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Introduction

This thesis is developed following two lines of research in analysis and applied mathe-
matics: the study of mixing phenomena arising in a non-smooth setting and dynamic
blocking problems of fire propagation.

The first part of this thesis is devoted to the study of mixing from the point of view
of Ergodic Theory and the one of Fluid dynamics. The major result achieved here is
the construction of infinitely many Exponential Mixers, that is divergence-free vector
fields that have strong mixing properties. Moreover we give an example of a vector
field which is weakly mixing but not strongly mixing.

The second part is devoted to the study of the Fire Problem first proposed by
Bressan in 2007 [14]. Here, we study the properties of Optimal Blocking Strategies,
proving Bressan’s fire conjecture for spiral-like strategies.
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Properties of Mixing BV vector
fields

This part of the thesis will focus on the interplay between Ergodic Theory and Fluid
Dynamics. A common feature between these two fields is the study of Mixing. In
particular, in Ergodic Theory it is studied as a statistical behaviour of some dynamical
system and in Fluid Dynamics it refers generally to the property of the motion of an
incompressible fluid. Since the study of Mixing in Ergodic Theory has been widely
developed [4, 23, 30, 32, 33, 36], the aim of this work is to understand the possible
connections between these two branches of Mathematics, showing indeed that some
ideas can be borrowed from Ergodic Theory in order to study the mixing properties
of incompressible fluids. There is a quite recent interest in quantifying the degree of
mixedness of an incompressible fluid and in producing deterministic examples of flows
that achieve the optimal mixing: two of the most challenging open problems in the
field are indeed Bressan Mixing Conjecture [1] and the deterministic Pierrehumbert
Model [41]. Many approaches going from Probability to Geometric Measure Theory
have been used in the recent years to solve some questions [3, 27, 37, 8], while the
strong connection with Ergodic Theory could be a rich source of inspiration for new
results.

Now, we consider a divergence-free vector field b : R+×Td → Rd and the continuity
equation

∂tρt +D · (ρtbt) = 0, ρt=0 = ρ0. (0.0.1)

In recent year the following question has been addressed: is the solution ρt approaching
weakly a constant as t → ∞? The meaning of ”approaching a constant” is usually
formalized as

ρt →
t→∞

−
ˆ
ρ0Ld weakly in L2, (0.0.2)

(Ld is the d-dimensional Lebesgue measure) since ∥ρt∥Lp is constant (at least for positive
solutions and sufficiently regular vector fields) and this is referred to as functional
mixing (another notion of mixing is the geometric mixing introduced in [1], but for our
purposes the functional mixing above is the most suitable, since it is related to Ergodic
Theory).

Without any functional constraint on the space derivative Dbt, it is quite easy to
obtain mixing in finite time: a well known example is [39]. A similar idea, used in a
nonlinear setting, can be found in [2]. See also [finite] for completeness. The problem
is usually formulated as follows: assume that b ∈ L∞

t,x ∩ L∞
t W

s,p
x , what is the maximal

speed of convergence in (0.0.2)?

This question has been addressed in several papers. In [3] the 2d-case has been
throughly analyzed, and the main results are the explicit construction of mixing vector

7



8 PROPERTIES OF MIXING BV VECTOR FIELDS

fields when the initial data is fixed: the authors are able to achieve the optimal expo-
nential mixing rate for the case W 1,p, p > 1, and study also the case s < 1 (mixing in
finite time) and s > 1 (mixing at a polynomial rate). Recall that for s = 1, p > 1 the
mixing is at most exponential [24], while the same estimate in W 1,1 (or equivalently
BV) is still open [1]. In [YaoZlatos, 27] it is discussed the existence of universal mixers:
that is divergence-free vector fields that mix any initial data. In particular, in [27] the
authors construct a vector field which mixes at an exponential rate every initial data,

and it belongs to L∞
t W

s,p
x for s < 1+

√
5

2 , p ∈ [1, 2
2s+1−

√
5
). The autonomous 2d vector

field is special, having an Hamiltonian structure: indeed in [11] the authors show that
the mixing is polynomial with rate t−1 when b ∈ BV.

In this paper we consider the different problem: how many vector fields are mixing?
More precisely, we study the mixing properties of flows generated in the unit square
K = [0, 1]2 by divergence-free vector fields b : [0, 1] ×K → R2 belonging to the space
L∞([0, 1],BV(K)): to avoid problems at the boundary, we assume that the vector field b
is divergence-free and BV when extended to whole R2. In order to shorten the notation,
we will sometimes write BV(K), K = [0, 1]2 as the space BV(R2) ∩ {supp b ⊂ K}.
All the results stated here can be extended to the case x ∈ T2 with minor modifications;
our choice is in the spirit of [43].
In this setting, there exists a unique flow t→ Xt ∈ C([0, 1], L1(K;K)) (called Regular
Lagrangian Flow (RLF)) of the ODE{

d
dtXt(y) = b(t,Xt(y)),

Xt=0(y) = y,

which is measure-preserving and stable, see [6, 5] and Section 1.0.2. The idea here
is to consider the L2-a.e. invertible measure preserving map Xt=1 : K → K as an
automorphism of the measure space (K,B(K),L2⌞K) and apply the tools of Ergodic
Theory. Here and in the following L2⌞K is the Lebesgue measure on K and B(K) are
the Borel subsets of K. We call G(K) the group of automorphisms of K. A non trivial
additional difficulty is to retain that the maps under consideration are generated by a
divergence-free vector field in L∞

t BVx.

There is a rich literature in Ergodic Theory that has deeply investigated the gener-
icity properties of mixing for invertible and measure-preserving maps. We have to take
into account that heremixing behaviour, ormixing phenomena, refers to different notion
of mixing that are developed in Ergodic Theory (and recently they have been studied
also in a Fluid Dynamics context). More precisely, let T ∈ G(K) be an automorphism.
We say that

• T is ergodic if for every A ∈ B(K)

T (A) = A ⇒ L2(A) = 0 or L2(A) = 1; (0.0.3)

• T is weakly mixing if ∀A,B ∈ B(K)

lim
n→∞

1

n

n−1∑
j=0

[
L2(T−j(A) ∩B)− L2(A)L2(B)

]2
= 0; (0.0.4)

• T is (strongly) mixing if ∀A,B ∈ B(K)

lim
n→∞

L2(T−n(A) ∩B) = L2(A)L2(B). (0.0.5)
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The genericity results concerning ergodic, weakly mixing and strongly mixing auto-
morphisms are due mostly to Oxtoby and Ulam [40], Halmos [30, 31], Katok and Stepin
[33] and Alpern [4]. They proved that the set of ergodic transformation is a residual (or
comeagre) Gδ-set (i) in the set G(K) with the neighbourhood topology1 [31], (ii) in the
set of measure-preserving homeomorphisms of a connected manifold with the strong
topology2 [40, 33]. Moreover, the weakly mixing automorphisms are a residual Gδ set
[31, 33]. In 1976 Alpern showed that these problems are indeed connected by using the
Annulus Theorem [4]. A different result holds for strongly mixing maps. It was shown
firstly by Rokhlin in [42] (see [45] for an exposition of Rokhlin’s work) and then by D.
Ornstein [32] that (strongly) mixing maps are a first category set in the neighborhood
topology.

In these settings, the genericity properties of measure-preserving (weakly) mixing
or ergodic maps are fairly understood; to our knowledge a similar analysis has not
been done for flows generated by vector fields with additional regularity requirements
(e.g. b ∈ L∞

t BVx). The aim of our work is to extend the above genericity results
to divergence-free vector fields whose Regular Lagrangian Flow is ergodic and weakly
mixing (in dimension d = 2, but see the discussion below on the extension to every
dimension d ≥ 3).
We remark that here we are looking to genericity properties of mixing in the topological
sense, and not a.e. mixing w.r.t. some probability measure in the space of vector fields
(e.g. [9]): while there is some relation between the two notions, in general one result
does not imply the other.

We consider b ∈ L∞([0, 1],BV(K)) be a divergence-free vector field.

Definition 0.0.1. We say that b is ergodic (weakly mixing, strongly mixing) if its unique
Regular Lagrangian Flow evaluated at time t = 1 is ergodic (respectively weakly mixing,
strongly mixing) as an automorphism.

0.0.1 Comparing weakly and strongly mixing behaviour

The definition of mixing vector fields was first given in [10], but there are examples of
strongly mixing vector fields in previous literature. For instance, in [27] the authors
give an explicit example of a strongly mixing vector field b ∈ L∞([0, 1],W s,p(Td)) for

s < 1+
√
5

2 and p ∈ [1, 1
2s+1−

√
5
) whose RLF at time t = 1 is the Folded Baker’s map.

We should remark that the advantage of the rough regularity of the vector field, espe-
cially in the case of the BV regularity, is that it allows for rigid cut and paste motions,
since the flows originated by these vector fields do not preserve the property of a set to
be connected. These constructions would be hard to reproduce for vector fields with
higher regularity in time and space. Nevertheless, a stochastic approach (see for ex-
ample [8]) investigates mixing vector fields with higher regularity, but does not furnish
deterministic examples of vector fields with the desired mixing properties.

As we told above, the weakly mixing behaviour is typical, while strongly mixing vec-
tor fields are few in the sense of Baire Category Theorem (see also [4],[30],[32],[40],[42],
and [45]). Nevertheless it is hard to give examples of weakly mixing automorphisms/
vector fields that are not strongly mixing.

The example we give in Chapter 2 is based on a work of Chacon [21], who con-
structed a weakly mixing automorphism that is not strongly mixing, in the

1The neighbourhood topology is indeed the convergence in measure, see Subsection 1.1.1.
2A sequence of maps Tn → T in the strong topology if Tn → T and T−1

n → T−1 uniformly on K.



10 PROPERTIES OF MIXING BV VECTOR FIELDS

Figure 1: The grid on the torus with k = 4 and an enumeration of subsquares.

Figure 2: The automorphism U4 sends the starting configuration into this final one.

one-dimensional space ([0, 1],B([0, 1]), |·|), where |·| is the one-dimensional Lebesgue
measure. The importance of his work is that a general procedure to build up weakly
mixing automorphisms that are not strongly mixing is given. Indeed his example easily
extends to multiple dimensions, but we will focus on the dimension d = 2 to avoid tech-
nicalities and to provide some visual expressions of the vector fields under considera-
tion. In particular we will construct a divergence-free vector field b ∈ L∞([0, 1],BV(T2))
whose Regular Lagrangian Flow X(t), when evaluated at time t = 1, is a weakly mixing
automorphism that is not strongly mixing.

The general idea here is the definition of a setting (see Configurations in Section
2.2) that helps to relate an automorphism, call it U , to the vector field bU whose RLF
at time t = 1 is U .

A configuration γ is a n×n matrix that takes values in the set {1, 2, . . . , n2}. More-
over we ask that γij = γhk iff i = h, j = k. Every configuration indeed represents an
enumeration of the subsquares of the torus of the grid N × N 1

n (see Figures 1,2). A
movement T : C(n) → C(n) is a one-to-one map from the space of configurations C(n)
into itself, that is, it is a permutations of the subsquares of the grid N × N 1

n . Among
movements the following are relevant for Chacon’s example: simple exchange, sort,
rotation (Section 2.2), and each one of them can be realized as the flow, evaluated at
time t = 1, of some BV divergence-free vector field (see Subsection 2.2.1 and Figure 3).

The key example that one has to keep in mind while approaching this problem is the 15
puzzle where one performs rigid movements on subsquares in order to reach the desired
configuration (see Figure 4).

Chacon’s method provides a sequence of automorphisms {Uk} that are permutations of
the subsquares of the grid N× N 1

k . To give an intuition, we fix for example k = 4 and
we assume to enumerate squares as in Figure 1. Chacon’s automorphism U4 ∈ G(T2)
moves the previous enumeration of squares (the starting configuration) into the final
configuration in Figure 2. Then he considers the limit map U = limk→∞ Uk, which is a
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Figure 3: Vector fields on the torus that move rigidly the subsquares.

Figure 4: The 15 puzzle.

weakly mixing automorphism that is not strongly mixing (see Sections 2.1, 2.3).

Using Chacon’s construction and the setting of configurations, we prove in particular
the following result (Section 2.4):

Theorem 0.0.2. There exists a divergence-free vector field bU ∈ L∞
t BVx whose RLF

XU (t) when evaluated at time t = 1 is the Chacon’s map U , that is bU is a weakly
mixing vector field that is not strongly mixing.

We conclude remarking that all these constructions are possible assuming to work
in [0, 1]d instead of Td.

0.0.2 Residuality results for mixing BV vector fields.

Before our work [10], only few examples of deterministic mixing vector fields were
known. In [10] we extended the genericity results mentioned above to divergence-
free vector fields whose Regular Lagrangian Flow is ergodic and weakly mixing (in
dimension d = 2, but see the discussion below on the extension to every dimension
d ≥ 3). Moreover, we constructed infinitely many exponentially mixing vector fields.

In the original setting (0.0.1), if bt+1 = bt (i.e., it is time periodic of period 1), then
it is fairly easy to see that if b is strongly mixing as in the above definition then (0.0.2)
holds, while for weakly mixing vector fields b it holds the weaker limit

lim
T→∞

1

T

ˆ T

0

( ˆ
K

(
ρt −−

ˆ
ρ0L2

)
ϕL2

)2

dt = 0, ∀ϕ ∈ L2(K).
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This gives a precise connection between the functional mixing and the notion of mixing
in Ergodic Theory.

The main result that we achieved is:

Theorem 0.0.3. There exists a Gδ-subset U ⊂ L1([0, 1];L1(K)) ∩ {b : D · b = 0} con-
taining all divergence-free vector fields in L∞([0, 1]; BV(K)) with the following proper-
ties:

1. the map Φ associating b with its RLF Xt,

Φ : {b ∈ L∞
t BVx : D · bt = 0} → C([0, 1], L1(K)),

can be extended as a continuous function to the Gδ-set U ;

2. ergodic vector fields b are a residual Gδ-set in U ;

3. weakly mixing vector fields b are a residual Gδ-set in U ;

4. strongly mixing vector fields b are a first category set in U ;

5. exponentially (fast) mixing vector fields are a dense subset of U .

We will reasonably call the flow Xt = Φ(b), b ∈ U , as the Regular Lagrangian Flow
of b, even if we are outside the setting where RLF are known to be unique: however Xt

is the unique flow which can be approximated by RLF of smoother vector fields bn as
bn → b in L1. The existence of such a set U is due to purely topological properties of
metric spaces (Proposition 1.0.3).

Our proof adapts some ideas from [31] to our setting: we give an outline of Halmos’
analysis. First of all, both ergodic automorphisms and weakly mixing automorphisms
are a Gδ-set [30, 31]. Next, it is shown that the mixing properties are invariant under
conjugation, i.e., if T : [0, 1] → [0, 1] is weakly/strongly mixing and R : [0, 1] → [0, 1]
is an automorphism, then R ◦ T ◦ R−1 is weakly/strongly mixing too. It remains to
be proved that weakly mixing maps are dense: define a permutation as an automor-
phism of [0, 1] sending dyadic intervals (subintervals of [0, 1] with dyadic endpoints)
into dyadic intervals by translation (in dimension greater than 1 the map translates
dyadic subcubes). Cyclic permutations (i.e., permutations made by a unique cycle) of
the same intervals are clearly conjugate. One of the key ingredients of Halmos’ proof is
that, for every non periodic automorphism (i.e., Tnx ̸= x for all n in a conegligible set
of points x), there exists a cyclic permutation close to it in the neighbourhood topology,
and by the previous observation about conjugation of permutations one deduces that if
T is non-periodic then the maps of the form R◦T ◦R−1 form a dense set. In particular,
the weakly mixing maps are a Gδ-set containing a non periodic map, hence this set is
residual.

In our setting, the fact that ergodic/weakly mixing vector fields form a Gδ-subset
of U is an easy consequence of the Stability Theorem for Regular Lagrangian Flows
and the definition of the map Φ (see Point (1) and Proposition 1.1.10). Indeed, since
both ergodic automorphisms and weakly mixing automorphisms are a Gδ-set [30, 31],
then by the continuity of the map Φ associating b with the RLF Xt, ergodic and weakly
mixing vector fields are a Gδ-set also. Unfortunately, we cannot use conjugation of a

RLF Xt with an automorphism R of K, since in general R ◦Xt=1 ◦R−1 is not a RLF
generated by b ∈ L∞

t BVx (or even b ∈ U). However, we are able to prove the density
in U of vector fields b ∈ L∞

t BVx whose RLF is a cyclic permutation of subsquares of
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K, which is the natural extension of the permutation of intervals used in [31]. More
precisely, the map T = Xt=1 sends by a rigid translation subsquares of some rational
grid N×N 1

D , where D ∈ N, into subsquares of the same grid (it will be clear later that
being dyadic as in [31] is not relevant, see Lemma 4.1.1 and Remark 4.1.3), and as a
permutation of subsquares it is made by a single cycle. The precise statement is the

following.

Theorem 0.0.4. Let b ∈ L∞([0, 1],BV(K)) be a divergence-free vector field. Then for
every ϵ > 0 there exist 1 ≪ D ∈ N, two positive constants C1, C2 and a divergence-free
vector field bc ∈ L∞([0, 1],BV(K)) such that

||b− bc||L1(L1) ≤ ϵ, ||Tot.Var.(bc)(K)||∞ ≤ C1||Tot.Var.(b)(K)||∞ + C2 (0.0.6)

and the map Xc
t=1 : K → K, where Xc

t : [0, 1]×K → K is the flow associated with bc,
is a D2-cycle of subsquares of size 1

D .

The above approximation is the most technical part of the work we did, and it is the
point which forces to state the theorem in U and not in the original space b ∈ L∞

t BVx:
indeed, while achieving the density in the L1

t,x-topology, the total variation increases
because of the constants C1, C2 in (0.0.6). (It is possible to improve the first estimate
of (0.0.6) to ∥b− bc∥L∞L1 ≤ ϵ, see Remark 3.1.7, but to avoid additional technicalities
we concentrate on the simplest results leading to Theorem 0.0.3.)

We remark that the above approximation result is sufficient to prove that strongly
mixing vector fields are a set of first category (Proposition 1.1.10): indeed, Theorem
0.0.4 shows the density in U of divergence-free vector fields whose flow is made of
periodic trajectories with the same period D2. This observation is the key to obtain
Point (4) of Theorem 0.0.3.

Looking at cyclic permutations of subsquares is an important step to obtain ergodic
(and then weakly mixing and strongly mixing) vector fields: indeed, instead of studying
the map Xc

t=1 (the RLF generated by bc of Theorem 0.0.4 above) in the unit square K
with the Lebesgue measure L2, it is sufficient to work in the finite space made of the
centers of the subsquares

Ω =

{
x =

(
k1 − 1/2

D
,
k2 − 1/2

D

)
, k1, k2 = 1, . . . , D

}
, (0.0.7)

where the measure-preserving transformation Xc
t=1 reduces to a cyclic permutations.

In particular in Ω it is already ergodic.

Since we cannot use the conjugation argument as we observed above, the final steps
of the proof of Theorem 0.0.3 differ from the ones of [31]. Indeed we give a general
procedure to perturb vector fields bc ∈ L∞

t BVx (whose RLF Xc
t at t = 1 is a cyclic

permutation of subsquares) into ergodic vector fields be (strongly mixing vector fields
bs) still belonging to L∞

t BVx: here the explicit form of Xc plays a major role, allowing
us to construct explicitly the perturbations to bc (Sections 3.1.1,3.1.2).
The key idea is to apply the (rescaled) universal mixer vector field (introduced in [27])
whose RLF at time t = 1 is the Folded Baker’s map

U = U⌞t=1=

{(
−2x+ 1,−y

2 + 1
2

)
x ∈

[
0, 12
)
,(

2x− 1, y2 + 1
2

)
x ∈

(
1
2 , 1
]
,

y ∈ [0, 1], (0.0.8)

to the subsquares of the grid N× N 1
D given by Theorem 0.0.4.

In order to achieve ergodicity, it is sufficient to apply the universal mixer U inside
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a single subsquare, because the action of Xc
t=1 is already ergodic in Ω being a cyclic

permutation. Together with the fact that ergodic vector fields are a Gδ-set, this gives
the proof of Point (2) of Theorem 0.0.3. The perturbation to achieve exponential mixing
is more complicated, since we need to transfer mass across different subsquares. The
idea is to apply the universal mixer U to adjacent couples of subsquares, a procedure
which assures that the mass of ρ is eventually equidistributed among all subsquares.
The exponential mixing is a consequence of the finiteness of Ω and the properties of U
(see Proposition 3.1.10). This concludes the proof of Point (5) of Theorem 0.0.3, and
since strongly mixing vector fields are a subset of weakly mixing vector fields we obtain
also Point (3), concluding the proof of the theorem.

It should not be surprising that exponentially mixing vector fields are a dense subset
of U . Even if this Gδ contains vector fields whose behaviour is far from mixing (as for
example horizontal shears) the key point is that any vector field can be approximated
by permutation vector fields, which are the building blocks for any mixing behaviour.
We point out that our construction does not provide any example of a smooth mixing
vector field: an interesting open question is the construction of a time-periodic vector
field with smooth regularity in space, since the one constructed in [9] does not satisfy
the periodicity in time.

A completely analogous result can be obtained in any dimension by adapting the
above steps, at the cost of additional heavy technicalities. In this work we decided to
sketch the proof of the key estimates (i.e., the ones requiring new ideas) in the general
case (see Subsection 4.1.1).

0.1 Structure of the proof of Theorem 0.0.3

Approximations of flows by permutations

The approximation through divergence-free vector fields b whose flow at t = 1 is a
permutation of squares has been already studied in [43] in the context of generalized
flows for incompressible fluids. Indeed the starting point of Chapter 4 is Lemma 4.1.1,
whose statement is almost identical to Lemma 4.3 of [43]: it says that if T is a smooth
map sufficiently close to identity, there exists an arbitrarily close flow σt, t ∈ [0, 1], such
that σt=0 = T and σt=1 maps affinely rectangles whose edges are on a dyadic grid into
rectangles belonging to the same grid. Even if the ideas of the proof are completely
similar to the original ones, we choose to make them more explicit (see also Remark
4.1.3 for some comments on the original proof).

At this point the proof diverges from [43], due to the fact that in his case one has
to control the L2-norm of the vector field while here we need to build a perturbation of
a vector field (not of a map) and to estimate its BVx-norm. In Lemma 4.2.3 we prove
that the perturbation σt constructed in the above paragraph (i.e., in Lemma 4.1.1) can
be encapsulated inside the flow Xt so that the resulting vector field is close in L∞

t L
1
x

and remains in L∞
t BVx if the grid is sufficiently small, always under the assumption

that Xt is close to identity.

We finally arrive to the approximation theorem through permutations (Theorem
4.4.1), which we think that can have an independent interest:

Theorem 0.1.1. Let b ∈ L∞([0, 1];BV (K)) be a divergence-free vector field. Then for
every ϵ > 0 there exist δ′, C1, C2 > 0 positive constants, D ∈ N arbitrarily large and a
divergence-free vector field bϵ ∈ L∞([0, 1];BV (K)) such that

1. supp bϵt ⊂⊂ Kδ′ = [δ′, 1− δ′]2,
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2. it holds

∥b−bϵ∥L∞(L1) ≤ ϵ, ||Tot.Var.(bϵ)(K)||∞ ≤ C1||Tot.Var.(b)(K)||∞+C2, (0.1.1)

3. the map Xϵ⌞t=1 generated by bϵ at time t = 1 translates each subsquare of the grid
N× N 1

D into a subsquare of the same grid, i.e., it is a permutation of squares.

We remark that in the statement of Theorem 4.4.1 it is also assumed that there
exists δ > 0 such that for L1-a.e. t ∈ [0, 1], supp bt ⊂⊂ Kδ. This is for technical reason,
as standard approximation methods allows to deduce the Theorem 0.1.1 above from
Theorem 4.4.1.

The starting point of its proof is to divide the time interval [0, 1] into subintervals
[ti, ti+1] and apply the previous perturbations (Lemma 4.1.1) to bt, t ∈ [ti, ti−1]. We
however need an additional mechanism in order to obtain a permutation of subsquares
and not a piecewise affine map at t = 1, as it would be the case if we only use the
perturbations above.

The introduction of this new perturbation is done in Section 4.3: the idea is that if
a measure preserving map T is diagonal with rational eigenvalues, then there exists a
subgrid and a map R made by two rotations such that T ◦ R maps subsquares of the
new grid into subsquares instead of rectangles (Lemma 4.3.1). The key point is that
the total variation of the new map is bounded independently on the grid size, while
the L1-norm converges to 0 as the grid becomes smaller and smaller. This gives better
BV estimates than the construction of [43]. In the proof of the theorem, this rotation
mechanism has to act differently in each subrectangle. The procedure illustrated in
Figure 5) has to be done during the time evolution. The interesting part of the above
theorem is the form of the estimate for the Total Variation in (0.1.1). The constant
C1 comes out from the approximation argument of Shnirelman: it means that the
total variation of the piecewise affine approximation is, as expected, of the order of
Tot.Var.(bt): we believe that this constant C1 can be optimized, but it is not necessary
here, because the hard term is the one leading to C2. Indeed, the second constant
comes from the rotation mechanism: performing a rotation inside a rectangle costs, in
terms of the total variation, as the area of the rectangle see Lemma 2.2.13).

From permutations of subsquares to ergodic/exponential mixing

The advantage of having a flow Xt such that Xt=1 is a permutations of subsquares is
that its action is sufficiently simple to perturb in order to achieve a desired property.
Nevertheless it requires some smart constructions, since in any case we need to control
the L1-distance and the BV norm.

The first step is to perturb a permutation of subsquares into a cyclic permutation of
subsquares, i.e., a permutation made of a single cycle: this is clearly a necessary condi-
tion for ergodicity. Roughly speaking, the idea is to exchange two adjacent subsquares
belonging to different cycles in order to merge them. We do this operation in two
steps. In Lemma 3.1.4 it is shown that one can arbitrarily refine the grid N×N 1

D into
N× N 1

DM so that each cycle of length k in the original grid becomes a cycle of length
kM2 in the new one. Moreover the perturbation is going to 0 in L∞

t L
1
x as M → ∞ and

its L∞BVx is arbitrarily small when D is large.
The above result allows now to exchange sets of size (DM)−1 when merging cycles:
this is done in Proposition 3.1.5. This proposition faces a new problem: in the previous
case the exchange of subsquares of size (DM)−1 occurs within the same subsquare of
size D−1: the latter is only deformed during the evolution and hence the merging can
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Figure 5: A graphic explanation of the action of rotations: the three top frames above
shows the evolution of curves at different times ti, where the perturbation of Lemma
4.1.1 takes care of transforming the green square affinely into the green rectangles. The
three bottom frames is the action of the rotation on a finer grid: the red rectangle is
chosen so that the action of the affine map Xt=t1 coincides with a rotation by π/2 (as
a set, but the black grid (image through an affine map) is not the image of the red grid
after a rotation), and then the red grid is mapped into itself when composed with a
rotation of π/2 inside the red rectangle. At the next step, one chooses again a finer
grid (the light blue one) to perform the same transformation, so that the blue grid is
mapped into itself.

be done in the whole time interval [0, 1]. In the case of Proposition 3.1.5, instead,
we are exchanging subsquares of size (DM)−1 which are then shifted away during the
flow, since they belong to different subquares of the grid D−1. This requires to do the
exchange sufficiently fast (i.e., during the time where they share a common boundary,
Remark 3.1.7), or to freeze the evolution for an interval of time [0, δ] and perform the
exchanges here and then let the flow permuting the subsquares to evolve during the
remaining time interval [δ, 1]. We choose for simplicity this second line, being easier
and not changing the final result: notice however that now the constant M plays the
role of controlling the constant δ−1, appearing because the exchange action occurs in
the time interval [0, δ].

Once we have a cyclic permutation of subsquares, the perturbation to get an ergodic
vector field is straighforward.

To achieve the exponential mixing, instead, we need to transfer mass across different
subsquares, and hence we face again the problem of Proposition 3.1.5 above: we let
the mixing action occurs in an interval of time where the evolution is frozen, and then
let the cyclic permutation to act in the time interval [δ, 1] (see also Remark 3.1.11).
The idea is again to use the universal mixer (0.0.8) to exchange mass across to nearby
subsquares. The additional difficulty here is that in order to avoid resonant phenomena
we mix all squares with 2 neighboring ones, so that by simple computations the Markov
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Shift obtained through this map is exponentially mixing, Proposition 3.1.10.

To collect all the above results into a proof of Point (5) of Theorem 0.0.3 is not
difficult at this point, and we devote a section (Section 3.1.3 and Corollary 1.1.11) to
shows how to merge these result and get the desired statement.

0.1.1 Structure of The Thesis

In this section we indicate how the material presented in the introduction is organized
in the thesis.

In Chapter 1, after listing some of the notation used in the paper, we give a short
overview of BV functions (Section 1.0.1) and Regular Lagrangian Flows (Section 1.0.2),
proving the extension of the continuous dependence to a complete set U in Proposition
1.0.3 (providing the proof of Point (1) of Theorem 0.0.3) and stating some technical
estimates on composition of maps (Theorem 1.0.4 and (1.0.3), (1.0.4)) and on the vector
field (2.2.5) generating a rotation (Lemma 2.2.13).

In Section 1.1 we collect some classical results in Ergodic Theory which are needed
for Theorem 0.0.3, and also give the proof of the Gδ-properties of the set of er-
godic/weakly mixing vector fields of Theorem 0.0.3. First we introduce the basic def-
initions, then in Section 1.1.1 we clarify the relation with the neighborhood topology
and the L1-topology used in Theorem 0.0.3.
In Section 1.1.2 we restate in our setting the well known fact that weakly mixing are
a Gδ-set, as well as the first category property of strongly mixing vector fields (Propo-
sition 1.1.10). The proof of the remaining parts of Theorem 0.0.3 is a corollary of the
previous statement (Corollary 1.1.11), if we know that the strongly mixing vector fields
are dense.
The construction of exponential mixing vector fields is based on the analysis of Markov
Shift: in Section 1.1.3 we give the results which are linked to our construction.

In Chapter 2 we give an example of a weakly mixing vector field which is not
strongly mixing. Here the construction is based on the work of Chacon 2.1.3, who gave
a general method for constructing weakly mixing automorphisms.

In Chapter 3 we present the proof of the the density of exponentially mixing vector
fields, under the assumption that permutation flows are dense in L1

t BVx w.r.t. the L1
t,x-

norm. We decide to put first this construction because it is in some sense independent
on the proof of the density of permutation flows: the idea is that different functional
settings can be studied by changing this last part (i.e., the density of permutation flow),
while keeping the construction of approximation by permutations more or less the same.
The first statement is Lemma 3.1.4 which allows to partition the subsquares of a given
cycle into smaller subquares still belonging to the same cycle. The usefullness of this
estimate is shown in Proposition 4.1.4, where we need to exchange mass only on an
area which is of order M−2, and hence obtaining that the perturbation is small in L1

t,x

and L∞
t BVx (Proposition 3.1.8 of Remark 3.1.7 addresses the problem of exchanging

two subquares during the evolution, a refinement not needed for the proof of Theorem
0.0.3). The last two subsection address the density of ergodic vector fields (Proposition
3.1.9) and of exponentially mixing vector fields (Proposition 3.1.10): the basic idea is
the same (i.e., perturb the cyclic permutation). Section 3.1.3 shows at this point how
the assumptions of Corollary 1.1.11 are verified, concluding the proof of Theorem 0.0.3
under the assumption of the density of vector fields whose flow is a permutation of
subsquares.

The last Chapter 4, proves the cornerstone approximation result, i.e., the density of
vector fields whose flow at t = 1 is a permutation of subsquares, Theorem 4.4.1 (whose



18 PROPERTIES OF MIXING BV VECTOR FIELDS

statement is the same of Theorem 0.1.1).
In Section 4.1 we approximate a smooth flow close to identity with a BV flow which is
locally affine in subrectangles: Lemma 4.1.1 considers the 2d-case as in [43], while the
needed variations for the d-dimensional case are in Section 4.1.1.
The BV estimates for such perturbed flow are studied in Section 4.2. A preliminary
result (Lemma 4.2.1) takes care of the conditions that the area of the subsquares has
to be a dyadic rational, while the key estimates are in Lemma 4.2.3: an important fact
is that as the grid becomes finer the perturbation becomes smaller.
An ingredient for obtaining a flow which is a permutation of subsquares is the use of
rotations: in Section 4.3 we study these elementary transformations.
The main approximation theorem, Theorem 4.4.1, is stated and proved in Section 4.4.
Its proof uses all the ingredients of the previous sections, and an additional argument
on how to encapsulate rotations in order to control the total variation.



Chapter 1

Preliminaries and notation

In this chapter we collect some preliminary and technical results that will
be used in the main body of this thesis. More in details, we will introduce
BV functions and Ambrosio Theory [6] on the existence and uniqueness of
flows of weakly differentiable vector fields in the subsections 1.0.1 and 1.0.2.
In Section 1.1 we will present the group of automorphism and the sketch
of the proof of genericity of weakly mixing automoprhisms. Finally, in the
subsection 1.1.3 we will present some tools from the theory of Markov shifts
that will be used to prove the density of strongly mixing vector fields.

First, a list of standard notations used throughout this paper.

• Ω ⊂ Rn denotes in general an open set; B(Ω) denotes the σ-algebra of Borel sets
of Ω;

• dist(x,A) is the distance of x from the set A ⊂ Ω, defined as the infimum of
|x− y| as y varies in A;

• ∀A ⊂ Ω, Å denotes the interior of A and ∂A its boundary, moreover, if ϵ > 0,
then Aϵ is the ϵ-neighbourhood of A, that is

Aϵ = {x ∈ Ω : dist(x, ∂A) ≤ ϵ};

• Mb(Ω) bounded Radon measures;

• if ν ∈ Mb(Ω) then ∥ν∥ denotes its total variation;

• BV(Ω) is the set of functions with bounded variation, and if u ∈ BV(Ω) we will
use instead Tot.Var.(u) to denote ∥Du∥;

• Ld denotes the d-dimensional Lebesgue measure on Rd, and Hk the k-dimensional
Hausdorff measure;

• K = [0, 1]2 is the unit square;

• all vector fields b are divergence-free and BV when extended to the whole R2. In
order to shorten the notation, it will sometimes be written BV(K), K = [0, 1]2

as the space BV(R2) ∩ {supp b ⊂ K};

• L2⌞K denotes the normalized Lebesgue measure on K;

19
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• let b : [0, 1]×R2 → R2, and let t, s ∈ [0, 1] then we denote by X(t, s, x) a solution
of {

ẋ(t) = b(t, x(t))

x(s) = x,

moreover we will use X(t)(x) or (alternatively Xt(x)) for X(t, 0, x) (in our setting
as a flow the function X(t, s, x) is unique a.e.);

• (S,Σ, µ) denotes a locally compact separable metric space where µ is a normalized
complete measure;

• G(S) denotes the space of automorphisms of S.

1.0.1 BV functions

In this subsection we recall some results concerning functions of bounded variation. For
a complete presentation of the topic, see [7]. Let u ∈ BV(Ω;Rm) and Du ∈ Mb(Ω)

n×m

the n × m-valued measure representing its distributional derivative. We recall the
decomposition of the measure Du

Du = Dcontu+Djumpu = Da.c.u+Dcantoru+Djumpu,

where Dcontu,Da.c.u,Dcantoru,Djumpu are respectively the continuous part, the abso-
lutely continuous part, the Cantor part and the jump part of the measure. We also
recall that for u ∈ BV (Ω) the following estimate on the translation holds: for every
C ⊂ Ω compact and z ∈ Rn such that |z| ≤ dist(C, ∂Ω)

ˆ
C
|u(x+ z)− u(x)|dx ≤

∣∣∣∣∣
n∑

i=1

ziDiu

∣∣∣∣∣ (C |z|). (1.0.1)

1.0.2 Regular Lagrangian Flows

Throughout the paper we will consider divergence-free vector fields b : [0, 1]×K → R2

in the space L∞([0, 1]; BV(K)) (in short b ∈ L∞
t BVx) such that supp(bt) ⊂⊂ K̊ for

L1-a.e. t ∈ [0, 1]: it is standard to extend the analysis to divergence-free BV-vector
fields in R2 with support in K. When the velocity field b is Lipschitz, then its flow is
well-defined in the classical sense, indeed it is the map X : [0, 1]×K → K satisfying{

d
dtXt(x) = b(t,Xt(x));

X0(x) = x.

But when we allow the velocity fields to be discontinuous (as in our case BV regular
in space) we can still give a notion of a flow (namely the Regular Lagrangian Flow).
These flows have the advantage to allow rigid cut and paste motions, since they do not
preserve the property of a set to be connected. More in detail, we give the following

Definition 1.0.1. Let b ∈ L1([0, 1]×R2;R2). A map X : [0, 1]×R2 → R2 is a Regular
Lagrangian Flow (RLF) for the vector field b if

1. for a.e. x ∈ R2 the map t → Xt(x) is an absolutely continuous integral solution
of {

d
dtx(t) = b(t, x(t));

x(0) = x.
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2. there exists a positive constant C independent of t such that

L2(X−1
t (A)) ≤ CL2(A), ∀A ∈ B(R2).

DiPerna and Lions proved existence, uniqueness and stability for Sobolev vector fields
with bounded divergence [26], while the extension to the case of BV vector fields with
divergence in L1 has been done by Ambrosio in [6]. When dealing with divergence-free
vector fields b the unique Regular Lagrangian Flow t → Xt associated with b is a flow
of measure-preserving maps, main objects of investigations in Ergodic Theory. In the
sequel we will build flows of measure-preserving maps originating from divergence-free
vector fields; more precisely, if a flow X : [0, 1] × K → K is invertible, measure-
preserving for L1-a.e. t and the map t → Xt is differentiable for L1-a.e. t and Ẋt ∈
L1(K), then the vector field associated with Xt is the divergence-free vector field defined
by

bt(x) = b(t, x) = Ẋt(X
−1
t (x)). (1.0.2)

Theorem 1.0.2 (Stability, Theorem 6.3 [5]). Let bn, b ∈ L∞([0, 1],BV(K)) be divergence-
free vector fields and let Xn, X be the corresponding Regular Lagrangian Flows. Assume
that

||bn − b||L1
t,x

→ 0 as n→ ∞,

then

lim
n→∞

ˆ
K

sup
t∈[0,1]

|Xn
t (x)−Xt(x)|dx = 0.

In this setting we can extend the family of vector fields we consider to a Polish subspace
of L1

t,x in which we still have a notion of uniqueness. This extension allows us to apply
Baire Category Theorem for the results of genericity that we will give for weakly mixing
vector fields.

Proposition 1.0.3 (Extension). Let

Φ : {b ∈ L∞
t BVx : D · bt = 0} ⊂ {b ∈ L1([0, 1], L1(K)), D · bt = 0} → C([0, 1], L1(K))

the map that associates b with its unique Regular Lagrangian Flow Xt. Then Φ can be
extended as a continuous function to a Gδ-set U containing {b ∈ L∞

t BVx : D · bt = 0}.

This proposition proves Point (1) of Theorem 0.0.3.

Proof. We recall that for every f : A→ Z continuous where A ⊂ W is metrizable and
Z is a complete metric space, there exists a Gδ-set A ⊂ G and a continuous extension
f̃ : G → Z (Proposition 2.2.3, [35]). Thus we have to prove the continuity of the map
Φ which follows by

∥Φ(bn)− Φ(b)∥CtL1
x
= sup

t∈[0,1]

ˆ
K

∣∣Xn
t (x)−Xt(x)

∣∣dx
≤
ˆ
K

sup
t∈[0,1]

∣∣Xn
t (x)−Xt(x)

∣∣dx.
This concludes the proof.

We will also use the following tools to prove the main approximation theorems of the
paper. The first one gives a rule to compute the total variation of the composition of
vector fields, while the second one is a direct computation of the cost, in terms of the
total variation of the vector field whose flow rotates rectangles.
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Theorem 1.0.4 (Change of variables, Theorem 3.16, [7]). Let Ω,Ω′ two open subsets
of Rn and let ϕ : Ω → Ω′ invertible with Lipschitz inverse, then ∀u ∈ BV (Ω′) the
function v = u ◦ ϕ belongs to BV (Ω) and

Tot.Var.(v) ≤ Lip(ϕ−1)n−1Tot.Var.(u).

Corollary 1.0.5. Let Ω,Ω′ ⊂ Rn be two open sets where ∂Ω′ is Lipschitz and let
ϕ : Ω̄ → Ω̄′ invertible with Lipschitz inverse, then ∀u ∈ BV (Rn) the function

v =

{
u ◦ ϕ x ∈ Ω,

0 otherwise,

belongs to BV (Rn) and

Tot.Var.(v)(Rn) ≤ Lip(ϕ−1)n−1
(
Tot.Var.(u)(Ω′) + ∥Tr(u, ∂Ω′)∥L1(Hn−1⌞∂Ω′ )

)
= Lip(ϕ−1)n−1Tot.Var.(u⌞Ω′)(Rn).

In the following, we have often to study the properties of the vector field b3 associated
with the composition Y3(t) of two smooth measure preserving flows t 7→ Yi(t), i = 1, 2,
with associated vector fields b1, b2. By direct computation

b3(t, Y3(t, y)) = ∂tY1(t, Y2(t, y)) = b1(t, Y3(t, y)) +∇Y1(t, Y2(t, y))b2(t, Y2(t, y)),

b3(t, x) = b1(t, x) +∇Y1(t, Y2(t, Y −1
3 (t, x)))b2(t, Y2(t, Y

−1
3 (t, x)))

= b1(t, x) +∇Y1(t, Y −1
1 (t, x))b2(t, Y

−1
1 (t, x)).

(1.0.3)

Hence using Theorem 1.0.4 we conclude that (being Y1 ◦ Y2 measure preserving too)

Tot.Var.(b3) ≤ Tot.Var.(b1) + Lip(Y1)
n−1Tot.Var.(DY1(t)b2)

≤ Tot.Var.(b1) + ∥∇Y1∥n∞Tot.Var.(b2) + ∥∇Y1∥n−1
∞ ∥b2∥∞Tot.Var.(DY1(t)).

(1.0.4)

Throughout the paper we will extensively use a flow rotating rectangles and the vector
field associated with it. More precisely we define the rotation flow rt : K → K for
t ∈ [0, 1] in the following way: call

V (x) = max

{∣∣∣∣x1 − 1

2

∣∣∣∣ , ∣∣∣∣x2 − 1

2

∣∣∣∣}2

, (x1, x2) ∈ K.

Then the rotation field is r : K → R2

r(x) = ∇V ⊥(x), (1.0.5)

where ∇⊥ = (−∂x2 , ∂x1) is the orthogonal gradient. Finally the rotation flow rt is the
flow of the vector field r, i.e., the unique solution to the following ODE system:{

ṙt(x) = r(rt(x)),

r0(x) = x.
(1.0.6)

This flow rotates the cube counterclockwise of an angle π
2 in a unit interval of time.

Lemma 1.0.6. Let R ⊂ R2 a rectangle of sides a, b > 0. Consider the rotating flow

Rt = χ−1 ◦ rt ◦ χ,

where χ : R → K is the affine map sending R into the unit cube and rt is the rotation
flow defined in (2.2.5). Let bRt the divergence-free vector field associated with Rt. Then

Tot.Var.(bRt )(R2) = 4a2 + 4b2, ∀t ∈ [0, 1].
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Proof. The potential V generating the rotation of π/2 in this case is the function

V (x) = max

{
b

a

(
x1 −

a

2

)2

,
a

b

(
x2 −

b

2

)2}
,

where we assume that R = [0, a]× [0, b], so that the vector field is given by

r(x) = ∇⊥V =

{(
0, 2ba

(
x1 − a

2

))
|x1| ≥ b

a |x2|, 0 ≤ x1 ≤ a,(
− 2a

b

(
x2 − b

2

)
, 0
)

|x1| < b
a |x2|, 0 ≤ x2 ≤ b.

Hence by elementary computations

∥Dcontr∥ = a2 + b2, ∥Djumpr∥ = 3a2 + 3b2,

and then we conclude. Recupera dim di questo.

1.1 Ergodic Theory

We will consider flows of divergence-free vector fields from the point of view of Ergodic
Theory. Even if we apply the results to the case (K,B(K),L2⌞K) in this section we will
give the notions of ergodicity and mixing in more general spaces [23, Chapter 1]. More
precisely, let (Ω,Σ, µ) be a locally compact separable metric space where µ is complete
and normalized, that is µ(Ω) = 1.

Definition 1.1.1. An automorphism of the measure space (Ω,Σ, µ) is a one-to-one
map T : Ω → Ω bi-measurable and measure-preserving, that is

µ(A) = µ(T (A)) = µ(T−1(A)), ∀A ∈ Σ.

We call G(Ω) the group of automorphisms of the measure space (Ω,Σ, µ).

Definition 1.1.2. A flow {Xt}, t ∈ R, is a one-parameter group of automorphisms of
(Ω,Σ, µ) such that for every f : Ω → Rmeasurable, the function f(Xt(x)) is measurable
on Ω× R.

Definition 1.1.3. Let T : Ω → Ω an automorphism. Then

• T is ergodic if for every A ∈ Σ

T (A) = A ⇒ µ(A) = 0 or µ(A) = 1; (1.1.1)

• T is weakly mixing if ∀A,B ∈ Σ

lim
n→∞

1

n

n−1∑
j=0

[
µ(T−j(A) ∩B)− µ(A)µ(B)

]2
= 0; (1.1.2)

• T is (strongly) mixing if ∀A,B ∈ Σ

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B). (1.1.3)

Remark 1.1.4. It is a well-known and quite elementary fact that strongly mixing ⇒
weakly mixing ⇒ ergodic.

We can give the analogous definitions for the flow:
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Definition 1.1.5. Let {Xt} a flow of automorphisms. Then

• {Xt} is ergodic if for every A ∈ Σ

Xt(A) = A ⇒ µ(A) = 0 or µ(A) = 1; (1.1.4)

• {Xt} is weakly mixing if ∀A,B ∈ Σ

lim
t→∞

−
ˆ t

0

[ˆ
Ω
χA(X−s(x))χB(x)dµ− µ(A)µ(B)

]2
ds = 0; (1.1.5)

• {Xt} is (strongly) mixing if ∀A,B ∈ Σ

lim
t→∞

ˆ
Ω
χA(X−t(x))χB(x)dµ = µ(A)µ(B). (1.1.6)

Let now T ∈ G(T2), then the Kolmogorov Koopman operator (see Chapter 1 in
[23]) UT : L2(T2) → L2(T2) is defined as

UT f(x)
.
= f(T (x)), ∀f ∈ L2(T2). (1.1.7)

We observe that any operator UT of the form considered has eigenfunctions f = const
corresponding to the eigenvalue 1. Then we have the following:

Theorem 1.1.6 (Mixing, Theorem 2 [23]). T is weakly mixing iff UT has no eigen-
functions which are not constants.

1.1.1 The neighbourhood topology as a convergence in measure.

To get a genericity result it is necessary to identify the correct topology on G(Ω).
Following the work of Halmos [31] we define the neighbourhood topology as the topology
generated by the following base of open sets: let T ∈ G(Ω) then

N(T ) = {S ∈ G(Ω) : |T (Ai)△S(Ai)| < ϵ, i = 1, . . . , n},

where ϵ > 0 and Ai ∈ Σ are measurable sets.
Since for our purposes we will consider the L1 topology on G(Ω), we recall the

following

Proposition 1.1.7. Let {Tn}, T ⊂ G(Ω) and assume that Tn → T in measure. Then
Tn → T in the neighbourhood topology. Conversely, if Tn → T in the neighbourhood
topology, then Tn converges to T in measure.

Since in our case Ω is a compact set, then the convergence in measure is equivalent to
the convergence in L1: hence we will use the L1 topology for maps as in Proposition
1.0.3.

We will be concerned with flows of vector fields extended periodically to the real line,
that is b(t+1) = b(t). Even if Xt is not a flow of automorphisms, the quantities in the
r.h.s. of (1.1.5),(1.1.6) can be computed and are related to the mixing properties of
T = Xt=1. Also the ergodic properties of T = X1 are equivalent to an ergodic property
of Xt.

Let {Xs}s∈[0,1] be a family of automorphisms of Ω such that s → Xs is continuous
(hence uniformly continuous) with respect to the neighborhood topology of G(Ω). Let
T = Xt=1 and define

Xt = Xs ◦ Tn = Tn ◦Xs, t = n+ s, s ∈ [0, 1).
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Lemma 1.1.8. The following hold

1. if T is ergodic then for every set A ∈ Σ

−
ˆ t

0
χXs(A)ds→L1 |A|;

2. T is weakly mixing iff for every A,B ∈ Σ

lim
t→∞

−
ˆ t

0

[
|Xs(A) ∩B| − |A||B|

]2
ds = 0;

3. T is mixing iff ∀A,B ∈ Σ

lim
t→∞

∣∣Xt(A) ∩B
∣∣ = |A||B|.

The proof of this lemma is given in Appendix 4.4, since we believe it is standard
and not strictly related to our results.

Definition 1.1.9. Let b ∈ L∞([0, 1],BV(R2)), supp bt ⊂ K, be a divergence-free vector
field. We will say that b is ergodic (weakly mixing, strongly mixing) if its unique RLF
Xt evaluated at t = 1 is ergodic (respectively weakly mixing, strongly mixing).

1.1.2 Genericity of weakly mixing

Let U be the Gδ-subset of L1
t,x where the Regular Lagrangian Flow can be uniquely

extended by continuity (Proposition 1.0.3). The first statement has the same proof of
[Theorem 2, [31]] and [Page 77,[32]]:

Proposition 1.1.10. The set of ergodic/weakly-mixing vector fields is a Gδ-set in U ,
the set of strongly mixing is a first category set.

We repeat the proof for convenience only for weakly/strongly mixing, the case for
ergodic vector fields is completely analogous [30].

Proof. Since the map Φ̃(b)(t = 1) = T (b) defined in Proposition 1.0.3 is continuous from
U into L1(K,K), it is enough to prove that the set of weakly mixing maps is a Gδ. For
simplicity we define a new topology on G(K) that coincides with the neighbourhood
topology known as Von Neumann strong neighbourhood topology. Given T ∈ G(K),
define a linear operator T : L2(K,C) → L2(K,C) by

(Tf)(x) = f(Tx) ∀f ∈ L2(K,C)

such that ||Tf ||L2 = ||f ||L2 (being T measure-preserving). Consider fi a countable
dense subset in L2: a base of open sets in the strong neighbourhood topology is given
by

N(T ) = {S ∈ G(K) : ||Tfi − Sfi||2 ≤ ϵ, i = 1, . . . , n}.

Then we define

E(i, j,m, n) =
{
T ∈ G(K) :

∣∣(Tnfi, fj)− (fi, 1)(1, fj)
∣∣ < 2−m

}
,

where (·, ·) denotes the scalar product in L2. Simply observing that T → (Tf, g) is
continuous in the strong neighbourhood topology then by Proposition 1.1.7 it follows
that E(i, j, n,m) is open in L1(K,K), and then

G =
⋂
i,j,m

⋃
n

E(i, j,m, n)
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is a Gδ-set. By the Mixing Theorem [Theorem 2, page 29, [23]] G coincides with the set
of weakly mixing maps in L1(K,K). Indeed if T is not mixing, then there exists f ̸= 0
and a complex eigenvalue λ ∈ {|z| = 1, z ̸= 0, 1} such that Tf = λf . We can assume
that f is orthogonal to the eigenvector 1, that is (f, 1) = 0, and also that ||f ||2 = 1.
Now choose i such that ||f − fi|| ≤ ϵ for some ϵ to be chosen later and take fj = fi.
Then

1 = |(Tnf, f)− (f, 1)(f, 1)|
≤ |(Tnf, f)− (Tnf, fi)|+ |(Tnf, fi)− (Tnfi, fi)|+ |(Tnfi, fi)− (fi, 1)(1, fi)|
+ |(fi, 1)(1, fi)− (f, 1)(fi, 1)|+ |(f, 1)(1, fi)− (f, 1)(f, 1)|

≤ 2||f − fi||2 + 2||fi||2||f − fi||2 + |(Tnfi, fi)− (fi, 1)(1, fi)|,

so since ||fi||2 ≤ 1 + ϵ we get that

1 ≤ 2ϵ+ 2(1 + ϵ)ϵ+ |(Tnfi, fi)− (fi, 1)(1, fi)|.

With the choice of ϵ > 0 small enough we get that 1
2 ≤ |(Tnfi, fi)− (fi, 1)(1, fi)|, that

is T ̸∈ G. This concludes the proof of the first part of the statement.
We next prove that the set of strongly mixing vector fields is a first category set. Let
A ⊂ K be a measurable set such that |A| = 1

2 . Then define the Fσ-set

F =
⋃
n

⋂
k>n

{
T ∈ G(K) :

∣∣∣∣|(T−k(A) ∩A)| − 1

4

∣∣∣∣ ≤ 1

5

}
.

Clearly strongly mixing maps are contained in F by definition and therefore strongly
mixing vector fields are contained in F̃ = Φ̃−1(t = 1)(F ). This F̃ is a set of first
category: indeed consider the set⋃

k>n

Φ̃−1(t = 1)

({
T ∈ G(K) :

∣∣∣∣|(T−k(A) ∩A)| − 1

4

∣∣∣∣ ≤ 1

5

})c

. (1.1.8)

By our main result (Theorem 4.4.1) ∀b ∈ U for all n ∈ N there exists k > n and
bp ∈ L∞

t (BVx) such that the RLF Xp
t=1 associated with bp evaluated at t = 1 is a

permutation of subsquares of period k. Hence⋃
k>n

{b ∈ L∞
t (BVx) permutation of period k}

is dense and contained in (1.1.8), so that we conclude that (1.1.8) is open and dense
for all n, i.e., F is of first category.

Corollary 1.1.11. Assume that the set

SM =
{
b ∈ U : b is strongly mixing

}
is dense in U . Then the set of weakly mixing vector fields is residual.

Proof. Elementary.

Our aim will be to prove the assumption of the above corollary, which together
with Proposition 1.1.10 will conclude the proof of Theorem 0.0.3 once we show that
the dense set of strongly mixing vector fields are actually exponentially mixing.

Remark 1.1.12. The above situation, namely
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• b strongly mixing is dense in U ,

• b weakly mixing is second category in U ,

is in some sense the best situation we can hope in U . Indeed, the strongly mixing vector
fields are a set of first category and then it is not a ”fat” set. On the other hand, the
weakly mixing vector fields would be a ”fat” set once we know their density, which one
deduces from the density of the strongly mixing vector fields.

1.1.3 Markov Shifts

When dealing with finite spaces X = {1, . . . , n} and processes whose outcome at time
k depends only on their outcome at time k − 1 it is easier to determine some statisti-
cal properties of the dynamical system, as ergodicity and mixing (see for a reference
[36],[44]). More precisely let B(n) = {θ : Z → X} the space of sequences and define a
cylinder

C(m, k1, . . . , kr) =
{
θ ∈ B(n) : θ(m+ i) = ki+1, i = 0, . . . , r − 1

}
where m ∈ Z and ki ∈ X. Therefore, since the Borel σ-algebra on B(n) is generated
by disjoint union of cylinders, we can define a probability measure µ on B(n) simply
determining its value on cylinders. A Markov measure µ is a probability measure on
B(n) for which there exist pi > 0, Pij ≥ 0, i, j = 1, . . . n, with∑

i

pi =
∑
j

Pij = 1,
∑
i

piPij = pj ,

such that
µ(C(m, k1, . . . , kr)) = pk1Pk1k2 . . . Pkr−1kr

for every cylinder C(m, k1, . . . , kr). The Pij are called transition probabilities and P =
(Pij) is the transition matrix. The transition matrix is a stochastic matrix, that is∑

j Pij = 1 for every i. Now define P
(m)
ij the coefficients of the matrix Pm.

Definition 1.1.13. A matrix P with positive coefficients is irreducible if ∀i, j there

exists m such that P
(m)
ij > 0.

Definition 1.1.14. A matrix P with positive coefficients is aperiodic if there exists m

such that P
(m)
ij > 0 ∀i, j.

A Markov shift is a map σ : (B(n), µ) → (B(n), µ) such that

σ(θ)(i) = θ(i+ 1), ∀θ ∈ B(n).

Then it can be proved that σ♯µ = µ. We conclude this subsection with the following
results on ergodicity and mixing properties of Markov shifts (see [44], Chapter 7).

Proposition 1.1.15 (Ergodicity). The following are equivalent:

1. σ : (B(n), µ) → (B(n), µ) is ergodic;

2. P is irreducible;

3. lim
m→∞

1

m

m−1∑
k=0

P
(k)
ij = pj.



28 CHAPTER 1. PRELIMINARIES AND NOTATION

Proposition 1.1.16 (Mixing). The following are equivalent:

1. σ : (B(n), µ) → (B(n), µ) is strongly mixing;

2. P is aperiodic;

3. lim
m→∞

P
(m)
ij = pj.



Chapter 2

Mixing BV vector fields

In this chapter we present the construction of a divergence free BV weakly
mixing vector field (see [46]) that is not strongly mixing. The example is
based on the fact that the Canonical Chacon map, which is a weakly mixing
automorphism that is not strongly mixing, can be connected to the identity,
that is it is the time-1 map of the flow of some divergence-free vector field.

Before [10] only few examples of divergence-free vector fields with good mixing proper-
ties were known. A fundamental example was provided in [27] where the authors con-
structed the time-periodic divergence-free vector field u ∈ L∞

t ([0, 1], BVx(R2)) whose
flow Tt : [0, 1] ×K → K of measure-preserving maps realizes at time t = 1 the folded
Baker’s map, that is

T = T⌞t=1=

{(
−2x+ 1,−y

2 + 1
2

)
x ∈

[
0, 12
)
,(

2x− 1, y2 + 1
2

)
x ∈

(
1
2 , 1
]
,

y ∈ [0, 1], (2.0.1)

(see Theorem 1, [27]). In reality, the construction in [27] gives a Sobolev Regular
vector field, but for our analysis we need simply the BV regularity. The action of this
automorphism can be represented as in Figure 2. The fundamental idea of the authors
is to prove that the map T is the time-1 map of the RLF of some divergence-free vector
field. A similar analysis can be performed for more complicated automorphisms, as
the Canonical Chacon’s automorphism. Here the vector fields that play a role perform
more complicated movements in order to obtain the precise behaviour of the map. We
remark that the analysis, that we perform in dimension 2, can be easily extended to
any dimension. In the next section we present the Canonical Chacon’s Transformation
in dimension 1: this is the starting point of our analysis. In Section 2.2 we present

Figure 2.1: The action of the automorphism U on the unit square K.

29
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Figure 2.2: In the left figure the Column C0, in the right figure the geometric repre-
sentation of the action of the automorphism T1.

the vector fields that act on the 2-dimensional torus as simple movements (rotation,
sort, exchange). In Section 2.3 we present the two dimensional version of the Chacon
map, and finally, in Section 2.4 we give the explicit construction of a weakly mixing
BV vector field which is not strongly mixing, providing a proof of Theorem 0.0.2.

2.1 Canonical Chacon’s Transformation

We present here the one dimensional canonical Chacon’s Transformation [21], that
can be easily extended to higher dimension (see for example Section 2.3 for the two
dimensional): indeed, this construction is based on a general geometric approach which
consists in mapping subintervals of the same length linearly onto each other (see also
[22] for further reference). Let us consider I = [0, 1] and let |·| be the Lebesgue measure.
The aim is to construct a weakly mixing automorphism T ∈ G(I) which is not strongly
mixing.

Definition 2.1.1. A column C is a finite sequence of disjoint subintervals J ⊂ I called
levels. The number of levels in a column is its height h.

We define a family of automorphisms {Tk}k ⊂ G(I) by induction. Let C0 be the
column C0

.
= I0,1 =

[
0, 23
)
, and let the remaining set be R0 =

[
2
3 , 1
]
. The height of the

column C0 is h0 = 1, since it has a unique level I0,1. We divide C0 into three disjoint
subintervals with same length: I0,1(1) =

[
0, 29
)
, I0,1(2) =

[
2
9 ,

4
9

)
, I0,1(3) =

[
4
9 ,

2
3

)
. We

call spacer the interval S0 =
[
2
3 ,

8
9

)
and R1 = R0 \ S0. We observe that the spacer has

the same length of I0,1(j) for j = 1, 2, 3. We put the spacer on the top of the middle
interval I0,1(2) (see Figure 2.2). We define the piecewise linear map T1 : I → I in the
following way: 

T1(I0,1(1)) = I0,1(2),

T1(I0,1(2)) = S0,

T1(S0) = I0,1(3).

In the set I \ (I0,1(1) ∪ I0,1(2) ∪ S0) the map T1 is defined in such a way that T1 is
invertible and measure-preserving (for simplicity we can assume T1(I0,1(3)) = I0,1(1)
and T1 = id otherwise). A useful notation to represent T1 in a simpler way is using the
language of permutations, that is

T1⌞[0,1]\R1
=

(
I0,1(1) I0,1(2) I0,1(3) S0
I0,1(2) S0 I0,1(1) I0,1(3)

)
. (2.1.1)

We construct the column C1 of height h1 = 3h0 + 1 = 4 putting one on the top of
the other the intervals in the order I0,1(1), I0,1(2), S0, I0,1(3): the intervals are arranged
so that each point is located below its image (see Figure 2.3). We rename the levels
I1,1 = I0,1(1), I1,2 = I0,1(2), I1,3 = S0, I1,4 = I0,1(3).
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Figure 2.3: The column C1 in which the levels are arranged one on top the other.

Figure 2.4: A column Cn and the action of the automorphism Tn+1.

The inductive step is performed in the following way: we start with a column Cn made
of hn = 3hn−1 + 1 levels In,1, In,2, . . . , In,hn . We divide each level into three disjoint
consecutive subintervals of the same length, that is In,j = In,j(1) ∪ In,j(2) ∪ In,j(3)

for j = 1, . . . , hn. We consider the set Rn =
[
3n+1−1
3n+1 , 1

]
and we construct Sn =[

3n+1−1
3n+1 , 3

n+2−1
3n+2

]
, with |Sn| = 2

3n+2 = |In,j(i)| for j = 1, . . . , hn, i ∈ {1, 2, 3} and we put

it on the top of the middle interval In,hn(2) of the bottom level In,hn (see Figure 2.4).
We finally define the piecewise linear map Tn+1 in the following way:

Tn+1(In,j(i)) = In,j+1(i) ∀j = 1, . . . hn − 1, ∀i ∈ {1, 2, 3},
Tn+1(In,hn(1)) = In,1(2),

Tn+1(In,hn(2)) = Sn,

Tn+1(In,hn(3)) = In,1(1),

Tn+1(Sn) = In,1(3),

Tn+1 = id otherwise.

The new column Cn+1 of height hn+1 = 3hn+1 is obtained arranging the levels starting
from the bottom In,1(1), In,2(1), . . . In,hn(1), In,1(2), In,2(2), . . . In,hn(2), Sn, In,1(3), . . . , In,hn(3).



32 CHAPTER 2. MIXING BV VECTOR FIELDS

We rename them as In+1,j j = 1, . . . , hn+1 following the same order of the levels and
we define Rn+1 = Rn \ Sn.
Definition 2.1.2. The Canonical Chacon’s map is the automorphism T = limn→∞ Tn.

Observe that the limit map T is well defined, invertible and measure-preserving, indeed

one can easily check that Tn+1 = Tn on
(
∪hn−1
j=1 In,j

)c
.

Theorem 2.1.3 (Chacon [21]). T is weakly mixing but not strongly mixing.

We will give a proof of this theorem in the case of two dimensional examples (see
Proposition 2.3.2).

2.2 Configurations and movements

In this subsection we introduce the notion of rows, columns and configurations. The
advantage of this abstract description is to simplify the action of two-dimensional au-
tomorphisms on the torus as the composition of a finite number of movements, where
each one can be described as the flow (evaluated at time t = 1) of a divergence-free BV
vector field.

Definition 2.2.1. A row r(i) of length n ∈ N and index i ∈ N is a integer-valued 1×n
matrix

r(i) = (i, j1 i, j2 . . . i, jn),

where j1, j2, . . . , jn ∈ N.
Definition 2.2.2. A column c(j) of length n ∈ N and index j ∈ N is a integer-valued
n× 1 matrix

c(j) =
(
i1, j i2, j . . . in, j

)T
,

where i1, i2, . . . , in ∈ N.
Definition 2.2.3. A configuration γ of size n ∈ N is a integer-valued n × n matrix,
where the entries γi,j ∈ {1, 2, . . . , n2} and γi,j = γh,k iff i = h, j = k. We can denote
γ both by rows as γ = (r(1), r(2), . . . , r(n))T and by columns γ = (c(1), c(2), . . . , c(n)).
We call C(n) the space of configurations of size n.

Remark 2.2.4. One can easily observe that ♯C(n) = n2!, being γ all possible permu-
tations of {1, 2, . . . , n2}.
Definition 2.2.5. Let γ ∈ C(n) be a configuration. Two entries γi,j , γi′,j′ are adjacent
if |i′ − i| = 1 and j′ = j or i′ = i and |j′ − j| = 1.

Definition 2.2.6. A movement is a bijective map S : C(n) → C(n).

Definition 2.2.7 (Simple exchange). Let γ ∈ C(n) and let γi,j , γi′,j′ be two adjacent
entries. For simplicity we can assume i′ = i+1, j′ = j according to Definition 2.2.5. A
simple exchange is a map Es(i, j; i+1; j) : C(n) → C(n) that exchanges the two entries,
that is

Es(i, j; i+ 1; j)


. . . . . . . . . . . . . . .
i, 1 . . . i, j . . . i, n

i+ 1, 1 . . . i+ 1, j . . . i+ 1, n
. . . . . . . . . . . . . . .



=


. . . . . . . . . . . . . . .
i, 1 . . . i+ 1, j . . . i, n

i+ 1, 1 . . . i, j . . . i+ 1, n
. . . . . . . . . . . . . . .
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Definition 2.2.8 (Sort). Let γ ∈ C(n) and let i ∈ N be some fixed row index. Let
j, j′ ∈ N with j < j′. Then the sort operation on columns is Sc(i; j, j

′) : C(n) → C(n)
defined by

Sc(i; j, j
′)

. . . . . . . . . . . . . . . . . . . . .
. . . i, j i, j + 1 . . . i, j′ − 1 i, j′ . . .
. . . . . . . . . . . . . . . . . . . . .

 =

. . . . . . . . . . . . . . . . . . . . .
. . . i, j′ i, j i, j + 1 . . . i, j′ − 1 . . .
. . . . . . . . . . . . . . . . . . . . .

 .

Similarly, if i, i′, j ∈ N and i < i′ Sr(i, i
′; j) : C(n) → C(n) is defined by

Sr(i, i
′; j)



. . . . . . . . .

. . . i, j . . .

. . . i+ 1, j . . .

. . . . . . . . .

. . . i′, j . . .

. . . . . . . . .

 =



. . . . . . . . .

. . . i′, j . . .

. . . i, j . . .

. . . . . . . . .

. . . i′ − 1, j . . .

. . . . . . . . .

 . (2.2.1)

Example 2.2.9. We give the example of some configuration γ and the new configura-
tion Sc(1; 2, 4)(γ) obtained by exchanging rows:

γ =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 Sc(1; 2, 4)(γ) =


1 4 2 3
5 6 7 8
9 10 11 12
13 14 15 16

 .

Remark 2.2.10. We observe that if j = 1 and j′ = n then the sort operation is simply
a shift. Since we will work on the torus, the shifts are easier to perform than sort
movements. In particular we will see that the cost of a shift, in terms of the total
variation, is lower than the cost of a sort movement.

Definition 2.2.11 (Rotation). Let γ ∈ C(n) and let i ≥ 2 and j < n. Then the
counterclockwise rotation R−

i,j : C(n) → C(n) is the following map

R−
i,j


. . . . . . . . . . . .
. . . i− 1, j i− 1, j + 1 . . .
. . . i, j i, j + 1 . . .
. . . . . . . . . . . .

 =


. . . . . . . . . . . .
. . . i− 1, j + 1 i, j + 1 . . .
. . . i− 1, j i, j . . .
. . . . . . . . . . . .

 ,

(2.2.2)
while the clockwise rotation R+

i,j : C(n) → C(n) is the following map

R+
i,j


. . . . . . . . . . . .
. . . i− 1, j i− 1, j + 1 . . .
. . . i, j i, j + 1 . . .
. . . . . . . . . . . .

 =


. . . . . . . . . . . .
. . . i, j i− 1, j . . .
. . . i, j + 1 i− 1, j + 1 . . .
. . . . . . . . . . . .

 .

(2.2.3)

Example 2.2.12. We give the example of some configuration γ and the new configu-
ration R−

2,3(γ) obtained by a counterclockwise rotation:

γ =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 R−
2,3(γ) =


1 2 4 8
5 6 3 7
9 10 11 12
13 14 15 16

 .
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2.2.1 Flows of vector fields associated with movements

From now on we will consider the two dimensional torus T2 = [0, 1]2 with periodic
boundary conditions. The idea of this subsection is to apply the previous description
via configurations, rows and columns to the two dimensional torus. In particular our
aim is to find vector fields whose flow acts on the torus as the movements previously
defined (Sort, Exchange, Rotation) and we want to give some estimates on their total
variation. We remark here that the BV regularity of the vector fields make possible all
these constructions, allowing for rigid cut and paste motions, in the spirit of [10] and
[27].

Following the notation introduced in [10] we define a flow that rotates subrectangles of
T2 and the vector field associated with it. More precisely we define the rotation flow
rt : T2 → T2 for t ∈ [0, 1] in the following way: call

V (x) = max

{∣∣∣∣x1 − 1

2

∣∣∣∣ , ∣∣∣∣x2 − 1

2

∣∣∣∣}2

, (x1, x2) ∈ T2.

Then the rotation field is r : T2 → R2

r(x) = ∇⊥V (x), (2.2.4)

where ∇⊥ = (−∂x2 , ∂x1) is the orthogonal gradient. Finally the rotation flow rt is the
flow of the vector field r, i.e. the unique solution to the following ODE system:{

ṙ(t, x) = r(r(t, x)),

r(0, x) = x.
(2.2.5)

This flow rotates the unit square [0, 1]2 counterclockwise of an angle π
2 in a unit interval

of time. We recall here Lemma 2.6 in [10] that gives the cost, in terms of the total
variation, of the rotation of a rectangle:

Lemma 2.2.13. Let Q ⊂ [0, 1]2 be a rectangle of sides a, b > 0. Consider the rotating
flow on the torus

(RQ)(t, x) = χ−1
Q ◦ r(t) ◦ χQ(x), if x ∈ Q.

where χQ : Q → [0, 1]2 is the affine map sending Q into [0, 1]2 and r(t) is the rota-
tion flow defined in (2.2.5). Let b(t)RQ the divergence-free vector field associated with
(RQ)(t) (extended to 0 outside the rectangle Q). Then

Tot.Var.(bR(t))(T2) = 4a2 + 4b2, ∀t ∈ [0, 1].

Let us fix now some k ∈ N giving the size of the partition, and let us consider
the grid given by N × N 1

k made of squares of side 1
k . We consider the subsquares

Qi,j = [ j−1
k , jk ]× [k−i

k , k−i+1
k ] and we identify each subsquare with an entry γij of some

configuration γ ∈ C(k). A horizontal stripe Hi = [0, 1] × [k−i
k , k−i+1

k ] is a row, while

a vertical stripe Vj = [ j−1
k , jk ] × [0, 1] is a column. We observe that if Qi,j and Qi′,j′

are adjacent subsquares (that is, they share a common side), then γi,j and γi′,j′ are
adjacent entries (Definition 2.2.5). From now on we will identify every γ ∈ C(k) with
an enumeration of the subsquares of the torus, and any movement T : C(k) → C(k) with
an automorphism T : T2 → T2that sends rigidly every subsquare of the grid N × N 1

k
into another one of the same grid. We start introducing the vector fields whose RLF,
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Figure 2.5: A transposition between two squares is an exchange.

when evaluated at time t = 1, are movements.

We first recall the transposition vector field, first introduced in [10]. Let κi, κj be two
adjacent squares of size 1

k and let Q = κi ∪ κj , then the transposition flow between
κi, κj is T (t)(κi, κj) : [0, 1]× T2 → T2 defined as

T (t)(κi, κj) =


χ−1 ◦ r(4t) ◦ χ x ∈ Q̊, t ∈

[
0, 12
]
,

χ−1
i ◦ r(4t) ◦ χi x ∈ κ̊i, t ∈

[
1
2 , 1
]
,

χ−1
j ◦ r(4t) ◦ χj x ∈ κ̊j , t ∈

[
1
2 , 1
]
,

x otherwise,

(2.2.6)

where the map χ : Q → T2 is the affine map sending the rectangle Q into the torus
T2, χi, χj are the affine maps sending κi, κj into the torus T2 and r is the rotation flow
(2.2.5). This invertible measure-preserving flow has the property to exchange the two
subsquares in the unit time interval (Figure 3.1). Moreover, by the computations done
in Lemma 2.2.13, we can estimate the total variation of the vector field bT (t)(κi, κj)
associated with T (t)(κi, κj) (recall 1.0.2) as

Tot.Var.(bT (t)(κi, κj))(T2) ≤ 4
20

k2
. (2.2.7)

We also observe that also L∞ estimates on the vector field are easily available: indeed

∥bT (κi, κj)∥L∞
t.x

≤ 4
2

k
. (2.2.8)

Definition 2.2.14 (Simple exchange vector field). Let us fix i, i′ ≤ k with |i− i′| = 1
and j ≤ k (or alternatively i ∈ N and j, j′ ∈ N with |j − j′| = 1). The simple exchange
vector field is b(t)(i, j; i′, j) ∈ L∞

t BVx such that, if X(i, j; i′, j) is its RLF evaluated at
time t = 1, then

X(i, j; i′, j)(T2) = Es(i, j; i
′, j)(γ), ∀γ ∈ C(k). (2.2.9)

The construction of this vector field is easy: fix for example i′ = i + 1. Then take
the two adjacent subsquares Qij and Qi+1,j and perform a transposition between them
T (t)(Qi,j , Qi+1,j). Then define

b(t)(i, j; i+ 1, j) = bT (t)(Qij , Qi+1,j).

Clearly one has

∥b(i, j; i+ 1, j)∥L∞
t,x

≤ 8

k
, Tot.Var.(b(t)(i, j; i+ 1, j))(T2) ≤ 4

20

k2
. (2.2.10)

Similarly we have
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Figure 2.6: An example of a sort vector fields on a horizontal stripe of the torus. Here
j = 2, j′ = 4. The transpositions to be performed are j′ − j = 2.

Definition 2.2.15 (Sort vector field). Let i ≤ k be some fixed row index. Let j, j′ ≤ k
with j < j′. Then the sort vector field (on columns) is bSc(i; j, j′)(t) ∈ L∞

t BVx such
that, if XSc(i; j, j′) is its RLF evaluated at time t = 1 then

XSc(i; j, j′)(T2) = Sc(i; j, j
′)(γ), ∀γ ∈ C(k). (2.2.11)

Remark 2.2.16. Similarly one has the sort vector field on rows bSr(i, i′; j)(t) for some
i < i′ ≤ k, j ≤ k.

To construct a sort vector field (on columns, but the construction for rows is identical),
we fix γ ∈ C(k), a row index i and two columns indices j < j′. The idea is to perform
j′ − j exchanges between squares (recalling that an exchange is a transposition). For
clarity see Figure 2.6 and compare with Example 2.2.9. We define the flow in the
following way:

XSc(i; j, j′)(t) =



T(j′−j)t

(
Qi(j′−1), Qij′

)
for t ∈

[
0, 1

j′−j

]
,

T(j′−j)t−1

(
Qi(j′−2), Qi(j′−1)

)
for t ∈

[
1

j′−j ,
2

j′−j

]
,

. . .

T(j′−j)t−(j′−j−2)

(
Qi(j+1), Qi(j+2)

)
for t ∈

[
j′−j−2
j′−j , j

′−j−1
j′−j

]
,

T(j′−j)t−(j′−j−1)

(
Qij , Qi(j+1)

)
for t ∈

[
j′−j−1
j′−j , 1

]
,

x otherwise.

(2.2.12)
By definition one has

bSc(i; j, j′)(t) = ẊSc(i; j, j′)(t) ◦XSc(i; j, j′)−1(t), (2.2.13)

so that

sup
t,x

|bSc(i; j, j′)(t, x)| ≤ sup
t,x

|ẊSc(i; j, j′)(t, x)| ≤ (j − j′)
8

k
≤ 8,

being the rotation vector field of the order of the side of subsquares. This implies that

∥bSc(i; j, j′)∥L∞
t L∞

x
≤ 8. (2.2.14)

Similarly one has, for every t ∈ [0, 1]

Tot.Var.(bSc(t)(i; j, j′))(T2) ≤ (j′ − j) · 4 · 4
(

4

k2
+

1

k2

)
≤ 80

k
. (2.2.15)

Remark 2.2.17. Recalling Remark 2.2.10 we observe that for the shift operation (that
is j′ = k and j = 1) we can consider another vector field, exploiting the structure of
the torus. We will still denote it as the sort vector field, but

b(t, x)(i; 1, k) =

{
1
k , if x ∈ Hi,

0 otherwise.
(2.2.16)
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Figure 2.7: Action of the counterclockwise rotation vector field, where k = 2, i = 2,
j = 1.

So we have instead the following estimates:

∥b(i, 1, k)∥L∞
t,x

≤ 1

k
, ∥Tot.Var.(b(i, 1, k)(T2)∥∞ ≤ 2

1

k
. (2.2.17)

This tells us that both the shift vector field and the sort vector field have total variation
of the order of the side of the squares of the grid.

Definition 2.2.18 (Rotation vector field). Let 2 ≤ i ≤ k and j ≤ k − 1. Then the
counterclockwise rotation vector field is b−(i, j) ∈ L∞

t BVx such that, if X−(i, j) is its
RLF evaluated at time t = 1, then

X−(i, j)(T2) = R−
ij(γ), ∀γ ∈ C(k). (2.2.18)

The clockwise rotation vector field is b+(i, j) ∈ L∞
t BVx such that, if X+(i, j) is its

RLF evaluated at time t = 1, then

X+(i, j)(T2) = R+
ij(γ), ∀γ ∈ C(k). (2.2.19)

We write here just the counterclockwise case since the other one is identical. Here we
have that, if we fix i, j as in the definition, we callQ = Q(i−1)j∪Qij∪Qi(j+1)∪Q(i−1)(j+1),
then

X−(i, j)(t) =


χ−1
Q ◦ r2t ◦ χQ, x ∈ Q̊, t ∈

[
0, 12
]
,

χ−1
lm ◦ r−1

2t ◦ χlm, x ∈ Q̊lm, t ∈
[
1
2 , 1
]
, l = i,m = j, j + 1, or l = i− 1,m = j, j + 1,

x otherwise,

(2.2.20)
where χ is the affine map sending Q into T2 and χlm is the affine map sending Qlm

into T2. Again, one has

|Ẋ−(i, j)(t, x)| ≤ 2

k
, (2.2.21)

from which one gets

∥b−(i, j)∥L∞
t,x

≤ 2

k
, Tot.Var.(b−(t)(i, j))(T2) ≤ 2 · 4

(
4

k2
+

4

k2

)
, ∀t. (2.2.22)

In the Figure 2.7 an example of the action of a clockwise rotation vector field.

Remark 2.2.19. If X : [0, 1] × T2 → T 2 is one of the flows previously considered
(simple exchange, sort/shift, rotation), then, if k is the side of the squares in which the
torus is tiled, one has

∥Ẋ∥L∞
t L∞

x
≤ max

(
8

k
,
(j − j′)8

k
,
2

k

)
(2.2.23)

We remark also that, if b is a vector field associated with a movement, then, ∀t ∈ [0, 1],
it holds

∥Tot.Var.(b)(T2)∥∞ ≤ max

(
80

k2
, (j − j′)

80

k2
,
64

k2

)
, (2.2.24)

which follows by the second of (2.2.10),(2.2.15) and the second of (2.2.22).
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2.3 Two dimensional construction

Our aim is the construction of a weakly mixing vector field which is not strongly mixing,
that is a divergence-free vector field b ∈ L∞([0, 1],BV(T2)) whose RLF X⌞t=1 when
evaluated at time t = 1 is a weakly mixing automorphism of T2 but not a strongly
mixing automorphism. The idea is to adapt Chacon’s one-dimensional construction of
Subsection 2.1 and decompose the map into simple movements (Section 2.2), described
as the flow of some divergence-free BV vector field (Subsection 2.2.1). Also in this case
the fundamental idea is to define U as the limit of a family of automorphisms {Uk}k.

Let us consider the two dimensional torus T2 as the unit square Q1 = Q1,1 = [0, 1]2 with
the canonical identification of boundaries. Using the notation via configurations (see
Section 2.2) we say that Q1 can be identified with the configuration γ1 = (1) ∈ C(1).
We define h1 = 0 and we divide the square Q1 = Q1,1 into four identical subsquares
each one of side 1

2 , more precisely: Q1,1 = Q1,1(1) ∪ Q1,1(2) ∪ Q1,1(3) ∪ R1 where
Q1,1 = [0, 12 ] × [12 , 1], Q1,1(2) = [12 , 1] × [12 , 1] and Q1,1(3) = [0, 12 ] × [0, 12 ]. Clearly
R1 = [12 , 1]× [0, 12 ]. We define U1 on these subsquares in such a way that

U1(Q1,1(1)) = Q1,1(2), U1(Q1,1(2)) = Q1,1(3) (2.3.1)

and U1 is measure-preserving and invertible on Q1,1. More precisely, we define U1 as

U1(x) =


x+ (12 , 0) if x ∈ Q̊1,1(1),

x+ (−1
2 ,−

1
2) if x ∈ Q̊1,1(2),

x+ (0, 12) if x ∈ Q̊1,1(3),

x otherwise.

(2.3.2)

We put h2 = 4h1 + 3 and we rename the subsquares Q1,1(i) as Q2,1 = Q1,1(1), Q2,2 =
Q1,1(2), Q2,3 = Q1,1(3). We look at this via configurations: let us take γ2 ∈ C(2), for
example

γ2 =

(
1 2
3 4

)
. (2.3.3)

Then we can easily represent U1(γ2) as

U1(γ2) =

(
3 1
2 4

)
. (2.3.4)

Here we see the advantage of the representation via configurations, which is more
immediate. We continue our construction dividing each subsquare Q2,i with i ∈ {1, 2, 3}
into 4 subsquares of side equal to 1

4 : Q2,i = Q2,i(1) ∪ Q2,1(2) ∪ Q2,1(3) ∪ Q2,i(4) and
we divide also R1 = R1(1)∪R1(2)∪R1(3)∪R2 into 4 subsquares (see Figure 2.8). We
define the map U2 in the following way

U2(x) =



U1(x) if x ∈ Q̊2,1 ∪ Q̊2,2,

x+ (14 ,
1
2) if x ∈ Q̊2,3(1),

x+ (14 , 0) if x ∈ Q̊2,3(2),

x+ (34 ,
1
4) if x ∈ Q̊2,3(3),

x+ (14 , 0) if x ∈ Q̊2,3(4),

x+ (−1
2 ,

1
4) if x ∈ R̊1(1),

x+ (−1
2 ,

1
4) if x ∈ R̊1(2),

x+ (−1
2 ,

3
4) if x ∈ R̊1(3),

x otherwise,

(2.3.5)
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Figure 2.8: Subdivisions of the two dimensional torus.

or, via configurations, fixing some γ4 ∈ C(4) we get

U2


1 2 5 6
3 4 7 8
9 10 13 14
11 12 15 16

 =


15 9 1 2
13 14 3 4
5 6 10 11
7 8 12 16

 . (2.3.6)

We put h3 = 4h2 + 3 = 15 and we rename the squares as

Q3,1
.
= Q2,1(1) → Q3,2

.
= Q2,2(1) → Q3,3

.
= Q2,3(1) →

→ Q3,4 = Q2,1(2) → · · · → Q3,14
.
= Q2,3(3) → Q3,15

.
= R1(3),

with the property that if Q3,i → Q3,i+1 then U2(Q3,i) = Q3,i+1.

The inductive step is the following: at the n-th step we have Qn,1, . . . Qn,hn subsquares
each one of area 1

4n−1 and side ln = 1
2n−1 . We divide each subsquare into 4 identical

subsquares: Qn,i = Qn,i(1) ∪ Qn,i(2) ∪ Qn,i(3) ∪ Qn,i(4) and we divide also Rn−1 into
4 identical subsquares Rn−1 = Rn−1(1) ∪ Rn−1(2) ∪ Rn−1(4) ∪ Rn. We put hn+1 =
4hn + 3 = 4n − 1 and we define the map Un in the following way:

Un(x) =



Un−1(x) if x ∈ Q̊n,1 ∪ · · · ∪ Q̊n,hn−1,

x+ ( 5
4n−1 − 1, 1− 1

2n−1 ) if x ∈ Q̊n,hn(1),

x+ ( 1
4n−1 , 0) if x ∈ Q̊n,hn(2),

x+ ( 3
4n−1 ,

1
4n−1 ) if x ∈ Q̊n,hn(3),

x+ ( 1
4n−1 , 0) if x ∈ Q̊n,hn(4),

x+ (−1 + 1
2n−1 ,

2n−3
4n−1 ) if x ∈ R̊n−1(1),

x+ ( 1
2n−1 − 1, 2

n−3
4n−1 ) if x ∈ R̊n−1(2),

x+ ( 1
2n−1 − 1, 2

n−1
4n−1 ) if x ∈ R̊n−1(3),

x otherwise .

(2.3.7)

We underline that, by definition, we have that

Un(x) = Un−1(x) if x ∈ Qn,1 ∪ · · · ∪Qn,hn−1. (2.3.8)

Finally we rename the squares as follows:

Qn+1,1
.
= Qn,1(1) → Qn+1,2

.
= Qn,2(1) → . . . Qn+1,hn

.
= Qn,3(1) →

→ · · · → Qn+1,4hn+2
.
= Qn,hn(3) → Qn+1,hn+1

.
= Rn(3),

with the property that if Qn+1,i → Qn+1,i+1 then Un(Qn+1,i) = Qn+1,i+1.

finally we define U = limn→∞ Un (well defined by condition 2.3.8). Then the following
propositions hold:
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Proposition 2.3.1. The map U is measure-preserving and ergodic.

The proof of the proposition relies on the notion of sufficient semi-rings, that can be
taken from [22].

Proposition 2.3.2. The map U is a weakly mixing automorphism of T2 that is not
strongly mixing.

Proof. The idea of the proof is the same of Chacon (see [21]). Indeed: take for example
a subsquare Qn = Qn,i with n sufficiently large. We will prove that

|Uhk(Qn) ∩Qn| =
1

4
|Qn| > |Qn|2, ∀k ≥ n. (2.3.9)

We first recall that U = limn→∞ Un and that Un+1 = Un on Qn+1,1 ∪ Qn+1,2 ∪ · · · ∪
Qn+1,hn+1−1. We remember that Qn = Qn,i(1) ∪Qn,i(2) ∪Qn,i(3) ∪Qn,i(4), so

Uhn
n (Qn,i(1)) = Qn,i(2),

Uhn
n (Qn,i(2)) = Qn,i−1(3),

Uhn
n (Qn,i(3)) = Qn,i−1(4),

Uhn
n (Qn,i(4)) = Qn,i−1(1).

This implies that

|Uhn
n (Qn) ∩Qn| =

1

4
|Qn|,

for any Qn sublevel of the n-th column. Since (2.3.8) holds and also Uhn
n (Qn,i(1)) =

Qn,i(2), one has

|Uhn(Q) ∩Q| ≥ 1

4
|Q|.

In particular, if one considers k ≥ n and takes a sublevel Qk of the k-th column, one
gets similarly

|Uhk(Qk) ∩Qk| ≥
1

4
|Qk|.

We observe now that any level Qn of the n-th column has 4k−n copies into the k-th
column. For example, if k = n + 1 one gets Qn = Q1

n+1 ∪ Q2
n+1 ∪ Q3

n+1 ∪ Q4
n+1. But

then

|Uhn+1(Qn) ∩Qn| =
4∑

j=1

|Uhn+1(Qj
n+1) ∩Qn| ≥

4∑
j=1

|Uhn+1(Qj
n+1) ∩Q

j
n+1|

≥
4∑

j=1

1

4
|Qj

n+1| =
1

4
|Q|.

More in general

|Uhk(Qn) ∩Qn| =
∑

Q′ copies

|Uhk(Q′) ∩Qn| ≥
∑

Q′ copies

|Uhk(Q′) ∩Q′|

≥
∑

Q′ copies

1

4
|Q′| = 1

4
|Q|.

This gives a diverging sequence {k} and a setQn for which the strongly mixing condition
does not hold (if one simply requires that |Qn| < 1

4), therefore U cannot be strongly
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mixing (see Definition 1.1.3). Whereas U is weakly mixing. Indeed, by the previous
proposition, U is measure-preserving and ergodic. By Theorem 1.1.6 we have to prove
that if f ∈ L2(T2) is an eigenfunction of UU of eigenvalue λ, with |λ| = 1, then f = c
for some constant c. By Lemma 2 of [23] (chapter 1, page 14), we need only to prove
that λ = 1. Since f is non-zero on a set of positive measure, for every ϵ > 0 there exists
a constant k such that the set

A = {x : |f(x)− k| < ϵ}

has positive measure. By the property of sufficient semi-rings (see again [22]) there
exists a subsquare Q = Qn,i such that

|Q ∩A|
|Q|

>
7

8
. (2.3.10)

As in the previous computations, since Q = Qn,i(1)∪Qn,i(2)∪Qn,i(3)∪Qn,i(4), using
that U is measure-preserving, Uhn(Qn,i(1)) = Qn,i(2), U

2hn+1(Qn,i(1)) = Qn,i(3) and
that the inequality (2.3.10) holds, we obtain that there exists a point x ∈ A ∩Q such
that Uhn(x) ∈ A ∩ Q, and that there exists y ∈ A ∩ Q such that U2hn+1(y) ∈ A ∩ Q.
Indeed, by (2.3.10) we have that |Qn,i(2) ∩A| > 1

8 |Q| and for the same reason that

|Qn,i(1) ∩A| >
1

8
|Q|,

therefore, by applying the map Uhn one gets

|Qn,i(2) ∩ Uhn(A)| > 1

8
|Q|,

which implies that

|(Q ∩A) ∩ Uhn(Q ∩A)| > 0.

An analogous argument proves that

|(Q ∩A) ∩ U2hn+1(Q ∩A)| > 0.

Therefore

|f(x)− k| < ϵ, |λhnf(x)− k| < ϵ, |f(y)− k| < ϵ, |λ2hn+1f(y)− k| < ϵ. (2.3.11)

So by the previous equations we have that

λhn =
k + δ2
k + δ1

, λ2hn+1 =
k + δ4
k + δ3

with |δi| < ϵ for every i. That is

λ =
(k + δ4)(k + δ1)

2

(k + δ3)(k + δ2)2
, (2.3.12)

and since this hold for every ϵ > 0, we conclude that λ = 1.

The maps Un can be decomposed into simple movements, using the notations of con-
figurations.

We have the following
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Proposition 2.3.3. For every n ≥ 2 the map Un can be expressed as

Un = Un−1 ◦ Vn, (2.3.13)

where Vn : C(2n) → C(2n) and

Vn =Es(2
n, 2n − 3; 2n, 2n − 2) ◦R+(2n, 2n − 3) ◦R+(2n, 2n − 3)◦

◦ S2
c (2

n − 1; 2n − 3, 2n) ◦R−(2n, 2n − 3) ◦ Sc(2n; 2n − 3, 2n − 1). (2.3.14)

Proof. For understanding the situation we first fix n = 1, and the starting configuration

γ =


1 2 5 6
3 4 7 8
9 10 13 14
11 12 15 16

 ,

We first apply V1 finding
1 2 5 6
3 4 7 8
9 10 13 14
11 12 15 16

 Sc(4;1,3)−→


1 2 5 6
3 4 7 8
9 10 13 14
15 11 12 16

 R−(4,1)−→


1 2 5 6
3 4 7 8
10 11 13 14
9 15 12 16

 S2
c (3;1,4)−→


1 2 5 6
3 4 7 8
13 14 10 11
9 15 12 16

 (R+(4,1))2−→


1 2 5 6
3 4 7 8
15 9 10 11
14 13 12 16

 Es(4,1;1,2)−→


1 2 5 6
3 4 7 8
15 9 10 11
13 14 12 16

 .

Then by applying U1 to the last configuration
1 2 5 6
3 4 7 8
15 9 10 11
13 14 12 16

 U1−→


15 9 1 2
13 14 3 4
5 6 10 11
7 8 12 16

 ,

to compare with (2.3.6). For a generic n ∈ N, one has to observe that, recalling (2.3.8),
one has

Un(x) = Un−1(x) if x ∈ Qn,1 ∪ · · · ∪Qn,hn−1. (2.3.15)

with hn = 4n−1 − 1. We list a series of useful observations:

• consider a configuration γ ∈ C(2n), then the map Vn acts only on the subsquares

Qn+1,hn , Qn+1,2hn , Qn+1,2hn+1, Qn+1,3hn+1, Qn+1,3hn+2, Qn+1,4hn+2, Qn+1,4hn+3, Rn;
(2.3.16)

• Qn,1 ∪ · · · ∪Qn,hn−1 in equation 2.3.15 correspond to the following subsquares of
the refined grid

Qn+1,1, Qn+1,2, . . . , Qn+1,hn−1, Qn+1,hn+1, Qn+1,hn+2, . . . , Qn+1,2hn−1,

Qn+1,2hn+2, Qn+1,2hn+3, . . . , Qn+1,3hn−1, Qn+1,3hn , . . . Qn+1,3hn+3,

Qn+1,3hn+4, . . . Qn+1,4hn+1;
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Figure 2.9: The adjacent subsquares Qn,hn and Rn−1 and their refinement.

• therefore we have to check Un−1 ◦ Vn only on the subsquares of (2.3.16);

• we recall that, by the enumeration chosen, Un(Qn+1,i) = Qn+1,i+1 and Un(Qn+1,hn+1) =
Qn+1,1;

• we recall also that

Un−1(Qn,hn) = Qn,1 = Qn+1,1 ∪Qn+1,hn+1 ∪Qn+1,2hn+2 ∪Qn+1,3hn+3, (2.3.17)

and
Un−1⌞Rn−1 = Id. (2.3.18)

That is, since Qn = Qn+1,hn ∪Qn+1,2hn ∪Qn+1,3hn+1 ∪Qn+1,4hn+2, then

Qn+1,hn

Un−1→ Qn+1,1,

Qn+1,2hn

Un−1→ Qn+1,hn+1, (2.3.19)

Qn+1,3hn+1
Un−1→ Qn+1,2hn+2,

Qn+1,4hn+2
Un−1→ Qn+1,3hn+3.

Finally, we consider the adjacent subsquares Qn,hn and Rn−1 in Figure 12 and their
refinement (equation 2.3.16) on which Vn acts.
Then the action of Vn is the following

Qn+1,hn → Qn+1,2hn ,

Qn+1,2hn → Qn+1,2hn+1,

Qn+1,2hn+1 → Qn+1,3hn+1,

Qn+1,3hn+1 → Qn+1,3hn+2,

Qn+1,3hn+2 → Qn+1,4hn+2,

Qn+1,4hn+2 → Qn+1,4hn+3,

Qn+1,4hn+3 → Qn+1,hn ,

Rn → Rn,

as described in Figure 13. Thus the map Vn acts only on the sublevels Qn+1,i of the
n+ 1-column, not on the sublevels Qn,i of the n-th column. Finally we recall that, by
the enumeration chosen, by using the observation (2.3.17) and the definition of Un−1

in equations (2.3.19) one finally has

Qn+1,hn

Vn−→ Qn+1,2hn

Un−1−→ Qn+1,hn+1 = Un(Qn+1,hn),
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Figure 2.10: The action of Vn on the refinement of Qn,hn and Rn.

Qn+1,2hn

Vn−→ Qn+1,2hn+1
Un−1−→ Qn+1,2hn+1 = Un(Qn+1,2hn),

Qn+1,2hn+1
Vn−→ Qn+1,3hn+1

Un−1−→ Qn+1,2hn+2 = Un(Qn+1,2hn+1),

Qn+1,3hn+3
Vn−→ Qn+1,4hn+2

Un−1−→ Qn+1,3hn+3 = Un(Qn+1,3hn+3),

and so on.

We will use similar ideas to recover the flow of the weakly mixing vector field in the
next section.

Remark 2.3.4. The interested reader can observe that ∀n the map Un is a cyclic per-
mutation of subsquares of the same area (see [10] for the definitions). This observation
is in the spirit of the result proved by Halmos in [31] that states that weakly mixing au-
tomorphisms are a residual Gδ-set in G(T2) with the L1-topology. A key ingredient for
the proof is to show that cyclic permutations of subsquares are dense in G(T2) with the
L1-topology. In [10] similar ideas are used to recover that weakly mixing vector fields
are dense with respect to the L1

tL
1
x-topology. In this paper we are doing a different

thing: we are considering those automorphisms/vector fields that are weakly mixing
but not strongly mixing, fixing a specific cyclic permutation. Therefore we cannot
deduce from the previous computations the density of weakly mixing automorphisms.

2.4 The weakly mixing vector field

In this final section we provide a weakly mixing vector field bU ∈ L∞
t BVx whose RLF

XU (t) evaluated at time t = 1 is the map U constructed in the previous section.

Our aim is to construct a flow Xn with n ≥ 2 that, evaluated at time t = 1, gives the
map Vn introduced in (2.3.14). We first consider γ2 ∈ C(2): we can take to fix the ideas
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the configuration (2.3.3). We start defining the following flow X1 : [0, 1]× T2 → T2 as

X1(t) =

{
T (2t)(Q2,1, Q2,2), t ∈ [0, 12 ],

T (2t− 1)(Q2,1, Q2,3) ◦ T (1)(Q2,1, Q2,2), t ∈ [12 , 1].
(2.4.1)

where the Q2,i i = 1, 2, 3 are the subsquares defined in the previous section. One can
easily see that X1(1)(γ2) = U1(γ2).

Building block flow. Let us consider the two adjacent subsquares Qn,hn , Rn−1 of
side 1

2n for some n ∈ N and consider their subdivisions into the sublevels Qn+1,i as in
Proposition 2.3.3. We look for a flow Xn(Qn,hn , Rn−1)[0, 1]× T2 → T2 that moves the
subsquares within the time interval [0, 1] with the property that Xn(Qn,hn , Rn−1)(1) =
Vn. We define therefore Xn(Qn,hn , Rn−1)(t) as

Xn(Qn,hn , Rn−1)(t) =



XSc(2n+1; 2n+1 − 3, 2n+1 − 1)(7t) t ∈ [0, 17 ],

X−(2n+1, 2n+1 − 3)(7t− 1) ◦Xn(Qn,hn , Rn−1)(
1
7) t ∈ [17 ,

2
7 ],

XSc(2n+1 − 1; 2n+1 − 3, 2n+1)(7t− 2) ◦Xn(Qn,hn , Rn−1)(
2
7)

t ∈ [27 ,
3
7 ],

XSc(2n+1 − 1; 2n+1 − 3, 2n+1)(7t− 3) ◦Xn(Qn,hn , Rn−1)(
3
7)

t ∈ [37 ,
4
7 ],

X+(2n+1, 2n+1 − 3)(7t− 4) ◦Xn(Qn,hn , Rn−1)(
4
7) t ∈ [47 ,

5
7 ],

X+(2n+1, 2n+1 − 3)(7t− 5) ◦Xn(Qn,hn , Rn−1)(
5
7) t ∈ [57 ,

6
7 ],

X(2n+1, 2n+1 − 3; 2n+1, 2n+1 − 2)(7t− 6) ◦Xn(Qn,hn , Rn−1)(
6
7)

t ∈ [67 , 1].

Let us call

bn(Qn,hn , Rn−1)(t, x)
.
= Ẋn(Qn,hn , Rn−1)(t, (X

n)−1(t, x)).

Then we have the following

Proposition 2.4.1. There exist two positive constants C1, C2 > 0 such that the fol-
lowing estimates hold:

∥Ẋn∥L∞
t L∞

x
≤ C1

2n
, (2.4.2)

∥TV (bn)(T2)∥L∞ ≤ C2

22n
. (2.4.3)

Proof. Let us fix t ∈ [0, 1], then by (2.2.23), since the sort operation occurs for a
maximum of 4 adjacent subsquares, that is j − j′ = 3, we have that

∥Ẋn∥L∞
t L∞

x
≤ 7 · 24

2n
=
C1

2n
.
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To prove the second estimate we observe that, by (2.2.24), since again the sort operation
occurs between at most 4 squares, one has

|Tot.Var.(bn)(t)(T2)| ≤ 7 · 240
22n

=
C2

22n
, (2.4.4)

which concludes the proof.

Finally we can define the flow XU (t) as

XU (t) =



X1(2t− 1) ◦XU (12) t ∈ [12 , 1],

X2(Q2,3, R1)(4t− 2) ◦XU (14) t ∈ [14 ,
1
2 ],

. . .

Xn(Qn,4hn , Rn−1)(2
nt− 2n + 2) ◦XU (2−n) t ∈ [2−n, 2−n+1],

. . . .

(2.4.5)

One can observe that the mapXU : [0, 1]×T2 → T2 is well-defined,XU ∈ C([0, 1];L1(T2))
and differentiable L1-a.e. t and for every t ∈ [0, 1] it is an invertible and measure-
preserving map from the torus into itself. We also remark that for every x ∈ T2 we
have that limt→0X

U (t, x) = x, which tells us that XU is a flow. Therefore, by (1.0.2)
one can define the divergence-free vector field bU (t, x)

.
= ẊU (t, (XU )−1(t, x)).

Proposition 2.4.2. The divergence-free vector field bU lives in the space L∞
t BVx.

Moreover, its RLF XU (1) when evaluated at time t = 1 is the map U , that is bU is a
weakly mixing vector field that is not strongly mixing.

Proof. Let us fix t ∈ [2−n, 2−n+1]. Then

bU (t, x) = 2nẊn(Qn,4hn−1+3, Rn−1)(2
nt− 2n + 2, (XU )−1(t, x)).

Therefore

∥bU (t)∥L1
x
= 2n

ˆ
T2

|Ẋn(Qn,4hn−1+3, Rn−1)(2
nt− 2n + 2, (XU )−1(t, x))|dx

= 2n
ˆ
T2

|Ẋn(Qn,4hn−1+3, Rn−1)(2
nt− 2n + 2, y)|dy (2.4.6)

≤ 2n|Qn,4hn−1+3 ∪Rn−1|∥Ẋn(Qn,4hn−1+3, Rn−1)∥L∞
t L∞

x
(2.4.7)

≤ 2n · 2 · 2−nC1

2n
≤ 2C1, (2.4.8)

where (2.4.6) follows by the fact that XU (t) is measure-preserving, (2.4.7) by the fact
that Xn acts only on Qn,4hn ∪ Rn−1 and (2.4.8) follows by (2.4.2). To compute the
total variation of bU , we observe that, for every t ∈ [0, 1] one has

ẊU (t, (XU )−1(t, x)) = 2nẊn(2nt− 2n + 2, (Xn)−1(2nt− 2n + 2, x)),

so that |Tot.Var.(bU (t)(T2)| = 2n|Tot.Var.(bn(t)(T2)|. By using (2.4.3), one has that,
if t ∈ [2−n, 2−n+1]

|Tot.Var.(bU (t)(T2)| = 2n|Tot.Var.(bn(t)(T2)| ≤ 2n
C2

22n
,

which implies that

∥Tot.Var.(bU )(T2)∥L∞ ≤ C2.



2.4. THE WEAKLY MIXING VECTOR FIELD 47

To conclude the proof we have to show that the map XU (1) = U is the Chacon’s map
introduced in Section 2.3. More precisely, we have to prove that

X1(1) ◦X2(Q2,3, R1)(1) ◦ · · · ◦Xn(Qn,4hn−1+3, Rn−1)(1) = Un.

This easily follows by Proposition 2.3.3 observing that the map X1(1) = U1 and
Xn(Qn,4hn−1+3, Rn−1)(1) = Vn.





Chapter 3

Density of Strongly Mixing
vector fields

In this chapter we present the approximation result by cyclic permuta-
tion vector fields: that is, every vector field can be approximated by a
divergence-free vector field whose RLF at time t = 1 is a cyclic permutation
of subsquares. This is the content of Section 3.1. In subsection 3.1.1 we
prove the density of ergodic divergence-free vector field by perturbing any
cyclic permutation vector field with the Universal Mixer [27]. Finally In
Section 3.1.2 we prove the density of strongly mixing vector fields, combin-
ing the previous result on ergodic vector fields with the theory of Markov
Shifts.

3.1 Cyclic permutations of squares

We start by recalling some basic facts about permutations. Denote by Sn the set of
permutations of the elements {1, . . . , n}.

Definition 3.1.1. Let σ ∈ Sn be a permutation and k ≤ n ∈ N. We say that σ is a
k-cycle c (or simply a cycle) if there exist k distinct elements a1, . . . , ak ∈ {1, . . . , n}
such that

σ(ai) = ai+1, σ(ak) = a1, σ(x) = x ∀x ̸= a1, . . . , ak.

We identify the permutation with the ordered set c = (a1a2 . . . ak). The number k is
the length of the cycle. We say that c is cyclic if k = n. We call transpositions the
2-cycles.

Definition 3.1.2. Let c1, c2 be the cycles c1 = (a1 . . . at) and c2 = (b1 . . . bs). We say
that c1, c2 are disjoint cycles if ai ̸= bj for every i = 1, . . . , t, j = 1, . . . , s.

Recall the following result.

Theorem 3.1.3. Every permutation σ ∈ Sn is the product of disjoint cycles.

From now on we will address flows Xt of divergence-free vector fields such that Xt=1 is
a permutation of squares of size 1

D .

Let us fix the size D ∈ N of the grid in the unit square K. We enumerate the D2

subsquares of the grid and we consider SD2 the set of the permutations of {κ1, . . . , κD2}.
We say that two squares (ore more in general two rectangles) are adjacent if they have
a common side. We will use also the word adjacent for cycles: two disjoint cycles of

49
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Figure 3.1: The action of the transposition flow Tt.

squares c1, c2 are adjacent if there exist κ1 ∈ c1, κ2 ∈ c2 adjacent subsquares. Two
adjacent squares can be connected by a transposition, which can be defined simply as
an exchange between the two squares: let κi, κj two adjacent squares of size 1

D and let
R = κi ∪ κj , then the transposition flow between κi, κj is Tt(κi, κj) : [0, 1] ×K → K
defined as

Tt(κi, κj) =


χ−1 ◦ r4t ◦ χ x ∈ R̊, t ∈

[
0, 12
]
,

χ−1
i ◦ r4t ◦ χi x ∈ κ̊i, t ∈

[
1
2 , 1
]
,

χ−1
j ◦ r4t ◦ χj x ∈ κ̊j , t ∈

[
1
2 , 1
]
,

x otherwise,

(3.1.1)

where the map χ : R → K is the affine map sending the rectangle R into the unit
square K, χi, χj are the affine maps sending κi, κj into the unit square K and r is
the rotation flow (2.2.5). This invertible measure-preserving flow has the property to
exchange the two subsquares in the unit time interval (Figure 3.1). Moreover, by the
computations done in Lemma 2.2.13, we can say that

Tot.Var.(Ṫt(κi, κj))(R̄) ≤
20

D2
. (3.1.2)

Lemma 3.1.4. Let b ∈ L∞
t (BVx) be a divergence-free vector field and assume that its

flow at time t = 1, namely X⌞t=1, is a k-cycle of squares of the grid N × N 1
D where

k,D ∈ N. Then for every M = 2p, there exists bc ∈ L∞
t (BVx) divergence-free vector

field such that

||b− bc||L∞(L1) ≤ O
(

1

D3M

)
,

||Tot.Var.(bc − b)(K)||∞ ≤ O
(

1

D2

)
,

and the map Xc
t=1 : K → K is a kM2-cycle of squares of size 1

DM , where Xc
t : [0, 1]×

K → K is the flow associated with bc.

Here and in the following we will write T (κi) = κj meaning that T is a rigid translation
of κi to κj . This to avoid cumbersome notation.

Proof. Let us call T
.
= Xt=1: being a cycle, there exist {κ1, . . . , κk} ⊂ {1, . . . , D2} such

that

T (κi) = κi+1, T (κn) = κ1, T (x) = x otherwise.

Now fix some M = 2p and divide each subsquare κi into M2 subsquares κji with
j = 1, . . . ,M2. Since T is a translation of subsquares and choosing cleverly the labelling
j → κji , then we have also T (κji ) = κji+1 so that T is a permutation of subsquares κji .
More precisely, it is the product ofM2 disjoint cycles of length k. The idea is to connect
these cycles with transpositions in order to have a unique cycle of length kM2: we will
need a parturbation inside κ1.
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Divide the M2 subsquares of κ1 into M2

2 couples R2
h = κj1 ∪κ

j′

1 with h = 1, . . . , M
2

2 and

κj1, κ
j′

1 are adjacent squares. In the time interval
[
0, 12
]
perform M2

2 transpositions, one
in each R2

h, that is

Xc
t (x) = Xt ◦ T 2

t (x), t ∈
[
0,

1

2

]
,

where the flow T 2 :
[
0, 12
]
×K → K

T 2
t ⌞R2

h

.
= T2t(κ

j
1, κ

j′

1 ) and T 2
t (x) = x otherwise,

is the transposition flow (3.1.1) between κj1 and κj
′

1 as defined in (3.1.1) above. Then
for t ∈

[
0, 12
]
fixed,

Tot.Var.(bct − bt)(κ1) ≤ O(1)2
M2

2

20

M2D2
,

where we have used (3.1.2). We observe that at this time step we have obtained M2

2
disjoint 2k-cycles.

In the time interval
[
1
2 ,

3
4

]
we divide the unit square into squares R4

h = R2
j ∪ R2

j′ with

h = 1, . . . , M
2

4 where R2
j , R

2
j′ are adjacent (in particular there exist κj1 ⊂ R2

j , κ
j′

1 ⊂ R2
j′

adjacent squares). Now we perform M2

4 transpositions of squares connecting the two
rectangles R2

j , R
2
j′ as in Figure 3.2. More precisely we define for t ∈

[
1
2 ,

3
4

]
Xc

t (x) = Xt ◦ T 4
t (x), t ∈

[
1

2
,
3

4

]
,

where the flow T 4 :
[
1
2 ,

3
4

]
×K → K

T 4
t ⌞R4

h

.
= T4t−2(κ

j
1, κ

j′

1 ) and T 4
t (x) = x otherwise,

is the transposition flow (3.1.1) between κj1 and κj
′

1 . Again,

Tot.Var.(bct − bt)(κ1) ≤ O(1)4
M2

4

20

M2D2
.

Repeating the procedure (see Figure 3.2),

1. at the 2i − 1-th step we divide our initial square κ1 into M2

22i−1 rectangles (made
of two squares of obtained at the step 2(i − 1)) so that we perform 22p−i trans-

positions of subsquares κj1 in the time interval
[∑2i−2

j=1
1
2j
,
∑2i−1

j=1
1
2j

]
;

2. at the 2i-th step, we divide our initial square κ1 into M2

22i
squares (made of 2 rect-

angles of the previous step) so that we perform 22p−i transpositions of subsquares

κj1 in the time interval
[∑2i−1

j=1
1
2j
,
∑2i

j=1
1
2j

]
.

In both cases we find in the interval
[∑i−1

j=1
1
2j
,
∑i

j=1
1
2j

]
that

Tot.Var.(bct − bt)(κ1) ≤ O(1)2i
M2

2i
20

M2D2
.
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Figure 3.2: Subdivision of the initial square κ1 into subrectangles/subsquares where

transpositions (the bars) occurr between subsquares κji ⊂ R2i
j , κ

j′

i ⊂ R2i
j′ of side 1

DM
(dotted lines). Notice that at the first/third step the initial square κ1 is divided into
rectangles (see Point (1) of the procedure), while at the second step it is divided into
squares (see Point (2)).

Call ti =
∑i

j=1 2
−j . We will prove that the map X(1, ti) ◦ Xc⌞t=ti is a permutation

given by the product of M2

2i
disjoint 2ik-cycles simply by induction on i.

The case i = 1 is immediate from the definition. So let us assume that the property is
valid for i and call c1, c2, . . . , cM2

2i

the disjoint 2ik-cycles made of rectangles of subsquares

as in Figure 3.2, where we have ordered them in such a way that c2h−1, c2h with h =

1, . . . , M2

2i+1 are adjacent along the long side. Then fix a couple of adjacent cycles, for
simplicity c1, c2. Then

c1 = (κ11 . . . κ12ik),

c2 = (κ21 . . . κ22ik),

and assume that there exist j, j′ such that κ1j , κ
2
j′ are the adjacent subsquares in which

we perform the transposition. By simply observing that

Xc⌞t=ti+1(x) = Xc⌞t=ti(x) +

ˆ ti+1

ti

bc(s,Xc
s(x))ds,

we deduce that, when restricted to c1∪ c2, the map X(1, ti+1) ◦Xc⌞ti+1 is the following
permutation κ11 . . . κ1j−1 κ1j . . . κ1

2ik
κ21 . . . κ2j′−1 κ2j′ . . . κ2

2ik

κ12 . . . κ2j′ κ1j+1 . . . κ11 κ22 . . . κ1j κ2j′+1 . . . κ21

 .

Clearly this is a single cycle of length 2(i+1)k, and it is supported on a rectangle.
The procedure stops at t =

∑2p
j=1

1
2j

when we have obtained a unique M2k-cycle.
Summing up, for t fixed

Tot.Var.(bct − b)(K) ≤ O(1)
20

D2
,
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that is

||Tot.Var.(bct − bt)(K)||∞ ≤ O
(

1

D2

)
.

We conclude with the L∞
t L

1
x estimate of the vector field: to do this computation it

is necessary to observe that bt and bct differ only in the couples of adjacent squares
in which we perform the transpositions. Using (1.0.3) and simple estimates on the
rotation (2.2.4) we obtain, for t ∈ [ti−1, ti] fixed,

∥bct − bt∥1 ≤ O(1)
M2

2i
2i

2

DM

2

D2M2
≤ O

(
1

D3M

)
,

which concludes the proof.

We state now the approximation result by vector fields whose flow at time t = 1 is a
unique cycle.

Proposition 3.1.5. Let b ∈ L∞
t (BVx) be a divergence-free vector field and assume that

bt = 0 for t ∈ [0, δ], δ > 0, and its flow at time t = 1, namely X⌞t=1, is a permutation
of squares of the grid N× N 1

D where D ∈ N. Then for every M = 2p ≫ 1 there exists
a divergence-free vector field bc ∈ L∞

t (BVx) such that

||b− bc||L1(L1) ≤ O
(

1

DM3

)
, ||Tot.Var.(bct − bt)(K)||∞ ≤ O

(
1

δM2

)
and the map Xc

1 : K → K, being Xc
t : [0, 1]×K → K is the flow associated with bc, is

a M2D2-cycle of subsquares of size 1
DM .

Proof of Proposition 3.1.5. Let us fix ϵ > 0 and consider M = 2p to be chosen later.
Let C

.
= X⌞t=1 be a permutation, which we write by Theorem (3.1.3)

C = (κ11 . . . κ
1
k1)(κ

2
1 . . . κ

2
k2) . . . (κ

n
1 . . . κ

n
kn) = c1 . . . cn,

where
∑n

i=1 ki ≤ D2. Define cn+1, . . . cN , N = D2−
∑

i ki+n, the 1-cycles representing
the subsquares that are sent into themselves. By the previous lemma we can also as-
sume that C⌞ci i = 1, . . . , N is a cyclic permutation of subsquares aijk, j = 1, . . . ,M2,

of the grid N × N 1
MD . To find a D2M2 cycle we should consider all the couples of

adjacent subsquares (of size 1
MD ), and then we should connect them by transpositions

in a precise way.

Fix c1 and consider

C1 = {ch ̸= c1 s.t. ch adjacent to c1} = {c11, . . . , c1|C1|}.

Now for every c1j ∈ C1 define by induction the disjoint families of cycles

C2
j = {ch /∈ {c1} ∪ C1 ∪ C2

1 ∪ · · · ∪ C2
j−1 s.t. ch is adjacent to c1j},

and call

C2 = C2
1 ∪ · · · ∪ C2

|C1| = {c21, . . . , c2|C2|}.

At the i− 1-th step we have

Ci−1 = {ci−1
1 , . . . , ci−1

|Ci|}.
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and, for every ci−1
j ∈ Ci−1,

Ci
j = {ch /∈ {c1} ∪ C1 ∪ C2 ∪ · · · ∪ Ci−1 ∪ Ci

1 ∪ . . . Ci
j−1 s.t. ch is adjacent to ci−1

j }.

The procedure ends when we have arranged all ci into sets Ci, and hence for some
K ∈ N we obtain CK+1 = ∅ (see Figure 3.3). Indeed, by contradiction assume that
|{c1}∪C1∪C2∪ · · · ∪CK | < N . Then this set has a boundary, i.e., there exists a cycle
c ̸∈ {c1} ∪ C1 ∪ C2 ∪ · · · ∪ CK adjacent to a cycle of {c1} ∪ C1 ∪ C2 ∪ · · · ∪ CK , which
is a contradiction by definition.

The partition
C(c1) = {c1} ∪ C2 ∪ . . . CK

has the natural structure of a directed tree: indeed every two cycles ci ∈ Ci, cj ∈ Cj

are connected by a unique sequence of cycles: the direction of each edge is given by
the construction ci−1

j → ch whenever ch ∈ Ci
j . This tree-structure gives us a selection

of the N − 1 couples of subsquares κji of disjoint cycles ci in which we can perform
a transposition among the subsquares aijk to connect all of them in a unique D2M2-

cycle. More precisely, for every connected couple ci−1
j , ch such that ch ∈ Ci

j , there exist

cubes κ ∈ ci−1
j , κ′ ∈ ch, and hence there are adjacent subsquares a ⊂ κ, a′ ⊂ κ′ of

size 1/(MD): assuming M ≥ 4, we can take a, a′ not being on the corners of κ, κ′,
respectively.

Let Tt : [0, δ]×K → K be the transposition flow (3.1.1) acting in the selected N−1
couples of subsquares a, a′ reparametrized on the time interval [0, δ] and define (being
Xt = id for t ∈ [0, δ])

Xc
t (x) =

{
Tt(x) t ∈ [0, δ],

Xt ◦ Tδ(x) t ∈ [δ, 1].
(3.1.3)

The transposition is well defined: indeed it can happen that ci, cj , ck are adjacent cycles
and the couples of adjacent squares (of size 1

D ) are κi, κj and κi, κk (where κi ∈ ci, κj ∈
cj and κk ∈ ck), that is: κi is in common. But since the transposition occurs between
subsquares of size 1

DM nor belonging to the corners, it is always guaranteed that the
transpositions act on disjoint subsquares. By using the explicit formula (2.2.4) we get
that for t ∈ [0, δ]

||bct − bt||1 ≤
O(1)

δ

(
N − 1

D3M3

)
≤ O(1)

δ

(
1

DM3

)
,

while for t ∈ [δ, 1] it clearly holds bct = bt. Coupling these last two estimates we get the
L1
tL

1
x estimate:

||b− bc||L1(L1) ≤ O
(

1

DM3

)
,

for δ << 1 and M sufficiently large.
Next we compute the total variation for t ∈ [0, δ]: by using (3.1.2), we get

Tot.Var.(bct)(K) ≤ N − 1

δ

20

M2D2
≤ 1

δ

20

M2
,

while for t ∈ [δ, 1− δ] we find

Tot.Var.(bct)(K) = Tot.Var.(bt)(K),

therefore

||Tot.Var.(bct − bt)(K)||∞ ≤ O
(

1

δM2

)
.
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Figure 3.3: Concatenation of cycles in a specific example, Remark 3.1.6. The orange
subrectangles are the couples of aijk on which the transposition Tt of (3.1.3) acts.

To conclude we have to prove that Xc
1 is a unique cycle, which follows by the tree-

structure of the selection of adjacent cycles. The end points of the tree are clearly
cycles. By recurrence, assume that ci−1

j is connected to cycles γh, each one made of all

squares belonging to ch ∈ Ci
j and all subsequent cycles to ch. It is fairly easy to see

that the transposition merging ci−1
j to each ch ∈ Ci

j generates a unique cycles γij , made

of the cubes of ci−1
j and all γh. We thus conclude that the map Xc

1 is a cycle of size

M2D2.

Remark 3.1.6. An example of how the proof works is in Figure 3.3: the decomposition
in cycles is

C = (κ11 . . . κ
1
5)(κ

2
1 . . . κ

2
7)(κ

3
1 . . . κ

3
8)(κ

4
1 . . . κ

4
6)(κ

5
1 . . . κ

5
13)(κ

6
1 . . . κ

2
12)(κ

7
1)(κ

8
1 . . . κ

8
10)(κ

9
1)(κ

10
1 ).

The black arrow indicates the adjacent subsquares where the exchanges are performed:
the tree of concatenation is then

(κ11 . . . κ
1
5)

(κ21 . . . κ
2
7)

(κ61 . . . κ
2
12) (κ71)

(κ31 . . . κ
3
8)

(κ81 . . . κ
8
10)

(κ41 . . . κ
4
6)

(κ91)

(κ51 . . . κ
5
13)
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Figure 3.4: The two adjacent cycles c1 (light green) and c2 (blue) touch in κ1 and κ2,
which exchange their mass during the time evolution.

Note that in the subsquares (κ12, κ
2
1), (κ

1
2, κ

3
1) and (κ15, κ

4
1), (κ

1
5, κ

5
1) the exchange occurs

actually in the subsquares (a12j , a
2
1ℓ), (a

1
2j′ , a

3
1ℓ′) and (a15k, a

4
1ℓ′′), (a

1
5k′ , a

5
1,ℓ′′′), so that it is

always acting on different couples of subsquares.

Remark 3.1.7. The construction of the cyclic flow (3.1.3) gives us only the L1
tL

1
x

estimate on the vector fields, which is what we need for our genericity result. We can
get the more refined estimate in L∞

t L
1
x allowing for mass flowing (when performing the

transposition) during the time evolution of the flow Xt (see Figure 3.4). In this case,
the time spent by the squares of size (MD)−1 to transfer the mass is of order (MD)−1,
so that the vector field moving it should be of the order

length

time
= O(1), acting on a region of area

N − 1

(MD)2
≤M−2. (3.1.4)

Hence the L∞
t L

1
x estimate can be obtained by (1.0.3) as

∥bct − bt∥1 ≤ O(1)M−2,

while the total variation estimate becomes

Tot.Var.(bct − bt) = O(1)
D

M
.

The statement one can prove is then the following.

Proposition 3.1.8. Let b ∈ L∞
t (BVx) be a divergence-free vector field and assume

that its flow at time t = 1, namely X⌞t=1, is a permutation of squares of the grid
N× N 1

D where D ∈ N. Then for every ϵ > 0 there exist M = 2p and bc ∈ L∞
t (BVx) a

divergence-free vector field such that

||bct − bt||L1 ≤ O(M−2) ≤ ϵ, Tot.Var.(bct − bt)(K) ≤ O(D/M),

and the map Xc
t=1 : K → K, being Xc

t : [0, 1]×K → K the flow associated with bc, is
a M2D2-cycle of subsquares of size 1

DM .

3.1.1 Density of ergodic vector fields

Starting from the cyclic permutation we have built in the previous section, we construct
an ergodic vector field arbitrarily close to a given vector field in L∞

t BVx. The density
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of ergodic vector fields is not strictly relevant for the genericity result of weakly mixing
vector fields, but it can be considered as a simple case study for the construction
of strongly mixing vector fields. Moreover it will give a direct proof of Point (2) of
Theorem 0.0.3.

We will use the universal mixer that has been constructed in [27]: it is the time
periodic divergence-free vector field u ∈ L∞

t ([0, 1], BVx(R2)) whose flow Ut : [0, 1]×K →
K of measure-preserving maps realizes at time t = 1 the folded Baker’s map, that is

U = U⌞t=1=

{(
−2x+ 1,−y

2 + 1
2

)
x ∈

[
0, 12
)
,(

2x− 1, y2 + 1
2

)
x ∈

(
1
2 , 1
]
,

y ∈ [0, 1], (3.1.5)

(see Theorem 1, [27]).

Proposition 3.1.9. Let b ∈ L∞
t (BVx) and let Xt be its RLF, and assume that Xt=1 is

a cyclic permutation of squares of the grid N × N 1
D . Then there exists be ∈ L∞

t (BVx)
divergence-free ergodic vector field such that

||b− be||L∞(L1) ≤ O
(

1

D2

)
,

||Tot.Var.(be)(K)||∞ ≤ ||Tot.Var.(b)(K)||∞ +O
(

1

D2

)
.

(3.1.6)

Proof. Let us call T = X⌞t=1 and κ1, . . . , κD2 the subsquares of the grid where the
numbering is chosen such that

T (κi) = κi+1, T (κn) = κ1.

Let us define

Xe
t =

{
Xt ◦ U1

t x ∈ κ1,

Xt otherwise,

where the flow U1
t = θ−1 ◦ Ut ◦ θ and θ is the affine map from κ1 to K, i.e. ,θ(x, y) =

(Dx,Dy).

We first prove the ergodicity of T e = Xe⌞t=1. Assume by contradiction that T e is not
ergodic, then there exists a measurable set B such that T e(B) = B and 0 < |B| < 1.
We claim that |B ∩ κ1| > 0. Indeed, since |B| > 0 there exists i such that |B ∩ κi| >
0. If i = 1 we have nothing to prove, if not, since T e is measure-preserving, then
|T e(B ∩ κi)| > 0. But

0 < |T e(B ∩ κi)| = |T e(B) ∩ T e(κi)| = |B ∩ κi+1|

(we have used that the set B is invariant) and re-applying the map T e sufficiently many
times we have the claim. Moreover, |B ∩ κ1| < 1

D2 . If not, that is |B ∩ κ1| = 1
D2 , then

|B ∩ κi| = 1
D2 for every i = 1, . . . , D2, again by using the fact that B is invariant and

that T e(κi) = κi+1 and T e(κD2) = κ1. But now

|B| =
D2∑
i=1

|B ∩ κi| =
D2∑
i=1

1

D2
= 1,

which is a contradiction, since |B| < 1. Now, the fact that 0 < |B ∩ κ1| < 1
D2 implies

that U1
1 (B ∩ κ1) ̸= B ∩ κ1 because U1

1 is mixing (and thus ergodic). But this is a
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contradiction because T e(B ∩ κ1) = B ∩ κ2 and applying to both of them TD2−1 we
find that

U1
1 (B ∩ κ1) = TD2−1(T e(B ∩ κ1)) = TD2−1(B ∩ κ2) = (T e)D

2−1(B ∩ κ2) = B ∩ κ1,

where we have used that TD2
= Id. To prove the estimates (3.1.6) we have to observe

first that Ut acts only on κ1, then that it is the composition of two rotations (see [Figure
1, [27]]), that is Tot.Var.(U̇t(U

−1
t ))(κ̄1) ≤ O

(
1
D2

)
(see again Lemma 2.2.13).

3.1.2 Density of strongly mixing vector fields

As in the previous section, we use the density of cyclic permutations to show that the
vector fields whose flow is strongly mixing are dense in U with the L1

t,x-topology. Again
we use the universal mixer constructed in [27]. The main result here is the following

Proposition 3.1.10. Let b ∈ L∞
t (BVx) and let Xt be its RLF, and assume that bt = 0

for t ∈ [0, 2δ] and Xt=1 is a cyclic permutation of squares of the grid N×N 1
D , D = 2p.

Then there exists bs ∈ L∞
t (BVx) divergence-free strongly mixing vector field such that

||b− bs||L1(L1) ≤ O
(

1

δD

)
,

||Tot.Var.(bs)(K)||∞ ≤ ||Tot.Var.(b)(K)||∞ +O
(
δ−1
)
.

(3.1.7)

In the proof it is shown that the mixing is actually exponential, in the sense that
for every set in a countable family of sets {Bi}i generating the Borel σ-algebra it holds∣∣T q(Bi) ∩Bj

∣∣− |Bi||Bj | = O(1)cqij , cij < 1.

Proof. Let us call T = X⌞t=1 and κ1, . . . , κD2 the subsquares of the grid where the
numbering is chosen such that

T (κi) = κi+1, T (κD2) = κ1.

If {1, . . . , D2} ∋ ℓ 7→ j(ℓ) ∈ {1, . . . , D2} is an enumeration of κi such that κj(ℓ), κj(ℓ+1)

are adjacent, consider the rescaled universal mixer U ℓ,ℓ+1
t acting on κℓ, κℓ+1 in the time

interval [0, δ], whose generating vector field bU
ℓ,ℓ+1

satisfies the estimates

∥bUℓ,ℓ+1

t ∥L1 = O(1)
1

δ

1

D3
, Tot.Var.(bU

ℓ,ℓ+1

t ) = O(1)
1

δ

1

D2
.

The idea is to define the a new vector field as in (3.1.3)

Xs
t (x) =

{
Mt(x) t ∈ [0, 2δ],

Xt ◦M2δ(x) t ∈ [2δ, 1],

where the map Mt, t ∈ [0, 2δ], is defined as follows:

Mt(x) =

{
U ℓ,ℓ+1
t (x) t ∈ [0, δ], ℓ even,

U ℓ,ℓ+1
t (x) t ∈ [δ, 2δ], ℓ odd.

The estimates (3.1.7) follows as in Proposition 3.1.9, so we are left with the proof that
T s = Xs

1 is strongly mixing.
The map T s is the composition of 3 maps T3 ◦ T2 ◦ T1 acting as follows (all indexes

should be intended modulus D2):
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1. T1 is the folded Baker’s map U acting on the couples ℓ, ℓ+ 1, ℓ = 0, 2, . . . even;

2. T2 is the folded Baker’s map U acting on the couples ℓ, ℓ+ 1, ℓ = 1, 3, . . . odd;

3. T3 is a cyclic permutation ℓ→ j−1(j(ℓ) + 1).

We first compute the evolution of a rectangle a of the form

a = 2−p[k, k+1]×2−p′ [k′, k′+1]
1

D
, k = 0, . . . , 2pD−1, k′ = 0, . . . , 2p

′
D−1, p, p′ ∈ N.

By definition of U (3.1.5) we obtain that if p ≥ 1 then the map T1 does not split a into
disjoint rectangles, i.e.

T1a = 21−p[k̃, k̃+1]×2−p′−1[k̃′, k̃′+1]
1

D
, k̃ = 0, . . . , 2p−1D−1, k̃′ = 0, . . . , 2p

′+1D−1,

and the same happens for T2:

T2a = 21−p[k̂, k̂+1]×2−p′−1[k̂′, k̂′+1]
1

D
, k̂ = 0, . . . , 2p−1D−1, k̂′ = 0, . . . , 2p

′+1D−1.

Hence if

a = 2−2p[k, k+1]×2−2p′ [k′, k′+1]
1

D
, k = 0, . . . , 22pD−1, k′ = 0, . . . , 22p

′
D−1, p, p′ ∈ N,

(3.1.8)
then

T2◦T1a = 22(1−p)[ǩ, ǩ+1]×2−2(p′+1)[ǩ′, ǩ′+1]
1

D
, ǩ = 0, . . . , 22(p−1)D−1, ǩ′ = 0, . . . , 22(p

′+1)D−1,

and being the action of T3 just a permutation, the final form T sa = T3 ◦ T2 ◦ T1a is
again a rectangle.
When p = 0, instead the rectangle a is mapped into two rectangles belonging to two
different subsquares κ, κ′

T1a = [k̃1, k̃1 + 1]× 2−p′−1[k̃′1, k̃
′
1 + 1]

1

D
∪ [k̃2, k̃2 + 1]× 2−p′−1[k̃′2, k̃

′
2 + 1]

1

D
,

and the action of T2 divides T1a into 4 rectangles of horizontal length 1/D belonging
to 4 different subsquares. As before, T3 just shuffles them into new locations.
The same happens when considering (T s)−1: if p′ ≤ 1 and a is given by (3.1.8) then
(T s)−1a is still a rectangle of side 2−2(p+1) × 2−2(p′−1) 1

D , while for p′ = 0 it is split into
4 rectangles with vertical size equal to 1/D.

In particular, starting from two squares a, a′ of side (2−2pD)−2, for q ≥ p the set
(T s)qa is made of disjoint rectangles whose horizontal side is D−1, and (T s)−qa′ is
made of disjoint rectangles whose vertical side is D−1. Hence if the masses of (T s)qa,
(T s)−q′a′ inside κi are mi(q), m

′
i(−q′), then by Fubini

L2
(
(T s)qa ∩ (T s)−q′a′

)
=

D2∑
i=1

D2mi(q)m
′
i(−q′).

In order to prove the strong mixing it is enough to show that

mi(q) →
L2(a)

D2
, m′

i(−q′) →
L2(a′)

D2
q, q′ → ∞.

Actually, we will show that the above convergence is exponential, which implies that
the mixing is exponential. We prove the above exponential convergence for mi(q), the
other being completely similar.

Once (T s)qa has become a rectangle of horizontal side 1/D, the distribution of mass
by T s is computed by the action of the following matrices on the vector (mi)i:
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1. the matrix A1 corresponding to the map T1,

(A1)ℓ′ℓ =
1

2

{
δℓ′ℓ + δℓ′(ℓ−1) ℓ′ = 0, 2, . . . ,

δℓ′(ℓ+1) + δℓ′ℓ ℓ′ = 1, 3, . . . ;

2. the matrix A2 corresponding to the map T2,

(A2)ℓ′ℓ =
1

2

{
δℓ′ℓ + δℓ′(ℓ+1) ℓ′ = 0, 2, . . . ,

δℓ′(ℓ−1) + δℓ′ℓ ℓ′ = 1, 3, . . . ;

3. the permutation matrix A3 corresponding to T3.

Being the Markov process generated by the matrix P = A3A2A1 finite dimensional,
exponential mixing is equal to strong mixing, and we prove directly that P has a
simple eigenvalue of modulus 1 whose eigenvector is necessarily the uniform distribution
(1/D2, 1/D2, . . . ): in particular this gives that P is aperiodic (Definition 1.1.14 and
Proposition 1.1.16). Indeed, for v ∈ CD one considers the functional |v|, and by simple
computations it holds |A3v| = |v| and

|A1v| = |v| iff vℓ = vℓ+1 for ℓ = 0, 2, . . . ,

|A2v| = |v| iff vℓ = vℓ+1 for ℓ = 1, 3, . . . .

Hence the unique v such that |Av| = |v| is v = (1/D2, 1/D2, . . . ), and 1 is a simple
eigenvector.

Remark 3.1.11. As in Remark 3.1.7, one could let the Bakers map to act during the
time evolution of Xt, but in this case the distance in L∞L1 would be of order 1. The
problem is that the maps T1, T2 are acting on the whole set K = [0, 1]2, and the vector
field bst − bt is of order 1 as in (3.1.4).

3.1.3 Proof of the density of strongly mixing vector fields

We are now ready to prove the density of strongly mixing vector fields in U , which
implies the statement by Corollary 1.1.11. It will be obtained through the following
steps.

1. Let b ∈ U : by the very construction of the set U (Proposition 1.0.3), we can
assume that b ∈ L∞

t BVx. Fix ϵ > 0.

2. By the continuity of translation in L1, we can take 0 < δ ≪ 1 such that defining

bδ =

{
0 t ∈ [0, 3δ),

1
1−3δ b(t−3δ)/(1−3δ) t ∈ [3δ, 1],

it holds

∥bδ − b∥L1
t,x
<
ϵ

4
.

Since

∥Tot.Var.(bδ)∥∞ =
1

1− 3δ
∥Tot.Var.(b)∥∞

then bδ ∈ U . Clearly we can also assume that bδ is compactly supported in K.
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3. Use Theorem 4.4.1 to approximate bδ in [3δ, 1] with a vector field bϵδ ∈ L∞
t BVx ⊂

U such that
∥bδ − bϵδ∥L1

t,x
<
ϵ

4
,

and such that its RLF is a permutation of squares of size D−1. We can assume
that

D ≫ 1

ϵδ
. (3.1.9)

4. Apply Lemma 3.1.4 together with Proposition 3.1.5 to bϵδ for t ∈ [2δ, 1] obtaining
a new vector field bϵδc ∈ L∞

t BVx ⊂ U such that

∥bϵδ − bϵδc∥L1
t,x

≤ O
(

1

DM

)
<
ϵ

4

for M = 2p
′ ≫ 1, and such that its RLF is a single cycle of squares of size

(DM)−1.

5. Finally, apply Proposition 3.1.10 to bϵδc in t ∈ [0, 1] obtaining a strongly (expo-
nentially) mixing vector field bϵδcs ∈ L∞

t BVx ⊂ U such that

∥bϵδc − bϵδcs∥L1
t,x

≤ O
(

1

δD

)
<
ϵ

4

by using (3.1.9).

We thus conclude that for every b ∈ L∞
t BVx and ϵ > 0 there is a vector field

bs ∈ L∞
t BVx exponentially mixing such that

∥b− bs∥L1
t,x
< ϵ,

which is our aim.





Chapter 4

Permutation Flow

In this Chapter we prove the key tool of this paper, namely the approxima-
tion in L1

t,x of any BV vector field with another BV vector field such that
its flow at t = 1 is a permutation of subsquares, i.e., it is a rigid translation
of subsquares of a grid partition of K = [0, 1]2. The approach is inspired by
[43], with the additional difficulty that we need to control the BV norm of
the approximating vector field. We will address also the d-dimensional case,
explaining the additional technicalities needed to prove the same approxi-
mation result in the general case. In Section 4.1 we prove the Shnirelman
Lemma and we correct a mistake in [43]. In Subsection 4.1.1 we analyze the
construction in any dimension. In Sections ?? we prove some BV estimates
useful for the main theorem, whose proof is given in Section 4.4.

This chapter is divided into two parts: in the first one we collect some preliminary
estimates which will be used as building blocks in the proof of the main theorem, while
in the second part we state the main approximation theorem and give its proof.

4.1 Affine approximations of smooth flows

The next lemma is almost the same of [43, Lemma 4.3]. In order to follow the original
Shnirelman’s Lemma we require the subrectangles in the next lemma to be dyadic (i.e.,
their corners belong to a dyadic partition, see Remark 4.1.3 however), but we notice that
the proof of the main theorem works in the same way just asking subrectangles with
rational coordinates to be mapped affinely onto subrectangles with rational coordinates.
At the end this section we will address the same lemma in the general case d > 2, which
in the original paper is not proved.

Let T be a measure-preserving diffeomorphism T : [0, 1]2 → [0, 1]2 of class C3 and such
that T = id in a neighborhood of ∂[0, 1]2. Assume that it is close to the identity, i.e.,
there exists δ > 0 sufficiently small such that ||T − id||C1 ≤ δ.

Lemma 4.1.1. There exists N ∈ N, N = 2p, and a path of measure-preserving in-
vertible maps t → σt piecewise smooth w.r.t. the time variable t such that σ0 = T and
σ1 maps arbitrarily small dyadic rectangles Pij ∈ N × N 1

N = KN (meaning that their

boundaries are in the net KN ) affinely onto dyadic rectangles P̃ij ∈ KN .

Moreover, the map σ is of the form

σt = T ◦ ξ3t1I[0,1/3](t) + ζ3t−1 ◦ T ◦ ξ11I[1/3,2/3](t) + η3t−2 ◦ ζ1 ◦ T ◦ ξ11I[2/3,1](t). (4.1.1)

63
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where ξ, η : [0, 1]× [0, 1]2 → [0, 1]2 are piecewise smooth and ζ : [0, 1]× [0, 1]2 → [0, 1]2 is
smooth, so that for every t ∈ [0, 1], the map σt is piecewise smooth on each subrectangle
κ and it extends continuously on κ̄.
Finally, the space differential Dσ1 of σt=1 is a constant diagonal matrix in each sub-
rectangle.

The number N is used in the next results in order to have that the perturbation is
arbitrarily small in L1

t,x.

Proof. The proof is given in 3 steps:

1. first by an arbitrarily small perturbation of the final configuration we make sure
the area of the regions which will be mapped into rectangles is dyadic;

2. secondly we perturb along horizontal slabs in order to have that vertical sections
of the slabs are mapped into vertical segments;

3. finally we perturb vertical slabs so that the image of particular rectangles are
rectangles and vertical segments remains vertical segments.

The composition of all 3 maps with T as in (4.1.1) will be the movement σt. We will
use the notation

[0, 1]2 ∋ (x1, x2) 7→ T (x1, x2) = (z1, z2) ∈ [0, 1]2

to avoid confusion between the final coordinates and the initial ones. When piecing
together maps which are defined in closed sets with piecewise regular boundaries, we will
neglect the negligible superposition of boundaries for simplicity: this slight inaccuracy
should not generate confusion.

Step 0: initial grid and perturbation. For N0 = 2p0 ≫ 1 define the horizontal and
vertical slabs

Hj = [0, 1]× 2−p0 [j − 1, j], Vi = 2−p0 [i− 1, i]× [0, 1], i, j = 1, . . . , 2p0 .

The image of the horizontal lines

x1 7→ T (x1, x2)

can be written as graphs of functions

z1 7→ g(z1, x2),

and divides every vertical slab Vi into N0 = 2p0 parts

ω̃ij =
{
(i− 1)2−p0 ≤ z1 ≤ i2−p0 , g(z1, (j − 1)2−p0) ≤ z2 ≤ g(z1, j2

−p0)
}
.

Let ζt : [0, 1]2 → [0, 1]2 be a measure preserving flow, moving mass across the
boundary of ω̃ij : we can assume w.l.o.g that the mass flow ϕij,i′j′ across the boundary
from ω̃ij to ω̃i′j′ occurs in the relative interior of ∂ω̃ij ∩ ∂ω̃i′j′ . The measure preserving
condition requires that

ϕij,(i−1)j + ϕij,(i+1)j + ϕij,i(j+1) + ϕij,i(j−1) = 0.

Set T ′ = ζ1 ◦ T and consider the new curves

z1 7→ g′(z1, x2), Graph g′ = T ′([0, 1]× {x2}).
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Let ω̃′
ij be the new regions

ω̃′
ij =

{
(i− 1)2−p0 ≤ z1 ≤ i2−p0 , g′(z1, (j − 1)2−p0) ≤ z2 ≤ g′(z1, j2

−p0)
}
,

whose new area is
L2(ω̃′

ij) = ϕij,i(j−1) + ϕij,i(j+1).

Starting with ω̃′
11, we move a mass ϕ11,12 < 2−p0−p1 ≪ 1 so that

L2(ω̃′
11) = 2−p0−p1n11 ∈ 2−p0−p1N.

Hence a mass −ϕ11,21 is flowing to the region ω̃21. Assuming that we have

L2(ω̃′
i1) = 2−p0−p1ni1 ∈ 2−p0−p1N,

and that the mass flowing by ϕi1,i2, ϕi1,(i+1)1 is < 2−p1 , we consider two cases:

1. if ϕi1,(i+1)1 ∈ 2−p0−p1 [0, 1), then we flow a mass ϕ(i+1)1,(i+1)2 ∈ 2−p0−p1 [0, 1) so
that

L2(ω̃′
(i+1)1) = 2−p0−p1n(i+1)1 ∈ 2−p1N,

and the flow to the right is then

ϕ(i+1)1,(i+2)i = ϕi1,(i+1)i − ϕ(i+1)1,(i+1)2 ∈ (−1, 1)2−p0−p1 ,

by the balance and because they have different sign;

2. if ϕi1,(i+1)1 ∈ 2−p0−p1(−1, 0), then we flow a mass ϕ(i+1)1,(i+1)2 ∈ 2−p0−p1(−1, 0)
and obtain the same estimate.

The last term ω̃′
N01

is computed by conservation: indeed∑
i

ϕi1,i2 = 0,

and then

L2(T ′([0, 1]× [0, 2−p0 ]) = 2−p0 =
∑

L2(ω̃′
i1) = 2−p0−p1

2p0−1∑
i=0

ni1 + L2(ω̃′
N01),

so that

L2(ω̃′
N01) = 2−p0−p1

(
2p1 −

2p0−1∑
i=0

ni1

)
∈ 2−p0−p1N.

The estimate of ϕN01,N02 is automatic from the flow ϕ(N0−1)1,N01.
The above procedure is then repeated for each region

T ([0, 1]× 2−p0 [j − 1, j]) =

N0⋃
i=1

ω̃ij ,

and the flow across each boundary is ≤ 2−p0−p1 : the conservation of the measure of
T ([0, 1]× [0, j]2−p0) yields that the last element ω̃N0j is again dyadic.

From now on we work with the map T ′ = ζ1 ◦ T .
Step 1: perturbation along horizontal slabs. Consider the curves

z2 7→ (T ′)−1(z1, z2),
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which can be parameterized as
x2 7→ f ′(z1, x2)

being T ′ close to the identity in C1. In each Hj we can determine uniquely the value

x1,j(z1) =

 j2−p0

(j−1)2−p0

f ′(z1, x2)dx2, (4.1.2)

and since T ′ is close to identity, again every map z1 7→ x1,j(z1) is invertible: denote its
inverse by z1,j(x1).

In particular, we consider the values

x1,ij = x1,j(i2
−p0). (4.1.3)

By (4.1.2) it follows that(
x1,ij − x1,(i−1)j

)
2−p0 = L2

(
(T ′)−1(ω̃′

ij)
)
∈ 2−p0−p1N, (4.1.4)

so that we deduce that the elements x1,ij are dyadic, i.e., x1,ij ∈ 2−p1N (being x1,0j = 0).
Consider the family of ordered curves parametrized by x1 ∈ [0, 1]

[0, 1]× [j − 1, j]2−p0 ∋ t, x2 7→ f ′j,t(x1, x2) = (1− t)x1 + tf ′(z1,j(x1), x2),

and let ξj,t : [0, 1]×[j−1, j]2−p0 → [0, 1]×[j−1, j]2−p0 be the unique measure preserving
map mapping each segment {x1} × [j − 1, j]2−p0 into the image of (f ′j,t(x1, x2), x2),
x2 ∈ [j − 1, j]2−p0 . This map is uniquely defined by the balance of mass, which reads
as ˆ (ξj,t)2(x1,x2)

(j−1)2−p0

∂x1f
′
j,t(x1, w)dw = x2 − (j − 1)2−p0 . (4.1.5)

Being f ′j,t close to the identity, ξj,t is smooth and close to the identity.

Let ξt : [0, 1]
2 → [0, 1]2 be the measure preserving map obtained by piecing together

the maps ξj,t. By construction the map T ′′ = T ′ ◦ ξ1 maps each vertical segment
{x1} × [j − 1, j]2−p0 into the vertical segment

{z1,j(x1)} ×
[
g′(z1,j(x1), (j − 1)2−p0), g′(z1,j(x1), j2

−p0)
]
.

Step 2: construction of the affine maps. The next step is to rectify the pieces of curves

[i− 1, i]2−p0 ∋ z1 7→ gj(z1) = g′(z1, j2
−p0), (4.1.6)

which are the horizontal slab of the sets ω̃′
ij . Fixing a vertical slide vi, one considers

the unique measure preserving map ηi,t : [i − 1, i] × [0, 1] → [i, i − 1] × [0, 1] such that
the segments (4.1.6) are mapped into vertical segments and such that maps the curve
gj([i− 1, i]2−p0) into the curve

g′t,ij(z1) = (1− t)g′(z1, j2
−p0) + t

 i2−p0

(i−1)2−p0

g′(w, j2−p0)dw

= (1− t)g′(z1, j2
−p0) + tz2,ij .

(4.1.7)

In each ω̃′
ij this map is uniquely determined by the balance

ˆ (ηi,t)2(z1,z2)

(i−1)2−p0

(
g′t,ij(w)− g′t,i(j−1)(w)

)
dw = constant,
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Figure 4.1: The action of σt in Lemma 4.1.1: first the map ξt moves the mass in Hj

in order to map the vertical green segments into the counterimages of the vertical red
segments; then the map T acts and the horizontal black boundaries of Hj becomes the
black curves, but vertical segments remain vertical; finally the action of ηt rectifies the
horizontal boundaries, while keeping vertical segments vertical.

while the vertical coordinate is affine in each vertical segment.

Let ηt : [0, 1]
2 → [0, 1]2 be the measure preserving map obtained by piecing together

the maps ηi,t.

Conclusion. Up to a time scaling, the map we are looking for is

σt = T ◦ ξt1I[0,1](t) + ζt−1 ◦ T ◦ ξ11I[1,2](t) + ηt−2 ◦ ζ1 ◦ T ◦ ξ11I[2,3](t).

It is clearly measure preserving and at t = 3 it maps affinely the rectangles with dyadic
coordinates

Pij =
[
x1,(i−1)j , x1,ij

]
× [j − 1, j]2−p0

into the rectangles with dyadic coordinates

P̃ij = [i− 1, i]2−p0 ×
[
z2,i(j−1), z2,ij

]
.

The values x1,ij , z2,ij are given by (4.1.3), (4.1.7) and belong to 2−p1N. Thus N1 = N
is the number of the statement.

The fact that σt is piecewise smooth and it extends continuously to the boundary of
each Pij are immediate from the construction, and its smallness follows by observing
that as p0, p1 diverge the maps ξ, ζ, η converge to the identity.

Being the rectangles dyadic in the grid N× N 1
N , then we have the following

Corollary 4.1.2. Every subsquare of the grid N × N 1
N is sent by σ1 affinely by a

diagonal matrix onto a subrectangle with rational coordinates.
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Remark 4.1.3. The previous lemma also tells us that the map σ1 is piecewise affine,
in particular there exists N = 2p1 ∈ N refinement of the grid such that σ1 maps each
κ subsquare of the grid N × N 1

N affinely by a diagonal matrix onto a subrectangle q
with rational coordinates. It’s false, in general, that q has dyadic rational coordinates
as stated in [43, Lemma 4.3]. More precisely, the previous lemma states that each

Pij = [x1,(i−1)j , x1,ij ]× [j − 1, j]2−p0

is sent into

P̃ij = [i− 1, i]2−p0 × [z2,i(j−1), z2,ij ],

where x1,(i−1)j , x1,ij , z2,i(j−1), z2,ij are dyadic. Call ∆x = x1,ij − x1,(i−1)j and ∆z =
z2,ij − z2,i(j−1). Then by (4.1.4) ∆x = 2−p1nij with nij ∈ N. Up to translation the
perturbed map σ1 (4.1.1) can be written as

σ1⌞Pij=

(
2−p0

∆x 0
0 2p0(∆z)

)
.

Take a subsquare κ = [h − 1, h]2−p1 × [k − 1, k]2−p1 ⊂ Pij , then q = σ1⌞Pij (κ) =[
2−p0

nij
, 2p0−p1(∆z)

]
, which is dyadic only with further requirements on nij . For a more

detailed analysis consider Hj and call ∆xi = x1,ij − x1,(i−1)j = 2−p1nij , where i =

1, . . . 2p0 . If we assume that every subsquare of the grid N × N 1
N is sent into a dyadic

rectangle then we find the conditions

nij = 2mij , ∀i, j.

This condition tells us that, being measure-preserving,

σ1⌞Pij=

(
2−p0+p1−mij 0

0 2p0−p1+mij

)
,

that is, all possible matrices are of the form(
1 0
0 1

) (
1
2 0
0 2

) (
2 0
0 1

2

) (
1
4 0
0 4

)
. . . .

This condition is not compatible with the fact that σ1 is an approximation of the
original map T , which has been chosen to be close to the identity.

Remark 4.1.4. From the previous lemma it easily follows that, if N is the size of the
grid, then every rectangle contained in the unit square K is sent by the perturbed flow
into a union of rectangles.

Remark 4.1.5. To use Theorem 1.0.4 we observe that in our case the change of
variables ϕ is given by the flow Xt. In particular, since Xt is close to the identity with
all its derivatives, the costant CXt given by the previous theorem, is CXt ≤ (1 + δ)d−1

(d = 2 here).

4.1.1 The d-dimensional case

The analysis of the general case can be done as follows.

The starting point is the following approximation assumption in d− 1-dimension.
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Assumption 4.1.6. If the Ld−1-measure-preserving diffeomorphism T : [0, 1]d−1 →
[0, 1]d−1 is sufficiently close to the identity and equal to id in a neighborhood of
∂[0, 1]d−1, then there exists N ∈ N, N = 2p, and a measure-preserving piecewise

smooth invertible map σ close to T such that T ◦ σ maps dyadic rectangles Pij ∈ Nd−1

N

onto dyadic rectangles P̃ij ∈ Nd−1

N by a diagonal linear map (up to a translation).

The above assumption is true for d = 3: indeed if σt is the map of Lemma 4.1.1 and
T is any L2-measure-preserving diffeomorphism T : [0, 1]2 → [0, 1]2, as in the previous
assumption, then σ = T−1 ◦ σt=1 does the job.

Now let T : [0, 1]d → [0, 1]d be a diffeomorphism sufficiently close to the identity and
equal to the identity near ∂[0, 1]d (Figure 4.2). We will not address the perturbation
ζ used to obtain dyadic parallelepipeds (Step 0 of the proof above), being the idea
completely similar to the 2d-case. We will also neglect the time dependence (i.e., how
to split t ∈ [0, 1] into time intervals where the different maps are acting), because it is
a fairly easy extension of the 2d case.

Step 1. Consider the curves

zd 7→ T−1(z1, . . . , zd).

The first step is to perturb T to a map T ′ in order to have that the above curves are
segments along the xd-direction in each slab xd ∈ [kd, kd + 1]/N (Figure 4.3).
Being T close to the identity, the surface T−1({zd−1 = const.}) is parameterized by
x1, . . . , xd−2, xd, and then in each strip

(x1, . . . , xd−2) = const., xd−1 ∈ [0, 1], xd ∈ [kd, kd + 1]
1

N

one can use the same measure preserving map ξ1 defined in Step 1 of the proof of
Lemma 4.1.1 above to obtain a perturbation T̂ = T ◦ ξ such that

T̂−1({zd−1 = const.}) ∩
{
xd ∈ [kd, kd + 1]/N

}
is independent of xd, in the sense that it is the graph of a function depending only on
x1, . . . , xd−2 times the segment xd ∈ [kd, kd + 1]/N .
Disintegrate the Lebesgue measure Ld as

Ld⌞{xd∈[kd,kd+1]/N}=

ˆ [
a(x1, . . . , xd−2, zd−1)dx1dxd−2dxd

]
dzd−1,

according to the partition T̂−1(zd−1 = const) (the density a does not depend on xd
because the surfaces contains the segments along xd), and consider the 2-dimensional
surfaces

T̂−1(zd−1 = const) ∩ {x1, . . . , xd−3 = const}.

We use the same map ξ1 of Step 1 of the proof above to rectify the curves

zd 7→ f(x1, . . . , xd−3, zd−2, zd−1; zd) = (T̂ )−1(zd−2, zd−1 = const)

∩ {x1, . . . , xd−3 = const} ∩ {xd ∈ [kd, kd + 1]/N}.

The main difference w.r.t. the maps (4.1.2), (4.1.5) is that instead of the Lebesgue
measure we use the density a(x1, . . . , xd−2, zd−1). Eventually, the composition of the
two maps above gives a new map Ť such that (Ť )−1(zd−2, zd−1 = const) is a (d − 2)-
dimensional surface made of the graph of a function depending on x1, . . . , xd−3 times
the segment xd ∈ kd, kd + 1]/N .
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The argument is then repeated in the d−2-regions (Ť )−1(zd−2, zd−1 = const) (i.e., disin-
tegrate the Lebesgue measure and shift along the xd−3 direction to rectify (Ť )−1(zd−3, . . . , zd−1 =
const), and so on until we obtain that a new map T ′ such that

(T ′)−1({z1, . . . , zd−1 = const.}) ∩
{
xd ∈ [kd, kd + 1]/N

}
is independent on xd. This means that lines along the zd are mapped back into N
segments of length 1/N along xd.

Step 2. Differently from the 2d case, it is not enough to perturb the vertical slab
as in Step 2, since the sets (T ′)−1({zk = const.}) are not of (piecewise) the form
{xk = const.}. Observe however that in each slab {xd ∈ [kd, kd + 1]/N} the map

(x1, . . . , xd−1) = (T ′
kd
)−1(z1, . . . , zd−1)

is well defined, where (T ′)−1
kd

denotes the first (d − 1)-components of (T ′)−1 restricted
to {xd ∈ [kd, kd+1]/N}: we have used the property that segments along zd are mapped
back into segments along xd.

We use Assumption 4.1.6 to get a map σkd : [0, 1]d−1 → [0, 1]d−1 such that T ′′
kd

=

T ′
kd
◦σkd maps affinely parallepipeds of a grid Nd−1/(NN1), N1 = 2p1 , into cubes of the

same grid: we can take N1 ≫ 1 in order to be independent of k (Figure 4.4).
Hence the map T ′′

kd
maps parallelepipeds of the form

d−1∏
i=1

[ki, ki + 1]

NN1
× [kd, kd + 1]

N

into regions for the form{
zd ∈

[
g(x1, . . . , xd−1, kd/N), g(x1, . . . , xd−1, (kd + 1)/N)

]
, zi ∈

d−1∏
i=1

[k′i, k
′
i + 1]

NN1

}
,

and up to a translation it is a linear diagonal map in the first d − 1 coordinates and
segments along xd remains along xd.

Step 3. Piecing together the maps T ′′
kd
, we obtain a measure preserving map T̄ close

to T with the properties listed at the end of the previous step. We will use the fact
that it is affine in the first (d− 1) coordinates to use a map similar η1 of Step 2 of the
proof of Lemma 4.1.1 to rectify the set

T̄ ({xd ∈ [kd, kd + 1]/N}) ∩
{
zj ∈ [k′j , k

′
j + 1]/(NN1), j = 1, . . . , d− 1

}
.

It is defined as the unique measure preserving map G(z1, . . . , zd−1) of the form

G(z1, . . . , zd−1) =
(
G1(z1, . . . , zd−1), G2(z2, . . . , zd−1), . . . , Gd−1(zd−1), G(z1, . . . , zd)

)
.

Note that since zd enters in the last component, segments along zd are mapped into
segments along zd, and the triangular form of the map assures its uniqueness (Figure
4.5).

The last part of the analysis is to deduce that if a measure preserving transformation
T̃ = G ◦ T̄ : [0, 1]d → [0, 1]d is such that T̃ is of triangular form then it is the identity:
we have rescaled every rectangle to a cube by linear scaling.
If the map has this triangular form, we conclude that the measure preserving condition
reads as

d∏
i=1

∂iT̃i(xi, . . . , xd) = 1,
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Figure 4.2: Starting point: the map T : [0, 1]3 → [0, 1]3 maps the slap x3 ∈ [k3, k3+1]/N
into a 3d-set with purple intersections, and T−1(z1, z2) is the red curve at the left.

Figure 4.3: First move the mass in the yellow 2d-rectangle x1 = const so that its
intersection with T−1(z2) is vertical in x3 ∈ [k3, k3 + 1]/N , next move the mass along
T−1(z2) so that T−1(z1, z2) is vertical in x3 ∈ [k3, k3 + 1]/N .
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Figure 4.4: The recurrence assumption yields a map σ which maps affinely subsquares
into rectangles: in the picture it is shows how it acts before the composition with T ′

(see also Figure 4.1).

Figure 4.5: The last step is to map the subcubes deformed in the direction x3 into
parallelepipeds such that the Lebesgue measure is preserved and the map G is of tri-
angular form: these conditions imply that T̃ = G ◦ T̄ is affine.
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which together with ˆ
∂iT̃i(xi, . . . , xd)dxi = 1

gives ∂iTi(xi, . . . , xd) = 1, i.e., that the map is the identity.

4.2 BV estimates of perturbations

Let Xt : K → K be a smooth flow of measure-preserving diffeomorphisms and assume

∥Xt − id∥C3 , ∥X−1
t − id∥C3 ≤ ℘, (4.2.1)

with ℘ ≪ 1. Call T (x) = Xt=1(x), and let N = 2p0 ∈ N be the dimension of the grid
given by Lemma 4.1.1. In this section we compute the BV norms of the perturbations
of the form (4.1.1) constructed in Lemma 4.1.1.

We first address the action of the map ζt on X(t). Define the perturbed flow

t 7→ X ′
t(x) = ζt ◦Xt(x).

Lemma 4.2.1. There exists a perturbation ζt as required by Step 0 of Lemma 4.1.1
such that if v is its associated vector field then

∥ζt − id∥C0 + 2−p0∥∇ζt − id∥C0 + 2−2p0∥∇2ζt∥C0 ≤ O(1)2−p1 ,

∥v∥C0 + 2−p0∥∇v∥C0 + 2−2p0∥∇2v∥C0 ≤ O(1)2−p1 .

for p1 sufficiently large.

Proof. The request of Step 0 of Lemma 4.1.1 is that the flow across the each region ω̃ij

is 0 (plus the dyadic condition on the new region ω̃ij). Hence the problem reduces in
finding a suitable incompressible flow with a given boundary flux: we will construct a
flow generated by a vector field constant in time.

Consider a function vn on ∂ωij such that

• its support is at distance 2−p0−2 from the corners of ω̃ij ,

• the integral on each of the regular sides is the required flux ϕij,i′j′ ,

• ∥vn∥∞, 2−p0∥v′n∥, 2−2p0∥v′′n∥ ≤ O(1)2−p1 , where v′n is the derivative of vn.

Its existence follows from the fact that ωij is close to a square of side 2−p0 , being X
close to the identity. The last point is a consequence of the fact that |ϕij,i′j′ | ≤ 2−p0−p1 .

The integral of v on ∂ω̃ij is a potential function p, which is constant in the 2−p0−2-
neighborhood of every corner and such that

∥p∥C0 , 2
−p0∥p′∥C0 , 2

−2p0∥p′′∥C0 , 2
−3p0∥p′′′∥C0 ≤ O(1)2−p0−p1 ,

where p′, p′′ are its first and second derivative.
Extend p to a C2-function inside ω̃ij : since this extension can be required to vary

in a region of size 2−p0−2, we get

∥p∥C0 ≤ O(1)2−p0−p1 , ∥∇p∥C0 ≤ O(1)
2−p0−p1

2−p0−2
= O(1)2−p1 ,

∥∇2p∥C0 ≤ O(1)
2−p0−p1

2−2p0−4
= O(1)2p0−p1 .
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∥∇3p∥C0 ≤ O(1)
2−p0−p1

2−3p0−6
= O(1)22p0−p1 .

In particular the vector field v = ∇⊥p satisfies the statement, and if ζt is the flow
generated by v then the same holds by the estimates

∥ζt − id∥C0 ≤ ∥v∥C0t, ∥∇ζt − id∥C0 ≤ e∥∇v∥C0
t − 1,

∥∇2ζ(t)∥C0 ≤ e∥∇v∥C0
t∥∇2v∥C0∥∇ζ∥2C0

,

with p1 ≫ 1.

Corollary 4.2.2. If b′ is the vector field associated with X ′
t = ζt ◦Xt, then

∥b′t − bt∥C1 ≤ O(1)22p0−p1 .

Proof. From the formula (1.0.3)

b′(t, x)− b(t, x) = v(x) +
(
∇ζt(t, ζ−1

t (x))− id
)
b(t, x),

where v(x) is the time independent vector field associated with ζt. Hence from the
previous lemma

∥b′(t)− b(t)∥C1 ≤ ∥v∥C1 +O(1)∥ζt − id∥C2∥b∥C1

≤ O(1)22p0−p1 .

Define the perturbed flow t→ X̃t as

X̃t(x) =

{
X ′(t, 0, ξt(x)) t ∈

[
0, 12
]
,

X ′(t, 1, η(t, 1, w(x))) t ∈
[
1
2 , 1
]
,

where ξt and ηt are given by formula (4.1.1) of Lemma 4.1.1 (here since the map ζ is
not needed we rescale ξt, ηt with t ∈ [0, 1/2]) and

w(x) = η1 ◦ T ′ ◦ ξ 1
2
(x), T ′ = ζ1 ◦ T.

Call b̃t the vector field associated with X̃t.

Lemma 4.2.3 (BV estimates). There exists a positive constant C = C(℘) such that

∥b− b̃∥L∞(L1) ≤
C℘

N
, ∥Tot.Var.(b̃)∥∞ ≤ C∥Tot.Var.(b)∥∞ +

C℘

N
. (4.2.2)

Proof. From Corollary 4.2.2, we have that (for p1 ≫ 1)

∥b− b′∥C1 ≤ O(1)22p0−p1 ≪ ℘

N
,

so that we are left to prove (4.2.2) with b′ in place of b:

∥b′ − b̃∥L∞(L1) ≤
C℘

N
, ∥Tot.Var.(b̃t)∥∞ ≤ C℘.

We will prove the above estimates for t ∈ [0, 1/2], i.e., only for X ′
t◦ξt, being the analysis

of X ′(t, 1, η(t, 1, w(x))) completely analogous.
We start by observing that there exists a constant C > 0 such that

∥ξ̇t∥∞ ≤ C℘

N
.
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Indeed, the map ξit = ξt⌞Hi is given by the formulas (see Step 1 of the proof of Lemma
4.1.1)

ξi1,t(x1, x2) = f ′i,2t(x1, ξ
i
t(x1, x2)) = (1− 2t)x1 + 2tf ′(z1,i(x1), ξ

i
2,t(x1, x2)),

ˆ ξi2,t(x1,x2)

(i−1)2−p0

∂x1f
′
i,2t(x1, w)dw = x2 − (i− 1)2−p0 .

Since it holds by (4.2.1)

∥f ′⌞Hi−id∥C3 , ∥z1,i − id∥C3 ≤ O(℘), (4.2.3)

then
∥f ′i,2t(x1, w)− x1∥C3 ≤ O(℘).

Hence the function

F (t, x1, x2, ξ) =

ˆ ξ2

(i−1)2−p0

∂x1f
′
i,2t(x1, w)dw − x2 + (i− 1)2−p0

satisfies

∥F (t, x1, x2, ξ)− (ξ2 − x2)∥C2 =

∥∥∥∥ˆ ξ2

(i−1)2−p0

(
∂x1f

′
i,2t(x1, w)− 1

)
dw

∥∥∥∥
C2

≤ O(℘)

N
.

By the Implicit Function Theorem we deduce that

∥ξi2,t − x2∥C2 ≤ O(℘)

N
,

and in particular

∥ξ̇i2,t∥C0 , ∥∇ξ̇i2,t∥C0 ≤ O(℘)

N
.

Similarly

∥ξi1,t − x1∥C2 ≤ O(℘)

N
,

and then

∥ξ̇i1,t∥C0 , ∥∇ξ̇i1,t∥C0 ≤ O(℘)

N
.

We next estimate the total variation of the vector field

vt = ξ̇t(ξ
−1
t (x)).

We will use the following elementary formulas:

∂z1f
′(z1, x2) =

1

∂z2X
−1
2 (z1, z2(z1, x2))

(4.2.4)

∂x2f
′(z1, x2) =

∂z2(X1)
−1(z1, z2(z1, x2))

∂z2(X2)−1(z1, z2(z1, x2))
, X2(z1, z2(z1, x2)) = x2, (4.2.5)

∂x1z1 =
1

−́i2−p0

(i−1)2−p0 ∂z1f
′(z1,i(x1), w)dw

,

from which it follows∑
i

||∂z1f ′(zi,1, x2)∂x1zi,1 − 1||L1(Hi) +
∑
i

∥∂x2f
′(zi,1, x2)∥L1(Hi) ≤ C||Tot.Var.(b)(K)||∞.



76 CHAPTER 4. PERMUTATION FLOW

Indeed

||∂z1f ′(zi,1, x2)∂x1zi,1 − 1||L1(Hi) ≤ ||∂x1zi,1||∞||∂z1f ′(zi,1, x2)− 1||L1(Hi)

+ ||∂x1zi,1 − 1||L1(Hi)

≤ C||∂z1f ′(zi,1, x2)− 1||L1(Hi)

+ C

∥∥∥∥−ˆ i2−p0

(i−1)2−p0

∂z1f
′(zi,1, x2)dw − 1

∥∥∥∥
L1(Hi)

≤ C||∂z1f ′(zi,1, x2)− 1||L1(Hi),

therefore, by (4.2.4), we get∑
i

||∂z1f ′(zi,1, x2)− 1||L1(Hi) +
∑
i

∥∂x2f
′(zi,1, x2)∥L1(Hi)

≤ C||∇(X−1 − Id)||1 ≤ C

ˆ 1

0
Tot.Var.(bs)(K)ds ≤ C||Tot.Var.(b)(K)||∞.

By the Implicit Function Theorem we recover the following estimate for |∇ξ̇|:

|∇ξ̇| ≤ C

(
|∂x1f

′(z1,i(x1), ξ2)− 1|+
ˆ ξ2

(i−1)2−p0

|∂2x1
f ′(z1,i(x1), w)|dw

+ ∥∇f ′(z1,i(x1), ξ2)∥C1

(
|ξ̇|+ |∇ξ|+ |ξ̇||∇ξ|

))
≤ C|∂x1f

′(z1,i(x1), ξ2)− 1|+ O(℘)

N
.

Hence

∥∇ξ̇∥1 ≤ C∥Tot.Var.(b)(K)||∞ +
O(℘)

N
.

For the jump part, we estimate the vector vt at the boundaries of Hi: from the
definition

ξt(x1, (i− 1)2−p0) = (1− 2t)x1 + 2tf ′
(
z1,i(x1), (i− 1)2−p0

)
,

ξt(x1, i2
−p0) = (1− 2t)x1 + 2tf ′

(
z1,i(x1), i2

−p0
)
,

We consider only the second one, being the analysis of the first completely similar.
Differentiating ξt(x1, i2

−p0) w.r.t. t and using the definition of z1,i(x1) we have

ξ̇t(x1, i2
−p0) = 2

(
f ′
(
z1,i(x1), i2

−p0
)
− x1

)
= 2

(
f ′
(
z1,i(x1), i2

−p0
)
−
 i/N

(i−1)/N
f ′
(
z1,i(x1), w

)
dw

)
.

and then

|ξ̇t(x1, i/N)| ≤ 2

ˆ i/N

(i−1)/N

∣∣∂x2f
′(z1,i(x1), w)

∣∣dw
≤ C

ˆ i/N

(i−1)/N

∣∣∂z2(X1)
−1(z1,i(x1), z2(z1,i(x1), w))

∣∣dw.
Hence, by (4.2.3) and from the definition of z2(z1, x2) in (4.2.5) we have that∥∥(z1,i(x1), z2(z1,i(x1), x2))− id

∥∥
C1 ≤ O(℘)

N
,
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so that using {(
z1,i(x1), z2(z1,i(x1), x2)

)
, (x1, x2) ∈ Hi

}
= X1(Hi),

we have
ˆ 1

0
|ξ̇t(x1, i/N)|dx1

≤ C

ˆ 1

0

ˆ i/N

(i−1)/N

∣∣∂z2(X1)
−1(z1,i(x1), z2(z1,i(x1), x2))

∣∣dx1dx2
≤ C

ˆ
X1(Hi)

∣∣∂z2(X1)
−1(z1, z2)

∣∣dz.
(4.2.6)

Again, since the change of variable which associate t, x1 with its position w1 on the
jump line [0, 1]× {i/N} is given by

t, x1 7→ w1 = (1− 2t)x1 + 2tf ′(z1,i(x1), i/N),

up to a constant 1+O(℘)/N (again by (4.2.3)) the first integral in (4.2.6) corresponds
to the jump part of ξ̇(x1, i/N) on [0, 1]× {i/N} when extended to 0 outside Hi.

The same estimate holds for the jump of ξ̇t(x1, (i− 1)2−p0) on [0, 1]× {(i− 1)/N .
We conclude that

∥Djumpv∥ ≤ C
∑
i

ˆ
X(Hi)

∣∣∂z2(X1)
−1(z1, z2)

∣∣dz ≤ C∥Tot.Var.(b)∥∞.

We thus deduce

Tot.Var.(vt) ≤ C∥Tot.Var.(b)||∞ +
O(℘)

N
.

Collecting all estimates we have:
L1 estimate. Fix t ∈

[
0, 12
]
. From (1.0.3) it follows that

|b̃t(x)− bt(x)| ≤ ∥ξ̇t∥∞|∇X ′
t((X

′)−1
t (x)| ≤ C℘

N
.

BV estimate. Again from (1.0.3)

Tot.Var.(b̃t − bt) ≤ Tot.Var.
(
∇Xt(X

−1
t (x))ξ̇t(X̃

−1
t (x))

)
,

so that we have to compute the total variation of

∇Xt(X
−1
t (x))ξ̇t(X

−1
t (x)).

By using Theorem 1.0.4 we have

Tot.Var.
(
∇Xt(X

−1
t )ξ̇t(X̃

−1
t )
)
≤ Lip(Xt)Tot.Var.

(
∇Xtξ̇t(ξ

−1
t )
)

≤ Lip(Xt)Tot.Var.(∇Xt)∥ξ̇t∥∞
+ Lip(Xt)∥∇Xt∥∞Tot.Var.(ξ̇t ◦ ξ−1

t )

= Lip(Xt)Tot.Var.(∇Xt)∥ξ̇t∥∞
+ Lip(Xt)∥∇Xt∥∞Tot.Var.(vt).

The first term can be estimated by

Tot.Var.(∇Xt)∥ξ̇t∥∞ ≤ O(℘)

N
,
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while the second term is controlled by

∥∇Xt∥∞Tot.Var.(vt) ≤ C∥Tot.Var.(b)||∞ +
O(℘)

N
.

This is the statement.

Remark 4.2.4. The above estimates can be obtained also for the d-dimensional case,
since the maps used in that case is a composition of maps of the 2d case: the estimates
are completely similar (but a lot more complicated).

Remark 4.2.5. We notice here that the constant C in front of the total variation is
larger than 1: this fact is one of the reasons why we need to work in the Gδ-set U .

4.3 BV estimates for rotations

In this part we address the analysis of rotations: these are needed because the map
of Lemma 4.1.1 maps affinely subrectangles into subrectangles, while we need squares
translated into squares.

The approach here differs from the one of [43, Lemma 4.5], because the rotations used
in that paper have a BV norm which is not bounded by the area (Lemma 4.3.1) and
instead it depends on the size of the squares (actually it blows up when the size of the
squares goes to 0).

Let N = 2p0 , p0 ∈ N, and σ1 : K → K be respectively the dimension of the grid and
the map given by Lemma 4.1.1.

Lemma 4.3.1. There exists M ∈ N and a flow R̄t : K → K invertible, measure-
preserving and piecewise smooth such that the map σ1 ◦ R̄1 translates each subsquare of
the grid N×N 1

M into a subsquare of the same grid, i.e., it is a permutation of squares.

In particular note that ∇(σ1 ◦ R̄1) is the identity inside each subsquare κ.

Proof. Fix κ a subsquare of the grid N× N 1
N and call q = σ1(κ) its image. Since σ⌞κ

is an affine measure-preserving map of diagonal form, then, up to translations,

σ1(x) =

(
λ1 0
0 λ2

)
x, ∀x ∈ κ,

where λ1, λ2 ∈ Q>0 and λ1λ2 = 1. Therefore the rectangle q has horizontal side of
length λ1

N and vertical side of length 1
λ1N

. Decompose now the square κ into rectangles

Rij with i = 1, . . . , 1
l1
and j = 1, . . . , 1

l2
with horizontal side of length l1

N and vertical side

of length l2
N . The numbers 1

l1
, 1
l2

∈ N are chosen such that λ1 = l2
l1
, i.e., σ1(Rij) = R⊥

ij ,

where R⊥
ij is the rotated rectangle counterclockwise of an angle π

2 .
In each Rij we perform a rotation given by the flow

Rij
t = χ−1 ◦ rt ◦ χ,

where χ : Rij → K is the affine map, up to translation, sending each Rij into the unit
square K, namely

χx =

(
N
l1

0

0 N
l2

)
x, ∀x ∈ Rij ,
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whereas rt : K → K is the rotation flow (2.2.5). Finally define Rt : K → K such that
Rt⌞Rij= Rij

t . This flow rotates the interior of each rectangle Rij by π/2 during the
time evolution.

Now we choose M ∈ N large enough to refine the grid N× N 1
N in such a way that

for every subsquare κ ∈ N × N 1
N , ∀i, j, each rectangle Rij ⊂ κ is the union of squares

of the grid N × N 1
M and each rectangle q = σ1(κ) is union of subsquares of N × N 1

M ,
which is possible since the vertices of the squares and rectangles we are considering are
all rationals.
We claim that the map σ1◦Rt : K → K is a flow of invertible, measure-preserving maps
such that σ1 ◦ R1 : K → K is a permutation of subsquares of size 1

M up to a rotation
of π/2. Indeed, fix Rij and assume that it contains aij subsquares κhij of size 1

M × 1
M

along the horizontal side and bij subsquares along the vertical one. The rotation R1

stretches each square κhij into a rectangle rhij whose size is l1
Ml2

× l2
Ml1

, i.e., 1
λ1M

× λ1
M .

Now it is clear that σ1(r
h
ij) is a square of size 1

M × 1
M .

The Jacobian of R1 is

JR1 =

(
0 −λ2
λ1 0

)
.

Thus the composition of the two maps acts in each square rhij as(
λ1 0
0 λ2

)(
0 −λ2
λ1 0

)
=

(
0 −1
1 0

)
,

i.e., a rotation of π/2.
Define then the map R̄t as

R̄t⌞κh
ij
= Rt ◦ r−π/2

t ,

where r
−π/2
t is the rotation of the square κhij of −π/2: now the map has Jacobian id in

each square κhij . This is the map of the statement.

Remark 4.3.2. A completely similar construction can be done in dimension d ≥ 3:
in this case, in each cube κ ∈ Nd/N the piecewise affine map σ has the form (up to a
translation)

σ = diag(λ1, . . . , λd), λ1λ2 . . . λd = 1.

Hence the subpartition of κ is done into parallelepipeds ℓ1 × ℓ2 × · · · × ℓd such that

λi =
ℓi+1

ℓi
.

The action of σ transform each of these parallelepipeds into the new ones ℓ2×ℓ3×· · ·×
ℓd × ℓ1, which is the range of the rotation


0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

1 0 0 . . . 0

 =


1 0 · · · 0 0
0 1 · · · 0 0
...

... id
...

...
0 0 · · · 0 −1
0 0 . . . 1 0

 · · · · · · ·


0 −1 · · · 0 0
1 0 · · · 0 0
...

... id
. . .

...
0 0 . . . 1 0
0 0 . . . 0 1

 .

(The above formula is the decomposition into 2d rotations.) Hence, as in Lemma
4.3.1 above, a rotation of the parallelpipeds ℓ1 × · · · × ℓd and a counter-rotation of the
subcubes of the parallelepipeds gives the transformation.
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4.4 Main approximation theorem

We are ready to prove our main result.

Theorem 4.4.1. Let b ∈ L∞([0, 1];BV (K)) be a divergence-free vector field and as-
sume that there exists δ > 0 such that for L1-a.e. t ∈ [0, 1], supp bt ⊂⊂ Kδ. Then for
every ϵ > 0 there exist δ′, C1, C2 > 0 positive constants, D ∈ N arbitrarily large and a
divergence-free vector field bϵ ∈ L∞([0, 1];BV (K)) such that

1. supp bϵt ⊂⊂ Kδ′,

2. it holds

∥b−bϵ∥L∞(L1) ≤ ϵ, ||Tot.Var.(bϵ)(K)||∞ ≤ C1||Tot.Var.(b)(K)||∞+C2, (4.4.1)

3. the map Xϵ⌞t=1 generated by bϵ at time t = 1 translates each subsquare of the grid
N× N 1

D into a subsquare of the same grid, i.e., it is a permutation of squares.

Remark 4.4.2. Observe that the theorem can be easily extended to vector fields
b ∈ L∞([0, 1],BV(R2)) such that supp bt ⊂ K. We keep here the original setting of
[43].

Remark 4.4.3. By inspection of the proof one can check that C1, C2 are independent
of b. This is in any case not needed for the proof of the main theorem.

Remark 4.4.4. A possible approach would be to divide the time interval [0, 1] into
sufficiently small time steps ∼ τ in order to apply Lemmas 4.1.1 , 4.3.1 and hence to
compose the resulting maps as done in [43], however by Lemma 2.2.13,

||Tot.Var.(R̄)(κ)||∞ ∼ Area(K)

τ

so that the total variation blows up as the time step goes to zero.

Proof. We divide the proof into several steps.

Step 1. Let ρ ∈ C∞
c (R2) be a mollifier, and define

bαt
.
= bt ∗ ρα,

where ρα(x)
.
= α−2ρ( xα) and α << 1 is chosen such that supp bα,t ⊂⊂ K.

By well known estimates (see (1.0.1)) we obtain

∥bαt − bt∥L1 ≤ αTot.Var.(bt)(K), Tot.Var.(bαt )(K) ≤ Tot.Var.(bt)(K).

then if α is chosen such that α ≤ ϵ
2||Tot.Var.(b)(K)||∞ , we conclude that

||bαt − bt||1 ≤
ϵ

2
, Tot.Var.(bαt )(K) ≤ Tot.Var.(bt)(K)

and we have to prove the theorem for bα. Moreover bα satisfies the estimates

||bαt ||∞ ≤ 1

α2
||bt||1, ∥∇nbαt ∥∞ ≤ Cn

α1+n
∥Tot.Var.(bt)(K)∥∞.

From now on we will call bα = b to avoid cumbersome notations.
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Step 2. Let us consider a partition of the time interval 0 = t0 < t1 < · · · < tn = 1
where n ∈ N and ti =

i
n , where n will be chosen later on. Let us call Xj

.
= X(tj , tj−1, x)

and Xj(t)
.
= X(t, tj−1, x) defined for t ∈ [tj−1, tj ]. Then each flow Xj(t) is close to the

identity with its derivatives, indeed

Xj(t, x) = x+

ˆ t

tj−1

b(s,X(s, tj−1, x))ds, (4.4.2)

so that
∥Xj(t)− id∥Ck ≤ C(k)(t− tj−1)∥b∥Ck .

More precisely, if ℘ is the constant of (4.2.1), there exists n ∈ N such that

∥Xj(t)− id∥C3 , ∥X−1
j − id∥C3 ≤ ℘, ∀t ∈ [tj−1, tj ], ∀j = 1, . . . , n.

Therefore we can apply Lemma 4.1.1 to each Xj(t) finding Nj = 2pj dyadic and X̃j :
[tj−1, tj ] × K → K with the property that, at time t = tj , the map X̃j(tj) sends
subsquares of the grid N × N 1

Nj
into rational rectangles with vertices in N

NjRj
. In

particular, the eigenvalues of all affine maps σ for X̃j(tj) belongs to N
Rj

. We can

moreover assume that Nj = N for all maps X̃j(tj) by taking N sufficiently large.
Finally from Lemma 4.2.3 we have that in each interval [tj−1, tj ] it holds

∥b− b̃j∥L∞(L1) ≤
C℘

N
, ∥Tot.Var.(b̃j)∥∞ ≤ C∥Tot.Var.(bt)∥∞ +

C℘

N
.

so that for N ≫ 1 we have

∥b− b̃j∥L∞(L1) ≤ ϵ, ||Tot.Var.(b̃j)(K)||∞ ≤ C||Tot.Var.(b)(K)||∞ + ϵ,

where b̃j is the vector field associated with X̃j .
We define t→ X̃t the perturbed flow

X̃(t) =



X̃1(t) 0 ≤ t ≤ t1,

X̃2(t) ◦ X̃1(t1) t1 ≤ t ≤ t2,

. . .

X̃i+1(t) ◦ X̃i(ti) ◦ · · · ◦ X̃1(t1) ti ≤ t ≤ ti+1,

. . .

X̃n(t) ◦ X̃n−1(tn−1) ◦ · · · ◦ X̃1(t1) tn−1 ≤ t ≤ 1.

The map is clearly piecewise affine, and the eigenvalues of each affine piece σ belong to
N∏
j Rj

.

Step 3. The map X̃(1) has the property of sending subsquares of the grid N × N 1
N

into union of rational rectangles. Let D = N(
∏

j Rj)
2: we now show that X̃(1) maps

subsquares of the grid N× N 1
D into rational rectangles.

Let R =
∏

j Rj and assume that the map X̃(1, tj+1) maps the subsquares of the
grid

N× N
1

NR
∏n

k=j+1Rk

into rational rectangles. Since X̃j maps affinely the subsquares of N×N 1
N into rectangles

of the grid

N× N
1

NRj
⊂ N× N

1

NR
∏n

k=j+1Rk
,
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Figure 4.6: A square is sent into a union of rectangles by the map X̃(1).

then

X̃−1
j

(
N× N

1

NR
∏n

k=j+1Rk

)
⊂ N× N

1

NR
∏n

k=j Rk
.

In particular we obtain that

X̃−1

(
N× N

1

NR

)
⊂ N× N

1

NR2
.

We rename the flow X̃D
t to indicate the size of the grid on which it acts as a piecewise

affine map. Note that the above estimates (as well as the next ones) improve whenever
N becomes larger, so that the size of the grid D can be taken arbitrarily large.

Step 4. To conclude the proof we want to modify the flow X̃D
t slightly in such a way

that the new flow X̌D
t evaluated at t = 1 sends subsquares into subsquares by trans-

lations. The key idea is to perform rotations as in Lemma 4.3.1 balancing two effects:
one one hand the cost of a rotation is at least of the order of the area (Lemma 2.2.13),
on the other hand if the squares are too much deformed the cost is exponentially large
w.r.t. the total variation used to deform the square. The idea will be to use these
rotations only when the deformation reaches a critical threshold.

First let us fix κ0 a subsquare of the grid N × N 1
D and call κi its images through the

maps κi = X̃D
t=ti(κ0). Since each map X̃i(ti) is affine and measure-preserving on κi−1,

up to a translation it can be represented as(
σi 0
0 1

σi

)
where σi ∈ Q and |σi − 1|, | 1σi

− 1| ≤ ℘≪ 1, where ℘ is the one given by the partition.
Moreover, being

∇2X̃D
t=tj (x) = 0 (4.4.3)

whenever x belongs to the interior of the subsquares, we deduce that for the same x

|∇2X̃D
t (x)| ≤ ℘.
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We can also observe that, by (4.4.2)

|σi − 1|,
∣∣∣∣ 1σi − 1

∣∣∣∣ ≤ C

L2(κ0)

ˆ ti

ti−1

Tot.Var.(bDs )(κ0)ds.

By elementary computations one can prove that∣∣∣∣∏
i

σi − 1

∣∣∣∣, ∣∣∣∣∏
i

1

σi
− 1

∣∣∣∣ ≤ max

{
σ,

1

σ

}∑
i

|σi − 1|.

Hence if we have the bound

3 ≤
(
σj+1 · . . . · σi +

1

σj+1 · . . . · σi

)
≤ 4,

then
3

8
L2(κj) ≤

ˆ ti

tj

Tot.Var.(bDs )(κ0)ds. (4.4.4)

The idea is to find now a new sequence of times {tij} ⊂ {ti}, j = 1, . . . , n′ and i =
1, . . . , n, in which we perform the rotations of Lemma 2.2.13 in order to have both the
total variation is controlled be the total variation of b̃D and the property of sending
subsquares into subsquares by translation.

Let us start defining ti0 = 0 and

ti1 = minT0,

where

T0 =

{
ti > 0 : 3 ≤

(
σ1 · · · · · σi +

1

σ1 · · · · · σi

)
≤ 4

}
.

Then two situations may occur.

1. The set T0 is empty, that is
(
σ1 . . . σi +

1
σ1...σi

)
≤ 3 for all i. In this case we

perform a rotation in [0, 1], that is R1 : [0, 1] × K → K (as in Lemma 4.3.1)
where R1⌞K\̊κ0

(x) = x and it is such that XD ◦ R1⌞t=1 sends subsquares of κ0
into subsquares of κn. In this case

X̂D
t = X̃D

t ◦R1
t

b̂Dt (x) = b̃Dt (x) +∇X̃D
t ◦ (X̃D

t )−1(x)Ṙ1
t ((X̃

D
t ◦R1

t )
−1(x)) x ∈ κ0

(where we have recalled that all functions can be extended smoothly to κ0) and

Tot.Var.(b̂Dt − b̃Dt )(κ0) ≤ ∥∇X̃D
t ∥2∞TV (Ṙt(R

−1
t ))(κ0)

+ ∥∇X̃D
t ∥∞∥Ṙ∥∞Tot.Var.(∇X̃D

t )(κ0)

≤ ∥∇X̃D
t ∥∞

4

D2

(
σ1 . . . σn +

1

σ1 . . . σn

)
+

O(℘)

D3

≤ ∥∇X̃D
t ∥∞

12

D2
+

O(℘)

D3
.

(4.4.5)

We have observed that

∇2X̃D
t=tj (x) = 0 for x ∈ κ̊0 by (4.4.3),
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so that for t ∈ [tj−1, tj ]

∥∇2X̃D
t ∥∞ ≤ O(1)

ˆ t

tj−1

|∇2b(s, X̃D
s )|ds = O(℘)

D2
.

Since ∥∇X̃D
t ∥∞ ≤ C by the assumptions that these are sets with small deforma-

tions, we obtain

Tot.Var.(b̂Dt − b̃Dt )(κ0) ≤
O(1)

D2
= O(1)L2(κ0),

where we have used (4.4.4).

2. The set T0 is non empty. Then if ti1 = 1 the procedure stops and you perform a
rotation as in Lemma 4.3.1 in [0, 1] finding

Tot.Var.(b̂Dt − b̃Dt )(κ0) ≤ ∥∇X̃D
t ∥ 4

D2

(
σ1 . . . σn +

1

σ1 . . . σn

)
+

O(℘)

D3

≤ O(1)∥∇X̃D
t ∥

ˆ 1

0
Tot.Var.(b̃Ds )(κ0)ds+

O(℘)

D3
,

where we have used (4.4.4) and we have estimated the higher order term as in
(4.4.5).

If ti1 < 1 we compute
ti2 = minT1,

where

T1 =

{
ti > ti1 : 3 ≤

(
σi1+1 . . . σi +

1

σi1+1 . . . σi

)
≤ 4

}
.

If T1 = ∅ we stop the procedure and we perform a rotation in [ti1−1, 1] = [0, 1]
finding, for t ∈ [ti1−1, 1]

Tot.Var.(b̂Dt − b̃Dt )(κ0) ≤ ∥∇X̃D
t ∥ 4

D2

1

1− ti0

(
σi1−1 . . . σn +

1

σi0 . . . σn

)
+

O(℘)

D3

≤ O(1)
1

1− ti0

ˆ ti1

ti0

Tot.Var.(b̃Ds )(κ0)ds+
O(℘)

D3

≤ O(1)−
ˆ 1

ti0

Tot.Var.(b̃Ds )(κ0)ds+
O(℘)

D3
.

(4.4.6)

If T1 is non empty we perform a rotation in [0, ti1 ] finding for t ∈ [0, ti1 ] the
following estimate

Tot.Var.(b̂Dt − b̃Dt )(κ0) ≤ ∥∇X̃D∥ 4

D2

1

ti1 − 1

(
σ1 . . . σi1 +

1

σ1 . . . σi1

)
+

O(℘)

D3ti1

≤ O(1)−
ˆ ti1

0
Tot.Var.(b̃Ds )(κ0)ds+

O(n℘)

D3
.

Again if ti2 = 1 the procedure stops and we perform another rotation in [ti1 , ti2 ].
If not we consider the set T2 and we proceed.
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The general step if the following: we consider the set

Tj+1 =

{
ti > tij : 3 ≤

(
σ1 · · · · · σi +

1

σ1 · · · · · σi

)
≤ 4

}
.

If Tj+1 is empty, then we perform a rotation in [tij−1 , 1] finding for t ∈ [tij−1 , 1] the
same estimate as (4.4.6). If Tj+1 is non empty, we perform a rotation in [tij−1 , tij ] and
we consider

Tj+2 =

{
ti > tij+1 : 3 ≤

(
σ1 · · · · · σi +

1

σ1 · · · · · σi

)
≤ 4

}
.

At the end of this procedure there are two possible scenarios: let n′ = sup{j : Tj ̸= ∅}.
If tin′ = 1, the procedure ends by performing a rotation in [tin′−1

, 1]. If we find tin′ < 1
with the property that (

σin′+1 . . . σi +
1

σin′+1 . . . σi

)
≤ 3

for all i = in′ + 1, . . . , n, the construction ends with a rotation in [tin′−1
, 1] (as in the

case of the estimate (4.4.6)).

In particular, for each subsquare κ0 we find a sequence of times {tij (κ0)}, j = 1, . . . , n′(κ0),
where we are performing a rotation. There are two cases to be considered: if T0(κ0) is
empty then

Tot.Var.(b̂Dt − b̃Dt )(κ0) ≤
O(1)

D2
,

otherwise

Tot.Var.(b̂Dt − b̃Dt )(κ0) ≤ O(1)∥Tot.Var.(b̃D)(κ0)∥∞ +
O(n℘)

D3
.

Summing over all possible κ0 we find that

Tot.Var.(b̂Ds )(K) ≤ Tot.Var.(b̃Ds )(K) +D2

(
O(n℘)

D3
+

O(1)

D2

)
+ C2∥Tot.Var.(b̃D)(K)∥∞

≤ Tot.Var.(b̃Ds )(K) + C1 + C2∥Tot.Var.(b̃D)(K)∥∞

if D ≫ 1, therefore we can conclude the proof finding a positive constant C > 0 such
that

∥Tot.Var.(b̂D)(K)∥∞ ≤ C1 + C2∥Tot.Var.(b̃D)(K)∥∞
which is the desired estimate.

Remark 4.4.5. The same result can be obtained for the d-dimensional case, by using
the maps of Section 4.1.1 and Remarks 4.2.4 and 4.3.2.





Appendix Mixing

Proof of Lemma 1.1.8. By the Ergodic Theorem, T = Xt=1 is ergodic iff

1

n

n−1∑
i=0

χT i(A) →L1 |A|

In particular, if T is ergodic, then by writing

1

n

ˆ n

0
χXt(A)dt =

ˆ 1

0

n− 1

n

(
1

n− 1

n−1∑
i=0

χT i(Xs(A))

)
ds

we see that

−
ˆ t

0
χXs(A)ds→L1 |A|.

It is immediate to find a counterexample to the converse implication: just consider
rotation of the unit circle with period 1.

The proof of the implication ⇒ in the second point is analogous. For the converse,
let A,B ∈ Σ such that

1

n

n∑
i=0

[
|T i(A) ∩B| − |A||B|

]2
> ϵ.

By the continuity of s 7→ Xs in the neighborhood topology we have that there exists s̄
such that for 0 ≤ s ≤ s̄ it holds∣∣Xs(B)△B

∣∣ = ∣∣B△(Xs)
−1(B)

∣∣ < ϵ

2
.

Hence we can write

−
ˆ n

0

[
|Xt(A) ∩B| − |A||B|

]2
dt ≥ n

T

ˆ s̄

0

1

n

n−1∑
i=0

[∣∣Xs(T
i(A)) ∩B

∣∣− |A ∩B|
]2
ds

=

ˆ s̄

0

1

n

n−1∑
i=0

[∣∣T i(A) ∩ (Xs)
−1(B)

∣∣− |A ∩B|
]2
ds

≥
ˆ s̄

0

1

n

n−1∑
i=0

[∣∣T i(A) ∩B
∣∣− |A ∩B|

]2
ds− s̄

ϵ

2
> s̄

ϵ

2

for n≫ 1. Hence

lim inf −
ˆ T

0

[
|Xt(A) ∩B| − |A||B|

]2
dt ̸= 0.

Finally, if T is strongly mixing, the continuity of s 7→ Xs in the neighborhood
topology gives that s 7→ Xn

s = Xs ◦ Tn is a family of equicontinuous functions, and
since for all s fixed

lim
n→∞

|Xs(T
n(A)) ∩B| = |A||B|

87
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we conclude that Xn
s converges to 0 uniformly in s. The opposite implication is trivial.



Dynamic blocking problems of
fire propagation

In this part of the thesis we study a dynamic blocking problem first proposed by Bressan
in [12]. The problem is concerned with the model of wild fire spreading in a region of
the plane R2 and the possibility to block it constructing some barriers in real time. If
we denote by R(t) ⊂ R2 the region burned by the fire at time t, then we can describe
it as the reachable set for a differential inclusion. More precisely, one considers the
Cauchy Problem

ẋ ∈ F (x), x(0) ∈ R0, (4.4.7)

where the set R0 ⊂ R2 represents the region burnt by the fire at the initial time t = 0
while the function F describes the speed of spreading of the fire. The set R0 ⊂ R2

is assumed to be open, bounded, non empty and connected with Lipschitz boundary,
whereas the standard assumptions on F are:

1. there exists r > 0 such that Br(0) ⊂ F (x) ∀x ∈ R2;

2. F (x) is compact and convex ∀x ∈ R2;

3. x→ F (x) is continuous in the Hausdorff topology.

If no barriers are present the reachable set for the differential inclusion is

R(t) =
{
x(t), x(·) abs. cont., x(0) ∈ R0, ẋ(τ) ∈ F (x(τ)) for a.e. τ ∈ [0, t]

}
.

When the fire starts spreading, a fireman can construct some barriers, modeled by a
one-dimensional rectifiable set ζ ⊂ R2, in order to block the fire. More in detail, we
consider a continuous function ψ : R2 → R+ together with a positive constant ψ0 > 0
such that ψ ≥ ψ0. If we denote by ζ(t) ⊂ R2 the portion of the barrier constructed
within the time t ≥ 0, we say that ζ is an admissible barrier (or admissible strategy) if

1. (H1) ζ(t1) ⊂ ζ(t2), ∀t1 ≤ t2;

2. (H2)
´
ζ(t) ψdH

1 ≤ t, ∀t ≥ 0,

where H1 denotes the one-dimensional Hausdorff measure. Once we have an admissible
strategy ζ, then we define the reachable set for ζ at time t the set

Rζ(t) =
{
x(t) : x abs. cont., ẋ(τ) ∈ F (x(τ)) for a.e. τ ∈ [0, t], x(τ) ̸∈ ζ(τ) ∀τ ∈ [0, t]

}
.

(4.4.8)

Definition 4.4.6. Let t→ ζ(t) be an admissible strategy. We say that it is a blocking
strategy if

Rζ
∞

.
=
⋃
t≥0

Rζ(t)

is a bounded set.
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We call isotropic the case in which the fire is assumed to propagate with unit speed in
all directions, while the barrier is constructed at a constant speed σ > 0, namely

F ≡ B1(0), R0 = B1(0), ψ ≡ 1

σ
, (4.4.9)

where B1(0) denotes the closure of the unit ball of the plane centered at the origin. The
existence of admissible blocking (or winning) strategies for the isotropic blocking prob-
lem is a very challenging open problem and it has been addressed mainly in [12],[15].1.
In particular, the following theorems hold:

Theorem 4.4.7. Assume that (4.4.9) hold. Then if σ > 2 there exists an admissible
blocking strategy.

Theorem 4.4.8. Assume that (4.4.9) hold. Then if σ ≤ 1 no admissible blocking
strategy exists.

The two theorems are proved in [12] and they motivate the following Fire Conjecture
[1]:

Conjecture 4.4.9. Let (4.4.9) hold. Then if σ ≤ 2 no admissible blocking strategy
exists.

For a survey of results related to the previous conjecture, see [13].
Equivalent formulation. Throughout the paper we will use the following equiv-

alent formulation of the dynamic blocking problem (for a proof of the equivalence, see
[18]): let Z ⊂ R2 be a rectifiable set. We denote by

RZ(t) = {x(t) : x abs. cont., ẋ(τ) ∈ F (x(τ)) for a.e. τ ∈ [0, t], x(τ) ̸∈ Z ∀τ ∈ [0, t]}.
(4.4.10)

We say that the strategy Z is admissible if

H1(Z ∩RZ(t)) ≤ σt. (4.4.11)

Similarly to the previous formulation we denote by

RZ
∞ =

⋃
t≥0

RZ(t) (4.4.12)

the burned region and we say that Z is an admissible blocking strategy if RZ
∞ is

bounded. The advantage of this description is that the barrier is fixed and it does
not grow while the time evolves.

One can easily prove that if the strategy Z consists of a simple closed curve, then
it is not admissible for σ ≤ 2, but only partial results are present in the literature if
the strategy has more complicated structures, as for example the presence of internal
barriers that slow down the fire. One possible idea to prove the conjecture would be
to investigate the shape of a strategy which is optimal among admissible strategies,
allowing for the presence of some internal barriers.

Optimization problem. To define an optimization problem one introduces the
following cost functional

J(Z) =

ˆ
RZ

∞

κ1dL2 +

ˆ
Z
κ2dH1, (4.4.13)

1One can prove that the existence of blocking strategy does not depend on the starting set R0 but
only on the speed σ [13]
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among all possible admissible blocking strategies, where κ1, κ2 : R2 → R+ are two
non-negative continuous functions. In [17] it is proved that, if the class of admissible
blocking strategies is non-empty, then there exists an optimal strategy. Moreover, there
exists an optimal strategy Z∗ which is complete:

Definition 4.4.10. Let Z ⊂ R2 be a rectifiable set. Z is complete if it contains all its
points of positive upper density, that is, let x ∈ R2 such that

lim sup
r→0+

H1(Z ∩Br(x))

2r
> 0 =⇒ x ∈ Z.

The following corollary also holds [18]:

Corollary 4.4.11. If there exists an admissible blocking strategy Z with H1(Z) < ∞,
then there exists an optimal blocking strategy Z∗ such that

Z∗ = (∪iZi) ∪N ,

where Zi are countably many compact rectifiable connected components and H1(N ) = 0.

We mention also the recent result in [16] where it is proved that the optimal strategy
is nowhere dense. Giving necessary conditions for optimality is a hard question. Some
results are obtained in [19] assuming some further regularity on the optimal strategy.

Minimum time function and Hamilton-Jacobi formulation. The propaga-
tion of fire can be described also in terms of the minimum time function

u(x)
.
= inf{t ≥ 0; x ∈ RZ(t)}. (4.4.14)

The function u is the time needed for the fire to reach the point x in the burned region,
without crossing the barrier. The minimum time function can be computed by solving
an Hamilton-Jacobi equation with obstacles, namely{

|∇u(x)| ≤ 1 x ̸∈ Z,

u(x) = 0 x ∈ R0.
(4.4.15)

For the properties of the solution of (4.4.15) we refer to [25].

4.5 Optimality conditions and a case study

The aim of this first part of the work is to present some new techniques that help to
determine the shape of the optimal strategy Z without asking any further regularity
assumption. These techniques can be used to prove the conjecture in the specific case
the optimal Z is assumed to be the union of an external barrier Z2 which is a simple
closed curve and an internal barrier Z1 which is a segment. We remark that our analysis
is independent of the regularity of the barrier Z, which is assumed to be only rectifiable
and complete, differently from what has been derived in [12], [19] where the C1 and
C2 regularity were respectively required. For our result will be of key importance to
assume that σ < 2, but this is enough. Indeed one can prove that if no admissible
blocking strategy exists for σ < 2, then it cannot exist for σ = 2. To be more precise,
if by contradiction there exists a blocking strategy for σ = 2, we can always consider a
new strategy for the starting set R0 = B 1

2
(0) which is constructed with a speed σ′ < 2.

Therefore, by using a rescaling argument, the confinement could be achieved for σ′

starting from R0 = B1(0). We remark that we will address mainly the optimization
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Figure 4.7: The new barrier obtained replacing the old one with the blue portion is
still admissible and star shaped (left picture) and convex (right picture).

problem 4.4.13 with α = 0, β = 1, that is we will find necessary conditions for optimal
strategies that minimize the length functional.

Techniques. We start our analysis with the assumption of having an admissible
blocking strategy Z (not necessarily optimal). As written above we will always write
Z = Z2∪Z1 (see Chapter 5 for further details). We look for some deformations (Z2)′ of
the external barrier Z2 that keep the new barrier admissible, but with shorter length.
In particular we prove in Chapter 6 the following two results (see Figure 4.7):

• If Z = Z2∪Z1 is an admissible blocking strategy, then there exists an admissible
blocking strategy Z ′ = (Z ′)2 ∪ (Z ′)1 with the following property: (Z2)′ is star-
shaped with respect to the direction of fire rays. Moreover H1(Z ′) ≤ H1(Z) and

L2(RZ′
∞) ≤ L2(RZ

∞), where L2 is the two-dimensional Lebesgue measure.

• If Z = Z2∪Z1 is an admissible blocking strategy, then there exists an admissible
blocking strategy Z ′ = (Z2)′ ∪ Z1 with the following property: (Z2)′ is convex
with respect to the direction of fire rays in the points of (Z2)′ where it does not
touch the internal barriers Z1. Moreover H1(Z ′) ≤ H1(Z).

For the definitions of star-shaped/convex w.r.t. the direction of the fire rays we refer
the reader to Chapter 6. Anyway, the main idea that will be used to derive some
new interesting features of the optimal strategy is the following homotopy argument:
assume that Z is an optimal blocking strategy. Then, if two portions of the external
barrier Z2 are burning simultaneously, they are two segments. With portions of the
barrier we mean arcs η : [0, 1] → R2 whose images are subsets of the strategy Z. Two
disjoint boundary arcs η1, η2 (that is, subsets of the external barrier Z2) are burning
simultaneously (see for example Figure 4.8) if

ηi([0, 1]) ∩RZ(τ) \ ∪τ̃<τR
Z(τ̃) ̸= ∅, i = 1, 2, ∀τ ∈ [t0, t1], for some t0, t1 ∈ [0, T ].

The homotopy argument (Proposition 6.0.5) states that every perturbation of ηi([0, 1])
with endpoints ηi(0) and ηi(1) and with shorter length is still admissible, therefore it
yields a strategy with shorter length. The reason of this fact can be heuristically under-
stood in the following way: when one considers the function t→ H1(Z ∩RZ(t)) which
describes the length of the set Z which is burned up to the time t, if two portions of
the barrier are burning simultaneously, then the burning rate

d

dt
H1(Z ∩RZ(t)) ≥ 2 > σ,
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Figure 4.8: The two arcs Z ′, Z ′′ are burning simultaneously.

Figure 4.9: If a perturbation of the barrier that shortens the length is not admissible,
then the burning rate should be lower than σ in some time interval, yielding a contra-
diction.

since the fire moves with speed 1 (this is the reason why we are focusing on the case
σ < 2). Consider now a perturbation of the barrier (homotopy) that shortens the length
(the red curve in Figure 4.9). If by contradiction the new curve is not admissible, then
its burning rate should be lower than σ for some time interval, which contradicts the
fact that we are still burning two branches of the barrier, thus with burning rate greater
than 2 (which is strictly greater than σ).

Clearly the homotopy argument cannot be used on internal walls, since we have no
way to take control of the admissibility of the barrier. This idea simplifies the under-
standing of the shape of the external barrier for the optimal strategy (where optimal
refers to the curves with minimum length), but yields also an interesting byproduct.
Let us assume that Z = Z2 ∪ Z1 is the optimal strategy, where Z2 is a simple closed
curve and Z1 is a single internal barrier. Then Z must be connected (see Lemma 6.1.2).
One conjectures indeed that the optimal strategy should be connected, since construct-
ing disconnected portions of walls seems a bad strategy, but this question is still wide
open for more complicated strategies.
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Figure 4.10: Shape of the optimal strategy, if the first point burning on Z2 P is reached
in a time u(P ) < t1.

Figure 4.11: A segment and a branch of logarithmic spiral vs a segment, a branch of
logarithmic spiral and two segments.

With these simplifications at hand we can treat a first case study in which the
optimal strategy Z = Z2 ∪ Z1 is the union of a single closed curve and of a segment
Z1 that touches Z2 in some point O. Here the assumption is to work with the optimal
strategy for the optimization problem α = 0 and β = 1, allowing us to assume the
convexity of the strategy and to use the homotopy.

It will be of key importance the following observation (which is valid not only in the
assumption Z1 is a segment but assuming Z1 is a single curve): call Z2(t) = Z2 ∩{u =
t}, where u is the minimum time function. Then we will prove (Chapters 6,10) that

♯Z2(t) ≤ 2.

This observation is fundamental: indeed, if one call ζ : [0, 2π] → R2 a parametrization
for the external barrier Z2, the only possibilities that one can have are the two of Figure
4.10. The analysis of Chapter 10 shows that the left picture consists of a segment and
a branch of logarithmic spiral, while the right configuration is associated to a curve
which is a union of a segment, a branch of logarithmic spiral and two segments, as in
Figure 4.11. The analysis in Subsection 6.1.3 shows that the optimal barrier cannot
have two segments joining at some points, excluding therefore the case of the second
picture. Once we know exactly the shape of the optimal strategy, we can easily verify
if it is admissible or not. In particular, the computations of Section 7.1 show that the
branch of the spiral cannot close, giving a contradiction. Extending this analysis to
the case in which Z1 is any single curve is far from trivial and it is object of the next
section.



4.6. NON ADMISSIBILITY OF SPIRAL-LIKE STRATEGIES 95

4.6 Non admissibility of spiral-like strategies

This second part is devoted to the study of spiral-like strategies: namely, admissible
barriers that are constructed putting all the effort on a single branch. The study of
spiraling strategies is of key importance in the study of Bressan’s Fire conjecture, indeed
there is a strongly belief that these strategies are the best possible barriers that can be
constructed when σ ≤ 2. To be more precise,

Definition 4.6.1 (Spiral-like strategy). Let Z = ζ([0, S]) ⊂ R2 be an admissible
strategy, where ζ is a parametrization by length. We say that it is a spiral-like strategy
if it satisfies:

• [0, S] ∋ s 7→ ζ(s) ∈ R2 is a Lipschitz curve, and ζ⌞[0,S) is simple;

• s 7→ u ◦ ζ(s) is increasing.

Finally, we say that Z is an admissible spiral if it is a spiral-like strategy, the curve
is locally convex, in the sense of Definition 8.0.2 and moreover it is admissible according
to (H1) and (H2). In addition to the parametrization by arc-length, it is possible to
parametrize any admissible spiral by (r(ϕ), ϕ), where ϕ denotes the angle of rotation on
the spiral, which is defined in Lemma 8.1.1 (see Equation (8.1.1)) while r(ϕ) represents
the length of the final segment of the fire ray reaching the point (r(ϕ), ϕ), as explained
in Figure 8.2. See also Remark 8.0.3.

The only results known on these barriers can be found in [15] and [34]. In the two
papers it is proved independently and with different techniques the following

Theorem 4.6.2. Let σ > 2.6144.. (critical speed). Then there exists a spiral-like
strategy which confines the fire.

The proof of this result is obtained by the study of a particular spiral, that we will
call saturated spiral. Let S be an admissible spiral. We say that S is a saturated spiral
if

S(S) = {t ∈ [0, T ] : H1(S ∩RS(t)) = σt} = [0, T ]. (4.6.1)

Saturated spirals (or portions of it) are thought to be building blocks for optimal
strategies. Indeed, it has been proved in [20] that, if σ > 2, the optimal strategy
(that minimizes the cost functional (4.4.13)) among simple closed curves is made by
an arc of circle and two branches of logarithmic spirals. One can prove that there are
intimate relations between logarithmic spirals and saturated spirals. Also, referring
to the previous discussion, we will prove that for σ < 2, if a strategy Z is optimal
(κ1 = 0, κ2 = 1) and its internal barrier is a segment, then the boundary ∂RZ

∞ is made
by a segment and a branch of logarithmic spiral.

The proof of Theorem 4.6.2 relies on the following fact: consider the parametrization
of a saturated spiral S given by (r(ϕ), ϕ) (Remark 8.0.3), where r(ϕ) represents the
length of the fire ray that does not coincide with a portion of the barrier (see Figure
8.2). Then the radius of S satisfies the following Cauchy Problem

dr

dϕ
= r(ϕ) cotα− r(ϕ− (2π + α))

sinα
, (4.6.2)

with initial data

r(ϕ) =

{
ecotαϕ ∀ϕ ∈ [0, 2π],

(e2π cotα − 1)ecotα(ϕ−2π) ∀ϕ ∈ [2π, 2π + α].
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where α satisfies

α = arccos

(
1

σ

)
, (4.6.3)

(this is precisely the approach followed by [34]). Observe that for ϕ < 2π the solution
is r(ϕ) = ecotαϕ which is the logarithmic spiral. A study of the eigenvalues of the
operator associated to the previous RDE (Section 8.1) gives the proof of Theorem 4.6.2
(see also Subsection 8.1.2). Actually, if a player constructs any admissible spiral and
at some point it decides to construct a saturated spiral, that is a branch that satisfies
the length constraint of Definition 4.6.1, then for σ > 2.6144 it manages to block the
fire. This is the content of Proposition 8.1.6 and is due to the complex spectrum of the
operator of (8.1.8). We are interested in the converse of Theorem 4.6.2, namely

Conjecture 4.6.3. If σ ≤ 2.6144... then no spiral-like strategy is admissible.

A partial answer to this conjecture has been given in [34] where the authors use a
geometric argument to prove the following

Theorem 4.6.4. If σ ≤ 1+
√
5

2 then no spiral-like strategy is admissible.

The aim of this part of the thesis is to extend the previous theorem to higher values
of σ and to provide a general framework for the study of spirals (or more complicated
strategies). We will prove the following

Theorem 4.6.5. No admissible spiral-like strategy confines the fire if σ ≤ 2.3.

We do not know if the bound 2.3 is sharp since it is obtained by purely numerical
computations. We believe that a slightly different variation of the approach we propose
may allow us to reach even higher values of σ: this is currently under investigation.
The critical case σ = 2.6144.. at the present time seems out of reach and very delicate.
We underline that Theorem 4.6.5 proves Bressan’s Fire Conjecture in the case of spiral
strategies.

We discuss here the general idea of our approach: let Z = ζ([0, S]) be an admissible
spiral-like strategy and let (r(ϕ), ϕ) be its parametrization by angle (see Section 8,
Remark 8.0.3). Assume that for every point ζ(s) of the barrier you can assign an
element of the following family of generalized barriers, that is

Definition 4.6.6 (Family of Generalized Barriers). We say that fs ∈ SBV([0,+∞);R),
with s ∈ [0, S], is an element of the family of generalized barriers FZ if:

• f0(ϕ) > 0 for ϕ ∈ [0,+∞);

• fs(ϕ) = r(ϕ) for every ϕ ≤ ϕ̄ whenever ζ(s) = (r(ϕ̄), ϕ̄).

Moreover, we say that it is a diverging family if, calling

f̄s(ϕ) = lim
h→0

fs+h(ϕ)− fs(ϕ)

h
, (4.6.4)

then f̄s(ϕ) ≥ 0 for every ϕ ∈ [0,∞).

See Figure 4.12. We remark that the parametrization (ϕ, r(ϕ)) of the optimal barrier
Z chosen at the beginning is an element of any family of generalized barriers, since it
is fS accordingly to the previous notation. A family of generalized barriers is NOT
in general a family of admissible barriers, but it is a family of functions parametrized
by the length parameter s. We are currently not able to write the right guess for the
barrier of minimal radius at fixed s ∈ [0, S], which would satisfy the definition naturally.
Our main theorem is:
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Figure 4.12: At every point an element of the family of generalized barriers is assigned.

Theorem 4.6.7. Let Z be as before and assume that there exists a family of generalized
barriers {fs} = FZ which is diverging. Then Z does not confine the fire.

The proof of this fact is very easy and relies on the following observation: by the
fundamental theorem of calculus we have that

fs(ϕ) = f0(ϕ) +

ˆ s

0
f̄η(ϕ)dη.

By the diverging condition on the family FZ it holds then that

fs(ϕ) ≥ f0(ϕ), ∀ϕ ≥ 0, ∀s ∈ [0, S],

therefore

fS(ϕ) ≥ f0(ϕ) > 0,

by the first assumption on the family. But since fS(ϕ) is r(ϕ) one concludes that the
radius of Z is always positive. This also proves that f0(ϕ) is the best strategy we can
do (even if it could be non-admissible, thus living in the family FZ). By Theorem
4.6.7, the proof of Theorem 4.6.5 follows by exhibiting a diverging family of generalized
barriers for σ ≤ 2.3.

The motivation for this construction can be explained as follows: given a spiral
Z defined up to an angle ϕ̄, corresponding to a point ζ(s) = (ϕ̄, r(ϕ̄)), the strategy
(ϕ, fs(ϕ)) with ϕ ≥ ϕ̄ represents the best spiral-like barrier that a player can place in
order to enclose the fire. This gives a lower bound on the radius of any admissible
spiral r(ϕ) ≥ f0(ϕ) > 0 which is strictly positive by definition of family of generalized
barriers. Being r(ϕ) > 0 strictly positive for every choice of ϕ, for every admissible
spiral-like strategy, then no spiral can confine the fire.
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Setting this framework for the study of spirals has been extremely hard. One
of the main issues of this procedure is that, in general, finding a diverging family
of generalized barriers is a difficult task. First of all, we did many guesses for the
shape of fs and the most reasonable failed to be correct (here the need to introduce
the concept of generalized barriers). Moreover, the proofs of these results are based
on numerical computations, which make hard to take under control how the strategies
evolve. The possibility to perform an analytical proof of these results is currently under
investigation, but we strongly believe that at some point one needs to use machine-based
computations. Anyway, we are strongly convinced that this new method to prove the
non-admissibility of strategies could be promising in the study of the fire problem and
could be adapted to more general cases.

4.6.1 Construction of the family of generalized barriers.

Summarizing, in order to prove the non-admissibility of spiral-like strategies, we need
to find a diverging family of generalized barriers. Let Z be an admissible spiral, then
for every P ∈ Z we define the Admissibility Functional A as

A(P ) = u(P )− 1

σ
L(P ) ≥ 0,

where L(P ) is the length of the spiral from the starting point until P . This is precisely
the admissibility condition (H2) for spirals. Then we have the following geometric
result (which is the content of Chapter 9):

Proposition 4.6.8. Let Z be an admissible spiral-like strategy and let (r(ϕ), ϕ) be its
parametrization by angle. Fix any ϕ̄ and consider the following strategy Ẑ parametrized
by (r̂(ϕ), ϕ) such that:

• r̂(ϕ) = r(ϕ) for every ϕ ≤ ϕ̄;

• (r(ϕ), ϕ) ⊂ {u = u((r(ϕ̄), ϕ̄)} for ϕ ∈ [ϕ̄, ϕ̄+∆ϕ̄] (it is a subset of the level set of
the minimum time function u);

• (r(ϕ), ϕ)) for ϕ ∈ [ϕ̄ + ∆ϕ̄ = ϕ1, ϕ2] is a segment of endpoints P1, P2 such that
P1 ∈ {u = u((r(ϕ̄), ϕ̄)} and P2 is saturated, that is A(P2) = 0. Moreover the
segment P1P2 is tangent to {u = u((r(ϕ̄), ϕ̄)} in P1.

• r(ϕ) is solution to the following RDE

ṙ(ϕ) = cotαr(ϕ)− r(ϕ− 2π − α)

sinα
,

for ϕ ≥ ϕ2 (or, in other words, it is a saturated spiral).

Then we have that, for ϕ ∈ [ϕ̄, ϕ̄+ 2π] it holds

r(ϕ) ≥ r̂(ϕ).

This result states that, for fixed Z admissible spiral and fixed angle ϕ̄, the following
optimization problem

min
Z̃∈AS(Z,ϕ̄)

rZ̃(ϕ), for some ϕ ≥ ϕ̄, (4.6.5)

where AS(Z, ϕ̄) denotes the class of admissible spirals that coincide with Z up to the
angle ϕ̄, and if Z̃ ∈ AS(Z, ϕ̄), (rZ̃(ϕ), ϕ) will denote its parametrization by angle, admits
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a minimizer if ϕ ∈ [ϕ̄, ϕ̄+ 2π]. In particular, it is possible to write down explicitly the
shape of this minimizer, which is precisely given by the proposition. It is not clear at
all if it is possible to determine the existence/uniqueness of the minimizer for bigger
angles ϕ, and also to exhibit the explicit shape of it.

The above proposition is the main reason why we considered at the beginning
the following family of generalized barriers: at each point P = ζ(s) of the spiral the
element of the family fs(ϕ) is the length of the radius of a spiral-like strategy Zs (not
necessarily admissible), with parametrization by angle given by (fs(ϕ), ϕ) with the
following properties: it is a subset of the level set {u = u(P )}, then it continues as
a segment whose last endpoint is saturated (in the sense the admissibility functional
is zero at that point) and then it is a saturated spiral, in the sense it satisfies the
RDE (8.1.8) (see again Figure 4.12). Actually, this construction did not produce a
diverging family of generalized barriers since there was always a tiny region in which
f̄s < 0. Inspired by this (negative) result, we found out instead that the best strategy
a player can do in order to confine the fire is to speed up the construction up to the
critical value, that is: from the point ζ(s), the strategy Zs is an an arc (subset of the
level set of u), a segment (whose last point is saturated for the admissibility functional
defined in (11.1.1)) and then it is a saturated spiral, but this time for the critical value
σ = 2.6144.... We remark that this is not a family of admissible barriers, since we are
using a construction speed which is higher than the one available (≤ 2.3), but every
element is a generalized barrier. Computations show that in this case f̄s > 0, therefore
this family is diverging and it is the right one to consider for proving Theorem 4.6.5.

The construction of the diverging family of generalized barriers is provided in Chap-
ter 11.

4.6.2 Plan of the discussion

In Chapter 5 we set the fire problem, giving some useful preliminaries and definitions.
In Chapter 6 we study the problem of optimal barriers for the Length functional (see
the Optimization Problem (4.4.13)) and we prove some qualitative properties of the
optimal strategy (as being star-shaped and convex). We describe also how to perform
homotopies in order to derive some important properties of the boundary of the burned
region (see Subsection 6.1). Connectedness of the optimal strategy and properties of
the external barriers are discussed. Differently from what was previously done, we do
not use any further regularity assumption on the barrier. In Chapter 10 we study in
detail the case of an optimal strategy whose internal barrier is a segment. In chapter 8
we give the definition of admissible spirals, and we study their description via an ODE
formulation (Section 8.1). In Chapter 9 we present the geometric motivation for the
study of family of generalized barriers. Instead in Chapter 10 we prove that the first
element of the family of generalized barriers for the critical speed σ̄ = 2.6144.. does not
confine the fire. Finally in Chapter 11 we construct a diverging family of generalized
barriers which gives the proof the main theorem 4.6.5. The numerical computations
can be found in the Appendix 11.2.2.





Chapter 5

Setting of the Fire Problem

In this chapter we set the fire problem and we give some basic definitions
on barriers. For a survey of the results related to Bressan’s Fire Conjecture,
see [13].

We consider the following objects:

• Z is a rectifiable set with finite length (our admissible strategy).

• R0 ⊂ R2 is an open set, we will assume that R0 = Br(0) with r << 1 (being
equivalent to assume R0 = B1(0)). We will call it the starting set.

• The set Γ of admissible curves (trajectories of the fire) is given by

Γ = {γ ∈ Lip([0, 1],R2), γ((0, 1)) ∩ Z = ∅, γ̇(t) ∈ B1(γ(t)) a.e. t}. (5.0.1)

• The distance of two points is

d(x, y) = inf{L(γ), γ ∈ Γ, γ(0) = x, γ(1) = y}. (5.0.2)

The function u (minimum time function) is defined as

u(x) = inf
{
L(γ) : γ ∈ Γ, γ(0) ∈ R0, γ(1) = x

}
. (5.0.3)

is the minimum time function for reaching a point x ∈ R2 from the starting set R0.

Definition 5.0.1 (Optimal ray). Let us fix a point x ∈ R2. An optimal ray from
the starting set R0 to the point x is a path γ̄ : [0, 1] → R2, γ ∈ Lip([0, 1];R2) with
the following property: there exists {γn} ⊂ Γ, a minimizing sequence for 5.0.3, with
γ(0) ∈ R0 and γ(1) = x such that γn → γ̄ uniformly. We will denote by γ̄x an optimal
ray starting from R0 and reaching some point x ∈ R2. We call Γ̄ the set of optimal
rays.

We give the following

Definition 5.0.2 (Complete Strategy). Let Z ⊂ R2 be an admissible strategy, then
we say that Z is complete if it contains all its points of positive upper density, that is,
if x ∈ R2 is such that

lim sup
r→0

H1(Z ∩Br(x))

2r
> 0 =⇒ x ∈ Z. (5.0.4)

In [17] it is proved that for any admissible strategy Z there exists a complete strategy
Z̃ ⊃ Z such that H1(Z̃ \ Z) = 0. One of the advantages of this assumption is the
Corollary 2.5 in [17]. We recall that a set A ⊂ Rn is a continuum if it is compact and
connected.
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Corollary 5.0.3. Let E be a set with H1(E) < ∞, and let Ẽ be its completion with
the points of positive upper density. If C ⊂ Ẽ is a connected component of Ẽ, then C
is a continuum.

From now on we will assume that, if Z is an admissible strategy, then Z is complete.

5.0.1 Classification of arcs

Here and in the following we will always write Z = Z2 ∪ Z1 where Z2 = ∂RZ
∞ is a

simple closed curve (blocking barrier) and Z1 = Z \ Z2 are the internal barriers (or
delaying arcs). This decomposition is general.

We call arc any (Jordan) curve Z ′, that is the image of a continuous injection
ψ : [0, 1] → R2, which is contained in Z.

Definition 5.0.4. Let Z be an admissible strategy. We say that an arc Z ′ ⊂ Z compact
is burning within the time interval [s, t] ⊂ [0, T ] if ♯Z ′∩RZ(τ)\∪τ̃<τRZ(τ̃) = 1 ∀τ ∈ [s, t]
, where

s = inf{τ : u(x) = τ,∀x ∈ Z ′}, t = sup{τ : u(x) = τ,∀x ∈ Z ′ \ ∪τ̃<τRZ(τ̃)}.

Moreover there exists η : [s, t] → R2 parametrization such that η(τ) = Z ′ ∩RZ(τ).

This definition tells us that we are considering arcs burning only on one side. The
following lemma establishes the rate at which every arc is burned by the fire. As it is
intuitive, since the speed of the fire is 1, this rate is greater than 1.

Lemma 5.0.5. Let Z be an admissible strategy and assume that an arc Z ′ ⊂ Z is
burning within [s, t] ⊂ [0, T ]. Then

H1(Z ′ ∩RZ(t′) \RZ(s′)) ≥ t′ − s′, ∀t′ > s′, t′, s′ ∈ [s, t]. (5.0.5)

Proof. This is an easy consequence of the fact that |∇u| = 1, where u is the minimum
time function.

The previous lemma gives as an immediate result the following corollary, that states
that the burning rate of n portions of the barrier burning simultaneously is greater than
n.

Corollary 5.0.6. Let Z be an admissible barrier and let Z1, . . . , Zn disjoint arcs of the
barrier burning simultaneously within the time interval [s, t]. Then

H1(Z1 ∪ · · · ∪ Zn ∩RZ(t′) \RZ(s′)) ≥ n(t′ − s′), ∀t′ > s′, t′, s′ ∈ [s, t]. (5.0.6)

We will call burning rate the function

b(t) =
d

dt
H1(Z ∩RZ(t)) (5.0.7)

in the points of differentiability of H1(Z ∩ RZ(t)). Then, if n portions of the barrier
are burning simultaneously, b(t) ≥ n.

Thanks to the next lemma, we can imagine the fire as a point source F and we can
assume that the admissible strategy Z is at a positive distance from it. Indeed, the
following holds:

Lemma 5.0.7. Let Z = Z2 ∪ Z1 be an admissible strategy. Assume that Z2 ∩ F ̸= ∅,
then the strategy Z is not admissible.
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Proof. The proof of this lemma relies on the condition σ < 2. Let ϵ > 0 and let Bϵ(F )
be some closed ball centered at F . Then H1(Z ∩Bϵ(F )) ≥ 2ϵ, since Z2 is a continuum
that intersects Bϵ(F ) in F and two points of ∂Bϵ(F ) (see Lemma 3.4 [28]). But this
contradicts the admissibility of Z, since H1(Z2 ∩RZ(ϵ)) ≥ 2ϵ > σϵ.

Remark 5.0.8. We observe first that, given an admissible barrier for the any open
set R0, then this barrier is admissible for any ball contained in R0 (and viceversa, if a
strategy is admissible for any ball, then it is admissible for any bounded open set R0).
Therefore one can consider the problem for R0 = B1(0) or even for R0 = (0, 0) with
the barrier at a positive distance (Lemma 5.0.7). A simple rescaling of the barrier then
allows us to work in the following framework: we will always assume that the fire starts
spreading in the point (0, 0) and the barrier is constructed in the point (1, 0) and

F ≡ B1(0), R0 = {(0, 0)}, ψ ≡ 1

σ
. (5.0.8)

Burning rate of segments

In this subsection we compute the burning rate of segments, that is we compute the
quantity b(t) if a portion of the barrier Z is a straight line. The following holds:

Lemma 5.0.9. If Z is a straight line and the level sets of u are convex, then the
burning rate is decreasing.

Proof. Since ∇u = n, where n is the outer normal, we have that the burning rate b(t)
is computed as

ḃ(t) =

√
1 + |Ż|2 − (Ż · ∇u)2,

in particular

b̈(t) =
Ż · Z̈ − Z̈ · ∇u−∇2u : Ż ⊗ Ż√

1 + |Ż|2 − (Ż · ∇u)2
.

We have denoted by Z a parametrization for the segment. In the case of straight line,
Z̈ = 0, and

∇2u =
1

R
t⊗ t,

t being the tangent vector to the level set and R the radius of curvature: we thus obtain
in general for any strategy without requiring to be a segment that

∇2u : Ż ⊗ Ż +∇u · Z̈ =
1

R
(t · Ż)2 + n · Z̈,

and observing that for θ angle w.r.t. n and RZ curvature of Z

t · Ż = sin θ, n · Z̈ = ±cos θ

RZ
,

where the plus depends if bends toward n or on the other side, we write

∇2u : Ż ⊗ Ż +∇u · Z̈ =
sin θ2

R
± cos θ

RZ
.

For the straight line case we conclude

b̈(t) = − sin θ2

R
√

1 + |Ż|2 − (Ż · ∇u)2
< 0.

Remark 5.0.10. These computations show that the level sets of the minimum time
function are convex in the points where they do not intersect the barrier.





Chapter 6

Qualitative Properties of the
Optimal Strategy

In this chapter we study the qualitative properties of strategies minimizing
the length functional in the optimization problem (4.4.13). Some geometric
properties as being star-shaped and convex are analyzed, moreover it is
given an homotopy argument to study the external boundary of the burned
region. It is proved that among strategies with a single internal barrier
the optimal one is connected and some further properties, as the number
of intersections with the level sets of the minimum time function u are
discussed.

Let Z = Z2∪Z1 ⊂ R2\R0 be an admissible barrier. Let ζ : [0, 1] → R2 be a clockwise
parametrization of Z2. We are interested in those perturbations of Z2 that keep the new
barrier admissible with shorter length. We fix two points w1 = ζ(t1), w2 = ζ(t2) ∈ Z2

with t1 ≤ t2. Assume also that ζ(t1, t2)∩Z1 = ∅. Here and in the following we assume
that the points w ∈ Z are reached by an optimal ray γ̄w. We recall that the main
assumption here is to work with σ < 2.

Lemma 6.0.1 (Star-shaped). Let γ̄w2 be an optimal ray to w2, and assume that w1 ∈
γ̄w2. Call (Z ′)2 the closed curve obtained by replacing ζ([t1, t2]) with the optimal ray
from w1 to w2. Then the barrier Z ′ = (Z ′)2 ∪ (Z ′)1, obtained by intersecting Z ∩
RZ′

∞ , where RZ′
∞ = int((Z ′)2) is an admissible strategy. Moreover, H1(Z ′) ≤ H1(Z),

L2(RZ′
∞) ≤ L2(RZ

∞).

For this result see also the proof in [20] for strategies where Z1 = ∅.

Proof. Clearly H1(Z ′) ≤ H1(Z), being the optimal ray by definition the shortest path
from w1 to w2. The inequality for the area is immediate since we are cutting out some
portions. For the proof we need to prove only the admissibility of the new strategy.
We have that

RZ′
(t) ⊂ RZ(t) ∀t,

therefore
H1(Z ′ ∩RZ′(t)) ≤ H1(Z ′ ∩RZ(t)).

We remark the following thing: we know that γ̄w2(t1) = w1 and γ̄w2(t2) = w2. Then,
for every t ∈ [t1, t2], γ̄w2⌞[0,t] is an optimal path from w1 to γ̄w2(t). In particular,

L(γ̄w2⌞[t1,t]) = t − t1. Therefore, H1(ζ([t1, t2]) ∩ RZ(t)) ≥ H1(γ̄w2([t1, t2]) ∩ RZ(t)),
which implies that

H1(Z ′ ∩RZ(t)) ≤ H1(Z ∩RZ(t)) ≤ σt,

105
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Figure 6.1: Cutting out a portion of the barrier yields the new strategy admissible.

where the last inequality follows by the admissibility of the barrier Z.

This analysis tells us that, in the optimal strategy, if the optimal ray touches the
external barrier Z2 in more than one point, then the external barrier coincides with it.
Therefore, from now on, we can assume Z2 to be star-shaped as in the previous lemma.

Definition 6.0.2. Let Z be an admissible blocking barrier. We say that Z2 is convex
in the region not touching the internal barrier Z1 if ∀w1 = ζ(t1), w2 = ζ(t2) ∈ Z2, such
that Z1 ∩ ζ(t1, t2) = ∅ the segment of endpoints w1, w2 is contained in RZ

∞.

Lemma 6.0.3 (Convexity). Let Z be an admissible strategy, star-shaped. We fix w1 =
ζ(t1), w2 = ζ(t2) ∈ Z2 as in Definition 6.0.2. Let us call S the segment of endpoints
w1, w2, and we assume that S ⊂ (intRZ

∞)c. Then the strategy Z ′ = (Z ′)2 ∪Z1 obtained
by replacing ζ([t1, t2]) with S is still admissible, moreover H1(Z ′) ≤ H1(Z).

Remark 6.0.4. If one considers an optimal strategy Z for the optimization problem
(4.4.13) with κ1 = 0, this result tells us that, up to increase the area burnt, we can
consider Z convex in the sense of Definition 6.0.2. This result does not give the con-
vexity for the optimization problem for κ1 ̸= 0. In the case of the area functional the
optimal among simple closed curves [20] is not convex.

Proof. The inequality H1(Z ′) ≤ H1(Z) is immediate, so one has to prove only the
admissibility of the new strategy Z ′. Assume that ζ([t1, t2]) burns within [s, t]. Then
for every τ ∈ [s, t] consider the set RZ′

(τ) and call z1(t), z2(t) the endpoints of the

intersection of Z ∩RZ′(τ). We have that

H1(ζ([t1, t2]) ∩RZ(τ)) = H1(ζ([t1, t2]) ∩RZ′(t)) ≥ z1(t)z2(t),

where the last quantity is the length of the segment of endpoints z1(t) and z2(t). If z
′
1(t)

and z′2(t) are instead the endpoints of the intersection of the barrier Z ′ with RZ′(t),
then it holds z2(t)z1(t) ≥ z′2(t)z

′
1(t). This concludes the proof (Figure 6.2).

6.0.1 Homotopy.

We present here one of the main tools that will be used throughout the paper. We
are interested in those portions of the external barrier that can be shortened keeping
the new barrier admissible. We saw that a barrier can be shortened cutting out some
portions (Lemma 6.0.1) or replacing some regions in which it is concave (Lemma 6.0.3).
Another important step towards this direction is the following: let z1, z2 ∈ Z2 and
assume that the arc Z ′ ⊂ Z of endpoints z1, z2 is burning within the time interval [t1, t2]
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Figure 6.2: The selection of points z1(t), z2(t) and z
′
1(t), z

′
2(t) in the proof of the con-

vexity.

(recall Definition 5.0.4), with the assumption that z1 ∈ Z ′∩RZ(t1) and z2 ∈ Z ′∩RZ(t2).
Call η : [0, 1] → R2 an injective parametrization of Z ′, with η(0) = z1, η(1) = z2. Let
now h : [0, 1]2 → R2 be a Lipschitz homotopy with fixed points, that is

h(r, 0) = z1, h(r, 1) = z2 ∀r ∈ [0, 1],

and

h(0, s) = η(s) ∀s ∈ [0, 1].

We call Zr = Z2,r ∪ Z1 the perturbed barrier obtained replacing η([0, 1]) by h(r, [0, 1])
(see Figure 6.3). Moreover we assume that

1. the homotopy does not affect the internal barrier, that is h(r, (0, 1))∩Z1 = ∅ for
every r;

2. the burning rate of the barrier burned within [t1, t2] is greater than σ, that is

H1(Zr ∩RZr(t) \RZr
(s)) > σ(t− s), ∀r ∈ [0, 1],∀t > s, with t, s ∈ [t1, t2];

(6.0.1)

3. the homotopy shortens the lengths, that is

H1(Zr) < H1(Zr′) ∀r′ < r, (6.0.2)

4. the set Zr ∩ RZr(t) = Z ∩ RZ(t) for every t ≤ t1, and Z
r ∩ RZr(t) \ RZr

(t2) =
Z ∩RZ(t) \RZ(t2) for t ≥ t2.

Proposition 6.0.5 (Homotopy.). Let z1, z2 ∈ Z2 and h be as before satisfying (1),(2),(3),(4).
Then Zr is admissible for every r ∈ [0, 1].

Proof. Assume by contradiction that there exists some r ∈ [0, 1] for which Zr is not
admissible. Therefore there exists t ∈ [0, T ] such that H1(Zr ∩RZr(t)) > σt. We claim
that t ∈ (t1, t2). Indeed, if t ≤ t1, by (4) we have that

H1(Zr ∩RZr(t)) = H1(Z ∩RZ(t)) ≤ σt,
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Figure 6.3: An example of some portion of the barrier that can be shortened by the
homotopy remaining admissible.

since Z is admissible. If t ≥ t2 we have that, always by (4),

H1(Zr ∩RZr(t)) = H1(Zr ∩RZr(t2)) +H1(Zr ∩RZr(t) \RZr(t2))

≤ H1(Zr ∩RZr(t2)) +H1(Z ∩RZ(t) \RZ(t2)),

but since the homotopy shortens the lengths (3),

H1(Zr ∩RZr(t2)) ≤ H1(Z ∩RZ(t2)),

being

H1(Zr ∩RZr(t2)) = H1(h(r, [0, 1])) +H1(Zr \ h(r, [0, 1]) ∩RZ(t2))

≤ H1(η([0, 1])) +H1(Z \ η([0, 1]) ∩RZ(t2))

= H1(Z ∩RZ(t2)) ≤ σt2.

So, since t ∈ (t1, t2) we have that

H1(Zr∩RZr(t2)\RZr
(t)) = H1(Zr∩RZr(t2))−H1(Zr∩RZr(t)) ≤ σt2−σt = σ(t2−t),

which contradicts (2).

Remark 6.0.6. We observe that if two arcs Z ′, Z ′′ ⊂ Z are burning simultaneously,
that is they are burning within a time interval [t0, t1], then their burning speed should
be strictly greater than σ (being σ < 2) as proved in Corollary 5.0.6. In this case
condition (2) is satisfied for r = 0. If we shorten the lengths of both Z ′, Z ′′ with a
continuos homotopy h, we are still burning two arcs of the barrier, so condition (2) is
satisfied for any other r (see Figure 6.4).

Remark 6.0.7. What is really crucial in the proof is that the last point (in the previous
case z2) remains admissible. One could also think to homotopies with no fixed points
but that have this property, and the proposition would work in the same way. We will
use this observation to prove the connectedness of the optimal strategy if Z1 is a single
internal barrier (see Lemma 6.1.2).

We remark also that thanks to the convexity proved before the homotopy allows to
reduce the total burned area. This argument is powerful for the external barrier,
since does not require any regularity assumption on Z2, but it can not be used in the
shortening of the internal barriers, since this would affect the barrier not only within
the time interval [t1, t2] as in the previous result, but also for later times.
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Figure 6.4: The new barrier obtained by substituting Z ′, Z ′′ with the red segments is
still admissible by Proposition 6.0.5

Figure 6.5: A single curve can be shortened remaining admissible since from the first
point on the barrier P there are always at least two branches burning simultaneously.

Corollary 6.0.8. Let Z be an admissible strategy and assume that Z is a simple curve,
that is Z = Z2. Then Z cannot be a blocking strategy.

Proof. Any simple closed curve is characterized by the following property: let P be the
first point on the curve Z reached by the fire, and let Q be the last point: then for
t ≥ u(P ) there are always at least two branches of the barrier burning simultaneosuly.
If Z is admissible then any shortening of the curve that remains a simple closed curve
passing through the point Q is still admissible (by Homotopy 6.0.5 and Remark 6.0.7),
since it has shorter length and the property that the burning rate 5.0.7 is always greater
than σ (Proposition 6.0.5). In particular the segment QF is still admissible, which is a
contradiction (Lemma 5.0.7).

6.1 Further Properties of Optimal Strategies

We consider an optimal strategy Z = Z2 ∪ Z1 for the optimization problem (4.4.13)
with κ1 = 0, κ2 = 1. We assume here that Z1 is a single rectifiable curve. By the
results of the previous section, we can assume Z being star-shaped and convex with the
meaning of Lemmas 6.0.1,6.0.3. Moreover we can also assume that, if T is the time at
which the fire is confined,

T ∈ S(Z). (6.1.1)

Indeed, if not, consider {u = T − ϵ} for ϵ << 1. Consider the new barrier Z̃ =
∂RZ(T − ϵ) ∪ Z1 ∩ RZ(T − ϵ). It has shorter length (since the level sets of u are
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Figure 6.6: The new strategy given by the convex envelope is still admissible.

convex) and it is admissible, since T ̸∈ S(Z) and ϵ << 1. But this contradicts the
hypothesis that Z is optimal.

Remark 6.1.1. The optimal strategy Z is not unique in general. If the initial burnt
set R0 is a ball, as in this case, then every rotation of Z is an optimal strategy.

6.1.1 Connectedness of the Optimal set.

Thanks to the homotopy argument, we can prove the following statement:

Corollary 6.1.2. Let Z = Z2 ∪Z1 be an admissible blocking strategy and assume that
Z2 and Z1 are two (disjoint) connected components. Then Z cannot be optimal.

Proof. The proof of this result exploits the same idea of 6.0.8. Let us consider the first
point P1 reached by the fire on the external barrier, burning at time t1, and the last
one, let us say P2, reached by the fire at time T . We claim that the burning rate of
the strategy Z within [t1, T ] is always strictly greater than σ. Indeed, when the fire
reaches P1 at least two branches (the left one and the right one with respect to P1)
start burning simultaneously. Consider the optimal ray γ̄P2 : if it does not intersect the
internal barrier, then it is a segment: the same proof of Corollary 6.0.8 then gives us
the statement. If it intersects the internal barrier Z1 at some point P , consider the
convex envelope of the set C = Z1 ∪ {F} ∪ {P2}. Consider the two arcs connecting
F to P2: call η1 the one passing through P , η2 the other one, touching Z1 in some
point Q. We observe that H1(∂C) = L(η1) + L(η2) ≤ H1(Z2), by convexity of the
optimal strategy (lemma 6.0.3). Call ηϵ a small perturbation of the curve η = η1 ∪ η2
whose distance from Z1 is ϵ. Consider the new strategy Zϵ = ηϵ ∪ Z1. Now, since
it burns with speed greater than σ (consider the first point and the last point on ηϵ

etc.), and since L(ηϵ) < H1(Z2), by Proposition 6.0.5, it is admissible. Since ϵ can be
chosen arbitrarily small, we find that the curve obtained by the strategy Z1 ∪ η = Z̃ is
admissible: contradiction. Indeed: for every ϵ we have that, by admissibility:

H1(Zϵ ∩RZϵ(t)) ≤ σt.

Without loss of generality we can assume that ηϵ → η monotonically (that is, the set
delimited by η is contained in the set delimited by ηϵ). Then we observe that if ϵ1 < ϵ2,

RZϵ1 (t) ⊂ RZϵ2 (t). In particular, H1(Zϵ ∩RZ̃(t)) ≤ σt. Now, since Zϵ → Z̃ w.r.t. the
Hausdorff distance, and since H1 is lower semicontinuous for compact connected sets
[28], we have that

H1(Z̃ ∩RZ̃(t)) ≤ σt.
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Figure 6.7: The intersection of T1 or T2 with r−, r+ would violate the optimality.

As told in the introduction, the hope would be to prove the connectedness of the
optimal strategy, but we cannot simply use the homotopy argument to achieve it in the
case we have more connected components. Anyway, we can prove the following

Corollary 6.1.3. Let Z = Z2∪Z1 be an admissible strategy and assume that Z2∩Z1 =
∅. Then Z cannot be optimal.

Proof. The proof is almost identical to the previous one.

This collection of results tells us that there is always at least one internal barrier
intersecting the external barrier.

6.1.2 Intersection with level sets

In this subsection we deal with the number of branches of the external barrier burning
simultaneously. We recall that {u = t} are convex in the points where it does not
intersect the barriers (see Remark 5.0.10). We start with the following

Proposition 6.1.4. Let Z be an optimal strategy. Assume that there exist T1, T2 ⊂ Z2

sub arcs of the external barrier burning simultaneously within [t1, t2]. Then they are
two segments. In particular, if T1 ∩ T2 = {Q} with Q ∈ {u = t1} and Q is a point of
differentiability for {u = t1}, then ∠Q = π (they are a single segment).

Proof. Consider the case in which T1 ∩ T2 = {Q} with Q ∈ {u = t1}. Call r−, r+ the
tangents in Q to the level set {u = t1}. If by contradiction at least one of the two
portions T1, T2 intersects r− or r+ in a point R different from Q, then by Proposition
6.0.5 the new strategy obtained replacing the portion of endpoints R,Q with the seg-
ment RQ would be admissible with shorter length, which contradicts the optimality
(see Figure 6.7). Therefore, since no intersections can occur between T1, T2 with the
two tangents, by homotopy one can replace the barrier with the two segments that start
burning at Q and arrive at {u = t2}. A similar argument can be used to conclude that
T1, T2 are segments in the case they intersect at P ∈ {u = t2}. Clearly, if r−, r+ = r,
since the optimal barrier is convex (Lemma 6.0.3), the angle in Q is π.
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Figure 6.8: A representation of the boundary of Z through level sets. We push for
example T1 ∪T2 on the level set {u = t1} since we are still burning two branches of the
barrier (T3, T4), therefore the strategy remains admissible.

Remark 6.1.5. It is not necessary that the point Q is a point of differentiability.
An alternative proof indeed would be the following: call Ri = Ti ∩ {u = t2} for
i = 1, 2. Then the segment R1R2 is shorter and its burning rate (5.0.6) is greater than
σ, therefore by Proposition 6.0.5 with Remark 6.0.7 we would have the admissibility.

Finally we have the following

Proposition 6.1.6. Let Z be an optimal strategy. If

♯Z2 ∩ {u = t} < +∞, for t ∈ (t1, t2),

then
♯Z2 ∩ {u = t} ≤ 3, for t ∈ (t1, t2).

Proof. If ♯Z2∩{u = t} ≤ 3, for t ∈ (t1, t2), then there is nothing to prove. Therefore
we assume to have T1, T2, T3, T4 burning simultaneously within [t1, t2]. By connected-
ness of Z2 there exists Ti, Tj such that the intersection Ti ∩ Tj ∈ {u = t2} and it is
non-empty. Call Ri the point Ti ∩ {u = t1} and Rj the point Tj ∩ {u = t1}. Call
ζ : [0, 1] → R2 a clockwise parametrization of Z2 and let Ri = ζ(ti) and Rj = ζ(tj)
with ti ≤ tj . Then the new strategy obtained by replacing ζ([ti, tj ]) with the portion of
the level set {u = t} of endpoints Ri, Rj is still admissible, by homotopy (Proposition
6.0.5), since by the convexity of level sets it has shorter length. But this contradicts
the optimality of Z.

In particular optimal strategies are characterized by the fact that

if ♯Z ∩ {u = t} < +∞ then ♯Z ∩ {u = t} ≤ 3

.
Before the next result we define the saturated set as

S(Z) = {t ∈ [0, T ] : H1(Z ∩RZ(t)) = σt}. (6.1.2)

Proposition 6.1.7. Let Z be an optimal strategy. Assume that there exist T1, T2 ⊂ Z2

burning simultaneously within [t1, t2] with t1 < t2 and assume that T1 ∩ T2 = {Q} with
Q ∈ {u = t2}. Then if t2 ̸∈ S(Z) the strategy is not optimal.
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Figure 6.9: A purely geometric reason is behind Theorem 6.1.8: from one side P ̸∈ B1,
since it is in the same level set of B, that is {u = t1}. On the other side the angle
between the segment PB with the fire ray should be less than α. Then PB ≥ t2 − t0.
Here the worst case is α = π

3 for σ = 2.

Proof. Assume t2 ̸∈ S(Z), then there exists ϵ≪ 1 such that t2 − ϵ > t1 and

H1(Z ∩RZ(t3)) < σ(t2 − ϵ). (6.1.3)

Consider the level set {u = t2 − ϵ} and call R1, R2 two intersections with T1, T2 re-
spectively. We recall that, by Proposition 6.1.4, T1, T2 are segments. The new strategy
Z ′ obtained by replacing the segments QR1, PR2 with the portion of the level set
{u = t2 − ϵ} of endpoints R1, R2 is shorter (by convexity) and admissible by condition
(6.1.3). This contradicts the optimality hypothesis.

Finally we have

Theorem 6.1.8 (Three branches). Let Z be an optimal strategy. Assume that there
exist T1, T2, T3 ⊂ Z2 arcs burning simultaneously within [t1, t2] and assume that T1 ∩
T2 = {Q} with Q ∈ {u = t0} where t0 < t1 and that T2 ∩ T3 = {P} with P ∈ {u = t2}.
If t0 ∈ S(Z) and no internal barrier is burning within [t0, t2], then the strategy is not
optimal.

This theorem will be of key importance in the study of Lemma 7.0.9.

Proof. By Proposition 6.1.4 T1, T2, T3 are two segments AP,PB (see also Remark 6.1.5)
burning within [t0, t2] with the property that P,B ∈ {u = t2} and A ∈ {u = t0}. By
Proposition 6.1.7 it has to be t2 ∈ S(Z). We assume that t0 ∈ S(Z). We claim that
the strategy is not optimal. By admissibility, since t0, t2 ∈ S(Z), the point P lies on
the ellipse

AP + PB = σ(t2 − t0). (6.1.4)

We claim that the angle ∠(γ̄B, PB) is lower than α = arccos
(
1
σ

)
. This must be true,

since, if by contradiction it is > α then the burning rate (5.0.7) would be greater than
σ, and since t3 ∈ S(Z) the strategy would not be admissible any more.

Clearly, since |∇u| = 1, we have that AP ≥ (t2 − t0), being P ∈ {u = t2} and
A ∈ {u = t0}. Moreover, by definition of u, the level set {u = t2} contains a ball of
radius t2 − t0, then we immediately find that PB ≥ (t2 − t0), which is a contradiction
(see Figure 6.9). This configuration cannot exist.
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Figure 6.10: The fire source F2 is emanated by F1. The subset S (blue) of S1 ∪ S2 is
not burnt by the fire F2, that is ̸ ∃x ∈ S for which F2 is a source.

6.1.3 Double segment

We consider now an admissible barrier Z = Z2 ∪ Z1 and we assume that two portions
of the external barrier S1, S2 ⊂ Z2 are segments joining at some point P . We will prove
under which condition on the segments the strategy Z is optimal.

Definition 6.1.9 (Order of Sources). Let F1, F2 ∈ RZ
∞ and let x ∈ Z such that

F1, F2 ∈ γ̄x([0, u(x)]), where γ̄x is an optimal ray to x. We say that F2 is subsequent to
F1 if there exist t1 ≤ t2 with t1, t2 ∈ [0, u(x)] such that F1 = γ̄x(t1) and F2 = γ̄(t2).

We now assume to have two segments S1 = AP and S2 = PB joining at a point
P , with ∠APB < π. We assume that for every x ∈ S1 ∪ S2, F1 ∈ γ̄x([0, u(x)]). We
fix some F2 ∈ RZ

∞ with the following assumption: whenever F2 ∈ γ̄x([0, u(x)]) for some
x ∈ S1 ∪ S2, then F2 is subsequent to F1 (see the Figure 6.10). We also assume that

C1) there exists x ∈ S1 ∪ S2 such that F2 ∈ γ̄x([0, u(x)]);

C2) consider the polygon P of vertices F1APBF2 and let intP be its interior. Then
Z1 ∩ intP = ∅, that is no internal barrier is contained inside P;

We start with the following simple observation: consider the polygon Q = F1APB,
then F2 ∈ Q, since F2 is emanated by F1. We exclude now some pathological cases
requiring that

F2 ∈ intQ. (6.1.5)

Indeed, if F2 lies on the boundary of Q then the two sources system F1, F2 behaves like
a single source system F1.

Proposition 6.1.10. Let S1 and S2 be as before and assume that Conditions C1),C2),
(6.1.5) hold. Assume also that d(F1, S1) < d(F1, S2). If Z is an optimal strategy, then
♯S2 ∩ {u = t} ≤ 1 or there exists a time t such that S1 ∪ S2 ∩ {u = t} ≥ 3.

Proof. Since d(F1, S1) < d(F1, S2), it means that the segment S1 starts burning before
S2. We start considering the two different cases: ∠F1PB ≥ π

2 and ∠F1PB < π
2 .

1. Case ∠F1PB ≥ π
2 . It follows immediately that ∠F1BP < π

2 , therefore ∠F2BP <
π
2 , since F2 ∈ Q.

1.1 Assume that F2 lives in the interior of the triangle F1PB. We claim that
♯S2 ∩ {u = t} ≤ 1 for all t such that ♯S2 ∩ {u = t} ̸= ∅. The claim follows
by the easy observation that, called η : [0, 1] → R2 the parametrization of
the segment S2, η(s) = P + s(B − P ), then the function s → d(F1, η(s)) is
strictly increasing.
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Figure 6.11: This figure represents the case 2.1 of Proposition 6.1.10.

1.2 Assume that F2 lives in the interior of the triangle AF1P . Also in this
case we claim that ♯S2 ∩ {u = t} ≤ 1 for all t for which the intersection
is non-empty. Assume by contradiction that there exist x1, x2 ∈ S2 such
that d(F1, x1) = d(F1, x2). Then the triangle F2x1x2 is isosceles, therefore
∠F2x1x2 <

π
2 , which is a contradiction, since ∠F2x1x2 > ∠F2PB > π

2 .

2. Case ∠F1PB < π
2 . Let H be the orthogonal projection of F1 on S2.

2.1 Assume F2 inside the triangle F1HB. Since d(F1, S1) < d(F1, S2), there ex-
ists a point H ′ ∈ S1 such that d(F1, H

′) = d(F1, H), indeed, if one considers
the following parametrization η : [0, 1] → R2, defined by

η(s) =

{
A+ 2s(P −A), for s ∈

[
0, 12
]
,

2P −B + 2s(B − P ), for s ∈
[
1
2 , 1
]
,

then the function s→ d(F1, η(s)) is continuous and admits a local maximum
at sp, where η(sp) = P . The existence of such H ′ implies now the existence
of a time t for which ♯Z2(t) ≥ S1 ∪ S2 ∩ {u = t} = 3.

2.2 We assume that the source F2 is contained in the polygon F1APH, and
moreover ∠F2PB < π

2 . This case is similar to the case 2.1. Indeed, call K
the orthogonal projection of F2 on S2, then by similar observations as before
(since this time K has the role of H ′, one concludes with the existence of
some time t for which ♯Z2(t) ≥ ♯S1 ∪ S2 ∩ {u = t} = 3.

2.3 We assume that the source F2 is contained in the polygon F1APH, but this
time ∠F2PB > π

2 . In particular, this situation can occur when F2 lives in the
triangle F1AP and ∠APB > π

2 . In this case we have that ♯S2∩{u = t} ≤ 1,
concluding similarly to case 1.2.





Chapter 7

A case study

In this chapter we do a detailed analysis of the case a barrier has a single
internal barrier which is a segment.

We consider an optimal strategy for the optimization problem (4.4.13) Z = Z2 ∪ Z1

and we assume that Z1 is a segment. By optimality, we know that Z is convex in the
sense of Lemma 6.0.3. Moreover, by Lemma 6.1.2, we can also say that Z1 intersects
the external barrier Z2. We assume that Z1 is a segment of endpoints A and O, where
O ∈ Z2. We consider a coordinate system centered at O and we assume that the
x-direction is along the segment OA, where, called (xA, yA) its coordinates, xA > 0.
Without loss of generality we can assume that the fire starts burning in the half plane
R × [0,+∞) (see Figure 7.1). Moreover, if we call (xF , yF ) the coordinates of the fire
(recall Lemma 5.0.7), we can always assume that yF > 0 by Lemma 5.0.7. We call A′

the point on the external barrier reached by the optimal trajectory passing through A.
We define the following parameters:

• t1 = d(F,O);

• t2 = d(F,A′);

• t3 = d(F,A) +AO.

Clearly t1 ≤ t3 by the triangular inequality. From now on we will use some clockwise
parametrization ζ : [0, 1] → R2 of Z2 such that ζ(0) = ζ(1) = O. Let sA′ be such that
ζ(sA′) = A′. We recall that by A(t) we will denote the set A ∩ {u = t}. We start with
the necessary conditions given by the admissibility of the barrier Z:

Lemma 7.0.1. If t2 ≤ t1, then the strategy Z is not admissible.

Figure 7.1: The simple case of a single segment with the correct orientation of the axes.

117
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Figure 7.2: Parametrizations of two possible Z2 a) and b). The green portion represents
the segment Z1. In any case the portion of the barrier ζ(s), with s ∈ [0, sA′ ] is always
burning simultaneously with another portion of the barrier.

Proof. Let us assume that t2 ≤ t1. We consider the level set graph of our admissible
strategy Z (see Figure 7.2). Let tmin = min d(F, ζ(s)) and tmax = max d(F, ζ(s)) for
s ∈ [0, sA′ ]. Then we have tmin ≤ t2 ≤ t1 ≤ tmax. We claim that the number of distinct
branches of the external barrier Z2 burning within [tmin, t1] is greater than 2, that is,
for every t ∈ (t2, t1) the condition ♯Z(t) ≥ 2 holds (see Figure 7.2). This is clearly
true, since the external internal barrier Z1 starts burning in a time t′2 ≤ t2 and it stops
burning in a time t′1 ≥ t1. By an homotopy argument (see Proposition 6.0.5), if we
consider the portion ζ([0, sA′ ]) we can shorten it keeping the new barrier admissible.
In particular, the new curve ZA obtained by replacing ζ([0, sA′ ]) with a curve passing
through F and the same endpoints is admissible. But this contradicts Lemma 5.0.7,
since no portion of the external barrier can intersect F .

7.0.1 Shape of the optimal strategy.

We add now the further assumption that Z is optimal meaning that it is the strategy
with minimum length. We start with some lemmas describing the shape of Z2. We
will prove that Z2 starts freely burning as a segment (far away from the fire) and then,
when the fire reaches it, it is a branch of a logarithmic spiral. After the spiral has been
burnt, the strategy is made by two segments joining in a point P : using Proposition
6.1.10, we conclude that the two segments are not optimal. Finally, an estimate of the
angle covered by the logarithmic spiral (see Section 7.1) will show that the strategy
cannot enclose the fire, yielding a contradiction.

Lemma 7.0.2. Let Z be an optimal strategy. Assume that d(F,O) ≤ d(F,A). Then
there exists t̄1 ≥ t1 such that, called tmin the first time the fire reaches the exter-
nal barrier Z2, Z2 ∩ clos(RZ(t̄1) \ RZ(tmin)) is a segment of endpoints O and Q with
d(Q,F ) ≥ d(F,O). Moreover, after t̄1 the segment OA has been burnt.
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Proof. Let us take tmin the first time the fire reaches the external barrier Z2. Then
tmin ≤ t1 ≤ d(F,A) = tA. By connectedness of Z2 (it is a simple closed curve) we
have that ♯Z ∩ {u = t} ≥ 2 for every t ∈ (tmin, tA]. Call Q ∈ Z2 ∩ {u = tA} such that
Q = ζ(sQ), with sQ = sup{s : ζ(s) ∈ {u = tA}). By Proposition 6.0.5 the barrier Z ′

obtained by replacing the strategy from O to Q with the segment of endpoints O and Q
is admissible, and the shortest possible curve, since within [t1, tA] the internal barrier
Z1 is burning, keeping the number of barriers burning simultaneously greater than σ.
Since Z is optimal, this means that Z = Z ′. In particular d(Q,F ) = d(Q,A) = tA ≥
t1 = d(F,O).

Lemma 7.0.3. Let Z be an optimal strategy. Assume that d(F,O) ≥ d(F,A). Then
Z2 ∩ RZ(t1) is a segment of endpoints O and Q (eventually coinciding) such that
d(Q,F ) = d(F,O).

Proof. Again, let us fix tmin the minimum time for reaching the external barrier Z2, then
tmin ≤ t1. Let Q ∈ Z2 be the point on the external barrier such that d(Q,F ) = d(F,O)
and such that Q = ζ(sQ), with sQ = sup{s : ζ(s) ∈ {u = tA}). As in the previous

lemma we have that ♯Z ∩ RZ(t) ≥ 2 for every t ∈ [max{tmin, tA}, t1], and again by an
homotopy argument (Proposition 6.0.5) we can shorten the barrier replacing it with a
segment of endpoints O and Q.

Lemma 7.0.4. Let Z be an optimal strategy and let Q be the point of Lemmas 7.0.2,7.0.3.
Then if u(Q) ̸∈ S(Z) there exists a point Q′ such that u(Q′) ∈ S(Z) and OQ′ ⊃ OQ is
a segment.

Proof. If u(Q) ̸∈ S(Z) we can shorten the length of the barrier keeping it admissi-
ble, therefore the optimal strategy should be made by a segment whose last point is
saturated.

Remark 7.0.5. By Lemma 7.0.4 we can assume that the point Q obtained in Lemmas
7.0.2,7.0.3 is saturated, that is u(Q) ∈ S(Z). Moreover d(Q,F ) ≥ d(F,O).

Lemma 7.0.6. The barrier Z is C1 in the point Q given by Lemma 7.0.2 or by Lemma
7.0.3.

Proof. As proved above, we can assume that u(Q) ∈ S(Z). By a blow up argument, by
convexity of the barrier Z2, we can consider the tangent cone at Z2 in the point Q and
the optimal rays from the fire F being parallel. If for simplicity we consider Q as the
origin of a cartesian coordinate system, the two tangents are y = α−x (the left one) and
y = α+x (the right one), the convexity immediately gives α− ≥ α+. Then, since the

speed for burning the barrier is
√

1 + 1
α2
±

(see Figure 7.3) the condition u(Q) ∈ S(Z)
gives √

1 +
1

α2
−

≥ σ ≥
√
1 +

1

α2
+

,

where the first inequality follows by the fact that before the fire reaches the point Q,
the burning rate is greater than σ, while the second inequality means that, since Q is
saturated, in order to be admissible the burning rate should be lower than σ. These
two condition together yield α− = α+, which gives the C1 regularity. Moreover, since

σ =

√
1 +

1

α2
,

the angle ∠FQO = arccos
(
1
σ

)
.
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Figure 7.3: The fire moves with speed one while the speed for burning the barrier is√
1 + 1

α2
±
.

We remark that the argument of the previous lemma applies to any point P ∈ Z2

where the barrier is convex with respect to the direction of the fire rays, together with
the local condition √

1 +
1

α2
−

≥ σ ≥
√
1 +

1

α2
+

,

that holds in saturated points. This blow up argument is valid also for internal barriers.

The previous discussion gives the following

Corollary 7.0.7. Let Z ′ ⊂ Z2 and assume that it is burning within [t1, t2] ⊂ S(Z).
Then it is C1.

Corollary 7.0.8. Call ζ(sP1) = P1 = sup{sP ∈ [sQ, 1] : u(ζ(sP )) ∈ S(Z)}, where sQ
is such that Q = ζ(sQ). Then there exists ϵ > 0 such that, if ζ(sP2) = P2 ∈ {u =
u(P1) + ϵ}, then ζ([sP1 , sP2 ]) is a segment tangent to Z in P1.

Proof. Since P1 is the last point saturated according to the definition in the statement,
there exists ϵ > 0 such that u(P1) + δ ̸∈ S(Z) for all δ < ϵ. This tells us that, since
the point P1 is saturated, then we can burn only one single branch of the strategy
(see Figure 7.4), that is the burning rate is lower than σ. This means that in the
time interval [u(P1), u(P1) + ϵ] with ϵ << 1 the fire is burning exactly one branch of
the barrier (see Figure 7.4) and H1(Z ∩ RZ(t)) −H1(Z ∩ RZ(s)) < σ(t − s) for every
t, s ∈ [u(P1), u(P1) + ϵ]. Call P2 = ζ(sP2) ∈ Z2 ∩RZ(u(Q) + ϵ). Then, if the portion of
the barrier ζ([sP1 , sP2 ]) is not a segment, we can shorten it a little bit keeping the new
barrier admissible, since u(P2) ̸∈ S(Z). Therefore ζ([sP1 , sP2 ]) must be a segment, and
since the barrier is C1 at P1, this segment must be tangent to Z at P1.

Therefore, if Z is an optimal strategy, we call [u(Q), T ′] the maximal time interval
contained in the saturated set: here the barrier is a branch of logarithmic spiral, which
is precisely the curve constructed at the edge of the advancing fire, in the assumption
the level sets are union of arcs of circles, as in this case (see Section 5.2 of [13]).

Lemma 7.0.9 (Folding). Consider the level set graph of the optimal strategy Z. If the
barrier Z2 has a folding, that is there exists a time interval [t−, t+] with t− ≥ T ′ such
that ♯Z2(t) = 3 for t ∈ [t−, t+], then the strategy is not optimal (see Figure 7.5).
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Figure 7.4: In the time interval [u(P1), u(P1)+ ϵ] the fire is burning exactly one branch
of the barrier, otherwise we would lose the admissibility.

Figure 7.5: A folding in the level set graph is not optimal.
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Proof. By Proposition 6.1.7 and by optimality t+ ∈ S(Z). Since t− ̸∈ S(Z) (if not,
since after t− we are burning three branches the burning rate 5.0.7 would be greater
than σ, violating the admissibility), the unique curve starting from the logarithmic
spiral and connecting the point in {u = t−} has to be a segment (Corollary 7.0.8)
which is tangent to the spiral in the point P1. Call the endpoints of this segment
P1, N . Moreover, since, by Proposition 6.1.4 the tree branches burning within [t−, t+]
are two segments RL and RN with R,L ∈ {u = t+} and N ∈ {u = t−}, then the
angle ∠RNP1 has to be π since again t− ̸∈ S(Z). We have obtained two segments P1R
and LR burning within [T ′, t+], with t+, T

′ ∈ S(Z). This is not optimal by Theorem
6.1.8.

Finally, we have the following

Lemma 7.0.10. In the time interval (T ′, T ] the optimal strategy is a piece of logarith-
mic spiral or it is made by two segments joining at some point P .

Proof. If t3 < T then two branches of the external barrier are burning within [t3, T ]
(they cannot be more than 2, by Proposition 6.1.6 and Theorem 6.1.8). In particular, by
Proposition 6.1.4, they are two segments of endpoints P2P and PO, with P ∈ {u = T}.
Again, t3 ̸∈ S(Z) (if not, since for t > t3 we are burning more than one segment, the
burning rate would be greater than σ, contradicting the admissibility), therefore the
branch of endpoints P1P2 (P1 was the endpoint of the spiral) has to be a segment,
and the angle ∠P1P2P = π. This concludes the proof in the case t3 < T . If t3 = T
then a single branch of the barrier is burning within [T ′, T ]. We recall that T ∈ S(Z)
(assumption (6.1.1)). Assume that it is not a logarithmic spiral, and compute the
logarithmic spiral starting at P1 (recall that P1P2 is tangent to the spiral). If the spiral
does not intersect the curve, it is the optimal, since it has shorter length. If it intersects
the curve in a point R, since the fire burns one branch, then the admissibility at R
reads as

u(R)− cosα(AO+OQ+QP1 +P1R) ≤ u(R)− cosα(AO+OQ+QP1 + (P1R)
s) = 0,

where (P1R)
s is the length of the saturated spiral between the points R1S and the last

equality is because the spiral satisfies the saturation condition (6.1.2) (see Figure 7.6),
which is a contradiction.

Figure 7.6: If the logarithmic spiral intersects a branch of the barrier that is touched
only by one side of the fire, then it is the optimal spiral.
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Remark 7.0.11. We remark that, even if in Lemma 7.0.10 we have a configuration
made of two segments as in Theorem 6.1.8, the two are different, since in the one of the
lemma we have that, if the two segments burn within [t1, t2], we have a unique point
in {u = t2}, while in Theorem we have two points on {u = t2}.

We summarize all the previous lemmas and propositions in the following character-
ization of the optimal strategy (Figure 4.11)

Theorem 7.0.12 (Optimal Shape). Let Z = Z2∪Z1 be an optimal strategy and assume
that Z1 is a segment AO. Then Z2 is the union of

• a segment OQ with the property that d(Q,F ) ≥ d(Q,O);

• is a piece of logarithmic spiral QP1, tangent to the segment OQ;

• is the union of two segments P1P and PO, where the first segment is tangent to
the logarithmic spiral at the point P1.

7.1 Final computations

In this last section we use the tools and lemmas proved in the previous sections in order
to show that an optimal strategy Z whose internal barrier is a segment does not exist.
We will analyze the two different situations of Lemmas 7.0.2,7.0.3 showing that the last
portion of the barrier, which is made by a branch of logarithmic spiral, cannot close,
allowing the fire to escape. In the following computations σ < 2 and α = arccos

(
1
σ

)
.

Without loss of generality we assume that the internal barrier corresponds to a
segment OA, where O = (0; 0) and A = (0; 1), that is it has length 1. The external
barrier Z2 starts from O and closes in O rotating clockwise. As in the previous section
we call ζ = ζ(θ) its clockwise parametrization, for θ ∈ [0, 2π], where ζ(0) = ζ(2π) = O.
We assume that the fire F starts burning from F = (d cosα, d sinα), for some positive
d > 0 and α ∈ [0, π]. By the optimality conditions we recovered that Z2 is convex in
the regions not touching the segment OA (see Definition 6.0.2) and that

• ζ([0, 2γ]) is a segment of endpoints O and Q of length L, for some γ ∈ [0, π2 ];

• ζ([2γ, θ]) is a piece of logarithmic spiral, for some θ ∈ [0, 2π].

• ζ([θ, 2π]) is made by two segments.

Our aim is to show that 2γ+ θ < π. We will examine the following different situations:

Figure 7.7: Situation of case a). From Q a single branch of spiral starts, and the angle
around the fire θ + 2γ is strictly smaller than π.
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7.1.1 Case a)

We assume that
d(F,Q) ≥ d(F,A) ≥ d(F,O) = d, (7.1.1)

as in Lemma 7.0.2. Since u(Q) ∈ S(Z) (see Remark 7.0.5) we have that

L+ 1 = σd(F,Q). (7.1.2)

By the theorem of sines applied to the triangle FOQ we get that

d(Q,F )

sin(2γ + α)
=

d

sinα
, (7.1.3)

being, by optimality, ∠FQO = α. In particular we find that 2γ ≤ π − 2α. By the
admissibility condition we get that

σd(F,Q)(eθ cotα − 1) + (L+ 1) ≤ σ(d(F,A) + 1) ≤ σ(d(F,Q) + 1),

where σd(F,Q)(eθ cotα − 1) is the length of the logarithmic spiral starting at the point
Q and covering the angle θ. By equation (7.1.2) we find that

σd(F,Q)(eθ cotα − 1) + σd(F,Q) ≤ σ(d(F,Q) + 1),

therefore

θ ≤ tanα log

(
1 +

1

d(F,Q)

)
≤ tanα log (1 + cosα) ,

where the last inequality follows by the inequality d(F,Q) ≥ σ. Therefore 2γ + θ < π.

7.1.2 Case b).

Similarly to the previous case:

d(F,Q) ≥ d(F,O) = d ≥ d(F,A), (7.1.4)

(see Lemma 7.0.3). The admissibility condition gives

L+ 1 = σd(F,Q), (7.1.5)

since after an amount of time equal to d(Q,F ) the fire has burnt both the segment OQ
of length L and the segment OA of length 1, and it is starting burning a single branch
of the external barrier Z2 (see Figure 7.7). In particular d(F,Q) ≥ 1

σ . Similarly as
before 2γ < π − 2α. Then we find that

σd(F,Q)(eθ cotα − 1) + (L+ 1) ≤ σ(d(F,A) + 1) ≤ σ(d(F,Q) + 1).

Therefore, as before,
2γ + θ < π. (7.1.6)

Since in both cases a), b) the angle 2γ + θ < π, we apply Proposition 6.1.10 on the
optimality of the double segment. Here F1 = F , F2 = A, A = P1 and B = O. Being
2γ + θ < π, condition (6.1.5) is satisfied, together with conditions C1),C2).

Proposition 7.1.1. It holds T ′ = T .

Proof. By Proposition 6.1.10 it holds ♯PO ∩ {u = t} ≤ 1 for t ∈ [t3, T ] or there exists
t such that P1P ∪ PO ∩ {u = t} ≥ 3. This last situation cannot occur: at most
two branches of the external barrier are burning from [T ′, T ]. Let us analyze the first
situation: if ♯PO ∩ {u = t} ≤ 1, then ∠AOP ≥ π

2 so that ∠FPO < π
2 . Similarly

∠FP1P > π
2 since ♯P1P ∩ {u = t} ≤ 1 for t ≤ t3. Then we are in the case 2.3 of

Proposition 6.1.10, therefore it must be ∠APO > π
2 , but since ∠AOP ≥ π

2 we find a
contradiction.



Chapter 8

Admissible Spirals

In this chapter we give the definition of spiral-like strategies and we intro-
duce their analytic description through RDE (Section 8.1). Here we study in
detail the equation associated to the saturated spiral, with a careful analysis
of its eigenvalues.

Let Z = ζ([0, S]) be an admissible strategy parametrized by arc length. Since
the problem is invariant by rigid transformations, we will assume that ζ(0) = (r0, 0),
with r0 ≥ 1. We call u the minimum time function of the strategy Z. Without
loss of generality we can simplify the problem by considering the following setting:
ζ(0) = (1, 0) and the fire starts spreading in the origin (0, 0) (see Remark 5.0.8).

Among admissible strategies, we consider spiral-like strategies: namely barriers
where the effort of construction is put on a single wall that keeps growing.

Definition 8.0.1 (Spiral-like strategy). Let Z = ζ([0, S]) ⊂ R2 be an admissible
blocking strategy, where ζ is a parametrization by length. We say that it is a spiral-like
strategy if it satisfies:

• [0, S] ∋ s 7→ ζ(s) ∈ R2 is a Lipschitz curve, and ζ⌞[0,S) is simple; 8.0.2;

• s 7→ u ◦ ζ(s) is increasing.

With this definition we exclude from our analysis those spirals that are touched
simultaneously in more than one point by the fire (apart from those branches of the
spiral that lie on the level sets of the minimum time function), while in the previous
example (Chapter 10) the fire could touch the segment/the external barrier in more
than one point.

From now on we will consider only admissible spiral-like strategies. Without loss
of generality we can assume that s → ζ(s) is oriented counterclockwise. We give a
definition of (local) convexity for strategies:

Definition 8.0.2. We say that a spiral-like strategy Z = ζ([0, S]) is locally convex if
for every x ∈ Z there exist an hyperplane H = x+ λv and ϵ > 0, δ > 0 and a function
f : [−δ, δ] → R convex such that, in the framework {v,v⊥} with v oriented in the
direction of s increasing and {v,v⊥} oriented as the canonical base,

Z ∩Bϵ(x) = {(z, y) : y = f(z), z ∈ [−δ, δ]}.

In particular, if Z = ζ([0, S]) is a spiral-like strategy, then ζ̇(s) exists a.e. and for
a.e. s ∈ [0, S) such that ζ̇(s) ̸= 0 there exists ϵ > 0 such that, for every s′ ∈ (s−ϵ, s+ϵ)
it holds

⟨ζ̇⊥(s), ζ(s′)− ζ(s)⟩ ≥ 0 a.e. s,

125
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where ζ̇⊥ denote the normal vector to Z at ζ(s) such that {ζ̇(s), ζ̇⊥(s)} has the same
orientation of the canonical basis, that is

ζ̇⊥(s) =

(
0 1
−1 0

)
ζ(s).

Moreover, if ζ(s) is a point of non differentiability of the curve Z, there exist two
tangent vectors t+(s) and t−(s) (coinciding on regular points) defined as follows:

t−(s) = lim
h→0+

1

h
(ζ(s)− ζ(s− h)),

t+(s) = lim
h→0+

1

h
(ζ(s+ h)− ζ(s)),

with the property that the function s → ζ̇(s)
.
= t+(s) = eiϕs ∈ S1 is monotone, that is

∀s, s′ such that s < s′ it holds ϕs ≤ ϕs′ .
We remark that the function s → ζ̇(s) defined above is BV (right-continuous) and

differentiable a.e. s ∈ [0, S]. In particular, there exists ζ̈(s) for L1- a.e. s ∈ [0, S]. In
the assumption ζ̈(s) ̸= 0, there exists the radius of curvature:

R(ζ(s)) =
1

|ζ̈(s)|
. (8.0.1)

We will use also the notation ζ(P ), ζ̇(P ), ζ̈(P ) if P = ζ(s) ∈ Z to indicate ζ(s), ζ̇(s), ζ̈(s).

Remark 8.0.3 (Alternative description via angles). If Z is an admissible spiral, as
pointed out in the introduction, we will also use in addition a parametrization by
angle (ϕ, r(ϕ)) to describe the strategy (see Figure 8.2), where, if P = (r(ϕ), ϕ), r(ϕ)
describes the length of the segment PPs, where Ps is the starting point of the fire ray
γ̄Ps . In particular, we will have ∇u(Ps) = eiϕ. We will use both the descriptions, and
we will develop a precise framework for characterizing spiral-like strategies in the next
section. We will both use the notations β(ϕ) = β(s) whenever (r(ϕ), ϕ) = ζ(s). This
description is possible thanks to the convexity assumption on admissible spirals, indeed
it implies that the angle at the point P is monotonically increasing and so it is possible
to parametrize the curve by the angle of rotation ϕ and the length of the radius.

Definition 8.0.4. Admissible spirals are admissible spiral-like blocking convex strate-
gies. We will denote by AS the set of admissible spirals.

Definition 8.0.5. Let P ∈ Z, where Z is an admissible spiral. The starting point of
the optimal ray γ̄P : [0, u(P )] → R2 is a point Pi with the following property: let

tP = inf{t ∈ [0, u(P )] : γ̄P ⌞[tp,u(P )] is a segment}. (8.0.2)

Then Pi = γ̄P (tP ).

In general optimal rays (Definition 5.0.1) are segments where they do not touch
the barrier: since the barrier is convex, these rays have an initial and a final segment
and in the intermediate points they coincide with the barrier. If the final segment has
length zero, then the barrier confines the fire. By definition of spiral-like strategies,
the starting point is well-defined, since for every P ∈ Z there exists unique γ̄P optimal
ray. Indeed, the solution to the Hamilton-Jacobi equation given by the Lax formula
has a unique optimal ray starting from O = (0, 0) and reaching any point P ∈ RZ

∞.
Moreover, if Pi ̸= O = (0, 0), it lies on the barrier Z. We will denote the direction of
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Figure 8.1: Here a point of non-differentiability of the convex barrier and the angles
β+ and β−.

fire rays starting from Pi = ζ(si) and reaching a point P ∈ Z as ∇u(ζ(si)) or ∇u(Pi)

or ζ̇(si)

|ζ̇(si)|
alternatively. Moreover, if ζ(s) = P we will denote by r(s) = PsP .

Moreover, the level set of the fire is a convex curve and in particular C1,1. Now we
consider a point P ∈ Z and let Pi = ζ(si) be its starting point. We define the two
following functions: s → β+(s) and s → β−(s) with values in [0, π] representing the
angles made by the the fire ray with the two tangents t+(s), t−(s). More precisely:

⟨t+(s),∇u(ζ(si))⟩ = cosβ+(s),

⟨t−(s),∇u(ζ(si))⟩ = − cosβ−(s).

Here the convexity assumption reads as

β+(s) ≥ β−(s). (8.0.3)

The function β+(s) is BV and right-continuous. We remark that, by the third assump-
tion in Definition 8.0.1, the angle β+(s) ≤ β+(s) ≤ π

2 , otherwise the fire would touch
the barrier in more than one point simultaneously. We denote by s→ β(s) = β+(s).

We recall that the admissibility condition reads as

H1(Z ∩RZ(t)) ≤ σt, ∀t ≤ T.

The function t → H1(Z ∩ RZ(t)) is monotone-increasing with countably many jumps,
corresponding to the set of times t where the barrier is placed on the level set {u = t},
moreover it is right-continuous [16]. We define the burning rate as

b(t) =
d

dt
H1(Z ∩RZ(t)) a.e. t. (8.0.4)

More precisely, we have the following

Lemma 8.0.6. The burning rate function b is BV.

Proof. If ζ(s) is a point of non-differentiability of the curve, the computation of the
right derivative of H1(Z ∩RZ(ζ(s)) is

b+(u(ζ(s))) =
1

cos(β+(ζ(s)))
,

and similarly the left derivative.



128 CHAPTER 8. ADMISSIBLE SPIRALS

Figure 8.2: Parametrization of a spiral-like strategy. Any optimal ray γ̄ is the union of a
subset of the spiral and a final segment: this motivates the definition of a parametriza-
tion (ϕ, r(ϕ)) where the angle ϕ (green) is the angle of rotation of the optimal ray
(defined in Equation (8.1.1)), while r(ϕ) is the length of the final segment of the opti-
mal ray.

Remark 8.0.7. Fix ζ(s) a point of non-differentiability of the curve. Then, under the
assumption of convexity we have that b+(u(ζ(s))) ≥ b−(u(ζ(s))).

Admissibility functional. We define also the Admissibility Functional related to
a spiral-like strategy. Given Z an admissible spiral-like strategy, we define

A(P ) = u(P )− 1

σ
L(P ), ∀P ∈ Z, (8.0.5)

where u(P ) is the minimum time function at P and L(P ) is the length of the spiral
from ζ(0) until the point P .

8.1 ODE description of a spiral

In this section we will give an ODE description of spiral-like strategies. In the following,
Z is an admissible spiral as in the previous section. As before, we will consider both a
parametrization via length, namely ζ(s) where s is the length parameter, or (r(ϕ), ϕ).

Lemma 8.1.1. Let Z be an admissible spiral 8.0.4 and let s → β(s) (alternatively
ϕ→ β(ϕ)) as before. Then one gets the following formulas:

1. The subsequent angle (see Figures 8.2, 8.3)

ϕ′(ϕ) = ϕ+ β(ϕ) + 2π, (8.1.1)

(given ϕ we will denote by ϕ−1 the previous angle).
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Figure 8.3: Computation of the subsequent angle ϕ′(ϕ).

2. If we call s the length parameter, the variation of the length is

ds

dϕ
=

r(ϕ)

sinβ(ϕ)
. (8.1.2)

3. In the points of differentiability of Z where ζ̈(s) ̸= 0 the curvature is given by

κ =
1

R
=
dϕ′

ds
. (8.1.3)

Finally the equation of the spiral is (by angle)

dr

dϕ′
= cotβ(ϕ′)r(ϕ′)−R(ϕ), (8.1.4)

dr

ds′
= cosβ(s′)− ds

ds′
. (8.1.5)

Proof. We start computing the subsequent angle. With reference to Figure 8.3 one
immediately observes that

ϕ′(ϕ+ δϕ)− ϕ′(ϕ) = β(ϕ+ δϕ)− β(ϕ) + δϕ.

This equation, coupled with the initial condition ϕ′(0) = 2π + β(0), gives the formula

in the statement For point (2) observe that δs = r(ϕ)
sin(β(ϕ))δϕ. For the point (3) one has

to remember that the curvature is the modulus of |ζ̈(s)|, where we indicated by ζ(s)
the parametrization by arc-length. We assume that |ζ̈(s)| ≠ 0. The equation of the
spiral is obtained in the following way:

r(ϕ′ + δϕ′)− r(ϕ′) = cotβ(ϕ′)δϕ′r(ϕ′)−
ˆ ϕ+δϕ

ϕ

r(η)

sinβ(η)
dη,
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Figure 8.4: In a point of non-differentiability P the variation of the radius is computed
as d

dϕ′ r(ϕ′) = cotβ(ϕ′)r(ϕ′). While the radius has a jump in the point R of the length
of the segment QR.

therefore remembering (8.1.1) one gets

dr

dϕ′
(ϕ′) = cotβ(ϕ′)r(ϕ′)− r(ϕ)

sin(β(ϕ))

1

1 + dβ
dϕ(ϕ)

,

which is equivalent to
dr

dϕ′
(ϕ′) = cotβ(ϕ′)r(ϕ′)−R(ϕ′),

where R is the radius of curvature. Clearly, by equations (11.2.2),(8.1.3) one gets

dr

ds′
=

dr

dϕ′
dϕ′

ds′
= cosβ(s′)− ds

ds′
.

Remark 8.1.2. In the case of the first round of the equation of spiral reads as follows

dr

ds
= cosβ(s). (8.1.6)

Since in the assumption of the previous lemma we had ζ̈(s) ̸= 0, we have that, if
ζ̈(s) = 0 for all s ∈ (s1, s2) (that is when the curve is a segment), and in the assumption
of continuity of the function s → β(s) (that is β+ ≡ β−), the solution has a jump of
the length of the segment. Instead in a point of non-differentiability the solution is
computed as

d

dϕ′
r(ϕ′) = cotβ(ϕ′)r(ϕ′).

See Figure 8.4.

8.1.1 Equation for the Saturated Spiral

We define the Saturated Spiral as the admissible spiral S with the following property:

S(S) = {t ∈ [0, T ] : H1(S ∩RS(t)) = σt} = [0, T ].

Saturated spirals are strategies built assuming the istantaneous speed of construction
is constant and takes the maximum value σ, that is the burning rate function b(t) is
constantly equal to σ.
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Proposition 8.1.3. Any Saturated Spiral is C1.

Proof. The proof exploits a blow-up argument and the convexity of the strategy S (see
for the proof Lemma 7.0.6).

The formula for burning rates tells us that, in case of saturated spirals, β+ = β− =
arccos

(
1
σ

)
. In this case (and in the following discussion) we will use the name α to

indicate this angle.

Lemma 8.1.4. Let S be a saturated spiral, and let (r(ϕ), ϕ) its parametrization via
angle. Then for ϕ ∈ [0, 2π] it is a logarithmic spiral.

Proof. From the equations found in the previous section, we have that at first round

dr

dϕ
= r(ϕ) cotα,

which gives precisely the logarithmic spiral, since its radius is r(ϕ) = ecotαϕ.

Lemma 8.1.5. Let S be a saturated spiral. Then the radius of S satisfies the following
Cauchy Problem

dr

dϕ′
= r(ϕ′) cotα− r(ϕ′ − (2π + α))

sinα
, (8.1.7)

with initial data

r0(ϕ) =

{
ecotαϕ ∀ϕ ∈ [0, 2π],

(r(2π)− 1)ecotα(ϕ−2π) ∀ϕ ∈ [2π, 2π + α].

Proof. For ϕ ∈ [0, 2π] it is the content of the previous lemma. Assume ϕ ∈ [2π, 2π+α],
one easily computes that, calling P = (1, 0), the saturated spiral is a logarithmic spiral
centered at P with initial radius r(2π) − 1 For the computation of the angle 2π + α,
see the computations of the subsequent angle in Lemma 8.1.1.

8.1.2 A formulation as a retarded ODE

We consider the following RDE

d

dϕ
r(ϕ) = r(ϕ) cotα− r(ϕ− ϕ0)

1

sinα
, (8.1.8)

where ϕ0 ∈ R>0 is any angle. In the assumption of saturated spirals it is ϕ0 = 2π + α.
(for the theory of RDEs see [29]). We observe that

d

dϕ

(
e− cotαϕr(ϕ)

)
= − 1

sinα
r(ϕ− ϕ0)e

− cotαϕ

therefore, if θ ∈ [0, ϕ0] we have that, for any n ∈ N it holds

r(θ + nϕ0) = ecotαθr(nϕ0)−
ˆ θ

0

1

sinα
ecotα(θ−η)r(η + (n− 1)ϕ0)dη.

If we call
ρn(θ) = r(θ + nϕ0)

we get

ρn(θ) = ecotαθρn−1(ϕ0)−
ˆ θ

0

1

sinα
ecotα(θ−η)ρn−1(η)dη.
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Therefore the retarded differential equation (8.1.8) defines a compact linear operator
T : C([0, ϕ0]) → C([0, ϕ0])

Tρ(θ) = ecotαxρ(θ)−
ˆ θ

0

1

sinα
ecotα(θ−η)ρ(η)dη (8.1.9)

By rescaling x = θ
ϕ0

and y = η
ϕ0

and the solution ρ̃n(x) = ρn(xϕ0) one gets the
following compact linear operator T : C([0, 1];R) → C([0, 1];R) defined by

Tρ(x) = eaxρ(1)−
ˆ x

0
bea(x−y)ρ(y)dy, (8.1.10)

and its iterates, where

a = ecotαϕ0 , b =
ϕ0

sinα
.

We reduce the problem to the study of the following operator

T̃ g(x) = eag(1)− b

ˆ x

0
g(y)dy,

observing that eaxT̃ (g)(x) = T (e(a·)g)(x).

8.1.3 Computation of the eigenvalues

To find the eigenvalues of the compact operator T it is sufficient to find the eigenvalues
of T̃ (which is still compact). We find the characteristic equation, computing T̃ g(x) =
ζg(x). One finds that

ζg(x) = eag(1)− b

ˆ x

0
g(y)dy. (8.1.11)

We observe that ζ = 0 is not in the point spectrum (it is not an eigenvalue). Therefore
one has

ζg′(x) = −bg(x),

so
g(x) = g(1)e

b
ζ
(1−x)

and putting inside the equation (8.1.11) one finds

ζe
b
ζ = ea,

that is

ζe

2π+α
sinα
ζ = ecotα(2π+α) (8.1.12)

Calling ζ̃ = b
ζ one finds the equation

eζ̃

ζ̃
=
ea

b
=
ecotα(2π+α)

2π+α
sinα

. (8.1.13)

We study therefore the function

z → ez

z
,

with z = x+ iy complex number. We find that:

ex+iy

x+ iy
=

ex

x2 + y2
(cos y+i sin y)(x−iy) = ex

x2 + y2
[(x cos y + y sin y) + i (x sin y − y cos y)] .
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• If y = 0 we have real eigenvalues and the equation reads as

ex

x
=
ea

b
. (8.1.14)

In particular we find that

1. If α < ᾱ = 1.1783 we have two solutions x1, x2 with x2 > 1 and x1 < 1.

2. If α = ᾱ = 1.1783 we have a unique eigenvalue at x = 1 with multiplicity 2,
corresponding to ζ = b.

3. If α > ᾱ we have no real eigenvalues (this case corresponds to ea

b < e).

• If y ̸= 0 we have that x = y cot y, in particular one has to study

f(y) =
ey cot y sin y

y
=
ea

b
.

The function y 7→ ey cot y sin y
y has the properties:

– for y → 0

lim
y→0

ey cot y
sin y

y
= e;

– the function is even (being a real operator, the eigenvalues are complex
conjugate), therefore we can limit our analysis to y > 0;

– the limits are (if k ≥ 1)

lim
y↗kπ

ey cot y
sin y

y
= 0,

lim
y↘kπ

ey cot y
sin y

y
= ∞.

Hence the following situation occurs:

1. if α > ᾱ, then there are only complex eigenvalues, the ones with positive
imaginary part in y ∈ (2k, 2k + 1)π, k > 1, and a couple for |y| < π;

2. at ᾱ, the couple at |y| < π converges to the point y = 0 (which is also real);

3. for α < ᾱ, there is a couple of real roots and a family of complex roots for
|y| > π, one in each interval (kπ, (k + 1)π), k ≥ 1.

8.1.4 Analysis on the complex eigenvalues

For the complex eigenvalues, we obtain

x = y cot y,
ey cot y sin y

y
=
ea

b
.

– There are eigenvalues for yk ∈ (2kπ, (2k+ 1)π), k ≥ 1, corresponding to the
solution

ey cot y sin y

y
=
ea

b
.

The corresponding eigenvalues are

ζk =
b

xk + iyk
,
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that is

ζk =
b sin yk
yk

(
cos yk − i sin yk

)
.

Writing

yk = 2πk +
π

2
− δk,

we obtain the equation

e(2πk+
π
2
−δk) tan(δk) cos δk

2πk + π
2 − δk

=
ea

b
.

– For k = 1 we obtain that in the original formulation (the one with the angle
α)

δ1 =
π

2
− α, y1 = ϕ0 = 2π + α, x1 = ϕ0 tanα, ζ1 = sinα− ı cosα.

– For general k, we observe that

d

du

e(u−v) tan v cos v

u− v


< 0 u < v + cot v,

0 u = v + cot v,

> 0 u > v + cot v,

and then the critical points have value

e sin v < e.

In particular all other complex eigenvalues have decreasing δk.

– As k → ∞, δk → 0 and expanding

e2πkδk

2πk
≃ ea

b
, δk ≃

ln( e
a2πk
b )

2πk
.

In the original eigenvalues, we get

ζk =
b cos δk

2πk + π
2 − δk

(sin δk − i cos δk) =
b

2πk + π
2

(
ln( e

a2πk
b )

2πk
− i

)
.

Hence the lie on the curve

x ≃ y2 ln(1/y).

– Note that the complex eigenvalues are simple and have eigenfunctions (com-
puted for the original operator T )

ρ(x) = ρ(0)e
(a− b

ζk
)x

= ρ(0)e(a−zk)x

= e(a−xk)x
(
cos(ykx)− i sin(ykx)

)
.

In particular, since yk > 2π for k > 1, they change sign in the interval [0, 1].
These are solutions which already at the beginning are changing sign.

– For the first eigenvalue we have that y1 < π, so that the real part of the
initial solution ρ1 is not changing sign. However by iteration we get

Tnρ(x) = e(a−x1)(x+n)(cos(y1(x+ n))− i sin(y1(x+ n))).

Tnρ(x) = e(a−xk)(x+n)(cos(yk(x+ n))− i sin(yk(x+ n))); (8.1.15)
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An application to strategies.

We assume now that σ > σ̄ = 2.614430844373.. = 1
cos ᾱ . Consider the following sit-

uation: a firefighter construct any admissible spiral with construction speed σ up to
some point Q, with the property that in the point Q it holds β−(Q) ≤ ᾱ (recall the
definitions in the previous section). From the point Q it starts constructing a spiral
with constant angle ᾱ. With abuse of notation from now on we will call saturated
branches the arcwise connected subsets of spiral-like strategies constructed with con-
stant angle. The new spiraling strategy obtained in this way is still convex, moreover
it is admissible: in this case, since the point Q is admissible by definition of admissible
spirals (Definition 4.6.6), then any point on the saturated branch remains admissible.
Indeed it holds that, if S is this particular strategy, then

H1(S ∩RS(t)) = H1(S ∩RS(sQ)) + σ(t− sQ) ≤ σt, ∀t ≥ sQ,

with sQ = u(Q) (u is the minimum time function), where we have used that the burning
rate (8.0.4) is constantly equal to σ and the fact that Q is admissible. An ODE point of
view to look at these strategies is precisely the one given by the RDE (8.1.8), with initial
data r0 given by the radius of the strategy chosen at the beginning by the firefighter.
The previous discussion on the complex spectrum of the operator justifies the following:

Proposition 8.1.6. If σ > σ̄, then for any initial data the saturated spiral confines
the fire.

Proof. We consider the change of variables

ρ(t) = r((2π + α)t)e−(2π+α) cotαt,

then the function ρ satisfies the following RDE:

ρ̇(t) +
(2π + α)

sin(α)
e−(2π+α) cotαρ(t− 1) = 0.

It is a well known fact that for RDE of the form ẋ + c(x − r) = 0 with c > 0 every
solution is oscillating iff the characteristic equation λ + ce−λr = 0 has only complex
eigenvalues (see for example [38]).

8.1.5 A change of variables

In this subsection we study a change of variable of the solution of (8.1.8). This will be
of key importance for the computations performed in the next sections, since exploiting
this formulation allows, in a relatively simple manner, to prove that a spiral does not
confine the fire (or, in other words, that the radius of any admissible spiral is always
strictly positive). Here we will use these computations to prove that the saturated
spiral (see (4.6.1)) does not confine the fire for σ < σ̄ (Proposition 8.1.10).

We consider the following change of variable:

ρ(t) = r((2π + α)t)e−c(2π+α)t,

with

c = cotα−
log
(
a
b

)
2π + α

.

The function ρ satisfies the following equation

ρ̇(t) = log
(a
b

)
ρ(t)− ρ(t− 1). (8.1.16)
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Observe that in the case α = ᾱ then the previous equation becomes

ρ̇(t) = ρ(t)− ρ(t− 1), (8.1.17)

since a
b = e, and

c̄ = cot ᾱ− 1

2π + ᾱ
, (8.1.18)

with c̄ = 0.27995.

Lemma 8.1.7 (Change of variables). Let a
b ≥ e. If ρ(1) > ρ(t) > 0 for every t ∈ [0, 1)

and ρ : [0,+∞) → R is continuous, then r(ϕ) > 0, for every ϕ.

Proof. Since a
b ≥ e we have that log(ab ) ≥ 1. Consider the interval [1, 2] (the proof will

be run inductively for any interval [n, n+ 1]), and define

t̄ = sup{t ∈ [1, 2] : ρ(t) ≥ ρ(1)},

then since ρ is continuous, ρ(t̄) ≥ ρ(1). Then

ρ̇(t̄) = log
(a
b

)
ρ(t̄)− ρ(t̄− 1) > ρ(t̄)− ρ(1) ≥ 0,

where we have used that ρ(t̄ − 1) < ρ(1) and that ρ(t̄) ≥ ρ(1). Since ρ̇(t̄) > 0, by
continuity of the function ρ̇ the supremum must be equal to 2. Moreover, the same
inequality ρ̇(t) > 0 holds for any t ∈ [1, 2]: in particular ρ is monotonically increasing
in [1, 2] and ρ(2) > ρ(t) > 0 for any t ∈ [1, 2). The induction is performed in the same
way. Since this proves that ρ > 0, clearly r(ϕ) is positive for every ϕ.

Remark 8.1.8. Note that (8.1.17) has the solutions 1 and t, corresponding to the two
generalized eigenfunctions of the Delay DE.

Remark 8.1.9. The previous lemma proves also that the function ρ ≥ κ > 0, in
particular the function r(ϕ) ≥ κecϕ increases exponentially fast.

As an application of the previous discussion, we show how this lemma can be applied
to a concrete case (the saturated spiral (4.6.1)) to prove that the strategy cannot confine
the fire.

Proposition 8.1.10. Let S be the saturated spiral. Then it does not confine the fire
for σ ≤ σ̄.

Proof. Recall the initial data for the saturated spiral is given in Lemma 8.1.5: it is

r0(ϕ) =

{
ecot ᾱϕ ∀ϕ ∈ [0, 2π),

(e2π cot ᾱ − 1)ecot ᾱ(ϕ−2π) ∀ϕ ∈ [2π, 2π + ᾱ].

We compute the solution of the RDE (8.1.8) for ϕ ∈ [2π+ ᾱ, 4π+2ᾱ] and we find that,
for ϕ ∈ [2π + ᾱ, 4π + ᾱ]

r(ϕ) = r(2π + ᾱ)ecot ᾱ(ϕ−2π−ᾱ) − 1

sin ᾱ

ˆ ϕ

2π+ᾱ
ecot ᾱ(ϕ−η)r(η − 2π − ᾱ)dη

= r(2π + ᾱ)ecot ᾱ(ϕ−2π−ᾱ) − 1

sin ᾱ
ecot ᾱ(ϕ−2π−ᾱ)

ˆ ϕ−2π−ᾱ

0
e−z cot ᾱr(z)dz,
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and since ϕ ∈ [2π + ᾱ, 4π + ᾱ] we have that

r(ϕ) =

(
r(2π + ᾱ)− 1

sin ᾱ
(ϕ− 2π − ᾱ)

)
ecot ᾱ(ϕ−2π−ᾱ), ϕ ∈ [2π + ᾱ, 4π + ᾱ].

The same computation can be performed for ϕ ∈ [4π + ᾱ, 4π + 2ᾱ], finding

r(ϕ) =

(
r(4π + ᾱ)− e2π cot ᾱ − 1

sin ᾱ
(ϕ− 4π − ᾱ)

)
ecot ᾱ(ϕ−4π−ᾱ), ϕ ∈ [4π + ᾱ, 4π + 2ᾱ];

In order to prove the positivity of the function r(ϕ) we apply Lemma 8.1.7: as before
we define

ρ

(
ϕ

2π + ᾱ

)
= r(ϕ)e−c̄ϕ,

and we prove that the function ρ is increasing in the interval [1, 2] (corresponding to
ϕ ∈ [2π+ᾱ, 4π+ᾱ]) proving that the derivative of r(ϕ)e−c̄ϕ is strictly positive, so that r
can never go to zero. Using the previous equations we find that for ϕ ∈ [2π+ ᾱ, 4π+ ᾱ]

d

dϕ
r(ϕ)e−c̄ϕ = − 1

sin ᾱ
ecot ᾱ(ϕ−2π−ᾱ)−c̄ϕ+

+
1

2π + ᾱ

(
r(2π + ᾱ)− 1

sin ᾱ
(ϕ− 2π − ᾱ)

)
ecot ᾱ(ϕ−2π−ᾱ)−c̄ϕ,

where we have used (8.1.18) for the value c̄.
In particular we have that the sign of the derivative depends on the following quan-

tity:

Q1(ϕ) = r(2π + ᾱ)− 1

sin ᾱ
ϕ,

and performing the same computations for the interval ϕ ∈ [4π + ᾱ, 4π + 2ᾱ] we find

Q2(ϕ) = r(4π + ᾱ)− e2π cot ᾱ − 1

sin ᾱ
(ϕ− 2π).

If we prove that these two quantities are positive then the derivative of r(ϕ)e−c̄ϕ is
positive and therefore the spiral can never confine the fire.

Estimates on Q1 and Q2. We observe that

Q1 = r(2π + ᾱ)− 1

sin ᾱ
ϕ ≥ r(2π + ᾱ)− 1

sin ᾱ
(4π + ᾱ)

= (e2π cot ᾱ − 1)eᾱ cot ᾱ − 1

sin ᾱ
(4π + ᾱ) ≥ 5.

Similarly,

Q2 ≥ r(4π + ᾱ)− ecot ᾱ(2π) − 1

sin ᾱ
(ϕ− 2π) ≥ r(4π + ᾱ)− ecot ᾱ(2π) − 1

sin ᾱ
(2π + 2ᾱ) ≥ 65.





Chapter 9

Existence of optimal closing
barriers

In this chapter we give the main geometric motivation for the study of
families of generalized barriers.

Here and in the following, we fix Z ∈ AS an admissible spiral-like strategy (Definition
8.0.4). We call (r(ϕ), ϕ) its parametrization by angle (see Remark 8.0.3), and ζ(s) its
parametrization by arc-length, but we will use alternatively the notation ζ(ϕ) to denote
the point (r(ϕ), ϕ) (if there is no risk of confusion). We remark that in this section we
will work with any construction speed σ > 0 and we recall that the angle α is defined
as

α = arccos

(
1

cosα

)
.

In this section we will address the following optimization problem: fix any admissible
strategy Z and any angle ϕ̄, then the minimization problem is

min
Z̃∈AS(Z,ϕ̄)

rZ̃(ϕ), for some ϕ ≥ ϕ̄, (9.0.1)

where AS(Z, ϕ̄) denotes the class of admissible spirals that coincide with Z up to the
angle ϕ̄, and if Z̃ ∈ AS(Z, ϕ̄), (rZ̃(ϕ), ϕ) will denote its parametrization by angle.
Differently from what stated for the optimization problem (4.4.13), for which it has
been proved that the minimum exists among admissible blocking strategies (therefore
in a class that could be empty) [17], here the class of strategies is non-empty, since we
are not assuming in general that the spiral-like strategies they confine the fire.

Here, for any angle ϕ̄ fixed, we also want to determine the best strategy Ẑ parametrized
by (r̂(ϕ), ϕ) with the following properties:

• r̂(ϕ) = r(ϕ) for ϕ ≤ ϕ̄;

• Ẑ is optimal in [ϕ̄, ϕ̄ + 2π], where optimal means that r̂(ϕ) ≤ r̃(ϕ) for every
admissible spiral-like strategy Z̃ parametrized by (r̃(ϕ), ϕ) which coincides with
Z up to the angle ϕ̄.

The position ζ(ϕ̄) is reached by the fire at time t(ϕ̄) = u(ζ(ϕ̄)), where u is the minimum
time function, and the admissibility functional reads therefore as

A(ϕ̄) = t(ϕ̄)− L(ζ([0, ϕ̄]))

σ
≥ 0.

The aim of this section is to prove that Ẑ has the following structure, starting from
ζ(ϕ̄):

139
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1. it follows the level set {u = u(ζ(ϕ̄))} for ϕ ∈ [ϕ̄, ϕ̄+∆ϕ = ϕ1];

2. for ϕ ∈ [ϕ1, ϕ2] it is a segment tangent to the level set and its endpoint ζ(ϕ2) not
lying on the level set {u = u(ζ(ϕ̄))} is saturated (which means that A(ϕ2) = 0);

3. for ϕ ≥ ϕ2 it is a saturated spiral, in the sense that the angle β(ϕ) = α for every
ϕ ≥ ϕ2 (see the previous section for the definitions). In particular the constraint

H1(Ẑ ∩ RẐ(t)) = σt for every t ≥ u(ζ(ϕ2)) is satisfied since the point ζ(ϕ2) is
saturated for point (2).

Even if it is possible to give the shape of the best strategy Ẑ minimizing r(ϕ) with
ϕ ∈ [ϕ̄, ϕ̄+2π], it is an open question if it is possible to write down explicitly the shape
of a minimizer for the problem (9.0.1). The computations that we will perform in this
section suggest that the natural guess for the minimizer is the following strategy: it
is a circle, starting from the point (1, 0), a segment whose last point is saturated, and
then a saturated spiral, meaning that the angle with the fire rays is constantly equal
to α, as in Figure 10.2. Actually it turned out it is not the right one (we will discuss
this point in the next chapter).

9.0.1 Study of the distance function u

The function u is the solution to HJ equation,

u(x) = dist(x, 0) = min
{
L(γ), γ admissible

}
.

Without loss of generality we call with the same name ζ(s) the parametrization of the
spiral by arc-length. If x ∈ Z, then s(x) is the length of the spiral Z up to the point
where the optimal ray γ̄x becomes a segment.

Lemma 9.0.1. The function u is convex in R2 \ Z, and if ζ(s(x)) is the last point
where γ̄x is a segment (recall γ̄x is an optimal ray), then

∇u =
x− ζ(s(x))

|x− ζ(s(x))|
= t(s), ∇2u =

1

|x− ζ(s(x))|
n(s)⊗ n(s),

where n(s) is the normal vector at ζ(s). The case κ(s(x)) = 0 is analogous, and ∇2u
is locally BV with jumps on the directions where Z is flat, since the radius of curvature
x− ζ(s(x)) has jumps.

Proof. All statements follows from the computation of the formulas. We consider only
the case where ζ(s(x)) is a differentiability point of Z and ζ ′′(s) = 1/R(s)n(s) ̸= 0.
Denote also t = ζ ′(s).

Using the parametrization

s, r 7→ x(s, r) = ζ(s) + rt(s),

we have that
u(s, r) = const + s+ r.

Then

Du = (1, 1) · (Dx)−1

= (1, 1)T
{[

t n
] [ 1 1

r/R 0

]}−1

= (1, 1)T
[
0 R/r
1 −R/r

] [
t n

]T
= tT .
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Figure 9.1: The green line is the set R(ζ̄) where all the points are saturated. It divides
the region into the admissible and the non admissible part.

This proves the first formula.

Differentiating ∇u(x(s, r)) = ζ ′(s), one obtains

∇2u(x(s, r))t(s) = 0, ∇2u(x(s, r))(t(s) +
r

R
n(s)) =

1

R
n(s),

i.e.

∇2u =
1

R
n⊗ n,

which is the second formula.

9.0.2 Construction of the curve of minimal reachable points

Definition 9.0.2. The set R(ζ̄), ζ̄ = ζ(ϕ̄), of minimal reachable points is the set of
end points of curves made of a piece of fire level set passing by ζ(ϕ̄) plus a tangent
segment to the level set: all the points should be admissible, not crossing Z and the
last point is saturated (meaning that the admissibility functional in the last point is
zero).

It is possible that none of the points on the fire level set ξ = u−1(u(ζ̄)) is saturated
: in this case there is no starting point of the curve. We thus assume that there is a
point ξ(a) such that

u(ξ(a)) = u(ζ̄) ≥ L(ζ([0, ϕ̄])) + L(ξ([0, ā]))

σ
=
L(ζ([0, ϕ̄])) + a

σ
.

Clearly such a point is unique, (see Figure 9.1). Let x ∈ R(ζ̄), and [ζ(s), x] the last
segment part of the optimal ray, [ξ(a), x] the segment part of the admissible curve, with
respective length r, b. Denote also

tf = ∇u(x) = x− ζ(s)

|x− ζ(s)|
, nf = t⊥f , tξ = ξ̇(a) =

x− ξ(a)

|x− ξ(a)|
, nξ = t⊥ξ .

Proposition 9.0.3. The tangent to R(ζ̄) in x is given by

v =
nf − nξ/σ

|nf − nξ/σ|
,
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oriented according to uf ◦ R, uξ ◦ R increasing, where

uf (ζ(s) + rζ ′(s)) = s+ r, uξ(ξ(a) + bξ′(a)) = a+ b,

ζ̇ is the tangent to the spiral and ξ̇ denotes the tangent to the level set.
The minimal slope of R is the slope of the saturated spiral, and starting from the

point ξ(a) up to this point of the curve is admissible, the quantity (∇uf · ∇uξ) ◦ R is
increasing.

After this point the curve is not admissible, in the sense that the segment has points
outside the admissibility region. Moreover the curve is convex in the direction of v⊥ in
the admissibility part.

Proof. Let uf , uξ be the HJ solutions defined by

uf (ζ(s) + rζ ′(s)) = s+ r, uξ(ξ(a) + bξ′(a)) = a+ b.

The admissibility functional reads as

A(x) = const + s+ r − a+ b

σ
= const + uf (x)− cos(α)uξ(x) = 0.

Differentiating and using Lemma 9.0.1 we obtain

∇A = tf − cos(α)tξ,

and (
∇uf − cos(α)∇uξ

)
· v =

(
tf − cos(α)tξ

)
· v = 0,

with v the vector of the statement, which is the tangent to the curveR(ζ̄), and this gives
precisely the statement. The orientation follows because we assume a counterclockwise
rotation, and in the starting point on the level set {u = u(ζ̄)} we obtain nξ = −tf , so
that the vector of the statement becomes

v =
nf + cos(α)tf
|nf + cos(α)tf |

.

In particular the initial angle in the fire frame, that is ∠(v, tf ) in this point is greater
than α. The derivative of uf ◦ R is

(uf ◦ R)′ = − cos(α)
(tf · nξ)

|nf − nξ/σ|

which is positive (we chose the orientation such that u ◦ R was increasing) unless
tf ⊥ nξ, which means that the lines are parallel, and then R → ∞ (or it hits the
barrier Z). Similarly,

(uξ ◦ R)′ =
(tξ · nf )

|nf − nξ/σ|
= −

(tf · nξ)

|nf − nξ/σ|
> 0,

as the saturation condition requires. One could also prove that v · tf decreases.
In general, in the fire frame (tf ,nf ) the position of nf − cos(α)nξ is contained in

(0, 1) + {|z| = cos(α)}, and the minimal slope is when v = eiα. This point is in the
cone αtf + βtξ up to this tangent point, giving that the gradient of the two functions
are approaching. Writing the derivative explicitly one gets

(∇uf · ∇uξ ◦ R)′ = vT nf ⊗ nf

rf
tξ + vT nξ ⊗ nξ

rξ
tf

=
tξ · nf

|nf − cos(α)nξ|

(
1− cos(α)nf · nξ

rf
−

nf · nξ − cos(α)

rξ

)
> 0,
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Figure 9.2: If by contradiction an admissible spiral (the red curve) crosses the strategy
made by an arc, a segment whose last point is saturated and then a saturated spiral,
it would enter the non-admissibility region. For the proof of this result see Corollary
9.0.4

so that
1− cos(α)nf · nξ

rf
−

nf · nξ − cos(α)

rξ
> 0.

In particular, the angle ∠(tf , tξ) along the curve R decreases. We call x̄ the point at
which this angle is α, (the critical point). In the point x̄ we have that v ∥ tξ.

After the critical angle, the vector tξ moves counterclockwise, which means that we
are going to take values of a already used. However the derivative of the admissibility
functional satisfies

∇A = tf − cos(α)tξ,

and thus for directions with angle > α

∇A · tξ = cos(ψv)− cos(α) < 0.

Hence in this part the functional is not admissible.

The second derivative of A along v gives

vT∇2Av =
(nf · v)2

rf
− cos(α)

(nξ · v)2

rf

=
1

|nf − cos(α)nξ|2

(
(1− cos(α)nf · nξ)

2

rf
−

(nf · nξ − cos(α))2

rξ

)
≥ 1

|nf − cos(α)nξ|2
nf · nξ − cos(α)

rξ

(
1− cos(α)nf · nξ − nf · nξ + cos(α)

)
> 0.

Hence the curve is convex in the direction of v⊥.

The curve R has 3 possibilities:

1. there is no starting point on the fire level set;

2. the curves starts on the fire level set and touches Z;

3. there is a starting point on the level set ξ(a). The point W is the one where the
angle is α (x̄ of the previous proof).
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Corollary 9.0.4. Assume that there is a starting point of the curve R(ζ̄) on the level
(case 3 above, see Figure 9.2), and let ς be the saturated spiral passing though W . Call
θ0 the angle that the spiral Z makes with the optimal ray γ̄ζ̄ and call r̂ the radius of
the strategy given by the arc (subset of {u = u(ζ̄)}), the segment up to the point W
and the saturated spiral (we will call this strategy Ẑ). Then r(ϕ) ≥ r̂(ϕ) for every
ϕ ∈ [ϕ̄, ϕ̄+ 2π + θ0].

This discussion tells us that the points on R are admissible and are the ones giving
the shortest r(ϕ) for the angle ϕ.

Proof. Assume that the admissible strategy crosses the segment: then it must cross
the curve R in a point z̄ by convexity. In particular it must be an arc and a segment
up to the point z̄ (if not, it would be longer than this strategy and therefore not
anymore admissible in the point z̄). This strategy is characterized by the fact that
∠(v(z̄), tξ(z̄)) > α, so that the burning rate (8.0.4) of the strategy is greater than σ
(by the convexity assumption on spiral-like strategies): this is not admissible. If instead
the admissible strategy Z crosses the saturated spiral ς for ϕ ≤ ϕ̄+ 2π + θ0 in a point
z̄′ then we would have

u(z̄′)− 1

σ
L(z̄′) < u(z̄′)− 1

σ
L̂(z̄′) = 0,

where L̂(z′) is the length of the strategy Ẑ up to the point z̄′. Here we have used
u(z̄′) = û(z̄′). The last equality is because the point z̄′ is saturated (living on a
saturated spiral). In particular z̄′ would not be admissible. Here it is crucial that
ϕ ≤ ϕ̄+ 2π + θ0 since the optimal rays of the two strategies Z and Ẑ ”coincide” up to
the angle ϕ̄+ 2π + θ0, so that, in the intersection points z̄′, it holds u(z̄′) = û(z̄′).



Chapter 10

A case study

Here the construction speed σ̄ = 2.6144.. is the critical speed, and ᾱ = arccos
(
1
σ̄

)
. The

computations of the previous section suggest to study the following case study: assume
that the fire spreads in a ball Ba(0) with a ∈ (0, 1] and that a player starts constructing
a spiral Sa starting from a point (1, 0) = P0 with the following property: in ϕ ∈ [0, 2π] it
is the union of a circle (eventually consisting of a single point), a segment of endpoints
P1(a), P2(a) tangent to the circle in P1(a) such that the point P2(a) is saturated, that
is

A(P2(a)) = u(P2(a))−
1

σ̄
L(P2(a)) = 0,

where L(P2(a)) is the length of the spiral Sa up to the point P2(a). From the point
P2(a) it is a saturated spiral, that is the angle β made by the spiral and the fire rays
(see Section 8) is constantly equal to ᾱ.

The relevant equations are the following:

• the length of the arc of circle is P0P1(a) = ∆ϕa;

• the length of the segment is P1(a)P2(a) =
1

sin ᾱ ;

• Saturation condition on P2(a):

u(P2(a))−
1

σ̄
L(P2(a)) =

(
1

sin ᾱ
− a

)
− 1

σ̄

(
∆ϕa +

cos ᾱ

sin ᾱ

)
= 0.

In particular,

∆ϕa = σ̄

(
1

sin ᾱ
− a

)
− cos ᾱ

sin ᾱ
= tan ᾱ− a

cos ᾱ
, (10.0.1)

since σ̄ = 1
cos ᾱ . Depending on the value of a we have the following situation:

∆ϕa ≤ 0 or ∆ϕa > 0.

Case ∆ϕa > 0: Here the formula for ∆ϕa is given by (10.0.1), corresponding to
a < sin ᾱ and θa = ∠P2(a)OP1(a) =

π
2 − ᾱ.

Case ∆ϕa ≤ 0: if ∆ϕa ≤ 0 (corresponding to a ≥ sin ᾱ) it means that P1(a) ≡ P0,
in particular, by the Theorem of Sines, it holds

P1(a)P2(a) =
sin θa
sin ᾱ

,
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Figure 10.1: The two cases with ∆ϕa > 0 and ∆ϕa ≤ 0.
.

where θa = ∠P2(a)OP1(a). Here the saturation condition on P2(a) is the following

(P2(a)O − a)− 1

σ̄
P1(a)P2(a) =

sin(θa + ᾱ)

sin ᾱ
− a− 1

σ̄

sin θa
sin ᾱ

= 0, (10.0.2)

which gives implicitly the value of θa. Indeed since 1
σ̄ = cos ᾱ we have that:

cos θa = a,

and since a ≥ sin ᾱ we find that θa ∈ [0, π2 − ᾱ].

The two cases are explained in Figure 10.1. We will prove the following

Theorem 10.0.1. For any value of a ∈ (0, 1], the spiral Sa does not confine the fire.

The proof of this theorem relies on a careful application of Lemma 8.1.7. Before
proving the previous theorem, we give the proof of the following two lemmas on prop-
erties of the solution of RDEs.

Lemma 10.0.2. Let r(ϕ) such that

d

dϕ
r(ϕ) = λr(ϕ)− γr(ϕ− ϕ0),

for some λ, γ, ϕ0 > 0, and, given ϕ0 ≤ ϕ1 ≤ ϕ2, assume that

r(ϕ) = κeλ(ϕ−ϕ1+ϕ0), ∀ϕ ∈ [ϕ1 − ϕ0, ϕ2 − ϕ0],

for some constant κ. Then

r(ϕ) = (r(ϕ1)− γr(ϕ1 − ϕ0)(ϕ− ϕ1)) e
λ(ϕ−ϕ1), ∀ϕ ∈ [ϕ1, ϕ2].

Proof. The proof follows easily by the following fact:

r(ϕ) = eλ(ϕ−ϕ1)r(ϕ1)− γ

ˆ ϕ

ϕ1

eλ(ϕ−η)r(η − ϕ0)dη

= eλ(ϕ−ϕ1)r(ϕ1)− γ

ˆ ϕ−ϕ0

ϕ1−ϕ0

eλ(ϕ−z−ϕ0)κeλ(z−ϕ1+ϕ0)dz

= (r(ϕ1)− γκ(ϕ− ϕ1)) e
λ(ϕ−ϕ1),

which is the statement.
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Figure 10.2: Here f0 is made by an arc, a segment and a saturated spiral.

Lemma 10.0.3. Let r(ϕ) such that

d

dϕ
r(ϕ) = λr(ϕ)− γr(ϕ− ϕ0),

for some λ, γ, ϕ0 > 0, and, given ϕ0 ≤ ϕ1 ≤ ϕ2, assume that

r(ϕ) = (r(ϕ1)− γr(ϕ1 − ϕ0)(ϕ− ϕ1)) e
λ(ϕ−ϕ1), ∀ϕ ∈ [ϕ1, ϕ2].

Call

d̄ = λ− 1

ϕ0
.

Then if r(ϕ1), r(ϕ1 − ϕ0) ≥ 0 the function

ρ(ϕ) = r(ϕ)e−d̄ϕ

is monotonically increasing in [ϕ1, ϕ2] if

r(ϕ1)− γr(ϕ1 − ϕ0)(ϕ2 − ϕ1 + ϕ0) ≥ 0. (10.0.3)

Proof. The computation of the derivative of ρ(ϕ) is straightforward, in particular

sign(ρ′(ϕ)) = sign

(
r(ϕ1)

ϕ0
− γ

(
r(ϕ1 − ϕ0) +

1

ϕ0
r(ϕ1 − ϕ0)(ϕ− ϕ1)

))
,

and the conclusion follows observing that r(ϕ1), r(ϕ1 − ϕ0) ≥ 0.

We are ready to give the proof of Theorem 10.0.1.

Proof. We divide the proof in the study of the two cases ∆ϕa > 0 and ∆ϕa ≤ 0.

• Case ∆ϕa > 0.This case is described in Figure 10.2. We remark that from
(10.0.1) we find that ∆ϕa ∈ (0, tan ᾱ], the worst possible case is tan ᾱ corre-
sponding to a = 0.

∆ϕ = tan ᾱ. (10.0.4)

We call ra the radius of the spiral Sa (see Remark 8.0.3). Then it can be computed
as follows:
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– for ϕ ∈ [∆ϕa,∆ϕa +
π
2 − ᾱ) we have that

ra(ϕ) =
1

cos(ϕ−∆ϕa)
,

in particular we call

κ1(a) = ra

(
∆ϕa +

π

2
− ᾱ

)
=

1

sin ᾱ
;

– for ϕ ∈ [∆ϕa +
π
2 − ᾱ, 2π) it holds

d

dϕ
ra(ϕ) = cot ᾱra(ϕ),

since the spiral is saturated, that is

ra(ϕ) = κ1(a)e
cot ᾱ(ϕ−π

2
+ᾱ−∆ϕa),

– the radius ra has a jump at ϕ = 2π, that is

ra(2π)− ra(2π−) = −1,

in particular we denote by

κ2(a) = ra(2π) = κ1(a)e
cot ᾱ(2π−π

2
+ᾱ−∆ϕa) − 1;

– for ϕ ∈ [2π, 2π + π
2 +∆ϕa) it holds

d

dϕ
ra(ϕ) = cot ᾱra(ϕ),

therefore

ra(ϕ) =

[
1

sin ᾱ
ecot ᾱ(2π−

π
2
+ᾱ−∆ϕa) − 1

]
ecot ᾱ(ϕ−2π); (10.0.5)

– the radius ra has a jump in ϕ = 2π + π
2 +∆ϕa , that is

ra

(
2π +

π

2
+ ∆ϕa

)
− ra

(
2π +

π

2
+ ∆ϕa−

)
= − cot ᾱ,

and also here we denote by

κ3(a) = ra

(
2π +

π

2
+ ∆ϕa

)
= κ2(a)e

cot ᾱ(π
2
+∆ϕa) − cot ᾱ.

– for ϕ ≥ 2π + π
2 +∆ϕ the function solves

d

dϕ
ra(ϕ) = cot ᾱra(ϕ)−

ra(ϕ− 2π − ᾱ)

sin ᾱ
.

Optimization w.r.t. a. We optimize with respect to the parameter a, comput-
ing the ODE satisfied by ∂ara(ϕ). We find that

– for ϕ ∈ [0,∆ϕa] it is ∂ara(ϕ) = 0;



149

– for ϕ ∈ [∆ϕa,∆ϕa +
π
2 − ᾱ] it holds

∂ara(ϕ) =
sin(ϕ−∆ϕa)

cos ᾱ cos2(ϕ−∆ϕa)
;

– for ϕ ∈ [∆ϕa +
π
2 − ᾱ,∆ϕa +

π
2 + 2π] it satisfies

d

dϕ
∂ara(ϕ) = cot ᾱ∂ara(ϕ);

– for ϕ ≥ ∆ϕa +
π
2 + 2π it satisfies

d

dϕ
∂ara(ϕ) = cot ᾱ∂ara(ϕ)−

∂ara(ϕ− 2π − ᾱ)

sin ᾱ
.

Similar computations to the ones performed in Section 8, Proposition 8.1.10 show
that ∂ara(ϕ) ≥ 0. Indeed, by Lemma 10.0.2 we have that

∂ara(ϕ) =

(
1

sin2 ᾱ
ecot ᾱ(2π+ᾱ) − 1

sin3 ᾱ
(ϕ−∆ϕa −

π

2
− 2π)

)
ecot ᾱ(ϕ−∆ϕa−π

2
−2π),

for ϕ ∈ [∆ϕa +
π
2 +2π, 4π+ ᾱ+ π

2 +∆ϕa]. In order to apply Lemma 8.1.7 we use
Lemma 10.0.3 and we have that ∂ara(ϕ) ≥ 0 if the following quantity

1

sin ᾱ2
ecot ᾱ(2π+ᾱ) − 1

sin ᾱ3
(4π + 2ᾱ) ≥ 0.

But this is clearly true, since the previous quantity is ≥ 6.7. In particular this
reduces our analysis to the case a = 0.

From now on we will assume a = 0 therefore ∆ϕ0 = tan ᾱ. We remark that the
function r0 is continuous for every ϕ ≥ 2π+π

2+tan ᾱ. To use Lemma 8.1.7, we first
need to compute r0(ϕ) for ϕ ∈

[
2π + π

2 + tan ᾱ, 4π + π
2 + tan ᾱ+ ᾱ

]
, such that

the change of variable ρ0(ϕ) = r0(ϕ)e
−c̄ϕ is continuous, where c̄ is given in (8.1.18).

We apply Lemma 10.0.2 and we find that for ϕ ∈
[
2π + π

2 + tan ᾱ, 4π + ᾱ
]
it holds

r0(ϕ) =

(
κ3(0)−

1

sin ᾱ
κ1(0)

(
ϕ−

(
2π +

π

2
+ tan ᾱ

)))
ecot ᾱ(ϕ−(2π+

π
2
+tan ᾱ)),

and called κ4(0) = r0(4π + ᾱ) one gets in the same way

r0(ϕ) =

(
κ4(0)−

1

sin ᾱ
κ2(0) (ϕ− (4π + ᾱ))

)
ecot ᾱ(ϕ−(4π+ᾱ)).

Thanks to Lemma 10.0.2, in order to prove the monotonicity of the function ρ we
need to prove that the two following quantities:

Q1 = κ3(0)−
1

sin ᾱ
κ1(0)

(
4π + 2ᾱ− π

2
− tan ᾱ

)
≥ 0,

Q2 = κ4(0)−
1

sin ᾱ
κ2(0)

(
2π +

π

2
+ tan ᾱ+ ᾱ

)
≥ 0.

We evaluate numerically these two quantities finding that they are positive. In-
deed one can check that

κ1(0) = 1.0823, κ2(0) = 3.56172, κ3(0) = 18.1369, κ4(0) = 59.2869,

and that
Q1 = 5.32605, Q2 = 15.157.

Thanks to Lemma 8.1.7 this proves that the spiral Sa does not confine the fire in
the case ∆ϕa ≥ 0.
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Figure 10.3: The function ϕ→ f0(ϕ).

• Case ∆ϕa ≤ 0. This case is described in Figure 10.3. We compute ra(ϕ) explic-
itly. We call θ̄a = θa + ᾱ, then

– for ϕ ∈ [0, θ̄a − ᾱ] we have that

ra(ϕ) =
sin θ̄a

sin(θ̄a − ϕ)
,

and we call

κ′1(a) = ra(θ̄a − ᾱ) =
sin θ̄a
sin ᾱ

;

– for ϕ ∈ [θ̄a − ᾱ, 2π) it holds

d

dϕ
ra(ϕ) = cot ᾱra(ϕ),

that is
ra(ϕ) = κ′1(a)e

cot ᾱ(ϕ−θ̄a+ᾱ);

– the function ra(ϕ) has a jump at ϕ = 2π, indeed

ra(2π)− ra(2π−) = −1,

and we call

κ′2(a) = ra(2π) =
sin θ̄a
sin ᾱ

ecot ᾱ(2π−θ̄a+ᾱ);

– for ϕ ∈ [2π, 2π + θ̄a) it holds

d

dϕ
ra(ϕ) = cot ᾱra(ϕ),

so that
ra(ϕ) = κ′2(a)e

cot ᾱ(ϕ−2π);



151

– in ϕ = 2π + θ̄a the function ra has a jump, computed as

ra(2π + θ̄a)− ra(2π + θ̄a−) = −sin(θ̄a − ᾱ)

sin ᾱ
,

and we call

κ′3(a) = ra(2π + θ̄a) = κ′2(a)e
cot ᾱθ̄a − sin(θ̄a − ᾱ)

sin ᾱ
;

– finally, for ϕ ≥ 2π + θ̄a the function solves

d

dϕ
ra(ϕ) = cot ᾱra(ϕ)−

ra(ϕ− 2π − ᾱ)

sin ᾱ
.

Optimization w.r.t. a. We optimize with respect to the parameter a, comput-
ing the ODE satisfied by ∂ara(ϕ). We recall that θ̄a = θa + ᾱ and cos θa = a.
Thereofre we find that

– for ϕ ∈ [0, θ̄a − ᾱ] it holds

∂ara(ϕ) =
sinϕ

sin(θ̄a − ᾱ) sin2(θ̄a − ϕ)
;

– for ϕ ∈ [θ̄a − ᾱ, 2π + θ̄a] it satisfies

d

dϕ
∂ara(ϕ) = cot ᾱ∂ara(ϕ);

– in the point ϕ = 2π + θ̄a the derivative has a jump, namely

∂ara(2π + θ̄a)− ∂ara(2π + θ̄a−) =
cot(θ̄a − ᾱ)

sin ᾱ
;

– for ϕ ≥ 2π + θ̄a it satisfies

d

dϕ
∂ara(ϕ) = cot ᾱ∂ara(ϕ)−

∂ara(ϕ− 2π − ᾱ)

sin ᾱ
.

By using Lemma 10.0.2 one finds that, for ϕ ∈ [2π + θ̄a, 4π + θ̄a + ᾱ]

∂ara(ϕ)e
− cot ᾱ(ϕ−2π−θ̄a) =

sinϕ

sin(θ̄a − ᾱ) sin2(θ̄a − ϕ)
ecot ᾱ(2π+ᾱ) +

cot(θ̄a − ᾱ)

sin ᾱ

− 1

sin ᾱ

sinϕ

sin(θ̄a − ᾱ) sin2(θ̄a − ϕ)
(ϕ− 2π − θ̄a).

We observe that

sinϕ

sin(θ̄a − ᾱ) sin2(θ̄a − ϕ)
⌞ϕ=θ̄a−ᾱ,

cot(θ̄a − ᾱ)

sin ᾱ
≥ 0;

by applying Lemma 10.0.3, we have that the sign of the function ∂ara(ϕ) in the
interval [2π + θ̄a, 4π + θ̄a + ᾱ] depends on the following quantity (recall Lemma
8.1.7 and the change of variables):

Q(a) = ∂ara(2π + θ̄a)−
1

sin ᾱ
∂ara(θ̄a − ᾱ)(4π + 2ᾱ).
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Figure 10.4: On the x-axis the parameter a ∈ [sin ᾱ, 1), and the blue function is Q(a),
which is positive. The orange line represents the axis y = 0.

The numerical evaluation of this quantity is positive (see Figure 10.4), which
tells us that ∂ara(ϕ) ≥ 0. In particular, this implies that the only case to study
corresponds to a = sin ᾱ. The discussion on the case ∆ϕa ≥ 0 allows us to further
reduce this case to a = 0. This concludes the proof of the theorem, since this
proves that ra(ϕ) ≥ r0(ϕ), for every angle ϕ, and r0(ϕ) ≥ 0 by the computations
on the previous case.

Corollary 10.0.4. The element Z0 with parametrization (r0(ϕ), ϕ) does not confine
the fire, moreover r0(ϕ) → +∞ exponentially fast.

Proof. The proof follows by Remark 8.1.9.
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Family of generalized barriers

In this chapter we construct the family of generalized barriers: in the first
section we consider elements of the family made by an arc (a subset of
the level set of the minimum time function u), a segment whose endpoint
is saturated and a saturated spiral (arc case). In the second section we
assume that the arc is made by a single point (segment case). The numerical
evidence shows that the derivative of the family f̄s is positive.

In this chapter we will exhibit an example of a diverging family of generalized barri-
ers. The computations that the construction requires rely on the evaluation of some
algebraic-type functions, in the spirit of what has been done in Theorem 10.0.1 of the
previous section, where we have analyzed concrete examples of admissible barriers and
we have proved that they do not confine the fire. Here, we fix σ̂ = 2.3 and

α̂ = arccos

(
1

σ

)
,

while σ̄ = 2.6144.. is the critical speed and α denotes the corresponding angle. We
consider also Z = ζ([0, S]) ∈ AS an admissible spiral, where (r(ϕ), ϕ) denotes its
parametrization by angle (Remark 8.0.3). For every point ζ(s) of the barrier we can
assign an element of a family of generalized barriers, namely

Definition 11.0.1 (Family of Generalized Barriers). We say that fs ∈ SBV([0,+∞);R),
with s ∈ [0, S], is an element of the family of generalized barriers FZ if:

• f0(ϕ) > 0 for ϕ ∈ [0,+∞);

• fs(ϕ) = r(ϕ) for every ϕ ≤ ϕ̄ whenever ζ(s) = (r(ϕ̄), ϕ̄).

Moreover, we say that it is a diverging family if, calling

f̄s(ϕ) = lim
h→0

fs+h(ϕ)− fs(ϕ)

h
, (11.0.1)

then f̄s(ϕ) ≥ 0 for every ϕ ∈ [0,∞).

We recall that exhibiting an example of a diverging family of generalized barriers
is necessary for the proof of Theorem 4.6.5, whose proof follows by Theorem 4.6.7. In
this section we will prove the following

Theorem 11.0.2. If σ̂ ≤ 2.3 there exists a diverging family {fs} = FZ of generalized
barriers.
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A possible candidate for the family is given following the geometric intuition of
Section 9. We recall that we have proved that, fixed any angle ϕ̄, the best strategy
we can construct for ϕ ∈ [ϕ̄, ϕ̄ + 2π + θ0] where β(ϕ̄) = θ0 (Corollary 9.0.4) is the one
given by the union of a subset of the level set u−1(u(r(ϕ̄), ϕ̄)), a segment tangent to it
whose last point is saturated and then a saturated spiral. In Chapter 10 we have then
proved that the strategy made by a circle, a segment tangent to it and a saturated
spiral, does not confine the fire, which gives precisely the proof that f0, which is the
first element of the family of generalized barriers, is always strictly positive. Even
if perfectly reasonable, this family fs turned out to be non-diverging (see Definition
4.6.6), since f̄s ≤ 0 in a small region. And this inequality was true even for the value

σ̂ = 1+
√
5

2 of Theorem 4.6.4.

The idea to overcome this issue was to change a slightly bit the family suggested
by Section 9. Since Theorem 4.6.7 yields the inequality

r(ϕ) ≥ f0(ϕ), ∀ϕ,

it states in other words that f0 is the best strategy (the one minimizing r(ϕ) for every
ϕ) a player can do: it can decide to put some barrier on a level set, continue as a
segment tangent to the level set and then it can construct a saturated spiral for the
maximum speed available: the critical speed. This strategy is clearly not admissible,
and this is the reason for considering generalized barriers.

The idea here is that at any point ζ(s) = (r(ϕ̄), ϕ̄) of the spiral the strategy that
confines better the fire is the union of a subset of the level set u−1(ζ(s)), a segment
tangent to it and a saturated spiral for the critical speed σ = 2.6144... In some sense it
corresponds to slowing down the fire at the speed σ̂

σ and then having at our disposal the
construction speed σ̂

(
σ
σ̂

)
= σ. We will prove that this new family is diverging, and its

explicit construction will give the proof of Theorem 11.0.2. The heuristic motivations
behind this choice of the family is not satisfactory: it is not clear while this method
stops working with higher values of the speed σ̂. Moreover, even if we strongly believe
that variations of this procedure can be explored in order to increase the value of σ̂
(∼ 2.4− 2.5), the critical case seems to us very difficult to solve with such techniques.

Clearly, a key ingredient of the proof of Theorem 11.0.2 is to show that the first
element f0 of the family is always strictly positive (and actually we will see that it
increases exponentially). This is the content of the first subsection. Then, we need
to construct a generic element of the family FZ . In the second subsection we will
consider generic elements fs of the family made by an arc (a subset of the level set of
the minimum time function u), a segment whose endpoint is saturated and a saturated
spiral for the critical speed σ (arc case). In the third subsection we will assume that
the arc is made by a single point (segment case).

We give an idea of the proof of Theorem 11.0.2: we first construct two elements of
the family fs and fs+δs. We then compute the derivative

f̄s(ϕ) = lim
δs→0

fs+δs(ϕ)− fs(ϕ)

δs
a.e s.

The main observation here is the following: since both fs+δs and fs for ϕ >> ϕ̄ are
saturated spirals, that is they satisfy the RDE (8.1.8) for ᾱ, then by linearity also their
difference satisfies the same RDE. Therefore the study of the derivative f̄s relies on
a careful study of the solution of the same RDE. Numerical computations prove that
f̄s(ϕ) ≥ 0. We will see indeed that the study of this problem relies on the evaluation of
some explicit algebraic-type functions, that we will perform numerically (all the plots
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are available in the Appendix 11.2.2). We use the software Mathematica to simply
verify that all the quantities we are interested in are positive.

11.0.1 Construction of the element f0.

We assume that the fire starts spreading in (0, 0) and that we start constructing our
barrier in (1, 0) (this choice is motivated by the analysis performed in the proof of
Theorem 10.0.1). We give the explicit construction of the element f0. It is the union of
a circle of endpoints P0, P1, a segment tangent to the circle of endpoints P1, P2 where
P2 is saturated for the following functional

Aσ̄,σ̂(P2) = u(P2)−
1

σ
P1P2 −

1

σ
P0P1−

1

σ̂
L(P0) = 0, (11.0.2)

where P0P1 denotes the length of the arc. We put L(P0) = 0 since the point P0 must
be admissible for the Admissibility Functional (8.0.5) for σ̂. If we call ∆ϕ = ∆ϕσ̄,σ̂ the
angle covered by the circle, then Equation (11.0.2) reads as

1

sinα
− 1

σ
cotα− 1

σ
∆ϕ = 0,

in particular
∆ϕ = tanα, (11.0.3)

since σ̄ = 1
cosα . This is precisely the case study of Section 10 (see Equation (10.0.4)),

whose parametrization was denoted by (r0(ϕ), ϕ). The discussion of the previous section
(Theorem 10.0.1, Corollary 10.0.4) is clearly the proof of

Theorem 11.0.3 (Base case). The first element of the family does not confine the fire,
that is f0(ϕ) > 0 for every ϕ ≥ 0 and f0(ϕ) → ∞ exponentially fast.

11.1 Analysis of Perturbations - Arc Case

We fix ϕ0 and we consider an element of the family fζ−1(r(ϕ0,ϕ0)) = fϕ0 defined in the
following way:

• fϕ0(ϕ) = r(ϕ) for every ϕ ≤ ϕ0;

• (fϕ0(ϕ), ϕ) ⊂ {u = u((r(ϕ0), ϕ0)} for ϕ ∈ [ϕ0, ϕ0 +∆ϕ];

• (fϕ0(ϕ), ϕ)) for ϕ ∈ [ϕ0 +∆ϕ = ϕ1, ϕ2] is a segment of endpoints P1, P2 such that
P1 ∈ {u = u((r(ϕ̄), ϕ̄)} and P2 is saturated for the following functional:

u(P2)−
1

σ
|P2 − P1| −

1

σ
P0P1 −

1

σ̂
L(P0) = 0, (11.1.1)

where u is the minimum time function, P1P0 denotes the length of the subset of
the level set and L(P0) denotes the length of the spiral from the starting point
until the point P0. Moreover the segment P1P2 is tangent to {u = u((r(ϕ̄), ϕ̄)}
in P1. Here we use (11.1.1) because in the case P2 ≡ P1 the previous expression
becomes the admissibility functional A (see (8.0.5)) for σ̂.

• r(ϕ) is solution to the following RDE

ṙ(ϕ) = cotαr(ϕ)− r(ϕ− 2π − α)

sinα
,

for ϕ ≥ ϕ2.
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Figure 11.1: Perturbation of the family.

We want to study the new closest spiral obtained by perturbing the initial point P0,
that is

P0 → P0 + seiθ0 = P̃0,

where θ0 is the angle with respect to the direction of fire rays at P0 (see Figure 11.1)
(it is β+ according to the notations of Chapter 8). Here and in the following we will
denote by n(P ) the unit vector in the direction of the fire rays at a point P and t(P )
will denote the tangent at the level sets. This means that we follow the level set for
a positive angle ∆ϕ up to a point P1, and then a segment with direction t(P1), up to
a point P2. The point P2 is saturated (in the sense of equation (11.1.1)) and it holds
∠n(P2), t(P1) = α. More precisely, we have:

• P0 the point on the level set {u = u(P0)} from which we put an amount of barrier
on the same level set. The point O0 ∈ Z is the point of the spiral from which the
fire ray towards P0 starts.

• P1 is the point on the same level set as P0 such that from P1 a segment is
constructed, that is u(P0) = u(P1). The point O1 ∈ Z is the point of the spiral
from which the fire ray towards P1 starts.

• ∆ϕ is the angle covered by the arc P0P1.

• P2 is the saturated point ((11.1.1)) from which a saturated spiral is constructed.
O2 ∈ Z is the point of the spiral from which the fire ray towards P2 starts.

• θ0 ∈ [0, π2 ] is the angle that the barrier forms with the fire ray γ̄P0 ;

• we call n(P1) =
∇u(P1)
|∇u(P1)| , n(P2) =

∇u(P2)
|∇u(P2)| , t(P1) =

P2−P1
|P2−P1| ;
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• s = P0P̃0, with s << 1, and

h = s cos θ0. (11.1.2)

• We will call δPi = P̃i − Pi, i = 0, 1, 2.

• Call ϕ0 the angle corresponding to the point P0 and ϕ1 the angle corresponding
to P1, that is ∆ϕ = ϕ1 − ϕ0.

Remark 11.1.1. We remark that the starting point on the spiral of the rays for Pi

and P̃i is the same: indeed, if the ray γ̄Pi is not tangent to the curve, it is clearly true.
If it is tangent, then if PiP̃i = O(δs), if we call the two starting points Oi, Õi then
OiÕi = o(δs), therefore we can assume that the starting point is the same.

Here the computations are performed with the parameter h instead of the parameter
s of the family, since it is the difference in time between the points P̃0, P0, for which
the computations are more easier to perform. In the following we will reconvert all the
formulas in order to deal directly with f̄s. We have the following relations:

Relations at point P0:

u(P̃0) = u(P0) + h, (11.1.3)

L(P̃0) = L(P0) +
h

cos θ0
, (11.1.4)

where L(P ) is the length of the spiral up to the point P . The variation of the angle ϕ0
reads as

r(P0)δϕ0 = h tan θ0, (11.1.5)

therefore the position of the new point P̃0 is

P̃0 = hn(P0) + r(P0)δϕ0t(P1) + o(h). (11.1.6)

Relations at point P1: the point P1 is on the same level set as P0.

u(P̃1) = u(P̃0) = u(P0) + h = u(P1) + h.

The position of the perturbed point as

P̃1 = P1 + hn(P1) + r(P1)δϕ1t(P1) + o(h).

We observe that the slope of the segment P̃1P̃2 is ei(ϕ1+δϕ1+
π
2
). Indeed here we cannot

a priori assume that the fire rays arrive parallel at the points P1, P̃1.

Relations at point P2: In the perturbed point P̃2 a new saturated spiral starts.
The slope of the segment arriving at P̃2 is ei(ϕ1+δϕ1+

π
2
), and the slope of the starting

spiral is ei(ϕ2+δϕ2+α). Therefore, since we require them to be parallel, the condition on
the angles reads as

ϕ1 + δϕ1 +
π

2
= ϕ2 + δϕ2 + α.

Since we know that

ϕ1 +
π

2
= ϕ2 + α,

the condition on the variation of angles becomes

δϕ1 = δϕ2.
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The difference in slope between the two vectors

P̃2 − P̃1

|P̃2 − P̃1|
and

P2 − P1

|P2 − P1|

is δϕ1 = δϕ2, therefore the position of the perturbed point P̃2 can be computed as

P̃2 = P2+(h−|P2−P1|δϕ1)n(P1)+

(
(h− |P2 − P1|δϕ1) cotα+

fϕ0(P2)

sinα
δϕ1

)
t(P1)+o(h).

We use the saturation condition, i.e. P̃2 is a saturated point, knowing P2 is saturated.
In particular, we have:

Saturation: P2 is a saturated point:

u(O2) +O2P2 = cosαP1P2 + cosαP0P1 + cos α̂L(P0); (11.1.7)

We write the same equation for the perturbed point.

Saturation perturbed: P̃2 is a saturated point:

u(O2) +O2P̃2 = cosαP̃1P̃2 + cosαP0P1 + cos α̂L(P0) + cos α̂s. (11.1.8)

We have that (recall r is the radius of the original spiral):

P̃1P̃0 =

ˆ ϕ1+δϕ1

ϕ0+δϕ0

(r(η) + h)dη

= P0P1 + h∆ϕ−
ˆ ϕ0+δϕ0

ϕ0

(r(η) + h)dη +

ˆ ϕ1+δϕ1

ϕ1

(r(η) + h)dη

= P0P1 + h∆ϕ− h tan θ0 + r(P1)δϕ1 + o(h),

where we have used (11.1.5). Moreover,

P̃1P̃2 = P2P1 − r(P1)δϕ1 + (h− |P2 − P1|δϕ1) cotα+
fϕ0(P2)

sinα
δϕ1 + o(h),

and

P̃2O2 = P2O2 +
h− |P2 − P1|δϕ1

sinα
+ fϕ0(P2)δϕ1 cotα+ o(h).

Subtracting equation (11.1.7) to equation (11.1.8) we get

h− |P2 − P1|δϕ1
sinα

+ fϕ0(P2)δϕ1 cotα−

cosα (h∆ϕ− h tan θ0 + r(P1)δϕ1)+

− cosα

(
−r(P1)δϕ1 + (h− |P2 − P1|δϕ1) cotα+

fϕ0(P2)

sinα
δϕ1

)
− cos α̂

h

cos θ0
= 0,

that is, expliciting δϕ1 we obtain

δϕ1 =
h

|P2 − P1|

(
1− cotα∆ϕ+ cotα tan θ0 −

cos α̂

sinα

1

cos θ0

)
(11.1.9)

=
s

|P2 − P1|

(
cos θ0 − cotα∆ϕ cos θ0 + cotα sin θ0 −

cos α̂

sinα

)
. (11.1.10)
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In particular, the variation of the angle of the level set arc is then

δ∆ϕ = ∆ϕ+ δϕ1 − δϕ0

= ∆ϕ+
h

|P2 − P1|

(
1− cotα∆ϕ+ cotα tan θ0 −

cos α̂

sinα

1

cos θ0
− |P2 − P1|

r(P0)
tan θ0

)
.

Call P (ϕ) any point on the segment, with P (ϕ1) = P1 and P (ϕ2) = P2. Then we
recover that, for any ϕ, ϕ+ t = ϕ1 +

π
2 .

P̃ (ϕ) = P (ϕ) + (h− |P (ϕ)− P1|δϕ1)n(P1)

+

(
(h− |P (ϕ)− P1|δϕ1) tan(ϕ− ϕ1) +

fϕ0(P (ϕ))

cos(ϕ− ϕ1)
δϕ1

)
t(P1),

and recall that

n(P (ϕ)) = cos(ϕ− ϕ1)n(P1) + sin(ϕ− ϕ1)t(P1). (11.1.11)

Finally, if we call f̃ϕ0 the element of the family of generalized barrier which is a per-
turbation of fϕ0 we find that: f̃ϕ0 − fϕ0(ϕ) = δr(ϕ) with

δr(ϕ) ∼



h
δϕ0

(ϕ− ϕ0) ϕ0 ≤ ϕ < ϕ0 + δϕ0,

h ϕ0 + δϕ0 ≤ ϕ < ϕ1 + δϕ1,

h−|P (ϕ)−P1|δϕ1

cos(ϕ−ϕ1)
ϕ1 + δϕ1 ≤ ϕ < ϕ2 + δϕ2.

The derivative in the parameter h reads as

ḡϕ0(ϕ) =


1 ϕ0 ≤ ϕ < ϕ0 +∆ϕ = ϕ1,

1− |P (ϕ)−P1|
|P2−P1|

(
1−cotα∆ϕ+cotα tan θ0− cos α̂

sinα
1

cos θ0

)
cos(ϕ−ϕ1)

, ϕ1 ≤ ϕ < ϕ2 = ϕ1 +
π
2 − α.

(11.1.12)
In particular to get f̄ϕ0 we need simply to multiply cos θ0ḡϕ0(ϕ).

11.1.1 Analysis of the initial data

In this subsection we analyze the initial data obtained in the previous section. We
found that

ḡϕ0(ϕ) =


1 ϕ0 ≤ ϕ < ϕ0 +∆ϕ = ϕ1,

1− |P (ϕ)−P1|
|P2−P1|

(1−cotα∆ϕ+cotα tan θ0− cos α̂
sinα

1
cos θ0

)

cos(ϕ−ϕ1)
, ϕ1 ≤ ϕ < ϕ2 = ϕ1 +

π
2 − α.

(11.1.13)
Since after the point P2 it is a saturated spiral, by linearity we can compute the RDE
that the derivative ḡθ0 satisfies. In this subsection we study precisely the RDE satisfied
by the initial data in the arc case.

It holds:
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• In the interval ϕ ∈ [ϕ1 +
π
2 − α, ϕ1 + 2π + θ0) it holds

dḡϕ0(ϕ)

dϕ
= ḡϕ0(ϕ) cotα.

In particular the solution reads as

ḡϕ0(ϕ) = ḡϕ0

(
∆ϕ+ ϕ0 +

π

2
− α

)
ecotα(ϕ−(∆ϕ+ϕ0+

π
2
−α)).

We remark that ḡϕ0

(
∆ϕ+ ϕ0 +

π
2 − α

)
can be easily computed: indeed it is

ḡϕ0

(
∆ϕ+ ϕ0 +

π

2
− α

)
=

cotα

sinα
(∆ϕ− tan θ0) +

cos α̂

(sinα)2
1

cos θ0
, (11.1.14)

in particular there is no need for the computation of the formula |P (ϕ)−P1| here.

• In the point ϕ = ϕ0 + 2π + θ0 there is a downward jump, that is

ḡϕ0(ϕ0 + 2π + θ0)− ḡϕ0(ϕ0 + 2π + θ0−) = − 1

cos θ0
.

• In the interval ϕ ∈ [ϕ0 + 2π + θ0, ϕ0 + 2π + π
2 ) it holds

dḡϕ0(ϕ)

dϕ
= ḡϕ0(ϕ) cotα.

In particular the solution reads as

ḡϕ0(ϕ) =

(
ḡϕ0

(
∆ϕ+ ϕ0 +

π

2
− α

)
ecotα(2π+θ0−∆ϕ−π

2
+α) − 1

cos θ0

)
ecotα(ϕ−(ϕ0+2π+θ0)).

• In the point ϕ = ϕ0 + 2π + π
2 there is an upward jump, that is

ḡϕ0(ϕ0 + 2π +
π

2
)− ḡϕ0(ϕ0 + 2π +

π

2
−) = tan θ0. (11.1.15)

Indeed

fϕ0

(
2π +

π

2
+ δϕ0

)
= fϕ0

(
2π +

π

2

)
+
h tan θ0
r(P0)

(
fϕ0

(
2π +

π

2

)
cotα− r(P0)

)
+o(h),

while

f̃ϕ0

(
2π +

π

2
+ δϕ0

)
= f̃ϕ0

(
2π +

π

2

)(
1 +

h tan θ0
r(P0)

cotα

)
+ o(h).

• In the interval ϕ ∈ [ϕ0 + 2π + π
2 , ϕ0 + 2π + π

2 +∆ϕ) it holds

dḡϕ0(ϕ)

dϕ
= ḡϕ0(ϕ) cotα− 1.

In particular the solution reads as

ḡϕ0(ϕ) =

[(
ḡϕ0

(
∆ϕ+ ϕ0 +

π

2
− α

)
ecotα(2π+θ0−∆ϕ−π

2
+α) − 1

cos θ0

)
ecotα(

π
2
−θ0) + tan θ0

]
·

· ecotα(ϕ−(ϕ0−2π−π
2
)).
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• In the point ϕ = ϕ0 + 2π + π
2 +∆ϕ there is a downward jump, that is

ḡϕ0

(
ϕ0 + 2π +

π

2
+ ∆ϕ

)
− ḡϕ0

(
ϕ0 + 2π +

π

2
+ ∆ϕ−

)
= − cot2 α

(
∆ϕ+

(
1− sin θ0
cos θ0

))
.

To prove this quantity, observe that

fϕ0

(
∆ϕ+

π

2
+ 2π + δϕ1

)
= fϕ0

(
∆ϕ+

π

2
+ 2π

)
− |P2 − P1|+

+
(
fϕ0

(
∆ϕ+

π

2
+ 2π

)
− |P2 − P1|

)
) cotαδϕ1 −

r(P2)

sinα
δϕ1,

while

f̃ϕ0

(
∆ϕ+

π

2
+ 2π + δϕ1

)
= f̃ϕ0

(
∆ϕ+

π

2
+ 2π

)
− |P̃2 − P̃1|+

+
(
f̃ϕ0

(
∆ϕ+

π

2
+ 2π

)
− |P̃2 − P̃1|

)
cotαδϕ1 − r̃(P1)δϕ1.

• For ϕ ≥ ϕ0 +∆ϕ+ 2π + π
2 the function ḡϕ0 satisfies:

dḡϕ0

dθ
= cotαḡϕ0(θ)−

ḡϕ0(ϕ− 2π − α)

sinα
.

We compute then the same quantities for f̄ϕ0 = cos θ0ḡϕ0 (the derivative with respect
to the length parameter s).

Optimizing with respect to ∆ϕ.

Before starting with the computations of the solution we optimize w.r.t. ∆ϕ exploiting
the linearity of the problem, finding out that the worst case to analyze is the one of
∆ϕ = 0 (which we will see correspond to the case of the segment). We compute the
derivative of ḡϕ0 = ∂ḡϕ0 with respect to ∆ϕ. We have the following relations

• The derivative of ḡϕ0 in the point ϕ1 +∆ϕ+ π
2 − α is (see (11.1.14))

∂ḡϕ0

(
ϕ1 +∆ϕ+

π

2
− α

)
=

cotα

sinα
.

• For ϕ ∈ [∆ϕ+ π
2 − α, 2π + π

2 +∆ϕ) it satisfies the equation

d

dϕ
∂ḡϕ0 = cotα∂ḡϕ0 .

• In ϕ = 2π + π
2 +∆ϕ there is a downward jump, that is

∂(ḡϕ0)∆ϕ(2π +
π

2
+ ∆ϕ)− ∂(ḡϕ0)∆ϕ(2π +

π

2
+ ∆ϕ−) = − cot2 α.

• For ϕ ≥ 2π +∆ϕ+ π
2 it satisfies

d

dϕ
∂ḡϕ0 = cotα∂ḡϕ0 −

∂ḡϕ0(ϕ− 2π − α)

sinα
.
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To prove some positivity of the derivative we use observation in Subsection 8.1.5. First
we compute the solution for ϕ ∈ [∆ϕ+ π

2 −α+(2π+α), 2π+ π
2 +∆ϕ+(2π+α)): (see

Lemma 10.0.2) it is(
cotα

sinα
ecotα(2π+α) − cot2 α− cotα

sinα2

(
ϕ− (∆ϕ+

π

2
+ 2π)

))
ecotα(ϕ−(∆ϕ+π

2
+2π)).

We recall that the following change of variable

ρ(t) = r

(
(2π + α)

log λ
t

)
e
−c

(2π+α)
log λ

t
,

with c solution of (8.1.18), satisfies

ρ̇(t) = ρ(t)− ρ(t− log λ).

Here λ = e (for σ = 2.6144) and c = 0.27995. We need to compute therefore

d

dϕ
∂ḡϕ0e

−cϕ.

An easy computation shows that it is

1

(2π + α)

(
cotα

sinα
ecotα(2π+α) − cot2 α− cotα

sinα2
(ϕ−∆ϕ− π

2
− 2π)

)
− cotα

sinα2
.

In particular for determining its sign we have to study the function (Lemma 10.0.3)

− cotα

sinα2

(
2π + α− ϕ+∆ϕ+

π

2
+ 2π

)
+

cotα

sinα
ecotα(2π+α) − cotα2

≥ − cotα

sinα2
(2π + α) +

cotα

sinα
ecotα(2π+α) − cotα2 ≥ 6.

This proves that it is an increasing function in ∆ϕ, that is ∂ḡϕ0 ≥ 0, therefore the worst
case scenario is represented by ∆ϕ = 0. The previous computations are the proof of
the following

Proposition 11.1.2. The worst possible scenario is ∆ϕ = 0, that is the study of the
segment case.

11.1.2 Diverging family: arc case

Here we study the case ∆ϕ = 0. The numerical plots of the results presented here are
in the Appendix. Even if all the formulas for f̄s are explicit, the computation of the
values of f̄s is onerous, therefore we use the software Mathematica in order to provide
them. See Section 11.3 in the appendix. We have the following:

Theorem 11.1.3. Let σ ≤ 2.3 and let fϕ0 be an element of the family made by a piece
of arc, a segment and a saturated spiral, with the constraint that if the arc is a single
point P1, then γ̄P1 is orthogonal to the segment P1P2. Then f̄ϕ0 ≥ 0.

Proof. By the previous discussion we can assume ∆ϕ = 0. We write the solution:

• We call

f̄ϕ0(ϕ0 +
π

2
− α) = κ1(θ0) =

cos α̂− cosα sin θ0
sinα2

;



11.2. ANALYSIS OF PERTURBATIONS - SEGMENT CASE 163

• then

f̄ϕ0(ϕ0 + 2π + θ0) = κ2(θ0) = κ1(θ0)e
cotα(2π+θ0−π

2
+α) − 1;

•
f̄ϕ0(ϕ0 + 2π + θ0) = κ3(θ0) = κ2e

cotα(π
2
−θ0) + sin θ0 − cotα2(1− sin θ0);

• finally for ϕ ∈ [ϕ0 + 2π + π
2 , ϕ0 + 4π + α+ θ0] the solution reads as

f̄ϕ0(ϕ) =

(
κ3(θ0)−

κ1(θ0)

sinα
(ϕ− ϕ0 − 2π − π

2
)

)
ecotα(ϕ−ϕ0−2π−π

2
)

• call

κ4(θ0) = f̄ϕ0(ϕ0 + 4π + α+ θ0);

• for ϕ ∈ [ϕ0 + 4π + α+ θ0, ϕ0 + 4π + α+ π
2 ] the solution reads as

f̄ϕ0(ϕ) =

(
κ4(θ0)−

κ2(θ0)

sinα
(ϕ− ϕ0 − 4π − θ0 − α)

)
ecotα(ϕ−ϕ0−4π−θ0−α).

In order to use the ideas of Subsection 8.1.5 we consider again

ρ(t) = r((2π + α)t)e−c(2π+α)t.

To prove that the derivative is positive one has to evaluate the two quantities (the
procedure is precisely the same of Subsection 11.1.1: when computing d

dϕr(ϕ)e
−cϕ one

gets:

• for ϕ ∈ [ϕ0 + 2π + π
2 , ϕ0 + 4π + θ0 + α] it is

− κ1
sinα

+
1

2π + α

(
κ3 −

κ1
sinα

(ϕ− ϕ0 − 2π − π

2
)
)
.

• For ϕ ∈ [ϕ0 + 4π + θ0 + α, ϕ0 + 4π + π
2 + α] it is

− κ2
sinα

+
1

2π + α

(
κ4 −

κ2
sinα

(ϕ− ϕ0 − 4π − θ0 − α)
)
.

Numerical computations (that can be found in the appendix) shows that κi ≥ 0
for i = 1, 2, 3, 4. (Analytically one could show that κi are all increasing functions).
In particular to have that they are positive it is enough to show that

− κ1
sinα

(
4π + θ0 + 2α− π

2

)
+ κ3 ≥ 0

and

− κ2
sinα

(
2π + α+

π

2
− θ0

)
+ κ4 ≥ 0.

Again, this is performed via numerical computations (see Appendix, Section 11.3
for the plots).
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Figure 11.2: Analysis of perturbations for the segment case.

11.2 Analysis of Perturbations - Segment Case

The analysis of this section refers to Figure 11.2. In this case the point P0 ≡ P1. Call
π − θ̄ = ∠O0P1P2. The analysis in Chapter 9 implies that there are no convex curves
with an angle θ0 > θ̄: indeed any admissible curve will cross the segment. Since the
last point is saturated, the starting angle must satisfy some bounds, that is:

α < θ̄.

Here again we will perform the computations for

h =
s sin(θ̄ − θ0)

sin θ̄
.

We have that the time difference for reaching the point P̃1 is:

δt = h.

Therefore (see Figure 11.2)

r(P1)δϕ0 = h
sin θ0 sin θ̄

sin(θ̄ − θ0)
, (11.2.1)

and the length is

|P̃1P1| = h
sin θ̄

sin(θ̄ − θ0)
. (11.2.2)

Call n(P1) the direction orthogonal to the segment P1P2 and t(P1) the tangent such
that (t(P1),n(P1)) = (−e1, e2). We have that

P̃1 = P1 + h sin θ̄n(P1) + h sin θ̄ cot(θ̄ − θ0)t(P1). (11.2.3)

Point P2. The new angle is ∠O0P̃1P̃2 = π − θ̄ − δθ̄ satisfying

ϕ0 + θ̄ + δθ̄ = ϕ2 + δϕ2 + α (11.2.4)
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but since ϕ0 + θ̄ = ϕ2 + α we have that δθ̄ = δϕ2. We find that

P̃2 = P2+
(
h sin θ̄ − |P2 − P1|δϕ1

)
n(P1)+

((
h sin θ̄ − |P2 − P1|δθ̄

)
cotα+

fϕ0(P2)δθ̄

sinα

)
t(P1).

(11.2.5)
In particular, the variation of the length of the segment P1P2 is as follows:

δ|P2 − P1| = h(sin θ̄ − |P2 − P1|δθ̄) cotα− h sin θ̄ cot(θ̄ − θ0) +
fϕ0(P2)δϕ2

sinα
. (11.2.6)

The time difference δt = ũ(P̃2)− u(P2) is

δt = fϕ0(P2)δθ̄ cotα+ (h sin θ̄ − |P2 − P1|δθ̄)
1

sinα
.

Finally the admissibility condition reads as(
h sin θ̄ − |P2 − P1|δθ̄

) 1

sinα
+ fϕ0(P2)δθ̄ cotα

− cosα

((
h sin θ̄ − |P2 − P1|δθ̄

)
cotα+

fϕ0(P2)δθ̄

sinα
− h sin θ̄ cot(θ̄ − θ0)

)
− cos α̂h

sin(θ̄)

sin(θ̄ − θ0)

=
(
h sin θ̄ − |P2 − P1|δθ̄

)
sinα+ cosα sin θ̄ cot(θ̄ − θ0)− cos α̂

sin θ̄

sin(θ̄ − θ0)
= 0.

This leads to

δθ̄ =
h

|P2 − P1|

(
sin θ̄ + cotα sin θ̄ cot(θ̄ − θ0)−

cos α̂

sinα

sin θ̄

sin(θ̄ − θ0)

)
Compare with the previous case with θ̄ = π

2 and ∆ϕ = 0. In this case the initial data
(where we are deriving w.r.t. the parameter h) is the following:

ḡϕ0(ϕ) =
sin θ̄

sin(θ̄ − ϕ)
−

|P (ϕ)− P1| δθ̄h
sin(θ̄ − ϕ)

=
1

sin(θ̄ − ϕ)

(
sin θ̄ − |P (ϕ)− P1|

|P2 − P1|

(
sin θ̄ + cotα sin θ̄ cot(θ̄ − θ0)−

cos α̂

sinα

sin θ̄

sin(θ̄ − θ0)

))
.

As before we are interested in the final point, that is for ϕ = θ̄ − α. We find that

f̄ϕ0(θ̄ − α) =

(
cos α̂− cosα cos(θ̄ − θ0)

sinα2

)
sin θ̄

sin(θ̄ − θ0)
, (11.2.7)

(compare with the computations for the segment case, that is ∆ϕ = 0 and θ̄ = π
2 .

11.2.1 RDE satisfied by the initial data

In this subsection we study the RDE satisfied by the initial data. It holds:

• In the interval ϕ ∈ [ϕ0 + θ̄ − α, ϕ0 + 2π + θ0) it holds

df̄ϕ0(ϕ)

dϕ
= f̄ϕ0(ϕ) cotα.

In particular the solution

ḡϕ0(ϕ) = ḡϕ0

(
ϕ0 + θ̄ − α

)
ecotα(ϕ−(ϕ0+θ̄−α)).

where ḡϕ0

(
ϕ0 + θ̄ − α

)
is given by the formula (11.2.7).
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• In the point ϕ = ϕ0 + 2π + θ0 there is a downward jump, that is

ḡϕ0(ϕ0 + 2π + θ0)− ḡϕ0(ϕ0 + 2π + θ0−) = − sin θ̄

sin(θ̄ − θ0)
, (11.2.8)

which is computed by subtracting the length |P1P̃1|
h .

• In the interval ϕ ∈ [ϕ0 + 2π + θ0, ϕ0 + 2π + θ̄) it holds

dḡϕ0(ϕ)

dϕ
= ḡϕ0(ϕ) cotα.

• In the point ϕ = ϕ0 + 2π + θ̄ the jump is computed as follows:

fϕ0(ϕ0+2π+θ̄+δθ̄) = fϕ0(2π+θ̄+ϕ0)+δθ̄fϕ0(2π+θ̄+ϕ0) cotα−
fϕ0(P2)δθ̄

sinα
−|P2−P1|;

f̃ϕ0(ϕ0 + 2π + θ̄ + δθ̄) = f̃ϕ0(2π + θ̄ + ϕ0) + δθ̄f̃ϕ0(2π + θ̄ + ϕ0) cotα− |P̃2 − P̃1|;

therefore, using (11.2.6), we get

ḡϕ0(ϕ0 + 2π + θ̄)− ḡϕ0(ϕ0 + 2π + θ̄−) =

= −δ|P2 − P1|+
fϕ0(P2)

sinα
δθ̄

=
cot(θ̄ − θ0) sin θ̄

sin2 α
− cot2 α

sin θ̄

sin(θ̄ − θ0)
.

• For ϕ ≥ ϕ0 + 2π + θ̄ the function ḡϕ0 satisfies:

dḡϕ0

dθ
= cotαḡϕ0(θ)−

ḡϕ0(ϕ− 2π − α)

sinα
.

We have then that f̄ϕ0 = sin(θ̄−θ0)

sin θ̄
ḡϕ0 . Then we have that

• In the point ϕ = ϕ0 + 2π + θ0 the downward jump is

f̄ϕ0(ϕ0 + 2π + θ0)− f̄ϕ0(ϕ0 + 2π + θ0−) = −1; (11.2.9)

• In the point ϕ = ϕ0 + 2π + θ̄ the jump is

f̄ϕ0(ϕ0 + 2π + θ̄)− f̄ϕ0(ϕ0 + 2π + θ̄−) =
cos(θ̄ − θ0)

sin2 α
− cot2 α.

11.2.2 Diverging family: segment case

In this subsection we finally compute the solution as we previously did in the arc case.
The numerical plots can be found in the Appendix Section 11.4

Theorem 11.2.1. Let σ ≤ 2.3 and let fϕ0 be an element of the family made by a
segment and a saturated spiral. Then f̄ϕ0 ≥ 0.

Proof. Without loss of generality we can assume ϕ0 = 0. We compute the solution f̄ϕ0 .
Call

•

f̄ϕ0

(
θ̄ − α

)
= κ1(θ̄, θ0) =

cos α̂− cosα cos(θ̄ − θ0)

sinα2
.
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• For ϕ ∈ [θ̄ − α, 2π + θ0) we have that

f̄ϕ0(ϕ) = κ1(θ̄, θ0)e
ϕ−(θ̄−α).

• For ϕ ∈ [2π + θ0, 2π + θ̄)

f̄ϕ0(ϕ) =
(
κ1(θ̄, θ0)e

cotα(2π+θ0−θ̄+α) − 1
)
ecotα(ϕ−2π−θ0) = κ2(θ̄, θ0)e

cotα(ϕ−2π−θ0).

(11.2.10)

• Then we have

f̄ϕ0(2π + θ̄) = κ2(θ̄, θ0)e
cotα(θ̄−θ0) +

cos(θ̄ − θ0)

sinα2
− cot2 α = κ3(θ̄, θ0).

Finally, in the interval where it is continuous we have:

• So for ϕ ∈ [2π + θ̄, 4π + θ0 + α)

f̄ϕ0(ϕ) =

(
κ3(θ̄, θ0)−

κ1(θ̄, θ0)

sinα
(ϕ− 2π − θ̄)

)
ecotα(ϕ−2π−θ̄). (11.2.11)

• Call then
κ4(θ̄, θ0) = f̄ϕ0(4π + θ0 + α);

• So that for ϕ ∈ [4π + θ0 + α, 4π + θ̄ + α] the solution reads as

f̄ϕ0(ϕ) =

(
κ4(θ̄, θ0)−

κ2(θ̄, θ0)

sinα
(ϕ− 4π − θ0 − α)

)
ecotα(ϕ−4π−θ0−α), (11.2.12)

and so on. Again, numerical computations shows that κi ≥ 0 for i = 1, 2, 3, 4. The
proof proceeds exactly in the same way as the one of the arc case (see Theorem
11.1.3). Indeed it is enough to show that the two following quantities are positive
(Lemma 10.0.3) (see Appendix 11.2.2, Section 11.4).

− κ1
sinα

(
4π + θ0 + 2α− θ̄

)
+ κ3 ≥ 0

and
− κ2
sinα

(
2π + α+ θ̄ − θ0

)
+ κ4 ≥ 0.

Remark 11.2.2. It is compatible with the computations done for the arc case in the
case ∆ϕ = 0 and θ̄ = π

2 .

Remark 11.2.3. It would be interesting to investigate the optimization w.r.t. θ̄ and
θ0.





Appendix Fire

Here the code provides the evaluation of the relevant quantities related to the function
f̄s: we do not ask the program to solve any PDE or ODE. The evaluation of these
functions are hard to perform by hand, and even if we do a careful analysis (like the
study of minima and maxima of the functions), at some point one needs to use a
calculator.

11.3 Numerical Computations for the Arc Case

In this section we present the numerical computations for the arc case (see Chapter 11,
Section 11.1). The orange line represents y = 0

0.5 1.0 1.5

0.1

0.2

0.3

0.4

0.5

k1

Figure 11.3: Computations for the arc case: κ1.
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Figure 11.4: Computations for the arc case: κ2.

0.5 1.0 1.5

2

4

6

8

k3

Figure 11.5: Computations for the arc case: κ3.
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Figure 11.6: Computations for the arc case: κ4.
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7π
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Figure 11.7: Computations for the arc case: κ3 − κ1
sinα

(
2α+ θ0 + 7π

2

)
.
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Figure 11.8: Computations for the arc case: κ4 − κ2
sinα

(
α− θ0 + 5π

2

)
.
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11.4 Numerical Computations for the Segment Case

In this section we present the numerical computations for the segment case (see Chapter
11, Section 11.2). The blue plane corresponds to z = 0.

Figure 11.9: Computations for the segment case: κ1.

Figure 11.10: Computations for the segment case: κ2.
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Figure 11.11: Computations for the segment case: κ3.

Figure 11.12: Computations for the segment case: κ4.
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Figure 11.13: Computations for the segment case: κ3 − κ1
sinα

(
4π + 2α+ θ0 − θ̄

)
.

Figure 11.14: Computations for the segment case: κ4 − κ2
sinα

(
2π + α− θ0 + θ̄

)
.
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insegnato. Mi ha dato l’opportunità di entrare nel suo mondo matematico e farmi
vedere qualche volta quello che lui vede con tanta chiarezza, oltre ad avermi dato la
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[27] Elgindi T. M., Zlatoš A. “Universal Mixers in All Dimensions.” In: Advances in
Mathematics 356 (2019).

[28] Falconer, K.J. The geometry of fractal sets. Cambridge University Press, 1986.

[29] Hale, J.K., Verduyn Lunel, S.M. Introduction to functional differential equations.
Springer-Verlag, 1993.

[30] Halmos P. R. “Approximation theories for measure preserving transformation.”
In: Transactions of the A. M. S. 55 (1944), pp. 1–18.

[31] Halmos P. R. “In General a Measure Preserving Transformation is Mixing.” In:
Annals of Mathematics 45.4 (1944), pp. 786–792. url: https://www.jstor.
org/stable/1969304.

[32] Halmos P. R. Lectures in Ergodic Theory. AMS Chelsea Publishing, 1956.

[33] Katok A., Stepin A. “Metric properties of measure-preserving homeomorphisms.”
In: Russ. Math. Surv. 25.191 (1970).

[34] Klein, R., Langetepe E., Levcopoulos C., Lingas A., Schwarzwald B. “On a Fire-
fighter’s problem.” In: Int. J. Foundations of Computer Science 30.02 (2019),
pp. 231–246.

[35] Srivastava S. M. A course on Borel sets.Graduate texts in Mathematics. Springer,
1989.
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