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1. Introduction

In doing analysis on metric measure spaces one is often led to consider the class of 
real valued Sobolev functions W 1,p(X), p ∈ (1, ∞). There are various possible definitions 
for this object ([24], [11], [37], [5]), most of them being equivalent: in this paper we are 
concerned with the approach proposed by Cheeger [11], which is equivalent to the one 
adopted by Shanmughalingham [37] and to the more recent ones proposed by Ambrosio, 
Savaré and the first author [5], [4].

A common feature of all these equivalent definitions is that a Sobolev function f ∈
W 1,p(X) comes with a non-negative function in Lp(X) playing the role of the ‘modulus 
of the distributional differential’. Unlike the Euclidean setting, this auxiliary function -
called ‘p-minimal weak upper gradient’ and denoted by |Df |p - might depend on p. More 
precisely, a quite direct consequence of the definitions is that for p1, p2 ∈ (1, ∞), p1 < p2
we have W 1,p2

loc (X) ⊂ W 1,p1
loc (X) and

|Df |p1 ≤ |Df |p2 m-a.e. ∀f ∈ W 1,p2
loc (X). (1.1)

It is well known that in general this is all one can say. More precisely:

i) In [13], a detailed study on weighted Euclidean spaces has been performed to build 
a family of metric measure spaces for which the strict inequality may occur in (1.1)
(earlier examples in this direction have been proposed in [27], see also the discussion 
in [7, Section 2.9]);

ii) There are examples (see, e.g. [27, Remark 5.2] and [4, Pag. 18]) of metric measure 
spaces X showing that we may have:
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f ∈ W 1,p1(X), f, |Df |p1 ∈ Lp2(m) but f /∈ W 1,p2(X), ∀p2 > p1.

On the other hand, for very regular structures (e.g. the standard Euclidean space) neither 
i) nor ii) can occur, thus one can wonder if there are regularity assumptions one can 

impose on the given metric measure structure to ensure that even in such more abstract 
setting i), ii) do not occur. Some result in this direction is already known:

- In [11] it has been proved that on doubling spaces supporting a Poincaré inequality, 
for Lipschitz functions f we have that |Df |p coincides a.e. with the local Lipschitz 

constant. A quite direct consequence of this fact is that i) cannot occur (see e.g. [7, 
Corollary A.9] - we shall report this fact in Theorem 3.3). In [27, Lemma 5.1] it has 
been proved that, under the same assumptions, the situation ii) cannot occur, either.

- In [18] it has been proved that on RCD(K, ∞) spaces neither i) nor ii) can occur, 
with a technique based on heat flow regularization and the Bakry-Émery inequality. 
Notice that RCD(K, ∞) spaces are not doubling in general.

The goal of this paper is to further investigate this topic, our main results being:

a) To propose an axiomatization of spaces having p-independent weak upper gradients 
(Definition 3.1), especially distinguishing between a weak and strong kind of inde-
pendence, roughly consisting in asking that i) cannot occur or that neither i) nor ii) 
can occur, respectively.

b) To investigate the consequences of these independences for what concerns the ab-
stract differential calculus as proposed in [17]. Perhaps not surprisingly, if weak upper 
gradients are independent of p, then the corresponding differentiation operators are 

also independent of p (see Theorems 4.1, 4.3 and notice that in principle for any 

Sobolev exponent p one has an abstract differential dp that might depend on p).
c) To single out a regularity property yielding p-independent weak upper gradients in a 

strong sense (Definition 3.4 and Theorem 3.9). The property we introduce, that we 

shall call Bounded Interpolation Property, is a first order property (in particular, it 
remains valid if we replace the original measure m with ρm with ρ, 1ρ ∈ L∞). With 

respect to the previous available results recalled above, we obtain an independence 

without relying on any local doubling property, and thus valid also in certain genuine 

infinite-dimensional situations.
d) We prove that the Bounded Interpolation Property is stable under measured Gromov 

Hausdorff convergence (Theorem 3.12).
e) We show that a large class of spaces satisfying a curvature dimension condition 

possess the Bounded Interpolation Property. In particular, this is the case for non 

branching MCP(K, N) spaces (Theorem 5.4).
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2. Preliminaries

Standing notation
Throughout this note, it goes without saying that, whenever we fix p ∈ [1, ∞), the 

letter q, even if not introduced, is automatically defined as the conjugate exponent by 
the relation

1
p + 1

q = 1

and thus ranging in (1, ∞] (with the usual extreme case p = 1 and q = ∞). The 
converse convention is also kept, i.e. if we start fixing a number q, then automatically 
p is defined as above. Typical recurrent exponents will be p1, p2, p̄, thus giving rise to 
the conjugate numbers q1, q2, q̄.

Let us fix (X, d) a complete and separable metric space and q ∈ (1, ∞). We equip 
the space of continuous path on [0, 1] with values in X, denoted by C([0, 1], X), with the 
uniform distance dsup(γ, η) := supt∈[0,1] d(γt, ηt), for every γ, η ∈ C([0, 1], X). This turn 
C([0, 1], X) into a complete and separable metric space. Next, we recall that the set of 
q-absolutely continuous curves, denoted by ACq([0, 1], X), is the subset of γ ∈ C([0, 1], X)
so that there exists g ∈ Lq(0, 1) satisfying

d(γt, γs) ≤
tˆ

s

g(r) dr, ∀s ≤ t in [0, 1].

We recall that, for any γ ∈ ACq([0, 1], X), there exists a minimal a.e. function g ∈
Lq(0, 1) satisfying the above, called metric speed and denoted |γ̇t|, which is defined 
as |γ̇t| := limh↓0 d(γt+h, γt)/h, for a.e. t. Then, define the Kinetic energy functional 
C([0, 1], X) � γ �→ Keq(γ) :=

´ 1
0 |γ̇t|q dt, if γ ∈ ACq([0, 1], X), +∞ otherwise. We recall 

the following well known lemma and, given that we are going to deal frequently with the 
objects below, we also provide a simple proof.

Lemma 2.1. Let (X, d) be a metric space, q ∈ (1, ∞) and (γn) ⊆ ACq([0, 1], X) uniformly 
converging to γ ∈ C([0, 1], X) with supn Keq(γn) < ∞.

Then, γ ∈ ACq([0, 1], X) and Keq(γ) ≤ limn Keq(γn). Moreover, if Keq(γn) → Keq(γ)
(i.e. there is conservation of the Kinetic Energy), then one also recovers |γ̇n

· | → |γ̇·| in 
Lq(0, 1).

Proof. For the first part, it suffices to notice that any weak-Lq limit G (possibly along 
a not relabeled suitable subsequence) of |γ̇n

· | in Lq(0, 1) satisfies

d(γt, γs) = lim
n

d(γn
t , γ

n
s ) ≤

tˆ
G(r) dt, ∀s, t ∈ [0, 1].
s
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Thus, γ ∈ ACq([0, 1], X) and, by minimality of |γ̇t| and weak lower semicontinuity of 
Lq-norms, one has

Keq(γ) ≤
1ˆ

0

Gq(t) dt ≤ lim
n→∞

Keq(γn)

Moreover, under the hypotheses of the second claim, the above becomes a chain of 
equalities ensuring that G = |γ̇t| is a strong limit in Lq(0, 1). �

Next, we will make use of the so-called evaluation map at time t ∈ [0, 1], 
et : C([0, 1], X) → X defined via et(γ) := γt.

In this note, a metric measure space is a triple (X, d, m) where

(X, d) is a complete and separable metric space,

m �= 0 is non negative and boundedly finite Borel measure.

We denote by M+
b (X) the space of finite Borel positive measures over X. Also, we write 

P(X) for the space of probability measures over X which here will be often equipped 
with the weak topology in duality with Cb(X), the space of continuous and bounded 
functions. In this case, convergence of μn to μ will be written μn ⇀ μ. Recall that, if 
φ : X → Y is a Borel map between two metric spaces and μ ∈ P(X), the set-value map 
B(Y) � B �→ φ�μ(B) := μ(φ−1(B)) is called the pushforward measure of μ via φ, and 
clearly φ�μ ∈ P(Y). When φ is continuous, the operation φ� is weakly continuous. A 
family K ⊂ P(X) is called tight, provided

∀ε > 0,∃Kε ⊂ X compact so that μ(X \Kε) ≤ ε, ∀μ ∈ K.

For later use, we report without proof a well known characterization of compactness in 
the weak topology.

Theorem 2.2 (Prokhorov). Let (X, d) be a complete and separable metric space and K ⊂
P(X). The following are equivalent:

i) K is precompact in the weak topology;
ii) K is tight;
iii) There exists a functional ψ : X → [0, ∞] with compact sublevels so that

sup
μ∈K

ˆ
ψ dμ < ∞.

Finally, we shall denote as usual by Lip(X) and Lipbs(X), the spaces of Lipschitz and 
boundedly supported Lipschitz functions, respectively. Moreover, if f ∈ Lip(X), we call 
Lip(f) its Lipschitz constant.
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2.1. q-test plans and Sobolev space

We follow the definition of Sobolev spaces proposed in [4] (for earlier approaches see 
the original work [11] of Cheeger and the one [37] of Shanmugalingam).

Definition 2.3 (q-test plan). Let (X, d, m) be a metric measure space and q ∈ (1, ∞). A 
measure π ∈ P(C(X, [0, 1])) is said to be a q-test plan, provided

i) there exists C > 0 so that (et)�π ≤ Cm for every t ∈ [0, 1];
ii) we have 

´
Keq(γ) dπ < ∞.

Moreover, we say that π is an ∞-test plan if, instead of ii), we require

ii’) π is concentrated on equi-Lipschitz curves, i.e. for some L > 0 we have Lip(γ) ≤ L

for π-a.e. γ (and thus for every γ in the support of π by the lower-semicontinuity of 
the global Lipschitz constant w.r.t. uniform convergence).

We usually refer to i) as the ‘compression condition’ and denote by Comp(π) the 
smallest constant C satisfying i) (and call it compression constant of π). The (full) 
kinetic energy of a q-test plan π, which we denote by Keq(π), is simply ‖Keq‖L1(π). Also, 
notice that

π �→ Keq(π) is weakly lower semicontinuous, (2.1)

since the integrand Keq(γ) appearing in the definition of Keq(·) is a lower semicontin-
uous on C([0, 1], X) by Lemma 2.1 and bounded from below, therefore it admits the 
representation as supremum of continuous and bounded functions. Moreover, we shall 
sometimes deal with plans π having bounded support: this is equivalent to say that 
{γt : γ ∈ supp(π), t ∈ [0, 1]} ⊂ X is bounded. In this note, it will be important to notice 
that the class of q-test plans is closed under restriction and rescaling. Namely, for any 
q-test plan π, we have:

◦ if Γ ⊂ C([0, 1], X) is Borel and π(Γ) > 0 then, the rescaling

π|Γ
π(Γ) is a q-test plan. (2.2)

◦ let s, t ∈ [0, 1] with s ≤ t and Restrts : C([0, 1], X) → C([0, 1], X) be the map via 
Restrts(γ) := γ(1−·)s+·t. Then, the restriction

(Restrts)�π is a q-test plan. (2.3)
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The proofs of these facts are based on a direct check of i)-ii) in Definition 2.3. In 
particular, for the restriction, it is necessary to make use of the change of variable 
Keq(Restrts(γ)) = Keq(γ)|t − s|q for every γ ∈ ACq([0, 1], X). We are finally ready to 
present the definition of Sobolev class via duality with q-test plans.

Definition 2.4 (Sobolev class). Let (X, d, m) be a metric measure space and p ∈ (1, ∞). 
A Borel function f belongs to Sp(X), provided there exists G ∈ Lp(X, m) with G ≥ 0, 
called p-weak upper gradient so that

ˆ
|f(γ1) − f(γ0)|dπ ≤

1̈

0

G(γt)|γ̇t|dtdπ, ∀π q-test plan. (2.4)

Let us comment on the well-posedness of the definition. The assignment (t, γ) �→
G(γt)|γ̇t| is Borel (see, e.g. [20]) and the right hand side in (2.4) is finite since the 
properties of any q-test plan π ensure

1̈

0

G(γt)|γ̇t|dtdπ ≤

⎛
⎝

1̈

0

Gp(γt) dtdπ

⎞
⎠

1/p ⎛
⎝

1̈

0

|γ̇t|q dtdπ

⎞
⎠

1/q

≤ Comp(π)‖G‖Lp(m)Ke1/q
q (π) < +∞.

(2.5)

The above calculation shows at the same time finiteness of the integral and continuity 
of the assignment Lp(m) � G �→

˜ 1
0 G(γt))|γ̇t| dtdπ. This, combined with the fact that 

convex combinations of p-weak upper gradients is a p-weak upper gradient, shows that 
the set of p-weak upper gradients of a given Borel function f , is a closed (because (2.5)
shows that the map sending G ∈ Lp(m) to the RHS of (2.4) is continuous for any q-test 
plan π) and convex subset of the uniformly convex Banach space Lp(m). The minimal 
p-weak upper gradient, denoted by |Df |p, is then the element of minimal norm in this 
class. Also, by making use of the lattice property of the set of p-weak upper gradients 
(see [11, Proposition 2.17 and Theorem 2.18]), such minimality is also in the m-a.e. sense.

It will be useful to keep in mind the locality property of minimal weak upper gradients 
(see e.g. [5, Proposition 4.8-(b)] for the case p = 2 and [4, Proposition 5.2] for the general 
case) i.e.:

|Df |p = |Dg|p m-a.e. on {f = g}, ∀f, g ∈ Sp(X), p ∈ (1,∞),

and the Leibniz rule i.e.: for f, g ∈ Sp(X) ∩ L∞(m) we have fg ∈ Sp(X) ∩ L∞(m) with

|D(fg)|p ≤ |f ||Dg|p + |g||Df |p, m-a.e.. (2.6)

Let us comment on the relation between minimal p-weak upper gradients with re-
spect to different p’s: for p1 ≤ p2, Hölder inequality easily implies {q1-test plans} ⊆
{q2-test plans}. Therefore the implication
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p1 ≤ p2 and f ∈ Sp2(X)
|Df |p1 ∈ Lp1(m)

⇒
f ∈ Sp1(X)
|Df |p2 is a p1-weak upper gradient
|Df |p1 ≤ |Df |p2 m-a.e.

(2.7)

can be easily seen to be true on an arbitrary metric measure space. On the other hand, 
as pointed out already in the Introduction, there is no evidence that a function f ∈
Sp1(X) ∩ Sp2(X) satisfies |Df |p1 = |Df |p2 m-a.e. Indeed, this fact is false in general and 
strict inequality may occur, see e.g. the analysis in [13]. This motivates the choice of the 
p-exponent subscript for |Df |p.

The prototype of functions belonging to the Sobolev class are the Lipschitz ones. We 
define the local Lipschitz constant as the function

lip f(x) := lim
y→x

|f(y) − f(x)|
d(x, y) ,

and 0 if x is isolated. A direct check of the definition shows then that Lipbs(X) ⊆ Sp(X), 
and lip f is a p-weak upper gradient for every f ∈ Lipbs(X) and p ∈ (1, ∞). In the sequel, 
we are going also to deal with Lusin-Lipschitz functions. We recall that a function f : X →
R is Lusin-Lipschitz, provided there exists N, Kn Borel, n ∈ N, with X := N ∪ (∪nKn), 
N negligible and Kn compacts, so that f |Kn

is Lipschitz for every n ∈ N. In this case, 
it is convenient to adapt the notion of Lipschitz constant with the measure-theoretic 
notion of approximate local Lipschitz constant

ap-lip f(x) := ap- lim
y→x

|f(y) − f(x)|
d(x, y) ,

and 0 if x is isolated, where the approximate limsup of an arbitrary Borel function 
u : X → R is defined as

ap- lim
y→x

u(x) := inf{t ∈ R : x is a density point of {u ≤ t}},

recalling that, for a Borel set E ⊂ X, x ∈ E is a density point of E if limr↓0
m(Br(x)∩E)

m(Br(x) =
1. On doubling spaces (see i) in Definition 3.2 below) it is standard to see, thanks to the 
existence of density points, that the approximate Lipschitz constant is local, namely

ap-lip f = ap-lip g m-a.e. on {f = g} (2.8)

and it is not hard to check, from the fact that at a density point porosity cannot occur 
(see e.g. Proposition 2.5 in [22]) that also

ap-lip f = lip f m-a.e. ∀f : X → R Lipschitz (2.9)

holds on doubling spaces.
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Requiring a function in the Sobolev class to be also p-integrable leads to the definition 
of the full Sobolev space. We remark that the definition below makes sense, meaning that 
W 1,p is a well-defined subset of Lp. In other words, the fact that a function f belongs 
to a certain Sobolev class Sp - and the corresponding notion of weak upper gradient -
is invariant under modification of f on a m-negligible set: this is due to property i) in 
Definition 2.3 of test plans.

Definition 2.5 (Sobolev space W 1,p(X)). Let (X, d, m) be a metric measure space and 
p ∈ (1, ∞). The Sobolev space, denoted by W 1,p(X), is Lp(m) ∩Sp(X) as a set, equipped 
with the norm

‖f‖W 1,p(X) :=
(
‖f‖pLp(m) + ‖|Df |p‖pLp(m)

) 1
p , ∀f ∈ W 1,p(X).

It is a standard fact that W 1,p(X) is a Banach space, by appealing to the weak lower 
semicontinuity of weak upper gradients (see [11, Theorem 2.7] for the proof that such 
semicontinuity implies completeness). Also, it is in general false that it is reflexive and 
that the particular choice of p = 2 leads to a Hilbert space. When the latter situation 
occurs, we say that (X, d, m) is infinitesimal Hilbertian [15]. Equivalently, we shall call 
a metric measure space infinitesimal Hilbertian provided the following parallelogram 
identity is satisfied:

2|Df |22 + 2|Dg|22 = |D(f + g)|22 + |D(f − g)|22, m-a.e.,∀f, g ∈ W 1,2(X). (2.10)

We finish this part by recalling the definition of local Sobolev class.

Definition 2.6. Let (X, d, m) be a metric measure space, p ∈ (1, ∞). A real valued Borel 
function f belongs to Sp

loc(X), provided there is G ∈ Lp
loc(m) (i.e. the restriction of G

to bounded sets is in Lp), G ≥ 0, such that for any k > 0 and η ∈ Lipbs(X), we have 
ηfk ∈ Sp(X) with

|D(ηfk)|p ≤ |η|G, m-a.e. on {η = 1},

where fk := k ∧ (f ∨ −k). In this case, we define |Df |p ∈ Lp
loc(m) via

|Df |p = |D(ηfk)|p m-a.e. on {η = 1} ∩ {|f | < k},

for every η and k as before.

We point out that the locality of the minimal p-weak upper gradient guarantees that 
the above definition is well-posed and the object |Df |p is m-a.e. well defined. It can also 
be proven that f ∈ Sp

loc(X) if and only if for some G ∈ Lp
loc(m) non-negative (2.4) holds.

We remark that in the generality we are working, the need of truncating the func-
tion before multiplying it by the cut-off is due to the following issue: there might be 



10 N. Gigli, F. Nobili / Journal of Functional Analysis 283 (2022) 109686
f ∈ Sp
loc(X) and some η ∈ Lipbs(X) such that ηf is not in Sp(X). Intuitively, this is due 

to the fact that the ‘best upper bound’ for |D(ηf)|p is |f ||Dη|p + |η||Df |p and without 
any control on the size of f it might be that this latter function is not in Lp(m) (notice 
that even in the Euclidean setting there are a function f ∈ L1

loc with distributional dif-
ferential in Lp and a smooth compactly supported function η such that the distributional 
differential of ηf is not in Lp).

2.2. Optimal transport on geodesic spaces

We recall here basic features of Optimal transportation on a complete and separable 
metric space (X, d). For a thorough discussion on the topic, we refer to the monograph 
[40] (see also [3]).

Let q ∈ (1, ∞) and denote by Pq(X) the set of probabilities μ ∈ P(X) with finite q-
moment, i.e. 

´
X dq(x, x0) dμ < ∞ for some (and thus, any) x0 ∈ X. Also, for a (possibly 

countable) cartesian product of the space X, denote by P i and P 1,...,i the canonical 
projections onto the i-th factor and the first i factors, respectively. We equip Pq(X) with 
the Wasserstein distance

Wq(μ0, μ1) :=
(

inf
α∈Π(μ0,μ1)

ˆ

X×X

dq(x, y) dα(x, y)
)1/q

, (2.11)

where μ0, μ1 ∈ Pq(X) and Π(μ0, μ1) := {α ∈ P(X × X): P 1
� α = μ0, P 2

� α = μ1} is the 
set of admissible plans. Any minimizer of (2.11) is called optimal plan and we denote 
Optp(μ0, μ1) the collection of optimal plans. We refer to (Pq(X), Wq) as the Wasser-
stein space. We report now some basic fact about convergence and compactness on the 
Wasserstein space. Let (μn) ⊆ Pq(X) and recall that

Wq(μn, μ) → 0 ⇔ μn ⇀ μ´
dq(x, x0) dμn →

´
dq(x, x0) dμ

(2.12)

as n goes to infinity for μ ∈ Pq(X) and for some (hence, any) x0 ∈ X. Moreover, 
(Pq(X), Wq) is complete and separable (if and only if X is so) and a family K is compact 
with respect to the topology induced by Wq if and only if is tight and q-uniformly 
integrable.

Throughout this manuscript, geodesics are always considered as constant speed curves 
defined on [0, 1] that realize the distance between their endpoints (and in particular are 
length minimizing). The space Geo(X) ⊂ C([0, 1], X) is the collection of such geodesics. 
Then, on a Polish geodesic spaces we can consider the set of dynamical optimal plans
between μ0 and μ1, defined as

OptGeoq(μ0, μ1) := {π ∈ P(Geo(X)) : (e0, e1)�π ∈ Optp(μ0, μ1)}.
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In this case, we have thus (e0, e1)�π ∈ Optq(μ0, μ1) and the kinetic energy realizes the 
Wasserstein distance; in fact it is not hard to see that we have

W q
q (μ0, μ1) = Keq(π), if and only if π ∈ OptGeoq(μ0, μ1). (2.13)

In other words, the transportation cost can be equivalently evaluated as the superpo-
sition of kinetic energies of transportation geodesic in the support of optimal dynamical 
plans. Notice that existence of plans in OptGeoq(μ0, μ1) implies the existence of ‘many’ 
geodesics starting from the support of μ0 and ending on the support of μ1, but it can 
be that OptGeoq(μ0, μ1) is not empty for a large class of measures μ0, μ1 even if the 
underlying space X is not assumed to be geodesic. This is the case, for instance, of 
CD/RCD(K, ∞) spaces and of spaces possessing the Bounded Interpolation Property 
that we introduce here (in all these examples it is not hard to see that geodesics with 
any given endpoints exist as soon as we assume bounded closed sets to be compact, but 
we shall not do so).

We shall sometimes consider the Wasserstein space also over the complete and sep-
arable space (C([0, 1], X), dsup). To avoid confusion, we will write in this situation 
(Pq(C([0, 1], X), Wq).

2.3. Differential calculus

Let L0(m) be the space of equivalence classes up to m-a.e. equality of Borel functions 
on X equipped with the topology of local convergence in measure. We recall the algebraic 
notion of a normed module over (X, d, m) and discuss a nonsmooth differential calculus 
on metric measure spaces as in [17]. In the following definition, we denote by 1̂ the 
equivalence class up to m-negligible set of the function constantly equal to one.

Definition 2.7 (L0(m)-normed module). Let (X, d, m) be a metric measure space. We call 
a L0(m)-normed module the quadruple (M , τ, ·, | · |), where

i) (M , τ) is a topological space;
ii) · : L0(m) × M → M is a bilinear map satisfying the product’s axioms

g · (f · v) = (fg) · v, 1̂ · v = v, ∀f, g ∈ L0(m), v ∈ M ;

iii) The map | ·| : M → L0(m), called pointwise norm, satisfying |v| ≥ 0 and |f ·v| = |f ||v|
m-a.e. for every f ∈ L0(m), v ∈ M , is s.t. the function dM : M ×M → [0, ∞] defined 
via

dM (v, w) :=
ˆ

X

|v − w| ∧ 1 dm′, for some chosen, fixed m′ so that m � m′ � m,

is a complete distance on M inducing the topology τ .
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One can check that point iii) does not make such definition ill posed, since the metric 
dM may depend on the choice of m′, but the induced topology τ on M does not. We 
recall the existence and uniqueness theorem of a suitable cotangent structure over a 
metric measure space in the language of L0(m)-normed modules (see [16, Theorem 1.8]
for the proof in the case p = 2 in the language of L2-normed modules and [21, Theorem 
2.4] for that in the language of L0-normed modules, and still the case p = 2 - notice that 
these arguments adapt to general p ∈ (1, ∞) without relevant modifications).

Theorem 2.8 (p-Cotangent module). Let (X, d, m) be a metric measure space and p ∈
(1, ∞). Then, there is a unique couple (L0

p(T ∗X), dp) where L0
p(T ∗X) is a L0(m)-normed 

module and dp : Sp
loc(X) → L0

p(T ∗X) is linear and satisfying

i) For any f ∈ Sp
loc(X), it holds |dpf | = |Df |p m-a.e.;

ii) The space {dpf : f ∈ W 1,p(X)} generates L0
p(T ∗X).

Here, uniqueness is intended up to unique module isomorphism, i.e. if (M , L) is another 
couple with the same properties, then there is a unique isomorphism Φ: M → L0

p(T ∗X)
so that Φ ◦ L = dp.

In the above statement, by generating, we mean that simple L0-linear combinations are 
dL0

p(T∗X)-dense and by module isomorphism, we mean a map Φ preserving the module’s 
operation that is also a pointwise isometry. Moreover, we sometimes informally call any 
element of the p-Cotangent module ‘Borel covector field’. Motivated by the need to 
discuss in this note also tangent structures over a metric measure space it is natural to 
give a definition of dual of a module.

Definition 2.9 (Dual of L0(m)-normed module). Let (X, d, m) be a metric measure space 
and M be a L0(m)-normed module. Then, we define its dual module M ∗ as

M ∗ := {L : M → L0(m) : L is L0(m)-linear and continuous},

equipped with the following operations

(L + L′)(v) := L(v) + L′(v),

(f · L)(v) := L(f · v),
|L|∗ := ess sup {L(v) : v ∈ M , |v| ≤ 1 m-a.e.},

for any f ∈ L0(m), L, L′ ∈ M ∗, v ∈ M .

It is an easy task to check that M ∗ has a natural L0(m)-normed module structure 
(in particular, |L|∗ < ∞ m-a.e. - this can be proved e.g. by contradiction assuming that 
|L|∗ = +∞ m-a.e. on a Borel set A with positive measure. Indeed in this case with a 
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cut-off procedure we can find vn with |vn| ≤ 1 and |L(vn)| ≥ n2 on A. Then χAvn/n → 0
but |L(χAvn/n)| ≥ 1 on A for every n ∈ N, contradicting continuity). Moreover, we can 
then define the p-tangent module simply as

L0
p(TX) :=

(
L0
p(T ∗X)

)∗
, ∀p ∈ (1,∞).

An L0(m)-normed module is called a Hilbert module provided

2|v|2 + 2|w|2 = |v − w|2 + |v + w|2, m-a.e.,

holds for any v, w ∈ M . It is easy to check that a module is Hilbert if and only if its 
dual is so. On infinitesimally Hilbertian metric measure spaces, from (2.10) it follows 
that L0(T ∗X), and thus also L0(TX) are Hilbert modules.

In the sequel, we shall sometimes require to work with p-integrable covector and vector 
fields among the Borel ones. In these situations, we restrict the attention to the spaces

Lp(T ∗X) := {ω ∈ L0
p(T ∗X): |v| ∈ Lp(m)}, ‖ω‖pLp(T∗X) :=

ˆ
|ω|p dm,

Lq(TX) := {X ∈ L0
q(TX): |X|∗ ∈ Lq(m)}, ‖X‖qLq(TX) :=

ˆ
|X|q∗ dm,

which have a natural structure of Lp(m)-normed (resp. Lq(m)-normed) L∞(m)-module. 
We will not discuss such structure and refer to the monograph [17] for a detailed discus-
sion. Here, we shall only recall that they are modules over the commutative ring L∞(m)
and that they are Banach spaces.

3. Independence under interpolation density bounds

3.1. Weak and strong p-independent gradients

As already highlighted in (2.7), we shall only expect one inequality between mini-
mal weak upper gradients with different p’s. In light of the two different pathological 
situations described in the Introduction, we give the following definition.

Definition 3.1 (p-independent weak upper gradients). Let (X, d, m) be a metric measure 
space. We say that it has p-independent weak upper gradients in the weak sense, provided 
for any p1, p2 ∈ (1, ∞):

a) W 1,p1(X) ∩W 1,p2(X) is dense in both W 1,p1(X) and W 1,p2(X);
b) for any f ∈ W 1,p1(X) ∩W 1,p2(X) it holds |Df |p1 = |Df |p2 m-a.e.;

Moreover, we say that X has p-independent weak upper gradients in the strong sense if 
we require a)-b) and
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c) any f ∈ W 1,p1(X) with f, |Df |p1 ∈ Lp2(m) belongs to W 1,p2(X).

A non-trivial fact about doubling spaces supporting a Poincaré inequality is that they 
have p-independent weak upper gradients in the strong sense. This is a consequence of 
the fact that on these spaces, in [11] it has been proved that the equality

lip(f) = |Df |p, m-a.e, (3.1)

holds for any f ∈ Lipbs(X) and of an approximation argument based on partition of the 
units done in [27] that shows that c) holds as well (see also [4] for the proof that the 
different definition of Sobolev spaces in these references agree). Let us give some details, 
starting from the definitions.

Definition 3.2. Let (X, d, m) be a metric measure space. We say that

i) it is uniformly locally doubling provided, for every R > 0, there exists a constant 
C := C(R) so that

m(B2r(x)) ≤ Cm(Br(x)), ∀x ∈ X, r ∈ (0, R).

For brevity, we shall only say that (X, d, m) is a doubling metric measure space.
ii) it supports a weak local (1, 1)-Poincaré inequality, provided for every R > 0 there 

exists τ, Λ > 0 so that for any f : X → R Lipschitz it holds

 

Br(x)

|f − fBr(x)|dm ≤ τr

 

BΛr(x)

lip f dm, ∀r ∈ (0, R), x ∈ X,

with the convention fB :=
ffl
B
f dm for every B ∈ B(X).

The notion of Poincaré inequality is often given on metric measure space with the 
concept of upper gradient, rather than local lipschitz constant. Nevertheless, by appealing 
to [4], the two approaches are fully equivalent (we remark that in the earlier paper [25]
the equivalence between the two versions of Poincaré inequality was proved on doubling 
spaces, which is sufficient for the present purposes - the arguments in [4] remain valid 
even without doubling). We then have the following well known result (see for instance 
[7, Corollary A.9] for a proof of the ‘weak’ part, i.e. points a), b) in Definition 3.1 and 
[27] for the ‘strong’ part, i.e. point c) in Definition 3.1).

Theorem 3.3. Let (X, d, m) be a doubling metric measure space supporting a weak local 
(1, 1)-Poincaré inequality. Then it has p-independent weak upper gradients in the strong 
sense.
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3.2. The bounded interpolation property (BIP)

Aim of this section is to present our first order regularity constraint over a metric 
measure space within its implication concerning Sobolev spaces. This will be done by 
imposing a special behavior of the spreading of mass along the geodesic of the space 
according to the next definition.

Definition 3.4 (Bounded interpolation property). We say that a complete and separable 
metric measure space (X, d, m) has the bounded interpolation property, provided:

for every q ∈ (1, ∞) there exists a profile function R+ � D �→ Cq(D) ∈ [1, ∞)
so that for every μ0, μ1 ∈ P(X) absolutely continuous with bounded densities and 
diam(supp(μ0)∪supp(μ1)) < D, there exists π ∈ OptGeoq(μ0, μ1) satisfying

(et)�π = ρtm, ‖ρt‖L∞ ≤ Cq(D)‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m), ∀t ∈ [0, 1], (BIP)

where ρi := dμi

dm .
When this holds, we say for brevity that (X, d, m) is a BIP-space, or that it has the 

(BIP) with profile function D �→ Cq(D).

This axiomatization is inspired by the results of [35], where the very same special be-
havior of mass transportation has been investigated under synthetic lower Ricci bounds. 
Such analysis was carried for the exponent q = 2, but we will see in Appendix B that it 
can actually be performed for all q ∈ (1, ∞). In this direction, [35, Theorem 4.1] ensures 
that the (BIP) yields the following:

A BIP-space supports a weak local (1, 1)-Poincaré inequality.

Thus we already know from Theorem 3.3 that if a BIP space is also doubling, then it 
has p-independent weak upper gradients in the weak sense. Our goal in this section is to 
show that, regardless of the doubling assumption, a BIP space has p-independent weak 
upper gradients in the strong sense. We then postpone to Section 5 the study of which 
sort of ‘known’ spaces satisfy (BIP).

Notice that, for every q, it is not restrictive to suppose the profile function D �→ Cq(D)
to be nondecreasing and continuous, thus we shall implicitly use these facts sometime. 
Moreover, when the profile function is independent of q, as it will be in all the cases 
faced in Section 5, we shall omit the subscript and simply write D �→ C(D).

For the sake of conciseness, we collect, for every q ∈ (1, ∞) all the relevant interpolants 
in the class

Geodq(X) :=

⎧⎪⎨
⎪⎩π ∈ OptGeoq(ρ0m, ρ1m) :

D > 0, ρ0, ρ1 ∈ L∞(m) probabilities
diam(supp(ρ0) ∪ supp(ρ1)) ≤ D

(et)�π ≤ Cq(D)‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m)m

⎫⎪⎬
⎪⎭ .

(3.2)
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Notice the important fact that, no matter of the fixed exponent q, the defining property 
of this class ensures that

any π ∈ Geodq(X) is an ∞-test plan, and thus also a q′-test plan for any q′ ∈ (1,∞).
(3.3)

Indeed, every plan is concentrated on geodesics of the space whose lengths are controlled 
from above by some diameter. We shall also work with the ‘polygonal’ version PolGeoq(X)
of the above, defined as the set of plans π ∈ P(C([0, 1], X)) for which there are a finite 
Borel partition (Ai)i=1,...,N of C([0, 1], X) with αi := π(Ai) > 0 and, for every j =
0, . . . , m − 1, m ∈ N and i = 1, . . . , N , we have α−1

i (Restr
j+1
m
j
m

)�(π|Ai
) ∈ Geodq(X).

Lemma 3.5 (Approximation with polygonal plans). Let (X, d, m) be a BIP-space, q ∈
(1, ∞) and π a q-test plan. Then there are (πn) ⊂ P(C([0, 1], X)) and (πn,m) ⊂
PolGeoq(X), n, m ∈ N, such that:

i) for every n ∈ N, we have
a) πn,m ⇀ πn as m → ∞;
b) limm→∞ Keq(πn,m) ≤ Keq(πn);
c) for some C(q, n) > 0 we have (et)�πn,m ≤ C(q, n)m for every m ∈ N, and 

t ∈ [0, 1];
ii) and moreover

a) πn ⇀ π as n → ∞;
b) limn→∞ Keq(πn) ≤ Keq(π);
c) for some C(q) > 0 we have (et)�πn ≤ C(q)m for every n ∈ N, and t ∈ [0, 1].

Proof. Let us set for brevity Y := C([0, 1], X) and assume at first that π has compact 
support so that E := {γt : γ ∈ supp(π), t ∈ [0, 1]} ⊂ X is also compact. We put D :=
diam(E) < ∞.
Case i). Let m, n ∈ N be fixed. Using the compactness of the support of π, find a finite 
Borel partition (Ai)i=1,...,Nn

of its support made of sets with positive π-measure and di-
ameter ≤ 1

n . For i ∈ {1, . . . , Nn} put αi := π(Ai)−1π|Ai
and then for j ∈ {0, . . . , m − 1}

let βi,j ∈ OptGeoq((e j
m

)�αi, (e j+1
m

)�αi) ∩ Geodq(X) given by the (BIP). With a glu-
ing argument (see e.g. [14, Lemma 2.1.1]) we can then find a plan βi such that 
(Restr

j+1
m
j
m

)�βi = βi,j for every j ∈ {0, . . . , m − 1}. We put πn,m :=
∑Nn

i=1 π(Ai)βi and 

we notice that the construction and the BIP assumption easily guarantees that property
(i-c) holds. Moreover, we claim

Keq(πn,m) ≤ Keq(π) (3.4)

and to this aim we notice that
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1̈

0

|γ̇t|q dtdβi =
m−1∑
j=0

j+1
m̈

j
m

|γ̇t|q dtdβi

(
from (Restr

j+1
m
j
m

)�βi = βi,j
)

=
m−1∑
j=0

1̈

0

mq−1|γ̇t|q dtdβi,j

(by (2.13)) =
m−1∑
j=0

mq−1W q
q

(
(e j

m
)�αi, (e j+1

m
)�αi

)

≤
m−1∑
j=0

mq−1
ˆ

dq(γ j
m
, γ j+1

m
) dαi

≤
m−1∑
j=0

mq−1
ˆ (

j+1
m̂

j
m

|γ̇t|dt
)q dαi

(by Jensen) ≤
m−1∑
j=0

mq−1− q
p

j+1
m̈

j
m

|γ̇t|q dtdαi =
1̈

0

|γ̇t|q dtdαi,

for all i = 0, ..., Nn. This in particular guarantees that (πn,m)m is a sequence of q-test 
plans with uniformly bounded q-kinetic energy and compression. We are going now to 
produce a weak limit πn, arguing by tightness.

Fix t, let j := j(t, m) so that t ∈ [j/m, (j+1)/m] and, using that πn,m ∈ PolGeoq(X), 
we estimate

Wq((et)�πn,m, (et)�π) ≤ Wq((et)�πn,m, (e j
m

)�πn,m) + Wq((e j
m

)�π, (et)�π)

≤
(ˆ

dq(γ j
m
, γt) dπn,m

)1/q

+
(ˆ

dq(γ j
m
, γt) dπ

)1/q

(ACq-supported) ≤
(ˆ ( tˆ

j
m

|γ̇t|dt
)qdπn,m

)1/q
+
( ˆ ( tˆ

j
m

|γ̇t|dt
)qdπ)1/q

(Hölder and (3.4)) ≤ 2m
1
pq Ke1/q

q (π).

(3.5)

Taking into account that {(et)�π : t ∈ [0, 1]} is Wq-compact (because π has finite q-
energy and thus t �→ (et)�π ∈ (Pq(X), Wq) is continuous), this last estimate ensures that 
{(et)�πn,m : t ∈ [0, 1], m ∈ N} is Wq-precompact for every n ∈ N. In particular such set 
is tight, and thus by Prokhorov’s Theorem 2.2 there exists a function ψ : X → R with 
compact sublevels such that
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sup
t∈[0,1],m∈N

ˆ
ψ d(et)�πn,m < ∞. (3.6)

Now, consider the functional Ψ : C([0, 1], X) → X defined by

Ψ(γ) :=
1ˆ

0

ψ(γt) + |γ̇t|q dt, if γ ∈ ACq([0, 1],X), +∞ otherwise

and notice that it has compact sublevels as well (see, e.g., [19, Lemma 5.8] for the case 
q = 2 and observe that for q ∈ (1, ∞) the proof works as well). By construction we have

sup
m

ˆ
Ψ dπn,m ≤ sup

t∈[0,1],m∈N

( ˆ
ψ d(et)�πn,m + Keq(πn,m)

) (3.4),(3.6)
< ∞.

Again, by Prokhrov’s Theorem, we conclude that (πn,m)m is tight family and, up to not
relabeled subsequences, we get the existence of a weak limit πn as m goes to infinity. We 
thus obtained (i-a). Also, from (3.5) we get

(et)�πn = (et)�π, t ∈ [0, 1]. (3.7)

Now notice that (3.7) ensures a posteriori (πn,m)m to be also a polygonal interpolation
of πn (recall that πn,m was built freezing marginals of (et)�π on a uniform time grid) 
whence (3.4) here reads Keq(πn,m) ≤ Keq(πn) for every m ∈ N. Taking now the limsup 
yields (i-b).
Case ii). We immediately notice that (3.7) ensures (ii-c) with C = Comp(π). Next, we 
show (ii-a) and, to this aim, we remark that Δn :=

∑Nn

i=0 αiπn|Ai
⊗ π|Ai

∈ Π(πn, π) by 
construction. Then, we can estimate

Wq
q (πn, π) ≤

ˆ

Y×Y

dqsup(γ, θ) dΔn(γ, θ) =
Nn∑
i=0

ˆ

Ai×Ai

αidqsup(γ, θ) dπn(γ)π(θ) ≤ 1
nq ,

where, evidently, we used that for πn ⊗ π-a.e. (γ, θ) ∈ Ai × Ai we have dsup(γ, θ) ≤ 1
n

due to the uniform bound of the diameter of Ai. This clearly implies (ii-a). But now, 
arguing again by weak lower semicontinuity (2.1), we conclude recalling (i-b) and (3.4)
that

lim
n→∞

Keq(πn) ≤ lim
n→∞

lim
m→∞

Keq(πn,m) ≤ Keq(π),

that is (ii-b).
Reduction step. In this final step, we relieve the proof of the Lemma of assumption π
supported on a compact set. Being π a probability measure on the complete and separable 
space Y, it is concentrated on a sigma-compact set. Let then Γk ⊂ Y be compact so that 
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π(∪kΓk) = 1, and consider, for every k ∈ N, the plans πk := π(∪i≤kΓi)−1π|∪i≤kΓi
. They 

are clearly of compact support, so that we can apply i)-ii) to produce the sequences πk
n,m

and πk
n satisfying all the listed properties. Now, a diagonalization argument in k and n

gives the conclusion. �
Lemma 3.6. Let (X, d, m) be a metric measure space, q ∈ (1, ∞) and (πn) ⊂
P(C([0, 1], X)) be a sequence such that πn ⇀ π as n goes to infinity for some q-test 
plan π ∈ P(C([0, 1], X)). Assume that

(et)�πn ≤ Cm, ∀n ∈ N, t ∈ [0, 1], (3.8)

and that

lim
n→∞

Keq(πn) ≤ Keq(π). (3.9)

Then for every G ∈ Lp(m) we have

lim
n→∞

1̈

0

G(γt)|γ̇t|dt dπn =
1̈

0

G(γt)|γ̇t|dt dπ. (3.10)

Proof. Let d′ := dsup ∨ 1 and Wq be the q-Wasserstein distance induced by d′. Thus 
Wq(π, πn) → 0 as n goes to infinity because d′ is a bounded distance equivalent to the 
original one.

We write again for brevity Y := C([0, 1], X) and consider, for every n ∈ N, first 
the plans βn ∈ Optq(π, πn) and then, using repeatedly a gluing argument, the plan 
βn ∈ P(Y × Yn) so that

(P 0,n)�βn = βn and (P 0,1,...,n−1)�βn = βn−1.

Kolmogorov’s Theorem (see e.g. [8, Section 7.7]) ensures the existence of β ∈ P(Y×YN)
so that (P 0,1,...,n)�β = βn for all n ∈ N. Thanks to the assumptions, we can write

0 = lim
n→∞

Wq
q (π, πn) = lim

n

ˆ

Y×Y

(d′)q(γ0, γn) dβn(γ0, γn)

= lim
n

ˆ

Y×YN

(d′)q(P 0(γ), Pn(γ)) dβ(γ).

Therefore, one gets that, up to a not relabeled subsequence, Pn(γ) → P 0(γ) uniformly 
for β-a.e. γ. Now let fn(γ, t) := |γ̇n

t | and gn(γ) :=
´ 1
0 fq

n(γ, t) dt = Keq(γn) and similarly 
f, g. Notice that (3.9) reads as lim

´
gn dβ ≤

´
g dβ and the lower semicontinuity of the 

q-kinetic energy ensures that lim gn(γ) ≥ g(γ) for β-a.e. γ. Hence the simple Lemma 3.7
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below ensures that gn → g in L1(β) and thus, up to a non-relabeled subsequence, also β-
a.e. Thus by Lemma 2.1 we deduce that for β-a.e. γ we have fn(γ, ·) → f(γ, ·) in Lq(0, 1)
and thus also in measure. By Fubini’s theorem we then see that fn → f in measure (w.r.t. 
β × L1|[0,1]). Now observe that (3.9) (and the identity ‖fn‖Lq = Keq(πn)) guarantees 
that (fn) is bounded in Lq(β × L1|[0,1]) and what we just proved shows that any weak 

limit must coincide a.e. with f , i.e. fn ⇀ f in Lq(β×L1|[0,1]). Using again (3.9) and the 
uniform convexity of Lq we conclude that

fn → f in Lq(β × L1|[0,1]). (3.11)

Putting Ĝn(γ, t) := G(γn
t ) and analogously Ĝ(γ, t) := G(γt), we then see that to con-

clude it is sufficient to show that Ĝn → Ĝ in Lp(β×L1|[0,1]). This is obvious by dominated 

convergence if G ∈ Cb(X), thus the conclusion will follow if we show that the linear maps 
Lp(X, m) � G �→ Ĝn, Ĝ ∈ Lp(β × L1|[0,1]) are uniformly continuous. This follows from 

(3.8), which give

1̈

0

|Ĝn|p dt dβ =
1̈

0

|G|p(·, t) dπn dt =
1̈

0

|G|p d(et)�πn dt ≤ C

ˆ
|G|p dm,

and the analogous estimates for π. Since the result does not depend on the particular 
subsequence chosen, the conclusion follows. �
Lemma 3.7. Let μ be a Borel probability measure on a Polish space Y, and fn, f : Y →
[0, ∞], n ∈ N, Borel such that

f(y) ≤ lim
n→∞

fn(y), and lim
n→∞

ˆ
fn dμ ≤

ˆ
f dμ < ∞.

Then fn → f in L1(μ).

Proof. Let g := limn→∞ fn and gn := infk≥n fk. Fatou’s lemma and the assumptions 
give that 

´
g dm < ∞, while the monotone convergence theorem ensures that 

´
gn dm →´

g dm. Hence ‖gn − g‖L1(μ) → 0. Also, we have

lim
n→∞

‖fn − gn‖L1(μ) = lim
n→∞

ˆ
fn − gn dμ ≤

ˆ
f − g dμ ≤ 0,

forcing in particular f = g μ-a.e. The conclusion follows. �
Thanks to this approximation result we get the following:

Proposition 3.8. Let (X, d, m) be a BIP-space, p ∈ (1, ∞), f : X → R Borel and G ∈
Lp(X) positive. Then, the following are equivalent:
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i) f ∈ Sp(X) and G is a p-weak upper gradient;
ii) the inequality

ˆ
|f(γ1) − f(γ0)|dπ ≤

1̈

0

G(γt)|γ̇t|dtdπ (3.12)

holds for any π ∈ Geodq(X).

Proof. The implication i) ⇒ ii) is obvious, so we are left to show the converse. We start 
noticing that (3.12) holds for any π ∈ PolGeoq(X). Indeed, for Ai, αi, N, m as in the 
definition of PolGeoq(X) we have

ˆ
|f(γ1) − f(γ0)|dπ ≤

N∑
i=1

m−1∑
j=0

ˆ
|f(γ j+1

m
) − f(γ j

m
)|dπ|Ai

=
N∑
i=1

m−1∑
j=0

αi

ˆ
|f(γ1) − f(γ0)|d

(
α−1
i (Restr

j+1
m
j
m

)�(π|Ai
)
)

∗
≤

N∑
i=1

m−1∑
j=0

αi

1̈

0

G(γt)|γ̇t|dtd
(
α−1
i (Restr

j+1
m
j
m

)�(π|Ai
)
)

=
1̈

0

G(γt)|γ̇t|dtdπ

having used the fact that α−1
i (Restr

j+1
m
j
m

)�(π|Ai
) is in Geodq(X) and the assumption ii) in 

the starred inequality.
The conclusion now comes by approximation. Let π be an arbitrary q-test plan and 

assume for the moment that f(γ1) − f(γ0) has the same sign for π-a.e. γ, say non-
negative (otherwise replace π with (Restr01)�π and notice that (3.12) is unaffected). Let 
(πn,m), (πn) be given by Lemma 3.5, put fk := (−k) ∨ f ∧ k for k ∈ N and notice that 
fk(γ1) −fk(γ0) ≥ 0 for π-a.e. γ. The fact that fk ∈ L∞(X) and the compression bounds 
given by Lemma 3.5 give that

lim
n→∞

lim
m→∞

ˆ
fk d(et)�πn,m = lim

n→∞

ˆ
fk d(et)�πn =

ˆ
fk d(et)�π, ∀t ∈ [0, 1],

therefore by monotone convergence we get
ˆ

|f(γ1) − f(γ0)|dπ = lim
k→∞

ˆ
|fk(γ1) − fk(γ0)|dπ

= lim
ˆ

fk(γ1) − fk(γ0) dπ

k→∞



22 N. Gigli, F. Nobili / Journal of Functional Analysis 283 (2022) 109686
= lim
k→∞

( ˆ
fk d(e1)�π −

ˆ
fk d(e0)�π

)

= lim
k→∞

lim
n→∞

lim
m→∞

(ˆ
fk d(e1)�πn,m −

ˆ
fk d(e0)�πn,m

)

≤ lim
k→∞

lim
n→∞

lim
m→∞

ˆ
|fk(γ1) − fk(γ0)|dπn,m

≤ lim
n→∞

lim
m→∞

ˆ
|f(γ1) − f(γ0)|dπn,m

≤ lim
n→∞

lim
m→∞

1̈

0

G(γt)|γ̇t|dtdπn,m,

where in the last step we used the fact that πn,m ∈ PolGeoq(X) and what previously 
proved. To conclude we apply Lemma 3.6 first as m → ∞ and then as n → ∞.

If both A+ := {γ : f(γ1) −f(γ0) ≥ 0} and A− := {γ : f(γ1) −f(γ0) < 0} have positive 
π-measure, we apply the above to the q-test plans π± := π(A±)−1π|A± observing that

ˆ
|f(γ1) − f(γ0)|dπ = π(A+)

ˆ
|f(γ1) − f(γ0)|dπ+ − π(A−)

ˆ
|f(γ1) − f(γ0)|dπ−.

The conclusion follows. �
We now come to the main result of the section, which is also the main reason behind 

the definition of BIP spaces:

Theorem 3.9. Let (X, d, m) be a BIP-space and let p1, p2 ∈ (1, ∞). Suppose f ∈ Sp1
loc(X)

is such that |Df |p1 ∈ Lp2
loc(m).

Then, f ∈ Sp2
loc(X) and

|Df |p1 = |Df |p2 , m-a.e..

Note: by a truncation and cut-off argument it is easy to see that the conclusion of 
this theorem is in fact equivalent to the p-independence of weak upper gradients in the 
strong sense.

Proof. Assume for a moment that f ∈ Sp1(X) and |Df |p1 ∈ Lp2(m). Then we know 
that (3.12) holds for every q1-test plan with G := |Df |p1 , and thus, recalling (3.3), 
also for every plan in Geodq2(X). Hence Proposition 3.8 tells that f ∈ Sp2(X) with 
|Df |p2 ≤ |Df |p1 m-a.e.

In the general case we pick k ∈ N and η ∈ Lipbs(X), define the truncated function 
fk := (−k) ∨ f ∧k and then consider ηfk. The Leibniz rule (2.6) (which is trivially valid 
also for locally Sobolev functions) gives
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|D(ηfk)|p1 ≤ |η||Df |p1 + |Dη|k ∈ Lp1 ∩ Lp2(m). (3.13)

Thus ηfk ∈ Sp1(X) with |D(ηfk)|p1 ∈ Lp2(m) and the previous argument applies to 
conclude that ηfk ∈ Sp2(X) with |D(ηfk)|p2 bounded by the right hand side of (3.13). 
By the very Definition 2.6 this means that f ∈ Sp2

loc(X) with |Df |p2 ≤ |Df |p1 m-a.e.
Now we can swap p1 and p2 to get that equality, and thus the conclusion, holds. �

3.3. Stability of (BIP)

We aim at proving the stability of the (BIP) under pointed measured Gromov Haus-
dorff convergence. We recall here some basic facts about limits of metric measure spaces 
as introduced in [23] (see also [38], here we follow the extrinsic approach described in 
[19]). A pointed metric measure space, is a quadruple (X, d, m, x), where (X, d, m) is a 
metric measure space and x ∈ X. Also, we put N̄ := N ∪ {∞}.

Definition 3.10 (pmGH-convergence). Let (Xn, dn, mn, xn), n ∈ N̄, be a sequence of 
pointed metric measure spaces. We say that that (Xn, dn, mn, xn) pointed-measure Gro-
mov Hausdorff-converges (pmGH-converges for short) to (X∞, d∞, m∞, x∞) provided 
there exists a complete and separable metric measure space (Z, d) and isometric embed-
dings

ιn : (Xn, dn) → (Z, dZ),

ι∞ : (X∞, d∞) → (Z, dZ),

such that (ιn)(xn) → ι∞(x∞) and

(ιn)�mn ⇀ (ι∞)�m∞, in duality with Cbs(Z).

In this case we write Xn
pmGH→ X∞.

In what follows we shall identify the spaces Xn, n ∈ N̄, with their isomorphic images 
in Z.

The stability of the (BIP) is a consequence of the following simple compactness prop-
erty of optimal geodesic test plans under pmGH-convergence:

Lemma 3.11. Let Xn
pmGH→ X∞ as in Definition 3.10, R > 0 and q ∈ (1, ∞). For 

every n ∈ N, and i = 0, 1, let μn
i ∈ Pq(Xn) be with supp(μn

i ) ⊆ BR(xn) and πn ∈
OptGeoq(μn

0 , μ
n
1 ). Assume that limn→∞ Comp(πn) < ∞.

Then (πn) ⊂ P(C([0, 1], Z)) is tight and for any weak limit π along some subsequence 
nk ↑ +∞ we have

i) μnk
i ⇀ μi, i = 0, 1, for some μi ∈ P(X∞) ⊂ P(Z) with support contained in B̄R(x∞),
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ii) π ∈ OptGeoq(μ0, μ1) and limn→∞ Keq(πn) = Keq(π);
iii) Comp(π) ≤ limn→∞ Comp(πn).

Proof. We start passing to a subsequence, not relabeled, realizing the limn→∞ Comp(πn). 
From (2.13) and the fact that the measures μn

i have uniformly bounded supports in P(Z)
and arguing as in the proof of Lemma 3.5 we see that tightness will follow if we show 
that {(et)�πn : t ∈ [0, 1], n ∈ N} is tight. To see this, let η : Z → [0, 1] be Lipschitz 
with bounded support and identically 1 on BR+1(x∞) ⊂ Z. Since xn → x∞ we see that ´
η dmn > 0 for every n sufficiently big, hence the definition

m̃n := 1
zn
ηmn ∈ P(Z), zn :=

ˆ
η dmn,

is well posed for every n ∈ N sufficiently big and we have m̃n ⇀ m̃∞ in duality with 
Cb(Z). In particular, (m̃n) is a tight sequence. Now fix ε > 0 and find K ⊂ Z compact 
such that limn m̃n(Z \K) < ε. Then observe that for every n ∈ N big enough we have 
supp((et)�πn) ⊂ {η = 1} and thus

(et)�πn ≤ Comp(πn)m̃n, for every t ∈ [0, 1] and n big enough. (3.14)

Hence for any S > limn Comp(πn) we have

lim
n→∞

sup
t∈[0,1]

(et)�πn(Z \K) ≤ lim
n→∞

Comp(πn)m̃n(Z \K) ≤ Sε,

proving the desired tightness.
Now say that πnk ⇀ π ∈ P(C([0, 1], Z)). Then (et)�πn ⇀ (et)�π for every t ∈ [0, 1] (in 

particular i) holds), thus passing to the limit in (3.14) we obtain

(et)�π ≤ Sm̃∞ ≤ Sm∞, ∀t ∈ [0, 1] and S > lim
n

Comp(πn),

thus iii) holds. To see ii) notice that since the measures μn
i have uniformly bounded 

support, the weak convergence μnk
i ⇀ (ei)�π implies Wq-convergence, thus recalling the 

characterization (2.13) of optimal geodesic plans we have

Keq(π) ≤ lim
k→∞

Keq(πnk) = lim
k→∞

W q
q (μnk

0 , μnk
1 ) = W q

q (μ0, μ1)

and the conclusion follows. �
We come to the actual stability result:

Theorem 3.12 (pmGH-stability of (BIP)). Let (Xn, dn, mn, xn), n ∈ N̄, be a sequence of 
pointed metric measure spaces with (Xn, dn, mn, xn) pmGH→ (X∞, d∞, m∞, x∞). Suppose 



N. Gigli, F. Nobili / Journal of Functional Analysis 283 (2022) 109686 25

0,
(Xn, dn, mn) satisfies the (BIP) with profile function D �→ Cn
q (D) for all n ∈ N and 

there exist non increasing assignments D �→ Cq(D) so that limn C
n
q (D) ≤ Cq(D) < ∞

for every D > 0, q ∈ (1, ∞).
Then (X∞, d∞, m∞) has the (BIP) with profile function D �→ Cq(D).

Proof. We subdivide the proof in two steps.
Step 1. Let q ∈ (1, ∞), μ∞ = ρ∞m∞ ∈ P(X∞) ⊂ P(Z) be with bounded support and 
A ⊂ Z open bounded with d(supp(μ∞), Z \ A) > 0. We claim that there is a sequence 
n �→ μn = ρnmn ∈ P(Xn) ⊂ P(Z) Wq-converging to μ∞ with

lim
n

‖ρn‖L∞(mn) ≤ ‖ρ∞‖L∞(m∞) (3.15)

such that supp(μn) ⊂ A for every n sufficiently big.
To see this, let η : Z → [0, 1] be continuous, identically 1 on supp(μ) and with support 

contained in A. Put

m̃n := 1
zn

ηmn, where zn :=
ˆ

η dμn

and similarly m∞. Notice that the assumptions on μ∞ ensure that z∞ > 0, so that 
m̃∞ is well defined, and thus the pmGH-convergence guarantees that zn > 0 for every n
sufficiently big, so that for these n’s the probability measures m̃n ∈ P(Z) are well defined 
and weakly converge to m̃∞ in duality with Cb(Z). In the forthcoming discussion we will 
neglect the small n’s and think the m̃n’s to be defined for every n ∈ N.

By construction supp(m̃n) ⊂ A for every n ∈ N and since A is bounded we deduce 
that Wq(m̃n, m̃∞) → 0 as n → ∞. Let αn ∈ Optq(m̃∞, m̃n), and define

μn := P 2
� β

n, where dβn(x, y) := dμ∞
dm̃∞

(x) dαn(x, y) ∈ P(Z × Z).

Notice that P 1
� β

n = μ∞, and thus βn ∈ Π(μ̃∞, μ̃n). Also, from dμ∞
dm̃∞

= z∞
dμ∞
dm∞

= z∞ρ∞
we get βn ≤ z∞‖ρ∞‖L∞(m∞)α

n and thus

μn ≤ z∞‖ρ∞‖L∞(m∞)P
2
� α

n = z∞‖ρ∞‖L∞(m∞)m̃n ≤ z∞
zn

‖ρ∞‖L∞(m∞)mn.

Since clearly zn → z∞, (3.15) holds. Moreover, we have

W q
q (μ∞, μn) ≤

ˆ
dq(x, y) dβn(y1, y2)

≤ z∞‖ρ∞‖L∞(m∞)

ˆ
dq(x, y) dαn(y1, y2) ≤ z∞‖ρ∞‖L∞(m∞)W

q
q (m̃∞, m̃n) →

(3.16)

and the claim is proved.
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Step 2. Let D > 0, μ0, μ1 ∈ P(X∞) be absolutely continuous with bounded densities 
and diam(supp(μ0) ∪ supp(μ1)) < D. Let A ⊂ Z be open with diam(A) < D and 
d((supp(μ0) ∪ supp(μ1)), Z \ A) > 0: apply the previous step with A and the measures 
μ0, μ1 to find corresponding sequences (μn

i ) as above. Since Xn is a BIP space we can 
find πn ∈ OptGeoq(μn

0 , μ
n
1 ) with

Comp(πn) ≤ Cn
q (D)

(
‖ρn0‖L∞(mn) ∨ ‖ρn1‖L∞(mn)

)
, (3.17)

where ρni := dμn
i

dm . By Lemma 3.11 above, the sequence (πn) has a subsequence weakly 
converging to some π ∈ OptGeoq(μ0, μ1), so that taking into account iii) of Lemma 3.11
and the previous step, by taking the lim in (3.17) we conclude that

Comp(π) ≤ lim
n→∞

Cn
q (D)

(
‖ρ0‖L∞(m∞) ∨ ‖ρ1‖L∞(m∞)

)

and the conclusion follows. �
4. p-independent differential calculus

4.1. Unification of p-differential calculus

In this section we study the effect of p-independence of weak upper gradients in terms 
of differential calculus. Informally, the idea is that on this sort of spaces we should have 
a concept of differential (and thus of cotangent module) which is independent on the 
chosen Sobolev exponent p.

Theorem 4.1 (Universal cotangent module - weak version). Let (X, d, m) be a metric 
measure space with p-independent weak upper gradients in weak sense.

Then there is a unique couple (L0(T ∗X), d) where L0(T ∗X) is a L0(m)-normed module 
and d: ∪p∈(1,∞) S

p
loc(X) → L0(T ∗X) is such that for any p ∈ (1, ∞) it holds

i) The restriction of d to Sp
loc(X) is linear;

ii) For any f ∈ Sp
loc(X), it holds |Df |p = |df | m-a.e.;

iii) The space {df : f ∈ W 1,p(X)} generates L0(T ∗X) as a module (for each fixed p ∈
(1, ∞) - in particular also ∪p{df : f ∈ W 1,p(X)} generates L0(T ∗X)).

Here, uniqueness is intended up to unique isomorphism, i.e. if (M , L) is another couple 
with the same properties, there is a unique module isomorphism Φ: M → L0(T ∗X) so 
that Φ ◦ L = d.

Moreover, the identification Ip : L0
p(T ∗X) → L0(T ∗X) sending dpf �→ df induces the 

module isomorphism Jp : L0
p(TX) → (L0(TX))∗.
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Proof. Uniqueness. For any p ∈ (1, ∞), the couple (L0(T ∗X), d|Sp
loc

) satisfies the same 

properties of (L0
p(T ∗X), dp) in Theorem 2.8. Therefore, uniqueness is a direct consequence 

of the uniqueness part such Theorem.
Existence. Fix p1, p2 ∈ (1, ∞), f, g ∈ W 1,p1(X) ∩ W 1,p2(X) and E ⊂ X Borel. We 
observe that locality of differentials together with the assumption on the metric measure 
space yield

dp1f = dp1g m-a.e. on E ⇔ dp2f = dp2g m-a.e. on E (4.1)

Indeed,

dp1f = dp1g m-a.e. on E ⇔ |dp1(f − g)| = 0 m-a.e. on E

⇔ |D(f − g)|p1 = 0 m-a.e. on E

⇔ |D(f − g)|p2 = 0 m-a.e. on E

⇔ |dp2(f − g)| = 0 m-a.e. on E

⇔ dp2f = dp2g m-a.e. on E

Building up on property (4.1) we are going to construct an isomorphism Ip2
p1

:
L0
p1

(T ∗X) → L0
p2

(T ∗X) sending dp1f to dp2f . We start by defining its action on sim-
ple 1-forms. Denote by Vpj

⊂ L0
pj

(T ∗X), j = 1, 2, the space of covector fields of type ∑n
i=1 χEi

dpj
fi, where (Ei) is a finite Borel partition of X, and (fi) ⊂ W 1,p1(X) ∩

W 1,p2(X). Then define Ip2
p1

: Vp1 → Vp2 by the formula

Ip2
p1

( n∑
i=1

χEi
dp1fi

)
:=

n∑
i=1

χEi
dp2fi.

It can be readily checked that (4.1) ensures the well posedness of such map. Moreover, 
Ip2
p1

is linear and, due to the independence of weak upper gradients, it is a pointwise 
isometry, since

∣∣∣Ip2
p1

( n∑
i=1

χEi
dp1fi

)∣∣∣ =
n∑

i=1

χEi
|dp2fi| =

n∑
i=1

χEi
|dp1fi| =

∣∣∣(
n∑

i=1

χEi
dp1fi

)∣∣∣ m-a.e.

Therefore, it is continuous and, with a little abuse of notation, it uniquely extends to
a pointwise isometry from the closure of Vp1 with values in L0

p2
(T ∗X). It is clear that, 

thanks to a) of Definition 3.1 and ii) of Theorem 2.8, the closure of Vpj
coincides with 

L0
pj

(T ∗X) itself, j = 1, 2. We thus built a module isomorphism Ip2
p1

such that

Ip2
p1

(dp1f) = dp2f, (4.2)

holds for every f ∈ W 1,p1(X) ∩W 1,p2(X) and it is then clear from definition of Spj

loc(X)
and the locality of the differential that (4.2) holds for any f ∈ Sp1

loc(X) ∩ Sp2
loc(X).
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To conclude, fix p̄ ∈ (1, ∞), set Ip := I p̄p , define the module L0(T ∗X) := L0
p̄(T ∗X), 

and the differential d as d|Sp
loc(X)

:= Ip ◦ dp. Notice that (4.2) ensures that the definition 

of d is well posed.
Then property i) follows from the linearity of dp and I p̄p . Property ii) follows from 

the fact that for every p ∈ (1, ∞), Ip is a pointwise isometry, as |df | = |Ip(dpf)| =
|dpf | = |Df |p, m-a.e. Finally, we know that {dpf : f ∈ W 1,p(X)} generates L0

p(T ∗X), 
thus iii) follows from the fact that Ip is an isomorphism. Finally, the claim about Jp is 
obvious. �
Definition 4.2 (Universal differential structures). Let (X, d, m) be a metric measure space 
with p-independent weak upper gradients in weak sense. We call the universal cotangent 
module the module L0(T ∗X) and d the associated universal differential given by Theo-
rem 2.8. Moreover, we call the universal tangent module, and denote it by L0(TX), the 
dual module (L0(T ∗X)∗.

In spaces with p-independent weak gradients in the strong sense, the following stronger 
result holds. Basically, it says that in this case the situation is closer to the standard 
Euclidean one, where one first has a distributional differential and then, by investigating 
its integrability, deduces whether the function is Sobolev:

Theorem 4.3 (Universal cotangent module - strong version). Let (X, d, m) be a metric 
measure space with p-independent weak upper gradients in strong sense.

Then in addition to the results in Theorem 4.1, the following holds. Let f ∈
∪p∈(1,∞)S

p
loc(X) be such that for some p̄ ∈ (1, ∞) we have |df | ∈ Lp̄

loc(m).
Then f ∈ Sp̄

loc(X).

Proof. By assumption we know that for some p ∈ (1, ∞) we have f ∈ Sp
loc(X). For 

k, R > 0 let fk := (−k) ∨ f ∧ k, ηR : X → [0, 1] given by ηR := (1 − d(·, BR(x̄)))+, where 
x̄ ∈ X is some fixed chosen point, and fk

R := ηRf
k. Then fk

R is bounded with bounded 
support, hence it belongs to Lp ∩ Lp̄(m). Moreover, we have

|Dfk
R|p ≤ ηR|Df |p1 + χsupp(ηR)k = ηR|df | + χsupp(ηR)k

and the assumption |df | ∈ Lp̄
loc(m) gives that the rightmost side in the above is in Lp̄(m). 

Then the fact that X has p-independent weak gradients in the strong sense implies that 
fk
R ∈ W 1,p̄(X) with |Dfk

R|p̄ ≤ |df | +χsupp(ηR)k. By the very definition of Sp̄
loc(X) we just 

proved that f ∈ Sp̄
loc(X), which is the conclusion. �

4.2. Infinitesimal Hilbertianity and universal gradient

Intuitively, when a metric measure is infinitesimal Hilbertian, there is a hidden scalar 
product between tangent directions at small scales. Such geometric concept has in prin-
ciple nothing to do with the particular choice of the exponent p = 2. Nevertheless, due 
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to the dependence of weak upper gradients on p, this hidden geometry remains unseen 
by all other W 1,p(X).

In this section we investigate some consequences of having both infinitesimal Hilber-
tianity and p-independent weak upper gradients. We start with the following proposition, 
whose proof essentially boils down into verifying that the classical Clarkson inequalities 
are valid also for elements of a generic Hilbert module:

Proposition 4.4. Let (X, d, m) be an infinitesimal Hilbertian metric measure space with p-
independent gradients in weak sense. Then, Lp(T ∗X) and W 1,p(X) are uniformly convex 
and consequently also reflexive for every p ∈ (1, ∞).

Proof. Reflexivity is a consequence of uniform convexity, so we focus on this latter prop-
erty. Also, the map

W 1,p(X) � f �→ (f,df) ∈ Lp(X) ×p L
p(T ∗X)

is an isometry and since Lp(X) is uniformly convex and so is the Lp-norm on R2 used 
to define the product norm, the uniform convexity of W 1,p(X) will follow if we show the 
one of Lp(T ∗X). We thus concentrate on this latter space and observe that it is sufficient 
to show that the Clarkson inequalities hold:

p ∈ [2,∞) ⇒
∥∥∥ω + η

2

∥∥∥p
Lp(T∗X)

+
∥∥∥ω − η

2

∥∥∥p
Lp(T∗X)

≤ 1
2‖η‖

p
Lp(T∗X) + 1

2‖ω‖
p
Lp(T∗X),

p ∈ (1, 2] ⇒
∥∥∥ω + η

2

∥∥∥q
Lp(T∗X)

+
∥∥∥ω − η

2

∥∥∥q
Lp(T∗X)

≤
(

1
2‖ω‖

p
Lp(T∗X) + 1

2‖η‖
p
Lp(T∗X)

) q
p

,

(4.3)
where q ∈ (1, ∞) is the conjugate exponent of p and ω, η are arbitrary elements in 
L0(T ∗X).

To see these, we start noticing that the assumption of infinitesimal Hilbertianity (and 
Theorem 4.1 and its proof) gives that

2|η|2 + 2|ω|2 = |η + ω|2 + |η − ω|2, m-a.e., ∀η, ω ∈ L0(T ∗X). (4.4)

Case p ≥ 2. From the inequality ‖x‖p ≤ ‖x‖2 valid for any x ∈ R2 we see that for any 
η, ω ∈ L0(T ∗X) we have

∣∣∣ω + η

2

∣∣∣p +
∣∣∣ω − η

2

∣∣∣p ≤
(∣∣∣ω + η

2

∣∣∣2 +
∣∣∣ω − η

2

∣∣∣2)p/2 (4.4)=
( |η|2

2 + |ω|2
2

)p/2
≤ |ωn|p

2 + |ηn|p
2 ,

(4.5)
having used the fact that R+ � t �→ t

p
2 is convex in the last step. Integrating we deduce 

the first in (4.3).
Case p ∈ (1, 2]. Obviously p ≤ 2 ≤ q and thus for any η, ω ∈ L0(T ∗X) we have

∣∣∣ω + η ∣∣∣q +
∣∣∣ω − η ∣∣∣q (4.5)

≤
( |η|2 + |ω|2)q/2 ∗

≤
( |η|p + |ω|p)q/p

, (4.6)
2 2 2 2 2 2
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where in the starred inequality we used the fact that ‖x‖2 ≤ ‖x‖p for any x ∈ R2.
Now suppose we already know the reverse triangle inequality in Lr spaces for r ∈ (0, 1), 

i.e. that for f, g Borel non-negative it holds

( ˆ
fr dm

) 1
r +

( ˆ
gr dm

) 1
r ≤

(ˆ
(f + g)r dm

) 1
r (4.7)

and apply it with r := p
q , f := 1

2 |ω + η|p and g := 1
2 |ω + η|p to obtain

(∥∥∥ω + η

2

∥∥∥q
Lp(T∗X)

+
∥∥∥ω − η

2

∥∥∥q
Lp(T∗X)

)p/q

≤
ˆ (∣∣∣ω + η

2

∣∣∣q +
∣∣∣ω − η

2

∣∣∣q)p/q

dm.

This and (4.6) give the second in (4.3), thus it remains to prove (4.7). Putting ϕ(x) :=
(fr(x), gr(x)) and Ψ(a, b) := (a 1

r + b
1
r )r, (4.7) takes the form

Ψ
( ˆ

ϕdm
)
≤
ˆ

Ψ ◦ ϕdm.

Now observe that since Ψ : R2 → R is convex and positively 1-homogeneous we have

Ψ = sup
�≤Ψ, � linear

�,

therefore

Ψ
( ˆ

ϕ dm
)

= sup
�

�
( ˆ

ϕ dm
)

= sup
�

ˆ
� ◦ ϕdm ≤

ˆ
Ψ ◦ ϕdm

and the conclusion follows. �
In presence of infinitesimal Hilbertianity and independence of p-upper gradients in 

the weak sense, we can naturally define a linear notion of gradient:

Theorem 4.5 (Universal gradient). Let (X, d, m) be a infinitesimal Hilbertian metric mea-
sure space with p-independent weak upper gradients in weak sense. Then there is a 
unique map ∇ : ∪p∈(1,∞) S

p
loc(X) → L0(TX), called universal gradient, such that for 

any p ∈ (1, ∞) it holds

i) The restriction of ∇ on Sp
loc(X) is linear;

ii) For any f ∈ Sp
loc(X), it holds df(∇f) = |∇f |2∗ = |df |2 m-a.e.;

iii) The space {∇f : f ∈ W 1,p(X)} generates L0(TX) as a module.

Proof. The assumption of infinitesimal Hilbertianity (together with Theorem 4.1 and its 
proof) ensures that L0(T ∗X) is a Hilbert module: let R : L0(T ∗X) → L0(TX) be the 
Riesz isomorphism.

Then from Theorem 4.1 above it is clear that ∇f := R(df) satisfies the require-
ments. �
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5. Spaces with the (BIP) and consequences

In this section we list some spaces and conditions that we can relate to the bounded 
interpolation property and we analyze the consequences.

5.1. Non branching MCP-spaces

We start recalling the definition of distortion coefficient. For every K ∈ (0, ∞), N ∈
(0, ∞), t ∈ [0, 1] set

σ
(t)
K,N (θ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+∞, if Kθ2 ≥ Nπ2,
sin(tθ

√
K/N)

sin(θ
√
K/N) , if 0 < Kθ2 < Nπ2,

t, if Kθ2 < 0 and N = 0 or if Kθ2 = 0,
sinh(tθ

√
−K/N)

sinh(θ
√
−K/N) , if Kθ2 ≤ 0 and N > 0.

Set, for N > 1, τ (t)
K,N (θ) := t

1
N σ

(t)
K,N−1(θ)1−

1
N while τ (t)

K,1(θ) = t if K ≤ 0 and τ (t)
K,1(θ) = ∞

if K > 0. Finally, for μ ∈ P(X) and N ∈ [1, ∞), we define the N -Rényi relative entropy
with respect to m by

UN (μ|m) := −
ˆ

ρ1− 1
N dm, if μ = ρm + μs, μs ⊥ m,

and the Shannon entropy by

Entm(μ) :=
ˆ

ρ log ρ dm, ifμ = ρm, ∞ otherwise.

Here, we report the definition of the measure contraction property, as introduced 
independently in [32] and [39].

Definition 5.1 (MCP-spaces). We say that a metric measure space (X, d, m) satisfies 
the measure contraction property MCP(K, N) for some K ∈ R, N ∈ [1, ∞) if for any 
μ0 = ρ0m ∈ P2(X) absolutely continuous with bounded support contained in supp(m)
and o ∈ supp(m), there exists π ∈ OptGeo2(μ0, δo) so that

UN (μt) ≤ −
ˆ

τ
(1−t)
K,N (d(x, o))ρ1− 1

N
0 dm, ∀t ∈ [0, 1),

having set μt := (et)�π.

In this note we will couple the MCP-class with the non branching condition: a geodesic 
metric space (X, d) is called non branching, provided
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γ, θ geodesic with γ|[0,t] = θ|[0,t] for some t ∈ (0, 1) ⇒ γ ≡ θ on [0, 1].

The reason is that the non branching MCP-class enjoys good properties of Wasserstein 
geodesics that in turns implies deep analytical consequences. We start by recalling that 
the two definitions of the MCP-condition given in [32] and [39] coincide under the non 
branching assumption (actually, under the weaker 2-essentially non branching assump-
tion, a technical property investigated in [36] that we shall never employ in this note). 
Then, a non branching MCP(K, N) metric measure space (X, d, m) is locally uniformly 
doubling and supports a weak local (1, 1)-Poincaré inequality [32,41]. In particular, it is 
proper.

Remark 5.2. Notice that Definition 5.1 is independent on the particular choice q = 2. 
The first observation is that, if o ∈ supp(m), the set OptGeoq(μ0, δo) is independent on 
q when μ0 = ρ0m with ρ0 ∈ L∞(m) and of bounded support. Indeed, in this case

μ0 ∈ Pq(X) and W q
q (μ0, δo) =

ˆ
dq(x, o) dμ0(x), ∀q ∈ (1,∞).

The verification being that the plan μ0 ⊗ δ0 is the only admissible coupling between the 
two marginal, and therefore it must be optimal for any q. Then, it is straightforward 
to see that if π ∈ OptGeo2(μ0, δ0), then (e1)�π = δo and therefore π ∈ OptGeoq(μ0, δ0)
for all q ∈ (1, ∞). This discussion automatically shows that the choice of q = 2 in 
Definition 5.1 is irrelevant. �

Finally, we state and prove an extension to abritrary q of a result present in [10] (see 
also [26]). This will directly imply the (BIP) condition.

Theorem 5.3. Let (X, d, m) be a non branching MCP(K, N)-space for some K ∈ R, N ∈
[1, ∞). Then, for every q ∈ (1, ∞), D > 0 and μ0, μ1 ∈ Pq(X) with μ0 = ρ0m, ρ0 ∈
L∞(m), and diam(supp(μ0) ∪ supp(μ1)) < D, there exists π ∈ OptGeoq(μ0, μ1) with 
μt := (et)�π � m and

‖ρt‖L∞(m) ≤
1

(1 − t)N eDt
√

(N−1)K−‖ρ0‖L∞(m), ∀t ∈ [0, 1), (5.1)

having set ρt := dμt

dm for t < 1.

Proof. For q = 2, the statement is proved in [10, Theorem 1.1]. Here, we give some 
details to handle the general case.
Step 1. We begin by showing that any (X, d, m) as in the hypothesis is ‘qualitatively 
non degenerate’ according to the axiomatization given in [9, Assumption 1] (actually, 
under non branching it is equivalent [26, Corollary 5.17]). Indeed, let K ⊂ X be compact, 
A ⊂ K non negligible and x ∈ K. Then, denoting by At,x ⊂ C([0, 1], X) the subset of 
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geodesics linking A to x, we denote μ0 = m(A)−1m|A and appeal to [10, Theorem 1.1]
to get that there exists π ∈ OptGeo2(μ0, δx) so that

1 = μt(At,x) ≤
1

(1 − t)N eDt
√

(N−1)K− m(At,x)
m(A) , ∀t ∈ [0, 1),

where D := diam (K) < ∞, having used that μt is a probability measure concentrated 
on At,x. In particular, this shows that there exists a profile function f : [0, 1] → (0, 1]
(depending on the compact set K) and a positive δ < 1 so that

m(At,x) ≥ f(t)m(A), ∀t ∈ [0, δ].

That is, (X, d, m) verifies Assumption 1 in [9].
Step 2. Suppose now μ1 = δx, for x ∈ supp(m). Then, from [10], we know that there 
exists π ∈ OptGeo2(μ0, δx) satisfying (5.1) hence, by Remark 5.2, we have also that 
π ∈ OptGeoq(μ0, δx).
Step 3. Let here n ∈ N and suppose μ1 is a finite convex combination of Dirac masses, 
namely μ1 :=

∑n
j=1 λjδxj

for (xj) ⊂ X with xi �= xi for i �= j and (λj) ⊂ [0, 1] with ∑n
j=1 λj = 1. Then, by appealing to Step 1, we are in position to apply [9, Theorem 

2.1] (recall X is proper) to deduce that there exists a unique optimal coupling between 
μ0 and μ1 and it is induced by a Borel map T : X → X, i.e.

W q
q (μ0, μ1) =

ˆ
dq(x, T (x)) dμ0(x).

Take this map T and define μj
0 := μ0|T−1(xj)

for every j = 1, ..., n. By Step 2, we know 

that there are πj ∈ OptGeoq(λ−1
j μj

0, δxj
) verifying

‖ρjt‖L∞(m) ≤
1

(1 − t)N eDt
√

(N−1)K−‖ρj0‖L∞(m), ∀t ∈ [0, 1), j = 1, ..., n,

having set ρjt := dμj
t

dm and μj
t := (et)�πj for t < 1.

We now define π :=
∑n

j=1 λjπ
j so that, by construction, we have that (e0, e1)�π ∈

Π(μ0, μ1) and μt := (et)�π � m for every t < 1 with ρt := dμt

dm =
∑n

j=1 λjρ
j
t . We now 

claim that ρt satisfies (5.1). To this aim, we instead check that

m({ρit > 0} ∩ {ρjt > 0})) = 0, ∀t ∈ (0, 1), j �= i,

as the latter property implies the claim by construction of μt. Suppose the above is not 
true, namely there exists τ ∈ (0, 1) so that m({ρiτ > 0} ∩ {ρjτ > 0})) > 0 for some 
j �= i. Then there would exist an optimal coupling between the (renormalized) measures 
m|{ρi

τ>0}∩{ρj
τ>0}

and δxj
+ δxi

that is not induced by a map. This finds a contradiction 

for what we have previously proved and concludes the step.
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Step 4. Since (X, d) is separable, given any μ1 as in the hypothesis, we can find a 
sequence of points (xj)j∈N ⊂ supp(μ1) and weights (λn,j)j∈N ⊂ [0, 1] so that

n∑
j=1

λn,jδxj
=: μn

1 → μ1 in Wq,

as n goes to infinity, recalling that the support of μ1 is bounded and consequently 
(2.12). By Step 3, we know that there exists a sequence πn ∈ OptGeoq(μ0, μn

1 ) verifying 
μn := ρnt m and (5.1) for every t < 1, n ∈ N. Finally, arguing as in [10, Lemma 4.4]
(the proof is written for q = 2 but works for arbitrary q, see also Lemma 3.11) we 
get the existence of a weak limit π ∈ OptGeoq(μ0, μ1) of πn verifying all the required 
properties. �

A direct implication of the above Theorem is the following:

Theorem 5.4. Let (X, d, m) be a non branching MCP(K, N)-space for some K ∈ R, N ∈
[1, ∞). Then, it is a BIP-space with profile function D �→ 2NeD

√
(N−1)K− and conse-

quently:

i) (X, d, m) has p-independent weak upper gradients in the strong sense;
ii) there exists a unique couple (L0(T ∗X), d) of universal cotangent module and differ-

ential;
iii) there exists an ∞-plan πmaster concentrated on geodesics so that:

for every p ∈ (1, ∞), f Borel and G ∈ Lp(m) with G ≥ 0, the following are equivalent
◦ f ∈ Sp(X) and G is a p-weak upper gradient;
◦ it holds

|f(γ1) − f(γ0)| ≤
1ˆ

0

G(γt)|γ̇t|dt, πmaster-a.e. γ.

Proof. We subdivide the proof in two steps.
Step 1. Let q ∈ (1, ∞), D > 0 and μ0, μ1 ∈ Pq(X) as in the definition of the (BIP). 
Then, Theorem 5.3 ensures that we can find π+ ∈ OptGeoq(μ0, μ1) so that

‖ρ+
t ‖L∞(m) ≤ 2NeD

√
(N−1)K−‖ρ0‖L∞(m), ∀t ∈ [0, 1

2 ],

and π− ∈ OptGeoq(μ1, μ0) so that

‖ρ−t ‖L∞(m) ≤ 2NeD
√

(N−1)K−‖ρ1‖L∞(m), ∀t ∈ [0, 1 ],
2
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having denoted ρ±t := d(et)�π±

dm for every t ∈ [0, 12 ]. Hence, by nonbranching and arguing 
as in [10], the set OptGeoq(μ0, μ1) is a singleton and therefore we can glue the forward
and backward estimates to verify the (BIP).
Step 2. Finally, recalling that MCP-spaces are doubling, we have thanks to [2] that 
W 1,p(X) is reflexive and therefore Lipbs(X) is dense in every W 1,p(X). Consequently, 
(X, d, m) have p-independent weak upper gradient in the strong sense by appealing to 
Theorem 3.9. The existence of a universal cotangent module L0(T ∗X) is guaranteed by 
Theorem 4.1. Finally, iii) is the content of Theorem A.4. �
Remark 5.5. Since it is known that CD(K, N) spaces are also MCP(K, N), the conclu-
sions of this last theorem hold in particular for non branching CD(K, N) spaces, N < ∞. 
�

5.2. CD(K, ∞)-spaces

The arguments of the last section do not cover the case of CD(K, ∞) spaces and 
actually we do not know whether the conclusions of Theorem 5.4 hold in this case or 
not, due to the fact that it is unknown whether the CD(K, ∞) condition implies anything 
on the structure of plans in OptGeoq(μ0, μ1) for q �= 2.

Still, for q ∈ (1, ∞) and K ∈ R we can consider the class of CDq(K, ∞) spaces, defined 
as those spaces (X, d, m) such that for any μ0, μ1 ∈ Pq(X) absolutely continuous w.r.t. 
m and with bounded support, there is a Wq-geodesic (μt) connecting them such that

Entm(μt) ≤ (1 − t)Entm(μt) + tEntm(μ1) −
K

2 t(1 − t)W 2
q (μ0, μ1) ∀t ∈ [0, 1].

This class of spaces is relevant for our purposes because of the following result, that 
generalizes the ones in [35] to the case of general q �= 2.

Theorem 5.6. Let (X, d, m) be a CDq(K, ∞)-space for some K ∈ R and q ∈ (1, ∞). For 
any D > 0 and ρ0, ρ1 ∈ L∞(m) probability densities with diam(supp(ρ0) ∪ supp(ρ1)) <
D, there exists π ∈ OptGeoq(ρ0m, ρ1m) satisfying μt := (et)�π � m. Moreover, writing 
μt := ρtm, we have

‖ρt‖L∞(m) ≤ eK
−D2/12‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m), ∀t ∈ [0, 1].

The proof of this Theorem closely follows the one in [35] hence, not to interrupt the 
line of thoughts at this point, we postpone its proof to Appendix B.

It is not known if the CDq(K, ∞)-class is independent on q (this is instead the case 
in finite dimension with technical assumptions [1]), still as a consequence of the previous 
considerations we have the following result:

Theorem 5.7. Let K ∈ R and suppose that (X, d, m) is a CDq(K, ∞)-space for every 
q ∈ (1, ∞). Then, it has the (BIP) with profile function D �→ eK

−D2/12.
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Proof. Observe that the hypotheses with Theorem 5.6 ensure the (BIP) to hold. �
5.3. RCD-spaces

In this section, we restrict our attention to the RCD-setting ([6,15]). We start with 
the definition of this class.

Definition 5.8 (RCD-spaces). Let K ∈ R and N ∈ [1, ∞]. A metric measure space 
(X, d, m) is a RCD(K, N)-space, provided it is an infinitesimal Hilbertian CD2(K, N)-
space.

For a reason that we now make clear, we avoided introducing the exponent’s subscript 
in the definition of RCD-space (i.e. a RCD2-condition), even though the two requirements 
characterizing the above definition are strictly related to the exponent p = 2. Indeed, 
the first motivation is that, recently in [12], it has been proven that RCD(K, N)-spaces 
with N < ∞ are non-branching. Therefore, by appealing to the work [1], it is clear that 
a posteriori in Definition 5.8 the choice p = 2 is irrelevant (to be precise, in [1] the 
results are stated only for spaces of finite mass - still it is expected that they generalize 
to the setting of σ-finite spaces). While, the second motivation is that in the work [18]
it has been already shown that RCD(K, ∞)-spaces posses p-independent weak upper 
gradients. Again, this implies a posteriori that one can equivalently require the defining 
parallelogram rule with arbitrary minimal p-weak upper gradients. The reason for which 
the arguments in [18], contrary to the present note, do not involve other exponents 
than p = 2 is that, using heat-flow regularization techniques (which are well understood 
and at hand in this class, see e.g. [5]), the problem of independence is reduced to the 
Lipschitz class which is large enough in the RCD-setting in every Sobolev space W 1,p(X)
and capable to lead to the conclusion of p-independent weak upper gradient even in the 
infinite-dimensional setting of RCD(K, ∞)-spaces. For the sake of completeness, we prove 
briefly which kind of independence is implied by [18] according to the axiomatization of 
Definition 3.1.

Proposition 5.9. Let (X, d, m) be a RCD(K, N)-space for some K ∈ R, N ∈ [1, ∞]. Then, 
(X, d, m) has p-independent weak upper gradient in the strong sense. Moreover, there are 
unique couples (L0(T ∗X), d) and (L0(TX), ∇) of universal cotangent and tangent module, 
with associated linear universal differential and gradient, respectively.

Proof. It suffices to prove the first claim for N = ∞. From [18] we know that 
RCD(K, ∞)-spaces do satisfy b) and c) of Definition 3.1. It remains to show a). Call 
now B := Lipbs(X)

W 1,p

and observe that, since Lipbs(X) ⊂ W 1,p(X) ∩W 1,2(X) and

2|Df |2p + 2|Dg|2p = |D(f + g)|2p + |D(f − g)|2p, m-a.e.,∀f, g ∈ Lipbs(X),
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one can argue as in Proposition 4.4 in order to show that B is uniformly convex. Then, 
for every f ∈ W 1,p(X), we consider thanks to [4] and a truncation argument, a sequence 
(fn) ⊂ Lipbs(X) so that

fn → f, |Dfn|p → |Df |p, in Lp(m). (5.2)

Then, for any G weak limit of |D(fn+fm)|p
2 , by lower semicontinuity of the W 1,p-norm, 

we have

lim
n,m

∥∥∥fn + fm
2

∥∥∥
W 1,p(X)

≥
(
‖f‖pLp(m) + ‖G‖pLp(m)

)1/p ≥ ‖f‖W 1,p(X).

Suppose, by contradiction, that (fn) is not Cauchy. Then, ∃ε > 0 so that ‖fn − fm‖ ≥ ε

for countably many n, m. Observe that, uniform convexity of B ensures that ∃δ > 0 such 
that

‖f‖W 1,p(X) − δ ≥
∥∥∥fn + fm

2

∥∥∥
W 1,p(X)

,

for countably many n, m, which clearly is absurd in light of (5.2). Therefore, (fn) is 
Cauchy and, its B-limit must be f . In other words, we showed that Lipbs(X) is a dense 
collection in W 1,p(X) for every p ∈ (1, ∞), which is a stronger statement implying a). 
Finally, for the last claim, simply invoke Theorem 4.5 and Theorem 4.1. �
5.4. CD(K, N) with N < 0

In this section, we consider a notion of the curvature dimension condition for metric 
measure spaces with generalized negative dimension N < 0. This was first introduced in 
[33] and recently studied in [30,29] where the authors considered a larger class of metric 
measure spaces equipped with a quasi Radon reference measures. In the present note we 
are not interested in working in full generality and recall the definition of this CD-class 
sticking to our notion of (X, d, m). Our goal is to show that very naturally, the results of 
[35] and Appendix B extend also to this class.

First, we need to modify the distortion coefficient for the case N ∈ (−∞, 0) and 
K ∈ R, t ∈ [0, 1]:

−σ
(t)
K,N (θ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+∞, if Kθ2 ≤ Nπ2,
sin(tθ

√
K/N)

sin(θ
√
K/N) , if Nπ2 < Kθ2 < 0,

t, if Kθ2 = 0,
sinh(tθ

√
−K/N)

sinh(θ
√
−K/N) , if 0 < Kθ2.

Set also −τ (t)
K,N (θ) := t

1
N σ

(t)
K,N−1(θ)1−

1
N . Finally, for μ ∈ P(X), we define the N -Rényi 

relative entropy with respect to m with Negative N by
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−UN (μ|m) :=
ˆ

X

ρ1− 1
N dm, if μ = ρm, ∞ otherwise.

Definition 5.10 (CDq(K, N) with N < 0). Let q ∈ (1, ∞), K ∈ R and N < 0. We 
say that a metric measure space (X, d, m) satisfies the curvature dimension condition
CDq(K, N) if any pair of probabilities μ0 = ρ0m, μ1 = ρ1m ∈ Pq(X) admits a plan 
π ∈ OptGeoq(ρ0m, ρ1m) so that

−UN ′(μt|m) ≤
ˆ

−τ
(1−t)
K,N ′ (d(γ1, γ0))ρ0(γ0)−

1
N +− τ

(t)
K,N ′(d(γ1, γ0))ρ1(γ1))−

1
N dπ(γ),

(5.3)
for every t ∈ [0, 1], N ′ ∈ [N, 0) and having denoted μt := (et)�π.

It is rather obvious, see e.g. [30, Proposition 2.6], that, if (X, d, m) satisfies the 
CDq(K, N)-condition K ∈ R, N < 0, then it satisfies the CDq(K ′, N ′)-condition for 
every K ′ ≤ K, N ′ ∈ [N, 0).

Remark 5.11. In order to avoid confusion with the previous definition, we considered 
writing −σ,− τ,− U intentionally to distinguish the notation when N < 0. Moreover, we 
point out that it is natural to consider defining the entropy as 

´
ρ1− 1

N dm without a 
minus sign in front of the integral, as h(s) := s1− 1

N is a convex function for N < 0. �

Following [35] and Appendix B, we show that also in this case, the curvature dimension 
condition spreads the support of the measure.

Lemma 5.12. Let (X, d, m) be a metric measure space that is a CDq(K, N)-space for some 
K ∈ R, N < 0 and q ∈ (1, ∞). Then, for any ρ0, ρ1 ∈ L∞(m) probability densities with 
D := diam(supp(ρ0) ∪ supp(ρ1))) < ∞, we have:

i) If K ≥ 0, there exists π ∈ OptGeoq(ρ0m, ρ1m) so that

m({ρ 1
2
> 0}) ≥ 1

‖ρ0‖L∞ ∨ ‖ρ1‖L∞
e−

1
2
√

(1−N)KD;

ii) If K < 0 and D < π
√

N−1
K , there exists π ∈ OptGeoq(ρ0m, ρ1m) so that

m({ρ 1
2
> 0}) ≥ 1

‖ρ0‖L∞ ∨ ‖ρ1‖L∞
cos1−N (1

2D
√

K/N − 1);

where (e 1
2
)�π = ρ 1

2
m + μs

1
2

with μs
1
2
⊥ m.

Proof. Fix π ∈ OpGeo(ρ0m, ρ1m) satisfying (5.3), denote E := {ρ 1
2
> 0} and notice that 

d(γ0, γ1) < D π-a.e. γ.
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Suppose first that K ≥ 0 and estimate

−σ
( 1
2 )

K,N (d(γ0, γ1)) = 1
e−

1
2
√

−K/Nd(γ0,γ1) + e
1
2
√

−K/Nd(γ0,γ1)
≤ 1

2e
1
2
√

−K/ND,

so that −τ ( 1
2 )

K,N (d(γ0, γ1)) ≤ 1
2
(
e

1
2
√

(1−N)KD
)− 1

N π-a.e. γ and lastly

UN (μ 1
2
|m) ≤ (‖ρ0‖L∞ ∨ ‖ρ1‖L∞)− 1

N

(
e

1
2
√

K(1−N)D)− 1
N . (5.4)

Moreover, being 1 − 1/N ≥ 1, an application of Jensen inequality yields the following 
estimate from below

UN (μ 1
2
|m) = m(E)

 

E

ρ
1− 1

N
1
2

dm ≥ m(E)
( 1
m(E)

)1− 1
N = m(E) 1

N . (5.5)

We can now combine (5.5) with (5.4), raise to the −N power and rearrange to conclude 
in the case K ≥ 0.

Suppose now instead K < 0 and D < π
√
N − 1/K. Then, π-a.e. γ we have that 

1
2d(γ0, γ1)

√
K/N − 1) < π/2 and, since the cosine is monotone decreasing and strictly 

positive on [0, π/2), we estimate

−τ
( 1
2 )

K,N (d(γ0, γ1)) = 1
2

( 1
cos( 1

2d(γ0, γ1)
√
K/N − 1)

)1− 1
N ≤ 1

2

( 1
cos( 1

2D
√

K/N − 1)

)1− 1
N

.

Then, combining with (5.5), we achieve

m(E) 1
N ≤ (‖ρ0‖L∞ ∨ ‖ρ1‖L∞)− 1

N

(
cos( 1

2D
√

K/N − 1)
) 1−N

N ,

that easily implies the conclusion. �
From this, it follows:

Theorem 5.13. Let (X, d, m) be a metric measure space that is a CDq(K, N)-space for 
some K ∈ R, N ∈ (−∞, 0), and q ∈ (1, ∞). Then, for any D > 0 and ρ0, ρ1 ∈ L∞(m)
probability densities with diam(supp(ρ0) ∪ supp(ρ1)) < D, it holds

i) if K ≥ 0, there exists π ∈ OptGeoq(ρ0m, ρ1m) with μt := (et)�π � m and

‖ρt‖L∞(m) ≤ ‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m);

ii) If K < 0 and D ≤ diam(X) < π
√

N−1
K , there exists π ∈ OptGeoq(ρ0m, ρ1m) with 

μt := (et)� � m and
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‖ρt‖L∞(m) ≤

(
D
4

√
K

N−1
)1−N

sin1−N
(
D
4

√
K

N−1
)‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m);

for all t ∈ [0, 1] and having set ρt := dμt

dm .

Proof. The proof follows directly from the proof of Theorem 5.6 in Appendix B, by 
replacing Step 1 there with Lemma 5.12 and repeating verbatim Step 2 - Step 3 - Step 
4. For the case i), we simplified the estimate directly working in the larger CDq(0, N)-
class. For the case ii), when K < 0, we shall also make use (to get the L∞-bound by 
completion and induction) of the identity:

lim
n→∞

n∏
i=1

cos(θ2−i) = sin(θ)
θ

, for θ = D
4

√
K

N−1 ,

proven in Lemma 5.16 below. �
We finish this section by proving two straightforward corollaries.

Corollary 5.14. Let (X, d, m) be a metric measure space that is a CDq(K, N)-space for 
every q ∈ (1, ∞) and for some K ∈ R, N ∈ (−∞, 0). If K ≥ 0 or K < 0 and diam(X) <
π
√

N−1
K , then (X, d, m) is a BIP-space.

Proof. Observe that the hypotheses with Theorem 5.13 give the conclusion. �
Corollary 5.15. Let (X, d, m) be a metric measure space that is a CD2(K, N)-space for 
some N ∈ (−∞, 0) and K ∈ R. Then, if K ≥ 0 or K < 0 and diam(X) < π

√
N−1
K , 

(X, d, m) supports a weak local (1, 1)-Poincaré inequality.

Proof. This is a direct consequence of [35, Theorem 4.1] recalling Theorem 5.13. �
Lemma 5.16. It holds

lim
n→∞

n∏
i=1

cos(2−iθ) = sin(θ)
θ

, pointwise.

Proof. Recalling the identity cos(2−iθ) = 1
2

sin(2−i+1θ)
sin(2−iθ) , we have for every n ∈ N:

n∏
i=1

cos(2−nθ) = 1
2n

n∏
i=1

sin(2−i+1θ)
sin(2−1θ) = 2−nθ

θ

sin(θ)
sin(2−nθ) .

The claim follows simply by taking the limit as n goes to infinity. �
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Appendix A. Detecting the Sobolev space with a single test plan

This appendix is devoted to the study of master test plans on metric measure spaces, 
i.e. test plans that are capable to detect the Sobolev space and weak upper gradients. 
This notion has been the main object of the study in [34], where the author asked 
whether this special object exists in [34, Problem 2.7]. We will perform this analysis first 
on arbitrary metric measure spaces to provide a positive answer to this problem and 
then move to BIP-spaces where we can actually achieve a more sophisticated result.

Finally, we mention the closely related article [31] where a similar investigation has 
been conducted for the space of BV functions.

A.1. Master test plans on arbitrary metric measure spaces

Let us start by defining the main object of this Appendix.

Definition A.1 (Master q-test plan). Let (X, d, m) be a metric measure space and q ∈
(1, ∞). A master q-test plan πq is a q-test plan so that:

if f : X → R Borel and G ∈ Lp(m) with G ≥ 0 are so that

|f(γ1) − f(γ0)| ≤
1ˆ

0

G(γt)|γ̇t|dt, πq-a.e. γ,

then f ∈ Sp(X) and G is a p-weak upper gradient.

We point out that the definition is given differently from the original one in [34, 
Definition 2.5] where the function f is assumed to be Sobolev. The main reason is that, 
differently from there, we are going to prove that master test plans are also able to detect 
the full Sobolev space and not only the minimal weak upper gradients.

We now come to the first main result of this part giving a positive answer to [34, 
Problem 2.7].

Theorem A.2. Let (X, d, m) be a metric measure space. Then, for every q ∈ (1, ∞), there 
exists a master q-test plan πq.

Proof. We fix an arbitrary q ∈ (1, ∞) and subdivide the proof in different steps.
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Step 1. Let us start defining for every α, β > 0 the set

Πα,β := {π ∈ P(C([0, 1],X)): Comp(π) ≤ α,Keq(π) ≤ β}.

Recalling that C([0, 1], X) with dsup is a complete and separable metric space, we have 
that P(C([0, 1], X)) is weakly separable. Therefore, we can consider for every α, β ∈ Q

countable and dense sets Aα,β ⊂ Πα,β and finally set

A :=
⋃

α,β∈Q
Aα,β .

By construction, A is countable.
Step 2. Let us then fix arbitrary f Borel and G ∈ Lp(m) with G ≥ 0. We claim that 
f ∈ Sp(X) and G is a p-weak upper gradient if and only if

ˆ
|f(γ0) − f(γ1)|dπ ≤

1̈

0

G(γt)|γ̇t|dtdπ, ∀π ∈ A. (A.1)

Obviously, we shall only prove the if-implication, as the converse is straightforward. To 
this aim, we fix an arbitrary q-test plan π and consider sequences (αn), (βn) ⊂ Q so that 
αn ↓ Comp(π) and βn ↓ Keq(π) as n goes to infinity. Being π ∈ Παn,βn

for all n ∈ N, 
thanks to a diagonalization argument, we can find a sequence πn ∈ A so that

πn ⇀ π, and limn→∞ Keq(πn) ≤ Keq(π),
limn→∞ Comp(πn) ≤ Comp(π).

We observe that, passing the limit in (A.1) with π = πn would give, given the arbitrari-
ness of π, that f ∈ Sp(X) and G is a p-weak upper gradient. To this aim, we invoke 
Lemma 3.6 to get that

lim
n→∞

1̈

0

G(γt)|γ̇t|dtdπn =
1̈

0

G(γt)|γ̇t|dtdπ.

Now, arguing as in the proof of Proposition 3.8, it suffices to take to the limit the term ´
f(γ1) − f(γ0)| dπn without the absolute value inside to conclude. This can be done as 

the uniformly bounded compression of (πn) ensures that 
´
f(γt) dπn →

´
f(γt) dπ as n

goes to infinity for every t ∈ [0, 1] when f is bounded. For the general case, we argue 
with a truncation argument, again as in the proof of Proposition 3.8.
Step 3. We now follow closely the strategy of [34] to reduce the countable collection 
A to a single plan. We include all the details for completeness. Let then (πk)k∈N be an 
enumeration of A and set
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η :=
∑
k∈N

πk

2k max{Comp(πk),Keq(πk), 1}
, πq := η

η(C([0, 1],X) .

The definition is well posed as η(C([0, 1], X)) ≤
∑

n,l,i 2−k = 1. We claim that the so-
defined plan is q-test plan. Indeed, it is by definition a probability measure on C([0, 1], X)
and, given any t ∈ [0, 1], the estimate

(et)�η ≤
∑
k∈N

(et)�πk

2kComp(πk) ≤
∑
n∈N

2−km = m,

ensures that πq has bounded compression. Moreover, we can estimate

1̈

0

|γ̇t|q dtdη ≤
∑
k∈N

1
2kKeq(πk)

1̈

0

|γ̇t|q dtdπk =
∑
k∈N

2−k = 1,

to show that Keq(π) < ∞ and consequently that πq is a q-test plan.
Step 4. We conclude the proof by proving that πq is a master q-test plan. By con-
struction, for every f Borel and G ∈ Lp(m) with G ≥ 0 we have that |f(γ1) − f(γ0)| ≤´ 1
0 G(γt)|γ̇t| dt holds πq-a.e. if and only if it holds π-a.e. for every π ∈ A. Integrating 

then yields (A.1) which in turn implies that f ∈ Sp(X) and G is a p-weak upper gradient. 
The proof is now concluded. �
A.2. Master test plan on BIP-spaces

Here, we specialize the previous analysis to the context of BIP-spaces. In this case, 
we will also achieve that there exists a unique master test plan independent on q that is 
also concentrated on geodesics.

A special role here will be played by the set

Geod(X) := ∪q∈(1,∞)Geodq(X)

which, recalling (3.2), is a set of ∞-test plans thanks to the (BIP). Our first task is to 
reduce the class Geod(X) given by the (BIP) to a countable number of plans, yet taking 
care that they are still capable of detecting the Sobolev space as in Proposition 3.8.

Proposition A.3. Let (X, d, m) be a BIP-space. Then, there exists a countable family 
D ⊂ Geod(X) of ∞-test plans concentrated on geodesics such that:

for every p ∈ (1, ∞) and f : X → R Borel and G ∈ Lp(X) with G ≥ 0, the following 
are equivalent

i) f ∈ Sp(X) and G is a p-weak upper gradient;
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ii) it holds

ˆ
|f(γ1) − f(γ0)|dπ ≤

1̈

0

G(γt)|γ̇t|dtdπ, ∀π ∈ D.

Proof. We subdivide the proof in a reduction step and afterwards, we prove the equiva-
lence.
Reduction. Let x̄ ∈ X be a point and consider, for every k ∈ N, the set of plans

Πk :=
{
π ∈ Geod(X): Comp(π) ≤ k, supp((ei)�π) ⊆ Bk(x̄), i = 0, 1

}
.

Fix k ∈ N, any π ∈ Πk is concentrated on geodesics lying in Bk(x̄) and (et)�π ≤
km|Bk(x̄) for every t ∈ [0, 1]. Hence, the family {(et)�π : t ∈ [0, 1], π ∈ Πk} is tight and, 
by Prokhorov’s Theorem 2.2, there exists a functional ψ : X → R with compact sublevels 
so that

sup
π∈Πk,t∈[0,1]

ˆ
ψ d(et)�π < ∞.

Then, arguing as in [19, Lemma 5.8] (or as in Lemma 3.5) and recalling that only 
geodesics with uniformly bounded length are to be considered, we can consider lifting 
ψ to the functional Ψ: C([0, 1], X) → R, defined via Ψ(γ) :=

´
ψ(γt) dt + d(γ0, γ1) if 

γ ∈ Geo(X) and +∞ otherwise, that has compact sublevels and satisfies

sup
π∈Πk

ˆ
Ψ(γ) dπ < ∞.

Using again Prokhorov’s Theorem 2.2, we get that Πk is relative compact in the weak 
topology of P(C([0, 1], X)). Now, for every k ∈ N, consider a countable and dense col-
lection Dk ⊂ Πk and lastly define

D :=
⋃
k∈N

Dk ⊆ Geod(X). (A.2)

It is then obvious by construction that the class D is a countable collection of ∞-test 
plans concentrated on geodesics.
Equivalence. The implication (i) ⇒ (ii) is obvious. For the converse (ii) ⇒ (i), we 
remark that it is sufficient to show

ˆ
f(γ1) − f(γ0) dπ ≤

1̈

0

G(γt)|γ̇t|dtdπ, ∀π ∈ Geod(X), (A.3)

as the conclusion will then follow invoking Proposition 3.8 and arguing as in the proof 
of Proposition 3.8 to improve from the above inequality to the one having 

´
|f(γ1) −
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f(γ0)| dπ at the left hand side. Then, we pick π ∈ Geod(X) and observe that there exists 
k ∈ N so that π ∈ Πk. Then, consider a sequence (πn) ⊆ D so that πn ⇀ π as n goes to 
infinity and, by construction, we can take in Dk for a suitable k). Then, the hypotheses 
ensure that

ˆ
f(γ1) − f(γ0) dπn(γ) ≤

1̈

0

G(γt)|γ̇t|dtdπn(γ)

=
1̈

0

G(γt)d(γ0, γ1) dtdπn(γ), ∀n ∈ N, (A.4)

having used the fact that πn is concentrated on geodesics in the last step. Since 
the function γ �→ d(γ0, γ1) is continuous and bounded on bounded sets, the plans 
(d(γ0, γ1) dπn(γ)) weakly converge to d(γ0, γ1) dπ(γ). Since clearly they have uniformly 
bounded compression, by arguing as in the proof of Proposition 3.8 we see that

1̈

0

G(γt)d(γ0, γ1) dtdπn(γ) →
1̈

0

G(γt)d(γ0, γ1) dtdπ(γ)

To pass to the limit in the left hand side of (A.4) we can argue e.g. as in the proof of 
Proposition 3.8, again using the assumption of uniformly bounded compression. Finally, 
we achieved (A.3) and the conclusion. �

Mimicking an argument in [34], we can pass from a countable collection of plans 
detecting the minimal p-weak upper gradient to just one.

Theorem A.4. Let (X, d, m) be a BIP-space. Then, there exists a ∞-test plan πmaster
concentrated on geodesics so that

πmaster is a master q-plan, ∀q ∈ (1,∞).

Proof. Let D be given by Proposition A.3 and (πn) an enumeration of the countable 
collection

C :=
{(

Restr
i
k
i−1
k

)
�
π : k ≥ ‖Lip(γ)‖L∞(π), k ∈ N, i = 1, ..., k, π ∈ D

}
⊂ P(C([0, 1],X))

and define

η :=
∑
n∈N

πn

2n max{Comp(πn), 1} , πmaster := η

η(C([0, 1],X) .

The definition is well posed as η(C([0, 1], X)) ≤
∑

n 2n < ∞. We claim that πmaster ∈
P(C([0, 1], X)) satisfies the requirements and we start checking that it is a ∞-test plan.
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For t ∈ [0, 1] we have

(et)�π ≤ 1
η(C([0, 1],X)

∑
n∈N

(et)�πn

2nComp(πn) ≤ 1
η(C([0, 1],X)

∑
n∈N

m

2n = m

η(C([0, 1],X) ,

and thus πmaster has bounded compression. Also, since every element πn of C is such that 
‖Lip(γ)‖L∞(πn) ≤ 2, we have that ‖Lip(γ)‖L∞(πmaster) ≤ 2 as well. We thus proved that 
πmaster is a ∞-test plan.

Now let p ∈ (1, ∞), f Borel and G ∈ Lp(m) with G ≥ 0, be such that

|f(γ1) − f(γ0)| ≤
1ˆ

0

G(γt)|γ̇t|dt, πmaster-a.e. γ,

and notice that since by construction πmaster-negligible sets are also π-negligible for any 
π ∈ C, we have

ˆ
|f(γ1) − f(γ0)|dπ(γ) ≤

1̈

0

G(γt)|γ̇t|dt dπ(γ)

for every π ∈ C. By definition of C and a simple gluing argument it is then clear that 
this last inequality holds for any π ∈ D, hence the conclusion follows from Proposi-
tion A.3. �
Remark A.5. We point out a key remark from [34] which is worth to notice also in this 
note. The results contained in Theorem A.2 and Theorem A.4 are not just technical. 
Indeed, the existence of master test plans as in Definition A.1 make it possible to identify 
which are the exceptional curves for which the weak upper gradient inequality |f(γ1) −
f(γ0)| ≤

´ 1
0 |Df |p(γt)|γ̇t| dt fails. This could be previously done by appealing to the 

notion of q-Modulus from [28] and further employed in [37] for a systematic definition of 
Sobolev space. The key difference is that the q-Modulus is only an outer measure, while 
master q-test plans πq (or, on BIP-spaces, the more powerful πmaster plan) are Borel 
probability measures. �

Appendix B. Proof of Theorem 5.6

The content of this Appendix is to prove Theorem 5.6. As previously remarked, the 
proof goes along the same lines of [35] (where the case of CD2-spaces is treated) hence, 
we shall adopt a concise style in the following to handle the case of CDq-spaces for 
arbitrary q ∈ (1, ∞). Next, we denote

C(D,K) := eK
−D2/12,
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and recall the statement of Theorem 5.6.

Theorem B.1. Let (X, d, m) be a CDq(K, ∞)-space for some K ∈ R and D > 0. For any 
ρ0, ρ1 ∈ L∞(m) probability densities with diam(supp(ρ0) ∪ supp(ρ1)) < D, there exists 
π ∈ OptGeoq(ρ0m, ρ1m) satisfying μt := (et)�π � m. Moreover, writing μt := ρtm, we 
have the following upper bound for the density

‖ρt‖L∞(m) ≤ C(D,K)‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m), ∀t ∈ [0, 1].

We face, before the proof, the necessary preparatory results. We shall adopt a concise 
presentation in the sequel, as the arguments in this Appendix are taken from [35] for the 
case q = 2 and applies with minor modifications in our context.

Preparatory lemmas Consider for any q ∈ (1.∞) two measures μ0, μ1 ∈ Pq(X) with 
Wq(μ0, μ1) < ∞ and denote by

Iq
t (μ0, μ1) := {μ ∈ Pq(X): Wq(μ0, μ) = tWq(μ0, μ1), Wq(μ, μ1) = (1 − t)Wq(μ0, μ1)},

the set of t-intermediate measures between μ0, μ1 where t ∈ (0, 1).

Lemma B.2. Let (X, d) be a metric space, q ∈ (1, ∞) and assume μ0, μ1 ∈ Pq(X) have 
bounded supports. Then, for every t ∈ (0, 1), the set Iq

t (μ0, μ1) is closed in (Pq(X), Wq).

Proof. For any νn ⊆ Iq
t (μ0, μ1) with νn → ν in Wq, the triangular inequality gives

max
i=0,1

|Wq(μi, ν) −Wq(μi, νn)| ≤ Wq(νn, ν),

from which the conclusion follows. �
We now face convexity properties of the set of t-intermediate measures. This statement 

should be interpreted as a way to redistribute mass on intermediate points of Wasserstein 
geodesics.

Lemma B.3. Let (X, d, m) be a metric measure space which is also geodesic and q ∈
(1, ∞). Suppose μ0, μ1 ∈ P(X) with Wq(μ0, μ1) < ∞. Then, for any π ∈ OptGeoq(μ0, μ1)
and f : Geo(X) → [0, 1] s.t. c = (fπ)(Geo(X)) ∈ (0, 1), we have

(et)�((1 − f)π) + cμ ∈ Iq
t (μ0, μ1),

for every μ ∈ Iq
t (1

c (e0)�(fπ), 1c (e1)�(fπ), t ∈ (0, 1).

Proof. We omit the details and refer to [35, Lemma 3.5] for the proof which reads 
identical for arbitrary q. �
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We consider the excess mass functional

FC(η) := ‖(ρ− C)+‖L1(m) + ηs(X),

and observe that, when it vanishes on a probability measure, it automatically detects 
both absolutely continuity with respect to the reference measure with corresponding 
density L∞-bounded from the constant C. We prove first that it is lower semicontinuous.

Lemma B.4. Let (X, d) be a bounded metric space equipped with a finite Borel measure 
m and q ∈ (1, ∞). Then, for any C ≥ 0, the functional FC is lower semicontinuous on 
(Pq(X), Wq).

Proof. Rajala’s proof consists in showing that

FC(μ) = sup
{ ˆ

g dμ− C

ˆ
g dm : g ∈ C(X), 0 ≤ g ≤ 1

}
,

for every μ ∈ Pq(X). It is proven in [35]) that it is lower semicontinuous in P2(X). Then, 
recalling (2.12) and the present hypothesis, FC is equivalently lower semicontinuous in 
the space (Pq(X), Wq) independently on q ∈ (1, ∞). �
Proof of Theorem B.1 (and Theorem 5.6) We subdivide the proof into several steps. 
Write for simplicity μi := ρim for i = 0, 1. First observe that, for every K, we can 
alternatively prove the statement in the larger (or equal) class of CDq(−K−, ∞)-spaces. 
Hence, for simplicity, we shall consider only K < 0 in the proof.
Step 1. From the CDq(K, ∞) condition, there exists π ∈ OptGeoq(μ0, μ1) which is 
concentrated on geodesics with length at most D. Also, we denote for simplicity E :=
{ρ 1

2
> 0}. We observe firstly that Jensen’s inequality with the convexity of u(x) = x log x

guarantees

Entm(μ 1
2
) =

ˆ

E

ρ 1
2

log ρ 1
2

dm ≥ log
( 1
m(E)

)
,

and secondly that

Entm(μ 1
2
) ≤ 1

2Entm(μ0) + 1
2Entm(μ1) + −K

8 W 2
q (μ0, μ1)

≤ log
(
‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m)

)
+ −KD2

8 .

We can thus combine in both case the two inequalities to get the following spreading of 
mass under curvature dimension condition principle:

m({ρ 1
2
> 0}) ≥ 1

∞ ∞
, (B.1)
P (D,K)‖ρ0‖L (m) ∨ ‖ρ1‖L (m)
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where P (D, K) = eK
−D2/8. For simplicity, we write from now on M :=

P (D, K)‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m).
Step 2. We claim that for any C > M , there exists a minimizer of FC(·) in Iq

1
2
(μ0, μ1). 

This has been shown in [35] building exactly upon (B.1), Lemma B.2, Lemma B.3 and 
Lemma B.4 for the particular case q = 2. Being these results valid also for general 
q ∈ (1, ∞) we omit the details of the strategy ensuring that

∀C > M, ∃μ ∈ Iq
1
2
(μ0, μ1) so that FC(μ) = inf

η∈Iq
1
2
(μ0,μ1)

FC(η). (B.2)

Step 3. For any C > M , we claim that

inf
η∈Iq

1
2
(μ0,μ1)

FC(η) = 0.

Denote Iq
min ⊂ Iq

1
2
(μ0, μ1) the set of minimizers of FC (which is always nonempty (B.2)) 

and let μ ∈ Iq
min be such that

m(ρμ > C) ≥
(M
C

) 1
4 sup
η∈Iq

1
2
(μ0,μ1)

m({ρη > C}), (B.3)

where μ := ρμm + μs with μs ⊥ m and η := ρηm + μs with ηs ⊥ m. We argue now 
by contradiction and suppose FC(μ) > 0 whence. If A := {ρμ > 0}, then this means 
necessarily that m(A) > 0 and μ2(X) > 0. In the first case, find a δ > 0 so that, denoting 
A′ := {ρμ > C + δ}, we have

m(A′) ≥
(M
C

) 1
2
m(A).

Let α ∈ Optq(μ0, μ), β ∈ Optq(μ, μ1) and consider

π̃ ∈ OptGeoq
(
(P 0)�

α|X×A′

μ(A′) , (P 1)�
β|A′×X
μ(A′)

)
,

given by Step 1. Denote Γt := (et)�π̃ the corresponding Wq-geodesic and consider its 
decomposition Γ 1

2
= ρΓm + Γs. Then, from (B.1), it follows that

m({ρΓ > 0} ≥ μ(A′)
M

≥ C

M
m(A′) ≥

( C

M

) 1
2
m(A). (B.4)

Now consider redistributing the mass of the measure μ via

μ̃ := μ| ′ + C
μ| ′ + δ

μ(A′)Γ 1 .

X\A C + δ A C + δ 2
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Arguing then as in [35, Lemma 3.5], Lemma B.3 directly yields μ̃ ∈ Iq
1
2
(μ0, μ1). Also, 

setting μ̃ = ρμ̃m +μ̃s with μ̃s ⊥ m, a standard calculation shows that the excess functional 
decreases. We omit here the details to get

FC(μ) −FC(μ̃) =
ˆ

{ρμ<C}

min
{
C − ρμ,

δ

C + δ
μ(A′)ρΓ

}
dm.

Notice that, being μ a minimizer, the right hand most side of the above equation is 
nonpositive whence, necessarily the integral must vanish giving in turn

μ̃ ∈ Iq
min(μ0, μ1), m({ρμ < C} ∩ {ρΓ > 0}) = 0.

Moreover, ρμ̃ > C m-a.e. on the set {ρμ ≥ C} ∩ {ρΓ > 0}, hence

m({ρμ̃ > C}) ≥ m({ρΓ > 0})
(B.4)
≥

( C

M

) 1
2
m({ρμ > C})

(B.3)
≥

( C

M

) 1
4 sup
η∈Iq

1
2
(μ0,μ1)

m({ρη > C}),

yielding a contradiction, since μ̃ ∈ Iq
1
2
(μ0, μ1) and C > M . Therefore, A is negligible 

and the first situation does not occur: necessarily μ is purely singular, otherwise there is 
nothing to prove. But then a similar redistribution of mass for the singular part applies 
giving a contradiction. Wrapping up, we showed

∀C > M ∃ min
η∈Iq

1
2
(μ0,μ1)

FC(η) = 0.

The extreme case C = M can be obtained with an easy argument as in [35, Corollary 
3.12]: being μ0, μ1 supported on bounded sets, we can find a bounded set B ⊂ X so that 
every η ∈ Iq

1
2
(μ0, μ1) is supported in B, and hence

min
η∈Iq

1
2
(μ0,μ1)

FM (η) ≤ min
η∈Iq

1
2
(μ0,μ1)

FC(η) + |C −M |m(B) = |C −M |m(B),

for every C > M . Thus, the conclusion follows also for C = M by approximation C ↓ M .
Step 4. The conclusion of the theorem will be achieved by iterating the above con-
struction from midpoint to a general dyadic partition of [0, 1]. Fix n ∈ N, we now show 
how to produce from the measures (ρk2−n+1) for k = 0, ..., 2−n+1 the successive sequence 
(ρk2−kn). Consider, for k odd, the midpoints μk2−n ∈ Iq

1
2
(ρk2−n+1m, ρ(k+1)2−n+1m) satis-

fying

μk2−n � m, μk2−n := ρk2−nm

‖ρ −n‖ ∞ ≤ P (2−n+1D,K)‖ρ −n‖ ∞ ∨ ‖ρ −n‖ ∞ ,
k2 L (m) (k−1)2 L (m) (k+1)2 L (m)
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since diam(supp(ρ(k−1)2−n)∪supp(ρ(k+1)2−n)) < 2−n+1D and all the previous steps ap-
ply. By induction, it is easy to prove that

‖ρk2−n‖L∞(m) ≤
n∏

i=1
P (2−i+1D,K)‖ρ0‖L∞(m) ∨ ‖ρ0‖L∞(m), ∀n ∈ N,

which, under the assumption D < ∞, can be coupled with the fact

C(D,K) := lim
n→∞

n∏
i=1

P (2−i+1D,K) < ∞,

giving in turn that a geodesic curve μt in OptGeoq(μ0, μ1) is well defined by completion. 
Finally, the L∞-estimate on ρt holds by lower semicontinuity of the functional FM . �
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