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Abstract
For an arbitrary integer 𝑟 ≥ 1, we compute 𝑟-framed motivic DT and PT invari-
ants of small crepant resolutions of toric Calabi–Yau 3-folds, establishing a
“higher rank” version of the motivic DT/PT wall-crossing formula. This gener-
alises the work of Morrison and Nagao. Our formulae, in particular their rela-
tionship with the 𝑟 = 1 theory, fit nicely in the current development of higher
rank refined DT invariants.
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1 INTRODUCTION

Let𝑌 be a smooth Calabi–Yau 3-fold. Donaldson–Thomas (DT in short) theory in rank 1 is an enumerative theory virtually
enumerating curves embedded in 𝑌. The moduli space being “enumerated” is the Hilbert scheme of 1-dimensional sub-
schemes of𝑌. On the other hand, Pandharipande–Thomas (PT in short) theory has as its main character themoduli space
of (rank 1) stable pairs on 𝑌, which are pairs (𝐹, 𝑠) where 𝐹 ∈ Coh𝑌 is a purely 1-dimensional sheaf and 𝑠 ∶ 𝒪𝑌 → 𝐹 is a
section with 0-dimensional cokernel. Both enumerative theories admit motivic refinements; in general it is very hard to
produce explicit formulae for the generating functions of themotivic DT and PT invariants, but when themoduli spaces in
question admit a description in terms of stable representations of the Jacobi algebra of a quiver with potential (𝑄, 𝜔), the
problemmight becomemore tractable. For instance, Morrison and Nagao computed in [15] motivic DT and PT invariants
of small crepant resolutions 𝑌𝜎 of the affine toric Calabi–Yau 3-fold

𝑋 = Specℂ[𝑥, 𝑦, 𝑧, 𝑤]∕
(
𝑥𝑦 − 𝑧𝑁0𝑤𝑁1

)
⊂ 𝔸4,

generalising previous results on the resolved conifold [16], corresponding to the case 𝑁0 = 𝑁1 = 1. Such resolutions
𝑌𝜎 →𝑋 are indexed by partitions 𝜎 of a polygon Γ𝑁0,𝑁1 naturally attached to 𝑋 (more details in § 3). Each partition 𝜎
defines a quiver with potential

(
𝑄𝜎, 𝜔𝜎

)
with𝑁 = 𝑁0 + 𝑁1 vertices (see Figure 3 for an example of such a𝑄𝜎), and for any
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𝑟 ≥ 1 one can consider the 𝑟-framed quiver (Definition 2.2) with potential
(
𝑄𝜎, 𝜔𝜎

)
. We denote by 𝐽𝜎 the corresponding

Jacobi algebra. A generic choice of stability parameters 𝜁𝖯𝖳 and 𝜁𝖣𝖳, respectively in the PT and DT regions of the space of
all stability parameters of 𝑄𝜎, gives rise to generating functions

𝖯𝖳𝑟
(
𝑌𝜎; 𝑠, 𝑇

)
and 𝖣𝖳𝑟

(
𝑌𝜎; 𝑠, 𝑇

)
of motivic invariants, where (at least in the 𝑟 = 1 case) 𝑠 represents the point class and 𝑇 is a vector of curve classes. The
definition of the series 𝖯𝖳𝑟 and 𝖣𝖳𝑟 is as follows. One first sets, for a generic stability parameter 𝜁,

𝖹𝜁
(
𝑦0, 𝑦1, … , 𝑦𝑁−1

)
=

∑
𝛼∈ℕ(𝑄𝜎)0

[
𝔐𝜁

(
𝐽𝜎, 𝛼

)]
vir
⋅ 𝑦𝛼

where the virtual motive [ ⋅ ]vir of the moduli stack 𝔐𝜁

(
𝐽𝜎, 𝛼

)
of 𝜁-stable 𝐽𝜎-modules with dimension vector (𝛼, 1) is

introduced in Definition 2.11. One then defines

𝖯𝖳𝑟
(
𝑌𝜎; 𝑠, 𝑇

)
= 𝖹𝜁𝖯𝖳

(
𝑠, 𝑇1, … , 𝑇𝑁−1

)
,

𝖣𝖳𝑟
(
𝑌𝜎; 𝑠, 𝑇

)
= 𝖹𝜁𝖣𝖳

(
𝑠, 𝑇1, … , 𝑇𝑁−1

) (1.1)

where 𝑠 = 𝑦0𝑦1 ⋯𝑦𝑁−1, 𝑇𝑖 = 𝑦−1
𝑖

and 𝑇 =
(
𝑇1, … , 𝑇𝑁−1

)
.

The generating functions (1.1) are computed explicitly for 𝑟 = 1 in [15, Cor. 0.3]. The result, recalled in § 5.2, is the
following: one has

𝖯𝖳1
(
𝑌𝜎; 𝑠, 𝑇

)
=

∏
1≤𝑎≤𝑏≤𝑁−1

𝑍[𝑎,𝑏]
(
𝑠, 𝑇𝑎 ⋯𝑇𝑏

)
,

where, letting
{
𝐶𝑖|1 ≤ 𝑖 ≤ 𝑁 − 1

}
be the set of components of the exceptional curve and 𝑐(𝑎, 𝑏) the number of (−1, −1)-

curves in
{
𝐶𝑖|𝑎 ≤ 𝑖 ≤ 𝑏

}
, one sets

𝑍[𝑎,𝑏](𝑠, 𝑇𝑎 ⋯𝑇𝑏) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∏
𝑚≥1

𝑚−1∏
𝑗=0

(
1 − 𝕃

𝑗+
1

2
−
𝑚

2 (−𝑠)𝑚𝑇𝑎 ⋯𝑇𝑏

)
if 𝑐(𝑎, 𝑏) is odd,

∏
𝑚≥1

𝑚−1∏
𝑗=0

(
1 − 𝕃

𝑗+1−
𝑚

2 (−𝑠)𝑚𝑇𝑎 ⋯𝑇𝑏

)−1
if 𝑐(𝑎, 𝑏) is even.

As for the DT series in rank 1, one has the DT/PT correspondence

𝖣𝖳1
(
𝑌𝜎; 𝑠, 𝑇

)
= 𝖣𝖳

points
1

(
𝑌𝜎, 𝑠

)
⋅ 𝖯𝖳1

(
𝑌𝜎; 𝑠, 𝑇

)
,

where 𝖣𝖳points
1

(
𝑌𝜎, 𝑠

)
is the Behrend–Bryan–Szendrői generating function [2], that we recall in (4.2).

The goal of this paper is to compute the generating functions 𝖯𝖳𝑟
(
𝑌𝜎; 𝑠, 𝑇

)
and 𝖣𝖳𝑟

(
𝑌𝜎; 𝑠, 𝑇

)
for arbitrary 𝑟. The result,

as we will show, is a full factorisation of the above series as 𝑟-fold (twisted) products of the 𝑟 = 1 generating functions.
Moreover, we establish an 𝑟-framed version of the motivic DT/PT correspondence for 𝑌𝜎.
Our main result, proved in § 5.2, is the following.

Theorem 1.1. Let 𝑌𝜎 be the crepant resolution of 𝑋 corresponding to a partition 𝜎. There are factorisations

𝖯𝖳𝑟
(
𝑌𝜎; 𝑠, 𝑇

)
=

𝑟∏
𝑖=1

𝖯𝖳1

(
𝑌𝜎; (−1)

𝑟+1𝕃
−𝑟−1

2
+𝑖
𝑠, 𝑇

)
,

𝖣𝖳𝑟
(
𝑌𝜎; 𝑠, 𝑇

)
=

𝑟∏
𝑖=1

𝖣𝖳1

(
𝑌𝜎; (−1)

𝑟+1𝕃
−𝑟−1

2
+𝑖
𝑠, 𝑇

)
.

(1.2)
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1098 CAZZANIGA and RICOLFI

Furthermore, the 𝑟-framed motivic DT/PT correspondence holds: there is an identity

𝖣𝖳𝑟
(
𝑌𝜎; 𝑠, 𝑇

)
= 𝖣𝖳

points
𝑟

(
𝑌𝜎, 𝑠

)
⋅ 𝖯𝖳𝑟

(
𝑌𝜎; 𝑠, 𝑇

)
,

where 𝖣𝖳points𝑟

(
𝑌𝜎, 𝑠

)
is the virtual motivic partition function of the Quot scheme of points on 𝑌𝜎.

The series 𝖣𝖳
points
𝑟

(
𝔸3, 𝑠

)
=
∑
𝑛≥0

[
Quot𝔸3

(
𝒪⊕𝑟, 𝑛

)]
vir
⋅ 𝑠𝑛, originating from the critical locus structure on

Quot𝔸3
(
𝒪⊕𝑟, 𝑛

)
, is studied in detail in [5, 6, 22]. The series 𝖣𝖳points𝑟 (𝑌, 𝑠) was introduced and computed for all 3-folds

𝑌 in [26, § 4], generalising the 𝑟 = 1 case corresponding toHilb𝑛𝑌 [2]. See § 4 for more details — for instance, an explicit
formula for 𝖣𝖳points𝑟

(
𝑌𝜎, 𝑠

)
will be given in Equation (4.3).

A first instance of Formulae (1.2) was computed in [5, Chap. 3] for the case of the resolved conifold and the resolution
of a line of 𝐴2 singularities.
The same factorisation of generating functions of “rank 𝑟 objects” into 𝑟 copies of generating functions of rank 1 objects,

shifted precisely as in Formulae (1.2), has recently been observed in the context of higher rank K-theoretic DT invariants
[10] and in string theory [20].
Even though the geometricmeaning of themoduli spaces of quiver representations giving rise to the 𝑟-framed invariants

(1.2), for arbitrary 𝑟, is not as clear as in the 𝑟 = 1 case, we do believe that such moduli spaces have a sensible geometric
interpretation as suitable “higher rank” analogues of the Hilbert scheme of curves in 𝑌𝜎 (DT side) and the moduli space
of stable pairs on 𝑌𝜎 (PT side). We come back to this in Remark 5.9, where we discuss a geometric interpretation of the
framed moduli spaces in the PT chamber for the case of the conifold and 𝐴2 quivers.

2 BACKGROUNDMATERIAL

2.1 Rings of motives

In this subsection we recall the definitions of various rings where the motivic invariants we want to study live.
As in [15, 16], we let ℂ be the Grothendieck ring of the category of effective Chow motives over ℂ with rational

coefficients [14], extended with 𝕃−1∕2. A lambda-ring structure on ℂ is obtained by setting 𝜎𝑛([𝑋]) =
[
Sym𝑛𝑋

]
and

𝜎𝑛
(
𝕃1∕2

)
= 𝕃𝑛∕2 to define the lambda operations. In particular, there is a well defined notion of power structure and

plethystic exponential on ℂ (see e.g. [2, § 2.5] or [8, § 1.5.1] for their formal properties). We consider the dimensional
completion [3]

̃ℂ =ℂ�𝕃�,

which is also a lambda-ring, and in which the motives
[
GL𝑘

]
of all general linear groups are invertible.

2.1.1 The virtual motive of a critical locus

Let𝑈 be a smooth 𝑑-dimensionalℂ-scheme, let 𝑓 ∶ 𝑈 → 𝔸1 be a regular function. The virtual motive of the critical locus
crit(𝑓) = 𝑍(d𝑓) ⊂ 𝑈, depending on the pair (𝑈, 𝑓), is defined in [15, 16] as the motivic class

[
crit(𝑓)

]
vir
= −

(
−𝕃

1

2

)−𝑑
⋅
[
𝜙𝑓
]
∈ 

𝜇̂

ℂ
,

where
[
𝜙𝑓
]
∈ 𝐾

𝜇̂
0

(
Varℂ

)
is the (absolute) motivic vanishing cycle class defined by Denef and Loeser [9] and the “𝜇̂”

decoration refers to 𝜇̂-equivariant motives, where 𝜇̂ is the group of all roots of unity. However, all the motivic invariants
studied here will live in the subringℂ ⊂

𝜇̂

ℂ
of classes carrying the trivial 𝜇̂-action, so we will not be concerned with

the subtle structure of this larger ring.
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CAZZANIGA and RICOLFI 1099

F IGURE 1 The 3-loop quiver 𝐿3 and the conifold quiver 𝑄con

As an example, consider the function 𝑓 = 0 ∈ Γ(𝑈). Then crit(𝑓) = 𝑈 and
[
𝜙𝑓
]
= −[𝑈], so

[𝑈]vir =

(
−𝕃

1

2

)−dim𝑈

⋅ [𝑈]. For instance,

[
GL𝑘

]
vir
=

(
−𝕃

1

2

)−𝑘2
⋅
[
GL𝑘

]
. (2.1)

Remark 2.1. Our definition of [crit(𝑓)]vir differs from the original one [2, § 2.8], which is also the one used in [6, 8]. We
decided to adopt the conventions in [15, 16] to keep close to the original formulae. In practice, the difference amounts to
the substitution 𝕃1∕2 ↔ −𝕃1∕2. In particular, the Euler number specialisation with our conventions is 𝕃1∕2 → 1, instead
of 𝕃1∕2 → −1.

2.2 Quivers: framings, and motivic quantum torus

A quiver 𝑄 is a finite directed graph, determined by its sets 𝑄0 and 𝑄1 of vertices and edges, respectively, along with the
maps ℎ, 𝑡 ∶ 𝑄1 → 𝑄0 specifying where an edge starts or ends. We use the notation

to denote the tail and the head of an edge 𝑎 ∈ 𝑄1.
All quivers in this paper will be assumed connected. The path algebra ℂ𝑄 of a quiver 𝑄 is defined, as a ℂ-vector space,

by using as a ℂ-basis the set of all paths in the quiver, including a trivial path 𝑒𝑖 for each 𝑖 ∈ 𝑄0. The product is defined by
concatenation of paths whenever the operation is possible, and 0 otherwise. The identity element is

∑
𝑖∈𝑄0

𝑒𝑖 ∈ ℂ𝑄.
On a quiver 𝑄 one can define the Euler–Ringel form 𝜒(−,−) ∶ ℤ𝑄0 × ℤ𝑄0 → ℤ by

𝜒(𝛼, 𝛽) =
∑
𝑖∈𝑄0

𝛼𝑖𝛽𝑖 −
∑
𝑎∈𝑄1

𝛼𝑡(𝑎)𝛽ℎ(𝑎),

as well as the skew-symmetric form

⟨𝛼, 𝛽⟩ = 𝜒(𝛼, 𝛽) − 𝜒(𝛽, 𝛼).

The following construction will be central in our paper.

Definition 2.2 (𝑟-framing). Let𝑄 be a quiver with a distinguished vertex 0 ∈ 𝑄0, and let 𝑟 be a positive integer. We define
the quiver 𝑄 by adding one vertex, labelled ∞, to the original vertices in 𝑄0, and 𝑟 edges ∞→ 0. We refer to 𝑄 as the
𝑟-framed quiver obtained out of (𝑄, 0).

The 𝑟-framing construction was applied to the 3-loop quiver (on the left in Figure 1) in [1, 5, 6, 22], following the 𝑟 = 1

case studied by Behrend–Bryan–Szendrői [2], and to the conifold quiver (on the right in Figure 1) in [5]. In this paper, it
will be applied more generally to the quivers arising in the work of Morrison–Nagao [15], which we briefly discuss in § 3.
The case 𝑟 = 1 was covered in [15, 16].
Let 𝑄 be a quiver. Define itsmotivic quantum torus (or twisted motivic algebra) as

𝑄 =
∏

𝛼∈ℕ𝑄0

̃ℂ ⋅ 𝑦
𝛼
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1100 CAZZANIGA and RICOLFI

with product rule

𝑦𝛼 ⋅ 𝑦𝛽 =

(
−𝕃

1

2

)⟨𝛼,𝛽⟩
𝑦𝛼+𝛽. (2.2)

If 𝑄 is the 𝑟-framed quiver associated to (𝑄, 0) via Definition 2.2, one has that 𝑄 sits inside 𝑄 as a ̃ℂ-subalgebra, and
there is a ℤ-module decomposition

𝑄 = 𝑄 ⊕
∏
𝑑≥0

̃ℂ ⋅ 𝑦
𝑑
∞,

where we have set 𝑦∞ = 𝑦(𝟎,1). Similarly, a generator 𝑦𝛼 ∈ 𝑄 will be identified with its image 𝑦(𝛼,0) ∈ 𝑄.

2.3 Quiver representations and their stability

Let𝑄 be a quiver. A representation𝜌 of𝑄 is the datumof a finite dimensionalℂ-vector space𝜌𝑖 for every vertex 𝑖 ∈ 𝑄0, and a
linearmap 𝜌(𝑎) ∶ 𝜌𝑖 → 𝜌𝑗 for every edge 𝑎 ∶ 𝑖 → 𝑗 in𝑄1. The dimension vector of 𝜌 is the vector dim𝜌=

(
dimℂ 𝜌𝑖

)
𝑖
∈ℕ𝑄0 ,

where ℕ = ℤ≥0.

Convention 1. Let 𝑄 be a quiver, let 𝑄 be the associated 𝑟-framed quiver. The dimension vector of a representation 𝜌 of 𝑄
will be denoted (𝛼, 𝑑), where 𝛼 ∈ ℕ𝑄0 and dimℂ 𝜌∞ = 𝑑 ∈ ℕ.

Representations of a quiver 𝑄 form an abelian category, which is equivalent to the category of left modules over the
path algebra ℂ𝑄 of the quiver. The space of all representations of 𝑄, with a fixed dimension vector 𝛼 ∈ ℕ𝑄0 , is the affine
space

R(𝑄, 𝛼) =
∏
𝑎∈𝑄1

Homℂ

(
ℂ𝛼𝑡(𝑎) , ℂ𝛼ℎ(𝑎)

)
.

The gauge group GL𝛼 =
∏

𝑖∈𝑄0
GL𝛼𝑖 acts on R(𝑄, 𝛼) by

(
𝑔𝑖
)
𝑖
⋅ (𝜌(𝑎))𝑎∈𝑄1 =

(
𝑔ℎ(𝑎)◦𝜌(𝑎)◦𝑔

−1
𝑡(𝑎)

)
𝑎∈𝑄1

. The quotient stack

𝔐(𝑄, 𝛼) =
[
R(𝑄, 𝛼)∕GL𝛼

]
parametrises isomorphism classes of representations of 𝑄 with dimension vector 𝛼.
Following [15, 16], we recall the notion of (semi)stability of a representation.

Definition 2.3. A central charge is a group homomorphism Z ∶ ℤ𝑄0 → ℂ such that the image of ℕ𝑄0 ⧵ 0 lies inside
ℍ+ =

{
𝑡𝑒
√
−1𝜋𝜑 | 𝑡 > 0, 0 < 𝜑 ≤ 1

}
. For every 𝛼 ∈ ℕ𝑄0 ⧵ 0, we denote by 𝜑(𝛼) the real number 𝜑 such that Z(𝛼) =

𝑡𝑒
√
−1𝜋𝜑. It is called the phase of 𝛼 with respect to Z.

Note that every vector 𝜁 ∈ ℝ𝑄0 induces a central charge Z𝜁 if we set Z𝜁(𝛼) = −𝜁 ⋅ 𝛼 + |𝛼|√−1, where |𝛼| = ∑
𝑖∈𝑄0

𝛼𝑖 .
We denote by 𝜑𝜁 the induced phase function, and we set 𝜑𝜁(𝜌) = 𝜑𝜁(dim𝜌) for every representation 𝜌 of 𝑄. The slope
function attached to Z𝜁 assigns to 𝛼 ∈ ℕ𝑄0 ⧵ 0 the real number 𝜇𝜁(𝛼) = 𝜁 ⋅ 𝛼∕|𝛼|. Note that 𝜑𝜁(𝛼) < 𝜑(𝛽) if and only if
𝜇𝜁(𝛼) < 𝜇𝜁(𝛽) (cf. [15, Rem. 3.5]).

Definition 2.4. Fix 𝜁 ∈ ℝ𝑄0 . A representation 𝜌 of 𝑄 is called 𝜁-semistable if

𝜑𝜁(𝜌
′) ≤ 𝜑𝜁(𝜌)

for every nonzero proper subrepresentation 0 ≠ 𝜌′ ⊊ 𝜌. When strict inequality holds, we say that 𝜌 is 𝜁-stable. Vectors
𝜁 ∈ ℝ𝑄0 are referred to as stability parameters.
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CAZZANIGA and RICOLFI 1101

For a fixed 𝜁, every representation 𝜌 admits a unique filtration

HN𝜁(𝜌) ∶ 0 = 𝜌0 ⊂ 𝜌1 ⊂ ⋯ ⊂ 𝜌𝑠 = 𝜌,

called the Harder–Narasimhan filtration, such that 𝜌𝑖∕𝜌𝑖−1 is 𝜁-semistable for 1 ≤ 𝑖 ≤ 𝑠, and there are strict inequalities
𝜑𝜁(𝜌1∕𝜌0) > 𝜑𝜁(𝜌2∕𝜌1) > ⋯ > 𝜑𝜁(𝜌∕𝜌𝑠−1).

Remark 2.5. The existence, uniqueness and functoriality of the Harder–Narasimhan filtration yields a stratification of the
moduli stack of all 𝑄-representations into locally closed substacks, indexed by Harder–Narasimhan type (this is a direct
consequence of [21, Prop. 3.4]); this stratification induces relations in the motivic quantum torus, which are implicitly
used in Lemma 5.4.

Definition 2.6 ([16, § 1.3]). Let 𝛼 ∈ ℕ𝑄0 be a dimension vector. A stability parameter 𝜁 is called 𝛼-generic if for any
0 < 𝛽 < 𝛼 one has 𝜑𝜁(𝛽) ≠ 𝜑𝜁(𝛼).

The sets of 𝜁-stable and 𝜁-semistable representations with given dimension vector 𝛼 form a chain of open subsets

R𝜁-st(𝑄, 𝛼) ⊂ R𝜁-ss(𝑄, 𝛼) ⊂ R(𝑄, 𝛼).

If 𝜁 is 𝛼-generic, one has R𝜁-st(𝑄, 𝛼) = R𝜁-ss(𝑄, 𝛼).

2.4 Quivers with potential

Let 𝑄 be a quiver. Consider the quotient ℂ𝑄∕[ℂ𝑄,ℂ𝑄] of the path algebra by the vector space spanned by commutators.
An element 𝑊 ∈ ℂ𝑄∕[ℂ𝑄,ℂ𝑄], which can be represented by a finite linear combination, is called a potential. Given a
cyclic path 𝑤 and an arrow 𝑎 ∈ 𝑄1, one defines the noncommutative derivative

𝜕𝑤

𝜕𝑎
=

∑
𝑤=𝑐𝑎𝑐′

𝑐,𝑐′ paths in 𝑄

𝑐′𝑐 ∈ ℂ𝑄.

This rule extends to an operator 𝜕∕𝜕𝑎 ∶ ℂ𝑄∕[ℂ𝑄,ℂ𝑄] → ℂ𝑄 acting on every potential. Thus every potential𝑊 gives rise
to a (two-sided) ideal 𝐼𝑊 ⊂ ℂ𝑄 generated by the paths 𝜕𝑊∕𝜕𝑎 for all 𝑎 ∈ 𝑄1. The quotient 𝐽 = 𝐽(𝑄,𝑊) = ℂ𝑄∕𝐼𝑊 is called
the Jacobi algebra of the quiver with potential (𝑄,𝑊). For every 𝛼 ∈ ℕ𝑄0 , a potential𝑊 =

∑
𝑐
𝑎𝑐𝑐 determines a regular

function

𝑓𝛼 ∶ R(𝑄, 𝛼) → 𝔸1, 𝜌 ↦
∑

𝑐 cycle in 𝑄
𝑎𝑐 ⋅ Tr(𝜌(𝑐)).

The points in the critical locus crit
(
𝑓𝛼
)
⊂ R(𝑄, 𝛼) correspond to 𝐽-modules with dimension vector 𝛼. Fix an 𝛼-generic

stability parameter 𝜁 ∈ ℝ𝑄0 . If 𝑓𝜁,𝛼 ∶ R
𝜁-st(𝑄, 𝛼) → 𝔸1 is the restriction of 𝑓𝛼, then

𝔐(𝐽, 𝛼) =
[
crit
(
𝑓𝛼
)
∕𝐺𝛼

]
, 𝔐𝜁(𝐽, 𝛼) =

[
crit
(
𝑓𝜁,𝛼

)
∕GL𝛼

]
are, by definition, the stacks of 𝛼-dimensional 𝐽-modules and 𝜁-stable 𝐽-modules.

Definition 2.7. A quiver with potential (𝑄,𝑊) admits a cut if there is a subset 𝐼 ⊂ 𝑄1 such that every cyclic monomial
appearing in𝑊 contains exactly one edge in 𝐼.

From now on we assume (𝑄,𝑊) admits a cut. This condition ensures that the motive [𝔐(𝐽, 𝛼)]vir introduced in the
next definition is monodromy-free, i.e. it lives in ̃ℂ. See [16, § 1.4] for more details. All quivers considered in this paper
admit a cut [15, § 4].
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1102 CAZZANIGA and RICOLFI

Definition 2.8 ([16]). We define motivic Donaldson–Thomas invariants

[
𝔐
(
𝐽, 𝛼
)]
vir

=

[
crit
(
𝑓𝛼
)]
vir

[GL𝛼]vir
,

[
𝔐𝜁(𝐽, 𝛼)

]
vir

=

(
−𝕃

1

2

)𝜒(𝛼,𝛼) [𝑓−1
𝜁,𝛼
(0)
]
−
[
𝑓−1
𝜁,𝛼
(1)
]

[GL𝛼]
,

(2.3)

in ̃ℂ, where
[
GL𝛼

]
vir
is as in Equation (2.1). The generating function

𝐴𝑈 =
∑

𝛼∈ℕ𝑄0

[
𝔐(𝐽, 𝛼)

]
vir
⋅ 𝑦𝛼 ∈ 𝑄 (2.4)

is called the universal series attached to (𝑄,𝑊).

Definition 2.9 ([16, § 2.4]). A stability parameter 𝜁 ∈ ℝ𝑄0 is called generic if 𝜁 ⋅ dim𝜌 ≠ 0 for every nontrivial 𝜁-stable
𝐽-module 𝜌.

2.5 Framed motivic DT invariants

Let 𝑟 ≥ 1 be an integer, let 𝑄 be a quiver, and 𝑄 its 𝑟-framing with respect to a vertex 0 ∈ 𝑄0 (Definition 2.2). A represen-
tation 𝜌 of 𝑄 can be uniquely written as a pair (𝜌, 𝑢), where 𝜌 is a representation of 𝑄 and 𝑢 = (𝑢1, … , 𝑢𝑟) is an 𝑟-tuple of
linear maps 𝑢𝑖 ∶ 𝜌∞ → 𝜌0.
From now on, we assume all 𝑟-framed representations to satisfy dimℂ 𝜌∞ = 1, so that by Convention 1 one has

dim𝜌 = (dim𝜌, 1).

Definition 2.10 ([19] and [16, Def. 3.1]). Let 𝜁 ∈ ℝ𝑄0 be a stability parameter. A representation (𝜌, 𝑢) of 𝑄 (or a
𝐽-module) with dimℂ 𝜌∞ = 1 is said to be 𝜁-(semi)stable if it is

(
𝜁, 𝜁∞

)
-(semi)stable in the sense of Definition 2.4, where

𝜁∞ = −𝜁 ⋅ dim𝜌.

Now fix a potential𝑊 on𝑄. We definemotivic DT invariants for moduli stacks of 𝑟-framed 𝐽-modules on𝑄. Let 𝐽 be the
Jacobi algebra 𝐽𝑄,𝑊 , where𝑊 is viewed as a potential on 𝑄 in the obvious way. For a generic stability parameter 𝜁 ∈ ℝ𝑄0 ,
and a dimension vector 𝛼 ∈ ℕ𝑄0 , set

𝜁∞ = −𝜁 ⋅ 𝛼, 𝜁 =
(
𝜁, 𝜁∞

)
, 𝛼̃ = (𝛼, 1).

As in § 2.4, consider the functions

associated to the potential𝑊. Define the moduli stacks

𝔐
(
𝐽, 𝛼
)
=
[
crit
(
𝑓𝛼̃
) /

GL𝛼
]
, 𝔐𝜁

(
𝐽, 𝛼
)
=
[
crit
(
𝑓𝜁,𝛼̃

) /
GL𝛼

]
.

Definition 2.11. We define 𝑟-framed motivic Donaldson–Thomas invariants

[
𝔐
(
𝐽, 𝛼
)]
vir

=

[
crit
(
𝑓𝛼̃
)]
vir

[GL𝛼]vir
,

[
𝔐𝜁

(
𝐽, 𝛼
)]
vir

=

[
crit
(
𝑓𝜁,𝛼̃

)]
vir

[GL𝛼]vir
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CAZZANIGA and RICOLFI 1103

F IGURE 2 A partition Γ𝜎 of Γ4,2

in ̃ℂ, and the associated motivic generating functions

𝐴𝑈 =
∑

𝛼∈ℕ𝑄0

[
𝔐
(
𝐽, 𝛼
)]
vir
⋅ 𝑦𝛼̃ ∈ 𝑄,

𝐴𝜁 =
∑

𝛼∈ℕ𝑄0

[
𝔐𝜁

(
𝐽, 𝛼
)]
vir
⋅ 𝑦𝛼̃ ∈ 𝑄,

𝖹𝜁 =
∑

𝛼∈ℕ𝑄0

[
𝔐𝜁

(
𝐽, 𝛼
)]
vir
⋅ 𝑦𝛼 ∈ 𝑄.

The fact that the 𝑟-framed invariants live in ̃ℂ (i.e., have no monodromy) follows from [16, Lemma 1.10]. The reason
is that the dimension vector 𝛼̃ = (𝛼, 1) contains “1” as a component.
Our main goal is to give a formula for 𝖹𝜁 , where 𝜁 is chosen in a PT (resp. DT) chamber.

3 NONCOMMUTATIVE CREPANT RESOLUTIONS

Fix integers 𝑁0 > 0 and 0 ≤ 𝑁1 ≤ 𝑁0, and set 𝑁 = 𝑁0 + 𝑁1. The cone realising the singular Calabi–Yau 3-fold
𝑋 = Specℂ[𝑥, 𝑦, 𝑧, 𝑤]∕

(
𝑥𝑦 − 𝑧𝑁0𝑤𝑁1

)
as a toric variety is the cone over the quadrilateral Γ𝑁0,𝑁1 with vertices (0,0),(

𝑁0, 0
)
,
(
𝑁1, 1

)
and (0,1), which becomes a triangle when 𝑁1 = 0.

A partition 𝜎 of Γ𝑁0,𝑁1 is, roughly speaking, a subdivision of the polygon Γ𝑁0,𝑁1 into 𝑁 triangles
{
𝜎𝑖
}
0≤𝑖≤𝑁−1

of area
1∕2. We refer the reader to [18, § 1.1] for the precise definition. We denote by Γ𝜎 the resulting object — see Figure 2 for
an example with 𝑁0 = 4, 𝑁1 = 2. Each internal edge 𝜎𝑖,𝑖+1 corresponds to a component 𝐶𝑖 of the exceptional curve in
the resolution 𝑌𝜎 attached to Γ𝜎, and 𝐶𝑖 is a (−1, −1)-curve (resp. a (−2, 0)-curve) if 𝜎𝑖 ∪ 𝜎𝑖+1 is a quadrilateral (resp. a
triangle).
As explained in [15, 18], any partition 𝜎 gives rise to a small crepant resolution 𝑌𝜎 → 𝑋 by taking the fan of Γ𝜎, and any

two such resolutions are related by a sequence of mutations. On the other hand, Nagao [18] explains how to associate to 𝜎
a bipartite tiling of the plane. The general construction in [13] then produces a quiver with potential

(
𝑄𝜎, 𝜔𝜎

)
. Its Jacobi

algebra 𝐽𝜎 is derived equivalent to 𝑌𝜎 [18, § 1].
The quiver𝑄𝜎 has vertex set 𝐼̂ = { 0, 1, … ,𝑁 − 1 }, which we identify with the cyclic groupℤ∕𝑁ℤ. This in turn yields an

identification

ℤ𝐼̂ = ℤ(𝑄𝜎)0 . (3.1)

Each vertex of 𝑄𝜎 has an edge in and out of the next vertex. The partition prescribes which vertices carry a loop, as we
now explain using the specific example of Figure 2. In that case, the partition 𝜎 =

{
𝜎𝑖
}
0≤𝑖≤5

can be identified with the
ordered set of half-points

𝜎 =

{(
1

2
, 0

)
,

(
1

2
, 1

)
,

(
3

2
, 0

)
,
(5
2
, 0
)
,

(
3

2
, 1

)
,
(7
2
, 0
)}

, (3.2)

where the 𝑖th element corresponds to the mid-point of the base of the 𝑖th triangle 𝜎𝑖 . A vertex 𝑘 ∈ 𝐼̂ will carry a loop if
and only if 𝜎𝑘−1 and 𝜎𝑘 have the same 𝑦-coordinate. Thus, by cyclicity, in our case we get two vertices (𝑘 = 0, 3) carrying
a loop. The resulting quiver is drawn in Figure 3.
For the definition of the potential 𝜔𝜎, we refer the reader to [18, § 1.2] or [15, § 2.A]. It is proved in [15, § 4] that

(
𝑄𝜎, 𝜔𝜎

)
has a cut for all 𝜎.
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1104 CAZZANIGA and RICOLFI

F IGURE 3 The quiver 𝑄𝜎 associated to the partition (3.2)

Remark 3.1. The quiver 𝑄𝜎 is symmetric. This implies that its motivic quantum torus 𝑄𝜎 is commutative.

We fix 𝜖0, … , 𝜖𝑁−1 to be the basis ofℤ(𝑄𝜎)0 corresponding to the canonical basis ofℤ𝐼̂ under (3.1). We call 𝜖𝑖 a simple root,
and 𝛿 = 𝜖0 + 𝜖1 +⋯+ 𝜖𝑁−1 the positive minimal imaginary root. Following the notation in [15], we set 𝜖[𝑎,𝑏] =

∑
𝑎≤𝑖≤𝑏

𝜖𝑖
for all 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑁 − 1, and

Δ
re,+
+ =

{
𝜖[𝑎,𝑏] + 𝑛 ⋅ 𝛿 | 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑁 − 1, 𝑛 ∈ ℤ≥0

}
,

Δ
re,−
+ =

{
−𝜖[𝑎,𝑏] + 𝑛 ⋅ 𝛿 | 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑁 − 1, 𝑛 ∈ ℤ>0

}
,

Δim+ = { 𝑛 ⋅ 𝛿 | 𝑛 ∈ ℤ>0 }.

(3.3)

From the above sets we form the larger sets

Δre+ = Δ
re,+
+ ⨿ Δ

re,−
+ , Δ+ = Δre+ ⨿ Δ

im
+ .

Remark 3.2. The above sets depend on 𝜎, but we omit this dependence to ease notation; in the language of [15], we have
Δ+ = Δ𝜎,+, Δre+ = Δre𝜎,+ and Δ

im
+ = Δim𝜎,+.

4 HIGHER RANKMOTIVIC DT THEORY OF POINTS

The rank 1 DT theory of points on a 3-fold 𝑌 is entirely solved, see e.g. [4] for the case of Hilb𝑛 𝑌 and [11] for the reduced
DT theory of points on an abelian 3-fold. In higher rank, to define the theory we fix a locally free sheaf 𝐹 of rank 𝑟 on 𝑌.
Building on the case of 𝑌 = 𝔸3, fully explored in [5–7, 22], a virtual motive for the Quot scheme Quot𝑌(𝐹, 𝑛) was defined
in [26, Def. 4.10] via power structures, along the same lines of the rank 1 case [2, § 4.1].
The generating function

𝖣𝖳
points
𝑟

(
𝑌, (−1)𝑟𝑠

)
=
∑
𝑛≥0

[
Quot𝑌(𝐹, 𝑛)

]
vir
⋅ ((−1)𝑟𝑠)𝑛

was computed in [26, Thm. 4.11] as a plethystic exponential. Just as in the case of the naive motives [25], the generating
function does not depend on 𝐹 but only on 𝑟 and on the motive of 𝑌.
Consider the singular affine toric Calabi–Yau 3-fold 𝑋 = Specℂ[𝑥, 𝑦, 𝑧, 𝑤]∕

(
𝑥𝑦 − 𝑧𝑁0𝑤𝑁1

)
⊂ 𝔸4, and fix a partition 𝜎

associated to the polygon Γ𝑁0,𝑁1 .

Lemma 4.1. Let 𝑌𝜎 be the crepant resolution of 𝑋 corresponding to 𝜎. Then[
𝑌𝜎
]
= 𝕃3 + (𝑁 − 1)𝕃2 ∈ 𝐾0

(
Varℂ

)
.
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CAZZANIGA and RICOLFI 1105

Proof. The toric polygon of 𝑌𝜎 consists of𝑁 = 𝑁0 + 𝑁1 triangles
{
𝜎𝑖
}
intersecting pairwise along the edges

{
𝜎𝑖,𝑖+1

}
. The

toric resolution 𝑌𝜎 is constructed by gluing the toric charts 𝑈𝜎𝑖 along the open affine subvarieties 𝑈𝜎𝑖,𝑖+1 . Thus, the class[
𝑌𝜎
]
can be computed using the cut-and-paste relations, after noticing that𝑈𝜎𝑖 ≃ 𝔸3 and𝑈𝜎𝑖,𝑖+1 ≃ 𝔸2 × ℂ∗. The result is

[𝑌𝜎] =

𝑁∑
𝑖=1

𝕃3 −

𝑁−1∑
𝑖=1

𝕃2(𝕃 − 1) = 𝕃3 + (𝑁 − 1)𝕃2.
□

By [6, Thm. A] (but see also [5, 22] for different proofs), after rephrasing the result using the conventions adopted in
this paper (cf. Remark 2.1), one has

𝖣𝖳
points
𝑟

(
𝔸3, (−1)𝑟𝑠

)
=
∏
𝑚≥1

𝑟𝑚−1∏
𝑘=0

(
1 − 𝕃

𝑘+2−
𝑟𝑚

2 𝑠𝑚
)−1

=

𝑟∏
𝑖=1

𝖣𝖳
points
1

(
𝔸3,−𝕃

−𝑟−1

2
+𝑖
𝑠

)
.

An easy power structure argument shows that the same decomposition into 𝑟 rank 1 pieces holds for every smooth 3-fold
𝑌. In a little more detail (we refer the reader to [12] or to [2, 8] for the formal properties of the power structure onℂ),
we have

𝖣𝖳
points
𝑟

(
𝑌, (−1)𝑟𝑠

)
= 𝖣𝖳

points
𝑟

(
𝔸3, (−1)𝑟𝑠

)𝕃−3[𝑌]
=

𝑟∏
𝑖=1

𝖣𝖳
points
1

(
𝔸3,−𝕃

−𝑟−1

2
+𝑖
𝑠

)𝕃−3[𝑌]

=

𝑟∏
𝑖=1

𝖣𝖳
points
1

(
𝑌,−𝕃

−𝑟−1

2
+𝑖
𝑠

)
.

Therefore, for any smooth 3-fold 𝑌, we can write

𝖣𝖳
points
𝑟 (𝑌, 𝑠) =

𝑟∏
𝑖=1

𝖣𝖳
points
1

(
𝑌, (−1)𝑟+1𝕃

−𝑟−1

2
+𝑖
𝑠

)
. (4.1)

By Lemma 4.1, the motivic partition of the Hilbert scheme of points on 𝑌𝜎 is

𝖣𝖳
points
1

(
𝑌𝜎, 𝑠

)
=
∏
𝑚≥1

𝑚−1∏
𝑘=0

(
1 − 𝕃

𝑘+1−
𝑚

2 (−𝑠)𝑚
)1−𝑁(

1 − 𝕃
𝑘+2−

𝑚

2 (−𝑠)𝑚
)−1

(4.2)

and this determines 𝖣𝖳points𝑟

(
𝑌𝜎, 𝑠

)
via Equation (4.1). The result is

𝖣𝖳
points
𝑟

(
𝑌𝜎, 𝑠

)
=
∏
𝑚≥1

𝑟𝑚−1∏
𝑘=0

(
1 − 𝕃

𝑘+1−
𝑟𝑚

2
(
(−1)𝑟𝑠

)𝑚)1−𝑁(
1 − 𝕃

𝑘+2−
𝑟𝑚

2
(
(−1)𝑟𝑠

)𝑚)−1
. (4.3)

5 MOTIVIC INVARIANTS OF NONCOMMUTATIVE CREPANT RESOLUTIONS

5.1 Relations among motivic partition functions

Fix integers 𝑁0 > 0 and 0 ≤ 𝑁1 ≤ 𝑁0, and set 𝑁 = 𝑁0 + 𝑁1. We consider the affine singular toric Calabi–Yau 3-fold

𝑋𝑁0,𝑁1 = Specℂ[𝑥, 𝑦, 𝑧, 𝑤]∕
(
𝑥𝑦 − 𝑧𝑁0𝑤𝑁1

)
⊂ 𝔸4.
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1106 CAZZANIGA and RICOLFI

Fix a partition 𝜎 of the polygon Γ𝑁0,𝑁1 , and set (𝑄,𝑊, 𝐽) =
(
𝑄𝜎, 𝜔𝜎, 𝐽𝜎

)
to ease notation, where 𝐽𝜎 is the Jacobi algebra of

the quiver with potential
(
𝑄𝜎, 𝜔𝜎

)
whose construction we sketched in § 3. The universal series

𝐴𝜎𝑈(𝑦) = 𝐴𝜎𝑈
(
𝑦0, … , 𝑦𝑁−1

)
=
∑

𝛼∈ℕ𝑄0

[
𝔐
(
𝐽𝜎, 𝛼

)]
vir
⋅ 𝑦𝛼 ∈ 𝑄,

defined in Equation (2.4), is the main object of study in the work of Morrison and Nagao [15].
Fix a generic stability parameter 𝜁 (cf. Definition 2.9) on the unframed quiver 𝑄. Consider the stacks 𝔐±

𝜁
(𝐽, 𝛼)

of 𝐽-modules all of whose Harder–Narasimhan factors have positive (resp. negative) slope with respect to 𝜁. These
stacks are defined as follows. Restrict the function 𝑓𝛼 ∶ R(𝑄, 𝛼) → 𝔸1, defined by taking the trace of 𝜔𝜎, to the open
subschemes R±

𝜁
(𝑄, 𝛼) ⊂ R(𝑄, 𝛼) of representations satisfying the above properties. This yields two regular functions

𝑓±
𝜁
∶ R±

𝜁
(𝑄, 𝛼) → 𝔸1, and we set 𝔐±

𝜁
(𝐽, 𝛼) =

[
crit
(
𝑓±
𝜁

)
∕GL𝛼

]
. We define the virtual motives

[
𝔐±

𝜁
(𝐽, 𝛼)

]
vir

as in the

second identity in Equation (2.3), and the associated motivic generating functions (depending on 𝜎 via 𝐽 = 𝐽𝜎)

𝐴±
𝜁
=
∑

𝛼∈ℕ𝑄0

[
𝔐±

𝜁
(𝐽, 𝛼)

]
vir
⋅ 𝑦𝛼 ∈ 𝑄.

The vertices of 𝑄 are labeled from 0 up to 𝑁 − 1. Let 𝑄 be the 𝑟-framed quiver associated to (𝑄, 0) (Definition 2.2). We let
𝐽 = 𝐽𝑄,𝑊 be the Jacobi algebra of

(
𝑄,𝑊

)
=
(
𝑄𝜎, 𝜔𝜎

)
. Now recall the motivic generating functions

𝐴𝑈, 𝐴𝜁, 𝖹𝜁

introduced in Definition 2.11. We have to extend the relations between framed and unframed generating functions (in
the same spirit of Mozgovoy’s work [17]) to general 𝑟. By the following lemma, the arguments are going to be essentially
formal.

Lemma 5.1. In 𝑄 there are identities

𝑦∞ ⋅ 𝑦(𝛼,0) =

(
−𝕃

1

2

)−𝑟𝛼0
⋅ 𝑦𝛼̃, 𝑦(𝛼,0) ⋅ 𝑦∞ =

(
−𝕃

1

2

)𝑟𝛼0
⋅ 𝑦𝛼̃.

Proof. Since ∞ ∈ 𝑄0 has edges only reaching 0, and no vertex of 𝑄 reaches ∞, we have 𝜒((𝛼, 0), (𝟎, 1)) = 0, and
𝜒((𝟎, 1), (𝛼, 0)) = −𝑟𝛼0. The result follows by the product rule (2.2). □

Corollary 5.2. In 𝑄, there are identities

𝐴𝜁 = 𝑦∞ ⋅ 𝖹𝜁

((
−𝕃

1

2

)𝑟
𝑦0, 𝑦1, … , 𝑦𝑁−1

)
, (5.1)

𝐴−
𝜁
⋅ 𝑦∞ = 𝑦∞ ⋅ 𝐴−

𝜁

(
𝕃𝑟𝑦0, 𝑦1, … , 𝑦𝑁−1

)
. (5.2)

Proof. We have

𝑦∞ ⋅ 𝖹𝜁

((
−𝕃

1

2

)𝑟
𝑦0, 𝑦1, … , 𝑦𝑁−1

)
=
∑

𝛼∈ℕ𝑄0

[
𝔐𝜁

(
𝐽, 𝛼
)]
vir
⋅ 𝑦∞ ⋅

((
−𝕃

1

2

)𝑟
𝑦0

)𝛼0

⋅ 𝑦
𝛼1
1
⋯𝑦

𝛼𝑁−1
𝑁−1

=
∑

𝛼∈ℕ𝑄0

[
𝔐𝜁

(
𝐽, 𝛼
)]
vir

(
−𝕃

1

2

)𝑟𝛼0
⋅
(
𝑦∞ ⋅ 𝑦𝛼

)
=
∑

𝛼∈ℕ𝑄0

[
𝔐𝜁

(
𝐽, 𝛼
)]
vir
⋅ 𝑦𝛼̃

= 𝐴𝜁,

where we have applied Lemma 5.1 in the last step. The identity (5.2) follows by an identical argument. □
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CAZZANIGA and RICOLFI 1107

Lemma 5.3 ([16, Proposition 3.5]). Let 𝑄 be a quiver, 𝜁 ∈ ℝ𝑄0 a generic stability parameter, 𝜌 a representation (resp.
𝐽-module) of the 𝑟-framed quiver 𝑄 with dimℂ 𝜌∞ = 1. Then there is a unique filtration 0 = 𝜌0 ⊂ 𝜌1 ⊂ 𝜌2 ⊂ 𝜌3 = 𝜌 such
that the quotients 𝜋𝑖 = 𝜌𝑖∕𝜌𝑖−1 satisfy:

1. 𝜋1∞ = 0, and 𝜋1 ∈ R+
𝜁

(
𝑄, dim𝜋1

)
,

2. dimℂ 𝜋
2
∞ = 1 and 𝜋2 is 𝜁-stable,

3. 𝜋3∞ = 0, and 𝜋3 ∈ R−𝜁
(
𝑄, dim𝜋3

)
.

Lemma 5.4. Let 𝜁 ∈ ℝ𝑄0 be a generic stability parameter. In 𝑄, there are factorisations

𝐴𝑈 = 𝐴+
𝜁
⋅ 𝐴𝜁 ⋅ 𝐴

−
𝜁
, (5.3)

𝐴𝑈 = 𝐴𝜎𝑈 ⋅ 𝑦∞. (5.4)

Proof. Equation (5.3) is a direct consequence of the existence of the filtration of Lemma 5.3. Equation (5.4) follows directly
from the following observation: given a framed representation 𝜌 = (𝜌, 𝑢) with dimℂ 𝜌∞ = 1, one can view 𝜌 as a sub-
module 𝜌 ⊂ 𝜌 of dimension

(
dim𝜌, 0

)
, and the quotient 𝜌∕𝜌 is the unique simple module of dimension (0,1), based at the

framing vertex. □

Following [15, § 0], we define, for 𝛼 ∈ Δ+, the infinite products

𝐴𝛼(𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∏
𝑗≥0

(
1 − 𝕃

−𝑗−
1

2 𝑦𝛼
)

if 𝛼 ∈ Δre+ and
∑
𝑘∉𝐼̂𝓁

𝛼𝑘 is odd,

∏
𝑗≥0

(
1 − 𝕃−𝑗𝑦𝛼

)−1
if 𝛼 ∈ Δre+ and

∑
𝑘∉𝐼̂𝓁

𝛼𝑘 is even,

∏
𝑗≥0

(
1 − 𝕃−𝑗𝑦𝛼

)1−𝑁(
1 − 𝕃−𝑗+1𝑦𝛼

)−1
if 𝛼 ∈ Δim+ ,

(5.5)

where 𝐼̂𝓁 ⊂ 𝐼̂ =
(
𝑄𝜎
)
0
denotes1 the set of vertices carrying a loop, and 𝛼𝑘 ∈ ℕ is the component of 𝛼 corresponding to a

vertex 𝑘.

Lemma 5.5 ([16, Lemma 2.6]). Let 𝜁 ∈ ℝ𝑄0 be a generic stability parameter. In 𝑄, there are identities

𝐴±
𝜁
(𝑦) =

∏
𝛼∈Δ+
±𝜁⋅𝛼>0

𝐴𝛼(𝑦). (5.6)

Lemma 5.6. Let 𝜁 ∈ ℝ𝑄0 be a generic stability parameter. In 𝑄, there is an identity

𝐴𝜎𝑈 = 𝐴+
𝜁
⋅ 𝐴−

𝜁
. (5.7)

Proof. By [15, Thm. 0.1] there is a factorisation

𝐴𝜎𝑈(𝑦) =
∏
𝛼∈Δ+

𝐴𝛼(𝑦).

Since 𝜁 is generic, 𝜁 ⋅ 𝛼 ≠ 0 for all 𝛼 ∈ Δ+. The result then follows by combining this factorisationwith Equation (5.6). □
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1108 CAZZANIGA and RICOLFI

Theorem 5.7. Let 𝜁 ∈ ℝ𝑄0 be a generic stability parameter. In 𝑄, there is an identity

𝖹𝜁(𝑦) =

𝐴−
𝜁

((
−𝕃

1

2

)𝑟
𝑦0, 𝑦1, … , 𝑦𝑁−1

)

𝐴−
𝜁

((
−𝕃

−
1

2

)𝑟
𝑦0, 𝑦1, … , 𝑦𝑁−1

) . (5.8)

Proof. Since 𝑄 = 𝑄𝜎 is symmetric (Remark 3.1), the algebra 𝑄 is commutative, therefore a power series 𝐹 ∈ 𝑄 starting
with the invertible element 1 ∈ ̃ℂ will be invertible. For instance 𝐴+𝜁 and 𝐴

−
𝜁
are invertible. Therefore we can write

𝑦∞ ⋅ 𝖹𝜁

((
−𝕃

1

2

)𝑟
𝑦0, 𝑦1, … , 𝑦𝑁−1

)
= 𝐴𝜁 by (5.1)

=
(
𝐴+
𝜁

)−1
⋅ 𝐴𝑈 ⋅

(
𝐴−
𝜁

)−1
by (5.3)

=
(
𝐴+
𝜁

)−1
⋅
(
𝐴𝜎𝑈 ⋅ 𝑦∞

)
⋅
(
𝐴−
𝜁

)−1
by (5.4)

=
(
𝐴+
𝜁

)−1
⋅
(
𝐴+
𝜁
⋅ 𝐴−

𝜁
⋅ 𝑦∞

)
⋅
(
𝐴−
𝜁

)−1
by (5.7)

= 𝑦∞ ⋅ 𝐴−
𝜁

(
𝕃𝑟𝑦0, 𝑦1, … , 𝑦𝑁−1

)
⋅
(
𝐴−
𝜁

)−1
by (5.2)

from which it follows that

𝖹𝜁

((
−𝕃

1

2

)𝑟
𝑦0, 𝑦1, … , 𝑦𝑁−1

)
=
𝐴−
𝜁

(
𝕃𝑟𝑦0, 𝑦1, … , 𝑦𝑁−1

)
𝐴−
𝜁

(
𝑦0, 𝑦1, … , 𝑦𝑁−1

) .

Thus the change of variable 𝑦0 →
(
−𝕃

−
1

2

)𝑟
𝑦0 yields the result. □

5.2 Computing invariants in the DT and PT chambers

In this subsection we prove Theorem 1.1.
Define, for 𝛼 ∈ Δ+, the fraction

𝑍
(𝑟)
𝛼

(
𝑦0, 𝑦1, … , 𝑦𝑁−1

)
=

𝐴𝛼

((
−𝕃

1

2

)𝑟
𝑦0, 𝑦1, … , 𝑦𝑁−1

)

𝐴𝛼

((
−𝕃

−
1

2

)𝑟
𝑦0, 𝑦1, … , 𝑦𝑁−1

) , (5.9)

where 𝐴𝛼 is defined case by case in (5.5). Then one deduces the following explicit formulae:

𝑍
(𝑟)
𝛼 ((−1)𝑟𝑦0, 𝑦1, … , 𝑦𝑁−1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑟𝛼0−1∏
𝑘=0

(
1 − 𝕃

𝑘+
1

2
−
𝑟𝛼0
2 𝑦𝛼

)
if 𝛼 ∈ Δre+ and

∑
𝑘∉𝐼̂𝓁

𝛼𝑘 is odd,

𝑟𝛼0−1∏
𝑘=0

(
1 − 𝕃

𝑘+1−
𝑟𝛼0
2 𝑦𝛼

)−1
if 𝛼 ∈ Δre+ and

∑
𝑘∉𝐼̂𝓁

𝛼𝑘 is even,

𝑟𝛼0−1∏
𝑘=0

(
1 − 𝕃

𝑘+1−
𝑟𝛼0
2 𝑦𝛼

)1−𝑁(
1 − 𝕃

𝑘+2−
𝑟𝑚

2 𝑦𝛼
)−1

if 𝛼 ∈ Δim+ .
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CAZZANIGA and RICOLFI 1109

These identities can be easily rewritten uniformly in terms of the ‘rank 1’ generating functions:

𝑍
(𝑟)
𝛼

(
(−1)𝑟𝑦0, 𝑦1, … , 𝑦𝑁−1

)
=

𝑟∏
𝑖=1

𝑍
(1)
𝛼

(
−𝕃

−𝑟−1

2
+𝑖
𝑦0, 𝑦1, … , 𝑦𝑁−1

)
. (5.10)

Let us set

𝑠 = 𝑦0𝑦1 ⋯𝑦𝑁−1, 𝑇𝑖 = 𝑦−1
𝑖
, 𝑇 =

(
𝑇1, … , 𝑇𝑁−1

)
.

For 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑁 − 1, we let 𝑇[𝑎,𝑏] = 𝑇𝑎 ⋯𝑇𝑏 be the monomial corresponding to the homology class

𝐶[𝑎,𝑏] =
[
𝐶𝑎
]
+⋯+

[
𝐶𝑏
]
∈ 𝐻2

(
𝑌𝜎,ℤ

)
,

where 𝐶𝑖 ⊂ 𝑌𝜎 is a component of the exceptional curve. Let 𝑐(𝑎, 𝑏) be the number of (−1, −1)-curves in
{
𝐶𝑖 |𝑎 ≤ 𝑖 ≤ 𝑏

}
.

Then we set

𝑍[𝑎,𝑏](𝑠, 𝑇[𝑎,𝑏]) =

⎧⎪⎪⎨⎪⎪⎩

∏
𝑚≥1

𝑚−1∏
𝑗=0

(
1 − 𝕃

𝑗+
1

2
−
𝑚

2 (−𝑠)𝑚𝑇[𝑎,𝑏]

)
if 𝑐(𝑎, 𝑏) is odd,

∏
𝑚≥1

𝑚−1∏
𝑗=0

(
1 − 𝕃

𝑗+1−
𝑚

2 (−𝑠)𝑚𝑇[𝑎,𝑏]

)−1
if 𝑐(𝑎, 𝑏) is even

and

𝑍im(𝑠) =
∏
𝑚≥1

𝑚−1∏
𝑗=0

(
1 − 𝕃

𝑗+1−
𝑚

2 (−𝑠)𝑚
)1−𝑁(

1 − 𝕃
𝑗+2−

𝑚

2 (−𝑠)𝑚
)−1

.

Fix, as in [15, § 6.C], stability parameters

𝜁𝖯𝖳 = (1 − 𝑁 + 𝜀, 1, … , 1), 𝜁𝖣𝖳 = (1 − 𝑁 − 𝜀, 1, … , 1),

with 0 < 𝜀 ≪ 1 chosen so that they are generic. We want to compute

𝖯𝖳𝑟
(
𝑌𝜎; 𝑠, 𝑇

)
= 𝖹𝜁𝖯𝖳

(
𝑠, 𝑇1, … , 𝑇𝑁−1

)
, 𝖣𝖳𝑟

(
𝑌𝜎; 𝑠, 𝑇

)
= 𝖹𝜁𝖣𝖳

(
𝑠, 𝑇1, … , 𝑇𝑁−1

)
.

For 𝑟 = 1, these are the generating functions computed in [15, Cor. 0.3]. We know by Equation (4.2) (see also [15,
Cor. 0.3 (2)]) that

𝑍im(𝑠) = 𝖣𝖳
points
1

(
𝑌𝜎, 𝑠

)
, (5.11)

and Morrison–Nagao proved that

𝖯𝖳1
(
𝑌𝜎; 𝑠, 𝑇

)
=

∏
1≤𝑎≤𝑏≤𝑁−1

𝑍[𝑎,𝑏]
(
𝑠, 𝑇[𝑎,𝑏]

)
,

𝖣𝖳1
(
𝑌𝜎; 𝑠, 𝑇

)
= 𝑍im(𝑠) ⋅ 𝖯𝖳1

(
𝑌𝜎; 𝑠, 𝑇

)
.

(5.12)

We have

{ 𝛼 ∈ Δ+ | 𝜁𝖯𝖳 ⋅ 𝛼 < 0 } = Δ
re,−
+ ,

{ 𝛼 ∈ Δ+ | 𝜁𝖣𝖳 ⋅ 𝛼 < 0 } = Δ
re,−
+ ⨿ Δim+ ,

(5.13)
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where the definition of the sets in the right hand sides was given in Equation (3.3). For the PT stability condition, we thus
obtain

𝖯𝖳𝑟
(
𝑌𝜎; 𝑠, 𝑇

)
=

𝐴−
𝜁𝖯𝖳

((
−𝕃

1

2

)𝑟
𝑠, 𝑇1, … , 𝑇𝑁−1

)

𝐴−
𝜁𝖯𝖳

((
−𝕃

−
1

2

)𝑟
𝑠, 𝑇1, … , 𝑇𝑁−1

) by (5.8)

=
∏

𝛼∈Δ
re,−
+

𝐴𝛼

((
−𝕃

1

2

)𝑟
𝑠, 𝑇1, … , 𝑇𝑁−1

)

𝐴𝛼

((
−𝕃

−
1

2

)𝑟
𝑠, 𝑇1, … , 𝑇𝑁−1

) by (5.6) and (5.13)

=
∏

𝛼∈Δ
re,−
+

𝑍
(𝑟)
𝛼

(
𝑠, 𝑇1, … , 𝑇𝑁−1

)
by (5.9)

=

𝑟∏
𝑖=1

∏
𝛼∈Δ

re,−
+

𝑍
(1)
𝛼

(
(−1)𝑟+1𝕃

−𝑟−1

2
+𝑖
𝑠, 𝑇1, … , 𝑇𝑁−1

)
by (5.10)

=

𝑟∏
𝑖=1

∏
1≤𝑎≤𝑏≤𝑁−1

𝑍[𝑎,𝑏]

(
(−1)𝑟+1𝕃

−𝑟−1

2
+𝑖
𝑠, 𝑇[𝑎,𝑏]

)
by (3.3)

=

𝑟∏
𝑖=1

𝖯𝖳1

(
𝑌𝜎; (−1)

𝑟+1𝕃
−𝑟−1

2
+𝑖
𝑠, 𝑇

)
, by (5.12)

which proves the first identity in Theorem 1.1.
Similarly,

∏
𝛼∈Δim+

𝐴𝛼

((
−𝕃

1

2

)𝑟
𝑠, 𝑇1, … , 𝑇𝑁−1

)

𝐴𝛼

((
−𝕃

−
1

2

)𝑟
𝑠, 𝑇1, … , 𝑇𝑁−1

) =
∏
𝛼∈Δim+

𝑍
(𝑟)
𝛼

(
𝑠, 𝑇1, … , 𝑇𝑁−1

)
by (5.9)

=

𝑟∏
𝑖=1

𝑍im

(
(−1)𝑟+1𝕃

−𝑟−1

2
+𝑖
𝑠

)
by (5.10)

=

𝑟∏
𝑖=1

𝖣𝖳
points
1

(
𝑌𝜎, (−1)

𝑟+1𝕃
−𝑟−1

2
+𝑖
𝑠

)
by (5.11)

= 𝖣𝖳
points
𝑟

(
𝑌𝜎, 𝑠

)
. by (4.1)

In particular, thanks to (5.13), the motivic DT/PT correspondence

𝖣𝖳𝑟
(
𝑌𝜎; 𝑠, 𝑇

)
= 𝖣𝖳

points
𝑟

(
𝑌𝜎, 𝑠

)
⋅ 𝖯𝖳𝑟

(
𝑌𝜎; 𝑠, 𝑇

)
holds. Note that, thanks to Equation (4.3), the right hand side is entirely explicit. Finally, the relation

𝖣𝖳𝑟(𝑌𝜎; 𝑠, 𝑇) =

𝑟∏
𝑖=1

𝖣𝖳1

(
𝑌𝜎; (−1)

𝑟+1𝑠𝕃
−𝑟−1

2
+𝑖
, 𝑇

)
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CAZZANIGA and RICOLFI 1111

follows from the factorisations of 𝖯𝖳𝑟 and 𝖣𝖳
points
𝑟 as products of (equally shifted) 𝑟 = 1 pieces, combined with the rank 1

DT/PT correspondence (5.12). The proof of Theorem 1.1 is complete.

Remark 5.8. A motivic DT/PT correspondence was obtained in [8] in the rank 1 case for the motivic contribution of a
smooth curve in a 3-fold, refining the corresponding enumerative calculations [23, 24].

Remark 5.9. In the case when 𝑌𝜎 is the crepant resolution of the conifold singularity, corresponding to 𝑁0 = 𝑁1 = 1, the
moduli space of framed quiver representation has a clear geometric interpretation for a choice of PT stability condition.
Consider the moduli space 𝑟

𝛼

(
𝑌𝜎
)
parametrising Shesmani’s highly frozen stable triples [27], whose geometric points

consist of framed multi-sections 𝒪⊕𝑟𝑌𝜎 → 𝐹 with 0-dimensional cokernel, where 𝐹 is a pure 1-dimensional sheaf 𝐹 satis-
fying ch2(𝐹) =

(
𝛼0 − 𝛼1

)[
ℙ1
]
and 𝜒(𝐹) = 𝛼0. In [5, Chap. 3] a scheme theoretic isomorphism𝔐𝜁𝖯𝖳

(
𝐽𝜎, 𝛼

)
≃ 𝑟

𝛼

(
𝑌𝜎
)
is

constructed, and it is used to compute a first instance of Formula (1.2). A completely analogous result holds when 𝑌𝜎 is
the resolution of a line of 𝐴2 singularities, corresponding to the case𝑁0 = 2,𝑁1 = 0 [5, Appendix 3.A]. We leave to future
work a full geometric interpretation of the more general moduli spaces of framed quiver representations that we studied
in this paper.
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