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Chapter 1

Introduction

This thesis is divided in four main chapters: in the first and present one we shall describe
the content of the thesis and introduce some general preliminaries.

The second chapter is based on the two works [BGLL23] and [GG23] and deals with
measure theory in the non-smooth setting: the first part consists on a proof of a conjecture
raised by David H. Fremlin, concerning the non-triviality of the n-dimensional Hausdorff
measure of Rn, endowed with a general distance inducing the Euclidean topology. In the
second part we shall instead study a type of differentiable structure for metric measure
spaces, proving that some well-known properties holding on Riemannian manifolds re-
main valid in this setting.

The third chapter is based on [CG23] and deals with the asymptotics of the s-fractional
perimeter on general (possibly weighted) Riemannian manifolds and RCD spaces when
s → 0+, proving at the same time general results of independent interest concerning the
heat kernel.

The fourth and last chapter is based on [GGZZ24] and deals with the regularity of
harmonic maps with domain an RCD(K,N) space and target which is a CAT(κ) space,
extending to the non-smooth setting various result holding in the smooth framework of
Riemannian manifolds.

During my PhD I also studied the Fourier transform of functions of bounded vari-
ation, leading to the preprint [BG24a]. One of the results of the paper consists in an
equivalent characterisation of sets of finite perimeter in terms of the Fourier transform of
their characteristic function.

1.1 Contents of Chapter 2

In the first chapter we shall discuss about measure theory in non-smooth spaces. The
first result we are going to present is an answer to a question of David H. Fremlin: it
is a standard result that the Lebesgue measure in Rn is, when normalized in the correct
way, equivalent to the n-dimensional Hausdorff measure computed with respect to the
Euclidean distance. One of the consequences of this equivalence (such consequence can
be inferred in many different ways) is that Hn

deucl.
(U) > 0 for every U ⊂ Rn open set. The

behaviour of the Hausdorff measure should in principle strongly depend on what is the
distance we use to define it, however in [BGLL23] we are able to show that if the distance
induces the Euclidean topology, the property of giving positive measure to open sets is
preserved, no matter which distance function is chosen. We can summarize the results
obtained in [BGLL23] in the following
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6 CHAPTER 1. INTRODUCTION

Theorem 1.1.1. Let ρ be a distance on Rn inducing the Euclidean topology, then for every open
set U we have Hn

ρ (U) > 0.

The strategy to prove the latter is to exploit topological techniques such as degree the-
ory (in this thesis we shall present a proof via Brouwer fixed point theorem, instead of in-
troducing the topological degree). After the completion of the thesis, Sylvester Eriksson-
Bique has pointed out that the question of Fremlin had an answer long before it was
posed. Indeed the first solution of such problems appears in [Szp37] and it is for exam-
ple repeated in [HW41] and, with a more general statement and using the concept of
topological dimension, in [Hei01, Theorem 8.15]. However our proof differs from the
classical ones, which use Coarea inequality.

The second part of the first chapter is instead devoted to the study of the reference
measure on the so-called metric measure spaces. To introduce the problem let us first dis-
cuss what happens in the smooth setting: consider an n-dimensional Riemannian man-
ifold (M, g) endowed with its volume measure µ. It is a standard result that µ = Hn

dg
,

where dg is the distance function induced by the Riemannian metric. The latter distance
is defined as follows

dg(x, y) = inf

{ˆ 1

0

√
gγt(γ̇t, γ̇t) dt : γ : [0, 1] →M, γ(0) = x, γ(1) = y, γ ∈ C1([0, 1];M)

}
,

for all x, y ∈M .
Now consider a chart φ : U ⊆ M → Rn and the measure ν := φ♯(µ|U): we claim that

ν ≪ L n. This is essentially due to the fact that φ−1 is a Lipschitz map from φ(U) to U
(say that U is bounded for simplicity) and the fact that for a Lipschitz map ψ between
metric spaces (X, dX) and (Y, dY) there holds

Hn
dY
(ψ(A)) ≤ Lipn(φ)Hn

dX
(A).

for every A ⊆ X Borel. In these types of arguments the fact that one deals with a chart
which is invertible and that the measure on the Riemannian manifold is the Hausdorff
measure is somewhat crucial. However this kind of assumption is not necessary and
such a phenomenon occurs even in non-smooth structures as the one of metric measure
spaces.

In the recent, very interesting, paper [EBS21] the authors provided a general con-
struction of charts on metric measure spaces, key features of their notion being: the com-
patibility with Sobolev calculus (and thus in particular with the differential calculus as
developed by Cheeger in [Che99] and Gigli [Gig15]), a very general existence result, no-
table consequences in terms of the structure of the Sobolev spaces (see also [EBRS22a]
and [EBRS22b]). An example in this latter direction is the proof that the space W 1,p(X),
p ∈ (1,∞) (and actually the cotangent module Lp(T ∗X) as well), is reflexive as soon as
the space X can be covered by a countable number of sets with finite Hausdorff measure
(the ‘previous best’ result appeared in [ACDM14] and required the metric to be locally
doubling).

A crucial step in [EBS21] is the proof that if φ : E ⊂ X → Rn is a ‘p-independent weak
chart’, then n is bounded from above by the Hausdorff dimension of E: more precisely
the authors prove the following:

Proposition 1.1.2. Suppose φ ∈ Lip(X,Rn) is p-independent on U . Then n ≤ dimH(U).

For the precise meaning of ‘p-independent weak chart’ we refer to 2.2.8; for the pur-
pose of this introduction we shall limit ourselves to point out that in the smooth setting
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this would be equivalent to requiring the image of the differential of φ at every point to
span the whole tangent space of Rd. Starting from this result, existence of actual charts is
obtained via a suitable maximality argument.

Interestingly, this upper bound is proved via means that have, in principle, little to
do with analysis in non-smooth setting: key ingredients are indeed the elliptic regularity
result in [DPR] and the study of the structure of the set of non-differentiability points of
Lipschitz functions in [AM16].

This sort of procedure has a recent analogue in the theory of RCD spaces. Let us
recall indeed that in [MN14] it has been proved that finite dimensional RCD spaces admit
bi-Lipschitz charts covering almost all the space. In [MN14] no information about the
behaviour of the reference measure w.r.t. these charts has been provided: this topic has
been later studied in [KM18], [DPMR], [GP21] where, relying in a way or another on
[DPR] and [AM16], it has been proved that φ∗(m|E) ≪ L n for a Mondino-Naber chart
φ : E → Rn.

Of particular interest for the discussion here is the fact that in [GP21] only the results
in [DPR] have been used, while in [KM18] also those in [AM16] were necessary. Com-
paring this with the results in [EBS21] it is natural to wonder whether the use of [AM16]
is really crucial or can be avoided: this is the question motivating the present note. Of
course, there is nothing wrong in using a well-established result in doing research, our
study is simply motivated by the desire of better understanding the interesting construc-
tion done in [EBS21]. The result of our investigation is that [AM16] is not really needed
and the line of thought presented here simplifies not only some of the steps done in
[EBS21], but also some of those in [GP21]: see Section 2.3.

Another remark that we make, consequence of the studies in [EBS21], is that the di-
mension of the (co)tangent module (in the sense of [Gig15]) on a subsetE ⊂ X is bounded
from above from the Hausdorff dimension of E, see Remark 2.3.11.

1.2 Contents of Chapter 3

This chapter deals with the asymptotic behaviour of the s-fractional perimeter as s goes
to zero and shows how harmonic functions are very much related to this problem.

The study of this kind of asymptotic was initiated in [DFPV13], where the authors
focus on Rn. In the Euclidean setting one can define the s-perimeter as follows (up to
dimensional constants)

Ps(E) = s

ˆ
Ec

ˆ
E

1

|x− y|n+s
dx dy.

It is possible to show that the previous quantity is equal (again up to dimensional con-
stants) to

Ps(E) =

ˆ
Rn

|ξ|s|F{1E}|2(ξ) dξ.

If one assumes |E| < ∞ and Ps0(E) < ∞ for some s0 ∈ (0, 1) it is easy to infer from a
dominated convergence argument and Plancherel theorem that

lim
s→0+

Ps(E) = |E|.

Indeed the Fourier transform of 1E is continuous and bounded by |E|, hence we can pass
to the limit inside the integral thanks to dominated convergence; one can take as domina-
tion the function g(ξ) = |E|1B1 + |ξ|s0|F{1E}|2(ξ)1Bc

1
. This technique is difficult to adapt
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if one wants to find the convergence for the relative s-perimeter and even more diffi-
cult if one considers general Riemannian manifolds. From a dimensional point of view
however one should expect an analogous behaviour for what concerns the asymptotic as
s→ 0+.

To approach this problem, on a general Riemannian manifold, given a Borel set E ⊂
M , we shall introduce and study the following quantity

θE(p) := lim
s→0+

ˆ
E\BR(p)

Ks(x, p)dµ(x) , (1.2.1)

where

Ks(x, y) :=
1

|Γ(−s/2)|

ˆ ∞

0

HM(x, y, t)
dt

t1+s/2
(1.2.2)

and HM(x, y, t) : M ×M × (0,∞) is the heat kernel of M , that is the minimal1, positive
fundamental solution to the heat equation ∂tu −∆gu = 0 on M with u(t, ·) → δ{y} in the
sense of distributions as t → 0+. The quantity analogous to (1.2.1) on Rn was previously
studied in [DFPV13], where the authors deal with the study of the fractional s-perimeter
as s → 0+. In the case of M = Rn, the limit in (1.2.1) does not depend on p (whenever it
exists); hence, θE is a constant function.

One of the main observations of this work is that θE is always an harmonic function
on M , with values in [0, 1], and in general can be non-constant if M does not satisfy the
L∞ − Liouville property (see Definition 3.2.4). Moreover, for E ≡ M , the function θM
encodes the asymptotics of the fractional Laplacian as s→ 0+ on every complete (M, g).

The following are the main results of this chapter.

Theorem 1.2.1. Let (M, g) be a complete Riemannian manifold with µ(M) = +∞, and let
E ⊂M be a measurable set. Then

(i) If for some R > 0 and every p ∈M , the following limit exists

θE(p) := lim
s→0+

ˆ
E\BR(p)

Ks(x, p)dµ(x) ∈ [0, 1] , (1.2.3)

then it is independent of the choice of R, and θE : M → [0, 1] is a bounded harmonic
function on M .

(ii) For R > 0 and p ∈M the limit

θM(p) := lim
s→0+

ˆ
M\BR(p)

Ks(x, p)dµ(x) ∈ [0, 1] (1.2.4)

always exists, does not depend on the choice of R, and equals

θM(p) = lim
t→∞

ˆ
M

HM(p, x, t) dµ(x) . (1.2.5)

Moreover, θM :M → [0, 1] is a bounded harmonic function on M .
1Here, minimal means the following: if v : (0,∞)×M → R is another function with ∂tv −∆gv = 0 on

M and v(t, ·) → δ{y} as t → 0+, then HM (·, y, ·) ≤ v. See Section 9.1 in [Gri09] for details on this property.
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Unless otherwise stated, when we will say ”assume θE exists” we intend that the limit
in (1.2.3) exists for some R > 0 and every p ∈ M . We shall also briefly discuss on the
existence/nonexistence of this limit for different points p.

Next is the asymptotics of the fractional Laplacian. Note that, on well-behaved am-
bient spaces, one would expect (as it happens on Rn) that the fractional (s/2)-Laplacian
tends to the identity as s → 0+. With the following result, we show that this is not true
on general Riemannian manifolds and that the harmonic function θM defined in (1.2.4)
encodes how this limit differs from the identity.

Theorem 1.2.2. Let (M, g) be a complete Riemannian manifold with µ(M) = +∞, and let θM
be given by (1.2.4). Let also s◦ ∈ (0, 2) and u ∈ Hs◦/2(M) ∩ L∞(M) (see Definition 3.1.1) with
bounded support. Then, as s→ 0+ there holds

(−∆)
s/2
Si u −→ θMu a.e. on M, (1.2.6)

where (−∆)
s/2
Si is the singular integral fractional Laplacian (3.1.4).

With this result, we also make an interesting observation regarding a Riemannian
manifold constructed by Pinchover in [Pin95]. This Riemannian manifold satisfies the
L∞ − Liouville property (see Definition 3.2.4), but it is not stochastically complete, and
we show that it satisfies θM ≡ 0. We describe the construction of this manifold in Example
3.5.2. Consequently, there exist complete Riemannian manifolds where the mass of the
heat kernel escapes so rapidly that the asymptotics of the fractional Laplacian not only
differs from the identity but becomes identically zero, even for regular functions.

In the following result, we address the equivalence (actually, equality) of different
definitions of the fractional Laplacian on stochastically complete manifolds. Moreover,
we also find the asymptotics of the fractional Laplacian on manifolds with finite volume.

Theorem 1.2.3. Let (M, g) be a stochastically complete Riemannian manifold. Let also s◦ ∈
(0, 2) and u ∈ Hs◦/2(M) (see Definition 3.1.1). Then, for all s < s◦ the three definitions of the
fractional Laplacian (3.1.4), (3.1.2), and (3.6.13) coincide a.e., that is

(−∆)
s/2
Si u = (−∆)

s/2
B u = (−∆)

s/2
Specu .

Moreover, as s→ 0+

(−∆)s/2u
L2

−−→ u− 1

µ(M)

ˆ
M

u dµ if µ(M) < +∞ , (1.2.7)

and

(−∆)s/2u
L2

−−→ u if µ(M) = +∞ , (1.2.8)

where (−∆)s/2 is any of the equivalent fractional Laplacians.

In proving the previous theorems, we also provide an equivalent characterization of
being stochastically complete (see Definition 3.2.1) in the case of infinite volume.

Proposition 1.2.4. Let (M, g) be a complete (possibly weighted) Riemannian manifold with
µ(M) = +∞, and let θM(p) be given by (1.2.4). If M is stochastically complete, then

θM = lim
s→0+

ˆ
M\B1(p)

Ks(x, p)dµ(x) = 1 ∀p ∈M . (1.2.9)
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Conversely, if there exists p ∈M such that

θM(p) = lim
s→0+

ˆ
M\B1(p)

Ks(x, p)dµ(x) = 1 , (1.2.10)

then M is stochastically complete.

We will prove this result at the beginning of section 3.4.
As a corollary of the results above we are able to obtain the asymptotics of the frac-

tional perimeter as s→ 0+ in an extremely general setting, generalizing both the existing
results [DFPV13] for Rn and [CCLMP22] for the Gaussian space. Although these out-
comes currently stem from broader results obtained in our investigation, we emphasize
that the initial motivation behind this research was to explore the asymptotic properties
of the fractional perimeter on general Riemannian manifolds.

In particular, with Theorem 1.2.5 and 1.2.7, we show that these two known behaviors
of the asymptotics, the one of Rn and the one of the Gaussian space, are essentially the
only two possible also in this general setting.

Theorem 1.2.5 (Infinite volume asymptotics). Let (M, g) be a complete, stochastically com-
plete Riemannian manifold with µ(M) = +∞ and such that the L∞ − Liouville property holds
(see Definition 3.2.4). Let Ω ⊂ M be an open, bounded, connected set with Lipschitz boundary.
Let also E ⊂ M be a measurable set with2 Ps◦(E,Ω) < +∞, for some s◦ ∈ (0, 1), and such that
θE exists (see (1.2.3)). Then

(i) The limit lims→0+
1
2
Ps(E,Ω) exists and

lim
s→0+

1

2
Ps(E,Ω) = θM\Eµ(E ∩ Ω) + θEµ(E

c ∩ Ω) . (1.2.11)

(ii) Conversely, if µ(Ω∩E) ̸= µ(Ω \E) and the limit lims→0+
1
2
Ps(E,Ω) exists, then the limit

in (1.2.3) exists and there holds

θE =
lims→0+

1
2
Ps(E,Ω)− µ(E ∩ Ω)

µ(Ω \ E)− µ(E ∩ Ω)
.

(iii) If µ(Ω ∩ E) = µ(Ω \ E) then the limit lims→0+
1
2
Ps(E,Ω) always exists and

lim
s→0+

1

2
Ps(E,Ω) = µ(Ω ∩ E) = µ(Ω \ E) .

Remark 1.2.6. Without the assumption of stochastic completeness of M the situation can
be different. We will describe in Example 3.5.2 a complete Riemannian manifold N , with
the L∞ − Liouville property but not stochastically complete such that lims→0+ Ps(E) = 0
for every subset E ⊂ N . Moreover observe that the r.h.s. of (1.2.11) can be rewritten as
(1− θE)µ(E ∩ Ω) + θEµ(E

c ∩ Ω) since θM\E = 1− θE in this case.

Theorem 1.2.7 (Finite volume asymptotics). Let (M, g) be a complete Riemannian manifold
with µ(M) < +∞, and let Ω ⊂ M be an open and connected set with Lipschitz boundary.
If for some set E ⊂ M there exists s◦ ∈ (0, 1) such that Ps◦(E,Ω) < +∞, then the limit
lims→0+

1
2
Ps(E,Ω) exists and

lim
s→0+

1

2
Ps(E,Ω) =

1

µ(M)

(
µ(E)µ(Ec ∩ Ω) + µ(E ∩ Ω)µ(Ec ∩ Ωc)

)
.

2We refer to Definition 3.1.3 for the definition of the fractional perimeter Ps(·,Ω).
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Finally in 3.6 we shall extend the results concerning the asymptotic of the fractional
perimeter to RCD spaces, where there is enough technology to repeat the proofs in a
similar fashion.

1.3 Contents of Chapter 4

In the last 50 years the study of harmonic maps has been blooming and gained a lot
of interest from the mathematical community. One of the main questions is the one of
existence of such mappings and parallel to that there is the issue of their regularity.

When u : Ω ⊆ Mn → Nk is an harmonic map between Riemannian manifolds
(Mn, gM) and (Nk, gN) the picture nowadays is quite clear: the existence of such map-
pings has been established via the study of parabolic problems by Hamilton (see [Ham75]
for a discussion on the topic) and then by looking at the problem in a variational way.
The latter approach can be tailored to the non-smooth setting as well, indeed in the re-
cent [Sak23] the author has been able to prove the existence of harmonic maps between
an RCD space and a CAT(κ) space if the image of u is contained in a sufficiently small
ball.

Back to the case of an harmonic map between smooth Riemannian manifolds, the
Bochner-Eells-Sampson formula states that

∆

(
| du|2HS

2

)
= |∇ du|2HS +RicgM (∇u,∇u)−

∑
i,j≤n

⟨u∗RN(ei, ej)ei, ej⟩,

where RicgM is the Ricci tensor of the source space, u∗RN is the pullback of the curvature
tensor of the target space via the map u and eα

n
α=1 is an orthonormal frame for the tangent

bundle TM . If we assume that RicgM ≥ −K (lower bound on the Ricci tensor) and RN ≤ κ
(upper bound on the sectional curvatures), the previous identity can be turned into the
following inequality

∆

(
| du|2HS

2

)
≥ |∇ du|2HS +K| du|2HS − κ| du|4HS. (1.3.1)

From this inequality, at least if κ = 0 it is possible to quickly deduce that harmonic maps
are locally Lipschitz, as in this case we have

∆

(
| du|2HS

2

)
≥ K| du|2HS (1.3.2)

and thus a De Giorgi-Nash-Moser argument shows that the function f := | du|2HS is lo-
cally bounded. The case κ > 0, say κ = 1, is more delicate and is known to require
the additional assumption that the range of u is contained in a ball Br(p) ⊂ Nk of ra-
dius r < π

2
(otherwise there are known counterexamples to regularity [Riv95]). On

top of this, the term | du|4 is a priori not in L1, making it hard to extract informations
from (1.3.1). To overcome these difficulties, Serbinowski argued as follows: the func-
tion f(x) := dN(u(x), p) satisfies −∆cos(f) ≥ | du|2HS cos(f) (as a consequence of the fact
that u is harmonic and of the curvature assumption on N ), and quite trivially we have
| d| du|HS|2 ≤ |∇ du|2HS. These consideration and little algebraic manipulation show that
(1.3.1) implies

| du|HS
cos(f)

div
(
cos2(f)∇

(
| du|HS
cos(f)

))
≥ K| du|2HS, (1.3.3)
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and since cos(f) is far from zero, a Moser iteration argument can be called into play to
prove that | du|HS

cos(f)
, and thus | du|HS, is locally bounded, as desired.

This type of reasoning allows to conjecture that, in the non-smooth setting, one should
impose a lower bound on the Ricci curvature of the source and an upper bound on the
sectional curvature on the target to get that an harmonic maps is (locally) Lipschitz.

Many contributions in this direction have appeared in the recent years: for an ac-
count of the story we refer to the extensive introductions in [ZZ18], [ZZZ19], [MSa] and
[Gig23b]. Here we just recall that in [ZZ18] the authors proved the Lipschitz regular-
ity of harmonic maps between Alexandrov spaces and a weak Bochner-Eells-Sampson
inequality. Building on this, in the more recent [Gig23b] and [MSa] the authors where
able to establish such regularity when the source space is an RCD(K,N) space, namely
a space with a synthetic notion of Ricci curvature bounded below by K and dimension
bounded above by N , and the target is a CAT(0) space, namely a space with a synthetic
notion of sectional curvature bounded above by 0.

Very roughly said, the basic argument to get a sort of (1.3.2) and local Lipschitz reg-
ularity of harmonic maps is to build two families (gt), (ht) of functions (via a kind of
Hopf-Lax formula for metric-valued maps) converging to | du|2 in L1 as t ↓ 0 satisfying

1
2
∆gt ≥ Kht ∀t > 0. (1.3.4)

Quite clearly, from this it is possible to pass to the limit and obtain that

∆

(
| du|2

2

)
≥ K| du|2. (1.3.5)

Notice that in this the quantity | du| is the operator norm of du, not its Hilbert-Schmidt
norm as in (1.3.2), thus (1.3.5) is not the same as (1.3.2), but the effect is the same: a Moser
iteration argument shows that | du| must be locally bounded and thus that u is locally
Lipschitz.

When dealing with the case κ > 0 this strategy encounters a problem, as the ap-
proximation procedure does not work well in conjunction with Serbinowski’s technique:
shortly said, at the approximated level the right hand side of (1.3.1) still contains a term
that does not go to 0 in L1 as t ↓ 0.

Because of these difficulties, we do not achieve Lipschitz regularity of harmonic maps
in the setting, our main results are rather:

1) the proof of Hölder continuity, see Theorem 4.2.12. Here we follow the strategy in
[Jos97].

2) the higher integrability of the energy density, see Theorem 4.2.15, by using a Cac-
cioppoli inequality and the Gehring lemma in [Maa08, AHT17].

3) Under the a priori assumption that the harmonic function is Lipschitz, possibly
with a sub-optimal control on the Lipschitz constant, we prove a version of in-
equality (1.3.1) and thus get sharper Lipschitz estimates; see Theorem 4.2.26. To
achieve this we suitable combine ideas from [ZZZ19], [MSa] and [Gig23b]. Once
we have this, following the arguments in [ZZZ19] one can obtain a sharp estimate
on the Lipschitz constant and, as a consequence, a Liouville-type of result, Theorem
4.2.27 and Corollary 4.2.28 for the precise statements.

4) the boundary regularity, see Theorem 4.2.31.



1.4. PRELIMINARIES 13

1.4 Preliminaries

In this section we shall focus on the necessary preliminaries for the forthcoming chapters.

1.4.1 Measure theory and Sobolev calculus

As references for what follows we would like to point out [GP20a], the monographs
[Bog07b] and [Fed69]. Let (X, d) be a complete and separable metric space and m a mea-
sure on (X, d)

Definition 1.4.1 (regular Borel measure). We say that m is a regular Borel measure on X
if it is defined on the Borel sigma algebra B(X) and for all E ∈ B(X) the two following
conditions hold

m(E) = inf{m(U) : E ⊆ U, U open}
m(E) = inf{m(C) : C ⊆ E, C closed}.

Definition 1.4.2 (Radon measure). We say that a regular Borel measure is Radon if

m(E) = inf{m(K) : K ⊆ E, K compact}.

for all E ∈ B(X). We denote the set of Radon measures as M(X), while with M+X we
denote the subset of M(X) made of positive ones.

We shall write µ ∈ P(X) if µ ∈ M+(X) and µ(X) = 1. This last definition allows
us to introduce the main class of spaces we shall deal with in this thesis, which are the
so-called metric measure spaces.

Definition 1.4.3 (Metric measure space). We say that (X, d,m) is a metric measure space
if (X, d) is a complete and separable metric space and m ∈ M(X) is finite on balls.

Remark 1.4.4. The requirement of finiteness over balls is crucial when one deals with
spaces which are infinite dimensional (balls are not compact with respect to the strong
topology).

We shall now introduce an important class of measures which one can naturally asso-
ciate to a metric space, namely the so-called Hausdorff measures (in the following P(X)
denotes the power set of X).

Definition 1.4.5 (Hausdorff measure). Let s ∈ (0,∞) be a real number. We define the
s-dimensional Hausdorff outer measure of A ∈ P(X) as

Hs
d(A) := supδ>0Hs

δ,d(A), with (1.4.1)

Hs
δ,d(A) := inf

{∑
i∈I

diam(Ai)
s : A ⊆ ∪i∈IAi, diam(Ai) ≤ δ

}
, (1.4.2)

where diam(U) = supx,y∈U d(x, y) and I is an at most countable collection of indices.

Remark 1.4.6. The usual definition of Hausdorff measure is given scaling the result by a
dimensional constant that, for instance, in the Euclidean case is equal to 2−nωn, where ωn

is the volume of the unit n-ball. We opted to overlook the constant in order to simplify
the notation.
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Definition 1.4.7 (Pushforward measure). Let µ be a Borel measure on X and let T : X → Y
be a Borel map, where Y is a topological space. We define the pushforward of µ via T as
the Borel measure T♯µ such that

T♯µ(E) = µ
(
T−1(E)

)
for all E ∈ B(X).

The following property of the pushforward of a measure holds

Proposition 1.4.8. Let µ be a Borel measure on X and T : X → Y be a Borel map, where Y is a
topological space. Then for all φ : Y → [0,∞] Borel we have the following change of variables
formula ˆ

Y

φ dT♯µ =

ˆ
X

φ ◦ T dµ.

We shall now recall the classical Disintegration theorem. The statement below is taken
from [AGS08, Theorem 5.3.1], see also [Fre06, Chapter 452] and [Bog07a, Chapter 10.6].

Theorem 1.4.9 (Disintegration). Let X,Y be complete and separable metric spaces, µ ∈ P(X),
let π : X → Y be a Borel map and let ν = π♯µ ∈ P(Y). Then there exists a ν-a.e. uniquely
determined Borel family of probability measures {µy}y∈Y ⊆ P(X) such that µx(X\π−1({y})) = 0
for ν-a.e. y ∈ X and ˆ

X

f dµ =

ˆ
Y

(ˆ
π−1({y})

f dµy

)
dν(y) (1.4.3)

for every Borel map f : X → [0,+∞].

Remark 1.4.10. Two remarks are in order here: the first one is that the above theorem in
[AGS08] is stated for Radon separable metric space but in our setting it suffices to state
it for complete and separable ones (which in particular are Radon), the second is that the
result easily extends to any f : X → R Borel provided for example that f ∈ L1(µ).

We shall now develop calculus tools on metric measure spaces: the material comes
from the seminal work [AGS14a] [Gig18] (see also [GP20a]).

A function f : X → R is said to be Lipschitz (continuous) if there exists L ∈ [0,+∞)
which we call Lip(f) such that |f(y) − f(x)| ≤ Ld(x, y) holds for all x, y ∈ X. We denote
with Lip(X), Lipb(X) and Lipbs(X) the set of Lipschitz functions, the set of bounded Lips-
chitz functions and the set of Lipschitz functions with bounded support respectively. For
a generic function f : X → R we set

lipf(x) :=

{
lim supy→x

|f(y)−f(x)|
dX(x,y)

if x is not isolated

0 if x is isolated

and we call it local Lipschitz constant of f . If f ∈ Lip(X) obviously one has lip(f)(x) ≤
Lip(f) for all x ∈ X.

With these definitions it is possible to introduce the Sobolev space W 1,p(X) following
the approach of [Che99]. To do so we define the so-called pre-Cheeger energy

prChp(f) :=

{
1
p

´
X
lipp(f) dm if f ∈ Lipbs(X)

+∞ otherwise,
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mimicking the Dirichlet energy. We then define the relaxation of the latter to obtain
an Lp(m) (p ∈ (1,∞)) lower semicontinuous functional, defining the following Cheeger
energy

Chp(f) := inf

{
lim inf
k→+∞

prChp(fk) : (fk) ⊆ Lipbs(X) s.t. fk → f in Lp(m)

}
. (1.4.4)

Definition 1.4.11 (Sobolev spaces). We say that a function u belongs to W 1,p(X) if u ∈
Lp(m) and Chp(f) < +∞.

It is possible to prove that for every f ∈ W 1,p(X) there exists a minimal Lp(m) function,
which we denote with |Df |p, such that Chp(f) := 1/p

´
X
|Dfp|p dm. The latter function has

the meaning of modulus of the differential of a function and it is not only minimal in the
Lp sense but also in the m-a.e. sense. It turns out that W 1,p(X) equipped with the norm

∥u∥W 1,p(X) :=
(
∥u∥Lp(m) + pCh(f)

) 1
p is a Banach space.

We shall continue the investigation of Sobolev spaces via the approach introduced
in [AGS14a], which is there proven to be equivalent to the one in [Che99]. We shall
denote with ACp([0, 1];X),p ∈ [1,∞), the subset of the continuous curves (C([0, 1];X))
γ : X → [0, 1] which are such that there exists g ∈ Lp([0, 1]) for which

d(γt, γs) ≤
ˆ t

s

g(r) dr ∀s < t ∈ [0, 1]. (1.4.5)

It can be proven that the following limit

lim
h→0+

d(γt+h, γt)

h
=: |γ̇t| (1.4.6)

exists for a.e. t ∈ (0, 1) (with respect to the Lebesgue measure). We call |γ̇t| the metric
speed of the curve γ. Moreover one can show that |γ̇t| is the minimal (in the a.e. sense) Lp

function that can be chosen in (1.4.5) as function g. Let p, q ∈ [1,∞] be such that 1
p
+ 1

q
= 1

(where we agree that 1
∞ = 0), we have the following.

Definition 1.4.12 (Test plan). We say that a probability measure π on C([0, 1];X) is a
q-test plan if it is concentrated on AC([0, 1];X) and the following two conditions are met:

1. ∃ C = C(π) > 0 such that et♯π ≤ Cm, where m is the reference measure on X and
et : C([0, 1];X) → X is the evaluation map et(γ) = γt.

2. The following quantity, called kinetic energy, is finite

K.E.(π) =

ˆ ˆ 1

0

|γ̇t|q dt dπ(γ).

We are now ready to give the second definition of Sobolev space: due to its equiv-
alence with Definition 1.4.11 proved in [AGS14a] we will refer to this spaces again as
W 1,p(X).

Definition 1.4.13. We say that a function f : X → R is in Sp(X) if f ∈ L0(m) and if there
exists G ∈ Lp(m) such that

ˆ
|f(γ1)− f(γ0)| dπ(γ) ≤

ˆ 1

0

ˆ
G(γt)|γ̇t| dπ(γ) dt (1.4.7)

holds for all π ∈ P(C([0, 1];X)) q-test plan.
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Remark 1.4.14. Again as for the case of Definition 1.4.11 there exists minimal function G
(both in the Lp norm and in the m-a.e. sense), which we call minimal p-weak upper gradient
and keep denoting by |Df |p (since it is m-a.e. equal to the one minimizing the Cheeger
energy Chp(f)), satisfying (1.4.7). These two objects are actually equivalent but the proof
is not immediate; see [AGS13] for the proof.

A fundamental notion to develop calculus tools on this non-smooth setting is the one
of infinitesimal Hilbertianity, introduced in [Gig15].

Definition 1.4.15 (Infinitesimal Hilbertianity). We say that a metric measure space (X, dX,m)
is infinitesimally Hilbertian if Ch2 is a quadratic form, or equivalently if W 1,2(X) is an
Hilbert space.

1.4.2 Lp-normed L∞-modules

We now switch our attention to the theory of Lp(m)-normed L∞(m)-modules developed
in [Gig18]: the following material can be found there, unless otherwise stated.

Definition 1.4.16 (Lp(m)-normed module). We say that a Banach space (M, ∥·∥M) is an
Lp(m)-normed L∞(m)-module if there exists a bilinear continuous map · : L∞(m)×M →
M which makes M a module with unity over the ring of L∞(m) functions and another
map | · | : M −→ Lp(m) with nonnegative values such that

∥|v|∥Lp(m) = ∥v∥M, (1.4.8)
|f · v| = |f ||v| m− a.e. (1.4.9)

for all v ∈ M, f ∈ L∞(m). We call · the multiplication and | · | the pointwise norm.

Remark 1.4.17. Note that the pointwise norm is continuous thanks to the triangular in-
equality, in fact

∥|v| − |w|∥Lp(m) ≤ ∥|v − w|∥Lp(m) = ∥v − w∥M.

Moreover with a little bit of abuse of notation we will write fv instead of f · v and write
Lp(m)-normed module instead of Lp(m)-normed L∞(m)-module.

A related interesting concept is the one of localization of a module, indeed it is easy to
see that the following object

M|E := {χEv : v ∈ M}

is a submodule of M and it clearly inherits the normed structure from M.

Definition 1.4.18 (Local independence). Let M be an Lp(m)-normed module and A ∈
B(X) with m(A) > 0, we say that a family v1, ..., vn ∈ M is independent on A if for every
f1, ..., fn ∈ L∞(m) we have

n∑
i=1

fivi = 0 m− a.e. on A =⇒ fi = 0 m− a.e. on A ∀i = 1, ..., n. (1.4.10)

In the spirit of linear algebra we shall also define what is the span of a set of vectors

Definition 1.4.19 (Span). Let M be an Lp(m)-normed module, V ⊂ M a subset and
A ∈ B(X). We denote with SpanA(V ) the closure in M of the L∞(m)-linear combinations
of elements of V . Moreover we say that SpanA(V ) is the space generated by V on A.
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After this definition, the one of basis and of dimension for an Lp(m)-normed module
M arise naturally:

Definition 1.4.20. We say that a finite family v1, ..., vn ∈ M is a basis on A ∈ B(X) if it
is independent on A and SpanA{v1, ..., vn} = M|A. If the above happens we say that the
local dimension of M on A is n and in case M has not dimension k for any k ∈ N we say
that it has infinite dimension.

It can be proved that the notion of dimension is well-posed, namely if we have v1, ..., vn
generating M on a set A and w1, ..., wm are independent on A, then n ≥ m. Ultimately
this means that two different basis must have the same cardinality.

Building over these tools we have the following proposition:

Proposition 1.4.21. Let M be an Lp(m)-normed module. Then there is a unique partition
{Ei}i∈N∪{∞} of X, up to m-a.e. equality, such that:

1. for every i ∈ N such that m(Ei) > 0, M has dimension i on Ei,

2. for every E ⊂ E∞ with m(E) > 0, M has infinite dimension on E.

We shall now introduce the notion of dual module, in analogy with that of dual of a
Banach space.

Definition 1.4.22 (Dual module). 2.2. We say that the space of L∞(m)-linear and continu-
ous maps L : M → L1(m) is the dual module of the module M and we shall denote this
space by M∗.

Remark 1.4.23. Being M Lp(m)-normed, we can endow M∗ with a natural structure of
Lq(m)-normed module.

When dealing with a module the reader can observe that there are two ways to con-
sider ”functionals” acting on it. The first way is to view the module M as a Banach
space and consider its dual M′, the second is by considering its dual in the sense of
modules, M∗. To pass from one description to the other one we can introduce the map
IntM : M∗ → M′ such that

IntM(T )(·) :=
ˆ
X

T (·) dm.

It is easy to verify that such map is an isometry from M∗ to M′; with a little bit of work
it is also possible to show that for Lp(m)-normed modules such map is also onto.

Finally we can introduce the following map JM : M → M∗∗, which to every v ∈ M
associates the map JM : M∗ → L1(m) given by

JM(v)(L) := L(v) ∀L ∈ M∗.

Exploiting the fact that the map IntM is an isometric isomorphism, it is possible to prove
that JM is an isometry which may however fail to be surjective. This allows us to give
the following definition

Definition 1.4.24 (Reflexive module). We say that an Lp(m)-normed module is reflexive
if the map JM is onto.

As one may notice, this definition resembles a lot the one given for Banach spaces and
the similarity is not purely formal. Indeed we have
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Proposition 1.4.25. Let M be an Lp(m)-normed module with p ∈ (1,∞). Then M is reflexive
as a module if and only if it is reflexive as a Banach space.

With the following we Theorem we shall build differentials of functions and subse-
quently link Sobolev calculus with Lp(m)-normed modules. The idea is to construct an
Lp(m)-normed module which plays the role of the cotangent bundle on a Riemannian
manifold. By duality we shall then construct the tangent module and we will finally be
able to speak about derivations, vector fields and gradients.

We have the following:

Theorem 1.4.26 (Existence of the cotangent module). There exists a unique couple (Lp(T ∗X), d),
where Lp(T ∗X) is an Lp(m)-normed module and dp : Sp(X) → Lp(m) is a linear operator such
that

• | dpf | = |Df |p holds m-a.e. for every f ∈ Sp(m).

• Lp(T ∗X) is generated in the sense of modules by { df : f ∈ Sp(X)}.

Remark 1.4.27. Uniqueness in the previous theorem is meant up to unique isomorphism:
if there is another couple (M, T ) satisfying the properties of the theorem, then there is a
unique module isomorphism Φ : Lp(T ∗X) → M such that Φ ◦ dp = T .

We therefore call Lp(T ∗X) the p-cotangent module and dp the differential: from an euris-
tic point of view one can think to the elements of Lp(T ∗X) as differential forms.

Definition 1.4.28 (Tangent module). We define the tangent module as the dual module of
Lp(T ∗X) and we denote it by Lq(TX), where q is the conjugate exponent of p.

In analogy with the smooth case one can think to the elements of Lq(TX) as vector
fields, derivations or gradients.

Remark 1.4.29. It is possible to prove that Lq(TX) is an Lq(m)-normed module whose
pointwise norm is given by

|b∗| := ess sup{|b(ω)| : ω ∈ Lp(T ∗X), |ω| ≤ 1}.

Finally we can introduce the gradient of a Sobolev function as the following

Gradq(f) := {v ∈ Lq(TX) : v( dpf) = | dpf |p = |v|q m− a.e.}. (1.4.11)

As one can observe Gradq(f) is a set, rather than a single element of a module. Via the
Hahn-Banach theorem it is possible to prove that this setter is never empty, however it
may not be a singleton. Whenever it will be a singleton we shall denote its single element
by ∇qf (or simply ∇f when clear from the context).

Since we are now able to speak about gradients and vector fields, by duality we can
introduce the concept of divergence.

Definition 1.4.30 (Divergence). We say that a vector field v ∈ Lq(TX) is in Divq(X) if there
exists a function g ∈ Lq(m) such that for all f ∈ W 1,p(X) one has

ˆ
X

v( dpf) dm = −
ˆ
X

gf dm.

We call g the divergence of v and we denote it by div(v).
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Now that we are able to speak about vector fields it would be interesting to speak
about derivations as well. We shall do this thanks to the ideas developed in [Mar14] and
the Sobolev calculus.

Definition 1.4.31 (Derivations). We say that a linear map b : Sp(X) → L1(m) is a deriva-
tion and we write b ∈ Derq(X) if there exists ℓ ∈ Lq(m) such that

|b( dpf)| ≤ ℓ|Df |p m− a.e. (1.4.12)

holds for every f ∈ Sp(m).

We immediately state (and prove, for the reader convenience) a result connecting the
notion of derivation with the one of vector field, which is [Gig18, Theorem 2.3.3]

Theorem 1.4.32 (Derivations and vector fields). For any vector field X ∈ Lq(TX) the map
X ◦ dp : S

p(X) → L1(m) is a derivation. Conversely, given a derivation b ∈ Derq(X) there exists
a unique vector field X ∈ Lq(TX) such that the diagram

Sp(X) Lq(T ∗X)

L1(m)

d

X
b

commutes.

Proof. The map X ◦ dp is linear and satisfies

|(X ◦ dp)(f)| = | dpf(X)| ≤ |X| | dpf |∗ = |X| |Df |p, m− a.e. ∀f ∈ Sp(X).

Since |X| ∈ Lq(m), the first claim is proved thanks to Hölder inequality.
For the second implication consider b ∈ Derq(X) and define a linear map from D :=

{ dpf : f ∈ Sp(X)} to L1(X) as follows

dpf 7→ X( dpf) := b(f).

Thanks to (1.4.12) (and the identity | dpf |∗ = |Df |p) the definition is well-posed and we
have

|X( dpf)| ≤ ℓ| dpf |∗.

Now thanks to the continuity (boundedness) of the latter map and the fact that D gen-
erates Lp(T ∗X) (Theorem 1.4.26) we can extend X to an L∞(m)-linear and continuous
functional from Lp(T ∗X) to L1(m), that is we built a vector field. This concludes the
proof.

First we recall Theorem 1.21 and Proposition 1.23 from [Pas22], which do not require
any assumption on the Sobolev space W 1,p(X). Before stating the results a few comments
are in order: first of all we are going to consider the map e : C([0, 1];X) × [0, 1] → X
satysfing e(γ, t) = γt. Recall that it is possible to endow the space C([0, 1] : X) with the
distance d∞ which is such that

d∞(γ, η) := sup
t∈[0,1]

d(γt, ηt).
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Such distance makes the space C([0, 1];X) a complete and separable metric space. Now
let us endow H := C([0, 1];X)× [0, 1] with the pythagorean distance

dH :=
√

d2
∞ + | · |2,

and the measure π⊗L1. It is easy to verify that (H, dH , π⊗L1) is a metric measure space.

Theorem 1.4.33 (Velocity of a test plan). Let (X, d,m) be a metric measure space and fix expo-
nents p, q ∈ (1,+∞) such that 1

p
+ 1

q
= 1. Let π be a given q-test plan on (X, d,m). Then there

exists a unique element π′ ∈
(
e∗Lp(T∗X)

)∗ such that, for any function f ∈ W 1,p(X) and L 1-a.e.

d

dt
f ◦ et := lim

h→0

f ◦ et+h − f ◦ et
h

= π′(e∗ dpf)(·, t), (1.4.13)

where the derivative is taken with respect to the strong topology of L1(π). Moreover,

|π′|(γ, t) = |γ̇t| for π ⊗ L 1 − a.e. (γ, t) ∈ ACq([0, 1];X)× [0, 1].

We call π′ the p-velocity of the test plan π.

Proposition 1.4.34. Let (X, d,m) be a metric measure space and p, q ∈ (1,+∞) satisfy 1
p
+ 1

q
= 1.

Let π be a q-test plan on X. Then for every function f ∈ W 1,p(X) the mapping t 7→ f ◦ et belongs
to ACq([0, 1];L1(π)) and satisfies

f ◦ et − f ◦ es =
ˆ t

s

π′(e∗ dpf)(·, r)dr ∀s, t ∈ [0, 1] with s < t. (1.4.14)

Remark 1.4.35. From 1.4.14 we deduce that for π-a.e. γ ∈ ACq([0, 1];X) we have
ˆ t

s

(f ◦ γ)′r dr =
ˆ t

s

π′(e∗ dpf)(·, r)dr ∀s, t ∈ [0, 1] with s < t.

By Lebesgue differentiation and Fubini this means that for π⊗L 1-a.e. (γ, t) ∈ ACq([0, 1];X)
we have

(f ◦ γ)′t = π′(e∗ df)(γ, t). (1.4.15)

Following [DM14] we first need to disintegrate the measure π⊗L 1
|[0,1] with the evalu-

ation map e : ACq([0, 1];X)× [0, 1] → X so that we obtain a family of probability measures
on curves {πx}x∈X satisfying, thanks to 1.4.3,

ˆ 1

0

ˆ
f(γ, t) dt dπ(γ) =

ˆ
X

ˆ 1

0

ˆ
f(γ, t) dπx(γ, t) de♯π(x)

for every f ∈ L1(π̃), with πx concentrated on the set {(γ, t) ∈ ACq([0, 1];X)× [0, 1] : γt =
x} for m-a.e. x ∈ X.

Note moreover that due to the compression bound et♯π ≤ Cm we easily deduce a
bound on the product measure π̃ = π ⊗ L 1

|[0,1], indeed e♯π̃ ≤ Cm, so that there exists
ρ ∈ L1(m) ∩ L∞(m) such that e♯π̃ = ρm. We can therefore write

ˆ 1

0

ˆ
f(γ, t) dt dπ(γ) =

ˆ
X

ˆ 1

0

ˆ
f(γ, t) dπx(γ, t)ρ(x) dm

for every f ∈ L1(π̃).
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Remark 1.4.36. It is a standard result that if (X, d) is a complete and separable metric
space then so is C([0, 1];X) with respect to the uniform topology and a fortiori so are
ACp([0, 1];X) and ACp([0, 1];X)× [0, 1].

Let us now define V :=

{∑n
i=1 χEi

dfi : (Ei) ⊆ B(X) disjoint, fi ∈ W1,p(X) ∀i =

1, ..., n

}
, which is a dense subset of Lp(T∗X), then we have the following:

Proposition 1.4.37. Consider the map bπ : V −→ L1(m) defined by

bπ( df)(x) :=
ˆ 1

0

ˆ
π′(e∗ df)(γ, t)ρ(x) dπx(γ, t), (1.4.16)

with πx being the disintegrations of the measure π̂ = π ⊗ dt, π q-test plan, with respect to the
evaluation map e : C([0, 1];X) × [0, 1] −→ X such that e(γ, t) = γt, while ρ ∈ L1(m) ∩ L∞(X)
is such that e♯π̂ = ρm.

Then bπ is continuous and uniquely extends to a continuous map from Lp(T∗X) to L1(m).

Proof. Let us prove that there exists a function Gπ ∈ Lq(m) with nonnegative values such
that

|bπ( df)| ≤ Gπ|Df |p m− a.e..
Note that the regularity of ρ follows from the fact that ∀A ∈ B(X) we have

e♯π̂(A) =

ˆ 1

0

π({γ : γt ∈ A}) dt ≤ C(π)m(A).

We have

|bπ( df)|(x) ≤ ρ(x)

ˆ 1

0

ˆ
|Df |p(γt)|γ̇t| dπx(γ, t) = |Df |p(x)ρ(x)

ˆ 1

0

ˆ
|γ̇t| dπx(γ, t),

since πx is concentrated on {(γ, t) : γt = x} for m-a.e. x ∈ X and defining Gπ(x) :=

ρ(x)
´ 1

0

´
|γ̇t| dπx(γ, t) we have Gπ ∈ Lq(m) sinceˆ
X

|Gπ(x)|q dm(x) ≤
ˆ 1

0

ˆ
X

ˆ
|γ̇t|qρ(x)q dπx(γ, t) dm(x) = C(π)q−1K.E.(π),

where we used Jensen inequality and the properties of the disintegration. Note moreover
that the latter map is L∞(m)-linear, indeed ∀g ∈ L∞(m) we have

bπ(g df) =

ˆ 1

0

ˆ
π′(e∗(g df))(γ, t)ρ(x) dπx(γ, t) =

ˆ 1

0

ˆ
π′(e∗( df))(γ, t)ρ(x)g(x) dπx(γ, t),

as in the last equality we used the fact that e∗(gω) = g ◦ ee∗(ω), the L∞(π̂)-linearity of π′

and again the properties of the disintegration.
Thanks to the previous estimate and the locality property we have that bπ extends to

an L∞(m)-linear map from Lp(T∗X) to L1(m), proving the result.

Remark 1.4.38. The maps we built in 1.4.16 enjoy additional regularity properties with
respect to standard integrable vector fields, since we can compute their divergence:ˆ
X

bπ( df) dm =

ˆ
X

ˆ 1

0

ˆ
π′(e∗ df)(γ, t)ρ(x) dπx(γ, t) dm(x) =

ˆ 1

0

ˆ
π′(e∗ df)(γ, t) dπ(γ) dt

(1.4.17)

=

ˆ ˆ 1

0

d(f ◦ γ)
dt

(t) dπ(γ) dt =

ˆ
f(γ1)− f(γ0) dπ(γ) =

ˆ
X

f(x)
(
ρ1(x)− ρ0(x)

)
dm(x),

(1.4.18)
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so that we have div(bπ) = ρ0(x)−ρ1(x) ∈ L1(m)∩L∞(m), where ρt is such that et♯π = ρtm
for every t ∈ [0, 1].

Thanks to the previous Proposition we are able to establish a density result concerning
vector fields in general metric measure spaces, namely that we can approximate (in the
sense of weak star topology) integrable vector fields with vector fields with bounded
divergence.

Proposition 1.4.39. The set Divq(X) is weakly∗ dense in Lq(TX).

Proof. Note that to prove the Proposition we just need to show that
ˆ
X

bπ(ω) dm = 0 ∀π test plan =⇒ ω = 0

for every ω =
∑N

n=1 χEi
dpfi with fi ∈ W 1,p(X) for every i = 1, ..., N and (Ei)

N
i=1 partition

of X.
Therefore let us assumeˆ

X

bπ

(
χE df

)
dm = 0 ∀π q-test plan

for some f ∈ W 1,p(X), E ∈ B(X) (the general case follows by L∞(m)-linearity of vector
fields and the linearity of the integral): we get

ˆ 1

0

ˆ
χE(γr)(f ◦ γ)′r dπ(γ) dr = 0. ∀π q-test plan (1.4.19)

Now fix a test plan π and define the following sets Γ+
t := {γ ∈ ACq([0, 1];X) : (f◦γ)′t >

0}, Γ−
t := {γ ∈ ACq([0, 1];X) : (f ◦ γ)′t < 0} and the following q-test plans π+

t :=
π|Γ+

t

π(Γ+
t )

,

π−
t :=

π|Γ−
t

π(Γ−
t )

for every t ∈ [0, 1].
By assumption we have

ˆ 1

0

ˆ
χE(γr)(f ◦ γ)′r dπ+

s (γ) dr = 0. (1.4.20)

Now define πts := Restrts♯π+
s with t > s, which is again test plan, so that we have
ˆ ˆ t

s

χE(γr)(f ◦ γ)′r dπ+
s (γ) dr = 0 (1.4.21)

and after dividing by (t− s) and taking the limit as t→ s we deduce
ˆ
χE(γs)(f ◦ γ)′s dπ+

s (γ) = 0 L 1 − a.e. (1.4.22)

Applying the same reasoning with the test plans π−
s we finally get

ˆ 1

0

ˆ
χE(γs)|(f ◦ γ)′s| dπ(γ) dt = 0

for every q-test plan π, which amounts to say that |χE df | = 0 m-a.e. since ∀π it holds
|(f ◦ γ)′t| =

(
χE(γt) + χEc(γt)

)
|(f ◦ γ)′t| ≤ χEc |Df |p(γt)|γ̇t| for π-a.e. γ, L 1-a.e., therefore

χEc|Df |p is a p-weak upper gradient and by the minimality property this suffices to prove
that |χE df | = 0, therefore proving the result.
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Thanks to the previous theorem we can also give a different proof of the Coarea for-
mula in general metric measure spaces (for the original proof see [Mir03]) assuming the
cotangent module to be separable, but first we shall recall a technical result whose proof
can be found in [GP20b, Theorem 2.1.18]

Proposition 1.4.40. Let u : X → R be a Lipschitz function (actually u Borel with u ∈ S2(X)
would be enough), then |Du| = 0 m-a.e. on f−1(N) for every N with L 1(N) = 0.

We can now state and prove Coarea formula.

Theorem 1.4.41 (Coarea formula). Assume L2(T ∗X) separable and let u : X → R be a Lips-
chitz function and f : X → [0,∞] another Borel function, then

ˆ
X

f |Du| dm =

ˆ
R

ˆ
f dPer({u < r}, ·) dr.

Proof. We begin by noticing that, thanks to Proposition 1.4.40, |Du| = 0 m-a.e. on u−1(B)
for every B such that L 1(B) = 0: therefore we get that u♯(|Du|m) << L 1 and so
u♯(|Du|m) = ρL 1 with ρ ∈ L1

loc(R). Now let us apply Theorem 1.4.9 and disintegrate
the measure µ = |Du|m with respect to the map u so that for every f : X → [0,∞] Borel
we get ˆ

X

f |Du| dm =

ˆ
R

ˆ
f dmtρ(t) dt.

where the map t 7→ mt is weakly Borel and mt is unique in the sense of Theorem 1.4.9:
finally let us define µt = mtρ(t). Thanks to [BG24b, Proposition 2.1], for any open set U
we have

Per(E,U) = sup

{ˆ
X

χEdiv(b) dm : b ∈ D(div), |b| ≤ 1, spt(b) ⋐ U

}
.

Now let us consider such an open set U , s, t ∈ R with s < t and a vector field b as in the
previous realization of the perimeter. We then have

ˆ t

s

ˆ
X

χ{u<r}(x)div(b) dm dr =

ˆ
X

(s ∧ u ∨ t)div(b) dm = −
ˆ
{s<u<t}

b

(
du

|∇u|

)
dm,

where we used Fubini, intergation by parts and the locality of the differential. We then
have ˆ

{s<u<t}
b( du) dm =

ˆ t

s

ˆ
X

b

(
du

|∇u|

)
dµt dt.

Therefore for L 1-a.e. t ∈ R we have
ˆ
X

χ{u<t}div(b) dm = −
ˆ
X

b

(
du

|∇u|

)
dµt. (1.4.23)

Now since L2(T∗X) is separable the weak-star topology of L2(TX) is metrizable and
by Banach-Alaoglu the unit ball in L2(TX) is compact, therefore L2(TX) is separable.
Moreover by Proposition 1.4.39 and the previous observation there exists a countable set
D ⊆ D(div) which is weakly-star dense in D(div). We then define a further countable set

D̃ :=

{ N∑
i=1

qibi : (qi)
N
i=1 ⊆ Q+, (bi)

N
i=1 ⊆ D

}
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so that ∀b ∈ D(div) there exists (bn)n ⊆ D̃ such that
ˆ
X

gbn(ω) dm →
ˆ
X

gb(ω) dm ∀g ∈ L∞(m)

and thanks to the density of W 1,2(X) into L2(m) we also get div(bn) ⇀ div(b) in L2(m).
Moreover thanks to Mazur lemma and the definition of D̃ we can choose the previous
sequence in such a way that

lim
n→+∞

ˆ
X

∣∣∣∣(bn − b)

(
du

|∇u|

)∣∣∣∣ dm = 0.

Up to throwing away a set of measure zero we have
ˆ
X

χ{u<t}div(b) dm = −
ˆ
X

b

(
du

|∇u|

)
dµt.

for every b ∈ D̃ with spt(bn) ⋐ U . Now we can just take the supremum on both sides and
note that for a sequence fn converging to f in L1(m) we get

ˆ
X

fn dµt →
ˆ
X

f dµt L 1 − a.e.

so that up to throwing away a further set of L 1 measure zero (call N the union of these
sets) we can take the supremum on n ∈ N in 1.4.23 to get

Per({u < t}, U) = µt(U) ∀t ∈ R \N.

Finally taking a countable base of open sets for the Borel sigma-algebra gives that the
previous identity holds for L 1-almost everywhere for every Borel set thanks to Borel
regularity, meaning that the measure Per({u < t}, ·) coincides with µt for almost every
t ∈ R and thus proving the statement.



Chapter 2

Measure theory in non-smooth spaces

2.1 Introduction and Notation

The following question was asked by professor David H. Fremlin: consider a distance ρ
on R2 inducing the Euclidean topology, is it possible that H2

ρ (R2) = 0? In [BGLL23] we
are able to answer this question negatively in any dimension.

By Hn
ρ we denote the n-dimensional Hausdorff measure according to Definition 2.1.1

below. We give an answer to this problem in full generality, since our proof is valid
in Rn, ∀n ≥ 1, showing that such a behaviour cannot happen. On the other hand, we
will show in Remark 2.3.4 that, when the metric does not induce the usual Euclidean
topology, counterexamples can be found.
Before stating our main theorem in Section 2.3, we recall in this introductory section some
classical tools for convenience of the reader (see [Fed69] for further details).

Definition 2.1.1 (Hausdorff measure). Let (X,d) be a metric space. We define the n-
dimensional Hausdorff outer measure of A ∈ P(X) as

Hn
d(A) := supδ>0Hn

δ,d(A), with (2.1.1)

Hn
δ,d(A) := inf

{∑
i∈I

diam(Ai)
n : A ⊆ ∪i∈IAi, diam(Ai) ≤ δ

}
, (2.1.2)

where diam(U) = supx,y∈U d(x, y) and I is an at most countable collection of indices.

Remark 2.1.2. The usual definition of Hausdorff measure is given scaling the result by a
dimensional constant that, for instance, in the Euclidean case is equal to 2−nωn, where ωn

is the volume of the unit n-ball. We opted to overlook the constant in order to simplify
the notation. Clearly Theorem 2.3.2 is not affected by this choice.

To prove our result we will exploit the following well-known theorem.

Lemma 2.1.3 (Dini). Let (K, d) be a compact metric space. Let fn : K → R be continuous
functions such that

fn ≤ fn+1 ∀n ∈ N (2.1.3)

and assume that

f(x) = lim
n→+∞

fn(x) ∀x ∈ K, (2.1.4)

exists and the function f : K → R is also continuous. Then (fn)n∈N converges uniformly to f on
K.

25
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We shall now recall Brouwer fixed point theorem: we shall indeed present a slightly
different proof of Theorem 2.3.2, however exploiting the same ideas contained in [BGLL23].
We have (see [Pat19, Theorem 10.1]) the following classical result.

Theorem 2.1.4 (Schauder-Tychonoff Fixed Point). LetX be a locally convex space, letK ⊂ X
be nonempty and convex (not necessarily closed), and let K0 ⊂ K be a compact set. Given a
continuous map f : K → K0, there exists x̄ ∈ K0 such that f(x̄) = x̄.

Remark 2.1.5. The same result holds if f is defined only from K0 instead of K.

2.2 More on normed modules

Definition 2.2.1 (Maps of bounded compression/deformation). Let (X, dX,mX) and (Y, dY,mY)
be two metric measure spaces. We say that a map φ : X → Y is a map of bounded com-
pression if it is a Borel map such that φ♯mX ≤ CmY. If the map φ is Lipschitz continuous
then we say that φ is a map of bounded deformation.

We now introduce the notion of pullback module which, roughly speaking, is nothing
but a module over a space X obtained by pulling back a module on another space Y via
a map of bounded compression.

Definition 2.2.2 (Pullback). Let (X, dX,mX) and (Y, dY,mY) be metric measure spaces,
φ : X −→ Y a map of bounded compression and M and Lp(mY)-normed module. Then
there exists a unique, up to unique isomorphism, couple (φ∗M, φ∗) with φ∗M being an
Lp(mX)-normed module and φ∗ : M −→ φ∗M being a linear and continuous operator
such that:

1. |φ∗v| = |v| ◦ φ holds mX-a.e., for every v ∈ M,

2. the set {φ∗v : v ∈ M} generates φ∗M as a module.

At this point one can try to understand what is the relation between the dimension
of a module and the one of its pullback via the map φ and in order to do so we need
to introduce a sort of left inverse of the pullback operator φ∗. To do so let us assume
φ♯mX = mY to simplify the exposition.

For f ∈ Lp(mX) nonnegative we put

Prφ(f) :=
dφ♯(fmX)

dmY
(2.2.1)

and in a natural way we set Prφ(f) := Prφ(f
+)− Prφ(f

−) for general f ∈ Lp(mX).
We now recall some properties of the map Prφ.

Proposition 2.2.3. The operator Prφ : Lp(mX) −→ Lp(mY ) is linear, continuous and

Prφ(f)(y) =

ˆ
X

f(x) dmy(x) mY − a.e., ∀f ∈ Lp(mX), (2.2.2)

where y 7→ my denotes the disintegration of mX with respect to the map φ. Finally it holds

|Prφ(f)| ≤ Prφ(|f |) mY − a.e. (2.2.3)
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Proof. Linearity is a consequence of the linearity of the integral. Formula (2.2.3) is also
trivial while for (2.2.2) we have for any A ∈ B(Y)

ˆ
A

Prφ(f)(y) dmY =

ˆ
A

dφ♯(f dmX) =

ˆ
φ−1(A)

f(x) dmX,

and by the properties of the disintegration we have
ˆ
φ−1(A)

f(x) dmX =

ˆ
Y

ˆ
φ−1(A)

f(x) dmy(x) dmY(y) =

ˆ
A

ˆ
X

f(x) dmy(x) dmY(y),

therefore proving (2.2.2).
To prove continuity note that the case p = ∞ is due to formula (2.2.3) while continuity

in Lp(m) for every p ∈ [1,+∞) follows from the following
ˆ
Y

|Prφ|p dmY =

ˆ
Y

∣∣∣∣ˆ
X

f(x) dmy(x)

∣∣∣∣p dmY(y) ≤
ˆ
Y

ˆ
X

|f(x)|p dmy(x) dmY(y) = ∥f∥pLp(m),

where we used Jensen’s inequality and the properties of the disintegration.

In the case of a generalLp(mX)-normed module the continuous operator Prφ : φ∗M :−→
M can be characterized by the following properties:

gPrφ(v) = Prφ(g ◦ φv), ∀v ∈ M ∀g ∈ L∞(mX) (2.2.4)
Prφ(gφ

∗v) = Prφ(g)v ∀v ∈ M ∀g ∈ L∞(mX), (2.2.5)

with the bound |Prφ(V )| ≤ Prφ(|V |) still holding mY-a.e. for every V ∈ φ∗M.
With these objects we are now able to describe the structure of the pullback mod-

ule, in particular (as one can expect by reasoning via pre-composition) the pullback of
an n-dimensional module M over E is an n-dimensional module over φ−1(E) (see also
[Pas18]).

Proposition 2.2.4. Let M be an Lp(mY)-normed module over the m.m.s. (Y, dY, µ) and let
E ∈ B(Y ) be a Borel set where M has dimension n, with {v1, ..., vn} being a basis. Let (X, dX,m)
be another m.m.s. and φ : X → Y be a Borel map such that φ♯mX = mY, then {φ∗v1, ..., φ

∗vn} is
a basis of φ∗M over φ−1(E).

Proof. We first prove that {φ∗v1, ..., φ
∗vn} generate φ∗M over φ−1(E).

First recall that φ∗M is generated (as module) by {φ∗v : v ∈ M} =: V . Let us show
that V ⊆ Spanφ−1(E){φ

∗v1, ..., φ
∗vn}: pick w ∈ V , then there exists v ∈ M such that w =

φ∗v so that there exists (Aj)j ⊆ B(X) partition of E and (gji )j∈N ⊂ L∞(mY) ∀i = 1, ..., n
such that

χAj
v =

n∑
i=1

gji vi ∀j ∈ N

Using the linearity of the pullback map and the fact that φ∗(gv) = g ◦ φφ∗v for all v ∈ M,
g ∈ L∞(mY) we get

χφ−1(Aj)w =
n∑

i=1

gji ◦ φφ∗vi.

Finally, since the pullback module has a natural structure ofLp(m)-normed L∞(m)-module,
we get that Spanφ−1(E){φ

∗v1, ..., φ
∗vn} is closed, proving the first result.
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We now turn to local independence: assume by contradiction {φ∗v1, ..., φ
∗vn} are not

independent on φ−1(E) then there exist f1, ..., fn ∈ L∞(mX) such that
∑n

i=1 fiφ
∗vi = 0 m-

a.e. with (upon relabeling indexes) |f1| > 0 m-a.e. on some subset Ẽ of positive measure.
Without loss of generality, possibly considering a smaller set, we shall assume f1 > 0
m-a.e. so that

n∑
i=1

fiφ
∗vi = 0 m− a.e. on Ẽ =⇒

n∑
i=1

Prφ(fi)vi = 0 m− a.e. on Ẽ.

However note that Prφ(f1) > 0 on some set of positive mY measure, contradicting the
independence of the vis.

Besides the differential of a Sobolev function introduced in Theorem 1.4.26, one can
give another definition which exploits the fact that the map is Lipschitz and such that
φ♯mX ≤ CmY for some C > 0 (namely a map of bounded compression): this class of
maps is that of bounded deformation. In this direction we need to recall the notion of
pullback of forms: in order to distinguish it from the pullback of a module we shall pro-
ceed denoting with ω 7→ [φ∗ω] the pullback map and with φ∗ the pullback of 1-forms
which is the following:

Definition 2.2.5. Let φ : X → Y be a map of bounded deformation, then we define φ∗ :
Lp(T∗Y) → Lp(T∗X) to be the linear map such that φ∗( df) = d(f ◦ φ) for all f ∈ W 1,p(Y)
and φ∗(gω) = g ◦ φφ∗ω for all g ∈ L∞(Y) and ω ∈ Lp(T∗Y).

Remark 2.2.6. It is easy to see that, thanks to the regularity properties of φ, the pullback
of 1-forms φ∗ is well defined.

Definition 2.2.7. Given φ : X −→ Y of bounded deformation we define for all p ≥ 1 its
p-differential as an operator dpφ : Lq(TX) −→ φ∗(Lp(T∗Y)

)∗ such that

[φ∗ω]( dpφ(v)) = φ∗ω(v) ∀v ∈ Lq(TX), ∀ω ∈ Lp(T∗Y). (2.2.6)

In the recent work [EBS21] the authors provide some “charts” over Borel sets (Ei)i∈N
partitioning the metric measure space m-a.e.: we will briefly recall here the definition

Definition 2.2.8. We say φ : X → RN is an EBS chart over the Borel setE if it is a Lipschitz
map with the following properties

1. (p-independence) ess infv∈SN−1 |D(v · φ)|p > 0 m-a.e on E.

2. (maximality) There is no other Lipschitz map φ : X → RM with M > N which is
p-independent on a subset of E of positive measure.

The authors proved that the condition of p-independence over a set E is equivalent
to the fact that the Lp(T∗X) module over E is generated by the differentials of the compo-
nents of the chart: in other words { dpφ

1, ..., dpφ
N} is a basis for Lp(T∗X)|E (see Lemma

6.3 in [EBS21]) and as a consequence of Theorem 1.4.7 in [Gig18] we are able to deduce
that Lq(TX)|E is also an N -dimensional normed module.
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2.3 Main results

Here, following the previous section, we shall first present the main result of [BGLL23]
and then the one of [GG23].

Before proving our main theorems we present a further key result; denoting with
B(0, r) the closed Euclidean ball (in Rn) of radius r centered at 0, we have the following:

Proposition 2.3.1. Let id : (B(0, 1), ρ) −→ (B(0, 1), deucl) be the identity map, where ρ is
a distance inducing the Euclidean topology. Let (Fk)k : (B(0, 1), ρ) −→ (B(0, 1), deucl) be a
sequence of continuous maps converging uniformly to id. Then there exists k0 ∈ N such that
int(Fk(B(0, 1))) is non-empty for all k ≥ k0.

Proof. Fix ε > 0 and choose k0 ∈ N such that ∥Fk − id∥∞ ≤ ε/n. To prove the proposition
it is enough to show that for all z ∈ B(0, 1 − ε/n) there exists x ∈ B(0, 1) such that
Fε(z) = x. To this aim, let z ∈ B(0, 1 − ε/n) and define the map T : B(0, 1) → Rn as
T (w) := z + w − Fε(w). For all w ∈ B(0, 1) we have

∥T (w)∥ ≤ ∥z∥+ ∥w − Fε(w)∥ ≤ 1− ε+ n∥w − Fε(w)∥∞ ≤ 1,

where in the last line we used that ∥v∥ ≤ n∥v∥∞. This means that the image of B(0, 1) un-
der T is contained in B(0, 1). Being T continuous by assumption, we can apply Theorem
2.1.4 and deduce the existence of x ∈ B(0, 1) such that T (x) = x, meaning that Fε(x) = z
and concluding the proof.

We are now in the position to state our main theorem.

Theorem 2.3.2. Let (Rn, ρ) be a metric space with ρ inducing the Euclidean topology, then
Hn

ρ (Rn) > 0.

Proof. Assume by contradiction that there exists a distance ρ in Rn such that Hn
ρ (Rn) = 0.

We denote by B(0, 1) the closed unit ball with respect to Euclidean metric and we consider
the identity map

id : (B(0, 1), ρ) −→ (B(0, 1),deucl). (2.3.1)

Such a map is an homeomorphism by assumption, but it carries no metric information a
priori. Let us write

id(x) =
(
π1(x), . . . , πn(x)

)
(2.3.2)

and define

πε
i (x) := min

z∈B(0,1)

[
πi(z) +

1

ε
ρ(x, z)

]
∀i = 1, ..., n ∀x ∈ B(0, 1), (2.3.3)

where we are using that B(0, 1) is compact also for the metric ρ. The latter functions
are Lipschitz, since they are the infimum of a family of equi-Lipschitz functions, more
precisely

|πε
i (x)− πε

i (y)| ≤
1

ε
ρ(x, y) ∀x, y ∈ B(0, 1). (2.3.4)

We say that the functions πε
i converge uniformly in the compact ball B(0, 1) to the com-

ponents of the identity as ε → 0. In order to prove that, for every εm → 0 consider a
sequence (zεm)m ⊆ B(0, 1) such that

πεm
i (x) = πi(zεm) +

1

εm
ρ(x, zεm). (2.3.5)
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Since (zεm)m is bounded, by compactness there exists a convergent subsequence. Due to
equation (2.3.5) and the bound

1 ≥ πi ≥ πεm
i ≥ −1, (2.3.6)

it follows that limm→+∞ ρ(zεm , x) = 0, which means that (zεm)m converges to x, leading
to the pointwise convergence. Now, since we have πε

i (x) ≥ πε+γ
i (x) for every γ, ε > 0

and for every x ∈ B(0, 1), by Dini’s theorem πεm
i converges uniformly to πi on B(0, 1) for

every i = 1, ..., n. Summing up we have obtained a sequence

F ε = (πε
1, ..., π

ε
n) : (B(0, 1), ρ) −→ (Rn,deucl) (2.3.7)

such that
deucl

(
F ε(x), F ε(y)

)
≤ Cερ(x, y) ∀x, y ∈ B(0, 1) (2.3.8)

with Cε > 0 and such that it converges uniformly to the identity in B(0, 1). We can now
choose a countable sequence εk → 0 and apply Proposition 2.3.1 to deduce the existence
of k0 ∈ N such that F εk(B(0, 1)) has non-empty interior for every k ≥ k0. For simplicity
set F ε̂ := F εk0 .
Since F ε̂(B(0, 1)) contains a non-empty open set and F ε̂ is Lipschitz, we get

Hn
deucl

(
F ε̂(B(0, 1))

)
≤ Cn

ε Hn
ρ (B(0, 1)) = 0, (2.3.9)

which is a contradiction since the n-dimensional Hausdorff measure on Rn with the Eu-
clidean distance gives positive measure to not empty open sets.

Remark 2.3.3. The same proof of Theorem 2.3.2 can be adapted to prove that any nonempty
open set A is such that Hn

ρ (A) > 0.
Remark 2.3.4. Removing the assumption that ρ induces the Euclidean topology, coun-
terexamples show that Hn

ρ (Rn) might vanish. Consider, for instance, the metric space
(C,d), where C ⊂ R is the Cantor set and d denotes the usual one-dimensional Euclidean
distance. Having C the cardinality of the continuum, there exist bijections gn : C → Rn.
Then, define on Rn the metric ρ(x, y) = d(g−1

n (x), g−1
n (y)).

Given any collection (Ai)i∈N that covers C, follows that (gn(Ai))i∈N covers Rn and diam(Ai) =
diam(gn(Ai))∀i ∈ N. Clearly, also the opposite direction applies. Therefore, we have

Hn
ρ (Rn) = Hn

d (C) = 0 (2.3.10)

that shows a counterexample.
Remark 2.3.5. Note that, under previous assumptions on ρ, it is not true in general that
dimρ

H(Rn) = n. In fact, choosing ρ(x, y) = deucl(x, y)
1/2, the distance ρ induces the Eu-

clidean topology, but in this case

Hs
deucl

(A) = H2s
ρ (A)

for all A ⊆ Rn, s ≥ 0. For this reason we get that dimρ
H(Rn) = 2n.

Now we shall focus on the main result of [GG23], giving an alternative proof to Propo-
sition 4.13 in [EBS21]. First we remark that with dpφ we will denote the differential of a
map of bounded deformation in the sense of definition 2.2.7, while with dpf we denote
the differential in the sense of Proposition Theorem 1.4.26. Lastly let us assume that m is
a finite measure: we can do so because of the inner regularity of the measure m. Indeed
if for a Borel map ψ : X → Rn we have ψ♯(m|Ek

) << L n for every k ∈ N with (Ek)k
compact, such that Ek ⊆ Ek+1 and m(E \ ∪kEk) = 0, then ψ♯(m|E) << L n.

We begin with the following simple lemma which follows standard arguments in
linear algebra:
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Lemma 2.3.6. Let M be an Lp(m)-normed module and M∗ be its dual module. Assume that M
has dimension n over E: then {v1, ..., vn} and {ω1, ..., ωn} are basis of M∗ and M (respectively)
over E if and only if det[ωi(vj)]ij > 0 m-a.e. on E.

Proof. Define Aij := [ωi(vj)]ij and let us assume first that detA > 0 m-a.e.. It is clearly
sufficient to prove the independence: assume by contradiction that

∑n
i=1 givi = 0 m-a.e.

on some subset B of positive measure, for some g1, ..., gn which are not all zero on B (in
the measure theoretic sense). Then consider g := (g1, ..., gn) and note that Ag ̸= 0 m-a.e.
on B because of the condition on the determinant. However (Ag)i =

∑n
j=1 gjvj(ωi)=0

m-a.e. on B for every i = 1, ..., n, which is clearly a contradiction. This argument trivially
applies for {ω1, ..., ωn} as well by considering the transpose of A.

Assume now that {ω1, ..., ωn} and {v1, ..., vn} are basis over E of M and M∗ respec-
tively and by contradiction let detA = 0 m-a.e. on a Borel subset C of positive measure.
Then there exists a further measurable subset (which we won’t relabel) C of positive
measure and g ∈ L∞(m)n for which Ag = 0 and g ̸= 0 m-a.e. on C. The latter system of
equations means that we have

vi

( n∑
j=1

gjωj

)
= 0 m− a.e. on C, ∀i = 1, ..., n. (2.3.11)

Set ω̃ =
∑n

j=1 gjωj and suppose that |ω̃| ≠ 0 m-a.e. on C, then there exists a non-zero
continuous functional ℓ ∈ M′ (which is the Banach dual) such that ℓ(χCω̃) = ||χCω̃||M
and there exists L ∈ M∗ (see Proposition 1.2.13 in [Gig18]) such that

ℓ(ω) =

ˆ
X

L(ω) dm ∀ω ∈ M.

In our case this means that ∥χCω̃∥M =
´
C
L(ω̃) dm > 0, so that there must be a Borel set of

positive measure where χCL(ω̃) > 0, which contradicts (2.3.11) since there exists D ⊂ C
with m(D) > 0 such that χDL =

∑n
i=1 fivi for some f1, ..., fn ∈ L∞(m).

Lemma 2.3.7. Let φ be an EBS chart over the Borel set E and {v1, ..., vn} ∈ Lp(TX) be inde-
pendent over E, then { dpφ(v1), ..., dpφ(vn)} ∈ φ∗Lp

µ(TRn) are independent over the same set,
where µ = φ♯(m|E) and Lp

µ(TRn) is the tangent module built over (Rn, deucl, µ).

Proof. Consider f1, ..., fn ∈ L∞(m) such that

n∑
i=1

fi dpφ(vi) = 0 m− a.e. on E,

then set v :=
∑n

i=1 fivi. Note that the maps Πj : Rn −→ R being the projection on
the j-th component are all 1-Lipschitz with respect to the Euclidean distance and for this
reason they belong toW 1,p(Rn,deucl, µ): following equation (2.2.6) we have that, for every
j = 1, ..., n and choosing ω = dpΠj ,

0 = dpφ
j(v) =

n∑
i=1

fi dpφ
j(vi) m− a.e. on E,

where φj is the j-th component of the map φ.
Being the matrix A = (Aij)ij = ⟨ dpφ

j, vi⟩ such that detA > 0 m-a.e., the equations
above can be rewritten as Af = 0 m−a.e. on E with f = (f1, ..., fn), meaning f = 0 thanks
to Lemma 2.3.6.
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The following result is borrowed from [LPR21] (Proposition 4.5) where only the met-
ric measure space (Rn, deucl, µ) is considered.

Proposition 2.3.8. Assume that there exists a Borel set E such that dimLp
µ(T

∗Rn)|E = n for
some p ∈ (1,+∞), then µ|E << L n.

Remark 2.3.9. It is in the proof of the latter proposition that the results contained in [DPR]
are used.

Now we are in place to apply Proposition 2.3.8 to prove the following:

Theorem 2.3.10. Let φ : X → RN be a p-independent weak chart over a Borel set E of positive
measure and with p ≥ 1, then µ = φ♯(m|E) << L N and N ≤ dimH(E).

Proof. For the moment assume p ∈ (1,+∞) and without loss of generality assume E
to be compact. Thanks to Lemma 2.3.7 we deduce that φ∗Lp

µ(T
∗RN) has dimension N

over the set E, meaning that Lp
µ(T

∗RN) has dimension N over the set φ(E). Being the
latter module top dimensional, by Proposition 2.3.8 we have that µ << L N which is the
first part of the statement. The second part is immediate since if we had N > dimH(E)
we would get HN(E) = 0 and since the map φ is Lipschitz this implies HN(φ(E)) =
L N(φ(E)) ≤ C · 0 = 0, so that by absolute continuity µ(φ(E)) = m(E) = 0, which is
clearly a contradiction.

For the case p = 1 note that, since the measure m is finite, we have |D(v · φ)|1 ≤
|D(v · φ)|p m-a.e. and for every v ∈ SN−1, meaning that φ is also p-independent and the
same argument applies.

Remark 2.3.11. By virtue of the latter theorem one can see that a control on the Haus-
dorff dimension l of a subset E of a metric measure space grants that the dimension of
Lp(T∗X)|E is bounded by l, hence the cotangent module is finite dimensional there. More-
over the proof presented here simplifies the one in [GP21] since there the authors needed
to build independent vector fields in L2(TX) with L2(m)-integrable divergence and push
them to Rn keeping them independent and regular: to do so they had to use additional
properties of the map Prφ and the bi-Lipschitz regularity of their chart φ was essential.
Here instead we mainly exploit the properties of Rn.



Chapter 3

On the asymptotics of the s-fractional
perimeter

3.1 Introduction and Notation

3.1.1 The fractional perimeter on Riemannian manifolds

It was recently pointed out in [CFSS23] a canonical definition of the fractional s-perimeter
on every closed Riemannian manifold (M, g): this boils down to giving a canonical def-
inition of the fractional Sobolev seminorm Hs/2(M) for s ∈ (0, 1). Consider a closed
(even though we will deal with general complete ones), connected Riemannian manifold
(M, g) with n ≥ 2. In [CFSS23] the authors show that a canonical definition of the frac-
tional Sobolev seminorm Hs/2(M) can be given in at least four equivalent (up to absolute
constants) ways:

(i) By the singular integral

[u]2Hs/2(M) :=

¨
M×M

(u(x)− u(y))2Ks(x, y) dµ(x) dµ(y) , (3.1.1)

where Ks(x, y) is given by (1.2.2).

(ii) Following the Bochner definition of the fractional Laplacian

(−∆)
s/2
B u =

1

Γ(−s/2)

ˆ ∞

0

(et∆u− u)
dt

t1+s/2
, (3.1.2)

via
[u]2Hs/2(M) = 2

ˆ
M

u(−∆)
s/2
B u dµ .

(iii) By spectral theory, one can set

[u]2Hs/2(M) =
∑
k≥1

λ
s/2
k ⟨u, ϕk⟩2L2(M) (3.1.3)

where {ϕk}k is an orthonormal basis of eigenfunctions of the Laplace-Beltrami op-
erator (−∆g) and {λk}k are the corresponding eigenvalues. Note that for s = 2 this
gives the usual [u]2H1(M) seminorm.

33
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(iv) Considering a Caffarelli-Silvestre type extension (cf. [CS07, BGS15, CG11]), namely, a
degenerate-harmonic extension problem in one extra dimension. One can set

[u]2Hs/2(M) = inf

{ˆ
M×[0,∞)

z1−s|∇̃U(x, z)|2 dµ(x)dz s.t. U(x, 0) = u(x)

}
.

Here ∇̃ denotes the Riemannian gradient of the manifold M̃ = M × [0,∞), with
respect to natural product metric, and the infimum is taken over all the extensions
U ∈ X , where X = H1(M̃ ; z1−s dµdz) is the classical weighted Sobolev space of the
functions U ∈ L2(M̃ ; dµ) with respect to the measure dµ = z1−s dµdz that admit a
weak gradient ∇̃U ∈ L2(M̃ ; dµ).

The spectral definition (iii) can be extended to manifolds that are not closed, where
the spectrum of the Laplacian is not discrete. Nevertheless, the equivalence between
(i) and (iv) also holds on many (but not every) complete Riemannian manifolds, which
are not necessarily compact. For example, a lower Ricci curvature bound is sufficient.
See [BGS15] for general conditions for which the equivalence of (i) ⇐⇒ (iv) holds.
Moreover, under suitable assumptions on u, the equivalence between (i) and (ii) holds if
and only ifM is stochastically complete; we will treat this equivalence in subsection 3.6.3.

Since in the present work, we aim to study the asymptotics of the fractional s-perimeter
on complete Riemannian manifolds (not necessarily closed or with curvature bounded
below), we work with the singular integral definition (3.1.1) since it extends naturally to
the case of general manifolds and weighted manifolds. Then, the fractional s-perimeter
on a Riemannian manifold is naturally defined by means of the fractional Sobolev semi-
norm.

Here and in the rest of the work, (M, g) will denote a general complete, connected Rie-
mannian manifold, and hence also geodesically complete. We denote by dµ its Rieman-
nian volume form and by HM(x, y, t) the heat kernel of (M, g). To see how to build the
heat kernel on a general (weighted) manifold, see the classical reference [Gri09]. More-
over, we denote by BR(p) ⊂ M the geodesics ball on M and by BR(0) ⊂ Rn the one on
Rn.

Definition 3.1.1. Let (M, g) be a complete Riemannian manifold and s ∈ (0, 2). Then, we
set

Hs/2(M) :=
{
u ∈ L2(M) : [u]2Hs/2(M) <∞

}
,

where

[u]2Hs/2(M) :=

¨
M×M

(u(x)− u(y))2Ks(x, y) dµ(x) dµ(y) ,

and Ks is defined as in (1.2.2).

Moreover, we will use the singular integral

(−∆)
s/2
Si u(x) := P.V.

1

|Γ(−s/2)|

ˆ
M

(u(x)− u(y))Ks(x, y) dµ(y) (3.1.4)

as our main definition of ”the fractional Laplacian” on M . We stress that in the general
setting of complete Riemannian manifolds, this integro-differential operator cannot be
regarded as a fractional power of the Laplacian in any reasonable sense. In particular:
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• If M is not stochastically complete (see Definition 3.2.1), then (i) and (ii) do not
coincide. In this case, since et∆1 ̸= 1, the Bochner fractional Laplacian (ii) of a con-
stant does not equal zero. In particular, defining the fractional Sobolev seminorm
with (ii) would imply that the s-perimeter is not invariant under complementation
Ps(E) ̸= Ps(E

c). Nevertheless, with our definition via the singular integral (i), one
has that the seminorm of a constant is always zero, and hence, in this work, the
fractional perimeter is always invariant under complementation.

• The semigroup property (−∆)α+β = (−∆)α ◦ (−∆)β also fails in general for our
definition (3.1.4). Indeed, one can see that the equivalence (i) ⇐⇒ (iv) above
is sufficient for the semigroup property to hold. For example, a Ricci curvature
lower bound would be sufficient. See [BGS15] for many sufficient conditions for
the equivalence (i) ⇐⇒ (iv).

Definition 3.1.2. For a measurable set E ⊂ M , we define the fractional s-perimeter of E
on (M, g) as

Ps(E) := [χE]
2
Hs/2(M) = 2

¨
E×Ec

Ks(x, y) dµ(x) dµ(y) ,

where [ · ]2
Hs/2(M)

is defined by (3.1.1) and χE is the characteristic function of E.

Apart from the above definition of the fractional perimeter of a set E on the entire M ,
we will also consider its localized version. For A,B ⊂ M disjoint and measurable sets,
let

Js(A,B) :=

¨
A×B

Ks(x, y) dµ(x) dµ(y)

be the s-interaction functional between the sets A and B.

Definition 3.1.3. Let (M, g) be a complete Riemannian manifold, and let Ω ⊂ M be an
open and connected set with Lipschitz boundary. We define the s-perimeter of E in Ω as

1

2
Ps(E,Ω) :=

¨
(M×M)\(Ωc×Ωc)

(χE(x)− χE(y))
2Ks(x, y) dµ(x) dµ(y)

= Js(E ∩ Ω, Ec ∩ Ω) + Js(E ∩ Ω, Ec ∩ Ωc) + Js(E ∩ Ωc, Ec ∩ Ω) .

For any measurableE ⊂M , it is clear by the definition above that Ps(E,Ω) = Ps(E
c,Ω),

that Ps(E,M) = Ps(E) = [χE]
2
Hs/2(M)

and also that Ps(E,Ω) = Ps(E) if E ⊂ Ω or Ec ⊂ Ω.

Remark 3.1.4. The hypothesis Ps◦(E,Ω) < +∞ for some s◦ ∈ (0, 1) cannot be removed in
neither of these results. Indeed, in [DFPV13, Example 2.10] the authors exhibit a bounded
set E ⊂ R such that Ps(E) = +∞ for all s ∈ (0, 1).

Remark 3.1.5. Note that, taking M = Rn with its standard metric in Theorem 1.2.5 gives
Ks(x, p) =

βn,s

|x−p|n+s , where

βn,s =
s2s−1Γ

(
n+s
2

)
πn/2Γ(1− s/2)

.

Hence

θRn = lim
s→0+

ˆ
Rn∩Bc

R(p)

βn,s
|x− p|n+s

dx =
Γ(n

2
)

2πn/2
lim
s→0+

s

ˆ
Rn∩Bc

1(0)

1

|x|n+s
dx =

Γ(n
2
)

2πn/2
αn−1 = 1 ,
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where αn−1 is the volume of the unit sphere Sn−1. Moreover, analogously for E ⊂ Rn (if
the limit exists)

θE = lim
s→0+

ˆ
E∩Bc

1(0)

βn,s
|x|n+s

dx =
1

αn−1

lim
s→0+

s

ˆ
E∩Bc

1(0)

1

|x|n+s
dx ∈ [0, 1] ,

which is (up to the absolute multiplicative constant α−1
n−1) what is denoted by α(E) in

[DFPV13]. Hence, we see that in the case of the Euclidean space our result Theorem 1.2.5
recovers the one in [DFPV13].

Remark 3.1.6. Note that, as s→ 0+, the constant in (1.2.2) satisfies

1

|Γ(−s/2)|
=

s/2

Γ(1− s/2)
∼ s

2
.

We will use this fact many times in the computations of the asymptotics.

The paper is divided as follows. In section 3.2 we recall some facts and definitions
that we will need regarding the heat kernel and harmonic functions on general complete
manifolds. In section 3.3 we prove the all the main results stated at the beginning of the
introduction. Then, building on our main results, in section 3.4 and section 3.5 we prove
Theorem 1.2.5 and Theorem 1.2.7 regarding the asymptotics of the fractional perimeter
in infinite volume and finite volume respectively.

Lastly, in section 3.6 we explain why our results hold in a much more general setting
than the one of Riemannian manifolds, namely RCD spaces. We could have proved our
theorem directly in this generality, but we believe that a presentation for Riemannian
manifolds is easier to follow and already captures all the possible (two) behaviors of the
limit of the asymptotics: this also allows us to present different proofs. For these reasons,
we have moved everything regarding non-smooth spaces to section 3.6.

3.2 The heat kernel on Riemannian manifolds

Let us start by recalling a few classical definitions and results.

Definition 3.2.1 (Stochastical completeness). We call a Riemannian manifold (M, g) stochas-
tically complete if, for every t > 0 and for every p ∈M

ˆ
M

HM(x, p, t) dµ(x) = 1 . (3.2.1)

For equivalent definitions of stochastical completeness, one can refer to the manuscript
[Gri09] or to the more recent [GIM20] and [GIMP23].

Lemma 3.2.2. Let (M, g) be a complete Riemannian manifold, then for every p ∈M

M(t, p) =

ˆ
M

HM(x, p, t) dµ(x) is nonincreasing in t.

Proof. The proof is an easy consequence of the semigroup property. Indeed, for t > s we
can write

HM(z, p, t) =

ˆ
M

HM(z, x, t− s)HM(x, p, s) dµ(x).
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Integrating in dµ(z), using Fubini’s theorem and the fact that
´
M
HM(z, x, t−s) dµ(x) ≤ 1

we get ˆ
M

HM(z, p, t) dµ(z) ≤
ˆ
M

HM(x, p, s) dµ(x),

which is the thesis.

Note that, because of Lemma 3.2.2, being stochastically complete is equivalent to the
fact that (3.2.1) holds for one single time t = t◦ > 0.

Theorem 3.2.3 (Yau). Let (M, g) be a complete Riemannian manifold. Then every L2(M) har-
monic function is constant.

Proof. Let u ∈ L2(M) be harmonic. It is a standard result by Yau (see for example [Li12,
Lemma 7.1]) that, on every complete Riemannian manifold M , the Caccioppoli-type in-
equality ˆ

BR(p)

|∇u|2 dµ ≤ 4

R2

ˆ
B2R(p)

|u|2 dµ (3.2.2)

holds. Since u ∈ L2(M), letting R → ∞ gives that u is constant.

Definition 3.2.4 (L∞−Liouville property). We say that a Riemannian manifold (M, g) has
the L∞ − Liouville property if every bounded harmonic function on M is constant.

Since the validity of the L∞ − Liouville property will be a key feature in our result for
infinite volume, we shall recall few conditions that imply this property. See [Gri99] for
more general conditions under which the L∞ − Liouville property holds.

Proposition 3.2.5. Let (M, g) be a complete Riemannian manifold. Then, each of the following
properties implies the L∞ − Liouville property for M :

(i) RicM ≥ 0.

(ii) µ(BR(p))/R
2 → 0 as R → ∞ for some (and hence any) p ∈M .

(iii) There exists a metric g̃ on M and K ⊂ M compact such that g̃ = g in M \K and (M, g̃)
has the L∞ − Liouville property.

Proof. To show (i) we just need to apply the L∞ − Lip regularization of (3.6.2), that we
state in general for RCD spaces in section 3.6 and we give a simple proof at the end of the
Appendix. Indeed let u ∈ L∞(M) be such a function: we can clearly assume ∥u∥L∞ = 1 so
that we have ∥∇et∆u∥L∞ ≤ C/

√
t. The previous estimate tells us that ∥∇et∆u∥L∞ → 0 as

t→ ∞ so that et∆u→ const weakly star in L∞(M). However, we also know that et∆u = u
for every t ∈ (0,∞) because of the uniqueness of the solution of the heat equation (due to
stochastical completeness which holds in the presence of a lower Ricci curvature bound)
and this means that u has to be constant.

Part (ii) follows from Yau’s estimate (3.2.2) letting R → ∞. Lastly, the proof of part
(iii) is contained in [Gri99, Proposition 4.2] and [Gri99, Theorem 5.1].

Notice that RicM ≥ −K for someK > 0 is not sufficient for the L∞−Liouville property
to hold since there exist non-constant bounded harmonic functions on the hyperbolic
space Hn. Since Hn is stochastically complete, this means that stochastical completeness
does not imply the L∞ − Liouville property. Moreover, quite surprisingly, stochastical
completeness ofM is not implied by theL∞−Liouville property. The first example of such
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a manifold was constructed by Pinchover in [Pin95], we briefly explain this construction
in Example 3.5.2.

In the next lemma, we give the proof of a result that, perhaps, is well-known to the
experts, but we could not find an appropriate reference. The case µ(M) < +∞ is stated
in [Gri09] as Exercise 11.21.

We stress that these results easily extend to the context of weighted Riemannian man-
ifolds.

Lemma 3.2.6. Let (M, g) be a complete, connected Riemannian manifold. Then

(i) If µ(M) < +∞, then for all x, y ∈M

lim
t→+∞

HM(x, y, t) =
1

µ(M)
,

and the convergence is uniform in every bounded Ω ⊂M , that is

lim
t→+∞

sup
x,y∈Ω

∣∣∣∣HM(x, y, t)− 1

µ(M)

∣∣∣∣ = 0 .

(ii) If µ(M) = +∞, then for all x, y ∈M

lim
t→+∞

HM(x, y, t) = 0 ,

and the convergence is uniform in every bounded Ω ⊂M , that is

lim
t→+∞

sup
x,y∈Ω

HM(x, y, t) = 0 .

Moreover, for every fixed p ∈M there holds also

lim
t→+∞

sup
x∈M

HM(x, p, t) = 0 . (3.2.3)

Proof. To prove the result we use standard spectral theory. Let us first do the case µ(M) =
+∞. The spectrum of the Laplacian σ(−∆) is contained in [0,∞) and by Theorem 3.2.3
we know that the eigenspace of λ = 0 contains no constant function except for the func-
tion identically 0.

Let {Eλ}λ≥0 be the spectral resolution of the Laplacian, then for every f ∈ L2(M)
(here ⟨ · , · ⟩ denotes the L2(M) scalar product)

⟨et∆f, f⟩ =
ˆ ∞

0

e−tλd⟨Eλf, f⟩.

Since limt→∞ e−λt = χ{0}(λ) we can apply dominated convergence to deduce that

lim
t→∞

⟨et∆f, f⟩ = ⟨E0f, f⟩ ,

and since E0 projects onto the eigenspace of λ = 0, made only by the constant function
identically zero, we get

lim
t→∞

⟨et∆f, f⟩ = 0 . (3.2.4)
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Now note that for all f, g ∈ L2(M) we have |⟨et∆f, g⟩| = |⟨et/2∆f, et/2∆g⟩|. Thus by
Cauchy-Schwartz

⟨et∆f, g⟩ = ⟨et/2∆f, et/2∆g⟩ ≤ ∥et/2∆f∥L2∥et/2∆g∥L2

= ⟨et∆f, f⟩⟨et∆g, g⟩ .

Taking the supremum over g ∈ L2(M) with ∥g∥L2 ≤ 1 and sending t → ∞ gives that
et∆f → 0 strongly in L2(M). Since this holds for all f ∈ L2(M), this implies HM(·, y, t) →
0 in L2(M) as t→ ∞.

Now, by a local parabolic Harnack inequality, we are able to turn this convergence
into pointwise convergence that is actually locally uniform. Indeed for p ∈ M , R ≪ 1 to
be chosen depending on p, and t ≥ 10, taking f = χBR(p) above gives

⟨et∆χBR(p), χBR(p)⟩ =
ˆ
BR(p)

ˆ
BR(p)

HM(x, y, t) dµ(x) dµ(y) ≥ µ(BR(p))
2 inf
x,y∈BR(p)

HM(x, y, t) .

By the parabolic Harnack inequality (see Remark 3.2.8 after this proof) applied two
times

inf
x,y∈BR(p)

HM(x, y, t) ≥ C−1 inf
x∈BR(p)

sup
y∈BR(p)

HM(x, y, t− 1/2)

≥ C−1 sup
x∈BR(p)

inf
y∈BR(p)

HM(x, y, t− 1/2)

≥ C−2 sup
x,y∈BR(p)

HM(x, y, t− 1) ,

for some C > 0 depending on BR(p) ⊂M but independent of t. Hence

sup
x,y∈BR(p)

HM(x, y, t) ≤ C(BR(p))⟨e(t+1)∆χBR(p), χBR(p)⟩ → 0 ,

as t→ ∞. Covering any bounded set with small balls allows us to infer the desired local
uniform convergence.

We are left to prove (3.2.3). By the properties of the heat kernel, we have

HM(p, p, t) =

ˆ
M

H2
M(p, z, t/2) dµ(z) = ∥HM(p, ·, t/2)∥2L2(M).

Moreover

HM(x, p, t) =

ˆ
M

HM(x, z, t/2)HM(p, z, t/2) dµ(z) ≤
√
HM(p, p, t)∥HM(x, ·, t/2)∥L2(M),

which concludes the proof if we are able to show that supx∈M ∥HM(x, ·, t/2)∥L2(M) is
bounded as t→ ∞.

However since HM(x, y, t) = e(t−1)∆(HM(x, ·, 1))(y) and we have the contraction es-
timate ∥es∆(f)∥L2(M) ≤ ∥f∥L2(M) for every s ∈ (0,∞) and for every f ∈ L2(M) we can
write

∥HM(x, ·, t)∥L2(M) = ∥e(t−1)∆(HM(x, ·, 1))∥L2 ≤ ∥HM(x, ·, 1)∥L2 ∀t > 1.

Therefore, we reach the sought conclusion. This concludes the proof of (ii).

Now assume µ(M) < +∞. Since the proof in this case is almost identical to the one
for infinite volume, we just sketch the argument, highlighting the differences. The only
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essential difference is that in the case µ(M) < +∞, the eigenspace relative to λ = 0 is
made only by the constant function µ(M)−1/2. Hence

E0f =
1

µ(M)

ˆ
M

f dµ =:

 
M

f ,

and in place of (3.2.4) we get

lim
t→∞

〈
et∆f −

 
M

f, f
〉
→ 0 .

From here, the proof proceeds exactly the same showing that HM(·, y, t)− 1/µ(M) →
0 strongly in L2(M). Then, one can turn the convergence into pointwise and locally
uniform by a similar argument with the parabolic Harnack inequality.

Indeed, the function v := (HM(·, y, t)−1/µ(M))+ (where (f)+ denotes the positive part
of f ) is a nonnegative subsolution to the heat equation. Then, by the parabolic version of
the Moser-Harnack inequality (see, for example, [SC95, Theorem 5.1]) we have (here C
depends on R and the geometry of M in B2R(p))

sup
[t+R2/2,t+R2]

v2 ≤ C

ˆ t+R2

t

ˆ
BR(p)

|v|2 dµ→ 0 . (3.2.5)

Hence lim supt→∞HM(·, y, t) ≤ 1/µ(M). Argiung similarly with the negative part gives
also the lim inf inequality, and hence the pointwise convergence. The fact that the con-
vergence is uniform follows from (3.2.5).

Remark 3.2.7. Since ∥HM(x, ·, t)∥L1(M) ≤ 1 and ∥HM(x, ·, t)∥L∞(M) → 0 as t → ∞, we
conclude that also ∥HM(x, ·, t)∥Lp(M) → 0 for any p ∈ (1,∞]. The convergence to zero in
L1(M) is clearly prevented if M is stochastically complete.
Remark 3.2.8. We emphasize that we have used only a local (non-uniform) Harnack in-
equality in BR(p) ⊂ M , that is where the constant is allowed to depend on the point p
and radius R. This is clear since, for fixed p ∈ M one can take R ≪ 1 such that, in nor-
mal coordinates at p, the metric coefficients satisfy ∥gij − δij∥C2(BR(p)) ≤ 1/100. Then, any
solution u : BR(p) → R to the heat equation on M satisfies (in coordinates)

ut − Lu = 0 , in BR(0)× (0,+∞) ,

where −L is a uniformly elliptic operator with uniformly bounded coefficients. Hence,
by the standard Harnack inequality on Rn one can conclude the local estimate.

On the other hand, for general Riemannian manifolds, a uniform Harnack inequality
(that is, with the constant independent ofR and the point p) fails, and strong assumptions
are required for it to hold. Actually, the validity of a volume doubling property and a
uniform Poincarè inequality is equivalent to the uniform Harnack inequality, this was
first proved in [SC92].
Remark 3.2.9. One can turn the previous local uniform convergence in (3.2.3) into the
convergence of solutions of the heat equation. Indeed, in the case µ(M) = +∞, since
HM(·, p, t) converges uniformly to zero we get (by dominated convergence)

et∆f(y) =

ˆ
M

HM(x, y, t)f(x) dµ(x) → 0 as t→ ∞ ,

for every y ∈M and f ∈ L1(M).
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3.3 Proof of the main results

First, we shall briefly comment on the following quantity

α(E) = lim
s→0+

s

ˆ
E\B1(0)

1

|y|n+s
dy,

introduced by Dipierro, Figalli, Palatucci, and Valdinoci in [DFPV13] as a measure of
the behavior of the set E near infinity, and which is (up to a dimensional constant) the
limit in (1.2.4) in the case M = Rn with its standard metric. This quantity is invariant
by rescaling of E and, at first, can be thought as a measure of ”how conical” is E near
infinity. Indeed, if the blow-down E/λ converges in L1

loc(Rn) to a regular cone E∞ as
λ → ∞, then α(E) = Hn−1(E∞ ∩ Sn−1). Nevertheless, the fact that this limit exists in not
equivalent to having a conical blow-down. Indeed, one can easily construct examples
where the limit in α(E) exists but the blow-downs of E converge to two different cones
along two different subsequences.

Finally, the authors in [DFPV13] refer to α(E) as the weighted volume towards in-
finity of the set E; however in light of our results and description, it would be more
appropriate to call this quantity heat density over E. Indeed, α(E) represents the fraction
of heat kernel that flows through the set towards infinity (this explains why θM ≡ 1 on
stochastically complete manifolds).

Because of this intuitive reason, the limit in the definition of α(E) needs not to exist
in general if E, for example, oscillates between two cones near infinity. See [DFPV13,
Example 2.8] for the construction of such an example.

On a Riemannian manifold, a similar quantity is needed but, since no canonical origin
(as in Rn) is present, the singular kernel 1/|y|n+s has to be replaced with Ks(y, p) and it has
to be proved if and when the limit (1.2.3) becomes independent of p ∈M . On Riemannian
manifolds, this property of the limit being independent of the base point p turns out to
be quite delicate and, as a consequence of Theorem 1.2.1, we will see that is implied by
the L∞ − Liouville property of Definition 3.2.4.

Definition 3.3.1 (Heat density of a set). Let E ⊂M be a measurable set with Ps◦(E,Ω) <
+∞ for some s◦ ∈ (0, 1). We define, for every p ∈ M and R > 0, the heat density of E as
the following limit

θE(p,R) := lim
s→0

ˆ
E\BR(p)

Ks(x, p) dµ(x) ,

when it exists. At this level, this may depend on p and R.

Note that, at this point, it is not even clear whether the limit (1.2.4) of the heat density
θM of the whole M exists or is different from zero. For example, as a consequence of the
proof of Theorem 1.2.5, if there were complete Riemannian manifolds with µ(M) = +∞
and θM ̸= 1, then we would see the asymptotic

lim
s→0+

1

2
Ps(E,Ω) = (θM − θE)µ(E ∩ Ω) + θEµ(E

c ∩ Ω)

holding (even when θM ̸= 1 ), and if θM = 0 this would mean that there are Riemannian
manifolds where the asymptotic of the fractional s-perimeter of any set E is zero. These
type of Riemannian manifolds exist; since θM ̸= 1 in this case, they are not stochastically
complete. We will describe such a manifold in Example 3.5.2.
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Now, we show that this does not happen if M is stochastically complete: the limit
(1.2.4) always exists, and it is equal to one. Actually, more is true: if there is a point
p ∈ M for which the limit is 1, then the manifold is stochastically complete. Indeed, this
is the statement of Proposition 1.2.4 that we now prove.

Proof of Proposition 1.2.4. Note that since µ(M) = +∞ we have µ(M \ B1(p)) > 0. We
want to compute the following

lim
s→0+

s

2

ˆ
M\B1(p)

ˆ ∞

0

HM(x, p, t)
dt

t1+s/2
dµ(x).

Claim 1. There holds

lim
s→0+

s

2

ˆ
M\B1(p)

ˆ 1

0

HM(x, p, t)
dt

t1+s/2
dµ(x) = 0.

Indeed, this directly follows by writing

lim
s→0+

s

2

ˆ
M\B1(p)

ˆ 1

0

HM(x, p, t)
dt

t1+s/2
dµ(x) = lim

s→0+

s

2

ˆ 1

0

et∆(χM\Br(p))(p)
dt

t1+s/2

and exploiting the estimate of Lemma 3.6.18.

Claim 2. There holds

lim
s→0+

s

2

ˆ
B1(p)

ˆ ∞

1

HM(x, p, t)
dt

t1+s/2
dµ(x) = 0. (3.3.1)

By the uniform convergence of the heat kernel to zero (in particular, by the result con-
tained in Remark 3.2.9) we get that et∆(χB1(p))(p) → 0 as t → ∞. Therefore, for all ε > 0
there exists T = T (ε) such that et∆(χB1(p))(p) ≤ ε for all t ≥ T , whence

lim sup
s→0+

s

2

ˆ ∞

1

et∆(χB1(p))(p)
dt

t1+s/2
dµ(x) ≤ lim

s→0

s

2

ˆ T

1

dt

t1+s/2
+ ε lim sup

s→0

s

2

ˆ ∞

T

dt

t1+s/2
≤ ε ,

for all ε > 0, proving the second claim.

Now, thanks to the first claim we can reduce ourselves to computing

lim
s→0+

s

2

ˆ
M\B1(p)

ˆ ∞

1

HM(x, p, t)
dt

t1+s/2
dµ(x).

Then we can then add (3.3.1) to the previous limit, which gives zero contribution, and
we end up with

lim
s→0+

s

2

ˆ
M

ˆ ∞

1

HM(x, p, t)
dt

t1+s/2
dµ(x).

Using Fubini and the stochastical completeness of M we get

lim
s→0+

s

2

ˆ
M

ˆ ∞

1

HM(x, p, t)
dt

t1+s/2
dµ(x) = lim

s→0+

s

2

ˆ ∞

1

dt

t1+s/2
dµ(x) = 1 ,

and this concludes the proof.
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Conversely assume that (1.2.9) holds, then since both the previous claims hold on any
connected and geodesically complete Riemannian manifold we have

lim
s→0+

s

2

ˆ
M

ˆ ∞

1

HM(x, p, t)
dt

t1+s/2
dµ(x) = 1.

Setting M(t, p) =
´
M
HM(x, p, t) dµ(x) ≤ 1 we can infer that, for every T > 0

1 = lim
s→0

s

2

ˆ ∞

T

M(t, p)

t1+s/2
dt ≤ lim

s→0

s

2

ˆ ∞

T

1

t1+s/2
dt = 1 .

Now, assume by contradiction that M is not stochastically complete. Then since
M(t, p) is nonincreasing in time and nonnegative, there holds limt→∞ M(t, p) ≤ 1 − δ
for some δ > 0, and we would have M(t, p) ≤ 1− δ/2 for every t ≥ T = T (δ). This gives

1 = lim
s→0

s

2

ˆ ∞

T

M(t, p)

t1+s/2
dt ≤ lim

s→0

s

2

ˆ ∞

T

1− δ/2

t1+s/2
dt = 1− δ/2 ,

reaching a contradiction, hence limt→∞M(t, p) = 1 and thanks to Lemma (3.2.2) we con-
clude.

Remark 3.3.2. Following the proof of Proposition 1.2.4, one can see a clear picture of what
happens to the limit in θM(p) even when M is not stochastically complete. Indeed, for
every Riemannian manifold (not necessarily stochastically complete) and p ∈ M , the
limit limt→∞ M(t, p) exists. This follows from the fact that M(·, p) is nonincreasing and
nonnegative; see Lemma 3.2.2. Since

M(t, p) =

ˆ
M

HM(p, x, t) dµ(x) = et∆1

is a solution to the heat equation starting from the function equal to one; it follows from
the proof above and from standard parabolic estimates that M(t, ·) → θM in C2

loc(M)
as t → ∞, where θM : M → R is a bounded, nonnegative harmonic function on M .
Therefore:

(i) If M is stochastically complete, we have θM ≡ 1 (in particular, the value of θM does
not depend on the point), and the proof above shows θM = 1.

(ii) If M is not stochastically complete but satisfies the L∞ − Liouville property (see
Definition 3.2.4) we know that θM ≡ θ◦ ∈ [0, 1) and, following the proof of the
proposition, one finds that the limit in the definition of θM exists, does not depend
on the point p and there holds θM = θ◦. Note that such Riemannian manifolds exist
and were first constructed in [Pin95]. In Example 3.5.2, we describe one with θ◦ = 0.

(iii) If M is not stochastically complete and does not satisfy the L∞ −Liouville property,
then in general θM is a nonconstant harmonic function onM , and the value of θM(p)
can depend on the point p.

Now we are in the position to prove our first main result.

Proof of Theorem 1.2.1. With no loss of generality assume r < R. First, we show that the
limit does not depend on the radius, that is

θE(p,R) = θE(p, r) .
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We have∣∣∣∣ ˆ
E\BR(p)

Ks(x, p) dµ(x)−
ˆ
E\Br(p)

Ks(x, p) dµ(x)

∣∣∣∣ ≤ ˆ
BR(p)\Br(p)

Ks(x, p) dµ(x)

≤ Cs

ˆ
BR(p)\Br(p)

ˆ 1

0

HM(x, p, t)
dt

t1+s/2
dµ(x)

+ Cs

ˆ
BR(p)\Br(p)

ˆ ∞

1

HM(x, p, t)
dt

t1+s/2
dµ(x) =: I1 + I2 .

For the first integral, by Lemma 3.6.18 as s→ 0+

I1 ≤ Cs

ˆ 1

0

et∆(χM\Br(p))(p)
dt

t1+s/2
≤ Cs

ˆ 1

0

e−c/t

t1+s
dt→ 0 .

Regarding the second integral, for all ε > 0 by Lemma 3.2.6 there is T = T (ε) > 0
such that |HM(x, p, t)| ≤ ε for all x ∈ BR(p) and t ≥ T , hence

I2 ≤ Cs

ˆ T

1

ˆ
BR(p)

HM(x, p, t) dµ(x)
dt

t1+s/2
+ Cs

ˆ ∞

T

ˆ
BR(p)

HM(x, p, t) dµ(x)
dt

t1+s/2

≤ Cs

ˆ T

1

dt

t1+s/2
+ Csεµ(BR(p))

ˆ ∞

T

dt

t1+s/2

= C(1− T−s/2) + Cεµ(BR(p))T
−s/2 ,

letting s → 0+ (and then ε → 0) gives I2 → 0. Hence, taking s → 0+ shows θE(p,R) =
θE(p, r), showing that the limit never depends on the radius. Note that what we have just
proved already implies that if E is bounded then the limit exists and θE = 0, since one
can just take R ≫ 1 so that E \BR(p) = ∅.

Now fix q ∈M . For every p ∈ B1/2(q) we can write

θE(p) = lim
s→0+

ˆ
E\B1(q)

Ks(x, p) dµ(x).

This is possible because we always have independence on the radius. Indeed∣∣∣∣ ˆ
E\B1/2(p)

Ks(x, p) dµ(x)−
ˆ
E\B1(q)

Ks(x, p) dµ(x)

∣∣∣∣ ≤ ˆ
B1(q)\B1/2(p)

Ks(x, p) dµ(x) ,

hence

lim sup
s→0+

∣∣∣∣ ˆ
E\B1/2(p)

Ks(x, p) dµ(x)−
ˆ
E\B1(q)

Ks(x, p) dµ(x)

∣∣∣∣ ≤ θB1(q) = 0 .

Now set
ΘE,s(p) :=

s

2

ˆ ∞

0

et∆(χE\B1(q))(p)
dt

t1+s/2
, (3.3.2)

so that θE(p) = lims→0+ ΘE,s(p). By Lemma 3.6.18 we have that that 0 ≤ ΘE,s(p) ≤ C, for
some constant C > 0 depending only on M . Now fix φ ∈ C∞

c (B1/2(q)), by dominated
convergence

ˆ
M

θE(∆φ) dµ = lim
s→0+

ˆ
M

ΘE,s(∆φ) dµ = lim
s→0+

ˆ
M

(∆ΘE,s)φ dµ . (3.3.3)
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Note that, for fixed s and p ∈ B1/2(q), we can write

∆ΘE,s(p) =
s

2

ˆ ∞

0

∆et∆(χE\B1(q))(p)
dt

t1+s/2
=
s

2

ˆ ∞

0

∂te
t∆(χE\B1(q))(p)

dt

t1+s/2
,

which, after integration by parts, becomes (note that the boundary term at t = 0+ is zero
due to Lemma 3.6.18) equal to

s

2

ˆ ∞

0

et∆(χE\B1(q))(p)
(1 + s/2)

t2+s/2
dt .

The latter quantity goes to 0 as s → 0+, and is uniformly bounded for s ∈ (0, 1), for
every p ∈ B1/2(q). Hence, going back to (3.3.3) we get

ˆ
M

θE(∆φ) dµ = 0 .

That is, θE ∈ L1
loc(M) is a very weak solution of ∆θE = 0. We’re left to prove that θE is

smooth and is a classical solution of ∆θE = 0.
In a small chart, in coordinates, one can see that u is (locally) a very weak solution

of ∂i
(√

|det(g)|gij∂jθE
)
= 0. Choosing the chart sufficiently small, we get that the co-

efficients
√

|det(g)|gij are smooth and uniformly elliptic. Then, for example by [ZB12,
Theorem 1.3], we get that θE ∈ W 2,2

loc (M) and bootstrapping classical elliptic regularity
gives that θE is smooth and harmonic.

Lastly, (1.2.5) follows from the last part of the proof of Proposition 1.2.4, and the fact
that p 7→ θM(p) is harmonic is verbatim the proof we did for E ⊂M above.

Note that, according to Theorem 1.2.1, if M possesses the L∞ − Liouville property,
then θE is constant for every set E for which it exists. A natural question to ask would be
whether some type of converse is true, however we are not able to provide an answer.

Now we turn to the proof of Theorem 1.2.2. To prove this result, we will need Lemma
3.3.3, which essentially says that for manifolds with µ(M) = +∞, the singular kernel Ks

locally behaves like that of Rn as s→ 0+. This is not the case for finite volume manifolds1.
Recall the notation of Remark 3.1.5, where we denote by βn,s

|x−y|n+s the singular kernel of Rn

with its standard metric. Note also that cs(2−s) ≤ βn,s ≤ Cs(2−s) for some dimensional
c, C > 0.

The following lemma is a sharpening of [CFSS23, Lemma 2.19] for manifolds with
infinite volume. Indeed, in [CFSS23], the authors are not interested in characterizing the
sharp dependence from s of Ks as s→ 0+. Moreover, in [CFSS23], the authors estimate Ks

locally on every complete Riemannian manifoldM (both with finite and infinite volume),
but the result stated in Lemma 3.3.3 is not true on manifolds with finite volume.

Lemma 3.3.3. Let (M, g) be a complete n-dimensional Riemannian manifold with µ(M) = +∞,
and let p ∈M . Assume that in normal coordinates at p there holds 99

100
|v|2 ≤ gij(q)v

ivj ≤ 101
100

|v|2
and |∇gij(q)| ≤ 1/100 for all v ∈ Rn and q ∈ B1(p). Then there exists K′

s : B1(p) × B1(p) →
[0,∞) such that

lim
s→0+

sup
x,y∈B1/8(p)

|Ks(x, y)−K′
s(x, y)| = 0 ,

1Indeed, for finite volume manifolds, the same conclusion (3.3.4) holds with constants depending on s,
but as s → 0+ the constants do not behave like the ones of Rn.
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and for all x, y ∈ B1/8(p)

c
βn,s

d(x, y)n+s
≤ K′

s(x, y) ≤ C
βn,s

d(x, y)n+s
, (3.3.4)

for some dimensional constants c, C > 0.

We postpone the proof of Lemma 3.3.3 to subsection 3.6.2 in the Appendix.

Proof of Theorem 1.2.2. As we can assume s < s◦/2, it follows from the proof of Proposi-
tion 3.6.21 that the integral in (−∆)

s/2
Si u is absolutely convergent2 for a.e. x ∈ M , and the

principal value is not needed. Moreover, since u ∈ Hs◦/2(M) we have
ˆ
M

(u(x)− u(y))2Ks◦(x, y) dµ(y) < +∞

for a.e. x ∈M . Fix x ∈M in the intersection of these two sets of full measure, and take R
such that supp(u) ⊂ BR(x). Then

(−∆)
s/2
Si u(x) =

ˆ
M

(u(x)− u(y))Ks(x, y) dµ(y)

=

ˆ
BR(x)

(u(x)− u(y))Ks(x, y) dµ(y) + u(x)

ˆ
M\BR(x)

Ks(x, y) dµ(y) . (3.3.5)

Note that being µ(M) = +∞ we have
ˆ
M\BR(x)

Ks(x, y) dµ(y) ̸= 0 .

Claim. As s→ 0+ there holds

lim
s→0+

ˆ
BR(x)

(u(x)− u(y))Ks(x, y) dµ(y) = 0 .

Indeed, let ρ ≪ 1 small that will be chosen later. We denote here by C a constant which
does not depend on s. Then∣∣∣∣ˆ

BR(x)

(u(x)− u(y))Ks(x, y) dµ(y)

∣∣∣∣
=

∣∣∣∣ ˆ
Bρ(x)

(u(x)− u(y))Ks(x, y) dµ(y) +

ˆ
BR(x)\Bρ(x)

(u(x)− u(y))Ks(x, y) dµ(y)

∣∣∣∣
≤
ˆ
Bρ(x)

|u(x)− u(y)|Ks(x, y) dµ(y) + 2∥u∥L∞

ˆ
BR(x)\Bρ(x)

Ks(x, y) dµ(y) .

We estimate these two integrals separately. Let K′
s be the singular kernel given by Lemma

3.3.3, applied with ρ sufficiently small and suitably rescaled. For the first integral, Lemma
3.3.3 gives

lim sup
s→0+

ˆ
Bρ(x)

|u(x)− u(y)|
(
Ks(x, y)−K′

s(x, y)
)
dµ(y) = 0 . (3.3.6)

2Here we are not assuming M being stochastically complete, but in Proposition 3.6.21 stochastical com-
pleteness is only used to have that (−∆)

s/2
B u = (−∆)

s/2
Si u a.e., not to show the absolute convergence of the

integrals.
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Moreover, by the bounds of Lemma 3.3.3 and since u ∈ Hs◦/2(M), for a.e. x ∈M
ˆ
Bρ(x)

(u(x)− u(y))2

d(x, y)n+s◦
dy ≤ C(s◦)

ˆ
Bρ(x)

(u(x)− u(y))2Ks◦(x, y) dy < +∞.

Hence, by Lemma 3.3.3 again and Holder’s inequality
ˆ
Bρ(x)

|u(x)− u(y)|K′
s(x, y) dµ(y) ≤ Cs

ˆ
Bρ(x)

|u(x)− u(y)|
d(x, y)n+s

dµ(y)

≤ Cs

(ˆ
Bρ(x)

(u(x)− u(y))2

d(x, y)n+s◦
dy

)1/2(ˆ
Bρ(x)

1

d(x, y)n+2s−s◦dy

)1/2

≤ Cs

(
ρs◦−2s

s◦ − 2s

)1/2

→ 0 ,

as s → 0+, where in the second-last inequality we have used polar coordinates for ρ
sufficiently small (possibly depending on x). Thus, with (3.3.6) we have that the first
integral tends to zero.

Regarding the second integral, one can note that we have proved in part (i) of Theo-
rem 1.2.1 that, for every x ∈M and r, R > 0

lim
s→0+

ˆ
BR(x)\Br(x)

Ks(x, y) dµ(y) = 0 ,

since BR(x) is a bounded set, and this concludes the proof of the claim.

Moreover, by the very definition of θM we have

lim
s→0+

ˆ
M\BR(x)

Ks(x, y) dµ(y) = θM(x) , (3.3.7)

hence letting s→ 0+ in (3.3.5) gives

lim
s→0+

(−∆)
s/2
Si u(x) = θM(x)u(x) ,

for a.e. x ∈M , and this concludes the proof.

To prove our result Theorem 1.2.7 on the asymptotics for infinite volume, one needs
also to know the asymptotics as s → 0+ of the fractional s-perimeter on the entire M ,
that is when Ω ≡M . This is addressed by Theorem 3.3.4 below on the asymptotics of the
fractional Sobolev seminorms. This result is the counterpart of Theorem 3.4.1 in the case
of infinite volume.

Theorem 3.3.4. Let (M, g) be a complete Riemannian manifold with µ(M) = +∞, and let
s◦ ∈ (0, 1). Then, for every u ∈ Hs◦/2(M) ∩ L∞(M) with bounded support there holds

lim
s→0+

1

2
[u]2Hs/2(M) =

ˆ
M

u2θM dµ .

Proof. Formally, one would like to infer that

1

2
[u]2Hs/2(M) :=

1

2

¨
M×M

(u(x)− u(y))2Ks(x, y) dµ(x) dµ(y)

=

ˆ
M

u(−∆)
s/2
Si u dµ

s→0+−−−−→
ˆ
M

u2θM dµ ,
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where the first equality is the very definition of the seminorm. The second inequality is
nontrivial since the integrals one would write in the few lines of a proof are not absolutely
convergent in general. Moreover, for the last step of taking the limit as s→ 0+ one needs
to show that the a.e. convergence (−∆)

s/2
Si u → θMu of Theorem 1.2.2 can be upgraded to

weak convergence in L2(M). Now we shall justify both steps.

Step 1. We have

1

2

¨
M×M

(u(x)− u(y))2Ks(x, y) dµ(x) dµ(y) =

ˆ
M

u(−∆)
s/2
Si u dµ . (3.3.8)

Fix ε > 0 and let

(−∆)s/2ε u(x) :=

ˆ
M\Bε(x)

(u(x)− u(y))Ks(x, y) dµ(y) .

Let also D := {(z, z) : z ∈ M} denote the diagonal of M ×M and Dδ a δ-neighborhood
of D. We have¨

M×M\Dε/
√

2

(u(x)− u(y))2Ks(x, y) dµ(x) dµ(y)

=

¨
M×M\Dε/

√
2

u(x)(u(x)− u(y))Ks(x, y) dµ(x) dµ(y)

−
¨

M×M\Dε/
√
2

u(y)(u(x)− u(y))Ks(x, y) dµ(x) dµ(y)

= 2

¨
M×M\Dε/

√
2

u(x)(u(x)− u(y))Ks(x, y) dµ(x) dµ(y)

= 2

ˆ
M

ˆ
M\Bε(x)

u(x)(u(x)− u(y))Ks(x, y) dµ(y) dµ(x)

= 2

ˆ
M

u(−∆)s/2ε u dµ ,

where splitting the integral and Fubini are justified since the integrals are absolutely
convergent. Indeed
ˆ
M

ˆ
M\Bε(x)

|u(x)(u(x)− u(y))|Ks(x, y) dµ(y) dµ(x)

≤
ˆ
M

|u(x)|2
ˆ
M\Bε(x)

Ks(x, y) dµ(y) dµ(x) +

ˆ
M

|u(x)|
ˆ
M\Bε(x)

|u(y)|Ks(x, y) dµ(y) dµ(x) ,

but by Lemma 3.6.18
ˆ
M\Bε(x)

Ks(x, y) dµ(y) = C

ˆ ∞

0

(ˆ
M\Bε(x)

HM(x, y, t) dµ(y)

)
dt

t1+s/2

≤ C

ˆ ∞

0

e−c/t

t1+s/2
dt ≤ C ,

for some C depending on s and ε. Hence
ˆ
M

ˆ
M\Bε(x)

|u(x)(u(x)− u(y))|Ks(x, y) dµ(y) dµ(x) ≤ C(∥u∥L∞ , µ(supp(u)), ε, s) < +∞ ,
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and this shows the absolute convergence.

Moreover, by Proposition 3.6.21 for a.e. x ∈ M the integral in (−∆)
s/2
Si u is absolutely

convergent, then

ˆ
M

∣∣(−∆)
s/2
Si u− (−∆)s/2ε u

∣∣2 dµ ≤
ˆ
M

∣∣∣∣ˆ
Bε(x)

|u(x)− u(y)|Ks(x, y) dµ(y)

∣∣∣∣2 dµ(x) ,

and the right hand side ternds to 0 as ε→ 0. Indeed, as ε→ 0, by the very same argument
at the end of the proof of Theorem 1.2.2 there holds

ˆ
Bε(x)

|u(x)− u(y)|Ks(x, y) dµ(y) → 0 ,

for a.e. x ∈ M , and for x fixed the convergence is monotone (decreasing) since the inte-
grand is positive. Hence we have proved (−∆)

s/2
ε u→ (−∆)

s/2
Si u in L2(M) as ε→ 0. Now,

letting ε→ 0 in

1

2

¨
M×M\Dε/

√
2

(u(x)− u(y))2Ks(x, y) dµ(x) dµ(y) =

ˆ
M

u(−∆)s/2ε u dµ ,

together with the monotone convergence theorem on the left-hand side, we get the equal-
ity of the seminorms and this completes the proof of Step 1.

Step 2. There holds

(−∆)
s/2
Si u ⇀ θMu weakly in L2(M) .

The convergence a.e. is given by Theorem 1.2.2. To prove that the convergence holds
weakly in L2(M), we show that (−∆)

s/2
Si u is equibounded in L2(M). By (3.6.12) there is C

depending only on s◦ such that

∥(−∆)
s/2
Si u∥

2
L2(M) ≤ C∥u∥2L2(M) + Cs2∥u∥2Hs◦ (M) ,

and hence
lim sup
s→0+

∥(−∆)
s/2
Si u∥

2
L2(M) ≤ C∥u∥2L2(M) < +∞ .

This concludes Step 2 and, sending s→ 0+ in (3.3.8) concludes the proof.

Remark 3.3.5. Note that the equivalence of the seminorms (3.3.8) always holds for char-
acteristic functions, without any assumption. Indeed for every measurable E ⊂M

2

ˆ
M

χE · (−∆)
s/2
Si χE dx = 2

ˆ
E

(
lim
ε→0

ˆ
M\Bε(x)

(1− χE(y))Ks(x, y)dy

)
dx

= 2

ˆ
E

(
lim
ε→0

ˆ
(M\Bε(x))∩Ec

Ks(x, y)dy

)
dx

= 2

ˆ
E

ˆ
Ec

Ks(x, y)dy = [χE]
2
Hs/2(M) ,

where the second-last equality follows by the monotone convergence theorem.
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Proof of Theorem 1.2.3. Since M is stochastically complete, by Proposition 3.6.23 we have
Hs◦/2(M) ⊂ Dom((−∆)

s/2
Spec). The equality a.e. of the fractional Laplacian, then follows

by Proposition 3.6.21 and Proposition 3.6.24.

To prove (1.2.7), (1.2.8) one can argue similarly to the proof of Theorem 3.4.1. Indeed,
as s→ 0+ for every v ∈ L2(M) we have

⟨(−∆)
s/2
Specu, v⟩ =

ˆ
σ(−∆)

λs/2d⟨Eλu, v⟩ →
ˆ
σ(−∆)\{0}

d⟨Eλu, v⟩ = ⟨u, v⟩ − ⟨E0u, v⟩ ,

where E0 is the projector onto the eigenspace of −∆ relative to the eigenvalue λ = 0. By
Theorem 3.2.3 every L2(M) harmonic function is constant, hence we have two cases:

(i) If µ(M) < +∞ then the eigenspace of λ = 0 is the span of the eigenfunction
µ(M)−1/2, then E0u = 1

µ(M)

´
M
u dµ and this gives (1.2.7).

(ii) If µ(M) = +∞ then E0u = 0 and we have (1.2.8).

This concludes the proof.

Remark 3.3.6. When M is stochastically complete with µ(M) = +∞ the convergence in
(1.2.8) also follows by Theorem 1.2.2, since θM ≡ 1 in this case. Nevertheless, the argu-
ment carried on in Theorem 1.2.2 is much more general and shows what happens in the
limit on any manifold with µ(M) = +∞, even whenM is not stochastically complete (i.e.
when (−∆)

s/2
Si and (−∆)

s/2
Spec do not coincide).

3.4 Asymptotics: finite volume manifolds

3.4.1 Global asymptotics

We first give a simple proof of Theorem 1.2.7 in the case Ω = M , using our results from
subsection 3.6.3 on the equivalence of the spectral fractional Laplacian and ours defined
by the singular integral (3.1.4).

Theorem 3.4.1. Let (M, g) be a complete Riemannian manifold with µ(M) < +∞ and let
s◦ ∈ (0, 1). Then, for every u ∈ Hs◦/2(M) there holds

lim
s→0+

1

2
[u]2Hs/2(M) = ∥u∥2L2(M) −

1

µ(M)

(ˆ
M

u dµ

)2

.

Proof. Let {Eλ}λ≥0 be the spectral resolution of the Laplacian −∆ on L2(M), and let
σ(−∆) ⊂ [0,∞) be the spectrum of −∆. In particular, for every u ∈ L2(M), d⟨Eλu, u⟩
is a regular Borel (real valued) measure on [0,∞) concentrated on σ(−∆), and with

∥u∥2L2(M) =

ˆ
σ(−∆)

d⟨Eλu, u⟩ .

We refer to [Gri09, Appendix A.5] for an introduction and properties of the spectral
resolution. Since µ(M) < +∞, we have that 0 ∈ σ(−∆) lies in the point spectrum with
eigenfunction ϕ0 = µ(M)−1/2. Then

−∆ =

ˆ
σ(−∆)

λdEλ , and (−∆)
s/2
Spec =

ˆ
σ(−∆)

λs/2dEλ ,
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on Dom((−∆)
s/2
Spec) :=

{
u ∈ L2(M) :

´
σ(−∆)

λs d⟨Eλu, u⟩ < +∞
}

.

Hence, for all s < s◦ by Corollary 3.6.25

1

2
[u]2Hs/2(M) =

ˆ
M

u(−∆)
s/2
Si u dµ =

ˆ
σ(−∆)\{0}

λs/2d⟨Eλu, u⟩ .

Taking the limit as s→ 0+ gives

lim
s→0+

1

2
[u]2Hs/2(M) =

ˆ
σ(−∆)\{0}

d⟨Eλu, u⟩ = ∥u∥2L2(M)−⟨E0u, u⟩ = ∥u∥2L2(M)−
1

µ(M)

(ˆ
M

u dµ

)2

,

where in the last line we have used that E0 is the projector onto the eigenspace of −∆
relative to the eigenvalue λ = 0, but by a result of Yau (see Theorem 3.2.3) on a complete
manifold every L2(M) harmonic function is constant and then ⟨E0u, u⟩ = ⟨ϕ0, u⟩2L2(M) =

1
µ(M)

(´
M
u dµ

)2.
Remark 3.4.2. This result allows us to prove our main theorem in the case Ω =M . Indeed,
if E ⊂ M is such that Ps◦(E) < +∞ for some s◦ ∈ (0, 1), then taking u = χE in Theorem
3.4.1 gives

lim
s→0+

1

2
Ps(E) = µ(E)− 1

µ(M)
µ(E)2 =

µ(E)µ(Ec)

µ(M)
.

3.4.2 Localized asymptotics and proof of Theorem 1.2.7

Now we turn to the proof of the main result on the asymptotics for finite volume Theorem
1.2.7

Lemma 3.4.3. Let (M, g) be a complete Riemannian manifold, and let A,B ⊂ M two disjoint
measurable sets with (say) µ(A) < +∞. If Js◦(A,B) < +∞ for some s◦ ∈ (0, 1) then

lim
s→0+

∣∣∣∣Js(A,B)− 1

|Γ(−s/2)|

¨
A×B

ˆ ∞

1/s

HM(x, y, t)
dt

t1+s/2
dµ(x) dµ(y)

∣∣∣∣ = 0 .

Proof. Since
´
M
HM(x, y, t) dµ(x) ≤ 1 for all y ∈M and t ∈ (0,∞) we have∣∣∣∣Js(A,B)− 1

|Γ(−s/2)|

¨
A×B

ˆ ∞

1/s

HM(x, y, t)
dt

t1+s/2
dµ(x) dµ(y)

∣∣∣∣
=

¨
A×B

(
Ks(x, y)−

1

|Γ(−s/2)|

ˆ ∞

1/s

HM(x, y, t)
dt

t1+s/2

)
dµ(x) dµ(y)

=
1

|Γ(−s/2)|

¨
A×B

(ˆ 1

0

HM(x, y, t)
dt

t1+s/2
+

ˆ 1/s

1

HM(x, y, t)
dt

t1+s/2

)
dµ(x) dµ(y)

=
1

|Γ(−s/2)|

(¨
A×B

ˆ 1

0

HM(x, y, t)
dt

t1+s/2
dµ(x) dµ(y) +

ˆ
A

ˆ 1/s

1

(ˆ
B

HM(x, y, t) dµ(x)

)
dt

t1+s/2
dµ(y)

)

≤ Cs

¨
A×B

ˆ ∞

0

HM(x, y, t)
dt

t1+s◦/2
+ Csµ(A)

ˆ 1/s

1

dt

t1+s/2

= CsJs◦(A,B) + Cµ(A)(1− ss/2) ,

and taking s→ 0+ concludes the proof.
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Proof of Theorem 1.2.7. First, we claim that

lim
s→0+

1

|Γ(−s/2)|

¨
A×B

ˆ ∞

1/s

HM(x, y, t)
dt

t1+s/2
dµ(x) dµ(y) =

µ(A)µ(B)

µ(M)
. (3.4.1)

Indeed
s

ˆ ∞

1/s

HM(x, y, t)
dt

t1+s/2
= s1+s/2

ˆ ∞

1

H(x, y, r/s)
dr

r1+s/2
,

and since by Lemma 3.2.6 as t→ +∞ the heat kernel HM(x, y, t) converges to 1/µ(M) for
all x, y ∈M , we get

lim
s→0+

s

2

¨
A×B

ˆ ∞

1/s

HM(x, y, t)
dt

t1+s/2
dµ(x) dµ(y) =

µ(A)µ(B)

µ(M)
lim
s→0+

(s/2) ss/2
ˆ ∞

1

dr

r1+s/2

=
µ(A)µ(B)

µ(M)
.

Then, putting together Lemma 3.4.3 and (3.4.1) readily implies

lim
s→0+

Js(A,B) =
µ(A)µ(B)

µ(M)
.

Lastly, since Ps◦(E,Ω) < +∞ and

1

2
Ps(E,Ω) = Js(E ∩ Ω, Ec ∩ Ω) + Js(E ∩ Ω, Ec ∩ Ωc) + Js(E ∩ Ωc, Ec ∩ Ω) ,

the theorem follows by letting s→ 0+.

In [CCLMP22] the authors prove the following result regarding the s-perimeter of the
Gaussian space. Since the total mass of the Gaussian space is one, we see that this is
formally identical to our Theorem 1.2.7 for finite volume.

Theorem 3.4.4 (Main Theorem in [CCLMP22]). Let Ω ⊂ Rn be an open and connected set
with Lipschitz boundary. Then, for any E ⊂ Rn measurable set such that P γ

s◦(E,Ω) < +∞ for
some s◦ ∈ (0, 1) there holds

lim
s→0+

s

2
P γ
s (E; Ω) = γ(E)γ(Ec ∩ Ω) + γ(E ∩ Ω)γ(Ec ∩ Ωc) ,

where P γ
s (E,Ω) is the fractional Gaussian perimeter

P γ
s (E,Ω)

=

¨
E∩Ω×Ec∩Ω

Ks(x, y) dγxdγy +

¨
E∩Ω×Ec∩Ω

Ks(x, y) dγxdγy +

¨
E∩Ω×Ec∩Ω

Ks(x, y) dγxdγy ,

and Ks(x, y) is defined as in (1.2.2) with on the right-hand side the heat kernelHγ of the Gaussian
space (Rn, γ), where dγ(x) = 1

(2π)n/2 e
−|x|2/2Ln(dx).

The proof in [CCLMP22] follows the same lines as our proof of Theorem 1.2.7, but the
authors heavily use the fact that they know the explicit form of the heat kernel Hγ for the
Gaussian space. In the next subsection, we briefly explain how our method implies their
result when applied to weighted manifolds.
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3.4.3 Weighted manifolds

Our result for finite volume manifolds extends, with proofs mutatis mutandis, to the case
of weighted manifolds with finite volume, implying the one in [CCLMP22].

A weighted manifold is a Riemannian manifold (M, g) endowed with a measure µ
that has a smooth positive density with respect to the Riemannian volume form dVg. The
space (M, g, µ) features the so-called weighted Laplace operator −∆µ, generalizing the
Laplace-Beltrami operator, which is symmetric with respect to measure µ. It is possible
to extend −∆µ to a self-adjoint operator in L2(M,µ), which allows one to define the heat
semigroup et∆µ as one would on a classical Riemannian manifold. The heat semigroup
has the integral kernel Hµ(x, y, t), which is called the heat kernel of (M, g, µ), and has
completely analogous properties as the classical one. For every detail regarding the heat
kernel on weighted manifolds, we refer to the survey [Gri06].

In this case, we see that our proof applies since Lemma 3.2.6 also holds (with the same
proof) on geodesically complete weighted manifolds, and also Theorem 3.4.1 holds with
the same proof, since our results from subsection 3.6.3 are valid for weighted manifolds
too.

Moreover, our method works also for manifolds with boundary and finite volume.
Indeed, if (M, g) is a complete manifold with (possibly empty) boundary and finite vol-
ume, and one defines Ks(x, y) by (1.2.2) with the heat kernel with Neumann boundary
conditions on the right-hand side, then the same proof applies.

3.5 Asymptotics: infinite volume manifolds

3.5.1 Global asymptotics

Corollary 3.5.1. Let (M, g) be stochastically complete and with µ(M) = +∞. Let E ⊂ M be
bounded and such that Ps◦(E) < +∞ for some s◦ ∈ (0, 1). Then

lim
s→0+

1

2
Ps(E) = µ(E) .

Proof. Since M is stochastically complete, by Proposition 1.2.4 we have θM ≡ 1. Then the
result follows taking u = χE in Theorem 3.3.4.

One can note that stochastical completeness is not really needed in Corollary 3.5.1.
Even when M is not stochastically complete, by Theorem 1.2.1, we know that θM is a
(possibly non-constant) bounded harmonic function with values in [0, 1]. Then, by Theo-
rem 3.3.4 with u = χE again

lim
s→0+

1

2
Ps(E) =

ˆ
E

θM dµ

Consequently, if in particular θM ≡ θ◦ ∈ [0, 1] we have

lim
s→0+

1

2
Ps(E) = θ◦µ(E) , (3.5.1)

for every E bounded with Ps◦(E) < +∞. This feature led us to note the following ex-
ample, which shows that, interestingly enough, Riemannian manifolds with θM ≡ θ◦ = 0
exists.
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Example 3.5.2. There exists a complete Riemannian manifold N where the asymptotics
of the fractional s-perimeter as s → 0+ is zero for every set, that is: for every bounded E
with Ps◦(E) < +∞ for some s◦ ∈ (0, 1) there holds

lim
s→0+

Ps(E) = 0 .

By (3.5.1) above we see that it is enough to provide an example of a Riemannian
manifold N with θN(p) ≡ θ◦ = 0, meaning that the limit does not depend on the point
p and is always zero. Moreover, by part (ii) of Remark 3.3.2 this is satisfied if N has the
L∞ − Liouville property, is not stochastically complete and

N (t, p) =

ˆ
N

HN(x, p, t) dµ(x) → 0 , as t→ ∞ .

A complete Riemannian manifold N with these properties actually exists, and we
now sketch how it is constructed. We want N such that

(i) N has the L∞ − Liouville property.

(ii) N is not stochastically complete.

(iii) For every p ∈ N we have N (t, p) =
´
N
HN(x, p, t) dµ(x) → 0.

The construction of N that satisfies (i), (ii) is taken from [Gri99, Section 13.5], which
in turn builds on the first such example found by Pinchover in [Pin95]. Here, we note
that it satisfies also (iii).

Figure 3.1: The two dimensional jungle-gym in R3. Picture taken from [Gri99].

Start from the two-dimensional jungle-gym JG2 in R3 as in Figure 3.1. This is done
by smoothly connecting the lattice Z3 ⊂ R3 with necks. Let g be the standard metric on
JG2 induced by the embedding in R3. Fix o ∈ JG2 and let r := d(o, x). One can show
that JG2 has the L∞ − Liouville property. Moreover, there holds µ(BR(o)) ≤ CR3, and
the Green function grows at most as G(o, x) ≤ C/r for large r. Let ρ : JG2 → [0,+∞) be
a smooth positive function with ρ = 1 in [0, 1] and ρ(r) ∼ 1

r log(r)
for large r, and consider

the conformal metric ĝ := ρ2(r)g on JG2. We claim that N := (JG2, ĝ) has the desired
properties. Since ˆ ∞

1

ρ(r)dr = ∞ ,
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then N is geodesically complete and hence complete. Moreover, as the Laplacian is con-
formally invariant in dimension two, JG2 with its standard metric and N have the same
harmonic functions, and thus N also has the L∞ − Liouville property and satisfies (i).
Denote by Ĝ the Green’s function of N . Then, by the choice of ρ, for R big

ˆ
N\BR(o)

Ĝ(o, x) dµ̂(x) =

ˆ
JG2\BR(o)

G(o, x)ρ2(r) dµ(x) < +∞ ,

and by [Gri99, Corollary 6.7] this implies (ii). Consequently, note that also
ˆ ∞

0

N (p, t) dt =

ˆ ∞

0

ˆ
N

HN(x, p, t) dµ̂(x) dt =

ˆ
N

(ˆ ∞

0

HN(x, p, t) dt

)
dµ̂(x)

=

ˆ
N

Ĝ(o, x) dµ̂(x) =

ˆ
N\BR(o)

Ĝ(o, x) dµ̂(x) +

ˆ
BR(o)

Ĝ(o, x) dµ̂(x) < +∞ ,

and since the function N (p, ·) is also nonincreasing this implies that N also satisfies (iii).

3.5.2 Localized asymptotics and proof of Theorem 1.2.5

We now show (among other things) that (1.2.3) is well-posed as in Rn for manifolds with
the L∞ − Liouville property, in the sense that it does not even depend on the choice of p.

Lemma 3.5.3. Let (M, g) be a complete Riemannian manifold with µ(M) = +∞ and E ⊂M be
a set for which the limit (1.2.3) exists for some p ∈M . IfM has the L∞−Liouville property, then
θE(p) ≡ θE is constant, meaning that the limit in θE(q) exists for all q ̸= p and equals θE(p).

Proof. We adopt the notation in the proof of Theorem 1.2.1. In particular, let q 7→ ΘE,s(q)
be defined in (3.3.2). Arguing exactly as in the proof of Theorem 1.2.1, every subsequen-
tial limit (say, in C2,α

loc (M)) of ΘE,s as s→ 0+ is a bounded harmonic function on M .
Since M has the L∞ − Liouville property, every such subsequential limit is constant.

Then, since the limit lims→0+ ΘE,s(p) = θE(p) exists by hypothesis, all the subsequential
limits must coincide with θE(p) everywhere.

Let us note that the conclusion of Lemma 3.5.3 is not completely trivial in general and
is particular of Riemannian manifolds that have the L∞ − Liouville property. Indeed, we
believe that on a general complete Riemannian manifold, it can happen that the limit in
θE(·) exists for some p ∈ M but does not exist for some other q ∈ M with q ̸= p. See
subsection 3.6.1 for a brief discussion on this feature.

Lemma 3.5.4. In the hypothesis of Lemma 3.5.3, for every bounded F ⊂ M and R > 0 with
F ⊂ BR/2(p) there holds

µ(F )θE = lim
s→0+

Js(F,E \BR(p)) = lim
s→0+

ˆ
F

ˆ
E\BR(p)

Ks(x, y) dµ(x) dµ(y).

Proof. Now since F ⊂ BR/2(p), we have that BR/10(y) ⊂ BR(p) ⊂ B10R(y) for every y ∈ F .
Since the kernel Ks is nonnegative we get

ˆ
E\B10R(y)

Ks(x, y) dµ(x) ≤
ˆ
E\BR(p)

Ks(x, y) dµ(x) ≤
ˆ
E\BR/10(y)

Ks(x, y) dµ(x) .

By the very definition of θE (1.2.3) and the fact that the limit does not depend on
the radius whenever it exists (see part (i) of Theorem 1.2.1) both the left-hand side and
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right-hand side of the last inequality converge to θE(y) = θE , since θE is constant by
Lemma 3.5.3, as s → 0+. Hence, integrating in y ∈ F and letting s → 0+, by dominated
convergence

lim
s→0+

ˆ
F

ˆ
E\BR(p)

Ks(x, y) dµ(x) dµ(y) =

ˆ
F

θE dµ(y) = µ(F )θE ,

which is what we wanted to prove.

Lemma 3.5.5. Let (M, g) be complete with µ(M) = +∞, and let A,B ⊂ M be two disjoint
measurable sets with µ(A), µ(B) < +∞ and with Js◦(A,B) < +∞, for some s◦ ∈ (0, 1). Then

lim
s→0+

Js(A,B) = 0 .

Proof. First, by Lemma 3.4.3 we have

lim sup
s→0+

Js(A,B) ≤ lim sup
s→0+

s

2

¨
A×B

ˆ ∞

1/s

HM(x, y, t)
dt

t1+s/2
dµ(x) dµ(y) .

Then

s

2

¨
A×B

ˆ ∞

1/s

HM(x, y, t)
dt

t1+s/2
dµ(x) dµ(y) = Cs1+s/2

ˆ
A

ˆ ∞

1

e(ξ/s)∆(χB)(x)
dξ

ξ1+s/2
dµ(x)

≤ C

ˆ
A

(
s

ˆ ∞

1

e(ξ/s)∆(χB)(x)
dξ

ξ1+s/2

)
dµ(x) .

Since χB ∈ L1(M), for every x ∈ A (see Remark 3.2.9) there holds by dominated
convergence

s

ˆ ∞

1

e(ξ/s)∆(χB)(x)
dξ

ξ1+s/2
→ 0 ,

as s → 0+. From here, the result follows by dominated convergence using that µ(A) <
+∞.

The results above directly imply the following.

Corollary 3.5.6. Let (M, g) be complete with µ(M) = +∞ and with theL∞−Liouville property,
and let Ω ⊂ M be bounded. Then, for every F ⊂ Ω with Ps◦(F,Ω) < +∞, for some s◦ ∈ (0, 1),
there holds

lim
s→0+

Js(F,E ∩ Ωc) = µ(F )θE .

Proof. Let p ∈M and R ≫ 1 be such that Ω ⊂ BR(p), then

Js(F,E ∩ Ωc) = Js(F,E ∩ Ωc ∩BR(p)) + Js(F,E ∩ Ωc ∩Bc
R(p))

= Js(F,E ∩ Ωc ∩BR(p)) + Js(F,E ∩Bc
R(p)) .

From here, since Ωc ∩BR(p) and F are disjoint and both with finite volume, the first term
tends to zero as

Js(F,E ∩ Ωc ∩BR(p)) ≤ Js(F,Ω
c ∩BR(p)) → 0 ,

as s→ 0+. Moreover, the second term tends to µ(F )θE by Lemma 3.5.4.

The proof of our main theorem in the infinite volume case is just a simple application
of all the results we have derived above.
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Proof of Theorem 1.2.5. Write

1

2
Ps(E,Ω) = Js(E ∩ Ω, Ec ∩ Ω) + Js(E ∩ Ω, Ec ∩ Ωc) + Js(E ∩ Ωc, Ec ∩ Ω)

=
1

2
Ps(E ∩ Ω)− Js(E ∩ Ω, E ∩ Ωc) + Js(E

c ∩ Ω, E ∩ Ωc) .

By Corollary 3.5.1 applied to the first term, and by Corollary 3.5.6 applied with F =
E ∩ Ω and F = Ec ∩ Ω respectively on the second and third term, taking the limit as
s→ 0+ we get

lim
s→0+

1

2
Ps(E,Ω) = µ(E ∩ Ω)− θEµ(E ∩ Ω) + θEµ(E

c ∩ Ω)

= (1− θE)µ(E ∩ Ω) + θEµ(E
c ∩ Ω) ,

and this shows (i).

To prove (ii) and (iii) we follow closely the proof of in [DFPV13, Theorem 2.7], which
deals with the analogous property in the case of the Euclidean space Rn. We just sketch
the argument since in the reference [DFPV13], the proof is carried on in full detail, and
in our case, it is analogous. Let us denote

ΘE,s :=

ˆ
E\BR(p)

Ks(x, p) dµ(x) , (3.5.2)

and fix R > 0 such that Ω ⊂ BR/2(p). Note that
ˆ
Ω\E

ˆ
E\BR(p)

Ks(x, y) dµ(x) dµ(y)−
ˆ
Ω∩E

ˆ
E\BR(p)

Ks(x, y) dµ(x) dµ(y)

=
1

2
Ps(E,Ω)−

1

2
Ps(E ∩ Ω,Ω)− Js(Ω \ E, (E \ Ω) ∩BR(p)) + Js(Ω ∩ E, (E \ Ω) ∩BR(p)) .

Now, arguing exactly as in the proof of Lemma 3.5.4 we have that for every F ⊂ Ω
there holds

lim
s→0+

∣∣∣∣µ(F )ΘE,s −
ˆ
F

ˆ
E\BR(p)

Ks(x, y) dµ(x) dµ(y)

∣∣∣∣ = 0 . (3.5.3)

Since Ω \ E and (E \ Ω) ∩ BR(p) are disjoint and both with finite volume (since they
are bounded), by Lemma 3.5.5 we have

lim
s→0+

Js(Ω \ E, (E \ Ω) ∩BR(p)) = 0 ,

and similarly
lim
s→0+

Js(Ω ∩ E, (E \ Ω) ∩BR(p)) = 0 .

Hence, taking the limit as s → 0+ above using (3.5.3) for the left-hand side with
F = Ω \ E and F = Ω ∩ E respectively gives

lim
s→0+

ΘE,s

(
µ(Ω \ E)− µ(Ω ∩ E)

)
= lim

s→0+

1

2

(
Ps(E,Ω)− Ps(E ∩ Ω,Ω)

)
.

Since E ∩ Ω ⊂ Ω is bounded, by Corollary 3.5.1 we have

lim
s→0+

1

2
Ps(E ∩ Ω,Ω) = lim

s→0+

1

2
Ps(E ∩ Ω) = µ(E ∩ Ω) ,
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thus

lim
s→0+

ΘE,s

(
µ(Ω \ E)− µ(Ω ∩ E)

)
=

(
lim
s→0+

1

2
Ps(E,Ω)

)
− µ(E ∩ Ω) .

From here, the conclusion of the theorem easily follows. Indeed, if µ(Ω\E) = µ(Ω∩E)
then the limit lims→0+

1
2
Ps(E,Ω) always exists and is equal to µ(E∩Ω). On the other hand,

if the limit lims→0+
1
2
Ps(E,Ω) exists then from above the limit in θE also exists and there

holds

θE =

(
lims→0+

1
2
Ps(E,Ω)

)
− µ(E ∩ Ω)

µ(Ω \ E)− µ(E ∩ Ω)
,

and this concludes the proof.

3.6 Extension to RCD spaces

In this section, we briefly explain how our results extend to the case of RCD(K,N) spaces,
which are a generalization of Riemannian manifolds with an upper bound on the dimen-
sion N and Ricci curvature bounded from below by the real number K (and they include
weighted manifolds). For the definition of RCD spaces we refer the reader to Chapter
4. We stress that we won’t reprove every result of the smooth case, but only the ones

presenting significant changes needed to perform the asymptotic analysis.

First of all, on any RCD(K,N) space with K ∈ R and N ∈ N ∪ {∞} it is possible to
define a heat kernel and to do so we shall exploit the theory of gradient flows.

We call the heat flow (et∆)t>0 the gradient flow (in the sense of Komura-Brezis theory)
of the Cheeger energy, which displays the following properties: for an L2 function f the
curve t ∈ (0,∞) → et∆f ∈ L2 is locally absolutely continuous, it is such that et∆f ∈ D(∆),
limt→0 e

t∆f = f in L2 and satisfies the heat equation

det∆

dt
= ∆et∆f ∀t > 0.

We will now collect some other properties of the heat flow holding on infinitesimally
Hilbertian metric measure spaces which we will exploit (see [GP20b] for a reference):

Proposition 3.6.1. Let (X, d, µ) be an infinitesimally Hilbertian metric measure space, then we
have

(i) (Weak maximum principle): Given any f ∈ L2(µ) such that f ≤ C µ-almost everywhere
we have

et∆f ≤ C µ− a.e.

(ii) (et∆ is self-adjoint): For all f, g ∈ L2(µ) we have
ˆ
X

et∆fg dµ =

ˆ
X

et∆gf dµ ∀t > 0.

(iii) (∆ and et∆ commute): For all f ∈ D(∆) we have

∆et∆f = et∆∆f µ− a.e., ∀t > 0.

Moreover if (X, d, µ) is an RCD(K,∞) space we have the following additional properties:



3.6. EXTENSION TO RCD SPACES 59

(iv) (Bakry-Émery estimate): For all f ∈ W 1,2(X) and t > 0 we have

|∇et∆f |2 ≤ e−2Ktet∆
(
|∇f |2

)
µ− a.e. (3.6.1)

(v) (L∞ − Lip regularization): For all f ∈ L∞(µ) and t > 0 we have

∥∇(et∆f)∥L∞(µ) ≤
e−2Kt

√
t

∥f∥L∞(µ). (3.6.2)

It is then possible to define the heat flow for all probability measures with finite sec-
ond moment as the EV IK (again, we assume the reader to be familiar with the terminol-
ogy) gradient flow of the entropy functional. More precisely for every µ ∈ P2(X), et∆µ
(with a little abuse of notation here) is the unique measure such thatˆ

X

φdet∆µ =

ˆ
X

et∆φ dµ ∀φ ∈ Lipbs(X),

where Lipbs(X) is the set of Lipschitz functions with bounded support and et∆φ is the
Lipschitz continuous representative of its equivalence class (which is well-posed thanks
to the L∞ − Lip regularization property).

On RCD(K,∞) it is possible to define the heat kernelHX(x, ·, t) := det∆δx
dµ

and we have
the following (see [JLZ16] for a reference):

Proposition 3.6.2. Let (X, d, µ) be an RCD(K,N) space with N ∈ N, then for all ε > 0, for
some C1, C2, C3, C4 nonnegative constants (possibly depending on ε and N ) we have

1

C1µ(B√
t(y))

exp

(
− d2(x, y)

(4− ε)t
− C2t

)
≤ HX(x, y, t) ≤

C1

µ(B√
t(y))

exp

(
−d2(x, y)

(4 + ε)t
+ C2t

)
(3.6.3)

for all x, y ∈ X , t > 0 and

|∇HX(x, ·, t)|(y) ≤
C3√

tµ(B√
t(y))

exp

(
−d2(x, y)
(4 + ε)t

− C4t

)
(3.6.4)

µ× µ-a.e. (x, y) ∈ X ×X , for all t > 0.
Moreover, if K = 0 then estimate (3.6.3) holds with C2 = C4 = 0.

On any RCD(K,∞) space we haveˆ
X

HX(x, y, t) dµ(x) = 1

for all y ∈ X , t > 0. That is, X is stochastically complete.

In the setting of RCD(K,N) (actually infinitesimal hilbertianity is not required) we
also have Bishop-Gromov’s comparison theorem, holding both for the perimeter mea-
sure and the volume measure (see [Stu06]). Finally, it is possible to prove that the follow-
ing version of the Harnack inequality holds (see [Li16] for the proof)

Proposition 3.6.3 (Harnack inequality). Let (X, d, µ) be an RCD(K,∞) space, p ∈ (1,∞)
and f ∈ L1(µ) + L∞(µ), then

|(et∆f)(x)|p ≤ (et∆|f |p)(y) exp
(

pKd2(x, y)

2(p− 1)(e2Kt − 1)

)
for all x, y ∈ X ×X and t > 0.
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From the previous Harnack inequality, it is possible to prove the following Gaussian
bound (see [Tam19, Theorem 4.1]) for RCD(K,∞) spaces (compare with (3.6.3) above for
RCD(K,N) spaces).

Proposition 3.6.4. Let (X, d, µ) be an RCD(K,∞) space, then there exists CK > 0 and for all
ε > 0 there exists Cε > 0 such that

HX(x, y, t) ≤
1√

µ(B√
t(x))

√
µ(B√

t(y))
exp

(
Cε(1 + CK)t−

d2(x, y)

(4 + ε)t

)
. (3.6.5)

If K ≥ 0 one can take CK = 0.

The second ingredient we need is a generalization to RCD(K,∞) spaces of the L2 −
Liouville property of Yau (our Theorem 3.2.3).

Proposition 3.6.5. Let (X, d, µ) be an RCD(K,∞) space. Then, any L2(µ) harmonic function
is constant.

Proof. Denote w(t, x) := et∆u(x). Assume u ∈ L2(µ) is harmonic, then by applying the
heat flow to ∆u = 0 and using item (iii) of Proposition 3.6.1 we have

∆w = 0.

By gradient flow theory we have
ˆ
X

|∇w|2 dµ ≤ 1

2t

ˆ
X

|u|2 dµ,

whence
0 = −

ˆ
X

w∆w dµ =

ˆ
X

|∇w|2 dµ.

This means |∇w| = 0 µ-a.e. and by the Sobolev to Lipschitz property, this implies that w
is constant. Therefore there exists C = C(t) such that w(t, ·) = C(t).

Now if µ(X) < +∞ we can infer (as u ∈ L2(µ) implies u ∈ L1(µ))
ˆ
X

w dµ =

ˆ
X

u dµ = µ(X)C(t),

hence C does not actually depend on t and by taking the limit as t → 0+ we infer that u
is constant.

If µ(X) = +∞, then for every t, we have w = 0 because the only constant in L2(µ) is
zero, and we conclude.

Remark 3.6.6. The previous proposition actually does not require a curvature condition:
working in a space in which having zero weak upper gradient implies being constant
suffices (see [DLDPMT23, Proposition 3.3]).

We then have the following result, which is a non-smooth analogous of Proposition
3.2.6.

Proposition 3.6.7. Let (X, d, µ) be an RCD(K,∞) space, then we have the following dicotomy:

(i) If µ(X) < +∞ then

HX(t, x, y) →
1

µ(X)
as t→ ∞ ∀x, y ∈ X.
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(ii) If µ(X) = +∞ we have
HX(·, ·, t) → 0 as t→ ∞ (3.6.6)

locally uniformly and HX(p, ·, t) → 0 uniformly as t→ ∞ for every p ∈M .

Proof. The proof follows along the same lines of Proposition 3.2.6. If µ(X) < +∞ let
f = HX(p, ·, 1)−1/µ(X), otherwise let f = HX(p, ·, 1), then max{∥et∆f∥L1 , ∥et∆f∥L∞} ≤ C
due to the properties of the heat flow. Moreover by the semigroup property of it is easy
to see that weak convergence in L2(µ) of et∆f is equivalent to strong convergence and we
again have the inequality

|(et∆f, g)| ≤ |(et∆f, f)∥(et∆g.g)| ≤ ∥g∥2L2(µ)|(et∆f, f)|

for all t ∈ (0,∞) and for all f, g ∈ L2(µ). Using the spectral measure representation
and Proposition 3.6.5, we infer the desired L2 convergence. This convergence can be
upgraded to be locally uniform by the Harnack inequality (Proposition 3.6.3) with p = 2
and by the fact that |f |2 ≤ ∥f∥L∞|f |, together with the maximum principle to get

|et∆f(x)|2 ≤ ∥f∥L∞et∆(|f |)(y) exp
(

2KR2

2(e2Kt − 1)

)
for every y ∈ BR(x). Integrating over the latter set in dµ(y) and taking the supremum
allows to conclude. The global uniform convergence follows as in the smooth case.

Remark 3.6.8. As in the smooth case if µ(X) = +∞ we have that for every f ∈ L1(µ)

lim
t→∞

et∆f(x) = 0

for every x ∈ X .

We refer to [BLS20] for an introduction to Hs spaces on very general ambient space,
like RCD spaces and more. We have the analog of Theorem 3.4.1.

Theorem 3.6.9. Let (X, d, µ) be an RCD(K,∞) space with K ∈ R and µ(X) < +∞. Let
u ∈ Hs◦/2(X) for some s◦ ∈ (0, 1) with bounded support. Then

lim
s→0+

1

2
[u]2Hs/2(X) = ∥u∥2L2(X) −

1

µ(M)

(ˆ
X

u dµ

)2

.

Proof. The proof is exactly the same as in the smooth case exploiting the L2 − Liouville
property of Proposition 3.6.5.

To prove the convergence result for the case of infinite volume we need a convergence
result for the solution of the heat equation to the initial datum. We, therefore, recall the
following (upper) Large Deviation Principle on proper RCD(K,∞) spaces (see [GTT22,
Theorem 5.3])

Theorem 3.6.10. Let (X, d, µ) be a proper RCD(K,∞) space, then for every x ∈ X and closed
set C ⊆ X we have, setting µt[x] = HX(·, x, t)µ,

lim sup
t→0

t log(µt[x](C)) ≤ − inf
y∈C

d2(x, y)

4
. (3.6.7)
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Remark 3.6.11. In (3.6.7) we can choose C = X \ Br(p) and obtain the following estimate
for small times (depending on r > 0 and ε > 0)

|et∆(χX\Br(p))(p)| ≤ exp

(
− r2 − ε

4t

)
(3.6.8)

We are finally ready to prove the following proposition (analog of Proposition 1.2.4)

Proposition 3.6.12. Let (X, d, µ) be a proper RCD(K,∞) space with µ(X) = +∞. Then for
every p ∈ X

θM(p) = lim
s→0

ˆ
X\B1(p)

Ks(x, p) dµ(x) = 1.

Proof. As for the smooth case, we first show that

lim
s→0+

s

2

ˆ
X\B1(p)

ˆ 1

0

HX(x, p, t)
dt

t1+s/2
dµ(x) = 0.

Indeed there exists δ > 0 such that for all t ≤ δ (3.6.8) holds, so that the previous integral
can be estimated with the following

s

2

ˆ δ

0

e−r2/5t dt

t1+s/2
+
s

2

ˆ
X\B1(p)

ˆ 1

δ

HX(x, p, t)
dt

t1+s/2
.

The first term clearly goes to zero as s → 0+ and to handle the second we use Fubini
to deduce that (here stochastical completeness is not necessary but RCD(K,∞) spaces
enjoy this property so we write the equality sign)

s

2

ˆ
X\B1(p)

ˆ 1

δ

HX(x, p, t)
dt

t1+s/2
=
s

2

ˆ 1

δ

dt

t1+s/2
− s

2

ˆ
B1(p)

ˆ 1

δ

HX(x, p, t)
dt

t1+s/2
dµ(x).

Again the first term trivially goes to zero while for the second we apply (3.6.5) and exploit
properness of the space to infer that HX(·, ·, ·) is equibounded in B1(p)× [δ, 1] so that

lim sup
s→0

∣∣∣∣s2
ˆ
B1(p)

ˆ 1

δ

HX(x, p, t)
dt

t1+s/2
dµ(x)

∣∣∣∣ ≤ lim sup
s→0+

C
s

2

ˆ 1

δ

dt

t1+s/2
= 0 .

We now claim that

lim
s→0+

s

2

ˆ
B1(p)

ˆ ∞

1

HX(x, p, t)
dt

t1+s/2
dµ(x) = 0.

Indeed, thanks to the local uniform convergence proved in (3.6.6) and reasoning as in the
previous step the latter result easily follows.

Finally, we can perform the same steps and write

θM(p) = lim
s→0

s

2

ˆ
X

ˆ ∞

1

HX(x, y, t)
dt

t1+s/2
dµ(x),

which equals 1 by using stochastical completeness.

In the following proposition, we study the behavior of the singular kernel Ks(x, y).
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Proposition 3.6.13. Let (X, d, µ) be an RCD(K,N) space with µ(X) = +∞ and essential
dimension equal to n. Then, for every x ∈ X which is a regular point we have

Cs

rn+s
≤ Ks(x, y) ≤

Cs

rn+s
+ os(1) + sup

t≥1/s

HM(x, y, t), (3.6.9)

for every y ∈ X , where r = d(x, y). In particular Ks(x, ·) → 0 as s → 0+ locally uniformly
away from x.

Proof. Let us define

Ks(x, y) =
s

2

ˆ 1

0

HX(x, y, t)
dt

t1+s/2
+
s

2

ˆ 1/s

1

HX(x, y, t)
dt

t1+s/2
+
s

2

ˆ ∞

1/s

HX(x, y, t)
dt

t1+s/2

=: I1 + I2 + I3.

By the Gaussian estimates (3.6.3) and using the fact that x is a regular point we have

I1 ≤ Cs

ˆ 1

0

e−r2/5t dt

t1+s/2+n/2
≤ Cs

rn+s
.

Moreover, since µ(X) = +∞ by (3.6.6) the heat kernel converges locally uniformly to
zero, and we also get

I2 ≤ Cs

ˆ 1/s

1

dt

t1+s/2
= C(1− ss/2) = os(1),

for some constant C which is bounded in a neighborhood of x. Finally, we have

I3 ≤
s

2
sup
t≥1/s

HM(x, y, t)

ˆ ∞

1/s

dt

t1+s/2
,

thus proving the upper bound in (3.6.13). For the lower bound it is enough to neglect I2
and I3 and apply the Gaussian estimate from below to I1.

Finally, the local uniform convergence Ks(x, ·) → 0 is apparent due to the local uni-
form convergence (3.6.6) of the heat kernel to zero and the other quantities involved.

With the next proposition, we show that the heat density of a set, whenever it exists,
is independent of the radius and also on the point if the L∞ − Liouville property holds,
analogously to the case of manifolds.

Proposition 3.6.14. Let (X, d, µ) be an RCD(K,∞) space with µ(X) = +∞, let E ⊂ M be
measurable and set

ΘE,s(p, r) :=

ˆ
X\Br(p)

Ks(p, x) dµ(x).

Then for all 0 < r ≤ R one has

lim sup
s→0+

∣∣ΘE,s(p,R)−ΘE,s(p, r)
∣∣ = 0.

meaning that if lims→0+ ΘE,s(p, r) = θE(p) exists for some p ∈ M , then it does not depend on
r. Moreover, if the L∞ − Liouville property holds on X and θE(p) exists for all p ∈ X , then
θE ≡ θE(p) is constant.
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Proof. We first show the independence on the radius; therefore we fix any two 0 < r < R,
and we show that

lim sup
s→0+

s

2

ˆ
BR(p)\Br(p)

ˆ ∞

0

HX(x, p, t)
dt

t1+s/2
dµ(x) = 0.

We split the integral over time in three pieces: one from 0 to ε, one from ε to T , and the
last one from T to ∞. The first piece goes to zero sinceBR(p)\Br(p) is a closed set and we
can apply (3.6.8), the second piece goes to zero for every T ≫ 1 thanks to the properness
of the space, the Gaussian upper bound (3.6.5) and easy calculations, while the last piece
is such that, for all T ≥ T0(ε)

lim sup
s→0+

s

2

ˆ ∞

T

HX(x, p, t)
dt

t1+s/2
dµ(x) ≤ ε.

Since this holds for every ε we get the convergence to zero.

For what concerns the independence on the point, we first take r big that q ∈ Br/10(p)
and wlog, we assume E to be closed. We have

lim sup
s→0+

∣∣∣∣ˆ
E\Br(p)

Ks(x, p) dµ(x)−
ˆ
E\B2r(q)

Ks(x, q) dµ(x)

∣∣∣∣
≤ lim sup

s→0+

∣∣∣∣ˆ
E\Br(p)

Ks(x, q) dµ(x)−
ˆ
E\B2r(q)

Ks(x, q) dµ(x)

∣∣∣∣
+ lim sup

s→0+

∣∣∣∣ˆ
E\Br(p)

Ks(x, p)−Ks(x, q) dµ(x)

∣∣∣∣ =: I1 + I2.

The first integral is zero since

I1 ≤ lim sup
s→0+

ˆ
B2r(q)\Br(p)

Ks(x, q) dµ(x) ≤ θB2r(q)(q) = 0 ,

where we have used the independence on the radius.
While for I2 we shall exploit the L∞ − Liouville property of X . We can, as usual,

expand the singular kernel and split the integral in time into three pieces in time, one
going from 0 to 1, another from 1 to T ≫ 1, and lastly, from T to ∞. The first two are
handled thanks to the exponential convergence (3.6.8) and the boundedness of the heat
kernel, while for the last one, we have

lim sup
s→0+

∣∣∣∣ ˆ ∞

T

et∆(χE\Br(p))(p)− et∆(χE\Br(p))(q)
dt

t1+s/2

∣∣∣∣ = 0 ,

thanks to the L∞ − Liouville property.
Indeed et∆(χE\Br(p)) converges up to subsequences to a constant harmonic function;

hence its (of the limit function) value at the points p and q is the same so that, being this
true for any subsequence, et∆(χE\Br(p))(p)− et∆(χE\Br(p))(q) → 0 as t→ ∞.

Remark 3.6.15. In the previous proposition, we only care about spaces satisfying the L∞−
Liouville property. However, with a little work, it is possible to show that the function
p 7→ θE(p), whenever it exists, is a bounded harmonic function in a suitable weak sense.

Finally, we have the analog of Theorem 3.3.4.
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Theorem 3.6.16. Let (X, d, µ) be a proper RCD(K,N) space with µ(X) = +∞, N < +∞,
essential dimension equal to n and let s◦ ∈ (0, 1). Then for every u ∈ Hs◦/2(X) ∩ L∞(X) with
bounded support there holds

lim
s→0+

1

2
[u]2Hs/2(X) = ∥u∥2L2(X).

Proof. The proof is similar to the smooth case; we just need to handle the computations
more carefully. We advise the reader to first see the proof in the smooth case of Theorem
3.3.4.

By Proposition 3.6.21 (which also holds for RCD spaces, see Remark 3.6.22) for µ-a.e.
x ∈ X the integral in (−∆)

s/2
Si u is absolutely convergent. Fix x ∈ X in this full-measure

set and R > 0 such that supp(u) ⊆ BR(x). Now we prove that, as s → 0+, (−∆)
s/2
Si u → u

µ-a.e. with the same strategy of the smooth case. Take also x ∈ X to be a regular point,
we have

(−∆)
s/2
Si u(x) =

ˆ
BR(x)

(u(x)− u(y))Ks(x, y) dµ(y) + u(x)

ˆ
X\BR(x)

Ks(x, y) dµ(y)

and we are left to prove that the first term goes to zero as s → 0+, as the second one in
the limit is precisely u(x). Now fix ρ≪ 1 and let us split the first integral as follows∣∣∣∣ ˆ

BR(x)

(u(x)− u(y))Ks(x, y) dµ(y)

∣∣∣∣ = ˆ
Bρ(x)

|u(x)− u(y)|Ks(x, y) dµ(y)

+

ˆ
BR(x)\Bρ(x)

|u(x)− u(y)|Ks(x, y) dµ(y).

For the first integral, we can apply Proposition 3.6.13 to obtain

ˆ
Bρ(x)

|u(x)− u(y)|Ks(x, y) dµ(y) ≤ Cs

ˆ
Bρ(x)

|u(x)− u(y)|
d(x, y)n+s

dµ(y) + os(1). (3.6.10)

Applying Hölder inequality as in the smooth case (take s small so that 2s < s0) we now
get

ˆ
Bρ(x)

|u(x)− u(y)|
d(x, y)n+s

dµ(y) ≤

(ˆ
Bρ(x)

(u(x)− u(y))2

d(x, y)n+s◦
dµ(y)

)1/2(ˆ
Bρ(x)

1

d(x, y)n+2s−s◦
dµ(y)

)1/2

and conclude in the same way that taking the limit as s → 0+ in (3.6.10) gives zero. For
the second term, we just use the fact that Ks(x, ·) goes to zero locally uniformly away from
x together with dominated convergence. Therefore we have proved that (−∆)

s/2
Si u → u

µ-a.e. as s → 0+. To establish the seminorms’ convergence, we exploit Corollary 3.6.25,
which also holds in this non-smooth setting with the same proof. To conclude we just
need to prove that (−∆)

s/2
Si u ⇀ u weakly in L2(µ): this is however apparent because of

the equiboundedness of ∥(−∆)
s/2
Si u∥L2(µ) given by the estimate (3.6.12).

Thanks to the previous results we would be in the position of stating and proving
(which we won’t do since the proofs are exactly the same as in the smooth case) the the-
orems regarding the asymptotics of the fractional perimeter Theorem 1.2.7 and Theorem
1.2.5, also in this non-smooth setting.
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3.6.1 On the existence/nonexistence of θE(·) at different points.

Let (M, g) be a complete Riemannian manifold with infinite volume and E ⊂ M . As we
have proved in Lemma 3.5.3 if M has the L∞ − Liouville property and θE(p) exists for
some p ∈ M then it exists for all p ∈ M and the two values coincide. Let us stress that,
on manifolds with L∞ − Liouville property, the limit does not need to exist, but if it does
not exist at some point, then it does not exist everywhere. For example, even on Rn in
[DFPV13, Example 2.8], the authors exhibit a set for which the limit θE(x) does not exist
at every point x ∈ Rn.

On the other hand, on a general M without the L∞ − Liouville property, we believe
that θE(·) could exist for some p ∈ M and fail to exist for some q ̸= p. Let ΘE,s(·) defined
as in (3.3.2) so that θE(p) = lims→0+ ΘE,s, if the limit exists. It can be proved with the
Li-Yau Harnack inequality [Li12, Corollary 12.3] that if the limit in θE(p) does not exist
and

lim sup
s→0+

ΘE,s(p)− lim inf
s→0+

ΘE,s(p) = δ > 0 ,

then the limit still does not exist for every q ∈ BCδ(p), where C > 0 is a constant that de-
pends onM . But in this estimate the lower bound for lim sups→0+ ΘE,s(q)−lim infs→0+ ΘE,s(q)
tends to 0 as q approaches ∂BCδ(p). Without further information in M , we do not see any
reason why the limit should not exist at some point outside BCδ(p).

3.6.2 Heat kernel estimates and Hs(M) spaces.

Here (M, g) denotes a complete, connected Riemannian manifold. First, we present a
simple interpolation inequality for Hs/2(M) spaces.

This inequality is known in the case of M = Rn or M = Ω ⊂ Rn for fractional Sobolev
spaces W s,p, also when p ̸= 2. Here, we carry on a structural proof using a few properties
of the heat kernel, which gives the interpolation inequality on general ambient spaces.

Lemma 3.6.17. Let u ∈ Hσ(M) for some σ ∈ (0, 1), and let 0 < s < σ < 1. Then u ∈ Hs(M)
and the following inequality holds

[u]Hs(M) ≤ C∥u∥1−s/σ

L2(M)[u]
s/σ
Hσ(M).

for some absolute constant C > 0.

Proof. We have

|Γ(−s)|[u]2Hs(M) =

¨
M×M

(u(x)− u(y))2
ˆ ∞

0

HM(x, y, t)
dt

t1+s
dµ(x) dµ(y)

≤
¨

M×M

(u(x)− u(y))2
ˆ ξ

0

HM(x, y, t)
dt

t1+s
dµ(x) dµ(y)

+

¨
M×M

(u(x)− u(y))2
ˆ ∞

ξ

HM(x, y, t)
dt

t1+s
dµ(x) dµ(y)

where ξ ∈ (0,∞) will be chosen at the end. Note that for all t ∈ (0, ξ) we have (ξ/t)1+s ≤
(ξ/t)1+σ so that we can estimate from above the first integral of the previous inequality
with

ξσ−s

¨
M×M

(u(x)− u(y))2
ˆ ξ

0

HM(x, y, t)
dt

t1+σ
dµ(x) dµ(y) ≤ ξσ−s|Γ(−σ)|[u]2Hσ(M).



3.6. EXTENSION TO RCD SPACES 67

The symmetry of the heat kernel and the fact that M(t, y) ≤ 1, for all y ∈ M , together
imply that the second integral can be bounded by

¨
M×M

(u(x)− u(y))2
ˆ ∞

ξ

HM(x, y, t)
dt

t1+s
dµ(x) dµ(y) ≤ 4

sξs
∥u∥2L2(M).

These two inequalities lead to

|Γ(−s)|[u]2Hs(M) ≤ ξσ−s|Γ(−σ)|[u]2Hσ(M) +
4

sξs
∥u∥2L2(M).

Optimizing the right-hand side in ξ gives that the optimal value is

ξ =

(
4∥u∥2L2(M)

(σ − s)|Γ(−σ)|[u]2Hσ(M)

)1/σ

.

Putting everything together gives

|Γ(−s)|[u]2Hs(M) ≤
C

s
∥u∥2(1−s/σ)

L2(M) [u]
2s/σ
Hσ(M) ,

and this implies
[u]Hs(M) ≤ C∥u∥1−s/σ

L2(M)[u]
s/σ
Hσ(M) ,

as desired.

Lemma 3.6.18 ([CFSS23]). Let (Mn, g) be a complete n-dimensional Riemannian manifold and
let BR(p) ⊂M . Then

et∆(χM\BR(p))(p) =

ˆ
M\BR(p)

HM(x, p, t) dµ(x) ≤ Ce−c/t ,

for some C, c > 0 depending on R and the geometry of M in BR(p).

Proof. This is essentially [CFSS23, Lemma 2.9]. Indeed, in [CFSS23, Lemma 2.9] the au-
thors prove that if (M, g) is a complete Riemannian manifold and Br(p) ⊂ M is a ball
diffeomorphic to Br(0) ⊂ TpM with metric coefficients gij (say, in normal coordinates)
uniformly close to δij , then

ˆ
M\Br(p)

HM(x, p, t) dµ(x) ≤ Ce−c r2/t ,

for some C, c > 0 dimensional. Then, taking r ≪ 1 very small and writing
ˆ
M\BR(p)

HM(x, p, t) dµ(x) ≤
ˆ
M\Br(p)

HM(x, p, t) dµ(x)

allows to bound the desired integral.

Now we present the proof of Lemma 3.3.3, that we needed to prove the asymptotics
of the full Hs/2(M) seminorm of Theorem 3.3.4.
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Proof of Lemma 3.3.3. Let φ−1 : B1(p) → Rn be the inverse of the exponential map at
p. Take η ∈ C∞

c (B4/5(0)) with χB2/5(0) ≤ η ≤ χB4/5(0) and let g′ij := gijη + (1 − η)δij .
This is a metric on Rn with g′ij = gij in B2/5(0). Denote by Ks,K′

s the singular ker-
nels of (M, g) and M ′ := (Rn, g′) respectively. Let Λ := supx∈B1/5(p)

HM(x, x, 1) and
Λ′ := supx∈B1/5(0)

HM ′(x, x, 1). Then, by [CFSS23, Lemma 2.17] applied to the Rieman-
nian manifolds (M, g) and (Rn, g′) we have, for x, y ∈ B1/5(0)∣∣Ks(φ(x), φ(y))−K′

s(x, y)
∣∣ ≤ s/2

Γ(1− s/2)

ˆ ∞

0

∣∣HM(φ(x), φ(y), t)−HM ′(x, y, t)
∣∣ dt

t1+s/2

≤ Cs(2− s)

ˆ 1

0

∣∣HM(φ(x), φ(y), t)−HM ′(x, y, t)
∣∣ dt

t1+s/2

+ Cs(2− s)

ˆ 1/s

1

∣∣HM(φ(x), φ(y), t)−HM ′(x, y, t)
∣∣ dt

t1+s/2

+ Cs(2− s)

ˆ ∞

1/s

∣∣HM(φ(x), φ(y), t)−HM ′(x, y, t)
∣∣ dt

t1+s/2

:= Cs(2− s)
[
I1 + I2 + I3

]
.

By [CFSS23, Lemma 2.17] there holds

I1 =

ˆ 1

0

∣∣HM(φ(x), φ(y), t)−HM ′(x, y, t)
∣∣ dt

t1+s/2
≤ C

ˆ 1

0

e−c/t dt

t1+s/2
≤ C ,

for some dimensional C = C(n) > 0. Regarding the second integral

I2 ≤
ˆ 1/s

1

(Λ + Λ′)
dt

t1+s/2
= (Λ + Λ′)

1− ss/2

s/2
,

and lastly

I3 =

ˆ ∞

1/s

∣∣HM(φ(x), φ(y), t)−HM ′(x, y, t)
∣∣ dt

t1+s/2

≤ ss/2
ˆ ∞

1

[
HM(φ(x), φ(y), ξ/s) +HM ′(x, y, ξ/s)

]
dξ

ξ1+s/2
= os(1) → 0

as s → 0+, since both M and M ′ have infinite volume, and thus, their heat kernel tends
to zero as t→ +∞ (see Lemma 3.2.6). Hence as s→ 0+∣∣Ks(φ(x), φ(y))−K′

s(x, y)
∣∣ ≤ Cs+ C(Λ + Λ′)(1− ss/2) + os(1) = os(1) ,

and note that this estimate is uniform in x, y ∈ B1/5(0). This follows, for example, from
the parabolic Harnack inequality since one can locally estimate the supremum ofHM and
HM ′ with the L1 norm at later times; see the end of the proof of Lemma 3.2.6. Then

lim
s→0+

sup
x,y∈B1/8(p)

|Ks(x, y)−K′
s(x, y)| = 0 .

Lastly, by [CFSS23, Lemma 2.5] there exists dimensional constants c, C > 0 such that

c
βn,s

d(x, y)n+s
≤ K′

s(x, y) ≤ C
βn,s

d(x, y)n+s
,

and this concludes the proof.
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3.6.3 On the equivalence and well-posedness of different fractional
Laplacians.

In this subsection we shall prove some results concerning the equivalence between dif-
ferent definitions of the fractional Laplacian, and the fractional Sobolev seminorms on
(possibly weighted) Riemannian manifolds.

Next we want to show that the fractional laplacian defined with the heat semigroup
(−∆)

s/2
B and the one defined via the singular integral (−∆)

s/2
Si coincide. Note that the two

following propositions do not hold whenM is not stochastically complete. Indeed, using
definition (3.1.4) gives (−∆)

s/2
Si (1) ≡ 0, while if M is not stochastically complete equation

(3.1.2) gives (−∆)
s/2
B (1) ̸= 0.

Proposition 3.6.19. Let (M, g) be a complete, stochastically complete Riemannian manifold, and
let u ∈ C∞

c (M). Then:

(i) For s < 1 the integral in (−∆)
s/2
Si u is absolutely convergent and the principal value is not

needed.

(ii) The singular integral (−∆)
s/2
Si u (defined in (3.1.4)) and the Bochner (−∆)

s/2
B u (defined in

(3.1.2)) definition coincide.

Proof. For what concerns the absolute convergence for s ∈ (0, 1), we have
ˆ
M

(u(x)− u(y))Ks(x, y) dµ(y) =

ˆ
Br(x)

(. . . ) dµ(y) +

ˆ
M\Br(x)

(. . . ) dµ(y) =: I1 + I2.

For r small, arguing exactly as in the proof of Theorem 3.3.4

I1 ≤ C

ˆ
Br(x)

1

d(x, y)n+s−1
dµ(y) ≤ C

ˆ r

0

1

ρs
dρ < +∞ .

On the other hand, for the second integral

I2 ≤ 2∥u∥L∞

ˆ
M\Br(x)

Ks(x, y) dµ(y) ,

and thanks to Lemma 3.6.18 and Fubiniˆ
M\Br(x)

Ks(x, y) dµ(y) =

ˆ ∞

0

1

t1+s/2

ˆ
M\Br(x)

HM(x, y, t) dµ(y) dt

≤ C

ˆ 1

0

e−c/t dt

t1+s/2
+

ˆ ∞

1

1

t1+s/2
dt < +∞.

This concludes the proof of (i).

Now, let us define

J(t) :=
et∆u(x)− u(x)

t1+s/2
=

1

t1+s/2

ˆ
M

HM(x, y, t)(u(y)− u(x)) dµ(y),

where the second equality is due to the stochastical completeness. Note that J ∈ L1(0,+∞)
since |et∆u(x)−u(x)| ≤ Ct, where the constantC depends on ∥∆u∥L∞ . We can now define

Jk(t) :=
1

t1+s/2

ˆ
M\B1/k(x)

HM(x, y, t)(u(y)− u(x)) dµ(y).
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and observe that Jk(t) → J(t) for all t ∈ (0,∞). Now if t ≥ 1 (estimating the mass of the
heat kernel by 1) we get Jk(t) ≤ 2∥u∥L∞/t1+s/2, while by [CFSS23, Lemma 2.11] we have∣∣J(t)− Jk(t)

∣∣ ≤ 1

t1+s/2

ˆ
B1/k(x)

HM(x, y, t)|u(y)− u(x)| dµ(y)

≤ C

t1+s/2+n/2

ˆ
B1/k(x)

e−d2(x,y)/5td(x, y) dµ(y) .

Applying Coarea formula and using the fact that Per(Br(x)) ≤ Crn−1 if k is big we get

∣∣J(t)− Jk(t)
∣∣ ≤ C

t1+s/2+n/s

ˆ 1/k

0

e−r2/5trndr =
C

ts/2

ˆ 1/(5tk2)

0

e−zzn/2−1dz ≤ C

ts/2
.

Therefore if t ≥ 1 we have Jk(t) ≤ C/t1+s/2 ∈ L1(1,+∞) while if t ≤ 1 we have Jk(t) ≤
C/ts/2 + J(t) ∈ L1(0, 1). Hence by dominated convergence we can write

(−∆)
s/2
B u(x) =

ˆ ∞

0

J(t) dt = lim
k→∞

ˆ ∞

0

ˆ
M\B1/k(x)

(u(y)− u(x))HM(x, y, t)
dt

t1+s/2
dµ(y).

Now for any k ∈ N fixed, by Lemma (3.6.18) and the fact that u is bounded, we get
ˆ ∞

0

ˆ
M\B1/k(x)

|u(y)−u(x)|HM(x, y, t)
dt

t1+s/2
≤ 2∥u∥L∞

ˆ 1

0

e−c/t dt

t1+s/2
+2∥u∥L∞

ˆ ∞

1

dt

t1+s/2
< +∞.

Therefore we can apply Fubini and infer

(−∆)
s/2
B u(x) = lim

k→∞

ˆ
M\B1/k(x)

ˆ ∞

0

(u(y)− u(x))HM(x, y, t)
dt

t1+s/2
dµ(y)

= P.V.

ˆ
M

(u(y)− u(x))Ks(x, y) dµ(y).

Remark 3.6.20. One can note that the proof above of the absolute convergence of (−∆)
s/2
Si u

for s ∈ (0, 1) actually shows that the integral is absolutely convergent if u ∈ Cα
loc(M) ∩

L∞(M) for some α > s.

Regarding the following two results, we couldn’t find any proof in the case of an
ambient Riemannian manifold (M, g), even though they appear to be well-known in the
community in the case M = Rn or a domain M = Ω ⊂ Rn. For example, a proof that
Dom((−∆Ω)

s/2
Spec) = Hs(Ω) for the Dirichlet Laplacian on Ω ⊂ Rn can be found in [BSV15,

Section 3.1.3], but it heavily uses the discreteness of the spectrum and interpolation the-
ory.

Our results are not sharp, in particular, we believe that Proposition 3.6.21 and 3.6.23
hold also for s = σ since this is the case for domains in Rn. Here we focus on providing
structural (and short) proofs that apply verbatim to the case of any weighted manifold,
and we avoid using any local Euclidean-like structure of M .

Proposition 3.6.21. Let (M, g) be a stochastically complete Riemannian manifold, σ ∈ (0, 1)
and u ∈ Hσ(M) (as defined in Definition 3.1.1). Then, for every s < σ the singular integral
(−∆)

s/2
Si u (defined in (3.1.4)) and the Bochner (−∆)

s/2
B u (defined in (3.1.2)) definition coincide

a.e. Moreover (−∆)
s/2
B u = (−∆)

s/2
Si u ∈ L2(M).
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Proof. Let u ∈ Hσ(M) and x ∈ M . Since M is stochastically complete, if we could ex-
change the order of integration we would have

(−∆)
s/2
B u(x) =

1

Γ(−s/2)

ˆ ∞

0

(et∆u(x)− u(x))
dt

t1+s/2

=
1

Γ(−s/2)

ˆ ∞

0

(ˆ
M

HM(x, y, t)(u(y)− u(x)) dµ(y)

)
dt

t1+s/2

=

ˆ
M

(u(y)− u(x))Ks(x, y) dµ(y) = (−∆)
s/2
Si u(x) .

Now we shall justify the steps above, showing that the integral is absolutely convergent.
Note that this will also justify the last equality, since we have defined (−∆)

s/2
Si with the

Cauchy principal value. In particular, we show that

ˆ
M

(ˆ
M

|u(x)− u(y)|Ks(x, y) dµ(y)

)2

dµ(x) < +∞ .

This will prove at the same time that the integral above is absolutely convergent for a.e.
x ∈M and that (−∆)

s/2
Si u ∈ L2(M). Let us call

I(t) :=

ˆ
M

|u(x)− u(y)|HM(x, y, t) dµ(y) ,

and denote by C a constant that depends at most on σ.

Note that, by Jensen’s inequality

ˆ ∞

0

I(t)2
dt

t1+σ
=

ˆ ∞

0

(ˆ
M

|u(x)− u(y)|HM(x, y, t) dµ(y)

)2
dt

t1+σ

≤
ˆ ∞

0

ˆ
M

|u(x)− u(y)|2HM(x, y, t) dµ(y)
dt

t1+σ

= C

ˆ
M

|u(x)− u(y)|2K2σ(x, y) dµ(y) . (3.6.11)

Write
ˆ
M

( ˆ
M

|u(x)− u(y)|Ks(x, y) dµ(y)

)2

dµ(x)

= Cs2
ˆ
M

(ˆ ∞

0

I(t)
dt

t1+s/2

)2

dµ

≤ Cs2
ˆ
M

(ˆ 1

0

I(t)
dt

t1+s/2

)2

dµ+ Cs2
ˆ
M

(ˆ ∞

1

I(t)
dt

t1+s/2

)2

dµ .

For the first integral, since s < σ, by Hölder’s inequality and (3.6.11) we have

ˆ
M

(ˆ 1

0

I(t)
dt

t1+s/2

)2

dµ ≤
ˆ
M

(ˆ 1

0

I(t)2
dt

t1+σ

)(ˆ 1

0

dt

t1−σ+s

)
dµ ≤ C[u]2Hσ(M) < +∞.

For the second integral, let us first renormalize the measure ν := C dt/t1+s/2 in a way that
it becomes a probability measure on [1,∞). Then, by Jensen again (applied two times: to
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dν(t) and then HM(x, y, t) dµ(y))
ˆ
M

(ˆ ∞

1

I(t)
dt

t1+s/2

)2

dµ ≤ C

s2

¨
M×M

ˆ ∞

1

|u(x)− u(y)|2HM(x, y, t) dν(t) dµ(y) dµ(x)

≤ 4C

s2

¨
M×M

ˆ ∞

1

|u(x)|2HM(x, y, t) dν(t) dµ(y) dµ(x)

≤ 4C

s2
∥u∥2L2(M) < +∞ .

Hence, we have proved

∥(−∆)
s/2
Si u∥

2
L2(M) ≤

ˆ
M

(ˆ
M

|u(x)− u(y)|Ks(x, y) dµ(y)

)2

dµ(x)

≤ C∥u∥2L2(M) + Cs2∥u∥2Hσ(M), (3.6.12)

and this concludes the proof.

Remark 3.6.22. Note that the proof of Proposition 3.6.21 applies verbatim to the case of
RCD(K,N) spaces, since every RCD(K,N) space is stochastically complete. We will use
this fact in the proof of Theorem 3.6.16.

Next, we address the equivalence of the spectral fractional Laplacian (−∆)
s/2
Spec with

the other definitions. We refer to [Gri09] and [EBGK+22, Section 2.6] and the references
therein for an introduction of the spectral theory of the fractional Laplacian on general
spaces.

LetEλ be the spectral resolvent of (minus) the Laplacian on (M, g). Then, for s ∈ (0, 2)
in the classical sense of spectral theory

Dom((−∆)
s/2
Spec) :=

{
u ∈ L2(M) :

ˆ
σ(−∆)

λs d⟨Eλu, u⟩ < +∞
}
,

and for u ∈ Dom((−∆)
s/2
Spec)

(−∆)
s/2
Specu :=

ˆ
σ(−∆)

λs/2d⟨Eλu, ·⟩ . (3.6.13)

Proposition 3.6.23. Let (M, g) be a stochastically complete Riemannian manifold, σ ∈ (0, 1)

and s < σ. Then Hσ(M) ⊆ Dom((−∆)
s/2
Spec).

Proof. Let u ∈ Hσ(M), and let

φ(λ) := λs/2 =
1

Γ(−s/2)

ˆ ∞

0

(e−λt − 1)
dt

t1+s/2
.

Since u ∈ L2(M), by standard spectral theory (see [Gri09] for example)
ˆ ∞

0

λsd⟨Eλu, u⟩ =
ˆ ∞

0

|φ(λ)|2d⟨Eλu, u⟩ = ∥φ(−∆)u∥2L2(M)

=

∥∥∥∥ˆ ∞

0

(et∆u− u)
dt

t1+s/2

∥∥∥∥2
L2(M)

= ∥(−∆)
s/2
B u∥2L2(M) = ∥(−∆)

s/2
Si u∥

2
L2(M) < +∞ ,

where we have used that by Proposition 3.6.21 (−∆)
s/2
B u = (−∆)

s/2
Si u ∈ L2(M).
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Proposition 3.6.24. Let u ∈ Dom((−∆)
s/2
Spec). Then

(−∆)
s/2
B u :=

1

Γ(−s/2)

ˆ ∞

0

(et∆u− u)
dt

t1+s/2
=

ˆ
σ(−∆)

λs/2d⟨Eλu, ·⟩ =: (−∆)
s/2
Specu ,

where the equality is in duality with Dom((−∆)
s/2
Spec).

Proof. We follow [CS16, Lemma 2.2] which deals with the analogous proposition in the
case of discrete spectrum in a domain Ω ⊂ Rn. Recall the numerical formula

λs/2 =
1

Γ(−s/2)

ˆ ∞

0

(e−λt − 1)
dt

t1+s/2
,

valid for λ > 0, 0 < s < 2. Let ψ ∈ Dom((−∆)
s/2
Spec), and write ψ =

´
σ(−∆)

dEλ⟨ψ, ·⟩. Then
ˆ
σ(−∆)

λs/2d⟨Eλu, ψ⟩ =
1

Γ(−s/2)

ˆ
σ(−∆)

ˆ ∞

0

(e−λt − 1)
dt

t1+s/2
d⟨Eλu, ψ⟩

=
1

Γ(−s/2)

ˆ ∞

0

(ˆ
σ(−∆)

(e−λt − 1)d⟨Eλu, ψ⟩
)

dt

t1+s/2

=
1

Γ(−s/2)

ˆ ∞

0

(
⟨et∆u, ψ⟩ − ⟨u, ψ⟩

) dt

t1+s/2
,

where the second-last inequality follows by Fubini’s theorem since u, ψ ∈ Dom((−∆)
s/2
Spec).

Corollary 3.6.25. Let (M, g) be a stochastically complete Riemannian manifold, σ ∈ (0, 1),
s < σ and u ∈ Hσ(M). Then

1

2
[u]2Hs/2(M) =

ˆ
M

u(−∆)
s/2
Si u dµ =

ˆ ∞

0

λs/2d⟨Eλu, u⟩ .

Proof. The first equality is (3.3.8), and the second equality is a direct consequence of
Proposition 3.6.21, Proposition 3.6.23 and Proposition 3.6.24.

3.6.4 Manifolds with nonnegative Ricci curvature.

We recall a theorem of Yau which gives a lower bound on the growth of the volume of
geodesic balls under the nonnegative Ricci curvature assumption. Note that the same
holds with the same proof on CD(K,N) spaces.

Theorem 3.6.26. Let (M, g) be a complete non-compact Riemannian manifold with RicM ≥ 0.
Then, there exists a constant C = C(n) > 0 such that for every x ∈M and λ > 0

Vx(rλ) ≥ CrVx(λ), ∀ r > 1 .

Proof. By scaling invariance of the hypothesis RicM ≥ 0 one can assume λ = 1. Then, the
result is [Li12, Theorem 2.5].

Next, we present here a result concerning the growth of the singular kernel Ks in the
case of nonnegative Ricci curvature. We will not use this result anywhere but we believe
it can be interesting per se. For example, it implies that on cylinders M = Sn−k × Rk

(with their product metric) the singular kernel Ks(x, y) decays like 1/d(x, y)k+s and not
1/d(x, y)n+s for large distances.
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Lemma 3.6.27. Let (M, g) be an n-dimensional Riemannian manifold with RicM ≥ 0 and s ∈
(0, 2). Then, there exists dimensional constants 0 < c < C such that

c
s(2− s)

rsµ(Br(x))
≤ Ks(x, y) ≤ C

s(2− s)

rsµ(Br(x))

with r = d(x, y) for all x, y ∈M .

Proof. In the definition of the singular kernel Ks we first perform the change of variables
r2t = k with r = d(x, y) so that we obtain

Ks(x, y) =
r−s

|Γ(−s/2)|

ˆ ∞

0

HM(x, y, r2k)
dk

k1+s/2
.

Now we employ the Gaussian estimates from above to get

Ks(x, y) ≤
Cs(2− s)

rs

[ˆ 1

0

1

µ(Br
√
k(x))

e−1/5k dk

k1+s/2
+

ˆ ∞

1

1

µ(Br
√
k(x))

e−1/5k dk

k1+s/2

]
=: I1+I2.

Using Bishop-Gromov’s inequality we get

I1 ≤
Cs(2− s)

µ(Br(x))

ˆ 1

0

e−1/5k

kn/2+1+s/2
dk ≤ Cs(2− s)

µ(Br(x))
,

while for k ∈ (1,∞) we can use Theorem 3.6.26 to write

I2 ≤
Cs(2− s)

µ(Br(x))

ˆ ∞

1

e−1/5k dk

k3/2+s/2
≤ Cs(2− s)

µ(Br(x))

and this concludes the upper estimate. For the one from below we again use the Gaussian
estimates to infer

Ks(x, y) ≥
cs(2− s)

rs

[ˆ 1

0

1

µ(Br
√
k(x))

e−1/3k dk

k1+s/2
+

ˆ ∞

1

1

µ(Br
√
k(x))

e−1/3k dk

k1+s/2

]
=: I3+I4.

We now get

I3 ≥
cs(2− s)

µ(Br(x))

ˆ 1

0

e−1/3k dk

k1+s/2
=
cs(2− s)

µ(Br(x))
.

Since I4 ≥ 0 we infer the lower bound as well.

Remark 3.6.28. If we assume AVR(M) = limr→∞
µ(Br(x))
ωnrn

= θ > 0 then we have the more
Euclidean-like bounds

cs(2− s)

θrn+s
≤ Ks(x, y) ≤

Cs(2− s)

θrn+s
.

Note moreover that the same proof works in the singular setting of RCD(0, N) spaces.

The following is a well-known result concerning the regularization of bounded func-
tions via the heat flow whose proof is based on Bakry-Emery inequality. Here we shall
present a direct proof exploiting Gaussian estimates, Yau’s inequality and the following
fact

Per(Br(x))

µ(Br(x))
≤ n

r
∀r > 0 , (3.6.14)

which is an easy consequence of the Bishop-Gromov theorem. We stress that our proof
is not fully general since it does not cover the case of RCD(0,∞) spaces (our inequality
is not dimension free).
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Proposition 3.6.29 (L∞ − Lip regularization). Let (M, g) be a geodesically complete Rieman-
nian manifold with RicM ≥ 0, then for every u ∈ L∞(µ) we have Lip(et∆u) ≤ C/

√
t for some

C = C(n) > 0, for all t > 0.

Proof. Fix any u ∈ L∞(µ) and p, q ∈M . Then we have

|HM(x, p, t)−HM(x, q, t)| ≤ d(p, q)

ˆ 1

0

|∇HM(x, γs, t)|ds ∀x ∈M, ∀t > 0

where γ is a constant speed geodesic joining p and q. Now we have

|et∆u(p)− et∆u(q)| ≤ d(p, q)∥u∥L∞

ˆ 1

0

ˆ
M

|∇HM(x, γs, t)| dµ(x) dt

which exploiting the Gaussian estimates for the gradient (3.6.4) and the Coarea formula
becomes

|et∆u(p)− et∆u(q)| ≤ C√
t
d(p, q)∥u∥L∞

ˆ 1

0

ˆ ∞

0

e−d2(x,γs)/5t
Per(Br(γs))

µ(B√
t(γs))

drds.

Now we can multiply and divide the integrand by µ(Br(γs)), use Coarea formula and
apply (3.6.14) to get

|et∆u(p)− et∆u(q)| ≤ Cn√
t
d(p, q)∥u∥L∞

ˆ 1

0

ˆ ∞

0

e−r2/5t µ(Br(γs))

µ(B√
t(γs))

1

r
drds.

We now set r2/5t = z and we get, applying Theorem 3.6.26 and relabeling constants,

|et∆u(p)− et∆u(q)| ≤ Cn√
t
d(p, q)∥u∥L∞

ˆ ∞

0

e−z

√
z
dz,

that is the thesis.

Finally let us observe that on a Riemannian manifold (M, g) (or actually RCD(K,N)
space) with Ricg ≥ −K we have that bounded harmonic functions have uniformly bounded
Lipschitz constant, indeed we have the following

Lemma 3.6.30. Let (M, g) be a Riemannian manifold with Ric ≥ −K with K ≥ 0. Then any
bounded harmonic function is globally Lipschitz continuous.

Proof. Let u :M → R be a bounded harmonic function, then we have et∆u = u. Therefore
by the L∞ − Lip regularization of the heat flow we get, for all t ∈ (0,∞)

∥∇u∥∞ = ∥∇et∆u∥∞ ≤ e2Kt

√
t
∥u∥∞, (3.6.15)

meaning that u is Lipschitz continuous. Optimizing in t the inequality (3.6.15) and get
∥∇u∥∞ = Lip(u) ≤ 2

√
eK∥u∥∞, which is a dimension free inequality.





Chapter 4

Regularity of harmonic maps

4.1 Introduction and Notation

4.1.1 The source: RCD(K,N) spaces

In this section we shall introduce the notion of RCD space. If we assume a metric measure
space (X, dX,m) to be infinitesimally Hilbertian (in the sense of Definition 1.4.15), it is
possible to give a meaning to the object

ˆ
X

⟨∇φ,∇f⟩ dmX

by setting ˆ
X

⟨∇φ,∇f⟩ dmX := Ch(f + φ)− Ch(f)− Ch(φ).

With the latter object we are able then to speak about ’Laplacian of a function’: one of the
ways to introduce such object is the following.

Definition 4.1.1 (L2 Laplacian). We say that f : X → R inW 1,2(X) is such that f ∈ D(∆) ⊂
L2(mX) if there exists g ∈ L2(mX) such that

−
ˆ
X

⟨∇φ,∇f⟩ dmX =

ˆ
X

gφ dmX

for all φ ∈ W 1,2(X). We shall set ∆f := g.

Definition 4.1.2 (Measure-valued Laplacian). We say that f : X → R in W 1,2
loc (X) has

measure-valued Laplacian in Ω if there exists a Radon measure µ ∈ M(Ω) such that

−
ˆ
X

⟨∇φ,∇f⟩ dmX =

ˆ
X

φ dµ

for all φ ∈ Lipc(Ω), the latter being the space of Lipschitz functions with compact support
inside Ω.

Remark 4.1.3. With a little bit of abuse of notation we shall call ∆f = µ the measure-
valued Laplacian as well. We will do this since if µ ≪ mX with density in L2

loc, then
µ = ∆fmX. Notice also that we are using the term Radon measure to denote what are
more properly called Radon functionals (see [CM20]).

77
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We are now ready to introduce the class of spaces which we will use as source space
for the definition of our harmonic map u. We can introduce RCD(K,N) spaces building
on the tools we have just presented. Following an Eulerian approach it is possible to
characterize them via the Bochner inequality (see [GKO13], [AGS14b], [AGS15], [EKS14],
[AMS15], [CM16]). For a more detailed discussion on such notions and for the interplay
with optimal transport we refer to the recent [Gig23a] and [Amb18].

Definition 4.1.4 (RCD(K,N) space). We say that a metric measure space (X, dX,mX) is an
RCD(K,N) space if the following conditions are met:

1. There exists c1, c2 ≥ 0 such that for some x ∈ X we have

m(Br(x)) ≤ C1e
c2r2 .

2. W 1,2(X) is a Hilbert space.

3. If f ∈ W 1,2(X) is such that | df | ≤ 1 m-a.e., then f has a 1-Lipschitz representative.

4. For every f ∈ D(∆) with ∆f ∈ W 1,2(X) and g ∈ L∞(m) ∩ D(∆) the following
Bochner inequality holds

ˆ
X

| df |2

2
∆g dm ≥

ˆ
X

g

(
K| df |2 + (∆f)2

N
+ ⟨∇f,∇∆f⟩

)
dm.

The final object we shall introduce is the heat semigroup et∆ : L2(mX) → L2(mX): it
can be introduced as the gradient flow of the Cheeger energy. Therefore we shall call
(et∆f)t≥0 such a gradient flow starting from f ∈ L2(mX) (as in Chapter 3). For an account
of its properties the reader can consult [GP20a]. If the space X is an RCD(K,N) space then
it is possible to consider the EVIK gradient flow of the entropy functional on the space of
probability measures. If we denote with et∆δx the gradient flow of the entropy starting
from a Dirac mass centered at x we have et∆δx ≪ mX and we shall call HX(x, y, t) :=
det∆δx
dmX

(y). It can be proved that et∆f :=
´
X
HX(x, ·, t)f(x) dmX and thatHX(·, ·, t) is Hölder

continuous and satisfies the following Gaussian estimates

c

mX(B√
t(x))

e−d2X(x,y)/3t−C1t ≤ HX(x, y, t) ≤
C

mX(B√
t(x))

Ce−d2X(x,y)/5t+C2t, (4.1.1)

for all x, y ∈ X, t > 0 and for some c, C, C1, C2 > 0. There is also a gradient bound thanks
to the Li-Yau inequality but for the sake of exposition we shall limit ourselves to this
presentation (see Proposition 3.6.2): the interested reader can consult [JLZ16], [Stu94],
[Stu95] and [Stu96] for more information on Gaussian estimates.

Since we are interested in giving a meaning to ”∆f ≥ η” we shall rigorously introduce
such a notion:

Definition 4.1.5 (Weak Laplacian bound). Let (X, dX,m) be a metric measure space and
Ω ⊂ X an open and bounded set. Let η : Ω → R be continuous and bounded. We say that
a function f ∈ W 1,2

loc (Ω) is such that ∆f ≤ η in the weak sense if for all φ ∈ Lip+
c (Ω) (being

Lip+
c (Ω) the subset of Lipc(Ω) made of nonnegative functions) we have

−
ˆ
X

∇f · ∇φ dmX ≤
ˆ
X

φη dmX.
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To introduce another (weaker) notion of Laplacian bounds we need to introduce the
following space

Test∞c (X) :=

{
φ ∈ D(∆) ∩ L∞ : |∇φ| ∈ L∞,∆φ ∈ L∞ ∩W 1,2

}
.

We write Test∞c (Ω) if suppφ ⊂⊂ Ω.

Definition 4.1.6 (Heat flow Laplacian bound). Let (X, dX,mX) be an infinitesimally Hilber-
tian metric measure space and Ω ⊂ X be an open and bounded set. Let f : Ω → R be a
bounded and lower semicontinuous function and let η ∈ Cb(Ω). We say that ∆f ≤ η in
the heat flow sense if

lim sup
t→0

et∆f̃(x)− f̃(x)

t
≤ η(x)

for all x ∈ Ω, where f̃ : X → R is the global extension of f which is set to zero outiside of
Ω.

Finally we recall the classical Laplacian comparison for the distance function from a
point, which in this non-smooth setting has been obtained in [Gig15, Corollary 5.15].

Theorem 4.1.7 (Laplacian comparison). Let (X, dX,mX) be an RCD(K,N) space for some
K ∈ R, N ∈ N and fix x0 ∈ X. Then the map x → d2

X(x0, x) = d2
X,x0

(x) has measure-valued
Laplacian and

∆
d2
X,x0

2
≤ C(N,K, dX,x0(·))mX

in the weak sense. Moreover the same holds for the map x→ dX,x0(x), on X \ {x0}, namely

∆dX,x0|X\{x0} ≤
C(N,K, dX,x0(·))− 1

dX,x0(·)
mX.

4.1.2 The target: CAT(κ) spaces

For what concerns the target space, for our harmonic map we will consider a complete
CAT(κ) space, namely a metric space with sectional curvature bounded above by κ. Let
Mκ be the model space, namely the 2-dimensional connected, simply-connected and com-
plete Riemannian manifold with constant sectional curvature equal to κ. Let us further
denote by dκ the geodesic distance on such a space and with Dκ = diam(Mκ) its diameter,
i.e.

Dκ =

{
π√
κ

if κ > 0

+∞ if κ ≤ 0.

We also set Rκ := Dκ/2. We have the following:

Definition 4.1.8 (CAT(κ) space). Let (Y, dY) be a complete metric space. We say that
(Y, dY) is a CAT(κ) space if it is geodesic and for any triple of points a, b, c ∈ Y such that
dY(a, b) + dY(b, c) + dY(a, c) < 2Dκ and any intermediate point d between b and c there
exist comparison points ā, b̄, c̄, d̄ ∈ Mκ such that dY(a, b) = dκ(ā, b̄), dY(b, c) = dκ(b̄, c̄),
dY(a, c) = dκ(ā, c̄) and

dY(a, d) ≤ dκ(ā, d̄).

We now have a key technical Lemma holding in general CAT(κ) spaces which is
[ZZZ19, Lemma 2.3]: we shall discuss only the case κ = 1 for the sake of exposition.
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Lemma 4.1.9. Let (Y, d) be a CAT(1) space. Take any ordered sequence of points {P,Q,R, S} ⊂
Y with dY(P,Q) + dY(Q,R) + dY(R, S) + dY(S, P ) ≤ 2π and let Qm be the mid-point of the
geodesic joining Q and R (which in this case is unique). Then for any α ∈ [0, 1] and β > 0 we get

1− α

2

(
4 sin2(dQR/2)− 4 sin2(dPS/2)

)
+ 2α sin(dQR/2)

(
2 sin(dQR/2)− 2 sin(dPS/2)

)
≤
[
1− 1− α

2

(
1− 1

β

)]
4 sin2(dPQ/2) + 2 cos(dQR/2)

(
cos(dPQm)− cos(dQQm)

)
(4.1.2)

+

[
1− 1− α

2

(
1− β

)]
4 sin2(dRS/2) + 2 cos(dQR/2)

(
cos(dSQm)− cos(dRQm)

)
.

Following [GT21] (after the seminal work [KS93]) we shall now introduce the Korevaar-
Schoen energy and its main properties, being the main tool we need to speak about har-
monic functions.

Let u ∈ L2(Ω,Y) with Ω ⊆ X open set. We call the 2-energy density of u at scale r
inside Ω the quantity ks2,r[u,Ω] : X → R+, defined as

ks2,r[u](x) :=


( ffl

Br(x)

d2Y(u(x),u(y))

r2
dm(x)

) 1
2

if Br(x) ⊂ U

0 otherwise.

(4.1.3)

Moreover we introduce the total energy of u in Ω as

E2[u,Ω] := lim inf
r→0

ˆ
Ω

ks2,r[u,Ω]
2(x) dm(x). (4.1.4)

We can now define Sobolev spaces as follows

Definition 4.1.10 (Korevaar-Schoen space and harmonic maps). We say that a function
u ∈ L2(Ω,Y) is in KS2(Ω,Y) if E2[u] < +∞. We say that u is harmonic in Ω if u =
argminv∈KS1,2(Ω,Y) E2[v,Ω].

Existence of minimizers for E2[·,Ω] has been established in the recent [Sak23] (see
Theorem 1.2 therein) under the condition that the image of such maps is contained in a
sufficiently small ball of the target space. For maps u : X → Y with source space which is
a strongly rectifiable metric measure space (which include the class of RCD(K,N) spaces)
and target which is a complete metric space it is possible to speak about differential
mdx(u) in the sense introduced by Kirchheim in [Kir94] in the Euclidean setting and
adapted by the authors in [GT21] to the metric setting. We shall assume the reader to be
familiar with these concepts as we are going to recall only part of [GT21, Theorem 3.13],
stating it for RCD spaces instead of the more general class of strongly rectifiable metric
measure spaces.

Theorem 4.1.11. Let (X, dX) be an RCD(K,N) space and (Y, dY) a complete metric space. Then
for every u ∈ KS1,2(X,Y) there exists a function ep[u] ∈ L2(X), called p-energy density of u,
such that

ks2,r[u] → e2[u] m− a.e. and in L2 as r → 0.

In particular the lim inf in (4.1.4) is actually a limit.
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We shall now present a representation formula of the energy density e2[u] in terms
of the Hilbert-Schmidt norm of the differential | du|HS: we will not discuss the meaning
of the object du, referring to [GPS20] for the details. What follows is [GT21, Proposition
6.7].

Theorem 4.1.12. Let (X, dX,mX) be an RCD(K,N) space and Ω ⊂ X an open set. Let (Y, dY)
be a CAT(κ) space and u ∈ KS1,2(Ω,Y), then for its energy density we have the following
representation formula

e2[u] = (d+ 2)−
1
2 | du|HS. (4.1.5)

Proof. Note that in [GT21] the theorem is stated for X which is a strongly rectifiable space
and Y which is a CAT(0) space. On one hand the proof for the case of CAT(κ) target is the
same of the one for CAT(0) spaces, exploting the universal infinitesimal Hilbertianity of
such spaces (see [DMGPS21]), on the other hand we shall avoid speaking about strongly
rectifiable metric measure spaces since our main results are only stated for RCD(K,N)
spaces.

Finally we have the following definition:

Definition 4.1.13 (λ-convexity). Let (Y, dY) be a complete and geodesic metric space. We
say that a function E : Y → R is λ-convex if for all x, y ∈ Y and for all geodesics γ
connecting x = γ0 and y = γ1 we have

E(γt) ≤ tE(γ1) + (1− t)E(γ0)−
λ

2
t(1− t)d2

Y(γ0, γ1).

4.2 Main results

4.2.1 Hölder regularity of harmonic maps

In this section we will prove Hölder regularity of our harmonic map with values in a
sufficiently small ball of a CAT(κ) space. Note that without this assumption there may
be a ”big” set of discontinuity (singular set), for examples and a detailed discussion one
can consult [Riv95]. Since we can always renormalize the target space in such a way that
it becomes a CAT(1) space, to ease the notation and the computations we shall assume
(Y, dY) to be a CAT(1) space here and in the rest of the work.

In the following we shall prove the convexity of three functions, namely 1− cos(dY,o),
dY,o and d2

Y,o. The proof of the λ convexity of the squared distance is contained [Oht07,
Lemma3.1] and the convexity of the distance dY,o is well-known but we shall prove them
here anyway because they are natural consequences of the convexity of 1− cos(dY,o).

Proposition 4.2.1. Let (Y, dY) be a CAT(1) space and consider Bρ(o) ⊂ Y with ρ < π/2.
Then the distance function dY,o = dY(o, ·) is convex on Bρ(o), d2

Y,o is λ-convex and the function
cos(dY(o, ·)) is λ′-concave, with

λ = 2 cos ρ, λ′ = cos ρ.

Finally dY(·, ·) restricted to Bρ/2(o) is jointly convex.

Proof. We show that the distance from the north pole on S2 is convex on the upper hemi-
sphere. Consider three points N, p, q ∈ S2. Denote with dN(y) := dS2(N, y) the distance
from the north pole for every y ∈ S2 and let γ be the geodesic connecting p and q. By the
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cosine law for the sphere we can consider the triangle whose vertex are p, q and N and
write

cos(f(t)) = cos(tdS2(p, q)) cos(dN(p)) + sin(td(p, q)) sin(dN(p)) sin(θ),

where f(t) = dN(γ(t)) and θ is the angle between γ′(0) and η′(1) (η being the geodesic con-
necting the north pole and the point p). Note that we also used the fact that dS2(p, γ(t)) =
tdS2(p, q). Now differentiate twice the previous identity to get

(cos(f(t)))′′ = −d2
S2(p, q) cos(f(t)) ≤ −d2

S2(γ1, γ0) cos ρ,

whence cos(f(t)) is a λ′-concave function with λ′ = cos(ρ). Now write f = arccos cos(f)
and let us call g(t) := cos(f(t)): we have

d2

dt2
f =

(g′)2g − g′′(1− g2)

(1− g2)
3
2

≥ 0, (4.2.1)

meaning that f is a convex function (we have used that Im(g) ⊆ (0, 1] and g′′ ≤ 0)- this is
fully justified if g ̸= 1, i.e. f ̸= 0, otherwise the argument is justified by slightly moving
the north pole N combined with the stability properties of convexity.

For what concerns the squared distance f 2 just use the product rule for the derivative
to get

d2

dt2
f 2 = 2|f ′|2 + 2ff ′′ ≥ 2ff ′′.

Now plug (4.2.1) into the previous expression to get

d2

dt2
f 2 ≥ 2f

[
(g′)2g − g′′(1− g2)

(1− g2)
3
2

]
≥ −2f

g′′(1− g2)

(1− g2)
3
2

≥ 2d2
Y(p, q) cos ρ

f

sin f
≥ 2d2

S2(p, q) cos ρ,

which is the λ convexity with λ = 2 cos ρ.
Now consider three points x, y ∈ Bρ(o) ⊆ Y and let p, q,N be three comparison

points of x, y, o in S2: by the CAT(1) condition we have dY(γ̃(t), o) ≤ dS2(γ(t), N) (with γ
geodesic joining p and q and with γ̃ geodesic joining x and y and), meaning that

cos(dY(γ̃(t), o)) ≥ cos(dS2(γ(t), N)).

The definition of comparison points together with the previous observation allows to
write

cos(dY(γ̃(t), o)) ≥ t cos(dY(q, o)) + (1− t) cos(dY(p, o)) +
t(1− t)

2
d2
Y(p, q) cos ρ,

which is the sought λ′-concavity with λ′ = cos ρ. Analogous arguments apply for dY(o, ·)
and d2

Y(o, ·).
For the final part of the proof fix x ∈ Bρ/2(o) and notice that for all y ∈ Bρ/2(o) we

must have dY(x, y) < ρ by triangle inequality. Therefore we can use the fact that Bρ(x) is
convex and conclude.

We recall now some lemmas of gradient flow theory on locally CAT(κ)-spaces which
will be useful to prove some Laplacian bounds. Let us start with the following, which is
part of [GN21, Theorem 3.3], to which we also refer for the relevant definitions:

Theorem 4.2.2. Let Y be a locally CAT(κ)-space, E : Y → R ∪ {+∞} a λ-convex and lower
semicontinuous functional. Then, the following hold:
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• Existence

For every y ∈ D(E) there exists a gradient flow trajectory for E starting from y.

• Uniqueness and λ-contraction

For any two gradient flow trajectories (yt), (zt) we have

dY(yt, zt) ≤ e−λ(t−s)dY(ys, zs) ∀t ≥ s ≥ 0. (4.2.2)

Then we have the following a priori estimates for the gradient flow trajectory which
is [GN21, Lemma 3.4], following the ideas contained in [Pet07]:

Lemma 4.2.3. Let Y be locally CAT(κ) and E : Y → R ∪ {+∞} be a λ-convex and lower
semicontinuous functional, λ ∈ R. Let y, z ∈ Y and consider the gradient flow trajectories
(yt), (zt) associated with E. Then, for any t ≥ s > 0, it holds

d2
Y(yt, zs) ≤e−2λs

(
d2
Y(y, z) + 2(t− s)(E(z)− E(y))

+ 2|∂−E|2(y)
ˆ t−s

0

θλ(r) dr − λ

ˆ t−s

0

d2
Y(yr, z) dr

)
. (4.2.3)

where θλ(t) :=
´ t

0
e−2λr dr.

With the previous two lemmas at hand we can prove the analogue of [GN21, Lemma
4.17] for CAT(κ) spaces. Below we shall denote with Lipbs(X) the space of Lipschitz
functions with bounded support and with Lip+

bs(X) the subset of Lipbs(X) made of non-
negative functions.

Lemma 4.2.4. Let (X, d,m) be an RCD(K,N) space, Y a locally CAT(κ)-space and Ω ⊂ X open
and bounded. Also, let f ∈ Lip(Y) be λ-convex, λ ∈ R, and u ∈ KS1,2(Ω,Y). For g ∈ Lipbs(X)

+

define the (equivalence class of the) variation map ut(x) := GFf
tg(x)(u(x)) ∀t > 0, x ∈ Ω. Then,

ut ∈ KS1,2(Ω,Y) for every t > 0 and there is a constant C > 0 depending on f, g such that

| dut|2HS ≤ e−2λtg

(
| du|2HS − 2t⟨ dg, d(f ◦ u)⟩+ Ct2

)
m− q.o. inΩ (4.2.4)

holds for every t ∈ [0, 1]. In particular

lim sup
t→0

EKS(ut)− EKS(u)

t
≤ − 1

d+ 2

ˆ
Ω

(
λg| du|2HS + ⟨ dg, d(f ◦ u)⟩

)
dm. (4.2.5)

Proof. The fact that ut ∈ L2(Ω,Y) easily follows from the following inequalities and the
fact that the support of g is bounded:

d2
Y(ut(x), o) ≤ 2d2

Y(ut(x), u(x)) + 2d2
Y(u(x), o)

≤ 2d2
Y(u(x), o) + 2te2|λ|t Lip2(f)g(x),

where for the second inequality we applied the a priori estimates (4.2.3) and exploited
the fact that |∂−f |(y) ≤ Lip(f) for all y ∈ Y. Now thanks to (4.2.2) we have (w.l.o.g.
assume g(y) ≥ g(x))

d2
Y(ut(x), ut(y)) ≤ e2|λ||g(x)−g(y)|d2

Y

(
u(x),GFf

t|g(y)−g(x)|(u(y))
)
.
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Now we can use the sharp dissipation rate of the gradient flow (see [GN21, point (ii) of
Theorem 3.2]) to establish the Lipschitzianity of the map t→ GFf

t (u(x)) and get

d2
Y

(
u(x),GFf

t|g(y)−g(x)|(u(y))
)
≤ 2d2

Y

(
u(x),GFf

t|g(y)−g(x)|(u(x))
)

+ 2d2
Y

(
GFf

t|g(y)−g(x)|(u(x)),GFf
t|g(y)−g(x)|(u(y))

)
≤ C1t

2|g(x)− g(y)|2 + 2e2|λ||g(y)−g(x)|d2
Y(u(y), u(x))

≤ C1t
2d2(x, y) + C2d

2
Y(u(y), u(x)).

Dividing by r2 := d2(x, y) and m(Br(x)) and integrating over Br(x) ⊆ Ω we get

ks22,r[ut,Ω](x) ≤ C1t
2 + C2ks

2
2,r[u,Ω](x).

The fact that m(Ω) < +∞ allows to conclude ut ∈ KS2(Ω,Y).
For what concerns estimate (4.2.4) the proof is verbatim the one in [GN21, Lemma

4.17].
Finally for the last point we just need to subtract from both sides of (4.2.4) the quantity

| du|2HS and then integrate over Ω and divide by 2t(d + 2). Taking the lim sup as t → 0+

and exploiting a dominated convergence argument allows to conclude with (4.2.5).

The following is a generalization to CAT(κ) spaces of well-known inequalities hold-
ing for functions in CAT(0) spaces. We begin with the following:

Proposition 4.2.5. Let (X, d,m) be an RCD(K,N) space and (Y, dY) be a locally CAT(κ) space.
Let Ω ⊂ X be open and bounded and let u : Ω → Y be an harmonic map and f : Y → R be a
Lipschitz and λ-convex map, then f ◦ u ∈ W 1,2(Ω) and

∆(f ◦ u) ≥ λ|du|2HSm (4.2.6)

in the weak sense. In particular ∆(f ◦ u) is a signed Radon measure.

Proof. The fact that f ◦ u ∈ W 1,2(Ω) is well-known (see [GT21]). To prove (4.2.6) first
observe that being u harmonic implies

lim sup
t→0

EKS(ut)− EKS(u)

t
≥ 0,

so that (4.2.5) gives

λ

ˆ
Ω

g| du|2HS dm ≤ −
ˆ
Ω

⟨ dg, d(f ◦ u)⟩ dm =

ˆ
Ω

∆(f ◦ u)g dm

for all g ∈ Lip+
bs(X), whence (4.2.6) follows.

Lemma 4.2.6. Let (X, dX,m) be an RCD(K,N) space and (Y, dY) a CAT(1) space. Let u : Ω ⊂
X → Y be an harmonic mapping such that u(Ω) ⊂ Bρ(o) for some ρ < π/2, then consider the
function fo : X → [0, 1] given by fo(x) := cos(dY(u(x), o)). We have fo ∈ W 1,2(Ω) and

∆fo ≤ − cos ρ| du|2HS (4.2.7)

in the weak sense in Ω.

Proof. This is indeed a consequence of Proposition 4.2.1 in combination with Proposition
4.2.5. Indeed one just needs to apply those results with the space (Bρ(o), dY), which is a
CAT(1) space.
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We now have the following result which holds in a more general setting than the
present one (see [BM95, Theorem 5.4]) but we shall present it in the setting of RCD spaces
to avoid further technicalities.

Theorem 4.2.7 (Elliptic Harnack inequality). Let (X, d,m) be an RCD(K,N) space and u :
X → R be a weakly subharmonic function in B4r(x0), i.e. u ∈ W 1,2(B4r(x0)) and

∆u ≥ 0

in the weak sense in B4r(x0). Then the following estimate holds

sup
z∈Br/2(x0)

max{u, 0}(z) ≤ C(K−r2, N)

(
1

m(Br(x0))

ˆ
Br(x0)

u2 dm

)1/2

, (4.2.8)

where C is equibounded as r → 0+.

Remark 4.2.8. As a consequence of (4.2.8) we get that any weakly subharmonic function
is locally bounded from above.

We shall now introduce the following notation: for a function v : X → R we set

vR :=

 
BR(x0)

v dm,

where x0 ∈ X is a point which will be clear from the context. We further set

v+,R := sup
x∈BR(x0)

max{v, 0}(x)

The following is a combination of [Jos97, Corollary 1] and [Jos97, Lemma 7]:

Corollary 4.2.9. Let u : X → R be as in the previous Theorem and nonnegative, then there exists
δ0 > 0 independent of R such that

sup
BR(x0)

u ≤ (1− δ0)u+,4R + δ0uR.

Moreover if ε ∈ (0, 1/4) there exists m ∈ N (independent of u and ε) such that

u+,εmR ≤ ε2u+,R + (1− ε2)uR′ (4.2.9)

where R′ (possibly depending on ε and u) is such that εmR ≤ R′ ≤ R/4.

We proceed recalling another useful lemma which again extends to the context of
CAT(κ) spaces without modifications:

Lemma 4.2.10. Let (X, d,m) be an RCD(K,N) space and let (Y, dY, o) be a pointed complete
metric space, then for every u ∈ KS1,2(X,Y) there exists C = C(diam(Ω), K,N) ≥ 1 such that
for every r > 0 and p ∈ Ω for which BrC(p) ⊆ Ω we have

 
Br(p)

ˆ
Br(p)

d2
Y(u(x), u(y)) dm(x) dm(y) ≤ Cr2

ˆ
BrC(p)

e22[u] dm. (4.2.10)

Proof. The proof can be found in [Guo, Lemma 4.9].

The next Lemma is basically [Jos97, Lemma 8] adapted to CAT(κ) setting.
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Lemma 4.2.11. Let (X, d,m) be an RCD(K,N) space, Ω ∈ X an open set, and (Y, dY) be a
CAT(1) space. Let u : Ω → Y be an harmonic map with values in Bρ(o) with ρ < π/2 and let
B4R(x0) ⊂⊂ Ω, then

R2

 
BR(x0)

| du|2HS dm ≤ C(v+,4R − v+,R),

where v(x) = d2
Y(u(x), o) and C = C(diam(Ω), K,N).

Proof. To begin with let us consider a mollified version of the Green function (whose
existence can be proved for instance via Lax-Milgram theorem) which solves in the weak
sense the following {

−∆Gp =
χBR(p)

m(BR(p))
on B2R(p)

Gp = 0 on Bc
2R(p).

We have (we shall omit the point p center of the ball)
ˆ
B2R

⟨ dφ, dGp⟩ dm =

 
BR

φ dm (4.2.11)

for all φ ∈ Lipbs(X) with suppφ ⊂⊂ B2R(p). Now following [BM95, Section 6] we define
for convenience a rescaled version of G, namely we set

Gp,R :=
m(BR(p))

R2
Gp,

which satisfies ˆ
B2R

⟨ dφ, dGp,R⟩ dm =
1

R2

ˆ
BR

φ dm

and the following estimates (again we refer to [BM95, Theorem 6.1], which deals with
more general metric spaces which include the class of RCD(K,N) spaces)

0 < C1 ≤ Gp,R on BR,

0 ≤ Gp,R ≤ C2 on B2R,

where C1, C2 only depend on K,N and diam(Ω). Now we can define z := v − v+,4R and
write, exploiting (4.2.6) for f(·) equal to d2

Y(·, o) with λ = 2 cos ρ by Proposition 4.2.1,

λ

ˆ
B2R

| du|2HSG
2
p,R dm ≤

ˆ
B2R

(∆z)G2
p,R dm = −2

ˆ
B2R

⟨ dz, dGp,R⟩Gp,R dm.

Now we can use the Leibniz rule for the differential d(Gp,Rv) = Gp,R dz + z dGp,R and
write

λ

ˆ
B2R

| du|2HSG
2
p,R dm ≤ −2

ˆ
B2R

⟨ dGp,R, d(Gp,Rz)⟩ dm+ 2

ˆ
B2R

⟨ dGp,R, dGp,R⟩z dm.

Being z ≤ 0 we can neglect the second term and obtain

λ

ˆ
B2R

| du|2HSG
2
p,R dm ≤ −2

ˆ
B2R

⟨ dGp,R, d(Gp,Rz)⟩ dm = − 1

R2

ˆ
BR

Gp,Rz dm

≤ −C1m(BR)

R2
(vR − v+,4R) =

C1m(BR)

R2
(v+,4R − vR)

where we used the definition of the mollified Green function. Finally, applying Corollary
4.2.9, we get the thesis.
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We are now in position to prove the desired Hölder continuity of harmonic maps.

Theorem 4.2.12. Let u : Ω ⊆ X → Y be an harmonic map such that Im(u) ⊆ Bρ(o) with
ρ < π/2 and with (X, d,m) which is an RCD(K,N) space and Y which is a CAT(1) space. Then
u is locally Hölder continuous in Ω.

Proof. The proof closely follows [Jos97, Theorem]. Let us fix x0 ∈ Ω in such a way that
B4R(x0) ⊂⊂ Ω. Let us define the mean of u on a ball centered at x0 with radius r, denoted
by ūr, as one of the minimums of

Y ∋ q 7→
 
Br(x0)

dY(u(x), q) dm(x).

Finally set vp(x) := d2
Y(u(x), p) where p ∈ Y will be chosen later andw(x) := d2

Y(u(x), ūR/4).
We want to exploit the result in Corollary 4.2.9: let us therefore fix ε ≤ 1/10 so that
εmR ≤ R′ ≤ R/4 and estimate as follows

wm
R′ =

1

m(BR′(x0))

ˆ
BR′ (x0))

d2
Y(u(x), ūR/4) dm(x) ≤ C

m(BR/4(x0)

ˆ
BR/4(x0)

d2
Y(u(x), ūR/4) dm(x)

where C is independent of R, exploiting the (uniformly) doubling property of the mea-
sure m on Ω. Now applying Poincaré inequality to the previous expression we get

C

m(BR/4(x0))

ˆ
BR/4(x0)

d2
Y(u(x), ūR/4) dm(x) ≤ C1

R2

m(BR(x0))

ˆ
BR/(4λ)(x0)

| du|2HS dm,

for some λ ∈ (0, 1). Now we shall apply Lemma 4.2.11 and the doubling inequality again
to obtain

wm
R′ ≤ C

(
vp,+,R/λ − vp,+,R/4λ

)
. (4.2.12)

Choose now p ∈ conv
(
u(BεmR(x0)

)
so that we have

sup
x∈BεmR(x0)

d2
Y(u(x), p) ≤ 2 sup

x∈BεmR(x0)

d2
Y(u(x), ūR/4)+2d2

Y(ūR/4, p) ≤ 4 sup
x∈BεmR(x0)

d2
Y(u(x), ūR/4)

and at the same time

sup
x∈BR(x0)

d2
Y(u(x), ūR/4) ≤ 4 sup

x∈BR(x0)

d2
Y(u(x), p)

Combining estimate (4.2.12) and the result of Corollary 4.2.9 we get

sup
x∈BεmR(x0)

d2
Y(u(x), ūR/4) ≤ 4ε2 sup

BR(x0)

d2
Y(u(x), ūR/4) + C

(
vp,+,R/λ − vp,+,R/4λ

)
≤ 16ε2 sup

x∈BR(x0)

d2
Y(u(x), p) + C

(
vp,+,R/λ − vp,+,εmR

)
,

where in the last line we also used that εm ≤ (1/8)m ≤ 1/4 ≤ 1/4λ. In the end we obtain

sup
x∈BεmR(x0)

d2
Y(u(x), p) ≤ 64ε2 sup

x∈BR(x0)

d2
Y(u(x), p) + C

(
vp,+,R/λ − vp,+,εmR

)
.

Setting ω(r) := supx∈Br(x0) d
2
Y(u(x), p) we can rewrite the previous inequality as

(1 + C)ω(εmR) ≤ 64ε2ω(R) + Cω(R/λ) ≤ (64/100 + C)ω(R/λ),
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which means
ω(εmR) ≤ cω(R/λ),

where ε and λ are fixed and c < 1. By an iteration of the latter estimate (holding for every
R ≤ R0 for which BR0(x0) ⊂⊂ Ω) we get

ω(r)

rα
≤ C

ω(R0)

Rα
0

,

where α ∈ (0, 1), C > 0 and r ≤ R0. Choosing p = ūr we get√
ω(r) ≤ osc(u,Br(x0)) ≤ 2

√
ω(r)

and this proves the (local) Hölder continuity of u.

4.2.2 Higher integrability of energy densities

Let Ω ⊂ X be an open bounded set in an RCD(K,N) space with X \ Ω ̸= ∅ , K ∈ R and
N ∈ [1,∞). Let (Y, dY) be a CAT(1κ) space with κ > 0 and suppose that u ∈ KS(Ω;Y ) is
an harmonic map with values in a ball Bρ(o) ⊂ Y with ρ ∈ (0, π

2
√
κ
). We shall always fix a

Hölder continuous representative of u.
Let us recall some notations in [AHT17].

Definition 4.2.13. For any q > 1, a nonnegative m-measurable function w on Ω belongs
to the weak q-Reverse Hölder class RHweak

q if there exists a constant Cq such that( 
B

wq dm

)1/q

⩽ Cq

ˆ
2B

w dm

for all ball B := Br(y) with 2B := B2r(y) ⊂ Ω.

We need the following Gehring lemma, see [AHT17, Propostion 6.2] and [Maa08,
Theorem 3.1].

Lemma 4.2.14. If 1 < q <∞ and w ∈ RHweak
q , then there exists ε > 0 such that w ∈ RHweak

q+ε .

Now we will prove the higher integrability of energy density.

Theorem 4.2.15. Let Ω, Y and u be as above. Then there exists an ε = ε(N,K, diam(Ω), ρ) > 0
such that | du|HS ∈ W 1,2+ε

loc (Ω) and( 
B

| du|2+ε
HS dm

) 2
2+ε

⩽ Cε

 
B

| du|2HS dm (4.2.13)

for any ball B with 2B ⊂ Ω, where the constant Cε > 0 depends only on ε.

Proof. Fix any ball B with 2B ⊂ Ω, then by Lemma 4.2.6, we have

∆(fo − a) ⩽ − cos ρ| du|2HS, ∀a ∈ R,

where fo(x) = cos(dY(u(x), o)). Let ϕ : Ω → [0, 1] be a cut-off function with ϕ = 1 on B,
ϕ = 0 out of 3

2
B, and

|∇ϕ| ⩽ C1r
−1, |∆ϕ| ⩽ C2r

−2,
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where the constants C1, C2 depend only on K,N and diam(Ω). Then we get
ˆ
B

| du|2HS dm ⩽
ˆ

3
2
B

| du|2HSϕ dm ⩽
C3

r2

ˆ
3
2
B

|fo − a| dm,

for all a ∈ R, where C3 = C2/ cos ρ. It is well-known that a weak (1, 2)-Poincaré inequal-
ity holds on RCD(K,N) spaces and since the weak (1, s)-Poincaré inequality is an open
ended condition (see [KZ08, Theorem 1.0.1]), there exists a number s0 ∈ (1, 2) such that
the weak (1, s0)-Poincaré inequality holds on RCD(K,N) spaces. Therefore, we have

inf
a∈R

 
3
2
B

|fo − a| dm ⩽ CK,N,diam(Ω),s0 · r
( 

2B

|∇fo|s0 dm
)1/s0

.

Combining the above two inequalities, we conclude that( 
B

| du|2HS dm

)1/2

⩽ C4

( 
2B

|∇fo|s0 dm
)1/s0

⩽ C4

( 
2B

| du|s0HS dm

)1/s0

,

where we have used |∇fo| ⩽ | sin dY (o, u)| · |∇dY (o, u)| ⩽ | du|HS. Now, applying 4.2.14 to
| du|s0HS, we obtain | du|HS is in W 2+ε

loc (Ω), and moreover( 
B

| du|2+ε
HS dm

)1/(2+ε)

⩽ Cε

( 
2B

| du|s0HS dm

)1/s0

⩽ Cε

( 
2B

| du|2HS dm

)1/2

,

since s0 < 2 and Hölder inequality.

4.2.3 Auxiliary results

In this section we shall work under the following assumptions:

1. (X, dX,m) is an RCD(K,N) space with essential dimension d ∈ N.

2. Ω ⊂ X is an open bounded set with m(X \ Ω) > 0.

3. (Y, dY) is a CAT(1) space: the results obtained for general CAT(κ) spaces will be
obtained by a rescaling of the distance function.

4. u ∈ KS(Ω;Y) is harmonic with values in a ball Bρ(o) ⊂ Y with ρ < π
2
. Finally we

shall fix Borel representatives of u (the Hölder continuous one) and of e2[u] (and of
| du|HS).

5. Let Ω′ ⊂⊂ Ω be open and consider r > 0 and x̂ ∈ Ω′ such that B4r(x̂) ⊂ Ω′ and
∥u∥Cα(Ω′)r

α < π/10. Finally call B = Br(x̂) 2B := B2r(x̂) and B′ = B3r/2(x̂).

Let us first define F : R → R as the following

F (t) := 2 sin

(
t

2

)
+ 4 sin2

(
t

2

)
and observe that F is such that F ′, F ′′ ≥ 0 on [0, π/2]. With a little abuse of notation let
us also set

F (z, w) := 2 sin

(
dY(z, w)

2

)
+ 4 sin2

(
dY(z, w)

2

)
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for any z, w ∈ Y.
We introduce the following quantities, in order to produce an Hopf-Lax formula for

the function u.

f(x, y) =

{
−F (u(x), u(y)) if x, y ∈ B′

−6 otherwise.

Notice that f is lower semiconinuous since F is bounded between 0 and 6. We call ft the
p-Hopf-Lax semigroup applied to the function f , namely we set

ft(x) := inf
y∈X

[
dp(x, y)

ptp−1
+ f(x, y)

]
, (4.2.14)

where we avoid to include p in the definition of ft to lighten the notation. Notice that
0 ≥ ft(x) ≥ −6 for every x ∈ X. Moreover the infimum in (4.2.14) is actually a minimum
(this follows by Weierstrass theorem exploiting the semicontinuity of the function we are
minimizing). We also have a quantitative estimate for where to find a minimum, indeed
denoting with yt,x a minimizer for ft(x), choosing x as a competitor, we get

ft(x) ≤
d2
X(x, yt,x)

2t
+ f(x, yt,x) ≤ 0.

This means dX(x, yt,x) ≤ 12
√
t so that there exists t∗ = t∗(p) > 0 such that we have

ft(x) := inf
y∈B12

√
t(x)

[
dp
X(x, y)

ptp−1
− F (u(x), u(y))

]
∀x ∈ B

for t ∈ (0, t∗).
Now set

St(x) :=

{
y ∈ X : ft(x) =

dp
X(x, y)

ptp−1
− F (u(x), u(y))

}
and observe that the latter set is non-empty if t < t∗. Finally set

Lt(x) := min
y∈St(x)

dX(x, y) and Dt(x) :=
Lp
t (x)

ptp−1
− ft(x).

We now present a slight modification of [ZZZ19, Lemma 4.1] since we still don’t know
that the map u is Lipschitz continuous but we have Hölder regularity instead: if the map
is assumed to be Lipschitz the proof works in the same way replacing α with 1.

Lemma 4.2.16. With the above notation and assumptions:

1. ft is Hölder continuous on B.

2. Lt and Dt are lower semicontinuous.

3. There exists a constant C = C(p, ∥u∥Cα , k) > 0 such that

Lt ≤ Ctβ, Dt ≤ C̃tβ
′
, −ft ≤ C̃tβ

′
on B (4.2.15)

for some β, β′ < 1 and constant C which depends on p, the Hölder norm of u ∥u∥Cα . If u is
Lipschitz we have α = β = β′ = 1.
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Proof. The proof of (1) is immediate since the infimum of equi-Hölder functions is Hölder.
The proof of (2) is contained in [ZZZ19, Lemma 4.1].
For the proof of (3) consider yt(x) ∈ St(x) such that Lt(x) = dX(x, yt). We get, using

sin θ ≤ θ for θ > 0 and that dY(u(x), u(yt)) ≤ π,

Dt(x) =
Lp
t (x)

ptp−1
− ft(x) = F (x, yt) ≤ dY(u(x), u(yt)) + d2

Y(u(x), u(yt))

≤ (1 + π)dY(u(x), u(yt)) ≤ (1 + π)∥u∥CαLα
t (x) = CLα

t (x).

At the same time, being ft ≤ 0 we have

Lp
t (x)

ptp−1
≤ Dt(x) ≤ CLα

t (x)

so that we get Lt ≤ Ctβ , with β = (p− 1)/(p− α). For Dt we have instead

Dt(x) ≤ CLα
t (x) ≤ C̃tβ

′

with β′ = αβ. Finally for ft we have, since −ft ≤ Dt,

−ft ≤ C̃tβ
′
.

We now recall [ZZZ19, Lemma 4.4]:

Lemma 4.2.17. Let q be such that 1/q + 1/p = 1. For all x ∈ B we have

lim inf
t→0

ft(x)

t
≥ −1

q
lipqu(x). (4.2.16)

Moreover for m-a.e. x ∈ B (namely any point in B where u is metrically differentiable) we have

lim
t→0+

ft(x)

t
= − lipqu(x)

q
(4.2.17)

and
lim
t→0+

Lt(x)

t
= lipq/pu(x), lim

t→0+

Dt(x)

t
= lipqu(x). (4.2.18)

Proof. The proof follows as in [MSa, Proposition 7.5] combined with [ZZZ19, Lemma
4.4].

To establish the key variational inequality we shall exploit the following simple but
useful lemma

Lemma 4.2.18. With the above assumptions we have

∆f(·, y) ≥ 0 on B

in the weak sense, for all y ∈ B.

Proof. Thanks to the assumptions it is sufficient to compute ∆F (u(·), u(y)) in the weak
sense. By the chain rule we get

∆F (u(·), u(y)) = F ′′|∇dY(u(·), u(y))|2 + F ′∆dY(u(·), u(y)),

whence the claim follows by the nonnegativity of the factors on the right hand side (recall
that the Laplacian of x 7→ dY(u(x), u(y)) is nonnegative thanks to Proposition 4.2.5).
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We now have a lemma on the heat flow Laplacian of the Hopf-Lax semigroup (the
idea is from [MSb], see also [Gig23b] and [MSa])

Lemma 4.2.19. Let f : X → R be a bounded Borel function. Assume that for some x, y ∈ X we
have

Qp
tf(x) = f(y) +

dp
X(x, y)

ptp−1
. (4.2.19)

Then

∆Qp
tf(x) ≤ ∆f(y)−K

dp
X(x, y)

tp−1
. (4.2.20)

holds in the heat flow sense.

Proof. First of all let πs ∈ P(X × X) be an optimal transport plan between es∆δx ∈ P(X)
and es∆δy ∈ P(X) for the cost dp

X. Moreover we have the following estimate, which is
the Wasserstein contractivity of the heat flow (holding in general RCD(K,∞) spaces, see
[AGS15]),

W p
p (e

s∆δx, e
s∆δy) ≤ e−pKsdp

X(x, y). (4.2.21)

We can now estimate as follows

es∆Qtf(x) =

ˆ
X

Qtf(z) de
s∆δx(z) =

ˆ
X×X

Qtf(z) dπs(z, z
′)

≤
ˆ
X×X

[
f(z′) +

dp(z, z′)

ptp−1

]
dπs(z, z

′)

(by optimality of πs) =

ˆ
X

f(z′) des∆δy(z) +
1

ptp−1
W p

p (e
s∆δx, e

s∆δy)

= es∆f(y) +
1

ptp−1
W p

p (e
s∆δx, e

s∆δy).

Finally applying (4.2.21) to the previous inequality we get (note that the following would
hold for any w ∈ X in place of y)

es∆Qtf(x) ≤ es∆f(y) +
e−pKs

ptp−1
dp
X(x, y). (4.2.22)

Subtracting (4.2.19) from (4.2.22), dividing by s > 0 and taking the lim sup as s→ 0 finally
gives (4.2.20).

We now proceed with a refinement of (4.2.7), following [Ser95, Proposition 1.17],
which will be crucial for obtaining an elliptic inequality involving the function ft.

Lemma 4.2.20. Let u : Ω → Y be an harmonic map with Ω ⊂ X open set, (Y, dY) which is a
CAT(1) space and Im(u) ⊆ Bρ(o) with o ∈ Y, ρ < π/2. Let further fo(x) := cos(dY(u(x), o)),
then we have fo ∈ W 1,2(Ω) and

∆fo ≤ −fo| du|2HS = −fo(n+ 2)e22[u] in Ω (4.2.23)

in the weak sense.

Proof. Let us first set R(x) := dY(u(x), o), denote with x → G
u(x),o
t the map which asso-

ciates to each x ∈ Ω the point at time t lying in the geodesic (recall that geodesics are
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unique in our case) connecting o and u(x). Finally set uη := Gu,o
η where η ∈ W 1,2(Ω) ∩

Cc(Ω) is such that 0 ≤ η ≤ 1: then by [Sak23, Lemma 3.8] we have

e22[uηt] ≤
sin2

[
(1− ηt)R

]
sin2R

(e22[u]− e22[R]) + e22[(1− ηt)R] (4.2.24)

m-a.e. in Ω, where t is a positive parameter that we will eventually send to zero. Now we
shall use the duplication formula for the sinus to get

| duηt|2HS ≤
[
cos2(tηR)+

sin2(tηR) cos2R

sin2R
−cosR sin(2tηR)

sinR

]
(| du|2HS−| dR|2HS)+| dR−tη dR|2HS.

Note that we have simultaneously used that | du|2HS = (n+2)e22[u] (recall that if f : X → R
then | df | = | df |HS). We proceed integrating over Ω, we divide by t and exploit the fact
that E2(utη)−E2(u) ≥ 0 (as u is harmonic) together with the asymptotics of the involved
functions to get

0 ≤
ˆ
Ω

[
− ηR

cosR

sinR
| du|2HS + ηR

cosR

sinR
| dR|2 − ⟨ dR, d(ηR)⟩

]
dm.

We can now use the following identity

〈
∇
(
η

R

sinR

)
,∇ cosR

〉
= ηR

cosR

sinR
| dR|2 − ⟨ dR, d(ηR)⟩

to get

0 ≤
ˆ
Ω

−ηRcosR

sinR
| du|2HS +

〈
∇
(
η

R

sinR

)
,∇ cosR

〉
dm.

Note that now we can choose the magnitude of η to be whatever we want since the
inequality doesn’t change if we divide everything by a positive constant. Now pick φ ∈
Lipc(Ω) nonnegative and set η := φR/ sinR: it is clear that η ∈ W 1,2(Ω) ∩ Cc(Ω) because
it is the product of a bounded W 1,2(Ω) and continuous function and a Lipschitz function
with compact support. Finally this means that for all φ ∈ Lipc(Ω) nonnegative we have

ˆ
Ω

φ cosR| du|2HS dm ≤
ˆ
Ω

〈
∇φ,∇ cosR

〉
dm.

The latter is the conclusion.

Finally define some parametric functions depending on the distance of the target
space dY and deduce some Laplacian bounds on them that we shall exploit later in the
proof of the ”good” distributional bound.

Lemma 4.2.21. Let u : Ω ⊂ X → Y be an harmonic map with Im(u) ⊂ Bρ(o) and ρ < π/2.
Consider for any z ∈ Ω and y ∈ Y the function

wa,b,y,z(x) = ad2
Y(u(x), u(z)) + b cos(dY(u(x), y)).

For m−a.e. x0 ∈ Ω we have

∆wa,b,o,x0(x0) ≤
(
2a− b cos(dY(u(x0), o))

)
(n+ 2)e22[u](x0)

=
(
2a− b cos(dY(u(x0), o))

)
| du|2HS(x0)

in the heat flow sense.
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Proof. First of all we shall notice that [MSa, Proposition 3.3] holds also in this setting with
the same proof since by Lemma 4.2.12 we have the (Hölder) continuity of u. Therefore
we have

et∆(d2
Y(u(·), u(xo))(x0) = 2| du|2HS(x0)t+ o(t) as t→ 0+. (4.2.25)

for m-a.e. x0. Secondly by the results contained in [GMS23] and Lemma 4.2.20 we have

lim sup
t→0

et∆ cos(dY(u(·), o))(x)− cos(dY(u(x), o))

t
≤ − cos(dY (u(x), o))| du|2HS. (4.2.26)

Combining (4.2.25) with (4.2.26) we finally get the thesis.

4.2.4 A variant of the Bochner-Eells-Sampson inequality

The authors in [ZZ18] are able to prove the Lipschitz continuity of harmonic maps be-
tween Alexandrov spaces exploiting the properties of the Hopf-Lax semigroup. More-
over in [ZZZ19], given the Lipschitz continuity of the harmonic map proved in [Ser95],
they are able to prove a weak version of the Bochner-Eells-Sampson inequality for maps
from a Riemannian domain to a CAT(1) space. Here we shall exploit the ideas contained
in [Gig23b] and fuel them with the ideas of [ZZZ19] (see also [MSa] for the non-smooth
counterpart, as in our case) to obtain a variational inequality (the ”good” distributional
bound) which in the limit will be the desired inequality.

We now recall [Gig23b, Lemma 6.13].

Lemma 4.2.22. There exists T > 0 such that, given a Borel set E ⊂ B′ such that m(B′ \E) = 0,
we have: for all 0 < t < T there exists zt ∈ B such that for m-a.e. x ∈ E ∩ B4r/3(x̄) =: E ∩ B′′

and every n ∈ N the function

y 7→ gt(x, y, zt) :=
d2(x, y)

2t
+ f(x, y) +

d2
X(y, zt)

2n

admits a minimizer Tt(x) and such minimizer belongs to the set E ∩B′′.

Proof. The difference with respect to [Gig23b, Lemma 6.13] lies in the different definition
of f , however since the proof follows with minor modifications we decided to omit it.
Note moreover that from the proof in [Gig23b] we can infer that Sobolev regularity is not
necessary for the function f . It would be sufficient to ask for f to be continuous and with
a Laplacian bound ∆f ≤ Lm in the weak sense.

We further define

ft,n(x) := inf
y∈X

[
d2(x, y)

2t
+ f(x, y) +

d2
X(y, zt)

2n

]
. (4.2.27)

We now have the following distributional bound for the function ft,n.

Lemma 4.2.23 (”Bad” distributional bound). Possibly choosing a smaller t∗ the following
holds. Let ft,n be defined as in (4.2.27): we have

∆ft,n ≤ C(K,N)

(
1

t
+

1

n

)
m on B (4.2.28)

in the weak sense, for all t < t∗, for all n ∈ N.
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Proof. Fix y ∈ B: combining Theorem 4.1.7 with Lemma 4.2.18 and [Gig23b, Lemma 4.7]
we infer the result.

To obtain the ”good” distributional bound we need the following lemma for the func-
tion F to be able to let the heat flow and the Hopf-Lax semigroup combine in an efficient
way.

Lemma 4.2.24 (Key technical Lemma). Consider 4 points P,Q,R, S inside u(Br(x)) in such
a way that P := u(x), Q := u(x̄), R := u(ȳ), S := u(y). Let us further set l0 := 2 sin dY(Q,R)

2
,

l1 := 2 cos dY(Q,R)
2

, α := 1/(1 + 2l0) and finally let β > 0. We have

F (u(x̄), u(ȳ))−F (u(x), u(y)) ≤
[
wa1,b,Qm,x̄(x)− wa1,b,Qm,x̄(x̄)

]
+
[
wa2,b,Qm,ȳ(y)− wa2,b,Qm,ȳ(ȳ)

]
αl0

,

(4.2.29)
where Qm is the middle point of the geodesic joining Q and R,

a1 := 1− 1− α

2

(
1− 1

β

)
, b := l1, a2 := 1− 1− α

2

(
1− β

)
and the function w is defined in Lemma 4.2.21.

Proof. We can apply (4.1.2) to get

αl0
(
F (Q,R)− F (P, S))

)
= αl0

(
4 sin2 dQR

2
− 4 sin2 dPS

2

)
+ αl0

(
2 sin

dQR

2
− 2 sin

dPS

2

)
≤
[
1− 1− α

2

(
1− 1

β

)]
4 sin2 dPQ

2
+ l1

(
cos dPQm − cos dQQm

)
+

[
1− 1− α

2

(
1− β

)]
4 sin2 dRS

2
+ l1

(
cos dSQm − cos dRQm

)
≤
[
wa1,b,Qm,x̄(x)− wa1,b,Qm,x̄(x̄)

]
+
[
wa2,b,Qm,ȳ(y)− wa2,b,Qm,ȳ(ȳ)

]
,

which concludes the proof.

The second tool we need is an improvement of the earlier distributional bound: this
is the aim of the following proposition.

Proposition 4.2.25 (”Good” distributional bound). We have

∆ft ≤ −K Lp
t

tp−1
+

(
1 + ot(1)

)
Dt| du|2HS on B (4.2.30)

in the weak sense, for all t < t∗.

Proof. First of all let us recall the definition of ft,n

ft,n(x) := inf
y∈X

[
d2
X(x, y)

2t
+ f(x, y) +

d2
X(y, zt)

2n

]
.

Thanks to the Lemma 4.2.22 we can find zt in such a way that a minimizer of gt(x, y, zt),
i.e. a point Tt(x) for which gt(x, Tt(x), zt) = ft,n(x), lies inside E∩B′′ for m-a.e. x ∈ E∩B′′

and we can choose E to be the set of regular points of the space intersected with the set
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of Lebesgue points of | du|HS (which is clearly of full measure). Now let us fix x̄ ∈ E ∩B′′

and call ȳ the ”good” minimiser of ft,n(x). Clearly for such points we have

ft,n(x̄) = f(x̄, ȳ) +
d2
X(x̄, ȳ)

2t
+

d2
X(ȳ, zt)

2n
= −F (u(x̄), u(ȳ)) + d2

X(x̄, ȳ)

2t
+

d2
X(ȳ, zt)

2n
.

Now fix any other two points x, y ∈ Ω. Setting P := u(x), Q := u(x̄), R := u(ȳ), S := u(y).
Using the inequality (4.2.29) of the key techcnical lemma (and its notation) we get

ft,n(x) = inf
y∈X

[
dp
X(x, y)

ptp−1
+ f(x, y) +

d2
X(y, zt)

2n

]
= −F (u(x̄), u(ȳ)) + inf

y∈X

[
dp
X(x, y)

ptp−1
+ F (u(x̄), u(ȳ))− F (u(x), u(y)) +

d2
X(y, zt)

2n

]
≤︸︷︷︸

(4.2.29)

−F (u(x̄), u(ȳ)) + wa1,b,Qm,x̄(x)− wa1,b,Qm,x̄(x̄)

αl0

+Qt

[
wa2,b,Qm,ȳ(·)− wa2,b,Qm,ȳ(ȳ)

αl0
+

d2
X(·, zt)
2n

]
(x),

with equality if x = x̄. We now proceed to obtain a bound on the Laplacian of ft,n in the
heat flow sense at the point x̄, therefore we shall estimate

lim sup
s→0+

es∆(ft,n)(x̄)− ft,n(x̄)

s
= ∆ft,n(x̄).

Exploiting the previous inequalities and the monotonicity of the heat flow (et∆f ≤ et∆g
if f ≤ g) we get

∆ft,n(x̄) ≤
∆wa2,b,Qm,ȳ(x̄)

αl0
+∆Qt

[
wa2,b,Qm,ȳ(·)

αl0
+

d2
X(·, zt)
2n

]
(x̄).

Moreover thanks to the properties of the Hopf-Lax semigroup (namely (4.2.20)) we get

∆Qt

[
wa2,b,Qm,ȳ(·)

αl0
+

d2
X(·, zt)
2n

]
(x̄) ≤ ∆wa2,b,Qm,ȳ(ȳ)

αl0
+

1

n
∆d2

X(·, zt)(ȳ)−K
Lp
t (x̄)

tp−1
.

Now we can apply Lemma 4.2.21 and the Laplacian comparison to obtain

∆ft,n(x̄) ≤
C(K,N, r)

n
−K

Lp
t (x̄)

tp−1
+

2a1 − b cos(dY(u(x̄), Qm))

αl0
| du|2HS(x̄)

+
2a2 − b cos(dY(u(ȳ), Qm))

αl0
| du|2HS(ȳ).

Since cos(dY(Qm), ȳ) = cos(dY(Qm), x̄) = l1/2 and 1 − l21/4 = l20/4 we can choose β such
that a2 = l21/4, so that 2a2 − b cos(dY(u(ȳ), Qm)) = 0. This is achieved with

β = 1− l0(1 + 2l0)

4
.

Via standard computations we get

2a1 − b cos(dY(Qm), x̄)

αl0
= 2l0(1 + 2l0)

(
1

4
+

1

4− l0(1 + 2l0)

)
.
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Therefore we get

∆ft,n(x̄) ≤
C(K,N, r)

n
−K

Lp
t (x̄)

tp−1
+ 2l0(1 + 2l0)

(
1

4
+

1

4− l0(1 + 2l0)

)
| du|2HS(x̄)

≤ C(K,N, r)

n
−K

Lp
t (x̄)

tp−1
+

(
1 + ot(1)

)
Dt(x̄)| du|2HS(x̄).

where we also used that Dt(x̄) = l0 + l20 and that u is Hölder continuous to estimate the
remainder in ot(1) (observe also that x̂ does not depend on n ∈ N). Combining the latter
with Lemma 4.2.28 and [Gig23b, Lemma 4.8] (recalling that u is continuous on Ω) we end
up with

∆ft,n ≤ C(K,N, r)

n
−K

Lp
t (·)
tp−1

+

(
1 + ot(1)

)
Dt(·)| du|2HS(·) on B

in the weak sense, for all n ∈ N and for all t < t∗ .
Now since ft,n converges to ft uniformly as n→ ∞, thanks to the regularity of ft and

the stability of the Laplacian bounds we infer (4.2.30).

Theorem 4.2.26 (A variant of the BES inequality). Let u be as above and assume that it is
locally Lipschitz in Ω, then the inequality

∆

(
lip2u

2

)
≥ |∇lipu|2 −Klip2(u)− e22[u]lip

2u (4.2.31)

holds in the very weak sense in Ω.

Proof. By the chain rule it is easy to infer that (4.2.31) is equivalent to

∆lipu ≥ −Klipu− e22[u]lipu. (4.2.32)

We shall now verify that there exists a neighborhood BR(x̄) with B2R(x̄) ⊂ Ω such that
lip(u) ∈ W 1,2(BR(x̄)) and (4.2.32) holds in the sense of distributions in BR(x̄).

Due to the continuity of u there exists R > 0 such that u(B2R(x̄)) ⊂ Bπ/4(u(x̄)), so that
diam(u(B2R(x̄))) < π/2 and R < r/2. By (4.2.30) and (4.2.15) we have ∆ft/t ≤ C(Lipu)
onB2R for all t ∈ (0, t∗). Combining the elliptic inequality (4.2.30) with Lemma 4.2.15 and
a Caccioppoli inequality we get ft/t ∈ W 1,2(B3R/2(x)) with ∥ft/t∥W 1,2(B3R/2(x̄)) ≤ C and C
depending only on the Lipschitz norm of u in Ω′. Therefore, exploiting Lemma 4.2.17, up
to a subsequence we have that −ft/t converges weakly in W 1,2 to lipq(u)/q and we get

∆(lipqu/q) ≥ Klipqu− e22[u] · lipqu (4.2.33)

in B3R/2(x̄) in the weak sense. Exploiting the Lipschitz continuity of u we get

∆(lipqu/q) ≥ K(lipu)q − (lipu)q+2 ≥ −C

where the constant is uniform in q. Now again by Caccioppoli inequality we get

∥lipqu/q∥W 1,2(BR) ≤ C as q → 1.

This means that lipq(u)/q converges to lip(u) in W 1,2(BR(x̄)) and we can pass to the limit
in (4.2.33) and get (4.2.32), whence we also deduce (4.2.31).
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Finally we shall mention that the theorems in [ZZZ19, Section 5] hold also in the
present setting: we refer to [ZZZ19] for the proofs which work mutatis mutandis in our
context.

Theorem 4.2.27. Let u be as above but with values in Bρ(o) ⊂ Y, where (Y, dY) is a CAT(κ)
space and ρ < π/2

√
κ. Then letting R > 0 be such that B2R(x0) ⊂ Ω we have

sup
x∈BR/2(x0)

lip(u)(x) ≤
Cd,

√
KR,π/(2

√
κ−ρ)

R
, (4.2.34)

where the constant C only depends on the parameters listed at its subscript.

As a consequence we obtain a Liouville type theorem for harmonic maps, which fol-
lows by estimate (4.2.34).

Corollary 4.2.28. Let (X, dX,mX) be an RCD(0, N) space and (Y, dY) be a CAT(κ) space. Con-
sider an harmonic map u : X → Y such that u(X) ⊂ Bρ(o) for some o ∈ Y and ρ < π/(2

√
κ)

with sublinear growth, i.e.

lim inf
R→∞

supy∈BR(x0) dY(u(y), o)

R
= 0

for some o ∈ Y. Then u must be a constant map.

4.2.5 Boundary regularity for harmonic maps

In this section, we continue to assume that Ω ⊂ X is an open bounded set in an RCD(K,N)
space with X \Ω ̸= ∅ , K ∈ R and N ∈ [1,∞). Moreover we let (Y, dY) be a CAT(κ) space
with κ > 0.

To study the boundary regularity of harmonic maps, we shall also impose some reg-
ularity conditions on the boundary of Ω.

Definition 4.2.29. Let Ω ⊂ X be a domain. We say that Ω satisfies an exterior density
condition if there exist two numbers λ ∈ (0, 1) and R0 > 0 such that

m(Ω \Br(x)) ⩾ λ ·m(Br(x)) ∀ x ∈ ∂Ω, ∀r ∈ (0, R0). (4.2.35)

Additionally we say that Ω satisfies a uniform exterior sphere condition if there exists a
number R0 > 0 such that for each x0 ∈ ∂Ω there exists a ball BR0(y0) satisfying

Ω ∩BR0(y0) = ∅ and x0 ∈ ∂BR0(y0). (4.2.36)

Remark 4.2.30. It is easy to see that if the space satisfies a volume doubling condition
(which is the case of RCD(K,N) spaces, thanks to Bishop-Gromov inequality), then the
exterior density condition is implies by the exterior sphere condition.

The main result of this section is the following.

Theorem 4.2.31. Let Ω and Y be as above. Suppose that Ω ⊂ X satisfies a uniform exterior
sphere condition with constant R0 and let w ∈ Lip(Ω, Y ). Let u ∈ KS1,2(Ω, Y ) be an harmonic
map with boundary data w such that Im(u) ⊂ Bπ/4−ρ(o) for some o ∈ Y and ρ > 0. Then for
any ε ∈ (0, 1) it holds

dY

(
u(x), w(x0)

)
⩽ CεLwd

1−ε
X (x, x0) (4.2.37)
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for all x0 ∈ ∂Ω and x ∈ Ω with dX(x, x0) < Rε, where both Rε and Cε depend only on ε,N,K
and diam(Ω), and

Lw := sup
x,y∈Ω

dY

(
w(x), w(y)

)
dX(x, y)

.

In particular, u is continuous at x0 and u(x0) = w(x0).

To prove this result, we need the following two lemmas.

Lemma 4.2.32. Let Ω ⊂ X be a bounded domain satisfying a uniformly exterior condition with
constant R0. Suppose that f ∈ W 1,2(Ω) is a harmonic function on Ω with boundary data g ∈
Lip(Ω). Suppose g(z0) = 0 for some z0 ∈ Ω. Then for any ε ∈ (0, 1), there exists a number
Rε ∈ (0,min{1, R0/2}) (depending only on ε,N,K and diam(Ω)) such that for any ball Br(x0)
with x0 ∈ ∂Ω and r ∈ (0, Rε) it holds

sup
Br(x0)∩Ω

|f(x)− f(x0)| ⩽ CεL · r1−ε, (4.2.38)

where the constant Cε > 0 depending only on ε,N,K, and the constant L is a Lipschitz constant
of g.

Proof. This is Theorem 4.3 in [ZZ24].

Lemma 4.2.33. Let Ω, Y be as above. Suppose that u : Ω → Y is an harmonic map. Then for
any P ∈ Y such that Im(u) ∈ Bπ/2−ρ(P ) it holds

∆dY

(
u(x), P

)
⩾ 0 (4.2.39)

in the sense of distributions.

Proof. Since the function dY(P, ·) is convex in Bπ/2(P ) ⊂ Y , the assertion follows directly
from Proposition 4.2.5.

We are now in the position to prove Theorem 4.2.31, whose proof is a modification of
the one in [ZZ24, Theorem 4.6].

Proof of Theorem 4.2.31. Fix any a point x0 ∈ ∂Ω, and set P = w(x0). Then, by the triangle
inequality and the fact that Im(u) ⊂ Bπ/4−ρ(o), we have dY(P, u(x)) ⩽ π/2 − 2ρ for any
x ∈ Ω. Moreover by Lemma 4.2.33, we observe that dY(P, u(x)) is sub-harmonic on Ω.

We can now solve the Dirichlet problem

∆f(x) = 0 on Ω and f(x)− dY(w(x0), w(x)) ∈ W 1,2
0 (Ω).

Notice that, by the triangle inequality, the function gx0(x) := dY(w(x0), w(x)) is Lipschitz
continuous on Ω with a Lipschitz constant

Lgx0
⩽ Lw and gx0(x0) = 0.

According to Lemma 4.2.32, we have

sup
Br(x0)∩Ω

|f(x)− f(x0)| ⩽ CεLwr
1−ε, (4.2.40)

for any ball Br(x0) with x0 ∈ ∂Ω and r ∈ (0, R′
ε).
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At last, since dY(u(x), w(x0))− f(x) is sub-harmonic on Ω, and

[dY(u(x), w(x0))− f(x)]+ ∈ W 1,2
0 (Ω),

the maximum principle yields

dY(u(x), w(x0)) ⩽ f(x), a.e. in Ω.

Noticing that u ∈ C(Ω) (by Theorem 4.2.12) and f ∈ C(Ω), we get

dY(u(x), w(x0)) ⩽ f(x), ∀x ∈ Ω.

The combination of the latter with (4.2.40) implies the desired result, concluding the
proof.
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tions for the fractional Laplacian on noncompact manifolds. Rev. Mat.
Iberoam., 31(2):681–712, 2015.

[BLS20] Fabrice Baudoin, Quanjun Lang, and Yannick Sire. Powers of generators
on dirichlet spaces and applications to harnack principles. arXiv preprint,
pages 55–61, 2020.

[BM95] M. Biroli and U. Mosco. A Saint-Venant type principle for Dirichlet forms
on discontinuous media. Ann. Mat. Pura Appl. (4), 169:125–181, 1995.

[Bog07a] V. I. Bogachev. Measure theory. Vol. I, II. Springer-Verlag, Berlin, 2007.

[Bog07b] Vladimir Bogachev. Measure theory. Vol. I, II. Springer-Verlag, Berlin, 2007.

[BSV15] Matteo Bonforte, Yannick Sire, and Juan Luis Vázquez. Existence, unique-
ness and asymptotic behaviour for fractional porous medium equations
on bounded domains. Discrete Contin. Dyn. Syst., 35(12):5725–5767, 2015.

[CCLMP22] Alessandro Carbotti, Simone Cito, Domenico Angelo La Manna, and
Diego Pallara. Asymptotics of the s-fractional gaussian perimeter as
s→ 0+. Fractional Calculus and Applied Analysis, pages 1388–1403, 2022.

[CFSS23] Michele Caselli, Enric Florit Simon, and Joaquim Serra. Fractional sobolev
spaces on riemannian manifolds. —to appear on Mathematische Annalen—,
2023.

[CG11] Sun-Yung Alice Chang and Marı́a del Mar González. Fractional Laplacian
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