
J. Spectr. Theory 12 (2022), 11–21

DOI 10.4171/JST/392

© 2022 European Mathematical Society

Published by EMS Press

This work is licensed under a CC BY 4.0 license

On the spectrum of critical almost Mathieu operators

in the rational case

Svetlana Jitomirskaya, Lyuben Konstantinov, and Igor Krasovsky

Abstract. We derive a new Chambers-type formula and prove sharper upper bounds on the

measure of the spectrum of critical almost Mathieu operators with rational frequencies.

Dedicated to the memory of M. A. Shubin

1. Introduction

The Harper operator, also know as “discrete magnetic Laplacian,” (the name “discrete

magnetic Laplacian” was first introduced by M. Shubin in [19]) is a tight-binding

model of an electron confined to a 2D square lattice in a uniform magnetic field

orthogonal to the lattice plane and with flux 2�˛ through an elementary cell. It acts

on `2.Z2/ and is usually given in the Landau gauge representation

.H.˛/ /m;n D  m;n�1 C  m;nC1 C e�i2�˛n m�1;n C ei2�˛n mC1;n; (1)

first considered by Peierls [18], who noticed that it makes the Hamiltonian separable

and turns it into the direct integral in � of operators on `2.Z/ given by

.H˛;�'/.n/ D '.n � 1/C '.nC 1/C 2 cos 2�.˛nC �/'.n/; ˛; � 2 Œ0; 1/: (2)

In physics literature, it also appears as “Harper’s model” or “Azbel–Hofstadter

model,” with both names used also for the discrete magnetic LaplacianH.˛/. In math-

ematics, it is universally called “critical almost Mathieu operator.” (This name was

originally introduced by Barry Simon [20].) In addition to its importance in phys-

ics, this model is of special interest, being at the boundary of two reasonably well

understood regimes – (almost) localization and (almost) reducibility – and not being

amenable to methods of either side. Recently, there has been some progress in the

study of the fine structure of its spectrum [7–10, 14, 16].
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Denote the spectrum of an operator H; as a set, by �.H/. An important object is

the union of �.H˛;�/ over �; which coincides with the spectrum of H.˛/. We denote

it by

S.˛/ WD �.H.˛// D
S

�2Œ0;1/ �.H˛;�/:

Note that, by the general theory of ergodic operators, if ˛ is irrational, then �.H˛;�/

is independent of � . We denote the Lebesgue measure of a set A by jAj.
For irrational ˛, the Lebesgue measure jS.˛/j D 0, see [2, 9, 15]. For rational

˛ D p0

q0
, where p0, q0 are coprime positive integers, Last obtained the bounds [15,

Lemma 1]

2.
p
5C 1/

q0

<
ˇ

ˇ

ˇS
�p0

q0

�ˇ

ˇ

ˇ <
8e

q0

; (3)

where e D exp.1/ D 2:71 : : : : The measure of the spectrum is subject to a conjecture

of Thouless [21,22]: that, in the limit pn=qn ! ˛, we have qnjS.pn=qn/j ! c, where

c D 32Cc=� D 9:32 : : : ; Cc D
P

1

kD0.�1/k.2k C 1/�2 being the Catalan constant.

Thouless provided a partly heuristic argument in the casepn D 1, qn ! 1. A rigorous

proof for ˛ D 0 and pn D 1 or pn D 2, qn odd was given in [6].

The purpose of this note is to present a sharper upper bound, for all ˛ 2 Q:

Theorem 1. For all positive coprime integers p0 and q0,

ˇ

ˇ

ˇS
�p0

q0

�ˇ

ˇ

ˇ � 4�

q0

:

Thus, the upper bound is reduced from 8e D 21:74 : : : to 4� D 12:56 : : : : The

way we prove Theorem 1 is very different from that of [15]; we use the chiral gauge

representation [9] and Lidskii’s inequalities. The chiral gauge representation of the

almost Mathieu operator also leads to a new type of Chambers’ relation (equations (14)

and (15) below).

2. Proof of Theorem 1

Consider the operator on `2.Z/

. zH˛;�'/.n/ D 2 sin 2�.˛.n� 1/C �/'.n� 1/C 2 sin 2�.˛nC �/'.nC 1/; (4)

with ˛; � 2 Œ0; 1/, and define

zS.˛/ WD
S

�2Œ0;1/ �.
zH˛;�/:

It was shown in [9, Theorem 3.1] that the two copies of the operator

M2˛ WD
L

�2Œ0;1/H2˛;�
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and the operator

zM˛ WD
L

�2Œ0;1/
zH˛;�

are unitarily equivalent, so that S.˛/ D zS.˛=2/. (Note that �.H2˛;�/ ¤ �. zH˛;�/; in

general.) See also related partly non-rigorous considerations in [11–13,17,23], and an

application of the rational case in [14]. Operator (4) corresponds to the chiral gauge

representation of the Harper operator.

From now on, we always consider the case of rational ˛. Furthermore, the ana-

lysis below for q0 D 1, q0 D 2 becomes especially elementary, and gives jS.1/j D 8,

jS.1=2/j D 4
p
2, so that Theorem 1 obviously holds in these cases. From now on, we

assume q0 � 3.

If p0 is even, define p WD p0

2
and q WD q0 (note that q is necessarily odd in this

case). This corresponds to Case I below. If p0 is odd, define p WD p0 and q WD 2q0.

This corresponds to Case II below. We note that in either case p and q are coprime

and S.p0=q0/ D zS.p=q/.
Let b.x/ WD 2 sin.2�x/, and further identify bn.�/ WD b..p=q/nC �/. For the

operator zHp
q

;� , Floquet theory states that E 2 �. zHp
q

;�/ if and only if the equation

. zHp
q

;�'/.n/ D E'.n/ has a solution ¹'.n/ºn2Z satisfying '.nC q/ D eikq'.n/ for

all n and for some real k. Therefore, for a fixed k, there exist q values of E satisfying

the eigenvalue equation

B�;k;`

 

'.`/
:::

'.`Cq�1/

!

D E

 

'.`/
:::

'.`Cq�1/

!

(5)

for any `, where

B�;k;` WD

0

B

B

B

B

@

0 b` 0 0 ��� 0 0 e�ikq b`Cq�1

b` 0 b`C1 0 ��� 0 0 0

0 b`C1 0 b`C2 ��� 0 0 0
:::

:::
:::

:::
: ::

:::
:::

:::
0 0 0 0 ��� b`Cq�3 0 b`Cq�2

eikqb`Cq�1 0 0 0 ��� 0 b`Cq�2 0

1

C

C

C

C

A

: (6)

Thus, the eigenvalues of B�;k;` are independent of `.

2.1. Chambers-type formula

The celebrated Chambers’ formula presents the dependence of the determinant of the

almost Mathieu operator with ˛ D p0=q0 restricted to the period q0 with Floquet

boundary conditions, on the phase � and quasimomentum k. In the critical, case it is

given by (see, e.g., [15])

det.A�;k;` � E/ D �.E/ � 2.�1/q0
�

cos.2�q0�/C cos.kq0/
�

; (7)
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where

A�;k;` WD

0

B

B

B

B

@

a` 1 0 0 ��� 0 0 e�ikq

1 a`C1 1 0 ��� 0 0 0
0 1 a`C2 1 ��� 0 0 0
:::

:::
:::
:::
:::
:::

:::
:::

0 0 0 0 ��� 1 a`Cq�2 1

eikq 0 0 0 ��� 0 1 a`Cq�1

1

C

C

C

C

A

; ` 2 Z; (8)

a.x/ WD 2 cos.2�x/; an.�/ WD a..p0=q0/nC �/; (9)

and �, the discriminant,1 is independent of � and k. An immediate corollary of this

formula is that S.p0

q0
/ D ��1.Œ�4; 4�/, see, e.g., [15].

Here we obtain a formula of this type for det.B�;k;` � E/: Indeed, as usual, sep-

arating the terms containing k in the determinant, for the characteristic polynomial

D�;k.E/ WD det.B�;k;` �E/, we obtain

D�;k.E/ D D
.0/

�
.E/� .�1/qb0 � � � bq�1 � 2 cos.kq/; (10)

where D
.0/

�
.E/ is independent of k and equal therefore to D�;kD

�
2q
.E/.

Lemma 1. For the product of bj ’s we have

b0 � � � bq�1 D
q�1
Y

j D0

2 sin 2�
�p

q
j C �

�

D 4 sin.�q�/ sin.�q.� C 1=2//

D 2
�

cos.�q=2/� cos.�q.2� C 1=2//
�

: (11)

Proof. To evaluate the product of bj ’s, we expand the sine in the first product in terms

of exponentials and use the formula 1� z�q D
Qq�1

j D0.1� z�1e2�i p
q j /. An alternative

derivation can go along the lines of the proof of [1, Lemma 9.6].

Substituting (11) into (10), we have

D�;k.E/ D D
.0/

�
.E/� 8.�1/q sin.�q�/ sin�q.� C 1=2/ cos.kq/: (12)

We can further obtain the dependence of D
.0/

�
.E/ on � :

Lemma 2. We have

D
.0/

�
.E/ D z�.E/C

´

0 if q is odd,

4.cos.2�q�/� 1/ if q is even,

where the discriminant z�.E/ WD D
.0/

�D0
.E/ is independent of � .

1In [15], the discriminant differs from �.E/ by the factor .�1/q0 .
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Proof. Since D�;k.E/ is independent of `, it is 1=q periodic in � , i.e., D�;k.E/ D
D�C1=q;k.E/, and by (10) so is D

.0/

�
.E/. Therefore, since, clearly,

D
.0/

�
.E/ D

q
X

nD�q

cn.E/e
2�i�n;

the terms ck other than k Dmq vanish, andD
.0/

�
.E/ has the following Fourier expan-

sion:

D
.0/

�
.E/ D c0.E/C cqe

2�iq� C c�qe
�2�iq� :

It is easily seen that the cq and c�q can be obtained from the expansion of the

determinant and that, moreover, they do not depend on E: Expanding D
.0/

�
.E/ with

E D 0 in rows and columns (cf. [14]), we obtain

D
.0/

�
.0/ D D�;kD

�
2q
.0/

D
´

0 if q is odd,

.�1/q=2.b2
0b

2
2 � � � b2

q�2 C b2
1b

2
3 � � � b2

q�1/ if q is even.
(13)

This gives cq D c�q D 0 for q odd, and

cq D
q�2

2
Y

j D0

e8�i p
q

j C
q�2

2
Y

j D0

e4�i p
q

.2j C1/ D 2 D c�q

for q even. It remains to denote z�.E/D c0.E/ for q odd, and z�.E/D c0.E/C 4 for

q even, and the proof is complete.

We therefore have, by (12) and Lemma 2:

Lemma 3 (Chambers-type formula). If q is odd,

D�;k.E/ D z�.E/C 4.�1/.q�1/=2 sin.2�q�/ cos.kq/I (14)

if q is even,

D�;k.E/ D z�.E/ � 4.1� cos.2�q�//
�

1C .�1/q=2 cos.kq/
�

: (15)

Note that z�.E/ is a polynomial of degree q independent of k 2 R and � 2 Œ0; 1/.
By Floquet theory, the spectrum �. zHp

q ;� / is the union of the eigenvalues of B�;k;`

over k, a collection of q intervals.

We make the following observations.
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Case I: q is odd. By (14),

D�;k.E/ � det.B�;k;` � E/ D 0 () z�.E/ D 4.�1/.qC1/=2 sin.2�q�/ cos.kq/:

Thus, �. zHp
q

;�/ is the preimage of Œ�4j sin.2�q�/j; 4j sin.2�q�/j� under the map-

ping z�.E/. If � D m=.2q/, m 2 Z, then �. zHp
q

; m
2q
/ is a collection of q points where

z�.E/ D 0. (In this case, b0.m=.2q// D 0, so that zH splits into the direct sum of

an infinite number of copies of a q-dimensional matrix.) We note that the spectra

�. zHp
q

;� / for different � are nested in one another as � grows from 0 to 1=.4q/; in

particular, for each � 2 Œ0; 1/,

�. zHp
q

;�/ D z��1.Œ�4j sin.2�q�/j; 4j sin.2�q�/j�/ � �. zHp
q ;�D

1
4q
/ D z��1.Œ�4; 4�/:

(16)

This implies that all the maxima of z�.E/ are no less than 4, and all the minima are

no greater than �4. Moreover, taking the union over all � 2 Œ0; 1/ gives:

zS
�p

q

�

D �. zHp
q

;�D
1

4q
/ D z��1.Œ�4; 4�/: (17)

Clearly, it is sufficient to consider only � 2 Œ0; 1=.4q/�.

Case II: q is even. This case is similar to Case I, so we omit some details for brevity.

By (15),D�;k.E/D 0 if and only if z�.E/D 4.1� cos.2�q�//.1C .�1/q=2cos.kq//.

Considering the cases k D 0; �
q

, it is easy to see that �. zHp
q

;�/ is the preimage of

Œ0; 8 � 8 cos.2�q�/� under the mapping z�.E/. If � D m=q, m 2 Z, then �. zHp
q ; m

q
/

is a collection of q points where z�.E/ D 0. We note that the spectra �. zHp
q

;�/ for

different � are nested in one another as � grows from 0 to 1=.2q/; in particular, for

each � 2 Œ0; 1/,

�. zHp
q

;�/ D z��1.Œ0; 8� 8 cos.2�q�/�/ � �. zHp
q

;�D
1

2q
/ D z��1.Œ0; 16�/: (18)

This implies that all the maxima of z�.E/ are no less than 16, and all the minima are

no greater than 0. Moreover, taking the union over all � 2 Œ0; 1/ gives

zS
�p

q

�

D �. zHp
q

;�D
1

2q
/ D z��1.Œ0; 16�/: (19)

Clearly, it is sufficient to consider only � 2 Œ0; 1=.2q/�.
In this case of even q, we can say more about the form of z�.E/. Note that

b0.0/D bq=2.0/D 0 and bk.0/D b�k.0/. Recall that, by Floquet theory,D�;k.E/D
det.B�;k;` � E/ is independent of the choice of `. For convenience, choose ` D
�q=2 C 1. It is easily seen that B�D0;k;`D�q=2C1 decomposes into a direct sum,

and moreover z�.E/ D D�D0;k.E/ D .�1/q=2Pq=2.�E/Pq=2.E/, where Pq=2.E/

is a polynomial of degree q=2, odd if q=2 is odd, and even if q=2 is even (as it is
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a characteristic polynomial of a tridiagonal matrix with zero main diagonal). Thus
z�.E/ D Pq=2.E/

2 is a square.

The discriminants z�.E/ � z�p=q.E/ and �.E/ � �p0=q0
.E/ are related in the

following way:

Lemma 4. For q odd,

z�p=q.E/D �p0=q0
.E/; p0 D 2p; q0 D qI (20)

for q even,

z�p=q.E/D �2
p0=q0

.E/; p0 D p; q0 D q=2: (21)

Proof. Case I: q is odd. Here, by our definitions at the start of the section, p0 D 2p

and q0 D q. Both z�p=q.E/ and�p0=q0
.E/ are polynomials in E of degree q with the

same coefficient �1 of Eq . Since z�.E/ D �.E/ D ˙4 at the 2q � q C 1 distinct

edges of the bands (cf. [5, Section 3.3]), these polynomials coincide: z�.E/ D �.E/

for each E.

Case II: q is even. Here, p0 D p and q0 D q=2. We observe that zS.p
q
/D S.p0

q0
/ is

the preimage of Œ0; 16� under z�p=q and of Œ�4; 4� under �p0=q0
, hence also of Œ0; 16�

under�2
p0=q0

. On the other hand, we have seen above that z�.E/D P 2
q=2
.E/ for some

polynomial Pq=2.E/ of degree q=2 D q0. Thus, P 2
q=2
.E/ and �2.E/ coincide at the

2q0 � q0 C 1 (for q0 odd) and 2q0 � 1 � q0 C 1 (for q0 even) distinct edges of the

bands (cf. [5, Section 3.3]; the central bands merge for q0 even), so these polynomials

of degree q are equal: z�.E/ D �2.E/ for each E.

2.2. Measure of the spectrum

The rest of the proof follows the argument of [3], namely it uses Lidskii’s inequalities

to bound j zS.p
q
/j. The key observation is that, choosing ` appropriately, we can make

the corner elements of the matrix B�;k;` very small, of order 1=q when q is large. This

is not possible to do in the standard representation for the almost Mathieu operator.

Here are the details.

Case I: q is odd. Assume, without loss of generality, that one has .�1/.qC1/=2 > 0,

for � 2 .0; 1=.4q/�. (If .�1/.qC1/=2 < 0, the analysis is similar.) Then the eigenval-

ues ¹�i .�/ºq
iD1 of B�;kD0;` labelled in decreasing order are the edges of the spectral

bands where z�.E/ reaches its maximum 4 sin.2�q�/ on the band; and the eigenval-

ues ¹O�i .�/ºq
iD1 of B�;kD�=q;` labelled in decreasing order are the edges of the spectral
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bands where z�.E/ reaches its minimum �4 sin.2�q�/ on the band. Then,

j�. zHp
q ;� /j D

q
X

j D1

.�1/q�j . O�j .�/� �j .�//

D
.qC1/=2
X

j D1

. O�2j �1.�/� �2j �1.�//C
.q�1/=2
X

j D1

.�2j .�/� O�2j .�//I (22a)

O�j .�/� �j .�/ > 0 if j is oddI O�j .�/� �j .�/ < 0 if j is even. (22b)

Now we view B�;kD�=q;` as B�;kD0;` with the added perturbation

B�;kD�=q;` � B�;kD0;` D
�

�2b`Cq�1

�2b`Cq�1

�

;

which has the eigenvalues ¹Ei .�/ºq
iD1 given by

Eq.�/D �2jb`Cq�1.�/j<0DEq�1.�/D � � �DE2.�/D 0< 2jb`Cq�1.�/j DE1.�/:

Theorem 2 (Lidskii inequalities; e.g., [4]). For any q � q self-adjoint matrix M , we

denote its eigenvalues by

E1.M/ � E2.M/ � � � � � Eq.M/:

For q � q self-adjoint matrices A and B , we have

Ei1.AC B/C � � � C Eim.AC B/

� Ei1.A/C � � � C Eim.A/C E1.B/C � � � CEm.B/I

Ei1.AC B/C � � � C Eim.AC B/

� Ei1.A/C � � � C Eim.A/C Eq�mC1.B/C � � � CEq.B/;

for any 1 � i1 < � � � < im � q.

Applying these inequalities with AD B�;kD0;`, B D B�;kD�=q;` �B�;kD0;` gives

.qC1/=2
X

j D1

. O�2j �1.�/� �2j �1.�// �
.qC1/=2
X

j D1

Ej .�/ D E1.�/I

.q�1/=2
X

j D1

.�2j .�/� O�2j .�// � �
q
X

j D.q�1/=2

Ej .�/ D �Eq.�/:

Substituting these into (22), we obtain

j�. zHp
q ;�/j � E1.�/�Eq.�/ D 4jb`Cq�1.�/j: (23)
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Moreover, by the invariance of D�;k.E/ under the mapping bn 7! bnCm, for n D
0; 1; : : : ; q � 1 and anym, we can choose any ` in (23), so that

j�. zHp
q ;�/j � 4min

`
jb`Cq�1.�/j: (24)

In particular,

ˇ

ˇ

ˇ

zS
�p

q

�ˇ

ˇ

ˇD j�. zHp
q ;�D

1
4q
/j � 4min

`

ˇ

ˇ

ˇb`Cq�1

� 1

4q

�ˇ

ˇ

ˇD 4 � 2
ˇ

ˇ

ˇsin2�
� 1

4q

�ˇ

ˇ

ˇ� 4�

q
: (25)

Therefore, jS.p0

q0
/j D j zS.p

q
/j � 4�

q
D 4�

q0
, as required.

Case II: q is even. This case is similar to Case I, so we omit some details for brevity.

This time, the Lidskii equations of Theorem 2 show that j zS.p
q
/j � 8�

q
. Indeed, as

in (24), we have (note the doubling of the eigenvalues for z�.E/ D 0)

j�. zHp
q

;�/j � 4min
`

jb`Cq�1.�/j: (26)

In particular,

ˇ

ˇ

ˇ

zS
�p

q

�ˇ

ˇ

ˇD j�. zHp
q

;�D
1

2q
/j � 4min

`

ˇ

ˇ

ˇb`Cq�1

� 1

2q

�ˇ

ˇ

ˇD 4 � 2
ˇ

ˇ

ˇsin2�
� 1

2q

�ˇ

ˇ

ˇ� 8�

q
: (27)

Therefore, jS.p0

q0
/j D j zS.p

q
/j � 8�

q
D 4�

q0
, as required.

This completes the proof of Theorem 1.
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