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Abstract

We consider the density properties of divergence-free vector fields b € L' ([0, 1], BV([0, 1]?)) which
are ergodic/weakly mixing/strongly mixing: this means that their Regular Lagrangian Flow X
is an ergodic/weakly mixing/strongly mixing measure preserving map when evaluated at ¢t = 1.
Our main result is that there exists a Gs-set U C L%,x([O, 1]?) containing all divergence-free vector
fields such that

1. the map & associating b with its RLF X; can be extended as a continuous function to the
Gs-set U;

2. ergodic vector fields b are a residual Gs-set in U;

3. weakly mixing vector fields b are a residual Gs-set in U;

4. strongly mixing vector fields b are a first category set in U

5. exponentially (fast) mixing vector fields are a dense subset of .

The proof of these results is based on the density of BV vector fields such that X;—; is a permuta-
tion of subsquares, and suitable perturbations of this flow to achieve the desired ergodic/mixing
behavior. These approximation results have an interest of their own.

A discussion on the extension of these results to d > 3 is also presented.
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Key words: ergodicity, mixing, Baire Category Theorem, divergence-free vector fields, Regular La-
grangian Flows, rates of mixing.

MSC2020: 26A21, 35Q35, 37A25.

Contents
1__Introductionl 2
1.1 A discussion of the key points and results leading to the main theorem|. . . . . . . .. 5
[.T.1 Approximations of Hows by permutations]| . . . . . . . . . . o v v v vt . 5
1.1.2  From permutations of subsquares to ergodic/exponential mixing| . . . . . . .. 6
1.2 lan of the paper| . . . . . . . L 8
B Prelimm . I onl 8
2. BV functionsl . . . . . . . e e e e e 9
2.2 Regular Lagrangian Flows| . . . . . . . . .. ... . oo o 9
13 Ergodic Theory| 12
13.1 The neighbourhood topology as a convergence in measure.|. . . . . .. ... ... ... 12
8.2 Genericity of weakly mixing| . . . . ... oL oo 13
B.3 Markov Shiftsl . . . . . . . . L 15
4 Density of Strongly Mixing vector fields| 15
4.1 Cyclic permutations of squares| . . . . . . . . . . . .. Lo e 16
4.2 Density of ergodic vector fields| . . . . ... ... ..o oo 21
[£:3 Density of strongly mixing vector fields] . . . . . ... ... ... ... ... .. .. .. 23
[A-4 Proof of the density of strongly mixing vector Helds|. . . . . . . . . v v v v v o .. 25

IData sharing not applicable to this article as no datasets were generated or analysed during the current study



[5__Permutation Flowl 26

5.1 Affine approximations of smooth flows| . . . . ... ... ... ... 0 00000 26

BEIT The d-dimensional casdl . . . . . . o o o o o 30
[.2 BV estimates of perturbations|. . . . . .. . ... ... oo 34
h.3 BV estimates for rotationsl . . . . . . . . . ... 39
[5.4 Main approximation theorem| . . . . . . . . . ... ... L Lo 40
A ppend 45

1 Introduction
Consider a divergence-free vector field b : R x T¢ — R? and the continuity equation

Opr + D - (pibe) =0,  pi—o = po- (1.1)

In recent year the following question has been addressed: is the solution p; approaching weakly a
constant as t — 00? The meaning of ”approaching a constant” is usually formalized as

pe =7 poL?  weakly in L2, (1.2)

(£ is the d-dimensional) since ||p¢||z» is constant (at least for positive solutions and sufficiently regular
vector fields) and this is referred to as functional mizing (another notion of mixing is the geometric
mizing introduced in [Bressan’'conj|, but for our purposes the functional mixing above is the most
suitable, since it is related to Ergodic Theory).

Without any functional constraint on the space derivative Dby, it is quite easy to obtain mixing in
finite time: a well known example is [Depauw]. A similar idea, used in a nonlinear setting, can be
found in [Bressan'illposed]. See also [finite] for completeness. The problem is usually formulated
as follows: assume that b € Ly, N LW P, what is the maximal speed of convergence in (T2)?

This question has been addressed in several papers. In [Alberti’mix] the 2d-case has been
throughly analyzed, and the main results are the explicit construction of mixing vector fields when the
initial data is fixed: the authors are able to achieve the optimal exponential mixing rate for the case
WP p> 1, and study also the case s < 1 (mixing in finite time) and s > 1 (mixing at a polynomial
rate). Recall that for s = 1,p > 1 the mixing is at most exponential [Crippa DeLellis|, while the same
estimate in W11 (or equivalently BV) is still open [Bressan'conj|. In [YaoZlatos, univ:mixer] it
is discussed the existence of universal mixers: that is divergence-free vector fields that mix any initial
data. In particular, in [univ:mixer] the authors construct a vector field which mixes at an exponential

2
2d vector field is special, having an Hamiltonian structure: indeed in [Marconi'Bonicatto’poly] the

authors show that the mixing is polynomial with rate t=! when b € BV.

rate every initial data, and it belongs to LPW2EP for s < M, p €l ﬁ) The autonomous

In this paper we consider the different problem: how many vector fields are mixing? More precisely,
we study the mixing properties of flows generated in the unit square K = [0,1]? by divergence-free
vector fields b : [0,1] x K — R? belonging to the space L°°([0,1],BV(K)): to avoid problems at
the boundary, we assume that the vector field b is divergence-free and BV when extended to whole
R2. In order to shorten the notation, we will sometimes write BV(K), K = [0,1]? as the space
BV(R?) N {suppb C K}.

All the results stated here can be extended to the case z € T? with minor modifications; our choice is
in the spirit of [Shnirelman).

In this setting, there exists a unique flow ¢t — X; € C([0,1], L}(K; K)) (called Regular Lagrangian
Flow (RLF)) of the ODE

4 X4 (y) = b(t, Xi(y)),
Xi—o(y) = ¥,

which is measure-preserving and stable, see [Ambrosio:BV, Ambrosio:Luminy] and Section
Our idea is to consider the £2-a.e. invertible measure preserving map X;—; : K — K as an automor-
phism of the measure space (K, B(K), L2 ) and apply the tools of Ergodic Theory. Here and in the
following £? i is the Lebesgue measure on K and B(K) are the Borel subsets of K. We call G(K)
the group of automorphisms of K. We underline that the additional difficulty is to retain that the
maps under consideration are generated by a divergence-free vector field in Lg° BV,,.



There is a rich literature in Ergodic Theory that has deeply investigated the genericity properties
of mixing for invertible and measure-preserving maps. These results are due mostly to Oxtoby and
Ulam [Oxtoby], Halmos [Halmos:ergodic, Halmos:weak:mix|, Katok and Stepin [Katok] and
Alpern [Alpern]. They proved that the set of ergodic transformation is a residual (or comeagre)
Gs-set (i) in the set G(K) with the neighbourhood topologyﬂ [Halmos:weak:mix]|, (ii) in the set of
measure-preserving homeomorphisms of a connected manifold with the strong topologyﬂ [Oxtoby,
Katok]. Moreover, the transformations satisfying a stronger condition known as weak mizing, that is

n—1

.1 . 2
Jim JZ_:O (T~ (A) N B) — w(A)u(B)]” =0,
for every A, B measurable sets, are still a residual Gy set [Halmos:weak:mix, Katok]. In 1976
Alpern showed that these problems are indeed connected by using the Annulus Theorem [Alpern)].
A different result holds for strongly mixing maps, i.e., such that
Jim p(T7"(A) N B) = p(A)p(B).

It was shown firstly by Rokhlin in [Rokhlin] (see [Weiss] for an exposition of Rokhlin’s work) and
then by D. Ornstein [Halmos:lectures] that (strongly) mixing maps are a first category set in the
neighborhood topology.

In these settings, the genericity properties of measure-preserving (weakly) mixing or ergodic maps
are fairly understood; to our knowledge a similar analysis has not been done for flows generated by
vector fields with additional regularity requirements (e.g. b € L BV,). The aim of our work is to
extend the above genericity results to divergence-free vector fields whose Regular Lagrangian Flow
is ergodic and weakly mixing (in dimension d = 2, but see the discussion below on the extension to
every dimension d > 3).

We remark that here we are looking to genericity properties of mixing in the topological sense, and
not a.e. mixing w.r.t. some probability measure in the space of vector fields (e.g. [Bedrossian]):
while there is some relation between the two notions, in general one result does not imply the other.

Let b € L>(]0,1],BV(K)) be a divergence-free vector field.

Definition 1.1. We say that b is ergodic (weakly mizing, strongly mizing) if its unique Regular
Lagrangian Flow evaluated at time ¢ = 1 is ergodic (respectively weakly mixing, strongly mixing).

In the original setting (1.1)), if ;41 = b; (i.e., it is time periodic of period 1), then it is fairly easy
to see that if b is strongly mixing as in the above definition then (1.2)) holds, while for weakly mixing
vector fields b it holds the weaker limit

T 2
Tli_r)noo%/o (/K <pt ][po£2>¢£2) dt =0, Vo¢e L*(K).

Our main result is the following.

Theorem 1.2. There ezists a Gs-subset U C LY([0,1; LY(K))N{b : D -b = 0} containing all
divergence-free vector fields in L°°([0,1]; BV(K)) with the following properties:

1. the map ® associating b with its RLF X,
®:{bec LBV, :D-b =0} — C([0,1], L}(K)),
can be extended as a continuous function to the Gg-set U;
2. ergodic vector fields b are a residual Gs-set in U;
3. weakly mizing vector fields b are a residual Gs-set in U;
4. strongly mizing vector fields b are a first category set in U;

5. exponentially (fast) mixing vector fields are a dense subset of U.

2The neighbourhood topology is indeed the convergence in measure, see Subsection
3 A sequence of maps Ty, — T in the strong topology if Ty, — T and Ty * — T~ uniformly on K.



We will reasonably call the flow X; = ®(b), b € U, as the Regular Lagrangian Flow of b, even if
we are outside the setting where RLF are known to be unique: however X; is the unique flow which
can be approximated by RLF of smoother vector fields ™ as ™ — b in L'. The existence of such a
set U is due to purely topological properties of metric spaces (Proposition .

Our proof adapts some ideas from [Halmos:weak:mix] to our setting: we give an outline of
Halmos’ analysis. First of all, both ergodic automorphisms and weakly mixing automorphisms are
a Gs-set [Halmos:ergodic, Halmos:weak:mix]. Next, it is shown that the mixing properties are
invariant under conjugation, i.e., if T': [0, 1] — [0, 1] is weakly /strongly mixing and R : [0,1] — [0,1] is
an automorphism, then RoT o R~! is weakly /strongly mixing too. It remains to be proved that weakly
mixing maps are dense: define a permutation as an automorphism of [0,1] sending dyadic intervals
(subintervals of [0, 1] with dyadic endpoints) into dyadic intervals by translation (in dimension greater
than 1 the map translates dyadic subcubes). Cyclic permutations (i.e., permutations made by a unique
cycle) of the same intervals are clearly conjugate. One of the key ingredients of Halmos’ proof is that,
for every non periodic automorphism (i.e., T™x # x for all n in a conegligible set of points x), there
exists a cyclic permutation close to it in the neighbourhood topology, and by the previous observation
about conjugation of permutations one deduces that if T" is non-periodic then the maps of the form
RoT o R™! form a dense set. In particular, the weakly mixing maps are a Gs-set containing a non
periodic map, hence this set is residual.

In our setting, the fact that ergodic/weakly mixing vector fields form a Gs-subset of U is an
easy consequence of the Stability Theorem for Regular Lagrangian Flows and the definition of the
map P (see Point and Proposition . Indeed, since both ergodic automorphisms and weakly
mixing automorphisms are a Gs-set [Halmos:ergodic, Halmos:weak:mix], then by the continuity
of the map ® associating b with the RLF X}, ergodic and weakly mixing vector fields are a Gg-set
also. Unfortunately, we cannot use conjugation of a RLF X; with an automorphism R of K, since in

general Ro X;—; o R~ is not a RLF generated by b € L BV, (or even b € U). However, we are able
to prove the density in U of vector fields b € L BV, whose RLF is a cyclic permutation of subsquares
of K, which is the natural extension of the permutation of intervals used in [Halmos:weak:mix].
More precisely, the map T = X;—; sends by a rigid translation subsquares of some rational grid
N x N %, where D € N, into subsquares of the same grid (it will be clear later that being dyadic as
in [Halmos:weak:mix] is not relevant, see Lemma and Remark , and as a permutation of
subsquares it is made by a single cycle. The precise statement is the following.

Theorem 1.3. Let b € L*°([0,1],BV(K)) be a divergence-free vector field. Then for every e >
0 there exist 1 <« D € N, two positive constants C1,Cy and a divergence-free vector field b¢ €
L>([0,1], BV(K)) such that

b =01y <€, ||Tot.Var.(b)(K)||oo < C1]|Tot.Var.(b)(K)||co + Ca (1.3)

and the map X{_, : K — K, where X{ : [0,1] x K — K is the flow associated with b°, is a D?-cycle
1

of subsquares of size 3.

The above approximation is the most technical part of the paper, and it is the point which forces
to state the theorem in ¢ and not in the original space b € Ly BV,: indeed, while achieving the
density in the L%ym—topology, the total variation increases because of the constants Cp, Cs in . (It
is possible to improve the first estimate of (1.3)) to ||b — b¢||pr1 < €, see Remark but to avoid
additional technicalities we concentrate on the simplest results leading to Theorem )

We remark that the above approximation result is sufficient to prove that strongly mixing vector
fields are a set of first category (Proposition : indeed, Theorem shows the density in U of
divergence-free vector fields whose flow is made of periodic trajectories with the same period D?2.
This observation is the key to obtain Point of Theorem

Looking at cyclic permutations of subsquares is an important step to obtain ergodic (and then
weakly mixing and strongly mixing) vector fields: indeed, instead of studying the map X7 ; (the RLF
generated by b° of Theorem above) in the unit square K with the Lebesgue measure £2, it is
sufficient to work in the finite space made of the centers of the subsquares

Q:{w:(kl_l/z k2_1/2>,k1,k2:1,...,D}, (1.4)

D ' D



where the measure-preserving transformation X;_; reduces to a cyclic permutations. In particular in
Q it is already ergodic.

Since we cannot use the conjugation argument as we observed above, the final steps of the proof
of Theorem differ from the ones of [Halmos:weak:mix]. Indeed we give a general procedure to
perturb vector fields b € L{° BV, (whose RLF X7 at t = 1 is a cyclic permutation of subsquares) into
ergodic vector fields b® (strongly mixing vector fields %) still belonging to L BV,;: here the explicit
form of X¢ plays a major role, allowing us to construct ezplicitly the perturbations to b¢ (Subsections
L3).

The key idea is to apply the (rescaled) universal mizer vector field (introduced in [univ:mixer])
whose RLF at time ¢ = 1 is the Folded Baker’s map

(20+1,-2+1) welnd),
= —1 = 1 1.
U Ul—t—l {(290—1,%—!—;) .%‘E(%,l]7 yE[O, }7 ( 5)

to the subsquares of the grid N x N % given by Theorem
In order to achieve ergodicity, it is sufficient to apply the universal mixer U inside a single subsquare,
because the action of X;_, is already ergodic in €2 being a cyclic permutation. Together with the
fact that ergodic vector fields are a Ggs-set, this gives the proof of Point of Theorem (1.2} The
perturbation to achieve exponential mixing is more complicated, since we need to transfer mass across
different subsquares. The idea is to apply the universal mixer U to adjacent couples of subsquares, a
procedure which assures that the mass of p is eventually equidistributed among all subsquares. The
exponential mixing is a consequence of the finiteness of © and the properties of U (see Proposition
. This concludes the proof of Point of T heorem and since strongly mixing vector fields are
a subset of weakly mixing vector fields we obtain also Point , concluding the proof of the theorem.
It should not be surprising that exponentially mixing vector fields are a dense subset of i/. Even
if this G5 contains vector fields whose behaviour is far from mixing (as for example horizontal shears)
the key point is that any vector field can be approximated by permutation vector fields, which are
the building blocks for any mixing behaviour. We point out that our construction does not provide
any example of a smooth mixing vector field: an interesting open question is the construction of a
time-periodic vector field with smooth regularity in space, since the one constructed in [Bedrossian]
does not satisfy the periodicity in time.

A completely analogous result can be obtained in any dimension by adapting the above steps, at
the cost of additional heavy technicalities. In this work we decided to sketch the proof of the key
estimates (i.e., the ones requiring new ideas) in the general case (see Section and the comments
in next section).

1.1 A discussion of the key points and results leading to the main theorem

The sketch of the proof given above includes steps which are somehow standard either in the theory
of linear transport or in ergodic analysis. Other points of the proof instead require to introduce new
ideas or at least to significantly develop tools present in the literature. This section is devoted to
expand these critical parts in order to help the reader to understand the novelties contained in this
work. In most proofs we tried to get the best possible result in term of the L' and BV norms, with
the hope to prove a similar statement inside the closed subset {b : [|b;[|11, Tot.Var.(b;) < C} C Lj .
However there are some delicate arguments where we have to increase the total variation of b of a
fixed amount: we will point out these points here below.

The most technical part of this paper is the proof of the approximation theorem through cyclic
permutations, Theorem It is based on two results: the first one, whose proof is the content of
Section [B] is an approximation through vector fields whose RLF X, at time ¢ = 1 is a permutation
of subsquares. The second one exploits the classical result that every permutation is a product of
disjoint cycles (Proposition , in order to merge these cycles into a single one.

1.1.1 Approximations of flows by permutations

The approximation through divergence-free vector fields b whose flow at ¢ = 1 is a permutation of
squares has been already studied in [Shnirelman] in the context of generalized flows for incompressible
fluids. Indeed the starting point of Section [5] is Lemma whose statement is almost identical to
Lemma 4.3 of [Shnirelman]|: it says that if T is a smooth map sufficiently close to identity, there



exists an arbitrarily close flow o, t € [0,1], such that 0,9 = T and o;—; maps affinely rectangles
whose edges are on a dyadic grid into rectangles belonging to the same grid. Even if the ideas of
the proof are completely similar to the original ones, we choose to make them more explicit (see also
Remark for some comments on the original proof).

At this point the proof diverges from [Shnirelman], due to the fact that in his case one has to
control the L?-norm of the vector field while here we need to build a perturbation of a vector field
(not of a map) and to estimate its BV, -norm. In Lemma we prove that the perturbation oy
constructed in the above paragraph (i.e., in Lemma can be encapsulated inside the flow X; so
that the resulting vector field is close in L{°LL and remains in L BV, if the grid is sufficiently small,
always under the assumption that X; is close to identity.

We finally arrive to the approximation theorem through permutations (Theorem [5.14)), which we
think that can have an independent interest:

Theorem 1.4. Let b € L*™([0,1]; BV(K)) be a divergence-free vector field. Then for every e > 0
there exist &', Cq,Co > 0 positive constants, D € N arbitrarily large and a divergence-free vector field
b¢ € L*°([0,1]; BV(K)) such that

1. suppbf CC K% = [6/,1— 62,
2. it holds

lb—b%||Lo(rry <€, [|Tot.Var.(b)(K)||ce < C1||Tot.Var.(b)(K)||oo + Co, (1.6)

3. the map X°Ly—1 generated by b¢ at time t = 1 translates each subsquare of the grid N x N% into
a subsquare of the same grid, i.e., it is a permutation of squares.

We remark that in the statement of Theorem it is also assumed that there exists § > 0 such
that for Ll-a.e. t € [0,1], suppb; CC K _ This is for technical reason, as standard approximation
methods allows to deduce the Theorem [[.4] above from Theorem [5.14

The starting point of its proof is to divide the time interval [0, 1] into subintervals [t;,;41] and
apply the previous perturbations (Lemma to by, t € [ti,t;—1]. We however need an additional
mechanism in order to obtain a permutation of subsquares and not a piecewise affine map at t = 1,
as it would be the case if we only use the perturbations above.

The introduction of this new perturbation is done in Section the idea is that if a measure
preserving map 7 is diagonal with rational eigenvalues, then there exists a subgrid and a map R made
by two rotations such that 7o R maps subsquares of the new grid into subsquares instead of rectangles
(Lemma [5.12)). The key point is that the total variation of the new map is bounded independently
on the grid size, while the L;-norm converges to 0 as the grid becomes smaller and smaller. This
gives better BV estimates than the construction of [Shnirelman]. In the proof of the theorem, this
rotation mechanism has to act differently in each subrectangle. The procedure illustrated in Figure
has to be done during the time evolution. The interesting part of the above theorem is the form
of the estimate for the Total Variation in . The constant C; comes out from the approximation
argument of Shnirelman: it means that the total variation of the piecewise affine approximation is,
as expected, of the order of Tot.Var.(b;): we believe that this constant C; can be optimized, but it
is not necessary here, because the hard term is the one leading to Cs. Indeed, the second constant
comes from the rotation mechanism: performing a rotation inside a rectangle costs, in terms of the
total variation, as the area of the rectangle see Lemma .

1.1.2 From permutations of subsquares to ergodic/exponential mixing

The advantage of having a flow X, such that X;—; is a permutations of subsquares is that its action
is sufficiently simple to perturb in order to achieve a desired property. Nevertheless it requires some
smart constructions, since in any case we need to control the L!-distance and the BV norm.

The first step is to perturb a permutation of subsquares into a cyclic permutation of subsquares,
i.e., a permutation made of a single cycle: this is clearly a necessary condition for ergodicity. Roughly
speaking, the idea is to exchange two adjacent subsquares belonging to different cycles in order to
merge them. We do this operation in two steps. In Lemma [£.4] it is shown that one can arbitrarily
refine the grid N x N% into N x N ﬁ so that each cycle of length k in the original grid becomes a
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Figure 1: A graphic explanation of the action of rotations: the three top frames above shows the
evolution of curves at different times t¢;, where the perturbation of Lemma takes care of trans-
forming the green square affinely into the green rectangles. The three bottom frames is the action of
the rotation on a finer grid: the red rectangle is chosen so that the action of the affine map X;—,
coincides with a rotation by 7/2 (as a set, but the black grid (image through an affine map) is not
the image of the red grid after a rotation), and then the red grid is mapped into itself when composed
with a rotation of 7/2 inside the red rectangle. At the next step, one chooses again a finer grid (the
light blue one) to perform the same transformation, so that the blue grid is mapped into itself.

cycle of length kM? in the new one. Moreover the perturbation is going to 0 in L¥°LL as M — oo
and its L°° BV, is arbitrarily small when D is large.

The above result allows now to exchange sets of size (DM)~! when merging cycles: this is done in
Proposition[f.5] This proposition faces a new problem: in the previous case the exchange of subsquares
of size (DM)~! occurs within the same subsquare of size D~!: the latter is only deformed during
the evolution and hence the merging can be done in the whole time interval [0,1]. In the case of
Proposition instead, we are exchanging subsquares of size (DM )~! which are then shifted away
during the flow, since they belong to different subquares of the grid D~!. This requires to do the
exchange sufficiently fast (i.e., during the time where they share a common boundary, Remark @,
or to freeze the evolution for an interval of time [0, 4] and perform the exchanges here and then let
the flow permuting the subsquares to evolve during the remaining time interval [d, 1]. We choose for
simplicity this second line, being easier and not changing the final result: notice however that now
the constant M plays the role of controlling the constant § !, appearing because the exchange action
occurs in the time interval [0, J].

Once we have a cyclic permutation of subsquares, the perturbation to get an ergodic vector field
is straighforward.

To achieve the exponential mixing, instead, we need to transfer mass across different subsquares,
and hence we face again the problem of Proposition above: we let the mixing action occurs in an
interval of time where the evolution is frozen, and then let the cyclic permutation to act in the time
interval [§,1] (see also Remark [£.11)). The idea is again to use the universal mixer to exchange
mass across to nearby subsquares. The additional difficulty here is that in order to avoid resonant
phenomena we mix all squares with 2 neighboring ones, so that by simple computations the Markov
Shift obtained through this map is exponentially mixing, Proposition

To collect all the above results into a proof of Point (5| of Theorem is not difficult at this point,
and we devote a section (Section and Corollary [3.10]) to shows how to merge these result and get
the desired statement.



1.2 Plan of the paper

The paper is organized as follows.

In Section [2] after listing some of the notation used in the paper, we give a short overview on
BV functions (Section and Regular Lagrangian Flows (Section 7 proving the extension of the
continuous dependence to a complete set U in Proposition (providing the proof of Point (1]} of
Theorem and stating some technical estimates on composition of maps (Theorem and ,
(2.3)) and on the vector field generating a rotation (Lemma [2.6)).

In Section [3] we collect some classical results in Ergodic Theory which are needed for Theorem
and also give the proof of the Gs-properties of the set of ergodic/weakly mixing vector fields of
Theorem [1.2] First we introduce the basic definitions, then in Section we clarify the relation with
the neighborhood topology and the L'-topology used in Theorem
In Section we restate in our setting the well known fact that weakly mixing are a Gs-set, as well
as the first category property of strongly mixing vector fields (Proposition [3.9). The proof of the
remaining parts of Theorem [1.2]is a corollary of the previous statement (Corollary [3.10)), if we know
that the strongly mixing vector fields are dense.

The construction of exponential mixing vector fields is based on the analysis of Markov Shift: in
Section we give the results which are linked to our construction.

In Section [ we present the proof of the the density of exponentially mixing vector fields, under the
assumption that permutation flows are dense in L} BV, w.r.t. the L%,z—norm. We decide to put first
this construction because it is in some sense independent on the proof of the density of permutation
flows: the idea is that different functional settings can be studied by changing this last part (i.e., the
density of permutation flow), while keeping the construction of approximation by permutations more
or less the same. The first statement is Lemma which allows to partition the subsquares of a
given cycle into smaller subquares still belonging to the same cycle. The usefullness of this estimate
is shown in Proposition where we need to exchange mass only on an area which is of order M2,
and hence obtaining that the perturbation is small in L{ , and L{° BV, (Proposition of Remark
7 addresses the problem of exchanging two subquares during the evolution, a refinement not needed
for the proof of Theorem [1.2)). The last two subsection address the density of ergodic vector fields
(Proposition and of exponentially mixing vector fields (Proposition : the basic idea is the
same (i.e., perturb the cyclic permutation). Section shows at this point how the assumptions of
Corollary are verified, concluding the proof of Theorem under the assumption of the density
of vector fields whose flow is a permutation of subsquares.

The last section, Section [5] proves the cornerstone approximation result, i.e., the density of vector
fields whose flow at ¢ = 1 is a permutation of subsquares, T heorem (whose statement is the same
of Theorem |1.6)).

In Section [5.1| we approximate a smooth flow close to identity with a BV flow which is locally affine
in subrectangles: Lemma considers the 2d-case as in [Shnirelman], while the needed variations
for the d-dimensional case are in Section [E.1.11

The BV estimates for such perturbed flow are studied in Section A preliminary result (Lemma
takes care of the conditions that the area of the subsquares has to be a dyadic rational, while the
key estimates are in Lemma[5.9} an important fact is that as the grid becomes finer the perturbation
becomes smaller.

An ingredient for obtaining a flow which is a permutation of subsquares is the use of rotations: in
Section we study these elementary transformations.

The main approximation theorem, Theorem [5.14] is stated and proved in Section[5.4} Its proof uses all
the ingredients of the previous sections, and an additional argument on how to encapsulate rotations
in order to control the total variation.

2 Preliminaries and notation

First, a list of standard notations used throughout this paper.

e 2 C R™ denotes in general an open set; B(Q2) denotes the o-algebra of Borel sets of ;

e dist(xz, A) is the distance of x from the set A C 2, defined as the infimum of |z — y| as y varies
in A;



o VA C Q, A denotes the interior of A and A its boundary, moreover, if € > 0, then A€ is the
e-neighbourhood of A, that is

A ={z € Q:dist(z,04) < €};

e M,;(€Q) bounded Radon measures;
o if v € Mp(Q) then ||v|| denotes its total variation;

e BV(Q) is the set of functions with bounded variation, and if v € BV(£2) we will use instead
Tot.Var.(u) to denote ||Dulf;

e L% denotes the d-dimensional Lebesgue measure on R%, and H* the k-dimensional Hausdorff
measure;

e K =10,1]? is the unit square;

e L2 g denotes the normalized Lebesgue measure on K;

e let b:[0,1] x R? — R?, and let ¢, s € [0,1] then we denote by X (¢, s, ) a solution of
(1) = blt, 2(1)
x(s) =z,

moreover we will use X (¢)(z) or (alternatively X;(z)) for X (¢,0,z) (in our setting as a flow the
function X (¢, s, ) is unique a.e.);

e (S,%, 1) denotes a locally compact separable metric space where p is a normalized complete
measure;

e (GG(95) denotes the space of automorphisms of S.

2.1 BYV functions

In this subsection we recall some results concerning functions of bounded variation. For a complete
presentation of the topic, see [AFP]. Let u € BV(Q;R™) and Du € Mp()"*™ the n x m-valued
measure representing its distributional derivative. We recall the decomposition of the measure Du

Du = Dcontu+ DJumpu — Da.c.u+ Dcantoru_i_DJurrlpu’

where Doty D¢, Dantory,  DIUmPy, are respectively the continuous part, the absolutely continuous
part, the Cantor part and the jump part of the measure. We also recall that for u € BV (Q) the
following estimate on the translation holds: for every C C Q compact and z € R™ such that |z| <

dist(C, 09)
Z Z; Diu

i=1

/ lu(z + 2) — u(x)|de < (C#h. (2.1)
c

2.2 Regular Lagrangian Flows

Throughout the paper we will consider divergence-free vector fields b : [0,1] x K — R? in the space
L>([0,1]; BV(K)) (in short b € L{°BV,) such that supp(b)) cC K for Ll-ae. ¢ € [0,1]: it is
standard to extend the analysis to divergence-free BV-vector fields in R? with support in K. When
the velocity field b is Lipschitz, then its flow is well-defined in the classical sense, indeed it is the map
X :]0,1] x K — K satisfying

4 X () = b(t, Xi());
Xo(z) = =

But when we allow the velocity fields to be discontinuous (as in our case BV regular in space) we can
still give a notion of a flow (namely the Regular Lagrangian Flow). These flows have the advantage
to allow rigid cut and paste motions, since they do not preserve the property of a set to be connected.
More in detail, we give the following



Definition 2.1. Let b € L'([0,1] x R%;R?). A map X : [0,1] x R? — R? is a Regular Lagrangian
Flow (RLF) for the vector field b if

1. for a.e. x € R? the map t — X;(7) is an absolutely continuous integral solution of

2. there exists a positive constant C' independent of ¢ such that

L2(X7HA) <CL%(A), VA€ B(R?).

DiPerna and Lions proved existence, uniqueness and stability for Sobolev vector fields with bounded
divergence [DiPerna:Lions]|, while the extension to the case of BV vector fields with divergence in L*
has been done by Ambrosio in [Ambrosio:BV]. When dealing with divergence-free vector fields b the
unique Regular Lagrangian Flow ¢ — X; associated with b is a flow of measure-preserving maps, main
objects of investigations in Ergodic Theory. In the sequel we will build flows of measure-preserving
maps originating from divergence-free vector fields; more precisely, if a flow X : [0,1] x K — K is
invertible, measure-preserving for £!'-a.e. t and the map ¢t — X; is differentiable for £!-a.e. t and
X, e L'(K), then the vector field associated with X; is the divergence-free vector field defined by

be(x) = b(t, z) = X (X 1(x)).

Theorem 2.2 (Stability, Theorem 6.3 [Ambrosio:Luminy]). Let b,,b € L*([0,1],BV(K)) be
divergence-free vector fields and let X™, X be the corresponding Regular Lagrangian Flows. Assume
that

[[bn, = bl — 0 asn— oo,

then

lim sup | X} (z) — X¢(x)|dz = 0.
n—=0 JK te[0,1]

In this setting we can extend the family of vector fields we consider to a Polish subspace of L%@ in
which we still have a notion of uniqueness. This extension allows us to apply Baire Category Theorem
for the results of genericity that we will give for weakly mixing vector fields.

Proposition 2.3 (Extension). Let
®:{bec LBV, :D-b =0} {be L'(0,1],L}(K)),D b, =0} — C([0,1], L*(K))

the map that associates b with its unique Regular Lagrangian Flow X;. Then ® can be extended as a
continuous function to a Gs-set U containing {b € L{° BV, : D - by = 0}.

This proposition proves Point of Theorem |1.2

Proof. We recall that for every f : A — Z continuous where A C W is metrizable and Z is a complete
metric space, there exists a Gs-set A C G and a continuous extension f : G — Z (Proposition 2.2.3,
[Srivastava]). Thus we have to prove the continuity of the map ® which follows by

1(b") — B(b) ¢y = sup / X7 (2) — X, (2)|de
tel0,1] J K

S/ sup | X7 (x) — Xy(x)|da.
K t€[0,1]

This concludes the proof. O

We will also use the following tools to prove the main approximation theorems of the paper. The first
one gives a rule to compute the total variation of the composition of vector fields, while the second
one is a direct computation of the cost, in terms of the total variation of the vector field whose flow
rotates rectangles.

10



Theorem 2.4 (Change of variables, Theorem 3.16, [AFP]). Let Q,Q two open subsets of R™ and
let ¢ : Q — Q invertible with Lipschitz inverse, then Yu € BV (') the function v = uo ¢ belongs to
BV (Q) and

Tot.Var.(v) < Lip(¢~!)" ' Tot.Var.(u).
Corollary 2.5. Let Q,Q C R™ be two open sets where O is Lipschitz and let ¢ : Q — Q' invertible
with Lipschitz inverse, then Yu € BV (R™) the function

y {u op xef
0 otherwise,
belongs to BV (R™) and
Tot.Var.(v)(R™) < Lip(¢~")" " (Tot.Var.(u) (') + || Tr(u, Q') || L1 (3n-10 )
= Lip(¢~ )" " Tot. Var.(uLg/ ) (R™).

In the following, we have often to study the properties of the vector field b3 associated with the
composition Y3(t) of two smooth measure preserving flows ¢ — Y;(t), i = 1,2, with associated vector
fields by, bo. By direct computation

bs(t, Ys(t,y)) = 0:Y1(t, Ya(t,y)) = b1(t, Y3(t,y)) + VYi(t, Ya(t,y))ba2(t, Ya(t,y)),
bt 1) = ba () + VYi(t, Yalt, Yo~ (0, 2)) (e, Yalt, Vi (1, 2))

L N (2.2)
=bi(t,x) + VY1 (¢, Y] (¢, 2))ba (8, Y] (¢, 2)).
Hence using Theorem we conclude that (being Y7 o Y5 measure preserving too)
Tot.Var.(b3) < Tot.Var.(by) + Lip(Y;)" ' Tot.Var.(DY; (t)bs) 23

< Tot.Var.(by) + || VY1 ||, Tot. Var.(b) + || VY1 ]| || b2 oo Tot. Var. (DY (t)).

Throughout the paper we will extensively use a flow rotating rectangles and the vector field associated
with it. More precisely we define the rotation flow ry : K — K for t € [0, 1] in the following way: call

2
1 1
V(x):max{m1—2 ,x2—2’} , (z1,29) € K.
Then the rotation field is r : K — R?
r(z) = VVi(z), (2.4)

where V+ = (—0,,,0,,) is the orthogonal gradient. Finally the rotation flow r; is the flow of the
vector field r, i.e., the unique solution to the following ODE system:

Pi(x) = r(ri(z)),
{ro(x) =z (2:5)

g
Lemma 2.6. Let R C R? a rectangle of sides a,b > 0. Consider the rotating flow

This flow rotates the cube counterclockwise of an angle T in a unit interval of time.
Ry=x"lorox,

where x : R — K s the affine map sending R into the unit cube and ry is the rotation flow defined in
[2.5). Let bF the divergence-free vector field associated with Ry. Then

Tot.Var.(b?)(R?) = 4a® + 4b*, Vt € [0,1].

Proof. The potential V' generating the rotation of /2 in this case is the function

Vi) = max {2 (5 - ‘2‘)2,‘;(@ - g)}

where we assume that R = [0,a] x [0,b], so that the vector field is given by

(0,2(x1 - 2)) 1] > blaa,0< 2y <oa,

(=22 (22— %),0) |o1| < Zfza|,0 < w2 <.

r(z) =V+IV = {

Hence by elementary computations
HDcont,r,H _ a2 + b2, HDjumpT” _ 3a2 + 3b2,

and then we conclude. O

11



3 Ergodic Theory

We will consider flows of divergence-free vector fields from the point of view of Ergodic Theory.
Even if we apply the results to the case (K, B(K), L2 f) in this section we will give the notions of
ergodicity and mixing in more general spaces [Ergodic:theory]. More precisely, let (Q,%, 1) be a
locally compact separable metric space where p is complete and normalized, that is u(Q) = 1.

Definition 3.1. An automorphism of the measure space (2,%, 1) is a one-to-one map T : Q — Q
bi-measurable and measure-preserving, that is

u(A) = u(T(A) = W(T7H(4)), VAex.
We call G(2) the group of automorphisms of the measure space (Q, X, p).

Definition 3.2. A flow {X;}, t € R, is a one-parameter group of automorphisms of (€2, %, ) such
that for every f : € — R measurable, the function f(X;(z)) is measurable on Q x R.

Definition 3.3. Let T': 2 — Q an automorphism. Then

e T is ergodic if for every A € &

T(A)=A = p(Ad)=0orpu(4)=1; (3.1)

o T is weakly mixing if VA, B € X

e T is (strongly) mizing if VA,B € X
lim u(T"(A) 1\ B) = p(A)u(B). (33)

n—oo

Remark 3.4. It is a well-known and quite elementary fact that strongly mixing = weakly mixing =
ergodic.

We can give the analogous definitions for the flow:
Definition 3.5. Let {X;} a flow of automorphisms. Then
o {X;} is ergodic if for every A € &

X:(A)=A = u(A)=0or pulAd) =1, (3.4)

o {X,} is weakly mizing if VA,B € ¥

t 2
i | [ xa (X @)xae)dn - ()| ds=o (35)
0

t—o0
o {X,}is (strongly) mixing if VA, B e %

lim [ xa(X_¢(2))xp(x)dp = p(A)u(B). (3.6)

t—o00 Q

3.1 The neighbourhood topology as a convergence in measure.

To get a genericity result it is necessary to identify the correct topology on G(£2). Following the work
of Halmos [Halmos:weak:mix| we define the neighbourhood topology as the topology generated by
the following base of open sets: let T' € G(2) then

N(T) = {S € G(Q) : [T(A)AS(A)| <€, i=1,...,n},

where € > 0 and A; € ¥ are measurable sets.
Since for our purposes we will consider the L' topology on G(2), we recall the following

12



Proposition 3.6. Let {T,,},T C G(Q2) and assume that T,, — T in measure. Then T, — T in the
neighbourhood topology. Conversely, if T,, — T in the neighbourhood topology, then T, converges to
T in measure.

Since in our case (2 is a compact set, then the convergence in measure is equivalent to the convergence
in L': hence we will use the L' topology for maps as in Proposition

We will be concerned with flows of vector fields extended periodically to the real line, that is b(t+1) =
b(t). Even if X; is not a flow of automorphisms, the quantities in the r.h.s. of , can be
computed and are related to the mixing properties of T = X;—;. Also the ergodic properties of
T = X; are equivalent to an ergodic property of X;.

Let {Xs}sejo,1) be a family of automorphisms of €2 such that s — X is continuous (hence uniformly
continuous) with respect to the neighborhood topology of G(2). Let T'= X;—; and define

X =X50T"=T"0X,, t=n+s,5€][0,1).
Lemma 3.7. The following hold

1. if T is ergodic then for every set A € &
t

][ XXS(A)dS — 1 ‘A|,
0

2. T is weakly mizing iff for every A, B € X
t
. 2
Jim 11,040 Bl - |41 B ds =
3. T is mizing iff VA, B € ¥
Jim | X:(A) N B| = |4||B|.

The proof of this lemma is given in Appendix [6] since we believe it is standard and not strictly
related to our results.

Definition 3.8. Let b € L>°([0,1],BV(R?)), suppb; C K, be a divergence-free vector field. We will
say that b is ergodic (weakly mixing, strongly mixing) if its unique RLF X; evaluated at ¢ = 1 is
ergodic (respectively weakly mixing, strongly mixing).

3.2 Genericity of weakly mixing

Let U be the Gs-subset of L%J where the Regular Lagrangian Flow can be uniquely extended by conti-
nuity (Proposition 2.3). The first statement has the same proof of [Theorem 2, [Halmos:weak:mix]]
and [Page 77,[Halmos:lectures]]:

Proposition 3.9. The set of ergodic/weakly-mizing vector fields is a Gs-set in U, the set of strongly
mixing s a first category set.

We repeat the proof for convenience only for weakly/strongly mixing, the case for ergodic vector fields
is completely analogous [Halmos:ergodic].

Proof. Since the map ®(b)(t = 1) = T(b) defined in Proposition is continuous from U into
LY(K,K), it is enough to prove that the set of weakly mixing maps is a Gs. For simplicity we define
a new topology on G(K) that coincides with the neighbourhood topology known as Von Neumann
strong neighbourhood topology. Given T € G(K), define a linear operator T : L?(K,C) — L?(K,C)
by
(Tf)(x) = f(Tz) VfeL*K,C)

such that ||Tf||rz = ||f||z2 (being T measure-preserving). Consider f; a countable dense subset in
L2: a base of open sets in the strong neighbourhood topology is given by

N(T)={SeGEK):||ITfi—Sfill2<e€ i=1,...,n}.
Then we define

E(imjamvn) = {T € G(K) : |(Tnf77fj) - (flal)(lvfj)| < 27777,}’

13



where (-,-) denotes the scalar product in L?. Simply observing that T — (T'f, g) is continuous in
the strong neighbourhood topology then by Proposition it follows that E(i,j,n,m) is open in

L'(K,K), and then
G = ﬂ UE(i,j,m,n)
2,7, N

is a Gg-set. By the Mixing Theorem [Theorem 2, page 29, [Ergodic:theory]] G coincides with the
set of weakly mixing maps in L!'(K, K). Indeed if T is not mixing, then there exists f # 0 and a
complex eigenvalue A € {|z| = 1,z # 0,1} such that Tf = A\f. We can assume that f is orthogonal
to the eigenvector 1, that is (f,1) = 0, and also that ||f||2 = 1. Now choose i such that ||f — fi|| < €
for some € to be chosen later and take f; = f;. Then

L= |(T"f. f) = (£, D(f, 1)
SHTf ) = (@ f)+ (T fe) — (T fi f)l + (T fis fi) — (fi (L, f)]
+[(fi, D, fi) = (D, DI (D, fi) = (F, DS D))
<2[f = fillz + 2l fill2ll f = fille + (T fi, fi) — (fi, D(L, fi)l,

so since ||fi||2 < 1+ € we get that

With the choice of € > 0 small enough we get that % < |(T™fi, fi) — (fi, 1)(1, fi)|, that is T ¢ G. This
concludes the proof of the first part of the statement.

We next prove that the set of strongly mixing vector fields is a first category set. Let A C K be a
measurable set such that |A| = 1. Then define the F,-set

F=JN {TeG(K):‘KT’“(A)mA) 1‘ gé}

i
n k>n

Clearly strongly mixing maps are contained in F' by definition and therefore strongly mixing vector
fields are contained in F' = ®~1(¢t = 1)(F). This F is a set of first category: indeed consider the set

Uote=1 ({T € G(K): ‘|(T’“(A) NA)| - i‘ < 1}) (3.7)

)
k>n

By our main result (Theorem Vb € U for all n € N there exists k > n and b” € L*(BV,) such
that the RLF X?_, associated with ¥ evaluated at ¢ = 1 is a permutation of subsquares of period k.
Hence

U {b € L°(BV,) permutation of period k}

k>n
is dense and contained in (3.7)), so that we conclude that (3.7)) is open and dense for all n, i.e., F is of
first category. O

Corollary 3.10. Assume that the set
SM = {b €U : b is strongly mim’ng}
s dense in U. Then the set of weakly mizing vector fields is residual.
Proof. Elementary. [

Our aim will be to prove the assumption of the above corollary, which together with Proposition
will conclude the proof of Theorem once we show that the dense set of strongly mixing vector
fields are actually exponentially mixing.

Remark 3.11. The above situation, namely
e b strongly mixing is dense in U,
e b weakly mixing is second category in U,

is in some sense the best situation we can hope in Y. Indeed, the strongly mixing vector fields are a
set of first category and then it is not a "fat” set. On the other hand, the weakly mixing vector fields
would be a ”fat” set once we know their density, which one deduces from the density of the strongly
mixing vector fields.

14



3.3 Markov Shifts

When dealing with finite spaces X = {1,...,n} and processes whose outcome at time &k depends only
on their outcome at time k — 1 it is easier to determine some statistical properties of the dynamical
system, as ergodicity and mixing (see for a reference [Mane],[Viana]). More precisely let B(n) =
{0 : Z — X} the space of sequences and define a cylinder

C(m,kl,...,kr):{GEB(n):G(m—i—i):th z’zO,...,r—l}

where m € Z and k; € X. Therefore, since the Borel o-algebra on B(n) is generated by disjoint
union of cylinders, we can define a probability measure p on B(n) simply determining its value on
cylinders. A Markov measure p is a probability measure on B(n) for which there exist p; > 0, P;; > 0,

1,7 =1,...n, with
Zpi = ZP@' =1, Zpipij =DPj,
i j i

such that
/-L(C(mv klv ceey kT)) = pk1Pk1k2 cee Pkr,lkr

for every cylinder C(m, k1,..., k). The P;; are called transition probabilities and P = (P;;) is the
transition matriz. The transition matrix is a stochastic matrix, that is > ; Pij =1 for every i. Now

define Pi(jm) the coefficients of the matrix P™.
Definition 3.12. A matrix P with positive coefficients is irreducible if Vi, j there exists m such that
P > 0.
Definition 3.13. A matrix P with positive coefficients is aperiodic if there exists m such that Pi(jm) >0
Vi, j.
A Markov shift is a map o : (B(n),u) — (B(n), 1) such that

o(0)(i) =0(: +1), V6 e B(n).

Then it can be proved that oyu = p. We conclude this subsection with the following results on
ergodicity and mixing properties of Markov shifts (see [Viana], Chapter 7).
Proposition 3.14 (Ergodicity). The following are equivalent:

1. o:(B(n),u) = (B(n),pn) is ergodic;

2. P is irreducible;

m—1

_— (k) _
Proposition 3.15 (Mixing). The following are equivalent:
1. o : (B(n),u) = (B(n), p) is strongly mizing;

2. P is aperiodic;

3. lim P™ =Dpj.

m—oo

4 Density of Strongly Mixing vector fields

In Sectionwe prove that permutation vector fields (i.e., vector fields whose RLF X, when evaluated
at t = 1, is a permutation of subsquares, Point (3) of Theorem are dense in /. In this section, we
show that each permutation vector field can be approximated by a vector field whose RLF evaluated
at time ¢ = 1 is a unique cycle. This approximation result will be used to get first the density of
ergodic vector fields, then the density of strongly mixing vector fields.
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Figure 2: The action of the transposition flow T;.

4.1 Cyclic permutations of squares

We start by recalling some basic facts about permutations. Denote by S,, the set of permutations of
the elements {1,...,n}.

Definition 4.1. Let 0 € S,, be a permutation and & < n € N. We say that o is a k-cycle ¢ (or simply
a cycle) if there exist k distinct elements aq,...,a; € {1,...,n} such that

o(a;) = ajr1, olag)=a1, o(x)=x Vr#ay,...,a.

We identify the permutation with the ordered set ¢ = (ajas . ..ag). The number k is the length of the
cycle. We say that c is cyclic if K =n. We call transpositions the 2-cycles.

Definition 4.2. Let ¢, ¢ be the cycles ¢ = (ay...a;) and ca = (by...bs). We say that ¢, cq are
disjoint cycles if a; # b; for every i =1,...,¢t, j=1,...,s.

Recall the following result.
Theorem 4.3. FEvery permutation o € Sy, is the product of disjoint cycles.

From now on we will address flows X; of divergence-free vector fields such that X;—; is a permutation

|
of squares of size 7.

Let us fix the size D € N of the grid in the unit square K. We enumerate the D? subsquares of the
grid and we consider Spz the set of the permutations of {k1,...,kp2}. We say that two squares (ore
more in general two rectangles) are adjacent if they have a common side. We will use also the word
adjacent for cycles: two disjoint cycles of squares c1,co are adjacent if there exist k1 € c1, ko € ¢
adjacent subsquares. Two adjacent squares can be connected by a transposition, which can be defined
simply as an exchange between the two squares: let r;,x; two adjacent squares of size % and let
R = k; U K;, then the transposition flow between k;, k; is Ty (k;, k5) : [0,1] x K — K defined as

X_10T4tOX Z’eé,te[o,%],
X;loraoxi T €k tE

7

Ty (Kkis kj) = (4.1)

[5.1],
-1 o
Xj ©TatOX;j zenj,té[,l],
x otherwise,

where the map x : R — K is the affine map sending the rectangle R into the unit square K, x;, x; are
the affine maps sending k;, #; into the unit square K and r is the rotation flow . This invertible
measure-preserving flow has the property to exchange the two subsquares in the unit time interval
(Figure . Moreover, by the computations done in Lemma we can say that

20

Tot.Var.(T}(ki, ;) (R) < 2

(4.2)

Lemma 4.4. Let b € L{°(BV,) be a divergence-free vector field and assume that its flow at time
t =1, namely XvLi—1, is a k-cycle of squares of the grid N x N% where k, D € N. Then for every
M = 2P, there exists b € LY°(BV,) divergence-free vector field such that

1
— b oo 1 < e
[[b—b°[| (L)_O<D3M>7

. 1
and the map X{_; : K — K is a kM?-cycle of squares of size ﬁ, where X¢ :[0,1] x K — K 1is the
flow associated with b°.
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Here and in the following we will write T'(x;) = x; meaning that T is a rigid translation of ; to ;.
This to avoid cumbersome notation.

Proof. Let us call T = X,—;: being a cycle, there exist {r1,...,x} C {1,...,D?} such that

T(ki) = ki+1, T(kn)=rk1, T(x)=2z otherwise.

Now fix some M = 2P and divide each subsquare x; into M? subsquares nz with j = 1,..., M2

Since T is a translation of subsquares and choosing cleverly the labelling j — 7, then we have also

T(Iij ) = /QZ 41 so that T is a permutation of subsquares 7. More precisely, it is the product of M 2

3
disjoint cycles of length k. The idea is to connect these cycles with transpositions in order to have a
unique cycle of length kM?: we will need a parturbation inside 1.

M2

. . . 2 ] i’ . ] i’
Divide the M? subsquares of k; into 2= couples R7 = x] Uk} with h = 1,...,2 and ki, x] are

adjacent squares. In the time interval [0, 5] perform MT2 transpositions, one in each R?, that is
c 2 1
Xi(x)=XioT{(x), te Oa§ )

where the flow T2 : [O, %] xK— K

TtZLR}zli Ty (K7, /—1{) and T?(z) = x otherwise,
is the transposition flow lb between /i{ and /i{/ as defined in (4.1)) above. Then for ¢ € [0, %} fixed,

M?% 20

TOt.Var.(bf - bt)(l{l) S O(l)QTW’

where we have used (4.2)). We observe that at this time step we have obtained MTQ disjoint 2k-cycles.
1 3 M2

271 T4
where RZ, R?, are adjacent (in particular there exist #] C R3,x] C R, adjacent squares). Now we

In the time interval [ ] we divide the unit square into squares Ry = R? U R?, with h =1,...

perform MTQ transpositions of squares connecting the two rectangles Rf, R?, as in Figure More

precisely we define for ¢ € [, 3]

13
Xtc(x) = Xt OTt4(m)7 te |:27 4:| 9

where the flow 7% : [%, %] xK— K
T;lI_R%i Tas—o(K, n{,) and T} (x) = x otherwise,

is the transposition flow |i between n{ and n{/. Again,

M? 20
Tot.Var.(bf — by) (k1) < 0(1)4TW'

Repeating the procedure (see Figure [3)),

1. at the 2¢ — 1-th step we divide our initial square 1 into 2%—: rectangles (made of two squares
of obtained at the step 2(i — 1)) so that we perform 22P~¢ transpositions of subsquares 7 in the
. . 2i—2 1 21—1 1 |,
time interval [ijl 270 2 je1 f],

2. at the 2i-th step, we divide our initial square k1 into ]2\/[—22 squares (made of 2 rectangles of the
previous step) so that we perform 22P~% transpositions of subsquares s’ in the time interval

2i—1 21
DormS sl
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1

R,

Ky
te 0.4 te|

ﬂ te[‘_.\]

Figure 3: Subdivision of the initial square 1 into subrectangles/subsquares where transpositions (the

b=
=]l
ol =1

bars) occurr between subsquares x7 C R, o ‘c R2 of side 547 (dotted lines). Notice that at the

first /third step the initial square x4 is divided into rectangles (see Point of the procedure), while
at the second step it is divided into squares (see Point )

In both cases we find in the interval Z;;ll =, 22:1 2%} that

M2 20
20 M2D?’

Tot.Var.(bf — b:) (k1) < O(1)2

Call t; = 22:1 277, We will prove that the map X (1,t;) o X¢;—;, is a permutation given by the
product of Z‘Q/If disjoint 2°k-cycles simply by induction on i.

The case ¢ = 1 is immediate from the definition. So let us assume that the property is valid for ¢ and

call c1,c2,...,cy2 the disjoint 2'k-cycles made of rectangles of subsquares as in Figure where we
o
have ordered them in such a way that cap_1,cop with h =1,..., é‘f—; are adjacent along the long side.

Then fix a couple of adjacent cycles, for simplicity c1,ce. Then

c1= (K] ... Kiip),

co= (K] ... Kaip),

and assume that there exist j, 7’ such that n}, H?/ are the adjacent subsquares in which we perform
the transposition. By simply observing that

tita
Xty (@) = X, (@) + / b(s, X°(x))ds,
t

i

we deduce that, when restricted to ¢; U ¢z, the map X (1,%;41) 0 Xy, , is the following permutation

1 1 1 1 2 2 2 2
K1 ... Kj_q K;j ce Kgiy KT ... Kj_y K cee o KSip
1 2 1 1 2 1 2 2

Ky .. K Kjy1 --- K1 Ry .. K Kig1 oo KT

Clearly this is a single cycle of length 20tDk and it is supported on a rectangle.

The procedure stops at t = 31; 1 2% when we have obtained a unique M?2k-cycle. Summing up,
for t fixed 20
Tot.Var.(bf — b)(K) < O(l)ﬁ,
that is

1
|| Tot. Var.(b; — by)(K)||eo < O (D2> .

We conclude with the L{°LL estimate of the vector field: to do this computation it is necessary
to observe that b; and bf differ only in the couples of adjacent squares in which we perform the
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transpositions. Using (2.2) and simple estimates on the rotation (2.4) we obtain, for ¢t € [t;_1, 1]

fixed,
M2 2 2 1
¢ — < <
1B = bl < O(1) 572 DMD?M?O(D3M>’

which concludes the proof. [

We state now the approximation result by vector fields whose flow at time ¢ = 1 is a unique cycle.

Proposition 4.5. Let b € L (BV,) be a divergence-free vector field and assume that by = 0 for
t € [0,8], 6 > 0, and its flow at time t = 1, namely X1;—1, is a permutation of squares of the
grid N X N% where D € N. Then for every M = 2P > 1 there exists a divergence-free vector field
b® € L (BV,) such that

1 . 1
b= b1 (1) < O (DM3> || Tot. Var. (b6 — b;)(K)||eo < O (5M2>

and the map X§{ : K — K, being X{ : [0,1] x K — K is the flow associated with b, is a M?D?-cycle
of subsquares of size ﬁ.

Proof of Proposition[{.5 Let us fix € > 0 and consider M = 2? to be chosen later. Let C' = X144
be a permutation, which we write by Theorem (4.3])

C=(k}...kp)(K]...Kg,) .. (K} ...k} ) =c1...cp,
where Y1 k; < D2. Define ¢, 41,...cn, N = D? — >, ki+n, the 1-cycles representing the subsquares
that are sent into themselves. By the previous lemma we can also assume that C., i =1,...,N is
a cyclic permutation of subsquares az-k, j=1,...,M? of the grid N x Nﬁ. To find a D?M? cycle
we should consider all the couples of adjacent subsquares (of size ﬁ), and then we should connect
them by transpositions in a precise way.

Fix ¢; and consider
C' = {c,, #¢1 s.t. ¢, adjacent to ¢;} = {c},.. .,cllcll}.
Now for every c} € C! define by induction the disjoint families of cycles
Cj2 ={en ¢ {c,}uCtuUC?U---U Cj{l s.t. ¢, is adjacent to c}},

and call
02 = 012 J--- UC|2C1| = {C%,...,Cfcql}.
At the ¢ — 1-th step we have _ 4
= {Czl_ |C7\}

and, for every cj-_l € il
C; ={en ¢ {c;yuCctucC?u---uCc-tucCiu... C]’;1 s.t. ¢p, is adjacent to cj-*l}.

The procedure ends when we have arranged all ¢; into sets C?, and hence for some K € N we obtain
CK+1 = () (see Figure [)). Indeed, by contradiction assume that [{c;} UCT UC?U---UCK| < N.
Then this set has a boundary, i.e., there exists a cycle ¢ € {c;} UCTUC? U --- U CK adjacent to a
cycle of {c;}UCT UC?U---UCK, which is a contradiction by definition.
The partition
C(Cl) = {Cl} U 02 U.. .CK

has the natural structure of a directed tree: indeed every two cycles ¢; € C%, ¢; € CV are connected

by a unique sequence of cycles: the direction of each edge is given by the construction cj-_l — ¢y

whenever ¢;, € C]’ This tree-structure gives us a selection of the N — 1 couples of subsquares Kug of
disjoint cycles ¢; in which we can perform a transposition among the subsquares a;:- . to connect all of
them in a unique D2M?2-cycle. More precisely, for every connected couple cé_l, cp, such that ¢, € C},

there exist cubes k € cl 1 k" € ¢, and hence there are adjacent subsquares a C k,a’ C k' of size

1/(MD): assuming M Z 4, we can take a,a’ not being on the corners of x, k’, respectively.
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Let T : [0,0] x K — K be the transposition flow (4.1) acting in the selected N — 1 couples of
subsquares a, a’ reparametrized on the time interval [0, 0] and define (being X; = id for ¢ € [0, d])

c _ Tt(‘r) te [076}7
Xile) = {Xt oTs(z) te[s1]. (4.3)

The transposition is well defined: indeed it can happen that c;,c;,c, are adjacent cycles and the
couples of adjacent squares (of size %) are K;, k; and K;, ki, (where k; € ¢;, K5 € ¢j and ki, € ¢t,), that
is: k; is in common. But since the transposition occurs between subsquares of size ﬁ nor belonging
to the corners, it is always guaranteed that the transpositions act on disjoint subsquares. By using

the explicit formula (2.4) we get that for ¢ € [0, d]

. O1) (N-1\ _0@1) [ 1
||bt _bt||1 S 5 (DSM'?’) S 5 DMS 9

while for ¢ € [, 1] it clearly holds b = b;. Coupling these last two estimates we get the L} L] estimate:

. 1
||b_ b ||L1(L1) <0 <DM3) )

for 6 << 1 and M sufficiently large.
Next we compute the total variation for ¢ € [0, d]: by using (4.2)), we get

. N-1 20 120
Tot.Var.(bf)(K) < 5 IEDE S 5
while for t € [§,1 — 0] we find

Tot.Var.(bf)(K) = Tot.Var.(b:)(K),

therefore

1
[| Tot. Var.(b; — b:)(K)||eo < O <5M2) .
To conclude we have to prove that X{ is a unique cycle, which follows by the tree-structure of the
selection of adjacent cycles. The end points of the tree are clearly cycles. By recurrence, assume that
i—1

c¢; " is connected to cycles 7y, each one made of all squares belonging to ¢, € C’; and all subsequent

cycles to c. It is fairly easy to see that the transposition merging c;_l to each ¢p, € C’; generates a
unique cycles 7;7 made of the cubes of c;fl and all v5,. We thus conclude that the map XY is a cycle

of size M?D?. O
Remark 4.6. An example of how the proof works is in Figure [} the decomposition in cycles is
C= (k2. R2) (K3 . k) (kT ke (KD D) (RS k) (KT) (k])(K1Y).

The black arrow indicates the adjacent subsquares where the exchanges are performed: the tree of
concatenation is then

(""'%“%) (K7 hg) (k1 h&) (K5 K13)
(k] .. wla)  (KD) (k)

Note that in the subsquares (k3, x7), (K3, 57) and (ki, k1), (ki, k7) the exchange occurs actually in the
subsquares (ay;, aiy), (a5;,a},) and (ahy, aipn), (agy, a3 gn), so that it is always acting on different
couples of subsquares.
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Figure 4: Concatenation of cycles in a specific example, Remark [£.6| The orange subrectangles are
the couples of ajy on which the transposition T; of (4.3]) acts.

Remark 4.7. The construction of the cyclic flow gives us only the L} Ll estimate on the vector
fields, which is what we need for our genericity result. We can get the more refined estimate in L L1
allowing for mass flowing (when performing the transposition) during the time evolution of the flow
X (see Figure . In this case, the time spent by the squares of size (M D)~! to transfer the mass is
of order (M D)™!, so that the vector field moving it should be of the order

length N-1
neTh _ O(1), acting on a region of area

(D) <M~2 (4.4)

time
Hence the L°LL estimate can be obtained by as
165 = bells < O(1)M 2,
while the total variation estimate becomes

D
Tot.Var.(bf — b;) = O(l)M.
The statement one can prove is then the following.

Proposition 4.8. Let b € L°(BV,) be a divergence-free vector field and assume that its flow at time
t =1, namely Xi¢=1, is a permutation of squares of the grid N x N% where D € N. Then for every
€ > 0 there exist M = 2P and b° € L°(BV,) a divergence-free vector field such that

|16 — bel|zr < O(M™2) <€, Tot.Var.(b — b)) (K) < O(D/M),
and the map X{_, : K — K, being Xf : [0,1] x K — K the flow associated with b°, is a M?D?-cycle
of subsquares of size ﬁ.
4.2 Density of ergodic vector fields

Starting from the cyclic permutation we have built in the previous section, we construct an ergodic
vector field arbitrarily close to a given vector field in L BV,. The density of ergodic vector fields is
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K1 K2

K1

€y, Ca

Figure 5: The two adjacent cycles ¢; (light green) and co (blue) touch in k1 and kg, which exchange
their mass during the time evolution.

not strictly relevant for the genericity result of weakly mixing vector fields, but it can be considered
as a simple case study for the construction of strongly mixing vector fields. Moreover it will give a
direct proof of Point of Theorem

We will use the universal mizer that has been constructed in [univ:mixer]|: it is the time periodic
divergence-free vector field u € L{°([0,1], BV;(R?)) whose flow U; : [0,1] x K — K of measure-
preserving maps realizes at time ¢ = 1 the folded Baker’s map, that is

(-2041,-2+4) ae0d).

0,1 4.5
(22 -1,%+1) z e (3,1], yelo1), (4:5)

U=Uri=1= {

(see Theorem 1, [univ:mixer]).

Proposition 4.9. Let b € L°(BV,) and let X; be its RLF, and assume that X,—1 is a cyclic
permutation of squares of the grid N x N%. Then there ezists b¢ € L°(BV,) divergence-free ergodic
vector field such that

e 1
[[b—b°||Loc (1) <O <D2> ,
1 (4.6)
[ Tot. Var. (6°) (K)||so < || Tot. Var.(b)(K)|| + O (m) .
Proof. Let us call T = Xi;—1 and K1,...,Kkp2 the subsquares of the grid where the numbering is

chosen such that
T(Ki) = Ki+1, T(Hn) = K1.
Let us define
X = X o Ul wenl,.
X, otherwise,

where the flow U! = 07! o U; 0 0 and @ is the affine map from «; to K, i.e. ,0(x,y) = (Dz, Dy).

We first prove the ergodicity of T¢ = X¢_;—1. Assume by contradiction that T is not ergodic, then
there exists a measurable set B such that T¢(B) = B and 0 < |B| < 1. We claim that |B N k1| > 0.
Indeed, since |B| > 0 there exists ¢ such that |B N x;| > 0. If ¢ = 1 we have nothing to prove, if not,
since T is measure-preserving, then |T¢(B N k;)| > 0. But

0 < |T*(BN k)| = |T¢(B) N T(x:)| = |B N ki

(we have used that the set B is invariant) and re-applying the map T sufficiently many times we
have the claim. Moreover, |[B N k1| < Bz. If not, that is [BN k1| = 2=, then |B N k;| = 75 for every
i=1,...,D? again by using the fact that B is invariant and that T°(k;) = k;11 and T¢(kp2) = k.
But now

D? D? 1
|B| :Z|Bm“i|22ﬁ =1,
i=1 i=1
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which is a contradiction, since |B| < 1. Now, the fact that 0 < [BNk;| < By implies that U] (BNky) #
BNk because U] is mixing (and thus ergodic). But this is a contradiction because T¢(BNk1) = BNkq
and applying to both of them 7°°~! we find that

UNBN k) =TP Y (T*(BNky)) =T "1 (BNky) = (TP Y (B Nka) = BNk,

where we have used that TP° = Id. To prove the estimates (4.6) we have to observe first that Uy
acts only on ry, then that it is the composition of two rotations (see [Figure 1, [univ:mixer]]), that
is Tot.Var.(Uy(U; 1)) (R1) < O (32) (see again Lemma . O

4.3 Density of strongly mixing vector fields

As in the previous section, we use the density of cyclic permutations to show that the vector fields
whose flow is strongly mixing are dense in U/ with the L%,w—topology. Again we use the universal mixer
constructed in [univ:mixer]. The main result here is the following

Proposition 4.10. Letb € L°(BV,) and let Xy be its RLF, and assume that by = 0 fort € [0,20] and
Xi—1 is a cyclic permutation of squares of the grid N x N%, D = 2P. Then there exists b* € L°(BV,)
divergence-free strongly mixing vector field such that

1
b—0|piy <O — |,

|| Tot. Var.(b*)(K)||oo < ||Tot.Var.(b)(K)||s + O (67").

In the proof it is shown that the mixing is actually exponential, in the sense that for every set in
a countable family of sets {B;}; generating the Borel o-algebra it holds

|T?(B;) N B;| — |Bi||B;| = O(1)cl, ey < 1.

Proof. Let us call T = Xi4—1 and Kq,...,Kkp2 the subsquares of the grid where the numbering is
chosen such that
T(Hz) = Ri+1, T(KD2) = K1.

If {1,...,D%} 2 ¢ — j(¢) € {1,...,D?} is an enumeration of x; such that r;(),xje+1) are adja-
cent, consider the rescaled universal mixer Uf £+ acting on k¢, ke41 in the time interval [0, ], whose
generating vector field bV satisfies the estimates

0,041 ]. 1 £,6+1 ]. 1
16V || :0(1)55, Tot.Var.(bY " ) = O(1) < —5.

The idea is to define the a new vector field as in (4.3])

X*(@) = {Mt(x) t € [0,20],

X o Mys(x) te€(20,1],
where the map My, t € [0,26], is defined as follows:
U (@) te0,6],€ even,
My(z) = bt
(&)t €[6,26], 4 odd.
The estimates (4.7)) follows as in Proposition so we are left with the proof that T° = X7 is strongly
mixing.
The map T° is the composition of 3 maps T35 o Th o T} acting as follows (all indexes should be
intended modulus D?):
1. Ty is the folded Baker’s map U acting on the couples £,¢+ 1, ¢ =0,2,... even;
2. T is the folded Baker’s map U acting on the couples ¢,/ + 1, £ =1,3,... odd;

3. Ty is a cyclic permutation £ — j71(j(¢) + 1).
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We first compute the evolution of a rectangle a of the form

/ 1 /
a=2"kk+ 1 x 2V KK+ 15, k=0, 2D —1 K =0,..2D—1, py eN.

By definition of U (4.5)) we obtain that if p > 1 then the map 77 does not split a into disjoint rectangles,
i.e.

-~ ~ , ~ o~ 1 ~ ,
Tlazzl—P[k,kH]><2—P—1[k’,k’+1]5, k=0,...,27'D—-1,k =0,...,2° T'D — 1,
and the same happens for Ts:
A o~ , PUN 1 N ~ ,
T2a=21—P[k,k+1]><2—P—1[k’,k’+1]5, k=0,...,27'D—-1,k =0,...,2°T'D—1
Hence if
, 1 ,
a=2""k k+1] x27% [k’7k’+1]5, k=0,....22D—1, kK =0,...,2°? D1, p,p' €N, (4.8)

then

v v / - - 1 ~ 7
TyoTia = 220~ P [k k+1] x 272+, k’+1]5, k=0,...,220"Up_1k =o0,...,220+Up_1

and being the action of T3 just a permutation, the final form T%a = T3 0T o Ty a is again a rectangle.
When p = 0, instead the rectangle a is mapped into two rectangles belonging to two different sub-
squares k, K’

Tya = [ky, by +1] x 277 71 [kG &) + 1]% U [a, ko + 1] x 277 72 [R), &) + 1%,
and the action of Ty divides Tya into 4 rectangles of horizontal length 1/D belonging to 4 different
subsquares. As before, T3 just shuffles them into new locations.

The same happens when cons1dcr1ng (T%)~t: if p <1 and a is given by (4.8 . then (T°) a is still a
rectangle of side 272(P*+1) x 2- 200" ’1)i while for p’ = 0 it is split into 4 rectangles with vertical size
equal to 1/D.

In particular, starting from two squares a,a’ of side (272PD)~2, for ¢ > p the set (T%)%a is made
of disjoint rectangles whose horizontal side is D=1, and (T%)~9a’ is made of disjoint rectangles whose
vertical side is D~!. Hence if the masses of (T°%)%a, (T°)~% a’ inside ; are m;(q), m}(—¢'), then by
Fubini

L2((T*)%an (T°)~ ZD mi(qQ)mi(—q).

In order to prove the strong mixing it is enough to show that

L2 (a Lo L2(d
D (g » £

mi(q) — q,q — oo.

Actually, we will show that the above convergence is exponential, which implies that the mixing
is exponential. We prove the above exponential convergence for m;(q), the other being completely
similar.

Once (T%)%a has become a rectangle of horizontal side 1/D, the distribution of mass by T* is
computed by the action of the following matrices on the vector (m;);:

1. the matrix Ay corresponding to the map 77,

(Al)élé = } {68/64_60([1) U= 0527"'5

Sprery +0pe '=1,3,...;

2. the matrix Ay corresponding to the map 75,

(AQ)@/@ _ (5@ A + 5@/(g+1) f/ = 0, 2, ey
(5@1(5 1+ Opg 0 =1,3,...;
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3. the permutation matrix Az corresponding to T5.

Being the Markov process generated by the matrix P = A3AsA; finite dimensional, exponential
mixing is equal to strong mixing, and we prove directly that P has a simple eigenvalue of modulus
1 whose eigenvector is necessarily the uniform distribution (1/D?,1/D?,...): in particular this gives
that P is aperiodic (Definition and Proposition [3.15). Indeed, for v € CP one considers the
functional |v|, and by simple computations it holds |Asv| = |v| and

|Ajv] = |v| Hf vp=wvp4q for £=0,2,...,

|Agv| = |v| iff vy =weyq for £=1,3,....
Hence the unique v such that |Av| = |v| is v = (1/D?,1/D?,...), and 1 is a simple eigenvector. [
Remark 4.11. As in Remark [£.7] one could let the Bakers map to act during the time evolution of

X;, but in this case the distance in L>L! would be of order 1. The problem is that the maps T, T»
are acting on the whole set K = [0, 1]?, and the vector field b§ — b; is of order 1 as in ([4.4).

4.4 Proof of the density of strongly mixing vector fields

We are now ready to prove the density of strongly mixing vector fields in ¢/, which implies the statement
by Corollary It will be obtained through the following steps.

1. Let b € U: by the very construction of the set U (Proposition 7 we can assume that b €
L BV,. Fix e > 0.

2. By the continuity of translation in L', we can take 0 < § <1 such that defining
b= Y t €0,30),
55b(—36)/(1-35) T € [36,1],
it holds
€

B —b|, <
[ ey, 1

Since .
| Tot. Var.(b%)|| oo = 1_736||Tot.Vam.(b)||Oo
then b° € U. Clearly we can also assume that b° is compactly supported in K.
3. Use Theorem to approximate b in [36, 1] with a vector field b € L° BV, C U such that

€
167 =0l < 7,

4
and such that its RLF is a permutation of squares of size D~!. We can assume that
1
D> —. 4.9
> € (4.9)

4. Apply Lemma together with Proposition to b for t € [2d, 1] obtaining a new vector field
be%¢ € Lg° BV, C U such that

1 €
ed _ pede < &
69 6%y, <O 5 ) < &

for M =2 >> 1, and such that its RLF is a single cycle of squares of size (DM)~?.
5. Finally, apply Proposition m to b°9¢ in t € [0, 1] obtaining a strongly (exponentially) mixing
vector field b¢* € L$° BV, C U such that
1 €
be&c _ beécs <O — e
|| I < (5D> <

by using (4.9).

We thus conclude that for every b € Ly° BV, and € > 0 there is a vector field b° € Lg° BV,
exponentially mixing such that
16 =0%L;, <e

which is our aim.
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5 Permutation Flow

In this section we prove the key tool of this paper, namely the approximation in L' of any BV vector
field with another BV vector field such that its flow at ¢ = 1 is a permutation of subsquares, i.e., it
is a rigid translation of subsquares of a grid partition of K = [0,1]2. The approach is inspired by
[Shnirelman], with the additional difficulty that we need to control the BV norm of the approximating
vector field. We will address also the d-dimensional case, explaining the additional technicalities needed
to prove the same approximation result in the general case.

This section is divided into two parts: in the first one we collect some preliminary estimates which
will be used as building blocks in the proof of the main theorem, while in the second part we state
the main approximation theorem and give its proof.

5.1 Affine approximations of smooth flows

The next lemma is almost the same of [Shnirelman]. In order to follow the original Shnirelman’s
Lemma we require the subrectangles in the next lemma to be dyadic (i.e., their corners belong to
a dyadic partition, see Remark however), but we notice that the proof of the main theorem
works in the same way just asking subrectangles with rational coordinates to be mapped affinely onto
subrectangles with rational coordinates. At the end this section we will address the same lemma in
the general case d > 2, which in the original paper is not proved.

Let T be a measure-preserving diffeomorphism 7" : [0, 1]2 — [0, 1]? of class C® and such that 7' = id in
a neighborhood of 9]0, 1]2. Assume that it is close to the identity, i.e., there exists § > 0 sufficiently
small such that ||T — id||cx < 4.

Lemma 5.1. There exists N € N, N = 2P and a path of measure-preserving invertible maps t — oy
piecewise smooth w.r.t. the time variable t such that oo = T and o1 maps arbitrarily small dyadic
rectangles P;; € N x N% = Kn (meaning that their boundaries are in the net Ky ) affinely onto dyadic

rectangles Pij € Ky.
Moreover, the map o is of the form

gy = To §3t1[0,1/3] (t) + C3t—1 oT o 51 1[1/372/3] (t) + N3t—2 © Cl ol o €1 1[2/3)1] (t) (51)

where &€, : [0,1] x [0,1]* — [0,1]? are piecewise smooth and ¢ : [0,1] x [0,1]2> — [0,1]? is smooth,
so that for every t € [0,1], the map oy is piecewise smooth on each subrectangle k and it extends
continuously on K.

Finally, the space differential Doy of oy—1 is a constant diagonal matriz in each subrectangle.

The number N is used in the next results in order to have that the perturbation is arbitrarily
small in L%’I.

Proof. The proof is given in 3 steps:

1. first by an arbitrarily small perturbation of the final configuration we make sure the area of the
regions which will be mapped into rectangles is dyadic;

2. secondly we perturb along horizontal slabs in order to have that vertical sections of the slabs
are mapped into vertical segments;

3. finally we perturb vertical slabs so that the image of particular rectangles are rectangles and
vertical segments remains vertical segments.

The composition of all 3 maps with T" as in (5.1)) will be the movement ;. We will use the notation
0,112 3 (21, 22) = T(z1,22) = (21, 22) € [0,1]?

to avoid confusion between the final coordinates and the initial ones. When piecing together maps
which are defined in closed sets with piecewise regular boundaries, we will neglect the negligible
superposition of boundaries for simplicity: this slight inaccuracy should not generate confusion.

Step 0: initial grid and perturbation. For Ny = 2P° > 1 define the horizontal and vertical slabs

Hj:[071]><27p0[j_17j]a W:27p0[i—17i]><[0’1]’ iajzla'”azpo'
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The image of the horizontal lines
x1 = T(z1,22)

can be written as graphs of functions
21— g(21,22),

and divides every vertical slab V; into Ny = 2P° parts
Gy = {1 =127 <2 <2770, g(a, (G- 1277) < 2 < g, 277 |

Let ¢ : [0,1] — [0,1]? be a measure preserving flow, moving mass across the boundary of @;;:
we can assume w.l.o.g that the mass flow ¢;; ;- across the boundary from @;; to @;/ ;s occurs in the
relative interior of 0@;; N Ow; ;». The measure preserving condition requires that

bij,i-1)j + Pij,i+1); T Pigaci+1) T ijag—1) = 0.
Set T" = (1 o T and consider the new curves
21+ ¢'(21,m2), Graphg =T'([0,1] x {x2}).

Let @;; be the new regions

~ 1
w.

i = {(i — 12770 <2 <277, g (21, (- )277) <z < 9’(217]'27"“)},

whose new area is
L2(@};) = bijigi-1) + Pij,iti+1)-
Starting with @};, we move a mass ¢11,12 < 27P°7P1 < 1 so that
L2(@],) =27P0 Pingy € 27PN,
Hence a mass —¢11,21 is flowing to the region @s;. Assuming that we have
L2(@fy) =27P0 Piny € 27PN,
and that the mass flowing by ¢;1 2, @1, (i+1)1 i < 27P1, we consider two cases:
L if ¢1 (3411 € 27707P1[0, 1), then we flow a mass ¢(;41)1,(i+1)2 € 277°7P*[0,1) so that
L(@(;11y1) = 277 Py € 277N,
and the flow to the right is then
Biv1)1,(i42)i = Pt (i+1)i — P+, (i+1)2 € (=1, 1)27P07 P
by the balance and because they have different sign;

2. if @1, (i41)1 € 27P07P1(—~1,0), then we flow a mass ¢;11)1,(i+1)2 € 277071 (—1,0) and obtain the
same estimate.

The last term WY, ; is computed by conservation: indeed
> ¢inia =0,
i

and then

270 —1

LAT([0,1] x [0,277°]) = 2770 = 3 " L3(@}y) = 27777 Y ngy + L2 (@)
=0

so that
2P0 1

£2(‘D§V01) — 9—Po—p1 (2171 _ Z 77,1'1> € 9~ Po—PIN,

1=0

The estimate of ¢n,1,n,2 is automatic from the flow ¢, —1)1,np1-
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The above procedure is then repeated for each region
No
T([0,1] x 277 — 1,4]) = | J @35,
i=1

and the flow across each boundary is < 27P0~P1: the conservation of the measure of T'([0, 1] x [0, j]277°)
yields that the last element Wy, ; is again dyadic.
From now on we work with the map 77 = ¢y o T

Step 1: perturbation along horizontal slabs. Consider the curves
29 > (T')fl(zl, 22),
which can be parameterized as
e f/(Z1, .732)

being 1" close to the identity in C'. In each H; we can determine uniquely the value

j27v0
r1,5(21) = 7[ f(21,2)dxs, (5.2)
(j—1)20

and since T” is close to identity, again every map z; — x1,;(21) is invertible: denote its inverse by

21,5 (21).-
In particular, we consider the values

‘Tlvij = LEL]‘ (Z.27p0). (53)
By (5.2) it follows that
(21,05 — m1,6-1)7)2 77 = L2((T") (@) € 277N, (5.4)

so that we deduce that the elements x; ;; are dyadic, i.e., 21 ,;; € 277'N (being z1,9; = 0).
Consider the family of ordered curves parametrized by x; € [0, 1]

[O, 1] X [j — 1,j]27p0 > t,l‘g — fJ{7t(I1,$2) = (1 — t)Il + tf/(ZLj(Il),IQ),

and let &, : [0,1] x [j —1,7]27P° — [0,1] x [j — 1,4]27P° be the unique measure preserving map
mapping each segment {x1} x [j — 1,7]277° into the image of (f],(x1,%2),22), T2 € [j — 1, j]27F°.
This map is uniquely defined by the balance of mass, which reads as

(&5,6)2(z1,22)
/ O} rn, w)h = 25— (j — 1277 55)
(G—1)27r0
Being fj’-,75 close to the identity, &; ; is smooth and close to the identity.
Let & : [0,1]2 — [0,1]? be the measure preserving map obtained by piecing together the maps
&;.+. By construction the map T" = T o & maps each vertical segment {z1} x [j — 1, j]277° into the
vertical segment

{z15(21)} % [9(21,5(21), (G = 1)277°), ¢/ (21,5(21), j277°)].
Step 2: construction of the affine maps. The next step is to rectify the pieces of curves
[’L* lai]27p0 221 Hg](zl) :gl(zl7j27p0)7 (56)

which are the horizontal slab of the sets (IJ;] Fixing a vertical slide v;, one considers the unique
measure preserving map ;¢ : [¢ — 1,4] x [0,1] — [¢,¢ — 1] x [0,1] such that the segments (5.6) are
mapped into vertical segments and such that maps the curve g;([z — 1,4)277°) into the curve

i27P0

g is(z1) = (1= )¢/ (21,5277°) + t][ o (w27 Vdw
(i=1)27r0 (5.7)

= (1 —1t)g'(21,7277°) + tza;.
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Figure 6: The action of o; in Lemma first the map & moves the mass in H; in order to map
the vertical green segments into the counterimages of the vertical red segments; then the map T acts
and the horizontal black boundaries of H; becomes the black curves, but vertical segments remain
vertical; finally the action of 7; rectifies the horizontal boundaries, while keeping vertical segments
vertical.

In each dz;j this map is uniquely determined by the balance

(ni,t)2(21,22) , ,
/ (97,45 (w) — gtﬂ-(j_l)(w))dw = constant,
(i—1)2—70

while the vertical coordinate is affine in each vertical segment.
Let 1 : [0,1]2 — [0, 1] be the measure preserving map obtained by piecing together the maps 7; ;.

Conclusion. Up to a time scaling, the map we are looking for is
oy =T o0& 11(t) + 10T 0§ X (t) +ne—20C 0T 0 &1 5(1).

It is clearly measure preserving and at ¢ = 3 it maps affinely the rectangles with dyadic coordinates
Pij = [1,-1)j Tr45]) %[5 — 1,5]277°

into the rectangles with dyadic coordinates

Pij = [Z —1, i]2_p° X [Zg’i(j,l), Zg’ij].

The values x4 5, 2245 are given by (5.3)), (5.7) and belong to 277*N. Thus N; = N is the number of

the statement.

The fact that oy is piecewise smooth and it extends continuously to the boundary of each F;; are
immediate from the construction, and its smallness follows by observing that as pg,p; diverge the
maps &, (,n converge to the identity. O

Being the rectangles dyadic in the grid N x N%, then we have the following

Corollary 5.2. Every subsquare of the grid N x N% is sent by o1 affinely by a diagonal matrixz onto
a subrectangle with rational coordinates.

Remark 5.3. The previous lemma also tells us that the map oy is piecewise affine, in particular there
exists N = 2P1 € N refinement of the grid such that o7 maps each k subsquare of the grid N x N%
affinely by a diagonal matrix onto a subrectangle ¢ with rational coordinates. It’s false, in general,
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that ¢ has dyadic rational coordinates as stated in [Shnirelman]. More precisely, the previous lemma
states that each

Pyj = 21, (i—1);, T1,45] ¥ [7 — 1, 5]27F°
is sent into

Py =1[i = 1,i]277° X [29,5j-1)s 22,35,

where T1,(i—1)j> L1,ijy 22,i(j—1)» #2,ij are dyadic. Call Az = T15 — L1,(i—1)j5 and Az = R2,ij — 22,i(j—1)-
Then by (5.4) Az = 27P'n;; with n;; € N. Up to translation the perturbed map oy (5.1) can be

written as
2*200 0
giLp,,.— Az .
I < 0 2Po (Az)>

Take a subsquare k = [h — 1, h]27P* x [k — 1,k]27Pt C Pyj, then ¢ = o1p,; (k) = [27’)0 2po—P1 (Az)}7

MNij ’

which is dyadic only with further requirements on n;;. For a more detailed analysis consider H; and
call Aw; = 15 — 2 (;—1); = 27Ptn;j, where i = 1,...2P0. If we assume that every subsquare of the
grid N x Nﬁ is sent into a dyadic rectangle then we find the conditions

— 9mj -
ng; = 2", Vi, j.

This condition tells us that, being measure-preserving,

2—p0+p1 —Mij 0
JlLPij: 0 2p0—p1+mij )

that is, all possible matrices are of the form

G2 G2 61 69

This condition is not compatible with the fact that o7 is an approximation of the original map T,
which has been chosen to be close to the identity.

Remark 5.4. From the previous lemma it easily follows that, if N is the size of the grid, then every
rectangle contained in the unit square K is sent by the perturbed flow into a union of rectangles.

Remark 5.5. To use Theorem we observe that in our case the change of variables ¢ is given by
the flow X;. In particular, since X; is close to the identity with all its derivatives, the costant C'x,
given by the previous theorem, is Cx, < (1 +6)%~! (d = 2 here).

5.1.1 The d-dimensional case

The analysis of the general case can be done as follows.
The starting point is the following approximation assumption in d — 1-dimension.

Assumption 5.6. If the £~ !-measure-preserving diffeomorphism 7 : [0,1]471 — [0,1]?7! is suffi-
ciently close to the identity and equal to id in a neighborhood of 9[0, 1]~ !, then there exists N € N,
N = 2P  and a measure-preserving piecewise smooth invertible map o close to T' such that T o ¢ maps
dyadic rectangles P;; € w onto dyadic rectangles Pij € W by a diagonal linear map (up to a
translation).

The above assumption is true for d = 3: indeed if o; is the map of Lemma and T is any
L2-measure-preserving diffeomorphism T : [0,1]? — [0,1]?, as in the previous assumption, then o =
T 00— does the job.

Now let T : [0,1]¢ — [0,1]¢ be a diffeomorphism sufficiently close to the identity and equal to
the identity near 9[0,1]% (Figure . We will not address the perturbation ¢ used to obtain dyadic
parallelepipeds (Step 0 of the proof above), being the idea completely similar to the 2d-case. We will
also neglect the time dependence (i.e., how to split ¢ € [0,1] into time intervals where the different
maps are acting), because it is a fairly easy extension of the 2d case.

Step 1. Consider the curves
za = TNz, 2q).

The first step is to perturb T to a map T’ in order to have that the above curves are segments along
the z4-direction in each slab xq € [kq, ka + 1]/N (Figure [§).
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Being T close to the identity, the surface T—!({z4_1 = const.}) is parameterized by x1,...,z4_2, 24,
and then in each strip

1
({,131, R ,LL'd,Q) = const., xg_1 € [O, 1], Tq € [k‘d,kd + 1]N

one can use the same measure preserving map &; defined in Step 1 of the proof of Lemma above
to obtain a perturbation T'= T o £ such that

T ({zq—1 = const.}) N {xq € [kq,ka +1]/N}

is independent of x4, in the sense that it is the graph of a function depending only on z1,...,z4_2
times the segment =4 € [kq, kg + 1]/N.
Disintegrate the Lebesgue measure £% as

LdL{xdE[kd,derl]/N}:/{a(xla---7xd—27zd—1)d$1dl'd—2dxd dzq-1,

according to the partition T‘l(zd_l = const) (the density a does not depend on x4 because the
surfaces contains the segments along x4), and consider the 2-dimensional surfaces

T_l(zd,l = const) N {x1,...,24_3 = const}.
We use the same map &; of Step 1 of the proof above to rectify the curves

Zg = f(x1, ..., 2d-3, 2d—2, Zd—1} 2d) = (T)_l(zdf%zdfl = const)
N{z1,...,xq-3 = const} N {zq4 € [kq, kq + 1]/N}.

The main difference w.r.t. the maps (5.2), (5.5) is that instead of the Lebesgue measure we use the
density a(xl, e Lm0y Zd—1)- Eventually, the composmon of the two maps above gives a new map T
such that (7')~ (zd 2, 2d—1 = const) is a (d — 2)-dimensional surface made of the graph of a function
depending on x1,...,x4_3 times the segment x4 € kg, kq + 1]/N.

The argument is then repeated in the d — 2-regions ()~ (z4_2, Zd— 1= Const) (i.e., disintegrate the
Lebesgue measure and shift along the z4_3 direction to rectify (1)~ *(z4—3, . .., z4—1 = const), and so
on until we obtain that a new map 7" such that

(T ({z1,..., 241 = const.}) N {md € [ka, ka + 1]/N}

is independent on x4. This means that lines along the z4 are mapped back into N segments of length
1/N along 4.

Step 2. Differently from the 2d case, it is not enough to perturb the vertical slab as in Step 2,
since the sets (T")~1({zr = const.}) are not of (piecewise) the form {z} = const.}. Observe however
that in each slab {z4 € [kq, kg + 1]/N} the map

(.131, e ,Z‘d_l) = (T,éd)_l(zl, .. .,Zd_l)

is well defined, where (T’),;d1 denotes the first (d — 1)-components of (7”)~! restricted to {xy €
[kq,kq + 1]/N}: we have used the property that segments along z4 are mapped back into segments
along xg4.

We use Assumption to get a map oy, : [0,1]77! — [0,1]?7! such that Ty, = Ty, o o), maps
affinely parallepipeds of a grid N¢~1/(NN;), N; = 2P', into cubes of the same grid: we can take
N;j > 1 in order to be independent of k (Figure E[)

Hence the map T}/ maps parallelepipeds of the form

1:[ kl,k‘ +1 [kd,kd+1]
Pl N

into regions for the form

[, i + 1]
24 € [g(z1, ..., 2a—1,ka/N), g(z1, ..., x4-1,(ka + 1)/N)], 2 € HW ,
i=1
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T

) Zz1 = const
Tﬁl(zl,ZQ) !

29 = const

]

T3 E [k‘3, ki

Figure 7: Starting point: the map T : [0,1]*> — [0, 1] maps the slap z3 € [k3, k3 + 1]/ into a 3d-set
with purple intersections, and T~1(z1, 29) is the red curve at the left.

, x1 = const
7 1’3€[k3,k3+1]/N

Figure 8: First move the mass in the yellow 2d-rectangle x; = const so that its intersection with
T~Y(z) is vertical in w3 € [ks, k3 + 1]/N, next move the mass along T~!(z2) so that T1(21, 2z2) is
vertical in 3 € [ks, k3 + 1]/N.
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(I)~too

(T")~(22)

Figure 9: The recurrence assumption yields a map o which maps affinely subsquares into rectangles:
in the picture it is shows how it acts before the composition with T” (see also Figure @

z1 = const

N\ g

L P .

29 = const Vs

Figure 10: The last step is to map the subcubes deformed in the direction x5 into parallelepipeds such
that the Lebesgue measure is preserved and the map G is of triangular form: these conditions imply
that T'= G o T is affine.
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and up to a translation it is a linear diagonal map in the first d — 1 coordinates and segments along
x4 remains along x4.

Step 3. Piecing together the maps T,;’d , we obtain a measure preserving map T close to T with
the properties listed at the end of the previous step. We will use the fact that it is affine in the first
(d — 1) coordinates to use a map similar 7 of Step 2 of the proof of Lemma to rectify the set

T({q € [kayka + 1]/N}) N {z; € K, K, +1]/(NNy),j=1,...,d— 1},

g

It is defined as the unique measure preserving map G(z1,. .., 24—1) of the form

G(Zl, .. .,Zd_l) = (Gl(zl, .. .7Zd_1)7G2(ZQ, .. -,Zd—l)a .. .,Gd_l(zd_l),G(Zl, .. .,Zd)).

Note that since z4 enters in the last component, segments along z; are mapped into segments along
24, and the triangular form of the map assures its uniqueness (Figure .

The last part of the analysis is to deduce that if a measure preserving transformation T=GoT:
[0,1]7 — [0,1] is such that T is of triangular form then it is the identity: we have rescaled every
rectangle to a cube by linear scaling.

If the map has this triangular form, we conclude that the measure preserving condition reads as

d
H&ﬂ(m“ . ,xd) = 1,
1=1

which together with

gives 0;T;(x;, ..., xq) = 1, i.e., that the map is the identity.

5.2 BV estimates of perturbations
Let X; : K — K be a smooth flow of measure-preserving diffeomorphisms and assume
1X: —id]lgs, [| X¢ = id]les < g, (5.8)

with p < 1. Call T(x) = Xy—1(z), and let N = 2P° € N be the dimension of the grid given by Lemma
In this section we compute the BV norms of the perturbations of the form constructed in
Lemma .11

We first address the action of the map (; on X (¢). Define the perturbed flow

t— X, () = ¢ o Xy(x).

Lemma 5.7. There exists a perturbation (; as required by Step 0 of Lemma such that if v is its
associated vector field then

1Ge = idllay + 2770V ¢ = idlle + 27270V Gelle, < O(1)277,
[vllco + 2770 Vulle, + 272 [ V2u]co < O(1)27F1.
for p1 sufficiently large.

Proof. The request of Step 0 of Lemma is that the flow across the each region &;; is 0 (plus the
dyadic condition on the new region @;;). Hence the problem reduces in finding a suitable incompress-
ible flow with a given boundary flux: we will construct a flow generated by a vector field constant in
time.

Consider a function v, on Ow;; such that

e its support is at distance 27722 from the corners of Wij,
e the integral on each of the regular sides is the required flux ¢;; 7/,

o [|vn]loos 27P0| 00 ||, 27 2P0 0| < O(1)27P1, where v/, is the derivative of v,,.
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Its existence follows from the fact that w;; is close to a square of side 277°, being X close to the
identity. The last point is a consequence of the fact that |¢;; ;| < 27P07P1,

The integral of v on dw;; is a potential function p, which is constant in the 2770 ~2-neighborhood
of every corner and such that

||p||C07 27ko ||pIHCO ) 2—2170 Hp//”Cm 2—31)0 ||p”/HCO < O(1>2_p0_p17

where p’, p” are its first and second derivative.
Extend p to a C2-function inside W;;: since this extension can be required to vary in a region of
size 277072, we get

o 2—Po—P1 _
Iplle, = O@2777F, [[Vplle, < O) 5= = 01)27",
9 2~ Po—p1 _
IV2pllcy < O() 55— = O(1)27 7.
2—Po—P1

[V3plle, < O(1) == O(1)22P0 P,

2—3po—

In particular the vector field v = V1 p satisfies the statement, and if ¢; is the flow generated by v then
the same holds by the estimates

¢ —idllco < lelleyt. 1VG —idfleo < el¥lent 1,

IV2¢(#) o < elVPleot || V2] 16, | VC 12,
with p; > 1. O]

Corollary 5.8. If b is the vector field associated with X{ = (; o X3, then
167 = belle, < O(1)2%0 7P
Proof. From the formula
V(t,@) = b(t, ) = v(x) + (VG (t, ¢ (2)) —id)b(t, @),
where v(z) is the time independent vector field associated with ;. Hence from the previous lemma

1°(t) = b(B)llcr < llvller + O = id]lc2 [[bller
< O(1)2%P07 P, O

Define the perturbed flow ¢t — X, as

X (3}) o X/(tvoagt(x)) t € [
CUTX Lt L w(x) e [,

=)
—_ D=
Pt

where & and 7; are given by formula (5.1) of Lemma (here since the map (¢ is not needed we
rescale &, with ¢ € [0,1/2]) and

w(z) =m oT’ogé(I), T =¢ oT.

Call b, the vector field associated with X;.
Lemma 5.9 (BV estimates). There exists a positive constant C = C(p) such that

Cp

N 7
Proof. From Corollary we have that (for p; > 1)

(5.9)

b= bller < 022" < 2,
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so that we are left to prove (5.9) with &’ in place of b:

- C -
16 = b e (1) < Wp, | Tot. Var. (b, )| < Cp.

We will prove the above estimates for ¢ € [0,1/2], i.e., only for X] o &, being the analysis of
X'(t,1,n(t, 1, w(x))) completely analogous.
We start by observing that there exists a constant C' > 0 such that

I€lloo < =
Indeed, the map & = &Ly, is given by the formulas (see Step 1 of the proof of Lemma

& (w1, m0) = fiop(21, &l (21, 22)) = (1 = 2)1 + 2t f' (21,4(21), €5 4 (21, 42)),

&% 4 (z1,32)
/ aivlfi/,Qt(x17w)dw =x9 — (1 — 1)2_p°,
(

i—1)2-Po

Since it holds by (5.8])
1f'em—idllcs, |21, —idflos < O(p), (5.10)

then
i 2t (21, 0) — 21]lcy < O(p).

Hence the function

&2
Pt o= [ 0u flplon widu — oo+ (i - D27
(i—1)2-P0
satisfies
&2 10)
P28~ (@ -l = | [~ @ntatorw) - | < D,
(i—1)2—Po Co
By the Implicit Function Theorem we deduce that
; O
e — ozl < X,
and in particular
€5, ¢llcos [[VEs illco < N
Similarly
; @
l€t — e < 22,
and then o)
1€ clles, IVEL llow < 2.
We next estimate the total variation of the vector field
v =& (@)
We will use the following elementary formulas:
0. (21, 12) L (5.11)
1 1,42) = — .
’ 02, X5 (21, 22(21, 22))
0z (X1) "' (21, 22(21, 22))
89: ! ) = = : : ’ X ’ ) = ) 5.12
oS (21, 22) 9. (X2) (21, 22(21,2)) 2(21, 22(21, 22)) = 22 (5.12)

1
Jc(iiz:lp)c;ﬂ)o 0z, f'(21,1(21), w)dw

8w1z1 =
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from which it follows

> 0 (200, 22) 0, 200 — Ulpiay + D 1020 f (201, 22) |22 (11,) < C||Tot. Var.(b) (K)][oo-

Indeed

102, £ (241, 22)02 210 = Ul < 19,21l o010z, £ (21, 22) = Ul
+ 102,261 — U1 (m)
< C)0:, f'(zi1, x2) = |1 (m,)
i27P0

+CH][ azlf'(ziyl,:cg)dw— 1
(i=1)2-70

K3

L1(H;)
< OO, (20, 22) = UL,

therefore, by (5.11)), we get
D 0= (zi0,w2) = Ul + Y 100, (200, @2) | 11 (a1,

1
<CIIVIXt = TId)||: < C’/ Tot.Var.(bs)(K)ds < C||Tot.Var.(b)(K)||sc-
0

By the Implicit Function Theorem we recover the following estimate for |V€|:

. 1P
VE| < c(amf%zl,i(xl),@) T /( 102, F/ (o1, w)lduw

i—1)2-P0
IV s, &)l (1€ + V] + |€|V€I))

< 0o, (). &) — 1)+ 2.

Hence

|VE|lL < C||Tot.Var.(b)(K)||o + %.

For the jump part, we estimate the vector v; at the boundaries of H;: from the definition
&(m1, (i — 1)27P0) = (1 — 2t)zq + 2tf (21,4 (21), (i — 1)277°),

ft(.’El,iQ_pO) = (]. — Qt)(El + 2tfl(21’i($1),i2_po),

We consider only the second one, being the analysis of the first completely similar. Differentiating
& (21,i27P0) w.r.t. ¢ and using the definition of 21 ;(x1) we have

€u(a1,i2770) = 2(f' (21,4(21),i277°) — 21)

i/N
= 2(f/(21,i(x1)ai2_p0) —][ f/(Zl,i(%),w)dw).
(i—1)/N
and then
_ i/N
for /NI <2 [ (0 i) w)]du
(i-1)/N

i/N
< C’/ |8Z2(X1)71(Z1,¢($1)722(21,i($1)7w))|dw-
(i—1)/N

Hence, by (5.10) and from the definition of z9(21,z2) in (5.12)) we have that

[ (z1,1(21), z2(21,0 (1), 22)) = id| ,, < %a

so that using
{(z1,i(@1), 22(21,6(21), 22)), (21, %2) € H; } = X1(H;),
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we have
1
/ ({1, i/N)|day
<c 0., (X (1), 20(214 (1), 22)) | drd 5.13
/ / D) (eri(@1), (a4 (wn), 22)) | drr (5.13)

SC/ |822(X1)7 (2’1,22){612’.
X1(H;)

Again, since the change of variable which associate t, 21 with its position w; on the jump line [0, 1] x
{i/N} is given by
t,x1 — wy = (1 - 2t).’IJ1 + Qtf/(Zl 1(1‘1) Z/N)

up to a constant 1 + O(p)/N (again by (5.10)) the first integral in 3) corresponds to the jump
part of &(xy1,i/N) on [0,1] x {i/N'} when extended to 0 outside H;.

The same estimate holds for the jump of & (z1, (i — 1)277°) on [0,1] x {(i — 1)/N.

We conclude that

Dy < CZ/ 0.,(X1)" (21, 22)|dz < C||Tot. Var. (b)] .

We thus deduce

Tot.Var.(vs) < C||Tot.Var.(b)]|eo + %

Collecting all estimates we have:
L' estimate. Fix ¢t € [0,1]. From (2.2) it follows that

(o) — (o) < elloe VXK )] = S

BV estimate. Again from
Tot. Var.(b; — b;) < Tot.Var.(VXt(Xt_l(x))ét(f(t_l(x))),
so that we have to compute the total variation of
VX (X, (2))6 (X, (@)
By using Theorem [2.4] we have

Tot.Var. (VX (X, 1)&(X; 1)) < Lip(X,)Tot.Var. (VX (&71))
< Lip(X;)Tot. Var.(VX,)[|€]l oo
+ Lip(X})||V X/ || oo Tot. Var. (& o &)
= Lip(X;)Tot.Var.(VX)[|€ ]l oo
+ Lip(X;) | VX || oo Tot. Var. (v;).

The first term can be estimated by

Tot.Var.(VXt)H{'tHoo < %7
while the second term is controlled by
IV X}||oo Tot. Var.(v,) < C||Tot. Var.(b)||oo + %
This is the statement. O

Remark 5.10. The above estimates can be obtained also for the d-dimensional case, since the maps
used in that case is a composition of maps of the 2d case: the estimates are completely similar (but
a lot more complicated).

Remark 5.11. We notice here that the constant C' in front of the total variation is larger than 1:
this fact is one of the reasons why we need to work in the Gg-set U.
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5.3 BYV estimates for rotations

In this part we address the analysis of rotations: these are needed because the map of Lemma [5.1
maps affinely subrectangles into subrectangles, while we need squares translated into squares.

The approach here differs from the one of [Shnirelman], because the rotations used in that paper
have a BV norm which is not bounded by the area (Lemma and instead it depends on the size
of the squares (actually it blows up when the size of the squares goes to 0).

Let N = 2P0 py € N, and o7 : K — K be respectively the dimension of the grid and the map given
by Lemma [5.1

Lemma 5.12. There exists M € N and a flow R, : K — K invertible, measure-preserving and
piecewise smooth such that the map o1 o Ry translates each subsquare of the grid N x Nﬁ mto a
subsquare of the same grid, i.e., it is a permutation of squares.

In particular note that V(oy o R;) is the identity inside each subsquare x.

Proof. Fix k a subsquare of the grid N x N% and call ¢ = o1(k) its image. Since oLk is an affine
measure-preserving map of diagonal form, then, up to translations,

o1(x) = ()(\)1 ;\)2) x, Vz € K,

where A1, A2 € Q5o and A\ Ay = 1. Therefore the rectangle ¢ has horizontal side of length
vertical side of length ﬁ Decompose now the square x into rectangles R;; with ¢ = 1,...

A
ol
L
i=1,..., i with horizontal side of length lﬁl and vertical side of length lﬁ? The numbers %, i eN

1
177

and
and

are chosen such that \; = %, ie,o1(Rij) =R
of an angle 7.
In each R;; we perform a rotation given by the flow

where Rilj is the rotated rectangle counterclockwise

R =x"toroy,

where x : R;; — K is the affine map, up to translation, sending each R;; into the unit square K,
namely

X0

XT = (lé N) z, V€ Ry,
l2

whereas r; : K — K is the rotation flow (2.5)). Finally define R; : K — K such that R;_r,,= RY.
This flow rotates the interior of each rectangle R;; by 7/2 during the time evolution.

Now we choose M € N large enough to refine the grid N x N% in such a way that for every
subsquare £ € N x N, Vi, j, each rectangle R;; C  is the union of squares of the grid N x N4> and
each rectangle ¢ = o1(k) is union of subsquares of N x N ﬁ, which is possible since the vertices of the
squares and rectangles we are considering are all rationals.

We claim that the map o1 0o Ry : K — K is a flow of invertible, measure-preserving maps such that

o10Ry : K — K is a permutation of subsquares of size -7 up to a rotation of 7/2. Indeed, fix R;; and

1
assume that it contains a;; subsquares s/ of size == x - along the horizontal side and b;; subsquares

J MM
along the vertical one. The rotation R; stretches each square n?j into a rectangle rlhj whose size is
11 I . 1 AL . h - . 1 1
35 X 36T e xoar X ar- Now it is clear that o1(ri;) is a square of size 37 X 77

The Jacobian of Ry is
_ 0 —Xo
JRy = ( A0 ) .
h
ij

At 0 0 =X\ (0 -1
0 Ao A1 0 ~\1 o0 )
i.e., a rotation of 7/2.

Define then the map R; as

Thus the composition of the two maps acts in each square 7% as

D —7/2
Rt'—nh.: Rt ory / )
ij

/ h

+; of =m/2: now the map has Jacobian id in each square
/—@Z This is the map of the statement. O

where r; ™% is the rotation of the square x
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Remark 5.13. A completely similar construction can be done in dimension d > 3: in this case, in
each cube xk € N?/N the piecewise affine map o has the form (up to a translation)

J:diag(/\l,...,/\d), Al)\g...)\dil.
Hence the subpartition of x is done into parallelepipeds £; X £5 X --- X {4 such that

livq
17

A\ =

The action of o transform each of these parallelepipeds into the new ones #5 X f3 X - - - X €4 X £1, which
is the range of the rotation

1 0 0 O 0 -1 0 0

0 -1 0 0
0 0 -1 0 0 1 0 O 1 0 0 0
: — i S ERRRRR i :
' 00 --- 0 -1 0 0 1 0
Lo 0 0 00 ... 1 O 0 O 0 1

(The above formula is the decomposition into 2d rotations.) Hence, as in Lemma above, a rotation
of the parallelpipeds ¢; X --- x ¢4 and a counter-rotation of the subcubes of the parallelepipeds gives
the transformation.

5.4 Main approximation theorem

We are ready to prove our main result.

Theorem 5.14. Let b € L*>°([0,1]; BV(K)) be a divergence-free vector field and assume that there
exists 6 > 0 such that for L'-a.e. t € [0,1], suppb; CC K°. Then for every ¢ > 0 there exist

0',C1,Cy > 0 positive constants, D € N arbitrarily large and a divergence-free vector field b¢ €
L (]0,1]; BV(K)) such that

1. supp b CC K‘sl,
2. it holds

lb =6 Leo(rry <€ [|Tot.Var.(b)(K)||ee < C1l|Tot.Var.(b)(K)||oo + Co, (5.14)
8. the map X ;—1 generated by b° at time t = 1 translates each subsquare of the grid N x N% into
a subsquare of the same grid, i.e., it is a permutation of squares.

Remark 5.15. Observe that the theorem can be easily extended to vector fields b € L*([0, 1], BV(R?))
such that suppb; C K. We keep here the original setting of [Shnirelman)].

Remark 5.16. By inspection of the proof one can check that Cy, Cs are independent of b. This is in
any case not needed for the proof of the main theorem.

Remark 5.17. A possible approach would be to divide the time interval [0, 1] into sufficiently small
time steps ~ 7 in order to apply Lemmas , and hence to compose the resulting maps as done
in [Shnirelman]|, however by Lemma

|| Tot. Var.(R) (k)] ]so ~ AT%(K)

so that the total variation blows up as the time step goes to zero.
Proof. We divide the proof into several steps.
Step 1. Let p € C(R?) be a mollifier, and define
b = by * pa,
where po(z) = a™?p(£) and o << 1 is chosen such that supp b, CC K.

x
«
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By well known estimates (see (2.1))) we obtain
165 — bl < aTot.Var.(by)(K), Tot.Var.(by)(K) < Tot.Var.(by)(K).

then if o is chosen such that o < , we conclude that

2[|Tot.Var.(b) (K)|]oo

1162 — be||1 < % Tot. Var.(b2)(K) < Tot.Var.(b;)(K)
and we have to prove the theorem for b®. Moreover b satisfies the estimates

(% 1 nio CTL
15 lloo < 5 lbell1, [IV*0 oo < —5 [ Tot. Var. (be) (K)o

From now on we will call b* = b to avoid cumbersome notations.

Step 2. Let us consider a partition of the time interval 0 = to <t; < --- <t, =1 where n € N and
t; = -, where n will be chosen later on. Let us call X; = X (t;,t;_1,2) and X;(t) = X(t,t;_1,)
defined for t € [t;_1,t;]. Then each flow X(¢) is close to the identity with its derivatives, indeed

t
Xt x)==z +/ b(s, X(s,tj—1,x))ds, (5.15)
tji—1
so that
1X5(8) —idller < C(R)(E = tj-1)[|bll o

More precisely, if g is the constant of ([5.8)), there exists n € N such that
I1X;(t) —idllcs, || X —id[les < o, VEE[tj—1,t5], Vi=1,...,n.

Therefore we can apply Lemmato each X, (t) finding N; = 275 dyadic and X : [t;_1,t;] x K — K
with the property that, at time ¢ = t;, the map Xj(¢;) sends subsquares of the grid N x Nﬁ into

rational rectangles with vertices in %. In particular, the eigenvalues of all affine maps o for X i (t5)
J5R
N

belongs to 7;- We can moreover assume that N; = N for all maps X;(¢;) by taking N sufficiently
large. Finally from Lemma [5.9| we have that in each interval [¢t;_1,¢;] it holds
Cp Cp

||b— l;j”Loo(Ll) < N~ | Tot.Var.(b;)|| o < C||Tot.Var.(bt) oo + N~

so that for NV > 1 we have

b= billpe(rry < € ||Tot.Var.(b;)(K)||e < C||Tot.Var.(b)(K)||o + €,

where b; is the vector field associated with X;.
We define t — X; the perturbed flow

X1(t) 0<t<ty,
X2(t)o)~(1(t1) ty <t <ty
X(t)y=<"2 . .
Xi_._l(t)OXi(ti)O-~~OX1(t1) ti StSti+l7
Xo(t) o Xp_1(tn_1)o---0Xi(t1) tnq <t<1.

The map is clearly piecewise affine, and the eigenvalues of each affine piece o belong to ]_[NR' .
gt

Step 3. The map X (1) has the property of sending subsquares of the grid Nx N % into union of rational
rectangles. Let D = N([]; R;)?: we now show that X (1) maps subsquares of the grid N x N4 into
rational rectangles. ~

Let R = Hj R; and assume that the map X (1,¢;41) maps the subsquares of the grid

1

NR Hk:j+1 Ry,
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Figure 11: A square is sent into a union of rectangles by the map X (1).

into rational rectangles. Since X ; maps affinely the subsquares of N x N% into rectangles of the grid

1 1
NXN—- CNXN———,
NR; NR Hk:j+1 Ry

then
1

NR HZ:j+1 Ry

1

XY NxN NxN——— .
g < * )C “NRIT, R

In particular we obtain that

_ 1
X1<N><N>CN><N

NR NR2’

We rename the flow XtD to indicate the size of the grid on which it acts as a piecewise affine map.
Note that the above estimates (as well as the next ones) improve whenever N becomes larger, so that
the size of the grid D can be taken arbitrarily large.

Step 4. To conclude the proof we want to modify the flow XtD slightly in such a way that the new flow
XtD evaluated at ¢t = 1 sends subsquares into subsquares by translations. The key idea is to perform
rotations as in Lemma balancing two effects: one one hand the cost of a rotation is at least of
the order of the area (Lemma [2.6), on the other hand if the squares are too much deformed the cost
is exponentially large w.r.t. the total variation used to deform the square. The idea will be to use
these rotations only when the deformation reaches a critical threshold.

First let us fix kg a subsquare of the grid N x N% and call k; its images through the maps k; =
Xt[;ti (ko). Since each map X;(t;) is affine and measure-preserving on k;_1, up to a translation it can

be represented as
a; 0
0o L

where 0; € Q and |o; — 1], |Ui — 1] < p <« 1, where g is the one given by the partition. Moreover,
being
2D _
VX, (z) =0 (5.16)

whenever x belongs to the interior of the subsquares, we deduce that for the same x
IV2XP ()] < p.

We can also observe that, by (5.15))

|Ji_1|7

t;
/ Tot. Var.(b2) (ko)ds.

ti—1

1 C
1l =
o 1’ = L2(r0)
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By elementary computations one can prove that

Hai—l H;—l’ Smax{a,i}Zoi—H.
3 3 K3

Hence if we have the bound

)

1
3 < (O’j+1'...'0’i+) §4,
Oj4+1 .. 04
then
3 b
§£2(/$j) §/ Tot.Var.(b?) (ko )ds. (5.17)
tj
The idea is to find now a new sequence of times {t;,} C {t;}, j=1,...,n  andi=1,...,n, in which

we perform the rotations of Lemma [2.6[in order to have both the total variation is controlled be the
total variation of b” and the property of sending subsquares into subsquares by translation.
Let us start defining ¢;, = 0 and
til = min TQ,

1
T():{ti>013§<0'1 ---- U,+>§4}
0‘1.....0—7;

Then two situations may occur.

where

1

in [0,1], that is R' : [0,1] x K — K (as in Lemma [5.12) where R'C\;,(z) = 2 and it is such
that XP o R' ;-1 sends subsquares of kg into subsquares of &,,. In this case

1. The set Ty is empty, that is (01 SOt o ) < 3 for all 7. In this case we perform a rotation

XP = XPoR!
b (@) = b7 (x) + VXL o (XP) (@) R} (X o R)™H(x)) € ko
(where we have recalled that all functions can be extended smoothly to kg) and
Tot. Var. (b = b7) (ko) < VXY 2TV (Re (R 1)) (o)
+ VXL [loo | Rl Tot. Var. (VX{7) ()

; 4 1 O(p) 5.18
<|VXtDooDQ(01~.Un+01“.U>+ D3 (5.18)
o 12 O(p)
< HVXtDHooﬁ+ D3

We have observed that R
VEXZ2, (x) =0 for z € ko by (5.16),
so that for ¢t € [tj_1,1;]

t
V2521 < 00) [ 90, K2)1as = S8,

i1
Since ||V)~(tD loo < C by the assumptions that these are sets with small deformations, we obtain
. - o1

Tot.Var.(bP — bP) (ko) < ()

S e
where we have used (5.17)).

2. The set Tp is non empty. Then if ¢;, = 1 the procedure stops and you perform a rotation as in

Lemma in [0, 1] finding

= O(l)EQ(HO)7

O(p)
DS

- ' 1
Tot.Var.(bP — bP) (ko) < ||VXtDHﬁ (01 Ot o ._Un> +

1
< OM)IVXP| /0 Tot.Var. (62 o) ds + 22,
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where we have used (5.17)) and we have estimated the higher order term as in (5.18)).

If t;; <1 we compute

ti, = minT7,
where )
T = {ti > ti, :3< (O’i1+1...0'i+> §4}
Oi1+1..-0¢
If Ty = 0 we stop the procedure and we perform a rotation in [t;;,—1,1] = [0,1] finding, for
te [tilfl, 1]
Tot.Var. (b — 5P) (ko) < [VXP | g — T
ot. Var.(b; — K ——|oy—1. O+ ———
t ¢ 0/ = ¢ D217t1‘0 1t Oig++-0n
O(p)
o (5.19)
1 biy -5 O(p) 5.19
<0(1) T /t Tot.Var. (b7 )(ko)ds + D3

i

< (9(1)][1 Tot.Var.(bP) (ko)ds + Olgf).

io

If Ty is non empty we perform a rotation in [0, ¢;,] finding for ¢ € [0,¢;,] the following estimate

- | 1 O(p)
i1 <04y i1
O(np)

D3

tiy ~
< (9(1)][ Tot.Var.(b?) (ko )ds +
0

Again if t;, = 1 the procedure stops and we perform another rotation in [t;,,t;,]. If not we
consider the set To and we proceed.

The general step if the following: we consider the set

1
Tj+1{ti>tij:3§ <0’1""‘0i+> §4}
Ulu-.-.Ui

If T 11 is empty, then we perform a rotation in [t;,_,,1] finding for ¢ € [t;,_,, 1] the same estimate as
(5.19). If T}, is non empty, we perform a rotation in [t;. ., t¢;.] and we consider
J+ j—1 J

1
Tj+2:{ti>tij+1:3§ (Ul""'Ui+M> §4}.

At the end of this procedure there are two possible scenarios: let n’ = sup{j : T; # 0}. If t; , = 1,
the procedure ends by performing a rotation in [t; ,  ,1]. If we find ¢; , < 1 with the property that

1
(Giusa-eeoit )<s
Uin/—i-l ... 04

for all i = i,» + 1,...,n, the construction ends with a rotation in [t; , ,1] (as in the case of the
estimate (5.19)).

In particular, for each subsquare ko we find a sequence of times {t;, (ko)}, j = 1,...,n/(ko), where we
are performing a rotation. There are two cases to be considered: if Ty(kg) is empty then
. - o(1
Tot. Var.(bP — bP) (ko) < DQ)’
otherwise Onp)
N ~ ~ ng
Tot. Var.(bP — bP) (ko) < O(1)| Tot.Var.(b”) (ko) || + D5
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Summing over all possible k¢ we find that

O(np) | O(1)
p: D

< Tot.Var.(bP)(K) + Cy + Cy||Tot.Var.(bP) (K)] oo

Tot. Var.(bP)(K) < Tot.Var.(b?)(K) + D2< ) + Cy|| Tot. Var.(bP) (K) | oo

if D > 1, therefore we can conclude the proof finding a positive constant C' > 0 such that
||Tot.Var.(IA)D)(K)||oo < Oy + Cy||Tot. Var. (0P ) (K)|| oo

which is the desired estimate. O

Remark 5.18. The same result can be obtained for the d-dimensional case, by using the maps of

Section [5.1.1] and Remarks [5.10] and [5.131

6 Appendix

Proof of Lemma[3.7 By the Ergodic Theorem, T' = X;—; is ergodic iff

n—1

ZXTi(A) = |4
i=0

1
n

In particular, if T" is ergodic, then by writing

1 n 1 n—1 1 n—1
— dt = i d
n/o XX (A) /0 n (n 1 ; Xt (Xs(A))) §

we see that .
][ XXS(A)dS — Lt |A|
0

It is immediate to find a counterexample to the converse implication: just consider rotation of the
unit circle with period 1.

The proof of the implication = in the second point is analogous. For the converse, let A, B € %
such that

1N (o
=Y [T )N Bl - [A4B])” > e.
=0

By the continuity of s — X in the neighborhood topology we have that there exists 5 such that for
0 < s <5 it holds

|X,(B)AB| = |BA(X,) "N (B)| < g
Hence we can write
n 5 n—1
F Xy ns - a1 Pa =7 [ ST X ) 0 B| - A0 B
0 i=0
5 1 n—1
:/0 S (TN (X (B)] - AN Bl Pds
1=0
>/51"_1 [|IT'(A) N B| — | AN B[] ds — 55 > 55
= Jo n & STy 70

for n > 1. Hence .
lim inf][ [1X:(A) N B — |A||B|]dt # 0.
0

Finally, if T is strongly mixing, the continuity of s — X, in the neighborhood topology gives that
s X7 = X, 0T™ is a family of equicontinuous functions, and since for all s fixed

lim [X,(T"(4)) N B| = |A|[B

we conclude that X" converges to 0 uniformly in s. The opposite implication is trivial. O
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