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Abstract

In this thesis, we explore a scenario in which local Lorentz invariance is
broken at high energies. This approach is primarily motivated by the
pursuit of a quantum gravity theory, specifically Hořava gravity, where
Lorentz violation is introduced so to achieve power-counting renormal-
izability.

In laboratory settings, Lorentz invariance violations intersect with grav-
ity through analogue models, where the breakdown of Lorentz symmetry
is a common feature of quantum perturbations within analogue black
hole geometries.

Analogue experiments have successfully measured Hawking radiation,
which is anticipated and deserved to remain robust despite the break-
down of Lorentz symmetry.

We begin by revisiting the analogue framework, demonstrating the re-
silience of the Hawking effect in the presence of Lorentz symmetry break-
ing.

Subsequently, we apply these insights to Lorentz-violating gravity mod-
els, reexamining the concept of black holes and introducing the notion of
the universal horizon, a Lorentz-breaking counterpart to the traditional
Killing horizon. We investigate how the evaporation of a Hořava gravity
black hole reflects an intriguing interplay between universal horizon and
the relativistic Killing horizon, highlighting a deeper connection between
thermodynamics and gravity that goes beyond Lorentz invariance.

This relationship is further explored in flat spacetimes by investigating
the Unruh effect, where we employ a novel construction of the Rindler
wedge to demonstrate that the duality between acceleration and gravity
remains intact.

Finally, we focus on the ultraviolet aspects of Hořava gravity, assessing
its potential as a viable quantum gravity candidate and reviewing the
current status in essessing its perturbative renormalizability.

The overall picture that emerges is coherent: on one hand, the proposed
quantum gravity theory offers a compelling theoretical appeal due to its
renormalizability. On the other, the resulting phenomenology provides
intriguing insights into the enduring connection between thermality and
gravity.
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Notations and conventions

In this thesis we will use the following conventions, where not specified differently:
we will adopt the “mostly plus” conventions for the signature of the metric, namely
diag(−,+,+,+). We will use the conventions of [1] for the indices, namely the latin
letters {a, b, c, . . . } will run from 0 to 3.

In Chapter 7, and solely for that, we will use the “mostly minus” signature
(diag(+,−,−,−)), often used in high energy physics and the latin indices {i, j, k, l, . . . }
will run from 1 to 3. In the whole treatment we will adopt the so-called natural
units ℏ = c = G = kB = 1.
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Chapter 1

Introduction

The search for Quantum Gravity (QG) has been – and still is – one of the main goals
of contemporary physics. Although General Relativity (GR), our current description
of gravity, has passed an incredible number of experimental tests [2, 3], a quantum
description of gravity arises as a strong theoretical necessity. Interestingly, it turns
out that the theory predicts its own limits that in their mathematical form are the
so-called singularity theorems [1, 4–6].

The (unavoidable) presence of singularities – such as those encountered in black
holes or cosmology – strongly suggests that we need to look beyond a classical
formulation and find a way to incorporate the quantum world into the game.

Unfortunately, the same tools that have been used to unify the other three funda-
mental forces into the Standard Model of particle physics cannot be directly applied
to GR in order to render it a quantum theory. Indeed, within a Quantum Field The-
ory (QFT) perspective, GR represents a non-renormalizable theory [7, 8], therefore
at most it has to be taken as an Effetive Field Theory (EFT) predictive only up to
some energy scale.

Experimentally, the main issue in trying to investigate the quantum aspects of
gravity, is encoded in the separation of energy scales that exists between particle
physics and the gravitational world. GR is intrinsically endowed with an energy scale
– the Planck energy Ep ∼ 1019GeV – at which one expects quantum gravitational
effects to become important. This energy scale lies way above any other scale at
which particle physics experiments are currently performed [9]. Therefore, trying to
find a hint for QG by lab-based experiments is an incredibly hard task.

On the other hand, the huge gap separating Standard Model and Planck scales
suggests a broad range of energies where gravity can be still considered a classical
entity while matter follows quantum rules. Since classical gravity can be interpreted
as the spacetime geometry, that tells matter how to move, in this regime it is possible
to examine the behaviour of quantum fields on a curved background. Probing QFT
in curved spacetime has led to unexpected and fascinating results regarding black
holes and cosmology, pointing out the role that different observers play in defining
the local QFT. Let us dig this topic a bit more.
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Quantum field theory in curved spacetime

Among the aforementioned results the discovery that black holes radiate as black
bodies shines [10, 11]: Hawking found that these objects are characterized by a
temperature TH and entropy SBH given by

kBTH =
κHℏ
2πc

, SBH =
AH

4l2p
,

where kB is the Boltzmann’s constant, κH is the surface gravity of the horizon
and AH is its area, while lp =

√
ℏGc−3 is the Planck length. This result shows

that black holes are in fact thermodynamical systems. The so-called “Black Hole
Thermodynamics” – which describes the mechanics of a black hole in a complete
analogy with the 4 laws of classical thermodynamics – is an anchor for the QG
investigation.

Moreover, Hawking’s calculations demonstrate that when one attempts to for-
mulate quantum field theory (QFT) within the context of a classical black hole
geometry, these black holes must inevitably radiate, leading to their gradual evapo-
ration. This outcome aligns with predictions made by standard thermodynamic prin-
ciples, thereby resolving a potential classical paradox. Specifically, a non-radiating
black hole immersed in a thermal bath at a lower temperature would paradoxi-
cally decrease the total entropy of the system simply by absorbing energy from its
surroundings [12].

Immediately after Hawking’s discovery, QFT in curved spacetime started to em-
phasize the strong connection that spacetime seems to have with thermodynamics.
The equivalence principle tells us that acceleration and gravity are two sides of the
same coin. Thus, an uniformly accelerated observer has been shown to describe the
Minkowski vacuum as a thermal state, with a temperature proportional to his own
proper acceleration ap

kBTU =
apℏ
2πc

,

a result that dates back to Unruh in the 70s [13]. This phenomenon, known as
the Unruh effect, serves as a striking example of how different observers – in this
case, a geodesic observer and a uniformly accelerated one – can have fundamentally
different experiences of the same quantum field, despite both existing within the
same spacetime.

A big step forward in the direction of unveiling how intimate is the relation
between gravity and thermality has been performed when, for the first time in
1995, Jacobson realized that the discussion can go beyond the black hole framework
[14]. The equivalence principle allows to cast every geometry as locally flat, thus
associating a temperature to the local Rindler patch. Spacetime dynamics can then
be derived simply requiring thermodynamical equilibrium, where the geometrical
deformation is induced by the heat flux δQ that flows across the Rindler horizon.
The shape of the horizon – which determines its entropy S – is adjusted in order to
preserve the thermodynamical equilibrium for which:

T dS = δQ .
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It turns out that the imposition of the Clausius relation implies the Einstein equa-
tions, without knowing anything about the gravitational Lagrangian. In this way,
it is possible to interpret the Einstein field equations as equations of state.

This point of view is quite revolutionary and opens up the possibility that space-
time could be not a fundamental entity but an emergent phenomenon instead. The
principle “if you can heat something, it must have a microstructure”, which led
Boltzmann to infer the existence of atoms before their experimental necessity, is
adopted to describe geometry as some effective description of a given microphysics.
In fact, a lot of work has been done in this direction, and the emergence of a classical
spacetime and its dynamics is a building block of several QG approaches. Frame-
works like Loop Quantum Gravity, String theory, Group field theory and Lattice
theories are just a few examples [15].

Let us stress that, even though QFT in curved spacetime has direct implications
in the phenomenology of gravity, it is important to realize that, strictly speaking, it
shares no link with general relativistic settings: a quantized field on top of a curved
geometry will not be sensitive to the origin of the background. In other words, it
does not matter if the effective spacetime comes as a solution of the Einstein field
equations (as it does in GR) or from other conditions. Viewed in this way, an effect
such as Hawking radiation is insensitive to the dynamics of the geometry, being
rather a description of the fields kinematics on a curved Lorentzian manifold.

This allows us to try and look for these effects also in completely different con-
texts than gravitational black holes. Of particular interest are the so-called analogue
models for gravity. Playing by analogies, in the 80s it was realized that the analysis
of perturbations (phonons) of a perfect fluid can be mapped into a case of field
theory on curved background [16]. Indeed a perturbative treatment of the equations
governing the fluid behaviour – the continuity equation and the Euler equation – de-
scribes phonons moving onto a curved acoustic metric. This metric, being a solution
of fluid-dynamic equations, has no knowledge of GR but it shows up to be a surpris-
ingly useful tool to investigate curved spacetime effects on fields. These geometries
can be used to build objects with (acoustic) horizons, which play the role of the
analogue of a black hole, and their evaporation can be studied, both theoretically
and experimentally. However, as already mentioned, these kind of spacetimes have
nothing to do with GR and they know nothing about the Einstein field equations,
which confirms that curved background effects in QFT are purely kinematics.

Beside reproducing relativistic phenomena, analogue models are also a way to
probe the open question that arises once one accepts Hawking’s result. The fact
that the final state after the black hole complete evaporation looks as a thermal
state, seems to suggest a non-unitary evolution between the initial pure state from
which the black hole itself was formed. That implies a loss of information between
the future and the past state, giving rise to the “information-loss paradox”. This
problem has been adressed in the context of analogue models, in a cosmological-
analogue setting, showing how the knowledge about the microstructure allows to
keep trace of the information, not only in the form the correlations between the pairs
of quanta produced in the process, but also by taking into account the correlation
of those quanta with the atoms of the background [17].

Another example is given by the so-called “trans-Planckian problem”. In a rela-
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tivistic setting, if one traces back an Hawking quantum from infinity to the horizon,
that particle seems to experience and infinite peel-out from the black hole horizon,
together with an infinite blueshift in energy. This brings the particle to experience
trans-Planckian energies ω ≫ Ep, exceeding the range of validity of our semiclassical
approximation of QFT in curved spacetime. Analogue models naturally provide a
way to study Hawking radiation without transplanckian frequencies. It is actually
quite common that, in systems where it is experimentally possible to simulate Hawk-
ing radiation – for instance, in superfluids or Bose-Einstein condensates, where the
coherence time is longer than in a standard fluid – perturbations obey a modified
dispersion relation, like

ω2(k) = c2s

(
k2 +

k4

Λ2
+ · · ·

)
,

where Λ is a cutoff, that is the characteristic scale of the microphysics, cs is the
speed of sound and the dots can be seen as further terms in an expansion in k/Λ
[18]. In this case, no perfect exponential peeling occurs at the horizon and the
blueshift is cut off at energy Λ. However, this regularization comes at the price of
introducing a Lorentz violating part in the dispersion relation, for which the Lorentz
invariant behaviour is approximately recovered when k2 ≪ Λ2. It has been shown
that the Hawking effect is incredibly robust to these modifications: the analogue
black hole radiates and in the regime when κH ≪ Λ this radiation is thermal, with
a temperature TH [19].

The robustness of Hawking radiation is a remarkable observation because it
makes us to rethink the hierarchy of our assumptions and may conclude that such
an effect may be, if not universal, at least quite insensitive to the ultraviolet (UV)
completion of the theory which generated the curved background. In particular,
Lorentz invariance and horizons seem less strict requirements than one may think in
order for such an effect to take place. Actually, besides Lorentz invariance violation,
the presence of Hawking radiation also for horizonless objects has already been
pointed out in the literature [20].

Thus, even though not strictly speaking quantum-gravitational, the effects of
quantum fields in curved space represent an incredibly good playground for testing
properties of gravity beyond the classical regime. As mentioned above, these may
help guide the search for QG towards the right direction, unveiling the layers of
assumptions which constitute GR. Moreover, the possibility of testing these features
in the lab makes them very appealing for contemporary research.

The need for quantum gravity

In summary, the formulation of a QFT with a classical curved spacetime represents
the first step toward the inclusion of quantum effects in gravity. However, this
treatment raises other puzzles, such as the information-loss paradox or the trans-
Planckian problem, where the approximation breaks down. In principle, this does
not directly tell us that gravity must be quantized, but rather that the backreaction
of the field onto the geometry must be taken into account at some point. One can
imagine that the solution to these new theoretical questions can also come from
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a complete semiclassical treatment, where a gravity-matter system is defined by
solving the semiclassical Einstein equations:

Gab =
8πG

c4
⟨ψ|T̂ab|ψ⟩ .

Here, the matter stress-energy tensor T̂ab is an operator acting on the quantum
state of matter |ψ⟩. This equation contains the backreaction that matter has on the
geometry and, in principle, solving it consistently should provide us with a full semi-
classical matter-gravity theory, of which the test-field limit represents the QFT in
curved spacetime formalism. This idea is quite appealing because, even if technically
involved, there would solve the problem of incorporating our (quantum) treatment
of matter into our (classical) description of gravity without invoking QG. This kind
of hypothesis has been considered in the past (see e.g. [21] and references therein),
which unfortunately shows up to be inconsistent, since a classical gravitational set-
ting can in principle lead to a violation of the uncertainty principle in the matter
quantum world [21].

On the experimental side, investigations are currently being carried on this di-
rection. The idea is to apply quantum information techniques to gravitational in-
teraction in the lab and try to entangle gravitons: this would confirm the intrinsic
quantum nature of gravity [22].

Additionally, a purely semiclassical approach has been shown not to answer the
original questions about where classical GR loses his predictivity: singularities are
still there and they cannot be prevented by a semiclassical treatment1. Therefore,
we have no other choice than moving beyond.

Many different approaches

Physics is facts, not theory. Quoting Feynman: if the facts are right, then the
proofs are a matter of playing around with the algebra correctly. This summarizes
once again the main issue concerning the QG program. Without any experimental
insight to drive theoreticians, nowadays we are left with an incredible amount of
proposals, all of them based on a different approach, and for each of them quantizing
gravity can mean a completely different thing. One can formally divide this huge
set between theories where spacetime is emergent and theories where that represents
the fundamental entity.

The former subset is, in general, conceptually more involved, trying to describe
structures that, after some coarse-graining procedure, effectively generate the space-
time. Typical examples are [15, 24]:

• Superstring theory (or M-theory): a higher-dimensional, supersymmetric the-
ory, where the fundamental entities are given by branes. After a compactifi-
cation procedure, our 4-dimensional spacetime emerges [25].

1Purely speaking, a violation of the standard energy conditions in ⟨Tab⟩ can provides non-
singular models. However, usually, this violation is phenomenologically introduced and justified
by invoking some QG-mechanism, as in regular black hole models (see [23] and references therein)
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• Loop quantum gravity: derived as an improvement of the canonical quantisa-
tion approach, loop quantum gravity interprets the spacetime as a fabric of a
finite length loops, enjoying a non-abelian gauge symmetry similar to the one
of the Standard Model [26].

• Group field theory: inspired by the loop quantum gravity approach, the con-
stituents are chunks of spacetimes, defined on a group manifold. In some
applications, the coarse-graining procedure, spacetime arises in a very similar
fashion as the analogue models [27, 28].

• Causal dynamical triangulations: this is a lattice theory, where the spacetime
manifold is described by a lattice and recovered in the continuum limit [29].

The one above is a non-exhaustive list, but just an example of how diverse the
specific theoretical framework can be when we talk about quantum gravity.

Besides these emergent-spacetime theories2, there is a whole set of approaches
where the metric is the building block. This point of view is indubitably more
conservative, since it does not require to create different structures other than the
geometry itself. The principal ones are [24]

• Asymptotically safe gravity: the Lagrangian formulation is the same as in GR,
but the Newton’s constant G and the cosmological constant Λ run with the
energy scale, eventually reaching a finite value in the far UV, thus rendering
the theory under control at all energies [30].

• Higher-derivative gravity: higher curvature terms – like R2, RabR
ab and so on

– are considered in the gravitational sector. The theory become perturbatively
renormalizable but it is affected by the presence of ghosts due to higher time-
derivatives (see Chapter 4) [31].

• Lorentz violating gravity: local Lorentz symmetry is dropped in first place, in
order to formulate a theory which is power-counting renormalizable and not
affected by instabilities, as it entails higher derivatives only in space [32].

All of those proposals have different guiding ideas and weak points, but none of
them can currently be considered definitive. However, based on the discussion we
have made in the previous sections, it is possible to outline some guidelines to make
our choice.

Removing the inessential

In the axiomatic derivation of Special Relativity (SR) a cornerstone is represented
by the so-called von Ignatowski theorem (1911). It states that once we assume [33]:

• Spatial homogeneity and isotropy

• Temporal homogeneity

2To be precise, in the causal dynamical triangulation approach the spacetime is not emergent
from a more fundamental theory but as a continuum limit procedure, as in lattice QCD
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• Relativity Principle (i.e. the equivalence of all the inertial frames)

• Pre-causality (i.e. the order of two events on a worldline is the same in any
reference frame)

then we must have SR. Interestingly, the special theory of relativity can be uniquely
derived as a theorem by a set of reasonable physical assumption and, with the
addition of the strong equivalence principle – which implies that all the local physics,
included SR, holds as without gravity – we can infer GR. Therefore, general relativity
seems to be quite a unique conclusion, once we have set the assumptions as above.

Very often those assumptions are taken to be valid also in the QG proposals up
to the far UV. Superstring theory is an example of Lorentz-invariant theory at all
energies, and the same happens in the Asymptotic safety scenario. However, in both
cases, the formulation of the theory is radically different from the one that we use
to describe the Standard Model. While the latter is perturbatively-renormalizable,
those QG candidates treat the problem either in a non-perturbative way, or invoking
completely different settings.

Another possibility to go beyond GR is to take a step back to the fundamental
assumptions and try to generalize the theory looking for the inessential. Adopting an
approach that removes assumptions rather than adding complex layers is a healthy
way to look at problems. Anytime we try to generalize a problem by reducing
the constraints, we may discover hidden degeneracies and, most importantly, we
learn that whatever physics we are left with, it is independent from – thus more
fundamental than – that assumption.

In the case of gravity we can ask ourselves what happens when we try to drop
one of the assumptions that lead to SR. In this, very conservative, procedure the
sensible possibilities reduce to two: taking away spatial isotropy returns us Finsler
geometries, where the metric is defined both in the tangent and in the co-tangent
space of the the spacetime manifold [34]; the other possibility is to drop the relativity
principle, thus the equivalence of all the local inertial frames. This builds a theory
with a preferred frame, explicitly violating the Local Lorentz Invariance (LLI).

While it may seem quite scaring at first sight, Lorentz Violating (LV) gravity
seems to show the nice features we demand to a QG candidate in three different
aspects.

Within a QFT framework, dropping LLI has been shown to produce a power-
counting renormalizable theory, known as “Hořava Gravity (HG)”. There are strong
hints for HG to be a perturbatively renormalizable theory, that would make it treat-
able with the same QFT techniques that we already know from the usual Standard
Model physics.

On the other hand, the low-energy implications of LV gravity can be as inter-
esting as their counterparts in the UV. Analogue models – where Lorentz breaking
phenomena arise spontaneously – already have provided us with an example where
the LV character of the perturbations does not spoil one of the main results of QFT
in curved spacetime, that is the Hawking radiation. It is then obvious that study-
ing LV models of gravity can also help us to understand better if the close relation
that in relativistic physics holds between spacetime and thermodynamics, is actually
based on Lorentz symmetry or represents something more fundamental.
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In addition, at current times, LV physics is one of the most experimentally viable
setting. In the gravitational sector, it has been shown that the Lorentz breaking
scale has to be sub-Planckian for several orders of magnitude, therefore requiring
much less effort to reach that energy [33].

These three motivations will be the guidelines that will accompany us throughout
the present work. Armed with them, we will adopt this reductive approach and
investigate a world where gravity is no longer Lorentz invariant.

Plan of the thesis

This work is organized as follows: the first Chapter (2) will be used to revise the
basic technical toolkit that is used when dealing with black hole radiation, such as
the quantum tunneling method or the Bogolyubov coefficient approach. This will
give us the chance to stress some useful point of view that will be adopted in the
rest of the work.

Then, we will start our journey in the lab: in Chapter 3 we will review in grater
detail the analogue models and their role as a tool for studying QFT in curved
spacetime both in the relativistic and non-Lorentz invariant cases. This will give us
the chance to clarify some open questions in the literature, showing the robustness
of the Hawking effect in a context where LV physics is built-in.

In Chapter 4 we will introduce some actual models of LV gravity. In a spirit of
semiclassical gravity, here we will focus on the low energy, classical approximation
of Lorentz braking gravity, such as Einstein-Aether and khronometric gravity. We
will analyze the new causal structure, explaining how black holes arise in a different
fashion with respect to their relativistics counterpart. A new notion of horizon – the
universal horizon – is introduced, and we will speculate on the existence of rotating
solutions.

In Chapter 5, quantum fields are introduced in these geometries. We will describe
the kinematics of particles in LV-black hole scenarios and, after a review of the
previous result, we will provide a novel treatment for describing the radiation of
these objects, concluding with an analysis on the quantum states compatible with
our result.

Chapter 6 will be devoted to dig more into the LV-spacetime thermodynamics,
through the analysis of the Unruh effect. After a first part of revision, where it
will be clear that this is an open issue in the literature, we will give a novel notion
of Rindler wedge, adapted to the presence of LV. We will show that the Unruh
effect is preserved and that thermality is ensured by the Kubo-Martin-Schwinger
(KMS) condition of the quantum state, fixed by the universal horizon. In the same
Chapter, we will also analyze the role of an accelerated detector, discussing its
response function.

Finally in Chapter 7 we will discuss the Hořava proposal as a QG candidate.
What has been done and what is left to do will be analyzed together with some
preliminary results.

Chapter 8 will contain the conclusions: we will review the work done, comment-
ing on the possible future perspective on the field.
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Chapter 2

Hawking radiation: a primer for
QFT in curved spacetime

As mentioned in the previous Chapter, Hawking radiation is one of the most fas-
cinating and unexpected result of QFT in curved spacetime [11]. It has posed the
basis for the study of quantum effect in GR and it represents a cornerstone of the
spacetime thermodynamics. Being the first, most-investigated, example of quantum
fields behaviour on curved background, it is often taken as a primer for the field. In
this Chapter we will briefly revise its derivations and use it to introduce concepts
and techniques that will be useful in the following of this thesis. In particular, we
will describe two well-known derivations, namely the Bogolyubov coefficients and the
tunneling method, which are the basic toolkit for the contents of the main references
of this work [35–40].

In the last part of this Chapter, we will also review an alternative derivation
of the same effect involving the Euclidean path integral, which will be useful in
Chapter 5 and 6.

2.1 Inequivalence of vacua: Hawking radiation as

a Bogolyubov transformation

One of the main features of QFT in curved spacetime effects is based on the following
observation: while in a flat spacetime treatment the notion of vacuum state for a
quantum field ϕ̂ represents a unique, Lorentz-invariant, physical state – so any
inertial observer will describe the same vacuum – the same is not valid in a generic
curved spacetime [41, 42]. This is quite obvious: since the definition of vacuum
state is based on the construction of the Fock space, that relies on a choice of a
concept of energy in order to build the modes, it has to be a coordinate-dependent
(or, equivalently, observer-dependent) statement. Since two different observers will
perceive time differently, the same quantum state can be simultaneously vacuum for
one of them and a populated state for the other. Let us see how.
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2.1.1 Bogolyubov coefficients

Let us consider, as a starting point, a simple model for a minimally coupled real
scalar field ϕ with mass m on a curved background gab [41]:

L = −1

2

√
−g
[
gabϕ∇a∇bϕ−m2ϕ2

]
. (2.1)

The canonical quantization procedure of ϕ goes as follows: we consider a spatial
foliation for our Lorentzian manifoldM, through the choice of a time coordinate t
and define the conjugate momentum π:

π =
δL
δ∂tϕ

=
√
−ggat∇aϕ . (2.2)

The quantization can be performed by promoting ϕ and π to operator-valued object
which satisfy the canonical commutation relations at equal times

[ϕ̂(t,x), π̂(t,y)] =
i√
−g

δ(x− y) ,

[ϕ̂(t,x), ϕ̂(t,y)] = [π̂(t,x), π̂(t,y)] = 0 .

(2.3)

where the “hatted” quantities have the usual notational meaning as indicating an
operator. The Fock space can be built as follows: let us take a constant time leaf
Σt = {t = const.} and define the following inner product

⟨ϕ1, ϕ2⟩Σt = −i
∫
Σt

na (ϕ1∇aϕ
∗
2 − ϕ∗2∇aϕ1) (2.4)

where na is the normal vector to Σt. This product, known also as Klein-Gordon
product determines the simplectic structure of the space of solutions of the field
equation for ϕ, that is, from (2.1)

δL
δϕ

= (□−m2)ϕ = 0 . (2.5)

Within the space of solution of (2.5), the inner product ⟨ϕ1, ϕ2⟩Σt can be easily
shown to be independent of the specific leaf Σt that is chosen for computing the
integral.

Armed with this inner product, it is possible to define an orthonormal basis {fΩ},
where fΩ solves (2.5) and satisfies the eigenvalue relation ∂tfΩ = −iΩfΩ; similarly
it happens for their complex-conjugated version ∂tf

∗
Ω = iΩf ∗Ω. Intuitively, Ω is the

energy defined with respect to the time t. Considering only Ω > 0, we have a
complete set of solutions that satisfy:

⟨fΩ, fΩ̄⟩ = −⟨f ∗Ω, f ∗Ω̄⟩ = δ(Ω− Ω̄) , ⟨fΩ, f ∗Ω̄⟩ = 0 . (2.6)

Due to this relations, fΩ is often called a positive-normed mode, while f ∗Ω is negative-

normed. Since {fΩ} form a basis of solutions, any operator ϕ̂ can be expanded in
this basis

ϕ̂ =

∫ ∞
0

dΩ

2π

[
âΩfΩ + â†Ωf

∗
Ω

]
. (2.7)
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The operators âΩ and â†Ω are the (position-independent) annihilation and creation
operator for a single mode of energy Ω. They satisfy the canonical commutation
relations:

[âΩ, â
†
Ω̄
] = δ(Ω− Ω̄) , [âΩ, âΩ̄] = [â†Ω, â

†
Ω̄
] = 0 . (2.8)

Most importantly, these operators define the vacuum state |0⟩f through the relation

âΩ|0⟩f = 0 . (2.9)

From this construction, it is crystal clear how the definition of the vacuum must
depend on the choice of time (or energy) that we have made at the beginning. The
state |0⟩f is Poincarè-invariant, but it is not under generic coordinate transformation.
Let us imagine to start again from (2.1) and repeat the construction but with a
different choice of time: this will lead to describe the space of solution with a
different basis {gω}, where ω is the eneregy defined with the help of the “new” time.
This implies

ϕ̂ =

∫ ∞
0

dω

2π

[
b̂ωgω + b̂†ωg

∗
ω

]
(2.10)

for a new set of operators b̂ω and b̂†ω satisfying the canonical commutation relations
and defining a different vacuum state through

b̂ω|0⟩g = 0 . (2.11)

Since the two basis formed by fΩ and gω describe the same field linearly, the trans-
formation that relates the two sets will be linear as well, that is to say:

gω =

∫ ∞
0

dΩ

2π
[αωΩfΩ + βωΩf

∗
Ω] . (2.12)

The coefficients αωΩ = ⟨gω, fΩ⟩ and βωΩ = −⟨gω, f ∗Ω⟩ are called Bogolyubov coeffi-
cients. From the normalization of gω one infers the completeness relations∫ ∞

0

dΩ

2π
[αωΩα

∗
ω̄Ω − βωΩβ∗ω̄Ω] = δ(ω − ω̄) , (2.13)∫ ∞

0

dΩ

2π
[αωΩβω̄Ω − βωΩαω̄Ω] = 0 . (2.14)

Let us note that equation (2.12) translates into a linear map between the annihilation
and creation operators:

b̂ω =

∫ ∞
0

dΩ

2π

[
α∗ωΩâΩ − βωΩâ

†
Ω

]
. (2.15)

This relation can be used to highlight the inequivalence between |0⟩f and |0⟩g. A
standard result, which comes directly from equation (2.15) regards the population of
|0⟩f in terms of the modes gω. Indeed, taking the expectation value for the number

operator N̂ω = b̂†ω b̂ω we obtain, after some simple manipulation [41]

⟨N̂ω⟩f =f ⟨0|b̂†ω b̂ω|0⟩f =
∫ ∞
0

dΩ

2π
|βωΩ|2 . (2.16)
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This is an extremely interesting result of QFT in curved spacetime. As anticipated,
we discover that two different observers, which experience two different notion of
time, thus defining two different vacua, experience the same state differently. In
particular, we can see that the vacuum |0⟩f is seen as a populated state in terms
of the basis {gω} if the Bogolyubov transformation contains some non-zero β coef-
ficients. That is to say that a single mode gω must be a superposition of positive
energy modes fΩ and negative-energy modes f ∗Ω. Without that mode-mixing, no
particle production happens (namely ⟨N̂ω⟩f = 0). In the following, we will apply
this formalism to describe black hole radiation.

2.1.2 Black hole radiation: a Bogolyubov approach

For definiteness, in what follows we will consider a static, spherically symmetric,
black hole geometry. This, as a vacuum solution of the Einstein equations, takes
the form of the Schwarzschild metric [1, 43]:

ds2 = gabdx
adxb = −F (r)dt2 + dr2

F (r)
+ r2dS2, F (r) = 1− rs

r
, (2.17)

where dS2 denotes the two-sphere, labelled by the angular coordinates θ and φ, and
rs = 2M is the Schwarzschild radius for a black hole of mass M . As usual in static
spacetimes, the black hole region is defined by a Killing horizon, that in this case is
the surface at which the norm of χa∂a = ∂t vanishes. In other words

|χ|2 = g00 = −F (r) = 0 ⇐⇒ r = rs . (2.18)

A minimally coupled scalar field ϕ is described by (2.1). Let us take the massless
case m = 0 for simplicity, but an equivalent treatment is valid for the massive case
[42]. Its equation of motion is

□ϕ = 0 . (2.19)

Due to the symmetry of the background, the solutions of the Klein-Gordon equation
are separable in the radial and angular variables:

ϕ(t, r, θ, φ) =
∑
l,m

ψl(t, r)

r
Ylm(θ, φ) . (2.20)

With this parametrization, the massless Klein-Gordon equation assumes a particu-
larly simple form in the the Regge-Wheeler coordinate r∗

dr∗ =
dr

F (r)
, r∗ = r + rs log

(
r − rs
rs

)
, (2.21)

that is [43]

−∂
2ψl
∂t2

+
∂2ψl
∂r2∗

+ Vl(r)ψl = 0 , (2.22)
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where the potential Vl is

Vl(r) = −F (r)
[
F ′(r)

r
+
l(l + 1)

r2

]
. (2.23)

This potential is the energy barrier that a particle has to climb in order to escape
from the gravitational attraction of the black hole. The main feature is that Vl
vanishes both asymptotically, for r → +∞ (equivalently r∗ → +∞), and for r = rs
(equivalently for r∗ → −∞). It is therefore useful to define the two null coordinates
u = t− r∗ and v = t+ r∗. When the potential vanishes the field equations simplifies
to

−∂
2ψl
∂t2

+
∂2ψl
∂r2∗

= − ∂2ψl
∂u∂v

= 0 . (2.24)

Thus, both asymptotically and near the horizon the solution of the field equation,
splits into an ingoing (only v-dependent) and an outgoing (only u-dependent) contri-
bution ψl(r, t) = gl(v)+fl(u). For the purpose of this calculation, only the outgoing
sector will be important. In fact, our goal is to study the radiation emitted by the
black hole, that reaches infinity in the null far future, at I +, that is purely outgoing.

The explanation of the Hawking effect as an effect of inequivalence of vacua
comes once we consider the following two physical observers: the first will be sitting
at r → ∞, where the metric is flat (and r∗ = r), and will define its time with the
Schwarzschild time t. Hence, one basis will be formed by (up to a normalization
factor)

f∞Ω = e−iΩ(t−r) = e−iΩ(v−2r) , ∂tf
∞
Ω = −iΩf∞Ω , (2.25)

together with their complex conjugated negative-normed modes. Let us note that
the definition of energy with respect to t is tantamount to say that the observer
sitting at infinity describes the energy using its own proper time. This observer is
not moving spatially and it is geodesics, thus follow the integral lines of χ. Since
|χ|2(r = ∞) = −1, t describes exactly the proper time of someone staying still on
i0.

The second basis will be constituted by the near-horizon modes from the point
of view of a freely-falling observer crossing the horizon. In order to better describe
this physical frame, it is convenient to make a coordinate change and describe our
geometry in some coordinate, which are regular at the horizon. For an infalling
trajectory, this is the case of the {v, r} set of coordinates, which takes the name of
Eddington-Finkelstein-Bardeen (EFB) coordinates, for which the line element looks
like [43]

ds2 = −F (r)dv2 + 2dvdr + r2dS2 . (2.26)

We can immediately see that, from the above equation, the apparent singularity at
the Schwarzschild radius disappears. Since a freely falling observer will regularly
cross the horizon at some finite retarded time vKH, we can take again the Killing
vector field – which in EFB coordinates looks like χa∂a = ∂v – to define our time1.

1Since vKH and ∂τvKH, where τ is the proper time of the free-falling observer, are well defined,
making v(τ) locally invertible, the choice of v as a time is coherent with the choice of the observer.
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Besides the presence of the – regular at r = rs – ingoing sets of modes, the outgoing
ones will take the form:

fKH
Ω = e−iΩ(v−2r∗) , χa∂af

KH
Ω = ∂vf

KH
Ω = −iΩfKH

Ω . (2.27)

Note that for both observers the energy is defined with respect to the Killing vector.
At this point, the only thing which is left to do is to compare the two basis

{fKH
Ω } and {f∞Ω } to evaluate the Bogolyubov coefficients. Let us take a closer look

to the (outside) near-horizon set of modes:

fKH
Ω = e−iΩ(v−2r∗) = exp [−iΩ (v − 2rs log(r − rs))] . (2.28)

Due to the logarithmic divergence of r∗ at the horizon, these mode are not analytical
at the horizon [42]. Actually, in (2.21), the formula for r∗ is given for the exterior of
the black hole. The integration of r∗ on interior is different and leads to an opposite
sign in the argument of the logarithm. Therefore, in principle, outgoing solutions
in the near-horizon limit, have supports only on one of the two sides of the horizon.
We thus have that fKH

Ω divides into

fKH,out
Ω = Θ(r − rs) exp

[
−iΩ

(
v − 2rs log

(
r − rs
rs

))]
,(

fKH,in
Ω

)∗
= Θ(rs − r) exp

[
−iΩ

(
v − 2rs log

(
r − rs
rs

))]
.

(2.29)

Here Θ is the Heaviside function, that highlights the single-side support of the
fKH
Ω ’s. Let us point out that the modes inside have been written as conjugated
modes because in this form they have negative norm. Let x = r− rs and hab be the
induced metric in the orthogonal of ∂v:

⟨
(
fKH,in
Ω

)∗
,
(
fKH,in
Ω

)∗
⟩ =

− i
∫
v=const

√
h dx dφ dθΘ(−x)

[(
fKH,in
Ω

)∗
(v,−x)

↔
∂ vf

KH,in
Ω (v,−x)

]
=

i

∫
v=const

√
h dx dφ dθΘ(x)

[
fKH,in
Ω (v, x)

↔
∂ v

(
fKH,out
Ω

)∗
(v, x)

]
=

− ⟨fKH,out
Ω , fKH,out

Ω ⟩ .

(2.30)

The Bogolyubov coefficients that interest us are the ones between {fKH,out
Ω } and

{f∞Ω }. These coefficients will tell us how the outgoing mode, right outside the
horizon, will be read in terms of the basis at infinity.

The computation of the Bogolyubov coefficient can be easily done following Un-
ruh in [13]. He observed that, the non-analytical modes of (2.29) can be combined
in such a way that their combination is analytical in the upper (lower) branch of
the r-complex plane. Basically, this makes use of the continuation of the complex
logarithm. For z ∈ C, so z = |z|eiθ, we have that the principal branch of log(z)
behaves as:

log(z) = log(|z|) + iθ . (2.31)
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This allows us to write down two sets of modes Φ±Ω at fixed energy Ω:

Φ±Ω = C±
[
fKH,out
Ω + e

∓ πΩ
κKH

(
fKH,in
Ω

)∗]
, (2.32)

where we have set κKH = (2rs)
−1 being the surface gravity of the horizon [43] and

C± are normalization constants. The sign ± corresponds to the two continuations
of the logarithm on the upper and lower half-complex planes. Thus, we have:

⟨Φ+
Ω,Φ

+
Ω̄
⟩ = −⟨Φ−Ω,Φ

−
Ω̄
⟩ = δ(Ω− Ω̄) , ⟨Φ+

Ω,Φ
−
Ω̄
⟩ = 0 . (2.33)

This implies

C± =
1

1− e∓
2Ωπ
κKH

. (2.34)

Moreover, with these normalization coefficients, one can directly check that

fKH,out
Ω = Φ+

Ω + Φ−Ω . (2.35)

Hence, since Φ+
Ω (Φ−Ω) is analytical in r, it can be described with a superposition of

only positive- (negative-) normed modes f∞Ω (f∞,∗Ω ), and the relation (2.12) reads

Φ+
Ω =

∫ +∞

0

dΩ̄

2π
αΩΩ̄f

∞
Ω̄ , Φ−Ω =

∫ +∞

0

dΩ̄

2π
βΩΩ̄ (f∞Ω̄ )∗ . (2.36)

This, together with the definition of the Bogolyubov coefficients (2.12) leads to the
direct computation of |βΩΩ̄|2, since, instead of ⟨(f∞)∗, fKH,out⟩, we can compute:

C− = ⟨Φ−Ω, f
KH,out
Ω ⟩ =

∫
dΩ̄

2π
βΩΩ̄⟨(f∞Ω̄ )∗ , fKH,out

Ω ⟩ =

−
∫

dΩ̄

2π
βΩΩ̄β

∗
ΩΩ̄ = −

∫
dΩ̄

2π
|βΩΩ̄|2 .

(2.37)

The derivation of the Hawking effect can now be stated in this way: let us take
the free-falling observer. If we assume that, while crossing the horizon, no particles
are observed by him, then the vacuum will be set through the basis fKH

Ω , we can
evaluate the particle content of that state in terms of the modes detected by the
asymptotic observer:

⟨N̂Ω⟩ff =

∫
dΩ̄

2π
|βΩΩ̄|2 = −C− =

1

e2πΩ/κKH − 1
, (2.38)

where “ff” denotes that the mean value has taken on the vacuum for the free falling
observer. The obtained spectrum represents a Bose-Einstein distribution in Ω, from
which we can read a temperature temperature TH (the so-called Hawking tempera-
ture)

TH =
κKH

2π
. (2.39)
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This tells us that, if the free-falling observer is in vacuum, there is a particle pro-
duction in terms of modes at infinity. Note that the spectrum at infinity will be
also affected by the probability for each one of these modes, produced nearby the
horizon, to climb the potential Vl(r). The resulting distribution at infinity is thus
modulated by this probability Γ(l,Ω), which is called greybody factor [42]:

n(Ω, l) =
Γ(l,Ω)

e2πΩ/κKH − 1
. (2.40)

The presence of a greybody factor, however, does not change the thermal nature of
the distribution, which is always peaked at TH.

2.2 A local approach: Hawking radiation as a

tunneling

Let us now describe a second method for deriving Hawking radiation. This approach
is based on the quantum tunneling technique [44], for which we will discuss the static,
spherically symmetric case. More general cases, such as non-static situations and
dynamical horizons treatment are extensively discussed, e.g. in [45, 46].

2.2.1 Quantum tunneling: from non-relativistic quantum
mechanics to QFT

The tunneling process is a purely quantum-mechanical effect, which tells us that
particles, being non-localized objects, can go through classically forbidden paths,
with a non-zero probability. Let us make a brief example on how it should work.

Non-relativistic quantum mechanics

Suppose that we have a bounded one-dimensional L1-integrable classical potential
V (x), such that

lim
x→±∞

V (x) = 0 (2.41)

The probability for a quantum mechanical wave function Ψ(x) with energy E <
max (V (x)) to tunnel through (sometimes called transmission coefficient) it is given
by the ratio of the norm of the transmitted wave Ψ> divided by the norm of the
incident wave Ψ< before hitting the wall [47]

|T |2 = ∥Ψ>∥2

∥Ψ<∥2
. (2.42)

For any shape of the potential, as long as the potential itself is only mildly time-
dependent, this can be described by using a Wentzel-Kramers-Brillouin (WKB)
approximation for the wave function. Here, restoring ℏ in physical units

Ψ(x) = Ψ0 exp

(
i
ℏ

∑
i

Si(x)ℏi
)
, (2.43)
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where we expanded S in powers of ℏ.
To leading order in ℏ, and considering the Schrödinger equation, the solution for

ingoing and outgoing waves is determined by the classical action

S0 = ±
∫

dx
√

2m(E − V (x)) (2.44)

with E being the energy of the incident wave and m its mass. Thus, one can
understand the tunneling process as occurring through a classically forbidden path
where the exponent becomes complex – since inside the potential E < V (x). This
has some similarities with the case of gravitational paths, as we see below.

QFT in curved spacetime

Within a particle point of view, the Hawking effect can be intuitively described by
the same cartoon picture already suggested by Hawking himself [11]. Close to but
still outside the horizon, a Hawking pair consisting of a positive and a negative
energy particle, can be created. The positive energy particle escapes the gravita-
tional well and it is measured by an asymptotic observer, while the negative energy
one falls into the black hole, where its existence on-shell is allowed by the spacelike
nature of the Killing vector associated to stationarity in time of this geometry.

Courtesy of the energy budget provided by the black hole, we can describe this
from a different perspective. Instead of a pair creation, we interpret the same process
as a single particle coming from the interior and tunneling outwards in a quantum
mechanical way. In fact, it is always possible to trade an inward-pointing negative
Killing energy particle with a positive energy, outward-pointing one, just reversing
the sign of time.

Similarly to what we have done for the non-relativistic particle, since our space-
time is static, we can make a WKB ansatz for the field, which obeys (2.5), having

ϕ = ϕ0e
i
ℏ
∑

n ℏnSn(x) = ϕ0e
i
ℏS0+O(1) (2.45)

with S0(x) the classical (or point-particle) action. The amplitude ϕ0 is allowed to
have a mild coordinate dependence, but it is usually treated as effectively constant.
With our ansatz, the Klein-Gordon equation becomes the Hamilton–Jacobi equation
to lowest order2 in ℏ

∂aS0∂aS0 = 0. (2.46)

The interpretation of S0 as a point particle action is coherent with a definition of a
notion of four-momentum ka for a particle described by that action

ka ≡ −∂aS0 . (2.47)

Let us note that, with this definition, (2.46) becomes the dispersion relation for a
massless particle. Within the geometry (2.17), it is convenient to define the Killing

2In principle we could also consider the sub-leading term S1. However, this does not contribute
to the tunneling probability.
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rKH

Figure 2.1: The Killing horizon is displayed as a null-line that separates the normal
(unshaded) from the trapped region (grayshaded). The tunneling path shows a
positive energy particle that starts in the interior on a past-directed outgoing null
path, crosses the horizon on a complex path (dashed), and scatters into a future-
directed outgoing null path, once it has crossed the horizon. This is equivalent to
the negative energy particle tunneling inwards.

energy Ω = χaka, thus getting

S0 = −Ωv +
∫ r

kr(r) dr . (2.48)

Let us note that here, for simplicity, we have dropped the angular direction. So,
in principle, we are restricting our study of ϕ to s-waves. However, due to the
background symmetries, we will see that the angular directions do not play any role
in the tunneling analysis.

Coming back to our discussion on the quantum-mechanical tunneling, in a sys-
tem with gravitational tunneling the probability to reach a classically inaccessible
region is given through complex paths, which is reminiscent to the case of the one-
dimensional potential barrier. The positive energy particle inside a black hole is
now interpreted to take a generically complex path across the horizon determined
by S0, as shown in figure 2.1.

Finally, we can define the tunneling rate as the ratio between the transmitted
fraction and the incident wave [48]

Γ =
∥ϕ>∥2

∥ϕ<∥2
= e−

2
ℏ Im(S0), (2.49)

which is 1 along classical paths Im(S0) = 0. This is connected to thermodynamics
by following [49, 50]. Comparing the probability for a detector to absorb a particle
Pabs with its probability to emit one Pem at a fixed energy Ω we get

Γ ≡ Pem

Pabs

= e−Ω/TH , (2.50)

thus finding that the detector is in a thermal equilibrium at (horizon) temperature
TH. So, the statistical interpretation, given by the rate of particle produced matches
with the probabilistic interpretation for a single particle of being produced.
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v

r

rs

Figure 2.2: Trajectory of a particle with action (2.52) in the (v, r) plane. The
particle infinitely peels out at the KH (r = rs) both inside (orange line) and outside
(red line).

Thus, whenever Im(S0) ∝ Ω, we can read off a horizon temperature from the
tunneling rate. However, the thermodynamics is only well-defined whenever the
imaginary part is positive definite [46]

Im(S0) > 0, (2.51)

otherwise the process leads to inconsistencies such as the violation of the probabilis-
tic interpretation.

2.2.2 Tunneling on a Schwarzschild background

Now we are ready to apply the tunneling machinery to the Schwarzschild geometry
(2.17). In this case we already know how modes of a fixed Killing energy behave
on the two sides of the horizon (2.29), in the EFB frame. We can read the particle
action S0

S0 = −Ωv + Ω

∫ r

dr
2rs
r − rs

(2.52)

and consider a tunneling path which crosses the horizon. In figure 2.2 we give a plot
of a constant S0 contour (i.e. the classical trajectory of the particle).

It is clear that in (2.52) any regular (so that crosses the horizon smoothly)
tunneling path v(r) does not rise any imaginary part from the first term on the
L.H.S. of the equation. However, the r-dependent part of the integral develops a
simple pole at the Killing horizon. Therefore we can, without any loss of generality
take v = const. and get

Im(S0) = Im

[
Ω

∫ r2

r1

dr
2rs
r − rs

]
. (2.53)

where r1 < rs < r2. The imaginary part is given computing the integral in the
r-complex plane. The simplest method is to add an iε-prescription, shifting the
pole in the imaginary axis (r− rs)→ (r− rs − iε), and then take the limit ε→ 0+.
Putting all together, we have, after some manipulations (cf. [46] for details)

Im(S0) = lim
ε→0+

Im

[∫ r2

r1

Ωdr

κKH (r − rs − iε)

]
=

πΩ

κKH

. (2.54)
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Finally, inserting (2.54) into (2.49) we get a Boltzmann factor, from which we can
read the temperature, which turns out to be exactly TH:

Γ = e−Ω/TH , TH =
κKH

2π
. (2.55)

2.3 Tunneling vs Bogolyubov: equivalence of two

methods

So far, throughout all this Chapter, we have shown two different derivations of
the Hawking effect for a static, spherically symmetric, black hole geometry: the
Bogolyubov coefficient calculation relates the modes at infinity with the near-horizon
ones, thus relying on a global knowledge of the spacetime and on a choice of the
vacuum state. The other, based on the quantum-tunneling formalism, tackles the
same problem in a local way, interpreting the particle-production at the horizon
as a tunnel-out of a particle – a WKB solution of the field equation – through a
classically forbidden path across the horizon itself.

At first glance, these are two conceptually different methods. Within the tun-
neling approach, no knowledge of the observer at infinity is required and it is not
clear where the choice of vacuum is actually performed. So, why do they give the
same result?

Actually, at a closer look, one may note that, within the two methods, there
are more similarities with respect to what we have just observed. Let us start from
the formula of the tunneling rate (2.49). This equation interprets the probability of
tunneling out of a single particle a the ratio of the “ratio between the transmitted
fraction over the incident wave”. Within a point-particle viewpoint, this is the ratio
between the probability for a particle to tunnel-out across the horizon, over the
probability of doing the reverse path. For concreteness, let us take equation (2.48)
as an example of our point-particle action.

If kr(r) presents a simple pole, we have a non-analiticity on the WKB solution
ϕ = ϕ0e

iS0 of the log-type in the exponential. The imaginary part of the action for
the tunnel-out process and for the revers process are opposite in sign:

Im(S0)|→ = Im

[
Ω

∫ r2

r1

dr
2rs
r − rs

]
= −Im

[
Ω

∫ r1

r2

dr
2rs
r − rs

]
= −Im(S0)|←. (2.56)

This two imaginary parts correspond exactly to the coefficents that appear in (2.32)
in between the in- and out-modes, therefore they match the two possible analytical
continuation of the logarithmic singularity in the action. Thus, in equation (2.32),
the combination Φ±Ω correspond exactly to the two processes of out- and in-tunneling
of our particle.

An important remark consists in noticing that the equivalence between a WKB
solution like the one in (2.45), used for the tunneling, and a full solution in the near
horizon region, such as (2.32) holds because of the infinite blueshift of the mode.
The pole that is present within kr(r) makes the WKB mode to fullfil exactly the
adiabaticity condition ∣∣∣∣∣ k̇rk2r

∣∣∣∣∣ r→rs−−−→ 0 , (2.57)
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where the “dot” is the derivative with respect to the proper time of the free falling
observer, which defines the vacuum state [38, 51] (we shall discuss this issue in
Chapter 5). So, in the case of exponential peeling, there is no difference between
the WKB-approximated solution and the full one at the horizon; therefore it is not
surprising that Φ± coincide with ϕWKB.

The probability of having an outgoing particle just outside the horizon is given
by the sum of these two processes weighted with some probability P :

fKH,out
Ω = PΦ−Ω + (1− P )Φ+

Ω , (2.58)

which tells us that a particle fKH,out
Ω can be originated by a emission with probability

P = Pem and by the reverse process with probability (1 − P ) = Pabs. From (2.32)
we can derive:

P = C− = −
∫

dΩ̄

2π
|βΩΩ̄|2 , 1− P = C+ =

∫
dΩ̄

2π
|αΩΩ̄|2 . (2.59)

Note that, by definition,

1 = C+ + C− =

∫
dΩ̄

2π
(|αΩΩ̄|2 − |βΩΩ̄|2) , (2.60)

which recovers the completeness relation for the Bogolyubov coefficients (2.13).
From the tunneling amplitude (2.49) we have the rate, connected with Im(S0)|→:

Γ =
∥ϕ>∥2

∥ϕ<∥2
=
⟨fKH,out

Ω ,Φ−Ω⟩
⟨fKH,out

Ω ,Φ+
Ω⟩

= − P

1− P
= e−2πΩ/κKH . (2.61)

This leads to: ∫
dΩ̄
2π
|βΩΩ̄|2∫

dΩ̄
2π
|αΩΩ̄|2

= e−2πΩ/κKH . (2.62)

Putting altogether with the completeness relation one has:∫
dΩ̄

2π
|βΩΩ̄|2 =

∫
dΩ̄

2π
|αΩΩ̄|2e−2πΩ/κKH =

(
1 +

∫
dΩ̄

2π
|βΩΩ̄|2

)
e−2πΩ/κKH , (2.63)

therefore we get ∫
dΩ̄

2π
|βΩΩ̄|2 =

1

eΩ/TH − 1
, (2.64)

obtaining the same result. Let us stress that P < 0, so it does not define, purely
speaking, a probability distribution. The sign of P , however, points out precisely
the role of the negative-norm modes in the process.

The compatibility of the two derivations allows us to point out a few things.
First of all, both approaches are, in a spherically symmetric case, independent from
the angles θ and φ: the rate of production of particles by the horizon is given only in
terms of the produced particle’s energy. As a tunneling calculation, this is obvious
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from the fact that the non-analiticity of the action lies on the radial direction. For
the Bogolyubov coefficients, we see that the potential – and so the l−dependence of
the mode – drops when approaching both the Horizon and the asymptotic region.
The angular dependence appears only in the greybody factor

We have shown that, considering the rate of tunneling of a point particle leads
us to evaluate the single absorption and emission probability of the black hole.
These quantities, in terms of the Bogolyubov transformation, match the integral of
the modoulus squared of the α and β coefficients. Let us stress that, in principle,
no vacuum state has been invoked so far. The role of the vacuum choice, in the
Bogolyubov approach, tells us that the spectrum measured by an observer at infinity
is proportional to the integral of |β|2, because the observer in free-falling detects
no particles. However, it is important to understand that the computation of the
Bogolyubov coefficients – that relates two basis – and the definition of vacuum are
two separated procedures. Here we have shown that the former computation can
equivalently be done with the tunneling method, but the choice of the vacuum state
remains something additional to both this calculations.

Within our treatment, we have considered vacuum for the freely-falling observer,
since it is possible to show that this is the state described at late times after the
formation of a black hole by collapsing matter [52]. This state is usually called
Unruh state.

However, even if the choice of Unruh state is physically sensible, here we want to
point out that another choice of vacuum would have produced a different outcome
on the particle content on I +. For instance, a black hole in equilibrium with an
external thermal bath, in the Hartle-Hawking state, would not evaporate 3.

The main conclusion is: the Bogolyubov relation between the analytical basis
(2.32) and the non-analytical one (2.29) is always the same and it is equivalent
to the tunneling rate (2.49). Everything is local at this level, since it has been
worked out near horizon. The analysis become global once one introduces a notion
of asymptotic basis (at r → ∞) that, in the asymptotically-flat case, is equivalent
to Φ±Ω, and imposes the Unruh vacuum. So, in this sense, the tunneling method and
the Bogolyubov approach are equivalent.

2.4 Hawking temperature in Euclidean quantum

gravity

While the Bogolyubov approach and the tunneling method turn out to be closely re-
lated (if not the same thing), an alternative derivation is given by the Euclidean path
integral approach to QG [54]. The approach is based on considering the Eucledan
gravitational path integral:

Z =

∫
[Dg] e−S[g] , (2.65)

3Actually, recent works have shown that it is possible to tune the future state on I + by choosing
appropriately the initial state on I − [53]
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where the integral runs over all the regular Euclidean metrics gab
4. The classical

action S[g] contains the Einsten-Hilbert termR plus the Gibbons-Hawking boundary
term KGH [43]. The analysis performed by Hawking and Gibbons in [54] considers
a saddle point approximation of Z, namely a gravitational instanton.

It turns out that objects with horizons are gravitational instantons only if the
rotated time variable is taken with the right periodicity to avoid conical singularities.
For example, let us consider the metric (2.17) in its Euclidean version t→ τ = it:

ds2 = F (r)dτ 2 +
dr2

F (r)
+ r2dS2 . (2.66)

The near-horizon limit of this metric is given by

ds2 = 2κKH(r − rs)dτ 2 +
dr2

2κKH(r − rs)
+ r2sdS2 , (2.67)

where F (r) = 2κKH(r − rs) + O((r − rs)2) as in the previous sections. Let us now
define ρ(r):

dρ =
dr√

2κKH(r − rs)
, (2.68)

obtaining

ds2 = ρ2d(κKHτ)
2 + dρ2 + r2sdS2 . (2.69)

therefore the near-horizon metric is non-singular at ρ = 0 if we have a periodicity
in the termal time:

κKHτ → κKHτ + 2πn . (2.70)

with n ∈ Z. So, the period β to assign to τ is given by:

β =
2π

κKH

=
1

TH
. (2.71)

So, the periodicity in the Euclidean time is exactly the inverse of the Hawking
temperature. The periodicity in the Euclidean metric, dramatically reflects into the
quantum state defined onto it.

Let us consider a field ϕ̂ defined on the (Lorentzian) background (2.17). If the
two-point function ⟨ϕ̂(0,y)ϕ̂(t,x)⟩ satisfy the so-called KMS condition [41, 56]:

⟨ϕ̂(0,y)ϕ̂(t,x)⟩ = ⟨ϕ̂(t+ iβ,x)ϕ̂(0,y)⟩ (2.72)

4The Wick rotation from Lorenzian to Euclidean spacetimes is not every time well defined. The
main reason is that the notion of time is coordinate dependent and, if one starts directly studying
the Euclidean path integral, rotating back from Euclidean to Lorentzian is not always possible.
It has been shown that the procedure is well defined if the spacetime manifoldM admits a well-
defined timelike vector field [55]. In that context, the Wick rotation can be seen as taking two real
section (a Euclidean version and its Lorentzian counterparts) of the same complex manifold.
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then the state for the field ϕ̂ is thermal (in particular, the particle number reads as
(2.38)).

If we define the evolution operator for the field ϕ̂ with respect to the time t felt
by the asymptotic observer, then the evolution is determined by αt = eiĤt, where Ĥ
is the associated Hamiltonian operator. The periodicity in the thermal time tells us
that the KMS condition (2.72) is satisfied if the metric enjoys the periodicity found
in (2.71).

With this point of view, the thermality of the state is a matter of consistency in
the gravitational background that has little to do with the specifics of the matter
that we consider to live there.
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Chapter 3

Hawking radiation in the lab: an
analogue gravity perspective

Analogue Gravity (AG) models were developed, beginning in 1981 with William
Unruh’s seminal paper [16] with the aim to explore open questions that the dis-
covery of black hole radiations left open, such as the trans-Planckian problem and
the information-loss paradox. These models simulate QFT phenomena in curved
spacetime within laboratory settings. In addition, they offer a concrete example in
which the UV completion of the theory is explicitly known.

Regarding the information-loss paradox, this knowledge turns out to be particu-
larly useful: taking into account the full Hilbert space of the system – made by the
quantum perturbations and the UV degrees of freedom –, it is possible to show that
no information-loss happens [17].

Interestingly, ten years after Unruh’s first paper, it was realised that analogue
gravity could provide a physical model for the trans-Planckian modes, believed to
be relevant for the Hawking effect and the investigation of Hawking radiation in
the presence of modified dispersion relations was further explored [18, 57, 58]. It
was soon recognised that analogue gravity systems (see [59] for an extensive review)
provide an ideal testing ground for the robustness of Hawking radiation against
high-energy modifications. This is due to their theoretical simplicity and versatility
as well as their capability to offer explicit tabletop experimental settings to test such
predictions.

The natural presence of quantum fields with modified dispersion relations, which
is a consequence of LV terms in the equation of motions, renders the analogue setting
a perfect starting point for this work.

In this Chapter, which results are based on [40], we will briefly review how QFT in
curved spacetime can be derived starting from the fluid dynamics and how analogue
black holes arise as solutions of the hydrodynamical equations. We will then review
the main results presented in the literature concerning Hawking radiation of analogue
black holes. Finally, with the help of the tunneling approach – never used before
in this framework – we will revise some known result, shedding some light onto
questions left open in previous works.
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3.1 Analogue gravity in a nutshell: from fluid dy-

namics to curved spacetime

The idea that a fluid can behave as a curved background is based on a very simple
physical intuition: a moving fluid will drag its own perturbations (sound waves)
along with its flow. Therefore, if the flow is non-trivial, the sound waves trajectories
will be bent accordingly with the velocity of the background, analogously to what
happens to light rays when the spacetime is curved. In a situation where the fluid
velocity overcomes the speed of sound for the perturbations, then we have a region
that traps any sound wave, namely a black hole analogue (or “sonic hole”, or “dumb
hole”, as commonly named in the literature).

Mathematically speaking, the equivalence can be shown as follows. Without
external forces, a perfect fluid – therefore irrotational and non-viscous – fulfills the
continuity and the Euler equations [60]:

∂ρ

∂t
+∇ · (ρv) = 0 , ∇p = −ρ

[
∂v

∂t
+ (v · ∇)v

]
, (3.1)

where ρ is the density, p the pressure and v is the velocity of the fluid. Being
irrotational, the velocity vector satisfy ∇× v = 0, thus allows for the introduction
of a potential ϕ such that v = ∇ϕ. Let us consider a barotropic fluid, that is
endowed with an equation of state ρ = ρ(p). If we now define:

ϕ = ϕ0 + ϕ1 , ρ = ρ0 + ρ1 , p = p0 + p1 , v = v0 + v1 , (3.2)

where the fields with subscript “1” are considered perturbations with respect to the
background quantities with subscript “0”, we can show that the linearized version
of equations (3.1) become a Klein-Gordon equation for the perturbation ϕ1 [16, 59]

□gϕ1 = 0 . (3.3)

Here the the operator□g is the D’Alambert operator, built with the so-called “acous-
tic metric” gab:

gab =
ρ0
c2s

(
−(c2s − v0 · v0) −vT

0

−v0 I3×3

)
. (3.4)

The speed of sound cs is given by the equation of state c2s = ∂p/∂ρ. The derivation
of this result involves simple algebra (see [59] for details) and we will not report the
calculations, which are not instructive for the aim of this Chapter.

Here we stress the following: equation (3.2) tells us that phonons – sound per-
turbation in a fluid – behave as a massless scalar field in an acoustic geometry (3.4),
determined by the background value of the fluid flow. Let us emphasize that, even
if geometry corresponds to a relativistic (3 + 1)-dimensional Lorentzian metric, the
tensor gab comes out as an effective combination of the background solution of the
system (3.1) and has nothing to do with the Einstein field equations. Therefore,
beside being quite tempting, we have to keep in mind that it is not possible to study
the gravitational dynamics in analogue settings. Instead, as we shall see, analogue
spacetimes are very useful in probing the kinematics of – classical or quantum –
fields in curved spacetimes.
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3.1.1 Black holes analogues

Let us now see how analogue black holes geometries arise in the case of acoustic met-
rics. In the following, in order to simplify the notation, we shall drop the subscript
“0” from the background geometry. This will be no source of confusion, since the
linearized hydrodynamics reduce to a Klein-Gordon equation only for the perturba-
tion ϕ (for which we are going to drop the subscript “1”) and no other equation for
the other physical perturbations is given.

Heuristically speaking, a sound ray living on top of the flowing fluid moves with
speed cs along some direction n with respect to the flow. The total speed with
respect to the laboratory frame is:

dx

dt
= ±csn+ v . (3.5)

Since n is a spatial normalized vector (n · n=1) we can rewrite the trajectory in
terms of a null curve of the effective geometry [59]

0 = ds2 = −csdt2 + (dx− vdt)2 = −[c2s − v2]dt2 − 2v · dxdt+ dx · dx , (3.6)

which are precisely the null curves of the metric (3.4). Let us observe that, any
particle following (3.5), for a fixed flow v, cannot travel against the flow whenever
|cs| ≤ |v|. This tells us that the region of the spacetime defined by the metric (3.4)
in which the flow velocity overcomes the speed of sound is a special region for sound
rays: any wave propagating in that region is obliged to follow the flow direction.

At the level of the effective geometry, this can be determined by the metric, just
looking at the component g00. The spacetime position in which the flow equates cs
is given by the equation g00 = 0. Therefore it is extremely useful the definition of
the vector:

χa∂a = ∂t =⇒ g00 =
c2s
ρ
gabχ

aχb =
c2s
ρ
|χ|2 . (3.7)

Wherever the norm of χ vanishes, we have that the null rays of gab are dragged by
the flow. In this sense g00 = 0 defines the boundary of an ergoregion, namely a
portion of spacetime where even sound waves must move accordingly with v.

Let us now take an inward-pointing flow. Every time that the normal component
of the fluid velocity v⊥ overcomes the speed of sound, this defines a trapping region,
namely a point where the normal component of (3.5) has the same sign of v⊥, and
a sound wave must move inward. As in GR, the union of all the trapping surface
gives an apparent horizon.

However, in order to define a black hole region for these geometries, we need to
specify the event horizon. Within a gravitational setting, the definition of an event
horizon is a global concept: one must take trace of the whole history of the universe
and characterize the portion that does not allow the null rays to escape [61].

In case of stationary spacetimes the definition becomes easier, because the po-
sition of the outermost trapping surface is invariant under time translation (where
with “time” we mean the time direction defining the isometry). In that case the
event horizon, which coincides with the apparent horizon, becomes a Killing horizon,
defined as the null hypersurface where the norm of the Killing vector goes to 0.
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Here, the analogous of stationary spacetimes are the ones where the flow is
“steady”, namely when the vector χ is a symmetry, thus a Killing vector for the
metric (3.4). If this is the case, the Killing horizon is given by:

|χ|2 = g00 = c2s − v2 = 0 . (3.8)

This equation defines the boundary of a black hole region, to which we can associate
a geometrical notion surface gravity κKH through the normal derivative computed
at the horizon:

κKH =
1

2
∇n(c

2
s − v2)

∣∣∣∣
c2s=v2

, (3.9)

where the derivative ∇n is taken to be along the direction normal to the surface
c2s − v2 = 0.

Although the definition of a black hole region and horizon’s surface gravity has
been presented in the steady-flow case, it is worth mentioning that it is possible to
give a similar definition in the case of non-steady flows, for more details see [59].

3.1.2 Laboratory frame vs preferred frame

In the previous section we have seen how to introduce the concept of a sonic black
hole, trapping the sound waves which enters the horizon. Before studying of the
quantum properties of these object, let us take some time to introduce some geo-
metrical definitions, which will be useful in the rest of the present Chapter.

The description of analogue systems in terms of an effective metric, makes these
systems taste very much likely gravitational spacetimes. However, it is important to
make a crucial disclaimer. In equation (3.8) we made use of the stationarity of the
metric to define the Killing horizon. Unlike relativistic settings, here the meaning
of the Killing time has a precise definition in physical terms. In fact, any analogue
experiment is automatically endowed with a special notion of time. The fact is
that these systems corresponds to a specific experimental settings that take place
in a laboratory. The appearance of an effective geometry for the fluid perturbation
is nothing else than an artifact and no real curved geometry is present. Instead
they are endowed with a notion of time that recalls more a Newtonian definition
instead of a relativistic one. If one looks to our starting point (3.1), there is no
ambiguity in what is the time coordinate that define the evolution of the phyisical
quantities characterizing the fluid. Actually, an observer sitting down in the lab,
will be able to describe the whole evolution through the coordinate time t, which
corresponds to the so-called laboratory frame. Within this frame, the role of time is
played by the vector χ and a steady-flow represents a fluid which velocity v is only
space-dependent, that is v = v(x). Indeed, that observer experiences a (almost)
flat spacetime given by

ηab = diag(−c2, 1, 1, 1) (3.10)

for which the (flat) time coordinate is given precisely by χ and c is the speed of
light.
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In contrast, a ray traveling inside the fluid is dragged by it. That allows us to
define the so-called preferred frame, in which the fluid is at rest:

ua∂a =
1

cs

(
∂t + v · ∇

)
. (3.11)

This is a natural description for someone moving with respect to the fluid, which
will be useful in the following sections.

3.2 Quantum phonons

Now that we have our geometry, let us see how to simulate quantum fields, on
analogue systems. To this aim, the best candidates are quantum fluids – such as
superfluids or Bose-Einstein condensates (BEC) – because the offer features which
better adapts to quantum effects, for instance Hawking radiation. They show a high
degree of quantum coherence and low speed of sound – therefore suitable for the for-
mation of black hole gemoetries – and are characterized by very low temperatures,
which reduces the noise. This last aspect is crucial, since the correspondent astro-
physical case renders the Hawking flux practically impossible to measure, due to the
difference between an astrophysical-black hole temperature and the enviromental
one. If the enviroment and the radiation are of the same order, then experiments
are possible.

BECs have been proposed as a possible way towards analogue Hawking radiation
in the early 2000s [62, 63] and they are still today one of the most studied systems
for simulating quantum fields in curved spacetimes.

3.2.1 Quantum fields from BECs: a proxy for Lorentz vio-
lation

Let us take a diluted gas of bosons, described by a bosonic quantum field Ψ̂, obeying
the following equation of motion [59, 63, 64]

iℏ∂tΨ̂ =

[
− ℏ2

2m
∇2 + V (x) + gΨ̂†Ψ̂

]
Ψ̂ , (3.12)

wherem is the atomic mass, g is the effective coupling and V is an external potential.
The ground state of the field Ψ̂ describes a condensate. So, if Ψ0 = ⟨Ψ̂⟩ is the
expectation value of the field operator, the condensate is defined as a solution of the
Gross-Pitaevskii equation:

iℏ∂tΨ0 =

[
− ℏ2

2m
∇2 + V (x) + gρ0

]
Ψ0 , (3.13)

with ρ0 = |Ψ0|2 being the particle density. Within the so-called Madelung represen-
tation, we can write the wave function for the ground state as:

Ψ0 =
√
ρ0e
−iθ/ℏ (3.14)
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with θ being the function defining the phase. The background velocity will be given
by [59]

v =
∇θ
m

. (3.15)

QFT arises once one considers a perturbative treatment of Ψ̂ around its expectation
value Ψ0:

ψ̂ =
Ψ̂−Ψ0

Ψ0

. (3.16)

The linearization of equation (3.12) in terms of ψ̂ returns the Bogolyubov-de Gennes
equation

iℏ∂tψ̂ =

[
− ℏ2

2mρ0
∇ · (ρ0∇)− iℏv · ∇+mc2s

]
ψ̂ +mc2sψ̂

† , (3.17)

where cs =
√
gρ0/m is the speed of sound. This equation couples ψ̂ and ψ̂† and

contains only first derivatives apart from the first term on the right-hand-side. One
can go to Fourier space, defining

Ωψ̂ = iℏ∂tψ̂ , kψ̂ = iℏ∇ψ̂ (3.18)

and, combining (3.17) with its complex conjugate, one obtains that ψ̂ behaves as a
particle obeying a supersonic dispersion relation in the eikonal approximation (see
[59] for details):

(Ω− v · k)2 = ω(k)2 = c2sk
2

(
1 +

c2sk
2

Λ2

)
, (3.19)

where Λ = 2mc2s/ℏ is called “healing frequency”. Equation (3.19) describes a modi-
fied dispersion relation (MDR) for a fluctuation of the bosonic field Ψ̂, moving onto
a geometric background of the type (3.4) with flow velocity v and speed of sound
cs.

Within the background geometry, that dispersion relation describes an example
of Lorentz-violating behaviour. The sound-relativistic behaviour is recovered at low
frequencies (k2 ≪ Λ2), while at high frequencies the behaviour resembles the one of
an individual gas particle, for which ω = ℏ2k2/(2m).

Let us point out that (3.19) highlights the role of the two frames described in
section 3.1.2. Here the energy Ω is the energy defined with respect to the laboratory
frame, while the combination

ω = Ω− k · v (3.20)

represents the energy defined with respect to the preferred frame u given in (3.11).
We can immediately see that the form of the dispersion relation (3.19) takes a
particularly easy form only if expressed in the preferred frame.
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3.2.2 Analogue black hole radiation

The possibility to study quantum fluctuation onto a curved background allows the
investigation of radiative properties by black hole horizon. Hawking radiation seems
to be an extremely robust effect, both theoretically (see e.g. [58, 65–70]) and, most
importantly, at the experimental level, in the context of Bose-Einstein condensates
[71–74] (see also [75] for a review and other references).

The experimental approach is based on the analysis of the correlation function
between the Hawking quanta and its partner. In gravitational physics, the region
inside the horizon is not accessible, while in analogue models one has complete
control on the whole system, thus making possible to probe both the particles. The
evaluation of the correlation function between those two modes can be done in the
momentum space, thus giving the k-space correlation spectrum ⟨b̂k,HRb̂k,HP⟩1. This
quantity is linked to the Bogolyubov coefficients (2.12) through [71, 72]:

|⟨b̂k,HRb̂k,HP⟩|2 = |β|2k|α|2k (3.21)

where we have set

|β|2k =
∫

dk̄

2π
|βkk̄|2 , |α|2k =

∫
dk̄

2π
|αkk̄|2 . (3.22)

Employing the completeness relation 1 = |α|2k − |β|2k, one can deduce

|⟨b̂k,HRb̂k,HP⟩|2 = |β|2k(1 + |β|2k) (3.23)

and extract the shape of |β|2k. This approach is then strongly based on a Bogolyubov
analysis, which has been the main tool also at theoretical level.

Modified dispersion relations

Interestingly, the presence of modified dispersion in analogue system has been shown
to not drastically modify the effect of particle production by the horizon. This was
confirmed both at theoretical and at experimental levels [76–79]. Whenever the
surface gravity of the horizon κH is much smaller than the healing frequency κH ≪ Λ
the thermal spectrum, peaked at the Hawking temperature, is recovered [19].

However, the presence of dispersion, makes the sonic horizon not to represent
anymore a causal boundary (in the sense of the sonic causal cone). Therefore,
deviation from thermality is expected [80].

In this context, the Bogolyubov method, even if extremely useful in an exper-
imental setting, does not allow an easy analytical treatment. The analytical pro-
cedures developed in this regard [19] are technically quite involved and stop to the
0th order in the κH/Λ analysis.

On the other hand, the tunneling method presented in Chapter 2 has the advan-
tage to study the problem in a point particle picture, thus being technically very
affordable and does not require any notion of the asymptotics to be applied.

In the following section we aim to study the analogue Hawking effect in pres-
ence of dispersion, with the help of the tunneling picture. We will show that this

1where “HR” states for the Hawking quanta and “HP” for the partner
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derivation is able to capture the deviation from thermality induced by the disper-
sive character of the particles we will consider. This fact will lead to interesting
considerations.

3.3 Analogue Hawking radiation: tunneling par-

ticles with dispersion

Let us consider a (1+1)-dimensional stationary geometry, in which the background
acoustic metric is given by the line-element

ds2 = −dt2 + (dx− v(x)dt)2 = −(1− v2(x))dt2 − 2v(x)dxdt+ dx2 , (3.24)

which corresponds to (3.4), where the flow velocity is completely given by its x-
component and it does not depend on time. Additionally, we have set c2s = 1, in
order to further simplify the system.

It is possible to show that the sign of v(x) determines the nature of this space-
time. This line-element describes the Painlevé-Gullstrand coordinates of a sonic
black hole if v(x) ≤ 0 and of a sonic white hole if v(x) ≥ 0 [81]. In the following
we are going to focus on the former case. Hereinafter, we will omit to write the
x−dependence explicitly, unless necessary. Since the metric is stationary, it enjoys
the time translation invariance in the laboratory frame, given by χa∂a = ∂t.

The preferred frame (3.11) takes the form

ua∂a ≡ (∂t + v∂x) , sa∂a ≡ ∂x . (3.25)

Here, we introduced sa as the orthonormal vector to ua. The sonic horizon (3.2) of
this geometry is located at

|χ|2 = v2 − 1 = 0 . (3.26)

Let us emphasize that, depending on the value that v(x) assumes, this object
does/does not describe a sonic hole. In particular we will talk about supercriti-
cal flow if |v| > 1 in some region of the acoustic spacetime, instead we will name
subcritical the flow which never overcomes the speed of sound and as critical the
case at which supx |v(x)| = 1.

In the following discussion, we will focus in objects with at most a single horizon,
therefore, no particular restriction will be made on the profile of v(x) apart from
the request of being a monotonous function everywhere.

3.3.1 Particles with MDR

In section 3.2.1 we have seen that quantum perturbation can arise with MDRs. Here
we will not specify the microscopic model that originate the dispersion, but, keeping
in mind the BEC case, we will generically consider a scalar perturbation ϕ living on
this geometry and obeying a generic field equation with dispersion [82]:

−(∂t + ∂xv)(∂t + v∂x)ϕ+ F (∂2x,Λ)ϕ = 0. (3.27)
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The function F is in principle free and it is the origin of the dispersion in our simple
model. However, in order to detect the effects of dispersion, we will consider F to
be expanded in powers of ∂x/Λ, being Λ the cut-off energy scale. Taking the first
nonrelativistic correction, we generically can write:(

□+ ξ
∆2

Λ2

)
ϕ = 0 . (3.28)

Here ∆ = (gab + uaub)∇a∇b is a purely spatial operator in the preferred frame
provided via the flow four-velocity ua. The parameter ξ = ±1 – which can be
always set to |ξ| = 1 up to a rescaling of Λ – determines the sign of the higher
derivative operators. Let us stress that different analogue systems predict different
values for such parameters [76, 78].

In what follows, we shall call the dispersion relations with ξ = ±1 superluminal
(upper sign) and subluminal (lower sign) respectively, as they correspond to cases
for which the group velocity of perturbations is always larger/smaller than the speed
of sound.

WKB ansatz

As required by the tunneling treatment, we need to provide a particle interpretation
to the field ϕ. To this aim, we adopt a WKB approximation (2.45)

ϕ = ϕ0e
iS and ka = −∂aS (3.29)

where ϕ0 is a slowly varying amplitude and S is a phase that represents the point-
particle action.

The constant phase contours of ϕ yield the trajectory of the associated ray.
Introducing the four-momentum ka enables us to rewrite the field equation as a
dispersion relation for a point particle, at the leading order in the WKB formalism

ω2 =

(
k2 + ξ

k4

Λ2

)
. (3.30)

The relation for ω(k) given in (3.30) has been written in the preferred frame, such
that ω = kau

a becomes the preferred notion of energy and k = kas
a the preferred

(spatial) momentum. For ξ = 1 this coincides exactly with (3.19).
Due to the stationarity of our flow, the system provides a notion of Killing energy

Ω = kaχ
a for the particle. This can be linked to the preferred frame’s energy ω in

the very simple way, analogously to what we did in (3.19)2

Ω = ω − vk . (3.31)

Since Ω is associated to a translational symmetry, the idea is to find mode solutions
ϕΩ of (3.30) at fixed Killing energy, which can be proven to be a conserved quantity
even for MDR [83]. This, together with the dependence of our modified dispersion
relation on Λ, strongly suggest the introduction of a dimensionless parameter

α ≡ Ω/Λ (3.32)

2Note that here we have defined k with the opposite sign
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that controls the deviations from the relativistic behaviour – recovered in the limit
α → 0 (Λ → ∞). We will see the importance of this parameter every time a
modification to the relativistic dispersion relation arises.

Characteristics and turning point

In order to deal with a point particle we shall consider a superposition of monochro-
matic modes ϕΩ, peaked around some energy Ω, which trajectory is identified with
the group velocity cg:

cg =
∂ω

∂k
=
k

ω

(
1 + 2ξ

k2

Λ2

)
. (3.33)

Let us point out that, as anticipated, from the above expression follows immediately
that for any k one has |cg| ≥ 1 for ξ > 0 and |cg| ≤ 1 for ξ < 0. The corresponding
trajectory is locally given by

(cgua + sa)dx
a = 0 ⇐⇒ dt

dx
=

1

cg + v
, (3.34)

where the dual vectors ua = (−1, 0) and sa = (−v, 1) are deduced from (3.25). The
above expression also implies that the action for such point particle will take the
form

S = −Ω
∫

(cgua + sa)

(cgut + st)
dxa = −Ω

(
t+

∫
dx

cg + v

)
(3.35)

The last expression can be formally integrated, to obtain the shape of the trajectory
t(x, α) in the (x, t)-plane, which, as we shall see, is a function that depends on the
Killing energy of the particle through α. For a relativistic particle, cg = ±1 which
exhibits that (3.34) describes an everywhere regular, ingoing mode as well as an
outgoing mode with a simple pole at the Killing horizon, where 1 + v = 0.

However, for modified dispersion relations the solution space is larger [38]: analysing
(3.30), while keeping Ω fixed, amounts to solving a 4th order algebraic equation.
Nonetheless, the number of solutions at any given point x is not always the same,
and in particular it depends on the norm of the Killing vector. This becomes clear
when plugging equation (3.31) into the dispersion relation (3.30) so to obtain

ξ
k4

Λ2
−
(
v2 − 1

)
k2 − 2vΩk − Ω2 = 0 . (3.36)

Let us consider a supercritical flow describing a black hole, so that v(x) < 0
everywhere and the black hole region defined by |v| > 1. We find that all the
coefficients in front of the various kn-terms are of fixed-sign, with the exception of
the coefficient in front of k2. This particular one is proportional to |χ|2 and thus
changes sign at the Killing horizon. Therefore, there will always be a region of
spacetime with four real solutions for k and another one where this number reduces
to two.

The boundary between these two regions depends on the energy and is located at
the point xtp(α) (with TP standing for “turning point”) where two out of the four
solutions become degenerate. In terms of trajectories, this represents two smoothly
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merging trajectories at xtp(α). The name turning point can be understood graphi-
cally in the (t, x)-plane. The curves at the meeting point can always be interpreted
as two branches of a single trajectory that, in the (t, x)-plane, turns back at xtp(α).
Additionally, the position of xtp(α) depends crucially on the sign of ξ. In the super-
luminal case, xtp(α) can always be found inside the horizon, where |χ|2 > 0, while in
the subluminal case xtp(α) lies outside. This follows directly from the discriminant
of (3.36). The shape of the trajectories is sketched for both cases in figure 3.1.

t

v

ξ = − 1 (subluminal case)

t

v

ξ = 1 (superluminal case)

Figure 3.1: Example of the four different solution of (3.36) at fixed Ω. The horizontal
axis shows v, without specifying any profile v(x) yet. The dashed black vertical line
is the Killing horizon v = −1 in both figures. In all plots, we have taken α = 0.02
for each ray. Left panel: subluminal case (ξ = −1); we see that the turning point,
where the dashed and the solid orange lines meet, lies outside the Killing horizon.
Right panel: superluminal case (ξ = 1) for which we find turning point to be inside
the Killing horizon. Both cases share a regular mode (in blue) which travels inwards
and a mode (in red) which lingers at the horizon. The latter changes its direction
depending on the sign of ξ, while the blue one remains qualitatively unchanged.

In the limit for which α→ 0 (Λ→∞), the sub- and superluminal cases degener-
ate and we recover the relativistic behaviour, that is, two of the four solutions cease
to exist, leaving us only with the upper branch of the turning mode (the dashed
part of figure 3.1), on one side of the Killing horizon, and with half of the lingering
mode on the other side. These two represent the usual outgoing-ingoing relativistic
particles (the would-be Hawking pairs) that peel infinitely at the horizon.

3.3.2 Mimicking an horizon: the approximant

Technically speaking, the application of the tunneling method requires the presence
of a simple pole in the particle action S. This is clear from the definition of the rate
(2.49), which needs the action to enjoy an imaginary part. The only way to have
a nonvanishing imaginary part in the real axis is then to have a divergence with
nonzero residue, i.e. a simple pole.

However, in a non relativistic scenario, nothing comparable will ever occur, given
that the modified dispersion relation, never produces an exact peeling (see the quali-
tative difference between figures 3.1 and 2.2) and therefore the particle trajectories
at the Killing horizon remain analytic. In turn, one would expect an absence of
Hawking radiation in this settings – or at the least that this effect cannot be de-
scribed via the tunneling method. On the other hand, we know that that Hawking
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effect must be there also with MDRs and that the tunneling method fits its descrip-
tion in the relativistic limit. Therefore, there must be a way to implement that
technique to recover the horizon radiation, at least perturbatively around α = 0.

Actually, in a naive α-expansion of the group velocity

cg = 1 + δcg(x, α) + . . . , (3.37)

with |δcg(x, α)| ≪ 1, one can compute the correction to the tunneling rate. In the
case of a dispersion relation like (3.30), the correction assumes the form δcg(x, α) =
α2f(x), with f(x) depending on the geometry and on the sign of ξ. Hence

dt

dx
=

1

cg + v
=

1

1 + v
− α2f(x)

(1 + v)2
+ · · · , (3.38)

that causes a non-zero contribution when plugged into Im(S) as in equation (2.49),
thus giving a non-trivial tunneling amplitude

Γ = e−Ω/T (α) . (3.39)

The associated “effective temperature” T (α) (as it stems per se from an approxi-
mated trajectory) will then receive corrections of order α2. This will be given by
the residue of the correction

T (α) =
κkh
2π

[
1 + α2Res

(
f(x)

(1 + v(x))2
, xKH

)
+ · · ·

]
, (3.40)

that coincides with TH for α → 0+. Let us emphasize that the tunneling calcu-
lations is sensitive only to the logarithmic divergence of the point-particle action
(i.e. the residue of (3.34)). Higher-order poles may appear, but they give only real
contributions to S (see, cf. [84, 85]) and do not play any role in the tunneling rate
Γ.

This is an example about how to capture the correction to the thermal behaviour,
for α ≪ 1. Those correction, makes T (α) not to be energy-independent, thus
represents a deviation from thermality. Those deviations, as we shall see, are anyway
very mild since they arise at the next-to-leading order in the perturbative parameter
α.

The perturbative analysis for small α tells us something about the capability
of the tunneling method to capture the dispersive character of the perturbation.
However, this treatment can be improved, going beyond such an approximation.
Let us see how.

Approximating the modes: outside the horizon

From the perturbative analysis, it becomes clear that the main protagonists in this
computation are given by the upper branch of the turning mode and the lingering
mode. These two branches are the only ones, together with the ingoing mode, that
can reach the region |v| ≪ 1. Quite interestingly, we can show that their lower
branches are never defined in v = 0 (which is the asymptotically flat region of
(3.24)). In fact, setting v = 0 in (3.31) and (3.30), we get:

ω = Ω+O(v) , Ω2 = k2 + ξ
k4

Λ2
+O(v) . (3.41)
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Since for v = 0 the dispersion relation becomes an equation for k2 we obtain only two
real solutions with opposite signs that we name k±0 (Ω), with k

+
0 = −k−0 . Only these

solutions will reach the v = 0 line for both superluminal and subluminal dispersion
relations.

Specifically, with reference to figure 3.1, such solutions describe either the regular
ingoing mode and the upper branch of the turning mode for the subluminal disper-
sion relation, or the regular ingoing one and the outside branch of the lingering one
for the superluminal case.

In the superluminal case, it is clear from (3.36) that more than two real solution
for k are allowed only inside the Killing horizon, thus the lower branches of the
turning and lingering mode do not exist outside.

For what regards subluminal dispersion relations, in principle, (3.36) would tell
us that these lower branches stays outside of the horizon. This is true, however we
do not see it in equation (3.41). This can be explained by the fact that k does not
share a smooth behaviour – for which the only two solution are given by (3.41) –
on the lower branches while approaching v → 0−. In other words, k diverges as v
decreases in modulus. However, k has a cutoff given by the dispersion relation (3.30):
when k2 > Λ2, the preferred energy ω becomes imaginary and no real solution of
the equations for the trajectories exists anymore.

Therefore, the asymptotic solutions outside the horizon can be described as fol-
lows: naming the three group velocities associated to the regular ingoing, turning
and lingering modes respectively cregg , cturng and clingg , we find at v = 0 that

cregg =

{
−cturng if ξ = −1
−clingg if ξ = 1

. (3.42)

In both, the subluminal and the superluminal case, −cregg describes the trajectory
of our Hawking quanta in the |v| ≪ 1 region. Looking back at (3.41), we can easily
see that this approximation, which is exact at v = 0, can be extended beyond this
region, and is valid whenever Ω≫ kv, thus

v2 ≪ 1 +
√

1 + 4ξα2

2
. (3.43)

Inside the horizon

Let us now assume that for some intermediate value of x our flow admits an unique
acoustic horizon. Inside the latter, the asymptotic region will be described by the
regime |v| ≫ 1. If we solve (3.36) in this limit, we have again two solutions with
opposite group velocities such that

k∞ = − Ω

v + 1
, ω±∞ = ± Ω

v + 1
. (3.44)

These two solution are as well associated to the regular mode and to the Hawking
partner of figure 3.1. For the choice ξ = 1 the latter is represented by the upper
branch of the turning mode, while for ξ = −1 this role is taken by the lingering
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mode. In summary, at the leading order we have

cregg =

{
−cturng if ξ = 1

−clingg if ξ = −1
(3.45)

Again, looking at equations (3.30) and (3.31) one can realize that the above approx-
imation is still valid whenever k2 ≪ Λ2 which translates into the following condition
for the flow velocity.

(v + 1)2 ≫ α2 . (3.46)

The approximant trajectory

Putting all of the previous analysis together, we realise that (3.42) and (3.45) tell us
that the trajectory defined through −cregg describes always the modes associated to
the “effective Hawking pair” in both the regions |v| ≪ 1 and |v| ≫ 1, independently
from the nature of the dispersion relation. In other words, this path effectively
interpolates between these two different solutions. Hence, we call such an effective
trajectory the “approximant”.

We shall return to this later when we assert the range of validity of such an
approximation as well as the question why it is sufficient to reproduce the Hawking
radiation derived via a full Bogoliubov approach. For the moment let us see how
the adoption of the approximant as a proxy for the trajectory of the Hawking pairs
enables the emergence of a simple pole structure. Figure 3.2 provides a plot of this
trajectory for both subcritical and supercritical flows and shows clearly the capacity
of the approximant to uncover the presence of the effective horizon experienced
by the modes associated to the Hawking process. Consequently, we can apply the
tunneling method even though α is not perturbatively close to zero.

t

v

ξ = − 1 (subluminal case)

v(xEFH) t

v

v(xEFH)

ξ = 1 (superluminal case)

Figure 3.2: Approximant trajectory (dashed blue) versus actual solutions. The
dashed trajectories mimic the branches responsible for the particle production in
the subluminal (left) and superluminal (right) case asymptotically. Here again α =
2× 10−2. The dashed black vertical line is the point where the approximant peels,
i.e. the effective horizon v(xEFH).

3.3.3 Tunneling the approximant

Let us now apply the ideas from the previous section to the calculation of the
tunneling rate. To do so, we consider modes with energies Ω = αΛ, such that the
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trajectories of the Hawking partners are effectively estimated by our approximant. In
particular, we take the outgoing ray to travel with speed −cregg (x, α) in the preferred
frame. For this trajectory we find

dt

dx
=

1

−cregg + v
. (3.47)

The position of the simple pole associated to this expression localises xefh(α) of the
“effective horizon (EFH)” for a particle of energy α, so that

cregg (xefh, α) = v(xefh) . (3.48)

Please note, that the solution of this equation depends on α, on the range of values of
v(x), and on ξ. If a solution to (3.48) exists, it will allow us to define the trajectory
outside of the EFH as

t(x) =
1

v′(xefh)(1− ∂vcregg )|efh
ln[x− xefh(α)] . (3.49)

In analogy to our calculations in (2.49), we use (3.49) to calculate the tunneling rate
as

Γ = exp

[
− Ω

T (α)

]
where T (α) =

v′(xefh)(1− ∂vcregg )|efh
2π

≡ κ(α)

2π
, (3.50)

where we have defined κ(α) as the peeling factor of the EFH and T (α) as the
associated “effective temperature”. Let us stress that, despite the name, T (α) is
energy dependent, and so the rate Γ cannot be considered as a true Boltzmann
factor; thus the emission is not purely thermal.

3.4 Application: subcritical vs supercritical flows

After this general treatment, we are going to discuss next the tunneling rate of our
effective trajectory. In doing so, we address the subluminal and superluminal dis-
persion relations individually and specifically distinguish further between subcritical
(|v| < 1, without a horizon) and supercritical (with a horizon) flow (in doing so we
also comment on the critical flow). As we shall see soon, the resulting cases have
remarkable similarities but also striking differences.

3.4.1 Particle production with an horizon: supercritical flows

Our starting point will be the supercritical flow, that is to say, the permitted range
for v(x) supports the presence of a horizon, i.e. |v(x)| > 1 for some x. For now, we
keep our treatment as general as possible without particularising to a specific profile
for v(x). We demand:

• v(x) to be monotonous to avoid inner Killing horizons (namely, v(x) = −1 has
a single root)

• v → 0 for x→ −∞, so that we have an asymptotically flat region
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• conditions (3.43) and (3.46) hold almost everywhere apart from a small region
around the effective horizon (we shall analyze this point later on)

A typical example of such flow is the one considered in [86]

v(x) = tanh(κkhx)− 1 . (3.51)

This profile interpolates between v(−∞) := v−∞ = −2 and v(∞) := v∞ = 0 while
the Killing horizon is located at xkh = 0, such that κkh = v′(xkh) denotes the
horizon’s surface gravity. As long as the surface gravity – the profile steepness at
the KH – is large, the region around the horizon, where the approximant will deviate
from the real trajectory of the Hawking pair, will be small.

v(x)
x

Figure 3.3: Supercritical velocity profile (3.51) for a left-going flow with one subsonic
region (x > 0) and one supersonic region (x < 0). The dashed line marks the location
of the sonic/Killing horizon, for which xkh = 0 and v(xkh) = −1.

As a general feature, the supercritical flow connects our calculation with the
relativistic limit in both, the subluminal and in the superluminal case, because the
particle production for relativistic fields happens only in the presence of a horizon.
As already mentioned, the relativistic behaviour appears when the higher order of
the dispersion relation can be neglected, or, in other words, when α → 0. Fur-
thermore, when the lowest order corrections in α ≪ 1 are taken into account we
saw from (3.40) how the relativistic Hawking temperature gets generically corrected.
Now we explore such corrections for our specific dispersion relation and flow further;
in doing so, we extend our investigation to a broader range of α.

Superluminal behaviour

If we choose ξ = 1 in (3.30), we will get |cregg | ≥ 1 everywhere. Hence, in this case,
the solutions of (3.48) must always be located inside the Killing horizon (i.e. for
negative x), where v ≤ −1 (with the equality valid for α = 0).

Nominally, the allowed range for α spans from α = 0, solving cregg = −1 up to
α = αmax, which is when the group velocity reaches the lower bound of v(x), namely,
cregg = v−∞. In the case at hand, that is, v−∞ = −2, we find αmax ≃ 3. This is clearly
in conflict with the effective meaning given to (3.30). Hence, we limit ourselves to
values of α ≤ 0.5. In the left panel of figure 3.4, we show the location of the effective
horizon, determined numerically by equation (3.48), for different values of α within
the allowed range.
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Similarly, once we know the shape of xefh(α), one can evaluate κ(α) via equation
(3.50) and contrast it with κkh of (3.51). The ratio κ(α)/κkh is plotted in the left
panel of figure 3.4: its deviation from unity and constancy can be taken as a measure
of the deviation from thermality induced by the dispersive behaviour. As we can see,
in agreement with the previous studies, the Hawking effect displays a remarkable
robustness given that values of α of order or larger than 0.1 would have to be
considered already in the far UV, as they corresponds to energies close to the cut-off
Λ.

xEFH(α)
α

0.1 0.2 0.3 0.4 0.5

-0.08

-0.06

-0.04

-0.02

κ(α)
κKH
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0.0 0.1 0.2 0.3 0.4 0.5

0.96
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Figure 3.4: On the left: shape of xefh(α) for the profile (3.51) up to α = 1/2. On
the right: shape of the ratio κ(α)/κkh. We see that, since |xefh(α)| ≥ |xkh|, so the
EFH is inside the KH, the temperature of it appears to be slightly hotter than TH
at low α and then showing a O(5%) deviation from thermality for α ∼ 0.5

Low-energy regime Here, we connect our result with the general formula pro-
vided in Eq. (3.40), by focusing on the low energy regime where an analytical treat-
ment is possible. Let us start by solving (3.48) perturbatively in α, one obtains

v(xefh(α)) = −1−
3

8
α2 +O(α3) , (3.52)

or, if (3.51) is taken into account

xefh(α) = −
3α2

8κkh
+O(α3) . (3.53)

In both cases we find xefh to be perturbatively close to xkh with corrections starting
at O(α2). As already mentioned, for the superluminal case |xefh| > |xkh|. Given
(3.52), we can compute the correction to κ(α). Since

1− ∂vcregg = 1 +
3

8
α2 +O(α3) , and v′(xefh) = κkh +O(α4) , (3.54)

we get

κ(α) = κkh

(
1 +

3

8
α2

)
+O(α3) . (3.55)

So, the first correction arises at order O(α2), reproducing what we have found in
(3.40). This highlights how the emission still remains quasi-thermal for low-energy
particles.
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Subluminal behaviour

For what regards the subluminal case, ξ = −1, we have |cregg | ≤ 1 always, as such,
(3.48) admits possible solutions only outside the Killing horizon – i.e. for positive x
– where |v| ≤ 1. Again, the equality is valid for α = 0, but for values close to this
minimum, perturbative analysis around the Killing horizon can be safely performed.
For what concerns the upper bound in the α-range we can scrutinise (3.36) evaluated
at v = 0. The solutions are given by (3.41) with ξ = −1. As anticipated, we find real
solutions exclusively for α ≤ 1/2. Once again, we compute the position of xefh(α)
as well as the value of the ratio κ(α)/κkh numerically so to test the robustness of
Hawking radiation. The results are collected in figure 3.5 for the allowed range.
We can see again that for α ≪ 0.1 the spectrum is basically thermal with small
deviations from the relativistic result.

xEFH(α)

α
0.1 0.2 0.3 0.4 0.5
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Figure 3.5: On the left: shape of xefh(α) for the profile (3.51) up to α = 1/2. On
the right: shape of the ratio κ(α)/κkh. We see that, since |xefh(α)| ≤ |xkh|, the
effective horizon is inside the Killing one, the temperature of it being slightly colder
than TH at low α and then showing a O(10%) deviation from thermality for α ≳ 0.4.

Low energy regime Similarly to the treatment in previous section, we can now
analyze the low-energy regime for the subluminal case. Effectively the calculations
change only for the sign of ξ, hence we find

v(xefh(α)) = −1 +
3

8
α2 +O(α3) , (3.56)

suggesting an effective horizon that lies outside the Killing horizon. Recalling the
velocity profile (3.51) we get

xefh(α) =
3α2

8κkh
+O(α3) . (3.57)

which consequently leads to

κ(α) = κkh

(
1− 3

8
α2

)
+O(α3) . (3.58)

showing a similar correction but with the opposite sign with respect to the superlumi-
nal case. Once again, we discover that the low-energy regime admits a quasi-thermal
behaviour, as expected.
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3.4.2 Extremal case: critical flow

This section discusses a second possible regime for the fluid velocity: the critical
flow for which v−∞ = −1 and |v| < 1 otherwise. An exemplary profile could be

v(x) =
1

2
[tanh(κ◦x)− 1] , (3.59)

which we plot in figure 3.6. Note, κ◦ is a fiducial scale to compensate the dimension
of x.

v(x)
x

Figure 3.6: Critical velocity profile (3.51) for a left-going flow with one subsonic
region (x > −∞) and one sonic point at (xkh = −∞). The dashed line marks the
location of the sonic/Killing extremal horizon, for which xkh = −∞ and v(xkh) = 0.

Here, the Killing horizon moved to xkh = −∞ where the surface gravity vanishes
κkh = v′−∞ = 0, thus reproducing the behaviour of an extremal analogue black hole.
The analysis of (3.48) can be split into various cases based on the type of dispersion
relation as follows:

• superluminal case: the only solution to (3.48) is found for α → 0. However,
since v′∞ = 0, κ(α) = 0 and no particle production takes place, whatsoever.

• subluminal case: we instead solve (3.48) for 0 ≤ α ≤ 1/2 and numerically
compute xefh(α) and κ(α) (see figure 3.7).
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0.1 0.2 0.3 0.4 0.5

-5

-4

-3

-2

-1

κ(α)

α
0.0 0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15

0.20

Figure 3.7: On the left: shape of xEH(α) for the profile (3.59) up to α = 1/2. One
can see that xefh → −∞ when α→ 0. On the right: shape of the ratio κ(α). This
quantity goes to 0 (which is the relativistic value) for very low energies but it still
shows some nonzero value for α > 0.
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Interestingly, the subluminal case still supports particle production processes even
when the relativistic mechanism has ceased. Let us point out that both setups,
subluminal and superluminal, resonate with what we have found in the perturbative
analysis of (3.55) and (3.58) around α = 0 which returned κ(α) = O(α3).

3.4.3 Particle production without an horizon: subcritical
flows

Now, we complete our analysis by investigating a subcritical flow for which |v| < 1
besides |vmax| ∼ O(1). Then, no sonic horizon exists, hence such a flow mimics
a very compact star rather than a black hole, cf. [87, 88] for further references.
This is a quite interesting case, given that experimental problems in shallow water
waves experiments concerning the stability of horizons led to the prevalent realisa-
tion of such “near-critical” flows [74, 77, 89, 90]. Experiments that nonetheless
observed particle production. This led to several numerical [91, 92] and analytical
investigations [76] which verified the presence of a particle flux albeit generically
characterised by substantial deviations from thermality.

Here we shall re-analyze this phenomenon using the tunneling method with the
above introduced approximant trajectory. Doing so we shall recover the qualitative
behaviour of the aforementioned results and at the same time clarify the basic physics
behind this “at first sight puzzling” particle production. Let us start with the EFH
condition (3.48).

• superluminal dispersion relation (ξ = 1): particles fail to see any effective
horizon, in fact, (3.48) can never be fulfilled, since |cregg | ≥ 1 always and
|v| < 1 everywhere,

• subluminal dispersion relation (ξ = −1): |cregg | ≤ 1 always, hence, there can
be solutions of (3.48), even if |v| < 1 everywhere.

Before particularising to a specific profile of v(x), we quantify first how far from
the sonic point v = −1 can the flow most negative value be so to still admit some
solution to (3.48) for our subluminal dispersion relation. Within our setting this
yields numerically the upper bound (namely, the solution of (3.48) for α = 1/2)

vmin ≃ −0.88 . (3.60)

For flows for which the maximally negative value remains smaller in norm than this
|vmin| there cannot be any particle production, at least within the here considered
formalism. Actually, particle creation will take place for a subluminal dispersion
relation only if |v−∞| > |vmin|. Indeed, the set of solutions to (3.48) is consequently
limited to the range of x in which |v−∞| ≥ |v| ≥ |vmin| instead of 1 > |v| > |vmin|.

In order to proceed further in our investigation, let us now assume a velocity
profile of the form

vε(x) =
1

2 + ε
[tanh(κ◦x)− 1] , (3.61)

where ε > 0 and κ◦ is again a fiducial scale to compensate the dimension of x. Note,
(3.61) shows a similar shape than the critical one shown in Figure 3.7, however
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v(x)
x

Figure 3.8: Profile for vε(x) of eq. (3.61) with ε = 5 × 10−2. The dashed line
represents v(x) = −1.

|v−∞| < 1. Indeed, we have

lim
x→−∞

vε(x) = −
2

2 + ε
> −1 . (3.62)

In order to achieve somewhere |v| > |vmin|, we need ε ≤ 0.27. In figure 3.9 we have
plotted κ(α) for different values of ε.
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Figure 3.9: κ(α) for different values of ε: increasing ε reduces the range of α for which
(3.48) has a solution. Moreover, κ(α) starts from 0 with a nonvanishing derivative
(apart from the critical case ε = 0) which implies a deviation from thermality in the
emission that will be the topic of the last section

As a final remark, we stress that the presence of particle production in absence
of a Killing horizon has been noticed also in the “dual” case for which the flow is
everywhere supercritical and the dispersion relation is superluminal [79]. Remark-
ably, it is easy to see that within our framework, this case is analogous to the just
considered subluminal-subcritical case.

Indeed, for |v| > 1 everywhere, one still obtains roots for (3.48) only when ξ = 1
and, if the flow is not “too much” supercritical (a dual condition of that implied by
Eq. (3.60)), this effect can be detected in the range α ≤ 0.5, obtaining a behaviour
which resembles closely the one found in figure 3.9 for subluminal-subcritical case.
This correspondence in behaviour is indeed just another manifestation of the dual-
ity between supercritical-superluminal and subcritical-subluminal settings already
noticed in previous analogue gravity investigations.
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3.5 Analogue tunneling: phenomenological con-

siderations

With the light shed by our tunneling calculations, we can now move to some less
technical considerations, which will help us to provide a complete and comprehensive
picture of our results.

3.5.1 Deviation from thermality

The first question addresses the problem whether the predicted particle production
leads to a thermal – or approximately thermal – spectrum or not. To answer this,
we define the quantity

δ(α) =

∣∣∣∣∂ακ(α)κ(α)

∣∣∣∣ . (3.63)

Whenever δ(α) ≪ 1, the change in κ(α) remains negligible with respect to κ(α)
itself; therefore the emission will be considered as thermal.

Supercritical flow

For the supercritical regime, we can see, from (3.58) and (3.55) that within the low
energy region, the surface gravity behaves as

κ(α) = κkh +O(α2) and ∂ακ(α) =
3

4
ξακkh +O(α3) . (3.64)

As a consequence, for α ≃ 0, δ(α) = O(α) implying that the emitted spectrum
shows perturbatively thermal features. This can be also extracted from figure 3.10.
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Figure 3.10: Deviation from thermatity in a supercritical flow. On the left: δ(α) for
the subluminal case. On the right: δ(α) for the superluminal case. The dashed line
is f(α) = 0.1.

Subcritical flow

While we perturbatively recover thermality in the supercritical case, we see that a
subcritical (and subluminal) setup displays the complete opposite behaviour. Albeit
having generically ∂ακ(α) ̸= 0 for α ̸= 0, we find that κ(α) = 0 at the minimum
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value of the subcritical profile v = −2/(2 + ε). This, in turn, means that δ(α)
diverges, thus maximising the deviation from thermality. This should come as no
surprise given the essential role of the presence of a Killing/sonic horizon to which
the EFH has to be close, in order to assure the approximate constancy of T (α).

3.5.2 Spectrum

Whether or not thermal, the emission spectrum is determined by the tunneling rate
(3.50). In figure 3.11, we plotted Γ for the supercritical regime, while the subcritical
case (subluminal dispersion relation) is shown in figure 3.12.
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Figure 3.11: Plot (the vertical axis is displayed in a logarithmic scaling) of Γ for
a supercritical flow. The dashed black line depicts the relativistic rate, while the
blue solid line represents the superluminal and the red the subluminal case. For
convenience, here we have set 2πΛ = 1, such that Γ = e−α/κ(α) and κkh = 1.
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Figure 3.12: Plot of Γ in the subluminal case for some values of ε. The case ε = 0
represents the critical regime. Again we have set 2πΛ = 1.

Comparing both spectra, we observe that Γ stays close to the relativistic tunnel-
ing rate – at low energies in the supercritical phase independently from the nature of
the dispersion relation. However, when increasing α, the subluminal as well as the
superluminal scenarios depart further and further from the relativistic behaviour,
describing respectively a colder and a hotter object, respectively.

Finally, let us stress that even if subluminal dispersion relations predict particle
production for super- as well as subcritical flows, it remains true that

|Γsubcrit| ≪ |Γsupercrit| . (3.65)
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I.e. even if subluminal dispersion allows for an in-principle particle production in
the absence of a Killing horizon, this effect is strongly suppressed with respect to
the particle production in the presence of an horizon.

3.5.3 Energy conservation: subcritical particle production

The particle creation found in section 3.4.3 confirms previous results based on Bo-
goliubov coefficients [76, 91, 92]. However, given that in stationary geometries the
spontaneous particle creation from the vacuum always requires the presence of an
ergoregion to ensure energy conservation, this result might seem puzzling at first
sight. Indeed, for this production to be consistent, the ingoing Hawking partner
must carry a negative Killing energy to compensate for the positive one carried to
infinity by the Hawking quantum. However, this can happen only within an ergore-
gion apparently absent in the considered subcritical flow. In what follows, we shall
explain how this apparent paradox is resolved by the peculiar nature of subluminal
dispersion relations.

Starting with Eq. (3.30), the requirement for the existence of a quantum with
Ω < 0 can be recast into the condition ω < kv (considering positive preferred
energies amounts to k < 0) which in turn means

0 > cph =
ω

k
> v , (3.66)

that is, the phase velocity’s absolute value must be smaller than the fluid velocity.
For superluminal dispersion relations this requires |v| > 1 which implies the

necessity of the presence of a Killing horizon. However, for subluminal dispersion
relations we can write

c2ph =
ω2

k2
= 1− k2

Λ2
< v2 . (3.67)

This inequality is satisfied whenever

Λ2 > k2 > Λ2(1− v2) , (3.68)

where the upper bound Λ2 > k2 was added to respect the perturbative interpretation
of the dispersion relation as well as to ensure ω2(k) ≥ 0. Equation (3.68) then
reveals an important feature: the energy balance can be satisfied in the subluminal
case regardless of the presence of any Killing horizon. In particular, if |vmax| is close
to the speed of sound, the window of opportunity described by (3.68) may allow for
the presence of an EFH for k < Λ. While for deeply subcritical flows, such window
rapidly closes and only for k ≃ Λ some mode can be excited3.

Let us notice that the possibility of having negative-energy modes only when
|v| > |cph| is an established, well-known fact, see cf. [93, 94].

3.5.4 Tunneling the approximant: validity of the calculation

As a last topic we would like to quantify the validity of our approximation. All
calculations are based on finding an approximant trajectory to our non-relativistic

3However, one should study the non-perturbative structure of the dispersion relation, to verify
the reasoning in such regimes.
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particle. Since this fiducial curve experiences an effective horizon, it allows us to
perform a tunneling calculation as it is associated with a simple pole which is instead
is absent in the true trajectory. Nonetheless our results confirm the expectations
based on the Bogoliubov methods. How can this be?

The crucial issue here is that the actual particle creation process does not happen
arbitrarily close to the horizon, but rather when the partners of the Hawking pair are
sufficiently stripped apart from tidal forces for them to be distinguishable “on-shell”
particles. Such critical distance is usually identified with the de Broglie wavelength
(or Compton, if they are massive) of the particles [51, 95, 96]. Thus, in turn, we
assume that if our process happens within a de Broglie wavelength, the calculation
can be considered as trustworthy.

In an analogue setting, the de Broglie wavelength of an acoustic excitation has
to be defined using the speed of sound cs explicitly [59]. After restoring all relevant
physical quantities, we can write

λs =
hcs
Ω

. (3.69)

The idea is the following: since λs denotes the characteristic distance between the
Hawking partners at which they go on-shell, we must require that the approximant
trajectory fails to mimic the physical trajectories only when these are separated by
a distance smaller than λs, in order for our method to apply. This is tantamount to
say that the physical trajectories and the approximant are indistinguishable from
the point of the particle creation process. In other words, if we define x1(α) as the
point where we violate (3.43) (the approximant fails to trace the ray outside the
effective horizon) and x2(α) as the point where (3.46) is violated (the approximant
digresses strongly from the inside ray), then their distance ∆x(α) has to be smaller
than λs:

|∆x(α)| = |x2(α)− x1(α)| ≤ λs =
hcs
αΛ

. (3.70)

Since (3.46) and (3.43) involve v(x), we have to specify a profile for the flow
velocity to determine actual values for ∆x. Let us then take the following profile

v(a, b;x) =
a

2
[tanh(bx)− 1] . (3.71)

controlled by the two parameters a and b which are associated to alternative features
of the flow:

• a = − limx→−∞ v(a, b;x) controls the lower limit of v and can be identified as
a = |v−∞|.

• b controls the slope, i.e. the bigger b is, the steeper v becomes in passing from
0 to −a.

This profile for v allows us to include all investigated cases in the discussion and,
given that we can invert the function

x(a, b; v) =
1

b
artanh

(
1 +

2v

a

)
, (3.72)

we can use it to study ∆x.
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Superluminal case

Taking ξ = 1, the effective horizon will always be located inside the Killing horizon,
as such we have to consider the case v ≤ −1 in condition (3.46)). So let us consider,
for a given α, the values of the flow velocity for which the conditions (3.43) and
(3.46) are saturated

v1(α) = −

√
1 +
√
1 + 4α2

2
, and v2(α) = −1− α . (3.73)

Then, after multiplying (3.70) by α and collecting the α-dependence, we can use
(3.72) to write

α ·∆x(α) = α

b

[
artanh

(
1 +

2

a
v2(α)

)
− artanh

(
1 +

2

a
v1(α)

)]
. (3.74)

Since we are in the superluminal case, particle production occurs only in the su-
percritical regime, namely for a ≥ 1. In general, the expression for α · ∆x(α) is
parametrically small, depending on the value of b as follows: if b increases, then
v will change rapidly in a very narrow region in x, such that the particles will be
produced in a small neighborhood around the Killing horizon. Note that b for a = 2
represents exactly the Killing surface gravity, as one can immediately see from (3.51).

At low energies, one can expand (3.74) for α ≃ 0+ obtaining

α ·∆x(α) = − aα2

2b(a− 1)
+O(α3), (3.75)

which reveals that (3.70) will be always satisfied at low energies for a > 1, indepen-
dently from the value of b. For a = 1, representing the critical behaviour for the
flow, (3.75) must be analyzed separately due to the obvious pole. If we set a = 1
and then expand for α ≃ 0,

α ·∆x(α) = − α
2b

ln
(α
2

)
+O(α2), (3.76)

which is again perturbatively small and satisfies the bound given by (3.70).
The only point where the approximation fails independently from b, occurs when

v is a slightly supercritical flow (a ≳ 1) such that we can have particle production
up to v−∞ for α ≤ 1/2. This happens only4 when

v2(α) = −a = v−∞ ⇐⇒ α = a− 1 . (3.77)

When (3.77) is fulfilled at a finite α ̸= 0, the product α · ∆x(α) diverges and we
cannot satisfy (3.70). This can be understood, simply because for α = a−1, particle
production should happen for velocities v−∞, viz. in the point x = −∞.

4Notice that |v2(α)| > |v1(α)|.
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Subluminal case

For the subluminal case the discussion resembles the previous one in most parts.
By setting ξ = −1 while considering that the effective horizon lies outside of the
Killing horizon, the breakdown of the approximation, outside and inside the EFH,
is destined to happen respectively at

v1(α) = −

√
1 +
√
1− 4α2

2
, and v2(α) = −1 + α , (3.78)

which yields an expression for α · ∆x(α) very close to (3.75). In general, this ex-
pression changes antiproportionally with b. At low energy, for a > 1 (supercritical
flow), we find again (3.75) while for the critical case a = 1 we recover (3.76). This
confirms that the low energy behaviour is well described by our approximant.

Again, here, we violate (3.70) when ∆x(α) diverges at a finite α, which is at

v2(α) = −a = v−∞ ⇐⇒ α = 1− a . (3.79)

This is possible only for the subcritical scenario, since α > 0. In this case, we
discover again that the approximation breaks down at x = −∞ when particles
fulfill α = a− 1, then our treatment becomes invalid.

Let us then summarise:

• our approximation is always valid for low energy particles, in the supercritical
and critical case, both for super- and subluminal perturbations and indepen-
dently of the model,

• for a generic value of α, the validity of the approximation depends strongly on
the model, namely, the energy scale Λ, the sound speed cs and the steepness
of the profile v(x), 5

• for a v(x)-profile of the tanh(x)-type, there exists an α for the supercritical
and superluminal case (α = a− 1) and one for the subcritical and subluminal
case (α = 1− a), for which our approximation fails.

3.6 Outlook

Let us conclude this Chapter giving an outlook on the found results. We have
discussed analogue models as a tool for investigating QFT in curved spacetime. In
particular, our focus has been devoted to the Hawking radiation.

Quantum fluids seem to provide a good playground where to probe quantum
effects on acoustic geometry. The case of BECs is quite instructive for us, because it
offers the possibility to analyze both the effect of the background geometry, together
with the possibility to understand the role of the dispersion in superluminal particles.
While in a gravitational setting, modified dispersions are allowed only if one invokes

5Recently, it has been shown that some polariton models can be engineered in order to tune
the steepness without changing the other parameters (such as the asymptotic behaviour of v(x)),
becoming a good place to test the calculations developed in this chapter [97]
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a Lotrentz violation mechanism, in analogue systems this is automatically built-in
in the properties of the background, as dispersion arises as soon as one studies the
behaviour of the quantum perturbations moving on a condensate.

Departing a bit from the standard techniques, we have investigated the problem
of Hawking radiation with dispersion with a tool that offer an intuitive description of
it: the tunneling method. This, which is a standard and well-established approach
in gravitational settings, has allowed us to explore several different scenarios that
may be prevalent in analogue set-ups. That was possible with the introduction of a
new concept, the approximant, that interpolates between the two Hawking partners
far from the effective horizon.

A first outcome is that, in presence of a sonic horizon, the particle production
phenomenon is mainly driven by the standard Hawking effect. Deviations from
thermality are there, but they are very mild in the low energy regime: that conclusion
confirms once again the robustness of Hawking radiation against the breakdown of
Lorentz symmetry.

Secondly, we have analyzed the possibility for an horizonless geometry, to un-
dergo such a phenomenon. We have shown that subluminal particles are emitted
also from slightly subcritical case (or very compact objects, from the gravitational
viewpoint). This emission is purely non-thermal and it is very suppressed compared
with its counterpart in a geometry with an acoustic horizon. This fact, which has
previously been noticed in the literature, shows that an horizon works like an anchor
for particle production, driving the main part of the emission (i.e. the low energy
part of the spectrum).

The quality of the calculation is analyzed and reveals that the approximant is a
good tool for computing the production of particles both for low-energy particles and
for steep flows. This is given by invoking the Heisenberg indetermination principle
and considering produced particles to go on-shell (so to be effectively produced)
when their distance is bigger that their de-Broglie wavelength. If the production
happen when the two are too close to each other, they cannot be distinguished at
the quantum mechanical level.

This last observation gives also an insights about the trans-Planckian problem,
since the very same reasoning – which is necessary in the case of MDRs in order to
apply the tunneling procedure – can be applied to relativistic dispersions. One may
consider the ray tracing of the particle just a mathematical tool: the production
of particles physically happens at a finite distance (within which only a quantum
soup exists, maybe exiting our QFT-in-curved-spacetime approximation) and no
trans-Planckian frequencies can ever be really reached.

A last comment is reserved to the quantum state. We have shown, that the
tunneling rate describes a temperature, once the vacuum for the infalling observer
is imposed at the horizon (see section 2.3). Throughout the whole discussion –
helped by the fact that our metric (3.24) enjoys an asymptotically flat region for
v = 0 – we have implicitly considered the local vacuum at the EFH in a similar
way. However, this requirement is not motivated by anything, if not the analogy
with the relativistic case. One can assume that, for supercritical flow, the formation
of an horizon will make the system to collapse onto the Unruh state, and in case of
MDRs, the almost-thermal character of the spectrum will determine small correction
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for the low-energy sector. This is a reasonable assumption for a state described by
an adiabatic evolution with an initial vacuum in Minkowski. However, let us stress
that the presence of a cut-off energy Λ would also allow for a regular Boulware state,
which predicts no radiation at all, even though it would imply an energy firewall of
order Λ at the horizon.

However, this last comment points out that the AG-analysis cannot be the end
of the story. In the following section we will show how in some gravitational models
we can provide a completion to the geometry, allowing the definition of a unique
quantum state, also in the case of MDRs. We shall return to the comparison with
the result of this Chapter in the conclusions.
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Chapter 4

Gravity without Lorentz
invariance

In Chapter 3 we have shown how analogue models can provide an extremely useful
tool to investigate QFT in curved spacetime. Acoustic geometries can be used
to simulate black holes for phonons and to check their radiative properties. The
theoretical predictions and the experimental detection of this effect confirm once
again that Hawking radiation has nothing to do with gravitodynamics itself, but
rather with the kinematics of quantum particles onto a non-flat geometry.

In addition, we have studied the robustness of this effect against violation of
the (sonic) Lorentz symmetry, which naturally arises in AG from the fundamental
condensed-matter equations.

Albeit AG is an interesting research area per sè, we would now like to employ
the insights we gained from it in order to learn something more about the gravita-
tional world. While the discover that Hawking’s result is not so intimately linked to
the invariance under local Lorentz transformations could be seen as surprising, the
nature of this robustness makes us expect that similar results should be valid also
for gravitational LV-models.

Nonetheless, even though the Lorentz violating behaviour of perturbations has
been shown to cut-off the trans-Planckian physics from the analysis, the analogue
treatment leaves open some fundamental questions about the structure of the vac-
uum state. We shall see that, by extending the Lorentz breaking framework to
gravity – not anymore limited to be described by the Euler and continuity equa-
tions (3.1) – will probe crucial in this and other questions.

Finally, and perhaps most importantly, studying LV gravity can be a step forward
in understanding QG. As we shall discuss, dropping local Lorentz invariance will not
turn out to be just an academic exercise, but rather a concrete way to address the
problem of quantizing gravity.

Hence, in this Chapter we shall direct our efforts in this directions. In what
follows we will present an introduction to Lorentz violation in gravity restricting, in
particular, to models of gravity with a preferred frame. We will review the causal
structure of such geometries, discuss the generalization of black holes within this
setting, and explore their interplay with Lorentz breaking matter fields.
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4.1 Breaking Lorentz symmetry

Lorentz symmetry has been massively tested throughout the past hundred years
[33]. Extremely high-precision measures in high-energy astrophysics leave severely
constrained the violation of Lorentz invariance in the Standard Model. However,
this is not the case for the gravitational sector, where the experimental accessible
energies are lower and allows for some theoretical room where to play.

Mathematically speaking, the non-compactness of the Lorentz group makes im-
possible to test it uniformly. While this can be actually done for the SO(3) rotation
subgroup, that is impossible with the addition of boost transformations [98].

Physically speaking, dropping rotational invariance will break spatial isotropy,
while abandoning boost invariance translates into the insertion of a preferred frame,
thus dropping the relativity principle 1.

Exploring the presence of a preferred reference frame in gravity can be seen as
an interesting problem for several reasons. First of all, preferred frames arise in
spacetimes with initial singularities – such as cosmological settings – for which the
gradient of the cosmological time represents a preferred time direction [98]. Besides,
breakdown of local boost invariance arises in many condensed matter situations,
as we saw in Chapter 3, suggesting that similar structures might arise in emergent
gravity scenarios.

However, the main theoretical motivation for facing the study of LV theories
of gravity boils down to the non-renormalizability of GR [7]. It has been known
for long time that the addition of higher derivative (i.e. higher curvature) terms
in the gravitational Lagrangian would have cured the renormalizability issue [99,
100]. Unfortunately, the addition of higher derivatives brings, together with itself,
the presence of instabilities [101]. In a Lorentz invariant theory, the propagator D
for a higher derivative massive field is given by:

D(p) ∼ 1

p2(p2 −m2)
=

1

m2

[
1

p2
− 1

p2 −m2

]
, (4.1)

where p2 = pap
a and m is the mass of the particle. We can immediately see that

the spectrum of D contains two relativistic particles, one of which is a ghost. This
problem has been recently faced, in a Lorentz-invariant context, at the perturbative
level in [102, 103] and at a non-perturbative analysis is given in [104].

It is clear though that the problems brought by higher derivatives arise because
of the presence of higher temporal derivatives. Due to Lorentz-invariance, the prop-
agator (4.1) must depend only on p2, thus admitting as many temporal derivatives
as spatial ones in any frame.

Intuitively, this problem can be overcame if one consider a theory which admits
only higher spatial derivative operators. The Lagrangian becomes power-counting
renormalizable, but the absence of higher temporal derivatives prevents the presence
of instabilities. This was exactly the observation made by Hořava in 2009 [32]2. In

1The relativity principle enters into the axiomatic derivation of special relativity as the equiv-
alence of all the inertial frames [33]

2Previous investigations in the same direction have been made by Anselmi in [105]
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this model, the spacetime manifoldM is considered to be factorized:

M≃ R× Σ (4.2)

with Σ being a co-dimension 1 (spatial) sub-manifold. Therefore, spacetime is foli-
ated with Σ-leaves along the time direction. This automatically introduce a preferred
time direction τ which runs over the real line τ ∈ R. Gravity becomes a Lifshitz
field, because of the anysotropic scaling between τ and the spatial coordinates x
defined over Σ:

x→ λx , τ → λdτ , (4.3)

where d is the dimension of Σ.
It is quite clear that the à priori introduction of a foliation ontoM breaks the

local Lorentz invariance, giving a preferred notion of time. Within the Arnowitt–
Deser–Misner (ADM) decomposition, the time direction is given by the 1-form

u = N(τ,x) dτ , (4.4)

called aether. N is the lapse function [106], which determines the geometry together
with the shift vector Ni and the spatial metric γij. The preferred notion of time
(4.4) breaks the local boost invariance, therefore it is possible to build a theory with
a different number of time and space derivatives. The full Diff -invariance breaks
down to the subset of transformation which preserve the structure of the foliation,
called FDiff (foliation-preserving diffeomorphisms):

Diff → FDiff . (4.5)

Actually, in order to achieve renormalizability, one needs to consider higher spa-
tial derivative terms up to 2d [32]. In (3 + 1) dimensions, we can order the full
gravitational Lagrangian in powers of derivatives:

LHG = L2 +
1

M2
∗
L4 +

1

M4
∗
L6 , (4.6)

where M∗ is an energy scale at which LV effect becomes sensible and Ln contains
operators with n-derivatives.

The power-counting renormalizability of the theory is quite appealing and makes
HG a sensible QG candidate, even though the analysis of the coupling dimensions
cannot be directly used to infer directly the perturbative renormalizability, given
the absence of Lorentz invariance [107]. We shall discuss about this fact later on, in
Chapter 7.

Besides the formal aspects, we emphasize that having an actual QG candidate
makes the investigation of such a gravity theory tempting (if not mandatory). There-
fore, the rest of the Chapter will be devoted to introduce the phenomenology of
gravity with a preferred frame and to analyze its implications.
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4.1.1 Gravity with a preferred time direction

In doing phenomenology, we assume that our gravitational sector will describe a
geometry well below the energy scale M∗, thus we will restrict our analysis to L2

of equation (4.6). It is convenient to use a Stükelberg field to recover the full Diff -
invariance of the Lagrangian. This field, dubbed khronon, is nothing else that the
function τ(x) which determines the shape of the foliations thorugh

Σ = {τ(x) = const.}. (4.7)

Within this parametrization, we abandon the ADM formalism and we recover a
metric-aether one with a usual Lorentzian metric tensor gab and an aether vector
field which takes the form:

ua =
∂aτ√

−gbc∂bτ∂cτ
. (4.8)

From there we see immediately that the lapse function given in (4.4) is

N = (−∂aτ∂aτ)−1/2 . (4.9)

Note that the aether field (4.8) is, by definition, hypersurface orthogonal and always
timelike. A quadratic (in derivatives) theory with a preferred, hypersurface orthog-
onal, timelike vector field, is called khronometric theory. At this level, τ enters the
Lagrangian only through u

Lkh = R + λ(∇au
a)2 + β(∇aub)(∇bua) + αaaa

a , (4.10)

where aa = ub∇bua is the acceleration of u. The three (dimensionsless) couplings
λ, α and β are constrained to be |β| ≲ 10−15, |α| ≲ 10−7 with λ unconstrained or
|α| ≲ 10−4 with λ ≃ α/(1− 2α) (in any case λ > 0 to avoid ghosts) [107–109].

If one relaxes the hypotesis of hypersurface orthogonality of u, so exiting from
the realm of low-energy Hořava solutions, one can study a generic quadratic theory
of gravity with a preferred frame, called Einstein-aether (EA) gravity [98]. Without
the constraint on the hypersurface orthogonality, the requirement for u to be unit-
timelike normalized is implemented “by hand” with a Lagrange-multiplier. The EA
action can be formulated in terms of the irreducible representation of the SO(3)-
subgroup which leaves ua invariant:

LEA = R +
1

3
cθθ

2 + cσσabσ
ab + cωωabω

ab + caaaa
a + Φ(uau

a + 1) , (4.11)

where Φ is the Lagrange multiplier. The expansion θ, the shear σab, the twist ωab
and the acceleration aa are defined as the trace part, symmetric traceless part, and
antisymmetric part of ∇aub [110]:

∇aub =
1

3
θγab + σab + ωab + uaab (4.12)
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with γab = gab + uaub being the spatial projector and we have:

θ = ∇au
a ,

σab = ∇(aub) −
1

3
θγab − u(aab) ,

ωab = ∇[aub] − u[aab] .

(4.13)

The basic difference between the khronometric theory and EA is that, for hyper-
surface orthogonal aethers, the twist tensor ωab must vanish due to the Frobenious
theorem [1]. Thus, we can recover khronometric theory from EA just by taking the
limit cω → ∞. Equations (4.13) gives the relations between the couplings of given
in (4.10) and (4.11) [98]:

ca = α , cσ = β , cθ = β + 3λ . (4.14)

The crucial aspect of those theories of gravity with a preferred frame is that this
frame is local and obeys an equation of motion, therefore is dynamical. This is of
great importance since it allows to respect general covariance in the theory [98].
Moreover, this highlights an important difference with respect to the case of AG,
where the preferred frame was defined without a field equation, but as a comoving
frame with the fluid (3.11). In the following, we will see the consequences of this
fact.

Given that khronometric theory can be seen as “hypersurface orthogonal EA”,
one can show that the hypersurface orthogonal solutions of EA gravity are also
solutions of the khronometric theory, even if the discussion can hide some subtleties
[110, 111].

Both (4.10) and (4.11) can be written as LEH + Lu, where we disentangle the
Einstein-Hilbert term LEH = R from the parts containing the aether u. The field
equations can be written as

Gab = 8πGT uab , (4.15)

where Gab is the usual Einstein tensor and

T uab = −
2√
−g

δSu
δgab

, (4.16)

where Su is the action correspondent to Lu, giving the interpretation to the tensor
T uab of stress-energy-tensor of the aether, which particular expression differs from
EA to khronometric theory [112]. From (4.15) one can us the generalized Bianchi
identities [113] to derive the equation of motion3 for the aether (in the case of EA)
or for the khronon (in the khronometric case). Both of them are defined in terms

3This means that (4.15) contains already all the information on the dynamics. Working out

δS

δua
= 0 (4.17)

is redundant, if one takes into account the geometrical identities.
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of a vector Aa orthogonal to the aether Aaua = 0. In the EA case, these equations
are:

Aa = 0 , (4.18)

while for the khronometric case, the equation of motion is given for a scalar field,
namely the khronon τ , that returns a scalar equation of motion:

∇a(NAa) = 0 . (4.19)

It is clear that an aether without twist satisfying Aa = 0, also satisfies this latter
equation.

Of course, a matter action can be included, thus entering the field equations
(4.15) through its stress energy tensor Tmab on the right-hand-side of the equation.

4.2 Black holes in LV gravity

Let us now move on describing the causal structures of these kind of spacetimes.
This will be of fundamental importance to study black hole geometries.

As already mentioned, the motivation of considering the introduction of a pre-
ferred time direction is to be able to insert higher spatial derivative without having
Ostrogadski instabilities [101]. This means that dispersion relations for the pertur-
bations will be in general non-relativistic. Generically, they will be of the form

ω(k)2 = β0k
2 + β1

k4

Λ2
+ β2

k6

Λ4
, (4.20)

where ω is the energy defined with respect to the preferred time u and ka = γbakb is
the spatial projection of the four-momentum and βi constants. Let us emphasize that
this dispersion relation takes the simple form of (4.20) only in the preferred frame,
while it can assume a more complicated shape in any other frames (similarly to what
happens for (3.19)). In the case of gravitational perturbation, from (4.10), we have
the identification Λ = M∗, but generically, Λ will be considered as a scale at which
the non-relativistic modification becomes non-negligible. In (4.20) we stopped to the
order k6 because this is the case for Hořava’s model, due to the renormalizability
requirement. However, for the phenomelogical’s sake we can imagine more general
polynomial expression up to k2n, with a generic n ∈ N.

In principle, this discussion, which is valid in the case of an hypersurface orthog-
onal aether, can be taken as true also for EA gravity. There, gravitational degrees
of freedom propagates at finite speed [114, 115], but the presence of a local preferred
frame allows aether-matter couplings that lead to MDRs like (4.20)4.

The important aspect of (4.20) is that, if βi > 0 [116], the dispersion relation
becomes superluminal, thus changing the causal structure of the spacetime. The
presence of superluminal particles invalidates the usual causal analysis. In partic-
ular, Killing horizons cannot anymore be identified as causal boundaries, because
particles can classically travel from the inside to the outside, as we already found
out in Chapter 3. The prevision of object like black holes is a key feature of GR,
therefore let us explain how to extend this concept to LV gravity.

4Actually, whether the non-hypersurface orthogonality may or may not lead to ill definiteness
in the quantization of the theory would be an interesting question.
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4.2.1 Black holes in khronometric theory

Let us start in the hypersurface orthogonal case. In defining the causality we will
recall some concept from [117]. We have said that in principle there is no universal
finite limiting speed for particles with (4.20). Therefore the only notion of causality
for physical particles can be given just by the requirement form them to move
forward in the preferred time.

Indeed, considering a world-line xa(λ) parametrized by λ ∈ R, we define it causal
and future (past) directed if ẋ · u < 0 (> 0) evrywhere, where ẋa = ∂λx

a. If xa(λ)
posses at least one point where ẋ · u = 0, then it is defined to be acausal.

Intuitively, a black hole region will be described by the portion of spacetime from
which a causal curve cannot reach the asymptotic region. So, let us be concrete and
consider the following situation. Let us take a point p ∈ M and let us consider
the (unique) leaf Σp of constant-khronon which contains p. Let us now imagine to
have a notion of spatial infinity, which we will denote as ip, where the metric is flat
gab|ip = ηab and the aether becomes there the Minkowskian time-translation vector
ua∂a|ip = ∂t. Now, the asymptotic region I forM is the union of all the ip:

I =
⋃
p

ip . (4.21)

Let us notice that in theories with no limiting speed there is no formal notion of
null infinity and spacelike infinity. The asymptotic region is only defined by some
properties of the metric-aether couple.

It is possible to interpolate between the relativistic definitions of infinities and
this one given in equation (4.21), by considering the conformal boundary for a speed-
c metric. For any finite c we will obtain a similar asymptotic structure with respect
to the relativistic case. For c→∞, we recover the definition of I that we have given
in (4.21) (see [117] for more details). However, for the purpose of our discussion, we
will skip this discussion here.

The complementary region to the black hole one is defined by “The set of causal
curves which reaches I in the future”. Therefore, we can take I and trace back
all the causal curves which future endpoints belong to I . Let us indicate this
trace-back with J−(I ). The black hole region B is defined as:

B =M\J−(I ) . (4.22)

This is of course a notion that is as teleological as in GR, since it requires one to
know the whole history of spacetime. A more useful notion of black hole region, can
be given, as well as in relativistic geometries, if the spacetime is static. Let us see
how.

Universal horizon

If the spacetime is stationary, i.e. it admits a Killing vector χ for which

Lχu = 0 , (4.23)
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and asymptotically flat, namely

(u · χ)|I = −1 , γabχ
aχb|I = 0 , (4.24)

then we can define the black hole region with a local statement. The black hole’s
horizon will be given by the so-called universal horizon (UH) which defines the
following two conditions:

(u · χ) = 0 , (a · χ) ̸= 0 (4.25)

with a being the acceleration of u. The fact that this object defines an horizon is
explained as follows: the condition (4.23) can be employed to show that {(u·χ) = 0}
is a leaf orthogonal to ua itself [117]. However, in each point of this leaf, (u ·χ) ̸= −1
by definition. So, this leaf never reaches the asymptotic region and is compact
[117]. This means that, once a particle following a causal curve, crosses this surface
inwards, then coming back to the outside is impossible, without going backwords in
the preferred time. In this sense, every physical particles, which must go forward in
the preferred time, are trapped by the UH.

The condition (a · χ) ̸= 0, as we will see, it is tantamount to ask the black hole
not to be extremal. In [117] is fundamental to show that the UH is actually a leaf
Σ, but can be relaxed in order to define extremal objects [118].

4.2.2 Spherically symmetric universal horizons

The spherically symmetric case is obviously of particular interest, so let us start
with that one. The high degree of symmetry in spherical spacetimes constraints
the aether to be hypersurface orthogonal [115]. Therefore, EA and khronometric
solutions match and we can use the notions developed in section 4.2.1.

In particular, in spherical coordinates {t, r, θ, φ} we will consider a spherically
symmetric aether ua = ua(r) with uθ = uφ = 0. The stationarity is given by
χa∂a = ∂t and we have:

Lχua = 0 , Lχgab = 0 . (4.26)

One can try to solve (4.15) in this geometry. Let us consider a static spherically
symmetric metric in Schwarzschild coordinates [107]

ds2 = −F (r)dt2 + B(r)2

F (r)
dr2 + r2dS2 , (4.27)

and a spherically symmetric aether

uadx
a =

1 + F (r)A(r)2

2A(r)
dt+

B(r)

2A(r)

(
1

F (r)
− A(r)2

)
dr. (4.28)

Here F (r), B(r), and A(r) are arbitrary functions to be determined by the EA
field equations, while the normalization of the aether is chosen for convenience, and
automatically satisfies the unit norm condition |u|2 = −1.
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Let us notice that a Killing horizon may be present for |χ|2 = F (r) = 0. In
order to satisfy (4.25) and (4.24) we must have that the Killing vector passes from
a timelike behaviour (near I ) to a spacelike one (near the UH), therefore becoming
null, at some point. In figure 4.1 we give a representation, through a Penrose
diagram, of an eternal, spherically symmetric, LV black hole. Therefore a root for
F (r) is anyway needed. Asymptotic flatness implies:

F (r)→ 1 , B(r)→ 1 , A(r)→ −1 , (4.29)

for r → ∞. Solutions of (4.15) of the form (4.28) and (4.27) are present in all the
parameter space [112], although in a numerical form. However, two analytical forms
are known form some specific values of α, β and λ [107, 119]. Specifically, for both
B(r) = 1 everywhere and r0 represents twice the ADM mass of the spacetime:

• Case α = 0:

F (r) = 1− r0
r
− β r

4
ae

r4
, A(r) = − 1

F (r)

(
−r

2
ae

r2
+

√
r4ae
r4

+ F (r)

)
(4.30)

and

rae =
r0
4

(
27

1− β

)1/4

(4.31)

is an integration constant which has been chosen in order to keep A(r) ∈ R.
The UH for this solution corresponds to a sphere of radius:

rUH =
3r0
4
. (4.32)

• Case β + λ = 0:

F (r) = 1− r0
r
− C(C + r0)

r2
, A(r) = − r

r + C
. (4.33)

and

C = r0
2

(√
2− α

2(1− β)
− 1

)
(4.34)

The UH for this solution corresponds to a sphere of radius:

rUH =
r0
2
. (4.35)

Solutions (4.30) is compatible with the observational bounds, while (4.33) is com-
patible only if one impose also α = λ = 0, thus implying β = 0 and reducing to GR.
However, that branch is interesting because, fixing the couplings in such a way that
C = 0, one finds the metric (2.17) with A = −1 that implies an aether compatible
with the Schwarzschild metric:

uadx
a = −F (r) + 1

2
dt− 1

2

(
1

F (r)
− 1

)
dr . (4.36)
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In this highly symmetric situation, we can also generically integrate the shape of
the foliation (or preferred time) τ(t, r). If we choose the lapse function

−N = u · χ = ut , (4.37)

we can define a preferred timelike coordinate

τ = t+

∫ r ur
ut
dr . (4.38)

One can explicitly check that τ(r, t) is the scalar function entering equation (4.8).
Within this choice, the UH can be also defined through N = 0. Interestingly,
the preferred time value blows up while approaching the horizon, since the r−
component of (4.38) diverges logarithmically while approaching ut = 0. However,
the aether uadx

a = Ndτ is integrable and well-defined, crossing smoothly the UH.
We shall see the implications of this observation in Chapter 5.

Another convenient choice of coordinates, can be made by considering the space-
like vector sa orthogonal to ua (analogously to what we did in (3.25)), defining in
the same way a preferred spacelike coordinate ρ(t, r)

ρ = t+

∫ r sr
st
dr . (4.39)

In the following, the chart {τ, ρ} will be addressed as preferred frame.
Within the spherically symmetric geometries, an alternative definition for the

UH, which makes use of sa can be given studying the expansion θs:

θs = hab∇asb where hab = gab + uaub − sasb (4.40)

that defines the UH with the equations θs = 0, thus recalling the relativistic formal-
ism of Killing horizons with the null expansion coefficients [120].

The metric, written in the {τ, ρ, θ, φ} coordinates, takes the form

ds2 = (−uaub + sasb)dx
adxb + r(τ, ρ)2dS2

= −N2dτ 2 + V 2dρ2 + r(τ, ρ)2dS2 ,
(4.41)

where V = s ·χ. The definition of these quantities has a direct link with the acoustic
geometry. If one, in the {t, r} plane, makes the replacements

N ←→ cs and V ←→ v (4.42)

recovers the geometry (3.4) in (1+1) dimensions 5. Indeed, the Killing horizon
(please, compare to (3.8)) is given by:

−F (r) = |χ|2 = −(u · χ)2 + (s · χ)2 = V 2 −N2 = 0 . (4.44)

5Actually, this is not explicit in the preferred frame. However, it is possible to define a coordinate
X(ρ, τ) such that sa∂a = ∂X . In {t,X} the aether takes the form uadx

a = Ndt and the line element
assumes the Painlevé-Gullstrand form:

ds2 = −N2dt2 + (dX + V dt)2 (4.43)

where the interpretation of N as the sound speed and of V as the flow velocity is explicit [121]
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Figure 4.1: Penrose diagram for an EA spherical black hole: the Killing horizon
is depicted by the dashed line, while the bold line displays the universal horizon
at N = 0. Dotted lines mark the individual leafs Σ ⊥ u, with the color coding
indicating the value of the preferred time (4.38) from an outside observer perspective.
Purple indicates large τ , while cyan corresponds to small values of τ . The asymptotic
regions can be defined similarly to the relativistic Schwarzschild black hole [117].

Surface gravity

One can associate to UH some analogous properties that horizons have in GR. A
notion of surface gravity is well defined [119, 122] and reads

κUH =
(a · χ)

2

∣∣∣∣
UH

=
1

2
ua∂a(u · χ)

∣∣∣∣
UH

. (4.45)

Some observations on the definition of κUH are:

• Since (u · χ) = 0 defines a constant-khronon leaf, κUH corresponds to the
normal derivative of the function defining the surface. In [122], this quantity
has been shown to coincide with the possible alternative definitions of surface
gravity for UHs.

• κUH is constant over all the UH [117]. This, from a BH-thermodynamical
viewpoint, corresposnds to the so-called zeroth law of BH thermodynamics.

• (4.45) implies that the lapse function N must vanish regularly with a well
defined derivative. A kink-behaviour likeN ≃ |r−rUH| brings to ill-definiteness
in the QFT of such spacetime [35].

• The request a·χ ̸= 0 contained in (4.25) can be read as a non-vanishing surface
gravity. As already mentioned, see [118] for the extremal treatment (a ·χ) = 0.
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4.2.3 Analogue UH?

At this point, it is quite natural to ask ourselves the following question: given the
similarities of the geometries, are there any analogue version of UH?

The problem has been addressed in [83] and the answer is, unfortunately, that
there is none. The motivation lies in the fact that the geometries that we can derive
from analogue models (3.4) are endowed with a notion of preferred frame (3.11), so
with a notion of aether. Nevertheless, this aether vector field is not an additional
ingredient to the geometry but can be completely derived from the metric. In LV
gravity, however, we can see that ua contains, even in static, spherically symmetric
spacetimes, an additional degree of freedom (the function A) which does not appear
in the metric tensor (4.28).

This lack of freedom limits the choice of aether-metric geometries in analogue
models to a set of backgrounds which cannot enjoy any UH structure. If one con-
siders additional ingredients – thus increasing the number of degrees of freedom–
such as an external magnetic field, it is possible to show that such an horizon can
be made of analogue spacetimes [123].

4.3 Digression on axisymmetric solutions

Now that we have described spherically symmetric solutions, the logical extension
would be to study rotating objects. However, the existence of rotating black holes
is a currently standing problem. In khronometric theory, slowly rotating solutions
have been studied numerically [111], but extensions to higher spins and analytical
treatments are still lacking.

EA theory seems to offer a more feasible playground where to look for rotat-
ing solutions. Actually, numerical rotating geometries have been found [124] for
arbitrary high spins, even if those geometries arise without Killing horizons.

A interesting analytical solution has been found in [125]: restricting within the
corner of the parameter space correspondent to

ca = cσ = cω = 0 , (4.46)

it is possible to solve the field equations by imposing the Kerr geometry at the metric
level and any normalized timelike vector ua with zero expansion, namely

θu = ∇au
a = 0 . (4.47)

The interesting feature of this solution is that it exhibits a possible notion of UH. In-
deed, considering the Killing vector for the Kerr geometry, which in Boyer-Lindquist
(BL) coordinates [43] takes the form χa∂a = ∂t, the solution presented in [125] has
a surface correspondent to the condition6:

χau
a = 0 . (4.48)

6Since the solution is axysimmetric, uφ = 0 and the equation (4.48) is satisfied simultaneously
by the vector ∂t and the generator of the Killing horizon ∂t + ΩH∂φ, where ΩH is the angular
velocity of the solution

68



This surface, called quasi-universal horizon (QUH), is in BL coordinates an oblate
surface r = rQUH(θ) which is not orthogonal to the aether ua. This is allowed by the
structure of the EA theory and it is a mathematical consequence of the non-vanishing
twist ωab ̸= 0 of this solution.

This non-hypersurface orthogonality, however, spoils the analysis of [117], and
so the local definition of the UH given in (4.25) does not à priori imply any causal
property. Therefore, the name QUH. Intuitively, the non-hypersurface orthogonality
allows for causal, future-directed trajectories to escape the QUH classically, without
going backwards in the preferred time. In the following section, we shall comment
on the possibility for (4.48) to define a true horizon and speculate on the possibilities
for having rotating solutions.

4.3.1 Rotating UH?

Let us set up the spacetime symmetries. In the following we will consider an aether-
metric couple (gab, ua), describing our spacetime. We assume that the metric admits
two Killing vector fields: χa, generating time translations, and ψa, generating rota-
tions around an axis; χa is assumed to be timelike in a neighbourhood of infinity,
while ψa, whose orbits are closed, is assumed to be everywhere spacelike. Hence,
the metric is assumed to be stationary, but not necessarily static, and axisymmetric.
Moreover, we assume that the Killing vectors commute and that the aether obeys
the same symmetries as the metric, i.e. we assume it to be Lie-dragged along the
Killing vector fields:

Lχψa = 0 , (4.49)

Lχua =0 and Lψua = 0 . (4.50)

In addition, we assume that

ua ψ
a = 0 . (4.51)

This condition, which entails that an observer at rest in the aether frame has zero
Killing angular momentum (i.e. it is “ZAMO”), is herein assumed because it greatly
simplifies the discussion. Though this does not seem indispensable, it is physically
well motivated: indeed, if (4.51) were not satisfied, the integral curves of ψa would
be causal and closed – thus nullifying the chronology protection conjecture and
possibly leading to paradoxes.

It is quite natural to address this problem in the following particular basis for
the tangent space: the timelike direction will be ua. The first spacelike leg can be
taken to be

φa = ψa/|ψ| . (4.52)

Then we take a second (unique, up to a sign) spacelike vector θa, normalized, and
orthogonal to u, χ and φ, namely

θaχ
a = θau

a = θaφ
a = 0 . (4.53)
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To complete the basis, we determine sa as the orthonormal direction to ua, θa and
φa (but not orthogonal to χa). Therefore our basis will be {ua, sa, θa, φa}. In this
basis, the twist tensor

ωab = ∇[aub] + u[aab] , (4.54)

where aa = ub∇bu
a, will have only one independent component7. It is quite straight-

forward to see that ωab is orthogonal to ψ
a, namely

ωabψ
a = 0 , (4.56)

and, by construction

ωabu
a = 0 , (4.57)

therefore the only component that does not vanish trivially is given by ωabs
aθb or,

equivalently, using χa,

ωabχ
aθb = (s · χ)ωabsaθb . (4.58)

Causal boundary

The definition of a causal boundary for a theory with a preferred frame must be
given by the causal structure of the theory. Since, in principle, both in EA and in
khronometric theory there is no notion of limiting speed for particles, the causality
is determined just by going forward in time. This means that a signal following a
causal curve xa(λ) will generically travel along a tangent vector of the form

ẋa = ua + cSv
a , (4.59)

where va is a normalized combination of sa, θa and φa and cS is the velocity at which
it propagates. Here we have parametrized xa(λ) in such a way that ẋaua = −1, so
the curve is future directed. Now, let us consider a compact spacelike surface S and
let us call its inward-pointing, normal, timelike vector na. In order to escape this
surface, cS has to satisfy:

0 < naẋ
a = −naua + cSnav

a =⇒ cS >
n · u
n · v

. (4.60)

Since cS is unbounded, apparently we can always tune it in order for the signal to
escape S, even if it goes forward in the preferred time. However, if

nav
a = 0 (4.61)

for any spacelike vector va this might not be the case. The above condition implies
that na is parallel to ua, i.e. ua is hypersurface orthogonal on S.

7Note that here we define the anisymmetric part of a tensor Tab as:

T[ab] =
1

2
(Tab − Tba) (4.55)
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This surface, in order not to reach the asymptotic region, has to evade the
condition (4.24). Therefore, we can consider the surfaces

(u · χ) = const. (4.62)

and define their normal vector:

na = ∇a(u · χ) . (4.63)

Note that no surface of this kind can reach the asymptotic region I , since, by
definition of I we have (u · χ)|I = −1. Working in our basis, we can write down
the components of na

na = −
(
ab χ

b
)
ua +

(
ub χ

b
)
(ac s

c) sa+[(
ub χ

b
)
(ac θ

c) + 2
(
sb χ

b
) (
θc ωcd s

d
)]
θa . (4.64)

In order for a causal trajectory not to escape one of this surface along the s-direction
one has to find:

(u · χ) = 0 , (4.65)

That exactly defines S as the QUH. One can write na, evaluated at (u · χ) = 0

na|QUH =
[
−
(
ab χ

b
)
ua +

(
sb χ

b
) (
θc ωcd s

d
)
θa
]
QUH

. (4.66)

This makes us conclude that na ∝ ua (so ensuring the no-esacping condition also in
θ) only if (

θc ωcd s
d
)
QUH

= 0 ⇐⇒ ωab|QUH = 0 . (4.67)

Therefore the conclusion, which is quite obvious, is that the QUH is an UH only if the
twist vanishes on (u·χ) = 0 (which, unfortunately, is not the case for [125]). Whether
this is possible without having complete hypersurface orthogonality – namely, the
twist vanishes pointwise on S only – is not clear and it is material for future work.
However, let us stress that, within the EA framework, the requirement ωab = 0 is
highly unstable, since we expect generic perturbation of the aether field δua to add
also a component δωab to the twist, destroying the UH structure.
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Chapter 5

Hawking radiation in LV gravity:
a tale of two horizons

The presence of black holes in LV contexts, although not obvious, renders the theory
viable for their phenomenological investigations. The presence of horizons which are
universal for any kind of particle, resembles very closely the relativistic situation,
where the horizon is completely detrmined by the causal structure of the theory, à
priori from the specifics of particles.

In this Chapter, we will probe the QFT effect in such curved backgrounds. Our
analysis will focus on spherically symmetric geometries.

We have already pointed out in Chapter 3 that Killing horizons, at least in the
low-energy regime, radiate with an (approximate) thermal spectrum. However, the
non-thermal deviations of the spectrum are a direct consequence of the dispersive
character of perturbations. The main point is to see how MDRs – which also char-
acterize the LV gravity theory – percieve the presence of such a universal surface,
which was not considered in the previous chapters.

In the following, we shall study Hawking radiation in the presence of UH and the
presented results are mainly based on [36, 38]. We will take the chance to analyze
previous calculations [119, 121, 126, 127] and to spot the differences between our
results and the ones contained in these previous works.

5.1 On the necessity of universal horizons

Before jumping into the analysis of the QFT with a UH, let us make an observation.
From the causal point of view, the motivation which encouraged the search for a
surface which can trap universally every kind of signals, comes from spacetimes
where no limiting speed is present. If particles enjoy dispersion relations such as
(4.20), then an UH is the only way to define a black hole.

Nevertheless, such a surface is needed also in the case of particles travelling at a
finite speed – which is the case, for instance, that corresponds to the gravitational
perturbations in EA theory [114, 115].

This can be shown with a thermodynamical reasoning [128–130]: let us consider
two types of massless particles (type 1 and type 2) which enjoy two different causal
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cones, defined by the velocities c1 and c2, with c2 > c1:

ω1 = c1|k1| , ω2 = c2|k2| . (5.1)

These two particles feel two different horizons, which corresponds to the Killing
horizon of the metric capturing their causal structures. In particular, if the energies
ωi in (5.1) are given with respect to a time direction ua, then the effective metrics
describing our particles as objects travelling along null trajectories are:

g1,ab = gab + (1− c21)uaub , g2,ab = gab + (1− c22)uaub , (5.2)

where gab is the original metric. The surfaces which work as causal boundaries for
particles 1 and 2 are given by the Killing horizons of the disfomal transformed metric
(5.2).

Those surfaces will radiate, by Hawking effect, with temperatures T1 and T2.
Note that c2 > c1 implies T2 > T1. Now, following [128], let us consider two shells
A and B, interacting only with particle 1 and 2, respectively. Let us choose those
two shells with temperatures TA and TB in such a way that

TB > T2 > T1 > TA . (5.3)

Given TA > T1, there will be a flux Φ(TA, T1) > 0 of particles of type-1. Conversely,
since TB < T2, the type-2 flux will go on the other direction, namely Φ(TB, T2) < 0.
So, a net flux of energy is extracted from the surface A and another one is acquired
from the shell B. If we fine tune the shells A and B in order for the two flux to
compensate:

Φ(TA, T1) = −Φ(TB, T2) , (5.4)

then we will have that the black hole mass will not decrease. From an exterior
observer, nothing happens if not a net energy flux from A to B. However, since A is
colder than B, this would violate the second law of thermodynamics, thus making
possible to build a perpetuum mobile.

This construction, pictorially represented in figure 5.1 mrefined later on in [129,
130], tells that multiple limiting speeds are in conflict with thermodynamics.

Subsequent works [131], where it has been proven that this general construction
does not apply to spherically symmetric geometries in theories where gravity is
attractive, such as EA or Hořava gravity. This may suggest that such a perpetuum
mobile is not actually possible in general, but the picture has still to be completed
in this direction.

Nevertheless, the introduction of Lorentz invariance violations as a species-
dependent geometries can evidently lead to possible paradoxes. On top of that,
this may spoil the point of view of the Hawking effect as a kinematical effect, mak-
ing it depending on the specific of the coupling of perturbation with gravity. This
makes the UH an appealing extension as an horizon candidate for theories with a
preferred frame.
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Figure 5.1: Pictorial representation of a perpetuum mobile of the secon kind. An
outgoing flux Φ(T1, TA) and an incoming one Φ(T2, TB) creates a net flux from a
colder shell A to a hotter one B

5.1.1 Hawking radiation from UH: previous results

As soon as it was realized that UHs exist, the investigation on their radiative prop-
erties started [119]. In order to probe the presence of an UH, one should consider
a particle which fulfills a MDR like (4.20). Let us consider a spherically symmetric
geometry. For phenomenological’s sake, one can generically consider, for a generic
n ∈ N, a particle satisfying

ω(k)2 = k2 +
n∑
j=2

β2j
k2j

Λ2j−2 , (5.5)

where ω is the energy with respect to ua, k is the momentum defined with respect
to its orthogonal sa. In the following, we will avoid subluminal behaviours taking
β2j ≥ 0. In general, a particle’s trajectory will be defined by the group velocity cg

cg =
dω

dk
=
k

ω

(
1 +

n∑
j=2

jβ2j
k2j−2

Λ2j−2

)
, (5.6)

and follows the curve:

dū = (cgua + sa)dx
a = 0 . (5.7)

As we shall see, in the near-UH limit, the particle undergoes an infinite blueshift,
analogously to what happens in GR nearby Killing horizons. This implies that, in
equation (5.6), only the highest j = n term in the sum will contribute. Therefore, the
near-horizon physics of the group velocity is sensitive to n. Skipping the technical
details, which we shall explain better in the following sections, one can study the
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trajectory (5.7) and compute the tunneling probability through the UH, finding
[126, 127]:

TUH =
n

n− 1

κUH

π
. (5.8)

Obviously, since cg = cg(n), also the temperature will be n−dependent. This result,
which we will comment, resolves only partially the problem which we presented in
section 5.1. In fact, it was noticed in previous works that the solution comes at the
price of invoking some UV-completion argument to impose the universality of the
exponent n for every LV particle living wihtin our spacetime.

Indeed, one should exclude the case for which different partilcles obey (5.5) for
different n. If n is non-unique, say we have n1 ̸= n2, then we could repeat the
perpetuum mobile construction with TUH(n1) and TUH(n2).

Invoking the universality of n is not a crazy idea, in the context of Hořava gravity:
the power-counting renormalisability fixes n = 3 for the gravitational sector, and
one expect the same argument to hold for matter fields, see cf. [105, 132]. However,
in the EA context, it is not clear why we should fix that exponent.

In contrast with these calculations, the literature contains even more puzzling
results [121]. In an analogue-inspired calculations, the authors argue that no radia-
tion is emitted by the UH. They find that all the radiative properties are expressed
by the Killing horizons, in a similar way to what we have found in Chapter 3. This
result is even more astonishing: since the UH is the true causal barrier of foliated
spacetimes, the tunnel-out through quantum processes should be there in a way very
similar to GR.

In addition, in [119] the authors find a third different result, valid only for the
case n = 2. That anisotopic scaling does not match the n = 3 UV-requirement of
Hořava proposal, enhancing the tension contained in the literature.

In what follows we shall revise in details the calculations that drive to the Hawk-
ing radiation from UH. We will rederive the temperature and discuss these contrasts,
higlighting a possible way to solve the inconsistencies.

5.2 Particles in LV black holes

In order to probe static spherically symmetric UHs we will consider the geome-
try given in (4.28) and (4.27). If calculations requires specific expressions for the
functions A(r), B(r) and F (r) we will specify to:

A(r) = −1 , B(r) = 1 , F (r) = 1− 2M

r
, (5.9)

which is exactly the solution given in (4.33) for C = 0. For this solution the UH is
given by [38]

N = −χ · u =
M

r
− 1 = 0 =⇒ rUH =

rKH

2
=M , (5.10)

which coincides with (4.35).
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Matter fields on this geometry will be taken in order to be able to probe the UH.
Therefore we consider the following action for a massless scalar field ϕ:

Sm =
1

2

∫
M

d4x
√
−g ϕ

[
□+

n∑
j=2

β2j
Λ2j−2 (−∆)j

]
ϕ , (5.11)

where 2ϕ = gab∇a∇bϕ is he usual d’Alambert operator and ∆ϕ = γab∇a∇bϕ is the
spatial (in the preferred frame sense) Laplace operator, being γab = gab + uaub the
projector onto Σ. The ϕ-variation of (5.11) leads to the equation of motion

□ϕ+
n∑
j=2

β2j
Λ2j−2 (−∆)jϕ = 0. (5.12)

Here all the βi are coupling constants, while n controls the scaling of the equations
at large momentum. We have normalized β2n = 1, which is always possible by
rescaling the energy scale Λ. For simplicity, we have also set the infrared speed of
the mode to c = 1, in order to agree with the GR result in the decoupling limit. We
will also assume that all βi ≥ 0, in order to avoid regions of the parameter space
with sub-luminal behavior, as we did in the preliminary discussion below (5.5).

5.2.1 WKB ansatz

Once again, we will focus on a WKB treatment of the solution, like what we did in
(2.45). Therefore, we will consider the field ϕ to assume the form

ϕWKB = ϕ0e
iS0 , (5.13)

where the phase S0 is the point particle action, so that curves with constant phase
are equivalent to trajectories followed by classical rays. It is useful to define the two
functions ω and k which satisfy the eigenvalue equations

ua∂aϕ = −iωϕ and sa∂aϕ = −ikϕ , (5.14)

namely the preferred energy and the preferred momentum. Here we have suppressed
any angular dependence, thus focusing solely on the s-wave contribution to the
solution.

The advantage of this choice is that, as previously discussed, only in the preferred
frame the equation of motion reduces to the dispersion relation

ω2 = k2 +
n∑
j=2

β2j
Λ2j−2k

2j +G(ω,∇ω, k,∇k) , (5.15)

where the function G(ω,∇ω, k,∇k) encodes all the terms which depend on the
derivatives of either ω or k. If the evolution is adiabatic, namely |∇k| ≪ k2 we can
neglect G(ω,∇ω, k,∇k) and boil down to (5.5), which corresponds to an eikonal
approximation. For now, let us assume adiabaticity and let us discuss it in the
following.
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Since neither ua nor sa are Killing vectors, ω and k are space-time dependent.
Similarly to what has happened in Chapter 3, the Killing vector χa∂a = ∂t allows
to separate the variables in the (t, r) plane via the eigenvalue equation

χa∂aϕΩ = −iΩϕΩ , (5.16)

and label the modes ϕΩ with constant Killing energy Ω. Rewriting the left hand
side of this definition in the preferred frame, we arrive to the identity

Ω = −ω(u · χ) + k(s · χ) = ωN + kV , (5.17)

where V = (s ·χ) and N = −(u ·χ), as introduced in Chapter 4. Together, equations
(5.5) and (5.17) provide a complete system that can be solved for ω and k, and hence
for the monochromatic mode ϕΩ.

Getting ω from (5.17) and substituting it into the dispersion relation (5.5), we
obtain the following algebraic equation for k

n∑
j=2

β2j
Λ2j−2k

2j+

(
1− V 2

N2

)
k2 +

2ΩV

N2
k − Ω2

N2
= 0 . (5.18)

This is a polynomial of degree 2n with position dependent coefficients. Note however
that all coefficients accompanying powers of k are sign definite for all r – once the
sign of Ω is chosen –, except for the term multiplying k2, which vanishes at the
Killing horizon, since |χ|2 = −N2 + V 2.

Asymptotic solutions

In the outer region of the Killing horizon, (5.18) will display exactly two real roots,
corresponding to positive and negative values of k. Indeed, in the asymptotic region
r →∞, where N = 1 and V = 0, we get

n∑
j=2

β2j
Λ2j−2k

2j + k2 − Ω2 = 0 , (5.19)

which has exactly two real roots of opposite sign1.

Near-UH solutions

In the region inside the Killing horizon instead, the change of sign allows for the
number of real roots to potentially grow up to four. Focusing in the near-UH limit,
where N → 0, we indeed find four roots [121, 127] – two hard solutions, for which
k diverges when approaching the UH; and two soft solutions, for which k remains
finite. The latter two can be obtained straightforwardly by setting N = 0 and V = 1
in (5.17), obtaining

ks = −Ω, ωs = ±Ω

√√√√1 +
n∑
j=2

β2jα2j−2, (5.20)

1These are the same solutions as the one found in (3.41) for ξ = 1.
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where again α = Ω/Λ, as in (3.74).
For hard solutions instead, the radial momentum k diverges at the position of the

horizon, with its behavior controlled by the highest power in the dispersion relation.
The divergence must be polynomial from (5.5) and the exponent can be found by
solving (5.17) at constant Ω:

k±h,out = ±Λ
(
−V
N

)γ
− 1

n− 1

Ω

V
+O(N) ,

ω±h,out = ±Λ
(
−V
N

)nγ
+

n

n− 1

Ω

N
+O(N0) ,

(5.21)

where we have introduced the exponent γ = 1/(n − 1). The “out” label indicates
that these solutions are obtained in the limit N → 0+, corresponding to the outer
near-horizon region. If we look at the inner neighborhood instead, we get

k±h,in = ±Λ
(
V

N

)γ
− 1

n− 1

Ω

V
+O(N) , (5.22)

ω±h,in = ∓Λ
(
V

N

)nγ
+

n

n− 1

Ω

N
+O(N0) . (5.23)

At some intermediate point inside the Killing horizon, but not necessarily at its
surface, the character of the equation must change and the number of real solutions
reduces to two, connecting to the exterior modes. This is exactly the turning point,
found also in Chapter 3.

5.2.2 Wavepackets and characteristics

While above we have discussed monochromatic waves, in what follows we focus on
the more physical case of a wavepacket. This has a direct link with the modelling
of a particle and, as we will see in the following, it allows us to explore the differ-
ences induced by the modified dispersion relation (5.15) with respect to the general
relativistic case.

As a wavepacket, we will consider a superposition of positive energy modes ϕΩ,
centered around a frequency ω0

ψ(r) =

∫ +∞

0

dω√
2πσ

ϕΩ(r) e
− (ω−ω0)

2

2σ =

∫ +∞

0

dΩ√
2πσ

dω

dΩ
ϕΩ(r) e

− (ω−ω0)
2

2σ , (5.24)

with standard deviation σ, and where dω/dΩ can be computed from the behavior
of the modes. This expression satisfies the equations of motion (5.15) as long as
the approximations previously introduced – WKB and adiabaticity – hold, since
adiabaticity allows us to neglect derivatives of ω. Note that at large radii ω → Ω
and ψ describes a Gaussian wavepacket in Killing frequencies.

The wavepacket ψ can be classically thought of as an object travelling with speed
determined by its enveloping wave-front, with group velocity cg(r, α) = dω/dk. This
determines the trajectory (5.7) of the particle once one specifies k and ω. In terms
of cg the trajectory reads, in the EFB frame {v(r), r} (see (2.26)):
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dv

dr
=

cg + 1

Ncg + V
, (5.25)

or, in the preferred frame {ρ, τ}:

ρ̇ =
dρ

dτ
= −N

V
cg . (5.26)

Equation (5.25) can be integrated in r in order to find the characteristics of the four
wavepackets. These are plotted, for the case n = 2, in figure 5.2.

Turning point

Analogously to what we have found in Chapter 3, the characteristics enjoy the
presence of a turning point. This, as mentioned above, must lie inside the Killing
horizon. However, with respect to the analogue gravity case, the presence of an UH
admits the possibility of having two turning points: one outside the UH rout(α) >
rUH and another one inside it at rin(α) < rUH. Both of them depend on α = Ω/Λ
(defined in (3.74)), which also in this case governs the energy dependence of the
trajectories. A complete analysis of the turning point location, in the case n = 2 is
given in Appendix A.

The positions of the turning points are given by (5.25) whenever

cg(r, α) = −
V

N
. (5.27)

In figure 5.2 we see explicitly that there are two modes turning back in the {v, r}
plane: the “orange mode” – which was called “turning mode” in the analogue case –
which turns back in the exterior of the UH and the “blue mode” – which was called
“regular mode” in Chapter 3 – that turns inside it.

5.2.3 Energy balance

Before moving on to investigate radiative properties of the UH, let us comment on
the energy content of the particles that are depicted in figure (5.2). The natural
interpretation of these particle must be given in terms of the preferred time direction
ua. Since

ua∂aϕ = −iωϕ (5.28)

then modes with ω > 0 can be interpreted as particles moving forward in the
preferred time direction. Therefore, in the following analysis, we will fix ω > 0 for
all the particles and see what this tells us for the associated Ω and their direction
of propagation.
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ψ red

ψblue
ψgreen

ψ orange

v − r

3M2MM0 r

Figure 5.2: Characteristics of all modes for α = 0.5 and n = 2. Starting from
outside the Killing horizon at r/M = 2, we see that at fixed r, there are only two
possible solution: the red out-going mode and the blue in-going one. In the interior
of the Killing horizon we find the turning point rout(α), where the two orange lines
meet. For rUH < r < rout(α) we have four real solutions. Inside the UH, the red line
and the hard branch of the orange mode leave the stage to the green mode and the
hard branch of the blue mode, until they reach rin(α), where the two blue modes’
branches are linked. Beyond this point, only the orange and green lines hit the
singularity. The arrows represent the direction of propagation of the rays, given by
their group velocities cg. The labels {ψred, ψorange, ψblue, ψgreen} associated to each
ray are the same ones that we refer to along the text.

Outside the horizon

If we focus outside the UH r > rUH we have that the aether flows towards the
horizon. Particles living here are analogous to the ones found in Chapter 3 and can
be summarized as:

• The blue mode ψblue: this is one of the two asymptotic solutions, the ingoing
one. It has positive Killing energy and crosses the UH inwards.

• The red mode ψred: also this one can be found within the asymptotic solu-
tions as the positive-Ω outgoing one. Tracing it back, we can see that it has
support only in the exterior of the UH and shows a hard behaviour like the
one given in (5.21), in the branch with positive Ω.

• The orange mode ψorange: this mode is a turning mode. It enjoys a hard
branch ψorange

hard which peels out from the UH, that is defined only outside by
(5.21) and at the leading order in the near-UH limit it share the same trajectory
as the red mode. Departing from the horizon it starts to differ from ψred and
eventually turns back, with its upper branch ψorange

soft , crossing the UH. Imposing
ω > 0 for the orange modes means that it has to carry a negative Killing energy
Ω < 0.

81



sgn(Ω) sgn(ω) Direction
ψred + + Out
ψblue + + In
ψorange
hard − + Out

ψorange
soft − + In

Table 5.1: Behavior of the modes in the exterior region. The last column indicates
the direction of propagation.

Inside the horizon

Inside the horizon the situation is symmetric, at the level of solutions. However, due
to the change of sign of the lapse N , inside the UH the aether ua points inwards and
departs from rUH flowing into the singularity r = 0. However, we can still study the
behaviour of the solutions:

• The orange mode ψorange: this is the smooth continuation of the upper
branch ψorange

soft that we found outside. It carries a negative-Ω Killing energies
towards the singularity.

• The green mode ψgreen: this is a true novel mode, that was not present in the
AG case. This mode carries a negative energy Ω < 0 towards the singularity
and it has support only inside the UH. Of course, at costs of employing the
CPT symmetry of the equations (5.5) and (5.17):

(Ω, ω, k)→ (−Ω,−ω,−k) (5.29)

it can always be interpreted as a positive-Ω particle travelling towards the UH

• The blue mode ψblue: this mode is the other turning mode. It continues
smoothly the trajectory of ψblue that crosses form outside with a soft behaviour
ψblue
soft . Than, always carrying Ω > 0, it turns back and it approaches the UH

sgn(Ω) sgn(ω) Direction
ψgreen − + In
ψblue
soft + + In

ψblue
hard + + Out

ψorange − + In

Table 5.2: Behavior of all modes in the interior region. The last column indicates
the direction of propagation.

Let us notice that the condition ω > 0 must hold at any along the trajectory for
particle with Ω ̸= 0. Otherwise, ω = 0 would imply k = 0 through the MDR and
consequently Ω = 0. This condition always ensures us that, even if a ray peels at
the UH – thus becoming asympotically parallel to a constant-khronon slice – it will
always go locally forward in the preferred time direction.
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5.3 Tunneling the UH

Armed with our knowledge of the behaviour of particles on a LV black hole, we
are ready to compute the radiation given by the UH. Referring to figure 5.2, it is
obvious that the wavepacket that interests us is represented by ψred. That, in the
future asymptotic region I +, will describe the only outgoing radiation, so the one
emitted by the black hole. In the following, we shall consider no incoming radiation
from I −, therefore turning off ψblue, as we did in previous calculation on the AG
case.

Once again, we want to apply the tunneling formalism to address this calculation.
Therefore, in the same way we did in section 2.2.2, we have to specify the shape of
the mode in the near-UH limit

5.3.1 Squeezing the wavepacket

Let us start with the following observation: in the relativistic case, the near-horizon
behaviour of outgoing wavepackets and monochromatic waves is exactly the same.
Considering a Gaussian superposition of fixed-energy modes ϕΩ or a pure Ω-labelled
mode does not change the shape of the trajectory followed by the constant phase
contours. Indeed, the former is specified by the group velocity cg and the latter
by the phase velocity cp. In the relativistic case we always have, near the Killing
horizon

ω = |k| , (5.30)

both for massive and massless particle2. This implies that:

cp =
ω

k
=

dω

dk
= cg (5.32)

Therefore, no difference occurs, from the tunneling point of view, between the two
cases. Actually, in Chapter 2 we have not even specified if we were considering a
wavepacket or a monochromatic wave. However, formally speaking, we have been
worked with the fixed-energy modes ϕΩ (see (2.52) and below).

In the presence of MDRs, the degenracy between cg and cp does not hold any-
more. This is clear from:

cp =
ω

k
= ±

√√√√1 +
n∑
j=2

β2j

(
k

Λ

)2j−2

̸= cg =
dω

dk
=
k

ω

(
1 +

n∑
j=2

jβ2j

(
k

Λ

)2j−2
)
.

(5.33)

2due to the infinite blueshift a massive particle will behave as:

ω =
√

m2 + k2 ≃ |k| (5.31)
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So, which one do we choose? The answer can be derived just by looking at what
the hard solutions (5.21) do the wavepacket defined in (5.24).

It is easy to see that the Gaussian distribution, due to the divergence of ω in
approaching N = 0, squeezes the packet and projects it onto a mochromatic solution
ϕΩ. We have, from (5.21)

dω

dΩ
=

n

n− 1

1

N
, ω − ω0 =

n

n− 1

Ω− Ω0

N
. (5.34)

In this limit, the distribution in (5.24) hence becomes a delta distribution, given the
identity

lim
N→0+

n

n− 1

1√
2πσN

e
− n2(Ω−Ω0)

2

2σN2(n−1)2 = δ(Ω− Ω0) . (5.35)

What we observe here, is nothing else than a huge blueshift which erases the details
of the wavepacket when traced back to the UH. In this limit, the wavepacket expe-
riences infinite squeezing, such that it eventually degenerates to a monochromatic
mode ϕΩ0 near the UH, i.e.

lim
r→r+UH

ψred = ϕΩ0 . (5.36)

5.3.2 Signal velocity as a notion of causality

The projection of our wavepacket onto a monochromtic wave comes with no surprise,
due to the infinite blueshift of ω. The problem is that no notion of group is now
associated anymore to our particle. So, which kind of signal does ϕΩ represent? A
nice treatment is given in [133]: whenever the frequency diverges, the function ϕΩ

represents a signal which travel with the phase velocity cp. This can easily be seen
as a general feature, i.e. for any kind of dispersion relation ω(k). Indeed, locally,
one can always recast our WKB solution of energy Ω as [133]:

ϕmΩ (R, T ) = lim
ε→0+

∫ +∞

−∞
dω

e−iωT+ikm(ω)R

Ω + ω(u · χ)− k(s · χ) + iε
(5.37)

where the index m refers to one of the branches that invert the relation ω = ω(k).
The imaginary part iε has been put in order to shift the pole – which implements
the constraint equation (5.17) for Ω – from the real axis. Note that integral (5.37)
is computed at fixed points in the spacetime and we have set locally ua∂a = ∂T ,
sa∂a = ∂R

3.
The implementation of the constraint at fixed Ω in the integral (5.37) can

be understood via the Sokhotski-Plemelj theorem [84, 85] for a function of form
f(x)/(x− xo) after a complexification around the pole xo

lim
ε→0

∫ b

a

f(x)

x− xo + iε
dx = −iπf(xo) + P

(∫ b

a

f(x)

x− xo
dx

)
(5.39)

3This can be done at any fixed point (τ0, ρ0) just by defining:

dT = ua(τ0, ρ0)dx
a , and dR = sa(τ0, ρ0)dx

a . (5.38)
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with P denoting the Cauchy principal value.
With the help of the Cauchy theorem [134], we can compute the integral since

exp [−iωT + ikm(ω)R] (5.40)

is analytical in the upper half of the ω-complex plane. When the exponential is
dumped, namely:

lim
|ω|→∞

(km(ω)− ωθ) > 0 , (5.41)

with θ = T/R, we have that the contour on the upper-half plane vanishes and there-
fore ϕmΩ (R, T ) = 0. So, (5.37) represents a signal which is not causally connected
with the region outside the causal cone defined by the infinite limit speed of the
group velocity. Therefore, the causal connection for ϕmΩ (R, T ) is represented by a
cone for which the edges are given by [133]:

R(T ) = T ·
(

lim
|ω|→∞

cp

)
. (5.42)

In other words, if we set ϕmΩ (R0, T0) ̸= 0 on a single point (R0, T0), the function
ϕmΩ (R, T ) will vanish outside the future cone, centered in (R0, T0), defined by (5.42).

In our case, the causal meaning captures exactly the structure of the foliation.
Let us change coordinates, passing from the preferred frame to the {t, r} one:

kr(ω, k) = −ωur + ksr

Ω(ω, k) = −ωut + kst .
(5.43)

In this case the infinite-frequency limit of the phase velocity for a dispersion relation
(5.5) takes the form:

lim
|ω|→∞

kr
Ω

= lim
|ω|→∞

−ωur + ksr
−ωut + kst

=
ur
ut

(5.44)

which tells us that:

kr = Ω
ur
ut
, (5.45)

that can be integrated in r find the effective null coordinate determining the causal
cone

ū =

(
t+

∫ r kr
Ω
dr

)
=

(
t+

∫ r ur
ut
dr

)
= τ , (5.46)

with τ defined in (4.38) as the khronon. So, in the case at hand, an infinitely
blueshifted signal will travel along the constant τ lines.

This analysis captures exactly the causal horizon, so the black hole region, which
can be thought as the surface where the causal cone alignes with a surface that does
not touch I . Therefore, a signal moving closeby the black hole horizon will be a
function of ū (or, equivalently, of τ) only

ϕUH(r, t) = ϕUH(τ) (5.47)
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similarly to what happens in the relativistic case, where the near-horizon outgoing
signals become function of the retarded time u = t−r∗ (see (2.29)). If we label these
modes with constant Killing energy Ω, imposing ∂tϕ

UH
Ω = −iΩϕUH

Ω , this defines for
us the set of outgoing modes near the UH

ϕUH
Ω = e−iΩτ . (5.48)

This result makes completely sense, a posteriori. From (5.5) we see that the infinite-
frequency limit of the phase velocity is infinite in the preferred frame. An infinite-
speed signal, in our theory, is exactly defined to move along a constant τ slice. This
is also expected to happen for outgoing modes near the black hole horizon, as they
must get infinitely blueshifted in order to escape the gravitational potential.

Let us comment that, from this analysis, the same result can also be derived
generically for a wavepacket [133]. If one consider a generic superposition

ψ =

∫
dΩΓ(Ω)ϕmΩ (5.49)

one can repeat the same analiticity argument and find again (5.41). This tells us
that, nearby the black hole horizon, all the details about the matter-aether coupling
that we considered in (5.11) are washed out and the behaviour of the modes become
universal. Note that this discussion shows also that the angular momentum of the
mode plays no role, in the near horizon physics, as in the relativistic case.

No group velocity

Following the same treatment, we can also show that no propagation with the group
velocity is possible. Let us consider

cg
cp

=
1 +

∑n
j=2 jβ2j

(
k
Λ

)2j−2
1 +

∑n
j=2 β2j

(
k
Λ

)2j−2 . (5.50)

Taking the infinite-frequency limit we have

lim
|ω|→∞

cg
cp

= n > 1 . (5.51)

Therefore, a ray-tracing of high-frequency signals cannot be made with cg, since the
ray would travel outside the causal cone defined by (5.42). In particular, this rules
out the near-horizon analysis with cg for any mode at a given energy Ω. Therefore
the results which claim a n-dependent horizon peeling, that leads to a n-dependent
Hawking temperature (5.8), violates these causal analysis.

In general, the converse may happen as well: it is also possible that the cg-
propagation becomes slower as we increase the frequencies. In [93, 94] it has been
shown that in slow light experiments [59] it is possible to arbitrarily tune down the
group velocity, in order to artificially form a “group horizon” that may play the role
of a causal boundary. However, the same works analyze the fact that this notion
of horizon cannot really be used for setting up particle production phenomena.
In order to have those, a mode-mixing mechanism is needed, therefore a “phase
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horizon” must exists. As already commented in Chapter 3, one can work this out
from the conservation equation. (5.17) tells us that Ω < 0 are allowed for

cp =
ω

k
< −V

N
. (5.52)

The equality cp = −V/N is satisfied exactly at the UH, which is also the high-
frequency limit of the phase velocity, thus capturing the causal meaning of the
horizon.

Alternative derivation

Let us present here an alternative derivation for the trajectory of the ray nearby
u · χ = 0. Let us emphasize that, with respect to what contained in [38], this
presentation is more general and will be useful also to speculate on the axisymmetric
black hole case.

Let us consider the conservation equation (5.17). Whenever k = sak
a diverges

approaching the UH, we must have that ω diverges as well, in order to compensate
for keeping Ω constant. This, in turn, implies the n-dependent hard behaviour
(5.21). However, without specifying the degree of divergence of ω and k, this gives
us the information on the phase velocity

cp =
ω

k
= − s · χ

u · χ
, (5.53)

which exactly reproduces the behaviour found in the previous section. The effective
trajectory followed by our ray is then

dū = (cpua + sa)dx
a = 0 , (5.54)

therefore, the relative displacements along ua and along sa are given, near u ·χ = 0,
by

sadx
a

uadxa
= −cp =

s · χ
u · χ

. (5.55)

Equation (5.55) has an advantage: it does not strongly rely on the form of τ , which
diverges at the UH, but instead provide a formula using the aether, which is regular
at the UH and does not require our spacetime to be foliated (in poor words, it
applies in principle also to EA non-hypersurface orthogonal, solutions). Now, let us
take a parametrization λ for the curve xa(λ) which defines our particle’s trajectory.
Without loss of generality, we require that the parameter λ is finite at the UH, such
that the curve “reaches” the UH for λ|UH = λ̄ ∈ R.

Let us define:

dT = −(uaẋa)dλ , (5.56)

where ẋa = dxa(λ)/dλ. Since ua is regular everywhere in a neighborhood of the UH
we can safely normalize (ẋaua) = −1 such that λ = T represents the aether time.
Similarly, we can define

dR = (saẋ
a)dλ . (5.57)
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Therefore we can rewrite (5.55) as

dR

dT
= −cp(λ) =

s · χ
u · χ

. (5.58)

This equation can be locally integrated around u · χ = 0. Around that point, we
can expand

uaχ
a = (naẋ

a)|UH(λ− λ̄) +O((λ− λ̄)2) , (5.59)

where only the component of ẋa along the normal na counts, since (u ·χ) is constant
(i.e. it vanishes) along the surface. In the hypersurface orhotogonal case we have
na ∝ ua and, plugging (5.56) and (5.59) into (5.58) we get in the near-UH limit

dR =
s · χ
u · χ

dT = −(s · χ)(uaẋa)
(naẋa)

∣∣∣∣
UH

dλ

λ− λ̄
. (5.60)

In the hypersurface orthogonal case equation (5.59) transforms into

(u · χ)(λ) = ẋa∂a(u · χ)|UH(λ− λ̄) = −(ẋ · u)ua∂a(u · χ)|UH(λ− λ̄) , (5.61)

so that:

naẋ
a|UH = −(a · χ)uaẋa|UH , (5.62)

that makes us conclude, in the hypersurface orthogonal case that

na|UH = −(a · χ)ua|UH (5.63)

as we expected from (4.66). Therefore we have, from (5.60)

R(λ) =
(s · χ)
(a · χ)

∣∣∣∣
UH

log(λ− λ̄) . (5.64)

Since (5.56) is locally invertible, we can write:

λ− λ̄ =
T − T̄
Ṫ (λ̄)

, (5.65)

where T̄ = T (λ̄) and Ṫ = ∂λT . Thus we conclude that, up to a constant

R(T ) =
(s · χ)
(a · χ)

∣∣∣∣
UH

log(T − T̄ ) . (5.66)

In the spherically symmetric case we have, by definition that near the UH

dR = sadx
a = stdt , dT = uadx

a = urdr , (5.67)

so that

t(r) =
1

(a · χ)

∣∣∣∣
UH

log(r − rUH) =
1

2κUH

log(r − rUH) . (5.68)

We can see immediately that (5.68) recovers exactly the log-type divergence of the
Killing time with respect to the radial coordinate, as it happens for the near-horizon
modes in relativistic case (2.29). That behaviour corresponds exactly with a {τ =
const.} surface for r ≃ rUH, as a consistency check with what we found in (5.46).
Moreover, this approach tells us some additional things:
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• In the near horizon limit, equations adjust in order to preserve the constancy
of the Killing energy. The condition for the phase velocity is given without
the specifics of the MDR. This confirms, once again, that the Hawking effect
is a consequence of the fields kinematics in a curved background.

• This happens at u · χ = 0 any time the components k along sa diverges. In
principle this is the case also for non-hypersuface orthogonal aether, with small
modifications, as we shall see.

• The pre-factor of the logarithm in the expression for t(r) is given by the normal
derivative of u · χ. This coincides with the usual definition of surface gravity,
given also for sonic horizons (3.9). When ua ∝ na, this matches exactly twice
the surface gravity given in (4.45).

5.3.3 Radiation from the universal horizon

Now we are ready to compute the tunneling rate through the UH. Our particle
action will be obtained considering the point particle action

S = −Ωτ , (5.69)

which describes the phase of ϕΩ. As we have described in section 5.2.2, the hard
red solution has support only outside and it has a symmetric partner inside the UH:
the green mode ψgreen. Therefore we can evaluate Im(S) tunneling from the green
(inside) to the red (outside) trajectories.

UH temperature

Equation (5.68) tells us how the monochromatic waves have to peel at the UH in
order to preserve the constancy of Ω, therefore the tunneling amplitude, between
the green and the red trajectories can be given by considering the imaginary part
of:

Im(S) = Im(−Ωτ) = lim
ε→0+

Im

[
−Ωt−

∫ rUH+ε

rUH−ε

dr

2κUH(r − rUH)

]
(5.70)

where the shape of τ(r, t) is given in equation (4.38) and near the UH assumes the
form:

dτ ≃ dt+
dr

2κUH(r − rUH)
. (5.71)

So, for a regular crossing path t(r) (even {t = const.}) we get4

Im(S) = lim
ε→0+

Im

[
−
∫ rUH+ε

rUH−ε

dr

2κUH(r − rUH)

]
=

πΩ

2κUH

. (5.72)

4unlike the relativistic calculation, at the UH, the coordinate t is well behaved, therefore taking
this path is a well-defined procedure
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Therefore we can compute the tunneling rate

ΓUH = e−Ω/TUH , TUH =
(a · χ)
2π

∣∣∣∣
UH

=
κUH

π
. (5.73)

As already mentioned in Chapter 2, this can be equivalently computed with the
Bogolybov coeffients approach, just analytically continuing the logarithm in (5.68),
thus building the analytical combinations Φ±Ω:

Φ±Ω = C±
[
ψred + e

∓ Ωπ
2κUH (ψgreen)∗

]
, (5.74)

and, repeating the same steps that led to (2.38) in Chapter 2 we arrive to [38]∫
dΩ̄

2π
|βΩΩ̄|2 = −C− =

1

eπΩ/κUH − 1
, (5.75)

obtaining the same UH-temperature.

5.3.4 Effective metric: UH radiation from thermal time

In Chapter 2 we have also shown that the Hawking temperature can be derived as
the required periodicity to give to the Euclidean time, in order to avoid the conical
singularity at the horizon. Let us show here that the discussion can be generalized
to spacetimes with arbitrary signal velocities. Let us take a matter field ϕ which
obeys some dispersion relation ω(k) in the preferred frame. We have shown that
the causal structure felt by the field is given by the quantity (the so-called signal
velocity or sometimes front velocity):

cf = lim
|ω|→∞

ω

k(ω)
. (5.76)

Let us now consider this velocity as an arbitrary parameter in a (1+1) spacetime (or
a spherically symmetric one) which enjoys a timelike Killing symmetry χa∂a = ∂t.
Let us choose the frame spanned by {u, s} (where s is the orthogonal to u in the
{u, χ} space) and consider therein a generalized null-ray with propagation speed cf
such that:

uadx
a = ±sadx

a

cf
. (5.77)

This ray can be interpreted as moving on the causal cone of the effective metric

g
(cf )

eff,abdx
adxb = −

(
u2t −

1

c2f
s2t

)
dt2 +

(
u2r −

1

c2f
s2r

)
dr2. (5.78)

where r is the other coordinate which spans the {u, χ} space. This metric enjoys a
Killing horizon at:

|χ|2 =

(
u2t −

1

c2f
s2t

)
= 0 . (5.79)

The idea behind this calculation, where the horizon for a cf -speed causal cone is
given as a Killing horizon of some effective metric, has also been developed in a
similar context in [135].
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Relativistic case

If c2f = 1, then (5.78) becomes:

g
(1)
eff,abdx

adxb = −
(
u2t − s2t

)
dt2 +

(
u2r − s2r

)
dr2 . (5.80)

and the Killing horizon becomes the relativistic one:

|χ|2 =
(
u2t − s2t

)
= (u · χ)2 − (s · χ)2 = 0 . (5.81)

This Killing horizon exactly coincides with the usual one provided by the Lorentz
invariant treatment, just described in a different basis {u, s}. Therefore, we recover
the interpretation of the Hawking temperature as the one given in section 2.4.

UH case

If instead we send c2f →∞ our effective metric becomes

g
(∞)
eff,abdx

adxb = −u2tdt2 + u2rdr
2 . (5.82)

The Killing horizon occours at

|χ|2 = u2t = (u · χ)2 = 0 , (5.83)

which corresponds to the definition of the UH. Performing a near-horizon expansion

u2t = −(∂rut)2|rUH
(r − rUH)

2dt2 , (5.84)

so that

g
(∞)
eff,abdx

adxb = −(∂rut)2|rUH
(r − rUH)

2dt2 + (ur)
2|rUH

dr2 . (5.85)

Defining ρ = ur|UH(r − rUH) we get

g
(∞)
eff,abdx

adxb = −(∂rut)
2

u2r

∣∣∣∣
rUH

ρ2dt2 + dρ2 , (5.86)

which, after a Wick rotation in the Euclidean time we get

g
(∞)
E,abdx

adxb =
(∂rut)

2

u2r

∣∣∣∣
rUH

ρ2dτ 2 + dρ2 . (5.87)

Similarly to what we have done in the relativistic case, we can get rid of the conical
singularity just by imposing the periodicity on τ with

β =
2πur
∂rut

∣∣∣∣
rUH

=⇒ TUH =
∂rut
2πur

∣∣∣∣
rUH

. (5.88)

therefore we obtain, as a function of ua and its derivatives, the temperature of the
UH. We can enforce the normalization condition in (5.86):

utut + urur = −1 =⇒ ur(rUH) = −
1

ur(rUH)
, (5.89)
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and get the known result

TUH =
ur∂rut
2π

∣∣∣∣
rUH

=
κUH

π
. (5.90)

Therefore, the temperature of the UH is something which can be derived by the
causal structure, just imposing the presence of an absolute time for everyone, very
much likely the relativistic case.

5.3.5 Comparison with previous results

Throughout the previous discussion, we have commented about the tension between
our result and previous calculations contained in the literature. Let us sum up the
differencies here.

• In [126, 127] the group velocity cg has been used top trace the trajectory up
to the UH. This, as we have stressed, is in conflict with causality. The group
velocity of an infinite blueshifted ray defines a trajectory which cannot be
allowed by the causal structure of the theory. This can be seen from equation
(5.51), which tells us that for n > 1 the cg-ray would travel faster than the
single surface of simultaneity. More explicitly, in the case of a ray propagating
with the phase velocity cp, the trajectory in the preferred frame is given by:

dρ

dτ

∣∣∣∣
cp,UH

= 1 . (5.91)

The same computation using cg returns

dρ

dτ

∣∣∣∣
cg,UH

= n . (5.92)

Since we have seen in section 5.3.2 that the cp-propagation leads to a ray trav-
elling on a constant τ surface, the cg propagation clearly violates the causality
fixed by the preferred frame.

• The derivation contained in [121] computes the particle production through
the Bogolyubov coefficients between (ψred, ψorange). This makes the authors to
conclude that the Killing horizon gives a non-vanishing contribution, while the
UH does not play any role. As we shall see in the following of this Chapter, the
interplay between ψred and ψorange will be the source of a contribution from
the Killing horizon, in a very similar fashion to what we have computed in
Chapter 3 for the analogue case. However, it is clear from our analysis of the
characteristics that the contribution given by the UH has to be computed by
the Bogolyubov between (ψred, ψgreen), thus obtaining our result.

• The discrepancy between us and [119] is more difficult to explain. At a careful
reading, one can see that the discrepancy of their treatment with ours consists
in the fact that they consider

SΛ =

∫
(ωua + ksa)dx

a (5.93)
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which by construction satisfy the definition of preferred momentum k and
energy ω for the field ϕ given in (5.14). They compute the tunneling amplitude
by considering the r-component of the action SΛ using the hard solutions
(5.21). This gives, at the leading order:

SΛ = Λ

∫ [(
−V
N

)nγ
ur −

(
−V
N

)γ
ksr

]
dr . (5.94)

This formula contains a non-integer pole of degree nγ = n/(n − 1). This
contribution can be analytically continued around N = 0 only in the case
n = 2, namely for integer values of nγ, which is the one considered by the
authors. However, this action loses its Ω-dependence, since the most-divergent
part of ω and k is only Λ-dependent and there is no memory of Ω anymore.

One may (correctly) argue that considering the next-to-leading contribution
given in (5.21) this dependence could be recovered5, having

SΛ = −Ωt+
∫ [

Λ

(
−V
N

)nγ
ur − Λ

(
−V
N

)γ
sr +

n

n− 1

Ω

N

]
dr . (5.95)

Nonetheless, also this approach presents some problematic features. First of
all, it requires considering a sub-leading order, which in principle should be
negligible very close to the horizon. Secondly, and maybe most importantly,
the constant-phase contour defined by SΛ is

dt =

[
Λ

Ω

(
−V
N

)nγ
ur −

Λ

Ω

(
−V
N

)γ
sr +

n

n− 1

1

N

]
dr , (5.96)

which is a trajectory describing an object which travels “faster” than a signal
on a surface of simultaneity, namely (note that sr → 0 linearly at the UH)

dt

dr

∣∣∣∣
dSΛ=0,UH

=
Λ

Ω

(
−V
N

)nγ
ur +

n

n− 1

1

N
>

1

2κUH

1

N
=

dt

dr

∣∣∣∣
dτ=0,UH

. (5.97)

This cannot be possible, just by a simple causality reasoning. In particular,
one can directly read off kr from SΛ

kΛr = Λ

(
−V
N

)nγ
ur + Ω

n

n− 1

1

N
(5.98)

and see that (5.97) compares with (5.44):

kΛr
Ω

=
Λ

Ω

(
−V
N

)nγ
ur +

n

n− 1

1

N
>
ur
ut
. (5.99)

So, a ray defined by SΛ does not define a signal in the sense of [133], thus the
propagation cannot happen along the constant-SΛ phase contours.

5This is exactly what has been done in [119]
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Concluding, let us state what we have found in the following way: the fact that
the constant-phase contour of the near-horizon modes coincides with a surface of
simultaneity should be viewed as a ray travelling “as fast as possible” in order to
escape the gravitational well of the black hole. This is analogous to what we found
in Chapter 2 for the outoging modes near the Killing horizon: any particle that
escapes the potential should travel along a null trajectory which is the fastest way
allowed in GR by causality. In the same way, once we have found that ϕ = ϕ(τ)
near UH, the assignment of a conserved Killing energy Ω fixes uniquely the shape
of the function.

5.4 Towards the Killing horizon

We have shown that the behaviour of the rays nearby the UH is universal, and it
is given by the shape of the foliation. This happens because a wavepacket stops
travelling with the group velocity, due to the infinite blueshift, and starts travelling
with the phase velocity, which diverges as it approaches r = rUH. Far from it, the
packet will be peaked in energy, thus following the trajectory defined with cg (5.25),
here in EFB coordinates:

dv

dr
= − cgur + sr

cguv + sv
. (5.100)

A particle with energy Ω will thus minimize the action:

S0 = −Ωv − Ω

∫ r cgur + sr
cguv + sv

. (5.101)

Let us recall that the group velocity is energy-dependent, i.e. cg = cg(r, α), so it
does the trajectory. Equation (5.101) has the same feature that we have found for
particles in the analogue case of Chapter 3. This particle does not enjoy an infinite
peeling at the Killing horizon, but, the lower the energy, the bigger is the intensity
of the lingering, as shown by figure 5.3.

Exactly in the same way as it happens for analogue geometries, one can do a
perturbative analysis around α = 0 and compute the tunneling amplitude between
the outside branch of ψred lingering mode and the soft branch of the turning mode
ψorange.

In principle one can repeat the analysis made for the analogue case with su-
perluminal dispersion and supercritical flows, specifying to n = 2. As a generical
feature, namely for any n, it is possible to extract the first correction, since for any n
the first term appearing in the dispersion relation (5.5) is of order O(k2/Λ2). Since
the solution depends on the geometry, for this calculation we specify to (5.9), thus
getting6:

credg (r, α) = 1 +
3r2

2(r − 2M)2
α2 +O(α3) . (5.102)

6Here we have set the coefficient β4 = 1. Keeping that parameter free, one must rescale
α2 → βaα

2.
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v − r
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α = 10−5

α = 10−4

α = 10−3

α = 10−2

α = 10−1

α = 1

Figure 5.3: Classical trajectories for ψred, evaluated at different values of α in the
case n = 2. Each value of α is reported next to the correspondent ray. We observe a
lingering behaviour at the Killing horizon (dashed line) for low-energy modes. The
UH is at rUH =M .

Plugging this into S0 and evaluating the imaginary part we get:

Im(S0) =
Ωπ

κKH

(1− 3α2) +O(α3) . (5.103)

that leads to

T (α) = TH
1

1− 3α2
+O(α3) = TH(1 + 3α2 +O(α3)) , (5.104)

where TH = κKH/2π is the Hawking temperature (2.39). As in (3.55), we pertur-
batively obtain a slightly hotter temperature with respect to the relativistic one.
The coefficient of the correction does not match because of the difference of the two
geometries.

5.4.1 WKB condition

Since all of our analysis is based on a WKB approximation of the field, let us
now spend a few lines in trying to see the validity of this assumption. The WKB
approach, as mentioned in Chapter 2, is based on the validity of the adiabaticity
condition: ∣∣∣∣ ω̇ω2

∣∣∣∣≪ 1 . (5.105)

Equation (5.105) tells us that, if the phase of the field does not vary to much, we
can locally define a basis of “plane waves” {eiS0} with action (5.101). This tells us
that, whenever we have such a basis, we can perform our QFT calculations within
our twofold interpretation of mode and particle of the function eiS0 . Therefore, the
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field operator decomposition given in equation 2.7 holds and a vacuum state can be
defined instantaneously as âΩ|0⟩ = 0.

A more intuitive interpretation of (5.105) can be the following: whenever that
condition is fulfilled, the single-energy modes adapt to the variation of ω, which is
small compared to ω itself. This means that we are able to ray trace the mode,
following its evolution in the spacetime. Therefore, the tunneling applies correctly.
Whenever this approximation breaks down, we cannot identify the single-energy
mode anymore. Therefore, the place where the WKB is broken, is usually identified
as the point where the particle production happens [51, 96]7. This, in terms of
Bogolyubov coefficients has a direct interpretation: if the adiabaticity condition is
satisfied at I and at the horizon, we can compare the two basis, and compute the
particle production, which happens where the two basis are not anymore a good
way to define a vacuum state in terms of âΩ and â†Ω.

In the analysis of (5.105) it is crucial to specify the evolution parameter, namely
who is the “dot” applied to ω in the numerator. This is, as underlined in [86], an
observer-dependent statement. In GR, we would have taken the time defined by the
freely-falling observer, who is the one that has to define the vacuum at the horizon.
In LV case, the analougus of the free-falling observer is not automatically given.
Therefore, we will chose to follow the trajectory of the infalling solution ψblue. If
ψblue is taken with small α, the world-line of our observer will be very close to those
of a GR observer. We choose to label the trajectory using the ū coordinate for the
out-going red mode, that thus defines our clock. This yields

ω̇ =
dω(r(ū), α)

dū
=

dr(ū)

dū
ω′ , (5.106)

where ω′ = ∂rω. If we work within (5.9), the relation between ū and r is given by

dū

dλ
=

dt

dλ
+
credg (r, α)ur + sr

credg (r, α)ut + st

dr

dλ
=

(
credg (r, α)ur + sr

credg (r, α)ut + st
− r

r − 2M

)
dr

dλ
, (5.107)

where λ parametrizes the infalling world-line. The derivation of this formula is given
in Appendix B, together with an alternative derivation of T (α).

Let us rewrite the group velocity as

cg(r, α) =
∂ω

∂k
=
∂rω

∂rk
=
ω′

k′
, (5.108)

where also k′ = ∂rk. Differentiating (5.17) with respect to r yields

0 = (ω + k)N ′ +Nω′ + V k′ , (5.109)

where we used that N ′ = V ′, which holds true for (5.9). Combining the previous
two expressions we thus get

ω′ = − cgN
′(Ω + k)

N(cgN + V )
=⇒ ω′

ω2
= − cgNN

′(Ω + k)

(Ω− kV )2(cgN + V )
. (5.110)

7Incidentally, this happens at r ≃ 3M for the relativistic case.
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Therefore:

ω̇

ω2
=

dr(ū)

dū

ω′

ω2
= −

(
cgUr + Sr
cgN + V

− r

r − 2M

)−1
cgNN

′(Ω + k)

(Ω− kV )2(cgN + V )
. (5.111)

This expression can be plotted in function of r, as we did in figure 5.4. As one can
see, the adiabaticity holds perfectly at the UH, due to the divergence of k, for any
α. Moreover, the modes conserves the adiabatic structure if sufficiently low energy.
One can show that, in the case n = 2, ψred enjoy a behaviour of the type k ∼ 1/α
for α≪ 1. This implies also cg ∼ 1/α, thus implying

lim
α→0+

ω̇

ω2
= 0 for r ∈ [M, 2M ] . (5.112)

·ω
ω2

2MM r3M 4M 5M 6M 7M 8M

Figure 5.4: Adiabatic condition for modes ψred
Ω with different α: α = 10 (purple),

α = 1 (blue), α = 10−1 (green), α = 10−2 (orange), α = 10−3 (red). The dashed
orange line represent the checking of the WKB condition for the relativistic case. The
vertical lines are at the Killing horizon r = 2M (dashed) and r = 3M (dotted), where
the relativistic-WKB breaks down. All lines are computed with Ω = 1.6 × 10−1,
laying close to the peak of the emission from the UH, which sits at Ω = 1/(2πM).

In conclusion: the UH treatment is exact within the WKB approximation, thus
the emission at TUH remains. For low energy modes, the adiabaticity is preserved
in the region between the Killing and the universal horizons, thus rendering the
tunneling treatment valid and it breaks down closeby the relativistic r = 3M . That
calculation, however, cannot be applied to the high-energy modes, for which the
adiabaticity is violated and the maximum violation of the WKB condition happens
before the KH.

5.4.2 Quantum state

The result (5.104) was expected from the analysis of the analogue case. Besides
the specifics of the geometry, in both cases we have faced the problem of describing
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superluminal particles in the presence of a Killing horizon, and we have obtained
the same result.

However, in contrast to what we had in the AG case, for an LV black hole, an
UH is present. What does it imply for the quantum state of ϕ?

In section 5.3, we have learned that the causal properties of the spacetime make
all the modes to exponentially peel at the horizon surface r = rUH in the same
way. Due to the infinite blueshift, the infalling observer would see an infinite-energy
barrier if the field is not set to be in vacuum. Actually, setting the vacuum at the
horizon in GR, is exactly what tells us that the state percieved on I + is thermal,
due to the Bogolyubov relation between the basis.

Similarly, here we will take our near-UH basis {e−iΩτ} and define, through the
associated creation-annihilation operators âΩ and â†Ω, the vacuum |0UH⟩ as

âΩ|0UH⟩ = 0 . (5.113)

It is in this way that the UH completes the picture with respect to the AG case
of Chapter 3. In section 3.6, we have mentioned the absence of a sensible way to
define the vacuum state for the field ϕ. Here we have a preferred choice, which
follows closely the GR analysis, due to the infinite divergence of the modes at the
UH, defining a LV version of the Unruh state.

Nevertheless, our computation for low-energy rays at the Killing horizon holds
and predicts an almost-Hawking spectrum in its low-energy part. However, as al-
ready mentioned, this would imply to set the local vacuum state at any effective
horizon, as defined in equation (3.48). If ϕ is not in this state, an infalling observer
would perceive the lingering as a sort of energy-Λ firewall which, even if not infinite,
would imply a huge energy barrier nearby the EFH. A possible solution to get rid
of it maintaining the regularity of the state at the UH would be to have compatibil-
ity of the two state; namely if it would exist a quantum state |ϕ⟩ which looks like
vacuum on the UH and vacuum on the EFH, no firewalls appear.

The compatibility of the two states is exactly what it is shown by the adiabaticity
condition analysis of the previous section. We have seen that the low energy part of
the spectrum satisfy the adiabatic condition. This means that the same basis {eiS0}
is valid in the whole region between the UH and the EFH. The adiabaticity allows
to say that the low energy particle content of |0UH⟩ is the same as |0EFH⟩ in between
the two horizons. Therefore, once one has set the vacuum |0UH⟩, he is also ensured
to find vacuum at the EFH, for low α, thus explaining the compatibility between
the two conditions.

The resulting spectrum will be something which interpolates between a thermal
distribution with TUH for the high-α modes, and a distribution following T (α) at
low-α. We shall come back to this point in the conclusion.

5.5 Axisymmetric solutions

The fact that, in the near-horizon limit, rays travel along a spacelike hypersurface
is a consequence of the infinite blueshift character of the near-horizon solutions.
However, as we already pointed out in section 5.3.2, this fact can be derived in a
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pretty generic way as a behaviour of a particle, obeying a MDR nearby (u · χ) = 0.
Let us take the expression for Ω

Ω = −ω(u · χ)− ks(s · χ) , (5.114)

where the subscript “s” has been introduced to underline the fact that it indicates
the momentum along sa. In the spherically symmetric analysis, this component of
the momentum is the only one which can diverge, due to the rotational invariance.
However, let us consider a geometry like the one given in [125], which has been
analysed in section 4.3. This solution, although not endowed with an UH, enjoy a
surface for which (u · χ) = 0, named QUH. However any signal defined here will
be able also to travel along θa (as defined in section 4.3), without the constraint of
spherical symmetry. This is exactly what makes the QUH to fail being an horizon:
any ray can escape from it, if it travels along θa fast enough.

Note that, unlike the spherically symmetric case, where the symmetries plus the
MDR combined with the conservation of Ω allows us for a complete description of
the WKB solution, in the less-symmetric rotating case, this is no longer possible.
The rotational invariance along the azimuthal angle φ, the conservation of Ω and
the MDR remains, but we lose the constraint on kθ, which now becomes another
incognita of our system.

However, let us point out that the constraint (5.114) still admits for solutions
which diverge nearby the QUH. Actually, the treatment made in section 5.3.2 can
be adapted quite easily for a generic trajectory which travels with the phase velocity
cp.

Whenever |ks| → +∞ as approaching the QUH, equation (5.114) tells us that,
near (u · χ) = 0

ω

ks
= − s · χ

u · χ
. (5.115)

We can then consider the MDR for a divergent |k|

ω2 ≃ |k|
2n

Λ2n−2 . (5.116)

In the case of divergent ω – namely if at least one of the components ks, kθ blows
up – the motion is given in terms of the phase velocity, as we explained in section
5.3. Let us define the spatial direction as

va =
ka

|k|
, (5.117)

such that the trajectory is locally determined by

(cpua + va)dx
a = 0 , where cp =

ω

|k|
. (5.118)

If |ks/kθ| → ∞ at the QUH, we have

va|QUH = sa . (5.119)
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Therefore, we recover exactly the spherically symmetric computation. The (non-
normalized) tangent vector to the trajectory is

ẋa = ua + cpv
a (5.120)

such that, since n · s = 0 at the QUH from (4.66), we get

(n · ẋ) = (a · χ) (5.121)

and, after the same steps, we recover exactly the formula given in (5.68), thus
reproducing the logarithmic peeling. This seems to tell us that the surface (u·χ) = 0,
even if it does not represent, purely speaking, an UH, it defines a surface where
trajectories with an exponential peeling solve the field equations at constant Ω.
However, this happen only for those motions which happen in the {u, s} plane in
a neighborhood of the QUH. Whenever the ray enjoys a near-QUH nontrivial θ
component, the product (n · ẋ) assumes the form:

(n · ẋ) = (a · χ) + (n · θ)(v · θ)cp (5.122)

which contains a divergent contribution given by cp, and the trajectory does not
longer show any logarithmic behaviour.

Additionally, the peeling factor of the ks-dominated trajectories

κQUH =
a · χ
2

, (5.123)

cannot automatically shown to be constant on the whole surface u · χ = 0, but
instead it will be a θ-dependent function. This would mean that, from the thermo-
dynamical point of view, even if this surface would start to radiate, it would not be
in equilibrium, since it would not have a constant temperature.

Let us conclude commenting that in this axisymmetric case, the possible way to
clarify the kinematic of the field are the following two:

• One finds that (u·χ) = 0 is an actual UH: if one manages to find an aether field
ua with a vanishing twist on the QUH, then, this surface becomes orthogonal
to the aether itself – therefore na ∝ ua – and the logarithmic behaviour is
recovered for all the outgoing trajectories.

• One finds out a way to close the system of equations. Indeed, a WKB field ϕ
in the rotating case is determined completely by the three functions ω, ks and
kθ. However, only two equations – the MDR ω = ω(|k|) and the conservation
of Ω – are given, as far as we know. The integrability of the GR geodesics in a
Kerr geometry is given by the conservation of the so-called Carter’s constant
[136], determined through a Killing tensor, which in our case is not conserved
anymore (or at least, not in general, as one can verify for the solution of [125]).
Let us underline that, the notion of a second conserved quantity, will allow us
to determine whether the outgoing peeling trajectory with ks →∞ are actual
physical solution or just a feature of the underdetermination of the system of
the equations.
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5.6 Outlook

As a summary of this Chapter, let us go through its main results. The analysis of
the causal structure of a LV black hole has been performed considering a field with
a (superluminal) MDR on top of this geometry.

The universal horizon, which represents the main difference between this Chapter
and Chapter 3, radiates with a constant temperature, proportional to its surface
gravity TUH = κUH/π. The analysis of the causal behaviour for the modes tells
us that a species-dependent result is not possible, because those modes have to
propagate onto a constant-khronon surface, when they get infinitely blueshifted.
The study of the modes in section 5.2.2 gives also a picture on the energy balance of
the LV-Hawking process. The appearance of a negative-energy mode with support
only inside the UH – namely ψgreen – allows the pair production at the horizon in
the usual way. This was not considered in [121], where the analysis was performed
considering the interplay ψred and ψorange which gives no contribution at the UH.

However, this contribution turns out to be of great importance in the analysis
of the (α-dependent) propagation of the rays. The Killing horizon acts on those as
a prism, differently for each α. This allows us to recover the analysis made in the
analogue case at the acoustic horizon.

The combination of these two effects returns a global, coherent picture. The UH
serves as an anchor to fix a vacuum state for the infalling observer, which turns
out to be compatible, at low energy, with the relativistic Unruh state, determining
vacuum at the Killing horizon. At the phenomenological level, it implies a spectrum
at infinity which low-energy parts are dominated by the Killing horizon – therefore
by the Hawking temperature (plus α-corrections) – and which the high-energy sector
are determined by TUH.

However, the full spectrum is still to be derived, probably with the help of
semi-analytical or full fledged numerical methods. Also, this is just a first step in
understanding the thermodynamics of black holes in Lorentz violating theories, in
particular if the four laws of black hole thermodynamics can be extended to them
(see e.g. [137, 138]). We will come back on this in the conclusions.
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Chapter 6

Unruh effect without Lorentz
invariance

As we have discussed in Chapter 1, the duality between gravity and acceleration
encoded in the equivalence principle makes the Hawking effect and the Unruh effect
two sides of the same coin. Actually, at the local level there is no difference between
an observer hovering at constant r near a large black hole Killing horizon in a
Schwarzschild geometry and a constantly accelerating one on a flat background,
since the apparent horizon perceived by the latter can be mapped into the Killing
one.

The Hawking temperature TH = κ/(2π) of equation (2.39) is the temperature
perceived by an observer sitting at r = +∞. In general, a constant-r observer
will detect the black hole radiation with the Hawking temperature rescaled by the
Tolman factor [139]:

Tobs =
TH
|χ|

= TH

(
1− rs

r

)−1/2
, (6.1)

where χ = ∂t is the time translation invariance. Hence, as anticipated, TH =
limr→∞ Tobs.

In a near-Killing horizon limit, the constant-r observer is mathematically equiva-
lent to an accelerated one in the Rindler wedge of Minkowski spacetime: a constant-r
trajectory becomes an integral line of the boost Killing vector χ = ∂η and an observer
living there feels the temperature given by its proper acceleration [41]

Tobs =
ap
2π

. (6.2)

The magnitude of ap depends on the particular χ-orbit followed by the observer.
Since its proper time τp on a particular orbit is given by

dτp =
√
−gηηdη = |χ|dη , (6.3)

then one can write ap as

ap =
a

|χ|
, (6.4)
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where a is a bookkeping parameter. Therefore, we have

Tobs =
ap
2π

=
a

2π

1

|χ|
. (6.5)

If one defines the TR = a/(2π) as the temperature of the Rindler wedge, then
the relation resembles closely the one in (6.1), where the observed temperature is
rescaled by the norm of the Killing vector.

The fact that this equivalence could hold also without Lorentz invariance is a
matter of debate. Since LV gravity as we discussed here drops the local boost
invariance, the equivalence between the two effect can be spoiled at the fundamental
level.

Indeed, even if the robustness of Hawking radiation is common wisdom within
this framework, the same cannot be told for what regards for the Unruh effect [140–
142].

The different fate of the two phenomena when dealing just with ultraviolet
Lorentz-breaking matter can be readily understood in terms of separation of scales:
while the Hawking effect is characterized by an objective scale provided by the sur-
face gravity of the black hole, which in turns is determined by the conserved charges
of the black hole solution (e.g. mass and angular momentum for a Kerr black hole),
no such scale is present in the Unruh effect, as the Rindler wedge temperature TR

of (6.2) can always be rescaled to be 1/2π [143], being a a bookkeeping parameter.
The absence of an intrinsic scale (akin to the black hole surface gravity κ) to be
contrasted to the UV Lorentz breaking scale, say Λ, is what prevents the scale sep-
aration (κ ≪ Λ) so crucial in preserving the Hawking effect for example in analog
models of gravity.

So it was no surprising that a stream of papers on the subject concluded that
the question concerning the robustness of Unruh radiation in the presence of UV
Lorentz breaking matter had to be answered in the negative [140–142]. Note that
technically, the main culprit of such an apparent wipe out of the effect can be traced
down to the breakdown of the KMS condition of the Wightman function [142, 144].

However, we have already seen that the presence of an UH may serve as an
anchor for preserving the KMS structure of the state, by providing the usual conical
singularity, in the Euclidean patch. The presence of such a surface cannot be found
in the relativistic Rindler wedge, which is limited by the Killing horizon. However,
as we shall see, such a thing is possible if the Rindler spacetime is extended in order
to contain an aether field ua, that has to be dynamical, satisfying the gravitational
field equations (4.15). We will show that this consideration is crucial, because it
will insert a physical scale in the problem, that will provide the aforementioned
separation of scales. Within this treatment, the analogy between the Unruh and the
Hawking effect can be restored also in LV settings.

In this Chapter, we will describe how to make this construction, basing our
treatment mostly on [39]. We will describe the LV-Rindler wedge, solving for a
compatible aether and then we will compute the Unruh effect in two ways. The first
one will rely on a Bogolyubov transformation and the other one on the Unruh-De
Witt detector, accompanying our accelerated observer.
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6.1 Geometrical set up: the Rindler wedge

Let us start by briefly reviewing the relativistic Rindler wedge to extract its internal
geometrical logic which can then be utilized to identify an according patch of space-
time in LV gravity. For more details on the relativistic case see [41, 145].

The relativistic Rindler space-time (R, gR) is a subset of Minkowski space-time,
the intersection of the future and the past of the worldline of a uniformly accelerated
observer. In Rindler coordinates, its metric takes the form

gR = e2aξ(−dη2 + dξ2) + dE2 (6.6)

where lines of constant ξ correspond to an accelerated observer’s worldline, and a is a
bookkeeping parameter with the dimension of an acceleration. For all our purposes,
the problem at hand effectively reduces to a two-dimensional problem, and therefore
we can relinquish the Euclidean plane E2 in our subsequent analysis focusing on the
(1+1) dimensional spacetime {η, ξ}.

The metric gR is static and admits a globally timelike Killing vector χ = ∂η
which in Minkowski space-time can be easily recognized to be the boost Killing
vector χ = a(x∂t + t∂x).

Because of the relativistic causal structure, an accelerated observer is in this
case in causal contact only with a limited region, i.e. gR where |t| < x, of the full
Minkowski space-time gM . The two metrics are related by the coordinate transfor-
mation

η(t, x) =
1

a
artanh

(
t

x

)
, ξ(t, x) =

1

2a
ln
(
a2(x2 − t2)

)
(6.7)

The coordinates (η, ξ) are adapted to an observer on an orbit of the boost Killing
vector in flat space-time, and they are only defined on a restricted region due to
their logarithmic nature. Indeed, it is easy to see that in Minkowski coordinates,
the trajectory of an observer at {ξ = const} is {x2 − t2 = a−2p }, i.e. a hyperbolic
trajectory with proper acceleration ap = a e−aξ.

Since the Rindler space-time is just a section of Minkowski, it is Riemann-flat
and its asymptotic regions correspond to the future null infinity I +, and past null
infinity I −, because the space-time is asymptotically simple and empty. Hence, the
Penrose diagram for the Rindler dissection of Minkowski space-time – cf. figure 6.1
– comprises of four regions, the left and right wedges, R and L , and a future and
past wedge, F and P. Those regions are separated by a Killing horizon, that is, a
bifurcating, non-degenerate, null 3-surface defined by the Killing vector χ becoming
null. In the coordinate patch (6.6), this condition holds at

|χ|2 = 0 ⇔ g00χ
0χ0 = −e2aξ → 0 ⇔ ξ → −∞, (6.8)

such that the horizon creates an asymptotic boundary and, therefore, determines
the closure of the Rindler wedge. The feature that a coordinate patch asymptotes to
the Killing horizon is familiar from Schwarzschild space-time in tortoise coordinates.

After analyzing the construction of the relativistic Rindler patch, we extract the
following properties: the Rindler patch is a globally hyperbolic Riemann-flat space-
time that admits a boost Killing vector. These conditions will serve as a blueprint
to construct the Rindler patch in a Lorentz breaking setting.
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Figure 6.1: Penrose diagram for the right Rindler wedge R (colored area in the
Penrose diagram of the full Minkowski manifold M ) with the hyperbolic trajectory
of the relativistic accelerated observer ranging from i− to i+ and rapidity aη. The
future and past horizons H + and H − determine the closures of the part of the
manifold that borders to F and P. Each point in this figure represents a Euclidean
flat plane.

6.1.1 The non-relativistic Rindler patch

In contrast to the general relativistic case, in Lorentz-breaking theories we face a
Newtonian causal structure, in which the Killing horizon, as a null surface, becomes
permeable in both ways for signals that travel with propagation speed cS > 1.
Hence, the non-relativistic version of the Rindler wedge should be larger than the
corresponding relativistic one, and include the latter. However, the foliated Rindler
patch R will be a subset of the foliated Minkowski manifold M and will fail to cover
it completely, as we will see.

The LV geometry is defined by a space-time triplet (R, gR, uR). We begin de-
manding the following properties to be satisfied by a non-relativistic version of the
Rindler wedge

• Boost invariance: LχgR ≡ 0, and LχuR = LχsR ≡ 0

• Riemann flatness: Riem = 0

It is important to highlight the relevance of the first condition1, as it ensures the
existence of stationary orbits, in the non-relativistic Rindler patch, consistent with
standard Rindler orbits. This condition is crucial because, without it, no equilibrium
state could be associated with these orbits. Consequently, it would be unclear how
our investigation would relate to the standard Unruh effect.

Moreover, we demand the pair (gR, UR) to solve the equations of motion of EA
gravity [98]. Since the spacetime is Riemann-flat from the metric point of view, the

1as usual, sa is the spacelike vector orthonormal to ua

106



equations of motion for the aether are given by (4.15) and (4.18):

T uab = 0 , Aa = 0 . (6.9)

Let us note that the (1 + 1)-dimensional EA formulation with a timelike Killing
symmetry have the same degrees of freedom as the (3 + 1)-dimensional spherically
symmetric one, namely, a single-variable function determining the metric tensor and
another one determining the aether. Therefore, the solution will be hypersurface
orthogonal. This can be proven just by taking the twist tensor ωab and recalling
that

ωabu
b = 0 . (6.10)

Therefore, the only possible contraction in the {u, s} basis is ωabsasb, which vanishes
because of the antisymmetry of the twist. The expression for the two tensors in (6.9)
is given in [109, 111]:

T uab =∇c(g
cdu(bFa)d − gcdFd(aub) − F(ab)u

c) + caaaab

+ (ud∇cF
cd − caacac)uaub +

1

2
gabLEA + 2A(aub) ,

(6.11)

where LEA is the Lagrange density of (4.11) and

Fab = cθθgab + cσ∇bua + caabua ,

Aa = γab(∇cF
cb − caac∇buc) .

(6.12)

Finding the geometry

Now, we can use the properties attributed to the relativistic Rindler space-time
(R, gR) in order to construct the Lorentz-violating space-time (R, gR, UR). A sketch
of the computation is reported below but we refer to Appendix C for explicit calcu-
lations.

Let us focus on the aether equation of motion Aa = 0. Since all relevant physics
takes place in a (1 + 1)-dimensional submanifold, we adopt the following ansatz to
determine our spacetime’s building blocks

gW = W 2(τ, ρ)(−dτ 2 + dρ2), uW = W (τ, ρ)dτ, (6.13)

with W (τ, ρ) a conformal factor. This ansatz reflects the dimensionality of the
physical setup: since the observer’s trajectory is embedded in a (1+ 1)-dimensional
submanifold spanned by u and s, we use an adapted coordinate system {τ, ρ} such
that u assumes the form in (6.13) and s = W (τ, ρ)dρ. This is complemented with
the statement that all two-dimensional metrics are conformally flat. Hence, the
(1 + 1)-dimensional submanifold containing the trajectory of the observer can be
decomposed into the {u, s} orthonormal basis as

gab = −uaub + sasb (6.14)
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Imposing boost invariance and Riemann flatness, the aether equation of motion
leads to the solution (and its time correspondent reversal used later on)

W±(τ, ρ) =
1

ā(ρ± τ)
, (6.15)

which we can insert into (6.13) to arrive at

gW =
−dτ 2 + dρ2

ā2(ρ± τ)2
, uW =

dτ

ā(ρ± τ)
. (6.16)

Note, we display here both solutions for the sake of completeness but specify in the
following analysis to the ‘+-branch’ while we refer to the lower sign later in the
article.

As required, this solution is Lie dragged with respect to the Killing vector χ =
τ∂τ + ρ∂ρ, that is, the boost Killing vector2, see below. In (6.15), ā arises as an
integration constant, but it is straightforward to see that it encodes a geometrical
meaning, corresponding to the norm of the aether acceleration ∥a∥ = ā, as well as
to its expansion θ = ∇au

a = ā.
The metric (6.16) is Riemann flat, and therefore it is always possible to introduce

a coordinate change (τ, ρ)→ (t, x) to the Minkowski metric

gabdx
adxb = −dt2 + dx2 (6.17)

taking the form

τ(t, x) =
x− t
2

+
1

2ā2(t+ x)
, and ρ(t, x) =

t− x
2

+
1

2ā2(t+ x)
. (6.18)

In the chart parametrized by (t, x), the Killing vector χ = τ∂τ + ρ∂ρ becomes, as
anticipated, the usual boost generator χ = ā(x∂t + t∂x). From that, the aether can
be easily deduced given the shape of W (τ(t, x), ρ(t, x)).

To draw a closer comparison between this non-relativistic Rindler manifold R and
the relativistic R, it is convenient to perform the coordinate transformation (6.7)
to the chart (η, ξ), in which the metric is given by (6.6). The resulting geometry is

gR = e2āξ(−dη2 + dξ2) , uR = −e
2āξ + 1

2
dη +

e2āξ − 1

2
dξ . (6.19)

Note that for the left Rindler patch L the metric tensor gL as well as the aether UL
assume the exact same form as their siblings in R while the boost generator becomes
χ = ∂η in R and χ = −∂η in L; the corresponding Killing horizons are, therefore,
located at ξ → ∓∞. As we shall see, this space-time incorporates the usual Rindler
wedge fully.

However, its different causal structure allows for trajectories crossing the Killing
horizon in both ways and, as such, the foliation extends into the neighboring regions
of R. Here, we stress again the role of the parameter ā. While it is usually just a
bookkeeping parameter, in this case, it represents a physical scale which arises from
the gravitational background, associated with the expansion and acceleration of the
aether.

2Note that such solution admits an additional pair of Killing vectors where Kp = ∂τ + ∂ρ
generates the past and Kf = ∂τ − ∂ρ the future Killing horizons.
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Rindler wedge as a near-horizon limit

An alternative derivation of this geometry can be performed in the following way: it
is well-known that the near-Killing horizon approximation of a Schwarzschild black
hole is represented by the Rindler metric of the form of gR. So, accompanying this
near-horizon expansion with the same one applied to a compatible aether, we should
recover a perturbative solution of (6.9). In other words, let us consider (4.33) with
(5.9), namely

gS = −
(
1− 2M

r

)
dt2+

dr2

1− 2M
r

+ r2dS2 , uS =

(
1−M

r

)
dt+

M

r − 2M
dr , (6.20)

where dS2 is the line-element of the two sphere. Retaining the leading order in an
(r − 2M)-expansion, and relabelling afterwards r − 2M = 2Me2āξ and t = η, then
(6.20) becomes

gS = e2āξ(−dη2 + dξ2) + 4M2dS2 , uS = −
e2āξ + 1

2
dη +

e2āξ − 1

2
dξ (6.21)

which reduces to (6.19) in the large mass limit, that implies S2 → E2.

6.1.2 Causal structure

Let us now analyze the causal structure of the spacetime we have just found. Coming
back to (6.19), we introduce at this point a change of variables through

2āϵ(ξ) = e2āξ , (6.22)

in order to cover the region beyond the Killing horizon F as well, finding

gR = 2āϵ(−dη2 + dξ2) , UR = −2āϵ+ 1

2
dη +

2āϵ− 1

2
dξ, (6.23)

The extension from R into F thus requires a sign change in ϵ

2āϵ(ξ) =

{
+e2āξ in R,

−e2āξ in F .
(6.24)

To determine the extent of this manifold into the region F , it is convenient to regard
ϵ as a spatial coordinate.

Universal horizon

Our solution allows for an UH, located at

(χ · u) = −1 + 2āϵUH

2
= 0, (6.25)

which admits the solution ϵUH = −1/(2ā). Associated to the universal horizon, we
also compute its surface gravity

κUH =
(a · χ)

2

∣∣∣∣
UH

=
ā

2
, (6.26)

which is again characterized by the æther’s acceleration ā, being the only scale in
the problem.
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Foliation

Since ϵUH < 0, the UH lies in F , which means in turn that the foliation of R extends
into the relativistic wedge F – since the previous condition can never be met in
R. To substantiate this result, we solve (4.8) for the khronon field coordinating
the foliation in both patches, R and L, in Minkowski coordinates – foliation leafs
corresponding to constant khronon surfaces. We find3,

τR(t, x) = −
1

ā
ln

(
ā2(x2 − t2) + 1

ā(x+ t)

)
, τL(t, x) = −

1

ā
ln

(
− ā

2(x2 − t2) + 1

ā(x+ t)

)
.

(6.27)
The khronon leafs accumulate exactly at the hyperbola

t2 − x2 = 1/ā2 , (6.28)

which corresponds to the location of the universal horizon. The first observation to
emphasize here is the existence of two solutions that constitute the foliation of the
right and the left Rindler patches (R and L, respectively) until the universal horizon,
as well as the future and past patches (F and P). Second, due to the sign difference
in the argument of the logarithm, both foliations are oriented in opposite directions.
If, for instance, τR is future oriented, then τL is past oriented, and vice versa. More
colloquially speaking, the clock τR ticks in opposite direction with respect to τL.
Since the lapse of the foliation NR = −(χ · u) flips sign across the universal horizon,
F is foliated according to τL and P with respect to τR. As can be seen in figure
6.2, foliation leafs accumulate from both sides at the universal horizon, describing a
natural closure that limits the Rindler patches.

Additionally, from (6.27) it is straightforward to show that the lapse function N
assumes an opposite sign between the two regions R and L. Indeed, since dτR =dτL
we have uR = uL. However the boost Killing vector χ = x∂t+ t∂x flips sign between
the two regions that gives us NR = −NL

Figure 6.2 also shows that the accelerated aether cuts the space-time into four
pieces. We observe that the foliation of R extents into the region F , yielding a very
particular form of the right patch that resembles the shape of the exterior foliation of
an EA-Schwarzschild black-hole [38]. Similar to the black hole interior, the change
of sign in (χ · u) ensures that the manifold is C2(R) across the horizon [35].

It should be emphasized that the space-time, and thus the foliation, are invariant
under the action of the boost vector χ. For foliated manifolds, this implies that the
aether itself is invariant. As a consequence, (χ · u) is independent of the time
coordinate η and the aether is Lie dragged with respect to ∂η. This determines our
foliation uniquely and constitutes the Rindler patch.

An analog patch L can be found by considering the outside red part in figure 6.2
with adjacent region P given by the lower green part. Altogether, these four parts
cover all of Minkowski space-time like in the relativistic scenario. The corresponding
Penrose diagram for R can be seen in figure 6.3.

As a final remark, let us point out that the structure depicted by the foliation
(6.27) represents the unique (1 + 1)-dimensional spacetime with a boost-invariant

3The same spacetime was found, in an independent manner in [146]
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Figure 6.2: Foliated area of Minkowski space-time through an accelerated aether.
The right, green panel shows the lines of constant τR, which generate a future di-
rected aether uR and charts R and P. The left, red panel depicts the folium generated
by constant τL lines, and covers the regions L and F. The corresponding aether uL
is past-directed with respect to uR.
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Figure 6.3: Penrose diagram for the right Rindler patch R (colored area in M) with
hyperbolic trajectory of the relativistic accelerated observer ranging from i− to i+

with rapidity āη. The future universal horizon H ∞ determines the closures of the
part of the manifold that borders to F. The Killing horizon is displayed by the
dotted null line while the constant khronon leafs are the dashed purple lines. It
is visible that R ⊂ R for identical hyperbolae. The left Rindler patch L can be
obtained by reflecting R at the point where I + meets the Killing horizon.
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preferred time. Considering a usual uniformly accelerated observer, which follows
an orbit of χ up to i+, our Rindler wedge defines the portion of Minkowski which
is causally connected with him. This construction becomes a crucial difference in
the study of the Unruh effect for LV physicis with respect to previous investigations
[142] which limit their analysis to the relativistic wedge.

6.2 The Unruh effect: Bogolyubov approach

The Unruh effect consists in the detection of a thermal bath by a uniformly accel-
erated (Rindler) observer in Minkowski vacuum. Its derivation usually follows from
the confrontation of the vacuum associated to an inertial observer in Minkowski
with that associated to the second quantization of the field in a basis of modes
appropriated for the Rindler observer.

More specifically, let us consider a massless relativistic field obeying the usual
Klein Gordon equation [13, 145]

□ϕ(x, t) = (−∂2t + ∂2x)ϕ(x, t) = 0 (6.29)

which space of solutions can be labelled by the modes

uk =
1√
2π|k|

e−i|k|t+ikx , (6.30)

thus defining the energy ω = |k| with respect to the Minkowskian time ∂t. This
mode-decomposition allows to define the Mikowski vacuum as

âk|0⟩M = 0 , (6.31)

being âk the annihilation operator for a mode with energy ω(k) = |k|. This vacuum
will be the vacuum for any inertial observer in Minkowski, being a Poincarè invariant
state.

On the other hand, (6.29) can be solved in the Rindler patches (6.6), i.e. for
{x > |t|} and {x < −|t|}. This is a particularly simple task for a massless scalar
field, since the field equation is conformal invariant and the metric is conformally
flat:

□ϕ(ξ, η) = e−2aξ(−∂2η + ∂2ξ )ϕ(ξ, η) = 0 (6.32)

that admits again a mode decomposition of the form

vp =
1√
2π|p|

e−i|p|η+ipξ , (6.33)

with Ω(p) = |p| being the energy of the mode defined with respect to the boost
Killing vector ∂η. Those modes are associated with another couple of creation and

annihilation operators b̂†p and b̂p. As already discussed, these functions are not
analytical at the Killing horizon and it is possible to build an analytical combination
of only positive and only negative Minkowski modes [13]:

ψ±p (η, ξ) = vR,p(η, ξ) + e∓
πω
a v∗L ,−p(η, ξ) , (6.34)
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where the subscripts L and R refer to the left and right Rindler wedge. From
(6.34), one can work out the Bogolyubov coefficients as described in Chapter 2 and
in particular the mean value of the particle number operator N̂p = b̂†pb̂p onto the
Minkowski vacuum [41]:

⟨N̂p⟩M =
1

e
2πΩ
a − 1

. (6.35)

The resulting Bose-Einstein distribution tells us that the Minkowski vacuum looks
like a thermal state for the accelerated observer. That defines the wedge temperature
as:

TR =
a

2π
. (6.36)

As a final remark, let us notice that TR is exclusively governed by the horizon H +,
but not by the particular observer. In fact, the bookkeeping parameter a can always
be set to one in (6.7) without loss of generality. However, the proper temperature
measured by an accelerated observer, travelling along a specific hyperbola of constant
ξ, can be derived from the wedge temperature by the appropriate Tolman factor

Tp =
TR√
−g00

=
aeaξ

2π
=
ap
2π

. (6.37)

We hence see that the observed temperature of a given Rindler observer depends on
its proper acceleration ap, and coincides with TR on the special hyperbola ξ = 0.

6.2.1 Rindler modes in Lorentz-violating gravity

Let us now consider a dispersive field in the (boost invariant) LV geometry that we
described in section 6.1.1. As usual we will take a field ϕ of the form of (5.11) with
field equation [

□−
n∑
j=2

β2j
Λ2j−2 (−∆)j

]
ϕ = 0, (6.38)

where ∆ = γab∇a∇b is the usual Laplace operator. One can define the preferred
energy and momentum as we did previously in this thesis. Within a WKB ansatz

ϕWKB = ϕ0e
iS0 , (6.39)

one can set

ua∂aϕ = −iωϕ and sa∂aϕ = −ikϕ . (6.40)

The equation of motion becomes a modified dispersion relation:

ω2 = k2 +
n∑
j=2

β2j
Λ2j−2k

2j , (6.41)
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accompained with the conserved quantity connected with the boost invariance

Ω = −ω(u · χ)− k(s · χ) = ωN − kV . (6.42)

Let us emphasize that the mathematics is exactly the same as the one found in
Chapter 5. The modes which solve (5.15) do not completely decouple due to the
dispersion. Actually, the massless, (1 + 1)-dimensional relativistic case is the only
case where right-going and left-going modes decouple completely [147]. In general,
the propagation of the modes is affected from the geometry and the dispersion, which
also is the cause of the greybody factor. This computation is thus more similar to
the black hole case then to the Unruh computation for the massless field.

However, in addition to the UH analysis we will have to investigate the shape of
the modes also nearby the juction {x+ t = 0}, since the goal will be to combine the
modes in the left and right Rindler patches in such a way to build an analogous of
(6.34) and compare with the Minkowski vacuum.

Near horizon modes

Indeed, even if the computation of the full form of the modes in the whole spacetime
is quite involved an perhaps impossible for generic n, we are interested in the near-
UH limit of the solution. There, we find a behaviour of divergent ω and k in complete
analogy to what we found in Chapter 5. This again gives the phase velocity (readable
directly from (6.42))

cp =
ω

k
= −V

N
. (6.43)

The (divergent) phase velocity, defines the constant-phase contours of the right-going
modes through

dū = (cpua + sa)dx
a = 0 . (6.44)

Following the same steps given in Chapter 5, one see that the near-UH, right-going
modes in the right Ringler patch are given by:

ϕΩ = e−iΩτ , where τ = η − 1

ā
log(1 + 2āϵ) , (6.45)

where the energy has been fixed with respect to χ = ∂η.

Near x+ t = 0

The other point where we have to look is the surface {x+ t = 0} where the constant
khronon leaves accumulate in the infinite past. The situation can be analyzed in
a similar fashion. Let us introduce a set of null coordinate to describe the {u , s}
plane:

V̄ = t+ x , Ū = t− x , (6.46)

in which we have

u = −1

2

(
dV̄

āV̄
+ āV̄ dŪ

)
, s =

1

2

(
dV̄

āV̄
− āV̄ dŪ

)
. (6.47)
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Closeby the surface V̄ = 0+ the conservation of Ω (6.42) can be easily evaluated as

Ω =
ω − k
2

, (6.48)

that, together with (6.41) allows to determine the shape of the WKB mode ϕ, just
by evaluating the classical action of (6.39) in the limit (x+ t)→ 0+:

ϕΩ = e−i
Ω
ā
log(V̄ ) . (6.49)

6.2.2 Analytical continuation

Give the non-analiticities of the modes both at the UH and at V̄ = 0 we can build
the following combinations between the L and R modes:

Φ±Ω(η, ϵ) = ϕL,Ω(η, ϵ) + e∓
πΩ
ā (ϕR,Ω(η, ϵ))

∗ . (6.50)

Surprisingly, the factor e∓
πΩ
ā cures the non-analyticities both at the horizon and at

V̄ = 0. Hence the set {Φ±Ω} describes modes at fixed Ω which are well defined in
the whole Minkowski space-time.

The Bogolyubov coefficients can be computed again in the usual way giving the
following number of created particles

⟨N̂Ω⟩M =

∫
dΩ̄ |βR

Ω̄Ω|
2 =

1

e
2πΩ
ā − 1

(6.51)

where we have defined the particle number operator N̂Ω = b̂†Ωb̂Ω, and the expectation
value has been evaluated within the Minkowski vacuum state. We find that the
number of measured particles follows a Bose-Einstein distribution from which we
can read off the associated patch-temperature

TR =
ā

2π
=
κuh
π
. (6.52)

Note, we identified ā = 2κUH where κUH is the surface gravity calculated from the
expansion, which is related to the peeling surface gravity [122] at the universal
horizon.

Again, the above temperature is purely set on the basis of geometrical consid-
erations related to the universal horizon induced by the aether flow of the Rindler
patch. In this sense, we derived the equivalent of the Rindler wedge temperature
TR = a/2π. However, this is not the temperature that an observer will detect while
moving on a specific orbit of the boost Killing vector, the equivalent of (6.37) for
our case.

One might contemplate applying the usual Tolman factor to get the proper accel-
eration, but this would not do: indeed the Tolman factor is purely metric dependent
and would not capture the relevance of the observer motion with respect to the pre-
ferred frame set by the aether. The important question, we need to address here, is,
what would an observer on a Rindler trajectory (along ξ =const.) actually detect in
a realistic, thus simplified, measurement process. Therefore, let us now push further
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our investigation (and double check the above results) by considering the response of
a uniformly accelerated Unruh-DeWitt detector. We shall see in what follows that
this will not only corroborate our previous analysis but will also enlighten where the
imprints of the LV physics can be found in spite of the insensitivity of the found
temperature (6.52) on the details of the modified dispersion relation.

6.3 Unruh-De Witt detector

In order to understand what an actual Rindler observer would measure, we consider
a simple model describing a point-like Unruh-DeWitt detector [148]. We will again
work within the (1+1)-dimensional submanifold that contains the world-line of the
detector. This treatment is in line with [145], which also shows the generalization
to the full (1 + 3)-dimensional setup.

The detector is composed out of a Hermitian operator µ̂ which acts on a two-
dimensional Hilbert space Hµ ≃ C2 spanned by the orthonormal basis {|E0⟩, |E1⟩}
where |E0⟩ denotes the ground-state and |E1⟩ the excited state. These states are
designed to be the eigenstates of the free Hamilton operator Ĥµ, that is, they fulfill

Ĥµ|E0/1⟩ = E0/1|E0/1⟩ with E0 < E1 . (6.53)

To detect field excitations, we couple the detector to a scalar field ϕ̂ via the inter-
action term [145, 148, 149]

Ŵ = b

∫ ∞
−∞

dτ χ(τ)µ̂(τ)ϕ̂[y(τ)] (6.54)

with coupling strength b ∈ R, and switching function χ(τ), that has support only
on the time interval of the measurement [140]. The evolution parameter τ is always
adapted to the Cauchy problem; and it is typically chosen to be the proper time
of the detector on its world-line. Here, we choose τ to be the preferred time of
the foliation, dictated by the khronon. This aligns the Hamiltonian flow with the
direction of the preferred clock and yields a consistent Schrödinger evolution.

Since our detector is constantly accelerated, its domain of dependence will only
cover the right Rindler patch R, as previously argued, whose khronon is given by
(6.27). The Hamiltonian flow must then be tangent to u and the Schrödinger opera-
tor iLu− Ĥµ acquires an additional dependence on the lapse. Colloquially speaking,
the detector evolution is determined by the preferred time rescaled by the lapse as

µ̂(s) = e−iNĤµτ(s)µ̂0 e
iNĤµτ(s). (6.55)

Note that we have introduced the proper time of the detector s via τ(s) = seāξ

so that we can relate our result to the relativistic Unruh setup that is naturally
parametrized by s, the detector clock.

The Hamilton operator [148] that acts on states in the Hilbert space Hϕ is given
by

Ĥϕ(τ) =

∫
Στ

d3y
√
−det(γ)

{
Π̂(τ, y⃗)ua∂aϕ̂(τ, y⃗)− L[ϕ̂,∇ϕ̂](τ, y⃗)

}
, (6.56)
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where the Lagrange density L[ϕ̂,∇ϕ̂](τ, y⃗) is given by (5.11). As usual, Π̂(τ, y)
denotes the canonical momentum conjugated to the field ϕ̂(τ, y). Then the total
Hilbert space is H = Hµ ⊗Hϕ and the total Hamilton operator takes the form

Ĥ = Ĥµ ⊗ îdϕ + îdµ ⊗ Ĥϕ + Ŵ , (6.57)

where îd represents the identity operator. In order to avoid infrared divergences
[145], we introduce a regularization scale m that can be interpreted as a fiducial
mass for the field, which then obeys(

2−
n∑
j=2

β2j
Λ2j−2 (−∆)j −m2

)
ϕ = 0. (6.58)

Also, by doing this the comparison with the relativitic case as discussed in [145]
becomes immediate. Note that the quantum field ϕ̂ must be evaluated on the detec-
tor’s trajectory y(s) such that ϕ̂(τ, y⃗) → ϕ̂[y(s)]. As an operator, ϕ̂ is represented
through a positive frequency basis, such that

ϕ̂(y) =

∫
R

dk

2π

{
âkuk(y) + â†ku

∗
k(y)

}
(6.59)

where uk(y) is a solution to the equations of motion and âk|0⟩ = 0 the destruction
operator annihilating the vacuum state of the quantum field |0⟩.

In general, the outcome of a measurement is given by acting with Ŵ onto a given
state. This can either be the ground state |0⟩, or the corresponding excited state
|1⟩, respectively

|0⟩ = |0⟩ ⊗ |E0⟩ and |1⟩ = |k⟩ ⊗ |E1⟩ , (6.60)

which describes a particle with momentum k that has excited the detector – a
clicking event. With this,

Ŵ =

∫
R

ds {îd⊗ µ̂(s) + ϕ̂[y(s)]⊗ îd} , (6.61)

since the total Hilbert space is given by a tensor product, and we can define the
excitation rate over a probing-time interval ∆s as

R =
1

∆s

∫
R

dk |Ak|2, (6.62)

where

Ak = i⟨1|Ŵ |0⟩ and ∆s =

∫ ∞
−∞

χ(s)ds . (6.63)

Note that we tacitly assumed k to be conserved. This is not true in the Lorentz
violating case, but let us assume it so for the moment. We will come back to
this point later when we particularize the setup to our Gedankenexperiment (for a
general discussion, cf. [145]).
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6.3.1 Temperature

Here, we are interested in the question of what a detector in Minkowski vacuum
measures on a uniformly accelerated trajectory. Let us start with the solution space
to (6.38) in a foliated Minkowski vacuum – hence with a homogeneous aether. We
find for the mode

uk[y(s)] =
eik[y(s)]√
2ωΛ(k)

, (6.64)

where k[y(s)] = ωΛ(k)t(s)− kx(s) and ωΛ(k) =
√
m2 + k2 + k4

Λ2 denotes the disper-

sion relation in Minkowski space-time.
In the (foliated) Minkowski space-time, the hyperbola described by the acceler-

ated detector can be parametrized as usual

t(s) =
1

ap
sinh(aps), x(s) =

1

ap
cosh(aps), (6.65)

where ap is the proper acceleration. Using the mode (6.64), we find that the ampli-
tude in (6.62) factorizes as follows

⟨1|Ŵ |0⟩=
∫
I
ds ⟨E1| ⊗ ⟨k|µ̂(s)ϕ̂[y(s)]|0⟩ ⊗ |E0⟩

=

∫
I
ds ⟨E1|µ̂(s)|E0⟩

∫
R

dk√
8π2ωΛ(k)

e
i
ap

(k cosh(aps)−ωΛ(k) sinh(aps)),
(6.66)

where I = [−s0, s0] is the time-interval of the measurement determined by the
indicator function χ(s), here taken symmetric for simplicity. The first of these
factors depends on the specifics of the detector, while the second, usually called the
response function, describes how the field is perceived on the hyperbola.

The evaluation of µ̂(s) requires to consider the Hamiltonian flow. From the
coordinate transformations (6.7), we derive the function τ(s) on a fixed ξ trajectory
from (6.27) to be τ(s) = e−āξs. Note how, via this relation, the aether acceleration
just came into play. The consequences for the rate are immediate. Considering
(6.55) and the fact that |E0/1⟩ form a basis of Hµ, we find that

⟨E1|µ̂(s)|E0⟩ = q eiN∆Eτ(s) (6.67)

where we defined q = ⟨E1|µ̂0|E0⟩, and ∆E = E1 − E0.
After squaring the amplitude, we are thus facing the following integral for the

rate

R =
|q|2

4πap∆s

∫ ∞
−∞

dk

ωΛ(k)

∫
I
ds

∫
I
ds′
[
eiNe

−āξ∆E(s−s′)eiΦ(s,s′,k)
]
, (6.68)

where Φ(s, s′, k) is defined as

Φ =
ωΛ(k)

ap

[
sinh

(
aps
)
− sinh

(
aps
′)]+ k

ap

[
cosh

(
aps
′)− cosh

(
aps
)]
. (6.69)
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Let us now define σ = s− s′ and 2ζ = s+ s′. We can rewrite Φ as

Φ(σ, ζ, k) =
2

ap
sinh

(apσ
2

)
[ωΛ(k) cosh(apζ)− k sinh(apζ)] . (6.70)

The expression for R becomes then

R =
|q|2

2πap∆s

∫ ∞
−∞

dk

ωΛ(k)

∫
dσ

∫
dζ
{
eiNe

−āξ∆EσeiΦ(σ,ζ,k)
}
, (6.71)

where σ ∈ [−2s0, 2s0] and ζ ∈ [−s0, s0] and we omitted the extrema of integration
for compactness. The σ-integral can be transformed into a soluble form after another
change of variables λ = exp(apσ/2) – thus λ ∈ [e−s0ap , es0ap ] – so that we find Φ to
be

Φ(λ, ζ, k) =
1

ap

(
λ− 1

λ

)
[ωΛ(k) cosh(apζ)− k sinh(apζ)] (6.72)

and

R =
|q|2

2πap∆s

∫ ∞
−∞

dk

ωΛ(k)

∫
dζ

∫
dλ

λ

{
λ

i2Ne−āξ

ap
∆E
eiΦ(λ,ζ,k)

}
. (6.73)

If we want our observer to experience the whole curve we have to send s0 → +∞. In
this way, the λ-integral becomes within the range [0,+∞) while the ζ one runs all
over the real line ζ ∈ (−∞,+∞). At the same time also the normalization ∆s = 2s0
blows up. The λ integration can be faced easily4:∫ ∞

0

dλ

λ

{
λ

i2Ne−āξ

ap
∆E
eiΦ(λ,ζ,k)

}
=

e−πνKiν

(
2 [ωΛ(k) cosh(apζ)− k sinh(apζ)]

ap

)
.

(6.75)

where we have defined

ν =
2Ne−aξ

ap
∆E (6.76)

and Kiν(x) is a modified Bessel function of the second kind [151]. Since

Kiν

(
2 [ωΛ(k) cosh(apζ)− k sinh(apζ)]

ap

)
. (6.77)

is limited in ζ, the following ζ-integration

1

∆s

∫
dζ Kiν

(
2 [ωΛ(k) cosh(apζ)− k sinh(apζ)]

ap

)
, (6.78)

4To solve this integral explicitly, we used the subsequent identity [150]∫ ∞

0

dx xν−1 exp

(
iµ

2

(
x− β2

x

))
= 2βνe

iπν
2 Kν(βµ). (6.74)
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is finite, as the divergence of the integral is compensated by the divergence of ∆s in
the denominator. Namely, the limit

lim
s0→+∞

1

2s0

∫ s0

−s0
dζ Kiν

(
2 [ωΛ(k) cosh(apζ)− k sinh(apζ)]

ap

)
< +∞ . (6.79)

We can thus define the total response of the detector R

R =
|q|2

2πap∆s

∫ ∞
−∞

dk

ωΛ(k)

∫
dζ Kiν

(
2 [ωΛ(k) cosh(apζ)− k sinh(apζ)]

ap

)
. (6.80)

In other words, we have the excitation rate to be

R = e
−πNe−āξ

ap
∆E ×R . (6.81)

To extract the temperature from this calculation, we need to compute also the de-
excitation rate. While (6.73) is given by the k-integral of |Ak|2, where Ak is the
matrix element Ak = i⟨1|Ŵ |0⟩ given in (6.63), the de-excitation rate R̄ is given by
the probability of the inverse process to occur

R̄ =
1

∆s

∫
R

dk |Āk|2 . (6.82)

where Āk = i⟨0|Ŵ |1⟩.
In practical terms, this requires to compute the de-excitation probability of the

detector
⟨E0|µ̂(s)|E1⟩ = q∗ e−iN∆Eτ(s) , (6.83)

where q∗ = ⟨E0|µ̂0|E1⟩ is the complex conjugate of q. Additionally we need to
compute the |k⟩ → |0⟩ matrix element of ϕ̂[y(s)] which is given by

⟨0|ϕ̂[y(s)]|k⟩=
∫
R

dk√
8π2ωΛ(k)

e
− i

ap
(k cosh(aps)−ωΛ(k) sinh(aps))

=

(
⟨k|ϕ̂[y(s)]|0⟩

)∗
.

(6.84)

The computation now goes along the same lines as that previously shown for R. We
arrive to

R̄ =
1

∆s

∫
R

dk |Āk|2 = e
πNe−āξ

ap
∆E ×R , (6.85)

where R is the same response function, containing the remaining ζ-integral, appear-
ing in (6.80). Using (6.73) and (6.85) we can see that the ratio

R
R̄

= e
−2πNe−āξ

ap
∆E

, (6.86)

is a Boltzmann factor which then allows us to read off the temperature that is
measured by the detector [145]

TUDW =
ape

āξ

2πN
=

ā

2πN
=

1

N
TR . (6.87)
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This turns out to have the same value as in the relativistic version of the Unruh
effect, albeit being rescaled by the factor Ne−aξ.

Alternatively, one can interpret (6.87) as the wedge temperature rescaled by
N instead of

√
−g00. In hindsight, this is not a surprising result. Indeed, the

conversion factor linking the Rindler patch temperature to the observed one on
a given hyperbola is nothing else that the rescaling factor between the preferred
and the Killing time. In the relativistic case, one can get (6.37) from the wedge
temperature just by looking at the proportionality factor between the proper time
s of the observer and the Killing time η: on a ξ = const. hyperbola we have ds =√
−g00 dη, telling us the different rates at which the two times pass. Similarly, if

one computes the same quantity for the preferred time τ on the same hyperbola,
one gets uadx

a = N dη. From that, we can directly read the new proportionality
factor – corresponding to the lapse N – which we have found in (6.87). Note that,
similarly to the relativistic case, on the hyperbola ξ = 0, the detector temperature
corresponds to the wedge one (6.2).

6.3.2 Response function: the effect of dispersion

In the previous section, we have seen that an accelerated observer will detect par-
ticles with a rate determined by TUDW. The scale factor which determines the
hyperbola at which the observer is located is given by the lapse function of the
foliation, coherently with the choice of the clock for the detector, i.e. the preferred
time.

As one may immediately note, the relativistic limit Λ → ∞ is quite easy to
recover. In that case ωΛ →

√
k2 +m2 and the response (6.80) can be integrated

analitically in ζ, recovering the relativistic result of [145]. With a finite Λ, there is
no analytical expression for R. Moreover, it is possible to show that the relativistic
result is not dependent on the range of ζ within which the integral is performed. In
our case, this is not true, since the dispersion is sensitive to the time of detection, as
we discuss below. This does not spoil the form of TUDW but it changes the response.
However, for k ≪ Λ we should be able to recover the relativistic response, at least
approximately. In order to investigate this question, let us define Ak as

R =

∫ +∞

−∞
Akdk . (6.88)

Here Ak describes the momentum distribution that determines the rate when in-
tegrated over the full k-space. We plotted this quantity evaluated on the central
hyperbola for several values of the LV scale Λ in figure 6.4.

As it can be seen, the maximum coincides for all distributions, and in particular
with that of the relativistic limit Λ → ∞ (in blue). However, while the latter
decays monotonically towards larger values of k, the rest of the distributions show
an oscillatory tail, connected to the zeros of the Bessel function, that starts earlier
for lower values of Λ. This behavior seems to point to the emergence of Lorentz
symmetry at low energies. As long as the condition k ≪ Λ can be trusted, the effect
of the Lorentz-violating operators, and thus the oscillatory behavior, can be safely
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𝔄k

∞−∞ k0
Figure 6.4: The distribution Ak in the response function integral R for differ-
ent values of Λ: the Lorentz breaking amplitudes are shown for different values of
Λ ∈ {10, 102, 103, 104} (in units of ā) in orange, green, red, and purple, while the
relativistic result obtained from the integral in [145] is indistinguishable from the
purple curve (but shows no oscillations whatsoever). We have set the particular
hyperbola for which ap = ā for this plot, and identified the mass in the result of
[145] to equal m. We have furthermore chosen m = ā.

neglected. Once the approximation breaks down, we start observing modifications
in Ak that differ from the relativistic case.

Shape of Ak

To develop a deeper understanding of what happens when Lorentz-symmetry is
reinstated, let us discuss the behavior of Ak in the non-relativistic case further.
First of all, we place the observer onto the hyperbola where ap = 1 for simplicity
and rewrite

Ak ∝
∫ ∞
−∞

dζ
Kiν(2 {ωΛ(k) cosh(ζ)− k sinh(ζ)})

ωΛ(k)
=∫ ∞

−∞
dζ

Kiν

(
[ωΛ(k)− k]eζ + [ωΛ(k) + k]e−ζ

)
ωΛ(k)

.

(6.89)

Now, with a change of variable ζ → ζ + ln(ωΛ(k)− k), which is valid for any k ∈ R,
we get

Ak ∝
∫ ∞
−∞

dζ
Kiν

(
eζ + [ω2

Λ(k)− k2]e−ζ
)

ωΛ(k)
. (6.90)

Eq. (6.90) is illuminating in several aspects. First of all, it is clear that a relativistic
dispersion relation will decouple the ζ-integration and the k-integration in (6.73) as
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Kiν(eζ + ϖ(k)e−ζ)

ζ

Figure 6.5: Shape of Kiν(e
ζ +ϖ(k)e−ζ) for ϖ(k) = 2 and ν = 4π as a function of ζ

already observed in [145]. Since in the relativistic case we have

Ak ∝
∫ ∞
−∞

dζ
Kiν

(
eζ +m2e−ζ

)
√
k2 +m2

, (6.91)

where m is the mass of the field, it becomes obvious that the two integrals factorize.
Then, the shape of Ak will be controlled by the

√
k2 +m2 in the denominator.

Let us point out that this fact is intimately linked with the boost invariance of the
dispersion relation. This can be deduced by noticing that the argument of the Bessel
function in (6.89) is just the result of a boost of (ωΛ(k), k) with rapidity ζ. In [145] it
has been shown that a change of variable k → k′(k, ζ) in the k-integration of (6.80)
while applying the inverse boost, leaves the measure unchanged (so dk′/ω′ = dk/ω
for the relativistic case), thus factorizing the ζ- and k-integrals.

Without this symmetry, however, we cannot disentangle the two integrals, since
the coefficient (ω2

Λ(k)− k2) remains k-dependent. This explains why, for k = 0, the
relativistic and non relativistic values of Ak both give

A0 ∝
∫ ∞
−∞

dζ
Kiν

(
eζ +m2e−ζ

)
m

, (6.92)

while they depart for other values of k. In other words, in the infrared region, our
detector enjoys the same response function regardless of Lorentz-symmetry while
high energy measurements differ significantly. In fact, in the deep ultraviolet region,
where k → ∞, we notice that the non-relativistic Ak is strongly suppressed with
respect to the relativistic one. This is a consequence of the ultraviolet behavior
of ωΛ(k). While in the latter case ω ∝ |k| at large k, the former case leads to
ω ∝ |k|n/Λn−1, so that Ak is suppressed by a power law. Let us define for convenience
the quantity

ϖ(k) = ω2
Λ(k)− k2 . (6.93)

In the intermediate region, we notice the presence of a finite number of oscillations
in the non-relativistic Ak. Mathematically this can be explained by looking at the
shape of Kiν(e

ζ +ϖ(k)e−ζ) before the ζ-integration, at fixed k, as shown in figure
6.5. There, we observe a finite number of oscillations, while the tails decay very
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rapidly5. Note that for large values of ϖ(k), the Bessel function stops oscillating
[152]. The same happens for the value of the mass, which acts here as an IR
regulator effectively cutting-off the distribution at low energies. In particular, since
ϖ(k) = ω2

Λ(k)− k2 ≥ m2, we can show, by computing its minimum, that

eζ +ϖ(k)e−ζ ≥ 2
√
ϖ(k) ≥ 2m, (6.94)

and the number of zeros of Kiν is governed by m and ∆E. For large values of the
mass m, no oscillation is present, and no bumps appear in Ak.

It should be mentioned that the detector still couples to the aether even in the
decoupling limit of the field Λ→∞. Due to this, the previous limit will not impact
the value of the temperature in (6.87).

Therefore we observe actually a real thermal spectrum without modifications in
the perceived temperature, the only modifications appear in the response function,
and additionally the temperature is dictated by the universal horizon’s surface grav-
ity. As we shall see, this is an evidence for an existing KMS state within this setup.
As explained in Chapter 2, this can be inferred by checking the periodicity of the
Euclidean time of the metric. This has been already shown in a very similar fashion
in Chapter 5 for the black hole temperature TUH.

6.4 Euclidean effective metric and thermal state

Similarly to what we have said in section 5.3.4, in a (1+1) dimensional LV spacetime
with a timelike symmetry χ = ∂η, it is possible to build an effective metric that
captures the causal structure of the spacetime:

g
(cf )

eff,abdx
adxb = −

(
u2η −

1

c2f
s2η

)
dη2 +

(
u2ξ −

1

c2f
s2ξ

)
dξ2 , (6.95)

where cf = lim|ω|→+∞ cp is the signal velocity, capturing the causality perceived by
a field.

When cf = +∞, the steps of the calculations are the same as the ones performed

in Chapter 5, and the Eucliedan version of g
(cf )

eff,ab (i.e. after the complex rotation
η → iη) enjoys a conical singularity solved by a periodicity

β =
2πuξ
∂ξuη

∣∣∣∣
UH

, such that TR =
∂ξuη
2πuξ

∣∣∣∣
UH

=
κUH

π
(6.96)

providing the wedge temperature. This tells us that the quantization of a field ϕ
onto a LV Rindler wedge will describe a thermal state with a temperature TR.

6.4.1 Invitation: EA equations from thermodynamics

Let us conclude this Chapter with some speculative ideas. The derivation of the

thermal properties of the Rindler wedge via the effective metric g
(cf )

eff,ab seems to

5For large values of the argument, we have Kiν(x) ∼ e−x/
√
x [151]
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suggest that the geometry described by that metric feels the causal properties of

a speed-cf signal in the {u, s} frame in a relativistic way. In other words, g
(cf )

eff,ab

describes the UH as an edge of its null cone, and characterizes it as a Killing horizon.
The similarities are so strong that one may wonder if they can be pushed further.

In particular, the effective metric g
(cf )

eff,ab can be taken as the true geometry felt by
the cf -speed matter living on the Rindler spacetime. In [14], Jacobson derived the
Einstein field equations, by invoking the notion of causality given by the Rindler
metric (that can be written also as g

(1)
eff,ab) and the energy flux of the matter content

across its (local) Killing horizon.
More explicitly, ifH is the local Killing horizon, defined by the local Killing vector

which generates boosts, one has that the Killing energy flowing across generates a
heat flow of

δQ =

∫
H
Tabχ

adΣb , (6.97)

where dΣb is the surface element of H. Making the assumption that the variation
of the horizon’s entropy is given by the variation of its area times a constant α, we
have:

dS = α δAH = α

∫
H
θdλdA (6.98)

where θ is the expansion of the – affinely parametrized – geodesic tangent to H,
determining the variation of the horizon’s area [14]. Since matter is in a thermal
state, heat and entropy are related by the Clausius relation

δQ = TUdS . (6.99)

After some algebra and invoking the Raychaudury equation to understand the rate
of change of AH, the Einstein equations comes as a general consequence of the
Clausius relation.

As pointed out in Chapter 1, this derivation, and the subsequent refinements to
more general cases (see, cf. [153, 154]), is completely agnostic from the gravitational
action. Its main ingredients are:

1. A Lorentzian geometry, given by a metric gab. Any metric can be locally
diagonalized to the flat one ηab, choosing the appropriate reference frame (for
instance, using Riemann normal coordinates [43]). Therefore it admits a local
boost invariance χ in that system of coordinates.

2. The Unruh effect, which tells us that the quantization with respect to the
boost invariance gives a thermal character to the Minkowskian vacuum state
for matter fields. This encodes a notion of horizon and of the causal structure
felt by matter.

3. The assumption that the horizon has an associated entropy defined by its
area6.

6This assumption holds for GR, while for more general metric theories, this assumption may
have to be adapted [154]
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Within these assumptions, one can argue that, in order to respect the thermodynam-
ical equilibrium, the geometry must adjust to compensate the heat flow, following
the Clausius relation.

Let us now come back to the LV case, where a notion of preferred time ua is
part of the local geometry, together with gab. In this case the causality felt by LV
matter includes the UH, as emphasized in this Chapter. As we have observed, this
horizon comes out automatically if one considers the causality perceived by a a signal
travelling at infinite-speed in the preferred frame, namely by g

(∞)
eff,ab. Remarkably, as

shown in section 5.3.4, the UH, which is a spacelike surface if described by the “true”
metric gab, assumes a null characterization from the point of view of g

(∞)
eff,ab, becoming

its Killing horizon. This can easily be explained just by noticing that the effective
metric adapts the suprluminal signal to travel on the edges on its causal cone. Most
importantly, that metric contains the information about the aether field encoded
within itself. We have seen how the thermal character of the quantum matter state
could be derived directly form g

(∞)
eff,ab.

On top of that, previous result has been argued that the UH possesses in fact
an entropy, which is proportional to its area [137], pointing towards the formulation
of a first thermodynamical law for LV black holes. This feature pushes the analogy
with the relativistic case.

In summary: the effective metric g
(∞)
eff,ab seems to fit the assumptions behind the

Jacobson’s derivation. In particular, it is a metric which enjoys the boost invariance,
whose Killing horizon defines the boundary of the Rindler wedge. That horizon has
an associated temperature, that defines the local matter fields to live in a thermal
state. In addition, this horizon seems to have an entropy defined by its area. Given
the striking analogy, it is quite tempting to try to ask ourselves if it would be possible
to reproduce the EA-field equations just by thermodynamical arguments.

Let us clarify that the discussion of the present section is purely speculative and
unfortunately it is not supported by any calculations yet. However, the author of
this thesis hopes to be able to tackle this question in the near future.

6.5 Outlook

Let us now sum up the main results of this Chapter. We started from questioning the
existence of the Unruh effect without Lorentz invariance. As already explained, this
has been a debated topic in the literature, where it has been claimed the breakdown
of this effect, while arguing the robustness of its “gravitational counterpart”, the
Hawking effect [142]. The fact that the Hawking effect can provide an intrinsic scale
in the problem – the black hole’s surface gravity κ – makes possible to compare it
with the UV scale Λ and show the presence of Hawking radiation by Killing horizons
for κ ≪ Λ. This cannot be done just by considering LV matter fields within the
relativistic Rindler wedge. The latter does not provide any intrinsic scale, since the
Unruh temperature can always be rescaled to 1/(2π), forbidding to treat in the same
way as the Hawking effect.

Additionally, in Chapter 5, we have proven that the Lorentz-violating version
of the black hole radiation is determined through the true causal boundary of the
theory, the universal horizon, which is linked to a true thermal emission governed
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by its surface gravity, and not by the Killing horizon. This enforces the argument
that no true thermality is possible, for LV matter, without a UH. This horizon is
clearly absent in the relativistic Rindler patch.

The starting point of our discussion lies exactly here: a new notion of Rindler
patch is needed in order for the field to experience the LV causal structure. Inspired
by the black hole case we have worked out the unique (1 + 1), flat, boost invariant,
Lorentz violating geometry, solving the equations of motion.

Note that our solution is valid at all times, therefore eternal, and so it is the
accelerated observer that we take in the Unruh-De Witt detector part. As in the
relativistic case, this cannot correspond to any physical situation, but instead we
use this solution as a proxy for the late-time behaviour of the spacetime foliation.
In other words, the physical case will be a Minkowskian foliation, which then starts
bending, coinciding with our solutions at late times. It is worth mentioning the
fact that, an observer-aether coupling can be used in order to make the aether
itself to bend (see [155] for a cosmological example), aligning with the observer
itself. However, the description of this mechanism goes beyond the scope of our
discussion.

Our LV-Rindler wedge does two main things: it provides a bipartition of the
Minkowskian manifold in two patches, through the presence of an universal horizon.
Secondly, it defines a physical scale, correspondent to the aether acceleration, and
defines the wedge temperature TR = ā/(2π), that now cannot be arbitrarily rescaled,
restoring the aforementioned separation of scales.

The LV modes near the UH enjoy a very similar shape with respect to the ones
near the black hole horizon in Chapter 5. Therefore, the analytical arguments work
the same way, bringing the value for TR = ā/(2π). The Unruh effect is restored,
even without Lorentz invariance.

It is worth mentioning that, in the (1+1) dimensional relativistic massless case,
the left- and right-going branches of the modes decouples completely, therefore there
is no greybody factor, unlike in the (3 + 1) dimensional case with the Hawking
effect. This can be seen by the conformal structure of the (1+1) spacetime and the
conformal invariance of the massless relativistic fields. However, this simplification
happens only in this particular case, as pointed out in [147]. In our case, the effect
of dispersion is given by the Λ-suppressed term in the matter field equations.

This is clear from the analysis of the Unruh-De Witt detector, made in section
6.3. There we take into account the case of a detector with a monopole coupling.
We show that the temperature – defined through the excitation-deexcitation ratio
– coincides exactly with the one found with the Bogolyubov coefficients.

However, the detector gives additional hindsights with its response function.
First of all, unlike in the relativistic case, the time of detection has a nontrivial im-
pact7, since the MDR for the Minkowski modes is not invariant under η-translation.
Secondly, the sensivitity of the detector to the different frequencies k assumes a pe-
culiar non-relativistic taste: while approaching the GR result at small frequencies,
the high-k part of Ak has completely different shape, showing a series of bumps,
which number is governed by a nontrivial interplay of the detector’s energy gap
∆E, the field’s mass m and the LV scale Λ. In the far high-k part, Ak drops faster

7The dependence from ∆s is evident from (6.71) that, in our calculation, we send to +∞
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than the relativistic case, accordingly to the high-energy behaviour of the dispersion
relation ωΛ(k) ≃ kn/Λn−1 (n = 2 in the present Chapter).

The particular shape of Ak may also have interesting experimental consequences.
In our treatment, we considered a detector which sensitivity is uniform in the whole
real line k ∈ R. However, taking a detector with a different sensitivity, say with
some high-energy peaked distribution P (k), will give a completely different outcome
with respect to the relativistic case. Moreover, it would be interesting to adapt this
calculation to the so-called “circular Unruh effect”: a proposal within the analogue
setting to measure the Unruh effect in a (2 + 1)-dimensional system, for which
the accelerated observer follows a circular orbit [156, 157]. This would limit the
experimental issues given by the linear acceleration. Our shape of Ak, will affect the
spectrum in case of LV matter that, as we have seen in Chapter 3, is commonplace
within analogue systems.

The energy-independent wedge temperature, fixed by the universal horizon,
seems to be linked to the causal structure of the spacetime through the imagi-
nary periodicity of η within the effective metric g

(∞)
eff,ab. This is a strong hint for the

KMS structure of the matter quantum state, as emphasized in section 2.4. This
would explain, by standard treatment, why we have obtained such a temperature
even without Lorentz invariance.

The effective metric turns out to be a nice tool also in order to describe another
feature. It is well-known that the wedge temperature is not the actual temperature
felt by the observer. In fact, an observer on a specific ξ = const. hyperbola, will
perceive the wedge temperature rescaled by the Tolman factor

|χ| =
√
−g00. (6.100)

In the LV case, the Tolman factor is given by the lapse N , which is constant on any
hyperbola, given the symmetries of our Rindler wedge. This, in our treatment, is a
clear outcome if one defines the Hamiltonian flow accordingly to the preferred time
direction τ . However, this can be interpreted also as the usual Tolman factor |χ|
built with the effective metric g

(∞)
eff,ab, namely

|χ|(∞)
eff =

√
−g(∞)

eff,00 = N . (6.101)

This is quite appealing if one wonders about recovering the relativistic behaviour
from our calculation. Intuitively, the speed-cf signal effectively feels the spacetime

described by g
(cf )

eff,ab. In other words, g
(cf )

eff,ab captures the causal structure felt by a
matter field which travels at speed cf in the preferred frame. Since the causal
structure is what determines the thermal character of the state, one can imagine
to compute the temperature associated to the perturbation of the cf -speed modes,
detected by an accelerated observer. This, for any value of cf , gives a one-parameter
family of Tolman factors

|χ|(cf )eff =

√
−g(cf )eff,00 =

√
u2η −

s2η
c2f

(6.102)

which interpolates between the standard result, with cf = 1 and the EA case where
cf → +∞. So, even if at first sight the choice of τ in the Hamiltonian flow seems not
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continuously connected with the relativistic choice of η8, the effective metric offers
an heuristic way to make this limit in a smooth way.

As a final remark, we emphasize that the rescue of the Unruh effect from the
breaking of local Lorentz invariance, gives also the opportunity for further analogies
between spacetime and thermodynamics, such as the Jacobson’s derivation of the
gravitational field equations as equations of state.

8Actually, this point has been raised exactly in [39], emphasazing the apparent discontinuity
between the choice of η and the choice of τ .
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Chapter 7

Towards QG: ultraviolet aspects of
Hořava gravity

As a final Chapter, let us conclude our journey talking about quantum gravity.
Throughout the previous Chapters, we have analyzed the behaviour of quantum
perturbations on top of a classical background. As mentioned in Chapter 1, this
treatment is valid in a range of energies well below the QG scale. Namely below the
energies at which quantum gravitational perturbations become tangible. However,
renormalizability of gravity has to do with the ultraviolet structure of the theory. In-
deed, a theory of QG should be under control at any scale and should be able to give
theoretical predictions at all the energies at which the experiments are performed.

General relativity is unable to satisfy this theoretical requirement, at least at the
perturbative level. The presence of a negative-dimensional coupling G =M−2

p allows
for the construction of higher derivative operators in the gravitational Lagrangian
that scales in powers of (Gp2), where p2 represents the energy of the propagating
quantum perturbation. It is possible to show that all these operators appear in a
perturbative loop expansion and the number of new divergencies to cure through
renormalization increases at every order1, making the theory to loose predictivity
[158–160]. GR as a quantum field theory can be considered only an effective field
theory well-below the Planck’s energy [161].

In a Lorentz invariant theory, the dimensional analysis of the coupling constants
appearing in the Lagrangian is enough to argue renormalizability [159], since every
propagator must be a function of Lorentz-invariant quantities, that, at high energy,
it means that propagators are function of p2 only. Knowing the divergence of propa-
gators and the dimension of the couplings, the behaviour of every Feynman diagram
can be analyzed in the UV. As explained, the negative mass-dimension of G allows
to build infinitely many vertices with higher p2-scaling, while this is not possible in
renormalizable Lorentz-invariant theories, where the couplings are at most dimen-
sionsless (if not even with positive mass-dimension) and no such construction takes
place.

An option to cure this problem would be to increase the number of derivatives,
leading to quadratic gravity (or, more in general, higher derivative gravity). How-
ever, this approach leads to the presence of Ostrogadsky insitabilities, as discussed

1This is not true at one-loop for a pure-gravity Lagrangian [7, 8]
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in Chapter 4.
Hořava gravity [32] is a ghost-free alternative to this approach. Containing

only two temporal derivatives, it allows for perturbations with MDRs, instead of
ghosts [107], thus abandoning Lorentz-invariance. As already mentioned, the set of
transformation that leaves the theory invariant are the so-called FDiff (foliation-
preserving diffeomorphisms), that leave untouched the shape of the spacetime fo-
liation. Basically, given our absolute time τ and a set of spatial coordinates {xi},
scaling as (4.3), onto a constant-τ leaf Σ we have:

FDiff = {(τ, xi)→ (τ̃(τ) , x̃i(xj, τ))} . (7.1)

Due to the anisotropic scaling (4.3) between τ and xi, the spacetime is assumed
to have a factorized topology between time and space as in (4.2). Therefore it is
convenient to write the theory in the ADM decomposition in the preferred foliation.
The dynamical fields are the lapse N , the shift Ni and the spatial metric γij. The
4-dimensional line element takes the form [107]

ds2 = (N2 −NiN
i)dτ 2 − γij

(
dxi +N idτ

) (
dxj +N jdτ

)
. (7.2)

Under an FDiff (7.1), the fields transform as

N → Ñ =
dτ

dτ̃
N ,

N i → Ñ i =
dτ

dτ̃

(
N j dx̃

i

dxj
− dx̃i

dt

)
,

γij → γ̃ij = γkl
dxk

dx̃i
dxl

dx̃j
.

(7.3)

In the rest of the Chapter, we will discuss HG from the point of view of a QFT.
We will review the state of art, and we will make some speculation on the further
developments. Technical details will be sometimes omitted, being not instructive for
the purpose of this treatment, in order to give priority to a physical understanding
of the situation. Let us now see how the theory is formulated, at the Lagrangian
level.

Notation of this Chapter

Within this chapter, and solely for this one, we are going to adapt the following
notations:

• The signature of the metric is the one commonly used in particle physics,
namely the mostly minus. I.e. the 4-dimensional flat spacetime will be identi-
fied by the Minkowski metric η = diag(+,−,−,−) as we already did in (7.2).

• The indices (i, j, k, l . . . ) will identify the spatial directions, unless differently
specified

• The Riemann tensor Rijkl, the Ricci tensor Rij and the Ricci scalar R will be
the ones built with the spatial metric γij, namely only the spatial ones, unless
differently specified.
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7.1 Lagrangian formulation

The Lagrangian formulation of the theory proposed in [32] involves the objects which
transform covariantly under (7.3). The kinetic term can be built with the extrinsic
curvature Kij

Kij =
1

2
Dtγij =

γ̇ij − 2∇(iNj)

2N
(7.4)

where we defined a “covariant time derivative” [162]

Dt :=
1

N
(∂t − LN i) . (7.5)

One can see from (7.4) that the terms built with Kij contain time derivatives.
Therefore a generic kinetic term up to 2 time derivatives takes the form:

Lkin =
1

16πG

(
KijKij − λK2

)
, (7.6)

where λ is a dimensionless coupling and K = Ki
i .

Besides the kinetic part, the most generic Lagrangian compatible with (7.3)
contains all the terms allowed with the symmetry. In general, we have, in d spatial
dimensions

SHG =
1

16πG

∫
M
Ndτ

√
|γ|ddx

(
KijKij − λK2 − V

)
. (7.7)

The shape of the potential V depends on d [107], but in general it contains all the
possible terms without time derivatives. The case

λ = 1 and V = R− 2Λ , (7.8)

corresponds to the ADM decomposition of the Einstein-Hilbert action [106]. Look-
ing at equation (7.7), one can immediately see that, given the different scaling
dimensions of τ and xi:

[τ ] = d , [xi] = 1 , (7.9)

and the corresponding one for the fields:

[γij] = 0 , [Ni] = d− 1 , [N ] = 0 (7.10)

the coupling G becomes dimensionsless

[G] = 0 . (7.11)

In the original proposal [32], the potential V was taken to contain only the
possible contraction made with the spatial Riemann tensor Rijkl up the the scaling
dimensions of 2d. The number of possible terms increases as one increases d.

In [163, 164], it was recognized that, if V is built only with the spatial Riemann
tensor, the infrared behaviour of perturbations around flat spacetime contains an
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unstable scalar mode. A “healthy” version of the theory can be build considering
the co-vector

ai = ∇i log(N) , (7.12)

which transforms covariantly with respect to (7.1) and adding it to the Lagrangian.
Note that, inserting the aether vector field ua with a Stückelberg trick, the vector
ai corresponds exactly to its acceleration.

In particular, the lowest energy term containing two derivatives

αaia
i , (7.13)

is needed to ensure a low-energy well-behaved dispersion relation for the perturba-
tions [163]. Specifically, it is possible to show that, without such a term, recovering
GR at low energies is not possible [116]2.

With such a potential V one can compute the superficial degree of divergence
for an L-loop Feynman diagram, which is:

Dg = 2d− 2L[G] = 2d . (7.14)

The theory with [G] = 0 is therefore power-counting renormalizable because the
counterterms will affect operators with scaling dimensions up to 2d [107].

7.1.1 Projectable HG

The symmetries of HG allow for a simplified version of the theory, called projectable
HG. That is defined by the requirement that the lapse function N will depend only
on the preferred time τ

N = N(τ) . (7.15)

This automatically implies that the acceleration ai vanishes
3. This fact, for the

previous discussion tells us that this projectable version possesses infrared instabil-
ities, thus not phenomenologically viable [116]. However, condition (7.15) serves as
a great simplification of the theory. This simplified treatment allows for impressive
results that render the projectable version of HG worth mentioning.

The projectable condition (7.15) allows to fix N = 1 with an appropriate rescal-
ing of time, so that the action become

SpHG =
1

16πG

∫
M

dτddx
√
|γ|
(
KijKij − λK2 − V

)
. (7.16)

where V is now an expression built only with the Riemann tensor Rijkl. Note that
if d = 3, V can be built with the Ricci tensor Rij alone and in d = 2 there is only
the Ricci scalar R.

2To be precise, in [116] it has been shown that one never recovers GR, because a small amount of
Lorentz violation is always present. However, with “recover GR” we mean having an approximation
reproducing the same phenomenology

3The careful reader will note that this condition implies that there is no solution within the
projectable branch of HG which can describe a stationary black hole in the sense of Chapter 4.
This is evident from the UH definition (6.25).
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The theory enjoys two propagating degrees of freedom: a scalar mode and the
usual transverse-traceless mode that also characterizes general relativity. In d = 3,
their UV behaviour is well-defined (i.e. ghost-free) if [163]

3λ− 1

1− λ
> 0 . (7.17)

These modes show a dispersion relation of the form [107, 165]:

ω2
TT = ηk2 + µ2k

4 + ν5k
6 ,

ω2
S =

1− λ
1− 3λ

(−ηk2 + (8µ1 + 3µ2)k
4 + (8ν4 + 3ν5)k

6) .
(7.18)

where the labels “TT” and “S” refer to the transverse-traceless and scalar mode,
respectively, and η, µ1, µ2, ν4 e ν5 are couplings contained in V which refers to the
interactions:

−ηR , µ1R
2 , µ2RijR

ij , ν4∇iR∇iR , ν5∇iRjk∇iRjk . (7.19)

From (7.18) one can immediately see the problem of a vanishing ai. Setting
η > 0 in order to recover the relativistic behaviour of the TT-mode, implies that the
infrared dispersion relation for the S-mode defines an imaginary sound speed [163,
164]

c2S = −η λ− 1

3λ− 1
< 0 , (7.20)

which is the source of the instability.

7.1.2 Non-projectable HG

The non-projectable version of HG is the general version of the theory. The lapse
function is allowed to have a spatial-dependence

N = N(τ, xi) (7.21)

and it cannot be gauged away by fixing the time reparametrization. The spatial-
dependence generically implies a non-vanishing acceleration ai. The action reads

SnpHG =
1

16πG

∫
M

dτddxN
√
|γ|
(
KijKij − λK2 − V

)
. (7.22)

The potential at low energy – i.e. at the lowest order in spatial derivatives – contains
the two terms

V = ηR + αaia
i + higher orders . (7.23)

The low-energy interaction modifies the infrared behaviour of the propagating modes
[107, 163, 165]4:

ω2
TT = k2 +O(k4) ,

ω2
S =

1− λ
1− 3λ

(
2

α
− 1

)
k2 +O(k4) .

(7.24)

4Here we have set η = 1 for simplicity. This, in pure gravity is always possible up to a spatial
rescaling.
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which now represent a stable perturbation if

0 < α < 2 . (7.25)

Note that the limit in which the projectable case is recovered is α→∞, in order to
decouple the lapse perturbations from the Lagrangian.

Noticeably, the phenomenology of non-projectable HG predicts analogous results
to the low energy GR, recovering the Newton’s law with gravitational constant [163]

GN =
1

8πM2
p (1− α/2)

, (7.26)

where GN is the effective Newton’s constant, determining the low-energy gravita-
tional potential, and Mp is the Planck mass.

7.2 Towards renormalization: HG in the UV

Now that we have settled down the Lagrangian formulation of the theory, it is time
to talk about renormalizability. It is important to stress that, unlike the Lorentz-
invariant cases, in HG the perturbative renormalizability cannot be argued directly
from the dimensions of the coupling constants.

In presence of Lorentz symmetry, the dependence of the propagators from the
momenta can take place only thorugh the 4-dimensional modulus squared of the
4-momentum pap

a = p2 = ω2 − k2. This fact, together with the scaling of the
vertices, allows to infer pertubative renromalizability if the couplings have positive
mass dimensions or if they are dimensionless [159, 160].

This argument, which is based on the scaling of the propagators in the UV, seems
to be applicable also in Hořava gravity. The HG propagators for the perturbations
scales in the ultraviolet as ω−2 or, equivalently k−2d. What forbids us to recycle the
same Lorentz-invariant argument is that, due to the time-space separation, propa-
gators in HG may occur in the form

D(ω, k) ∼ 1

ω2
, or D(ω, k) ∼ 1

k2d
. (7.27)

The suppression of the propagators only in the frequency ω or in the momentum k,
even if ensures the right scaling of the propagator, generates non-local divergencies
either along all the time axis or a spatial leaf. Namely, the inverse Fourier transform
of ω−2 gives [107, 166]

1

ω2

F−1

−−→ |τ |δd(x) , (7.28)

which is divergent at all-times. The problem of renormalizability of HG can be then
reformulated in the problem of how to treat these non-local divergencies.
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7.2.1 Renormalizability of the projectable case

With no small suprise, in 2016, Barvinski and collaborators managed to tame the
projectable version of the theory, showing its perturvative renormalizability [166]
and, immediately after, its asymptotic freedom behaviour in the (2+1)-dimensional
case [167].

The key point of their treatment, was to find a way to get rid of those non-local
terms, by choosing the appropriate way to gauge-fix the spatial diffeomorphisms –
while the time-reparametrization invariance has beeen used to identify N = 1 – in
the Lagrangian (7.16).

In the projectable case only one of the two possible irregular behaviours (7.27) –
the D ∼ ω−2 one – arises. Expanding the perturbation at the quadratic level around
a background {γ̃ij, Ñi}:

γij = γ̃ij + hij , Ni = Ñi + ni , (7.29)

such that

D̃t := ∂t − LÑ i . (7.30)

From the structure of the kinetic term KijK
ij − λK2 we see that the quadratic

Lagrangian (that is the Lagrangian at the quadratic level in the perturbations ni
and hij) contains the term [107, 166]

D̃tni∂jh
ij . (7.31)

This term, when computing the propagators, is responsible for the irregular one,
which in turn appears in the ⟨hh⟩ part, as we shall see.

Case d = 2

Let us, for the following calculations, specialize to d = 2 in order to simplify the
treatment. In this case we have [166]:

⟨hijhkl⟩ = (δikδjl + δilδjk − 2δijδkl)
16πiG

ω2
+ regular propagators . (7.32)

So, we see the 1/ω2 irregular behaviour.
The way out to solve this issue has been found in [166] when the authors realized

that there was possible to fix the gauge of the spatial dieffeomorphisms

xi → x̃i(τ, xj) (7.33)

in such a way to get rid of the term (7.31) in the gauge-fixed Lagrangian. The gauge
fixing condition Fi is a vector and must scale homogenously [166]. If we want it to
include the term D̃tni, which scales as:

[D̃tni] = 2d− 1 = 3 (7.34)

we will have to add h-terms with three spatial derivatives. Therefore we have to
consider a possible contraction of the tensor ∇̃i∇̃j∇̃khlm. The ni-hij terms (7.31)
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come from the kinetic part of the Lagrangian in which hij appears through the
combination

∇̃kh
k
j − λ∇̃jh . (7.35)

So, in order to cancel those terms, we need Fi to contain hij through (7.35). There-
fore, we need to construct Fi by suitably applying a generic operator with two ∇̃i

to (7.35). In particular we can parametrize it with

Oij = γ̃ij∆̃ + ξ∇̃i∇̃j (7.36)

where ξ is a gauge parameter. The gauge-fixing condition Fi, which is required to
scale homogeneously, thus become [166]

Fi = D̃tni +
1

2σ
Oij
(
∇̃kh

kj − λ∇̃jh
)
, (7.37)

and σ is a second gauge parameter. The turning point with respect to the usual
treatment in the gauge fixing procedure, was to recognize that the gauge-fixing
Lagrangian Lgf can be generically written as a quadratic form of Fi which is not
necessarily given by FiF

i. Actually, the gauge-fixing term that regularize the prop-
agators is given by [166, 167]

Lgf =
σ

2G

√
γ̃ F i(O−1)ijF j (7.38)

where O−1 is given by the inverse of (7.36). The resulting Lgf is then

Lgf =
σ

2G

√
γ̃

[
D̃tn

i(O−1)ijD̃tn
i +

(D̃tn
i)(∇̃kh

k
i − λ∇̃ih)

σ
+

(∇̃kh
k
i − λ∇̃ih)Oij(∇̃lh

l
j − λ∇̃jh)

4σ2

]
.

(7.39)

The second term in (7.39) exactly compensates for (7.31) in the original action. At
first sight, this gauge fixing procedure introduce a non-local term given by

D̃tn
i(O−1)ijD̃tn

i . (7.40)

However, one can get rid of it just by introducing an auxiliary field πi – a sort of
conjugated variable to ni – and “integrate it in” in the path integral [166, 167]:

exp

[
i

∫
d2xdτ

√
γ̃
σ

2G
D̃tn

i(O−1)ijD̃tn
i

]
∝
∫
D[π] exp

[
i

∫
d2xdτ

√
γ̃

(
− G
2σ
πiOijπj + πiD̃tn

i

)]
,

(7.41)

where we have used the following identity for Gaussian functional integrals [160]:∫
D[ϕ] exp

[
i

2
ϕT · A · ϕ+ iJ · ϕ

]
∝ (det(A))−1/2 exp

[
− i

2
J · A−1 · J

]
(7.42)
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for a generic matrix Aij and vectors ϕi and J i. therefore, we end up with a local
gauge fixing term in the action which is:

Lgf =
σ

2G

√
γ̃

[
−G

2

σ2

(
πi∆̃πi + ξπi∇̃i∇̃jπ

j

)
+

2G

σ
πi(D̃tni)+

(D̃tni)(∇̃jh
ij − λ∇̃ih)

σ
+
∇̃kh

ik − λ∇̃ih

4σ2
×

×
(
∆̃(∇̃jh

j
i − λ∇̃ih) + ξ∇̃i∇̃j(∇̃lh

jl − λ∇̃jh)

)]
.

(7.43)

As usual, after having fixed the gauge, we get a couple of Faddeev-Popov ghosts
[159, 160], namely a couple of anti-commuting vectors ci and c̄i, which enters the
action through [166]

Lgh =

√
γ̃

G

[
− D̃tc̄

iD̃tci − c̄i
(
− 1

2σ
(∆̃2ci + ∆̃∇̃k∇̃ic

k − 2λ∆̃∇̃i∇̃kc
k

+ ξ(∇̃i∇̃k∆̃c
k + ∇̃i∇̃j∇̃k∇̃jck − 2λ∇̃i∆̃∇̃kc

k)

)]
.

(7.44)

All the resulting propagator are regular, therefore the theory results perturbatively
renormalizable via standard arguments, also in d = 35, showing that all the diver-
gencies (which now are local) can be reabsorbed into the terms already contained
in (7.16), see cf. [166].

This result is of great importance if one thinks to that in this way: the projectable
version of HG is an ultraviolet complete quantum theory of gravity! Given the
scarcity of QG theories, this statement is quite remarkable.

However, as we already explained, this QG candidate is not in agreement with
the phenomenology at low energies. At high energy, as already mentioned, the case
d = 2 has been show to be asymptotically free [167].

7.2.2 Non projectable case: constraints

In the same work where the projectable version of the theory has been proved to be
perturbatively renormalizable, it has been pointed out that the non projectable case
hides additional subtleties. Even if the gauge-fixing of the spatial diffeomorphism
can be done the same way as in the projectable version, problems arise with the
time-reparametrization invariance.

At current times, the problem is mathematically understood within the Hamil-
tonian formalism. The spatial-dieffeomorphism invariance, which we discussed in
the projectable case, corresponds, in a canonical approach to the quantization of
the theory, to a first-class constraint. First-class constraint can be usually identi-
fied with the generator of the gauge symmetries in the Lagrangian formalism [168].

5In the case d = 3 we have to take Oij of the form:

Oij = ∆̃
(
γ̃ij∆̃ + ξ∇̃i∇̃j

)
. (7.45)
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However, the implementation within the Lagrangian formalism of the second-class
ones is less clear. The quantization of a second-class constraint necessities of Dirac
brackets and an adapted formalism developed by Batalin, Vilkovisky, Fradkin and
Fradkina [169–171], known as Batalin-Fradkin-Vilkovisky (BFV) quantization. This
formalism seems to fit the implementation of the second-class constraint of HG [172,
173]. Let us briefly describe it.

Hamiltonian formalism

Within the Hamiltonian formalism we associate to each field its conjugated variable,
forming the couples (N, πN), (Ni, πi) and (γij, πij). Following [173], the second-class
constraints are

θ1 = NH0 −∇i

(
√
γN

δV
δai

)
= 0 , θ2 = πN = 0 , (7.46)

where H0 is the classical Hamiltonian defined as the Legendre transform of the
Lagrangian

πAΦA − L = H0 =

(
πijπ

ij

γ
+ σ̄

π2

γ
+ V

)
(7.47)

where ΦA represents the fields and πA the corresponding conjugated momenta. The
unique first class constraint is

Hi = −2γij∇kπ
jk = 0 . (7.48)

The implementation of the second-class constraint in the BFV formalism leads to
the construction of the following path integral [173]:

Z =

∫
D[ϕA]δ(θ1)δ(θ2)det{θ1, θ2} exp

[
i

∫
L
]
, (7.49)

where ϕA serves as a proxy for all the fields and their conjugated momenta, {θ1, θ2}
is the Poisson bracket between the second-class constraints and L is the Lagrangian
density already implemented with the spatial-diffeomorphism gauge fixing (namely
with the first-class constraint). Note that, since θ2 = πN we have

{θ1, θ2} =
δθ1
δN

. (7.50)

This has a clear intuitive meaning in terms of functional integral measure. The
vanishing of the second class constraint restricts the space of configurations available
for N . Namely, let us assume that N̄ is a root of the equation θ1 = 06. Then, we
can rewrite:

δ(θ1) =
δ(N − N̄)

det δθ1
δN
|θ1=0

. (7.51)

6Here, we assume also that the solution N̄ is unique, for simplicity
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Therefore, the implementation of the constraint through the combination

δ(θ1)det{θ1, θ2} = δ(N − N̄) (7.52)

should be equivalent to integrate over only the configurations of the lapse which
solve θ1 = 0. One can implement the constraints adding auxiliary fields in (7.49),
namely a Lagrange multiplier A and a couple of Grassmann variables (η̄, η) so that
[173]:

δ(θ1)det{θ1, θ2} ∝
∫
D[A]D[η̄η] exp

[
i

∫ (
Aθ1 − η̄

δθ1
δN

η

)]
, (7.53)

while the other second class constraint – πN = 0 – can be implemented directly in L
setting to 0 the conjugated momentum to N . At this point, one remains with local
operators involving the fields {N,Ni, πi, γij, πij, ci, c̄i,Pi, P̄i,A, η̄, η}, where ci and c̄i
are the ghosts given from the spatial-diffeomorphism gauge-fixing and the couple
(Pi, P̄i) represents their conjugated momenta. It is then clear that this approach,
involving 12 fields, will be computationally quite involved.

Note that this implementation of the constraint, understood as a sort of “equa-
tion of motion” for the lapse N , implies to solve θ1 = 0 at some fixed time and then
preserve it with a Lagrange multiplier at all times and it was already suggested in
earlier studies on the Hamiltonian structure of the theory in [174].

7.2.3 Non projectable case: Lagrangian formulation

Although referring to very preliminary and speculative results, we can try to refor-
mulate the problem within a Lagrangian approach. The advantage of the Hamilto-
nian formalism is to make us understand which field configurations for N have to be
taken into account in the path integral. On the other hand, working in the Hamilto-
nian approach means to face an action containing more fields and interaction with
respect to the ones given within the Lagrangian formulation. Therefore, it is worth
trying to understand if we can reformulate the problem in this latter setting.

A first trial would be to consider the Lagrangian with the direct implementation
of the constraints, through a Lagrange multiplier as in equation (7.53). In this way
we take the action (7.22), armed with the gauge-fixing terms of the spatial-diffeos
and we consider a total Lagrangian:

Ltot = LnpHG + Lgf + Lgh +Aθ1 − η̄
δθ1
δN

η . (7.54)

The path integral is given by

Z =

∫
D[ΦA] exp

[
i

∫
Ltot

]
, (7.55)

where {ΦA} = {N,Ni, γij, πi, ci, c̄i,A, η, η̄} and πi is the auxiliary field introduced
in (7.41) in order to make the gauge-fixing Lagrangian local. Note that the result-
ing Ltot is local Lagrangian where we have implemented the constraint θ1. So, in
principle it is possible to proceed with the usual calculation of diagrams.

141



Irregular propagators

Let us take the same d = 2 case as we did for the projectable case. The potential
in this case reads [173]:

V =− βR− αa2 + µ1R
2 + µ2a

4 + µ3a
2R + µ4a

2∇ia
i

+ µ5R∇ia
i + µ6∇ia

j∇iaj + µ7(∇ia
i)2

(7.56)

In order to compute propagators we expand around a flat background, namely

N = 1 + n , Ni = 0 + ni , γij = δij + hij , (7.57)

and all the other fields already represents perturbations, having a vanishing classical
value. The quadratic Lagrangian in the ξσ-gauge L(2)

flat is:

L(2)
flat = −

µ67

2G
n∆2n− 1− 2λ

4G
N i∂ijN

j − 1

4G
N i∆Ni +

1

8G
ḣijḢ

ij

− λ

8G
ḣ2 + Ṅiπ

i − Gξ

2σ
πi∂ijπ

j − G

2σ
πi∆πi −

1

2G

1

σ
c̄i(∆2ci −∆∂i∂jcj)

+
λξ

4Gσ
hij∂ij∆h−

ξ

8Gσ
hij∂ijklh

kl − λ2ξ

8Gσ
h∆2h− 1

8Gσ
hij∂jk∆h

k
i

− µ1

2G
hij∂ijklh

kl +
λ

4Gσ
hij∂ij∆h+

µ1

G
hij∂ij∆h−

µ1

2G
h∆2h

− λ2

8Gσ
h∆2h+

µ5

2G
n(∆2h−∆∂ijh

ij) +
µ5

2G
A(∂ij∆hij −∆2h)

+
µ67

G
A∆2n− µ67

G
η̄∆2η +

1

G
˙̄ciċi −

1

G

(1 + ξ)(1− λ)
σ

c̄i∂ij∆c
j ,

(7.58)

where the notation ∂ij = ∂i∂j and similarly for more indices. From the quadratic
Lagrangian we can compute the propagators in flat spacetime. Using our compact
notation for the fields, we can write generically

L(2)
flat =

1

2
ΦAO

ABΦB (7.59)

and the propagators are simply given by the inverse matrix DAB = O−1AB (see cf.
[159, 160]).

The form of the propagators consists in a series of quite long expressions. The
important part to notice is the presence of irregular propagators involving n, A, η
and η̄, namely, in Fourier space:

⟨nA⟩ = ⟨AA⟩ = iG

(µ6 + µ7)k4
= ⟨η̄η⟩ = −⟨ηη̄⟩ , (7.60)

which exactly corresponds to the type of divergence reported in (7.27). Note that
this result, derived in the Lagrangian context, matches the one of [173, 175].

It is clear that these irregular propagators arise together with the implemen-
tation of the constraint, involving A, η and η̄. In principle, as already explained,
they may spoil the perturbative renormalizability, leading to non-local counterterms.
However, this does not seem to be the case for HG. Let us see how.
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7.2.4 Non projectable case: cancellation of non-localities

Even if it is true that irregular propagators arise from the calculations, the shape
with which they come into the game it is not casual. In particular, remarkably we
have

⟨nA⟩ = ⟨AA⟩ = ⟨η̄η⟩. (7.61)

This symmetric behaviour reflects inevitably on the diagrammatic computation. At
one-loop this can be seen explicitly. Let us make an example, following what has
been done in the projectable case [167]. In order to compute the running of the
coupling constants we have to choose a non-trivial background and treat it as a
classical source in the loops. In our case, let us pick the flat background with some
non-trivial background shift

γij = δij + hij , N = 1 + n Ni = N̄i + ni . (7.62)

Expanding the Lagrangian at the quadratic order in the perturbation and consid-
ering the interaction with the classical source N̄i, we get the Feynman rules for the
vertices. In particular, working with a non-trivial background shift vector allows
for the computation of the running of G and λ. However, for our discussion here
we just need to specify the interaction terms that generates diagrams with irregular
propagators, since the complete expression for the Lagrangian is extremely long and
not particularly instructive for what regards this section. Let us assign a graphic
notation to each field:

Figure 7.1: Graphic notation for the propagators

The interaction which interst us are defined by the following vertices:

N̄a
1

ni2

n3

=
ki1k

a
2 + δai(k1 · k2)− 2λka1k

i
2

2G
(7.63)

N̄a
1

ni2

A3

= −k
i
1k

a
2 + δai(k1 · k2)− 2λka1k

i
2

2G
(7.64)
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N̄a
1

hij2

n3

=
ω2

2

δaikj1 + δajki1 − 2λδijka1
2G

(7.65)

N̄a
1

hij2

A3

= −ω2

2

δaikj1 + δajki1 − 2λδijka1
2G

(7.66)

N̄a
1

N̄ b
2

n3

A4

= −−k
i
1k

a
2 − δai(k1 · k2) + 2λka1k

i
2

2G
(7.67)

N̄a
1

N̄ b
2

η3

η̄4

=
−kb1ka2 + 2λka1k

b
2 − δab(k1 · k2)

2G
(7.68)

Where the vertices are defined by [160]:

V [Φ1Φ2 · · ·Φn] =
δnL

δΦ1δΦ2 · · · δΦn

. (7.69)

Note that the vertices listed above have two by two the same structure up to a
global sign. Namely the expression (7.63) has opposite sign with respect to (7.64)
and similarly for the couples (7.65)-(7.66) and (7.67)-(7.68). This means that the
diagrams that can be build with those vertices with N̄i as an external source, cancel
exactly. That implies that, for this one-loop computation, the non-local divergencies
will not generate any counterterm. Therefore the renormalization will proceed as
usual in QFT and so the computation of the beta-functions.

In order to be more explicit, let us take the vertices (7.67) and (7.68). These
will contribute to the renormalization of the 2-point function ⟨N̄aN̄b⟩ with the two
diagrams:

+
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We have:

= − =
−Q2δab + (2λ− 1)QaQb

k4(µ6 + µ7)

where Qa is the external momentum of N̄a and k
a is the internal one, which runs in

the loop: the two diagrams sum exactly to 0, as anticipated. An identical cancella-
tion takes place for the other contributions.

This nice cancellation seems to strongly push towards the definitve conclusion
of the perturbative renormalizability of the non projectable version of HG. Let us
emphasize that the relation between the vertices, which ensures the cancellation,
strongly relies on the particular shape of the A-ηη̄ sector of the Lagrangian

Aθ1 − η̄{θ1, θ2}η . (7.70)

The last step towards the final proof of renormalizability would be to show that the
structure of the terms given in (7.70) is preserved by the renormalization procedure.
The most natural way to do it would be to find some BRST symmetry, as it has
been done for the spatial-diffeomorphisms in the projectable version [163]. However,
so far the problem remains unsolved.

7.3 Outlook

In this Chapter we have revised the status of Hořava gravity as a candidate to be
a quantum theory of gravity. The related investigations are quite involved, since
the power-counting renormalizability does not represent a sufficient condition for a
non-Lorentz invariant theories to be perturbatively renormalizable. However, even
if the standard arguments do not hold, the theoretical advancements in the study
of HG are quite impressive.

The first remarkable result is that HG is an ultraviolet- complete theory of
spacetime, in its projectable version. Although non-phenomenologically viable in
the infrared, this is the only known example where a perturbative-renormalization
technique can be applied to gravity to make prediction at any energy as it happens
for the Standard Model.

Besides that, the same ideas developed within the projectable setting, in order
to prove renormalizability, can be transferred directly to the non-projectble case,
where the generalized gauge-fixing condition (7.38) manages to cure the irregular
propagators of the form 1/ω2, fixing the spatial-diffeomorphism invariance.

The non-projectable version of HG has been shown to be viable and well-behaved
phenomenologically.

Its UV aspects, however, are trickier. The implementation of the symmetry
given by the reparametrization of time can be rigorously done within the BFV
Hamiltonian formulation, as an imposition of a second-class constraint in the action.
Once implemented in the path integral, this constraint implies the presence of other
irregular propagators of the kind 1/k2d, implying non-local divergencies.

Interestingly, and somehow magically, these nonlocalities in the action seems to
not contribute to the counterterms, therefore to the renormalization procedure.
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Within this Chapter an explicit example, based on preliminaries calculations,
has been made in order to show how this happens. The main point now is to show
that this behaviour is encoded in the symmetries of the theory and it is not spoiled
by the renormalization procedure. Although not yet completed, the proof of HG
renormalizability seems now closer then ever.
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Chapter 8

Conclusions

In this thesis we have analyzed the impact of Lorentz invariance violation in gravity.
Such a choice has been motivated, on one side, by the existence of a quantum grav-
ity proposal, Hořava gravity, that seems to show well-behaved ultraviolet properties.
On the other side, laboratory-based experiments of QFT in curved spacetimes un-
doubtedly share the presence of Lorentz breaking features for phonons, as in the
case of analogue models of gravity.

This latter setting has been the starting point of our journey. In Chapter 3 we
have revised how the analogue framework could provide a suitable playground for
the detection of the (sonic) black hole radiation. This has allowed us to revise and
confirm the resilience of the Hawking effect in the presence of non-Lorentz invariant
perturbations. Within the Chapter, we have developed a new technique, based on
the definition of an approximant ray. This ray has the utility to describe the Hawking
pair far from the horizon, while enjoying a peeling behaviour closeby an effective
horizon, which location depends on the energy of the ray. Since Lorentz breaking
particles do not enjoy any pure horizon-peeling behaviour, the approximant turns
out to be particularly useful in simplifying the problem.

In addition, it provides interesting hindsights about the physics behind the Hawk-
ing radiation. First of all, the energy conservation: we understood that the energy
balance is led by the phase velocity and that particle production is possible only
when ω/k switches sign. This fact allows also the possibility for horizonless object
to emit particles, in the case of subluminal dispersion, even if not in a thermal way.

Secondly, the approximant makes us understand that the horizon’s particle pro-
duction is not an ultralocal process: the actual effect takes place when the Hawking
couple has departed at least a de Broglie wavelength from the horizon, in order to
respect the Heisenberg indetermination principle. This interpretation justifies the
introduction of the approximant ray and explains why such an emission process can
happen in nonrelativistic settings.

This brings us directly to Chapter 5. Since sonic black holes emit particles, one
may wonder if the same effect extends to the gravitational case. In Chapter 4, black
holes are defined in the context of Lorentz-violating gravity, such as in Einstein-
aether and khronometric theory. The built-in presence of superluminal signals within
LV gravity allows for a similar treatment of the Killing horizon particle production:
modes at low Killing energy (with respect to the LV scale Λ) are produced by that
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surface with an energy-dependent rate T (α).
However, LV gravitational black holes offer a completion of the picture left by

the analogue analysis. In a spacetime which admits superluminal particles, a Killing
horizon does not provide a true boundary, thus being unable to determine a black
hole region, from the causal point of view. Therefore, an additional notion, cor-
responding to the universal horizon, is needed. This surface is able to trap any
possible physical signal, regardless its speed.

In khronometric theory, this horizon is determined by a compact constant-
khronon leaf. The aether vector field is orthogonal to this surface, thus forbidding
particles, which always move forward in time, to escape it. The possibility of having
axisymmetric solution is analyzed and the requirement for the aether to be orthog-
onal to the UH seems mandatory: if the normal to any surface misaligns with the
time direction, one can always find a fast-enough signal which can exit it. This in
turn implies, for the EA case, that the twist tensor has to vanish locally. This latter
condition seems quite unstable, from the point of view of EA theory, since a generic
perturbation will destroy the horizon itself.

In a static, spherically symmetric case, where Einstein-aether and khronomet-
ric theories match, the UH is a sphere, enclosed in the Killing horizon. We have
investigated the UH as a source of particle production and we have found its be-
haviour to resemble the relativistic Killing horizon’s one. The outgoing modes share
an universal peel-out, together with an infinite blueshift. In the near-horizon limit,
these signals have infinite speed, so that they follow a surface of simultaneity, which
approaches logarithmically the UH with a coefficient defined by its surface gravity
κUH.

Note that this behaviour is universal – so energy-independent – and the emission
from the UH is purely thermal, peaked at TUH. This conclusion, although logical,
appears to be in contrast with several previous treatments. The root of the tension
has to be found in a more involved modes structure which LV dispersions imply.
First of all, Lorentz invariance violation breaks the relativistic degeneracy which
occurs between the notion of phase and group velocity in Lorentz-invariant theories.
We have shown that near-horizon modes must be described by the phase velocity,
which leads to the aforementioned universal peeling behaviour and not by the group
velocity, which would result in a species-dependent horizon temperature TUH(n).

Additionally, the presence of a larger set of modes with respect to the relativistic
case has as a consequence a two-step calculation: at the UH the energy balance is
ensured by identifying the Hawking couple as the (ψgreen, ψred) couple of figure 5.2,
while the Killing horizon emission is governed by the (ψorange, ψred) couple, as in the
AG case. However, no (ψorange, ψred) can be found at the UH. This explains why in
[121] only the Killing horizon contribution appears.

The UH also saves the day in terms of quantum state. The infinite blueshift
experienced by near-horizon modes fix the state at the UH, just by imposing the
regularity for the infalling observer. This condition, together with an analysis of
the WKB condition for the modes, turns out to be compatible with the almost-
relativistic behaviour that low-energy rays show at the Killing horizon. Therefore
the quantum state, a LV version of the relativistic Unruh state, describes a spectrum
at infinity governed by the Hawking temperature TH at low energies and by TUH at
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high energies.
Remarkably, this completes the picture of the analogue calculation, where the

notion of UH is missing and no fixed prescription for choosing the vacuum is given.
The absence of such a structure in analogue black holes boils down to the lack of a
sufficient number of degrees of freedom to determine the background geometry. In
gravity, the aether and the metric tensor are two independent entities, while this is
not true in AG. Actually, it has been shown that the possible geometries within the
analogue frameworks – if not endowed with external fields – do not allow any UH
[123].

The presence of Hawking radiation by UHs is a strong hint for a formulation of
black hole thermodynamics in LV theories, which is currently lacking. Finalizing
this picture, besides being a matter of completeness, would definitely establish that
thermodynamics can be more fundamental than Lorentz invariance itself.

Chapter 6 enforces the link between geometry and thermodynamics. There we
show that, despite a controversial debate in the literature, the Unruh effect can be
rescued from the breakdown of Lorentz invariance. The presence of a dynamical
aether makes us to define a novel LV-Rindler wedge, extended with respect to the
relativistic one, which enjoys the boost invariance, thus being suitable for describing
an uniformly accelerated observer.

This geometry, that can be also seen as a near-Killing horizon black hole approx-
imation, contains an universal horizon, determined by a physical scale, namely the
aether acceleration ā. Given the spacetime symmetries, the analysis of the modes
goes pretty much as for the black hole case, making us to identify the wedge tem-
perature through a standard Bogolyubov approach as TR = ā/(2π). Note that ā is
not anymore a bookkeping parameter, as in GR, thus it cannot be absorbed away
by a suitable coordinate rescaling.

An independent analysis with an accelerated Unruh-De Witt detector gives the
same result. As expected, and in analogy with the relativistic case, the wedge tem-
perature is not the one perceived by the observer. From the detector’s calculation,
the observer instead measures the wedge temperature rescaled by the foliation lapse
Tobs = TR/N . This is a consequence of the definition of the Hamiltonian flow with
respect to the preferred time direction.

An additional, independent calculation can be carried following Hawking’s Eu-
clidean approach: the thermal character of a spacetime can be deduced by finding
the right periodicity that the Euclidean Killing time must have in order to get rid of
a conical singularity at the horizon. This, both for the black hole’s UH and for the
Rindler’s UH, tells us that the Euclidean time right periodicity is given by 1/TUH

(1/TR in the Rindler’s case), thus recovering our result. In order to perform this
calculation, we have built an effective metric, which is able to describe the infinite-
speed signals as null rays, thus capturing the LV causal structure of the spacetime
in a relativistic language.

The rediscovery of the Unruh effect within a LV setting also opens a window onto
the thermodynamical treatment of the Einstein-aether field equations à la Jacobson.
An interesting future perspective for this field would be to see the viability of this
idea.

In the last part, namely in Chapter 7, we have focused in Hořava gravity as

149



a candidate for quantum gravity, investigating its ultraviolet properties. We have
described the two possible branches of the theory: the projectable and the non-
projectable one. The former, while not viable at the phenomenological level, turns
out to be a perturbatively renormalizable theory. This makes the projectable HG
an ultraviolet complete theory of quantum gravity.

The non-projectable branch seems to describe a quite appealing phenomenology:
it agrees with observations in the Newtonian limit and it allows – in the low-energy
regime – for black hole solutions, as the ones we described in Chapter 4. These
solutions are absent in the projectable case, where the aether’s acceleration vanishes
everywhere.

However, the UV properties of the non-projectable version of HG are not com-
pletely understood yet. As we have shown, the unavoidable presence of irregular
propagators seems to threaten the possibility of the theory to be renormalizable.
Surprisingly, the strange divergences originated by these propagators give the im-
pression not to contribute to the renormalization procedure.

The definitive proof of perturbative renormalizability, where these divergences
are tamed, is a clear perspective of great importance for future research.

Therefore, a coherent path – from the lab to the UV – emerges from our discus-
sion. Lorentz violating phenomenology seems to be smoothly connected with the
relativistic one. That implies a robustness of Hawking and Unruh effect. At the
same time, the breakdown of such a fundamental symmetry has made us rethink
fundamental notions, such as the causal structure of spacetime. Some hidden rel-
ativistic degeneracies have been spoiled, like the different roles of group and phase
velocity, teaching us a lesson about the physics behind the behaviour of quantum
fields on a curved spacetime.

In conclusion, we feel that this exploration exemplifies the profound insights that
can be gained by pushing the boundaries of our theoretical frameworks. Violation
of Lorentz invariance might or might not be realized in nature, but its interplay in
showing the resilience of thermodynamical aspects of gravity has surely still much
to teach us about the intimate nature of spacetime.
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Appendix A

Turning point

In this appendix we will give an additional analysis on the characteristics of Chapter
5. In particular, we will analyze the position of the turning point for the case n = 2.

As already said, the turning point is defined as the point rtp where the polynomial
(5.18) admits a solution with algebraic multiplicity 2. In other words, whenever that
polynomial have two degenerate roots.

The treatment for n = 2 is meaningful both at the technical level – because for
a 4th-order polynomial the shape of the roots is known exactly as a function of the
coefficients – and at the phenomenological level, since a perturbative theory in k/Λ
will be described at the leading order by the n = 2 case of (5.5), which corresponds
to the lowest order in the effective field theory expansion for a CPT-even Lorentz
violating theory [33].

α

r (α)

0 2 10 50 ∞

M

̂rin(α)

̂rout(α)

Figure A.1: Position of the roots r̂out(α) (in orange, dash-dotted) and r̂in(α) (in
blue, dashed) in terms of α > 0. The solid black line represent the UH radius.

The degeneracy of the roots of a polynomial (5.18) can be studied through its
discriminant ∆(r, α)1:

∆(r, α) =
(
4α2 + 1

)2
r̂4 − 2

(
16α4 + 16α2 + 3

)
r̂3+

4
(
4α4 + 17α2 + 3

)
r̂2 − 8

(
9α2 + 1

)
r̂ + 27α2 ,

(A.1)

1The discriminant ∆ of a polynomial P(x, bi) with real coefficients {bi} is a real function of the
coefficients ∆[P](bi). Its vanishing indicates degeneracy of at least two of the solutions, while a
change of sign in ∆ implies that two real solutions become complex conjugate.
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where r̂ = r/M . Remarkably, ∆(r, α) displays two real roots {r̂out(α), r̂in(α)}, one
on each side of the UH, and whose positions depend on α, as it can be seen in figure
A.1. They correspond to the turning point for ψorange and for ψblue, respectively.
Note that for α → 0, the outer solution approaches the Killing horizon, moving
inwards as we increase the value of α. The inner one, instead, starts from the
singularity and moves towards the UH for large α.
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Appendix B

Effective temperature function

As a second alternative derivation of (5.104), we introduce now the concept of
“Effective Temperature Function (ETF)”. Defined in [20], the ETF measures the
degree of peeling of a ray with respect to a given surface. This notion is particularly
useful in the case of quasi-horizons [20], and in situations in which event horizons
are not yet formed, but the situation is close enough to its final state so that most
of the dynamics will approach the latter under certain conditions.

The ETF is defined through the relation U+ = p−1(U−), which relates the light-
cone coordinates at I + and I −, thus connecting the choice of the vacuum state
with the coordinate followed locally by the modes. The ETF is then defined as [20]

κ(U+) := −
d2U−
dU2

+

(
dU−
dU+

)−1
= − p̈(U+)

ṗ(U+)
. (B.1)

In the particular case where p(U+) takes an exponential form, this captures
exactly the peeling surface gravity κ(U+) = κpeeling. In a general case instead, and
even if the peeling behaviour is not perfectly exponential, one can start having
Hawking radiation if the variation of κ remains adiabatic [20]∣∣∣∣ κ̇(U+)

κ(U+)2

∣∣∣∣≪ 1 (B.2)

which implies the approximated constancy of κ(U+) over the time scale associated
with the typical period of Hawking quanta – since the peak frequency of the spectrum
is ωpeak ∼ κ(U+).

Let us then apply this idea to the case discussed throughout this paper, by
treating the Killing horizon as a quasi-horizon, following [139]. It is not an event
horizon for rays of arbitrary α, but satisfies the previous conditions, and thus rays
peel off it, for small α. The role of the light-cone coordinates U+ and U− is played
here respectively by the adapted null coordinate for the outgoing (red) modes ū
and its equivalent one for in-going ones Ū (blue mode). Note that at I − one has
Ū = U−.

Let us now consider the variation of ū as perceived by an infalling observer along
a blue mode trajectory. For concreteness, we take such an observer to have Killing
energy well below Λ at I −, so it will be approximately relativistic all along its path
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while infalling into the Killing horizon. Indeed, for low-energy blue modes, for which
kblue(r, α)≪ 1, we have that the trajectory can be described by a parameter λ as

dt

dλ
= − r

r − 2M

[
1 +

3

2

k2blue
Λ2

(
2M

r
− 1

)]
dr

dλ
, (B.3)

which near the Killing horizon coincides exactly with the relativistic null observer
along dv = 0. Since we will be interested in that region, in the following we will
neglect the subleading term in (B.3). Then, using eq.(B.3) and (5.26), we can label
a constant Ū line with ū getting

dū

dλ
=

dt

dλ
+
credg (r, α)Ur + Sr

credg (r, α)Ut + St

dr

dλ
=

(
credg (r, α)Ur + Sr

credg (r, α)Ut + St
− r

r − 2M

)
dr

dλ
. (B.4)

This relation – formula (5.107) in the main text – describes exactly the situation
depicted in figure B.1, corresponding to an observer travelling along a Ū = Ū0 =
const. line crossing the outgoing red trajectories.

Ū =
Ū0

r = M r = 2M r

Figure B.1: Constant Ū = Ū0 observer (in blue) which crosses a congruence of
ū = const. lines (in red).

Let us now make a convenient choice that simplifies the computation, i.e. we label
points along a Ū=const. trajectory using their radius (this is always allowed as long
as the relation between λ and r is monotonic, as in our case). This is tantamount to
choosing a parameter λ so that coinciding with the radial coordinate. In this case
we have ∂λr = 1 and, expanding (B.4) using (5.102), we obtain

dū

dŪ
=

dū

dr
= − 2r

r − 2M
+

3α2 (4M2 + 4Mr + r2)

2(r − 2M)2
+O

(
α3
)
, (B.5)

that we can integrate to

ū(r) =
1

2

(
−48α2M2

r − 2M
+ 8M

(
3α2 − 1

)
log(r − 2M) +

(
3α2 − 4

)
r

)
. (B.6)
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Neglecting the terms which are finite for r → 2M , we can invert the expression
above getting finally the relation Ū(ū)

Ū(ū) = r(ū) = 2M +M
6α2

3α2 − 1

1

W

(
6α2

3α2−1e
− 1

4M(3α2−1)
ū

) , (B.7)

where the function W (x) is the (principal branch of the) Lambert function1. Let us
notice that, when α → 0+, the expression for Ū(ū) matches, as expected, the one
for the Kruskal–Szekeres null coordinates plus O(α2) corrections,

lim
α→0+

Ū(ū) =Me−ū/4M
(
1− 3α2 ū

4M
+O(α4)

)
, (B.8)

thus recovering exactly the relativistic peeling with κ = (4M)−1.
With these ingredients, we are ready to compute the ETF and expand it at small

α

κ(ū) = −d2Ū

dū2

(
dŪ

dū

)−1

=
1

4M(1− 3α2)

1 + 2W

(
6α2

3α2−1e
− 1

4M(3α2−1)
ū

)
[
1 +W

(
6α2

3α2−1e
− 1

4M(3α2−1)
ū
)]2 =

1

4M
(1 + 3α2 + · · · ) ,

(B.9)

which is constant up to corrections of order O(α4), hence automatically satisfying
the adiabatic condition. The result obtained in (B.9) leads to the same temperature
in (5.104).

As a final interesting observation, let us note that the same result displayed here
can be obtained by taking the limit in which the observer approaches the Killing
horizon. In (B.6), this corresponds in ū to the limit ū → −∞. In the ETF, this
corresponds to

lim
ū→−∞

κ(ū) =
1

4M(1− 3α2)
, (B.10)

which can be interpreted as the rays departing the Killing horizon with a constant
α-dependent exponent.

1The Lambert function is defined as the solution of the equation W (x)eW (x) = x [176].
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Appendix C

Derivation of the Rindler wedge

C.1 Geometry

Here we give a detailed derivation of the solution (6.15) to the equation of motion
(4.19). We will assume invariance under boosts and local flatness – i.e. Riem = 0.
For the ease of notation, we work with the (1 + 1)-dimensional submanifold of the
metric in (6.13), thus neglecting the sub-manifold E2, which will not contribute in
any case.

Let us start with the first condition, that is that the aether as well as the metric
are Lie dragged with respect to the boost vector. To this aim we have to find out
the explicit form of the Killing vector which obeys Lχg = 0. Using the conformal
metric, we find the following set of equations

∂τχτ − χτ∂τ ln(W (τ, ρ))− χρ∂ρ ln(W (τ, ρ)) = 0, (C.1)

∂ρχρ − χτ∂τ ln(W (τ, ρ))− χρ∂ρ ln(W (τ, ρ)) = 0, (C.2)

χρ∂ρ ln(W (τ, ρ)) +W (τ, ρ)∂τ ln(χτW (τ, ρ)) = 0 (C.3)

which leads immediately to the relation ∂τχτ = ∂ρχρ. Moreover, the space-time
should not depend on the time associated to the timelike Killing vector field, such
that Lχg(U, χ) = 0 and Lχg(S, χ) = 0 respectively. Together with the Killing
equation we find that the components of the Killing vector read

χτ = f1(τ)W
2(τ, ρ) and χρ = f2(ρ)W

2(τ, ρ) (C.4)

with until now, arbitrary functions f1(τ) and f2(ρ). Using again the space-time
independence of the Killing time, and plugging in the above components, we find
that ∂τf1(τ) = ∂ρf2(ρ) ∀τ, ρ which implies that the derivatives must equal to a
constant c0 so that the arbitrary functions f1 and f2 take the form

f1(τ) = c0τ + c1, and f2(ρ) = c0ρ+ c2. (C.5)

Now, using the equations above, we can find a functional relation between
W (τ, ρ) and f1(τ) and f2(ρ)

W (τ, ρ) =
h
(
f1(τ)
f2(ρ)

)
f1(τ)

(C.6)
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where h is a function to determine. We do this by imposing local flatness through
Riem = 0. Being a bi-dimensional geometry, it is sufficient to ask for our geometry
to have a vanishing scalar curvature [41]. We cast the two-dimensional Ricci scalar
curvature in the (τ, ρ) coordinate system and find

R = −2(−∂2τ + ∂2ρ)W (τ, ρ) + 2
(∂ρW (τ, ρ))2 − (∂τW (τ, ρ))2

W (τ, ρ)
= 0, (C.7)

which leads to the following solution

W (τ, ρ) = F1(τ + ρ)F2(τ − ρ), (C.8)

with, again, arbitrary functions F1 and F2.
To simplify f1(τ) and f2(ρ), we impose the coordinate shift

τ → τ − c1
c0

as well as ρ→ ρ− c2
c0

(C.9)

such that

f1(τ) = c0τ and f2(ρ) = c0ρ . (C.10)

Relating the two forms (C.6) and (C.7) for the conformal factor and their τ - and
ρ-derivatives we arrive at

1+ τ∂τ ln(F1(τ + ρ))− τ∂τ ln(F2(τ − ρ))+ ρ∂ρ ln(F1(τ + ρ))+ ρ∂ρ ln(F2(τ − ρ)) = 0.
(C.11)

Since we find a differential equation for the functions F1(τ + ρ) and F2(τ − ρ),
we find a unique family of solutions for both that lead to the following conformal
factor

W (τ, ρ) =

(
ρ+ τ

ρ− τ

)α
C

ρ+ τ
(C.12)

whith the integration constants C, α ∈ R.
To determine α we need to fulfill the equation (6.27). However, since our so-

lution is hypersurface orthogonal, the equations of motion of khronometric gravity
coincide with those of in EA gravity. This implies that we can proceed to solve the
simpler equation Aa = 0 with A given in (4.18) instead of (4.19), and hypersurface
orthogonality will ensure the equivalence of solutions. Inserting our ansatz for gW ,
we find that for Aa to vanish, every individual term in Aa has to be zero indepen-
dently, since the couplings are arbitrary. From this, it follows that LSθ = 0, which
simplifies to ∂ρθ = 0. Since θ = ∇au

a = ∂τW
−1(τ, ρ) we have ∂τ∂ρW

−1(τ, ρ) = 0,
which is solved by

W (τ, ρ) =
1

A(τ) +B(ρ)
, (C.13)

for two generic functions A(τ) and B(ρ). This restricts the coefficient α ∈ {0, 1},
and after setting C = 1

ā
for convenience, we find the two solutions

W±(τ, ρ) =
1

ā(ρ± τ)
. (C.14)
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as given in (6.15). Let us notice that the conformal patch we used here is only
the easiest way for deriving the solution. However, it is easy to see that the two-
dimensional problem of finding a flat boost-invariant solution of (4.19) is anyway
overdetermined. One could have proceeded in the following way: the flatness of
the solution ensures that the metric can be written as the Minkowski metric, in the
right system of coordinates. Then, the normalization condition for a two dimensional
vector u links the two components through the relation |u|2 = −1. Finally, boost-
invariance makes the problem one-dimensional, transforming (4.19) into an ODE
for one of the two components of the aether vector, which leads to the same the
solution found through the conformal method.

C.2 Stress energy tensor

The metric-aether solution that we have shown represents the natural extension of
the rindler wedge with an everywhere timelike, hypersurface orthogonal, vector (see
also [146]).

In particular, as we proved, this solution can be also obtained as a near-Killing
horizon limit of a LV-Schwarzschild black hole. This, of course, ensures that the
aether equation of motion

δSEA

δua
= 0 ⇐⇒ Aa = 0 (C.15)

which is linear in the vector field ua, is automatically satisfied at the first order in
ϵ = r−2M . In addition, we have seen that this solution is Lie-dragged by the boost
generator χ = ∂η and Riemann flat.

Nevertheless, we have to note that the same reasoning cannot be applied to the
gravitational field equations

δSEA

δgab
= 0 ⇐⇒ Gab = 8πGT uab . (C.16)

In a flat manifold the Einstein tensor vanishes Gab = 0, so that the EA equations
lead to

T uab = 0 . (C.17)

One can explicitly check that, for general couplings cθ, ca and cσ the stress-energy
tensor of the aether does not vanish. Mathematically, this has to do with the
quadratic dependence of ua that T uab enjoys: this does not allow to recover the
solution perturbatively in ϵ from the black hole geometry. However, in the case of
the relativistic Rindler wedge R, we face a very similar issue regarding the space-
time geometry sourced by the stress-energy tensor. If one assumes matter fields
in R, their stress-energy tensor is found to admit a nonzero vacuum expectation
value [177]. This apparent tension is resolved when considering the stress-energy
tensor in the left Rindler wedge L as well. Then, one can show that the value of
the stress-energy tensor in R is exactly compensated by the one in L . The key
point of the argument is based on the reverse of the orientation between the two

159



patches. Namely, on the right side the boost generator ∂η “flows upwards” in the
right Rindler wedge, while it “flows downwards” on the left side.

In the LV case, this has an impact on the sign of the lapse, since

(u · χ)R = NR = −NL = −(u · χ)L . (C.18)

This tells us that the two patches are opposite-oriented, since the spatial constant-τ
submanifold Σ are the same on the two sides. Therefore, similarly to what happen
for a standard matter field in relativistic settings, the total energy balance is satisfied
between L and R.

This discussion tells us that the left patch is a necessary ingredient in order to
describe a solution without any gravitational source.
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ertial vacua equivalent in Lorentz-violating theories? Does it matter?” In:
Annals of Physics 453 (2023), p. 169303.

[150] Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. Table of inte-
grals, series, and products. Academic press, 2014.

[151] F. Bowman. Introduction to Bessel Functions. Dover Books on Mathemat-
ics. Dover Publications, 1958. isbn: 9780486604626. url: https://books.
google.it/books?id=_k6iJN5QabUC.

[152] Erasmo M. Ferreira and Javier Sesma. “Zeros of the Macdonald function
of complex order”. In: Journal of Computational and Applied Mathematics
211.2 (2008), pp. 223–231. doi: 10.1016/j.cam.2006.11.014. url: https:
//doi.org/10.1016%2Fj.cam.2006.11.014.

[153] Christopher Eling, Raf Guedens, and Ted Jacobson. “Non-equilibrium ther-
modynamics of spacetime”. In: Phys. Rev. Lett. 96 (2006), p. 121301. doi:
10.1103/PhysRevLett.96.121301. arXiv: gr-qc/0602001.

172

https://doi.org/10.1007/s10509-007-9554-0
https://doi.org/10.48550/ARXIV.1003.0112
https://doi.org/10.48550/ARXIV.1003.0112
https://arxiv.org/abs/1003.0112
https://doi.org/10.1007/978-3-319-00266-8_1
https://arxiv.org/abs/1212.6821
https://doi.org/10.1103/PhysRevD.92.024018
https://arxiv.org/abs/1504.07856
https://doi.org/10.1103/revmodphys.80.787
https://doi.org/10.1103%2Frevmodphys.80.787
https://doi.org/10.1103%2Frevmodphys.80.787
https://doi.org/10.1007/bf02108003
http://dx.doi.org/10.1007/BF02108003
https://doi.org/10.1103/PhysRevD.85.124027
https://doi.org/10.1103/PhysRevD.85.124027
https://arxiv.org/abs/1202.6015
https://books.google.it/books?id=_k6iJN5QabUC
https://books.google.it/books?id=_k6iJN5QabUC
https://doi.org/10.1016/j.cam.2006.11.014
https://doi.org/10.1016%2Fj.cam.2006.11.014
https://doi.org/10.1016%2Fj.cam.2006.11.014
https://doi.org/10.1103/PhysRevLett.96.121301
https://arxiv.org/abs/gr-qc/0602001


[154] Goffredo Chirco, Christopher Eling, and Stefano Liberati. “Reversible and
Irreversible Spacetime Thermodynamics for General Brans-Dicke Theories”.
In: Phys. Rev. D 83 (2011), p. 024032. doi: 10.1103/PhysRevD.83.024032.
arXiv: 1011.1405 [gr-qc].

[155] Isaac Carruthers and Ted Jacobson. “Cosmic alignment of the aether”. In:
Physical Review D 83.2 (Jan. 2011). issn: 1550-2368. doi: 10.1103/physrevd.
83.024034. url: http://dx.doi.org/10.1103/PhysRevD.83.024034.

[156] A. Retzker et al. “Methods for Detecting Acceleration Radiation in a Bose-
Einstein Condensate”. In: Physical Review Letters 101.11 (Sept. 2008). issn:
1079-7114. doi: 10.1103/physrevlett.101.110402. url: http://dx.doi.
org/10.1103/PhysRevLett.101.110402.

[157] Steffen Biermann et al. “Unruh and analogue Unruh temperatures for circular
motion in 3 + 1 and 2 + 1 dimensions”. In: Phys. Rev. D 102 (8 2020),
p. 085006. doi: 10.1103/PhysRevD.102.085006. url: https://link.aps.
org/doi/10.1103/PhysRevD.102.085006.

[158] John F. Donoghue. “General relativity as an effective field theory: The leading
quantum corrections”. In: Physical Review D 50.6 (Sept. 1994), 3874–3888.
issn: 0556-2821. doi: 10.1103/physrevd.50.3874. url: http://dx.doi.
org/10.1103/PhysRevD.50.3874.

[159] Damiano Anselmi. Renormalization. Independently published, May 2019.
isbn: 978-1-0990-5067-1.

[160] Michael E. Peskin and Daniel V. Schroeder. An Introduction to quantum
field theory. Reading, USA: Addison-Wesley, 1995. isbn: 978-0-201-50397-5,
978-0-429-50355-9, 978-0-429-49417-8. doi: 10.1201/9780429503559.

[161] Cliff P. Burgess. “Quantum Gravity in Everyday Life: General Relativity as
an Effective Field Theory”. In: Living Reviews in Relativity 7.1 (Apr. 2004).
issn: 1433-8351. doi: 10.12942/lrr-2004-5. url: http://dx.doi.org/
10.12942/lrr-2004-5.

[162] Andrei O. Barvinsky et al. “Heat kernel methods for Lifshitz theories”. In:
JHEP 06 (2017), p. 063. doi: 10.1007/JHEP06(2017)063. arXiv: 1703.
04747 [hep-th].
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Gravity”. In: Physical Review Letters 104.18 (May 2010). issn: 1079-7114.
doi: 10.1103/physrevlett.104.181302. url: http://dx.doi.org/10.
1103/PhysRevLett.104.181302.

[164] Thomas P Sotiriou, Matt Visser, and Silke Weinfurtner. “Quantum gravity
without Lorentz invariance”. In: Journal of High Energy Physics 2009.10
(Oct. 2009), 033–033. issn: 1029-8479. doi: 10.1088/1126-6708/2009/10/
033. url: http://dx.doi.org/10.1088/1126-6708/2009/10/033.
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ity”. In: Physical Review D 84.10 (Nov. 2011). issn: 1550-2368. doi: 10.
1103/physrevd.84.104019. url: http://dx.doi.org/10.1103/PhysRevD.
84.104019.

[175] Jorge Bellorin, Claudio Borquez, and Byron Droguett. “Effective action of
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