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ABSTRACT

The ΛCDM model has been the standard model of cosmology for several decades. With
the increasing precision of current and upcoming measurements, we now have a unique op-
portunity to test this model with greater significance. A central focus of modern cosmology
is the search for evidence of cosmic inflation. Its most promising signature is the detection
of a distinct pattern in the polarization of the CMB, known as primordial B-modes, which
can only be generated by gravitational waves during the inflationary epoch. However, one
of the critical challenges in detecting B-modes arises from foreground emissions within our
Galaxy, which dominate the CMB signal. Current experiments lack the power to fully
disentangle these foregrounds, making a definitive detection of inflation elusive.

In this thesis, we aim at building upon current knowledge of foregrounds from obser-
vational data by developing a capability of simulating a diffuse foreground components
that accurately captures their statistical properties. We focus specifically on thermal dust
emission, which is one of the primary contaminants in polarized CMB signals. The first
work consists in the development of the necessary estimators for measuring the level of
non-Gaussianity using Minkowski functionals, in particular in the dust component which
are currently in the PySM3 package, an algorithmic environment which gathers the efforts
by the entire CMB community in order to understand, characterize, model and simulate
foreground emissions. In the second work, we introduce ForSE+, a Python package based
on Neural Networks, designed to generate non-Gaussian thermal dust emission maps at ar-
cminute resolution and in polarization, using the available information from data, with the
capability of producing random realizations of small-scale structures, a feature which is
essential for implementing simulations in the ForSE+. We validate these maps to ensure
that their statistical properties, including power spectra and non-Gaussianity, align with
real observational data.

These realistic simulations will be crucial for future studies of the impact of non-
Gaussian foregrounds on CMB analysis, including lensing reconstruction, de-lensing, and
the detection of cosmological gravitational waves in CMB polarization B-modes. They will
significantly enhance the analysis of CMB data in upcoming experiments, such as those
from the Simons Observatory and CMB-S4, ultimately pushing the boundaries of precision
cosmology.
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Introduction

From the steady-state model to the hot big-bang scenario where the Universe is observed
to expand, and recently, at an accelerating rate, the understanding of human being for our
Universe is constantly evolving. Passing from inflation, quasi-exponential expansion in the
early Universe, to the dark energy which comes into dominance only recently, mysteries
unanswered exist and wait for more insight. From the measured acoustic peaks in the
CMB to the observed luminosity of type Ia Supernovae, every object and structure in the
Universe tells a part of the story.

In this Thesis, we focus on the CMB radiation, which free streamed since when the
Universe was only 380000 years old and has remained to the present day, with the age of the
Universe being 14 billion years. Many of he CMB prediction has been verified by precise
measurements. The next major breakthrough is expected to come from the detection
of the primordial B-mode in the CMB polarization signal, a curl-like pattern that would
confirm the occurrence of inflation. The possible amplitude of very faint B-mode is pushing
down by detectors with ever-increasing sensitivity. Should this signal remain undetected,
alternative cosmological theories may need to be considered.

From an observational perspective, it is not straightforward to detect the extremely
weak B-mode signal which will require rigorous control over experimental systematics such
as instrumental noise. The main challenge, however, comes from foreground emissions
within our Galaxy, specifically thermal dust and synchrotron radiation, which are major
contaminants to the CMB polarization signal. While there are methods to separate the
foregrounds from the desired CMB signal, residual foregrounds are inevitable and can affect
statistical analyses of the CMB, including two-point correlation functions (or power spectra
in Fourier space) and higher-order statistics like non-Gaussianity.

Knowledge from observational side is of vital importance to understand the foregrounds,
which is currently limited in terms of both frequency range and resolution, mostly derived
from the dedicated experiments for CMB detection. Modeling the foregrounds is crucial
to bridging the gap between the experimental knowledge and the foregrounds at smaller
scales and unexplored frequencies.

In this Thesis, we investigate the thermal dust maps from two foreground models.
One is PySM3, which integrates the latest development of the widely used PySM2 from
the PanEx GSWG. In particular my contribution consists in implementing the suitable
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estimators to measure the level of non-Gaussianity in the newly obtained maps. The other
is called ForSE+, with important extensions to the previous version of ForSE. In this
work, rooted in machine learning which absorbs and reproduces information from existing
data, we reach the arcminute scale for simulating thermal dust, as required by operating
and future B-mode observations, and we comprehensively validate the produced maps
from various perspectives, such as power spectra and level of non-Gaussianity. These new
foreground models provide essential ingredients in the integrated pipeline to obtain the
estimation of cosmological parameters.

This Thesis is organized as follows.
In Chapter 1, we introduce the standard model of cosmology, the ΛCDM, based on

Einstein’s GR. The cosmological principles are valid at largest scales, postulating a smooth
background. On top of this background we then consider small fluctuations which grow to
form the structures in the Universe. The initial condition for these fluctuations are widely
believed to set by the inflation, which we will discuss in details at the end of this Chapter.

In Chapter 2, we focus on the basics physics and mathematics for describing CMB,
which represents one of the most powerful probe of inflation. After that we discuss about
the shape of observed power spectra of CMB total intensity and polarization, highlighting
the specific pattern in the polarized CMB map that can only be sourced by the tensor per-
turbations during inflation. Before closing this Chapter, we review the latest measurements
of CMB signals and highlight several future experiments.

In Chapter 3, we present the current knowledge about foregrounds, including the physi-
cal mechanism for them, the phenomenological modeling for different components and their
observed properties. We then describe how they contaminate the detection of CMB signal,
in terms of both the power spectrum and higher order statistics such as non-Gaussianity.
Methods to separate the contribution from foregrounds to CMB are then introduced. The
understanding of foregrounds is limited by the observational constraints and we review the
latest models that try to extrapolate the acquired knowledge to the uncovered frequencies
and resolutions.

In Chapter 4, we present our contribution to the new version of PySM3 package. We
begin with a summary of the new aspects of PySM3 compared with the older version,
which include implementation of new models for foregrounds and new templates. We then
introduce the basic properties of Minkowski functionals, with which we try to measure the
level of non-Gaussianity contained in the maps from new models.

In Chapter 5, our work dealing with the exploitation of machine learning techniques in
order to simulate small scales of foregrounds is presented. The ForSE+ model extends the
capabilities of its predecessor ForSE by reaching smaller scales and enabling the generation
of random realizations. We first introduce the fundamentals of neural networks and the
basics of the status of the art of the implementation. We then describe the new approach
for reaching arcminute scale resolution in polarization and after detailing the new model,
we thoroughly validate the generated maps from various perspectives.

Finally, in the Conclusions, we summarize the main results of this thesis, which include

2



the development of new foreground models and open a new area of research for the actual
simulation of the CMB contaminants in polarization and reaching the arcminute resolution.
We also discuss the potential applications in the context of cosmological inference from
CMB observations.
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1
ΛCDM Cosmology

Let us talk about the universe!

The current standard model of cosmology is the ΛCDM model, which we describe in
extreme synthesis here in this first Chapter: as we discuss below, the universe today is
expanding and dominated by dark energy (Λ) and cold dark matter (CDM), and it
assumes that Einstein’s general relativity (GR) is the correct theory of gravity on cosmo-
logical scales, where the geometry of space is almost flat. We now briefly address these
main features.

• Λ, the cosmological constant, is the simplest form of the dark energy, which is the
component responsible for cosmic acceleration (Riess et al., 1998; Perlmutter et al.,
1999). It was first introduced by Einstein (Einstein, 1917) in his field equations to
counterbalance the effect of gravity and achieve a static universe, which was the
accepted view at that time. Later, it has been recognized as capable of causing
cosmic acceleration, interpreted as the energy density of empty space, or vacuum
energy, supported by current cosmological measurements.

• Cold dark matter, the matter interacting at most weakly with light proposed to
explain the the stability and growth of structure in the universe (Zwicky, 2009; Rubin
& Ford, 1970). It is thought to be non-baryonic (matter other than protons, neutrons
and electrons1), does not interact with ordinary baryonic matter and radiation except

1Although electrons are not baryons, they are interestingly classified as baryons by the cosmol-
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through gravity and possibly weak interactions which makes it difficult to detect,
hence the name “dark”, and has negligible energy momentum compared to mass,
hence “cold” (Bertone & Hooper, 2018).

• Ordinary matter, observed as atoms, chemical elements, gas and plasma.

Besides the the inclusion of the main components in the universe, ΛCDM also implies a
dynamical thermal history starting from a big bang, which is an extremely hot and dense
state in the early stages of the cosmological evolution, which lasts for about 13.8 billions
years (Planck Collaboration VI, 2020). At early times all particles are constantly colliding
with each other and are thus in a thermal equilibrium state. Then particles fall out of
thermal equilibrium when their interaction rate drops below the expansion rate of the uni-
verse. When the universe is at the age of t ≈ 1 second, neutrinos decouple from the thermal
bath constituting the cosmic neutrino background. After that, light elements, mostly
hydrogen, helium and lithium, begin to form within t ≈ 3 minutes (Weinberg, 1977) and
this process is called Big Bang nucleosynthesis (BBN). At around t ≈ 380000 years, the
universe has cooled enough for the decoupling between photons and electrons which leads
to the formation of the first stable neutral hydrogen atoms, a process which is known as
recombination, producing the cosmic microwave background (CMB) which we ob-
serve. After recombination the universe remains in a neutral state and this epoch is usually
known as Dark ages because there are no light sources other than the gradually diluting
cosmic background radiation2, and the gas clouds begin to collapse, silently in the dark
environment with no visible light. The first stars—called population III stars—form
when t ≈ 100 million years, and emit ultraviolet light to heat and ionize the surrounding
gas, leading the universe to a reionization state. The first galaxies start to appear nearly
at t ≈ 1 billion years. Recently when t ≈ 9 billion years, dark energy starts to dominate
the universe causing an accelerating expansion until now.

As the standard model of modern cosmology, ΛCDM is supported by modern cosmo-
logical observations, and described by a small number of parameters, as we will see later
in this chapter. The observational data include the Hubble diagram that describes the
accelerating expansion of the universe observed in the light from distant galaxies and su-
pernovae (Riess et al., 1998; Perlmutter et al., 1999); light element abundances from BBN
(Cooke et al., 2018); temperature and polarization information in the CMB that agree well
with theory (Planck Collaboration V, 2020); and multiple probes of large-scale structure
in the distribution of galaxies (e.g., Anderson et al. (2012)). We will now have a detailed
look of ΛCDM model from a mathematical perspective.

ogists.
2There are also small amount of photons occasionally released by neutral hydrogen atoms, known

as the 21 cm line emission, which is produced by the spin-flip transition of the electron in the
hydrogen atom.
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1.1 Expanding Universe
We know the universe is expanding, which means that the physical distance between
galaxies increases with time. It is conventional to introduce the scale factor, a, and
comoving distance, χ. The comoving distance is defined in a coordinate system which
follows the expansion of the universe. The scale factor describes the expansion (or contrac-
tion, if possible) of the universe. Therefore the physical distance has the form of x = aχ.

A direct effect of the expansion is that the physical wavelength of a photon emitted
from a distant galaxy will be stretched out proportionally to the scale factor, which is called
cosmological redshift. And it is convenient to define the stretching effect as redshift z
through the ratio between the emitted and observed wavelengths:

1 + z ≡ λobs

λemit
=

aobs
aemit

=
1

aemit
, (1.1)

where in the last equality the scale factor today is assumed to be 1 by convention. The scale
factor, cosmological time, and redshift are equivalently used as markers of the cosmological
expansion and thermal history.

1.1.1 Friedmann-Lemâıtre-Robertson-Walker metric

Non-relativistic classical mechanics treats time as a universal quantity of measurement
which is uniform throughout space, and separate from space. In the context of special
relativity (SR), time cannot be separated from the three dimensions of space, because the
observed rate at which time passes for an object depends on the object’s velocity relative
to the observer. GR generalizes SR and modifies Newton’s law of universal gravitation,
providing a unified description of gravity as a geometric property of space and time, the
four-dimensional spacetime.

Spacetime has its own geometry. The appearance of objects at cosmological distances is
affected by the curvature of spacetime through which light travels. In GR, the fundamental
quantity is the metric which describes the geometry of spacetime. For example, in three-
dimensional Euclidean space, the physical distance between two points separated by the
infinitesimal coordinate distances dx, dy and dz is

dℓ2 = dx2 + dy2 + dz2 =
3∑

i,j=1

gij dxi dxj , (1.2)

where gij = diag(1,1,1) and
(
x1, x2, x3

)
= (x, y, z). In spherical polar coordinates, the

physical distance can be written as

dℓ2 = dr2 + r2( dθ2 + sin2 θdϕ2) =
3∑

i,j=1

gij dxi dxj , (1.3)
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where in this case gij = diag(1, r2, r2 sin2 θ) and
(
x1, x2, x3

)
= (r, θ, ϕ). In these two cases

dℓ2 is invariant so the metric plays a role that turns coordinate distances which may vary
with coordinates into the physical distances. We can write distances in spacetime as

ds2 =
3∑

µ,ν=0

gµνdx
µdxν , (1.4)

where the indices µ and ν range from 0 to 3, with the first one reserved for the time-like
coordinate (e.g., x0 = t) and the last three for spatial coordinates. In SR the spacetime is
Minkowski, where the metric is simply gµν = diag(-1, 1, 1, 1) and the associated spacetime
curvature vanishes. For GR, on the other hand, the metric will depend on the position and
incorporate the effects of gravity as spacetime curvature. We now want to derive the form
of metric in the expanding universe with a smooth background.

Cosmological Principles state that the universe, on scales much larger than galaxies,
has the following basic features:

• Homogeneity: any physical quantity does not depend on the spatial coordinate.

• Isotropy: any physical quantity does not depend on directions.

The spatial homogeneity and isotropy of the universe mean that it can be represented by
a time-ordered sequence of three-dimensional spatial slices, each of which is homogeneous
and isotropic and evolve in time. The metric now has the form

ds2 = −c2 dt2 + a2(t)dℓ2, (1.5)

where dℓ2 encodes the spatial metric on each slice and a(t) is the scale factor.
Homogeneous and isotropic three-spaces must have constant intrinsic curvature (Wein-

berg, 2008). There are then only three options: the curvature of the spatial slices can be
zero, positive or negative for flat, spherical and hyperbolic spaces, respectively, and dℓ2

can be written in spherical polar coordinates as (see proof in Weinberg (2008); Baumann
(2022))

dℓ2 =
dr2

1− kr2
+ r2( dθ2 + sin2 θdϕ2), (1.6)

where k can have three possible values for different geometries:

k =


> 0 Spherical ,
< 0 Hyperbolic ,
0 Flat .

(1.7)

It reduces to Eq.1.3 in the flat, Euclidean space case. Combing Eq.1.5 and 1.6, the complete
form for the metric is

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2( dθ2 + sin2 θdϕ2)

]
, (1.8)
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which is called the Friedmann-Lemâıtre-Robertson-Walker (FLRW, Friedmann (1922);
Lemâıtre (1931); Robertson (1935); Walker (1937)) metric of cosmology.

In a flat universe with above symmetries and using Euclidean coordinates instead, the
metric has a simple form

gµν =


−c2 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

 , (1.9)

which is only a function of time.

1.1.2 Einstein equations

In order to determine how the function a(t) evolves with time, we need to know the
composition of the constituents in the universe, and the Einstein field equations. We will
discuss the constituents in the next Section and here we focus on the Einstein equations,
which relate the Einstein tensor describing the geometry, to the energy-momentum tensor
describing energy:

Gµν + Λgµν =
8πG

c4
Tµν , (1.10)

where Gµν is the Einstein tensor which depends only on the metric and its derivatives, Λ is
the cosmological constant, G is the Newton’s constant, and Tµν is the energy-momentum
tensor, a function of the constituents of the universe. More detailed descriptions of Einstein
equations can be found in any book/lecture notes on GR, such as Blau (2022).

Homogeneity and isotropy impose constraints not only on the geometry of the space-
time, but also on the distribution of matter and energy, leaving us with a energy-momentum
tensor being that of a perfect fluid, which is parameterized only by its global energy density
ρ(t) and pressure P (t) as

Tµ
ν = gµλTλν =


−ρc2 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 , (1.11)

where ρc2 and P are the energy density and pressure in the rest frame of the fluid.
By using he FLRW metric (Eq.1.8) and the Einstein equations (Eq.1.10) along with

the expression of the energy-momentum tensor (Eq.1.11) we can derive the Friedmann
equations which determine the cosmological expansion, which take the form

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
,

Ḣ +H2 =
ä

a
= −4πG

3

(
ρ+

3P

c2

)
,

(1.12)
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where we have also defined the Hubble parameter, H ≡ ȧ/a. We note that the above
equations are not independent. The first one is known as Friedmann Equation, while the
second one is the Ray Choudhury equation, which can be obtained through the Einstein
equations and conservation of the energy-momentum tensor. These are the fundamental
equations describing the expansion in a homogeneous and isotropic universe (i.e., a FLRW
universe with the metric in Eq.1.8), which establish the relationship between the time-
dependent scale factor and the time-dependent pressure and energy density of the cosmic
fluid.

We now focus on the description of the cosmological constituents that we have antici-
pated in the current context. Before that, we conclude this Sub-Section with the definition
of the comoving horizon as

η(t) ≡
∫ t

0

cdt′

a (t′)
. (1.13)

No information could have propagated further on the coordinate grid than η since the
beginning of time. Therefore, regions separated by distances greater than η are not causally
connected. The comoving horizon can also be written as

η(a) =

∫ a

0
d ln a′

c

a′H (a′)
. (1.14)

Therefore the comoving Hubble radius, 1/aH, is the approximate distance over
which light can travel in the course of one expansion time, i.e., the time in which the scale
factor increases by a factor of e.

1.1.3 Cosmic constituents

The ρc2 in Eq.1.12, coming from the energy-momentum tensor (Eq.1.11), should be un-
derstood as the sum of all kinds of cosmological energy densities. We can first obtain
the evolution of total energy density and momentum with time by utilizing the continuity
equation for energy conservation and Euler equation for momentum conservation in the
covariant form of GR:

∇µT
µ
ν = 0. (1.15)

Solving the time-time component of these equations leads to the energy conservation
in the cosmological context:

ρ̇+ 3
ȧ

a

(
ρ+

P

c2

)
= 0. (1.16)

Most of the cosmological constituents can be parameterized in terms of a constant
equation of state, ω = P/(ρc2), which allows to integrate directly Eq.1.16 and obtain

ρ ∝ a−3(1+ω). (1.17)

We can distinguish three kinds of cosmological constituents through the different values
of the equation of state.
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• Radiation. This component is used to denote anything having a pressure equal to 1/3
of the energy density which includes relativistic particles such as photons. Eq.1.17
gives ρ ∼ a−4, showing that the dilution receives effects from both the expanding
volume and the redshifting of the particle energies.

• Matter. In this case the pressure is much smaller than the energy density, P ≪ ρc2.
Assuming ω = 0, Eq.1.17 gives us ρ ∼ a−3, which corresponds to the dilution of
the energy density simply because the expansion of the volume. Matter includes
ordinary matter and dark matter, as we mentioned at the beginning of this chapter.

• Dark Energy. This component has a negative pressure P = −ρc2 and does not dilute
with the expansion of the space, having a constant energy density, ρ ∼ a0.

We now have the evolution of ρ of each single fluid as a function of the scale factor, and
therefore we can solve the time-dependence of the scale factor treating the cosmic fluid as
a mixture of each component and rewrite the equations in Eq.1.12:(

ȧ

a

)2

=
8πG

3

∑
i

ρi −
kc2

a2
,

ä

a
= −4πG

3

∑
i

ρi (1 + 3wi) .

(1.18)

It is convenient to work with the dimensionless fractional density parameters of
each component, Ωi, which is defined as the ratio of physical density relative to the
critical density, ρcrit,0

3:

Ωi ≡
ρi,0

ρcrit ,0
, i = r,m,Λ, ... (1.19)

where ρcrit,0 is the total energy density of universe when the universe is flat and is defined
via ρcrit,0 = 3H2

0/(8πG) by setting k = 0 (flat) in the first equation of Eq.1.12. H0 is
the Hubble constant, the Hubble parameter evaluated at today, t = t0. r and m refer to
radiation and matter component respectively. With these fractional densities defined, the
first equation of Eq.1.18 can now be written as

H2

H2
0

= Ωra
−4 +Ωma−3 +Ωka

−2 +ΩΛ, (1.20)

where we also introduce curvature density parameter, Ωk ≡ −kc2/H2
0 . If Ωk = 0, i.e.,

the universe is flat, the total density is equal to the critical one. It is one of the central

3We will use the subscript ’0’ to indicate quantities observed today from now on, unless stated
otherwise.
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tasks in modern cosmology to measure these density parameters and hence determine the
composition of the universe.

For simplicity, here we focus on the case where there is only one dominating component,
which is a valid approximation for most of the cosmological time since different components
have different scalings with expansion, except at the epochs where two or more components
are comparable (Baumann, 2022). Also, assuming flatness, by combining Eq.1.20 with
Eq.1.17 we can get time dependence of the scale factor for different eras dominated by
different component:

a(t) ∝

 t2/3(1+wi)
wi = 1/3 t1/2 RD, Early Universe > z ≳ 3000,

wi = 0 t2/3 MD, 3000 ≳ z ≳ 0.5,

eH0
√
ΩΛt wi = −1 ΛD, 0.5 ≳ z.

(1.21)

RD, MD and ΛD stand for radiation dominated, matter dominated and dark energy dom-
inated areas, which are three periods in the cosmic history (specified by the redshift z)
when the specific component dominates the energy density. For each period the scale fac-
tor has a different dependence with time, recording the expansion/contraction history of
the universe. The indicated redshift intervals in Eq.1.21 are determined by the measured
abundances of cosmological components, anticipating the subject of the next Sub-Section.

1.1.4 Cosmological Abundances

A number of cosmological observations determine the observed abundances of cosmological
components. Most of these are based on the dynamics and behavior of cosmological per-
turbations, which are the subject of the next Section. Here we just conclude the current
one by quoting the constraints deriving from the Planck satellite, which is a full-sky sur-
vey with multi-frequency bands to measure CMB and other astrophysical signals, giving
observed values as4 (Planck Collaboration VI, 2020)

H0 = (67.66± 0.42)km/s/Mpc,

ΩΛ = 0.6889± 0.0056,

Ωm = 0.3111± 0.0056,

ΩK = 0.001± 0.002,

Ωr = 9.2364× 10−5.

(1.22)

at 68% confidence level (CL). The matter density can be divided into two components as
Ωbh

2 = 0.02233 ± 0.00015,Ωch
2 = 0.1198 ± 0.0012, where b and c stand for baryons and

cold dark matter. h is defined via H0 = 100h for mathematical convenience. The fractional
density for radiation is derived using results in (Planck Collaboration VI, 2020), since this

41Mpc = 106pc, where pc is a distance unit in astronomy and short for parsec and 1pc ≈
3.09× 1016 m.
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paper does not give the estimated values directly, and it is negligible compared to the other
abundances at present.

We see that the dominant species are the dark energy and dark matter which consists
of around 95% of the total energy density hence the name of ΛCDM model, while the
normal matter only contributes to 5%. The contribution from cosmological curvature is
zero within errors.

1.2 Linear Perturbations
In this Section we go beyond the assumptions of Homogeneity and Isotropy, describing
linear cosmological perturbations.

We separate metric and energy-momentum tensors in background and linear perturba-
tions, depending on both space and time, writing

gµν(t,x) = ḡµν + δgµν(t,x),

Tµν(t,x) = T̄µν + δTµν(t,x),
(1.23)

where barred quantities are from the smooth background and terms starting with δ are the
perturbations upon the background values.

The assumption of linearity relies on the approximation of evolution equations (Boltz-
mann, Einstein and conservation equations) to first order in the perturbations, ignoring
higher orders and backreaction of the perturbations onto the background. We now proceed
to the classification of linear cosmological perturbations, focusing on the quantities which
are relevant in this Thesis, and pointing the reader for a full treatment and more details
to Baumann (2022); Weinberg (2008); Dodelson & Schmidt (2020).

1.2.1 Scalar-Vector-Tensor decomposition

From now on we define units in which the speed of light is one. We first perturb the FLRW
metric (1.9) by a small amount and define

g00(t,x) = −1 + h00(t,x),

g0i(t,x) = a(t)h0i(t,x) = a(t)hi0(t,x),

gij(t,x) = a2(t) [δij + hij(t,x)] ,

(1.24)

where h00, h0i, hij are metric perturbations as functions of space and time to the first order.
It will be useful to perform a scalar-vector-tensor (SVT) decomposition of the pertur-

bations following the decomposition theorem, which states that perturbations of each
type—scalar, vector, and tensor—behave differently under spatial rotations and evolve in-
dependently at linear order. Therefore Einstein equations for scalars, vectors and tensors
also do not mix at linear order and can be solved separately. We are most interested in
scalar perturbations to the metric since these couple to the density of matter and radiation
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and ultimately are responsible for most of the structures we observe in the universe. Vec-
tor perturbations are usually associated to rotational velocity fields that are usually not
interesting since they decay due to expansion. Tensor fluctuations in the metric, that are,
gravitational waves (GWs) which distort the spacetime as they pass by, are not coupled
to the density and thus are not responsible for the large-scale structure of the universe,
but they do induce anisotropies in the CMB which turn out to be a unique signature of
processes in the early universe, which is the focus of next Section and next Chapter.

We now discuss how to do perform the SVT decomposition to the perturbations in
Eq.1.24. h00 in Eq.1.24 is a three-scalar since it does not have a spatial index and remains
unchanged under spatial rotations. Therefore we parametrize it with a scalar function

h00 = −2Z. (1.25)

The time-space perturbation h0,i is a 3-vector which can be decomposed into the gra-
dient of a scalar function and a divergence-less vector function

h0i = ∂iA︸︷︷︸
scalar

+ B̂i︸︷︷︸
vector

. (1.26)

where we define the scalar and vector contributions respectively.
The space-space component, hij , is a symmetric 3-tensor and be be written as a com-

bination of three parts

hij = Cδij + ∂⟨i∂j⟩D︸ ︷︷ ︸
scalar

+ ∂(iÊj)︸ ︷︷ ︸
vector

+ Ĥij︸︷︷︸
tensor

, (1.27)

where

∂⟨i∂j⟩D ≡
(
∂i∂j −

1

3
δij∇2

)
D,

∂(iÊj) ≡
1

2

(
∂iÊj + ∂jÊi

)
.

(1.28)

The hatted quantities are divergence-less, ∂iB̂i = ∂iÊi = ∂iĤij = 0 and the tensor pertur-
bations is also traceless, Ĥ i

i = 0.
Until now, we have identified four scalar functions (Z, A, C, D), two transverse vectors

(B̂, Ê) and one tensor (Ĥ) which in total makes 10 degrees of freedoms (D.O.F.) for the
symmetric 4-tensor (one for each scalar, two for each vector with divergence-less constraint,
two for the tensor with divergence-less and traceless constraint). In the next Sub-Section
we show that not all of them have independent physical meaning, and focus on the relevant
degrees of freedom.
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1.2.2 Gauge choice

Gauges in cosmology are simply reference frames which are close to the comoving one,
so that coordinate shifts contribute to cosmological perturbations at linear level. The
simplest example is the h00, i.e. the time shift, which can be set to zero if all observers
adopt the same cosmological time as their time coordinate. We do not derive the necessary
algebra here, referring to original works (Bardeen, 1980) for a complete treatment. We
limit ourselves to define the gauge-invariant variables, and the one adopted in the gauge
that, historically, have been used most, i.e. the conformal-Newtonian one. With this
limit we can say that physically independent quantities are two for scalars, one for vectors
(which we do not define as we’re not focusing on them in this Thesis), while tensors, being
unaffected by gauges by construction, are automatically gauge invariant. The most popular
choice is the Bardeen variables (Bardeen, 1980):

ΦA ≡ Z +
1

a

∂

∂η

[
a
(
A−D′)] ,

ΦH ≡ −C +
1

3
∇2D − aH

(
A−D′) , (1.29)

where η is the conformal time defined as dη = dt/a(t) and the prime represents the deriva-
tive with respect to η.

In the conformal-Newtonian gauge, where D = A = 0, we have ΦA = Ψ and ΦH = −Φ.
Then the scalar part of the metric with perturbations in Eq.1.24 reads

g00(x, t) = −1− 2Ψ(x, t),

g0i(x, t) = 0,

gij(x, t) = a2(t)δij [1 + 2Φ(x, t)],

(1.30)

where Ψ and Φ are two gauge-invariant variables, the so-called Bardeen potentials,
representing the two D.O.F for scalar perturbations. They correspond to Newtonian po-
tential and spatial curvature respectively. The tensor part of the metric perturbations is
gauge-invariant and has the form of

gij(x, t) = a2(t)[δij +Hij(x, t)], Hij =

 h+ h× 0
h× −h+ 0
0 0 0

 , (1.31)

where h+ and h× are the two components of the divergence-less, traceless, symmetric
tensor, which corresponds GWs in GR.

This reasoning is extended similarly to the energy-momentum tensor Tµν , which will
include perturbations to the density, pressure, velocities and so on (see e.g., Baumann
(2022)). One important gauge-invariant variable which is a linear combination of pertur-
bations both in the metric and matter (i.e., all species including radiation), can be defined
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as

R ≡ −C +
1

3
∇2E − aH(v +A), (1.32)

where v is the scalar part of the perturbations to the velocity in the energy-momentum
tensor and R is called curvature perturbation since it reduces to the intrinsic curvature
of the spatial slices in the comoving gauges. We will see in next Section that R is useful
when describing initial conditions.

1.3 Inflation
In this Section we introduce the most important process concerning the very early universe,
which is currently under active investigation in cosmology, responsible for the growth of the
initial size of the universe to the present. Since the dynamics corresponds to an initial and
transient phase of accelerated expansion, the process is known as Inflation. We will briefly
review the problems which Inflation might solve, and then define the inflationary quantities
concerning initial conditions for perturbations, which are relevant for this Thesis.

1.3.1 Problems of the pre-inflationary cosmology

Inflation is capable of providing a framework where at least two well-known problems that
affect a cosmology based on radiation and matter only. We briefly describe them here and
refer to Baumann (2009) for a more detailed description.

• Horizon problem. We have a precise measurement of the temperature of the
CMB photons which are observed to be nearly isotropic, with the fluctuations at
different directions only at the level of 10−5. However the information travels only
with a limited speed, which define a causal horizon beyond which there is no way
to communicate. After the decoupling, photons travel freely in the universe so the
only chance for them to synchronize their temperature is before decoupling, but
constrained in the horizon. The horizon at decoupling corresponding to an angular
scale of about one degree, which means that photons with separation larger than
one degree have no chance to interact and the probability for them to have the same
temperature is almost zero, which however happens in our real universe.

• Flatness problem. It arises from the observation that the current density of the
universe is extremely close to the critical value, or the universe is very close to flat,
as we explained in Sec.1.1.2. Given that any deviation of the total density from the
critical value would increase rapidly over cosmic time, this implies that the early
universe must have been even closer to flatness, with a deviation of one part in 1062

or less. Cosmologists are puzzled by how the initial density became so finely tuned
to this ‘special’ value.

The Inflation model is a theoretical framework (Guth, 1981; Sato, 1981; Starobinsky,
1982; Linde, 1982; Albrecht & Steinhardt, 1982) proposed to solve these problems, which
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describes a quasi-exponential expansion of space in the early universe, thus serving as an
modification to the ΛCDM model at early times. The inflationary epoch is believed to have
lasted from 10−36 seconds to between 10−33 and 10−32 seconds after the Big Bang, during
which the universe expands roughly 27 orders of magnitude. This offers an explanation to
the horizon problem: before inflation physical interactions can happen within the horizon
at that time, then after inflation the scales are stretched to be much larger than the horizon.
At the same time inflation solve the Flatness problem by stretching the universe.

Within the inflation framework, a wide variety of mathematical models have been
studied in the literature (for a extremely comprehensive review of inflation models see
Martin et al. (2014), see also Baumann (2009)) and in fact many of them can fit the
observations.

The simplest and most popular ones are the single-field slow-roll inflation (Linde,
1982; Albrecht & Steinhardt, 1982), based on the assumption that inflation is driven by a
single scalar field, ϕ, slowly rolling down a potential well toward its true ground state, al-
though such kind of scalar field is unknown. We typically define two slow-roll parameters
to quantify slow roll, ϵsr and δsr, although different forms exist. Inflation ends when
the scalar field reaches the potential minimum and and no longer slowly rolling. At this
point, the field has significant kinetic energy so it oscillates around the minimum then
finally the scalar field decays into lighter particles, which eventually leads to a homoge-
neous, radiation-dominated universe. All the discussions below are within the framework
of single-field slow-roll inflation models.

Besides providing a solution to the above problems, after its initial proposal, inflation
was soon realized to be able to provide a natural mechanism for generating the perturba-
tions which are the seeds for the formation of the cosmological structures (Bardeen et al.,
1983). Within inflation theory, quantum fluctuations are first generated in the very early
Universe when the relevant scales are causally connected. Then they are stretched outside
the horizon by inflation and are frozen all the way to the moment when they re-enter
the horizon and finally serve as initial conditions for the growth of structures in the uni-
verse. As we discussed in the Section 1.2.1, the most significant kinds of perturbations
produced during inflation are scalar and tensor ones because their dynamics allows them
to be observable at the present epoch.

1.3.2 Fourier transform and power spectra

In cosmology, we always focus on the statistical properties of the observables since all the
theories can only predict the ensemble average of a physical quantity. The choice is the
power spectrum—the two-point correlation in Fourier space. Mathematically, we enter
into the Fourier space with a Fourier transform

f(t,k) ≡
∫

d3xf(t,x)e−ik·x, (1.33)
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with the advantage that different k modes evolve independently in linear theories, where k
corresponds to a physical wavelength of λ = 2π/k. Statistical homogeneity, which means
translation invariance, implies that power spectrum is nonzero only if two scales consid-
ered k and k′ have k = k′. Further assuming statistical isotropy which means rotational
invariance, we can reduce the dependence of the power spectrum of k to k, where k = |k|.
Therefore the power spectrum can be defined as〈

f(k)f
(
k′)∗〉 = (2π)3δ3

(
k− k′)P (k), (1.34)

where <> is the ensemble average of different realizations of the field. δ3 is the Dirac delta
function which constrains k = k′. Physically speaking, the amplitude of P (k) offers a mea-
surement of the possibility to find two particles (galaxy, photon, ...) at the characteristic
distance λ = 2π/k, i.e., the particles are more likely to cluster at the distance of λ. Thus
P (k) provides a quantitative way to describe the distribution of the particles in a field.

1.3.3 Scalar perturbations

In principle, we should specify the initial density and velocity perturbations for each kind
of species. However in single-field inflation theories all known particles derive from the
decay of a single entity, the inflation scalar field, which generates adiabatic perturbations:
the fractional density perturbations are the same for all species,

δρs
ρs

=
δρ

ρ
. (1.35)

Using Einstein field equations, it is sufficient to specify the initial conditions in terms
of Ψ defined in Eq.1.30, then derive the perturbations for all species from Ψ.

We have defined the gauge-invariant curvature perturbation R in Equation 1.32. A
critical feature of this variable is that it is conserved when the perturbations moves outside
the horizon, transferring the perturbations in the scalar field ϕ during inflation to the
perturbations in the Bardeen potentials Ψ and Φ.

The scalar perturbations generated during inflation are commonly parameterized in
terms of the power spectrum of R:

PR(k) ≡ 2π2Ask
−3

(
k

kp

)ns−1

, ∆2
R(k) ≡

k3

2π2
PR(k) = As

(
k

kp

)ns−1

, (1.36)

where As is the power spectrum amplitude of scalar fluctuations at the pivot scale kp,
which is determined as the scale best constrained by the particular experiment (e.g., for
CMB observations the Planck team adopts kp = 0.05Mpc−1), and ns is the scalar power
spectral index. We also introduce the dimensionless power spectrum, ∆2

R, which gives
the variance in a logarithmic wavenumber interval. Both As and ns are related to the slow-
roll parameters in the inflation models.
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Before inflation was proposed, in 1970s, it was argued by Harrison, Zel’dovich and
Peebles that the initial perturbations of our universe are likely to have taken a power law
form with spectral index ns ∼ 1 (Harrison, 1970; Zeldovich, 1972; Peebles & Yu, 1970),
which means that ∆2

R(k) is scale-invariant from Equation 1.36. It is now called the
Harrison-Zel’dovich-Peebles spectrum for ns = 1. Inflation also predicts the ns to be close
to but not equal to 1. The phenomenology behind this occurrence is simple. Since each
perturbation at a given wavenumber k exits the horizon at different times during inflation,
it records the different dynamics in the inflationary process. Since the inflation had to slow
down reaching the minimum of the potential modes with smaller wavelengths, i.e. larger
ks, recorded a smaller expansion rate, and therefore, a smaller perturbation, making the
spectrum tilted towards ns less than 1. Constraints from CMB experiments of these two
parameters are As = (2.098 ± 0.023) × 10−9 and ns = 0.965 ± 0.004 (at kp = 0.05Mpc−1,
Planck Collaboration VI (2020)). The observed percent-level difference from the Harrison-
Zel’dovich-Peebles spectrum is precisely what is expected for fluctuations generated by
inflation.

1.3.4 Tensor perturbations

The most intriguing and robust prediction of inflation is a stochastic background of GWs, or
the tensor metric perturbations, δgij = a2Hij . These tensor modes from inflation are called
Primordial Gravitational Waves (PGW) since there are astrophysical processes in
the late universe like the merging of compact objects which can also produce GWs. Similar
to the curvature perturbations R, we can define power spectrum of Hij as

PH(k) ≡ 2π2ATk
−3

(
k

kp

)nT

, ∆2
H(k) ≡ k3

2π2
PH(k) = AT

(
k

kp

)nT−1

, (1.37)

with the amplitude AT and the spectral index nT defined for tensor perturbations. nT = 0
corresponds to a scale-invariant tensor power spectrum (which is different for the case of
scalar perturbations with ns = 1, for convention). In practice, the tensor amplitude is
usually expressed in terms of tensor-to-scalar ratio r:

r(k) ≡ PT (k)

PR(k)

k=kp
=

AT

As
, (1.38)

which is also depending on the slow-roll parameters, especially sensitively on the energy
scale of inflation. Various inflation models have different predictions for r, and therefore,
even in case of a non-detection of PGWs, the latter occurrence will provide insight into
the inflationary process. The best constraints for r comes from the observations of CMB
polarization data, which will be our topic for next chapter, reaching at the upper limit
r < 0.032 (Tristram et al., 2022), at a 95% confidence level, which is still within the
predictions of a few popular slow-roll models.

In the following chapter we will describe how the scalar and tensor perturbations gen-
erated during inflation leave their imprints on the distribution of CMB photons, especially
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to the CMB temperature and polarization power spectra. These perturbations will defi-
nitely have similar effects to the distribution to the matter field (including normal and dark
matter) and for those we refer the interested readers to any cosmology book (eg. Dodelson
& Schmidt (2020); Baumann (2022)).

1.3.5 Primordial Non-Gaussianity

Before concluding this Chapter, we briefly mention the area of research concerning devia-
tions of the inflationary perturbations from a pure Gaussian field, i.e. the description and
quantification of the PNG.

Even in the simplest inflationary models, involving a single slowly rolling scalar field,
a small and yet calculable amount of non-Gaussianity5 is predicted (Maldacena, 2003).
On the other hand, a wide range of inflationary models, based on varying assumptions
about the nature of scalar field(s), can produce significant PNG (Lyth et al., 2003; Bartolo
et al., 2004). A robust detection or strong constraints on PNG can distinguish between
competing mechanisms responsible for generating cosmological perturbations in the early
Universe. Different inflationary scenarios predict distinct amplitudes, shapes, and scale
dependencies of non-Gaussianity. Consequently, PNG provides complementary informa-
tion to the scalar spectral index of curvature perturbations and the tensor-to-scalar ratio,
helping to differentiate between inflationary models (Komatsu, 2010).

A way to phenomenologically parametrize the level of non-Gaussianity in the cosmolog-
ical perturbations is to introduce a non-linearity parameter fNL through Bardeen’s gravi-
tational potential defined in Eq.1.30 (e.g., Komatsu & Spergel, 2001), writing

Φ(x) = ΦL(x) + fNL

(
Φ2
L(x)−

〈
Φ2
L(x)

〉)
, (1.39)

where ΦL(x) denotes the linear Gaussian part of the perturbation. fNL quantifies the
strength of the PNG signal, and therefore is considered one of the cosmological parameters
which is suited to distinguish various inflationary models (Planck Collaboration IX, 2020).

Mathematically speaking, if the primordial fluctuations follow a Gaussian distribution,
they are fully described by their two-point correlation function, or equivalently, their power
spectrum (Coil, 2013). However, if the fluctuations are non-Gaussian, higher-order corre-
lation functions contain additional statistical information that the two-point correlation
function cannot capture. Specifically, the three-point correlation function, or its Fourier
transform known as the bispectrum, is particularly important as it is the lowest-order
statistic capable of differentiating between Gaussian and non-Gaussian perturbations. The
primordial bispectrum is defined by:

⟨Φ (k1) Φ (k2) Φ (k3)⟩ = (2π)3δ(3) (k1 + k2 + k3)BΦ (k1, k2, k3) . (1.40)

The bispectrum BΦ (k1, k2, k3) samples triangles formed by the three wave-vectors in
the Fourier space. The shapes of the triangles encode information about the physical mech-

5Any deviation from a Gaussian distribution is called non-Gaussianity.

19



anisms that can generate such non-Gaussian fingerprints in the early Universe. Different
types of non-Gaussianity are defined for the following distinct configurations of the k-modes
involved (Planck Collaboration XXIV, 2014).

• Local. This is characterized by a signal that is maximal for squeezed triangles with
k1 ≪ k2 ≃ k3 (or permutations) and in general occurs when PNG is generated on
very large scales .

• Equilateral. This peaks for a equilateral triangle with k1 ≈ k2 ≈ k3 .

• Folded. This is due to enhanced correlation for k1 + k2 ≈ k3 .

As a valuable complement to the bispectrum, Minkowski Functionals (Hadwiger, 1957;
Hikage et al., 2006) work in real space which makes them useful to handle complexities in
the analysis, such as masks. They are also used to describe the properties of signals which
are markedly non-Gaussian, such as the diffuse Galactic emissions, which will be subject of
the following Chapters. Other statistical methods for measuring non-Gaussianity include
wavelet scattering transform (Regaldo-Saint Blancard et al., 2020; Delouis et al., 2022;
Mousset et al., 2024) and skewness and kurtosis (Ben-David et al., 2015).

Non-Gaussian information in the initial conditions is transferred to observable quanti-
ties such as CMB anisotropies that we are going to introduce in the next Chapter, making
the CMB an excellent tracer of PNG (Komatsu, 2002; Planck Collaboration IX, 2020),
also incorporating non-linear mechanisms, such as gravitational lensing from large scale
structure, which also induce a deviation from a pure Gaussian field. Indeed, in the rest of
the Thesis, when discussing non-Gaussianity, we shall focus on the latter effect from the
point of view of CMB anisotropies, and the diffuse Galactic emissions, which, as we shall
see in Chapter 3, are markedly non-Gaussian.
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2
Cosmic Microwave Background

Let the universe shine for us!

In the previous Chapter, we have introduced the basic properties of ΛCDM cosmology.
Here we focus on CMB, which is constituted by photons decoupled from electrons at the
end of the recombination, which happened approximately 380000 years after the Big Bang
(z ≈ 1100, with a thickness of about ∆z = 90), as we discussed in the previous Chapter.
The spacetime region of the recombination is known as Last Scattering Surface (LSS)
and carries the oldest record of cosmic structure via electro-magnetic radiation, when the
matter dominated era in cosmology have already started (Eq.1.21).

We are interested in the angular distribution of the properties of CMB photons, both
total intensity and polarization, i.e., the anisotropies, as a function of the line of sight
(n̂). The average temperature of CMB is about T̄ = 2.7K with the fluctuations σ(T ) at
the level of 10−5, which we indicate as δT (n̂)/T̄ . Anisotropies in the linear polarization
are a few percent of these, as we shall wee.

The anisotropies we see today have two main contributions, an intrinsic component
originated in the LSS and another one due to perturbative effects collected along the line
of sight to us, writing here just total intensity for simplicity, as

δT

T̄

∣∣∣∣∣
today,0

=
δT

T̄

∣∣∣∣∣
LSS,∗

+
δT

T̄

∣∣∣∣∣
journey,∼

, (2.1)

and hereafter we will use 0, * and ∼ to represent today, LSS (recombination) and the time
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during the journey to us, respectively.
In Sec.2.2, after the definition of the statistics of interest in Sec.2.1, we will give an

overview of the physics of CMB, explaining the two terms in the right hand side of Eq.2.1.
In Sec.2.3, we shall focus on the linear polarization of CMB photons, which, thank to the
anisotropic response of the electro-magnetic scatter, is able to record local inhomogeneities
through the linear polarization of the outgoing CMB photon. Moreover, in Sec.2.4, we will
have a review of the achievements of current and past observations, and the science goals
of future ones.

The purpose of the content in this Chapter is to give a phenomenological overview of
CMB physics, along the main relevant equations describing this cosmological constituent.
For a full description, we refer the readers to pedagogical reviews and books on CMB, e.g.,
Hu & Dodelson (2002); Hu & White (1997) and Dodelson & Schmidt (2020).

2.1 Angular power spectrum for total intensity

anisotropies
In this Section we define the angular decomposition of CMB anisotropies, focusing on total
intensity, leaving the part concerning polarization to Sec.2.3.

Analogously to the Fourier transformation (Eq.1.33) for fields in three-dimensional
space, we can apply the spherical harmonic transformation to the CMB temperature per-
turbations on a two-dimensional sphere. This allows us to decompose the perturbations
into a linear combination of harmonic functions across different angular scales, writing

Θ(n̂, t) ≡ δT

T̄
(n̂, t) =

∞∑
l=1

l∑
m=−l

alm(t)Ylm(n̂),

aTlm(t) =

∫
dΩY ⋆

lm(n̂)Θ(n̂, t) ,

where T stands for temperature and we rename Θ(n) ≡ δT
T̄
(n̂). The subscripts ℓ,m are

conjugate to the real-space direction vector n̂, just like the variable k is conjugate to
the three-dimensional position x in Eq.1.33. The coefficients ℓ and m mark the angular
scale of the expansion. In particular, ℓ describes the equivalent of the wavelength in
the Fourier space, being related to the typical scale of variation in the angular domain
as ℓ approximately 180/ℓ degrees, while m varies from −ℓ to ℓ, denoting different angular
distributions at that scale. The complete set of eigenfunctions is Ylm(n̂), while the complete
set of eigenfunctions for the 3D Fourier transform is eik·x. All of the information encoded
in the temperature field is also contained in the (x, t)-dependent amplitudes alms.

Similar to density perturbations, theories cannot predict the individual value of alm
but can only make statistical predictions. In the same way as the definition of power
spectrum for the 3-D field in Eq.1.34, we can also define the variance of perturbations for
each ℓ−mode as angular power spectrum
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〈
aTlmaT∗

l′m′
〉
= δll′δmm′CTT

l , (2.2)

where <> is the ensemble average of different realizations of alms. There is no m-
dependence due to rotational invariance. We have access to only one realization of CMB
for observations, which is the one in our Universe. Thus for a given ℓ, there are 2ℓ+1 alms
with m varying, from which we can have an estimation of Cℓ as

Ĉl
TT

=
1

2l + 1

∑
m

alma∗l′m′ , (2.3)

where Ĉl
TT

is our estimator for the theoretical CTT
ℓ . Therefore there is an intrinsic uncer-

tainty in the estimation of CTT
ℓ from the observed CMB temperature map, just like esti-

mating the variances from its limited samples, which is the well-known cosmic variance
(Gawiser & Silk, 2000) and reads(

∆CTT
l

CTT
l

)
cosmic variance

=

√
2

2l + 1
. (2.4)

As expected, the uncertainty is proportional to the inverse of the square root of the number
of samples and restrict our ability to measure the properties with infinite precision. This
uncertainty decreases for small scales (large ℓ) and the large variance at small ℓ makes
large scales difficult to measure.

The angular power spectra Cℓs encode all the statistical information of a Gaussian field,
which is the case for the fluctuations in the temperature of CMB photons, if we assume
perfect Gaussianity in the inflationary perturbations and this is the case according to the
measurements from Planck (Planck Collaboration IX, 2020).

Before concluding this Section, we wish to introduce a basic phenomenological quan-
tity in cosmology, corresponding to the cosmological effective horizon, or, in the common
jargon of cosmologists, horizon. In the previous Chapter we introduced the concept of
causal horizon, namely the ones associated to pure geometry, without any other inter-
action. The effective horizon, corresponding to a typical distance where interactions can
occur, is another quantity, corresponding to the inverse of the Hubble expansion rate, H−1.
No quantitative demonstration of this statement exists, but its validity can be understood
by looking at the evolution equations in cosmology, where the spacetime dynamics of back-
ground and perturbations is set by the Hubble expansion rate.

Perturbations obey just the dynamics caused by expansion on super-horizon scale,
i.e. k ≪ aH, while they can interact and modify their shape if they are on sub-horizon
scales, i.e. k comparable or ≫ with respect to aH. The moment in which their scale is
comparable to the horizon, k = aH, is called horizon crossing. For CMB anisotropies, since
ℓ marks scales on the LSS, i.e. their coefficients on l ≪ lH , where the latter is the multiple
corresponding to the angle subtended by the horizon at the LSS, are on super-horizon
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scales; while, vice versa, anisotropies at l ≫ lH record perturbations on sub-horizon scales.
The value of lH , determined by cosmological abundances, expansion, etc., is approximately
200, i.e. one degree on the sky.

2.2 Observed CMB temperature power spectra
The main sources of anisotropies on the LSS due to the actual distribution of photons are
represented by density and velocity of the photon-electron system undergoing the scattering
towards observations. The first one simply descends from the Bose-Einstein statistics and
the Stephen-Boltzmann law, ργ ∝ T 4, meaning that denser zones are also hotter, and vice-
versa. The second one is just a Doppler effect caused by peculiar velocity of the scatterer
along the line of sight. These two effects have the form

δT

T̄

∣∣∣∣∣
∗

=

(
1

4
δγ − n̂ · ve

)
∗
, (2.5)

where δγ is the energy density contrast defined as (ργ − ρ̄γ)/ρ̄γ , n̂ is the direction of our
observation and ve is the bulk velocity of the electrons.

After recombination, the photons travel through the inhomogeneous universe and gain
(blueshift) or lose energy (redshift) when they fall in or climb out the gravitational potential
wells from evolving structures along the path (which is a null geodesic), which do imprint
anisotropies if the energy loss or gain when crossing an evolving structure do not balance.
Therefore the fluctuations from the time of recombination to now is an integration of
the gravitational redshift effect. Using geodesic equation and the metric (with scalar type
perturbations) in Eq.1.30, we can have the form of δT during the free streaming of photons,
which can be written as

δT

T̄

∣∣∣∣∣
∼

= −
∫ t0

t∗

dΨ +

∫ t0

t∗

(
Ψ̇ + Φ̇

)
dt

= Ψ∗ +

∫ t0

t∗

(
Ψ̇ + Φ̇

)
dt ,

(2.6)

where Ψ and Φ are the Bardeen potentials defined in last Chapter and we ignore the Ψ0

term since it is the same for all the photons observed by us thus only contributes to overall
shift, not the anisotropies.

By combining the two equations above, we derive the anisotropies of the CMB photons
that can be observed today as:

Θ(n)

∣∣∣∣∣
0

=

(
1

4
δγ +Ψ

)
∗︸ ︷︷ ︸

SW

−

(
n̂ · vb

)
∗︸ ︷︷ ︸

Doppler effect

+

∫ t0

t∗

dt
(
Ψ̇ + Φ̇

)
︸ ︷︷ ︸

ISW

. (2.7)
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The latter can be separated into the following three contributions.

• Sachs-Wolfe term (Sachs & Wolfe, 1967). It combines the intrinsic temperature
fluctuations coming from the density fluctuations of photons with the induced one
from the gravitational redshift at the time of recombination.

• Doppler term. The Doppler effect from the electrons bulk velocity, as we have
mentioned above.

• ISW. It describes additional gravitational redshift due to the evolution of potential
in the universe that photons travel through, which would disappear if the potential
is constant. From Eq.1.21, we know that for most of the history the universe was
matter-dominated and the potential was indeed constant. But at early times, the
residual radiation made it varying and contributed to the early ISW effect. At
late times, dark energy comes into existence, causing Φ to evolve again and leads to
the late ISW effect.

The physical quantities, δγ ,Ψ, Φ and the associated derivatives in Eq.2.7 all depend on
the initial conditions set by inflation and some approximations can be made at different
scales to make the equations of these variables easier to solve. We refer to Dodelson &
Schmidt (2020) for a complete treatment and only present the qualitative results here.

At large scales, i.e., at low ℓmultipoles, where ℓ ≪ ℓH , the fluctuations of CMB photons
were created by the super-horizon perturbations at recombination and Eq.2.7 becomes

Θ(n) ≈
(
1

4
δγ +Ψ

)
∗
, (2.8)

which is the SW effect. From adiabatic conditions (Eq.1.35) which is valid for super-horizon
scales, we can relate δγ to matter perturbations. In this hypothesis that the power spectra
are scale-invariant along with the primordial scalar power spectrum, ∆R, it can be shown
(Dodelson & Schmidt, 2020) that the CMB power spectra take the approximate and simple
form

l(l + 1)

2π
CSW
l =

As

25
, (2.9)

where As is amplitude defined in Eq.1.36.
For scales with ℓ ≫ ℓH , which are sub-horizon at decoupling, The approximations

adopted so far are not valid, as effects from the radiation pressure cannot be neglected in
the photon-baryon fluid, where photons are tightly coupled to electrons and protons.
The over or under density in the cosmological constituents cause gravitational inflow or
outflows of CMB photons, which is counterbalanced by radiation pressure, causing oscil-
lations which, in CMB physics, are normally known as acoustic oscillations. Peaks and
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Figure 2.1: CMB TT , EE and TE power spectra. Solid red lines are the theoretical
predictions from ΛCDM model assuming Planck 2018 cosmology (Planck Collabora-
tion VI, 2020). Blues dots are the results for the bandpower of Planck 2018, while
other data points are results from experiments showing in the legends. Notice at
small multipoles (ℓ < 30) x-axis are shown in logarithmic scale while at large mul-
tipoles (ℓ > 30) in linear scale. All the data points come from the NASA Lambda
website1, including ACTPol (Choi et al., 2020), SPTPol (Henning et al., 2018), BI-
CEP2/Keck (BICEP2 Collaboration et al., 2016).
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valleys in the overall distributions of them, projected onto the LSS, give rise to an oscil-
latory pattern in CMB anisotropies, at predictable multipoles given the initial conditions
and the adiabaticity assumption (Dodelson & Schmidt, 2020).

As it is intuitive, the corresponding pattern also imprints on baryons and creates char-
acteristic scales at which the galaxies have a high correlation. This feature is known as
baryon acoustic oscillations (BAO, Bassett & Hlozek, 2010) and manifests itself into
the power spectrum of density perturbations at later times.

Finally, on smaller angular scales, two separate effects contribute to the cut-off of
anisotropies. One is represented by the diffusion, or Silk, damping (Silk, 1968), simply
caused by the diffusion of radiation spending more time on sub-horizon regime. The second,
and more severe one, is caused by the thickness of the LSS, which prevents to distinguish
details on angular scales smaller than the one it subtends in the sky.

In the upper panel of Fig. 2.1, the best-fit CMB total intensity spectrum in solid red
line from the ΛCDM cosmology, along with the data in points from the quoted experiments,
is shown. Given a cosmology, the theoretical CMB power spectra can be calculated by the
standard numerical Boltzmann solvers, such as CAMB2 (Lewis et al., 2000; Lewis & Bridle,
2002) and CLASS3 (Lesgourgues, 2011). The predicted spectra then can be utilized to fit
the cosmological parameters through the comparison with observations. Being extremely
close to each other, the predicted and observed power spectra both present the features we
discussed, the large scale SW plateau, the acoustic oscillations, and the damping. Also, the
error bars well represent the achieved precision on these measurements, becoming larger
on large scales due to the cosmic variance.

Primary anisotropies are the ones generated by effects on the LSS. The ISW is therefore
the first example of secondary anisotropy, as it is injected on the CMB along the line
of sight. Before concluding this Section, we describe two more examples of important
sources of secondary CMB anisotropies acting, in particular, on CMB total intensity. For
a complete treatment, we refer to Hu & Dodelson (2002).

As we mentioned previously, light from forming structure sets the end of the Dark Ages,
and hits the inter-galactic medium, causing a fraction of electrons to be set free again. This
happens around z=6. The electrons could scatter with the photons again during their
propagation, partially smearing out the structure of primary anisotropies. The magnitude
of this effect is set by the optical depth τrei, which is an integration of the evolution of
the free electron density from reionization to today. It can be shown that the primordial
anisotropies produced at z ≈ 1100 are suppressed by a factor of e−2τrei , approximately,
due to reionization. The optical depth is much less than 1 ( τrei = 0.058 from latest
Planck results (Tristram et al., 2024), thus roughly 6% of CMB photons were re-scattered
at the reionization epoch), due to the overall reionization efficiency, and therefore the

1https://lambda.gsfc.nasa.gov/education/lambda_graphics/cmb_power_spectra.html
2http://camb.info
3https://lesgourg.github.io/class_public/class.html
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effect, although very important and measured with high precision, does not alter primary
anisotropies substantially. What’s more, this scattering only affects those perturbations
within the horizon at the time of reionization, i.e., large multipoles, leaving the very large
scales unaffected. Reionization brings more prominent features to the spectra of CMB
polarization, as we will see in the next Section.

CMB lensing is caused by deflection of photons caused by geodesics deviation around
evolving cosmological structures along the line of sight. It results in a blurring of total
intensity CMB anisotropies on scales where the deflection is relevant. It can be shown that
the typical rms of gravitational lensing deviations on CMB photons is about 2 arcmin-
utes for typical ΛCDM cosmology, so that, also in this case, the modification to primary
anisotropies is not substantial. Also, in this case, the most prominent features of gravita-
tional lensing are on the CMB polarization anisotropies, which is the subject of the next
Section. For more details on CMB lensing, we refer the reader to (Hu, 2000).

2.3 CMB polarization
Due to the anisotropic properties of the Thomson scattering, an incident quadrupolar
distribution in the intensity surrounding a last scatterer particle is recorded as linear po-
larization in the outgoing wave, as shown in Fig. 2.2.

The polarization of the any electromagnetic wave can be fully described by the Stokes parameters
(Rybicki & Lightman, 1985)

I = E2
x + E2

y ,

Q = E2
x − E2

y ,

U = 2ExEy cos (ϕx − ϕy) ,

V = 2ExEy sin (ϕx − ϕy) 1 .

(2.10)

where Ex and Ey are the amplitudes along x- and y- axis for the electric field and ϕx and
ϕy are the initial phase angles. I measures the total intensity of the radiation, while Q,U
describe its linear polarization and V is related to circular polarization. Eq.2.10 describes a
fully polarized radiation with I2 = Q2+U2+V 2, and corresponds, for the CMB blackbody,
to the total flux of radiation, parameterized by its temperature. As it is well known, the
scattering process in Fig. 2.2 is incapable of generating circular polarization, and therefore
we neglect V in the following.

From Eq.2.10 we see that Q parameter is the difference between the intensity along
the x-axis and that along the y-axis, while U is the difference between the intensity along
x′-axis and y′-axis, where x′ and y′ are rotated clockwise by 45◦ with respect to the original
x- and y-axis. It can be shown that the Stokes parameters, under rotation of the x- and
y-axis by an angle ϕ transform like

Q′ ± iU ′ = e∓2iϕ(Q± iU) . (2.11)

28



y

z

x

e−

Polarized

HotHot

Cold

Cold

Figure 2.2: Generation of CMB polarization from the Compton scattering with a
quadrupole photon distribution. Lines depict the intensity of photons along different
axes and hot clouds are shown in red, cold in blue. The dashed arrows represent the
directions of the propagation of photons. The solid black dot in the center is the
electron. Figure has been adapted from Dodelson & Schmidt (2020).
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Q and U are explicitly coordinate dependent. In cosmology it is convenient to adopt
another basis, which is the subject of the next Sub-Section.

2.3.1 E-B decomposition

The expansion in the angular domain of the quantity defined above needs to be performed
using spin 2 tensor spherical harmonics, due to the tensor nature of CMB polarization:

(Q± iU)(n̂) =
∑
lm

a±2,lm ±2Ylm(n̂) . (2.12)

It is convenient to decompose the polarization field in two components, even and odd
with respect to parity, corresponding to the gradient (E) and curl (B) mode of a tensor field
(Zaldarriaga & Seljak, 1997; Kamionkowski et al., 1997). The latter can be re-arranged in
maps as follows

E(n̂) =
∑
lm

aE,lmYlm(n̂), B(n̂) =
∑
lm

aB,lmYlm(n̂) , (2.13)

where aE,lm and aB,lm are the multipole coefficients of the E- and B-modes and can be
defined from linear combinations of the harmonic coefficients in Eq.2.12,

aEℓm ≡ −1

2
[a2,ℓm + a−2,ℓm], aBℓm ≡ − 1

2i
[a2,ℓm − a−2,ℓm] . (2.14)

It can be shown that the E and B-modes couple differently, because of their geometrical
properties, to cosmological perturbations defined in the previous Chapter (Hu & White,
1997). Specifically, the E modes are excited by all kinds of cosmological perturbations,
while B modes are excited only by vector and tensor modes. Since vector modes are
damped by the cosmological expansion, as we already mentioned, the B modes would be
then a proof of the existence of cosmological gravitational waves produced during inflation.

Similar to the definition of CTT
l we can also have power spectrum for the polarization

signal, written as 〈
aXlmaY ∗

l′m′
〉
= δll′δmm′CXY

l , (2.15)

where X, Y can be T,E,B modes.

2.3.2 Observed EE and TE power spectra

In the middle and bottom panels of Fig. 2.1, we show the power spectra for EE and TE,
respectively, also presenting best-fit and observed ones simultaneously.

We can identify several distinct features in EE spectrum compared with TT one. First,
due to the facts that polarization is sourced by CMB quadrupole and the quadrupole is
suppressed before recombination due to Compton scattering, the amplitude of polarization
spectra is smaller than that of total intensity. Second, like with temperature, the polar-
ization Cℓs also exhibit a series of acoustic peaks because the quadrupole in the fluid also
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undergoes acoustic oscillations. More quantitatively, EE power spectrum has peaks that
are out of phase with those in the TT spectrum since in the tight-coupling approximation
the quadrupole is related to the dipole, which is out of phase with the monopole, which
is the dominant contribution to the TT spectrum. Finally, the dipole is less affected by
photon diffusion so that the EE spectrum is less damped at small scales.

The TE spectrum combined and closely follows the feature of T and E-modes, following
the correlation between density and velocity perturbations on the LSS. It can be both
positive and negative, and is of larger amplitude than the EE signal.

Although not visible in Fig. 2.1, which is plotted in linear scale, a power in EE, TE
power spectra at ℓ < 10 is caused by cosmic reionization, i.e. the boost of anisotropies due
to re-scattering of CMB photons onto the population of free electrons generated by the
occurrence of electro-magnetic processes in structure formation. As we anticipated, the
effect is active on angular scales subtended by the horizon at the corresponding epoch, and
larger. We shall come back to this point in the next sub-Section.

2.3.3 CMB BB spectrum

In Fig. 2.3, we show the CMB BB spectrum in red lines, along with a collection of current
data. Two dashed lines correspond to the tensor perturbations generated during inflation
with different amplitudes, quantified by the tensor-to-scalar ratio r ≡ AT /AS . The signal is
much weaker than other spectra we see in Fig. 2.1. Two significant bumps at large scales are
the definite characteristics of primordial BB spectra. The reionization bump at ℓ < 10,
comes from the re-scattering process at reionization epoch, as mentioned earlier. The
recombination bump, peaking at ℓ ∼ 100, goes back to the last scattering at recombination
epoch. On smaller angular scales, the contribution is suppressed because oscillations,
although present and visible in the Figure, are not supported by gravitational potentials,
as in the case of the temperature anisotropies. These bumps provide us a potential window
to detect the existence of PGWs, which many on-going and future experiments are after,
as we will see in next Sub-Section.

The observedBB signal can also receive contributions from scalar perturbations through
CMB lensing effect. The latter is a second order effect in cosmology, made by forming struc-
ture acting on CMB anisotropies, and therefore in general it is capable of mixing E and
B, and in particular converting a small portion of E into B-modes (Hu & Okamoto, 2002).
The effect is dominating with respect to the tensor contribution on the arcminute scale,
while, marginally, the latter dominates on the degree scale or more, if the tensor amplitude
is high enough (Hu, 2000; Planck Collaboration VIII, 2020), as the solid red line in Fig. 2.3
shows. The lensing peak is centered around the arcminute scale, subtended by most dark

4http://bicepkeck.org/BK18_datarelease/BK18_components_20210607.txt
5https://lambda.gsfc.nasa.gov/product/act/act_dr4_spectra_info.html
6https://lambda.gsfc.nasa.gov/education/lambda_graphics/more/bb_upperlimits_

source.html
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matter lenses, still in linear regime, when the lensing deflection is most relevant for CMB
photons, roughly between redshift 1 and 3. The dotted red line is the total BB signal from
both lensing and tensor B-modes (for r = 0.03), which matches the latest results from the
joint constraints from BICEP/Keck, Planck and WMAP data (Bicep/Keck Collaboration
XIII, 2021). This is the most evident effect of lensing on CMB anisotropies. Other effects,
which are not central for the current discussion, are represented by the smearing of acous-
tic peaks, as well as the reprojection of anisotropies on arcminute and degree scale onto
smaller ones, where the contribution is actually relevant because of the fading of CMB
anisotropies due to the thickness of the LSS.

2.4 CMB measurements
In this Section, we review the achievements, the challenges, and future projects from the
observational side to detect CMB power spectra and understand the cosmological param-
eters, with a particular emphasis on the quest of primordial B-mode signal. The number
of CMB observations is actually high, and we apologize in advance if some of the efforts
have been omitted here, where we focus on the measurements which are more relevant in
this work.

2.4.1 Brief history of CMB measurements

The first ever recognized detection of CMB radiation was achieved by Arno Penzias and
Robert Wilson in 1964 (Penzias & Wilson, 1965), as a form of unexpected access in the
signal received by a horn antenna. With the help from theorists of nearby universities,
the latter excess was actually identified as the CMB (Dicke et al., 1965). The temperature
anisotropy was first detected by the COBE satellite in 1992 (Smoot et al., 1992), as shown
in Fig. 2.47, which mapped the whole sky in three microwave frequencies and provided the
definite evidence for the black-body spectrum of CMB (Mather et al., 1994), although with
a poor angular resolution, around 7◦. Improved observations came up with the WMAP
satellite, which made observations from 2001 to 2010 at five frequencies between 23 and 90
GHz at a resolution smaller than one degree (Bennett et al., 2013). WMAP also conducted
the first full-sky measurement of the polarization signal of CMB and Galactic foregrounds
at five microwave frequencies. Moving forward, the best full-sky CMB anisotropy data to
date has been provided by the Planck satellite, operating from 2009 and 2014, reaching
arcminute angular resolution, and improving sensitivity by a factor of about 10 with respect
to WMAP. Planck and WMAP have also observed diffuse Galactic foregrounds, in total
intensity and polarization, at the same frequencies, as well as extra-Galactic point sources.
The latest and final major release of Planck results was in 2018-2019 (Planck Collaboration
VI, 2020), with a recent update from Tristram et al. (2024).

Sub-orbital telescopes also provide a substantial contribution to the scientific commu-

7https://photojournal.jpl.nasa.gov/jpegMod/PIA16874_modest.jpg
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nity. The first direct detection of the E-modes had been achieved with DASI (Kovac et al.,
2002). The first detection of the gravitational lensing of the CMB was accomplished by
ACT (Das et al., 2011) through a measurement of the four-point correlation function in
the temperature maps. The B-mode lensing signal has been first detected by the SPTPol
receiver on the SPT, in cross-correlation with CIB (Hanson et al., 2013).

Concerning the primordial-B modes, the BICEP/Keck project located at the South
Pole at an altitude of 2800 meters first reported the detection of an excess over the lensing
B-mode expectation at 150 GHz (BICEP2 Collaboration et al., 2014), corresponding to
r ∼ 0.2, which turned out to be consistent with polarized Galactic dust emission in a joint
analysis combing multi-frequency data from Planck (BICEP2/Keck Collaboration et al.,
2015). Using data from BICEP2, Keck Array and BICEP3 projects, their 2021 science
results included measurements of the polarized microwave sky in 95/150/220 GHz on a
patch of 400-600 square degrees centered around the south celestial pole, with a resolution
at 20-30 arcminute. With this configuration, BICEP/Keck measures the polarized sky at
angular scales 50 < ℓ < 200, which are minimally affected by lensing B-modes, and combine
data with foreground-dominated channels from WMAP and Planck to better quantify the
signal of polarized Galactic foregrounds. The detected B-modes are shown in black dots in
Fig. 2.3, representing the tightest constraint up to date. Other datasets in Fig. 2.3 come
from ongoing efforts at the quest of CMB B-modes including PolarBear (POLARBEAR
Collaboration, 2022), SPT (SPT Collaboration, 2023) and ACT (Madhavacheril et al.,
2024), all of which are consistently upgrading their detectors to improving their sensitivity.

Fig. 2.58 shows the most recent constraints of r from different dataset and the tightest
constraint is r < 0.032 (Tristram et al., 2022), at a 95% confidence level, combining data
from BICEP/Keck 2018, last Planck PR4 release and BAO measurement.

Most relevant results exist concerning balloon-borne probes as well. We quote one of
the earliest evidences for the first three acoustic peaks and the flatness of the Universe, by
BOOMERANG (Masi, 2002) and MAXIMA (Hanany et al., 2000). More recent probes,
such as SPIDER (Spider Collaboration, 2022), have focused on polarization measurements.

2.4.2 Challenges of measuring CMB B-modes

The deployment of a number of observations briefly reviewed above requires the develop-
ment of a robust data analysis pipeline, in terms of original study of algorithms, simulations,
validation and actual data reduction. It is beyond of the scope in this Thesis to detail each
of the corresponding layer of analysis, and in this Sub-Section we give just a brief descrip-
tion of the various analysis phases. We leave more details to more comprehensive work like
(Partridge, 1995; Tristram & Ganga, 2007).

1. Instrumental systematics. Detectors transform the physical signal into electric-
ity, tens of times per seconds, for months, or year, in TODs, requiring an explicit and

8https://lambda.gsfc.nasa.gov/education/lambda_graphics/r_upper_limits.html
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most accurate knowledge of the detectors, such as noise properties, beam pattern,
response to the temperature variation and so on, as well as a reliable pipeline for
calibrating the voltage into physical units.

2. Pointing and Map-making. As we specified, TOD record the detected value for
the specific pixels, corresponding to a specific direction in the sky, and associated
time when the detectors. An accurate control of the pointing of the focal plane is
necessary in order to properly reconstruct the distribution of the sky of the signal.
Moreover, pixels are observed many times to control the noise level. It is necessary
to compress the time information and make a sky map which has one value for
each pixel on the sky, using techniques called map-making. The latter is not just a
coaddition because, in particular, it needs to take into account the noise properties,
in particular the time constants, which correlate noise properties on smaller time
intervals.

3. Component Separation. The maps consist of CMB, diffuse foregrounds, Galactic
and extra-Galactic sources. The sky maps at various frequencies can be seen as a
linear combination of different components. In order to extract most of the CMB,
which contains the cosmological information, component separation methods are
required in order to separate other components out. We will return to this topic in
a more detailed manner in the next Chapter.

4. Power spectra Estimation. With CMB maps which are extracted from a multi-
frequency dataset through component separation, we can perform the estimation
of the parameters. The information is usually compressed into power spectra, as
mentioned in Sec.2.1, which are the objects that are interfaced with parameter esti-
mation, also characterizing the noise in the angular domain, as well as taking care of
the existence of areas of the sky which are not observed. The latter effect, in partic-
ular, causes mode-coupling as well as EB mixing problems if represented through
harmonics defined on the sphere, which make Cℓ at different multipoles and between
different observables, correlated. The correlation can be inferred through the same
geometry of the observation, and therefore, it can be treated and controlled.

5. Parameter Constraints. Statistical tools are needed to find which of the intervals
of cosmological parameters can be compatible with observed spectra. MCMCs rep-
resent the most used methodology in order to get the posterior distribution of each
parameter given our cosmological model, such as energy density of different species
and the tensor-to-scalar ratio r, while marginalizing nuisance parameters such as
foreground signals. Obtaining the constraints on the parameters is not the end of
the analysis framework, on the contrary it provides the basic recipes for theorists to
consolidate our cosmological models or tend to search for new alternatives.
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2.4.3 Future CMB experiments

Tab.2.19 summarizes the basic configurations of the past, on-going and future CMB exper-
iments. In this Sub-Section we focus on the future projects trying to pursuit the PGWs.

Table 2.1: Completed, ongoing and planned CMB signal detection experiments,
including the name of the experiment, the duration, the angular scale range that
can be detected, the detection frequency and the type of experiment. The Table has
been adapted from the NASA LAMBDA website.

Project Time ℓmin ℓmax Frequency(GHz) Type

BOOMERanG 1997-2003 25 1025 90-420 Balloon
COBE/DMR 1989-1993 2 40 31.5, 53, 90 Satellite

WMAP 2001-2010 2 1200 23, 33, 41, 61, 94 Satellite
BICEP2 2010-2012 21 335 150 Ground

Planck 2009-2014 2 2500
30, 44, 70, 95, 150,
217,353,545,857

Satellite

Keck Array 2012-2020 21 335 95,150,220,270 Ground
POLARBEAR 2012- 50 2000 150 Ground

SPTPOL 2012- 50 8000 95,150 Ground
ACTPOL 2013- 225 8725 90,146 Ground
SPIDER 2015- 10 300 90,150,280 Balloon
BICEP3 2016- 21 335 95 Ground

Advanced ACTPol 2016- 225 8725 28,41,90,150,230 Ground
SPT-3G 2018- 50 11000 95,150,220 Ground

BICEP Array 2020- 21 335 30, 40, 95, 150, 220, 270 Ground
Simons Observatory 2024- 30 8000 27, 39, 90, 150, 220, 270 Ground

Simons Array Future 30 3000 90, 150, 220, 270 Ground
AliCPT Future 20 900 90, 150 Ground

LiteBIRD Future 2 200
40, 50, 60, 68, 78, 89, 100, 119,
140, 166, 195, 235, 280, 337, 402

Satellite

CMB-S4 Future 21 11000 20, 30, 40, 90, 150, 220, 270 Ground

With the start of observations this year (2024), SO (Ade et al., 2019), located in the
Atacama desert, Chile, at about 5200 meters altitude, consists of three 42cm-diameter SATs
to measure intermediate to large scales for about 10% of the sky, and one 6m-diameter LAT
to measure small scales on about 40% of the sky, at frequencies between 27 and 280 GHz.
Exploiting three highly sensitive low-resolution SATs is crucial for constraining degree-
scale B-modes at the necessary low noise levels, while the LAT observes small-scale lensing
B-modes in order to enable de-lensing of data from the SATs. The baseline program will
have a precision of σ(r) = 0.003 (at 68% CL), after the nominal five years of observation

9https://lambda.gsfc.nasa.gov/product/expt/
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(Ade et al., 2019). SO will also contribute to the science of neutrino mass, the reionization
epoch, and late-time physics such as galaxy evolution.

AliCPT (Li et al., 2018) is located in Tibet, China, at 5250-meter altitude, and will
observe at 90 and 150 GHz in order to provide the best ground measurement of CMB
polarization from northern sky, which will be useful for cross check with those observing at
south hemisphere. AliCPT will present sensitivity at σ(r) = 0.02 for its first phase (Ghosh
et al., 2022).

As a next-generation satellite project, LiteBIRD (LiteBIRD Collaboration et al., 2023)
is expected to perform a three-year full-sky survey in 15 frequency bands between 34 and
448 GHz, starting from late 2020s. By constraining large-scale B-modes LiteBIRD can
measure r at a precision of σ(r) = 0.001.

In the same next decade, the next-generation ground-based experiment, CMB-S4 (Abaza-
jian et al., 2016, 2019) will rely on 21 telescopes located at the South Pole and in the Chilean
Atacama desert to measure sky at centimeter to millimeter wavelength, beginning at early
2030s. Similar to SO, CMB-S4 has also planned SAT and LAT to focus on large and small
scales separately, but at unprecedented sensitivity, keeping a frequency range similar to
the SO one, ranging from 30 to 270 GHz. One of the main science goals of CMB-S4 is to
constrain the primordial tensor-to-scalar ratio at a precision of σ(r) ∼ 5×10−4 (Abazajian
et al., 2019).

As we can see in Tab.2.1, all the CMB experiments equip with detectors at around
150 GHz, where is the peak of CMB blackbody spectrum. Most of them also include low
frequencies down to 20 GHz, and high frequency up to 400 GHz, with the main functions
being quantifying the Galactic synchrotron emission and thermal dust emission at low and
high frequencies, respectively. In the next Chapter, we discuss physical characterization of
these foregrounds.
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Figure 2.3: CMB BB power spectra from observational data (points) and theoretical
prediction in solid red lines from ΛCDM model assuming Planck 2018 cosmology.
Blues dots are the results for the bandpower of Planck 2018, while other data points
are results from experiments showing in the legends. Data comes from the paper of
BICEP2/Keck 20184 (Bicep/Keck Collaboration XIII, 2021), ACTPol5 (Choi et al.,
2020). Other data points are from NASA Lambda website6, which includes Planck
(Planck Collaboration V, 2020), WMAP (Larson et al., 2011), SPTPol (Sayre et al.,
2020), Polarbear (POLARBEAR Collaboration, 2017).
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Figure 2.4: Cartoon illustrating three generations of satellite experiments of CMB
since the 1990s: COBE, WMAP and Planck from left to right respectively. The
upper part are the pictures of these three satellites, and the lower part is the detection
results of the corresponding satellites in 10 square degree sky area. It can be clearly
seen that the resolution is rapidly improving, and the Planck satellite is by far the
most accurate measurement,which has brought us into the era of precision cosmology.
Figure credit: NASA/JPL-Caltech/ESA.
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Figure 2.5: Constraints of the tensor-to-scalar ratio, r, from different combination of
existing datasets. Figure adapted from NASA LAMBDA website.
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3
CMB Foregrounds

Let us talk about the foregrounds!

Astrophysical emissions from our own Galaxy, as well as extra-Galactic sources, exhibit
a variety of emission processes which contaminate CMB measurements. The CMB can
be separated out of the other astrophysical contaminants by means of multi-frequency
observations, since foregrounds possess a markedly different behavior in frequency with
respect to a black body. This occurrence is very well known in cosmology, and is the
subject of an entire layer of data analysis, represented by the component separation, see,
e.g., Planck Collaboration XI (2020). Diffuse foreground emissions from our own galaxies,
in particular, are polarized, and therefore contaminate CMB polarization as well. The
contamination is particularly relevant for the B-modes, due to their weakness with respect
to the other component, and cannot be neglected ay any frequency, and any position in
the sky (Krachmalnicoff et al., 2016, 2018). In this Chapter we review the basic physics of
diffuse Galactic foregrounds, and their expected contamination to CMB B-modes. We will
limit our text to the information which is needed in the following Chapters, which focus
in particular on the modeling of Galactic foregrounds. The latter is common to several
probes, including in particular B-mode probes, such as SO, S4, LiteBIRD.

In Sec.3.1 we describe the physical mechanism, phenomenological modeling and current
measurement of the foregrounds, mainly in polarization. In Sec.3.2 we describe the current
assessment of their contamination to CMB B-modes and impact from their non-Gaussianity
in Sec.3.3. After that, we describe the current methodologies for component separation in
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Figure 3.1: Spectrum in polarization of each physical component from observational
data at frequencies in the range of [300 MHz, 3000GHz]. The AME (Spinning Dust
in the figure, orange curve) represents current upper limit, rather than a detection.
The lower and upper bound of each component come from two different masks with
sky fractions of 88 and 27 %. Vertical bands indicate the band coverage of each
experiment. Figure adapted from (BeyondPlanck Collaboration I, 2023)

Sec.3.4. Finally, in Sec.3.5, we discuss the latest developments for foreground modeling,
which will be the subject of following Chapters.

3.1 Mechanism, modeling and measurements of

foregrounds
The primary source of contamination to CMB B-modes arises from astrophysical processes
causing diffuse emissions within our own Galaxy. The spectral behavior of each foreground
component is shown in Fig.3.1, which we discuss about with more details in the following,
specializing the discussion for most of the components highlighted in the figure.

3.1.1 Thermal dust

In our Galaxy, emission from dust grains is the dominant component at high frequencies
(≳ 70 GHz) in both temperature and polarization (Planck Collaboration XII, 2020). Dust
consists mainly of carbonaceous particles, silicate compounds and polycyclic aromatic hy-
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drocarbons. These particles produce radiation by reacting with the ISM in which they
are heated by absorbing starlight in the optical band from newly formed stars and cooled
by radiating in the far infrared (e.g., Draine (2011)). Moreover, the non-spherical dust
grains tend to align their minor axis with the local magnetic field and the radiation tends
to be stronger along the major axis of the grains which is perpendicular to the direction
of the magnetic field, i.e., the signal from thermal dust emission is polarized. Observation
shows that dust can have up to 20% polarization fraction at intermediate and high Galactic
latitudes (Planck Collaboration XII, 2020).

The observed dust emissivity is the result of radiation by all emitting dust grains along
the line of sight. For the frequencies of interest to CMB experiments, the final emission
spectrum on the sky can be well described by the blackbody radiation with power-law
spectral corrections, shown in Fig.3.1 in red band, which can be modeled as a function of
the sky direction n̂ and frequency ν, as

Idν (n̂) =AI,νI (n̂) (ν/νI)
βd(n̂)Bν (Td(n̂)) ,{

Qd
ν(n̂), U

d
ν (n̂)

}
= {AQ,νP (n̂), AU,νP (n̂)}×

(ν/νP )
βd(n̂)Bν (Td(n̂)) ,

(3.1)

where Aν(n̂) are the intensity (I) and polarization (Q, U) templates at the reference
frequencies νI and νP , which are basically the frequencies of the observational templates.
For example, Planck observations at 545 GHz in intensity and 353 GHz in polarization are
utilized to be the templates of dust emission in PySM. Bν is the Planck function. βd and
Td in Eq.3.1 are the spectral index in the power law and temperature parameter in the
Planck function, respectively, which should also be functions of sky position and different
for temperature and polarization.

Moreover, Td depends on the interstellar radiation field (heating process) and efficiency
of emitting far-infrared light (cooling process) of the dust grains, thus the complexity of
the environments and distinct shapes of dust grains both across the sky and along the
line of sight may lead to multiple temperatures of various dust components. While single-
component models can fit observational data well, two or even more components are in
some case needed to jointly describe the dust emission for a more accurate description
(Finkbeiner et al., 1999).

Given the complicated physics of dust, various choices can be made when constructing
simulations considering different level of complexity (Thorne et al., 2017; Zonca et al., 2021)
(which also applies for other foreground components discussed below). The simplest dust
model in PySM31 assumes that these two spectra parameters are fixed constants across the
sky, with (βI

d , β
P
d ) = (1.48, 1.53) and Td = 19.6K (Planck Collaboration Int. XXII, 2015;

Planck Collaboration XI, 2020).

1https://pysm3.readthedocs.io/en/latest/models.html
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Another consequence of multiple population of dust grains is decorrelation, the phe-
nomenon that the dust SEDs do not scale rigidly with frequency (which is the case of fully
correlation). Planck Collaboration XI (2020) found no evidence of decorrelation using four
polarized channels from 100 to 353 GHz.

At the power spectra level, thermal dust emission at a specific frequency can also be
fitted with a power law of the form

Dℓ
XY ≡

ℓ(ℓ+ 1)CXY
ℓ

2π
= AXY (ℓ/80)αXY +2 , (3.2)

where X,Y ∈ {T,E,B}, A and α are the amplitudes and exponents evaluated at the
pivot scale, ℓ = 80, which corresponds to the angular scale where the maximum of the
contribution from theoretical PGWs is located. These parameters have statistically sig-
nificant variations over sky regions. Planck data for the LR71 region gives fitted values
αEE = −2.42 ± 0.02 and αBB = −2.54 ± 0.02, respectively (Planck Collaboration XI,
2020). Notably, there exists a E/B power asymmetry, namely ABB/AEE ≈ 0.5 (also see
Planck Collaboration Int. XXX (2016)), which has been considered as statistical signature
of turbulence in the magnetized ISM from magnetohydrodynamic simulations (Kritsuk
et al., 2018), or due to the correlation between the filaments in dust distribution and the
magnetic field orientations (Planck Collaboration Int. XXXVIII, 2016), although still un-
der debate. A significant TE correlation is also observed, which can be explained by the
alignment of density structures with the magnetic field as well (Planck Collaboration XI,
2020).

3.1.2 Synchrotron

As the dominant component at low (≲ 70 GHz) frequencies, synchrotron emission originates
from relativistic cosmic ray electrons spiraling (accelerating) around the GMF and it is
polarized perpendicular to the magnetic field lines, with mean polarization fraction having
different values and morphology across the sky (Planck Collaboration IV, 2020).

The intensity and spectrum of synchrotron radiation depends on the cosmic ray energy
and the strength of the magnetic field in the direction perpendicular to the line of sight.
For electrons with a power-law energy distribution Ne(E) = E−p, the resulted synchrotron
emission also follows a power-law spectrum Iν ∝ B(p+1)/2νβ with βs = −(p+3)/2 (Rybicki
& Lightman, 1985) where B is the magnitude of the magnetic field strength.

The simplest form of the synchrotron emission thus can be parameterized as (which is
also utilized in PySM3):

ISynchν (n̂) = Aν0(n̂)

(
ν

ν0

)βs(n̂)

, (3.3)

where Aν0 is the synchrotron emission template, which is commonly taken as reprocessed
Haslam 408 MHz data (Remazeilles et al., 2015) for intensity and the WMAP Q/U maps
at 23 GHz (Bennett et al., 2013) for polarization. Results from S-PASS polarization map
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combining Planck and WMAP data recovered an average value βs = −3.22± 0.08 for EE
and BB power spectra from different sky regions (Krachmalnicoff et al., 2018), which are
consistent with the results found in Martire et al. (2022) dealing with Planck and WMAP
data only.

Similar to dust emission, multiple components of electrons can result in spatially varying
spectra index βs. Besides that, the superposition of multiple components can also lead to
the flattening of βs. On the other hand, as synchrotron sources age their SED steepens,
since high frequency radiation corresponds to higher energy particles which radiate energy
away most rapidly. The potential steepening and flattening can be described by introducing
an additional curvature parameter in model of Eq.3.3 which can be generalized as

ISynchν (n̂) = Aν0(n̂)

(
ν

ν0

)βs(n̂)+C ln
(

ν
νc

)
, (3.4)

where positive C corresponds to flattening and negative C to steepening.
At the power spectrum level, the power-law described in Eq. 3.2 provides a good fit

to synchrotron data as well. The S-PASS experiment constrains the synchrotron spectral
index, αs, to approximately -3.15 within an iso-latitude mask for Galactic latitudes |b| >
30◦. Additionally, the data also reveals an asymmetry of ABB/AEE ≈ 0.5 for |b| > 35◦

(Krachmalnicoff et al., 2018).
Another interesting manifestation, also known as depolarization effect, happens for

the observations of synchrotron emission, especially at low frequencies and low Galactic
latitude due to the Faraday rotation (Ichiki Kiyotomo, 2014; Krachmalnicoff et al., 2018).
Faraday rotation effect changes the polarization angles of electromagnetic waves propagat-
ing through the ionized Galactic medium in the presence of the magnetic field and leads
to emission regions with different polarization angles across the entire Galactic disk. The
superposition of these emissions then results in the observed decline of polarization degree.

We have seen that both polarized thermal dust emission and synchrotron are related
the GMF, therefore these two components are expected to have some degree of correlation,
which brings more complexity into the modeling of foregrounds with the aim of detecting
the primordial CMB B modes (Bicep/Keck Collaboration XIII, 2021). Planck Collabora-
tion XI (2020) detected this correlation which decreases with increasing multipole and is
detected with high confidence only for ℓ < 40, through the computation of cross angular
power spectra between WMAP low frequency channels, which are sensitive to synchrotron
emission and Planck high frequency channels, which are dominated by thermal dust emis-
sion. A similar correlation is also found by comparing S-PASS data at 2.3 GHz with Planck
data at intermediate and high latitudes (Krachmalnicoff et al., 2018).

Thermal dust and synchrotron emissions are the two main signals in the polarization
maps, while other foregrounds only have power in temperature or only exhibit small degree
of polarization, which we will discuss in the following Sections.
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3.1.3 Free-free

Free-free emission, also known as thermal bremsstrahlung, arises from the scattering pro-
cess between electrons and ions in interstellar plasma (Rybicki & Lightman, 1985). This
emission is expected to be intrinsically unpolarized due to the randomness of the Coulomb
interactions between electrons and ions. Upper limits on the polarization fraction over the
sky have been obtained to be about 1% (Macellari et al., 2011). Nevertheless, at the edges
of bright ionized clouds, additional scattering of electrons can result in higher polarization
fractions of about 10% (Fraisse et al., 2009).

The frequency scaling of free-free emission is determined by the number of free pro-
tons and electrons along the line of sight, which is commonly quantified in terms of
emission measure, i.e., the integrated, squared electron density along the line of sight,
assuming the number densities of free protons and electrons are equal (Draine, 2011). It
is very close to a power law of -2.14 at frequencies greater than 1 GHz, while at low fre-
quencies, the medium for free-free emission becomes optically thick, leading to a break in
the power-law frequency scaling (Planck Collaboration X, 2016).

3.1.4 AME

AME is a prominent Galactic emission in the frequency range 20-40 GHz, which is spatial
correlated with dust on degree scales, with peak brightness roughly four orders of magnitude
less than that of thermal dust emission, and having little polarization (see a recent review
Dickinson et al. (2018)).

As the name tells, the physical mechanism responsible for AME is not clearly under-
stood yet, which is only known for less than 30 years (Kogut et al., 1996). A widely-accepted
model states that the ultra-small, rapidly spinning dust grains with electric dipole are re-
sponsible for AME (Draine & Lazarian, 1998), partly due to the strong spatial correlation
between AME and thermal dust emission in the range 300-3000 GHz(e.g., Poidevin et al.
(2023)). A magnetic dipole emission from dust grains may also plausibly explain the
anomalous emission (Draine & Hensley, 2013). Its polarization properties are also not well
understood yet, with recent results on large angular scales using Planck and WMAP data
indicating that its polarization fraction varying from 0.6% to 2.5%, depending on the prior
on βs, i.e., the spectral index of synchrotron (Herman et al., 2023).

Not only detected in our Galaxy, there is also evidence of AME in other galaxies such
as the Andromeda Galaxy (M31), which is the largest galaxy in the Local Groupe (see a
recent measurement from QUIJOTE-MFI2 (Fernández-Torreiro et al., 2024)).

The SED of AME can be described by a log-normal distribution (Stevenson, 2014)
which have the form

IAME
ν (n̂) = AAME(n̂) exp

[
− 1

2W 2
AME

ln2
(

v

vAME

)]
, (3.5)

2Q-U-I JOint Tenerife Experiment Multi Frequency Instrument
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where AAME, νAME and WAME are the AME peak flux density, frequency and width.

3.1.5 Other Galactic foregrounds and Extra-galactic emis-
sion

In addition to the above diffuse Galactic foregrounds which are commonly discussed in the
literature, there are also other kinds of foregrounds in the Galaxy like CO line emission
and zodiacal light in our Solar System. Several extra-Galactic effects are also important
for CMB frequencies, including the SZ effect. They are not central for our discussion, as
the dominant contaminations to the CMB B-modes are represented by the ones we already
discussed, and especially dust and synchrotron, as we shall see in the following Sections.

• CO lines. When electrons in a molecule move from one energy level to a lower energy
level, there will be molecular transition emission at a certain frequency, determined
by Planck’s energy-frequency relation. CO resides in the dense molecular clouds dis-
tributed in ISM and emits line emission due to the rotational transition. Especially,
three lines at 115, 230 and 345 GHz from J = 0 → 1, J = 1 → 2, J = 2 → 3 respec-
tively, contribute significantly in the Planck intensity maps (Planck Collaboration
XIII, 2014).

• Zodiacal light. In our Solar System, dust particles and grains in the ecliptic plane gen-
erate ZE which is a source of radiation observable from the optical to the sub/millimeter
regimes. In CMB studies, the ZE is a local foreground whose structure varies signifi-
cantly based on the observer’s location within the Solar System. Consequently, each
experiment detects a unique ZE signal due to variations in scanning strategies and
telescope positions. This means that, unlike most Galactic foregrounds which can
be described using a single template, the ZE must be specifically modeled for each
specific experiment (San et al., 2022).

• SZ effect. Hot electrons in ionized gas interact with incoming photons through inverse
Compton scattering and shift the energy of the photons. In particular, background
CMB photons are scattered by hot gas in clusters of galaxies in the universe and
result a variation in temperature, which is called SZ effect (Sunyaev & Zeldovich,
1972). There are two kinds of SZ effects: the tSZ effect referring to the interaction
of the CMB photons with a hot, thermalized electron gas, and kSZ corresponding
to interaction with electrons having a net ensemble peculiar velocity along the line
of sight. An important difference between these two effects is that tSZ has a dif-
ferent frequency dependency with CMB anisotropies while kSZ exhibits the same
dependence which makes kSZ more difficult to detect through CMB observations.
Moreover, different with diffuse emission we have mentioned, SZ effects are localized
to happen around galaxy clusters, which act like point sources in the observed CMB
maps.
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• Extra-Galactic point sources. They appear as unresolved, point-like objects in CMB
measurements at microwave frequencies due to the limited resolution of CMB ex-
periments, while the bright, resolved ones are fitted and removed from maps using
suitable filters (Puglisi et al., 2018; Diego-Palazuelos et al., 2021). These sources
are primarily associated with synchrotron radiation from active galactic nuclei and
dusty, star-forming galaxies, becoming significant contaminants in the CMB at very
small scales and therefore impacting CMB lensing reconstruction and the detection
of low values of r.

3.2 Contamination to CMB B-modes
Let us now turn to examine the foreground contamination to the CMB polarization, in the
EE and BB modes and power spectra, expressed asDℓ ≡ ℓ(ℓ+1)Cℓ/2π. The foreseen levels
of the main polarized foregrounds, dust and synchrotron, are shown in the left and right
plots of Fig.3.2, respectively for EE and BB. The colored bands represent the various
levels which are expected when different sky fractions are considered. Foregrounds are
highly non-stationary in their variations and statistics across the sky. The main variable
affecting the level of contamination is represented by the Galactic latitudes which are
considered: the higher is the signal, the closer is the boundary of the region which is
considered to the Galactic plane. The theoretical CMB EE and primordial BB signal for
different r values, together with lensing, assuming Planck 2015 ΛCDM parameters (Planck
Collaboration XIII, 2016), are also shown.

Still focusing on the power spectra, we add another layer of information to the previous
figure. In Fig.3.3, the quantity

f(ℓ, ν) =

√
Ds

ℓ(ν) +Dd
ℓ (ν)

DCMB
ℓ

=

√√√√As

(
ℓ
80

)αs ss(v)
ss(30GHz) +Ad

(
ℓ
80

)αd sd(v)
sd(353GHz)

DCMB
ℓ

,

(3.6)

where subscripts ‘d’ and ‘s’ refer to thermal dust and synchrotron, is shown, representing
the ratio of the foregrounds and CMB BB power across the ℓ and frequency spaces. The
dependence of this ratio across frequency follows the scalings ss(v) and sd(v) which are
defined for synchrotron in Eq.3.3 and dust in Eq.3.1, respectively. The multipole depen-
dence is described by Eq.3.2 with spectral indices αs and αd. The numerical values of
parameters are obtained in (Planck Collaboration IV, 2020) which is the work where the
Figure has been produced. As for CMB B-modes, the signals are derived from ΛCDM
model including lensing-induced ones, shown in red and black contours in Fig.3.3 with and
without contribution from PGWs.

By combining the information in Fig.3.1, 3.2, 3.3, we can clearly see that, with the
possible exception of frequencies around 100 GHz, and ℓ ∼ 1000 where lensing B-modes
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Figure 3.2: EE (left) and BB (right) power spectra of thermal dust and synchrotron
emission, at 95 and 150 GHz. Colors covers the expected range of the amplitudes for
different sky fractions. CMB EE and BB spectra are also shown. Figure adapted
from (Planck Collaboration XI, 2020).

Figure 3.3: Iso-contour of the expected ratio between BB
power spectra of total polarized foregrounds, defined as

f(ℓ, ν) =
[
Dfg

ℓ (ν)/D
CMB
ℓ

]1/2
. Black and red curves corre-

spond to the CMB B-modes of r = 0.0 and 0.05, including
lensing signal. Figure adapted from Planck Collaboration
IV (2020).
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dominate, the foregrounds are comparable or dominating with respect to the CMBB-modes
in the entire ν−ℓ space. This evidence does not come as a surprise. Early analyses already
indicated this occurrence (Baccigalupi, 2003), confirmed by WMAP (Page et al., 2007),
and later using Planck and radio surveys (Planck Collaboration IV, 2020). Krachmalnicoff
et al. (2018) further conclude that foregrounds cannot be neglected at any place or any
frequency if the primordial B-modes are originating from PGWs with r comparable or
smaller than 10−2.

3.3 Foreground non-Gaussianity
As we anticipated, diffuse foregrounds generally exhibit a large degree of non-Gaussianity.
This evidence comes primarily from large-scale observations both in total intensity and
polarization (Miville-Deschênes et al., 2007; Ben-David et al., 2015; Coulton & Spergel,
2019; Allys et al., 2019) and is expected to also be true at smaller scales, since dust grains
are highly locally distributed and the magnetic field in the diffuse ISM is highly turbulent.

The foreground non-Gaussianity introduces couplings between different modes in the
angular power spectra, which determine non-diagonal terms in the covariance matrices of
the observed signal. On the other hand, covariance matrices are usually treated as diagonal
under the assumption that all the sky components behave like Gaussian random fields (e.g.,
Planck Collaboration VIII, 2020). This occurrence may introduce systematics errors, if the
foregrounds are treated as Gaussian signals in analysis framework, or also an advantage, if
new methodologies are designed to remove the foregrounds based on their statistics of order
larger than the two point correlation signal, where the CMB contribution is negligible.

In the case of B-modes from PGWs, Abril-Cabezas et al. (2024) claim that the con-
straints on r are robust using the polarized dust at the power spectra level, but they only
focus on 30 ≤ ℓ ≤ 300, the angular scales at which the PGWs cause a maximum B-mode
contribution. At smaller scales where lensing dominates and produce non-Gaussianity into
the CMB maps, the residual non-Gaussian foreground will possibly cause bias to lensing
reconstruction (Beck et al., 2020) and de-lensing.

Moreover, non-Gaussianity of foregrounds also affects PNG measurements (Planck Col-
laboration IX, 2020) (see Sec.1.3.5). Cabella et al. (2010) used a bispectrum estimator
based on needlets in order to constrain fNL and found that foreground residuals in WMAP
5-year data can lead to bias. In Jung et al. (2018), the authors used the binned bispectrum
estimator to calculate the bispectra of various Galactic foreground components derived by
Commander from Planck 2015 data and assessed their impact on PNG.

In summary, foregrounds are non-Gaussian, non-stationary, non-linear at all angular
scales, and their power spectra, down at least to the degree scale, is comparable or higher
than cosmological B modes at any frequency, any angular scale. Current observations of
polarized foregrounds are limited to degree scales over a large sky fraction and can only
reach a higher resolution at sub-degree or arcminute scales for portions of the sky (Planck
Collaboration XI, 2020; Bernardi et al., 2004; Remazeilles et al., 2015). Apparatuses which
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are capable of simulating polarized emissions, and in particular at the arcminute scale
where data are lacking is strategically important for CMB B-mode measurements, and we
will mention the latest progress in Sec.3.5, while in the next Section we focus on the class
of algorithms, known up to date, which are able to separate background and foreground
diffuse emissions in CMB observations.

3.4 Component Separation
The set of data analysis methods capable of extracting the CMB anisotropies out of a
multi-frequency dataset is known as Component Separation. Several implementations ex-
ist, exploiting the different properties that CMB and foregrounds have, such as frequency
dependency and spatial distribution. Depending on the assumptions made about the fore-
grounds, these methods can generally be classified into blind (Yao et al., 2018; Delabrouille
et al., 2009) and parametric ones (Stompor et al., 2009; Planck Collaboration IV, 2020;
BeyondPlanck Collaboration I, 2023). Blind methods come from the blindness to the nui-
sance components and focus only on the signal of interest, when performing the foreground
removal. On the other hand, parametric methods usually build a detailed physical models
to represent the observed data with numerous parameters, including cosmological, astro-
physical and instrumental ones. In this Section we will introduce the methods which are
most known and developed by the CMB community. For reviews we refer to Delabrouille
& Cardoso (2007); Leach et al. (2008); Planck Collaboration IV (2020).

We note that, in practice, datasets from CMB experiments are usually expressed in
thermodynamic units since in this way the CMB anisotropies, which are derivatives of
a blackbody spectrum, become constant at different frequencies. That is, the frequency
dependence of CMB can be described with a simple vector which is filled with 1.

3.4.1 ILC

The ILC method was first casted in the harmonic domain by Tegmark & Efstathiou (1996)
and has many variations with different improvements (e.g., Delabrouille et al. (2009); Re-
mazeilles et al. (2011); Carones & Remazeilles (2024)). As the name tells, it constructs the
estimator of the aℓms in the harmonic or spatial domain, which has the aim to minimize
the contamination from Galactic and extra-Galactic foregrounds and instrumental noise.
Specifically, in the harmonic ILC case, the estimator ŝℓm is a linear combination of the
observed xiℓm at frequency i which can be written as

ŝℓm =
∑
i

wi
ℓx

i
ℓm , (3.7)

where wi
ℓ are the weights at frequency i and multipole ℓ, which are determined by the

constraint that the estimator should have minimum variance among the possible estimators,
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that is, the weighted power spectrum is minimized through

argmin
wℓ

〈
|ŝℓm|2

〉
= wT

ℓ Cℓwℓ, s.t.
∑
i

wi
ℓ = 1 , (3.8)

where wℓ is the vector consisting of wi
ℓ and Cij

ℓ =
〈(

xiℓm
)†

xjℓm

〉
. In the implementations

the Cℓ is estimated by Ĉℓ:

Ĉℓ ≡
1

2ℓ+ 1

∑
m

xℓmx†
ℓm , (3.9)

where xℓm represents data vector of all the frequency channels. The constraint in Eq.3.8
makes it explicit that the CMB signal is lossless in the recovered map. The weights can be
obtained with the Lagrange multiplier method, which gives

wℓ =
C−1

ℓ e

eTC−1
ℓ e

, (3.10)

where e is a vector filled with 1, which is the frequency dependence of CMB component.
As a blind method, ILC makes no assumption about the foregrounds and only as-

sumes that the component of interest, CMB, is independent with foregrounds, which is
valid for most of the scales (multipoles). At large scales, however, there may be chance
correlation between CMB and foregrounds, leading to the well-known ILC bias in the final
reconstructed CMB power spectrum (Delabrouille et al., 2009; Saha et al., 2008).

ILC also makes an implicit assumption that the spectral scaling of foregrounds is spa-
tially uniform, which is not the case since foregrounds differs a lot across sky. Improvements
exist by working in needlet space, known as NILC (Delabrouille et al., 2009; Planck Col-
laboration IV, 2020). Needlets enable localized filtering in both pixel and harmonic spaces.
This localization in pixel space allows the weights in the linear combination to adapt to
the local conditions of foreground contamination and noise. Meanwhile, localization in
harmonic space enables the method to prioritize foreground rejection on large scales and
noise exclusion on small scales.

NILC was further generalized to be GNILC in Remazeilles et al. (2011) to allow for the
estimation of foreground components, and was applied to construct maps of the thermal
dust emission from Planck data (Planck Collaboration Int. XLVIII, 2016a), with the
advantage that the recovered thermal dust maps are free of cosmic infrared background
anisotropies.

3.4.2 ICA

Similar to ILC, ICA depends on the prerequisite that CMB and foregrounds are statis-
tically independent and constructs the estimator that is also a linear combination of fre-
quency maps. ICA further assumes that the observed signal is a linear combination of
several physical components, which means that ICA relies on a mathematical model for
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each component. SMICA is a well-developed algorithm to do the component separation
(Delabrouille et al., 2003; Delabrouille & Cardoso, 2007; Cardoso et al., 2008), which is
based on spectral statistics, that is, starting from Eq.3.9, although, originally, ICA methods
were used to exploited the non-Gaussianity of foregrounds in the real space, by means of
machine learning (Baccigalupi et al., 2000).

Different from ILC, SMICA does not substitute Ĉℓ to be the Cℓ. On the contrary, it
constructs a model for the data power spectra which is parameterized by a set of parameters
θ, written as

Cℓ(θ) =
[
a F

] [ CCMB
ℓ 0
0 P ℓ

]
[a F ]† +N ℓ , (3.11)

where CCMB
ℓ is the CMB power spectrum at multipole ℓ and a is a Nfre× 1 column vector

denoting the frequency dependence of the CMB signal, and Nfre indicates the total number
of bands of the experiment. F is a Nfre×Nfg matrix representing the frequency dependence
corresponding to the Nfg kinds of foreground components, which can be ℓ dependent. P ℓ

is a positive definite Nfg ×Nfg foreground covariance matrix and N ℓ is the diagonal noise
matrix.

The best fit values of these parameters are obtained by minimizing the “spectral mis-
match” between Cℓ and Ĉℓ, which is identical to maximizing the likelihood of the data in
a model where all components are Gaussian distributed, stationary and independent:

θ̂ = argmin
θ

∑
ℓ

(2ℓ+ 1)
[
Tr
(
ĈℓC

−1
ℓ (θ)

)
+ log detCℓ(θ)

]
. (3.12)

The parameters of Cℓ(θ) include CCMB
ℓ , P ℓ, a, F and the diagonal elements of the

matrix Nℓ. A key point for the parameter fitting process is the optimization. How to
find the most suitable algorithm so that the formula Eq.3.12 can converge quickly and
stably requires a combination of mathematical, physical and computer knowledge. Com-
monly used algorithms include Expectation-Maximization (Delabrouille et al., 2003) and
Conjugate Gradient (Cardoso et al., 2008).

3.4.3 Parametric methods

Parametric component separation methods construct an explicit model to represent the
experimental data, taking all the possible physical signals and complete instrumental sys-
tematics into account and assuming that the functional forms of the frequency scaling for
all relevant components are known. The basic equation for this approach is

dv(p) = gv

Nc∑
c=1

Fv (βc) sc + nv(p) , (3.13)

where dv(p) indicates the observed data at frequency ν and pixel p. The sum runs over
Nc modeled physical components, such as CMB and foregrounds mentioned in Sec.3.1,
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Figure 3.4: Typical parameters needed to model the observed data for a CMB ex-
periment, where the arrows show the interdependencies of each kind of parameters.
Parameters considered include the most interested ones describing CMB, those for
foregrounds and instrument configuration, and possibly extra parameters for external
data when performing a joint analysis. Figure adapted from BeyondPlanck Collab-
oration I (2023).

each with an amplitude vector sc, and frequency scaling function Fv (βc) that depends on
astrophysical spectral parameters βc. The quantity g(ν) denotes an overall instrumental
calibration factor per frequency channel, and nν(p) indicates instrumental noise. Fig.3.4
shows the schematic overview of the typical parameters considered to model the observed
data of modern CMB experiments. Eq.3.13 can be written in a more compact form:

dp = Apsp + np . (3.14)

Generally speaking, Eq.3.13 is the starting point for all the parametric methods to
do component separation. Commander (Eriksen et al., 2004, 2008; Seljebotn et al., 2019;
BeyondPlanck Collaboration I, 2023) works in the well-established Bayesian framework to
estimate the posterior distribution, p(Θ | d), where d indicates all available data and Θ is
the combined set of all free parameters. Bayes’ theorem reads

p(Θ | d) = p(d | Θ)p(Θ)

p(d)
, (3.15)

where p(Θ) is our prior knowledge for the parameters and p(d | Θ) is called the likelihood.
For a simple model with small number of parameters, the best fit value of each pa-

rameter can be obtained through analytical calculation or grid-based, brute-force way.
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Nevertheless, this quickly becomes computationally unfeasible since the number of grid
points grows exponentially with the number of parameters. For a complicated model such
us the one defined in Eq.3.13, we have to resort to smart analysis methods such as Gibbs
sampling, which is a powerful variation of traditional MCMC algorithm (BeyondPlanck
Collaboration I, 2023). The primary advantage of these techniques is that they invest
most of the computing resources around the peak of the posterior, the critical region in pa-
rameter space for determining final parameter estimates. In contrast, gridding techniques
waste plenty of their time assessing probability densities that are practically zero, which is
much less efficient.

Similar to Commander, the Maximum Likelihood Estimator (Stompor et al., 2009; Er-
rard et al., 2011; Stompor et al., 2016)starts from Eq.3.14 and estimates sp from the
maximization of the likelihood:

−2 logL = −
∑
p

(dp −Apsp)
T N−1

p (dp −Apsp) . (3.16)

By comparing with Commander, the key advantage of this approach lies in their compu-
tational efficiency, although at the cost of not achieving the same rigorous propagation
of error analysis from performing inference over the full posterior. The most advanced
implementation of this method is known as ForeGround BUster (FGBuster) implemented
in a Python package3.

3.4.4 Machine Learning

Besides the traditional component separation methods described above, the application
of machine learning techniques to recover the cleaned CMB signals has been proposed in
recent years. Wang et al. (2022) built a deep convolutional neural network4 in order to
recover CMB signal from Planck temperature data and simulated polarization maps based
on the CMB-S4 experiment, which was further tested on the Planck polarization data
(Yan et al., 2023). As for extra-Galactic foregrounds, Bonjean et al. (2024) performed
component separation for the simulated extra-Galactic submillimeter sky, which includes
CIB and the SZ effect as the foregrounds for the CMB signal.

3.4.5 Tools to validate the absence of residual foregrounds

It is of great importance to validate that there is no foregrounds present in the cleaned
CMB maps. That is why, as we anticipated, any foreground residual is likely to imprint-
ing non-Gaussianity, as the CMB contributes marginally to that. Traditional methods
constrain residual foregrounds by leveraging cross-correlations with foreground-dominated
maps (e.g., Aluri & Rath, 2016). Measurement of anisotropy are also proposed to character-
ize the remaining foregrounds (Kamionkowski & Kovetz, 2014; Rotti & Huffenberger, 2016),

3https://fgbuster.github.io/fgbuster/index.html
4The introduction to machine learning terminology will be delivered in Chapter 5.
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since the primordial signal is expected to be isotropic, whereas residual foregrounds are not.
In Planck Collaboration VII (2020), several additional techniques—including Minkowski
functionals, and N-point functions—were adopted to search for deviations from statistical
isotropy and homogeneity, which may signal the presence of residual foregrounds. Non-
Gaussianity, as we mentioned in Sec.3.3, can also be exploited to trace the foregrounds. For
example, von Hausegger et al. (2019) examined how skewness and kurtosis measurements
could be employed to constrain residual foreground contamination.

Having now described thoroughly the physical mechanisms of foregrounds, the main
aspects of the modeling to simulate them and the methods to do component separation, we
are ready now for the discussion about the improvements in foreground modeling that we
implemented in this work. In next Chapter, we focus on the newly developed PySM3 package
to simulate foregrounds with improved templates and a new mathematical formalism, while
we conclude this Chapter by outlining the latest developments for foreground modeling in
the literature.

3.5 Latest Development of Foreground Modeling
In Sec.3.1 we have mentioned the PySM setup to simulate foregrounds in principle at any
wanted frequency, with further improvements which we will discuss in more details in
Chapter 4. There are other methods starting from different perspectives to model the
foreground emission in the literature, which we briefly summarize in the rest of this Section.

Clark & Hensley (2019) provides a data driven framework to construct three-dimensional
Stokes parameter maps of thermal dust emission in position-position-velocity space using
only neutral hydrogen data on the basis that HI is strongly correlated with the dust in the
diffuse ISM (Lenz et al., 2017). By integrating over the velocity space, they obtain the
polarized dust emission maps over the full sky at a resolution of 16.2′, corresponding to
that of HI data, which are in good agreement with the Planck observed 353 GHz dust maps
in terms of several physical properties such as the polarization fraction and power spectra,
although they do not have a thorough discussion about the non-Gaussianity contained in
their maps.

Herv́ıas-Caimapo & Huffenberger (2022) uses a large number of filaments in the dis-
tribution of the thermal dust grains together with the large-scale template from data to
reproduce the main features of the Planck 353 GHz map. These include the power spec-
trum slopes of intensity and polarization maps, the ratios between EE, BB, and TE power
spectra, and the level of non-Gaussianity in the total intensity map, which can be controlled
by the density of filaments. When focusing on scales of arcminutes or tens of arcminutes,
ℓ = 300−1200, however, the Planck 353 GHz total intensity map has more non-Gaussianity
with respect to the generated small scales from the model based on filaments.

Diffuse foreground models are also generated by exploiting magnetohydrodynamic (MHD)
simulations. They model the physical processes of the ISM, such as heating and cooling
of the gas and the interaction between dust grains and the turbulent magnetic field. The
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thermal dust emission can be obtained by integrating the emission of dust grains along
the line of sight (Padoan et al., 2001; Planck Collaboration Int. XX, 2015; Kim et al.,
2019). The simulated maps are thus non-Gaussian because of the MHD processes and can
reach small scales according to the resolution of the MHD simulation itself. However, the
MHD simulations can only reproduce the statistical properties of the Galaxy, and thus fail
to generate the specific morphology of Galactic foreground emission. Another important
limiting factor of MHD simulations is that they are computationally expensive, especially
in achieving a high resolution.

An additional technique consists of simulating the foreground by exploiting innovative
machine learning algorithms capable of modeling the emission pattern at a high resolution
on the basis of the observed one at moderated and low angular scales. We leave more
details of this approach to Chapter 5, where we also describe our recent results.
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4
Foreground Modeling with PySM3

Let us model the foregrounds!

Starting from this Chapter, we are going to focus on the phenomenological modeling
of the foregrounds, trying to extrapolate what we learn from data to the frequencies and
angular scales where current data are lacking, with non-Gaussianity being one of the main
priority.

Our first step concerns the introduction of the context in which foregrounds are simu-
lated, in terms of the software platform where the modeling is implemented. Since, as it is
clear from our previous Chapters, foregrounds are a common challenge to all probes looking
at CMB polarization, a single group, with members belonging to most of the collaboration
working in the various observations, has been formed in recent years, with the purpose of
supporting individual efforts in a centralized and coordinated manner (Zonca et al., 2021;
PanEx Collaboration, 2024). The group is known as PanEx GSWG and in this Chapter
we describe our contribution to that, culminating in the release of the PySM3, which is
a public Python package containing the latest developments from PySM2 (Thorne et al.,
2017). The models are implemented in several versions with increasing level of complexity
and sophistication, which in PySM convention are labeled by numbers following d and s
for characterizing the dust and synchrotron, respectively. For instance, d0 incorporates
dust templates from the 2015 Planck analysis, applying a fixed spectral index (1.54) and a
uniform blackbody temperature (20 Kelvin) across the sky. Nowadays, it is considered as a
simplified form for d1, which incorporates spatial variations in both temperature and spec-
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tral index within the modified blackbody model. Additionally, d4 extends d1 by including
multiple dust populations, while d7 accounts for frequency decorrelation of the dust. Sim-
ilar features characterize the synchrotron models: s0 features a constant spectral index
(-3.1) across the sky, while s1 incorporates the spectral index large scale modulations as
seen by Planck, and s5 the small scale power identified in radio surveys. For more details
of each foreground model in PySM3 see the related documentation1.

Our contribution has been focusing on the investigations concerning the levels of non-
Gaussianity in the various models, an aspect which will be central also for the next Chapter.
After summarizing the new aspects of the PySM3 package in Sec.4.1, we introduce the
basic properties of Minkowski functionals in Sec.4.2 and apply them to measure the non-
Gaussianity of dust maps from the new model in PySM3 in Sec.4.3.

4.1 New aspects comparing with PySM2

In this Section we summarize the new scientific aspects of PySM3 comparing with PySM2.
The main aspects concern the generation of templates including simulated data on small,
arcminute, angular scales. Specifically, a new formalism, called polarization fraction tensor
(PolTens), has been introduced to model Galactic polarization and extrapolate the power
to small angular scales up to ℓmax = 16384. The new procedure is implemented for model
d10 (s5) in PySM3 for dust (synchrotron), respectively. Model d11 (s6) also contain the
capability of generating different realizations of foreground obeying the same statistical
properties on the fly. A second improvement concerns the study of recent high resolution
data products observed at microwaves which are used as new templates, updating those of
previous versions. Finally, additional models for different foreground component proposed
in the literature are implemented to cover a more complete set of cases, for example d12

for a 3D model of polarized dust emission with six layers. In the following we give a brief
introduction to the first and second points. The PySM3 also utilizes the latest development
in the programming industry for the consideration of faster execution and less CPU memory
cost. For more details we refer to PanEx Collaboration (2024).

4.1.1 Polarization Fraction Tensor formalism

The PolTens framework involves the transformation of the Stokes parameters I, Q, and U
into their analogues i, q, and u according to

i ≡ 1

2
ln(I2 − P 2) ,

q ≡ 1

2

Q

P
ln

I + P

I − P
, (4.1)

u ≡ 1

2

U

P
ln

I + P

I − P
,

1https://pysm3.readthedocs.io/en/latest/models.html
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Figure 4.1: Mollview plots of PySM3 d10 dust maps at 353 GHz in IQU space in the
first row and in iqu space in the second row.

where P ≡
√
Q2 + U2 is the commonly defined polarized intensity, independent of coor-

dinate system, and p ≡ P/I is the polarization fraction. For small p, the formulas above
reduce to i ≃ ln I, q ≃ Q/I, and u ≃ U/I thus motivating the name of this approach. The
inverse transformations are

I = ei cosh ξ ,

Q =
q

ξ
ei sinh ξ , (4.2)

U =
u

ξ
ei sinh ξ ,

where ξ ≡
√

q2 + u2.
The PySM3 d10 dust maps in IQU and iqu space are shown in the first and second

row of Fig.4.1 respectively. The transformation is clearly non-linear and as we can see the
dynamical range of iqu is much smaller than that of IQU maps. Another notable feature
is that the Galactic plane of Q and U maps disappear in the qu counterparts, or, we
can say intuitively, the maps become “less non-Gaussian” with this transformation. This
motivates to generate Gaussian realizations in iqu space which will become non-Gaussian
when transformed back into I, Q, and U . That is what the new models (d9, d10, d11 for
dust and s4, s5 s6 for synchrotron) in PySM3 actually do in order to generate small-scale
fluctuations. We outline the steps applied in these new models as follows.

1. The I, Q, and U templates are transformed into i, q, and u templates via Eq.4.1.
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2. These template i, q, and u maps are then low-pass filtered with cut-off multipole
ℓ1 = 100 in order to yield the large scale maps which are dominated by signal and
less affected by instrumental noise.

3. The tt, te, ee, and bb full sky power spectra are calculated from the i, q, and u maps,
in analogy with how TT , TE, EE, and BB spectra are computed from I, Q, and U
maps.

4. The ℓ-dependence of each spectrum is modeled as a broken power law. To estimate
the power spectrum at small scales ( ℓ > ℓ1 ), a power law is fitted to the spectrum
over the range ℓ0 < ℓ < ℓ1 with a free amplitude and a fixed spectrum index from the
literature (Planck Collaboration XI, 2020; Miville-Deschênes et al., 2016). The power
is then extrapolated from ℓ1 to a second pivot scale ℓ2 = 2000 using the fitted power
law. Finally, for even smaller scales ℓ > ℓ2 , the ee and bb spectra are constructed
with the power law index of the tt spectrum, while the te spectrum retains its fit
index. This consideration is to ensure the power of polarization is smaller than that
of total intensity at small scales. The tb and eb spectra are assumed to be zero for
ℓ > ℓ1.

5. The small-scale i, q, and u maps are synthesized as Gaussian realizations from the
constructed tt, te, ee, and bb spectra using the synfast routine provided by HEALPix
(Górski et al., 2005). and are then high-pass filtered at cut-off multipole ℓ1.

6. The small scales cannot be added to the large scale maps directly since they do not
have the same anisotropy with the large scales. Modulation maps mi and mp are
constructed for intensity and polarization, respectively, to be multiplied with the
small scales to yield the final small-scale maps.

7. Finally, the large-scale and small-scale maps (from Steps 2 and 6, respectively) are
summed and transform back to I, Q, and U maps via Eq.4.2.

The methodology allows, in principle, to implement realizations of the signal, which
means being capable of getting errors on any application using these templates, from
their statistical variation. On the other hand, we notice that, with the exception of the
power law inferred from large scales, the generation of Gaussian power on small scales is
a pure assumption, which may not account for the right statistics of foregrounds on the
corresponding scales.

4.1.2 New templates

PySM3 also substitutes different data products as templates for the models of dust and
synchrotron emissions. For total intensity of dust, Planck GNILC 2015 component sep-
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arated map at 353 GHz2 is used, which is free of CIB emission (Planck Collaboration
Int. XLVIII, 2016b). For the dust Q and U maps PySM3 takes the GNILC dust maps3

from Planck Data Release 3 (Planck Collaboration IV, 2020). The reprocessed Haslam
408 MHz map (Remazeilles et al., 2015) is used for total intensity of synchrotron emission,
and WMAP K-band (23GHz) Q and U maps4 from Data Release 5 is employed as the
templates for polarization.

4.2 Minkowski functionals
Minkowski functionals (MFs, Minkowski, 1903) are essential mathematical tools in the
analysis of complex spatial structures in digitized images. They provide a quantitative
description of the morphology of patterns by characterizing features such as area, boundary
length, and topology. In the context of cosmology, these functionals are particularly useful
to measure the high-order statistics such as non-Gaussianity (Hikage et al., 2006; Martire
et al., 2023; Carones et al., 2024). In the following we give a brief introduction to MFs.

Consider a grey scale image represented by a function ρ(x) on a two-dimensional domain
Ω ⊂ R2. The image can be analyzed by considering the excursion sets Dρ defined as the
regions where the image intensity exceeds a certain threshold ρ (see Fig.4.2):

Dρ = {x ∈ Ω | ρ(x) > ρ}. (4.3)

The set of all the points which have the value of ρ is indicated as ∂Dρ, which is the
boundary of the excursion set.

For an excursion set embedded in d-dimensional Euclidean space, Hadwiger’s theorem
(Hadwiger, 1957) states that any of its morphological observable is a linear combination of
d + 1 MFs, which thus provide a comprehensive set of morphological descriptors for the
excursion set. For two-dimensional fields, three kinds of MFs can be built: V0, V1, and V2.
They fully describe the statistical properties of the field and represent the covered area (V0),
the boundary length (V1), and the number difference of connected regions and holes of the
image’s feature (V2), as a function of the threshold, ρ (Hadwiger, 1957). Connected regions
and holes are topological concepts which can be illustrated in Fig.4.2: in the left image
the two white “butterflies” are two connected regions while the central one having two
holes inside it. Therefore V0 and V1 are geometrical observables while V2 is a topological
observable. We give a more explicit definition of these functionals in the following equation.

2http://pla.esac.esa.int/pla/aio/product-action?MAP.MAP_ID=COM_CompMap_

Dust-GNILC-F353_2048_R2.00.fits
3http://pla.esac.esa.int/pla/aio/product-action?MAP.MAP_ID=COM_CompMap_

IQU-thermaldust-gnilc-varres_2048_R3.00.fits
4https://lambda.gsfc.nasa.gov/data/map/dr5/skymaps/9yr/raw/wmap_band_iqumap_r9_

9yr_K_v5.fits
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Figure 4.2: Illustration of excursion set, which are the points in the white region,
whose values are larger then the threshold, while the black region contains the set of
points not belonging the excursion set. Figure adapted from Ganesan (2017).

1. Area (V0): The total area covered by the excursion set is given by

V0(Dρ) =

∫
Dρ

d2x . (4.4)

2. Boundary Length (V1): The boundary total length of the excursion set is defined
as

V1(Dρ) =
1

2π

∫
∂Dρ

ds , (4.5)

where ∂Dρ denotes the boundary of the excursion set, and ds is the line element
along this boundary.

3. Euler Characteristic (V2): The Euler characteristic is a topological invariant that
provides information about the connectivity of the structure. It is defined as

V2(Dρ) =
1

2π

∫
∂Dρ

κ(s)ds , (4.6)

where κ(s) is the curvature of the boundary ∂Dρ. The Euler characteristic counts
the number of connected components minus the number of holes in the structure.
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Implementation of algorithms in real case to calculate the MFs is a non-trivial task. In
practice a further discretization is needed for the already discretized field, like the observed
maps on the sky.

For flat 2-D images, Mantz et al. (2008) extended the use of MFs to the analysis of
noisy experimental grey-scale images by introducing a novel real-space technique based
on these functionals. Their method, based on the marching square algorithm (Lorensen
& Cline, 1987), allows for accurate computation of MFs in digitized images by exploiting
weighted side lengths for pixels. First, squares with different length are used to cover
the whole field considered. Then, each corner of the square is adjusted according to the
threshold value, depending on whether it is inside the excursion set or not. During this step
squares become polygons to further constrain the boundary of the excursion set. Once these
polygons are constructed, MFs can be calculated from these polygons by simple geometry.
This approach is particularly effective in capturing the true boundary lengths in the images,
which is crucial for analyzing surface topologies.

On the sphere with HEALPix pixelization scheme, Grewal et al. (2022a) presented a
formalism to efficiently get the MFs, which can be written as

V0 (ρj) =
1

N

∑
i

Θ(α (xi)− ρj) ,

V1 (ρj) =
1

4N

∑
i

∆(α (xi)− ρj)
√
α2
ϕ + α2

θ ,

V2 (ρj) =
1

2πN

∑
i

∆(α (xi)− ρj)

(
2αϕαθαϕθ − α2

ϕαθθ − α2
θαϕϕ

α2
ϕ + α2

θ

)
,

(4.7)

where Θ is the Heaviside step function, α (xi) is the value for pixel xi, ∆ is 1 when
α (xi) is between ρj and ρj+1, N is the total number of pixels. ϕ and θ are the related
polar coordinates and αϕ, αθ, αϕθ, αθθ, and αϕϕ are derivatives of the field, which can be
calculated using the routine provided by HEALPix (Górski et al., 2005; Zonca et al., 2019).

4.3 Measuring the non-Gaussianity in the new dust

maps
In this Section, we quantify the level of non-Gaussianity in the smallscale dust emission gen-
erated through PolTens using the simulations from PySM3 dust model d10. The small-scale
fluctuations in the new synchrotron emission maps from PySM3 are constructed following
the same algorithm, we expect those maps to show similar levels of non-Gaussianity on the
scales where the pattern is simulated with the same procedure.

We use MFs to compare the small-scale structure in d10 to those of two other sets
of maps: (i) maps where the small-scale structures are fully Gaussian and isotropic and
(ii) maps where the small-scale structures are Gaussian but modulated across the sky. As
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Figure 4.3: Planck High Frequency Instrument (HFI) Masks from Planck Legacy
Archive for different sky fractions.

described in Section 4.1.1, the small-scale structures in the d10 model are generated as a
Gaussian random field in i, q and u, and are multiplied by mi and mp modulation maps
before they are coadded to the large scale maps and transformed back into I, Q and U .
We want to understand the impact of this effective modulation on the MFs, and therefore
construct a set of maps that are modulated versions of Gaussian-random field maps. This
allows to disentangle any non-Gaussianity generated through the modulation from the po-
tential non-Gaussianity introduced due to the polarization fraction tensor transformation.

The first set of maps is built according to the following procedure.

1. We first fit power laws to the TT , EE, BB power spectra in the multipole range
[800, 2000] calculated from the d10 maps on the GAL097 mask.

2. In order to retain only the small scales, we apply a high pass filter to the fitted
power law power spectra with ℓcut = 200 for intensity and polarization maps, and
then generate full sky realizations of these filtered power spectra (with ℓmax = 4096)
with the synfast routine.

3. The generated Gaussian isotropic small scales are added to the large-scale dust tem-
plate to form the first set of maps.
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For the second set, we need to mimic the effective modulation of d10 maps in IQU
quantities. We use the following procedure.

1. We generate modulation maps in the same way as done in iqu space, except that
here we implement them directly in IQU , therefore obtaining mI and mP for total
intensity and polarization.

2. We multiply these modulation maps with maps of Gaussian isotropic small scales
(generated as for the first set of Gaussian isotropic maps, as described in steps 1 and
2 above) and coadd them with the large scale dust template.

3. We compare the power spectra of these maps with those of d10 on four different
individual sky-fraction masks: GAL40, 60, 80, 90, as shown in Fig.4.3. We note
that these masks are required solely for the generation of the modulation maps, with
the exception of GAL80, which is also employed in the subsequent analysis presented
in this Section.

4. We fine tune the mI and mP modulation maps, through multiplication factors in the
sky regions defined by the non-overlapping area among the above five masks. For
each non-overlapping area we only consider the part which is not overlapping among
masks, such as the green region in Fig.4.3, showing the additional coverage of GAL60
compared with GAL40 which we indicate as GAL60-40. The multiplication factors for
the non-overlapping regions are {GAL97-90, GAL90-80, GAL80-60, GAL60-40, GAL40}
= {2.32, 1.20, 0.38, 0.78, 2.47}, {6.32, 2.50, 1.46, 1.51, 2.60} for temperature and
polarization maps, respectively. These factors are applied to ensure that the power
spectra of modulated Gaussian small scales computed on the individual sky-fraction
masks are as close as possible to the d10 map, which can be shown in Fig.4.4.

We thus consider three sets of maps with different coadded small scales: PySM3 model
d10, a map with purely Gaussian small-scale structure, and a map with modulated Gaus-
sian small-scale structure. We apply a high-pass filter with [ℓmin, ℓmax] = [200, 2048],
to retain only the small scales of these maps, which we will refer to as poltens-ss,
Gaussian-ss, and Gaussian-mod-ss, respectively. We calculate the MFs both on the
sphere and in several selected regions of the sky projected into a Cartesian projection.

4.3.1 Minkowski Functionals on the sphere

Following the algorithm by Grewal et al. (2022a), we calculate the MFs for the threeQmaps
on the sphere, i.e., in HEALPix format, with a GAL080 mask, which masks out the Galactic
plane. We first normalize the maps by dividing each map by its standard deviation, and
compute the MFs for iso-intensity contours in the range [−3, 3] (Figure 4.5). The MFs of
the corresponding U maps look very similar to Q maps and are not shown here.
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Figure 4.4: Power spectra of PySM3 d10 map and modulated Gaussian map described
as above, in red and green lines respectively. Three masks, namely GAL040, GAL060,

GAL080 are considered. The agreement of these two sets of maps of power spectra
on different sky fraction masks indicates that they have similar anisotropies, up to
the sky masks considered.

Figure 4.5 shows that when averaging over a large sky area, the MFs of Gaussian-

mod-ss and poltens-ss are almost identical, while the MFs of Gaussian-ss differ sub-
stantially. The difference in MFs between poltens-ss and Gaussian-ss indicates the
existence of non-Gaussianity in poltens-ss, but the similarity between poltens-ss and
Gaussian-mod-ss demonstrates that the non-Gaussianity in poltens-ss comes from the
anisotropy in the maps, which originates from the modulation, rather than from the polar-
ization fraction tensor transformation. With the exception of the issue which we report in
the next sub-Section, this is an important point, showing that, even if PolTens represent a
progress towards a comprehensive rendering of foregrounds, including a small-scale power
according to the power spectra observed in the large one, the non-Gaussian pattern would
have to be evaluated by other methods, bringing to the small scales not only the scaling
of power in the angular domain, but also non-Gaussian properties. We come back to this
point in the summary, and in the next Chapter.

4.3.2 Minkowski Functionals on small regions

We now consider a region centered at (l, b) = (−15◦, 45◦) with an extension corresponding
to 20◦ × 20◦ in order to determine whether significant differences in the MFs between
Gaussian-mod-ss and poltens-ss sets of maps exist in small regions of sky. Those maps
are shown in Figure 4.6. We can see by eye that poltens-ss contains structure that is not
present in the Gaussian-mod-ss maps. We calculate the MFs of these small-scale maps,
following Mantz et al. (2008) for the calculation of MFs for a square patch. Before the
calculation, we also rescale all the small scales linearly to be in the range [-1, 1], using the
minmax scheme.

Figure 4.7 shows the MFs of the Gaussian-mod-ss and poltens-ss maps presented
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Figure 4.5: MFs for the small scales of three sets of maps on the sphere with GAL080

mask. The large scales are filtered out by excluding multipoles ℓ < 200 in the maps,
and we choose ℓmax = 2048 when obtaining the small scales. We show the MFs as
a function of threshold ρ, for Gaussian-mod-ss in blue, poltens-ss in orange and
Gaussian-ss in dashed gray.

in Figure 4.6. In contrast with the large-area results presented in Figure 4.5, in this
case we do measure a departure of the poltens-ss MFs from the Gaussian-mod-ss ones.
This means that the polarization fraction tensor transformation introduced non-Gaussian
small-scale structure, distinct from pure modulation effects, that is detectable on small sky
regions. This level of non-Gaussianity, however, does not rely on statistical properties of
foregrounds, and is sub-dominant with respect to the effect caused by modulation, when
larger sky area are examined.

4.4 Summary
Foreground simulations serve as an essential test in the context of CMB observations.
Pipelines such as component separation and lensing reconstruction must incorporate fore-
ground simulations as a key prerequisite. PySM is a community-driven effort that provides
these simulations, which are widely used not only within the CMB community but also by
researchers in other fields interested in Galactic foregrounds, such as those working in the
21cm domain.

In this Chapter, we presented the latest development of the package, PySM3, which
introduces a variety of new models for different foreground components. This includes a
novel model based on the polarization fraction tensor framework, as well as several existing
models from the literature.

We focused on quantifying the non-Gaussianity in the small-scale structures of the
dust maps generated by the d10 model, using MFs in order to measure the degree of
non-Gaussianity both on the full-sky maps with the Galactic plane masked and within a
selected sky patch. Since the d10 model incorporates not only the PolTens framework but
also a modulation of small scales in the iqu space, we constructed an additional set of
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Figure 4.6: We show the detailed plots in the selected patch at the center (l, b) =
(−15◦, 45◦), which are, from left to right, the final map with Gaussian-mod-ss, final
map with poltens-ss (i.e., d10 map), Gaussian-mod-ss only map and poltens-ss

only map. From top to bottom is for I, Q and U respectively. The color bar on the
left indicates the pixel values in the leftmost two columns in the units of µKRJ and
the color bar on the right is for the last two columns.
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Figure 4.7: MFs as a function of the threshold ρ for the one realization of I, Q and U
small scales in the patch with center of (l, b) = (−15◦, 45◦) in Galactic coordinates.
Each row shows three kinds of MFs. The blue dotted one is for Gaussian-mod-ss
while the orange solid one is from poltens-ss. We also show the Gaussian-ss in
dashed gray line as a comparison.
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Gaussian maps with identical modulation to the d10 maps to isolate the contributions to
non-Gaussianity from the PolTens framework and the modulation. Purely Gaussian maps
were also generated for comparison.

By comparing these three sets of dust maps, we found that the PolTens framework
does introduce non-Gaussianity in small sky patches, with the effect varying across re-
gions. However, when averaged over large sky areas, the level of non-Gaussianity remains
insignificant compared with the Gaussian modulated small scales. We leave more discus-
sions about the results in the Conclusions.
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5
Simulating Stochastic

Non-Gaussian Foregrounds with
Machine Learning

Let machine learn the foregrounds!

Recently, machine learning techniques, in particular neural networks, have been ex-
ploited to simulate foregrounds with increasing complexity. The ForSE model introduced
by Krachmalnicoff & Puglisi (2021) (hereafter KP2021) is able to generate small scales,
up to 12′, starting from the low-resolution polarized dust observations at 80′. It utilizes
a GAN, which is trained to inject small-scale features with statistical properties like the
ones observed at a high resolution in the intensity maps.

Neural networks have, in principle, the capability of learning statistics at any order.
Therefore, in our context, the perspective is to get high resolution maps where the non-
Gaussianity of the large scales is faithfully reproduced. In this Chapter, we focus on the
ForSE approach and present the version which we produced, ForSE+, focusing mainly
on two perspectives: (i) Producing dust polarization maps at 3′ resolution, which is vital
for achieving foreground maps where the signal is available at all angular scales covered
by CMB experiments, necessary in particular for checking the stability of lensing recon-
struction and de-lensing algorithms in CMB observations, (ii) Stochastically generating
multiple realizations of small-scale features, which is most important in order to estimate
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the uncertainty associated with foreground variations.
In Sec.5.1 we introduce some basics of neural networks. After that we summarize the

first version of the ForSE algorithm and present the extension and methodology used to
achieve the new version operating at arcminute scale in Sec.5.2. In Sec.5.3, we describe
the pre-processing, training, and post-processing of the new model and also present our
validation procedure. In Section 5.4, full-sky maps are presented and compared with maps
from the latest version of PySM3 package. This Chapter is based on Yao et al. (2024).

Additional uses of deep generative models for dust simulations exist in the literature.
For example, GANs are also employed in Aylor et al. (2021) to generate simulated total
intensity maps from the observed Planck GNILC map at 353 GHz. Irfan (2023) used CNNs
to obtain a full-sky high-resolution Galactic synchrotron spectral index map. Other com-
mon generative models, such as variational autoencoders (Thorne et al., 2021) or diffusion
models (Mudur & Finkbeiner, 2022; Heurtel-Depeiges et al., 2023), are also used.

5.1 Basics of Neural Networks
Belonging to a subset of machine learning, NN dates back to 1940’s when neurophysiologist
tried to describe how neurons in human brain might work. Rosenblatt (1958) implemented
the first NN, called perceptron which was invented by McCulloch & Pitts (1943) to study
the biological systems. In late 1980s, LeCun et al. (1989) pioneered the implementation
of CNNs that automatically learn spatial hierarchies of features, making them particu-
larly effective for image recognition tasks. NN gained significant attention and became a
prominent research topic in the past decades, as evidenced by the rapidly growing body
of related literature in all kinds of scientific fields, including astronomy. This occurrence
in popularity is primarily driven by the ever-increasing availability of data, coupled with
advancements in technology and computational power. In particular, DL, which has mul-
tiple layers between the input and output layers, has become the fundamental framework
for modern networks to solve complicated problems. In 2014, GANs were proposed by
(Goodfellow et al., 2014) to generate new data samples that resemble a given dataset and
soon brought up numerous applications, including Deep Convolutional GAN, which is used
in our work in this Chapter. In 2024, machine learning and NN won the Nobel Prize in
Physics 2024 for the pioneers’ work to train NN using physics1.

Simply speaking, NN is a function of input, with numerous free parameters. Applying
NN to solve problems can be divided into three parts: preparing data, designing archi-
tecture of NN, and fit the NN to the data. While first part is highly case-dependent, the
latter two parts usually consist of similar components, like neurons, layers, loss functions,
..., which we introduce in the next two Sub-Sections respectively. There are numerous
excellent online lectures on neural networks, such as those by Andrew Ng2 and Hung-yi

1https://www.nobelprize.org/prizes/physics/2024/press-release/
2https://www.andrewng.org/courses/
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Figure 5.1: Illustration of a neural network architecture used for classification tasks.
Each vertical block is called a layer of NN. The input image is flattened into feature
vectors with 256 pixels and fed into the network. The next layers (hidden layers)
consists of neurons (blue circles) that apply activation functions to the weighted sum
of inputs, where black arrows represent the weight connected to each neuron. The
output layer generates raw predictions, which are converted into probabilities using
the Softmax function. The Cross Entropy loss function is then used to measure
the difference between the predicted probabilities and the target labels, guiding the
training process.

Lee3. We refer the interested readers to those resources for details, also see reviews like
LeCun et al. (2015); Alzubaidi et al. (2021).

5.1.1 Structures of NN

Fig.5.1 shows the basic structure of a fully-connected neural network to classify the number
in the input image, which we use as an example to briefly explain each part of NN structures
in the following.

1. Input Layer: Depending on the design of NN, the input layer can vary for practical
cases, such as three dimensions for three RGB channels of a colored image. Here in
this example, the leftmost component of the figure shows an image of a handwritten

3https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.php
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digit (e.g., ‘1’), represented as 256 pixel values. This image is flattened into a vector
of features (x1, x2, . . . , x256), before given to the neural network.

2. Neurons (Hidden Layer): The hidden layer contains neurons represented by blue
circles. Each neuron receives input from the previous layer (input layer) and com-
putes a weighted sum of the inputs, often adding a bias term. The connections
between input and hidden neurons are shown as arrows. This network belongs to
full-connected ones, since every neuron in one layer connects to every neuron in next
layers. Advanced versions of connections exist such as CNN, which share the weights
among neurons for a particular feature in the image, thus greatly reduce the total
number of parameters needed to fit.

3. Activation Function: After computing the weighted sum, each neuron applies an
non-linear activation function (not explicitly shown in the figure but implied by the
neural structure). Common activation functions include ReLU, sigmoid, or tanh,
which introduce non-linearity into the model, allowing it to learn complex patterns.

4. Output Layer: The output layer of this example is represented by a set of 10
values, (y1, y2, . . . , y10), which are the raw predictions before applying the activation
function. These outputs correspond to the probability scores for each class (e.g.,
digits 0-9 in a digit classification task).

5. Softmax Function: The Softmax layer transforms the raw outputs into probabil-
ities by normalizing them, ensuring that the sum of all probabilities is equal to 1
and the ideal output of this NN is y1 = 1, yi = 0 for i ̸= 1. This step is crucial in
multi-class classification problems, providing interpretable outputs.

6. Loss Function: The loss function measures the difference between the predicted
probabilities (ŷ1, ŷ2, . . . , ŷ10) and the actual target labels. This function is used to
quantify the model’s prediction error, guiding the optimization process during train-
ing by minimizing this error. The choice of loss function depends on the nature
of the task and the type of output generated by the network. Common loss func-
tions include Mean Squared Error for regression tasks and Cross Entropy Loss for
classification problems.

5.1.2 Training Process of NN

The parameters fitting process, or training of NN, involves iteratively adjusting the model’s
parameters to minimize the error between the predicted outputs and the actual targets.
This process relies on key components such as the backpropagation algorithm and the use
of training, validation, and testing datasets. Below is a detailed introduction to each of
these components and their roles in training NN.

1. Training, Validation, and Testing Sets
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• Training Set: This is the primary dataset used to train the NN. It consists of
input-output pairs that the model uses to learn patterns and relationships. The
training set allows the network to adjust its weights through multiple iterations
to minimize prediction errors.

• Validation Set: During training, a separate validation set is used to evaluate
the model’s performance. It helps in tuning hyperparameters (e.g., learning
rate, number of layers) and prevents overfitting (where the model performs
well on the training data but poorly on unseen data) or underfitting (where
the model fails to capture the underlying patterns) by monitoring how well the
model generalizes to unseen data.

• Testing Set: After training is complete, the testing set is used to assess the
final model’s performance. This set contains data that the model has never
seen before and provides an unbiased evaluation of its predictive capabilities.

2. Backpropagation

Backpropagation is a crucial algorithm used for training NN, enabling efficient com-
putation of the gradient of the loss function with respect to each weight in the
network. It consists of two main steps:

• Forward Pass: In this step, input data is passed through the network to
generate predicted outputs. The loss function then computes the error between
the predictions and the actual targets.

• Backward Pass (Gradient Computation): The error is propagated back-
ward through the network using the chain rule of calculus. This process com-
putes the gradients of the loss function with respect to each weight, indicating
how much each weight contributes to the overall error.

3. Optimization and Model Training

The optimization process involves updating the weights of the network iteratively
using the gradients computed by backpropagation. Common optimization algorithms
are Stochastic Gradient Descent and Adam (Kingma & Ba, 2014), which adjust the
weights in the direction that minimizes the loss. This step is repeated over multiple
epochs, where each epoch refers to one complete pass through the entire training
dataset.

In summary, the training process of NN is a systematic approach involving the adjust-
ment of model parameters to minimize the loss function. By leveraging training, validation,
and testing sets, the process ensures that the model learns meaningful patterns while main-
taining its ability to generalize to new data. Backpropagation plays a pivotal role in this
process by enabling the efficient computation of gradients, which guide the optimization
of the model during training.
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5.1.3 Generative Adversarial Networks

GANs are a particular family of networks (Goodfellow et al., 2014) whose characteristic
feature is to be composed of two sub-networks called Generator (G) and Discriminator
(D), which are trained to compete against each other. In practice, the goal of G is to
produce new images that are compared by D with a set of real images that are the training
set. Once the training of the two sub-networks is done in an adversarial way, G is able to
produce images that have the same statistical properties as those belonging to the training
set, in such a way that mock and real images are no longer distinguishable by D.

5.2 From ForSE to ForSE+

In this Section, we start by briefly reviewing the basic structure and assumptions of the
ForSE algorithm presented in KP2021. We then introduce our new version of the code,
ForSE+, which allows one to generate maps of the thermal dust emission with non-
Gaussian structures at 3′ angular resolution, in both a deterministic and a stochastic way.

5.2.1 Review of the ForSE model: From 80′ to 12′

As has already been mentioned, the ForSE model is based on GANs and allows one
to produce non-Gaussian full-sky maps of polarized thermal dust emission at an angular
resolution of 12′ from low-resolution Planck observations at 80′.

The structure of the GAN that was used in KP2021 and inherited in this work is shown
in Fig.5.2. In the ForSE implementation, the input to G are images at a low resolution
(80′) of the thermal dust emission observed by the Planck satellite and processed through
the GNILC method4 (Planck Collaboration IV, 2020). The output of G are small-scale
features at 12′, which are then compared by D with real observations in total intensity at
the same angular resolution. We note that different training is performed for total intensity
and Stokes Q and U maps, but always having as the training set images of small scales
m̃I,20◦

12′ in total intensity. KP2021 therefore assumed that thermal dust statistical properties
of small scales in polarization are the same as for Stokes I maps. We also rely on that
assumption in this work.

In KP2021 and in this work, the following definition of “small scales” is used. Let
MTOT be a foreground map at a given angular resolution, which can be seen as the sum
of two maps containing, respectively, only large- and small-scale structures:

MTOT = MLS +MSS . (5.1)

Assuming that the map encoding small-scale features, MSS , is modulated by the large
scales, MLS – that is, MSS = MLS ·mss – we have

MTOT = MLS +MLS ·mss = MLS · m̃ss , (5.2)

4http://pla.esac.esa.int/pla/aio/product-action?MAP.MAP_ID=COM_CompMap_

IQU-thermaldust-gnilc-unires_2048_R3.00.fits
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Figure 5.2: GAN architecture used in this work which, composed by two models
called Generator and Discriminator. The figure has been adapted from Krachmalni-
coff & Puglisi (2021)

where m̃ss = mss + 1 represents the small-scale map generated by network G, having as
an input MLS .

Although there exist NNs designed to work on the sphere (Krachmalnicoff & Tomasi,
2019), our GAN deals with flat two-dimensional images. For this reason, we had to project
the input maps onto flat patches, and project output patches back onto the sphere, after
the application of the trained GAN model. We used the same projection strategy as that
described in the appendix of KP2021, which divides the GNILC thermal dust Stokes Q
and U maps at 80′ with Nside = 2048 (in the HEALPix format) into 174 square patches
that have 320× 320 pixels and a physical side length of 20◦. We note that this projection
on flat patches and reprojection on the sphere can introduce distortions in the final full-sky
map. In order to mitigate this effect, the flat patches overlap each other. We estimate that
the final level of distortion induced by our procedure is always less than 7% of the signal
(around 2% on average).

From now on we will use m̃X,y◦

z′ and MX,y◦

z′ to refer to the small-scale (output of the
network) and large-scale (input of the network) patches, respectively, where X = I/Q/U
defines the Stokes parameters, y◦ the physical dimension of the patch in degrees, and z′ its
angular resolution in arcminutes.

The training procedure, input maps, and output validation of the ForSE model are
fully described in KP2021.
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Figure 5.3: Model structures in ForSE (KP2021) and ForSE+ (this work). ForSE
is designed to achieve a 12′ resolution from input large scales at 80′. We have
three kinds of newly trained models here: ForSE+S12 and ForSE+S3 to produce
stochastic maps at 12′ and 3′, and ForSE+D to generate a deterministic map at 3′.
The output, M

Q/U,20◦

12′ , from ForSE and ForSE+S12 are the input to ForSE+D
and ForSE+S3 to get deterministic and stochastic small scales at 3′, respectively.

5.2.2 ForSE+: Producing non-Gaussian dust maps at 3′

In this work, we implement ForSE+, an updated version of the ForSE code and its
training procedure, with the following two objectives.

1. Allowing the generation of full sky polarization maps with non-Gaussian features at
an enhanced resolution of 3′.

2. Starting from the same low-resolution maps, to generate multiple realizations of
stochastic small scales that still have the correct non-Gaussian statistical properties.

In the Sections below, we explain the assumptions and methodology used to achieve these
two goals. Figure 5.3 sketches the input and output of the new ForSE+ models and in
Table 5.1 we summarize the new models trained in this work.

In order to incorporate these extensions, we re-implemented the same GAN architecture
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Model Description (Output) Input

ForSE
KP2021 version to simulate
deterministic thermal dust

emission maps at 12′

Planck GNILC maps at 80′ (map1)

ForSE+S12
new model to simulate stochastic

thermal dust emission at 12′
map1 plus random component

ForSE+D
new model to simulate

deterministic thermal dust
emission maps at 3′

Maps at 20′, smoothed from
ForSE 12′ maps (map2)

ForSE+S3
new model to simulate stochastic
thermal dust emission maps at 3′

map2 plus random component

Table 5.1: Summary of three newly trained models in this work and the first version
of the model proposed in KP2021.

as for the ForSE model using the new Tensorflow5 framework (version 2.6.0), and we
performed additional fine-tuning steps of some hyper parameters of the networks to improve
our results.

5.2.2.1 Scale invariance assumption

The first goal of our implementation of ForSE+ is to generate a map of polarized dust
emission with non-Gaussian features at arcminute angular scales. As we anticipated, this
is crucial to be able to perform component separation with simulated foreground templates
where power and non-Gaussianity is distributed on all scales, as realistically as possible, in
particular for checking the stability of the extraction of the CMB B-mode lensing signals,
which peak at these scales. In order to achieve this, we need to find a way to overcome
the current limitation in the observational data. As a matter of fact, in order to train
our GANs we can only rely on a training set composed of 350 patches, with dimensions
of 20◦ × 20◦ and 320 × 320 pixels, at an angular resolution of 12′, taken from the total
intensity GNILC Planck map at 353 GHz, described in KP2021. No other observations of
thermal dust emission at a higher angular resolution in a portion of the sky large enough
to be used as training set are available.

The idea to circumvent this restriction and still be able to reach a resolution higher than
12′, even in the absence of a proper training set, is to make a scale-invariance assumption,
applying our GAN model in an iterative way. In practice, our set of training squared
patches with dimensions of 20◦ × 20◦ and a resolution of 12′ can equally be treated as
having dimensions of 5◦ × 5◦ and resolution of 3′, since the network does not have a sense
of physical units and is only sensitive to the ratio between the dimension of the patch and

5https://www.tensorflow.org
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its angular resolution (i.e., m̃I,20◦

12′ ≡ m̃I,5◦

3′ ). In this way, the same dataset used to train
the first version of ForSE in KP2021 can be used to train a new GAN model. This model
takes the output of the first iteration of the code as input and generates non-Gaussian
scales at 3′. As it has been mentioned, this implies that we are assuming scale invariance
for the statistical properties of dust emission; that is, scales at 12′ have the same properties
as those at 3′. This assumption is justified by the fact that current observations of the
dust polarization power spectra shows that they can, at the first order, be approximated
as a power law as a function of the angular scales (Planck Collaboration XI, 2020).

Additional pre- and post-processing of the input patches (including upsampling, smooth-
ing, and the sub-division of patches) is needed to train the GAN in the correct way and to
be able to restore full-sky maps, as is described in Section 5.3.2.1.

5.2.2.2 Stochasticity

Our second goal is to produce different realizations of the non-Gaussian small-scale struc-
tures. This is important in order to estimate the variance of the signal we are simulating
as well as the correlation among different angular scales. The way we achieved this was
by simply adding a random component to the large-scale maps that are the input of our
GANs. We then trained new models on these signal + random component maps, always
using the 350 m̃I,20◦

12′ patches as the training set.
The random component that we considered was simply generated as a random realiza-

tion from a uniform distribution in the range [−1, 1]. Since our input maps were always
re-scaled to have pixel values ranging in the same interval to be compatible with the input
of our NN, we had a signal-to-noise ratio (SNR) of ∼ 1. We refer to this as “stochastic
training;” in other words, a random component was added to the input signal, ForSE+S,
as opposed to the deterministic case (ForSE+D), in which we did not add any random
component to the input maps.

5.3 Pre-processing, training, and post-processing

of ForSE+

In this section, we describe the training details of ForSE+S and ForSE+D, including the
pre-processing and post-processing steps, and present the results on flat-squared patches,
including maps and power spectra, before reprojecting them to full-sky maps.

5.3.1 ForSE+S to 12′

We first describe how we generate stochastic maps with non-Gaussian features at a reso-
lution of 12′. We also applied a similar procedure to construct maps at 3′, as is described
in Section 5.3.2. For clarity, we will call ForSE+S12 the model that generates stochastic
maps at 12′ and ForSE+S3 the one that goes up to 3′.

As was mentioned above, we injected stochasticity into our generative process by simply
adding a random component to the low-resolution maps that are the input of our GAN. By
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doing so, ForSE+S is able to generate non-Gaussian small-scale features that still partially
depend on the real observed large-scale structures but will have a different morphology as
we change the realization of the random component in the input dataset.

5.3.1.1 Training and post-processing

As in KP2021, we trained two models for Q and U maps separately. The inputs to the

generator, G, were the 174 M
Q/U,20◦

80′ patches that together cover the full sky, with dust
signal plus an additional random component. The training set, which encodes the target
statistical distribution of small scales, was the 350 m̃I,20◦

12′ maps. The weights of the neural
works were updated for 2× 105 epochs and saved every 500 steps. Since we do not want to
generalize the exploitation of the trained model (as it only needs to predict the output from
the training data) it is not a problem if there is an over-fitting during training. Therefore,
there was no consideration of a separate validation set during the training process.

During the GAN training process, the goal is to produce small-scale feature maps with
statistical properties as close as possible to the ones of the training set. We quantified
the level of agreement by calculating the overlapping fractions between the distributions of
MFs (see Section 4.2) of the maps in the training set (m̃I,20◦

12′ ) and those of the generated

ones (m̃
Q/U,20◦

12′ ). The distributions of MFs are indicated by the ±1σ variation among the
training set or generated maps and the overlapping fractions were computed as the ratio
between the intersection area and the total area spanned by the two distributions. In
practice, we calculated the MFs overlapping for each saved epoch of G and selected as
the best model the one with the highest score. In doing so, we computed the MFs for the

output maps, m̃
Q/U,20◦

12′ , by applying G to maps with the realization of a random component
different from the one used for training.

The best models are obtained after 5500 epochs and 6000 epochs for Q and U , respec-
tively. Their MFs are shown in Figure 5.4 and compared with the ones from the training
set. The overlap among the distributions is at a level of 50%− 60%, comparable with the
one obtained in Krachmalnicoff & Puglisi (2023) (that includes corrections to KP2021).
In comparison, Gaussian small scales have MFs with obviously different shapes from these
two sets of maps, as is illustrated in Fig.7 of KP2021.

We also computed the overlapping fraction of the MFs by considering 100 different
realizations of the small-scale maps (obtained by changing the random component in the
input). The mean (standard variation) values of the overlapping fraction for V0, V1, and
V2 are 59.1%(1.5%), 62.9%(0.6%), and 55.8%(0.7%), respectively, for Stokes Q maps, and
58.8%(2%), 56.3% (1.3%), and 45.5%(1.1%), respectively, for U maps. These numbers
show the robustness of ForSE+S in generating stochastic small scales with non-Gaussian
high-order statistics.

Since in the training procedure both the input maps and the training sets are normalized
in the range of [-1,1], the output maps also have pixel values in this range, and therefore
need to be normalized to restore physical units. We achieved this by following the procedure
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Figure 5.4: MFs of small scales at 12′ produced by ForSE+S, compared with the
ones from the intensity maps in the training set. The overlapping fractions (OFs) of
each pair of MFs are also shown. The dashed line represents the mean over the set of
different patches and the shaded area is their standard deviation. The distribution
of Q maps is shown in the upper panel, and U in the lower panel.

of KP2021, hence ensuring that, for each patch and for both Q and U , the amplitude of the
power spectrum of the produced small scales matches the extrapolation at higher multipoles
of the power spectrum of the low-resolution input maps at 80′.

5.3.1.2 Results of ForSE+S at 12′

Figure 5.5 shows M
Q/U,20◦

12′ patches with two different realizations of small scales at 12′

from ForSE+S12, after the normalization mentioned above, in the second and third
columns, compared with the deterministic results from ForSE in the first column. Both
the differences at small scales and consistency at large scales between the outputs from
ForSE and ForSE+S12 show the capability of the trained model to produce small-scale
features in the map space.

To further validate these maps, we calculated the second-order statistics by means of
the power spectrum, using the Namaster package (Alonso et al., 2019)6. In Figure 5.6, we
show the EE and BB power spectra from the QU squared patches of low-resolution maps,
the output from ForSE, and 100 realizations of ForSE+S12 in black, green, and gray,
respectively. The mean values of power spectra from 100 stochastic realizations are also
shown in red. The output maps from ForSE+S12 are consistent with the deterministic
output maps in terms of the power spectra, as was expected.

6https://namaster.readthedocs.io/en/latest/sample_flat.html
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Figure 5.5: Maps of 20◦× 20◦ patches at 12′. From left to right are the deterministic
map from ForSE and two stochastic realizations from ForSE+S12. All the maps
are shown in Galactic coordinates.

5.3.2 ForSE+D and ForSE+S3 to 3′

We describe now the procedures that we followed in order to generate maps at the reso-
lution of 3′, by using our GAN model iteratively both in the case of ForSE+D and for
ForSE+S3. The whole procedures, including several pre- and post-processing steps, are
shown in Figure 5.7 and described in the following (see also Foschi (2021)).

5.3.2.1 Pre-processing for the training of ForSE+D

As was mentioned above, we reached the resolution of 3′ by assuming scale invariance in
the statistics of the thermal dust emission. We exploited the output of the first GAN model
as the input to a second generative step by using the same training set and considering
it to be composed of 350 patches with dimensions of 5◦ × 5◦ at a resolution of 3′, as was
explained in Section 5.2.2.1. Therefore, since the first iteration of ForSE allows to go
from maps with dimensions of 20◦ × 20◦ and a resolution of 80′ to maps at a resolution
of 12′, the second iteration can produce 5◦ × 5◦ maps at a resolution of 3′. In order to
preserve the proportions among all the relevant quantities (i.e., patch dimension, resolution
of input, and resolution of output), the input patches for the second iteration should have
dimensions corresponding to 5◦ × 5◦ and a resolution of 20′. We can obtain those patches
by smoothing and subdividing the output of ForSE.

In practice, we pre-processed each of the 174 M
Q/U,20◦

12′ maps with 320 × 320 pixels
obtained from the first iteration in the following way.
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Figure 5.6: EE and BB power spectra of the squared patches at 12′ shown in Figure
5.5. Dash-dotted black lines are the power spectra for GNILC 80′ patches and green
lines are for the deterministic 12′ patches. Gray lines show the power spectra of all
the 100 realizations from ForSE+S12 and red lines are the means.

1. Each map with 320×320 pixels is re-sampled to 1280×1280 by repeating each pixel
four times.

2. The maps are smoothed with a Gaussian kernel in order to reach a resolution of 20′.

3. Each of the large squared patches is subdivided into 5◦ × 5◦ ones, individually con-
taining 320 × 320 pixels. We divided each large patch into 49 small ones, with a
large overlap among them, made of 160 pixels on each side. This overlap is needed
in order to avoid border effects when the composition and reprojection on the sphere
is performed.

4. At the end of this procedure, we have a set of 174× 49 = 8526 patches for Q and U ,

which is the total amount of patches covering the full sky and represents the M
Q/U,5◦

20′

that will be used as the input to the second GAN iteration.

We applied the same pre-processing to the output of ForSE and ForSE+S12 in
order to produce maps at 3′ in both the deterministic case and the stochastic one. In
the stochastic case, we added an additional random component, as is described in Section
5.2.2.2.

5.3.2.2 Training and post-processing of ForSE+D

Once the pre-processing steps described above are performed, the obtained 8526 patches
can be used to train a new GAN model. However, the time cost is basically linear with the
number of patches. We note that the 8526 patches have repeating pixels among them (see
the steps above to get 8526 patches); thus, they are actually not independent. In order to
save computational time, we fed as input to the generator, G, only a subset of 696 patches,
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The first number beneath the images indicates the number of pixels on each side
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that described in Section 5.2.1. We note that after the “Dividing” and before the
“Composing” steps, each original image was divided into 49 sub-patches, with a side
length of 5◦. At the end, all the flat patches were reprojected onto a HEALPix map
with Nside equal to 4096.

randomly selected from the total 8526 patches. Once the network was trained, we applied
it to the remaining patches.

In Figure 5.8 we show the MFs of the generated small scales at 3′. The overlap with
the target distribution is at a level of 70-80% in the deterministic case. In the stochastic
case, which is not shown, on the other hand, the overlap ranges between 60% and 70%,
showing therefore that we are also able to generate non-Gaussian small scale features at
this higher resolution.

The output of the GAN models are patches, m̃
Q/U,5◦

3′ , containing the small-scale features
that, as in the first iteration, have pixel values in the range of [−1, 1]. We therefore
normalized them in physical units before multiplying them with the large-scale maps at
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Figure 5.8: MFs overlapping between deterministic 3′ small scales and intensity small
scales.

the resolution of 20′, obtaining 8526 M
Q/U,5◦

3′ maps.
We recall that each of these patches comes from a sub-division of the larger maps with

physical dimensions of 20◦ × 20◦ (as is described in Section 5.3.2.1) into 49 sub-patches
with a large overlap among each other. Therefore, before reprojecting them on the sphere
to obtain the full-sky maps, we needed to recombine them. In order to avoid border effects,
we did this by using cos2 apodization window functions, as is shown in Figure 5.9: each
sub-patch was weighted with the corresponding window function, then they were summed

together to form the 174 M
Q/U,20◦

3′ maps that could then be reprojected on the sphere.

5.3.2.3 Results of ForSE+D and ForSE+S3 at 3′

In Figure 5.10, we show the comparisons of a selected patch at 80′, 12′ from ForSE and
maps at 3′ from ForSE+D, from left to right. The small scale structures that ForSE+D
can inject are evident, following the modulation of the large-scale emission.

The power spectra, computed on the same patch, are shown in Figure 5.11. As can be
seen, the amplitude at low ℓ matches the one from the low-resolution GNILC maps, and
the generated small scales have power at higher multipoles, with no breaks in the power
spectrum that follows a power law, as was expected.

ForSE+S3 was utilized to generate stochastic small scales at 3′, as is mentioned in
5.2.2.2. Two realizations of small scales for the Q map in the range of [-1, 1] with a side
length of 5◦ and centered on [288◦,−61.5◦] (i.e., at the position of the dashed red box in
the upper right plot of Figure 5.10) are shown in the upper panel of Figure 5.12, and in the
lower panel we show the normalized maps combined with the large scales. The differences
between the two realizations should be noted and both of them trace the large-scale features
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Figure 5.9: Apodized window function of each sub-patch at different positions to
compose 49 sub-patches with a side length of 5◦ into a patch with a length of 20◦.

of the input maps. We also show the power spectra of 100 realizations in Figure 5.11, where
we also plot the mean, validating the results of stochasticity on the power spectrum level.

5.4 Validations of full-sky maps from ForSE+

In this Section, we show the maps and power spectra after reprojecting the flat patches
back to the sphere, following the algorithm in the Appendix of KP2021. Before showing
the results, we introduce a further step to adjust the E-to-B ratio in the simulated maps
to match the observations at large scales.

5.4.1 Fine-tuning of the E-to-B ratio to match observations

We recall that, due to the limitation of observational data in polarization, we used the
statistical properties of the total intensity small scales to be the ground truth of both Q
and U during the training process. This implies that the output high-resolution map will
have the same power for E and B modes. However, high-frequency observations of the
Planck satellite have shown the existence of an asymmetry between the measured power
of thermal dust emission in the E and B modes, with ABB/AEE ∼ 0.5 over the multipole
range of 40 ≤ ℓ ≤ 600 (Planck Collaboration XI, 2020). Therefore, in order to match the
real observations, we applied a fine-tuning to the full-sky maps, obtained after all the steps
mentioned above.

We first transformed QU maps into the harmonic space to obtain the aEℓm and aBℓm
coefficients. Then we applied a factor of

√
0.5 to the aBℓm to decrease its power, since aEℓm

and aBℓm have the same variance as was just mentioned. Finally, we transformed the tuned
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40 100 400 1000 3000
Multipole 

10 1

10 3

10 5

C
 [

K
2 CM

B]

EE

40 100 400 1000 3000
Multipole 

10 1

10 3

10 5

BB
GNILC 80'
ForSE
ForSE+D
ForSE+S3, Mean

Figure 5.11: EE and BB power spectra of the squared patches at 3′ shown in Figure
5.10. Dash-dotted black lines are the power spectra for GNILC 80′ patches and
purple lines are for the deterministic 12′ patches. Green lines depict the behavior of
ForSE+D maps, while gray lines show the power spectra of all the 100 realizations
from ForSE+S3 and red lines are the means.

aℓms back to the map space to get maps that match the observed ratio of 0.5 at the power
spectra level. We note that the large scales in the output maps of ForSE/ForSE+ remain
to be the observed ones, so the tuning was applied only to the small scales; that is, aℓms
belonging to ℓ > 1357 and the transition between large and small scales was smoothed with

7Corresponding to 80′: ℓ = π/θ = π/(80/60/180 ∗ π) = 135.
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a sigmoid function to avoid discontinuities in the final power spectra.
The E-to-B ratios of the power spectra calculated for different fractions of sky are

shown in Figure 5.13. The red lines show the ratios after the tuning steps, which were
indeed corrected to ∼ 2 for the injected small scales.

5.4.2 Full-sky maps

We are now ready to present the full-sky maps and specifically, we show the ForSE+D
maps at 3′, at Nside = 4096, in Figure 5.14, compared with the input GNILC ones at
80′. The difference between the two highlights the presence of small-scale features in the

ForSE+D maps. When zooming into a patch that consists of two M
Q/U,20◦

3′ patches we
also find no clear edge effects. These results show that border effects from reprojection are
negligible.

In Figure 5.15, the power spectra of the maps on the sphere at different resolutions are
shown for different sky fractions. As was expected, our maps at 3′ can further extrapolate
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Figure 5.13: E-to-B ratios of non-tuned and tuned maps in green and red lines, for
different sky masks.

the power up to ℓ ∼ 3600, which corresponds to the drop scale of 3′. We also note the
absence of discontinuities at the transition from large scales to small scales (ℓ > 200),
implying that the small scales are produced with a similar pattern as the one at large
scales, attributed to the normalization step to rescale the generated small scales in the
range of [-1, 1] to the correct amplitude, as was mentioned in Section 5.3.2.2. In order
to make a comparison with the latest d9 dust model from PySM3, we also show the power
spectra of d9 maps at 353GHz in blue. Although the latter was produced with entirely
different methods, the power spectra of ForSE+D maps at 3′ are impressively close to
those of d9 maps, even for different sky fractions.

We also calculated the power spectra of 100 realizations of full-sky maps at 3′, gener-
ated with ForSE+S3, with a 80% sky mask, up to ℓmax = 4096 and with a bin width of
∆ℓ = 160. The covariance matrix from these 100 realizations is shown in Figure 5.16. The
correlation among multipoles at small scales is further evidence that the small scales at
ℓ > 800 were synthesized in a non-Gaussian way. In fact, if the small-scale features were
produced with Gaussian properties, we would not observe any non-diagonal correlation,
which is verified from our experiment to calculate the covariance matrix of a purely Gaus-
sian field. We devote the next Section to further deepening the non-Gaussian properties
of our maps.

5.4.3 Non-Gaussianity measured on the sphere

In previous Sections, we considered the MFs in order to characterize non-Gaussianity
for flat patches. Here, we expand the analysis to the full-sky maps, by exploiting the
algorithms described in Grewal et al. (2022b), in order to calculate MFs for spherical maps
in the HEALPix format. We focus on the small scales injected by ForSE and ForSE+D
and here we used the multipole range [200, 2048] to band-pass filter the raw maps and
applied a 80% sky mask to ignore the Galactic plane.

In Figure 5.17 we show the results of the MFs statistics applied to the sphere, confirming
our previous claims. Differences in the ForSE+D map are visible with respect to the case
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Figure 5.14: Top panel: full-sky polarization maps (left: Stokes Q, right: Stokes U)
for the GNILC template at a 80′ angular resolution. These maps are the input to
our algorithm. Middle panel: maps with small scale features, up to 3′, generated
by ForSE+D. Bottom panel: the difference between the two maps. The residuals
mostly encode smaller angular scales, as was expected.

of Gaussian maps in dashed gray for all three kinds of MFs. The Gaussian maps were
generated from a random realization from the power spectra of the ForSE+D Q map.
We also show the results of the latest PySM3 d9 dust maps in blue, which exhibits a deviation
from Gaussianity, although being similar to the modulated Gaussian maps in orange, whose
non-Gaussianity is supposed to derive only from the modulation of large scales. We further
checked that the results are robust for the 40% sky mask and for ℓmin = 500 and 1000.
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In order to make a comparison, we also show the power spectra of PySM3 d9 dust
map at 353GHz in blue.

5.5 Summary
In this Chapter, we extend the ability of the ForSE model proposed in KP2021 based on
the GAN technique to simulate non-Gaussian stochastic small scales of polarized thermal
dust emission up to 3′. We have trained three new models, which are summarized in Table
5.1, together with the one trained in KP2021.

Based on the results obtained in KP2021, our first test was to bring stochasticity into
our models by adding a random component into the input and to train a new network called
ForSE+S12 so that it can generate different maps with different seeds. MFs were used to
quantify the level of non-Gaussianity in the maps and in Figure 5.4 we demonstrate that
the polarized thermal dust small scales have a similar level of non-Gaussianity to that in
the intensity small scales. Different realizations of maps at 12′ for a specific patch and the
corresponding power spectra are shown in Figure 5.6, which indeed have expected variations
at small scales and the correct amplitude scaling with multipoles for power spectra.

We then considered the case of a 3′ angular scale, where lensing B-modes have the
strongest signal, and we studied the deterministic case first, ForSE+D. By relying on the
scale invariance assumption discussed in Section 5.2.2.1 and the pre- and post-processing
steps outlined in Figure 5.7, we trained the model to generate maps at 3′ out of those
at 12′, which are the output from ForSE. MFs distributions in Figure 5.8 represent a
verification of the training process. Maps and power spectra of a selected patch of maps
at 3′ are shown in Figure 5.10, where the 3′ power is present as expected. ForSE+S3
was finally trained in order to generate stochastic small scales at 3′. Two realizations of
small scales are shown in Figure 5.12, with their power spectra shown in the right panel of
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Figure 5.10, showing the expected multipole scaling.
After obtaining the small scales on flat patches, we re-projected them onto the celestial

sphere in order to get full-sky maps in the HEALPix format, with Nside = 2048 for maps
at 12′ and 4096 for maps at 3′. We show the Mollview projection of the deterministic
maps at 3′ in Figure 5.14 and compare them with the observed Planck GNILC maps,
validating both the effectiveness of the injected small scales and the reprojection process.
The power spectra of deterministic maps at 80′, 12′, and 3′ with 100%, 80%, and 40% sky
masks are plotted in Figure 5.15, indicating that the small scales generated preserve the
same anisotropies as the low-resolution observations.

We further obtain the covariance matrix of power spectra up to ℓmax ∼ 4000 from 100
realizations of maps at 3′ in Figure 5.16, which has a strong correlation between different
multipoles at small scales, and thus highlights the non-Gaussianity in our maps. We note
that for a Gaussian field, the variances along the diagonal line are smaller than the variances
we obtained here and the off-diagonal correlation is zero. We repeated the calculation of
the covariance matrix for the PySM3 d11 model, which is also designed to generate multiple
realizations of small scales of thermal dust emission (PanEx Collaboration, 2024), and find
that off-diagonal elements are also close to zero, meaning that the level of non-Gaussianity
of the injected small scales on the full sky is small.
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Finally, we measured the level of non-Gaussianity using MFs in the simulated full-
sky maps in Figure 5.17, and compared it with the small scales simulated within the
Gaussian assumption. The difference between the MFs obtained from the two kinds of
maps is another clear indication of the non-Gaussian small-scale component generated
with ForSE+. We shall discuss further exploitation of the maps obtained by ForSE+ in
the Conclusions.

Future improvements in the ForSE algorithm are foreseeable. First, more observations
are needed. In fact, the assumptions made in Section 5.2.2 are somewhat a compromise
due to the lack of observation at the required resolution. The models will get more reliable
as more observations become available. Second, by considering the network architecture,
the loss function accounting for the non-Gaussianity of the targets produced by the GAN
may be considered, as in the current implementation this process is not automatized. A
way to quantify the level of non-Gaussianity with a formalism that is differentiable with
respect to the input pixels would be desirable, as then we could construct the loss function
of the network in order to include the information of non-Gaussianity, which will effectively
guide the generator. The last point we want to mention is that the operation of adding
noise is to some extent like the training process of diffusion models in deep learning, which
is more natural than what is done in this work.

The code to generate maps has also been made publicly available8.

8https://github.com/yaojian95/ForSEplus.
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6
Conclusions

With the aim to push down the upper limit of the tensor-to-scalar value, many CMB
experiments are constantly upgrading the detectors to improve the sensitivity, resolution,
sky and frequency coverage of the observations. The advancements in instrumentation
enhance not only direct observations of the CMB but also significantly improve foreground
control. This capability is crucial for modern observations aimed at probing PGWs, as
observational evidences indicate that foreground power is comparable to or even surpasses
the CMB across all frequencies and angular scales, reaching down to arcminute resolutions.
In this situation, where accurate data on foregrounds are lacking in particular, it is im-
perative not only to design methods capable of controlling and removing the foreground
emission out of a multi-frequency observations, but also, having good and complete models
of foregrounds, in order to validate those techniques. This is the subject of the problem
we face in this Thesis: we construct models of the main polarized foreground, the thermal
dust emission in our own Galaxy, which enable to simulate the emission at unobserved
frequencies and angular resolutions beyond current observational limits. This approach
maximizes the use of available observational data while reflecting the present uncertainties
in the spatial distribution and frequency dependence of foregrounds. We concentrate on
two foreground models, both designed to meet the requirements of CMB data analysis.

Chapter 4 describes our contribution within the collaboration PanEx GSWG to update
the widely used package PySM3 to simulate CMB foregrounds. It integrates optimized data
and new models in the literature to provide different level of complexity when preparing
the simulations for CMB data analysis. In particular, we use MFs as a tool to quantify the
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non-Gaussianity injected into the small scales of thermal dust emission generated by the
new model (called d10 in PySM3) based on the PolTens framework, which imprints non-
Gaussianity by transforming the maps back and forth non-linearly. As expected, we found
that the non-Gaussianity in the small scales simulated in this manner is similar to that of
modulated small scales when averaging over the sky within GAL80 mask which means that
the induced non-Gaussianity comes from the modulation process. We also investigated
this process locally, i.e. by considering small flat patches individually, and found that the
measured MFs of d10 indicate a non-Gaussian pattern which however might be caused by
local deviation from perfect large-scale modulation. Therefore, even for the most advanced
technique implemented in the PySM3 and in particular for the d10model, a pure modulation
effect as observed on the large scale foreground power is capable of accounting for the entire
non-Gaussian effects injected into small scales.

We face this problem with the work which is described in Chapter 5, based on Yao
et al. (2024), where we present a new methodology called ForSE+ based on NN. It is able
to simulate foreground pattern at the arcminute scale and generate multiple realizations,
preserving all the non-Gaussian statistics which is present at observed large scales, as
indicated by MFs. We use the same network in KP2021 in order to obtain the polarized
thermal dust emission with small-scale information at 353 GHz. The extension to arcminute
scale is achieved through the scale invariance assumption, in which our training samples at
12′ can equally be treated as having patches at 3′ and thus can be treated as the target for
the NN to learn to generate small scales. We validate the generated maps by comparing
with observations at large scales, in terms of power spectra and non-Gaussianity. Once the
steps above are achieved, we can use the synthetic dust Stokes Q and U maps at 353 GHz
at 3′ resolution as a template and appropriately scale across different frequencies by taking
the observed dust SEDs, similar to what PySM3 does.

Toolkits such as PySM3 and ForSE+ play a crucial role in the simulation of foreground
maps, which are essential for studying cosmological signals in the presence of astrophysical
contamination. These tools allow for the generation of realistic foreground realizations,
which can be used to assess the effectiveness and robustness of component separation
algorithms. By simulating multiple foreground realizations, researchers can quantify the
scatter and uncertainties in the separation process, ensuring that the extraction of the
cosmological signal remains accurate across various foreground models.

Furthermore, high-resolution non-Gaussian maps are vital for testing and validating
lensing reconstruction methods. Lensing from inhomogeneous gravitational field distorts
the path of CMB photons and introduces non-Gaussianity to the observed CMB maps,
dominating the B-modes at small scales. Lensing reconstruction methods try to recover
the gravitational potential which can be used to delensing the CMB BB spectra. The
residual non-Gaussian foregrounds can lead to bias to these two processes and the effects
have been tested so far on foreground models where the arcminute structure is either absent
or Gaussian (Lonappan et al., 2023), or based on models of the Galactic magnetic fields
in order to reproduce a non-Gaussian pattern (Beck et al., 2020). High-resolution simu-
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lations of foregrounds with the level of non-Gaussianity constrained by the data provide
a detailed benchmark against which lensing reconstruction algorithms can be compared,
ensuring their reliability and performance in real data analyses. These maps help to iden-
tify and correct potential biases or inaccuracies that could arise in low-resolution datasets,
ultimately improving the accuracy of cosmological inferences.

Thanks to the results presented in this Thesis, we can start these analysis in order to
give responses to the CMB community about these outstanding questions, at least with
the current, and unprecedented, faithfulness of non-Gaussian pattern in foregrounds, at all
the angular scales of interest.

97



Bibliography

Abazajian, K., Addison, G., Adshead, P., et al. 2019, arXiv e-prints, arXiv:1907.04473,
doi: 10.48550/arXiv.1907.04473

Abazajian, K. N., Adshead, P., Ahmed, Z., et al. 2016, arXiv e-prints, arXiv:1610.02743,
doi: 10.48550/arXiv.1610.02743

Abril-Cabezas, I., Herv́ıas-Caimapo, C., von Hausegger, S., Sherwin, B. D., & Alonso, D.
2024, MNRAS, 527, 5751, doi: 10.1093/mnras/stad3529

Ade, P., Aguirre, J., Ahmed, Z., et al. 2019, J. Cosmology Astropart. Phys., 2019, 056,
doi: 10.1088/1475-7516/2019/02/056

Albrecht, A., & Steinhardt, P. J. 1982, Phys. Rev. Lett., 48, 1220, doi: 10.1103/

PhysRevLett.48.1220

Allys, E., Levrier, F., Zhang, S., et al. 2019, A&A, 629, A115, doi: 10.1051/0004-6361/
201834975

Alonso, D., Sanchez, J., Slosar, A., & LSST Dark Energy Science Collaboration. 2019,
MNRAS, 484, 4127, doi: 10.1093/mnras/stz093

Aluri, P. K., & Rath, P. K. 2016, MNRAS, 458, 4269, doi: 10.1093/mnras/stw283

Alzubaidi, L., Zhang, J., Humaidi, A. J., et al. 2021, Journal of Big Data, 8. https:

//api.semanticscholar.org/CorpusID:232434552

Anderson, L., Aubourg, E., Bailey, S., et al. 2012, MNRAS, 427, 3435, doi: 10.1111/j.
1365-2966.2012.22066.x

Aylor, K., Haq, M., Knox, L., Hezaveh, Y., & Perreault-Levasseur, L. 2021, MNRAS, 500,
3889, doi: 10.1093/mnras/staa3344

Baccigalupi, C. 2003, New A Rev., 47, 1127, doi: 10.1016/j.newar.2003.09.038

98

http://doi.org/10.48550/arXiv.1907.04473
http://doi.org/10.48550/arXiv.1610.02743
http://doi.org/10.1093/mnras/stad3529
http://doi.org/10.1088/1475-7516/2019/02/056
http://doi.org/10.1103/PhysRevLett.48.1220
http://doi.org/10.1103/PhysRevLett.48.1220
http://doi.org/10.1051/0004-6361/201834975
http://doi.org/10.1051/0004-6361/201834975
http://doi.org/10.1093/mnras/stz093
http://doi.org/10.1093/mnras/stw283
https://api.semanticscholar.org/CorpusID:232434552
https://api.semanticscholar.org/CorpusID:232434552
http://doi.org/10.1111/j.1365-2966.2012.22066.x
http://doi.org/10.1111/j.1365-2966.2012.22066.x
http://doi.org/10.1093/mnras/staa3344
http://doi.org/10.1016/j.newar.2003.09.038


Baccigalupi, C., Bedini, L., Burigana, C., et al. 2000, MNRAS, 318, 769, doi: 10.1046/j.
1365-8711.2000.03751.x

Bardeen, J. M. 1980, Phys. Rev. D, 22, 1882, doi: 10.1103/PhysRevD.22.1882

Bardeen, J. M., Steinhardt, P. J., & Turner, M. S. 1983, Phys. Rev. D, 28, 679, doi: 10.
1103/PhysRevD.28.679

Bartolo, N., Komatsu, E., Matarrese, S., & Riotto, A. 2004, Phys. Rep., 402, 103, doi: 10.
1016/j.physrep.2004.08.022

Bassett, B., & Hlozek, R. 2010, in Dark Energy: Observational and Theoretical Ap-
proaches, ed. P. Ruiz-Lapuente, 246, doi: 10.48550/arXiv.0910.5224

Baumann, D. 2009, arXiv e-prints, arXiv:0907.5424, doi: 10.48550/arXiv.0907.5424

Baumann, D. 2022, Cosmology (Cambridge University Press)

Beck, D., Errard, J., & Stompor, R. 2020, J. Cosmology Astropart. Phys., 2020, 030,
doi: 10.1088/1475-7516/2020/06/030

Ben-David, A., von Hausegger, S., & Jackson, A. D. 2015, J. Cosmology Astropart. Phys.,
2015, 019, doi: 10.1088/1475-7516/2015/11/019

Bennett, C. L., Larson, D., Weiland, J. L., et al. 2013, ApJS, 208, 20, doi: 10.1088/
0067-0049/208/2/20

Bernardi, G., Carretti, E., Fabbri, R., et al. 2004, MNRAS, 351, 436, doi: 10.1111/j.
1365-2966.2004.07797.x

Bertone, G., & Hooper, D. 2018, Reviews of Modern Physics, 90, 045002, doi: 10.1103/
RevModPhys.90.045002

BeyondPlanck Collaboration I. 2023, A&A, 675, A1, doi: 10.1051/0004-6361/202244953

BICEP2 Collaboration, Ade, P. A. R., Aikin, R. W., et al. 2014, Phys. Rev. Lett., 112,
241101, doi: 10.1103/PhysRevLett.112.241101

BICEP2 Collaboration, Keck Array Collaboration, Ade, P. A. R., et al. 2016,
Phys. Rev. Lett., 116, 031302, doi: 10.1103/PhysRevLett.116.031302

BICEP2/Keck Collaboration, Planck Collaboration, Ade, P. A. R., et al. 2015,
Phys. Rev. Lett., 114, 101301, doi: 10.1103/PhysRevLett.114.101301

Bicep/Keck Collaboration XIII. 2021, Phys. Rev. Lett., 127, 151301, doi: 10.1103/

PhysRevLett.127.151301

99

http://doi.org/10.1046/j.1365-8711.2000.03751.x
http://doi.org/10.1046/j.1365-8711.2000.03751.x
http://doi.org/10.1103/PhysRevD.22.1882
http://doi.org/10.1103/PhysRevD.28.679
http://doi.org/10.1103/PhysRevD.28.679
http://doi.org/10.1016/j.physrep.2004.08.022
http://doi.org/10.1016/j.physrep.2004.08.022
http://doi.org/10.48550/arXiv.0910.5224
http://doi.org/10.48550/arXiv.0907.5424
http://doi.org/10.1088/1475-7516/2020/06/030
http://doi.org/10.1088/1475-7516/2015/11/019
http://doi.org/10.1088/0067-0049/208/2/20
http://doi.org/10.1088/0067-0049/208/2/20
http://doi.org/10.1111/j.1365-2966.2004.07797.x
http://doi.org/10.1111/j.1365-2966.2004.07797.x
http://doi.org/10.1103/RevModPhys.90.045002
http://doi.org/10.1103/RevModPhys.90.045002
http://doi.org/10.1051/0004-6361/202244953
http://doi.org/10.1103/PhysRevLett.112.241101
http://doi.org/10.1103/PhysRevLett.116.031302
http://doi.org/10.1103/PhysRevLett.114.101301
http://doi.org/10.1103/PhysRevLett.127.151301
http://doi.org/10.1103/PhysRevLett.127.151301


Blau, M. 2022, Lecture Notes on General Relativity, http://www.blau.itp.unibe.ch/
GRLecturenotes.html

Bonjean, V., Tanimura, H., Aghanim, N., Bonnaire, T., & Douspis, M. 2024, A&A, 686,
A91, doi: 10.1051/0004-6361/202245624

Cabella, P., Pietrobon, D., Veneziani, M., et al. 2010, MNRAS, 405, 961, doi: 10.1111/j.
1365-2966.2010.16542.x

Cardoso, J.-F., Martin, M., Delabrouille, J., Betoule, M., & Patanchon, G. 2008, arXiv
e-prints, arXiv:0803.1814, doi: 10.48550/arXiv.0803.1814

Carones, A., CarrónDuque, J., Marinucci, D., Migliaccio, M., & Vittorio, N. 2024, MNRAS,
527, 756, doi: 10.1093/mnras/stad3002

Carones, A., & Remazeilles, M. 2024, J. Cosmology Astropart. Phys., 2024, 018, doi: 10.
1088/1475-7516/2024/06/018

Choi, S. K., Hasselfield, M., Ho, S.-P. P., et al. 2020, J. Cosmology Astropart. Phys., 2020,
045, doi: 10.1088/1475-7516/2020/12/045

Clark, S. E., & Hensley, B. S. 2019, ApJ, 887, 136, doi: 10.3847/1538-4357/ab5803

Coil, A. L. 2013, The Large-Scale Structure of the Universe, ed. T. D. Oswalt & W. C.
Keel (Dordrecht: Springer Netherlands), 387–421, doi: 10.1007/978-94-007-5609-0_8

Cooke, R. J., Pettini, M., & Steidel, C. C. 2018, ApJ, 855, 102, doi: 10.3847/1538-4357/
aaab53

Coulton, W. R., & Spergel, D. N. 2019, J. Cosmology Astropart. Phys., 2019, 056, doi: 10.
1088/1475-7516/2019/10/056

Das, S., Sherwin, B. D., Aguirre, P., et al. 2011, Phys. Rev. Lett., 107, 021301, doi: 10.
1103/PhysRevLett.107.021301

Delabrouille, J., & Cardoso, J. F. 2007, arXiv e-prints, astro, doi: 10.48550/arXiv.

astro-ph/0702198

Delabrouille, J., Cardoso, J. F., Le Jeune, M., et al. 2009, A&A, 493, 835, doi: 10.1051/
0004-6361:200810514

Delabrouille, J., Cardoso, J. F., & Patanchon, G. 2003, MNRAS, 346, 1089, doi: 10.1111/
j.1365-2966.2003.07069.x

100

http://www.blau.itp.unibe.ch/GRLecturenotes.html
http://www.blau.itp.unibe.ch/GRLecturenotes.html
http://doi.org/10.1051/0004-6361/202245624
http://doi.org/10.1111/j.1365-2966.2010.16542.x
http://doi.org/10.1111/j.1365-2966.2010.16542.x
http://doi.org/10.48550/arXiv.0803.1814
http://doi.org/10.1093/mnras/stad3002
http://doi.org/10.1088/1475-7516/2024/06/018
http://doi.org/10.1088/1475-7516/2024/06/018
http://doi.org/10.1088/1475-7516/2020/12/045
http://doi.org/10.3847/1538-4357/ab5803
http://doi.org/10.1007/978-94-007-5609-0_8
http://doi.org/10.3847/1538-4357/aaab53
http://doi.org/10.3847/1538-4357/aaab53
http://doi.org/10.1088/1475-7516/2019/10/056
http://doi.org/10.1088/1475-7516/2019/10/056
http://doi.org/10.1103/PhysRevLett.107.021301
http://doi.org/10.1103/PhysRevLett.107.021301
http://doi.org/10.48550/arXiv.astro-ph/0702198
http://doi.org/10.48550/arXiv.astro-ph/0702198
http://doi.org/10.1051/0004-6361:200810514
http://doi.org/10.1051/0004-6361:200810514
http://doi.org/10.1111/j.1365-2966.2003.07069.x
http://doi.org/10.1111/j.1365-2966.2003.07069.x


Delouis, J. M., Allys, E., Gauvrit, E., & Boulanger, F. 2022, A&A, 668, A122, doi: 10.
1051/0004-6361/202244566

Dicke, R. H., Peebles, P. J. E., Roll, P. G., & Wilkinson, D. T. 1965, ApJ, 142, 414,
doi: 10.1086/148306
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Tristram, M., Banday, A. J., Górski, K. M., et al. 2022, Phys. Rev. D, 105, 083524,
doi: 10.1103/PhysRevD.105.083524

Tristram, M., Banday, A. J., Douspis, M., et al. 2024, A&A, 682, A37, doi: 10.1051/
0004-6361/202348015

von Hausegger, S., Gammelgaard Ravnebjerg, A., & Liu, H. 2019, MNRAS, 487, 5814,
doi: 10.1093/mnras/stz1582

Walker, A. G. 1937, Proceedings of the London Mathematical Society, 42, 90, doi: 10.
1112/plms/s2-42.1.90

Wang, G.-J., Shi, H.-L., Yan, Y.-P., et al. 2022, ApJS, 260, 13, doi: 10.3847/1538-4365/
ac5f4a

Weinberg, S. 1977, The First Three Minutes. A Modern View of the Origin of the Universe
(Basic Books)

Weinberg, S. 2008, Cosmology (Oxford University Press)

Yan, Y.-P., Wang, G.-J., Li, S.-Y., & Xia, J.-Q. 2023, ApJ, 947, 29, doi: 10.3847/

1538-4357/acbfb4

Yao, J., Krachmalnicoff, N., Foschi, M., Puglisi, G., & Baccigalupi, C. 2024, A&A, 686,
A290, doi: 10.1051/0004-6361/202449827

Yao, J., Zhang, L., Zhao, Y., et al. 2018, ApJS, 239, 36, doi: 10.3847/1538-4365/aaef7a

Zaldarriaga, M., & Seljak, U. 1997, Phys. Rev. D, 55, 1830, doi: 10.1103/PhysRevD.55.
1830

Zeldovich, Y. B. 1972, MNRAS, 160, 1P, doi: 10.1093/mnras/160.1.1P

Zonca, A., Singer, L., Lenz, D., et al. 2019, Journal of Open Source Software, 4, 1298,
doi: 10.21105/joss.01298

Zonca, A., Thorne, B., Krachmalnicoff, N., & Borrill, J. 2021, Journal of Open Source
Software, 6, 3783, doi: 10.21105/joss.03783

Zwicky, F. 2009, General Relativity and Gravitation, 41, 207, doi: 10.1007/

s10714-008-0707-4

109

http://doi.org/10.1088/0034-4885/70/6/R02
http://doi.org/10.1088/0034-4885/70/6/R02
http://doi.org/10.1103/PhysRevD.105.083524
http://doi.org/10.1051/0004-6361/202348015
http://doi.org/10.1051/0004-6361/202348015
http://doi.org/10.1093/mnras/stz1582
http://doi.org/10.1112/plms/s2-42.1.90
http://doi.org/10.1112/plms/s2-42.1.90
http://doi.org/10.3847/1538-4365/ac5f4a
http://doi.org/10.3847/1538-4365/ac5f4a
http://doi.org/10.3847/1538-4357/acbfb4
http://doi.org/10.3847/1538-4357/acbfb4
http://doi.org/10.1051/0004-6361/202449827
http://doi.org/10.3847/1538-4365/aaef7a
http://doi.org/10.1103/PhysRevD.55.1830
http://doi.org/10.1103/PhysRevD.55.1830
http://doi.org/10.1093/mnras/160.1.1P
http://doi.org/10.21105/joss.01298
http://doi.org/10.21105/joss.03783
http://doi.org/10.1007/s10714-008-0707-4
http://doi.org/10.1007/s10714-008-0707-4

	List of Figures
	List of Tables
	List of Acronyms
	ABSTRACT
	Introduction
	CDM Cosmology
	Expanding Universe
	Friedmann-Lemaître-Robertson-Walker metric
	Einstein equations
	Cosmic constituents
	Cosmological Abundances

	Linear Perturbations
	Scalar-Vector-Tensor decomposition
	Gauge choice

	Inflation
	Problems of the pre-inflationary cosmology
	Fourier transform and power spectra
	Scalar perturbations
	Tensor perturbations
	Primordial Non-Gaussianity


	Cosmic Microwave Background
	Angular power spectrum for total intensity anisotropies
	Observed CMB temperature power spectra
	CMB polarization
	E-B decomposition
	Observed EE and TE power spectra
	CMB BB spectrum

	CMB measurements
	Brief history of CMB measurements
	Challenges of measuring CMB B-modes
	Future CMB experiments


	CMB Foregrounds
	Mechanism, modeling and measurements of foregrounds
	Thermal dust
	Synchrotron
	Free-free
	AME
	Other Galactic foregrounds and Extra-galactic emission

	Contamination to CMB B-modes
	Foreground non-Gaussianity
	Component Separation
	ILC
	ICA
	Parametric methods
	Machine Learning
	Tools to validate the absence of residual foregrounds

	Latest Development of Foreground Modeling

	Foreground Modeling with PySM3
	New aspects comparing with PySM2
	Polarization Fraction Tensor formalism
	New templates

	Minkowski functionals
	Measuring the non-Gaussianity in the new dust maps
	Minkowski Functionals on the sphere
	Minkowski Functionals on small regions

	Summary

	Simulating Stochastic Non-Gaussian Foregrounds with Machine Learning
	Basics of Neural Networks
	Structures of NN
	Training Process of NN
	Generative Adversarial Networks

	From ForSE to ForSE+
	Review of the ForSE model: From 80 to 12
	ForSE+: Producing non-Gaussian dust maps at 3

	Pre-processing, training, and post-processing of ForSE+
	ForSE+S to 12
	ForSE+D and ForSE+S3 to 3

	Validations of full-sky maps from ForSE+
	Fine-tuning of the E-to-B ratio to match observations
	Full-sky maps
	Non-Gaussianity measured on the sphere

	Summary

	Conclusions

