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Abstract
In this paper we study derived categories of nodal singularities. We show that for all nodal
singularities there is a categorical resolution whose kernel is generated by a 2 or 3-spherical
object, depending on the dimension. We apply this result to the case of nodal cubic fourfolds,
where we describe the kernel generator of the categorical resolution as an object in the
bounded derived category of the associated degree six K3 surface. This paper originated from
one of the problem sessions at the Interactive Workshop and Hausdorff School “Hyperkähler
Geometry”, Bonn, September 6–10, 2021.

Keywords Categorical resolutions · Nodal singularities · Cubic fourfolds

Mathematics Subject Classification 14J45 · 14J17 · 18E30

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3077
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3080
3 Categorical resolutions of nodal varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3091
4 Categorical resolutions of nodal cubic fourfolds . . . . . . . . . . . . . . . . . . . . . . . . . . 3100
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3104

1 Introduction

Resolution of singularities is a central topic studied in algebraic geometry. Since Hironaka
[7] proved that singularities of varieties in characteristic 0 can be resolved, there has been
much progress in studying singularities, their resolutions, and their applications in birational
geometry. On the other hand, derived categories provide a strong technique for understanding
algebraic varieties, for example two smooth Fano (or general type) varieties with equivalent
derived categories are isomorphic [3]. For other varieties, derived categories can yield infor-
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mation about their birational geometry, for example flops of three dimensional varieties
induce derived equivalences of their derived categories [4].

One can often study a singularity by considering the properties of a resolution of it, and
for relatively simple varieties and singularities, this might be done concretely. From the
categorical viewpoint, let Y be a singular variety and let σ : ˜Y → Y be a resolution of
singularities, then we have derived functors between their derived categories

σ ∗ : Dperf (Y ) → Dperf (˜Y ), σ∗ : Db(˜Y ) → Db(Y ).

Since ˜Y is a smooth variety, we have Db(˜Y ) = Dperf (˜Y ). The two functors are related by the
projection formula

σ∗σ ∗(F) = F ⊗ σ∗O˜Y .

Inspired by the geometric picture, Kuznetsov introduced in [19] the definition of “abstract”
categorical resolution of singularities (see Definition 2.21). In the case of Db(Y ), it consists
of a triple (˜D, σ∗, σ ∗), where ˜D is a geometric triangulated category, σ∗ : ˜D → Db(Y ) and
σ ∗ : Dperf (Y ) → ˜D are functors such that σ ∗ is left adjoint to σ∗, and the natural morphism
of functors idD perf → σ∗σ ∗ is an isomorphism.

Now an interesting question is whether or not this categorical viewpoint allows one to
characterize the singularity geometrically. To shed some light on this, we investigate in
this paper one special kind of singularities and their categorical resolutions, namely nodal
singularities.

Before stating our main result, we briefly recall a few notions. A resolution of singularities
is crepant if its relative canonical class is trivial. Crepant resolutions are interesting since they
are considered minimal resolutions in the case of Gorenstein varieties, but they are also rare.
On the other hand, a categorical resolution of singularities σ∗ : ˜D → Db(Y ) isweakly crepant
if the left adjoint σ ∗ of σ∗ is also its right adjoint (see Definition 2.21). An object T ∈ ˜D
is called k-spherical if Hom•(T , T ) = C ⊕ C[−k] and there is an isomorphism of functors
Hom(T ,−) = Hom(−, T [k])∨; and E ∈ ˜D is exceptional if Hom•(E, E) = C.

Theorem 1.1 Let Y be a quasiprojective variety with an isolated nodal singularity, and
assume dim(Y ) ≥ 2. Then there exists a weakly crepant categorical resolution σ∗ : ˜D →
Db(Y ) such that:

(a) The kernel ker(σ∗) of σ∗ is classically generated by a single object T which is 2-spherical
if dim(Y ) is even, and 3-spherical otherwise.

(b) The resolution σ∗ is a localization functor up to direct summands, cf. Definition 2.24.

Note that the existence of a weakly crepant categorical resolution is a direct application of
[19].We remark that the constructed categorical resolution has the advantage of beingweakly
crepant in any dimension, while the geometric resolutionDb(˜Y ) is not. In [19] another notion
of crepancy, called strong crepancy, was introduced. The resolution ˜D in Theorem 1.1 is not
strongly crepant, as computed in Proposition 3.10, if the dimension of Y is bigger than 3.

Our contribution is the explicit description of the kernel of the categorical resolution. We
will define the resolution ˜D as an admissible component of Db(˜Y ), where ˜Y is the blow-
up at the isolated nodal singularity. Here, the object T has a clear geometric meaning: if
dim(Y ) is even, the object T is the pushforward to ˜Y of the spinor bundle on the quadric
exceptional divisor; and if dim(Y ) is odd, the object T is described as the right mutation of
the pushforward of one of the spinor bundles through the other, see Proposition 3.6.
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Kernels of categorical resolutions of nodal singularities 3079

Remark 1.2 Theorem 1.1 has been recently proven independently by Kuznetsov and Shinder
in [16, Theorem 5.8] with a similar strategy. Furthermore, [16, Theorem 5.2] explains that
one can drop “classically” and “up to direct summands” in Theorem 1.1; see also [24] for a
discussion about this. Finally, note that the case when Y is 1-dimensional has been recently
studied in [32].

Based on Theorem 1.1, we propose the following definitions of categorical nodal singu-
larities.

Definition 1.3 [(Abstract) nodal category] A triangulated category T is called (abstract)
nodal if there is a categorical resolution σ∗ : ˜D → T which is weakly crepant and whose
kernel is (classically) generated by a single spherical object.

Definition 1.4 [Geometric nodal category] A triangulated category T is called geometric
nodal if it is an admissible subcategory of the derived category Db(Y ) of a normal quasipro-
jective variety Y which has only an isolated nodal singularity, such thatT perf is not smooth1.

Using Theorem 1.1 we show the following relation between the above definitions.

Theorem 1.5 [Theorem 3.11] If T is a geometric nodal category, then T is an abstract
nodal category. Furthermore, the constructed categorical resolution σ∗ : ˜D → T as in the
definition of an abstract nodal category is a localization up to direct summands.

However, there are some questions around the definition of abstract nodal category.

Question 1.6

(a) The sphericalness property depends on the dimension of the variety. What should be a
suitable definition of dimension of an abstract triangulated category?

(b) It is not clear to uswhether the definition characterizes nodal singularities in the geometric
picture. In other words, if Y is a variety such that Db(Y ) is abstract nodal, is then Db(Y )

a geometric nodal category?
(c) Does the sphericalness property of the kernel generator already imply that the resolution

is weakly crepant?
(d) Suppose that there is a 2 or 3-spherical object T inDb(X)where X is a smooth projective

variety, and let T ⊂ Db(X) be the triangulated subcategory classically generated by T .
Is the quotient Db(X)/T a geometric nodal category?

Remark 1.7 Note that a positive answer to Question 1.6.(c) has been recently given in [17,
Lemma 5.8].

To address the last problem above, we study a concrete example: Let Y ⊂ P
5 be a

nodal cubic fourfold, with hyperplane section class H . By [20] there is a semiorthogonal
decomposition of Db(Y ) given by

Db(Y ) = 〈AY ,OY ,OY (H),OY (2H)〉,
whereAY := 〈OY ,OY (H),OY (2H)〉⊥ andOY ,OY (H),OY (2H) form an exceptional col-
lection of line bundles. Then a categorical resolution ofAY is provided byDb(S), where S is
a K3 surface of degree 6 obtained as the intersection in P

4 of a smooth quadric hypersurface
Q with a cubic hypersurface. In this situation, we have the following application of Theorem
1.1, which provides an answer to [20, Remark 5.9].

1 When T is a triangulated category, we say in this article that T perf is smooth if T can be realized as
an admissible subcategory of the bounded derived category Db(X) of a smooth variety X . This means in
particular that T perf = T by [27, Proposition 1.10] and the fact that Dperf (X) = Db(X).
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Theorem 1.8 If Y is a nodal cubic fourfold, then the kernel of the categorical resolution
Db(S) → AY is classically generated by t∗S, where t : S → Q is the inclusion map of the
K3 surface into the defining quadric Q of S, and S denotes the spinor bundle on Q.

Remark 1.9 Note that the object t∗S ∈ Db(S) is 2-spherical. This is similar to the situation
of a nodal K3 surface, in which the spherical objects OEi (−1) appear in the kernel, where
Ei are the exceptional curves in the resolution, cf. [23, Lemma 2.3] and [4, Lemma 3.1].

1.1 Plan of paper

In Sect. 2, we recall the definitions and theorems that we use in the following sections. In
particular, we review the definitions and properties of nodal singularities, the construction of
their categorical resolution via a Lefschetz decomposition following [19], and some results
in [5] which we use to compute the kernel of these categorical resolutions.

Section 3 is about the proof of Theorem 1.1. We first use a Lefschetz decomposition of
quadrics to construct a categorical resolution of varieties with an isolated nodal singularity
as in [19]. Then by results of [5], we find the kernel generator and check the sphericalness
property.

In Sect. 4, we focus on the case of nodal cubic fourfolds, proving Theorem 1.8 as a
consequence of Theorem 1.1.

1.2 Notations and conventions

By variety we mean an integral scheme that is separated and of finite type over C. If not oth-
erwise mentioned, all functors between derived categories are implicitly derived.We useRA

andLA to denote the right and leftmutationwith respect to an admissible subcategoryA , and
useTB to denote the twist functor−⊗B.We defineHom•(−,−) = ⊕

i Hom(−,−[i])[−i].
If T is a triangulated category, a classical generator of T is an object T ∈ T such that the
smallest strictly full triangulated subcategory of T which is closed under direct summands
and containing T is equal to T , in symbols T = 〈T 〉⊕. We take the liberty to write most
isomorphisms as equalities.

2 Preliminaries

In this section, we briefly recall the notation and tools that we will use in subsequent sections.
In particular, we discuss nodal singularities, semiorthogonal decompositions, categorical
resolutions arising from Lefschetz decompositions and some results from [5] that allow to
compute the kernel of certain categorical resolutions. Finally we review some properties of
spinor bundles on quadrics, and perform some cohomology computations we need in later
sections.

2.1 Nodal singularities

Let X be a variety of dimension n. We recall the definition of a nodal singularity, which is
the simplest kind of hypersurface singularity.

Definition 2.1 An isolated singular point x ∈ X is a nodal point (or ordinary double point) if
the variety X is formally locally around x isomorphic to the singularity defined by the origin
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Kernels of categorical resolutions of nodal singularities 3081

of the zero locus of x20 + x21 + x22 +· · ·+ x2n inside A
n+1
C

, i.e. ÔX ,x  C[[x0, . . . , xn]]/(x20 +
· · · + x2n ).

Remark 2.2 Since we are working over C, we can replace “formally locally” with “analyti-
cally locally” and obtain an equivalent definition. Indeed, the completions of the algebraic
and the analytic local rings coincide, cf. [30, Proposition 3], and two analytic germs are
equivalent if and only if the completions of their analytic local rings are isomorphic, cf. [10,
Theorem 4.2.3].

Assume that X has only one nodal singularity x ∈ X and is smooth elsewhere. Since
hypersurface singularities areGorenstein, so is X (recall that beingGorenstein can be checked
after completion of local rings, cf. [1, Proposition 3.1.19.(c)]). Now let σ : ˜X → X be the
blow-up of X at x . Then σ is a resolution of singularities whose exceptional locus j : Q → ˜X
is the smooth projective quadric hypersurface defined by x20+x21+x22+...+x2n . The conormal
bundle of Q ⊂ ˜X isOQ(1) = N

∨
Q/˜X

= j∗O
˜X (−Q), since Q is the exceptionalCartier divisor

of a blow-up.

2.2 Semiorthogonal decompositions

We recall the definitions of admissible subcategories and exceptional collections, which are
the main source of semiorthogonal decompositions. Denote by T a triangulated category.

Definition 2.3 [Admissible subcategory] Let A ⊂ T be a full triangulated subcategory.
Then A is called admissible if the embedding functor of A into T admits left and right
adjoints.

Definition 2.4 [Semiorthogonal decomposition] Let A1, . . . ,Am be a sequence of admis-
sible subcategories of T . Then we say that A1, . . . ,Am is a semiorthogonal collection if
Hom(Ai ,A j ) = 0 for all i > j . If in addition this collection generates T , we say that it
forms a semiorthogonal decomposition of T , which we denote by

T = 〈A1, . . . ,Am〉.
Any admissible subcategory A induces a semiorthogonal decomposition: Set

A ⊥ = {F ∈ T | Hom(A ,F) = 0},
⊥A = {F ∈ T | Hom(F,A ) = 0},

then there are two semiorthogonal decompositions

T = 〈A ⊥,A 〉, T = 〈A , ⊥A 〉.
We define the left mutation functor LA and the right mutation functor RA to fit into the
following exact triangles, respectively,

αα! → id → LA , RA → id → αα∗,

where α : A → T is the embedding functor and α! and α∗ are its right and left adjoints,
respectively. Note that the semiorthogonality ensures that the cones in the triangles above
are functorial. Indeed, use that the decomposition of an object of T into semiorthogonal
components is functorial to deduce that im(RA ) ⊂ ⊥A , and then consider the long exact
sequences arising from applying, for example, Hom(RA (F),−) to the triangles above. The
following lemmata describe the interaction between mutation functors and semiorthogonal
decompositions.
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Lemma 2.5 [20, Corollary 2.9]Assume thatT = 〈A1, . . . ,Am〉 is a semiorthogonal decom-
position. Then for each 1 ≤ i ≤ m − 1 there is a semiorthogonal decomposition

T = 〈A1, . . . ,Ai−1, LA i (Ai+1),Ai ,Ai+2, . . . ,Am〉
and for each 2 ≤ i ≤ m there is a semiorthogonal decomposition

T = 〈A1, . . . ,Ai−2,Ai , RA i (Ai−1),Ai+1, . . . ,Am〉.
Lemma 2.6 [22, Lemma 2.2] Let A be an admissible subcategory of T . Assume that A
admits a semiorthogonal decomposition A = 〈A1, . . . ,Am〉. Then

LA = LA1 ◦ · · · ◦ LAm and RA = RAm ◦ · · · ◦ RA1 .

Examples of admissible subcategories are given by exceptional objects.

Definition 2.7 [Exceptional object] An object E ∈ T is exceptional if Hom•(E, E) = C.2

Definition 2.8 [Exceptional collection] A set of objects {E1, . . . , Em} in T is an exceptional
collection if each Ei is exceptional, and Hom•(Ei , E j ) = 0 when i > j .

If E is an exceptional object in a triangulated category T , then the full triangulated
subcategory A = 〈E〉 generated by E is admissible, cf. [2]; the mutations of an object
F ∈ T can be described explicitly as

LE (F) = cone(Hom•(E,F) ⊗ E → F), RE (F) = cone(F → Hom•(F, E)∨ ⊗ E)[−1].
Similarly, an exceptional collection gives rise to a semiorthogonal collection.

In this paper, we consider a special kind of semiorthogonal decomposition.

Definition 2.9 [Lefschetz decomposition][19, Definition 2.16] Let X be a variety with a (not
necessarily ample) line bundleO(1).ALefschetz decompositionofDb(X) is a semiorthogonal
decomposition of the form

Db(X) = 〈B0,B1(1), . . . ,Bm−1(m − 1)〉 where 0 ⊂ Bm−1 ⊂ · · · ⊂ B1 ⊂ B0 ⊂ Db(X).

A Lefschetz decomposition is rectangular if B0 = B1 = · · · = Bm−1. Similarly, a dual
Lefschetz decomposition is a semiorthogonal decomposition of the form

Db(X) = 〈Bm−1(1 − m), . . . ,B1(−1),B0〉 where 0 ⊂ Bm−1 ⊂ · · · ⊂ B1 ⊂ B0 ⊂ Db(X).

2.3 Spherical objects and Serre functors

Let T be a triangulated category. We recall the definition of spherical objects, which play an
important role in this paper.

Definition 2.10 [k-spherical object][31, Definition 2.14, Lemma 2.15] Let k ∈ N be a natural
number. An object T ∈ T is called k-spherical if

(a) the functors Hom•(T ,−) and Hom•(−, T ) on T take values in the category of finite-
dimensional graded vector spaces;

(b) Hom•(T , T ) = C ⊕ C[−k];
2 If the category T is not proper, one also requires that the functors Hom•(E,−) and Hom•(−,E) on T
take values in the category of finite-dimensional graded vector spaces.
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Kernels of categorical resolutions of nodal singularities 3083

(c) for any F ∈ T there is an isomorphism Hom(T ,F) = Hom(F, T [k])∨, which is
functorial in F .

Condition (c) in Definition 2.10 can be simplified in some situations, for instance when
T has a Serre functor.

Definition 2.11 [Serre functor]LetT be a triangulated category.AnequivalenceS : T → T
is called Serre functor if for any two objects F,G ∈ T there is a bifunctorial isomorphism

Hom(F,G) = Hom(G, S(F))∨.

For instance, by Grothendieck–Verdier duality [9, Theorem 3.34] the Serre functor of the
derived categoryDb(X) of a smooth projective variety X of dimension n is given byTωX ◦[n],
where ωX is the canonical bundle of X . The Serre functor is unique up to isomorphisms
of exact functors. The following lemma describes the relation between Serre functors and
semiorthogonal decompositions with two components.

Lemma 2.12 [20, Lemma 2.11],[22, Lemma 2.6] Let T = 〈A ,B〉 be a semiorthogonal
decomposition of a triangulated category. Assume that T has Serre functor ST . Then

(a) there are semiorthogonal decompositions T = 〈ST (B),A 〉 = 〈B, S
−1
T (A )〉, and

(b) A and B have Serre functors SA and SB , respectively, satisfying the relations

SB = RA ◦ ST , S
−1
A = LB ◦ S

−1
T .

Remark 2.13 Assume thatT admits a Serre functorS. By theYoneda lemma, in theDefinition
2.10 of a k-spherical object T ∈ T we can replace condition (c) with S(T ) = T [k].

This paper is about varieties with an isolated nodal singularity. By the local nature of such
singularities, it seems unnatural to focus just on projective varieties; we prefer instead to work
with quasiprojective varieties. The smooth varieties arising from resolution of singularities
will again be quasiprojective; in particular, their derived categorywill not have a Serre functor,
but they will admit the following weaker version.

Definition 2.14 [Serre functor for a pair (R,T )][34, Section 6.4] Let T be a triangulated
category. LetR ⊂ T be a full triangulated subcategory such that for anyF ∈ R the functors
Hom•(F,−) andHom•(−,F) onT take values in the category of finite-dimensional graded
vector spaces. An equivalence S : T → T is called Serre functor for the pair (R,T ) if

(a) S leaves R stable and
(b) for any two objects F ∈ R,G ∈ T there is a bifunctorial isomorphism

Hom(F,G) = Hom(G, S(F))∨.

In particular, the restriction of S to R is a Serre functor for R.

Example 2.15 Let X be a smooth quasiprojective variety of dimension n. Let j : E → X
be the embedding of a smooth projective divisor; denote by ω j := ωE ⊗ j∗ω∨

X its relative
dualizing bundle. Define the category Db

E (X) as the full subcategory of Db(X) consisting
of complexes topologically supported on E . As a triangulated category, Db

E (X) is generated
by j∗Db(E), a remark that is very useful in practice. For any F ∈ Db

E (X), the functors
Hom•(F,−) and Hom•(−,F) take values in the category of finite-dimensional graded
vector spaces: indeed, this holds true for an object of the form j∗F,F ∈ Db(E), because
Hom•(−, j∗F) = Hom•( j∗(−),F) and Hom•( j∗F,−) = Hom•(F, j∗(−) ⊗ ω j [−1]).
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We claim that TωX ◦ [n] is a Serre functor for the pair (Db
E (X),Db(X)). Condition (a) in

Definition 2.14 is clearly satisfied; as for condition (b), for any F ∈ Db(E) and G ∈ Db(X),
by Grothendieck-Verdier duality we have

HomX ( j∗F,G) =HomE (F, j∗G ⊗ ω j [−1])
=HomE (F, j∗G ⊗ ωE ⊗ j∗ω∨

X [−1])
=HomE ( j∗(G ⊗ ω∨

X )[−n],F)∨

=HomX (G, j∗F ⊗ ωX [n])∨.

The following result is analogous to Lemma 2.12, and can be proven in the same way.

Lemma 2.16 LetT be a triangulated category, andR ⊂ T a full triangulated subcategory.
Suppose that we have a full triangulated subcategoryA ofR that is admissible in bothR and
T ; in particular, we have semiorthogonal decompositions R = 〈A ,B〉 and T = 〈A ,C 〉.
Assume that the pair (R,T ) has a Serre functor SR ,T . Then the pair (B,C ) has a Serre
functor, which is given by

SB ,C = RA ◦ SR ,T .

Remark 2.17 Assume that an objectT ∈ T belongs to a full triangulated subcategoryR ⊂ T
such that the pair (R,T ) has a Serre functor S. To check that T is k-spherical, condition (c)
in Definition 2.10 can be replaced (again by the Yoneda lemma) with S(T ) = T [k].

2.4 Categorical resolutions

We recall the material from [19, §3].

Definition 2.18 [Geometric category] A triangulated category D is geometric if it is equiv-
alent to an admissible subcategory of Db(X), where X is a smooth variety.

Definition 2.19 [27, Definition 1.6] Let D be a triangulated category. An object F ∈ D is
homologically finite if for any G ∈ D there exists only a finite number of n ∈ Z such that
HomD (F,G[n]) �= 0. The category Dperf is defined as the full subcategory of D whose
objects are the homologically finite objects.

Remark 2.20 The notation Dperf is justified since the homologically finite objects in the
bounded derived category of coherent sheaves on a quasiprojective variety X are nothing
else than the perfect complexes, i.e. Db(X)perf = Dperf (X), cf. [27, Proposition 1.11].

Definition 2.21 [Categorical resolution] A categorical resolution of a triangulated category
D is a geometric triangulated category ˜D and a pair of functors

σ∗ : ˜D → D, σ ∗ : Dperf → ˜D,

such that σ ∗ is left adjoint to σ∗ on Dperf , i.e.

Hom
˜D (σ ∗F,G) = HomD (F, σ∗G) for any F ∈ Dperf , G ∈ ˜D,

and the natural morphism of functors idD perf → σ∗σ ∗ is an isomorphism.
A categorical resolution (˜D, σ∗, σ ∗) is weakly crepant if σ ∗ is also right adjoint to σ∗ on

Dperf , i.e.

Hom
˜D (G, σ ∗F) = HomD (σ∗G,F) for any F ∈ Dperf , G ∈ ˜D .
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We now focus on a particular construction of a (weakly crepant) categorical resolution
starting from a classical resolution of singularities. Consider a resolution of rational singu-
larities σ : ˜Y → Y whose exceptional locus E is an irreducible divisor. Let Z = σ(E) and
ρ : E → Z be the restriction of σ to E . Denote by j : E → ˜Y the inclusion morphism. Let

Db(E) = 〈Bm−1(1 − m), . . . ,B1(−1),B0〉 (2.1)

be a dual Lefschetz decomposition with respect to OE (1) := N
∨
E/˜Y

. Define ˜D as the subcat-
egory

˜D := {F ∈ Db(˜Y ) | j∗F ∈ B0}.
Proposition 2.22 [19, Proposition 4.1]Consider the notation fixed in (2.1). The pushforward
functor j∗ is fully faithful on Bi (−i) for 1 ≤ i ≤ m − 1 and we have a semiorthogonal
decomposition

Db(˜Y ) = 〈 j∗Bm−1(1 − m), . . . , j∗B1(−1), ˜D〉.
Theorem 2.23 [19, Theorem 4.4, Proposition 4.5] Consider the notation fixed in (2.1). Sup-
pose that B0 ⊂ Db(E) contains ρ∗(Dperf (Z)). Then the functor σ ∗ factors through ˜D and
(˜D, σ∗, σ ∗) is a categorical resolution of Db(Y ) where

σ∗ : ˜D → Db(Y ), σ ∗ : Dperf (Y ) → ˜D .

If in addition Y is Gorenstein, and ω
˜Y = σ ∗ωY ⊗O((m−1)E), and ρ∗(Dperf (Z)) ⊂ Bm−1,

then the categorical resolution (˜D, σ∗, σ ∗) is weakly crepant.

2.5 Localization functors and their kernels

In this section we review results from [5, 12] which will allow us to compute the kernels of
certain categorical resolutions.

Definition 2.24 Let T and T ′ be triangulated categories.

(a) An exact functor F : T → T ′ is a localization if the induced functor F : T / ker(F) →
T ′ is an equivalence.

(b) An exact functor F : T → T ′ is a localization up to direct summands if F : T → im(F)

is a localization onto a dense subcategory of T ′, in symbols im(F)⊕ = T ′.3

Definition 2.25 [Nonrational locus][12, Definition 6.1] Let σ : X → Y be a proper birational
morphism. A closed subscheme Z ⊂ Y is called a nonrational locus of Y with respect to σ

if the natural morphism

IZ → σ∗Iσ−1(Z)

is an isomorphism in Db(Y ). Here IZ ⊂ OY denotes the ideal sheaf of Z ⊂ Y , and σ−1(Z)

is the scheme-theoretic pre-image of Z , so that Iσ−1(Z) = σ−1IZ · OX .

Theorem 2.26 [5, Theorem 8.22] Let σ : X → Y be a proper morphism such that σ∗OX =
OY . Assume that there is a subscheme Z ⊂ Y , such that all its infinitesimal neighborhoods

3 The terminology “categorical contraction” is preferred for this notion in [16, Definition 1.10].
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Zk, for k ≥ 1, are nonrational loci of Y with respect to σ . Consider the cartesian diagram

E X

Z Y .

ρ

j

σ

Assume that the functor ρ∗ : Db(E) → Db(Z) is a localization up to direct summands. If
σ is an isomorphism outside Z, then σ∗ : Db(X) → Db(Y ) is a localization up to direct
summands with kernel classically generated by j∗(ker(ρ∗)).

We verify the hypotheses of Theorem 2.26 for blow-ups of certain affine cones. The
following corollary is remarked in passing after [5, Theorem 1.10]; we provide a proof for
the sake of completeness.

Corollary 2.27 Let Y ⊂ Ån+1 be the cone over a projectively normal smooth Fano variety
W ⊂ P

n. Let Z = {0} be the singular point of Y . Letσ : ˜Y → Y be the blow-up at the singular
point Z and E = W its exceptional divisor. Then, σ∗ : Db(˜Y ) → Db(Y ) is a localization up
to direct summands with kernel classically generated by j∗(〈OE 〉⊥), where the orthogonal
〈OE 〉⊥ is taken in Db(E).

Proof We verify that the hypotheses of Theorem 2.26 hold. First note that σ : ˜Y → Y is a
resolution of singularities for Y ; in particular, it is an isomorphism outside Z . Moreover, the
exceptional locus E is isomorphic to the Fano variety W . As Y is an affine cone over W , its
coordinate ring is isomorphic to the homogeneous coordinate ring of W , which is integrally
closed as W is projectively normal, hence Y is normal.

Recall that a cone over a Fano variety has rational singularities by [13, Corollary 3.4],
hence, σ∗O˜Y = OY . Let ρ : E → Z be the restriction of σ to E . As E is a Fano variety,
we have that OE is exceptional by Kodaira’s vanishing theorem. As a consequence, we
have ρ∗OE = H•(E,OE ) = C = OZ . We now prove that ρ∗ is a localization. Since
the functor ρ∗ has a left adjoint ρ∗, by [5, Remark 3.3] it is a localization if and only if
ρ∗ is fully faithful. This is indeed the case by the projection formula applied to ρ∗ using
ρ∗OE = OZ (see [19, Lemma 2.4] for details). Finally, considering the decomposition
induced on Db(E) = 〈ker(ρ∗), ρ∗Db(Z)〉, cf. [21, Lemma 2.3], we have

ker(ρ∗) = (ρ∗Db(Z))⊥ = 〈OE 〉⊥.

The last thing to check in order to apply Theorem 2.26 is that the canonical map

Ik
Z → σ∗(σ−1(Ik

Z ) · O
˜Y ) = σ∗Iσ−1(Zk )

is an isomorphism for k ≥ 1, where Zk is the k-th formal neighbourhood of Z . By the
construction of blow-ups, the variety ˜Y is defined as Proj(

⊕∞
i=0 Ii

Z ). On the other hand, the
graded sheaf of modules corresponding to σ−1(Ik

Z ) · O
˜Y is

⊕∞
i=0 I

k+i
Z , which is equal to

O
˜Y/Y (k), where O

˜Y/Y (1) is the twisting sheaf on the blow-up ˜Y . We recall that O
˜Y/Y (1) =

O
˜Y (−E) and OE (1) = OE (−E). Consider for k ≥ 0 the short exact sequence of sheaves

on Y

0 → Ik+1
Z → Ik

Z → Ik
Z/Ik+1

Z → 0, (2.2)

and the short exact sequence of sheaves on ˜Y

0 → O
˜Y (−(k + 1)E) → O

˜Y (−kE) → OE (−kE) → 0, (2.3)
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as well as the morphism of exact triangles

Ik+1
Z Ik

Z Ik
Z/Ik+1

Z

σ∗O˜Y (−(k + 1)E) σ∗O˜Y (−kE) σ∗OE (−kE),

(2.4)

where the upper row is the triangle (2.2) and the lower row comes from the application of
σ∗ to (2.3). We claim that the induced map Ik

Z/Ik+1
Z → σ∗OE (−kE) is an isomorphism for

k ≥ 0. As Z is a point, it is enough to study the stalk of the morphism at Z . Let R(E) be the
homogeneous coordinate ring of E = W ⊂ P

n . By definition, the affine coordinate ring of
Y , namely K[Y ], is just R(E) without its grading. Identifying IZ ⊂ K[Y ] with (x0, . . . , xn),
we obtain that Ik

Z/Ik+1
Z corresponds to the space of homogeneous polynomials of degree

k in K[Y ]. On the other hand, by Kodaira vanishing, we have that Hi (E,OE (k)) = 0
for any i > 0, so we obtain σ∗OE (−kE) = H0(E,OE (k)), which is isomorphic to the
space of homogeneous polynomials of degree k in R(E). By projective normality, we have
that the composition H0(Pn,OPn (k)) → Ik

Z/Ik+1
Z → H0(E,OE (k)) is surjective, cf. [6,

Exercise II.5.14(d)], hence the map Ik
Z/Ik+1

Z → H0(E,OE (k)) is surjective. As both source
and target of the latter are vector spaces of the same dimension, the map is an isomorphism.

To conclude the proof, we prove inductively that the canonical maps Ik
Z → σ∗O˜Y (−kE)

are isomorphisms. The base case k = 0 of the induction is given by the isomorphism σ∗O˜Y =
OY . Then by the induction hypothesis the map Ik

Z → σ∗O˜Y (−kE) is an isomorphism, hence
the canonical morphism on the left in (2.4) is an isomorphism, concluding the inductive step.
As we showed that Zk is a nonrational locus of Y for k ≥ 1, we can apply Theorem 2.26 and
obtain the statement. ��
Remark 2.28 Note that Corollary 2.27 remains valid for varieties Y with an isolated sin-
gular point y which look, upon restriction to a formal neighborhood of y in Y , like
the cone singularity in the corollary. Indeed, the crucial part of the proof is the check
that the infinitesimal neighborhoods of the singularity are nonrational loci. Now use that
Spec(ÔY ,y) → Spec(OY ,y) is faithfully-flat, cf. [33, Tag 00MC], and Spec(OY ,y) → Y is

flat, so the nonrational locus condition can be checked after base-change to Spec(ÔY ,y).

2.6 Derived base-change

The last ingredient we need in the derived categories setting is the following base-change
result.

Proposition 2.29 Consider a cartesian square of varieties

X ×S Y Y

X S.

q

p g
f

Suppose that g is a closed immersion and local complete intersection morphism, X is
Cohen–Macaulay, and codimX (X ×S Y ) = codimS(Y ). Then

q∗ p∗ = g∗ f∗.

Proof The proposition is a corollary of Tor-independent base-change, cf. [33, Tag 08IB].
In slightly more detail: Since local complete intersection immersions are Koszul-regular
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immersions, cf. [33, Tag 09CC], one can use the Koszul complex to compute higher Tor
groups. The regular sequences that define Y ⊂ S locally stay regular on X because of the
codimension assumption and the unmixedness theorem, cf. [33, Tag 02JN]. So the Koszul
complex stays exact after tensoring with OX , and we see that higher Tor groups vanish, as
required to apply Tor-independent base-change.

A proof can also be found in [18, Corollary 2.27]. ��

2.7 Spinor bundles on quadric hypersurfaces

In this subsection we summarize some properties of spinor bundles on quadric hypersurfaces.
Let Q ⊂ P

n+1 be the (unique up to isomorphism) smooth quadric hypersurface of dimension
n. The definition of spinor bundles on Q, given in [29], depends on the parity of n.

Assume first that n = 2m+1 is odd; in this case, the maximal dimension of a (projective)
linear subspace contained in Q ism. The parameter space for them-planes contained in Q is
an irreducible smooth projective variety S. LetOS(1) be the ample generator of Pic(S)  Z; it
can be shown that dim H0(S,OS(1)) = 2m+1. Now, for any x ∈ Q, consider the embedding

ix : Sx := {Pm ⊂ Q | x ∈ P
m} → S = {Pm ⊂ Q}.

The induced restriction map H0(S,OS(1)) → H0(Sx , i∗xOS(1)) turns out to be surjective, so
its dual yields an inclusion

H0(Sx , i
∗
xOS(1))

∨ → H0(S,OS(1))
∨.

Since dimH0(Sx , i∗xOS(1)) = 2m for any x ∈ Q, we obtain a morphism

s : Q → Gr(2m, 2m+1).

The spinor bundle S on Q is defined as the pullback by s of the tautological subbundle on
Gr(2m, 2m+1).

Let usmove on to the case of a quadric of even dimension n = 2m. Themaximal dimension
of a linear subspace contained in Q is m. The parameter space for the m-planes contained in
Q has two connected components S′ and S′′. Both S′ and S′′ are smooth irreducible projective
varieties. Let OS′(1) and OS′′(1) be the ample generators of Pic(S′)  Z and Pic(S′′)  Z,
respectively; it can be shown that dim H0(S′,OS′(1)) = dimH0(S′′,OS′′(1)) = 2m . Now,
for any x ∈ Q, consider the embeddings

i ′x : S′
x = {Pm ∈ S′ | x ∈ P

m} → S′ and i ′′x : S′′
x = {Pm ∈ S′′ | x ∈ P

m} → S′′.

The induced restrictionmapsH0(S′,OS′(1)) → H0(S′
x , (i

′
x )

∗OS′(1)) andH0(S′′,OS′′(1)) →
H0(S′′

x , (i
′′
x )

∗OS′′(1)) turn out to be surjective. By passing to the dual we obtain the inclusions

H0(S′
x , (i

′
x )

∗OS′(1))∨ → H0(S′,OS′(1))∨ and H0(S′′
x , (i

′′
x )

∗OS′′(1))∨ → H0(S′′,OS′′(1))∨.

Since dimH0(S′
x , (i

′
x )

∗OS′(1)) = dimH0(S′′
x , (i

′′
x )

∗OS′′(1)) = 2m−1 for any x ∈ Q, we
obtain two morphisms

s′ : Q → Gr(2m−1, 2m) and s′′ : Q → Gr(2m−1, 2m).

The spinor bundle S ′ (resp. S ′′) on Q is defined as the pullback by s′ (resp. s′′) of the
tautological subbundle on Gr(2m−1, 2m). We write S, respectively S ′, S ′′, for the spinor
bundle(s) on the odd, respectively even, dimensional quadric Q. These bundles enjoy the
following properties.
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Theorem 2.30

(a) The spinor bundles are stable, cf. [29, Theorem 2.1].
(b) Suppose Q is an even dimensional quadric and let S ′, S ′′ be the two spinor bundles. Let

i : Q′ → Q be the closed immersion of a smooth hyperplane section, with spinor bundle
S. Then i∗S ′ = i∗S ′′ = S, cf. [29, Theorem 1.4(i)].

(c) If S is either the spinor bundle on the odd dimensional quadric or any of the two spinor
bundles on the even dimensional quadric, then Hi (Q,S(k)) = 0 for 0 < i < n and
arbitrary k ∈ Z. Furthermore H0(Q,S(k)) = 0 for k ≤ 0, and dimH0(Q,S(1)) =
2[(n+1)/2], where n is the dimension of Q, cf. [29, Theorem 2.3].

(d) Suppose the quadric Q has odd dimension n = 2m + 1. We have a short exact sequence

0 → S → O⊕2m+1

Q → S(1) → 0, (2.5)

and S∨ = S(1), cf. [29, Theorem 2.8(i)].
(e) Suppose the quadric Q has even dimension n = 2m. We have short exact sequences

0 → S ′ → O⊕2m
Q → S ′′(1) → 0,

0 → S ′′ → O⊕2m
Q → S ′(1) → 0.

(2.6)

Furthermore, if n ≡ 0 (mod 4), then S ′∨ = S ′(1) and S ′′∨ = S ′′(1), and if n ≡ 2
(mod 4), then S ′∨ = S ′′(1) and S ′′∨ = S ′(1), cf. [29, Theorem 2.8(ii)].

(f) Spinor bundles are exceptional. If Q is even dimensional, S ′ and S ′′ are orthogonal to
each other, cf. [11].

We summarize here some cohomology computations.

Lemma 2.31 Let Q ⊂ P
n+1 be the smooth quadric of dimension n. Then

ωQ = OQ(−n) (2.7)

and the following cohomology groups vanish:

H•(Q,OQ(−k)) = 0 for k = 1, . . . , n − 1. (2.8)

Proof As Q is a smooth hypersurface of degree 2 in P
n+1, by the adjunction formula we have

ωQ = OQ(−n − 2 + 2) = OQ(−n). The vanishing statement (2.8) follows from Kodaira’s
vanishing theorem. ��
Remark 2.32 Let S be any spinor bundle on the smooth quadric Q of dimension n. Using
Serre duality and Theorem 2.30(c)-(e), we haveHn(Q,S(k)) = 0 for k ≥ 1−n. In particular,
H•(Q,S(k)) = 0 for 1 − n ≤ k ≤ 0.

Lemma 2.33 Let Q ⊂ P
n+1 be the smooth quadric of odd dimension n = 2m + 1. We have

Hom•(S(k),S) =
{

C if k = 0

C[−1] if k = 1.
(2.9)

Proof The isomorphism for k = 0 follows from the exceptionality of S, see Theorem 2.30(f).
For the proof of the second isomorphism, we use sequence (2.5). Consider the long exact
sequence induced by applying Hom•(−,S). This provides the exact triangle

Hom•(S,S) ← Hom•(O⊕2m+1

Q ,S) ← Hom•(S(1),S).
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As the central term vanishes by Remark 2.32, we obtain

Hom•(S(1),S) = Hom•(S,S)[−1] = C[−1].
��

Lemma 2.34 Let Q ⊂ P
n+1 be the smooth quadric of even dimension n = 2m ≥ 2. Let S ′

and S ′′ be its spinor bundles. We have

Hom•(S ′(k),S ′) = Hom•(S ′′(k),S ′′) =
{

C if k = 0

0 if k = 1,
(2.10)

and

Hom•(S ′′(k),S ′) = Hom•(S ′(k),S ′′) =
{

0 if k = 0

C[−1] if k = 1.
(2.11)

Proof If k = 0, the isomorphism (2.10) holds because S ′ is exceptional by Theorem 2.30(f).
To prove the vanishing of Hom•(S ′(1),S ′), consider the defining sequence of a smooth
hyperplane section i : Q′ → Q tensored with S ′

0 → S ′(−1) → S ′ → i∗i∗S ′ → 0.

Applying Hom•(S ′,−) and using adjunction we get

Hom•(S ′,S ′(−1)) → Hom•(S ′,S ′) → Hom•(S ′, i∗i∗S ′) = Hom•(i∗S ′, i∗S ′).

Recall that by Theorem 2.30(b) we have i∗S ′ = S, where S is the spinor bundle on Q′. As
spinor bundles are exceptional, we have Hom•(S ′,S ′) = C = Hom•(S,S). Moreover, the
map Hom0(S ′,S ′) → Hom0(S ′, i∗i∗S ′) is injective, hence an isomorphism. We conclude
that Hom•(S ′(1),S ′) = Hom•(S ′,S ′(−1)) = 0.

We proceed with the proof of (2.11). The vanishing for k = 0 holds by Theorem 2.30(f).
We calculate Hom•(S ′′(1),S ′). Applying Hom•(−,S ′) to the sequence (2.6)

0 → S ′ → O⊕2m
Q → S ′′(1) → 0,

we get

Hom•(S ′,S ′) ← Hom•(O⊕2m
Q ,S ′) ← Hom•(S ′′(1),S ′).

As the central term vanishes by Remark 2.32, we obtain

Hom•(S ′′(1),S ′) = Hom•(S ′,S ′)[−1] = C[−1].
��

We end this section by recalling Kapranov’s Lefschetz decomposition for quadrics.

Theorem 2.35 [14, Lemma 2.4] Let Q ⊂ P
n+1 be the smooth quadric of dimension n. Then

we have the dual Lefschetz decomposition

Db(Q) = 〈Bn−1(1 − n), . . . ,B1(−1),B0〉. (2.12)

Here, if n is odd, we have

B0 = 〈S,OQ〉 and B1 = · · · = Bn−1 = 〈OQ〉,
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where the bundle S is the unique spinor bundle on Q. If n is even, we have

B0 = B1 = 〈S ′,OQ〉 and B2 = · · · = Bn−1 = 〈OQ〉,
where S ′ is any of the two spinor bundles on Q.

Proof For an odd dimensional quadric we have by [11] the semiorthogonal decomposition

Db(Q) = 〈S,OQ,OQ(1), . . . ,OQ(n − 1)〉.
It suffices to suitably group its components and apply Lemma 2.12(a) to get the desired dual
Lefschetz decomposition.

For a quadric of dimension n = 2m we have by [11] the semiorthogonal decomposition

Db(Q) = 〈S ′,S ′′,OQ,OQ(1), . . . ,OQ(n − 1)〉.
We claim that ROQS ′′ = S ′(1)[−1]. First, we have

Hom•(S ′′,OQ) = Hom•(OQ,S ′′∨) = H•(Q,S ′′′(1))

where S ′′′ is one of the spinor bundles depending on the parity of m, see Theorem 2.30(e).
By Theorem 2.30(c), we have the isomorphism

H•(Q,S ′′′(1)) = C
⊕2m .

Then, using the exact sequence (2.6), we obtain that cone(S ′′ → C
⊕2m ⊗ OQ) = S ′(1),

which shows that ROQS ′′ = S ′(1)[−1]. By Lemma 2.5 we deduce the semiorthogonal
decomposition

Db(Q) = 〈S ′,OQ,S ′(1),OQ(1), . . . ,OQ(n − 1)〉.
Tensoring by OQ(−1) and applying Lemma 2.12(a) as before, we get the desired dual Lef-
schetz decomposition. ��

3 Categorical resolutions of nodal varieties

In this sectionwe proveTheorem1.1,which is obtained fromProposition 3.6 to 3.8. LetY be a
quasiprojective variety with an isolated nodal singularity y. Let σ : ˜Y → Y be the resolution
of singularities provided by the blow-up at the singular point. Recall that the exceptional
divisor j : Q → ˜Y is isomorphic to the smooth quadric of dimension dim(Y ) − 1. Let S be
the spinor bundle on Q if dim(Y ) is even, and denote by S ′,S ′′ the spinor bundles if dim(Y )

is odd. Recall from Secti. 2.1 that OQ(1) = j∗O
˜Y (−Q).

For the sake of simplicity, let us assume first that Y is projective: we shall explain how to
adjust the proofs when Y is quasiprojective in Remark 3.9. We start with some observations
on the properties of certain objects in Db(˜Y ).

Lemma 3.1 If dim(Y ) ≥ 3, then j∗OQ(k) is exceptional. Moreover, if dim(Y ) is odd, then
j∗S ′ and j∗S ′′ are exceptional as well, and we have

Hom•( j∗S ′, j∗S ′′) = C[−2]. (3.1)

If dim(Y ) is even, then we have that

Hom•( j∗S, j∗S) = C ⊕ C[−2]. (3.2)
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Proof By Proposition 2.22, the functor j∗ is fully faithful on the subcategory generated by
the exceptional objectOQ . It follows that j∗OQ(k) = j∗OQ ⊗O

˜Y (−kQ) is exceptional too.
Now let us assume that dim(Y ) is odd. Note that the role of the spinor bundles S ′ and

S ′′ is interchangeable. Applying Proposition 2.22 to the Lefschetz decomposition (2.12),
we get that j∗S ′ and j∗S ′′ are exceptional. Next, we compute Hom•( j∗S ′, j∗S ′′), which is
isomorphic to Hom•( j∗ j∗S ′,S ′′) by adjunction. Consider the exact triangle on Q

j∗ j∗S ′ → S ′ → S ′(−Q)[2] = S ′(1)[2], (3.3)

and the associated long exact sequence obtained by applying Hom•(−,S ′′). By Theorem
2.30(f) and Lemma 2.34 we know

Hom•(S ′,S ′′) = 0, Hom•(S ′(1),S ′′) = C[−1].
Substituting these equalities, we obtain

Hom•( j∗S ′, j∗S ′′) = Hom•(S ′(1),S ′′)[−1] = C[−2],
proving the equality (3.1).

Following the same strategy, we compute Hom•( j∗S, j∗S) when dim(Y ) is even. By
applying Hom•(−,S) to the exact triangle (3.3), we obtain

Hom•( j∗ j∗S,S) ← Hom•(S,S) ← Hom•(S(1)[2],S).

Recalling that

Hom•(S,S) = C, Hom•(S(1),S) = C[−1],
by Lemma 2.33, we obtain Homi ( j∗ j∗S,S) = 0 except for i = 0, 2, for which it is equal to
C. ��
Remark 3.2 Note that by Lemma 3.1 the objects j∗OQ(k) are exceptional, so the mutation
functor R j∗OQ (k) is well defined. The same remark holds for j∗S ′′ when dim(Y ) is odd.

Lemma 3.3 If dim(Y ) is even, we have the isomorphisms

R j∗OQ (k)( j∗S) = j∗S

for 2 − dim(Y ) ≤ k ≤ −1. Moreover, for all k ∈ Z, we have

R j∗OQ (k)( j∗S(k)) = j∗S(k + 1)[−1].
Proof Again, we use the exact triangle on Q

j∗ j∗S → S → S(1)[2]. (3.4)

We prove the first isomorphism. By adjunction, Hom•( j∗S, j∗OQ(k)) = Hom•( j∗ j∗S,

OQ(k)). Applying Hom•(−,OQ(k)) to (3.4) we get the exact triangle

Hom•( j∗ j∗S,OQ(k)) ← Hom•(S,OQ(k)) ← Hom•(S(1)[2],OQ(k)).

Now we have by Theorem 2.30(d) that

Hom•(S,OQ(k)) = H•(Q,S∨(k)) = H•(Q,S(k + 1)) and

Hom•(S(1),OQ(k)) = H•(Q,S∨(k − 1)) = H•(Q,S(k)).

Since 2 − dim(Y ) ≤ k ≤ −1, both these terms vanish by Remark 2.32, thus

Hom•( j∗ j∗S,OQ(k)) = 0 for 2 − dim(Y ) ≤ k ≤ −1. (3.5)
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We conclude that

R j∗OQ(k)( j∗S) = j∗S.

We prove now the second isomorphism. Let 2m + 1 = dim(Y ) − 1. Twisting the exact
sequence (2.5) by OQ(k) and taking the pushforward along j , we get the exact triangle

j∗S(k + 1)[−1] → j∗S(k) → j∗OQ(k)⊕2m+1
. (3.6)

Since Hom•( j∗S(k+1), j∗OQ(k)) = Hom•( j∗ j∗S(1),OQ) = 0 by (3.5), this is a mutation
triangle. This immediately implies the statement. ��
Lemma 3.4 If dim(Y ) is odd, we have the isomorphisms

R j∗OQ (k)( j∗S ′) = j∗S ′

for 2 − dim(Y ) ≤ k ≤ −1. Moreover, for all k ∈ Z, we have

R j∗OQ(k)( j∗S ′(k)) = j∗S ′′(k + 1)[−1],
R j∗OQ(k)( j∗S ′′(k)) = j∗S ′(k + 1)[−1].

Finally, we have that

R j∗S ′′( j∗S ′) = cone( j∗S ′ → j∗S ′′[2])[−1].
Proof The first three isomorphisms are proven in the same way as the previous lemma. The
last one follows immediately from (3.1). ��

We can now come to the study of the categorical resolution ofDb(Y ), where Y is the nodal
variety from the beginning of this section.

Proposition 3.5 With the notation introduced at the beginning of this section and in Theorem
2.35, set

˜D := {F ∈ Db(˜Y ) | j∗F ∈ B0}.
Let σ∗ : ˜D → Db(Y ) denote the restriction of the pushforward functor. Then the pullback
functor σ ∗ : Dperf (Y ) → Db(˜Y ) factors as σ ∗ : Dperf (Y ) → ˜D , and (˜D, σ∗, σ ∗) is a weakly
crepant categorical resolution of Db(Y ).

Proof Set n := dim(Y ) − 1. Recall the dual Lefschetz decomposition of Db(Q) introduced
in Theorem 2.35

Db(Q) = 〈Bn−1(1 − n), . . . ,B1(−1),B0〉,
where

(a) B0 = 〈S,OQ〉 and Bi = 〈OQ〉 for 1 ≤ i ≤ n − 1, if Y is even dimensional,
(b) B0 = B1 = 〈S ′,OQ〉 and Bi = 〈OQ〉 for 2 ≤ i ≤ n − 1, if Y is odd dimensional.

Denote by ρ the restriction of σ to Q; the image of ρ consists of the singular point y
of Y . Since Dperf (y) = 〈Oy〉, we have ρ∗Dperf (y) = 〈ρ∗Oy〉 = 〈OQ〉 ⊂ B0. In fact,
ρ∗Dperf (y) = 〈OQ〉 ⊂ Bi for all i . Recall that a varietywith nodal singularities isGorenstein,
as discussed in Sect. 2.1. We now compute the discrepancy of the exceptional divisor Q. As
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σ is an isomorphism outside of Q, we have ω
˜Y = σ ∗ωY ⊗ O(kQ) for some k ∈ Z. By the

adjunction formula and Lemma 2.31 we have that

OQ(−n) = ωQ = (ω
˜Y ⊗ O(Q))|Q = (σ ∗ωY ⊗ O((k + 1)Q))|Q = OQ(−k − 1).

As Pic(Q) is torsion free, cf. [6, Exercise II.6.5c], this implies k = n − 1. Then the triple
(˜D, σ∗, σ ∗) defined in the proposition is a weakly crepant categorical resolution by Theorem
2.23. ��

Next, we compute the kernel of the categorical resolution from Proposition 3.5. For the
rest of this section, we will use σ∗ to denote the pushforward functor Db(˜Y ) → Db(Y ), and
not its restriction to ˜D .

Proposition 3.6 The kernel ker(σ∗) ∩ ˜D of the weakly crepant categorical resolution ˜D of
Db(Y ) is classically generated by a single object T , where T = j∗S if dim(Y ) is even, and
T = R j∗S ′′( j∗S ′[1]) = cone( j∗S ′ → j∗S ′′[2]) if dim(Y ) is odd.

Proof Set n := dim(Y ) − 1. Note that the conditions of Theorem 2.26 are satisfied in our
situation as explained in Corollary 2.27 and Remark 2.28. This gives that σ∗ : Db(˜Y ) →
Db(Y ) is a localization functor up to direct summands, and its kernel is classically generated
byK := 〈 j∗(〈OQ〉⊥)〉, that is, ker(σ∗) = K ⊕ is the idempotent completion ofK . We now
determine ker(σ∗) ∩ ˜D .

On the one hand, 〈OQ〉⊥ admits by Theorem 2.35 a semiorthogonal decomposition of the
form

(a) 〈OQ〉⊥ = 〈OQ(1 − n), . . . ,OQ(−1),S〉 if Y is even dimensional,
(b) 〈OQ〉⊥ = 〈OQ(1 − n), . . . ,S ′(−1),OQ(−1),S ′〉 if Y is odd dimensional,

thus the pushforwards of the components along j are a set of generators of K .
On the other hand, the semiorthogonal decomposition

Db(˜Y ) = 〈 j∗Bn−1(1 − n), . . . , j∗B1(−1), ˜D〉 (3.7)

induced by (2.12) and the fully faithfulness of j∗ on Bi (−i) for 1 ≤ i ≤ n − 1 show that

(a) { j∗OQ(1 − n), . . . , j∗OQ(−1)} if Y is even dimensional,
(b) { j∗OQ(1 − n), . . . , j∗S ′(−1), j∗OQ(−1)} if Y is odd dimensional

are full exceptional collections of ˜D⊥.
Now, looking at the generators of ˜D⊥ and K , we obtain ˜D⊥ ⊂ K ⊂ ker(σ∗), which

implies that

ker(σ∗) ∩ ˜D = R
˜D⊥ ker(σ∗).

We first assume that Y is even dimensional. Notice that all the generators of K belong to
˜D⊥ except the pushforward of the spinor bundle, so that R

˜D⊥K = 〈R
˜D⊥( j∗S)〉. Since

R
˜D⊥(K ⊕) ⊂ (R

˜D⊥K )⊕, we have the inclusions

R
˜D⊥( j∗S) ⊂ R

˜D⊥(ker(σ∗)) ⊂ 〈R
˜D⊥( j∗S)〉⊕.

Now, as both ker(σ∗) and ˜D are idempotent complete, so is their intersection R
˜D⊥(ker(σ∗)).

Thus R
˜D⊥ ker(σ∗) = 〈R

˜D⊥( j∗S)〉⊕. The same argument shows that R
˜D⊥ ker(σ∗) =

〈R
˜D⊥( j∗S ′)〉⊕ when Y is odd dimensional.
To conclude, it suffices to compute the mutations of the spinor bundles through ˜D⊥.

When Y is even dimensional, we have by Lemmas 2.6 and 3.3

R
˜D⊥( j∗S) = (R j∗OQ(−1) ◦ · · · ◦ R j∗OQ (1−n))( j∗S) = j∗S.
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When Y is odd dimensional, we consider the exceptional collection of ˜D⊥ obtained by
mutating j∗S ′(−1) through j∗OQ(−1). SinceR j∗OQ (−1)( j∗S ′(−1)) = j∗S ′′[−1] byLemma
3.4, we have

˜D⊥ = 〈 j∗OQ(1 − n), . . . , j∗OQ(−1), j∗S ′′〉. (3.8)

Using Lemmas 2.6 and 3.4 we obtain

R
˜D⊥( j∗S ′) = (R j∗S ′′ ◦ R j∗OQ(−1) ◦ · · · ◦ R j∗OQ (1−n))( j∗S ′) = R j∗S ′′( j∗S ′),

and also R j∗S ′′( j∗S ′) = cone( j∗S ′ → j∗S ′′[2])[−1].
These computations yield the desired classical generator of ker(σ∗) ∩ ˜D in the even and

odd dimensional case. ��
Now let T = j∗S or T = cone( j∗S ′ → j∗S ′′[2]), depending on the parity of the

dimension of Y .

Proposition 3.7 If Y is even dimensional, then T is a 2-spherical object in ˜D .

Proof Set n := dim(Y ) − 1. Let us prove that T = j∗S satisfies the three conditions of
Definition 2.10. Condition (a) is automatic, since ˜Y is projective and ˜D is a semiorthogonal
component of Db(˜Y ) in the decomposition (3.7). By Lemma 3.1, we have that

Hom•(T , T ) = C ⊕ C[−2],
so condition (b) holds true. It remains to check condition (c). Recall that ˜D has a Serre functor,
given by Lemma 2.12(b); thus, by Remark 2.13, it is enough to show that S

˜D (T ) = T [2].
We have that

S
˜D ( j∗S) = R

˜D⊥(SDb(˜Y )( j∗S)) = (R j∗OQ (−1) ◦ · · · ◦ R j∗OQ(1−n) ◦ SDb(˜Y ))( j∗S),

where SDb(˜Y ) = Tω
˜Y

◦ [n + 1]. Since, by the adjunction formula, we have the equality

j∗ω
˜Y = ωQ ⊗ j∗O

˜Y (−Q) = OQ(− dim(Q) + 1) = OQ(1 − n),

we obtain

SDb(˜Y )( j∗S) = j∗(S ⊗ j∗ω
˜Y )[n + 1] = j∗S(1 − n)[n + 1].

Now, using Lemma 3.3, we have

R j∗OQ(k)( j∗S(k)[2 − k]) = j∗S(k + 1)[2 − k − 1].
Proceeding inductively, we obtain

S
˜D ( j∗S) = j∗S[2],

proving the statement. ��
Proposition 3.8 If Y is odd dimensional, then T is a 3-spherical object in ˜D .

Proof Again, since the category ˜D is proper, condition (a) in Definition 2.10 is automatically
satisfied. To check condition (b), recall that T sits in the exact triangle

j∗S ′ → j∗S ′′[2] → T . (3.9)

By definition we have Hom•(T , j∗S ′′) = 0. Hence by applying Hom•(T ,−) to (3.9) we
obtain that

Hom•(T , T ) = Hom•(T , j∗S ′[1]),
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and by applying Hom•(−, j∗S ′) to (3.9) we obtain

Hom•( j∗S ′, j∗S ′) ← Hom•( j∗S ′′[2], j∗S ′) ← Hom•(T , j∗S ′).

We have by previous computations (cf. Lemma 3.1 and (3.1)) that

Hom•( j∗S ′, j∗S ′) = C, and Hom•( j∗S ′′, j∗S ′) = C[−2].
We get from the long exact sequence that

Hom•(T , T ) = C ⊕ C[−3].
To complete the proof we need to show that S

˜D (T ) = T [3]. Using Lemma 2.12(b) with
respect to the decomposition in (3.8), we have the factorization

S
˜D (T ) = R

˜D⊥(SDb(˜Y )(T )) = (R j∗S ′′ ◦ R j∗OQ(−1) ◦ · · · ◦ R j∗OQ(2−dim(Y )) ◦ SDb(˜Y ))(T ).

For the sake of keeping a lighter presentation, we write, by abuse of notation, T (k) in place
of T ⊗ O

˜Y (−kQ), even though the object T does not belong to Db(Q). As in Proposition
3.7, we have

SDb(˜Y )(T ) = T (2 − dim(Y ))[dim(Y )].
As R j∗OQ(k) is an exact functor, by Lemma 3.4 we have

R j∗OQ (T ) = cone(R j∗OQ ( j∗S ′) → R j∗OQ ( j∗S ′′[2]))
= cone( j∗S ′′(1)[−1] → j∗S ′(1)[1])
= T ′(1)[−1],

where T ′ = cone( j∗S ′′ → j∗S ′[2]). The arrow j∗S ′′(1)[−1] → j∗S ′(1)[1] is nonzero (also
similar for the arrows below), otherwise the object S

˜D (T )would become a direct sum of two
objects, but this would contradict Hom0(T , T ) = C as the Serre functor is an equivalence.
Analogously, we obtain

(R j∗OQ(1) ◦ R j∗OQ )(T ) = T (2)[−2],
and more generally

(R j∗OQ (k+1) ◦ R j∗OQ(k))(T (k)) = T (k + 2)[−2].
It follows that

(R j∗OQ(−2) ◦ · · · ◦ R j∗OQ(2−dim(Y )))(T (2 − dim(Y ))[dim(Y )]) = T (−1)[3]. (3.10)

Finally, we compute

R j∗OQ(−1)(T (−1)[3]) = T ′[2],
and the last mutation

R j∗S ′′(T ′[2]) = R j∗S ′′(cone( j∗S ′′ → j∗S ′[2])[2])
= cone(R j∗S ′′( j∗S ′′) → R j∗S ′′( j∗S ′[2]))[2]
= cone(0 → R j∗S ′′( j∗S ′[2]))[2]
= cone(0 → T [1])[2]
= T [3].

��
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Remark 3.9 This concludes the proof of Theorem 1.1 in the case of a projective variety Y with
an isolated nodal singularity y.We point out how to adjust the proofs when Y is only supposed
quasiprojective. Let Y ′ be a projective compactification of Y ; by resolution of singularities,
we can assume that Y ′ is smooth outside y. We continue to denote by σ : ˜Y → Y the blow-up
at the singular point, by j : Q → ˜Y the embedding of the exceptional divisor and by n the
dimension of Q. The variety ˜Y is quasiprojective, and can be regarded as an open subset of
the blow-up ˜Y ′ of Y ′ at y; we denote by i : ˜Y → ˜Y ′ the corresponding open immersion.

Let us focus on the categorical aspects. We will denote as Db
Q(˜Y ) the full subcategory

of Db(˜Y ) consisting of complexes topologically supported on Q; the functor i∗ embeds it
as a full subcategory of Db(˜Y ′). Now, Lemma 3.1 holds true even if Db(˜Y ) is not proper,
because the functor j∗ has both left and right adjoints. From Lemma 3.3 to Proposition 3.6,
all results hold without any change. In fact, by going through the proofs, from the Lefschetz
decomposition

Db(Q) = 〈Bn−1(1 − n), . . . ,B1(−1),B0〉
of Theorem 2.35 we deduce semiorthogonal decompositions not only forDb(˜Y ′) andDb(˜Y ),
but also for Db

Q(˜Y ): explicitly, we have

Db(˜Y ′) = 〈(i ◦ j)∗Bn−1(1 − n), . . . , (i ◦ j)∗B1(−1), ˜D ′〉
Db(˜Y ) = 〈 j∗Bn−1(1 − n), . . . , j∗B1(−1), ˜D〉
Db

Q(˜Y ) = 〈 j∗Bn−1(1 − n), . . . , j∗B1(−1), ˜DQ〉,
where ˜D ′ is defined as the left orthogonal of 〈(i ◦ j)∗Bn−1(1− n), . . . , (i ◦ j)∗B1(−1)〉 in
Db(˜Y ′), and ˜D and ˜DQ as the left orthogonal of 〈 j∗Bn−1(1 − n), . . . , j∗B1(−1)〉 in Db(˜Y )

andDb
Q(˜Y ), respectively. The categories ˜D ′ and ˜D provide categorical resolutions ofY ′ andY ,

respectively. Clearly ˜DQ = ˜D ∩Db
Q(˜Y ), and we can easily verify thatR

˜D ′⊥ ◦ i∗ = i∗ ◦R
˜DQ

⊥

on Db
Q(˜Y ), so that i∗ ˜DQ = ˜D ′ ∩ i∗Db

Q(˜Y ).
Consider now the classical generator T of ker(σ∗) given by Proposition 3.6. We need to

prove that it is spherical in the category ˜D . Since T belongs to ˜DQ , the functors Hom•(T ,−)

andHom•(−, T ) on ˜D take values in the category of finite-dimensional graded vector spaces,
because so do they on Db(˜Y ) (see Example 2.15); this shows that T satisfies condition (a)
in Definition 2.10. For the other two conditions, we can reason as follows. By Example 2.15
and Lemma 2.16, the pair (˜DQ, ˜D) has a Serre functor S; moreover, we have

i∗ S(T ) = i∗R
˜DQ

⊥(T ⊗ ω
˜Y [dim(Y )]) = R

˜D ′⊥ i∗(T ⊗ i∗ω
˜Y ′ [dim(Y )])

= R
˜D ′⊥(i∗T ⊗ ω

˜Y ′ [dim(Y )]) = R
˜D ′⊥ ◦ SDb(˜Y ′)(i∗T ) = S

˜D ′(i∗T ).

From the isomorphism i∗ S(T ) = S
˜D ′(i∗T ) and the full faithfulness of i∗ on ˜DQ we deduce

that conditions (c) and (b) in Definition 2.10 are satisfied by T in ˜D if and only if they are
satisfiedby i∗T in ˜D ′.Hence, the k-sphericalness ofT in ˜D is equivalent to the k-sphericalness
of i∗T in ˜D ′, which was proven in Proposition 3.7 and Proposition 3.8.

This concludes the proof of Theorem1.1. In [19,Definition 3.5] another notion of crepancy
was introduced in the categorical setting. A categorical resolution ˜D ofD is strongly crepant
if the relative Serre functor S

˜D /D is isomorphic to the identity functor. We refer to [19,
Section 3] for the definition of relative Serre functor. We only recall this notion in the case
we consider, namelyD = Db(Y )with a categorical resolution ˜D ⊂ Db(˜Y ), whereπ : ˜Y → Y
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is a geometrical resolution of singularities: a functorS
˜D /Y : ˜D → ˜D is a relative Serre functor

if for every F,G ∈ ˜D there is a bifunctorial isomorphism

RHom(π∗ RHom(F,G),OY ) ∼= π∗ RHom(G, S
˜D /Y (F)).

In the next proposition, we show that the weakly crepant categorical resolution ˜D provided by
Proposition 3.5 is not strongly crepant when the quasiprojective variety Y with isolated nodal
singularity has dimension at least 4. We stick with the notations of Remark 3.9: σ : ˜Y → Y
denotes the blow-up at the singular point, Q its exceptional divisor, Db

Q(˜Y ) the full trian-

gulated subcategory of Db(˜Y ) consisting of complexes topologically supported on Q, and
˜DQ = ˜D∩Db

Q(˜Y ). Recall thatTω
˜Y
◦[dim(Y )] is a Serre functor for the pair (Db

Q(˜Y ),Db(˜Y )),

and induces a Serre functor S for the pair (˜DQ, ˜D).

Proposition 3.10 The categorical resolution ˜D admits a relative Serre functor S
˜D /Y , given

by S
˜D /Y = R

˜D⊥ ◦ TO((n−1)Q).

(a) For any F ∈ ˜D such that j∗F ∈ 〈OQ〉 we have S
˜D /Y (F) = F .

(b) For any F ∈ ˜DQ we have S
˜D /Y (F) = S(F)[− dim(Y )].

Therefore, if T is the classical generator of the kernel computed in Proposition 3.6, we
have S

˜D /Y (T ) = T [2 − dim(Y )] if dim(Y ) is even and S
˜D /Y (T ) = T [3 − dim(Y )] if

dim(Y ) is odd. In particular, the categorical resolution (˜D, σ∗, σ ∗) is not strongly crepant if
dim(Y ) > 3.

Proof The relative canonical bundle of σ is given by ω
˜Y/Y = O

˜Y ((n − 1)Q). By [19,

Proposition 4.7], the relative Serre functor S
˜Y/Y = Tω

˜Y/Y
of Db(˜Y ) induces a relative Serre

functor S
˜D /Y on ˜D ; its explicit expression, as well as and part (a), can be found in loc. cit .

We prove part (b). Since j∗ω
˜Y/Y = j∗ω

˜Y , for any G ∈ Db(Q) we have

S
˜Y/Y ( j∗G) = j∗G ⊗ ω

˜Y/Y = j∗(G ⊗ j∗ω
˜Y/Y ) = j∗(G ⊗ j∗ω

˜Y ) = j∗G ⊗ ω
˜Y = Tω

˜Y
( j∗G).

Hence, for any F ∈ ˜DQ , we have

S
˜D /Y (F) = (R

˜D⊥ ◦ S
˜Y/Y )(F) = (R

˜D⊥ ◦ Tω
˜Y
)(F) = S(F)[− dim(Y )].

Therefore, as soon as dim(Y ) > 3, the relative Serre functor S
˜D /Y is not the identity on the

spherical object T ∈ ˜DQ , so the categorical resolution ˜D is not strongly crepant. ��
We now deduce Theorems 1.5 from1.1.

Theorem 3.11 If T is a geometric nodal category, then T is an abstract nodal category,
i.e. there exists a categorical resolution σ∗ : ˜D → T which is weakly crepant and whose
kernel is classically generated by a single spherical object. Furthermore, σ∗ : ˜D → T is a
localization up to direct summands.

Proof By hypothesis, there exists a quasiprojective variety Y which has only an isolated nodal
singularity, and a semiorthogonal decomposition Db(Y ) = 〈T ,T ′〉 with T perf not smooth.
Weclaim that this forcesT ′perf to be smooth. For this,we look at the categories of singularities
Dsg(Y ) := Db(Y )/Dperf (Y ) andT sg := T /T perf . By [26, §2, §3.3] and [28, Thm. 2.10] we
know thatDsg(Y )⊕  Dsg(C[z]/(z2)) if dim(Y ) is even, andDsg(Y )⊕  Dsg(C[x, y]/(xy))
if dim(Y ) is odd. In the even dimensional case, following [26, §3.3], one sees that there exist
non-zero morphisms between any pair of non-zero objects in Dsg(C[z]/(z2)). Hence the full
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subcategoryDsg(Y ) ⊂ Dsg(C[z]/(z2)) admits no non-trivial semiorthogonal decomposition.
But we have the semiorthogonal decomposition Dsg(Y ) = 〈T sg,T ′sg〉 by [27, Prop. 1.10],
so either T sg = 0 or T ′sg = 0, as desired. In the odd dimensional case, the category
Dsg(C[x, y]/(xy)) is equivalent to the category of Z/2Z-graded finite-dimensional vector
spaces, where the shift functor swaps the graded pieces cf. [15, Ex. 2.18], so we can conclude
as before.

Let us assume that the dimension dim(Y ) ≥ 2 is even, the proof of the odd dimensional
case is similar. Then, by Theorem 1.1, we know that there is a weakly crepant categorical
resolution σ∗ : ˜D → Db(Y ) whose kernel ker(σ∗) is classically generated by a 2-spherical
object S.

Let us denote by ı : T ′ → Db(Y ) the embedding functor. As T ′ is admissible, it has
a left adjoint functor ı∗ and a right adjoint functor ı !. We know that ı(T ′) ⊂ Dperf (Y )

since T ′perf = T ′ by hypothesis. Then we see that the functor σ ∗ ◦ ı : T ′ → ˜D is fully-
faithful. Moreover, this functor has the right adjoint ı ! ◦ σ∗, thus making T ′ an admissible
subcategory of ˜D . So we can consider the semiorthogonal decomposition ˜D = 〈 ˜T ,T ′〉,
where ˜T := T ′⊥.

Nowwe claim that the restriction of σ∗ to ˜T provides a categorical resolution that satisfies
the conditions in Definition 1.3. First, if F ∈ T ∩ Dperf (Y ) and G ∈ T ′ ⊂ ˜D , then
Hom•(G, σ ∗F) = Hom•(σ∗G,F) = 0, which implies that σ ∗ maps T perf to ˜T . Second,
if F ∈ ˜T and G ∈ T ′, then Hom•(G, σ∗F) = Hom•(σ ∗G,F) = 0, which implies that
σ∗ maps ˜T to T . Regarding adjointness and weak crepancy, let F ∈ T perf and G ∈ ˜T ,
and considering them as objects of Db(Y ) and ˜D , respectively, we see that Hom(σ ∗F,G) =
Hom(F, σ∗G) and Hom(G, σ ∗F) = Hom(σ∗G,F). In the same vein we have that idT perf →
σ∗σ ∗ is an isomorphism.

By Theorem 1.1 we know that

˜D/〈S〉⊕ → Db(Y )

is an equivalence onto its dense image. Since σ∗(S) = 0 and for G ∈ T ′ we have
Hom(σ ∗G,S) = Hom(G, σ∗S) = 0, we see that S ∈ ˜T . So, by the universal property
of Verdier quotients, we can factor σ∗| ˜T : ˜T → T via

σ∗ : ˜T /〈S〉⊕ → T .

Furthermore, by [27, Lemma 1.1] we have that the embedding ˜T ⊂ ˜D descends to a fully-
faithful functor ˜T /〈S〉⊕ → ˜D/〈S〉⊕, which implies that σ∗ is fully-faithful.

Using that σ∗(T ′) ⊂ T ′, we see that im(σ∗) = T ∩ im(σ∗). We need to check that the
idempotent completion of the latter is T . Since σ∗σ ∗ = idDperf (Y ), we see that

⊥T = T ′ ⊂
im(σ∗), which implies that

im(σ∗) ∩ T = LT ′(im(σ∗)).

Since we know that im(σ∗)⊕ = Db(Y ), we get

T = T ′⊥ = LT ′(Db(Y )) =LT ′(im(σ∗)⊕)

⊂ (LT ′(im(σ∗)))⊕ = (im(σ∗) ∩ T )⊕.

Hence, since T is idempotent complete, we conclude T = (im(σ∗) ∩ T )⊕, as desired. ��
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4 Categorical resolutions of nodal cubic fourfolds

In this section we focus on the special case of a cubic fourfold Y ⊂ P
5 with a single isolated

nodal singularity P ∈ Y . Our goal is to prove Theorem 1.8 by applying Theorem 1.1.

4.1 Geometric setting

We first recall the geometric setting following [20, Section 5], which can be summarized in
the diagram

Q ˜Y D

P Y P
4 S.

j

σ π

i

p (4.1)

On the left hand side, the point P is the nodal singular point and the morphism σ : ˜Y → Y is
the blow-up of Y at P; this yields the resolution of singularities ˜Y , whose exceptional divisor
Q is a smooth quadric of dimension 3. On the right hand side, the linear projection from P
induces a regular map π : ˜Y → P

4, which can be shown to be the blow-up of P
4 along a

smooth K3 surface S that is a (2, 3)-complete intersection, cf. [20, Lemma 5.1]. We denote
by D the exceptional divisor of the map π , and write j : Q ↪→ ˜Y and i : D ↪→ ˜Y for the
inclusions, as well as p for the restriction π |D .

Moreover, the restriction π |Q identifies the divisor Q with the defining quadric of S in P
4.

Also, the description of the map π shows that the surface S parametrizes the lines contained
in Y passing through P . Such lines are contracted by the linear projection from P , and
the divisor D is the union of their strict transforms in ˜Y .

The following result clarifies the relation between Q, D, and S.

Lemma 4.1 The restriction p|Q = π |Q∩D of the projection map π identifies Q ∩ D ⊂ ˜Y
with the K3 surface S. In other words, S is a retract of D and the diagram

Q S

˜Y D

j

t

s

i

p

is cartesian, where t denotes the inclusion of S into Q, and s : S ∼−→ Q ∩ D ↪→ D denotes
the inclusion into D.

Proof Recall that π |Q is an isomorphism between Q and the defining quadric of S in P
4, and

that π(D) = S. Therefore the intersection Q ∩ D is a closed subscheme of the pre-image
(π |Q)−1(S) in Q, which is a smooth K3 surface. Note that Q ∩ D is non-empty since each
line in Y passing through P provides a point contained in Q ∩ D. Then, by Krull’s principal
ideal theorem, the dimension of Q ∩ D is at least 2 everywhere. We conclude that Q ∩ D
coincides with the surface (π |Q)−1(S). In other words, π |Q∩D identifies Q ∩ D with the K3
surface S. ��

4.2 Computation of the kernel

We work in the geometric situation summarized in diagram (4.1). Let h be the class of a
hyperplane in P

4, and H be the class of a hyperplane section of Y ⊂ P
5. By abuse of

notation, we use the same notation for their pullbacks to ˜Y .
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Recall that 〈OY ,OY (H),OY (2H)〉 is an exceptional sequence, sowehave the semiorthog-
onal decomposition

Db(Y ) = 〈AY ,OY ,OY (H),OY (2H)〉, (4.2)

where AY := 〈OY ,OY (H),OY (2H)〉⊥. Now we consider two semiorthogonal decomposi-
tions of Db(˜Y ) arising from the two geometric interpretations of the variety ˜Y , cf. [20, (16),
(17)]. First, we apply Proposition 2.22 using the Lefschetz decomposition of Db(Q) from
Theorem 2.35 to write

Db(˜Y ) = 〈 j∗OQ(−2h), j∗OQ(−h), ˜D〉,
where ˜D := ⊥〈 j∗OQ(−2h), j∗OQ(−h)〉 is a weakly crepant resolution of Db(Y ). Then
we consider the decomposition of ˜D induced by that of Db(Y ) in (4.2). As Y has rational
singularities, σ ∗ : Db(Y ) → ˜D is fully faithful, cf. [19, Lemma 2.4], so the pullbacks of
OY , OY (H) and OY (2H) along σ are an exceptional sequence in ˜D , and we obtain

˜D = 〈 ˜AY ,O
˜Y ,O

˜Y (H),O
˜Y (2H)〉.

Substituting this in the decomposition above, we get

Db(˜Y ) = 〈 j∗OQ(−2h), j∗OQ(−h), ˜AY ,O
˜Y ,O

˜Y (H),O
˜Y (2H)〉. (4.3)

Note that the residual category ˜AY is a weakly crepant resolution ofAY by [20, Lemma 5.8].
On the other hand, since ˜Y is the blow-up of P

4 along the K3 surface S, we have by Orlov’s
blow-up formula [25] that

Db(˜Y ) = 〈�(Db(S)),O
˜Y (−3h),O

˜Y (−2h),O
˜Y (−h),O

˜Y ,O
˜Y (h)〉, (4.4)

where � : Db(S) → Db(˜Y ) is given by � = TO
˜Y (D) ◦ i∗ ◦ p∗. Recall that TO

˜Y (D) denotes
the functor which twists by O

˜Y (D).
Using a series of mutations, one may relate these two decompositions and show that there

is an equivalence �′′ : Db(S) ∼−→ ˜AY , cf. [20, Corollary 5.7], so Db(S) is also a weakly
crepant categorical resolution of AY . The equivalence is explicitly given by

�′′ = RO
˜Y (−h) ◦ RO

˜Y (−2h) ◦ TO
˜Y (D−2h) ◦ i∗ ◦ p∗.

Now, applying Proposition 3.6, the weakly crepant categorical resolution of Db(Y ) given
by ˜D together with the restrictions of σ∗ and σ ∗ has kernel classically generated by j∗S. We
show that the latter is also a classical generator of the kernel of ˜AY → AY . Since ˜AY is an
admissible subcategory, it is in particular thick, so it suffices to prove the following lemma.

Lemma 4.2 The object j∗S lies in ˜AY .

Proof By Proposition 3.6, we have that j∗S lies in ˜D = ⊥〈 j∗OQ(−2h), j∗OQ(−h)〉. It now
suffices to verify that j∗S ∈ 〈

O
˜Y ,O

˜Y (H),O
˜Y (2H)

〉⊥.
Note that for all k ∈ Z we have

Hom•̃
Y
(O

˜Y (kH), j∗S) = Hom•
Q(OQ,S) = 0,

since Q is the exceptional divisor of σ and the line bundle O
˜Y (kH) pulls back to the trivial

line bundle on Q. ��
Next we describe j∗S as an object in Db(S) using the left adjoint of �′′. The latter has

been computed in [20, Remark 5.9], but beware of a misprint in loc. cit , so we provide here
its correct expression.
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Proposition 4.3 The left adjoint of �′′ is

	 = p∗ ◦ i∗ ◦ TO
˜Y (−3h+D)[1] ◦ LO

˜Y (3h−D) ◦ LO
˜Y (4h−D).

Proof Recall that if E is an exceptional object in Db(X), where X is a smooth projective
variety, then the functor RSX (E) is right adjoint to LE , where SX is the Serre functor of
Db(X). Using this fact and that the canonical class of ˜Y is −5h + D, we obtain

Hom
˜Y (A,�′′(A)) =Hom

˜Y (A, (RO
˜Y (−h) ◦ RO

˜Y (−2h) ◦ TO
˜Y (D−2h) ◦ i∗ ◦ p∗)(A))

=HomD((i∗ ◦ TO
˜Y (2h−D) ◦ LO

˜Y (3h−D) ◦ LO
˜Y (4h−D))(A), p∗A).

Now we need to compute the left adjoint of p∗. The canonical bundle of D is by adjunction

ωD = (ω
˜Y ⊗ O(D))|D = (

O(−5h + D) ⊗ O(D)
)|D .

So we haveωD = i∗O
˜Y (−5h+2D). We compute the left adjoint of p∗ using Grothendieck–

Verdier duality

HomD(F, p∗A) = HomD(p∗A,F ⊗ ωD[3])∨
= HomD(p∗A,F(−5h + 2D)[3])∨
= HomS(A, p∗F(−5h + 2D)[3])∨
= HomS(p∗F(−5h + 2D)[3],A ⊗ ωS[2])
= HomS(p∗F(−5h + 2D)[1],A).

This shows that the left adjoint of p∗ is p∗ ◦ Ti∗O
˜Y (−5h+2D)[1]. Putting everything together,

we obtain

HomD((i∗ ◦ TO
˜Y (2h−D) ◦ LO

˜Y (3h−D) ◦ LO
˜Y (4h−D))(A), p∗A)

=HomS((p∗ ◦ Ti∗O
˜Y (−5h+2D)[1] ◦ i∗ ◦ TO

˜Y (2h−D) ◦ LO
˜Y (3h−D) ◦ LO

˜Y (4h−D))(A),A)

=HomS((p∗ ◦ i∗ ◦ TO
˜Y (−5h+2D)[1] ◦ TO

˜Y (2h−D) ◦ LO
˜Y (3h−D) ◦ LO

˜Y (4h−D))(A),A)

=HomS((p∗ ◦ i∗ ◦ TO
˜Y (−3h+D)[1] ◦ LO

˜Y (3h−D) ◦ LO
˜Y (4h−D))(A),A),

and thus

	 = p∗ ◦ i∗ ◦ TO
˜Y (−3h+D)[1] ◦ LO

˜Y (3h−D) ◦ LO
˜Y (4h−D),

proving the statement. ��
We now identify 	( j∗S) as the restriction of the spinor bundle on Q to S.

Proposition 4.4 We have that 	( j∗S) = t∗S, where t : S → Q is the inclusion of S into the
quadric Q which is embedded in P

4 via π ◦ j .

Proof Note that the first two mutations in the formula of 	 have no effect, since we have,
using the relation D = 3h − H ,

Hom•̃
Y
(O

˜Y (4h − D), j∗S) = Hom•
Q( j∗O

˜Y (4h − D),S)

= Hom•
Q( j∗O

˜Y (h + H),S)

= Hom•
Q( j∗O

˜Y (h),S)

= Hom•
Q(OQ(h),S) = 0,
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and similarly for the second mutation. Applying TO
˜Y (−3h+D), we get

j∗S ⊗ O
˜Y (D − 3h) = j∗S ⊗ O

˜Y (−H) = j∗(S ⊗ j∗O
˜Y (−H)) = j∗(S ⊗ OQ) = j∗S.

The last step is to calculate p∗i∗ j∗S. We consider the diagram

Q S

˜Y D

P
4 S

j

t

s

id

π

i

p

(4.5)

where the upper square is cartesian by Lemma 4.1. We prove i∗ j∗ = s∗t∗ by checking
the conditions of the base-change result Proposition 2.29. Indeed, as Q and ˜Y are smooth,
they are Cohen–Macaulay. The closed immersion i of the exceptional divisor of the blow-
up is by its very nature a local complete intersection in ˜Y . Finally, we have codim

˜Y (D) =
codimD(S) = 1. Thus we obtain

p∗i∗ j∗S = p∗s∗t∗S = t∗S.

��
We conclude this section with the proof of Theorem 1.8.

Proof of Theorem 1.8 By Theorem 1.1 and Lemma 4.2 we have that the kernel of Db(S) →
AY is classically generated by j∗S. Then the statement follows from Proposition 4.4. ��
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