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1 Introduction

Phase transitions (PTs) taking place in the early universe, often referred to as cosmological
phase transitions, received a continuous and growing attention. From a theoretical perspective,
since the zero temperature potential is expected to be a complicated manifold with several
minima, PTs are considered to be common phenomena within quantum field theory. From
a phenomenological perspective, PTs might exhibit intriguing implications for the thermal
history of the early universe. In particular, a first order PT (FOPT), where a transition
occurs from a metastable to a more stable vacuum state, i.e. to a deeper minimum of the
potential, might lead to many phenomenological consequences such as baryogenesis [1–14],
the production of heavy dark matter [15–27], primordial black holes [28–32] and possibly
observable gravitational waves (GWs) [33–38]. In a related way, FOPTs occur naturally
in a large variety of motivated BSM models like composite Higgs [39–43], extended Higgs
sectors [44–52], axion models [53, 54], dark Yang-Mills sectors [55, 56] and B − L breaking
sectors [57, 58].

The interactions between the bubble wall and the plasma have recently attracted much
attention. In the regime of relativistic bubble expansion (BE), when the boost factor
γw ≡ 1/

√
1− v2

w ≫ 1 (vw is the velocity of the wall), it was first shown in [59] that the
ultra-fast bubble wall could allow exotic 1 → 2 interactions, otherwise forbidden in a Lorentz-
invariant background. Subsequently, [60] argued that particles much heavier than the scale of
the transition could be produced in 1 → 1 and 1 → 2 processes due to the Lorentz violating
bubble wall background and will propagate in shells around the bubble wall. A broad review
of the different particle production mechanisms and their corresponding interactions with
the bubble wall is given in [61].

It was later suggested [18] that the special class of 1 → 2 processes could lead to the
production of heavy scalar Dark Matter (DM) via the operator λϕ2h2, where h is the field
undergoing the phase transition, potentially playing the role of the Higgs or another scalar
field, and ϕ is the heavy DM particle. Due to the large boost factor, reached by ultra-
relativistic or runaway bubble walls, DM produced in h → ϕϕ transitions will be strongly
boosted with an average energy in the plasma frame given by Ēϕ,plasma ∼M2

ϕ/Tnuc, where
Tnuc is the nucleation temperature and Mϕ the mass of the scalar ϕ. Based on this realisation,
authors of [22] proposed that the bubble wall production mechanism could induce heavy and
warm Dark Matter (WDM), using again an interaction of the form λϕ2h2.

Nevertheless, the DM sector is not necessarily scalar by nature or required to share a
renormalizable interaction with the phase transition sector, containing the h field (which
in principle could be related to the SM Higgs or not). If the DM sector does not share
renormalisable interactions with the SM, it is said to be secluded. Such secluded sectors
typically interact with the thermal bath via non-renormalisable operators with a characteristic
scale Λ, of the type

h2ODS
Λd−2 , (1.1)

with ODS being a function of fields with dimension d, containing the DM candidate. In
this paper, we study the production of heavy and potentially warm DM, generated by a
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phase transition via such non-renormalisable operators in eq. (1.1). We assume that the
produced particles constitute the entire DM abundance. Consequently, we will see that
the phase transition scalar field h cannot be the physical SM-like Higgs if the production
mechanism is required to produce the observed abundance of DM, but has to be another
scalar field, which may be a B − L Higgs boson for the neutrino mass [62–66], a Peccei
Quinn Higgs boson [67–70], or some Higgs associated with the flat direction for thermal
inflation/supercooling [71, 72]. These Higgs do not have Standard Model gauge charge and
it is easy to have an ultra-relativistic bubble wall expansion during the first order phase
transition because the friction can be small. Our discussion applies generically, and we denote
them as BSM Higgs. In what follows, we will denote the SM Higgs with a capital letter
H and the BSM Higgs with a lowercase h.

In this paper, we will consider different natures for the DM particle: DM can be a fermion
ψ, a dark vector γ or a dark glueball G and we will scrutinize each of these cases in detail.
Furthermore, we compute the spectrum of the DM right after bubble production, and track
its evolution, taking into account scatterings with the bath. We present schematically our
mechanism in figure 1, where the production is sketched inside the red rectangle and the
rescattering after production inside the blue one.

Here is the summary of the new results presented in this paper:

• We study the production and the abundance of particles originating from a higher-
dimensional operator of dimension five and six. We find the following scalings for the
corresponding number densities for the production of the particles in the weakly coupled
cases: ndim 5 ∝ T 3

nucv
2/Λ2, ndim 6 ∝ γwT

4
nucv

3/Λ4. For the strongly interacting case
(glueball DM production), it is more sensible to describe the process in terms of the
total energy transferred to the dark sector and we find that the glueball energy density
scales as ρG ∝ γ2

wT
4
nucv

4/Λ4. The scaling of the energy density of the gluons, with the
large boost factor, comes from the fact that both the number density of gluons ng ∝ γw
and the energy in the plasma frame of the emitted gluon, Ēg ∝ γw scale like γw.

• For weakly interacting boosted particles, we compute the average velocity at matter-
radiation equality and the spectrum of the DM after production, as well as its evolution
until matter-radiation equality. Bubble wall production appears to be an efficient
mechanism to produce heavy warm DM in both the fermion and the vector production.

• We compute the pressure due to this particle production, which is not only inevitable
in our mechanism, but might also be a rather generic effect for FOPTs with fast bubble
walls. We find the following relations: P5 ∝ γwv

3T 3
nuc/Λ2 and P6 ∝ γ2

wv
4T 4

nuc/Λ4. We
however observe that this pressure is parametrically smaller than the leading order
v2T 2 pressure over the whole range where our computation holds.

• We compute the Freeze-In (FI) abundance produced via the three operators mentioned
above and compare with the bubble production via the same operators.

In table 1, we present a summary of the salient results of our study. The remainder of this
paper is organised as follows: in section 2, we remind the reader of the main results obtained
in [18, 22] and highlight the salient characteristics of the scalar emission. In section 3, we
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Figure 1. Schematic of the production of Dark Matter from bubbles with k2
⊥ ∼ γwvTnuc, p|| ∼ γwTnuc.

In the middle panel, we show how the expansion of bubble walls can produce very boosted fermions ψ,
vectors γ or gluons g (which become glueballs G) depending on the model under consideration. In the
right panel, the red rectangle, we present more in details the bubble-plasma production channels. The
cross represents the interaction with the bubble wall which allows the DM production. Subsequently,
as shown on the left panel, in the blue rectangle, we show the interactions of the boosted produced
particles with the thermalised plasma, the blue h particles on the sketch. The fast ψ, γ, g can interact
with the slow targets h via h(ψ, γ, g) → h(ψ, γ, g) and cool down to usual CDM or free-stream and
remain warm dark matter. In the main text, we consider either ψ, γ or g to be produced.

present the study of the production of a weakly coupled secluded sector via dimension five
and six operators. In section 4, we study the production of high-energy gluons and their
confinement leading to glueballs.

2 Reminder of the production via the renormalisable operator

To make our story complete, we first review the computation of the production via the
renormalisable interaction λϕ2h2, as it was initially proposed in [18] and then further studied
in [22]. In this section we consider the following Lagrangian

L = 1
2(∂µϕ)

2 − 1
2M

2
ϕϕ

2 − λ

2h
2ϕ2 . (2.1)

During the phase transition, the BSM Higgs field h → h + v, induces a three-leg vertex
in the Lagrangian

L ⊂ λvhϕϕ , (2.2)

allowing for splittings h→ ϕϕ. Note that this transition would be forbidden in vacuum and
only occurs thanks to the bubble wall presence, which breaks Lorentz invariance, leading to
the non-conservation of z-momentum. Using the WKB approximation, the transition from
light to heavy states h → ϕϕ has a probability of the form [18]1

Ph→ϕ2 ≈
(
λv

Mϕ

)2 1
48π2Θ(1−∆pzLw) ≃

(
λv

Mϕ

)2 1
48π2Θ

(
p0 −

2M2
ϕ

v

)
. (2.3)

Where Lw is the width of the wall, which is approximately Lw ∼ 1/v, with v ≪ Mϕ, and
∆pz ≡ phz − pϕz,b − pϕz,c ≈M2

ϕ/(2phzx(1− x)) = 2M2
ϕ/p

h
z is the difference of momenta between

1Notice the factor of two difference with [18].
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h2ψψ̄/Λ h2FF/Λ2 h2GG/Λ2

P1→2 (3.2): v2

Λ2

(
log 2p0v

M2 − 4/3
)

(3.43): v3p0
Λ4

ΩBEh
2 (3.7): M

GeVP1→2α
3/4
n e

− M2
vTnucγw (3.45): M

GeV (γwP1→2)3/4 α
3/4
n

ΩFIh
2 (3.8): 60 M2Mpl

Λ2×GeV

(
Treh
M

)3/2
e
− 2M
Treh (3.46): 102M3Mpl

Λ4

√
M
Treh

e
− 2M
Treh (4.2) and (4.7)

Ē (3.11): L−1
w γw

3 log(γwT/M2Lw)−5.92 (3.51): 0.16γwL−1
w

Veq (3.23)(3.55): Ē GeV
TrehM

if Λ2 > MplTreh No Free Streaming

P1→2 (3.34): 1
8π4

γwv3T 3

Λ2 (3.49): 1
2π4

γ2
wv

4T 4

Λ4

M/GeV Figure 3: [106 − 1014] Figure 5: [106 − 1014] Figure 6: [1− 106]

v/GeV Figure 3: [103 − 1012] Figure 5: [102 − 1014] Figure 6: [102 − 1014.5]

Table 1. In this table, we present a summary of our results in a schematic way and point toward the
equations/figure in the main text. In these expressions, γw is the boost factor for the wall to the plasma,
v is the VEV of the broken symmetry, P1→2 is the probability of the splitting, P is the averaged
pressure on the bubble wall from the reaction, Veq is the velocity of the DM at radiation-matter
equality, Ē is the average energy of the DM particle at production. The subscripts BE and FI mean
bubble expansion and freeze-in abundance, respectively. α is the strength of the phase transition
α ≈ (Treh/Tnuc)4. M always designates the mass of the candidate DM MDM. In the last two rows, we
report the attainable DM mass and symmetry breaking scale, assuming that the DM abundance via
bubble expansion matches the observation.

final- and initial-state particles in the direction orthogonal to the wall, and we took x = 1/2 in
the last equality. The Θ(1−∆pzLw)-function comes from the requirement that the transition
is non-adiabatic. Putting a step cut-off is a rough approximation and the exact behaviour is
in principle dependent on the wall shape (see appendix A of [18] and appendix H of [73] for
further discussions). This condition is physically similar to the requirement that the energy
in the center-of-mass frame of the collision between a standing particle of the wall and an
incoming h, which is sprod ∼ 2p0v, needs to be larger than 4M2

ϕ for on-shell ϕ production.
In the aftermath of the bubble expansion, a non-thermal abundance of ϕ accumulates,

which takes the following form

nBE, PF
ϕ ≈ 2

γwvw

∫
d3p

(2π)3Ph→ϕ2(p)× fh(p, Tnuc)

≈ 2λ2v2

48π2M2
ϕγwvw

∫
d3p

(2π)3 × fh(p, Tnuc)Θ(pz − 2M2
ϕ/v), (2.4)

where the subscript PF means evaluated in the plasma frame. vw =
√
1− 1/γ2

w is the velocity
of the wall, and fh(p) is the equilibrium thermal distribution of h outside of the bubble. We
assume h to be in thermal equilibrium with the bath at temperature Tnuc and is therefore
described by a Boltzmann distribution fh(p) ≈ e−γw(Eh−vwphz )/Tnuc with Eh =

√
p2
z + p⃗2

⊥. We
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can thus perform the integral in eq. (2.4), obtaining

nBE
ϕ = λ2

96π4γ3
wvw

× v2T 2
nuc

M2
ϕ

(M2
ϕ/v

1− vw
+ Tnuc(2− vw)
γw(vw − 1)2

)
× e−γw

2M2
ϕ
v

1−vw
Tnuc . (2.5)

With γw(1 − vw) = γw −
√
γ2
w − 1 → 1

2γw in the limit of fast walls, the density in the
plasma frame becomes

nBE
ϕ = T 3

nuc
24π2

λ2v2

π2M2
ϕ

e
−

M2
ϕ

vTnucγw +O(1/γw) . (2.6)

The factor e−M
2
ϕ/(vTnucγw) is a consequence of Θ(p0 − 2M2

ϕ/v) in the eq. (2.4). We can see
that in the non-adiabatic limit,

γw >
M2
ϕ

vTnuc
, (2.7)

the exponential goes to one and the density becomes independent of the velocity of the wall vw,
as opposed to particle production via dimension five and six operators, as we will see below.
The final number density of heavy non-thermal DM, in the unsuppressed region, is of the form

nBE, PF
ϕ ≈ λ2v2

M2
ϕ

T 3
nuc

24π4 e
−

M2
ϕ

vTnucγw . (2.8)

After the completion of the PT, the plasma is reheated to some reheating temperature Treh,
that we can compute in the following way

Treh ≈ (1 + αnuc)1/4Tnuc ≈ v , αnuc ≡
∆V
ρrad

, (2.9)

where ∆V is the difference of potential in the broken and the symmetric vacuum.
Dividing by the entropy density after the PT, s(Treh) ∝ T 3

reh and redshifting to today,
the final relic abundance today writes

Ωtoday
ϕ,BE h

2 ≈ 2.7× 105 ×
( 1
g⋆S(Treh)

)(
λ2v

Mϕ

)(
v

GeV

)(
Tnuc
Treh

)3
e
−

M2
ϕ

vTnucγw . (2.10)

Here, g⋆S(T ) is the relativistic degrees of freedom for entropy and we will also use g⋆(T )
to indicate the one for the energy. Notice that emitted particles are produced with very
large boost factor in the plasma frame

Ēϕ,plasma ≈ 1
2

∫
dx
[
(p0
b + p0

c)γw − (pzb + pzc)vwγw
]∫

dx
∼ 1

2
M2
ϕ

Tnuc
. (2.11)

Here, in the last approximation we have used that pϕ0 ∼ γw(1 + vw)Tnuc, vw =
√
1− γ−2

w .
The authors in ref. [22] have shown that in part of the parameter space of the model

DM maintains large velocity apart from the usual red-shifting due to the universe expansion
and can have a significant free-streaming (FS) length LFS

LFS =
∫ ∞

zeq
dz

1
H

Veq
1+z

1+zeq√(
Veq

1+z
1+zeq

)2
+ 1

, (2.12)
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where we defined Veq ≡ V (teq) as the average velocity of the DM at matter-radiation equality
and z is the redshift. Observations of small scale structures constrain LFS. The strongest
constraint for the DM free-streaming comes from Lyman-α for the DM free-streaming length
LFS ≲ 0.059Mpc, which is recast from sterile neutrino mass bound, 5.3 keV [74–76]. This
leads to the following bound on the average velocity at matter-radiation equality,

Veq ≲ 4.2× 10−5 (Lyman-α bound) . (2.13)

Similarly, we can recast the future prospects from 21 centimeters (WDM mass > 14 keV with
the Hydrogen Epoch of Reionization Array [77, 78]), which leads to

LFS < 0.018 Mpc ⇒ Veq < 1.2× 10−5 (21 centimeters) , (2.14)

and subhalo count (WDM mass > 18keV with the Vera Rubin Observatory [79])

LFS < 0.016 Mpc ⇒ Veq < 1.0× 10−5 (subhalo count). (2.15)

The DM particles which have such non-negligible velocities are denoted in the literature
as warm (WDM), with typical velocities

V WDM
eq ∼ 10−5 . (2.16)

In traditional mechanisms [80] for WDM the candidate mass is generally small, around keV
mass scale. However the authors of ref. [22] have shown that the DM produced in the bubble
expansion can also be warm, though very heavy. Indeed starting from equation (2.11) and
assuming that DM is not in kinetic equilibrium with the surrounding plasma we obtain:

Veq ≈
(
g⋆,s(Teq)
g⋆,s(Treh)

)1/3 Teqp
i
DM

TrehMDM
∼ 0.3 Teqp

i
DM

TrehMDM

≈ 0.3 TeqĒϕ
TrehMϕ

≈ 10−10 GeV ×Mϕ

TrehTnuc
, (2.17)

where Teq is the temperature at matter-radiation equality and Treh, as we will describe more
in depth later, the temperature after the completion of the PT. Thus the DM produced
in the bubble expansion will be warm if

105vTnuc ∼Mϕ × GeV . (2.18)

Very interestingly, this indicates a viable parameter space for explaining the observed abun-
dance of DM being heavy and warm in a range roughly v ∼ O(100)GeV,Mϕ ∼ 10(8−9) GeV
and mild supercooling [22]. We now pursue this line of investigation with secluded DM
and more realistic DM models. At last we would like to comment on the DM production
from the bubble-bubble collisions [15, 26, 81, 82]. This process is always present but is
generically subdominant to the DM production if the non-adiabaticity constraint is satisfied.
As a consequence, we will neglect it in the rest of this study.

– 7 –
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3 Production of weakly coupled particles

After the reminder of production via renormalisable operators, we now turn to the production
via non-renormalisable operators of the type h2ODS/Λd−2. In this section, we will study
the bubble production of dark matter within the framework of weakly coupled theories,
where the DM can be a fermion or a dark vector. We also compute the parameter space
where it can constitute the total amount of DM, its average velocity and its spectrum at
and after the production.

3.1 Production from dimension 5 operator and fermion DM

We start with the case of fermionic DM ψ, which carries conserved quantum number responsible
for its stability, coupled to the thermalised sector h via the following non-renormalisable
operator

L ⊃ h2ψψ̄

Λ , (3.1)

where Λ is the UV cutoff and ψ is the fermion DM of mass Mψ. A very similar procedure to
the one presented in the previous section 2 can be followed for the operator in eq. (3.1). We
show in appendix A that the probability Ph→ψψ of this splitting is given by

Ph→ψψ(p0) =
v2

8π2Λ2G(p0) , (3.2)

where p0 is the energy of the incoming h in the wall frame. Let us comment on various
factors in this equation. The first Θ-function, is an anti-adiabaticity constraint and can be
understood in a similar way as the Θ-function in eq. (2.3).

When the energy in the center of mass sprod ≈ 2γwvTnuc > Λ2, the EFT breaks down and
we expect the production mechanism to become dependent on the explicit UV completion
of the model. For this reason, we will require now that

sprod ≈ 2p0v ≈ 2γwvTnuc < Λ2 (EFT validity condition) , (3.3)

as ensured by the second Θ-function of (3.1). The region that does not meet this condition
will be referred to as the EFT breakdown region. The G(p0) is a dimensionless function
entering the production process which has the following form

G(p0) ≡
4
3

√
1−

2M2
ψ

p0v

(
M2
ψ

2p0v
− 1

)
+ log

∣∣∣∣∣∣1− p0v

M2
ψ

−

√√√√( p0v

M2
ψ

− 2
)
p0v

M2
ψ

∣∣∣∣∣∣
 . (3.4)

After the bubble wall expansion, a non-vanishing abundance of ψ particles has been created.
By performing the same analysis as in the renormalisable case, we obtain, in the plasma frame

nBE,PF
ψ ≈ gh

v2T 2
nuc(1 + vw)

16π4Λ2γwvw

(
2
M2
ψ

v
+ γwTnuc(2 + vw − v2

w)
)
G(γwTnuc)e−

2M2
ψ
γw

Tnucv
(1−vw) ,

(3.5)
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leading, if gh = 1, to the DM fraction today:

Ωtoday
ψ,BEh

2 ≈ 5.38×108 nBE
ψ

gs⋆T
3
reh

Mψ

GeV

≈ 5.38×108 1
gs⋆

v2T 3
nuc(1+vw)

16π4T 3
rehΛ2γwvw

(
2
M2
ψ

vTnuc
+γw(2+vw−v2

w)
)
G(γwTnuc)e−

2M2
ψ
γw

Tnucv (1−vw) ,

(3.6)

which for vw ≈ 1 gives finally

Ωtoday
ψ,BEh

2 ≈ 1.38× 106
( 1
gs⋆

)(
v

Λ

)2 (Tnuc
Treh

)3 (Mψ

GeV

)( M2
ψ

γwvTnuc
+ 1

)
G(γwTnuc)e−

M2
ψ

Tnucvγw .

(3.7)

On the top of this production by bubble expansion, there will be a contribution from
FI after reheating, computed in appendix C if Mψ ≫ Treh,

Ωtoday
ψ,FI h

2 ≈ 5.84× 104
(
Mψ

GeV

)
MplMψ

g
3/2
⋆ Λ2

(
Treh
Mψ

)3/2

e−2Mψ/Treh , (3.8)

which can be sizable if Mψ ≲ 20Treh. Here Mpl ≈ 1.2 × 1019 GeV is the Planck mass. As
a consequence, FI production will be subdominant if

ΩFI
ψ h

2 ≪ 0.1 , Mψ/Treh > 25 + log
(
v

Λ
M2
ψ

v2

)
, (3.9)

where we approximated Treh ∼ v in the argument of the logarithm.2 One finds that in our
scenario, the upper bound of the reheating temperature, TR, before the phase transition
cannot be too larger than the upper bound of Treh by the phase transition. Conventionally,
we call Treh the reheating temperature after the phase transition, and TR the temperature
of the universe after the reheating due to inflation.

After the DM production, the future of the emitted particles depends on the interactions
with the thermal bath, mostly with the h particles, via ψh→ ψh. There will be two different
regimes that we will now study in detail.

2We also have a contribution of the thermal production before the phase transition. This can be estimated
by replacing Treh in ΩFI

ψ with the reheating temperature by inflaton decay, TR, and multiplying an entropy
dilution factor T 3

nuc/T
3
reh, assuming again that Mψ is larger than TR. We get

Ωtoday
ψ,FI h

2 ≈ 5.84 × 104
(
Mψ

GeV

)
MplMψ

g
3/2
⋆ Λ2

(
TR

Mψ

)3/2 (
Tnuc

Treh

)3
e−2Mψ/TR

Requiring this to be much smaller than 0.1, we get

Mψ/TR ≳ 20.
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Figure 2. Normalised spectrum of the fermions ψ immediately after emission, via h→ ψψ. The thick
lines represent the numerical solutions for the spectrum of ψ from bubbles, where Eψ is the energy in
the plasma frame. The dashed lines represent the spectrum from a hypothetical thermal Boltzmann
abundance of ψ at high temperature (TB = 104, 105 GeV), which are shown as a comparison for the
large E behaviour.

Free-streaming region The first possibility is that the interaction ψh → ψh is always
out of equilibrium after the PT and cannot modify the velocities of DM particles. This
is the case when

Γψh→ψh ∼ T 3
reh

8π3Λ2 ≪ H(T = Treh) ,
TrehMpl

Λ2 < 1.66g1/2
⋆ (8π3) . (3.10)

Immediately after the phase transition the average energy of the ψ field can be approximated
as (see appendix D for the computation)

Ēψ,plasma ≃ L−1
w γw

3 log γwT
M2
ψ
Lw

− 5.92
. (3.11)

We compare this expression with the energy of the DM for the renormalizable portal in
eq. (2.11), the dimension-four scalar portal. We observe that the dimension-five case predicts
more energetic DM, with the ratio of energies scaling as:

Ēdim 5

Ēdim 4
∼ γwTnucv

M2
DM

. (3.12)

The energy distribution of the DM produced via bubble-plasma collisions will not have the
thermal shape immediately after the production. This spectrum can be obtained numerically
by convolution of the Boltzmann distribution for the initial particles h with the probability
for the heavy-particle production (see details in appendix D). The results are presented on
figure 2, where we have used the same normalisation∫ ∞

0
dEψ

dF

dEψ
= 1 , (3.13)

for every curve. Here dF/dEψ corresponds to the differential number density and Eψ is
the energy in the plasma frame. At low energies the spectrum starts to rise for Eψ ≳ Mψ,
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follows a plateau which is finally exponentially cut off by the Boltzmann suppression at
Eψ ≳ γwL

−1
w ∼ γwv.3

CDM region On the other hand, if the interactions ψh → ψh are active after the phase
transition

TrehMpl
Λ2 > 1.66g1/2

⋆ (8π3) , (3.14)

ψ will quickly slow down until it reaches a kinetic distribution with strongly non-relativistic
velocities. DM then becomes usual Cold DM (CDM).

Transition region between CDM and FS. We now address the region between two
extreme cases in eq. (3.10) and eq. (3.14). In order to find the DM velocity Veq in this
transition regime, we need to take into account the momentum loss due to rescattering of
DM with plasma and follow the average DM energy evolution as a function of T . This effect
can be estimated from the following simplified procedure. The momentum of a particle lost
in one collision ψ(p1)h(p2) → ψ(p3)h(p4), δpψ, is given by [22]

δpψ ≈ Eψ1 − Eψ3 ≈ −t/4T , (3.15)

where the energies are evaluated in the plasma frame and t ≡ (p1 − p3)2 ≈ −2p1 · p3 is the
usual Mandelstam variable. Now the equation for the evolution of the ψ average energy
Ē, as long as Ē ≈ |p1| ≫ Mψ, is

a−1d(Ēa)
dt

= ⟨σhψ→hψvM ⟩⟨δpψ⟩lossnh , (3.16)

where ⟨δpψ⟩loss ∝ Ē is the average energy loss in one collision and vM is the Møller velocity.
Using that dσhψ→hψ/dt ∝ t/s2Λ2, the energy of the collision being approximately s ≈ 4ET ,
and neglecting the mass Mψ for simplicity of the computation, we obtain

−⟨δpX⟩loss(E) = − 1
σhψ→hψ

∫ s

dt
dσhψ→hψ

dt
δpψ = 2E

3 . (3.17)

Then we can rewrite the evolution eq. (3.16) as follows

d

dt
= −HT d

dT
⇒ a−1HT

d(aĒ)
dT

= ⟨σhψ→hψvM ⟩Ē 2ζ(3)
3π2 T 3 , (3.18)

where we have assumed that g∗, the relativistic number of d.o.f, is not changing and we
used that the number of d.o.f. of the scalar h, gh = 1. The velocity averaged cross-section
for the dimension five operator is given by:

⟨σhψ→hψvM ⟩ = 1
8πΛ2 , (3.19)

3Strictly speaking the dark matter is produced during the whole process of the bubble wall expansion,
during which γw is growing. However the DM production will be dominated by the bubbles with the maximal
radii just before the collision, thus we believe the corrections will be subleading.
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where we approximated the relative velocity to be vM ≈ 2. And we finally obtain the
evolution eq. (3.16) in the form

d(aĒ)
aĒ

≈ 1
12πΛ2

ζ(3)Mpl
1.66π2√g∗

dT . (3.20)

The evolution equation can then be trivially integrated to give the final energy of the ψ

particle at the decoupling of the scattering

Ef
Ei

=
(
Tf
Ti

)
exp

[
− 1
12πΛ2

2ζ(3)Mpl
1.66π2√g∗

(Ti − Tf )
]
. (3.21)

In this expression, the initial temperature Ti is the reheating temperature after the transition
Treh = Ti. Since this expression was derived using the assumption of relativistic ψ we can
use it till the temperature Tf = TNR when the ψ becomes non-relativistic and Eψ ≈ Mψ.
Then after the end of the interactions, the velocity will be simply redshifted by the universe
expansion. The velocity at matter-radiation equality is thus given by

Veq =
(
g⋆(Teq)
g⋆(TNR)

)1/3 Teq
TNR

,
Mψ

Ēψ
≃ TNR
Treh

exp
[
− 1
6πΛ2

ζ(3)Mpl
1.66π2√g∗

(Treh − TNR)
]
, (3.22)

where Ēψ is the average energy given in eq. (3.11). The second relation can be solved for
TNR and plugged in the first. Combining this with Teq ≈ 0.8 eV, we obtain

Veq ≈ 2× 10−10 GeV × Ēψ
TrehMψ

exp
[
− ζ(3)
1.66× 6π3√g∗

Mpl(Treh − TNR)
Λ2

]
. (3.23)

Dynamics of the phase transition and pressure from production We now sketch
the dynamics of the PT. Bubbles nucleate generically with a radius

Rnuc ∝ 1/Tnuc . (3.24)

The expansion of a bubble can proceed in two regimes: either the bubble reaches a steady
state motion and the velocity becomes constant (terminal velocity regime), or the bubble
keeps accelerating until collision (runaway regime). As long as the pressure from the release
of energy is not balanced by the pressure from the plasma, the bubble keeps accelerating
with the equation of motion [83, 84]

γw(R) ≈
2R

3Rnuc

(
1− ∆P

∆V

)
≈ 2R

3Rnuc
. (3.25)

If the bubble keeps accelerating until collision, the largest velocity is controlled by the radius
of the bubble at collision, γter

w (R⋆), given by

R∗ ≈
(8π)1/3vw

H[Tnuc]β(Tnuc)
, β(T ) = T

d

dT

(
S3
T

)
, (3.26)

where R⋆ is an estimate for the bubble size at collision and β the inverse dimensionless
duration parameter of the transition. We obtain the boost factor at collision

γcoll
w ∼ 2

√
10MplTnuc

π2/3
√
8π√g⋆βT 2

reh
≈ 0.06MplTnuc

βT 2
reh

. (3.27)
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However, the pressure from particles coupling to h might terminate the acceleration long
before γcollision

w is reached. The study of the bubble wall interaction with the plasma is a field
under active investigation [59, 60, 73, 85–105]. In the regimes of ultra-relativistic bubbles,
the computation of the terminal velocities [59, 60, 98, 99, 101] amounts to comparing the
release of energy ∆V with the plasma pressure in the relativistic regime ∆P(γw). In principle,
we could obtain the terminal velocities by solving

∆V ≈
∑

P(γter
w ) , (3.28)

where ∑P(γter
w ) is the sum of the different source of pressure.

In the relativistic regime, the computation of the pressure however largely simplifies and
the following picture emerges: the pressure is due to the interactions inducing an exchange of
momentum from the plasma to the bubble wall. Schematically it reads

Pγw→∞ ≈
∑
ij

pz
p0
ni︸ ︷︷ ︸

flux

× Pi→j︸ ︷︷ ︸
probability i→ j

× ∆pi→j︸ ︷︷ ︸
exchange of momentum i→ j

(3.29)

where the first factor is the incoming flux of particle species i entering into the wall and having
a transition i → j, i.e. to state j, with an associated loss of momentum ∆pi→j ≡ pi − pj .
This loss of momentum of the plasma is transmitted to the wall, which is felt by the wall as
a pressure. A more complete presentation is provided in appendix B.

We now investigate the possibility of having runaway walls, as necessary for our production
mechanism. The first contribution to the pressure is the pressure from the particles coupling
to the BSM Higgses h gaining mass [98],

Ph ≈ gh
m2
hT

2
nuc

24 (BSM Higgs gaining mass: model-independent) , (3.30)

Pi ≈ cigi
m2
iT

2
nuc

24 (Particles coupling to h gaining mass: model-dependent) , (3.31)

PLO = Ph +
∑
i

Pi , (3.32)

where mh is the mass of the BSM Higgs in the broken phase, ci = 1(1/2) for bosons(fermions).
We assume that this pressure is not enough to prevent to balance the release of energy
∆V > PLO. On the other hand, if the BSM Higgs couples sizably with gauge coupling g to
gauge bosons, the emission of soft transverse gauge bosons [59, 99] and longitudinal gauge
bosons [101], would induce a pressure

Pg ∝
g3

16π2 γwT
3
nucv (emission of soft bosons: model-dependent) , (3.33)

preventing runaway. The intuitive picture in eq. (3.29) permits to understand how the
pressure on the wall can increase with the energy γwT without ever threatening unitarity: in
the wall frame, ni ∝ γwT

3 while ∆pz ∼ v and the plasma frame ni ∝ T 3 while ∆pz ∼ γwv. In
both frames, the probability of the emission of the soft gauge boson is bounded Pϕ→ϕA ≪ 1.

We thus assume that the BSM Higgs does not couple to gauge bosons so that Pg → 0 [61]
or the gauge coupling is small, e.g., g ≲ 0.01β1/3

(
v

1010 GeV

)1/3
by taking Treh ∼ Tnuc ∼

– 13 –
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(∆V )1/4 ∼ v and assuming eq. (3.33) for the friction, and in this case, the pressure from
gauge boson emission remains always subleading. We finally focus on the unavoidable (model
independent) pressure induced by the production. Indeed, the transition h → ψψ has a
non-vanishing exchange of momentum, which is transmitted to the wall at the production.
Because of this, the wall undergoes a plasma pressure [60] (see appendix B for the details
of the computation)

Pprod
h→ψψ ≈ 1

8π2
v3nhγw

Λ2 (production pressure: model-independent) , (3.34)

which we call the production pressure[60] and could in principle stop the wall acceleration.
Let us insist on the fact that the maximal pressure that can be induced in the context of
the EFT validity is given by

γmax
w ≈ Λ2

2vTnuc
⇒ Pprod

h→ψψ

∣∣∣∣
max

≈ gh
v2T 2

nuc
16π4 , (3.35)

where we set 2γwvTnuc = Λ2. This remains in principle always smaller than the pressure from
the h obtaining a mass in eq. (3.30). We can thus safely neglect it.

At the end of the day, the boost factor involved in the production of DM is given by

γmax
w = Min

[
γter
w , γcoll

w

]
. (3.36)

The value of γter
w strongly relies on the physics of the PT sector, namely the presence

of gauge bosons and further particles, as well as the amount of supercooling. Following the
discussion above, we however consider the following situation

∆V > Ph ≫ Pprod
h→ψψ

∣∣∣∣
max

, Pg ∼ 0 ⇒ Runaway regime (3.37)

As a consequence, in the remainder of this paper we will always take γmax
w = γcoll

w from
eq. (3.27).

Results and discussion After describing the dynamics of the phase transition, we now put it
all together and study the parameter space. In principle, we have five parameters in our model(

γw, α
1/4
nuc ≈

Tnuc
v
, v,Λ,Mψ

)
, (3.38)

but for the plots we fix the value of Tnuc/v and set γw = γmax
w = γcoll(β, Tnuc, Treh) to the value

at bubble collision (3.27). We take Treh = v = Tnuc for the non-supercooled case. The value of
Λ is obtained by requiring that the produced DM abundance, given by eq. (3.7) and eq. (3.8);

Ωtoday
ψ,todayh

2 = Ωtoday
ψ,BEh

2 +Ωtoday
ψ,FI h

2, (3.39)

matches the observation of DM in the universe today. Thus we are left just with two free
parameters v- scale of the phase transition and Mψ dark matter mass, which we use for
plotting. In figure 3 we present several versions of this plot for the various values of β and
Tnuc/v. We observe that the DM can be fairly warm for vϕ ∈ [102, 105]GeV, close to the EFT
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Figure 3. Contour plots of log10(Veq) for the operator h2ψ̄ψ
Λ and for various values of β and Tnuc,

while Treh = v. Purple dashed lines indicate the isocontours of the UV cutoff, log10
( Λ

GeV
)
. The shaded

area to the left of the solid black line excludes the region where the EFT analysis breaks down, i.e.
2γvTnuc > Λ2. The dark gray region in the lower right of each plot indicates v > Mψ. The dark purple
area indicates the region where the anti-adiabaticity condition is not satisfied γwTv ≤ 2M2

ψ. The light
purple area denotes the region defined by the conditions M2

ψ ∈ γwTnucv × [0.05, 0.5], in this region
DM can be produced, but expression in eq. (3.11) is not valid. In the white hatched regions, FI is the
dominant process for DM production. The red lines represent the current and future experimental
bounds on the velocity, as given by eqs. (2.13), (2.14), and the red star marks the specific points we
study in the main text. Light grey area in the lower right corner of the plot indicates the DM in the
thermal equilibrium.
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breakdown. We observe an ankle in the Λ contours, followed by an exponential suppression.
This change of behaviour can be understood from eq. (3.7) where we set Ωtoday

ψ,BEh
2 = 0.12

and solve for Λ. When the DM production becomes exponentially suppressed, the Λ drops
exponentially to compensate, creating an ankle in the Λ contours. We note that generically
thermal DM is incompatible with EFT (light grey regions in the bottom-left corner of the
plot). More specifically, this region was obtained by solving the right expression of eq. (3.22)
for TNR and checking if the DM particle is in equilibrium or not at this temperature. Note
that the naive condition of (3.14) leads almost to the same contour.

At last we present two benchmark points with very heavy and warm DM:

• β = 10:

v = 400 GeV, Mψ = 8× 108 GeV (3.40)
Λ = 6.3× 109 GeV, γw = 1.7× 1014, Veq = 9.5× 10−6 .

• β = 100:

v = 200 GeV, Mψ = 1.6× 108 GeV (3.41)
Λ = 1.5× 109 GeV, γw = 3.4× 1013, Veq = 7.1× 10−6 .

These points are represented on figure 3 by a red star and might be soon observable by
structure formation probes like Lyman-α and 21 cm [77, 78] or sub-halo count [79]. As we
will also comment in section 5, such points would also likely produce a copious gravitational
wave signal that might be detectable with the space interferometer LISA.

3.2 Production from dimension 6 operator and vector DM

We can now go through the same steps for the dark vector DM produced via a dimension
6 operator of the form

h2FµνF
µν

Λ2 , (3.42)

where Fµν is the field strength of a dark vector γ. The probability of the production of
transverse gauge bosons is again computed in appendix A and reads4

Ph→γγ ≡ Ph→γ±γ∓ ≈ v3p0
Λ4

1
4π2Θ(p0v − 2M2

γ ) . (3.43)

One might be worried that the probability of the interaction increases with the energy and
threaten the unitarity when p0 ≫ Λ4/v3. However, we expect the EFT description to break
down around p0 ∼ Λ2/v, and the UV description to unitarize the theory.

4Longitudinal mode production, on the other hand, is model dependent. If we consider the mass of the
vector obtained from Higgsing, then one can go back to section 2 for the production of longitudinal modes by
considering that ϕ is the BSM Higgs field for the vector’s mass. When the mass of the Higgs and the vector
are both light, according to the equivalence theorem (whose validity was discussed in [26]), the estimation is
the same as the Higgs case. Since the BSM Higgs gets a VEV, it decays but the vector boson does not need to
decay because of the unbroken dark charge conjugation symmetry: ϕ→ ϕ∗, F → −F .
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The abundance produced by bubble expansion is then given by

nBE,PF
γ ≈ gh

2γwv3T 4
nuc

(πΛ)4 e
−

M2
γ

Tnucvγw . (3.44)

Hence, with gh = 1, the vector DM fraction today is of the form

ΩBE
γ,todayh

2 ≈ 1.1×107×
( 1
g⋆(Treh)

)(
γwv

2TnucMγ

Λ4

)(
v

GeV

)(
Tnuc
Treh

)3
e
−

M2
γ

vTnucγw . (3.45)

As for the fermion production, an unavoidable FI contribution comes from the reheating tem-
perature after the transition, and is given by (see appendix C for the complete computation)

ΩFI
γ,todayh

2 ≈


8.76×104

(
Mγ

GeV

)
MplM

3
γ

g
3/2
⋆ Λ4

√
Mγ

Treh
e−2Mγ/Treh when Treh ≪Mγ

1.05×106
(
Mγ

GeV

)
MplT

3
reh

g
3/2
⋆ Λ4

when Treh ≫Mγ

. (3.46)

The total abundance is then given by

Ωtot
γ,todayh

2 = ΩBE
γ,todayh

2 +ΩFI
γ,todayh

2 . (3.47)

If the mass of the vector boson is below the reheating temperature, Mγ < Treh, the FI is
relativistic, then the ratio of the relic abundances will be

ΩBE
ΩFI

≃ 102
(
γwTnuc
Mpl

)(
v

Treh

)3 (Tnuc
Treh

)3
≈ 6
β

(
Tnuc
Treh

)6
. (3.48)

Here, we have taken into account only FI after the PT and in the second equality we
considered the maximal terminal velocity given by eq. (3.27).5 With β ∼ 10, we observe
that ΩBE

ΩFI
is most likely to be smaller than one and we hence conclude that in the case of

relativistic FI, the BE contribution will be typically subdominant. For this reason we will
impose Mγ > v in our future computations.

The conclusion about the pressure from production is the same as in the dimension five
case: the pressure on the bubble wall is given by

Pprod
h→γγ ≈ nh

v4

Λ4
γ2
wT

2π2 (production pressure) . (3.49)

Following the same reasoning as for the dimension five case, the maximal pressure within
the EFT validity regime is

Pprod
h→γγ

∣∣∣∣
max

≈ gh
v2T 2

nuc
32π4 , (3.50)

5Generically, assuming FI also happened before the immediately after inflation, at TR, we have the further
contribution

ΩFI
γ,todayh

2 ≈ 8.76 × 104
(
Mγ

GeV

)
MplM

3
γ

g
3/2
⋆ Λ4

√
Mγ

TR

(
Tnuc

Treh

)3

e−2Mγ/TR ,

which again requires
Mγ ≳ 20TR .
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Figure 4. Normalised spectrum of the vector DM γ immediately after emission via h→ γγ. Same as
figure 2, but now for the dimension six operator.

where we set 2γwvTnuc = Λ2. This remains in principle always smaller than ∆V and the LO
pressure from the ϕ obtaining a mass. We can thus safely neglect it. Immediately after the
production, the average energy in the plasma frame of the produced vectors is given by (see
appendix D for the numerical and the analytical computation.)

Ēγ ≈ CγγwL
−1
w , Cγ ≈ 0.16 . (3.51)

As for the fermions, the spectrum of the vectors immediately after production is not a
thermal spectrum. We present the details of the computation of the spectrum in appendix D
and show it for some values of the parameters in figure 4. The spectrum, compared to the
spectrum of the dimension five case presented in figure 2, does not show a plateau, but an
increasing slope until the Boltzmann exponential tail. As for the dimension five, at low
energies the spectrum starts to rise for Eγ ≳ Mγ .

As before, after production, the vector DM can rescatter via γh → γh, inducing an
energy loss that we can compute. The only difference is the energy dependence of the
cross-section ⟨σv⟩ ∝ TĒ

Λ4 :

d(aĒ)
aĒ2 = ζ(3)

16π31.66√g⋆
Mpl
Λ4 TdT . (3.52)

Then solving for the energy we get the following relations

Veq =
(
g⋆(Teq)
g⋆(Treh)

)1/3 Teq
TNR

Mγ ≃ TNR
Treh

Cγγwv

[
1 + ζ(3)

16π31.66√g⋆
MplγwvT

2
reh

Λ4

]−1

, (3.53)

which combines to the following expression for the velocity at equality

Veq =
(
g⋆(Teq)
g⋆(Treh)

)1/3 Teq
Mγ

Cγγwv

Treh

[
1 + ζ(3)

16π31.66√g⋆
MplγwvT

2
reh

Λ4

]−1

, (3.54)

giving

Veq ≈ 0.32× 10−10 GeV × γwv

TrehMγ

[
1 + ζ(3)

16π31.66√g⋆
MplγwvT

2
reh

Λ4

]−1

. (3.55)
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Figure 5. Contour plots of log10[Veq] for the operator h2FF
Λ2 for different β, Tnuc and Treh ∼ v.

Coloring scheme and various contours are exactly the same as in the figure 3.

We present results on the figure 5, following exactly the same conventions of the figure 3.
The cut-off scale is fixed in order to reproduced the DM abundance and the boost factor γw
is fixed to be the one at collision (3.27). The color scheme for the plots is exactly the same
as in figure 3. We observe that we can get WDM with velocities Veq ∼ (0.5− 1)× 10−4.

We now discuss the differences and similarities between the fermion and the vector
production.

3.3 Comparison between the dimension five and the dimension six production

Let us now comment on the differences between the production of fermions and that of
vector particles. First, looking at figure 2 and figure 4, we observe that the initial spectrum
have different energy dependences:

(fermion): dFψ
dEψ

∝ E0
ψ, (vector): dFγ

dEγ
∝ E1

γ , (3.56)

in between the Boltzmann suppressed regime and the rise at small E.
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Secondly, in both the fermion and the vector case, the EFT validity constraint, requires
that the DM is generically free-streaming after the production and does not thermalise
efficiently. Interestingly we find that the parameter space with Veq ∼ 10−5 is much larger
in dimension six models compared to the dimension five. For the vector emission, the DM
is warm in a larger band near the EFT breaking bound. A third observation is that there
is no striking difference in the parameter space (Λ,M) allowing the dark sector to contain
the total amount of observed DM. This is because the ratio of the production of vector
over fermions scales like

nγBE
nψBE

∝ O(0.1)γ
coll
w Tnucv

Λ2 , (3.57)

up to logarithmic corrections. The consequence is that the very large γcoll
w partially cancel

the large suppression from Tnucv/Λ2. A similar cancellation does not occur for the FI,
where we have

nγFI
nψFI

∝ M2
DM
Λ2 , (3.58)

and, as we consider MDM ≪ Λ, the FI contribution is less relevant. As a consequence, for
both cases, a phase transition at the EW scale can produce the total amount of observed
DM and than this DM will be typically warm. In this case, h may be a BSM Higgs field
relevant to the electroweak phase transition.

Finally, we find that in both cases we can match the observed DM abundance by taking
Λ ∼ Mpl, v = 1010−14GeV. This is a particularly interesting observation because i) we
expect on general grounds any dark sector to be coupled to the thermal sector by at least
Planck-suppressed operators, ii) The PT of the scale of v = 1010−14GeV agrees with the seesaw
and Peccei-Quinn scales and happens in various well-motivated models for the neutrino mass
or the strong CP problem [62–66, 68–70]. In those models, ultra-relativistic bubble walls can
populate the dark sector particles coupled to the visible sector solely via gravity, and explain
the DM abundance. In this scenario, the GW signal features a peak frequency of 102−6Hz
in addition to the scale-invariant one from cosmic strings, since the models spontaneously
break U(1) global/gauge symmetry. Let us also mention that when Λ ≳Mpl, we also need
to consider the production mediated by graviton which is an unavoidable mechanism. The
details of this production will be studied in the future.

4 Production of strongly coupled gluons

In this section, we study the case in which the dark sector is a strongly coupled pure Yang-
Mills theory, which means that the considered dark sector is purely made of gluons in the
deconfined phase or glueballs in the confined phase (for the review see [106–108]). We will
thus explore the phenomenology of bubble wall produced gluons which later hadronize and
account for the DM in the universe.

4.1 Glueballs as WIMP dark matter

If we assume that the dark sector is controlled by a pure Yang-Mills theory, the glueball DM
does not behave as a WIMP, which annihilates to reduce the comoving number efficiently.
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The difference is that, since a pion does not exist in the pure Yang-Mills theory, the glueball
is the lightest particle of the DS. The glueballs decrease their number density via the 3 → 2
process of the glueball self-interaction, while the glueballs in the final state are more energetic,
transforming the number density into thermal energy. This makes the scenario different
from usual freeze-out. On top of this, glueball DM has several interesting properties: first,
the glueball can only have higher dimensional interactions with other particles that are
not charged under SU(N). As a consequence, for glueball DM, the stability can be easily
satisfied without imposing any further symmetry. Second, glueballs have an irreducible
self-interaction rate controlled by the confinement scale. This self-interaction may be relevant
to the small-scale problem or, more recently called galaxy diversity problem, stating that
the rotation curves for spiral galaxies have inner slopes in a diverse range [109–111]. Very
interestingly, the self-interactions of glueballs might also make the SMBH [112] grow faster.

4.2 The set-up

We now turn to the mechanism for the population of the dark glueball sector. Assuming
a vanishing initial glueball abundance, again, there will be two mechanisms that lead to
the population of the dark sector, being FI and BE. Both processes will occur via the
following effective operator that couples the strong dark sector Gµν with the thermal sector
h, which could be the Higgs or another scalar field in the thermal bath that undergoes
the phase transition,

h2GµνG
µν

Λ2 . (4.1)

This effective coupling will produce gluons via the scattering hh→ gg for the FI production
case and via the splitting h → gg by bubble expansion.6

For the FI, as well as for the BE, the strongly coupled sector can be populated in
two different ways. The production mechanism can directly produce thermalised gluons or
glueballs. Moreover, as the glueballs are not naturally protected by a symmetry, they will
have a natural decay channel to a pair of h via the dimension six operator. In this case, the
decay rate is too large to explain the dark matter stability. To avoid this fast decay,7 we
require that mh ∼ v > MG ∼ 5Λconf [114], so that the glueballs cannot directly decay to
h. Other decay products involve the SM particles and arise from dimension six operators,
and we will discuss this possibility later in this section.

4.3 Comparison of the FI and the BE in two regimes

In this section, we estimate the relative abundance from FI and from bubble production,
within the two regimes of interest: first, the deconfined gluon phase is never attained during

6The gravitational freeze-in production via a purely Planck-suppressed operator was presented in [113].
7An alternative possibility is to consider a parity conserving dark sector, i.e., the strong CP phase is zero.

Then the lightest parity odd glueball gets more stabilized and can behave as dark matter. This also predicts
decaying DM because the parity symmetry is explicitly broken in the standard model sector, and the decay
rate of the parity odd glueball is not absolutely zero but suppressed compared with the parity even one. We do
not consider this possibility in this paper, because the parity odd one is usually not the lightest dark particle,
and it would annihilate into the parity even ones. The annihilation channels also exist, making the discussion
more complicated.
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the evolution. In this situation, glueballs are generated directly. As we will see below, we
anticipate that the FI contribution predominates over the bubble production in this regime.
Secondly, a gluon plasma forms after the thermalization of the dark sector. We will discuss
the conditions necessary for this transition in the following sections.

1. Glueball regime In this regime, the gluons will hadronize immediately to Npart free-
streaming glueballs. As a consequence, the abundance of glueballs immediately after FI can
be obtained following the same computation as for the vector production in eq. (C.10) and
multiplying by the multiplicity factor Npart,8 and the color factor N2 − 1. We obtain

Y FI
G ≈ 45(N2 − 1)Mpl

3.32g3/2
⋆ π7

T 3
reh
Λ4 Npart(Treh/Λconf) , (4.2)

where the FI production occurs after the phase transition. For the case of BE production,
one obtains

Y BE
G ≈ (N2 − 1)γwv

3Tnuc
π6g⋆Λ4

(
Tnuc
Treh

)3
Npart(γwTreh/Λconf) , (4.3)

which we extracted from eq. (3.44), and multiplied again by the multiplicity and color factor.
The ratio of those two production mechanisms is given by

Y BE
G

Y FI
G

≈ 3.32πg1/2
⋆ γwv

3Tnuc
45MplT 3

reh

(
Tnuc
Treh

)3
Npart(γw) ≈ 2.4γwTnuc

Mpl

(
Tnuc
Treh

)3
Npart(γw) , (4.4)

which is bounded by above

Y BE
G

Y FI
G

≲
1
β

(
Tnuc
Treh

)5
Npart(γw) , (4.5)

where we assumed that Treh ≈ v and we substituted the value of the terminal velocity given
in eq. (3.27). Since we expect β ≳ 10, we estimate that in the case of direct glueball emission,
the FI mechanism is most likely dominating, or at least at the same order of magnitude
compared to bubble production. We will thus leave this regime aside in the remainder of
the discussion and leave it to further studies.

2. Gluon regime Interestingly, strongly coupled theories can potentially lead to very
different DM scenarios compared to a weakly interacting DS. Namely, if the energy transfer
from the phase transition field to the strongly coupled sector proves sufficiently efficient,
it leads to the formation of a gluon plasma. For this reason, determining the total energy
transfer is of paramount importance in order to ascertain if a gluon plasma will be formed.
Moreover, the initial energy density of the strong sector will also control the final DM
abundance. This is because the gg → ggg interaction transforms the initially high-energetic
gluon to multiple lower energetic gluons. Hence, the final number of glueballs depends on the

8The multiplicity factor takes into account large number of hadrons(glueballs) produced and grows with

energy. Using [115] for pure gluonic theory we find Npart ∝ exp
√

2CA
πb

log s
Λ2 ∼ exp

√
24
11 log s

Λ2 .
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initial energy, governing the final DM abundance. We will therefore now proceed to present
the expressions for the energy density of both mechanisms.

The average energy of an emitted gluon produced by BE is similar to the case of dark
vectors and reads:

Ēg ≈ CgγwL
−1
w ∼ Cgγwv , (4.6)

where Cg is expected to be similar to Cγ , defined in appendix D, and therefore Cg ≈ Cγ ≈ 0.16.
To obtain the energy density deposited in the gluon sector, the above expression has to be
multiplied by the number density given by eq. (3.44). Moreover, the energy density of the
dark sector immediately after FI has been already computed in appendix C. The energy
densities by BE and FI are hence given by

ρBE ∼ ngĒg ≈ (N2 − 1)Cg
2γ2

wv
4T 4

nuc
(πΛ)4 , ρFI ≈ 10.2(N

2 − 1)T 7
rehMPl√

g⋆π5Λ4 , (4.7)

respectively. Notice the quadratic dependence on the boost factor γw for the case of BE
production. This can be understood in the following way: the energy density is given by
Egng where both quantities, ng and Ēg are Lorentz boosted and scale like γw ≫ 1. Of
course, similar to the weakly coupled cases, a condition for the validity of our computation
of the BE-produced abundance is that the EFT is still valid for large values of γw that
are considered, i.e.

Λ2 > s ≈ 2γwvTnuc (breakdown of the EFT) . (4.8)

These expressions allow for a straightforward comparison

ρBE
ρFI

≈ Cg
2πγ2

wv
4T 4

nuc
T 7

rehMpl
∼ 2πCg

γ2
wT

4
nuc

v3Mpl
∼ 0.02Cg

Mpl
β2v

(
Tnuc
v

)6
, (4.9)

where we used eq. (3.27) in the last step. We notice a very large enhancement due to
the factor Mpl/v, which makes the BE production largely dominant if the cooling is mild.
We however notice that if the cooling is strong Tnuc ≪ 10−2v, then it is unlikely that the
BE mechanism can dominate. As the case of mild cooling appears to be more interesting
phenomenologically, we will focus on it from now on.

Lastly, we would like to comment on the glueball production in the bubble-bubble
collisions, similar to the processes described in refs. [15, 26, 81, 82]. Unlike in weakly coupled
theories, energy transfer to the dark sector will be more efficient, as the glueballs will have
energy ∼ γv. However, the parameter space where EFT description is valid is much smaller
for the bubble-bubble collisions compared to plasma-bubble case. That said, the importance
of the bubble-bubble collisions remains an open question and we leave the analysis of this
process for the future studies.

4.4 Conditions for the formation of a gluon plasma

We have observed that if the dark sector reaches a gluon plasma, the BE mechanism is
likely to dominate over the associated FI contribution for non-supercooled PTs. We can
wonder now: what are the conditions to reach such gluon plasma state after the phase
transition? We find two conditions:
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• First, one should transfer sufficient energy to the dark sector

ρg ≈ Cg(N2 − 1)2γ
2
wv

4T 4
nuc

(πΛ)4 > Λ4
conf . (4.10)

• Second, even if the energy transfer to the dark sector is large enough, but the initial
density of glueballs is very small, a gluon plasma will not be formed. To estimate the
minimal necessary density, we require that the scattering rate of glueballs is larger than
the Hubble expansion rate:

ΓGG→GG ∼ ΓGGG... > H (Thermalisation of the dark sector) , (4.11)

where the rate ΓGGG... is the total rate of the processes in which three or more glueballs
are produced in GG collisions. It would scale parametrically the same as ΓGG→GG. We
can estimate this rate as follows:

ΓBE
GGG... ∼ nBE

G × σGGG... ≈ σGGG... × Cg(N2 − 1)2γwv
3T 4

nuc
(πΛ)4 Npart

(
γwv

Λconf

)
(4.12)

where we have used eq. (3.44) nG ≈ Npartnγ ≈ Npart
2γwv3T 4

nuc
(πΛ)4 . The scattering amongst

glueballs can be estimated by naive dimensional analysis. The estimate for the cross
section of 2 → 3 processes then reads [108]

σGGG... ∼ σGG→GG ∼ (4π)3

N2Λ2
conf

∼ 220
Λ2

conf

( 3
N

)2
, (4.13)

which is similar to the observed total QCD cross section σQCD ∼ 250
GeV 2 [116]. If this

condition is fulfilled, the interaction GG→ GGG (or more glueballs in the final state)
is active and the number density of glueballs starts to grow very quickly leading to the
formation of the gluon plasma. Note that the composite glueball has a cross-section of
∼ 1/Λ2

conf even at the high energy collision, similar to the nucleon scattering.

So far, we only considered collisions between fast glueballs produced via BE. However
a fast glueball produced via BE could have a collision with a slow glueball produced
via FI. In this setting, there are always two populations of glueballs: 1) some cold and
slow glueballs coming from FI and 2) some very boosted glueballs produced by the
bubble. Population 1) will naturally serve as targets for the fast and scarce glueballs of
population 2) to induce GG → GG . . . interactions. If this process is efficient it will
also lead to the rapid increase of the glueball density and the formation of the quark
gluon plasma. The scattering rate can be estimated as

ΓFI
GGG... ∼ nFI

G σGGG... ≈ 220
( 3
N

)2 2(N2 − 1)
3.32g1/2

⋆ π5

T 6
rehMpl

Λ4Λ2
conf

≈ 0.4 v6Mpl
Λ4Λ2

conf
. (4.14)

In what follows, we will take

ΓGGG... = ΓFI
GGG... + ΓBE

GGG... > H, (4.15)
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as a sufficient condition for the rapid increase of the gluon number density. Thus, we
will use the conditions in eq. (4.10) and eq. (4.15) as a criteria for the dark sector
being in the deconfined phase. This naive picture will be modified if the following
processes, possibly relevant for the thermalisation, are active hG → hG, hG → hGG

and GG→ hh. The rate of those interactions is roughly

ΓhG→hGG ∼ ΓhG→hG ≈ nhĒgTreh
8πΛ4 ∼ Cg

γwT
4
rehv

8π3Λ4 ,

ΓGG→hh ∼ nG
γwv

8πΛ4 . (4.16)

However those effects are only relevant if

H < ΓGG→hh H < ΓhG→hGG, (4.17)

but the viable space of parameters of our mode requires Λconf ≪ v. As we will confirm
below, we find that this effect is never relevant. Moreover, in all the parameter space
where ΓGG→hh might be active, the rate for thermalization of the dark sector ΓGG→GGG

is much larger and lead to a gluon plasma before energy might be given back to the
thermal sector. We can then always neglect it.

We now turn to the abundance of the glueball DM today.

4.5 The abundance of glueball DM today

We here restrict to the region of the parameter space where the gluon plasma is reached
after thermalisation. In this case, the produced glueballs interact with each other and melt
to a thermalized gluon plasma soon after the production around the cosmic temperature
T = Treh. The process is as follows: the energetic dark gluons produced by the BE form
glueballs because, at production, gluons are initially underdense compared to Λ3

conf . Then,
due to scattering, the typical energy of each glueball gradually decreases while the total
number of glueballs increases. When the number density of glueballs becomes higher than
∼ Λ3

conf , the glueball picture no longer holds and we get a dark gluon plasma. The number
density continues to increase (see ref. [117] for the detailed thermalization in the Λconf → 0
limit.) until the system reaches thermal equilibrium. We consider that this thermalization
completes within O(1) Hubble time because of the nature of the strong interaction. Then
the whole gluon sector will be characterized just by the corresponding temperature Tg. The
interaction between these gluons with temperature Tg (≪ TSM, i.e. the temperature of the
SM sector, which is also the temperature for the BSM Higgs h) and the thermal sector h
is negligible due to the nature of the higher dimensional interaction, and we call the gluon
sector, the dark sector. Afterwards, due to the expansion of the universe, Tg as well as TSM
redshifts. When Tg becomes smaller than Λconf , the glueballs are formed again due to the
confinement phase transition, for which we assume that the entropy production is negligible.

The calculation of the glueball relic abundance proceeds in a standard way [106–108] and
in our discussion we will follow closely the notations of [118]. Then introducing the parameter

B ≡
T 4
g

T 4
SM

= g⋆ρg
2(N2 − 1)ρSM

= 30ρg
2π2(N2 − 1)T 4

SM
= 30Cg

π6
γ2
wv

4

Λ4

(
Tnuc
Treh

)4
, (4.18)
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so that the relic abundance of glueball DM today is given by

(Ωh2)G
(Ωh2)DM

≈ 0.056(N2−1)
(

B

10−12

)3/4(Λconf
GeV

)
W

[
2.1N

2−1
N18/5 B

3/10
(
Mpl
Λconf

)3/5
]−1

,

(4.19)
where the function W is the inverse function of xex. The value of Λ allowing to match the
observed abundance of DM can be approximately found by taking the W ∼ 1, and we obtain

Λobserved DM ≈ 10
(
MG

GeV

)1/3(vTnuc
T 2

reh

)(
MplTnuc

β

)1/2
→ 10

(
MG

GeV

)1/3(Mplv

β

)1/2
, (4.20)

where the last limit is the case of the non-supercooling. We however use the exact expression
in the plots.

4.6 The production during the EWPT

It is particularly interesting to consider the case in which the h field, producing the gluonic
sector, is actually the Higgs field. Although this is not the case for the previous vector
field and fermion case, the glueballs are produced differently. In the context of the EWPT,
assuming it is a first order PT it has been shown in ref. [59] that the pressure from the
heavy gauge bosons, W± and Z, on the bubble wall prevents the EWPT from realistically
having highly relativistic boost factors. It was shown that γw scales like (v/Tnuc)3 [23], hence,
ultra-relativistic speeds are reached at the price of a long supercooling of the EWPT.

Using the estimate in eq. (4.9), we find

ρBE

ρFI

∣∣∣∣
EWPT

≈ 2πCg
γ2

EWPTT
4
nuc

v3
EWMpl

∝ vEW
Mpl

(
Tnuc
vEW

)−2
≪ 1 . (4.21)

From those estimates, we can conclude that during the EWPT, the production of the dark
gluon sector via BE is far too subdominant and can be discarded.

4.7 Phenomenological constraints on glueball DM

In the subsection, we discuss the constraints that exist on glueball DM. They come mainly
from the decays of DM and from the strong interactions of glueballs amongst each other.

4.7.1 Bullet cluster bounds on the scattering rate

We can estimate the scattering rate among glueballs by

σGG→GG ∼ 220
Λ2

conf

( 3
N

)2
. (4.22)

The bound from the bullet cluster is estimated to be [119, 120]

σGG→GG

MG
≲ 2× 103GeV−3 ⇒ 1

Λ3
conf

≲ 50GeV−3 , (4.23)

where we assumed that MG ∼ 5Λconf [114]. We thus can conclude that

Λconf ≳ 0.25 GeV . (4.24)
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4.7.2 Decay of the glueball

The glueball can decay via different channels depending on its mass. If Λconf > v, then the
glueballs decay very fast to h. So we require that Λconf < v. We will consider the constraint
on the decay of G to the SM particles, because it is usually more stringent than the decay
into some additional dark light particles.

When MG < vEW. We first focus on the decay to a SM fermion pair. For the reasons
advocated in section 4.6, matching the observed DM abundance requires that h is a BSM
Higgs. This BSM Higgs can however always share a quartic portal with the SM, which cannot
be forbidden by symmetries. Denoting the physical Higgs with a capital letter H and the
BSM Higgs with a lower case h, we can have

λ|H|2h2 , (4.25)

like in [23] and the effective operator controlling the decay is then given by

Leff ⊃ λvEWv

m2
hm

2
H

v

Λ2 yf f̄fGµνG
µν , (4.26)

because the mixing term is λH2h2 ⊃ 2λvEWvHh. Thus h couples to the SM fermions via
mixing with the Higgs boson ye

λvEWv
m2
h

. Taking into account that mh ∼ v and mH ∼ vEW,
the decay rate becomes

ΓG→f+f− ∼ λ2 y
2
fM

7
G

Λ4v2
EW

tG,decay ∼ 1023s

y2
fλ

2

( Λ
109GeV

)4 (0.1 GeV
MG

)7
. (4.27)

The decay is most dominant via the heaviest fermion pair available, i.e. MG > 2mf = 2yfvEW.

When MG > vEW. In the case of MG > 2mH , the glueballs can decay to a pair of
Higgses via the operator

Leff ⊃ λ
v2

m2
h

HHGµνG
µν

Λ2 , (4.28)

which is much less suppressed. The decay rate becomes

ΓG→HH ∼ λ2M
5
G

Λ4 tG,decay ∼ 102s

λ2

( Λ
109GeV

)4 (100 GeV
MG

)5
. (4.29)

The bounds on the lifetime of DM impose tG,decay ∼ 1026−27s , e.g., [121]. Taking the
estimate for Λobserved DM in eq. (4.20), we obtain an estimate for the decay time, in the
limit of non-supercooling

tG,decay ∼ 1011s

λ2β2

(100 GeV
MG

)11/3 ( v

GeV

)2
. (4.30)

In figure 6, we present the region of parameter space allowing to match the observed
abundance of DM from bubble expansion assuming the melted regime. On the Left panel, the
black (full, dashed and dash-dotted) lines show the region matching the observed abundance
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Figure 6. Left: we show the different conditions in the specific example Λconf = 0.25GeV. The
full black line satisfies the two conditions in ρg > Λ4

conf and ΓGGG... > H and match the observed
abundance while the dashed line only underproduce DM for fDM ≡ ΩBE

G /ΩDM,obs = [0.1, 0.01]. Right:
parameter space allowing to match the observed abundance of DM with the bubble production. When
ΓGGG... ≪ H , the glueballs are free-streaming, as in the previous discussion for dark vector field. This
could contribute to the dark radiation. In the dashed black contour, we present the region of DM that
would have decayed by today if λ = 10.

of DM (or a fraction of it in dashed lines), in the melted regime. We shade all the regions
where our computation is not valid: the yellow region excludes the region where the EFT
is broken, according to eq. (4.8), the orange region shows the region where the hG → hG

interaction is active, according to eq. (4.16), and the red region is the region where hh→ GG

is active. Those reactions would couple the thermal sector to the glueball sector and induce
an unacceptably large abundance of glueballs. Finally, the blue region shows the region where
the interaction GG→ GG . . . is inactive according to eq. (4.15) with the rates for FI and BE
given by eq. (4.14) and (4.11), respectively, and the gray region denotes the region where the
requirements of having enough energy to form a gluon plasma is not fulfilled, i.e. eq. (4.10).
In the latter two regions, we do not expect the dark sector to ever reach a deconfined gluon
phase and then our computation is likely not valid.

On the Right panel of figure 6, we observe that successful glueball DM can occur in
a vast region of the parameter space

v ∈ [104, 1015] GeV, Λ ∈ [1013, 1019] GeV, Λconf ∈ [0.25, 5× 106] GeV . (4.31)

For almost all the range of the strongly coupled sector that matches the DM abundance, the
DM is stable on cosmological timescales. However in a thin band of the parameter space, for
large glueball masses, and for a large portal coupling λ ≈ 10, the DM is decaying.

At the other edge of the parameter space, for light glueballs, the strong interactions
among DM glueballs can show up in bullet cluster-like events if Λconf ∼ 0.3GeV, hence we
use this value as a lower limit for the range of the parameter scan.
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5 GW signal from Dark Matter production

In the previous sections we studied the production of DM during the phase transition. We
saw that it required runaway walls and rather slow transitions with moderate values of β.
In turn this specific type of phase transition is expected to induce a large background of
gravitational waves due to the sound waves and the collision of bubble walls, making this
mechanism possibly detectable via GW interferometers.

In this section, we quickly comment on this GW background. In the simplest version of
our model, the energy of the phase transition goes to the bubble wall stress, the shells of
produced DM and strongly boosted fluid shells. For such a fast bubble expansion the bulk flow
model [122]9 is expected to describe the stochastic GW background the best [61] and we use
it to assess the current and future experimental sensitivities. We present the signal of the GW
signal induced together with the integrated power-law sensitivities of LISA, LIGO, CE, ET,
MAGIS, BBO in figure 7. Following ref. [122] the GW signal, assuming vw → 1, takes the form

h2ΩGW = h2ΩpeakS(f, fpeak) S(f, fpeak) =
(a+ b)f bpeakf

a

bf
(a+b)
peak + af (a+b)

, (a, b) ≈ (0.9, 2.1) ,

(5.1)
with

h2Ωpeak ≈ 1.06× 10−6
(
H

β

)2( αnucκ

1 + αnuc

)2(100
g⋆

)1/3
and κ = 1 ,

fpeak ≈ 2.12× 10−3
(

β

Hreh

)(
Treh

100GeV

)(100
g⋆

)−1/6
mHz . (5.2)

Note that on the top of this spectrum, one needs to impose an IR cut-off required by
causality for f < Hreh/2π.

The complicated problem of the separation of the unavoidable astrophysical background
(from time to time called foreground) from the possible cosmological background is still under
vivid investigation [123–126]. As a consequence, we shade in gray the regions where we expect
a strong foreground from galactic and extra-galactic compact binaries. This foreground is
still subject to very large uncertainties and will depend on our abilities to resolve individual
sources, it should therefore be interpreted with caution.

6 Summary and conclusions

In this paper, we have studied the bubble wall production of DM in a secluded sector connected
to the thermal bath by a non-renormalisable portal. We have first systematically studied the
abundance of DM, the spectrum of the emitted DM and its evolution for a dimension five
(fermion) and a dimension six portal (vector) weakly coupled DM scenarios. Unfortunately,
both scenarios are incompatible with EW phase transition, since the bubble expansion will not
be sufficiently fast due to the gauge boson friction. Requiring that the BE production matches
the observable abundance, we observe that very interestingly a phase transition at scale close
to the EW scale, v ∼ 102 − 103 GeV, can lead to DM masses up to 1010 GeV. We observed
that in both cases, of vector and fermion production, the EFT validity constraint requires

9The authors thank Jorinde Van De Vis and Ryusuke Jinno for helpful discussions on the bulk flow model.
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Figure 7. Shape of the GW signal for the model producing DM with αnuc = 1 and β = 10 (Left)
and β = 100 (Right) for different values of v = 102, 104, 106, 108 GeV. The signal-to-noise ratio and
the sensitivity curves can be build following the recommendations of [127–134]. The gray regions are
the expected foregrounds from galactic and extra-galactic compact binaries that we obtain from the
recommendations in [135–137].

that the DM is generically free-streaming after the production. On the other hand, both the
dimension five and the dimension six operators allow in a band of the parameter space the
production of WDM with Veq ∼ 10−5 or slightly faster. We found that in the instance of an
electroweak scale PT, on top of the expected GW signal accompanying the strong PT, the
bubble wall production of secluded warm fermionic and vector DM will be WDM and have of
large mass of order M(ψ,γ) ∼ 108 − 109 GeV. This is for example illustrated by the red star
on figure 3. Those signatures constitute a striking smocking gun of our scenario.

In parallel, we have calculated the pressure on the bubble wall caused by higher di-
mensional operators. Reassuringly, this new contribution to the pressure remains minor
across all the parameter spaces we examined, making it unlikely to significantly alter the
velocity of the wall.

We also studied the case of a pure Yang-Mills confining dark sector, where the DM is
composed of dark glueballs. In this scenario, we focused on the production of a thermal
dark gluon plasma. Here, the energy of each individual boosted glueball, initially produced
by the wall, contributes to increasing the final number density of glueballs through the
self-interactions of the dark sector. Consequently, glueball DM is always slow. The formation
of a gluon plasma, combined with the Bullet Cluster constraint on DM self-interactions,
requires the mass of the glueball to be within the range of [0.25, 5 × 106]GeV.

Finally, we emphasize that our proposal for DM production is inherently accompanied by
strong signals in the stochastic GW background. This makes our proposal highly detectable.
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A Bubble-plasma production probability

In this appendix, we gather the details of the computation of the production via Bubble-
Plasma interactions that we have studied in the main text.

A.1 Dimension five operator

In the main text, we studied the impact of the following dimension 5 operator
h2ψψ̄

Λ , (A.1)

where Λ is the UV cutoff, h undergoes the phase transition h→ h+ v and ψ is a fermion of
mass Mψ. We present the details of the computation of the probability of h→ ψψ production.
The kinematics of the process can be parameterized as follows

pa = (p0, 0, 0, p0),

pb = ((1− x)p0, k⊥, 0,
√
(1− x)2p2

0 −M2
ψ − k2

⊥),

pc = (xp0,−k⊥, 0,
√
x2p2

0 −M2
ψ − k2

⊥) , (A.2)

where Mψ < Λ is the mass of the ψ which is constant. From this point we can thus introduce
a WKB wave for the outgoing particles X, as presented in [59] and reviewed in [60]. Our
computation is typically valid in the wall frame for very large velocities: pz ∼ γwTnuc ≫ 1/Lw.
Within this WKB approach, the matrix element takes the form

M = i

(
Vs
As

− Vh
Ah

)
, (A.3)

where the s(h) subscript denotes the symmetric(higgsed) side. So

A ≡ p0 −
√
(1− x)2p2

0 −M2
ψ − k2

⊥ −
√
x2p2

0 −M2
ψ − k2

⊥ , (A.4)

and the squared vertex |V s
h→ψψ|2 = 0 and10

|V h
h→ψψ|2 = 4 v

2

Λ2 (pb · pc −M2
ψ)

= 4 v
2

Λ2

p2
0x(1− x)− p2

0x(1− x)

√√√√1−
M2
ψ + k2

⊥
p2

0x
2

√√√√1−
M2
ψ + k2

⊥
p2

0(1− x)2 + k2
⊥ −M2

ψ


= 2 v

2

Λ2
1

x(1− x)
(
M2
ψ(2x− 1)2 + k2

⊥

)
. (A.5)

10We can understand this intuitively by the fact that the vertex ∝ vhψψ̄ only exists on the higgsed,
broken side.
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Expanding for x2(1 − x)2p2
0 ≫ k2

⊥ +M2
ψ, we obtain

Ah = As ≈
M2
ψ + k2

⊥
2p0(1− x)x . (A.6)

The amplitude matrix then becomes

|Mh→ψψ̄|
2 = 8 v

2

Λ2

(
p0
Mψ

)2
x(1− x)

1 +
(
k⊥
Mψ

)2

1− 4x(1− x)

1 +
(
k⊥
Mψ

)2

 . (A.7)

The value of kmax
⊥ can be straightforwardly extracted from the non-adiabaticity condition.

For more details on how to recover this conditions from basic principles, see appendix A
of [18] and appendix H of [73] for further discussions. Therefore, the upper boundary of
the k⊥ integral reads:

M2
ψ + k2

⊥
2vp0

< (1− x)x (non-adiabaticity condition) , (A.8)

which implies that the upper bound on the integral is given by

(kmax
⊥ )2 = 2vp0x(1− x)−M2

ψ ≈ 2vp0x(1− x) . (A.9)

Using the matrix element in eq. (A.7) and the boundaries in eq. (A.9) and integrating over
the phase space, the probability of producing h → ψψ is

Ph→ψψ ≈ 1
8p2

0

∫ b−

b+

dx

x(1− x)

∫ 2p0vx(1−x)−M2
ψ

0

dk2
⊥

8π2 |Mh→ψψ̄|
2

≈ v2

8π2Λ2

4
3

√
1−

2M2
ψ

p0v

(
M2
ψ

2p0v
− 1

)
+ log

∣∣∣∣∣∣1− p0v

M2
ψ

−

√√√√( p0v

M2
ψ

− 2
)
p0v

M2
ψ

∣∣∣∣∣∣
 ,
(A.10)

and we defined

b+ ≡
1−

√
1− 2M2

ψ

p0v

2 , b− ≡
1 +

√
1− 2M2

ψ

p0v

2 . (A.11)

A.2 Dimension six operator

Let us now consider the dimension 6 operator between scalars and gauge bosons of the form

h2FµνF
µν

Λ2 , (A.12)

where F is the field strength of a dark vector γ. In this section we study the splitting h→ γγ,
the kinematics are given as usual by

pa = (p0, 0, 0, p0 ), (A.13)

pb = ((1− x)p0, k⊥, 0,
√
(1− x)2p2

0 − k2
⊥ −M2

γ ), (A.14)

pc = (xp0,−k⊥, 0,
√
x2p2

0 − k2
⊥ −M2

γ ). (A.15)
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We will work in the unitary gauge where the ghosts and the Goldstone boson have an
infinite mass and are thus decoupled from the theory. We are thus left with only massive
gauge bosons, two transverse modes ± and one longitudinal mode 0. We first consider the
two transverse polarization vectors, which are given by

ϵ±b = 1√
2− 2 M2

γ

(1−x)2p2
0

0,
√
1−

k2
⊥ +M2

γ

(1− x)2p2
0
,±i

√
1−

M2
γ

(1− x)2p2
0
,− k⊥

(1− x)p0

 ,

ϵ±c = 1√
2− 2 M2

γ

x2p2
0

0,
√
1−

k2
⊥ +M2

γ

x2p2
0

,±i
√
1−

M2
γ

x2p2
0
,
k⊥
xp0

 . (A.16)

Since in the frame transition p0 ≫ Mψ, we can apply a massless limit and one obtains
the following scalar products:

pb.ϵb = 0 , (A.17)

ϵ−b · ϵ−c ≈ ϵ+b · ϵ+c ≈ k2
⊥

4p2
0x

2(1− x)2 → 0 , (A.18)

ϵ−b · ϵ+c ≈ ϵ+b · ϵ−c ≈ −1 + k2
⊥

4p2
0x

2(1− x)2 → −1 , (A.19)

pb · ϵ+/−c ≈ − k⊥√
2x

+
k⊥(k2

⊥x−M2
γ (1− 2x))

2
√
2x3(1− x)p2

0
→ − k⊥√

2x
, (A.20)

pc · ϵ+/−b ≈ k⊥√
2(1− x)

−
k⊥(k2

⊥(1− x) +M2
γ (1− 2x))

2
√
2x(1− x)3p2

0
→ k⊥√

2(1− x)
, (A.21)

pb · pc ≈
k2
⊥ +M2

γ (1− 2x(1− x))
2x(1− x) +

(k2
⊥ +M2

γ )2(1− 2x)2

8(1− x)3x3p2
0

→
k2
⊥ +M2

γ (1− 2x(1− x))
2x(1− x) ,

(A.22)

which simplifies in the limit p0 ≫ k⊥ > Mψ by the quantity designated by the arrow. As before
the vertex on the symmetric side is zero while the vertex on the higgsed side takes the form

V λλ′
h = 2v

Λ2 ((pb · pc)(ϵ
λ
b · ϵλ

′
c )− (pc · ϵλ

′
b )(pb · ϵλc )) , (A.23)

which gives after plugging eq. (A.17)

V ++
h = V −−

h = v

Λ2
k2
⊥

x(1− x) , V +−
h = V +−

h = − v

Λ2
M2
γ (1− 2x(1− x))
x(1− x) . (A.24)

Keeping only the leading order terms in k2
⊥/p

2
0, we obtain the following expression for

the vertex function squared and summing over the polarisations, we obtain

|Vh|2 ≡ |V ++
h |2 + |V −−

h |2 + 2|V +−
h |2 ≈ v2

Λ4
2

x2(1− x)2

(
k4
⊥ +M4

γ (1− 2x(1− x))2
)
,

(A.25)
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and consequently, using eq. (A.3), we have

|Mh→γγ |2 ≈ 8(p0v)2

(M2
γ + k2

⊥)2Λ4

(
k4
⊥ +M4

γ (1− 2(1− x)x)2
)
≈ 8(p0v)2k4

⊥
(M2

γ + k2
⊥)2Λ4 , (A.26)

for negligible Mγ . As before, the probability of emission of tranverse gauge bosons is obtained
in the following way

P Th→γγ ≈ 1
8p2

0

∫ b−

b+

dx

x(1− x)

∫ 2p0vx(1−x)−M2
γ

0

dk2
⊥

8π2 |M|2 (A.27)

≈
v2M2

γ

8π2Λ4

∫ b−

b+

dx

x(1− x)

∫ 2p0vx(1−x)/M2
γ

0
d

(
k2
⊥

M2
γ

)
(k4

⊥/Mγ)4

(1 + (k⊥/Mγ)2)2 , (A.28)

where we defined

b+ ≡
1−

√
1− 2M2

γ

p0v

2 , b− ≡
1 +

√
1− 2M2

γ

p0v

2 . (A.29)

The function in the last integrand tends rapidly to one and we can therefore approximate
it with unity so that the expression becomes

Ph→γγ ≈ 2p0v
3

8π2Λ4

∫ b−

b+
dx ≈ v3p0

4π2Λ4

√
1−

2M2
γ

p0v
→ v3p0

4π2Λ4 . (A.30)

Incidentally, the production of gluons from h via
h2GµνG

µν

Λ2 (A.31)

is of the same form

Ph→gg = Ph→γγ . (A.32)

B Pressure on the bubble wall from particles production

In ref. [60], it was pointed out that the production of heavy particles by the bubble wall is
accompanied by an exchange of momentum from the plasma to the bubble: each produced
pair of ψ particles act as a kick on the bubble wall, which appears as an effective pressure on
the bubble wall when we integrate over the incoming flux. In this appendix, we recompute
the pressure in the relativistic regime induced by particles produced via h → XX.

Lorentz violating interactions will transfer momentum from the plasma to the wall. This
momentum exchange can be identified with the loss of the momentum from the emitted
particles, which in a 1 → 2 process, takes the form

∆pz = pza − pzb − pzc , (B.1)

and can be evaluated from the kinematics in eq. (A.2). The pressure on the wall can thus
be identified with the convolution of this exchange of momentum and the probability of
the interaction, together with the incoming flux,

Pa→bc =
∫

d3p

(2π)3 fh(pa)︸ ︷︷ ︸
incoming flux

∫
dPa→bc ×∆pz. (B.2)
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Using now the probability of the emission h → XX,

dPa→bc =
d3pbd

3pc
(2π)62Eb2Ec

|Ma→bc|2(2π)3δ2
(∑

i

pi⊥

)
δ

(∑
i

Ei
)
, (B.3)

we will compute this integral for the different cases we have considered in the main text.

B.1 Dimension five operator

Let us first consider the computation of the pressure from the production of X = ψ dark
matter. In the regime of a fast bubble wall (1 − x)2x2p2

0 ≫ M2
ψ + k2

⊥,

∆pz ≈
M2
ψ + k2

⊥
2x(1− x)p0

, (B.4)

and the pressure can be computed with the following steps

Ph→ψψ ≈ 2 v
2

Λ2

∫
d3p

(2π)3 fh(p)
∫ 2p0vx(1−x)

0

dk2
⊥

8π2

∫ 1−k⊥/p0

k⊥/p0

dx

(M2
ψ + k2

⊥)
×

M2
ψ + k2

⊥
2x(1− x)p0

= v3

Λ2

∫
d3p

(2π)3 fh(p)
1

8π2 , (B.5)

which finally leads to

Ph→ψψ ≈ 1
8π2

v3nhγw
Λ2 . (B.6)

B.2 Dimension six operator

We now turn to the pressure induced by the dimension six operator. We can easily estimate
the pressure exerted on the bubble by multiplying with the production probability from
eq. (A.26) with exchange of momentum ∆pz and using the results in eq. (B.2), we obtain

Ph→γγ ≈
∫

d3p

(2π)3 fh(p)
1
4p2

0

∫ 2vp0x(1−x)

0

dk2
⊥

8π2

∫ 1−k⊥/p0

k⊥/p0

dx

x(1−x)
k2
⊥+M2

γ

2x(1−x)p0
× 8(p0v)2k4

⊥
(M2

γ+k2
⊥)2Λ4

≈
∫

d3p

(2π)3
v4

Λ4
p0
2π2 fh(p)

≈nh
v4

Λ4
γ2
wT

2π2 . (B.7)

As for the particle production, the pressure is identical for vectors and for gluons

Ph→gg = Ph→γγ . (B.8)

C Computation of the Freeze-In abundance of DM

An irreducible contribution to the produced DM abundance comes from the high temperature
Freeze-In via 2 → 2 scatterings. In this appendix, we provide our estimates for the FI
abundance via the different production channels that we considered in the main text.
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C.1 Dimension five operator

If the h particles are in equilibrium with the thermal bath, the light DM particle will
undergo Freeze-In via the 2 → 2 scatterings hh → ψψ̄. The scattering matrix is given by
|Mhh→ψψ|2 = 2

Λ2 (s − 4M2
ψ) and the Boltzmann equation for this production mechanism

takes the form [138]:

ṅψ + 3Hnψ = a−3d(a3nψ)
dt

= T

512π6

∫ ∞

smin
dΩdsPhhPψψ√

s
|Mhh→ψψ|2K1(

√
s/T ) (C.1)

≈ T 5Mψ

8π5Λ2 ×
√
πT

Mψ
e−2Mψ/T

where we defined Pij ≡
√
s−(mi+mj)2

√
s−(mi−mj)2

2
√
s

, with Phh ≈
√
s/2 and Pψψ ≈

√
s− 4M2

ψ/2.
To obtain an analytical answer we applied the following approximation (s− 4M2)3/2 = (s−
4M2)(s − 4M2)1/2 ≈ (s − 4M2)4T and we have checked that this is in good agreement
numerically. In the second line we took the limit of Mψ ≫ T , which we will follow from
now on. We have also approximated the zK1(z) →

√
πz/2e−z ≈

√
πMψ/Te

−z. The density
normalized to the entropy density, Y FI

ψ = nFI
ψ /s will hence become

a−3d(a3nψ)
dt

= −HT 4
d
(
nψ
T 3

)
dT

= −HT 4g⋆
2π2

45
dY

dT
≈ T 5Mψ

8π5Λ2 ×
√
πT

Mψ
e−2Mψ/T

⇔ dY

dT
≈ − 45Mpl

16g3/2
⋆ π71.66Λ2

×

√
πMψ

T
e−2Mψ/T

⇔ Y FI
ψ ≈ 45Mpl

16g3/2
⋆ π13/21.66Λ2

× Mψ

2

(
Treh
Mψ

)3/2

e−2Mψ/Treh , (C.2)

where the last line is a fit of our numerical analysis. This translates into a DM fraction today of

ΩFI
ψ,todayh

2 =
MψY

FI
ψ s0

ρc/h2

= 2.35× 108
(
Mψ

GeV

) 45Mpl

16g3/2
⋆ π13/21.66Λ2

× Mψ

2

(
Treh
Mψ

)3/2

e−2Mψ/Treh

= 5.84× 104
(
Mψ

GeV

)
MplMψ

g
3/2
⋆ Λ2

(
Treh
Mψ

)3/2

e−2Mψ/Treh . (C.3)

C.2 Dimension six operator: vectors

Let us repeat the same computation for the FI of massive vectors, the computation will follow
the same steps. The scattering matrix for the vector portal is now given by

|Mhh→γγ |2 ≈ 1
Λ4

(
2(s− 2M2

γ )2 + 4M4
γ

)
. (C.4)

We will perform the computation in the two following limits: Mγ ≫ T and Mγ ≪ T .
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In the case, Mγ ≫ T : the matrix element takes the form

|Mhh→γγ |2 ≈ 1
Λ4

(
2(s− 2M2

γ )2 + 4M4
γ

)
≈

12M4
γ

Λ4 (C.5)

where the second approximation comes from the fact that we consider the regime Mγ ≫ T

where the exponential suppression selects the smallest value of the s ≈ 4M2
γ . The Boltzmann

equations for this production take the form

ṅγ + 3Hnγ = a−3d(a3nγ)
dt

= T

512π6

∫ ∞

smin
dΩdsPhhPγγ√

s
|Mhh→γγ |2K1(

√
s/T ) (C.6)

≈
3T 4M4

γ

32π9/2Λ4 ×

√
Mγ

T
e−2Mγ/T ,

where we again applied (s − 4M2
γ )1/2 ≈ 2T . It follows that

dY FI
γ

dT
≈

135MplM
4
γ

64π13/2g
3/2
⋆ 1.66T 2Λ4

√
Mγ

T
e−2Mγ/T

Y FI
γ ≈

135MplM
3
γ

128π13/2g
3/2
⋆ 1.66Λ4

√
Mγ

Treh
e−2Mγ/Treh . (C.7)

Finally

ΩFI
γ,todayh

2 =
MγY

FI
γ s0

ρc/h2

≈ 2.35× 108
(
Mγ

GeV

) 135MplM
3
γ

128π13/2g
3/2
⋆ 1.66Λ4

√
Mγ

Treh
e−2Mγ/Treh

≈ 8.76× 104
(
Mγ

GeV

)
MplM

3
γ

g
3/2
⋆ Λ4

√
Mγ

Treh
e−2Mγ/Treh . (C.8)

In the case, Mγ ≪ T : in the case of relativistic FI, we obtain

|M|2hh→γγ ≃ 2s2

Λ4 a−3d(a3nγ)
dt

≈ 3T 8

π5Λ4 , (C.9)

which leads to

Y
Mγ≪T

FI ≈ 45MplT
3
reh

3.32π7g
3/2
∗ Λ4

, (C.10)

and Finally

Y
Mγ≪T

FI h2 =
MγY

FI
γ s0

ρc/h2

≈ 2.35× 108
(
Mγ

GeV

) 45MplT
3
reh

3.32π7g
3/2
∗ Λ4

≈ 1.05× 106
(
Mγ

GeV

)
MplT

3
reh

g
3/2
⋆ Λ4

. (C.11)
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C.3 Dimension six operator: gluons

We now compute the Freeze-In density for gluons, keeping in mind the requirement MG ≲ v,
and so MG ≲ TR. In this section Treh is the reheating temperature. There should be several
regimes of FI. Typical gluons, during FI, will be produced with energy Eg ∼ TR ≳MG. We
will focus however only on the case in which the dark sector reaches a gluon plasma.

If the following condition is fulfilled

ρFI
g ≫ Λ4

conf , (C.12)

the dark sector will immediately go back to a plasma of free thermal gluons, then the

ρ̇g + 4Hρg =
3T

512π6

∫ ∞

0
dΩdss4 |M|2ϕϕ→ggK1(

√
s/T )

= 3(N2 − 1)T
256π5Λ4

∫ ∞

0
dss3K1(

√
s/T ) (C.13)

= 4725(N2 − 1)T 9

256π5Λ4 .

The density normalized to the entropy density, Y FI
ψ = nFI

ψ

s will hence become

ρ̇g + 4Hρg = −HT 5d
(
T−4ρg

)
dT

= 4725(N2 − 1)T 9

256π5Λ4

⇔ ρg
T 4

∣∣∣∣
FI

=
∫ Treh

0
dT

4725(N2 − 1)T 2MPl
256√g⋆1.66π5Λ4 = 10.2(N

2 − 1)T 3
rehMPl√

g⋆π5Λ4 (C.14)

which correspond to a temperature of the dark sector being(
Tg
Tγ

)4
≈ 150 T

3
rehMPl√
g⋆π7Λ4 . (C.15)

D Computation of the instantaneous spectrum after production

In this appendix, we present the computations of the spectrum of boosted particles immediately
after emission. We will first present a few analytical results and then provide the numerical
method we followed for the full computation of the spectrum that appears in the main text.

D.1 Energy distributions

Let us calculate the energy distribution for the particles in the plasma-bubble wall collisions.
We will now compute the energy spectrum immediately after the DM production from
bubble expansion.

D.1.1 Dimension 5 operator computation

We will start the discussion with the case of the dimension five operator. The average
value of the transverse momenta of the field ψ will be given by, for an incoming h particle
with fixed momentum p,

k̄⊥ ≡
∫
d3pPh→ψψfh(p)k⊥∫
d3pPh→ψψfh(p)

, k̄2
⊥ ≡

∫
d3pPh→ψψfh(p)k2

⊥∫
d3pPh→ψψfh(p)

, (D.1)
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which reduce to

k̄⊥ =

∫ dk2
⊥dx

(k2
⊥+M2

ψ
)2

[
k2
⊥ +M2

ψ(2x− 1)2
]
k⊥∫ dk2

⊥dx

(k2
⊥+M2

ψ
)2

[
k2
⊥ +M2

ψ(2x− 1)2
] with

k2
⊥ +M2

ψ

2p0x(1− x) < L−1
w

⇒ k̄⊥ =
π
√
p0L

−1
w

2
√
2(log p0L

−1
w

M2
ψ

− 8/3 + log 2)
, k̄2

⊥ ≃ L−1
w p0

3 log
(p0L

−1
w

M2
ψ

)
− 5.92

. (D.2)

Armed with this expression we can estimate the average energy of the ψ field in the
plasma frame Ēψplasma, assuming that the incoming particle h, which produces ψ, has energy
p0 ∼ pz. We obtain

Ēψplasma = γw(Eψ − vw
√
E2
ψ − k2

⊥ −M2
ψ) ≈ γw

k̄2
⊥

2Eψ
, (D.3)

where Eψ is the energy of the ψ field in the wall frame and scales like ∼ Tγw. In this case, we
can expand for very large values of γw and use the expression for the average value of k̄2

⊥ to find

Ēψ ≃ L−1
w γw

3 log γwT
M2
ψ
Lw

− 5.92
, (D.4)

where we took 2Eψ ≈ p0, corresponding to x ≈ 1/2. This analytical computation does not take
into account the necessary convolution with the Boltzmann distribution of the incoming h.

D.1.2 Dimension 6 operator computation

For the dimension six case, the computation proceeds in a similar way. We can again neglect
the mass of the Mγ in the computation and the expressions simplify to

k̄2
⊥ ≃ p0(17− 24 log(2))

6Lw(log(4)− 1) ≈ 0.16 p0L
−1
w . (D.5)

k̄⊥ ≃ −

(
16
√
2− 23

)
πp0

6
√
2(log(4)− 1)

√
Lwp0

≈ 0.36
√
p0L

−1
w (D.6)

The average energy in the plasma frame will then become

Ēγ
analytical
plasma ≈ γw

k̄2
⊥

2Eγ
≈ 0.16 γwL−1

w , (D.7)

where we again took 2Eγ ≈ p0 since x ≈ 1
2 .

D.2 Numerical algorithm for the evaluation of the spectrum

We have also calculated numerically the distribution function with respect to the energy
of the ψ field. This can be done by convoluting the distribution of the initial particle with
the corresponding δ function

dF

dE
=
∫
d3pfh(p)

∫
dk2

⊥dx|Mh→XX |2δ(E − E(ph0 , pz, x, k⊥))
Normalization

E(E, pz, x, k⊥)) = ph0xγw −
√
γ2
w − 1

√
(ph0x)2 −M2 − k2

⊥, (D.8)
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where the integral is performed using the Monte-Carlo method and E (M) is the energy
(mass) of the emitted particle, being Eψ, Eγ (Mψ,Mγ). The overall normalization factor
is determined at the end requiring ∫

dF

dE
dE = 1 . (D.9)

The numerical procedure becomes more efficient if we introduce a new integration variable:

Y = γw
T

(ph0 − vphz ) ⇒ d3pfh(p) ∝ dY dpze
−Y
(
TY

γw
+ vwph

)
. (D.10)

Note that we have ignored the overall numerical factor in front since the normalization is
anyway determined at the end by eq. (D.9). The results of this procedure for the spectrum are
shown in figure 2 and figure 4, for the fermion and the vector production respectively, and we
see that the distribution is peaked around the average energy value Ē and drops exponentially
fast once the threshold L−1

w γw is passed. One can see the origin of this threshold from the
following (expanding eq. (D.3)):

Ēplasma ≃ E

2γw
+ k2

⊥γw
2E ≈ k2

⊥γw

ph0
, (D.11)

where we took p0 ≈ 2E. On the other hand the maximum value of k2
⊥ is

k2
⊥|MAX ∼ ph0L

−1
w , (D.12)

from non-adiabaticity arguments, thus we obtain

Ēplasma|MAX ≃ L−1
w γw, (D.13)

so we expect the sharp drop of the spectrum once the threshold is passed. Using the spectrum,
computed via this method, also allows us to compute the average energy in the plasma
frame by simple integration of it.

D.2.1 Numerical determination of the average energies

After having computed the spectrum numerically, we can also extract the average energy via

Ē =
∫
dF

dE
EdE , (D.14)

and we obtain a good fit of the numerical data with

Ēψ
numerical
plasma ≃ (0.5− 1) L−1

w γw

3 log γwT
M2
ψ
Lw

− 5.92
, (D.15)

for the dimension five production and

Ēγ
numerical
plasma ≈ (0.12− 0.17)γwL−1

w , (D.16)

for the dimension six production. This agrees well with the analytical computations.
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