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ABSTRACT

Current and near-future precision measurements give us the unique opportunity to refine the standard
model of cosmology. One of the next milestones is the experimental proof of cosmic inflation,
which would resolve outstanding problems related to the standard model and shed light on the
origin of cosmic structure. Upcoming cosmic microwave background (CMB) experiments aim at
a first detection of the curl-like polarization B-modes, a signal that is sourced by cosmological
gravitational waves and considered a “smoking gun” of inflation. A key question, not only relevant
for B-mode searches but for precision cosmology in general, is how to find the best analysis strategy
when systematic effects match or dominate the signal of interest. In this Thesis, we present three
original works that address different facets of this question, and apply them to three complementary
problems in cosmological data analysis.

The main focus of this Thesis is the robust measurement of cosmological B-modes in the
presence of Galactic foreground emission, considered to be a major source of systematic bias. We
developed, tested, and validated the power-spectrum-based B-mode analysis pipeline for the Simons
Observatory, an upcoming experiment that is expected to set new constraints within the next five
years. The second work aims at constraining the optical depth to reionization from current large-
scale CMB polarization data, which are known to contain non-Gaussian instrumental systematic
effects that are difficult to write down in a likelihood model. We developed a novel likelihood-free
estimator based on neural networks (NNs) and applied it to real Planck data to retrieve the optical
depth directly from maps. This represents, to our awareness, the first cosmological parameter
estimation on CMB polarization maps that is performed entirely by NNs. In the third work, we
address the difficulty to efficiently marginalize over many astrophysical “nuisance parameters” that
commonly arise in two-point analyses of the cosmic large-scale structure (LSS). We present a
novel analytical likelihood approximation based on Laplace’s method and apply it to real LSS data,
achieving a speedup of a factor 3-5 compared to the standard “brute-force” approach.

The rising significance of systematic effects, exemplified by the search for cosmological B-
modes, requires efficient problem-tailored analysis methods that are easy to interpret and to employ.
It is essential that such methods are robust, meaning that we can reliably exclude potential sources
of bias. We anticipate that novel methods, such as hybrid analysis pipelines or NN-based estimators,
will prove highly beneficial to this endeavor.



Introduction

At the beginning of the 21st century, humans can measure and understand the physical processes
at the largest scales in our Cosmos – about one trillion trillion times larger than their average body
size – to sub-percent precision. This remarkable gain in knowledge initiated what scientists call
the era of “precision cosmology”. This was possible due to the collaborative effort of experimental
scientists to build instruments that can precisely measure tiny anisotropies in the cosmic microwave
background (CMB) radiation that was released when the Universe was merely 380,000 years old,
accurately matching the predictions that theoretical scientists made half a century ago. Today we
know that the Universe is expanding (at an accelerated rate), and we can accurately trace back its
evolution in time, thanks to the standard model of cosmology, which also predicts that the Cosmos
itself, and with it said background radiation, originated from a hot, dense state known as the “big
bang”.
This “cosmic symphony” between theory and experiments has cracks – and they run deep. In
fact, we do not know what has initially given rise to those tiny fluctuations in the cosmic fabric,
nor why they seem to permeate the Universe at its largest scales. The next generation of CMB
experiments is preparing to measure a minuscule pattern in the polarization signal of the CMB,
called B-modes, indicating the existence of primordial gravitational waves. Those, in turn, would
confirm a popular theory according to which the very young Universe underwent rapid expansion –
“cosmic inflation” – solving large parts of the cosmic puzzle. This signal has not been detected so
far, but many theories of the early Universe could be constrained – or ruled out – by high-sensitivity
measurements that either lead to a detection or a tighter upper limit of the B-mode amplitude.
Measuring the primordial B-mode signal from the first split seconds of our Universe is challenging:
first, we are talking about a fluctuation of a few tens of nK in a 2.7 K background, which requires
excellent control of instrumental noise. Second, we measure a much larger foreground signal from
our own Galaxy, which represents a complex, poorly characterized contaminant that can cause spu-
rious detection of primordial B-modes. Third, despite using cutting-edge technology, measuring
such a small, polarized signal requires scientists to be aware and in control of all possible kinds of
instrumental systematic effects that may bias the primordial signal.
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My own role in this endeavor, as part of the Simons Observatory (SO) Collaboration, has
been the development and validation of the B-mode power spectrum analysis pipeline, which will
assess SO’s first-year data and is designed to either measure, or set new constraints, on primordial
gravitational waves. A major part of the work described in this Thesis culminated in a pipeline
comparison and validation project, which featured different algorithms, designed to independently
extract and measure primordial B-modes from SO’s polarization data. With SO expecting to see its
first light in late 2023, we used simulated maps of the microwave sky in order to probe the pipelines’
ability to robustly constrain a primordial signal in the presence of complex Galactic foregrounds.
The results indicate robust agreement between all pipelines if foregrounds are simple, while biases
caused by more complex foregrounds can be successfully mitigated by using specific algorithmic
extensions that are presented in this work.

Apart from my work within a collaboration, I took the opportunity to independently develop
a novel algorithm to estimate cosmological parameters on the sky, based on artificial neural net-
works. Motivated by the fact that complex residuals that contaminate the sky are often hard to
model analytically, this work takes a likelihood-free approach that relies only on having access to
realistic simulations. We estimate the optical depth to reionization 𝜏 from real polarized Planck
maps and obtain results compatible with literature methods, albeit with 30% larger error bars. The
second conclusion of this work is that applying a neural network to real data required a large effort
to thoroughly validate the network on different types of simulations, and experiment with different
training setups. This allows for a promising outlook with regards to using neural networks as a
complementary method for future B-mode analyses.

This Thesis is structured as follows.

In Chpt. 1, I introduce the modern picture of cosmology based on Einstein’s General Relativity
theory (GR), starting with the remarkably simple hypotheses that our Universe is homogeneous and
isotropic at supergalactic scales. This leads to the Λ cold dark matter (CDM) model that implies
that our Universe is made of dark energy, dark matter, and standard model particles. I then add
linear perturbations to this theoretical framework, describing small fluctuations that are widely
believed to originate from primordial quantum fluctuations, before they are stretched out to cosmic
scales in a phase of early expansion known as inflation.

Chapter 2 takes this basic description and enriches it with the physical interactions of photons
in the early Universe, leading up to the decoupling of photons from standard-model particles and
giving rise to the CMB. I explain how we can understand, predict, and formalize angular fluctuations
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in the CMB total intensity and polarization, introducing the power spectrum statistic. After that,
I move to current measurements of the CMB power spectrum, highlighting the Planck experiment
and the Background Imaging of Cosmic Extragalactic Polarization (BICEP) and Keck experiment,
before characterizing two major present-day challenges centered around CMB polarization, those
being Galactic foregrounds and instrumental systematics. I close this chapter by presenting three
next-generation experiments, the Simons Observatory, the Lite (Light) satellite for the studies of
B-mode polarization and Inflation from cosmic background Radiation Detection (LiteBIRD), and
CMB-S4.

In Chpt. 3, I present my contribution to constraining large-scale B-modes with SO, a power
spectrum inference pipeline that I co-developed, tested and validated on simulations as a key part of
the work presented in this Thesis. I start by outlining the power spectrum estimation algorithm and
explaining how it solves practical issues related to observing the partial sky, after which I present
the likelihood and theoretical model of the B-mode power spectrum. Lastly, I detail the parameter
inference process, stressing the validation and code development work I carried out.

Chapter 4 puts the power spectrum pipeline I co-developed into the prespective of a pipeline
validation project, featuring three different B-mode inference algorithms that will be used to con-
strain the amplitude of primordial gravitational waves with SO. My role in this was to coordinate
and develop the code for the pipeline comparison. The goal of this project was to assess the
robustness of all three methods if the sky signal contains non-Gaussian realistic foregrounds. Here,
I describe the three algorithms with two extensions and the sky simulation suite that were used.
The results agree between all pipelines for simple foregrounds, while more complex foregrounds
can be successfully treated with said algorithmic extensions.

In Chpt. 5, I present a collaboration-independent work, in which I introduce a neural network
(NN)-based parameter estimation algorithm suitable for polarized CMB maps, and use it to infer
the optical depth to reionization 𝜏 directly from Planck maps – as a “first” in the field of CMB
data analysis. I motivate this likelihood-free approach by the need of modeling complex map-level
residuals, which is often hard to do analytically, before introducing neural networks and our specific
choice for the architecture, and the sky simulations that were used. I detail why and how we went to
great lengths to meticulously validate the NN training process in various steps using simulations,
before finally presenting the results on real Planck data.

Chapter 6 completes this Thesis by reporting a side project that I was involved in, related to the
problem of how to efficiently marginalize over many (≳ 10) systematic parameters in the context
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of inferring cosmology from the cosmic large-scale structure (LSS). My role in this project was
to co-develop a code that approximates marginal likelihoods based on Laplace’s method, speeding
up inference by a factor 3-10. I introduce and motivate the need for such a code in LSS analysis,
explain its mathematics and take this opportunity to highlight its connection with volume effects,
an issue that is of relevance also to CMB analysis. I close the chapter by presenting results on real
and simulated LSS data and offering future prospects for this method.

Finally, in the Conclusions, I summarize the original scientific work presented in this Thesis,
described in Chpts. 3 to 6. I highlight the main results and limitations of our methods, and single
out potential future improvements and perspectives for each of the works presented.
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CHAPTER 1

Λ cold dark matter cosmology

Cosmology is the science that studies the Universe in its entirety and its physical properties at
scales larger than the typical size of a galaxy. At its basis is Einstein’s theory of General Relativity
(GR). It offers a description of the Universe as a whole at the largest scales, where gravity is the
only relevant interaction. In addition to GR, most cosmological theories assume that the Cosmos
is spatially homogeneous and isotropic, meaning that at all times, any observer at rest with respect
to the cosmic expansion sees the same sky in all directions. This is clearly wrong, given that we
observe anisotropic structures at large scales, such as the clustering of galaxies. However, when
averaged over sufficiently large scales, these quantities are indeed evenly distributed and form a
homogeneous background, justifying our assumption. In this context, we obtain a remarkably
simple picture of the Universe that can globally expand or contract, depending on its exact energy
and matter composition. Knowing the precise content of the Universe at a given time, cosmologists
can determine its background expansion throughout cosmic history. Experimental data (e.g., Planck
Collaboration I, 2020) have shown that the present Universe is expanding in an accelerated manner,
driven by four main constituents that dominate the energy-matter budget: the elusive dark energy
(about 70%), symbolized by the Greek letter Λ, which, as we shall see, is responsible for the
cosmic acceleration, the equally poorly understood cold dark matter (CDM, about 25%), matter
from massive particles of the standard model of particle physics (about 5%), and electromagnetic
radiation (about 0.01%). This model, called “ΛCDM”, can be refined to describe small fluctuations
about the homogeneous background which, as we shall see, are the key to understanding and
probing the history of our early Universe.

In this chapter, we introduce the basic ingredients of homogeneous cosmology and present the
ΛCDM model, which represents the current standard description of our Universe at supergalactic
scales. We start by deriving the theory of the cosmic background expansion in Sect. 1.1, before
refining this picture by studying linear cosmological perturbations in Sect. 1.2.
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1.1 Background expansion

In this section, we discuss homogeneous and isotropic cosmology, describing the components that
make up the Universe, and explaining conceptual problems that may be solved by a hypothetical
inflationary era at very early cosmic times.

1.1.1 Homogeneous isotropic universe

In GR, space and time lose their absolute meaning from Newtonian physics. Instead they depend on
the observer’s state of motion and must be combined in the concept of a four-dimensional manifold
called “spacetime”. We can describe the geometry of spacetime in terms of a metric, a generalized
distance measure between points. Two neighboring points in spacetime with a local coordinate
distance d𝑥`, ` = 0, .., 3 (where ` = 0 labels time and ` = 1, 2, 3 labels the space coordinates)
have a coordinate-independent spacetime distance d𝑠 given by

d𝑠2 = 𝑔`ad𝑥`d𝑥a , (1.1)

where 𝑔`a denotes the spacetime metric, and we sum over repeated indices. The importance of
the metric is the ability to measure distances between any two points in spacetime and thereby
describing its entire geometry.

Gravity results from the interplay between mass, or energy, and the geometry of spacetime,
encoded in the spacetime metric. More specifically, gravity is equivalent to the curvature of
spacetime and its sole effect is to make masses move along curved paths. Meanwhile, the presence
of mass and energy itself causes the curvature of spacetime, explaining the apparent attractive force
that is gravity. This interplay is mathematically described by the Einstein equations

𝐺`a = 8𝜋𝐺𝑇`a − 𝑔`aΛ . (1.2)

The left-hand side of (1.2) represents the local curvature of spacetime via the Einstein tensor
𝐺`a, while the right-hand side describes the local energy-mass distribution, represented by the
energy-momentum tensor 𝑇`a, multiplied by Newton’s gravitational constant 𝐺. We refer to Wald
(1984) for a complete definition of the tensors used in Eq. (1.2) starting from the metric tensor. The
constant Λ accounts for the energy density of the vacuum, also known as the cosmological constant,
which is a key quantity for the dynamics of the Universe, as we shall see later in this chapter.

The assumption of spatial homogeneity and isotropy leads to an enormous simplification of the
geometry of the Universe. We can subdivide spacetime into a family of spatially homogeneous and
isotropic slices at constant time, giving us back the notion of an absolute time in the Newtonian sense,
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called “cosmic time” 𝑡. We can therefore measure infinitesimal time intervals d𝑡 independently of
our location in space, while spatial distances assume a time-dependent prefactor 𝑎(𝑡) called the
“cosmic scale factor”. This leads to a spacetime metric of the form (𝑖, 𝑗 ∈ {1, 2, 3})

d𝑠2 = 𝑔`ad𝑥`d𝑥a = −d𝑡2 + 𝑎2(𝑡)𝛾𝑖 𝑗d𝑥𝑖d𝑥 𝑗 , (1.3)

where we can write the the spatial metric 𝛾𝑖 𝑗 in spherical coordinates (𝑟, \, 𝜑)

𝛾𝑖 𝑗d𝑥𝑖d𝑥 𝑗 = d𝑟2 + 𝜒2(𝑟) (d\2 + sin2(\)d𝜑2) . (1.4)

We have one remaining geometrical degree of freedom in the curvature parameter 𝐾 , which can
be negative, zero, or positive, corresponding to a hyperbolic, flat, or spherical spatial geometry,
respectively. The radial coordinate 𝜒(𝑟), called the “comoving radius”, depends on the spatial
geometry as

𝜒(𝑟) ≡


|𝐾 |−1/2 sinh(

√︁
|𝐾 |𝑟) , 𝐾 < 0 (hyperbolic)

𝑟 , 𝐾 = 0 (flat)

𝐾−1/2 sin(
√
𝐾𝑟) , 𝐾 > 0 (spherical)

. (1.5)

Equation (1.3) is the so-called Friedmann-Lemaı̂tre-Robertson-Walker metric of cosmology (FLRW,
Friedmann, 1922; Lemaı̂tre, 1931; Robertson, 1935; Walker, 1937). It describes the background
geometry of the Universe in terms of its scale factor 𝑎(𝑡), which allows for the Universe to expand
or contract in time. In the late 1920s, Georges Lemaı̂tre and Edwin Hubble first showed that the
Universe is expanding at a rate 𝐻 (𝑡) ≡ d𝑎/d𝑡 today known as the “Hubble rate”. Evaluated at
the present, 𝑡 = 𝑡0, the Hubble rate is known as the “Hubble constant” 𝐻0 and amounts to about
70 km/s/Mpc.1 As an important consequence of measuring light across cosmological distances,
a photon traveling in an expanding FLRW universe for some finite time Δ𝑡 will have its physical
wavelength stretched, or “redshifted”. This happens because during the photon’s journey, the cos-
mic scale factor 𝑎 increases, and with it the physical length of any object. This relative increase in
the physical wavelength is known as the “redshift” 𝑧, and amounts to

𝑧 ≡ −1 + 𝑎(𝑡0)
𝑎(𝑡0 − Δ𝑡) , (1.6)

where 𝑡0 is the cosmic time at the end of the photon’s journey.
This extraordinary simplification of the geometry of the Universe puts equally strong constrains

on the allowed shape of the energy and matter distribution. Spatial isotropy prevents any energy-
momentum fluxes or anisotropic stresses, leaving us with a perfect fluid that is parameterized only

1One Megaparsec (Mpc) equals about 3.09 × 1022 m, or 3.26 million light years.
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by its global energy density 𝜌(𝑡) and pressure 𝑃(𝑡). Inserting the energy-momentum tensor of this
“cosmic fluid” intro the Einstein equations (1.2) leads to the well-known Friedmann equations,
which relate cosmic geometry (via the scale factor 𝑎 and its time derivatives 𝑎′ and 𝑎′′) to the
cosmic energy and matter content, given by the fluid parameters 𝑃 and 𝜌, and the cosmological
constant Λ. Defining units in which the speed of light is one, the Friedmann equations read

𝐻2 =

(
¤𝑎
𝑎

)2
=

8𝜋𝐺
𝜌

− 𝐾

𝑎2 + Λ

3
(1.7)

¤𝐻 + 𝐻2 =
¥𝑎
𝑎
=
−4𝜋𝐺

3
(𝜌 + 3𝑃) + Λ

3
. (1.8)

These are the key equations describing the expansion in an homogeneous and isotropic cosmology.
They relate the time-dependent scale factor to the time-dependent pressure and energy density of
the cosmic fluid, allowing us to know the scale of the Universe at all times, assuming we know
the constants 𝐾 and Λ (Peebles, 1993). If the cosmic fluid, including the cosmological constant,
happens to have an energy density equal to the “critical density” 𝜌crit,

𝜌crit(𝑡) ≡
3𝐻2(𝑡)
8𝜋𝐺

, (1.9)

then the curvature is forced to be zero. The term Λ results as viable general solution of the Einstein
equations (1.2) and was originally introduced in Einstein (1917) to ensure that the Universe was
static. This interpretation turned out to be wrong, since the effect of a cosmological constant is to
drive the exponential expansion of the Universe. A more modern interpretation of the cosmological
constant, more generally known as “dark energy”, is that of a quantum-mechanical vacuum energy
that permeates the Cosmos. Unlike the other constituents, whose energy densities get diluted as
the Universe expands, the cosmological constant does not vary, and inevitably ends up dominating
the cosmic energy density. In the following, we discuss the different components in this model in
more detail.

1.1.2 Constituents of the Universe

In order to solve the Friedmann equations and determine the cosmic expansion history, we need
to specify the properties of the cosmic fluid in an FLRW universe. Considering the ratio between
pressure and energy density, we can distinguish between three components: matter, radiation, and
the cosmological constant. Nonrelativistic matter has a negligible kinetic energy as compared
to its mass, and therefore behaves like a pressureless fluid, 𝑃 = 0. Radiation, consisting of
relativistic particles, exhibits radiation pressure given by one third of its energy density, 𝑃 = 𝜌/3.
A cosmological constant is a component with a constant energy density, implying a negative
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pressure that exactly outweighs its energy density, 𝑃 = −𝜌. To see this, we can use the covariant
energy-momentum conservation from GR to find (Peebles, 1993)

¤𝜌 = −3𝐻 (𝜌 + 𝑃) , (1.10)

which is known as the “continuity equation”. By inserting 𝑃 = −𝜌, we find indeed that the energy
density is constant. Equation (1.10) allows us to infer how the individual components’ energy
densities evolve in time. If, in turn, we insert a given component’s energy density into the first
Friedmann equation (1.7), we learn how a universe dominated by each single component would
scale in time. This defines four cosmological eras that a general FLRW universe can undergo,
which are listed in the following.

• Radiation-dominated era: This era is dominated by relativistic particles with an energy
density that scales like 𝜌 ∝ 𝑎−4, accounting for the dilution of the particle number density in
an expanding volume (𝑛 ∝ 𝑎−3) and the redshifting of wavelength (1/_ ∝ 𝑎−1). The cosmic
scale factor behaves like 𝑎 ∝ 𝑡1/2, resulting in a decaying energy density as 𝜌 ∝ 𝑡−2.

• Matter-dominated era: This era is dominated by nonrelativistic matter with an energy
density that scales like 𝜌 ∝ 𝑎−3, accounting for the dilution of the particle number density
in an expanding universe. The universe scales like 𝑎 ∝ 𝑡2/3, resulting in a decaying energy
density as 𝜌 ∝ 𝑡−2.

• Curvature-dominated era: If the universe is dominated by curvature, the first Friedmann
equation yields 𝐻2 = 𝐾/𝑎2, meaning that the universe expands linearly in time. If we were
to associate an energy density to curvature, it would decay quadratically in both 𝑎 and 𝑡.

• Λ-dominated era: This era is dominated by vacuum energy, or a cosmological constant, with
a constant energy density. The cosmic scale factor increases exponentially like 𝑎 ∝ 𝑒

√
Λ/3𝑡 .

In a real universe, these components generally form a mixed fluid, and the total energy density
and the scale factor behaves in a more complicated way that depends on the relative abundances of
each of them. However, we can see that by the relative scaling of the energy densities with 𝑎, the
components form a hierarchy: radiation decays faster than matter, which in turn decays faster than
curvature, while the cosmological constant does not decay at all. For any multicomponent universe,
at sufficiently early times, there must have therefore been a radiation-dominated era, followed by
a matter-dominated phase, and so on. Knowing the abundances of each of these components at
present would therefore allow us to evolve them back in time and making predictions for the future.
We define the fractional density parameter of a component 𝑋 as the ratio between its energy density
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and the critical energy density, which was defined in Eq. 1.9,

Ω𝑋 (𝑡) =
𝜌𝑋 (𝑡)
𝜌crit(𝑡)

. (1.11)

Using this definition, the first Friedmann equation (1.7) can be rewritten as

𝐻2 = 𝐻2
0

(
Ω𝑟𝑎

−4 +Ω𝑚𝑎
−3 +Ω𝐾𝑎

−2 +ΩΛ

)
, (1.12)

where we defined Ω𝐾 = −𝐾/𝐻2
0 , and 𝐻0 is the Hubble function evaluated at present. Current

measurements from Planck (Planck Collaboration VI, 2020) constrain the Hubble and density
parameters to

𝐻0 = (67.66 ± 0.42) km/s/Mpc

ΩΛ = 0.6889 ± 0.0056

Ω𝑚 = 0.3111 ± 0.0056

Ω𝐾 = 0.001 ± 0.002

at 68% credible level (CL).
Besides the unknown nature ofΛ, which completely lacks a fundamental physical explanation so

far, an almost equally puzzling component is hidden behind the matter sector. The visible ordinary
matter, such as stars, galaxies, planets, intergalactic dust, and black holes, cannot account for the
apparent gravitational mass observed dynamically in galaxies and galaxy clusters. Baryons, as
astrophysicists name all matter composed by particles from the standard model of particle physics,
can therefore only account for about one sixth of the total nonrelativistic mass. The remaining
unknown component, dubbed “cold dark matter”, behaves like a nonrelativistic (“cold”) fluid that
– since the moment when it decoupled from all the other particles – has interacted only through
its own gravity. As we shall see in the next chapter, anisotropies in the background radiation and
abundances of light nuclei (Planck Collaboration VI, 2020) constrain the baryonic energy density
to Ω𝑏ℎ

2 = 0.02233 ± 0.00015 and the cold dark matter density to Ω𝑐ℎ
2 = 0.1198 ± 0.0012, where

ℎ ≡ 𝐻0/(100 km/s/Mpc).
The finding that the observable Universe is dominated by two unknown components, the

cosmological constant Λ and cold dark matter, has given the current cosmological model its name
“Λ cold dark matter” (ΛCDM). In the following section, we complement this scenario with the
current hypothesis about the very early Universe, which predates and leads into the radiation-
dominated era.

10



1.1.3 The early Universe

The cosmological standard model ΛCDM, discussed previously, fits data exceptionally well. Ob-
servations of the relative temperature anisotropies in the CMB (see Chpt. 2) confirm the underlying
assumption of the approximate isotropy of the Universe at its largest scales. While the observational
data from the CMB seem to paint a coherent picture of an expanding FLRW universe that started
with a big bang about 13.7 billion years ago, the observed isotropy raises a conceptual problem
related to causality. Information can only travel at the speed of light, which defines a causal horizon
beyond which no two points in space could have talked to each other since the big bang. This
implies that no process in the early Universe could homogenize the CMB at scales larger than the
causal horizon at photon decoupling, which corresponds to an angular scale of about one degree
today. The fact that we still observe an isotropic CMB at scales well beyond degree scales raises the
question as to whether our picture of the early Universe is complete. This is known as the “horizon
problem.”

This question comes along with another conceptual issue: as we have seen in the previous sec-
tion, we observe a Universe with a spatially flat geometry. One can show that in a ΛCDM universe,
the curvature grows with time, meaning that it had to be much smaller in the past, to the point
where its smallness cannot be associated to a coincidence. This is called the “curvature problem.”

Cosmic inflation is a theoretical paradigm proposed to solve these problems through a modifi-
cation of our ΛCDM Universe at very early times (Guth, 1981). Inflation is defined as a phase of
exponential expansion at 𝑡 ≲ 10−32s after the big bang, which made the Universe grow by about
60 orders of magnitude within an extremely short amount of time. The typical length scale of
physical interactions before inflation was stretched out to scales far beyond the causal horizon, far
enough to even contain the causal horizon at the present day. This makes the present Universe
look homogeneous at its largest observable scales, simply by the fact that the primordial fluid could
interact over those scales and thermalize before inflation started. This solves the horizon problem.
It is possible to show that furthermore, inflation suppresses spatial curvature Ω𝐾 like 1/𝑎2, allowing
for the possibility that the curvature may have well been large at the beginning of inflation (Linde,
2008). This solves the curvature problem.

A broad variety of inflationary models has been studied (Linde, 2008; Martin et al., 2014). They
all have in common that at very early times, one or several quantum fields called “inflatons” with
negative pressure dominate the energy density of the Universe. This negative pressure leads to an
exponential expansion of the Universe, similar to what a cosmological constant does at late times.
The end of inflation is usually marked by the inflaton reaching a potential minimum and decaying
into the particles of the standard model of particle physics (Tsujikawa, 2003). The simplest family
of inflationary models is “single-field slow-roll inflation”, based on the assumption that inflation is
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caused by the inflaton slowly rolling down a potential well. This potential dominates the inflaton
energy until it reaches a minimum and starts decaying. One of the very first inflationary models
proposed, known as the Starobinsky 𝑅2 model, was derived from the interaction of a classical
gravitational field background with several massless quantum fields of different spins (Starobinsky,
1980).

The most intriguing consequence of inflation is that it explains the origin of primordial fluctu-
ations, which we shall discuss in the following section. While the physical interactions were in the
microscopic regime at the beginning of inflation, they reached macroscopic scales by its end. This
suggests that inflation stretches primordial quantum fluctuations to macroscopic scales, turning
them into classical fluctuations. This connects quantum field theory with large-scale cosmology
and introduces the picture of vacuum fluctuations giving rise to the primordial seeds of the CMB
anisotropies. The fundamental physics of inflation can be described by a single or several inflaton
fields that dominate the dynamics of the Universe at high energies and eventually decay into the
standard model particles at the end of the inflationary phase.

An experimental confirmation of inflation would be nothing short of a revolution in cosmology,
as it would allow us to probe energy scales of about 1015 GeV, far beyond the reaches of any human-
made experiment. A proof of inflation would also ascertain us that cosmological perturbations at
the largest observable scales today are a pristine probe of the physical processes within the first
10−32 seconds after the big bang.

1.2 Linear perturbations

We now move away from the strictly homogeneous description of the Universe to introduce small
fluctuations in the FLRW metric. This is the aim of linear cosmological perturbation theory, and
sets the foundations of our current understanding of the early Universe.

As we have seen in the last chapter, the geometry of the Universe is intrinsically related to its
energy-matter content. To take into account this relation, we must study the linear perturbations of
the Einstein tensor, representing the geometry of the Universe, and the energy-momentum tensor
of the cosmic fluid, representing its particle content:

𝐺`a → �̄�`a + 𝛿𝐺`a , 𝑇`a → 𝑇`a + 𝛿𝑇`a . (1.13)

We refer to Hu (2003); Durrer (2008) for a general treatment of cosmological perturbations. We do
not derive the full set of evolution equations and the resulting dynamics for those. Instead, we limit
ourselves to a description of the different kinds of perturbations and their key statistical properties,
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which are needed for the discussion in the following chapters.
A conceptual difficulty arises from the equivalence principle of GR: a gravitational field and

a corresponding acceleration of the reference system are physically equivalent. To mathemati-
cally satisfy this statement, the Einstein equations must, under general coordinate transformations,
maintain their mathematical form (1.2). If we decompose𝐺`a and 𝑇`a into a background and a per-
turbation as above, we must ensure that the equivalence principle holds for the background and the
perturbed quantities separately. This can be addressed by choosing “gauge-invariant” perturbation
variables that do not depend on the choice of coordinates. This way, we ensure that the solutions
describe physical effects and are not artifacts of an unfavorable choice of coordinates.

In the following, we write the linearly perturbed Einstein and energy-momentum tensors in a
mathematically convenient form, called scalar-vector-tensor decomposition. As we shall see latetr,
this description provides a complete set of physically relevant quantities as long as the perturbations
are small. This allows us to independently consider each one of these three types of perturbations,
and study them individually as they evolve in time.

1.2.1 Scalar and tensor perturbations

Based on the Helmholtz decomposition, we can express any field in a given spacetime as a sum
of three components – scalars, vectors, and tensors – that transform differently under spatial rota-
tions. Physically, scalar fields represent fluctuations in the local spatial curvature, the gravitational
potential, and the energy density, while tensor perturbations represent gravitational waves. Vector
perturbations are usually associated to rotational velocity fields, which are not generated in most
inflationary models, and, moreover, decay in an expanding universe (Hu, 2003). Therefore, vector
perturbations can be safely neglected at this stage. Scalar and tensor perturbations are independent
in linear theory, which allows us to study their evolution separately.

As an example, we apply this decomposition to the perturbations of the spacetime metric, 𝑔`a.
In contrast to the homogeneous FLRW background metric, the time-time component 𝑔00 is locally
affected by a scalar metric perturbation Φ, while vector (𝑉𝑖) and scalar (𝐵) perturbations give rise to
nonzero time-space components 𝑔0𝑖. Finally, the space-space metric components contain all three
types of perturbations (scalars Ψ and 𝐸 , vectors 𝐶𝑖, and tensors ℎ𝑖 𝑗 , see Hu, 2003):

𝑔00 = −𝑎2(1 + 2Φ) ,
𝑔0𝑖 = 𝑎

2(𝑉𝑖 − 𝐵,𝑖) ,

𝑔𝑖 𝑗 = 𝑎
2 [(1 − 2Ψ)𝛿K𝑖 𝑗 + 𝐷𝑖 𝑗𝐸 − 1

2
(𝐶𝑖, 𝑗 + 𝐶𝑖, 𝑗 ) + ℎ𝑖 𝑗 ] , (1.14)
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where 𝐷𝑖 𝑗 ≡ (𝜕𝑖𝜕𝑗 − 1
3𝛿

K
𝑖 𝑗
∇2), 𝛿K is the Kronecker symbol, ∇2 is the Laplace operator, and the

subscript , 𝑖 denotes the partial derivative with respect to the spatial coordinate 𝑥𝑖.
As explained in the last section, the need for a coordinate-independent theory makes it nec-

essary to define gauge invariant quantities. The gravitational wave perturbation ℎ𝑖 𝑗 already has
this property, while vector perturbations, as argued above, can be neglected. The scalar metric
perturbations can be combined with the perturbation of the fluid density 𝛿𝜌, the time derivative of
the density ¤𝜌, and the Hubble rate 𝐻, to give the gauge-invariant quantity (Riotto, 2003)

Z ≡ Ψ + 𝛿𝜌¤𝜌 . (1.15)

This is the gravitational potential on slices of uniform energy density. In the most common scenario,
where perturbations are adiabatic and we can neglect anisotropic stress in the cosmic fluid, Z
completely describes all scalar perturbations (Hu, 2003). We speak of an adiabatic perturbation if
the energy density and the pressure are related by

𝛿𝜌

¤𝜌 =
𝛿𝑃

¤𝑃
, (1.16)

which, in particular, implies that no energy is transferred between the perturbation and the back-
ground environment.

This leaves us with a minimal set of two variables, the scalar gravitational potential at uniform
energy density Z , and the tensorial amplitude of gravitational waves ℎ𝑖 𝑗 , that quantify the linear
perturbations of the Universe about a homogeneous FLRW background. Now, we may ask how we
can optimally compress these two fields into numbers that we can measure in an experiment. To
retrieve meaningful information from cosmic fluctuations, we need to know how to compare the
amplitude of perturbations between different points in spacetime. One elegant way of doing so is to
assume that perturbations are isotropic and homogeneous in the statistical sense, that is, they follow
the same statistical distribution across the entire sky as observed by any observer in spacetime.
We can regard this as the generalization of the cosmological principle for perturbations. Adopting
this assumption, we first describe any given perturbation field 𝑓 (𝑡, 𝒙) in terms of its spatial Fourier
transform:

𝑓 (𝑡, 𝒌) ≡
∫

d3𝑥

(2𝜋)3 𝑒
−𝑖𝒌·𝒙 , (1.17)

where we fixed cosmic time 𝑡. Statistical isotropy then implies that the two-point correlation in
Fourier space, ⟨ 𝑓 (𝑡, 𝒌) [ 𝑓 (𝑡, 𝒌′)]∗⟩, is nonzero only if 𝒌 = 𝒌′ and only depends on the absolute
magnitude of the Fourier wave vector 𝒌:

⟨ 𝑓 (𝑡, 𝒌) 𝑓 (𝑡, 𝒌′)∗⟩ = (2𝜋)3𝛿3
D (𝒌 − 𝒌′) 𝑃 𝑓 (𝑡, 𝑘) , (1.18)
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where 𝛿3
D is the three-dimensional Dirac delta distribution, 𝑘 ≡ |𝒌 |, and 𝑃 𝑓 (𝑡, 𝑘) is called the

power spectrum of the field 𝑓 . The power spectrum 𝑃 𝑓 (𝑘) encodes the two-point statistics of the
perturbation field. Assuming statistical homogeneity and isotropy thus allows to drastically reduce
the number of degrees of freedom of the perturbation fields from initially four dimensions (𝑡, 𝒌)
to two dimensions (𝑡, 𝑘). If the field 𝑓 is a Gaussian random variable, then its power spectrum
characterizes the full probability distribution of 𝑓 . Both of these properties are predicted by most
models of the very early Universe, including a large class of inflationary models.

In the following section, we present the standard power law parameterization of the power
spectrum of primordial perturbations, starting with scalar perturbations.

1.2.2 Power spectrum of scalar perturbations

As we saw earlier, scalar perturbations can, under fairly general conditions, be entirely described
by the Fourier-space power spectrum of the perturbation Z of the gravitational potential. While
this significantly reduces the complexity of our theoretical model, we can do even better. Most
models of the very early Universe, such as inflation, predict primordial scalar perturbations as
being produced in an almost scale-independent way, which would imply 𝑃Z (𝑘) = const.. Indeed,
since the inflationary phase needs to end at some point and the inflaton needs to keep track of
this “progress”, the power spectrum cannot be perfectly scale invariant. A simple and common
parameterization of the primordial curvature power spectrum is the power law,

𝑃Z (𝑘) = 𝐴𝑠
(
𝑘

𝑘∗

)𝑛𝑠
, (1.19)

measured at a conventional scale 𝑘∗ = 0.05 Mpc−1. Here, we introduced 𝐴𝑠, the power spectrum
amplitude of scalar fluctuations, and 𝑛𝑠, the scalar power spectral index. Equation (1.19) quantifies
the statistics of the seeds of the cosmic scalar perturbations, which give rise to the scalar CMB
anisotropies at decoupling and the LSS of the matter density and galaxy distributions in the late
Universe (Planck Collaboration X, 2020).

The parameters 𝐴𝑠 and 𝑛𝑠 are the two early-Universe parameters among the six parameters of the
cosmological standard model ΛCDM and represent the initial conditions for the cosmological per-
turbations. Current measurements by Planck give the following constraints (Planck Collaboration
VI, 2020)

ln(1010𝐴𝑠) = 3.043 ± 0.014

𝑛𝑠 = 0.965 ± 0.004 ,
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where the uncertainties indicate the corresponding central 68% credible intervals.

1.2.3 Power spectrum of tensor perturbations

The power spectrum of primordial tensor perturbations ℎ𝑖 𝑗 is commonly written as

𝑃ℎ (𝑘) = 𝐴𝑡
(
𝑘

𝑘∗

)1−𝑛𝑡
, (1.20)

which is measured at a pivot scale of 𝑘∗ = 0.05 Mpc. Here, 𝐴𝑡 is the power spectrum amplitude of
primordial tensor perturbations, and 𝑛𝑡 is called the tensor spectral index. Note that scale invariance
would imply 𝑛𝑡 = 1, not 0.

We parameterize the abundance of primordial gravitational waves by the tensor-to-scalar ratio,
the (positive) ratio of the power spectrum amplitudes between tensor and scalar perturbations:

𝑟 ≡ 𝐴𝑡

𝐴𝑠

����
𝑘=𝑘∗

, (1.21)

where 𝑘∗ = 0.05 Mpc, as usual. At the time of writing this Thesis (2023), the BICEP and
Keck array (BICEP2/Keck Collaboration, 2021) place the tightest experimental constraint on the
tensor-to-scalar ratio, with

𝑟 < 0.036 (BICEP/Keck 2021) (1.22)

at 95% CL. Near-future experiments, such as SO (SO Collaboration, 2019), LiteBIRD (LiteBIRD
Collaboration, 2023), and CMB-S4 (Abazajian et al., 2019), are preparing ground-based and space
missions to tighten this constraint by a factor of 3-10. This may potentially allow for the first
detection of primordial gravitational waves if 𝑟 is at a level of 𝑟 ≳ 0.003-0.01, and would otherwise
allow us to exclude a large class of theoretical models, such as Starobinsky 𝑅2 inflation, which
predicts a value of 𝑟 ∼ 0.0046 (see e.g., LiteBIRD Collaboration, 2023).

In the following chapter, we describe the CMB anisotropies in detail and relate the primordial
perturbations to the observable features in the CMB temperature and polarization power spectra.
We devote a large part of the following chapter discussing the experimental side of CMB analysis.
In that context, we present past measurements, discuss systematic effects, and summarize future
CMB surveys.
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CHAPTER 2

Cosmic microwave background

The FLRW cosmological model, founded on three essential assumptions – General Relativity,
spatial homogeneity, and isotropy – does not only lead to a stunningly simple, yet equally successful
picture of the homogeneous background Universe. By introducing linear perturbations, we obtain
a cosmological model allowing us to associate primordial quantum fluctuations with their later
manifestations at cosmic scales: as tiny gravity wells in the photon-baryon plasma, then as ripples
in the cosmic background radiation, and, finally, as the filamentary structure of dark matter,
galaxies, and intergalactic dust that permeates the largest scales of our observable Universe. Before
Arno Penzias and Robert W. Wilson discovered the cosmic microwave radiation in 1964 (Penzias
& Wilson, 1965), the idea of its existence had merely been the result of an elegant theoretical
hypothesis. Afterwards, we had the CMB – an almost uniform blackbody radiation with an average
temperature of 2.7 K – as evidence and visible afterglow of the big bang. Since then, the CMB has
served cosmologists as a direct probe of the physics around the time of the last scattering between
photons and baryons, about 380,000 years after the big bang.

The primordial fluctuations, conjectured to be the seeds of cosmic structure, eventually im-
printed themselves into the CMB radiation. In order to understand how this was possible, we need
to study the high-energy interactions of photons in the primordial plasma, which left their own,
distinctive marks in the photons’ spatial distribution. After the formation of the CMB, the photons
kept free-streaming for nearly 13.4 billion years during which they entered the reionized Universe,
and were slightly deflected in the gravitational potential of the late-time matter distribution. This
series of events has left predictable imprints in the power spectra of the CMB anisotropies, both in
temperature and in polarization, which makes the CMB the most powerful cosmological probe to
date.

Following the detection of the CMB, many experiments ensued that measured not only its
background temperature, but also its angular fluctuations. Thanks to ever more precise experiments,
such as the Cosmic Background Explorer (COBE)1, the Wilkinson Microwave Anisotropy Probe

1URL: lambda.gsfc.nasa.gov/product/cobe
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(WMAP)2, and Planck3, we have been able to confirm theoretical predictions at an astonishing
accuracy. While some aspects of the so-called “standard model of cosmology”ΛCDM are in perfect
agreement with experimental data, other aspects pose fundamental conceptual problems, such as the
horizon and curvature problem (see Sect. 1.1.2), which might be solved by cosmic inflation. One of
the key science goals of current and future CMB experiments is the first measurement of polarization
B-modes, the curl-like pattern in the CMB polarization. B-modes of primordial origin, as we
discuss in this chapter, would directly probe the amplitude of gravitational waves in the very early
Universe and potentially rule out or corroborate inflationary cosmology. As groundbreaking of an
achievement this would be for theoretical physics, it is challenging to realize from the experimental
perspective. Future experiments must be especially thorough in characterizing Galactic polarized
foregrounds and instrumental contamination, which may both lead to significant bias in B-mode
measurements.

In this chapter, we start by introducing the physics of photon decoupling that led to the formation
of the CMB in Sect. 2.1. We then formulate the mathematical description of the CMB and
polarization angular power spectra in Sect. 2.2, before discussing the predicted features from
physical effects before and after photon decoupling in Sect. 2.3. Afterwards, in Sect. 2.4, we move
to observations of the CMB anisotropies with a focus on the polarization B-mode power spectrum.
In Sects. 2.6 and 2.7, we introduce Galactic foregrounds and instrumental contamination in real
experiments, before closing with an overview on next-generation CMB polarization experiments
in Sect. 2.5.

2.1 Decoupling

From the theory of the homogeneous cosmology presented in the previous chapter, the CMB is
predicted to be a isotropic blackbody radiation with a temperature of 2.7 K. Primordial perturbations
introduce small variations that are imprinted in this background radiation. To understand how this
takes place in detail, we must study the physical interactions of photons through the history of
the early Universe until decoupling, the era when photons started free-streaming as the cosmic
background radiation. After the conjectured inflationary phase within the first 10−32 seconds after
the big bang, or at an equivalent energy scale of 1015 GeV, the standard model particles formed a
dense, tightly coupled primordial plasma. These particles interacted frequently via the strong and
electroweak forces, creating a thermal equilibrium. As the Universe kept expanding, their average
kinetic energy - known as the plasma’s temperature - kept decreasing accordingly. Some of the
particle interactions got inhibited due to the lower temperatures, marking “phase transitions” that

2URL: map.gsfc.nasa.gov
3URL: cosmos.esa.int/web/planck
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left behind temporarily stable reaction products. Examples are the first formation of protons and
neutrons from quarks and antiquarks after the quantum chromodynamic phase transition around 160
MeV, the decoupling of neutrinos around 1 MeV, and the phase of electron-positron annihilation
that resulted in a net number of electrons in the Universe. At about 100 keV, or a temperature of
109 K, nuclear fusion started to occur in a process known as “primordial nucleosynthesis”, which
produced the cosmic abundances of light nuclei, a mixture of ionized hydrogen, helium, and traces
of other elements. This plasma was still dominated by photons, tightly coupled with baryonic
matter via elastic Compton scattering, and cooling as the Universe expanded.

When the Universe had cooled to about 104 K, matter had become largely nonrelativistic
and started to dominate the global energy density. The mass density of both baryonic and cold
matter was no longer negligible with respect to their kinetic energy density and, as a result, tiny
gravitational potential wells from primordial curvature perturbations started to attract matter. This
produced small overdensities that followed the curvature perturbations. Meanwhile, photons and
baryons remained tightly coupled via elastic Compton scattering. At that time, two competing
forces dominated the plasma dynamics: while gravity tried to concentrate the mass inside the
potential wells, radiation pressure pushed outward, trying to disperse the plasma. This resulted in
a driven harmonic oscillation, during which the fluid would alternately cluster inside the potential
wells and “run over”. This phenomenon added an important imprint on the CMB anisotropies
called “baryonic acoustic oscillations” (BAOs), which we present in the following section.

As the acoustic oscillations continued, the large Compton scattering cross section kept the
plasma tightly coupled. During that era, electrons were immersed in a sea of photons and prevented
photons from freely traveling over any cosmologically relevant distance. By the time the Universe
had cooled down to energies well below the hydrogen ionization energy of 13.6 eV (about 1.6×104

K), electrons had slowly started to combine with protons to form temporarily stable neutral hydrogen
atoms. This process, called “recombination”, continued until the bulk of electrons was locked away
in hydrogen atoms, making it much less likely for a photon to encounter an electron, to the point
where photons could practically free-stream over the length of the observable Universe. This
process, called “photon decoupling”, took place at a temperature of about 3000 K and defines the
birth of the CMB.

To see how primordial perturbations of a given comoving Fourier mode 𝑘 (corresponding to a
comoving length scale _ = 2𝜋/𝑘 in real space) are imprinted in the CMB temperature anisotropies,
we must consider how they evolve in time. The linearized Einstein equations lead to solutions for
perturbations in the scalar gravitational potential that are approximately constant in time regardless
of their spatial scale, while for density and gravitational wave perturbations, we obtain different
solutions for scales much larger than the Hubble horizon (𝑘 ≪ 𝑎𝐻) and scales much smaller than the
Hubble horizon (𝑘 ≫ 𝑎𝐻). Density perturbations remain approximately constant at superhorizon

19



Geben
eine𝛽

e−

𝛾in

𝛾out

observer last scattering

e−

𝛾out

𝛾hot

𝛾cold

x

y
z

observer

Compton scattering 

v. polarization:

Figure 2.1: Illustration of Compton scattering, highlighting its polarization dependence (left panel)
and the generation of polarization anisotropies from local temperature quadrupole pattern at last
scattering (right panel). Figures adopted and modified from Hu & White (1997).

scales, while subhorizon scales oscillate in a radiation-dominated universe and grow linearly with
𝑎 in a matter-dominated universe. Gravitational waves, too, maintain a constant amplitude at
superhorizon scales and perform a damped oscillation at subhorizon scales (Hu, 2003). This means
that the comoving Hubble horizon at decoupling, 1/𝑘∗, marks a characteristic scale, which leads to
three regimes:

• 𝒌 ≫ 𝒌∗: perturbations of comoving size much smaller than 1/𝑘∗ had started decaying before
the CMB formed, resulting in a decreased amplitude for the CMB temperature fluctuations.

• 𝒌 ∼ 𝒌∗: perturbations of comoving size of order 1/𝑘∗ imprinted themselves in the CMB at
their maximum amplitude, leading to a maximum in the CMB temperature power spectrum
known as the “recombination peak”.

• 𝒌 ≪ 𝒌∗: perturbations of comoving size much larger than 1/𝑘∗ had not entered the horizon
by the time the CMB was formed, since no causal mechanism could have imprinted them
into the CMB. Therefore, they are not present in the CMB.

The comoving Hubble horizon at decoupling can be translated into a physical scale in the present-
day Universe, where it subtends an angle of about one degree on the sky.

Compton scattering plays another important role, that is, it generates the polarization anisotropies
of the CMB. Compton scattering changes the polarization of the incoming photon in the scattering
plane, depending on the scattering angle. Figure 2.1 in the left panel shows the scattering plane in
the rest frame of the electron. An incoming photon makes the electron oscillate along the incident
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polarization direction, but only the projection of this oscillation amplitude perpendicular to the
outgoing photon direction can translate into the final polarization amplitude. If this process keeps
happening in an isotropic fluid, no net polarization will be emitted on average. If, instead, we look
at a baryon-photon plasma that features a quadrupole pattern of cold and hot spots, as shown in the
right panel of Fig. 2.1, then photons that are Compton-scattered in the observer’s direction is lin-
early polarized on average. Thus, soon-to-be CMB photons around the time of decoupling adopted
anisotropies in linear polarization that traced the local quadrupole pattern in the temperature. The
photons had only a narrow time window to pick up this polarization pattern. This had to happen
late enough so that quadrupole patterns did not immediately get washed out via thermalization, and
early enough so that electrons were still available for Compton scattering. As a result, polarization
perturbations occur only at small scales, resulting in a sharp decline in the power spectrum of the
polarization at large angles.

To summarize, the anisotropies of the CMB in temperature and polarization contain information
about initial perturbations, and acoustic oscillations between baryons and photons at the time of
decoupling. Linear polarization, generated from temperature quadrupole anisotropies through
Compton scattering, is not only an important experimental cross check of our theory but carries
information independent of the temperature field. As we show in the next section, the parity-odd
polarization B-modes represent a uniquely clean window to primordial gravitational waves. In the
following, we give a formal characterization of the CMB temperature and polarization amplitudes.

2.2 CMB anisotropies

To test the theoretical explanation for the CMB anisotropies presented previously, we need an
efficient and robust characterization of temperature and polarization fluctuations on the 2-sphere.
Temperature anisotropies can be described by a scalar field 𝛿𝑇/𝑇 ( �̂�) which does not depend on
our choice of coordinates and expresses, as is intuitively clear from its definition, the relative
fluctuations of the thermodynamical temperature of the CMB. Linear polarization reaching us from
a given angle in the sky can be described by an electric field vector in the plane perpendicular
to the propagation direction. We can parameterize it by two numbers known as the linear Stokes
parameters𝑄 and𝑈. Choosing a fixed coordinate frame where the electric field lies in the 𝑥-𝑦 plane,
𝑄 quantifies the difference between the squared vertical and horizontal polarization amplitudes,
whereas𝑈 is the difference between the diagonally oriented squared polarization amplitudes,

𝑄 = |𝐸𝑥 |2 − |𝐸𝑦 |2 ,
𝑈 = 2|𝐸𝑥 | |𝐸𝑦 | cos 2𝜒 . (2.1)
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Here, |𝐸𝑥 | and |𝐸𝑦 | are the absolute values of the 𝑥- and 𝑦-components of the electric field vector,
respectively, and 𝜒 is the angle that the electric field vector spans with the 𝑥-axis, known as the
polarization angle (Rybicki & Lightman, 1985).

In contrast to 𝑇 , the linear polarization parameters 𝑄 and 𝑈 depend on the how we choose
to rotate our coordinate system, calling for an alternative parameterization. As we show in the
following, this can be achieved geometrically by recognizing parity-even and parity-odd polarization
modes on the 2-sphere, the so-called E- and B-modes. The point of this exercise is partially to
be able to robustly compare different experiments, but more importantly, it allows us to single
out primordial gravitational waves, which are the only source of polarization B-modes from the
early Universe. The T-, E-, and B-modes can then be efficiently compressed into different angular
power spectra (TT, TE, EE, BB, etc.), which represent the angular projection of the Fourier power
spectrum. For effects imprinted at decoupling, the angular power spectra allow us to translate
the three-dimensional comoving scales 1/𝑘 into angular scales \ as \ = 1/(𝑘 𝜒∗), where 𝜒∗ is the
comoving distance between us and the surface of last scattering (see Sect. 1.1).

Let us now sketch the essential mathematical transformations needed to arrive at the standard
characterization of CMB anisotropies on the sphere. The temperature fluctuations 𝛿𝑇/𝑇 ( �̂�) can be
re-written in harmonic space by means of the scalar coefficients 𝑎𝑇

ℓ𝑚
,

𝑎𝑇ℓ𝑚 =

∫
d�̂�

Δ𝑇

𝑇
( �̂�)𝑌ℓ𝑚 ( �̂�) , (2.2)

where 𝑌ℓ𝑚 ( �̂�) is the spherical harmonic function of degree ℓ at order 𝑚. For a linearly polarized
field represented by the complex number 𝑃 = 𝑄 + 𝑖𝑈, where 𝑄 and 𝑈 are the Stokes parameters,
we can analogously define the spin-weighted harmonic coefficients ±2𝑎

𝑃
ℓ𝑚

as

±2𝑎
𝑃
ℓ𝑚 =

∫
d�̂� 𝑃( �̂�)±2𝑌ℓ𝑚 ( �̂�) , (2.3)

where ±2𝑌ℓ𝑚 ( �̂�) are the spin-weighted spherical harmonics. The Stokes parameters 𝑄 and 𝑈
depend on the orientation of the coordinate frame in which we measure polarization on the sphere,
which makes them difficult to compare among experiments. To solve this dilemma, Kamionkowski
et al. (1997) and Seljak & Zaldarriaga (1997) introduced an alternative, coordinate-independent
parameterization that divides the two polarization degrees of freedom into irrotational E-modes
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and divergence-free B-modes,

𝑎𝐸ℓ𝑚 = −1
2
(2𝑎ℓ𝑚 + −2𝑎ℓ𝑚)

𝑎𝐵ℓ𝑚 = − 1
2𝑖

(2𝑎ℓ𝑚 − −2𝑎ℓ𝑚) . (2.4)

While E- and B-modes do not change under rotations of the 2-sphere, it can be shown that they
have opposite behavior under parity inversion �̂� ↦→ −�̂�: E-modes are not affected while B-modes
change their sign under parity inversion.

Most crucially for CMB data analysis, the E- and B-mode decomposition of polarization
anisotropies on the sphere has a consequential physical interpretation. It can be mathematically
demonstrated (Kamionkowski et al., 1997) that scalar perturbations only source temperature and
the E-mode polarization patterns in the CMB, while tensor perturbations lead to temperature,
E-, and B-mode anisotropies. This makes polarization B-modes in the CMB a direct tracer of
primordial gravitational waves, provided other, late-time sources can be isolated. For this reason,
current searches for cosmological gravitational waves focus on primordial B-modes in the CMB
polarization. We will explore the expected shape of this primordial signal in the following section.

Our cosmological theory of linear anisotropies is based on the assumption of statistical isotropy,
meaning that rotations on the sky do not change the large-scale statistical properties of the CMB.
We can make best use of this symmetry by casting our observations into angular power spectra. The
angular power spectrum 𝐶𝑋𝑌

ℓ
is defined as the correlation between spherical harmonic coefficients

on the isotropic sky,
⟨𝑎𝑋ℓ𝑚 (𝑎

𝑌
ℓ′𝑚′)∗⟩ = 𝛿Kℓℓ′𝛿

K
𝑚𝑚′ 𝐶

𝑋𝑌
ℓ , (2.5)

where 𝑋,𝑌 ∈ {𝑇, 𝐸, 𝐵} and 𝛿K is the Kronecker symbol. We note that isotropy implies that different
multipole pairs (ℓ, 𝑚) are statistically uncorrelated. In the important special case that 𝑋 and 𝑌
are Gaussian fields with zero mean, Eq. (2.5) implies that their spherical harmonic coefficients are
statistically completely described by their variance, given by 𝐶𝑋𝑌

ℓ
.

Estimating power spectra from a field on the 2-sphere usually relies on the assumption that
ensemble averaging ⟨·⟩ can be replaced by spatial averaging. It can be shown that an unbiased
estimator of the power spectrum is simply given by the average quadratic harmonic coefficient over
𝑚:

�̃�ℓ ≡
1

2ℓ + 1

ℓ∑︁
𝑚=−ℓ

|𝑎ℓ𝑚 |2 . (2.6)

This estimator is a quadratic form of Gaussian random variables, and as such a random variable
itself. The fact that we construct it from a finite set of data points (the 2ℓ + 1 measured harmonic
coefficients) implies that this estimate must have a statistical variance itself, known as “cosmic
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variance”. The cosmic variance represents a fundamental statistical limitation of our spherical
harmonic basis and cannot be reduced by improving one’s experiment. It is worth stressing that
angular power spectra are strictly defined on the full sky. If we wish to estimate the temperature
and polarization power spectra on the partial sky, as is the case for ground-based experiments,
we need to account for the statistical correlation between different pairs of (ℓ, 𝑚) and the mixing
of E- and B-modes. In particular, we need to know the polarization field on the entire sphere to
unequivocally distinguish a B-mode from an E-mode, and vice versa. We address these practical
complications when discussing power spectrum estimators in 3.1.

With the power spectrum, we have at hand an efficient summary statistic of the CMB anisotropies.
To compare observations with theoretical predictions, we need to be able to compute the expected
shape of the CMB temperature and power spectra from cosmological parameters. This can be
done by solving the relativistic Boltzmann equation, which describes the time evolution of photon
momenta and positions (or, equivalently, Fourier wave vectors) in a perturbed FLRW metric, in the
presence of a tight coupling between photons and baryons. This coupling term, quantifying elastic
Compton scattering between photons and electrons, generates a hierarchy of coupled equations that
can be solved iteratively. Standard numerical Boltzmann solvers, such as the Code for Anisotropies
in the Microwave Background (CAMB, Lewis et al., 2000; Howlett et al., 2012) and the Cosmic
Linear Anisotropy Solving System (CLASS, Lesgourgues, 2011), are easy-to-use, well-maintained
algorithms that allow fast and accurate computation of angular power spectra given an input set of
cosmological parameters. In the next section, we explore the shape of the CMB power spectra and
describe how early- and late-time cosmology is encoded in the various features.

2.3 Imprints in the CMB power spectra

Having described the photons’ view on cosmic history until decoupling, let us now change per-
spective and describe how the CMB angular power spectra look when we observe them 13.4 billion
years after decoupling. Causality, as expressed through the Hubble horizon, serves as a translator
between cosmic time and angular scales, allowing us to view the CMB power spectra almost like
a screenplay of cosmic history. As we argued in the previous section, this includes the very early
eras such as inflation as a possible origin of primordial perturbations, and later events, such as
baryonic acoustic oscillations and photon decoupling, which marks the birth of the CMB. Although
in the post-decoupling era, photons streamed through the Universe almost undisturbed, they kept
interacting with their environment, recording late-time events such as cosmic reionization. By
using numerical Boltzmann solvers such as CAMB, we can predict the exact shapes of the CMB
power spectra as a function of the cosmological parameters.

In this section, we have a closer look at the features in the CMB angular power spectra and
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Figure 2.2: Temperature and polarization angular power spectra expected from a standard ΛCDM
cosmology. We show the TT, TE, and EE spectra resulting from primordial scalar perturbations,
with their expected imprints from recombination and late-time physics. For comparison, we show
the tensor-only BB power spectrum (no lensing B-modes) for three different values of the tensor-
to-scalar ratio 𝑟.

discuss how they vary along with the cosmological parameters of the standard ΛCDM model,
considering an optional nonzero gravitational wave amplitude. We can categorize these imprints
into polarization-independent effects, such as baryonic acoustic oscillations, as well as polarizing
effects, such as the large-scale reionization bump. We start with the larger temperature and E-mode
power spectra, before investigating the much smaller B-modes, which are a main focus of this
Thesis.

2.3.1 General effects

Figure 2.2 shows the theoretical predictions of the TT, TE, and EE angular power spectra, calculated
using CAMB assuming the Planck 2018 best-fit ΛCDM cosmology. For comparison, we also show
the expected BB power spectrum from primordial perturbations assuming different values of the
tensor-to-scalar ratio 𝑟. We can see that due to the low polarization fraction of the CMB of about
10%, the TT power spectrum is the largest one, while the TE and EE powers are smaller by 1-2 and
2-4 orders of magnitude, respectively. We start by describing a set of general, non-polarizing effects
related to the era of decoupling and later times, which leave characteristic, calculable imprints in all
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CMB temperature and polarization power spectra. Later, we describe polarizing effects responsible
for additional features in the BB, EE, and TE power spectra.

• Sachs-Wolfe (SW) effect: At angular scales larger than the horizon at decoupling, ℓ ≲ 100,
the temperature perturbations could not have causally evolved before decoupling. Instead, the
temperature anisotropies observed today are equal to the temperature anisotropies at decou-
pling minus a gravitational redshift contribution. The latter effect expresses the photon energy
lost by climbing out of the local gravity well at decoupling, while the temperature anisotropies
are themselves related to local overdensities at decoupling. For a matter-dominated Universe
with adiabatic density perturbations, one can show that both of these terms combine to an
observed temperature anisotropy of 𝛿𝑇/𝑇 = −Φ/3, where Φ is the local gravitational po-
tential at decoupling (Sachs & Wolfe, 1967; White & Hu, 1997). This effect is visible as a
“valley” of nearly constant amplitude in the TT autospectrum at multipoles ℓ ≲ 100.

• Integrated Sachs-Wolfe effect (ISW): The largest observed angular scales are linked to
the late-time Universe, where the Hubble horizon was close to the size of the observable
Universe. At those late times, the Universe started to be dominated by dark energy, which
makes gravitational potentials grow faster than the surrounding Universe (Rees & Sciama,
1968). As a result, CMB photons traversing the cosmic LSS lose some net energy beyond the
term −Φ/3 from the ordinary SW effect, creating a slight upturn in the CMB at the largest
multipoles of the TT autospectrum.

• Baryonic acoustic oscillations (BAOs): In the presence of potential wells generated from
primordial perturbations, the baryon-photon plasma performed acoustic oscillations driven
by the competition between gravity and pressure. The spatial scale of the gravity wells
determined the oscillation frequency 𝜔 via 𝑘 = 𝜔𝑐𝑠, relating the perturbation scale 𝑘 to the
phases of the acoustic peaks. In particular, the first peak in the angular power spectrum at
ℓ ∼ 220 corresponds to the acoustic mode that had just reached the first peak by the time
of decoupling (Planck Collaboration I, 2016). The second peak at ℓ ∼ 538 corresponds to
the acoustic mode reaching its first minimum at decoupling, and so on. The scale associated
with the peaks is the sound horizon at last scattering, one of the six cosmological parameters
of the standard ΛCDM model, defined as

\∗ ≡
𝑟∗
𝜒(𝑡∗)

, (2.7)

where 𝑟∗ is the comoving sound horizon at decoupling and 𝜒(𝑡∗) is the comoving radius,
defined in Eq. (1.5), evaluated at the time of decoupling, 𝑡∗. The position of the acoustic
peaks probes the background expansion parameters 𝐻0,Ω𝑚 and the spatial curvature Ω𝐾 to
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high precision, while their amplitude is sensitive to the primordial power spectrum amplitude
𝐴𝑠 and the fractional energy density of baryons, Ω𝑏. The acoustic peaks are the dominant
feature at intermediate to small scales (200 ≲ ℓ ≲ 2000) in TT, TE, and EE.

• Reionization: The ignition of the first ionizing sources about 200 million years after decou-
pling led to the reionization of the intergalactic medium. The newly freed electrons started
undergoing Compton scattering with CMB photons, partially erasing anisotropies at scales
smaller than the Hubble horizon at the beginning of reionization. This leads to a decrease in
the CMB TT, TE, and EE power spectra at all but the very large angular scales (ℓ ≳ 20) by a
factor 𝑒−2𝜏, where 𝜏 denotes the optical depth to reionization

𝜏 ≡
∫ 𝑡0

𝑡∗

𝜎𝑇 𝑛𝑒 (𝑡) d𝑡 . (2.8)

Here, 𝑡0 is the present time, 𝜎𝑇 is the Thomson scattering cross section, and 𝑛𝑒 (𝑡) is the
electron number density. The optical depth 𝜏 represents a late-time parameter of the standard
ΛCDM model of cosmology.

• Damping: The decoupling process is not instantaneous, and therefore leads to a suppression
of TT, TE, and EE power at small angular scales ℓ ≳ 2000 that correspond to the thickness of
the surface of last scattering. Alternatively, we can interpret this suppression of the acoustic
peaks as the effect of imperfect coupling between photons and baryons, leading to a diffusion
damping of the small-scale acoustic peaks, which have undergone more oscillations than the
larger-scale peaks.

2.3.2 Polarization-specific effects

Let us now focus on polarization specific effects that do not effect the temperature anisotropies
but generate features in the BB, EE, and TE power spectra. As can be seen from Fig. 2.2, the
expected BB power spectrum from primordial perturbations is smaller than EE by about two orders
of magnitude. This is due to the fact that B-modes cannot be generated from density perturbations,
as we saw in Sect. 2.2. Hence, unlike E-modes, they do not inherit the prominent small-scale
acoustic peak structure that is generated at decoupling. Instead, there are three more subtle effects
that dominate the features of the BB angular power spectrum, which we discuss here.

• Recombination peak: Primordial tensor perturbations, or gravitational waves, are com-
monly assumed to originate from an inflationary phase in the very early Universe, producing
an almost scale-invariant power spectrum (see Sect. 1.1.3), with an amplitude that scales lin-
early with the tensor-to-scalar ratio 𝑟. They are imprinted in the CMB polarization B-modes
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at the time of decoupling, which leads to the “recombination peak” in the BB power spectrum
around angular scales ℓ ∼ 90, corresponding to the horizon scale at the time of decoupling
(Zaldarriaga & Seljak, 1997). Similarly, scalar perturbations are imprinted into polarization
E-modes at decoupling, causing a recombination peak in the EE and in TE power spectra.

• Reionization bump: The second time that primordial perturbations would be able to generate
E- and B-mode polarization patterns is during the time of reionization. When the Universe
stopped being electrically neutral, the largest causally interacting scales contributed to today’s
observed angular scales of ℓ ∼ 20, forming a large-scale “reionization bump” in the BB, EE,
and TE power spectra. Smaller-scale perturbations had already entered causal interactions
before, so they are suppressed. Larger scales have been scattering with the CMB in the later
Universe ever since, so they all contribute to the reionization bump. The amplitude of the
reionzation bump is approximately proportional to 𝜏2 (Reichardt, 2016; Kaplinghat et al.,
2002).

• Gravitational lensing: Nonlinear distortions of the CMB polarization field from the grav-
itational lensing effect caused by the late-time matter distribution convert E-modes into
B-modes. The lensing B-mode signal can be viewed as an additional source of stochastic
noise, with an almost white power spectrum of about 5 `K-arcmin amplitude on the largest
angular scales (Okamoto & Hu, 2003), which is expected to be the dominant contribution at
multipole scales 30 ≲ ℓ ≲ 300 probed by the SO SATs. We can artificially scale this “lensing
template” by a factor 𝐴lens, mimicking the practice of subtracting the lensing contribution on
the map level (“delensing”, Kesden et al., 2002; Smith et al., 2012).

Figure 2.3 shows how variations in the tensor-to-scalar ratio 𝑟 , the optical depth 𝜏, and the
amplitude of gravitational lensing, 𝐴lens, affect the features in the BB power spectrum.

2.4 Current measurements of power spectra

Having established a theoretical understanding that allows us to connect CMB power spectra with
cosmological parameters, we can now shift our attention to experimental constraints. In this section,
after briefly reviewing the highlights in past CMB observations, we discuss today’s state-of-the-art
power spectrum measurements. We specifically focus on the 2018 legacy results from the Planck
satellite and the latest constraints on polarization B-modes from the BICEP/Keck experiment.

Since the detection of the CMB in 1964, experimental cosmology has arguably seen its largest
success story so far. The CMB had been predicted to be essentially a blackbody of a few Kelvin
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Figure 2.3: BB angular power spectrum for different values of the the primordial tensor-to-scalar
ratio (color variation) and different values of the reionization optical depth, (line style variation). We
also plot a tensor-free spectrum which has the lensing B-mode contribution reduced (“delensed”)
to 30%.

temperature, with small anisotropies coming from primordial perturbations. With the remnant
radiation of the big bang at their grasp, scientists started to design the first experiments to map
the CMB anisotropies and determine its spectral distribution, but it took 25 years to realize the
first survey that could accomplish both of these tasks with the necessary precision. In 1989, the
COBE satellite was launched on a two-year mission to measure the spectral distribution of the CMB
between 60 GHz and 3 THz on the full sky, at seven degrees angular resolution. COBE showed
that the CMB monopole is perfectly fit a blackbody spectral distribution with a temperature of
2.725±0.002 K and achieved the first measurement of small, 100`K-level anisotropies in the CMB
angular distribution (Mather et al., 1999). These findings confirmed theoretical expectations and
encouraged the formation of larger science collaborations that would later build instruments able to
exploit the cosmological information within the CMB anisotropies. In 2001, the WMAP satellite
was launched to map the full sky of CMB radiation anisotropies in five frequency bands between
23 and 90 GHz at an angular resolution of 0.2 degrees. The mission was a groundbreaking success,
establishing the spatially flat ΛCDM model as the standard cosmological model and measuring the
five early-Universe parameters to better than five percent accuracy (Hinshaw et al., 2013). WMAP
also performed the first full-sky measurements of the polarized CMB and Galactic foregrounds
at 23 GHz. In 2009 followed the latest CMB survey in space, the European Space Agency’s
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Figure 2.4: The Planck CMB temperature map as produced from multifrequency maps using the
Commander component separation algorithm. Image is taken from Planck Collaboration I (2020).

Planck satellite, to further refine WMAP’s results and provide more sensitive, higher-resolution
measurements in temperature and polarization, which we describe in the following.

2.4.1 Planck temperature and polarization

The European Space Agency’s Planck satellite mission (Planck Collaboration I, 2020), aimed at
further constraining the parameters of the ΛCDM model beyond what WMAP found, by measuring
the maps of CMB anisotropies at higher sensitivity and down to smaller scales. Planck aimed at full-
sky polarization measurements that had been pioneered by WMAP, probing Galactic foreground
emission as a non-negligible contaminant to the CMB. Planck carried two instruments, the Low
Frequency Instrument (LFI) and the High Frequency Instrument (HFI) that measured the sky at
nine different frequency bands from 23 GHz to 857 GHz, among which the lower seven frequency
channels from 23 GHz to 353 GHz were sensitive to polarization. Both instruments scanned the full
sky in a four-year mission, having wto main science goal: constraining cosmology with the CMB,
and characterizing Galactic and extragalactic emission for studying astrophysics and improving
CMB foreground subtraction.

Planck pioneered component separation, the use of multifrequency maps to distinguish sky com-
ponents by means of their spectral differences and produce cleaned component maps. The Planck
science team developed several component separation algorithms, based on different methods to
enable robust comparison:
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• Commander (Planck Collaboration X, 2016; Eriksen et al., 2008) is a Bayesian parametric
fitting algorithm using templates in pixel space.

• Needlet Internal Linear Combination (NILC, Basak & Delabrouille, 2012, 2013) is a
model-independent (“blind”) cleaning algorithm that aims at removing all sky components
with spectral emission laws different from the CMB.

• Spectral Estimation Via Expectation Maximisation (SEVEM, Leach et al., 2008; Fernández-
Cobos et al., 2016) is an internal template-cleaning approach in pixel space that produces
clean CMB maps typically constructed as difference maps between two neighboring Planck
channels.

• Spectral Matching Independent Component Analysis (SMICA, Cardoso et al., 2008) uses
an independent power-spectrum-based algorithm to synthesize clean CMB maps.

Figure 2.4 shows the map of Planck’s CMB temperature anisotropies produced by the Commander
algorithm. Component-separated maps from Planck include polarized CMB maps at about 5
arcmin angular resolution, and maps of polarized Galactic foregrounds at an angular resolution of
80 arcmin or better, most prominently thermal dust and synchrotron emission, which are the most
detailed full-sky maps of Galactic foregrounds to date. We address these in more detail in Sect. 2.6.

The Planck 2018 legacy data include angular power spectra of the CMB temperature and
polarization. Figure 2.5 shows the TT, EE, and TE power spectra with error bars, which include the
uncertainty from foreground subtraction and the expected sampling variance associated to observing
a limited number of modes on the sky. The lower right panel of Fig. 2.5 shows the power spectrum
of the gravitational lensing potential, which represents the angle-averaged line-of-sight integral of
the gravitational potential of the matter distribution in the late Universe, causing a distortion in
the CMB power spectrum at small scales. The blue lines show the theoretical prediction from
the best-fit flat ΛCDM model which, as we can see, match the observed data to an astonishing
precision and accuracy. The intermediate scales of these power spectra are measured at high S/N
which allowed the detection of eight acoustic peaks. The TT and TE power spectra are dominated
by sample variance at most scales ℓ ≲ 1800, essentially exhausting all cosmological information
available, while the error bars of the EE power spectrum is dominated by instrumental noise. In
addition, Planck measured a null low-ℓ BB polarization power consistent with instrumental noise.

The Planck power spectra directly constrain six primary parameters in the flat ΛCDM scenario.
Adopting the convention that the Hubble parameter at present is 𝐻0 = 100ℎ km/s/Mpc, these
parameters and their values (with 68% central CL) as measured by Planck are: the density of cold
dark matter, 𝜔𝑐 ≡ Ω𝑐ℎ

2 = 0.1198 ± 0.0012; the density of baryons, 𝜔𝑏 ≡ Ω𝑏ℎ
2 = 0.02233 ±

0.00015; the amplitude, ln(1010𝐴𝑠) = 3.043 ± 0.014, and spectral index, 𝑛𝑠 = 0.965 ± 0.004, of
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Figure 2.5: The Planck CMB TT, TE, and EE angular power spectra as published in the 2018
legacy release (Planck Collaboration I, 2020). These are foreground-subtracted and frequency-
averaged𝐶ℓs representing the temperature autocorrelation (top), the temperature-polarization cross-
correlation (middle), the E-mode polarization autocorrelation (bottom left), and the gravitational
lensing potential (bottom right). The anisotropy power spectra are plotted with a multipole axis
that goes smoothly from logarithmic at low ℓ to linear at high ℓ. In all panels, the blue line is the
best-fit Planck 2018 model, based on the combination of TT, TE, and EE.
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a power-law spectrum of adiabatic perturbations; the angular scale of the acoustic oscillations,
100\∗ = 1.0411 ± 0.0003; and the optical depth to reionization, 𝜏 = 0.054 ± 0.007 (Planck
Collaboration VI, 2020). While the combinations 𝜔𝑐, 𝜔𝑏 are primarily constrained by the relative
height of the acoustic peaks, the sound horizon \∗ determines the absolute peak position. The
overall normalization of all power spectra at post-reionization scales ℓ ≳ 20 is sensitive to the
primordial power spectrum amplitude 𝐴𝑠, in combination with the optical depth as 𝐴𝑠𝑒−2𝜏. This
degeneracy can be broken by measuring the reionization bump in EE at ℓ ≲ 20, as we shall address
in more detail in Chpt. 5.

In summary, the measurement of the Planck temperature and E-mode power spectra has es-
tablished the flat ΛCDM model as the simplest and best-fitting “standard” model of cosmology,
although several fundamental questions on its validity remain open (see Sect. 1.1.3). We might
obtain answers to some of these questions from experimentally constraining primordial polarization
B-modes, enabling us to crucially narrow down the space of viable models of the very early Uni-
verse, including inflation. This is the ultimate goal of several future experiments that we introduce
in Sect. 2.5. In the following, we briefly present the BICEP/Keck experiment, a ground-based
telescope array that has achieved the tightest constraints on primordial B-modes at the time of
writing (2023).

2.4.2 Degree-scale polarization B-modes

While low-noise TT, TE, and EE power spectra from Planck have corroborated the ΛCDM model,
recent and ongoing ground-based experiments such as BICEP/Keck have since been further con-
straining the amplitude of the CMB BB power spectrum.

The BICEP and Keck array (hereinafter BK) are two CMB telescopes located at the South Pole
at 2800 m altitude. Since 2006, several surveys have been conducted, each including a number of
instrument upgrades. The 2021 science results included measurements of the polarized microwave
sky in three frequency bands between 95 and 220 GHz on about 2% of the sky in a patch centered
around the south celestial pole. To constrain polarization B-modes, BK measures the low-resolution
polarized sky at angular scales 50 < ℓ < 200, which are only weakly contaminated by lensing
B-modes, and combine data with foreground-dominated channels from WMAP and Planck to
characterize the amplitude of polarized Galactic foregrounds. BK uses a multifrequency power-
spectrum-based analysis pipeline to model and marginalize over foreground signals in a parametric
Bayesian approach.

The CMB community’s progress on constraining low-ℓ B-modes is tightly connected with
Galactic science via the characterization of degree-scale polarized Galactic foregrounds. In 2014,
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the BICEP2 Collaboration had reported a detection of primordial B-modes at a significance of
> 5𝜎 (BICEP2 Collaboration, 2014), a signal that, as later analyses of Planck data in the same sky
region revealed, can be entirely ascribed to Galactic thermal dust emission (Planck Collaboration
Int. XXX, 2016; BICEP2/Keck Collaboration & Planck Collaboration, 2015). In recent years,
thermal dust and synchrotron emission (Krachmalnicoff et al., 2018) have shown to be a ubiquitous
and significant contaminant to degree-scale B-modes, a topic we discuss in more detail in Sect. 2.6.
The current state-of-the-art constraints on the tensor-to-scalar ratio, based on the 2018 BK data
combined with foreground-sensitive archival data from Planck, give 𝑟 ≲ 0.032 at 95% CL (Tris-
tram et al., 2022). The successor experiment of BICEP/Keck, called BICEP Array, is projected to
improve the statistical uncertainty of currently 𝜎(𝑟) = 0.009 (68% central CL) to 𝜎(𝑟) ≲ 0.003 by
2027 (BICEP2/Keck Collaboration, 2022).

At small to intermediate angular scales, the predominant effect in the BB power spectrum of
the CMB is caused by gravitational lensing by the late-time matter distribution (see Sect. 2.3). This
effect was first observed in 2013 by the POLARization of the Background Radiation experiment
(POLARBEAR, POLARBEAR Collaboration, 2014)4, which estimated the lensing signal from
the four-point correlation function of E- and B-modes observed at a 30-square-degree patch of 2
arcsec map resolution in the southern sky. More recent Planck data were able to detect this signal
at a significance of about 40𝜎 (Planck Collaboration VIII, 2020).

Figure 2.6 shows the most recent constraints on the angular power spectra of the CMB polar-
ization B-modes in comparison to the theoretically expected lensing signal and the conjectured
signal from primordial gravitational waves. The figure highlights measurements by BICEP/Keck
for intermediate to large scales, as well as recent constraints of the lensing signal by POLARBEAR
(POLARBEAR Collaboration, 2017), the South Pole Telescope (SPT, Sayre et al., 2020) and the
Atacama Cosmology Telescope (ACT, Choi et al., 2020).

To summarize, the ΛCDM parameters are well constrained from temperature and E-mode
polarization data, while measuring degree-scale primordial B-modes requires significant efforts
in constraining foregrounds at multiple frequencies, and building experiments that achieve high
sensitivity. Moreover, reducing the statistical uncertainty on the BB power spectrum warrants sub-
tracting the intermediate-scale lensing B-modes on the map level, by a method called “delensing”.
This requires a synergy between experiments that measure the large scales (typically SAT-like
telescopes on the ground or in space) and LAT-like telescopes that measure the lensing B-modes at
sub-degree scales in the same area on the sky. This is especially relevant for high-sensitivity future

4URL: lambda.gsfc.nasa.gov/product/polarbear
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Figure 2.6: Current constraints on B-mode power spectra at large and intermediate scales (markers
with error bars; upper limits are given by downward pointing triangles), compared to the theoretical
scenarios of lensing B-modes combined with different levels of primordial gravitational waves
(𝑟 = 0.03 or 𝑟 = 0). The current upper limit on primordial gravitational waves is given by 𝑟 < 0.032
at 95% CL (Tristram et al., 2022). This figure is adopted from BICEP2/Keck Collaboration (2021),
for the original publications of the data sets see references therein.
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experiments, as we shall see in the next section.

2.5 Future experiments

In this section, we outline three representative next-generation CMB experiments to carry on
the legacy of WMAP and Planck in constraining our cosmological model. As we shall see in
the following, future CMB experiments are heavily investing in the prospect of gaining a new
understanding of the very early Universe through the search for primordial gravitational waves.
Being the main focus of Chpts. 3 and 4, we start by describing the SO experiment, a fully funded
ground-based CMB survey expected to receive its first light by 2024. Looking just a few years
ahead, we then continue with the LiteBIRD and CMB-S4 experiments, a next-generation satellite
mission and the first “Stage 4” ground-based experiment.

2.5.1 Simons Observatory

The Simons Observatory (SO) is a ground-based CMB telescope array located in the Atacama
desert, Chile, at about 5200 meters altitude. Its experimental setup consists of three 42cm-diameter
SATs, to measure intermediate to large scales on one northern and one southern sky patch covering
a total of about 10% of the sky, and one 6m-diameter LAT to measure small scales on about 40%
of the sky, at six frequency bands between 27 and 280 GHz. Each SAT contains a CRHWP to
demodulate the polarized signal and thus avoid large-scale noise related to the atmosphere. SO
aims at measuring primordial B-modes and non-Gaussianity, probing late-time cosmology and
astrophysics through small-scale observations of gravitational lensing and maps of CMB spectral
distortions caused by high-energy electrons in galaxy clusters. Further science goals of SO are
mapping the Galaxy to unprecedented precision, and using high-sensitivity polarization as an
independent cross-check of the ΛCDM cosmological model. In particular, the nominal instrument
design of SO is predicted to constrain primordial gravitational waves at a precision of 𝜎(𝑟) ≲ 0.003
after five survey years (SO Collaboration, 2019). This would allow us to detect, or rule out, a power
of primordial gravitational waves corresponding to 𝑟 = 0.01 at 2-3𝜎 significance, thereby crucially
constraining the models of the primordial Universe. Figure 2.7 shows SO’s predicted constraints on
primordial parameters in the 𝑟-𝑛𝑠 plane in comparison with an exemplary selection of inflationary
models that could be constrained, or ruled out, assuming a vanishingly small tensor-to-scalar ratio
(𝑟 = 0) or primordial gravitational waves with 𝑟 = 0.01.

The LAT will observe a patch covering about 40% of the sky at arcminute resolution, chosen to
optimize the overlap with the two SAT patches and the target regions of near-future galaxy surveys,
such as the Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration, 2016) and the Rubin
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Observatory/Legacy Survey of Space and Time (LSST, Ivezić et al., 2019), enabling combining
and cross-correlating probes. The SAT sky patches cover about 10% of the sky while avoiding the
highly foreground-contaminated Galactic plane, and are wide enough to constrain multipoles down
to ℓ ∼ 30 while keeping the variation in elevation, and the resulting ground pickup, to a minimum.
The frequency channels include two CMB-sensitive channels centered at 93 GHz and 145 GHz,
two low-frequency channels at 27 GHz and 39 GHz to constrain Galactic synchrotron emission,
and two high-frequency channels at 225 GHz and 280 GHz, designed to characterize the Galactic
thermal dust component.

Using three highly sensitive low-resolution SATs serves the key science purpose of constraining
degree-scale B-modes at the required low noise level, while the LAT measures the small-scale
lensing B-modes in a fully overlapping sky patch in order to delens the SAT B-modes. Apart from
this, the LAT enables the pursuit of many more small-scale science goals that we address below.
The polarized SATs and LAT sky signals are both contaminated by various foregrounds at different
scales, such as diffuse Galactic synchrotron and dust at the SAT large scales, and extragalactic radio
point sources and diffuse late-time signals such as the cosmic infrared background (CIB) at the
smaller LAT scales. Those contaminants must be subtracted using different methods according to
the required sensitivity. Degree-scale Galactic foregrounds for the SATs require component separa-
tion algorithms that make use of multifrequency observations, as described in Chpt. 4. Depending
on the scientific goals, foregrounds on the LAT are removed either through blind component sepa-
ration methods such as ILC (Bennett et al., 2003; Eriksen et al., 2004), and/or deprojection of the
sky contaminants (see Sect. 2.5 of SO Collaboration, 2019).

The Simons Observatory Collaboration has identified six key science goals for cosmology (SO
Collaboration, 2019), which we briefly present here.

1. Primordial perturbations. The SO SATs target the measurement of primordial gravitational
waves through degree-scale B-modes at a baseline precision of 𝜎(𝑟) = 0.003 (68% central
CL), which would allow to constrain models of the very early Universe. Moreover, measure-
ments of the total intensity and E-mode power spectra with the SO LAT will help tighten
the constraints on scalar primordial perturbations, with a predicted 0.5% precision on the
parameter combination 𝑒−2𝜏𝐴𝑠. Finally, SO aims at constraining the local non-Gaussianity
of primordial perturbations to 𝜎( 𝑓NL) = 2 at 68% central CL, by cross-correlating specific
effects in the LAT CMB anisotropies (the kinetic Sunyaev-Zel’dovich (kSZ) effect tracing
the bulk motion of high-energy electrons in galaxy clusters (Coulton et al., 2020; Sunyaev &
Zeldovich, 1980) and the gravitational lensing effect on the CMB, respectively) with external
galaxy survey maps.
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2. Effective number of relativistic species. Through their effects on the expansion rate, pri-
mordial element abundances and radiation perturbations affect the damping and the position
of the acoustic peaks in the temperature, polarization E-modes, and TE cross-power spectra.
The SO LAT can constrain these effects and help improve current measurements of the effec-
tive number of relativistic species in the early Universe, with a projected baseline precision
of 𝜎(𝑁eff) = 0.07 at 68% central CL.

3. Neutrino mass. SO aims at constraining the upper limit of the total mass of neutrinos to
𝜎(∑𝑚a) = 40 meV (SO baseline, 68% central CL), which leaves an imprint in the small-
scale lensing distortions and the acoustic peak positions in the CMB power spectra through
the total matter density, as well as galaxy clustering properties. These three effects can be
exploited in different ways via precision measurements by SO LAT, in combination with
external galaxy clustering data.

4. Deviation from Λ. The matter power spectrum holds information on the late-time expansion
history and possible deviations from the cosmological constant scenario. The SO LAT can
constrain the root mean square of matter fluctuations on an 8 Mpc/ℎ scale, 𝜎8, through
several means that involve galaxy clustering and gravitational lensing of the CMB, measured
in combination with external data sets. In addition, better indirect constraints on the Hubble
constant, achieved through precision measurements of the acoustic peak positions, can indi-
cate deviations from Λ. The SO baseline scenario predicts a 2% precision measurement of
𝜎8 at redshift 1-2, and a precision on the Hubble constant of 𝜎(𝐻0) = 0.4 km/s/Mpc at 68%
central CL, respectively.

5. Galaxy evolution. The kinetic and thermal Sunyaev-Zel’dovich effects are well-characterized
local spectral distortions of the CMB caused by elastic scattering between CMB photons and
high-energy electrons present in galaxy clusters (Sunyaev & Zeldovich, 1980). By measuring
the Sunyaev-Zel’dovich effects in massive halos, SO aims at informing and refining models
of galaxy evolution, measuring the efficiency of energy injection by feedback to 2% precision
and the fraction of non-thermal pressure to 6% precision (68% central CL; for more details,
see Battaglia et al., 2017). These constraints will be derived from the LAT temperature maps,
combined with galaxy positions measured by the DESI spectroscopic galaxy survey.

6. Duration of reionization. The kSZ effect provides a way to detect additional variance in
the temperature CMB attributed to the patchy reionization paradigm, and thus constrain the
duration of the epoch of reionization, Δ𝑧re (Calabrese et al., 2014). This is possible through
measurements of the CMB temperature and E-mode polarization anisotropies by the SO LAT.
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SO baseline constraints predict a measurement precision of 𝜎(Δ𝑧re) = 0.6 at 68% central
CL.

Secondary science targets of SO include constraining big bang nucleosynthesis, the nature and
interactions of dark matter, and the nonlinear growth of structure. Moreover, SO will be able to map
extragalactic sources, detect transient sources, and constrain Galactic science (Hensley et al., 2022).

To summarize, SO is a ground-based CMB experiment in the Chilean Atacama desert which
will measure CMB polarization and temperature anisotropies with the main goals of constraining
primordial gravitational waves and the early Universe, the neutrino mass, the reionization epoch,
and late-time physics such as dark energy and galaxy evolution. With two complementary types of
telescopes, three SATs and one LAT, and in six frequency bands, SO will delens the degree-scale
B-mode signal and characterize degree-scale Galactic foregrounds to be able to achieve a robust
detection of 𝑟 = 0.01 at 95% CL, by establishing a statistical uncertainty of 𝜎(𝑟) = 0.003 at 68%
central CL, improving on current constraints from Tristram et al. (2022) by a factor of three. With
the planned start of full science observations in 2024, SO is expected to reach its nominal science
goals after five years of observations. Subsequently, SO will obtain two additional SATs from
UK funds and one extra SAT from Japanese funds, together with a US-funded doubling of the
number of optics tubes in the LAT. These upgrades combined will increase the observatory’s total
number of detectors from nominally 60,000 to 100,000, which will subsequently be renamed the
Advanced Simons Observatory. In the next section, we present two other future CMB experiments,
the LiteBIRD satellite, expected to launch in the late 2020s, and the ground-based CMB-S4
experiment, designed as the first “Stage 4” CMB experiment in the early 2030s.

2.5.2 LiteBIRD and CMB-S4

The late 2020s and early 2030 will see the arrival of two ambitious future CMB experiments, Lite-
BIRD and CMB-S4. While the former is a satellite mission with a narrow focus on constraining
primordial B-modes on the full sky, the latter is poised to constrain a wide range of cosmological
parameters in an ambitious, multi-site ground-based CMB experiment.

LiteBIRD (Hazumi et al., 2020) is a satellite commissioned by the Japan Aerospace Explo-
ration Agency scheduled to launch in the late 2020s and perform a three-year full-sky survey. Its
primary goal is to constrain large-scale B-modes in order to measure the tensor-to-scalar ratio at a
precision of 𝜎(𝑟) ∼ 0.001 (60% central CL), and either detect gravitational waves associated with
specific inflationary models, or set upper limits to rule out a large class of models of the very early
Universe. In particular, LiteBIRD’s indispensable contribution to CMB science will be a full-sky
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r=0.036

Figure 2.7: Predicted constraints on the primordial tensor-to-scalar ratio 𝑟 and the scalar spectral
index 𝑛𝑠 achieved by a five-year SO nominal survey, assuming input models with 𝑛𝑠 = 0.965, and
either 𝑟 = 0 or 𝑟 = 0.01. The contours correspond to 68% and 95% central CL for SO baseline
(solid contours) and SO goal constraints (dashed contours). The figure also shows predictions by
some models of cosmic inflation assuming that the cosmic scale factor grew by a factor 𝑒𝑁 , with
𝑁 ∈ [45, 60], in line with current expectations. Inflationary models considered are: Cosine Natural
inflation (Freese et al., 1990), Starobinsky (𝑅2) inflation (Starobinsky, 1980; Starobinskij, 1992),
and 𝜙𝑛 inflation (Linde, 1983; McAllister et al., 2010). The horizontal dashed black line indicates
the 95% CL upper limit on primordial gravitational waves from BICEP2/Keck Collaboration (2021).
This figure was taken from SO Collaboration (2019).
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survey of the polarized microwave sky, including a high-sensitivity measurement of the large-scale
reionzation bump. Upcoming ground-based experiments, such as SO, BICEP Array, and CMB-S4,
will provide complementary small-scale measurements necessary to delens large-scale B-modes
measured by LiteBIRD. LiteBIRD’s polarization-sensitive transition-edge sensor (TES) array will
observe in 15 frequency bands between 34 and 448 GHz, and is expected to reach a typical angular
resolution of 0.5 degrees at 100 GHz. LiteBIRD will be the first full-sky CMB experiment since
Planck, and its increased sensitivity and better control of systematics will allow to probe large-scale
polarization effects such as the optical depth to reionization 𝜏 and the sum of neutrino masses,
cosmic birefringence, primordial magnetic fields, spectral distortions in the CMB, and large-scale
anomalies observed in Planck temperature maps.

CMB-S4 (Carlstrom et al., 2019) is a next-generation ground-based experiment of ambitious
dimension that is designed to set new limits on primordial physics and the cosmic thermal history,
and provide a “centimeter to millimeter legacy data set” for astrophysics and cosmology. Scheduled
for two seven-year surveys in the 2030s, CMB-S4 will consist of 21 telescopes located at the South
Pole and in the Chilean Atacama desert. One one hand, a low-resolution B-mode survey will
observe three percent of the sky through one LAT and up to 18 SATs in nine frequency bands
between 20 and 270 GHz, targeting a noise level below 1`K-arcmin. On the other hand, a wide
and deep survey set out to scan 70% of the sky through two additional 6m LATs will produce a 1.5
arcmin-resolution legacy data set to probe small-scale temperature and polarization anisotropies in
the CMB at unprecedented sensitivity. While upcoming surveys and science goals are yet to be
defined in detail, two of CMB-S4’s main science goals are to constrain the primordial tensor-to-
scalar ratio at a precision of 𝜎(𝑟) ∼ 5 × 10−4 and pin down the uncertainty in effective number of
relativistic particles to Δ𝑁eff ≤ 0.06 at 95% CL (Abazajian et al., 2019).

In Table 2.1, we show an overview of the predicted constraints on a selection of key cosmological
parameters with SO, LiteBIRD and CMB-S4.

2.6 Polarized Galactic foregrounds

The challenge of measuring the tiny B-mode signal in the CMB is significantly aggravated by the
large polarized emission from our own Galaxy. The two main sources, thermal emission from
interstellar dust and synchrotron emission from cosmic ray electrons, are the dominant signals on
the microwave sky at degree angular scales. Current data cannot constrain sky emission models
well enough to allow for a foreground-bias-free measurement of 𝑟, no matter the true amplitude
of the primordial signal. Characterizing Galactic foregrounds is therefore a priority for near-
future B-mode experiments. Galactic synchrotron and dust emission, although of different physical
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Table 2.1: Selection of uncertainties on cosmological parameters at 68% central CL, according to
current measurements and future predictions for SO (SO Collaboration, 2019), LiteBIRD (Lite-
BIRD Collaboration, 2023) and CMB-S4 (Abazajian et al., 2019). Parameters that represent ex-
tensions to the ΛCDM model are: the tensor-to-scalar ratio 𝑟, the local primordial non-Gaussianity
parameter 𝑓 local

NL , the sum of neutrino masses
∑
𝑚a and the effective number of relativistic species

𝑁eff . Current results are taken from (Planck Collaboration VI, 2020), unless indicated differently.

Predicted 68% CL uncertainties (ΛCDM plus extensions)

Parameter Current SO (baseline) LiteBIRD CMB-S4

𝑛𝑠 0.0038 0.0020 - 0.0020
𝜏 0.0060† - 0.0020 0.0025

𝑟 0.009‡ 0.003 0.001 0.0005
𝑓 local
NL 5.1∗ 2.0 - 0.57∑

𝑚a [meV] 60 40 12 15
𝑁eff 0.15 0.07 0.15 0.03

† Pagano et al. (2020) ‡ BICEP2/Keck Collaboration (2021) ∗ Planck Collaboration IX (2020)

origin, ultimately trace the morphology of the Galactic magnetic field (GMF). In the following, we
briefly discuss both components in terms of their phenomenology, current models and experimental
limitations, and their impact on CMB B-mode measurements.

2.6.1 Synchrotron emission

Synchrotron emission is caused by the accelerated motion of cosmic ray electrons in the presence
of the GMF, with an amplitude that depends on the magnetic field strength. The degree-scale
morphology of Galactic synchrotron emission is not limited to the Galactic disk, but extends far
beyond, following the magnetic field lines. Measurements show that linearly polarized Galactic
synchrotron emission can be approximated by a power law (Planck Collaboration X, 2016),

𝑓 a𝑠 = 𝐴𝑠

(
a

a0,𝑠

) 𝛽𝑠
(2.9)

with a spectral index 𝛽𝑠 ∼ −3, which also follows if we assume a power law spectral energy dis-
tribution (SED) for the cosmic ray electrons. Synchrotron emission is intrinsically polarized, with
a polarization fraction of ≲15% at intermediate and high Galactic latitude (Planck Collaboration
XXV, 2016; Page et al., 2007). We therefore expect no substantial difference between the polarized
and unpolarized synchrotron SED. While Planck data alone are not sensitive enough to measure
the spatial variability of the synchrotron spectral index, recent ground-based experiments show that
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at degree scales, 𝛽𝑠 varies at the percent level when observed in the southern hemisphere (Harper
et al., 2022; Krachmalnicoff et al., 2018).

The BB power spectrum can be roughly described by a power law, 𝐷ℓ ≡ ℓ(ℓ + 1)𝐶ℓ/2𝜋 =

𝐴𝑠 (ℓ/80)𝛼𝑠 , with amplitude 𝐴𝑠 and spectral index 𝛼𝑠. This simple model assumes that the syn-
chrotron morphology is the same for all frequencies and therefore does not account for variations in
the SED spectral index. Synchrotron emission dominates CMB B-modes at frequencies below 70
GHz. Krachmalnicoff et al. (2016) find that there is no region in the sky, nor frequency below 100
GHz, where synchrotron emission would be subdominant with respect to CMB B-modes. Recent
analyses of data from the S-Band Polarization All Sky Survey (S-PASS) combined with Planck,
WMAP data show that the minimum synchrotron contamination at degree angular scales at 90 GHz
is at the level of an equivalent tensor-to-scalar 𝑟synch ∼ 10−3 (Krachmalnicoff et al., 2018).

The Q-U-I JOint Tenerife Experiment (QUIJOTE)5 (Rubiño-Martı́n et al., 2010) is a ground-
based experiment located at the Teide Observatory in Tenerife, Canary Islands, with the scientific
goal of observing the polarized microwave sky at degree angular resolution at frequencies between
10 and 40 GHz. During a wide Galactic survey between 2012 to 2018, QUIJOTE’s Mid Frequency
Instrument (MFI) observed the northern sky, including the Galactic plane, at degrees between 10
and 20 GHz. Recent results from this survey (de la Hoz et al., 2023) find a mean synchrotron
spectral index of 𝛽𝑠 = −3.08 and with a degree-scale spatial dispersion of 0.13. Furthermore, the
power-law emission model describes data sufficiently well outside the Galactic plane but fails for
data inside this region. These results corroborate that characterizing synchrotron emission at a
sensitivity relevant for future B-mode experiments requires data models beyond a simple uniform
power-law SED.

2.6.2 Thermal dust emission

Thermal dust emission is caused by elongated dust grains, which align with the Galactic magnetic
field lines and radiate thermally with a nonzero fraction of linear polarization. While the exact
physical properties of these interstellar dust grains are unknown, some models consider multiple
dust populations (Guillet, V. et al., 2018), while others assume a single population (Draine &
Hensley, 2021). The dust SED in polarization is commonly described by a modified blackbody
law,

𝑓 a𝑑 = 𝐴𝑑

(
a

a0,𝑑

) 𝛽𝑑−2
𝐵a (𝑇𝑑)
𝐵a0,𝑑 (𝑇𝑑)

(2.10)

with temperature 𝑇𝑑 ∼ 20 K, a spectral index 𝛽𝑑 ∼ 1.5, and an arbitrary pivot frequency that we fix
to a0,𝑑 = 353 GHz. Observations at large scales find that the dust spectral indices in total intensity

5URL: research.iac.es/proyecto/quijote/pages/en/home.php
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and in polarization agree within 10% (Planck Collaboration XI, 2020; Ashton et al., 2018).
At subdegree scales, the morphology of polarized Galactic dust emission is poorly known due

to the lack of higher-resolution observations. Degree-scale observations are consistent with a BB
power spectrum model with a negative spectral index and significant variation among different
regions of the sky (Planck Collaboration XI, 2020). Moreover, when considering different dust
populations with different spectral indices that emit into the same line of sight, their average SED is
expected to differ from a modified blackbody law (Chluba et al., 2017). In recent years, alternative
models have been designed that account for spatial variation of the spectral emission laws of
Galactic foregrounds. Those include parameterizing frequency decorrelation, or accounting for
linear fluctuations in the dust SED via the so-called “moment expansion” (Tegmark, 1998; Chluba
et al., 2017; Azzoni et al., 2021). We address this latter model in Chpt. 3, when talking about the
𝐶ℓ-based component separation pipeline for SO.

Synchrotron and dust emission may, to some degree, exhibit a statistical correlation, consider-
ing their connection with the GMF. A common assumption in power-spectrum-based foreground
models is to include a scale-independent correlation coefficient, which current data constrain to be
lower than 20% (Choi & Page, 2015; Krachmalnicoff et al., 2018).

2.6.3 CMB contamination

Figure 2.8 shows current constraints on the BB power spectrum amplitudes of diffuse polarized
Galactic synchrotron and thermal dust foregrounds, estimated from from S-PASS, WMAP, and
Planck (Krachmalnicoff et al., 2018; Planck Collaboration Int. XXX, 2016). The power spectra
are measured on 184 patches at intermediate and large Galactic latitudes (|𝑏 | > 20 deg), covering
a sky fraction of about 1% each, and assuming power-law power spectra with fixed spectral
indices 𝛼𝑠 = −1 and 𝛼𝑑 = −0.42. Synchrotron and dust maps are evaluated at 2.3 and 353 GHz,
respectively, and multifrequency emissions are extrapolated using a power-law SED for synchrotron
and a modified-blackbody SED for dust, assuming 𝛽𝑠 = −3.22± 0.08, 𝑇𝑑 = 19.6 K, and 𝛽𝑑 = 1.59.
The figure shows that degree-scale Galactic foreground emission surpasses the CMB emission at
all frequencies considered. Krachmalnicoff et al. (2018) further conclude that not accounting for
the morphological complexity of Galactic B-mode emission would lead to biases on the tensor-
to-scalar ratio at the level 𝛿𝑟 ∼ 0.01-0.001 at intermediate to high Galactic latitudes. Therefore,
future B-mode searches rely on multifrequency observations to be able to characterize and subtract
foregrounds at the necessary accuracy.
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Figure 2.8: Constraints on the rescaled BB power spectrum amplitudes, 𝐷ℓ ≡ ℓ(ℓ + 1)𝐶ℓ/2𝜋,
inferred from real Galactic synchrotron and dust maps at 2.3 GHz and 353 GHz, respectively,
compared with theoretical predictions of cosmological and lensing B-modes. Emissions are in-
terpolated to different frequencies using isotropic SEDs of a power-law and a modified blackbody
shape, respectively. Foreground power spectra are evaluated in 184 circular sky regions at interme-
diate and high Galactic latitudes, each with a sky fraction of about 1%, assuming isotropic, fixed
power-law power spectral indices. Original work and figure: (Krachmalnicoff et al., 2018).
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2.7 Instrumental systematic effects

Instrumental systematic effects, as well as Galactic foregrounds, are the dominant potential sources
of bias for the next generation of CMB experiments, presented in Sect. 2.5. In this section, we
briefly address some of the most relevant sources of systematic uncertainty in near-future ground-
based CMB experiments, such as SO, which is the focus of Chpts. 3 and 4. While the detailed
inclusion of instrumental systematic effects are beyond the scope of the data analysis techniques
discussed there, the tight control of all possible sources of bias is essential for the robust detection
of primordial B-modes.

For ground-based experiments, two important contaminants are atmospheric emission and
ground pickup. These effects determine the choice of the telescope site and the design of the
optical elements, and are therefore closely related to the instrumental systematics discussed be-
low. In practice, the bulk of atmospheric systematic effects, mostly caused by the abundance of
precipitable water vapor, as well as emission from the terrain surrounding the telescope, can be
mitigated by applying a set of filters to the telescope timestream data. Timestream filtering affects
mainly low sampling frequencies, which predominantly translate to large angular scales on the sky,
and thus leads to a reduced number of measured modes at low to intermediate ℓ. This contributes
to a statistical large-scale noise known as 1/ 𝒇 noise that decreases the statistical sensitivity from
the ground. As we shall see later, employing an optical component called a cryogenic rotating
half-wave plate (CRHWP) can improve on this by trading in some of the 1/ 𝑓 noise for another,
potentially less harmful type of systematic effect.

In the following, we give a brief but general overview on instrumental contaminants expected to
be important for SO, although those can be considered relevant for most other next-generation CMB
experiments, too. With the scope of this Thesis being CMB polarization, we focus on polarization
effects. We do not attempt to give a complete list of all possible instrumental effects that SO
may encounter, and refer to the literature works cited in this section, and references therein, for an
extended discussion.

We begin by discussing three categories of instrumental effects: optical effects, detector-related
effects, and effects connected to polarization modulation. We then focus on a subset of instrumental
effects that specifically impact degree-scale BB measurements and explain how they translate to a
bias the tensor-to-scalar ratio.

Optical systematic effects. The first category of instrumental effects are those related to optical
elements of the telescope, as described in Gallardo et al. (2018). This concerns the instrument
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beam, orthogonal detector pairs, and the telescope pointing.

• The instrument beam, which is the optical response of the instrument to an incoming signal
in the field of view, can vary with the detector position within the optical array, the weather
conditions on site, or the observed frequency. To avoid bias in the signal amplitude, the beam
shape must be well characterized through calibration from external polarized sources, such as
planets like Jupiter, or flying drones. The instrument beam contains a central main beam, near
sidelobes adjacent to the main beam, and far sidelobes, which can be up to 180 degrees away
from the main beam. Near sidelobes can produce ghost images resulting from reflection,
scattering, or diffraction by optical elements, while far sidelobes can contain large-amplitude
stray light which degrades the detector performance. Sidelobe pickup can be mitigated by
reflective baffles that guide light rays away from the receiver.

• Pair-differencing systems such as the SO Large Aperture Telescope (LAT) relies on estimating
the Stokes Q and U parameters by subtracting the signals from co-pointed detectors sensitive
to orthogonal polarization states. Instrumental temperature-to-polarization (T-to-P) and E-
to-B leakage can be caused through differential transmission or reflection by optical elements.
These two types of leakage are especially important since total intensity is generally larger
than the polarized intensity, and CMB E-modes are much larger than B-modes. Both types
of leakage can also arise from imperfect detector pair orthogonality. The latter effect can be
mitigated by employing a CRHWP as a polarization modulator as implemented in the SO
SATs, which we discuss below.

• Another possible systematic effect are telescope pointing uncertainties that can arise either
from mechanical jitter whilst rotating the instrument, or long-term distortions in the optical
elements. The first effect causes a small-scale degradation of the beam and can be reduced
through careful calibration, while the latter effect creates beam distortions that are more
difficult to model and can be minimized, for instance, by mechanical reinforcements.

Detector-related systematic effects. The second category are systematics related to polarization-
sensitive detector arrays. Following Crowley et al. (2018), we focus on nonlinear bolometer
response, gain variations, and readout crosstalk.

• The polarization-sensitive detectors, called bolometers, are known to have a nonlinear re-
sponse to the input signal that can vary with environmental conditions such as the Earth’s
atmosphere along the telescope’s line of sight. These generally cause a global variation in
T, Q, and U which translate to 1/ 𝑓 noise in timestream data, and must be estimated from
timestream simulations. In the case of SO LAT, where polarization is measured through
pair-differencing, this also causes T-to-P and E-to-B leakage.
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• Detector gain drifts are caused by the long-timescale instability of the thermal bath tempera-
ture during observations of a scanning telescope. This signal-independent effect depends on
the type of detectors used, and generally causes large-scale noise and multiplicative bias in
the power spectra.

• Lastly, detector crosstalk is induced by the detector readout architecture, and refers to any
spurious coupling of one detector’s signal into the measured signal of another detector. In a
pair-differencing experiment such as SO LAT, detector crosstalk leads to T-to-P leakage and
E-to-B leakage, while in CRHWP experiments such at the SATs, detector crosstalk does not
contaminate the polarization channels with the brighter temperature signal, as we shall see
next.

Systematic effects from polarization modulation. A cryogenic, continuously-rotating half-
wave plate (CRHWP), as used in the SO SATs, is an optical system that modulates the incoming
polarization signal to alleviate systematic effects arising from slowly varying noise and detector
pair-differencing. This mitigates T-to-P leakage but introduces other systematic effects, like the
half-wave plate synchronous signal (HWPSS) which causes a non-linearity in the detector re-
sponse, introducing another, subdominant, source of T-to-P leakage. Salatino et al. (2018) studied
the CRHWP systematic effects for a telescope with the SO SATs’ specifications, and find a total
leakage coefficient well below one percent.

Effects on degree-scale B-modes. Having explored general instrumental systematic effects
relevant for a ground-based CMB experiment like SO, we present here an example of a specific
forecast for SO. In a recent work, Abitbol et al. (2021) quantify requirements on instrumental
systematics calibration to guarantee a bias of the tensor-to-scalar ratio 𝑟 at or below 𝛿𝑟 ∼ 10−3. The
authors consider gain variations, uncertainties in the frequency band centers, and uncertainties in the
polarization angle. Errors in the frequency bandpasses may be caused by time-variable atmospheric
effects, which influence the Galactic foreground parameters that leak into the cleaned CMB. A
frequency-dependence of the polarization angle, which may be caused by material properties of
the CRHWP, leads to E-to-B leakage and a corresponding bias on 𝑟. The authors find that gain
calibration factors and bandpass center frequencies must be known to percent level or better, while
polarization angles must be calibrated to the level of a few tenths of a degree to guarantee a robust
measurement of 𝑟.

These forecasts show how scientific goals translate from cosmological constraints into in-
strumental requirements, and demonstrate the synergy that is needed between instrumentation,
calibration, and science analysis working groups within a large collaboration such as SO.
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CHAPTER 3

Power spectrum pipeline to constrain primordial
B-modes

The Simons Observatory aims at measuring or tightening the experimental constraints on primor-
dial gravitational waves through degree-scale polarization B-modes in the CMB. This would have
a significant impact on theories of the very early Universe, such as cosmic inflation. We know
that this signal on the sky would be dominated by Galactic thermal dust and synchrotron emission
and B-modes from gravitational lensing due to the cosmic LSS. Moreover, instrumental correlated
noise and systematic effects, which typically depend on the details of the experimental setup, may
significantly contaminate the sky signal (see Sect. 2.7). Measuring this extremely faint gravita-
tional wave background thus requires using algorithms that accurately characterize and clean each
of these contaminants on the partial sky. Subtracting the B-mode lensing contribution, also called
“delensing”, requires E-mode observations at intermediate scales or tracers of the LSS (Lewis &
Challinor, 2006; Namikawa et al., 2022), while noise mitigation requires excellent knowledge of
instrumental properties. Removing Galactic foreground emission relies on observations at mul-
tiple frequencies to separate components based on the spectral difference compared to the CMB
(Delabrouille & Cardoso, 2007; Leach et al., 2008). To achieve this, the SO SATs measure the
degree-scale polarized sky in six frequency bands from 27 to 280 GHz (SO Collaboration, 2019;
Ali et al., 2020).

Estimating angular power spectra (𝐶ℓs) of a polarized field on the partial sky brings two main
challenges. Firstly, observing only a fraction of the sphere breaks isotropy by cutting off harmonic
modes on the sky, which introduces uncertainty about the angular scales that we measure. This
leads to a coupling between different ℓ-modes estimated on the partial sky (Hivon et al., 2002). Sec-
ondly, since E- and B-modes are geometrical patterns defined on the full sky, observing the partial
sky makes them intrinsically hard to disentangle and leads to “leakage” from E- to B-modes, and
vice versa. Given that the E-modes of the CMB are much larger in amplitude than CMB B-modes,
the main practical challenge for𝐶ℓ-based B-mode analyses is thus to distinguish leaked, ambiguous
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modes from the true B-mode signal, a technique known as “B-mode purification” (Smith, 2006;
Smith & Zaldarriaga, 2007; Bunn, 2011). In the first part of this chapter (Sect. 3.1), we address the
question of how to practically solve these issues when estimating power spectra.

The remaining part of this chapter addresses the question of how to infer cosmological pa-
rameters from degree-scale multifrequency B-mode power spectra, introducing power spectrum
likelihoods (Sect. 3.2) and data models (Sect. 3.3). We then introduce the core work of this
Thesis, the development and validation of a power-spectrum-based component separation pipeline
for analyzing degree-scale B-modes with SO (Sect. 3.4). The power spectrum pipeline, based on
an approach used by the BICEP/Keck Collaboration (BICEP2/Keck Collaboration, 2016b, 2018),
is one of three algorithms developed for SO with the aim of robustly inferring 𝑟 on partial sky
maps in the presence of Galactic foregrounds and instrumental noise. This pipeline computes BB
power spectra from four data split maps at the six SO frequencies, considering the partial sky as
observed by the SO SATs. The data splits are assumed to contain noise that is uncorrelated at
the map level. We compute “cross-split” power spectra by correlating unequal data splits, thereby
avoiding bias in the power spectra coming from the map-level noise autocorrelation. The resulting
noise-unbiased multifrequency power spectrum estimates are then compared against a theoretical
multi-component power spectrum model in a likelihood that is sampled within a Bayesian MCMC
framework. The pipeline infers cosmological parameters associated with the CMB as well as astro-
physical parameters associated with Galactic foregrounds, and can therefore retrieve the marginal
posterior of the tensor-to-scalar ratio by integrating (“marginalizing”) over foreground parameters.
In order to validate the SO component separation pipelines in their ability to perform this task, they
were tested against models of Galactic foregrounds of varying complexity in a pipeline comparison
project (Wolz et al., 2023a), which we describe in Chpt. 4.

This chapter is structured as follows. We start by reviewing present power spectrum estimation
and the associated challenges in Sect. 3.1. We then discuss the ingredients needed to perform
statistical inference with CMB power spectra, starting with the 𝐶ℓ likelihood in Sect. 3.2 and
moving to theoretical models of degree-scale B-modes on the microwave sky in Sect. 3.3. Finally,
in Sect. 3.4, we describe the SO𝐶ℓ pipeline, focusing on the implementation of the power spectrum
estimation, the covariance computation, and the Bayesian inference framework, before outlining
the numerical code in Sect. 3.4.4. We summarize our findings in Sect. 3.5.
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3.1 Estimating power spectra on the partial sky

The angular power spectrum, the harmonic transform of the two-point correlation function, is an
established summary statistic with a legacy worth of reliable estimators and inference methods
suited to analyze CMB polarization. It has important practical and theoretical benefits: Compared
to maps, the power spectrum provides efficient data compression while maintaining a physical
meaning that is easy to interpret. Current Planck data support the hypothesis of a Gaussian CMB
(Planck Collaboration VII, 2020), in which case the statistical information is fully encoded in
the power spectrum. If the data contain non-Gaussian components, such as Galactic foreground
emission, the power spectrum still represents a key statistical quantity. In this section, we explore
the practical challenge of estimating unbiased and near-optimal power spectra at the partial sky,
which is aggravated by the coupling of harmonic modes and E-to-B leakage. We then present
the pseudo-𝐶ℓ estimator, which is the algorithm used in the SO 𝐶ℓ pipeline, and explain how it
addresses the aforementioned problems. We also briefly outline the quadratic maximum likelihood
(QML) estimator.

3.1.1 Bandpower coupling and E/B leakage

Analyzing power spectra on the partial sky is a nontrivial task. On the full sky, computing the
angular power spectrum of an isotropic field involves an integration over all points of the sphere,
which is no longer possible on the incomplete sky. Observing only a part of the sky breaks isotropy
and causes a coupling between different ℓ-modes. This is because on the partial sky, spherical
harmonics do not form an orthogonal basis, hence they no longer provide a unique mapping between
angular scales and ℓ-modes. By observing only a part of the sky, we cut off a subset of harmonic
modes, which effectively introduces an intrinsic ambiguity as to what angular scales we measure,
called “mode coupling”. In real data analysis, our goal is therefore to capture the expected effect
that the observation mask has on our measurement, which allows us to retrieve the estimated𝐶ℓs as
they would appear on the full sky. This is achieved through the so-called “mode coupling matrix”,
which we discuss in detail in the context of the pseudo-𝐶ℓ estimator.

While mode coupling affects the estimation of power spectra of both scalar and polarization
fields, an additional complication in the polarized case is E/B leakage. On the full sky, all E-
and B-modes are uniquely defined, while on the partial sky, some of the polarization modes are
ambiguous and cannot be assigned to one type or the other. Analogous to harmonic modes,
E- and B-modes couple on the incomplete sky as a result of information loss from cutting off
parts of the sky, and with it geometric patterns in Q and U. This causes part of the (unobserved)
full-sky E-modes to become ambiguous modes, which bear the risk of being misinterpreted as
B-modes, and vice versa. Due to the relative smallness of CMB B-modes with respect to E-modes
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(𝐶𝐸𝐸
ℓ

/𝐶𝐵𝐵
ℓ

∼ 103 for ℓ ∼ 90), E-to-B leakage can lead to a significant positive bias in degree-scale
B-mode measurements, making this a high-risk contaminant in the search for primordial B-modes.
Besides said bias, E-to-B leakage increases the B-mode power spectrum variance, adding to the
statistical uncertainty associated with the primordial tensor-to-scalar ratio. Fortunately, reliable
and efficient methods exist that tightly control and mitigate these effects, which we detail in the
following section.

Mode coupling and E/B leakage can be addressed by different algorithms that estimate angular
power spectra on the partial sky. The SO 𝐶ℓ pipeline employs the pseudo-𝐶ℓ estimator, which is
a versatile and efficient power spectrum estimator commonly applied to analyze the small angular
scales of the CMB. We present the pseudo-𝐶ℓ algorithm in detail in the following section.

3.1.2 The pseudo-𝐶ℓ (PCL) estimator

The pseudo-𝐶ℓ (PCL) estimator (Hivon et al., 2002) is a semi-analytical algorithm designed to
estimate unbiased, full-sky angular power spectra from scalar or polarized fields observed on the
partial sky. It is based on the analytical computation of the mode coupling matrix requiring only
the sky mask and not the map itself, making it extremely efficient. The PCL estimator is always
unbiased, meaning it correctly reproduces the full-sky 𝐶ℓ on average. Moreover, the PCL with
B-mode purification is an optimal estimator of B-modes on the partial sky, meaning that it reaches
the lowest possible variance, assuming that pixels on the sky are statistically uncorrelated. For
ground-based experiments such as SO, this is often a sufficiently accurate assumption as long as
correlated systematic effects, such as large-scale “stripes” from the atmosphere, or detector gain
drift, can be neglected. Otherwise, the PCL estimator is no longer optimal but stays unbiased. We
briefly address optimal quadratic estimators below.

Let us have a look at the PCL estimator in more detail. For two polarized fields labeled 𝑋 and
𝑌 with measured harmonic coefficients 𝑎𝑋/𝑌,𝑝

ℓ𝑚
and 𝑝, 𝑞, 𝑝′, 𝑞′ ∈ {𝐸, 𝐵}, the PCL estimator can be

written as

�̂�
(𝑋,𝑝) (𝑌,𝑞)
ℓ

≡
∑︁
𝑝′,𝑞′

∞∑︁
ℓ′=0

(M−1)𝑝𝑞, 𝑝
′𝑞′

ℓℓ′ �̃�
(𝑋,𝑝′) (𝑌,𝑞′)
ℓ′ , (3.1)

where
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ℓ∑︁
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𝑎
𝑋,𝑝

ℓ𝑚
(𝑎𝑌,𝑞
ℓ𝑚

)∗

2ℓ + 1
(3.2)

is the naı̈ve, full-sky power spectrum estimator. The matrix M in Eq. (3.1) is the mode coupling
matrix mentioned above. It is defined as the linear map between the true, full-sky polarization
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power spectrum 𝐶
(𝑋,𝑝) (𝑌,𝑞)
ℓ

and the expectation value of the full-sky estimator,

∑︁
𝑝′,𝑞′

∞∑︁
ℓ′=0

𝑀
𝑝𝑞, 𝑝′𝑞′
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(𝑋,𝑝′) (𝑌,𝑞′)
ℓ′ =

〈
�̃�

(𝑋,𝑝) (𝑌,𝑞)
ℓ

〉
. (3.3)

If M−1 exists, using it to linearly transform the naı̈ve estimator as in Eq. (3.1) defines an unbiased
estimator. Binning the multipoles into ℓ-bins is a common practical way to ensure the invertibility
of the mode coupling matrix (Alonso et al., 2019).

For a polarized field, the mode coupling matrix contains 4x4 blocks that each map from the pair
of polarization modes (𝑝′, 𝑞′) to the pair (𝑝, 𝑞). Using the basic assumption that the pixels on the
sky are statistically uncorrelated, the mode coupling matrix can be written analytically as (Kogut
et al., 2003; Hansen & Gorski, 2003)

Mℓℓ′ =

©«
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, (3.4)

where

𝑀±
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2ℓ′ + 1
4𝜋
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ℓ′′=0
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(
ℓ ℓ′ ℓ′′

2 −2 0

)2
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. (3.5)

In the last step, we introduced the Wigner-3j symbol, and

𝑃𝑤ℓ ≡
ℓ∑︁

𝑚=−ℓ
|𝑎𝑤ℓ𝑚 |

2 , (3.6)

where 𝑎𝑤
ℓ𝑚

is the scalar spherical harmonic transform of the sky mask 𝑤( �̂�). Evaluating the PCL
estimator is extremely fast, since M need only be computed once for each mask, and the Wigner-6j
matrix elements can be read from precomputed lists. The numerical PCL estimation typically
scales like the cube of the maximum multipole probed, ℓ3

max). Together with its being unbiased,
this makes the PCL estimator a standard choice in CMB analysis.

Let us discuss how the PCL estimator solves the issues of mode coupling and E-to-B leakage.
Mode coupling manifests in the offdiagonal elements in the matrices (𝑀±

ℓℓ′), which depend directly
on the mask’s angular power spectrum defined in Eq. (3.6). Likewise, the leakage between E- and
B-modes becomes evident from the nonzero offdiagonal blocks in the matrix M, which all happen
to be proportional to (𝑀−

ℓℓ′), as can be seen from Eq. (3.4). If the mask is isotropic, meaning that we
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apply no sky cuts, it can be algebraically shown that the total coupling matrix M becomes the unity
matrix, in which case the different ℓs decouple, and the PCL estimator reduces to the full-sky esti-
mator. If the mask covers the incomplete sky, we can analytically solve the mode coupling issue by
multiplying the full-sky estimate by the inverse mode coupling matrix as done in Eq. (3.1). This de-
couples the multipoles and allows us to obtain unbiased power spectrum estimates on the partial sky.

The standard PCL estimator, although correcting for mode coupling and power spectrum bias
due to E/B leakage, does not solve the issue of power spectrum variance leakage between E- and
B-modes. While the mode coupling matrix formalism is designed to retrieve an unbiased estimate
of the full-sky power spectra of E- and B-modes (their two-point statistics), it does not provide
unbiased estimates of the power spectrum variance (the four-point statistics). Since the cosmological
B-mode signal targeted by SO is much smaller than the E-mode signal, the B-mode power spectrum
variance is expected to be systematically amplified by the presence of ambiguous modes, unless
we isolate and subtract the ambiguous signal on the map level before estimating the B-mode power
spectrum. Such procedure is called “B-mode purification”. The associated algorithm is described
in Smith (2006); Bunn (2011) and a recent software implementation is contained in the NaMaster
code framework (Alonso et al., 2019). To gain some insight into the purification algorithm, let us
first acknowledge that on the (full) 2-sphere, we can define a differential operator B that turns a
scalar field into B-modes (see Appendix A1 of Alonso et al., 2019). The standard procedure of
estimating B-modes on the full sky can be described by three consecutive operations:

1. We construct a “full-sky B-mode basis” by applying B to the well-known scalar spherical
harmonics 𝑌ℓ𝑚.

2. We project the polarization field that we want to analyze onto this full-sky B-mode basis.

3. We average over the full 2-sphere to obtain the final, unbiased B-mode harmonic coefficients.

If we observe the incomplete sky, then step 3 picks up ambiguous E-modes because of information
loss due to the unobserved modes. To prevent this from happening, we can modify step 1 to
construct a “cut-sky B-mode basis” by first multiplying the scalar spherical harmonics 𝑌ℓ𝑚 by the
observation mask, and then applying B to the product of both. This new basis projects out a smaller
set of modes called “pure” B-modes, which are orthogonal to the ambiguous modes, thus allowing
us to safely perform a full-sky average in step 3. As a result, we obtain partial-sky estimates of
pure B-mode harmonic coefficients, which are free from spurious E-modes. In particular, pure
B-modes allow us to estimate unbiased BB power spectra with no variance leakage. To combine
this procedure with the PCL algorithm, we need to make small modifications in the mode coupling
matrix 𝑀±

ℓℓ′ in Eq. (3.5) (see, e.g., Eq. (35) in Alonso et al., 2019). We also need to ensure that
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our observation mask is differentiable everywhere, which can be achieved by tapering the mask
boundaries to avoid sharp edges, also known as “apodization” (see Grain et al., 2009, for a thorough
discussion of these methods).

The SO 𝐶ℓ pipeline uses the NaMaster code (Alonso et al., 2019)1 to calculate the PCL es-
timator. The code is written in C and wrapped into python to facilitate combination with other
astronomy software libraries. For increased efficiency, NaMaster is structured around two main
classes (NmtField and NmtWorkspace) that incorporate field-level operations, such as spherical
harmonic transformation and B-mode purification, and correlation-level operations, such as com-
puting the PCL estimate and the mode coupling matrix. A NmtField object can be initialized with
a sky mask, a pair of Stokes Q and U maps that represent the input data, a beam transfer function,
and a flag to enable or disable B-mode purification. A NmtWorkspace object can compute the
mode coupling matrix from a pair of fields and a given ℓ-binning scheme, and decoupled PCL
estimates. Numerical stability and regularization of the mode coupling matrix warrants a binning
into bandpower windows, which is included as a convenience function in NaMaster. We note
that binning of 𝐶ℓs is only equivalent to a simple averaging over ℓs if we observe the full sky,
while on the partial sky, exchanging the order of binning and mode decoupling leads to different
results. Therefore, binned bandpower windows do not retain a rectangular shape but are smoothed
out depending on the details of the shape and borders of the mask. More details can be found in
Alonso et al. (2019).

3.1.3 The quadratic maximum likelihood (QML) estimator

The PCL estimator ignores any statistical correlation between different pixels in both signal and
noise. This is a good approximation if a) the noise bias can be avoided (e.g., via the cross-split
technique which we discuss later in Sect. 3.4), and b) correlated modes (e.g., atmospheric “stripes”
as a result of timestream filtering) can be neglected. In that case, the PCL estimator retrieves the
true full-sky B-mode power spectrum without bias, but obtaining a minimum-variance estimator
requires purification, as we saw in the previous section. It is possible to construct an unbiased,
minimum-variance estimator of polarization E- and B-modes on the incomplete sky that also
accounts for correlations between different pixels. This generalized estimator is known as the
quadratic maximum likelihood (QML) algorithm. The QML estimator accounts for real-space
correlation by weighting sky pixels with the full inverse pixel-pixel covariance matrix, instead of
just weighting every pixel with its inverse variance, as done in the PCL case.2 The QML algorithm

1Source code: github.com/LSSTDESC/NaMaster, documentation: namaster.readthedocs.io/
2The PCL estimator assigns infinite variance to unobserved pixels.
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is computationally expensive, demanding O(𝑁3
pix) operations for a map of 𝑁pix pixels, whereas

PCL is generally much faster in comparison, requiring only O(𝑁3/2
pix ) operations (Tegmark & de

Oliveira-Costa, 2001). Therefore, analysis pipelines of CMB polarization data usually apply QML
only to low-resolution maps that capture multipoles up to ℓ = 200 and resort to the faster PCL
method for smaller scales. The QML estimator represents a generalization of the PCL estimator,
and since we do not use it in the SO 𝐶ℓ pipeline, we do not lay out the mathematical details here.
We refer to Efstathiou (2004, 2006) for more details.

3.2 Power spectrum likelihoods

Inferring cosmological parameters from measured angular power spectra of a field on the sky re-
quires, besides a theoretical data model to compare with, a likelihood that allows the assessment of
statistical uncertainty. As we saw previously, the power spectrum statistic represents the two-point
information of a given field, and describes its full statistical properties if this field is Gaussian. If
non-Gaussian effects on the field level are sufficiently small, the power spectrum has a well under-
stood probability distribution that allows the construction of fast-to-evaluate analytical likelihoods.
Once we have a theoretical model, parameterized by a set of physical parameters as we shall see
later in Sect. 3.3, we can evaluate the power spectrum likelihood at different values in parameter
space. The final parameter distribution, called the posterior, combines the information from the
data likelihood with a parameter prior distribution, and can be estimated by numerical sampling
methods such as Monte Carlo Markov chain (MCMC).

In this section, we introduce several analytical likelihoods for power spectrum data that are
commonly used in CMB polarization analysis. We focus on the Gaussian likelihood approximation
that, as we shall see later, represents an accurate and numerically efficient choice for the SO 𝐶ℓ

pipeline. We briefly discuss alternative likelihood expressions that accurately describe the statistics
of the power spectrum estimate in more general cases.

3.2.1 Gaussian approximation

For the SO 𝐶ℓ pipeline, we employ the Gaussian likelihood approximation, which assumes that the
binned 𝐶ℓ multipoles can be described as Gaussian random variables. To see that this is a good
approximation, we first observe that binned power spectrum estimates are generally given by the
sum of 𝑀 = 𝑓skyΔℓ(2ℓ + 1) harmonic modes, where 𝑓sky ∈ (0, 1] is the observed sky fraction
and Δℓ is the width of the multipole bin. By virtue of the central limit theorem (see e.g., Eicker,
1966), the true power spectrum likelihood converges to a Gaussian distribution as 𝑀 → ∞, so the
distribution of𝐶ℓ estimates is close to Gaussian as long as ℓ-modes and ℓ-bin widths are sufficiently
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large.
CMB polarization experiments such as SO measure B-mode power spectra across different

frequency channels and at different angular scales, which are arranged in a data vector. The power
spectrum likelihood quantifies the statistical distribution of this data vector, including correlations
among pairs of channels and pairs of angular modes. The Gaussian likelihood approximation
𝑃(�̂� |𝜽), evaluated at a given data vector �̂� and conditional on the model parameter vector 𝜽 , is
given by

−2 ln 𝑃(�̂� |𝜽) =
∑︁

(a1, a
′
1)

∑︁
(a2, a

′
2)

𝑁bin∑︁
𝑙,𝑙′=1

(
�̂�
a1a2
𝑙

− 𝐶a1a2
𝑙

(𝜽)
)𝑇 (

Σ−1
)a1a2, a

′
1a

′
2

𝑙𝑙′

(
�̂�
a′1a

′
2

𝑙′ − 𝐶a
′
1a

′
2

𝑙′ (𝜽)
)
, (3.7)

where (a𝑖, a′𝑖) label the frequency channel pairs and 𝑙, 𝑙′ label the multipole bins. In the case of
the SO survey with six frequency channels, the sums over channel pairs go over 𝑁cross = 21 terms
corresponding to the number of unique cross-channel power spectra, and the sums over 𝑙, 𝑙′ contain
𝑁bin = 27 terms corresponding to the number of ℓ-bins. Finally, Σ is the (𝑁cross ·𝑁bin)×(𝑁cross ·𝑁bin)
covariance matrix. For the SO case, ignoring covariance terms that couple different multipole bins,
𝑙 ≠ 𝑙′, is a good approximation, as we shall see later in Sect. 3.4.2.

The data vector that enters the likelihood contains B-mode purified BB pseudo-𝐶ℓ estimates
obtained by the NaMaster code (see Sect. 3.4.1). Therefore, at the power spectrum likelihood
level, we do not need to explicitly include polarization, and instead treat the B-modes in the six SO
frequency channels as correlated scalar fields. Moreover, the power spectrum data do not contain
any noise bias, since we estimate them using the cross-split technique, which we discuss later in
Sect. 3.4.

We estimate the covariance Σ from simulations. This procedure can generate numerical noise
that may result in a noninvertible covariance matrix. Binning the ℓ-modes into bandpowers helps
mitigate numerical noise and decrease the number of nonzero subdiagonals related to masking the
sky (see Sect. 3.4). At the same time, binning increases the number of modes that are summarized in
the bandpower statistic, which significantly improves the accuracy of the Gaussian approximation.
Although Eq. (3.7) lacks the determinant term ∝ ln det Σ that would make this an exact Gaussian
distribution in the data vector �̂�, we can assume that this omission is of little practical consequence.
As shown in Kodwani et al. (2019), the parameter dependence of the covariance is generally weak,
and treating the covariance as a constant affects the parameter uncertainties by less than about
10%. This is a subdominant contribution compared to other B-mode variance-inducing effects
discussed in this chapter, such as E-to-B leakage, gravitational lensing, or the presence of Galactic
foregrounds. We therefore ignore parameter dependence in the covariance in the context of this
Thesis.
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3.2.2 Exact likelihood

To put the Gaussian likelihood approximation into perspective, let us introduce the exact power
spectrum likelihood on the full sky. Ignoring statistical moments of higher than second order, the
spherical harmonic coefficients 𝑎ℓ𝑚 of an isotropic random field on the 2-sphere are independent,
identically distributed Gaussian random variables with mean zero and variance

〈
|𝑎ℓ𝑚 |2

〉
= 𝐶ℓ. The

joint probability density of all spherical harmonics with constant ℓ is thus given by a product of
2ℓ + 1 Gaussian distributions,

−2 ln 𝑃({𝑎ℓ𝑚}|𝐶ℓ) =
ℓ∑︁

𝑚=−ℓ

|𝑎ℓ𝑚 |2
𝐶ℓ

= (2ℓ + 1)
(
�̃�ℓ

𝐶ℓ
+ ln(𝐶ℓ)

)
+ const. , (3.8)

where we introduced the unbiased full-sky estimator �̃�ℓ ≡ ∑ℓ
𝑚=−ℓ |𝑎ℓ𝑚 |2/(2ℓ + 1). From the

second line in Eq. (3.8), we see that �̃�ℓ is a sufficient statistic of all 𝑎ℓ𝑚 at fixed ℓ if, as we stated
before, higher-order moments are negligible, which is equivalent to assuming that the field on
the 2-sphere is a Gaussian random field. To obtain the posterior distribution 𝑃(𝐶ℓ (𝜽) |�̃�ℓ) of the
model 𝐶ℓ (𝜽) given the data �̃�ℓ from the data likelihood 𝑃(�̃�ℓ |𝐶ℓ (𝜽)) at fixed ℓ, we need to apply
two operations: first, we normalize Eq. (3.8) with respect to the random variable �̃�ℓ to obtain the
correctly normalized (proper) data likelihood. Then, we use Bayes’ theorem to obtain the proper
posterior distribution, which means we normalize the probability density with respect to the random
variable 𝐶ℓ. The result is a (rescaled) 𝜒2 distribution with (2ℓ + 1) degrees of freedom:

−2 ln 𝑃(𝐶ℓ |�̃�ℓ) = (2ℓ + 1)
[
𝐶ℓ

𝐶ℓ
− ln

(
�̃�ℓ

𝐶ℓ

)
− 1

]
, (3.9)

which, due to the central limit theorem, asymptotically approaches the Gaussian approximation
for ℓ → ∞, Eq. (3.7) (Cramér, 1946; Eicker, 1966). For individual multipoles ℓ ≳ 30 measured
on the full sky, every 𝐶ℓ estimate is a sum of 𝑀 ≈ (2ℓ + 1) ≳ 61 harmonic modes, making it
virtually indistinguishable from a Gaussian random variable. In practice, we measure binned power
spectra on the partial sky using PCL estimates (see Sect. 3.1.2), replacing the sum of 𝑎ℓ𝑚s by a
linear combination, which modifies the effective number of modes per bandpower to approximately
𝑀 = 𝑓skyΔℓ(2ℓ + 1) (Knox, 1997). For the SO 𝐶ℓ pipeline, we have 𝑓skyΔℓ ≈ 1, justifying our
choice of using the Gaussian likelihood approximation for SAT B-modes.

On the partial sky, the full-sky power spectrum estimator �̃�ℓ is biased, and we can no longer
use Eq. (3.9). In order to obtain the exact distribution of a Gaussian map on the incomplete sky, we
would in principle have to resort to likelihoods that are defined in pixel space. Evaluating general
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pixel-based likelihoods scales like ℓ6
max which is computationally prohibitive for ℓ ≳ 200 (Mortlock

et al., 2002; Lewis et al., 2002). Pixel-based likelihoods are used in low-ℓ CMB data analysis,
provided the bias from non-Gaussian systematic effects can be neglected (Planck Collaboration V,
2020).

An alternative to expensive pixel-based likelihoods is the𝐶ℓ-based Hamimeche-Lewis likelihood
(HL likelihood, Hamimeche & Lewis, 2008). The analytical expression of the HL likelihood is
based on a variable transformation of the term 𝐶ℓ/𝐶ℓ that allows one to rewrite Eq. (3.9) in the
form of a Gaussian likelihood. This has an important numerical advantage: as with the Gaussian
likelihood approximation described in Sect. 3.2.1, we can precompute the covariance matrix from
simulations, which makes the likelihood evaluation considerably less expensive.

3.3 Modeling degree-scale B-modes on the microwave sky

In this section, we present theory models of B-mode emission in power spectrum space, which
we compare to real multifrequency observations within the framework of the SO 𝐶ℓ pipeline. All
models include the lensed CMB and Galactic foregrounds, which are the dominant sky components
at angular scales 30 ≲ ℓ ≲ 300 relevant for SO SAT measurements. In this context, we introduce the
“𝐶ℓ-fiducial” and “𝐶ℓ-moments” models, which are extensively used in the SO pipeline comparison
project described in Chpt. 4.

3.3.1 Cosmic microwave background

In its two main variants, our CMB BB power spectrum model consists of two components: the
late-time gravitational lensing signal and the assumed primordial gravitational wave signal. The
lensing-induced contribution to the B-mode power spectrum features the lensing peak at small
scales around multipoles ℓ ∼ 1000 (see Sect. 2.3). At smaller multipoles 30 ≲ ℓ ≲ 300 probed
by the SO SATs, the amplitude of the lensing B-modes are expected to be at least as large as the
primordial signal, assuming the latest constraints 𝑟 ≲ 0.036 from BICEP2/Keck Collaboration
(2021). The conjectured primordial B-mode contribution features a large-scale reionization bump
at ℓ ∼ 4 and an intermediate-scale recombination bump at ℓ ∼ 90 (see Sect. 2.3 and Fig. 2.3). We
parameterize this CMB model by the primordial tensor-to-scalar ratio 𝑟 and the phenomenological
𝐴lens parameter that normalizes the power of lensing B-modes,

𝐷𝑐
ℓ = 𝑟 𝐷

tens
ℓ (𝑟 = 1) + 𝐴lens 𝐷

lens
ℓ , (3.10)

where we introduced the scaled power spectrum 𝐷ℓ ≡ ℓ(ℓ + 1)𝐶ℓ/2𝜋. In this simple model,
we use 𝐴lens to parameterize the uncertainty about the residual level of lensing B-modes after
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delensing. The tensor template 𝐷tens
ℓ

is the theoretically predicted CMB B-mode contribution
from primordial gravitational waves. The lensing B-mode template 𝐷lens

ℓ
is a convolution of the

predicted CMB E-mode power spectrum with the predicted lensing kernel (Lewis & Challinor,
2006). Both functions can be efficiently calculated by numerical Boltzmann solvers like CAMB
(Lewis et al., 2000; Howlett et al., 2012). In state-of-the-art B-mode data analysis, a common
choice is to directly estimate maps of lensing B-modes from observed E-modes and external data
sets using established methods, such as the the quadratic estimator by Okamoto & Hu (2003). This
lensing map is then subtracted from the raw B-mode map before estimating the power spectrum.
This method, called “delensing”, is usually the preferred approach since it reduces the total B-mode
power, leading to less cosmic variance and, in consequence, tighter constraints on the cosmological
parameters. Near-future CMB polarization experiments, such as SO, are commonly designed
to use SATs for B-mode measurements at large angular scales and LATs to measure the small-
scale gravitational lensing signal on an overlapping sky patch, allowing for map-based delensing.
Simulation-based predictions using delensing pipelines show that a reduction of the lensing signal
by well more than 50% (corresponding to 𝐴lens < 0.5) is realistic for SO (Namikawa et al., 2022).

3.3.2 Galactic foregrounds

Galactic foregrounds, specifically thermal emission from synchrotron radiation and Galactic dust
grains, dominate the CMB lensing B-modes and any possible primordial component at most
frequencies and scales (see Sect. 2.6). Even at the relative maximum of the CMB lensing signal at 90
GHz and ℓ ∼ 100, foregrounds significantly contaminate the CMB and must therefore be included in
CMB B-mode analyses (Planck Collaboration XXX, 2016; Krachmalnicoff et al., 2016). Studies of
Galactic foregrounds indicate that a potential primordial signal, currently constrained to 𝑟 < 0.0036
at 95% CL by BICEP2/Keck Collaboration (2021), would be contaminated by foregrounds at an
equivalent tensor-to-scalar ratio of at least 10−3 at all frequencies or scales (Krachmalnicoff et al.,
2018). It is therefore crucial to make full use of multifrequency observations in order to constrain
the SEDs of Galactic synchrotron and thermal dust emission to disentangle it from the CMB.

In the following, we present the theoretical models used to parameterize Galactic foregrounds
in the SO 𝐶ℓ pipeline. Thanks to past analyses of WMAP and Planck data, as well as recent
complementary studies at low frequencies, such as the C-Band All Sky Survey (C-BASS, Harper
et al., 2022) and S-PASS (Krachmalnicoff et al., 2018), we are able to constrain simple Galactic
foreground emission models at a quantitative level. However, these constraints still leave a lot of
freedom as to the details of the power spectrum model; we do not know yet which model will be
the best one. The conservative approach to this issue is to consider a range of complexity in both
our theory models and in our set of sky simulations, and to compare the model performance in

60



different mock data scenarios. This is the premise of the pipeline comparison project described in
Chpt. 4.

Let us now give an overview of the different foreground theory models implemented in the SO
𝐶ℓ pipeline. We start from a simple model of uncorrelated synchrotron and thermal dust model
without variations in their spectral indices. We then present two generalizations, the first of which
considers synchrotron-dust correlation, and the second one of which accounts for small spectral
index variations via the so-called moment expansion. While we consider only foreground emission
in the BB autospectrum here, we note that EE and EB foreground emission is usually parameterized
in the same way, but can differ considerably in their best-fit parameter values (see, e.g., Planck
Collaboration XI, 2020).

Simple dust and synchrotron model. To lowest order, the SED can be described by a modified
blackbody law 𝑓 a

′

𝑑
(𝛽𝑑 , 𝑇𝑑) (see Eq. (2.10)), parameterized by the dust temperature 𝑇𝑑 ∼ 20 K and

the dust frequency spectral index 𝛽𝑑 ∼ 1.5 (Planck Collaboration XI, 2020). Similarly, the simplest
theory model of the synchrotron spectral distribution is a power law SED 𝑓 a𝑠 (𝛽𝑠) (see Eq. (2.9)),
parameterized by the synchrotron spectral index 𝛽𝑠 ∼ −3 (Planck Collaboration XXV, 2016). The
power spectra of synchrotron and dust, measured at the pivot frequencies of 23 GHz and 353 GHz,
respectively, and a pivot scale ℓ0 = 80, are commonly modeled as power laws of the form

𝐷aa′

ℓ = 𝐷
𝑑, aa′

ℓ
+ 𝐷𝑠, aa′

ℓ
(3.11)

where 𝐷ℓ ≡ ℓ(ℓ + 1)𝐶ℓ/2𝜋 as above, and

𝐷
𝑑, aa′

ℓ
≡ 𝑓 a𝑑 (𝛽𝑑 , 𝑇𝑑) 𝑓
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𝑑 (𝛽𝑑 , 𝑇𝑑) 𝐴𝑑
(
ℓ

ℓ0

)𝛼𝑑
, 𝐷

𝑠, aa′

ℓ
≡ 𝑓 a𝑠 (𝛽𝑠) 𝑓 a

′
𝑠 (𝛽𝑑) 𝐴𝑠

(
ℓ

ℓ0

)𝛼𝑠
. (3.12)

Both the SED and power spectrum models used here are only rough approximations and do not
represent the complexity of the real sky. Based on Planck and WMAP measurements, the fore-
ground power law amplitudes evaluated in the SO SAT sky region (which covers a sky fraction of
𝑓sky ∼ 0.1 that avoids high Galactic emission, see Fig. 4.2) take typical mean values of 𝐴𝑠 ∼ 1.6`K2,
𝐴𝑑 ∼ 30`K2, while the power spectral indices amount to 𝛼𝑠 ∼ −1, 𝛼𝑑 ∼ −0.2 when evaluated in
the same region (Wolz et al., 2023a). Foreground amplitude parameters and spectral indices are
known to vary significantly between frequencies and regions on the sky (Krachmalnicoff et al.,
2018; Planck Collaboration XI, 2020), giving rise to frequency decorrelation (see Sect. 2.6). One
way to address this is by means of the moment expansion described below.

Dust-synchrotron correlation. One might expect Galactic dust and synchrotron emission
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to be statistically correlated at the power spectrum level, as both sources of emission are linked
with the morphology of the GMF (Planck Collaboration XXV, 2016; Planck Collaboration Int.
XXXII, 2016). Assuming a simple one-parameter model of synchrotron-dust correlation, the
power spectrum obtains an additional term

𝐷
𝑠×𝑑, aa′
ℓ

≡ 𝜖𝑑𝑠 ( 𝑓 a𝑑 𝑓
a′
𝑠 + 𝑓 a𝑠 𝑓

a′

𝑑 )

√︄
𝐴𝑑𝐴𝑠

(
ℓ

ℓ0

)𝛼𝑠+𝛼𝑑
, (3.13)

where 𝜖𝑑𝑠 ∈ [−1, 1] quantifies the level of correlation between both components. Adding this
correlation term to the simple dust and synchrotron model described in Eqs. (3.11) and (3.12), we
obtain the 𝑪ℓ-fiducial model that was adopted in the SO pipeline comparison project (see Chpt. 4).

Moment expansion. The simple 𝐶ℓ-fiducial model might not be sufficient to describe Galactic
foregrounds in real data. The spectral indices of thermal dust and synchrotron emission vary across
sky regions and along the line of sight, which cause the observed emission laws to differ from the
fiducial model defined in Eq. (3.11). As we show in Chpt. 4, neglecting plausible levels of spectral
variation in the model can lead to biases of more than 2𝜎 in the inferred value of the tensor-to-scalar
ratio. This motivated extensions of the spectral emission model (Tegmark, 1998; Chluba et al.,
2017) that parameterize the statistical fluctuations of the spectral index 𝛿𝛽 across the sky around
the mean value 𝛽. If those variations are small compared to the mean SED 𝑓 a = 𝑓 a (𝛽), Azzoni
et al. (2021) suggest to perform a Taylor expansion of a sky component’s foreground SED up to
second order

𝑓 a ( �̂�) ≈ 𝑓 a + 𝛿𝛽( �̂�)𝜕𝛽 𝑓 a +
1
2!
[𝛿𝛽( �̂�)]2𝜕2

𝛽 𝑓
a , (3.14)

where we used short notations 𝜕𝛽 𝑓 a ≡ 𝜕 𝑓 a/𝜕𝛽 |𝛽=𝛽 and 𝜕2
𝛽
𝑓 a ≡ 𝜕2 𝑓 a/𝜕𝛽2 |𝛽=𝛽. In the simplest

version of this so-called “moment expansion”, spectral index fluctuations 𝛿𝛽𝑑,𝑠 ( �̂�) of thermal dust
and synchrotron emission are assumed to be Gaussian random fields that are uncorrelated with any
other field. We can then parameterize their power spectra by power laws

𝐷
𝛽𝑑,𝑠
ℓ

= 𝐵𝑑

(
ℓ

ℓ0

)𝛾𝑑,𝑠
. (3.15)

Here, we introduced the four moment parameters {𝐵𝑑 , 𝛾𝑑 , 𝐵𝑠, 𝛾𝑠}, which are the power spectrum
amplitudes (𝐵𝑑/𝑠) and tilts (𝛾𝑑/𝑠) corresponding to dust and synchrotron emission, respectively.
Inserting Eqs. (3.14) and (3.15) into Eq. (3.11), we obtain the full, lowest-order moment expansion

𝐷aa′
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��
1×1 + 𝐷
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ℓ

��
0×2 , (3.16)
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where 𝐷ℓ

��
1×1 denotes the correlation between two first-order terms in the moment expansion, and

𝐷ℓ

��
0×2 denotes the correlation between a zeroth-order and a second-order term. Both terms have

the following explicit forms (Azzoni et al., 2021):
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where we used the Wigner-3j symbol in the first line. Equation (3.16), in addition to the synchrotron-
dust correlation term (3.13), defines the 𝑪ℓ-moments model used in the context of the SO pipeline
comparison project (see Chpt. 4).

3.4 Simons Observatory 𝐶ℓ pipeline

In this section, we present the architecture of the power-spectrum-based 𝐶ℓ pipeline that we co-
developed and tested as part of the main work of this Thesis, with the goal of robustly constraining
degree-scale CMB B-modes with SO. Figure 3.1 displays the main stages of the SO 𝐶ℓ component
separation pipeline.

We start from simulated multifrequency polarization Q and U maps with coadded CMB, fore-
ground sky signals (which are convolved with a Gaussian beam), and instrumental noise, as detailed
later in Sect. 4.2. The simulations can either serve as samples for the empirical covariance esti-
mation, or as mock data for pipeline validation. In the first case, we employ coadded Gaussian
map realizations of the fiducial power spectra of CMB, noise, and Galactic foregrounds using the
synfast function of the HEALPix code (Górski et al., 2005). In the second case, we use dust
and synchrotron templates from the Python Sky Model (PySM, Thorne et al., 2017; Zonca et al.,
2021), which are more realistic and thus generally non-Gaussian. PySM is a numerical code to
generate artificial maps of Galactic emission in intensity and polarization, and is based on publicly
available data from Planck and WMAP. The first two stages estimate angular BB power spectra
from maps, while the final two stages construct the covariance and infer the cosmological and
foreground parameters.

The map-level noise has an autocorrelation that biases power spectrum estimates. Ideally, we
can model and subtract the noise autocorrelation on the power spectrum level. While this is the most
efficient approach, it requires an accurate characterization of the noise properties, which may not
be available for real data, at least during the initial phase of an experiment. For the SO 𝐶ℓ pipeline,
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Figure 3.1: Schematic of the 𝐶ℓ component separation pipeline, starting from reading multifre-
quency polarization maps that include data splits, estimating the sample covariance and noise-
unbiased power spectra, and finally inferring cosmological and foreground parameters. All stages
but the covariance calculation are repeatedly run on simulations. See text for details.

64



we therefore adopt the more conservative “cross-split” technique, which relies on calculating power
spectra across unequal data splits. Averaging over this set of cross-split power spectra avoids the
noise bias in a robust and model-independent way, although slightly increasing the computational
cost. It all relies on the assumption that our experimental design allows for different data splits with
largely uncorrelated noise. Real CMB experiments, such as BICEP/Keck or Planck, usually provide
splits as a result of dividing data with regard to different criteria such as observation periods, sets
of detectors, or scanning strategies. The computation of the power spectrum covariance in the SO
pipeline relies on simulated split maps, which are simply realized by coadding independent noise
realizations to a single sky signal.

3.4.1 Power spectrum estimation

In Stage 1, we compute the pseudo-𝐶ℓ estimates of all cross-split spectra {�̂� (a1,𝑠1) (a2,𝑠2)
ℓ

} of a
given cross-frequency power spectrum, where a𝑖 and 𝑠𝑖 denote the frequency band and the split,
respectively. This procedure depends on three auxiliary inputs: the sky mask, the ℓ-binning scheme,
and the instrument beam model. As explained in Sect. 3.1.2, we use the NaMaster implementation
of the PCL algorithm, which analytically decouples ℓ-modes and mitigates E-to-B leakage caused
by observing the partial sky through a sky mask. To facilitate B-mode purification, meaning the
subtraction of ambiguous polarization modes from pure B-modes (see Sect. 3.1.2), we apodize the
edges of the mask with a 𝐶1-type kernel of 10 degree radius (see Grain et al., 2009). The multipole
binning scheme spans a range between ℓmin = 30 and ℓmax = 300 with a bin width Δℓ = 10, resulting
in 𝑁bin = 27 ℓ-bins. We deconvolve the 𝐶ℓs considering a set of Gaussian beam transfer functions
𝑏
a𝑖
ℓ

corresponding to the individual frequency channels:

�̂�
a1a2
ℓ

→ �̂�
a1a2
ℓ

/(𝑏a1
ℓ
𝑏
a2
ℓ
) . (3.18)

In Stage 2, we average over the cross-split spectra, considering only unequal splits 𝑠1 ≠ 𝑠2, to
estimate the noise-unbiased power spectra. Note that if we included spectra with 𝑠1 = 𝑠2, we would
pick up the noise auto-correlation that we want to avoid. Considering four splits, this means we
sum over 4(4 − 1)/2 = 6 unique cross-split spectra for frequency autocorrelations (a1 = a2) and
42 = 16 unique cross-split spectra for frequency cross-correlations (a1 ≠ a2). Given the six SO
frequency channels, we end up with a final set of 6(6 + 1)/2 = 21 noise-unbiased power spectrum
estimates.
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3.4.2 Covariance

As explained in Sect. 3.2, the key advantage of using the Gaussian likelihood approximation (or,
alternatively, the HL likelihood) is the fact that the covariance matrix can be precomputed from
simulations, thus removing the computational bottleneck of having to evaluate the covariance at
every sampling step during the likelihood evaluation. In Stage 3 as displayed in Fig. 3.1, we
compute a set of binned BB power spectra {𝐶a1,a2

𝑙
} from simulations and use them to calculate the

BB power spectrum covariance Σ as

Σ
a1a2, a

′
1a

′
2

𝑙𝑙′ = 𝛿K
𝑙𝑙′

ˆCov({𝐶a1a2
𝑙

}, {𝐶a
′
1,a

′
2

𝑙′ }) , (3.19)

where 𝛿K denotes the Kronecker symbol, (𝑙, 𝑙′) and (a, a′) label the ℓ-bins and the frequency
channels, respectively, and ˆCov(𝒙, 𝒚) denotes the sample covariance between two data vectors 𝒙

and 𝒚 of length 𝑁 , defined as

ˆCov(𝒙, 𝒚) ≡ 1
𝑁 − 1

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑥) (𝑦𝑖 − �̄�) , (3.20)

where 𝑥 ≡ ∑
𝑖 𝑥𝑖/𝑁 and �̄� ≡ ∑

𝑖 𝑦𝑖/𝑁 . We included the Kronecker symbol to imply that we neglect
any coupling between unequal ℓ-bins 𝑙 ≠ 𝑙′, which we find to be a good approximation in our case,
as we show below.

Covariance matrices that are calculated from simulations may be subject to two types of issues:
numerical instability and incompatibility with data in the likelihood. The first one can arise from
numerical noise that leads to a noninvertible covariance matrix, while the second one can arise from
poorly chosen covariance simulations that result in bad estimates of the power spectrum variance.
Here, we present a series of robustness checks as performed in the context of the SO pipeline
comparison project (see Chpt. 4) to detect these potential issues regarding the covariance.

• Number of simulations: The finite number of simulations 𝑁sims that are used to calculate
the sample covariance (3.20) introduces numerical noise. If we approximate the binned
power spectra as Gaussian random variables (which is a reasonable assumption given that the
lowest ℓ-bin is effectively a sum of 𝑀 ≈ 𝑓skyΔℓ(2ℓ + 1) = 61 harmonic modes), their sample
covariance follows a rescaled Wishart distribution (Wishart, 1928). We can then estimate the
element-wise standard deviation as

𝜎(Σ𝑖 𝑗 ) ≈
√︃
(Σ2

𝑖 𝑗
+ Σ𝑖𝑖Σ 𝑗 𝑗 )/𝑁sims , (3.21)

which gives us an expected S/N for the 𝐶ℓ standard deviation of about 20% for 𝑁sims = 100
and about 9% for 𝑁sims = 500. We run the entire pipeline in both cases and find negligible bias
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on the parameter uncertainties. For the main analysis cases in the SO pipeline comparison
project, we conservatively choose 𝑁sims = 500.

• Truncation of subdiagonals3: As shown in Sect. 3.1.1, 𝐶ℓ estimates on the partial sky are
correlated among different multipoles due to the anisotropy of the mask. As the correlation
quickly reduces with the distance |ℓ − ℓ′| (see Fig. 12 of Alonso et al., 2019), we can mitigate
this effect by introducing ℓ-binning. As a result, we do not expect significant mode coupling
between unequal ℓ-bins. However, numerical noise may affect the elements in the covariance
matrix that have 𝑙 ≠ 𝑙′, causing it to be noninvertible. A straightforward solution to this is to set
all subdiagonals to zero, provided this truncation does not erase actual physical information.
We test the robustness of this choice by a) comparing the first and second subdiagonals
(|𝑙 − 𝑙′| = 1, 2) with the expected numerical noise and b) comparing the minimum 𝜒2 statistic
(see Appendix A) calculated from 100 Gaussian simulations and zero, one, or two included
subdiagonals with the theoretically expected distribution. Figure 3.2 shows the results on the
left panel. We find that all subdiagonals are consistent with numerical noise and a diagonal
covariance is in excellent statistical agreement with the expectation.

• Non-Gaussian foregrounds: Polarized Galactic foregrounds are anisotropic and non-
Gaussian, but their statistical properties beyond the two-point correlation are largely unknown
(Delouis et al., 2022; Coulton & Spergel, 2019). In the SO𝐶ℓ pipeline, we ignore foreground-
related non-Gaussianity at the level of the power spectrum covariance, for two main reasons:
first, the considered non-Gaussian foreground models do not provide stochastic samples, and
second, drawing Gaussian map realizations from a fiducial 𝐶ℓ model is both numerically
efficient, and easy to implement and understand from a statistical viewpoint. We may ask
whether the 𝐶ℓ covariance obtained in this way are a sufficiently good representation of a
data set that contains a realistic level of foreground-induced non-Gaussianity. To investigate
this for SO, we generated 100 sky maps with coadded CMB, noise, and foregrounds, each for
different non-Gaussian dust and synchrotron templates from the PySM model (Zonca et al.,
2021), and assessed the empirical distributions of the minimum 𝜒2 values in each case. In
the right panel of Fig. 3.2, we show a comparison of the more complex dmsm model, which
includes spatially varying frequency spectral indices, and the simpler d0s0 model with con-
stant spectral indices (see Sect. 4.2 for more details). As can be seen from the figure, the
d0s0model is compatible with the theoretical expectation, which confirms that the Gaussian
simulation-based covariance is an adequate choice for this foreground scenario. The dmsm
model leads to sightly larger 𝜒2 values, indicating that the Gaussian covariance is still a rea-

3We refer to “subdiagonals”, meaning all matrix entries adjacent to the diagonal (first sub- and superdiagonal), and
then iteratively the respective adjacent elements further out from the diagonal (sub- and superdiagonals of order > 1).
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Figure 3.2: Statistical robustness tests of the empirical power spectrum covariance used with the
SO 𝐶ℓ pipeline. We show results from checking the truncation of subdiagonals (left panel) and
the adequate representation of artificial non-Gaussian foreground data (right panel), considering
100 simulated maps of CMB, foregrounds, and noise in the SO “goal-optimistic” scenario (see
Sect. 4.2) using the 𝐶ℓ-fiducial model. The black solid line represents the expected distribution of
the minimum 𝜒2 with 𝑁 − 𝑃 = 558 degrees of freedom. The small inlays show the corresponding
probabilities to exceed (PTE) from simulations and the two gray-shaded ares represent the 1𝜎 and
2𝜎 standard error expected from uniform sampling. The left panel considers Gaussian foreground
simulations and the right panel considers a diagonal 𝐶ℓ covariance.

sonable, but not perfect description of this foreground model. While exploring non-Gaussian
covariances compatible with complex, non-Gaussian foreground models is beyond the scope
of this work, this should be the topic of future investigations. In the context of this work,
however, we use Gaussian covariances, keeping in mind that our quantification of statistical
uncertainty may be slightly inaccurate in the case of complex foregrounds scenarios, such as
dmsm and d10s5 (see Chpt. 4).

In real B-mode data analysis, significant mode coupling and non-Gaussianity can have other
sources, such as small-scale leakage from delensing templates or instrumental systematic effects.
These topics are highly relevant for the analysis of real data with the SO𝐶ℓ pipeline and we address
them in the Conclusions.

3.4.3 Inference

Two of the 𝐶ℓ pipeline’s main purposes are estimating noise-unbiased power spectra from data
splits and computing the covariance. In Stage 4 as shown in Fig. 3.1, we construct the likelihood

68



from the covariance and perform MCMC sampling to obtain the parameter’s posterior distribution.
The data likelihood combines the noise-unbiased power spectrum data �̂�ℓ, the theoretical model
𝐶ℓ (𝜽) that depends on the theory parameters 𝜽 , and the covariance matrix Σ:

𝑃({�̂�ℓ}|{𝐶ℓ (𝜽)}, Σ) (3.22)

Each of these ingredients must be carefully chosen before the inference can commence. We
previously discussed sky models and likelihoods in a general fashion. Now, let us address the sky
models chosen for the SO pipeline comparison project.

As the nominal likelihood, we chose the Gaussian approximation (Sect. 3.2.1). Although,
in principle, the HL likelihood (Hamimeche & Lewis, 2008) might be slightly more accurate at
low ℓ, we verified through simulations that using the Gaussian approximation makes no practical
difference for the inferred parameter posterior distribution.

As for the theoretical 𝐶ℓ-based sky models, we implemented four alternatives:

• 𝑪ℓ-fiducial model. This model, as introduced in Eq. (3.11), includes the lensed CMB, a
possible primordial tensor contribution, and Galactic thermal dust and synchrotron emission.
The latter two are modeled in frequency space by a modified blackbody law and a power
law, respectively, and by power laws in harmonic space. Thermal dust and synchrotron may
be statistically correlated among each other, which is accounted for by the model, but their
spectral laws are assumed to be constant across the sky, with no frequency decorrelation. The
model contains nine free parameters: the CMB parameters 𝑟 and 𝐴lens, foreground amplitudes
𝐴𝑠 and 𝐴𝑑 for synchrotron and dust (evaluated at 23 GHz and 353 GHz, respectively), power
spectral indices 𝛼𝑠 and 𝛼𝑑 , frequency spectral indices 𝛽𝑠 and 𝛽𝑑 , and the synchrotron-dust
correlation 𝜖𝑑𝑠. In thermodynamic temperature units, this model can be written as

𝐷aa′

ℓ (fiducial) = 𝐷𝑐
ℓ + 𝐷

𝑠, aa′

ℓ
+ 𝐷𝑑, aa′

ℓ
+ 𝐷𝑠×𝑑, aa′

ℓ
, (3.23)

where CMB (𝑐), dust (𝑑), and synchrotron (𝑠) components are given by Eqs. (3.10) and
(3.12), and 𝐷ℓ ≡ ℓ(ℓ + 1)𝐶ℓ/2𝜋.

• 𝑪ℓ-moments model. This model performs a first-order harmonic expansion in the SED
spectral indices of thermal dust and synchrotron around their mean values on the sky (see
Sect. 2.6). As for the multifrequency power spectra, this results in an extension of the 𝐶ℓ
fiducial model by the four parameters {𝐵𝑑 , 𝐵𝑠, 𝛾𝑑 , 𝛾𝑠}. The 𝐶ℓ-moments model can be
written as

𝐷aa′

ℓ (moments) = 𝐷aa′

ℓ (fiducial) + 𝐷ℓ |1×1 + 𝐷ℓ |0×2 , (3.24)

where the two last terms are defined in Eq. (3.16).
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• ℓ-wise CMB model. This model, inspired by previous works (Dunkley et al., 2013; Planck
Collaboration XI, 2016; Planck Collaboration V, 2020) lifts the scale dependence of the
CMB in the 𝐶ℓ-fiducial model by parameterizing the CMB amplitude in every ℓ-bin, thereby
replacing 𝑟 and 𝐴lens. The benefit of this is the retrieval of individual CMB multipole bins
with error bars, which we used in the comparison of the cleaned CMB power spectra for the
SO pipeline comparison project (see Sect. 4.4.1). We can write the ℓ-wise CMB model as in
Eq. (3.23), with a new CMB model that reads

𝐷𝑐
ℓ = 𝐴

𝑐
ℓ , (3.25)

where {𝐴𝑐
ℓ
} parameterize the CMB power at multipole ℓ. While this increases the total number

of parameters to 𝑁bin + 6 (in our case, 33), which may potentially dilute the cosmological
constraints found from the retrieved bandpowers, we find that this model leads to results on
𝑟 and 𝐴lens that are consistent with the 𝐶ℓ-fiducial model, with little to no extra variance.

• ℓ-wise sky model. The power spectrum of polarized foreground emission may not scale
like a simple power law. Moreover, the spectral emission laws may generally vary with
angular scale. To include both effects, we implemented an ℓ-wise sky model in all three
sky components as described in Appendix D of BICEP2/Keck Collaboration (2018), thus
generalizing the 𝐶ℓ fiducial model (3.23). To do so, we made the SED spectral indices and
the dust-synchrotron correlation scale dependent,

𝛽𝑑 → 𝛽𝑑 (ℓ) , 𝛽𝑠 → 𝛽𝑠 (ℓ) , 𝜖𝑑𝑠 → 𝜖𝑑𝑠 (ℓ) , (3.26)

and re-parameterize the harmonic models by ℓ-wise component amplitudes,

𝐷𝑐
ℓ = 𝐴

𝑐
ℓ , 𝐷𝑑

ℓ = 𝐴
𝑑
ℓ , 𝐷𝑠

ℓ = 𝐴
𝑠
ℓ , (3.27)

thus obtaining a total of 6 𝑁bin (in our case, 162) parameters. In practice, we use the fact
that ℓ-modes decouple, and independently sample the six-dimensional posteriors for every
ℓ. While this model considerably dilutes the parameter constraints with respect to simpler
models, it may still be useful for comparison with other component separation methods.

To retrieve the marginal posteriors of CMB and foreground parameters, we use Bayesian
sampling methods. In most models, where the number of jointly sampled parameters does not
exceed 10, this is done with the MCMC sampler emcee (Foreman-Mackey et al., 2013). In the
ℓ-wise CMB model, we use the nested sampler PolyChord (Handley et al., 2015a,b) that guarantees
faster convergence for higher-dimensional models.
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3.4.4 BBPower code implementation

The code of the𝐶ℓ pipeline is publicly available under the name BBPower4. Originally developed by
David Alonso, the main work carried out in this Thesis consisted in implementing the parallelization
on a cluster, implementing the ℓ-wise CMB and sky models described in the previous section, and
continuously testing and validating all parts of the code using simulations. Here, we briefly discuss
the code implementation, its modular structure, and its parallel performance tested on computing
facilities at the National Energy Research Scientific Computing Center (NERSC)5.

The code is mainly written in the python programming language, with some auxiliary scripts
written in bash. In practice, the code operates in two production modes: covariance computation
(C) and data analysis (D). Some of the BBPower core modules are used in both modes and can
adopt their functionality to perform either C or D. The BBPower core modules are:

• BBPowerSpecter. This is the module that estimates pseudo-𝐶ℓ BB power spectra from
polarization maps in multiple channels using the NaMaster code (Alonso et al., 2019). Its
inputs are the Q and U maps including data splits, the sky mask, the frequency bandpass
windows, and the beam transfer function in multipole space. Its outputs are the estimated
cross-split 𝐶ℓs. BBPowerSpecter is used in both modes C and D and corresponds to Stage
1 as displayed in Fig. 3.1.

• BBPowerSummarizer. This module can perform two tasks: the computation of noise-
unbiased 𝐶ℓs from cross-split spectra and, optionally, the estimation of the covariance from
simulations. Its inputs are the cross-split 𝐶ℓs from data and, optionally, the cross-split 𝐶ℓs
from a set of simulations. Its output are noise-unbiased 𝐶ℓs or, alternatively, the covariance
matrix. BBPowerSummarizer can be tasked to run either in mode D, estimating data 𝐶ℓs
(Stage 2 in Fig. 3.1), or mode C, estimating the 𝐶ℓ covariance (Stage 3 in Fig. 3.1).

• BBCompSep. This module performs the 𝐶ℓ-based component separation and parameter
inference. Its inputs are the noise-unbiased data𝐶ℓs, the covariance matrix, and the parameter
priors. Its output is the MCMC chain of parameter posterior samples. BBCompSep is only
needed in mode D and corresponds to Stage 4 in Fig. 3.1.

Parts of the code are designed to run in parallel at the Perlmutter supercomputing cluster at
NERSC. Parallelization is currently managed through several auxiliary scripts that distribute single
instances of the pipeline (or parts thereof) over all available computing nodes. This effective
parallel “for loop” applies to

4URL: github.com/simonsobs/BBPower
5URL: nersc.gov
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Figure 3.3: Schematic overview of the parallelization implemented in the BBPower code, high-
lighting the two operation modes to estimate covariances from simulations and perform inference
on simulated “mock” data.

• Covariance mode (running time: about 20 minutes for 500 simulations at 15 computing
nodes6): the computation of the cross-split 𝐶ℓs from simulated maps (BBPowerSpecter in
mode C)

• Data mode (running time: about 30 minutes for 500 simulations at 20 computing nodes):
the computation of the cross-split and noise-unbiased 𝐶ℓs from map data and the 𝐶ℓ-based
component separation (BBPowerSpecter, BBPowerSummarizer, and BBCompSep, all in
mode D)

The computation of the covariance (BBPowerSummarizer in mode D) runs efficiently as a single
process at Perlmutter within 30 minutes . Another auxiliary script included in both parallel loops
performs the in-place coaddition of simulated sky components (see Sect. 4.2), so they do not need
to be stored in all possible combinations. Figure 3.3 summarizes the parallelization of BBPower.

6The “running time” is the wall clock time that is needed at NERSC for the parallel processing of 500 simulations
including four splits maps at six frequency bands and HEALPix resolution 𝑁side = 512, totaling to 432 GB of memory
space.
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3.5 Summary

Detecting a primordial polarization B-mode signal is considered a “smoking gun” for cosmic
inflation and one of the main science goals of next-generation experiments such as SO. Primordial
B-modes are known to be extremely faint and highly contaminated by gravitational lensing, Galactic
foreground emission, and instrumental systematics. Inferring cosmological parameters from power
spectra of the CMB anisotropies has been highly successful in the CMB field, motivating the SO
Collaboration to base one of their main B-mode analysis pipelines on this technique.

The main focus of this chapter is the design of a CMB data analysis pipeline that robustly
measures B-mode power spectra at intermediate to large scales on the partially masked sky as
observed by the SO SATs. Measuring the power spectrum of polarization B-modes on the partial
sky is challenging, since we need to overcome

• the coupling between different angular modes, potentially biasing power spectra depending
on the input signal, and

• the power leakage from the (much larger) E-modes into B-modes, which may significantly
increase the statistical uncertainty of the inferred value of the tensor-to-scalar ratio.

As an additional challenge, it is imperative for any B-mode inference pipeline to accurately char-
acterize and subtract Galactic foregrounds, which are one of the main contaminants to the much
fainter CMB signal.

As the main result of this chapter, we give an overall description of the SO B-mode pipeline and
report on the specific design choices that were made during its development. We start by reviewing
the PCL estimator that is implemented in the pipeline. We explain how the PCL estimator enables
us to efficiently retrieve unbiased and minimum-variance power spectrum estimates in a broad
range of realistic scenarios, and outline how our code uses analytic B-mode purification to mini-
mize the spurious variance from mask-induced E-to-B leakage. We introduce the power spectrum
likelihood, explain why we chose a simple Gaussian likelihood approximation, and briefly discuss
its generalization. We present a set of data models implemented in the power spectrum likelihood,
highlighting how they differ in their specific parameterization of the CMB and foregrounds. Two of
them, the𝐶ℓ-fiducial and the𝐶ℓ-moments model, adapt to different levels of foreground complexity
that we may encounter in real data, while the ℓ-wise CMB and ℓ-wise sky models are designed to
retrieve power spectrum estimates of individual sky components. We describe the full SO pipeline
and its various stages, highlighting tests and design choices that tightly couple with the pipeline
development work as a major contribution to this Thesis. In this context, we describe the parallel
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code architecture that was designed as part of this Thesis.

As possible limitations of this pipeline, we identify several stages that can be generalized to
account for more complex real-world data than we consider in this chapter. First, we do not
model instrumental systematic effects, such as a frequency-dependent polarization angle, which
are expected to affect real data at the power spectrum level (see Sect. 2.7). Second, this pipeline
does not account for possible mode coupling and E-to-B leakage beyond the mask-induced effect
accounted for by the NaMaster code. Instead, those can have multiple origins, such as atmospheric
contamination, ground pickup, or detector gain drifts. Third, we do not include template-based
delensing, which should significantly reduce the lensing B-mode power at intermediate and small
scales, resulting in a lower statistical uncertainty. Finally, we ignore non-Gaussian contributions to
the power spectrum covariance matrix, as expected from Galactic foregrounds (see Sect. 3.4.2).

Possible future improvements of the SO pipeline that address these limitations are being actively
studied. To account for the most important systematic biases to power spectra beyond the ones
from Galactic foregrounds, timestream simulations must be used to estimate the transfer function
to quantify the loss of power at each angular scale. Ongoing work (Hertig et al., 2023) has
achieved the implementation of map-based delensing in the SO pipeline. Another recent work
(Abril-Cabezas et al., 2023) proposes a model to account for non-Gaussian contributions to the
power spectrum variance due to Galactic foregrounds. We elaborate on these future perspectives
in the Conclusions.
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CHAPTER 4

The Simons Observatory degree-scale B-mode
cleaning pipelines

Detecting a signal of gravitational waves from the very early Universe requires the subtraction of
Galactic foreground emission from the CMB by exploiting spectral differences. As we explored in
the previous chapter, a possible avenue to do so is by comparing B-mode power spectra at multiple
frequencies with a parametric sky model, the result of which is the SO B-mode power spectrum
pipeline. In this chapter, we broaden our perspective on B-mode analysis, in that we include
other component separation techniques beyond the power spectrum pipeline. Given the large set
of possible systematic contaminants, any single measurement of the tensor-to-scalar ratio must be
carefully checked for robustness. One way of achieving this is by comparing several independent
data analysis methods. SO’s efforts to constrain primordial B-modes extend to three inherently
different foreground cleaning algorithms. The 𝐶ℓ pipeline described in Chpt. 3 is one of them.

This chapter is based on a recent paper project by the SO Collaboration, Wolz et al. (2023a)
(hereinafter BB2023). This work aims at validating the three component separation pipelines
(with two extensions) as to their ability to constrain the tensor-to-scalar ratio 𝑟 with the SO SATs
in the presence of complex Galactic foregrounds, ensuring that post-cleaning residuals are small
enough to not bias 𝑟. This is a continuation of the work described in the SO Science Goals and
Forecasts paper (SO Collaboration, 2019, hereinafter SO2019) that sets a baseline constraint on
the statistical uncertainty of 𝜎(𝑟) = 0.003 at 68% central CL. Compared to SO2019, BB2023
assumes more complex foreground simulations and introduces more advanced cleaning pipelines
that should meet the requirement of unbiased 𝑟 for all foreground scenarios and at a precision of
𝜎(𝑟) = 0.003. Robustness requires that the results agree between the inherently different algorithms
chosen for BB2023, which include 𝐶ℓ-based parametric, map-based parametric, and needlet-based
blind component separation. Compared to the real data analysis case, this project does not attempt
the map-level removal of gravitational lensing B-modes, or the inclusion of instrumental systematic
effects. Those additional challenges are left for future work, which we briefly address in the
Conclusions. With the SO Collaboration expecting the first data in late 2023, this work is a timely

75



assessment of the anticipated constraints on primordial B-modes.
This chapter is structured as follows. We start with a brief overview of the pipelines in Sect. 4.1

and discuss the sky simulations in Sect. 4.2. We then present the main 𝑟 inference results in Sect. 4.3
and close with the pipeline comparison methods in Sect. 4.4.

4.1 Component separation pipelines

After setting the context of BB2023, let us describe the three SO component separation pipelines and
the two extensions in more detail. All operate on partial-sky maps at the six SO frequency channels
between 27 and 280 GHz that contain simulated CMB, Galactic foregrounds, and instrumental noise
and output marginal posteriors of the inferred tensor-to-scalar ratio 𝑟 and the lensing amplitude
𝐴lens. The pipelines differ either in their cleaning algorithm or in the modeling of foregrounds.
We can categorize algorithms into parametric ones that use specific spectral foreground models,
or blind algorithms that do not make any assumptions on foreground SEDs. Furthermore, we can
distinguish between the data spaces where cleaning is performed: this can be pixel space, angular
power spectra, or the space of needlets, which are basis functions on the sphere that are localized
in real and harmonic space. Let us now briefly describe each one of them:

• Pipeline A: The main part of the work presented in this Thesis focuses on Pipeline A. This is
the 𝐶ℓ pipeline with the 𝐶ℓ-fiducial model described in Sect. 3.4. It cleans foregrounds from
multifrequency power spectra assuming constant spectral indices for Galactic foreground
emission.

• Pipeline A + moments: This is the 𝐶ℓ pipeline with the 𝐶ℓ-moments model described in
Sect. 3.4. It extends the parametric foreground model of Pipeline A by the moment parameters
that account for spatially varying spectral indices in dust and synchrotron emission.

• Pipeline B: This is a blind cleaning pipeline based on the NILC algorithm (Basak & De-
labrouille, 2012, 2013). It does not assume any spectral model for non-blackbody com-
ponents. After transforming the maps to needlet space, the algorithm linearly combines
multifrequency data to retrieve the cleaned CMB. The parameters 𝑟 and 𝐴lens are then in-
ferred through a power spectrum likelihood.

• Pipeline C: This pipeline, introduced in Stompor et al. (2008), compares the multifrequency
input maps with a parametric SED model that assumes spatially homogeneous emission.
From the best-fit spectral parameter values, the pipeline constructs a cleaned CMB map and
estimates the parameters 𝑟 and 𝐴lens through a power spectrum likelihood.
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Figure 4.1: Schematics of Pipelines B and C (NILC and map-based parametric B-modes cleaning)
used in BB2023.

• Pipeline C + dust marginalization: This extension of Pipeline C differs from the former at
the post-cleaning level, when parameters are inferred from clean CMB maps. It marginalizes
not only over 𝑟 and 𝐴lens but also over residual dust power estimated from the cleaned dust
map that was constructed from the best-fit spectral model.

To better understand the results of the pipeline comparison, it is worth taking a closer look at the
algorithms used in Pipelines B and C.

4.1.1 NILC cleaning

Let us first outline the principal architecture of Pipeline B as described in detail in Sect. 2.2 of
BB2023. The NILC cleaning algorithm (Delabrouille et al., 2009; Basak & Delabrouille, 2012,
2013) reconstructs clean CMB maps from multifrequency maps by exploiting the spectral difference
between the blackbody emission of the CMB and the emission laws of other sky components.
Pipeline B operates in needlet space, allowing to separate different scales in harmonic space and
simultaneously isolate features in pixel space (Narcowich et al., 2006). It uses the Internal Linear
Combination (ILC) algorithm, a so-called “blind” method that does not assume models for the
SEDs of any non-CMB components (see, e.g., Tegmark & Efstathiou, 1996).

The left panel of Fig. 4.1 shows the main analysis steps for Pipeline B. We first decompose
the input data into five needlet windows, each one being sensitive to a different multipole range
and a different region on the sky. Inside each window, we compute the ILC weights that allow a
retrieval of the minimum-variance CMB signal from multiple frequency channels. These weights
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are normalized so that the sum over all needlet windows equals one, guaranteeing the conservation
of the CMB signal amplitude. The final NILC CMB map is the sum of the five pixel maps that result
from the needlet-weighted multifrequency maps. The same set of weights is used to obtain “noisy
CMB” and “noise-only” maps from simulations. In the last two steps, we compute power spectra
using the NaMaster code with B-mode purification to alleviate variance leakage from ambiguous
modes (see Sect. 3.1.2 and Alonso et al., 2019), and infer 𝑟 and 𝐴lens with the Gaussian likelihood
(Sect. 3.2.1).

4.1.2 Map-based parametric cleaning

Pipeline C performs map-based parametric cleaning as described in Stompor et al. (2008), using
the numerical ForeGroundBuster code1 (FGBuster, Poletti & Errard, 2023). The observed
multifrequency data are modeled as a sum of noise and signal components that linearly map onto
the frequency channels,

𝒅𝝂 =
∑︁
𝑐

𝐴𝑐a (𝛽𝑐) 𝒔𝒄 + 𝒏𝝂 , (4.1)

where 𝒔𝒄 are the sky signals of components 𝑐 ∈ {CMB, dust, synchrotron} and 𝐴𝑐a (𝛽𝑐) is the
mixing matrix. The elements of the mixing matrix are the spectral emission laws of the three sky
components evaluated at the six SO frequencies, parameterized by the spectral indices {𝛽𝑐}: a
modified blackbody with spectral index 𝛽𝑑 and fixed temperature 𝑇𝑑 = 20 K for Galactic thermal
dust, a power law with spectral index 𝛽𝑠 for Galactic synchrotron, and a blackbody law in the case
of the CMB. Input data are compared to this spectral emission model through a likelihood that
assumes isotropic emission and includes statistical uncertainty through the pixel noise variance
estimated from 500 noise-only simulations. The maximum-likelihood spectral indices are then
inserted into the mixing matrix to retrieve the component maps.

The right panel of Fig. 4.1 shows the main analysis steps of Pipeline C. We start by estimating
the spectral indices from multifrequency maps and use them to reconstruct maximum-likelihood
component maps. We obtain component-wise noise maps by applying the previously found mixing
matrix to the 500 noise-only simulations. We estimate B-purified, noisy component power spectra
using the NaMaster code and obtain the final noise-debiased result by subtracting the average
noise-only power spectra. Finally, we infer 𝑟 and 𝐴lens from the CMB-only power spectrum using
a Gaussian power spectrum likelihood (see Sect. 3.2.1) with the CMB-only model from Eq. (3.10).
For more details, we refer to Sect. 2.3 in BB2023.

1URL: github.com/fgbuster/fgbuster
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Figure 4.2: SO SAT sky mask used for the B-mode pipelines. This mask is displayed in equatorial
coordinates and was apodized using a 𝐶1 kernel of 10 degrees radius to optimize the performance
of analytical B-mode purification.

4.2 Sky simulations

The simulations used in this work are coadded polarized sky maps in Q and U, containing the
CMB signal, instrumental noise, and Galactic foregrounds. These are the major contributions
expected to influence primordial B-mode inference, in addition to instrumental systematic effects
(see Sect. 2.7). While including the latter would exceed the scope of this project, targeting them in
future work is indispensable for robust data analysis and we will address this in the Conclusions.

All simulated maps use the “Hierarchical Equal Area isoLatitude Pixelisation of a 2-sphere”
scheme (HEALPix, Górski et al., 2005) with 𝑁side = 512 (or a pixel size of 6’.87)2. The SAT
sky mask, displayed in Fig. 4.2, effectively covers 10% of the sky in two distinct patches in the
northern and southern Galactic hemisphere. The six frequency channels are simulated at the SO
band centers at 27, 39, 93, 145, 225, and 280 GHz. We assume delta-like frequency bandpasses
in order to accelerate the production of these simulations. However, as all pipelines are able to
handle finite bandpasses, this approximation should not impact their performance. The sky signals
are convolved with Gaussian beam window functions with full widths at half maximum (FWHM)
as displayed in Tab. 4.1. In the following, we describe each simulated component in more detail.

• CMB: The polarized CMB simulations are Gaussian realizations of theory power spectra
evaluated at the fiducial cosmology of Planck 2018 (Planck Collaboration VI, 2020) including
gravitational lensing of amplitude 𝐴lens ∈ {0.5, 1} and a tensor-to-scalar ratio 𝑟 ∈ {0, 0.01}.
We simulate 500 CMB Q and U maps for each of the four cosmologies.

2A HEALPix map has 𝑁pix = 12𝑁2
side pixels of the same area Ωpix = 𝜋/(3𝑁2

side).
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• Noise: We consider Gaussian noise realizations of the parametric power spectrum model
presented in SO2019, given by

𝑁ℓ = 𝑁white

[
1 +

(
ℓ

ℓknee

)𝛼knee]
. (4.2)

The white-noise amplitude 𝑁white and the 1/ 𝑓 noise parameters {ℓknee, 𝛼knee} depend on the
SO noise scenario and assume different values for each frequency channel, listed in Tab. 4.1.
The “baseline” and “goal” noise cases span a range of predicted white noise levels for the SO
SATs, while the “optimistic” and “pessimistic” 1/ 𝑓 noise cases mimic the effects of filtering,
polarization modulation and atmospheric emission based on measurements from previous
ground-based experiments (see Sect. 2.2 of SO2019). We account for an inhomogeneous
scanning strategy by dividing the noise maps by the inverse square root of the hit counts
shown in Fig. 4.2. For each of the four scenarios, we simulate 2000 noise Q and U maps
(500 × 4 data splits3) at six frequencies.

• Galactic foregrounds. We simulated maps of polarized synchrotron and thermal dust
emission based on models produced by PySM (Thorne et al., 2017; Zonca et al., 2021). We
consider five diffuse foreground emission models of increasing complexity: Gaussian, d0s0,
d1s1, dmsm, and d10s54, described hereinafter.

Gaussian maps are random realizations of the 𝐶ℓ-fiducial model (see Sect. 3.4.3) at spectral
parameter values that were estimated from the PySM “nominal index” models of synchrotron
and dust (see Sects. 2.1.1 and 2.2.1 of Thorne et al., 2017), evaluated at the SO sky patch. In
thermodynamic temperature units, those fiducial values are (𝑑: thermal dust at 353 GHz; 𝑠:
synchrotron at 23 GHz): 𝐴𝐸𝐸

𝑑
= 56 `𝐾2

CMB, 𝐴𝐵𝐵
𝑑

= 28 `𝐾2
CMB, 𝛼𝐸𝐸

𝑑
= −0.32, 𝛼𝑑

𝐵𝐵
= −0.16;

𝐴𝑠
𝐸𝐸

= 9 `𝐾2
CMB, 𝐴𝑠

𝐵𝐵
= 1.6 `𝐾2

CMB, 𝛼𝑠
𝐸𝐸

= −0.7, 𝛼𝑠
𝐵𝐵

= −0.93. We simulated 500 Gaussian
foreground Q and U maps in six channels assuming a fixed frequency scaling with 𝛽𝑑 = 1.54,
𝑇𝑑 = 20 K, and 𝛽𝑠 = −3, consistent with Planck Collaboration IV (2020).

The non-Gaussian foreground models contain anisotropic dust and synchrotron templates
from PySM3 (Zonca et al., 2021) based on real temperature and polarization data. The most
notable differences among them are: a) d0s0 assumes spatially constant SEDs; b) d1s1
assumes spatially varying SEDs based on Planck Commander temperature data; c) dmsm
has a larger spatial variation of 𝛽𝑠 than d1s1, additional small-scale Gaussian fluctuations
as realizations of a power-law power spectrum with slope 𝛼𝐵𝐵𝑠 = −0.6 based on S-PASS
data (Krachmalnicoff et al., 2018), and uses 𝛽𝑑 and 𝑇𝑑 templates smoothed to 2 degrees

3We only used data splits for Pipeline A and A+moments.
4d10s5 is a preliminary template that had been released shortly before the publication of BB2023 and was therefore

tested on 100 simulations instead of 500 simulations.
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Table 4.1: Instrument and noise specifications used for the simulations in the SO B-mode pipeline
comparison project. These levels correspond to homogeneous noise, while our default analysis
assumes inhomogeneous noise maps weighted according to the SAT hit counts.

Baseline Goal Pessimistic Optimistic

Frequency FWHM Noise Noise ℓknee ℓknee 𝛼knee

[GHz] [arcmin] [`K-arcmin] [`K-arcmin]

27 91 46 33 30 15 -2.4
39 63 28 22 30 15 -2.4
93 30 3.5 2.5 50 25 -2.5

145 17 4.4 2.8 50 25 -3.0
225 11 8.4 5.5 70 35 -3.0
280 9 21 14 100 40 -3.0

angular resolution; d) the d10s5 model assumes dust emission and spectral templates based
on the Planck Generalized Needlet Internal Linear Combination (GNILC) data set (Planck
Collaboration IV, 2020), which feature larger spatial variation than d1s1 and dmsm. We refer
to pysm3.readthedocs.io/en/latest for more details on the non-Gaussian models.

4.3 Results on the tensor-to-scalar ratio

The five component separation pipelines were applied to the set of simulations described in Sect. 4.2
with the goal of inferring 𝑟 and its statistical uncertainty. In the following, we discuss the results
of several test settings, starting with the fiducial cosmology analysis that was conducted on the
four least complex foreground scenarios. We then briefly address alternative cosmologies, noise
inhomogeneity, and the d10s5 scenario.

In Fig. 4.3, we show the results on the standard cosmology (𝑟 = 0, 𝐴lens = 1) for the two 1/ 𝑓
noise cases and in four different foreground scenarios, including Gaussian, d0s0, d1s1, and dmsm.
The five pipelines are statistically consistent with 𝑟 = 0 and among each other in the two simplest
foreground scenarios, with biases of 1𝜎 (2-3𝜎) emerging for Pipelines A, B, and C in the d1s1
(dmsm) scenario and unbiased results for the extended pipelines. The statistical uncertainties vary
between 2.1× 10−3 and 3.6× 10−3 for Pipelines A, B, and C and increase by about 25% (80-100%)
for A+moments (C+dust marginalization), depending on the noise and foreground case. The effect
of changing between the two white noise scenarios and between the two 1/ 𝑓 noise scenarios results
in a respective increase of 𝜎(𝑟) by about 30%. These results are in reasonable agreement with the
forecasts from SO2019.
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Figure 4.3: Mean posterior values and standard deviations of the tensor-to-scalar ratio 𝑟 obtained
by the SO degree-scale B-mode cleaning pipelines, as a function of increasing complexity in
Galactic foregrounds. Results are averaged over 500 simulations, which include CMB with the
(𝑟 = 0, 𝐴lens = 1) fiducial cosmology, foreground emission and inhomogeneous noise at the
baseline level with optimistic (dot markers) or pessimistic 1/ 𝑓 component (cross markers). This
figure was directly adopted from BB2023.
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Figure 4.4: Mean posterior values and standard deviations of the tensor-to-scalar ratio 𝑟 obtained
by the SO degree-scale B-mode cleaning pipelines, as a function of input cosmology. Results are
averaged over 500 simulations, which include CMB, foreground emission in the d1s1 scenario
and inhomogeneous noise in the baseline-optimistic case. This figure was directly adopted from
BB2023.
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Figure 4.5: Effect of noise inhomogeneity on the inferred tensor-to-scalar ratio 𝑟. Upper panel:
Mean posterior values and standard deviations of 𝑟 obtained by the SO degree-scale B-mode
cleaning pipelines. Results are averaged over 500 simulations, which include CMB with the
standard cosmology, foreground emission in the d0s0 scenario and noise in the baseline-optimistic
case. Lower panel: Relative increase in 𝜎(𝑟) when exchanging homogeneous by inhomogeneous
noise. This figure was directly adopted from BB2023.

Aside from tightening constraints in the case of 𝑟 = 0, the SO baseline requirements include
the bias-free measurement of a primordial signal with 𝑟 = 0.01 at the 2-3𝜎 level considering a
50% removal of the gravitational lensing signal. To test this, we investigated three further scenarios
(𝑟 = 0.01, 𝐴lens = 1), (𝑟 = 0, 𝐴lens = 0.5), and (𝑟 = 0.01, 𝐴lens = 0.05) in the baseline-optimistic
noise case, assuming d1s1 foregrounds. Figure 4.4 shows the results. We find that in all four
cosmologies, the pipelines can measure 𝑟 at or below a 1𝜎 bias, confirming their robustness. We
also find that including 50% delensing lowers 𝜎(𝑟) by about 20 to 30% and assuming primordial
gravitational waves at a level of 𝑟 = 0.01 increases the error by about 40%, consistent with the
expected increase in cosmic variance.

Another distinguishing feature between this work and SO2019 is the inhomogeneous noise
described in Sect. 4.2. To check the impact of inhomogeneous noise on the 𝑟 inference, we ran all
pipelines on simulations that contained homogeneous noise in the baseline-optimistic case, CMB
with the standard cosmology, and d1s1 foregrounds and compared those with the corresponding
inhomogeneous noise simulations. The results, shown in Fig. 4.5, reveal that noise inhomogeneity
has different impacts on different pipelines, from a moderate rise of 𝜎(𝑟) by about 20% for Pipeline
A to a more pronounced 50% increase for Pipeline B.

We also investigated the d10s5 foreground template, which, among other changes with respect
to dmsm, has a more pronounced spatial variation in the dust amplitude and spectral index. We ran
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all pipelines on 100 simulations with the standard cosmology and inhomogeneous goal-optimistic
noise, and obtain

𝑟 = (19.4 ± 2.1) × 10−3 (Pipeline A)
𝑟 = (2.5 ± 3.1) × 10−3 (A + moments)
𝑟 = (14.4 ± 2.3) × 10−3 (Pipeline B) (4.3)

𝑟 = (22.0 ± 2.6) × 10−3 (Pipeline C)
𝑟 = (−1.5 ± 5.1) × 10−3 (C + dust marg.)

We obtain a substantial, up to 9𝜎, bias on 𝑟 for Pipelines A, B, and C and no significant bias
for the two extended pipelines (below 1𝜎). For A+moments and C+dust marginalization, an
unbiased measurement comes at the cost of 40% and 95% increase in the statistical uncertainty
compared to the nominal pipelines A and C, respectively. The moderate increase in 𝜎(𝑟) makes
the moments pipeline the unbiased method with the lowest statistical error, which is at the level
of the SO2019 baseline requirement. These results substantiate that measuring unbiased 𝑟 in the
presence of complex Galactic foregrounds, in particular with spatially varying spectral indices,
relies on algorithms that specifically target foreground residuals.

To validate these results, we applied a set of pipeline comparison tests, which we discuss in the
following section.

4.4 Pipeline comparison

Robust 𝑟 constraints require selecting one or several foreground cleaning pipelines that are unbiased
while achieving the smallest possible statistical error. To exclude any unexpected algorithm-specific
bias, it is useful to compare the pipelines not just with regard to the inferred 𝑟 value, but also to
intermediate data products, such as angular power spectra.

In the following, we summarize three sets of pipeline consistency checks targeting these sec-
ondary data products. This includes comparisons of CMB power spectra, foreground models used
in Pipelines A and A+moments, and channel weights derived from the three cleaning algorithms.

4.4.1 𝐶ℓ-based comparison

The first consistency test compares cleaned angular power spectra of the CMB as inferred by
Pipelines A, B, and C. While clean CMB power spectra can be readily obtained from Pipelines B
and C, they cannot in the case of Pipeline A, which directly infers 𝑟 from multifrequency power
spectra. We therefore replace the 𝐶ℓ-fiducial model by the ℓ-wise CMB model (see Sect. 3.4.3),
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Figure 4.6: Clean CMB power spectra as retrieved from the SO degree-scale B-mode cleaning
pipelines. Results are averaged over 500 simulations of CMB with (𝑟 = 0, 𝐴lens = 1), inhomoge-
neous goal-optimistic noise, and Galactic foregrounds of different levels of complexity. The error
bars quantify the empirical standard deviation calculated from simulations. This figure was directly
adopted from BB2023.
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which instead infers the binned power spectrum amplitudes of the cleaned CMB while marginalizing
over foreground parameters.

Figure 4.6 shows the binned CMB BB power spectra and their statistical uncertainties as
retrieved by Pipelines A, B, and C from 500 simulations containing CMB with (𝑟 = 0, 𝐴lens = 1)
and inhomogeneous noise in the goal-optimistic case. The three panels show the d0s0, d1s1,
and dmsm foreground scenarios, respectively. We also compare the fiducal CMB power spectrum
with the best-fit CMB models as found by Pipelines A, B, and C and, in the most complex dmsm
scenario, show the best-fit models for both pipeline extensions. We also show the data obtained by
the C+dust marginalization pipeline in the dmsm scenario. We find that in the simpler d0s0 and
d1s1 scenarios, the data from the three nominal pipelines agree among each other and with the
input model, with the largest deviations of up to 1𝜎 found at ℓ ≲ 100. For dmsm at multipoles
below 50, the bias grows to about 1.5𝜎. At ℓ ≳ 150, Pipelines B and C mildly deviate from the
fiducial model, which could originate from the fact that maps at different channels have different
beam resolutions, and therefore require a convolution to a common resolution prior to component
separation. The bias with pipelines B and C seen at large ℓ could indicate power leakage from
performing this transformation. The extended pipelines A+moments and C+dust marginalization
achieve an unbiased CMB reconstruction at the power spectrum level. In summary, we find that, as
expected, degree-scale foreground residuals bias the 𝑟 inference in complex foreground scenarios,
and can be mitigated by using the 𝐶ℓ-moments model or by marginalizing over the residual dust
amplitude after map-based component separation. We discuss future perspectives for the B-mode
cleaning pipelines in the Conclusions.

4.4.2 Model comparison

Besides looking at the marginalized 𝑟 results, we can compare different models in terms of their
overall fit to all model parameters, taking into account “Occam’s razor” principle that simple models
should be preferred. To do so, we apply the Akaike Information Criterion (AIC, Akaike, 1974)
to the two models of Pipeline A. The 𝐶ℓ-fiducial and 𝐶ℓ-moments model are well suited for this
comparison since they are nested and include foregrounds. The relative AIC can be interpreted as
the logarithm of the relative model odds (Wagenmakers & Farrell, 2004), and is defined as

ΔAIC = 2Δk + 𝜒2
min(moments) − 𝜒2

min(fiducial) , (4.4)

where Δ𝑘 = 4 is the number of excess parameters of 𝐶ℓ-moments compared to 𝐶ℓ-fiducial. We
calculateΔAIC for a set of 100 simulated maps of coadded Galactic foregrounds in all five scenarios,
noise in the goal-optimistic case, and CMB with (𝑟 = 0, 𝐴lens = 1).

Figure 4.7 shows the results. We find that the distribution of ΔAIC concentrates at values ≳ 1
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Figure 4.7: Empirical distribution of ΔAIC values obtained from comparing the 𝐶ℓ-fiducial with
the 𝐶ℓ-moments model on 100 sky simulations of coadded CMB with (𝑟 = 0, 𝐴lens = 1), inho-
mogeneous goal-optimistic noise, and Galactic foregrounds with different levels of complexity.
Positive values on the abscissa denote preference for the fiducial model, negative values indicate
preference for the moments expansion. This figure was directly adopted from BB2023.

for the four simple scenarios (Gaussian, d0s0, d1s1, dmsm), thus slightly preferring the 𝐶ℓ-fiducial
model, while d10s5 foregrounds lead to model odds of ΔAIC < 10−5 for 78 out of 100 simulations,
clearly preferring the 𝐶ℓ-moments model. This result contradicts the intuitive expectation that
the 𝐶ℓ-moments model should be preferred already in the dmsm scenario, given the 2-3𝜎 bias on
𝑟 reported in Sect. 4.3. We conclude that a 2-3𝜎 detection by the 𝐶ℓ-fiducial model cannot be
validated by model comparison metrics such as the AIC, at least for models with nine parameters
or more. For d10s5 instead, the AIC clearly identifies the 9𝜎 result as a bias. We shall comment
further on this result in Sect. 4.5.

4.4.3 Channel weights comparison

Although Pipelines A, B, and C use completely different component separation algorithms, we can
define for each of them a set of channel weights that quantify how much each frequency channel
contributes to the cleaned CMB signal. We first note that for Pipelines B and C, such weights are
already part of the algorithms, in form of the NILC weights (see Eq. (10) in Delabrouille et al.,
2009) calculated in every needlet window and the least-squares weights (see Eq. (8) in Stompor
et al., 2008) computed at every map pixel, respectively. In case of Pipeline A, we do not directly
retrieve maps, therefore no CMB map weights emerge from the algorithm. We can, however, take
inspiration from Planck’s power-spectrum-based SMICA algorithm (Cardoso et al., 2008, see also
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Figure 4.8: Channel weights for Pipelines A, B, and C. We show the SMICAweights for 27 different
ℓ-bins calculated from noisy multifrequency 𝐶ℓs (Pipeline A, upper panel), pixel-averaged NILC
weights for five needlet windows (Pipeline B, middle panel) and pixel-averaged weights from
parametric map-based component separation (Pipeline C, lower panel). Results are averaged over
100 simulations of coadded CMB with (𝑟 = 0, 𝐴lens = 1), and inhomogeneous noise in the goal-
optimistic (dashed lines) and baseline-pessimistic case (solid lines). The semitransparent gray
areas represent the channel weights’ 1𝜎 empirical standard deviation over simulations for baseline-
pessimistic noise. This figure was directly adopted from BB2023.
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Sect. 2.4.1), which synthesizes clean CMB maps from binned, noisy multifrequency power spectra,
assuming that the signal and noise maps are Gaussian and uncorrelated between pixels. Those maps
can be constructed for each ℓ-bin individually by multiplying the original maps with the SMICA
weights

𝒘 𝒍 =
𝒂𝑇 · �̂�−1

𝒍

𝒂𝑇 · �̂�−1
𝒍

· 𝒂
, (4.5)

where 𝒂 is vector of length six filled with ones, corresponding to the CMB frequency scaling in
thermodynamic temperature units, and �̂�−1

𝒍 is the 6×6-dimensional inverse cross-frequency power
spectrum matrix, which we calculate from noisy multifrequency power spectra.5

Figure 4.8 shows the channel weights for the three pipelines. We display Pipeline A’s SMICA
weights for all 27 ℓ-bins in the upper panel, Pipeline B’s pixel-averaged NILC weights for all five
needlet windows in the middle panel, and Pipeline C’s pixel-averaged least-squares weights in
the lower panel. We find that low and high frequencies are generally subtracted due to the large
foreground contribution, while the middle frequencies carry a larger CMB contribution and are
therefore added to the CMB reconstruction. Smaller scales (ℓ ≳ 300) considered by the NILC
weights tend to be larger at higher frequencies, possibly because small-scale lensing B-modes
become more important than thermal dust emission. In general we find that all pipelines are in
agreement, confirming the robustness of the three algorithms.

This series of consistency tests confirms that the bias seen in the 𝑟 results (Sect. 4.3) is not
related to algorithmic errors but the treatment of foreground residuals. We provide an extended
interpretation of this in the following section.

4.5 Summary

One of today’s frontiers in modern cosmology, the origin of cosmological fluctuations in the very
early Universe, may be in reach thanks to near-future B-mode experiments such as SO. Given the
challenge of detecting this tiny signal of unknown amplitude in the presence of much larger Galactic
and instrumental contaminants, obtaining consistent results from different cleaning algorithms is
indispensable for a robust analysis.

This chapter describes the SO component separation pipeline comparison project, which embeds
the𝐶ℓ pipeline described in Chpt. 3 as one of the algorithms to constrain the amplitude of primordial
gravitational waves from degree-scale B-modes. We consider the 𝐶ℓ pipeline in the 𝐶ℓ-fiducial
model, assuming no spatial variation in the foreground spectral indices, and the𝐶ℓ-moments model
accounting for small variations. The second pipeline uses the NILC algorithm, which is “blind”,

5Noisy multifrequency power spectra are obtained by Pipeline A by computing the weighted mean of all cross- and
auto-split power spectra (and not just the cross-split spectra, as described in Sect. 3.4).
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that is, agnostic with respect to the spectral properties of possible contaminants of the CMB, and
applies to needlets that are localized both in harmonic and pixel space (Basak & Delabrouille,
2013). The third pipeline is a parametric pixel-based cleaning pipeline based on the FGBuster
code (Poletti & Errard, 2023; Stompor et al., 2008), which assumes spatially constant SEDs, and
allows for a-posteriori marginalization over dust residuals in the cleaned CMB power spectrum.

We find that the three algorithms and two extensions agree in the simplest tested foreground
scenarios and confirm the statistical sensitivity on 𝑟, 𝜎(𝑟) = 0.003 at 68% central CL, anticipated
by the SO Goals and Forecasts paper SO Collaboration (2019). In the presence of complex fore-
grounds, a full reduction of the bias requires adequate extended model designs, such as the moment
expansion to the𝐶ℓ pipeline and the option to marginalize over residual dust in the case of the map-
based parametric pipeline. Thanks to these pipeline extensions, bias on 𝑟 found with the simpler
pipeline variants could be successfully identified as originating from simulated foregrounds, and
discerned from a simulated primordial and lensing B-mode signal in all cases considered. We stress
that choosing the more complex pipeline variants comes at the cost of larger statistical uncertainty
and possible bias associated with volume effects, which are spurious shift in the parameter posterior
distribution caused by a suboptimal choice of parameters (see Chpt. 6 for more details). Whether
the more complex, extended models are to be chosen for the data analysis must therefore be judged
on the basis of the performance of simpler models. Model comparison metrics are not always able
to validate 2-3𝜎 detections in 𝑟 , at least when considering models with nine or more parameters,
such as the ones used in the 𝐶ℓ pipeline.

Although in these simulated Galactic foreground scenarios, the extensions to Pipelines A and
C retrieve unbiased 𝑟 values, this represents a significant challenge for real data analysis: it is
not guaranteed that we can robustly distinguish between a primordial signal and residuals from
Galactic foregrounds, or residual instrumental systematic effects, which are beyond the scope of
the work presented in this chapter. Therefore, with the imminent arrival of the first data from SO,
an extended set of robustness tests will be needed to exclude any potential source of systematic
bias in 𝑟 . We shall discuss future robustness tests in the Conclusions. The five pipeline designs are
not definitive and efforts are ongoing to make the pipelines more optimal and robust. Examples
are a hybrid approach between map-based and 𝐶ℓ cleaning (Azzoni et al., 2023), NILC-based
algorithms introducing more advanced treatment of spatially varying foreground emission, such as
Multi-Clustering NILC (MCNILC, Carones et al., 2023).
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CHAPTER 5

NN-based inference of the reionization optical depth
from Planck maps

In the previous chapters, we focused on the estimation of the tensor-to-scalar ratio 𝑟 for SO. As
we pointed out there, inferring 𝑟 is challenging due to the presence of non-Gaussian foreground
residuals, and possibly also instrumental systematics, although the latter were not taken into account
in said works. These residuals can bias the estimation of 𝑟, as demonstrated in the case of the
d10s5 model. We showed that marginalizing over residuals at the likelihood level can mitigate
this bias, as we saw with Pipeline C in the extended “dust marginalization” option. This requires
one to find a parametric model of the residuals, which generally may not be a trivial task. In the
case of SO, we successfully used the power spectrum of the component-separated dust map, but
this procedure is not guaranteed to correct for residuals in general. For future experiments such as
CMB-S4 and LiteBIRD that aim at constraints of 𝜎(𝑟) ∼ 10−3, this becomes a critical issue: while
a correct analytic model of foregrounds is mandatory, it is difficult to obtain. One possible way to
overcome this issue is to use likelihood-free inference, which relies only on simulations and not on
the existence of an analytical likelihood. This is a much simpler task, since designing and running
simulations is usually less challenging than writing down the corresponding analytical model. A
potential solution is employing neural networks (NNs), trained on simulations, to perform the
inference task.

In this chapter, based on Wolz et al. (2023b), we investigate this approach by estimating the
optical depth 𝜏 from Planck maps. The parameter 𝜏 measures the number density of free elec-
trons that a CMB photon encounters in the reionized Universe after decoupling. It is known from
high-redshift quasar data that the reionization of the Universe, following the birth of the first stars
and galaxies, was completed by a redshift of 𝑧 ∼ 5.3 (Qin et al., 2021). CMB photons and free
electrons undergo elastic Compton scattering, leaving the photon energy constant but changing the
polarization fraction as the photons free-stream toward our instruments. As described in Sect. 2.3,
a nonzero optical depth 𝜏 causes a bump in the CMB polarization power spectra at large scales
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ℓ ≳ 20. Thus, analogous to 𝑟, the 𝜏 parameter is constrained by the large-scale CMB polarization
signal. A crucial difference between those two parameters, though, is their typical amplitude in
the CMB power spectra: the peak variance of large-scale E-modes at ℓ ∼ 4 that is sensitive to
the reionization optical depth is at least two orders of magnitude higher than that of primordial
B-modes. This makes estimating 𝜏 a similar but easier inference problem than estimating 𝑟. A
critical issue in the estimation of 𝜏 from Planck and WMAP data are large systematic effects that
contaminate the polarization signal at low multipoles. For this reason, also Planck analyses (Pagano
et al., 2020) use a simulation-based likelihood, given the difficulty to model residual systematic
effects analytically.

In recent years, NN-based approaches to likelihood-free inference underwent a rapid develop-
ment in cosmology, showing potential as an alternative tool for parameter estimation. Promising
tools are being developed for many applications: from LSS simulations (Villaescusa-Navarro et al.,
2022), to CMB lensing reconstruction (Caldeira et al., 2019), kSZ detection (Tanimura et al., 2022),
or modeling and cleaning of Galactic foregrounds (Jeffrey et al., 2022; Wang et al., 2022; Casas
et al., 2022; Krachmalnicoff & Puglisi, 2021). NN-based inference of cosmological parameters
has seen significant progress in the context of observations of the LSS, where the complexity of
the cosmological and astrophysical signals, together with the difficulty in the definition of optimal
summary statistics, challenge analytical methods. Up to now, this approach has been tested on
simulations (see e.g., Villaescusa-Navarro et al., 2022), with applications on real data still limited
in number, although leading to promising results (e.g., Fluri et al., 2019). In this context, CMB
data analysis could also benefit from the application of NN-based inference, helping overcome the
limitations of traditional methods.

Full-sky space missions such as WMAP and Planck have been able to measure the reionization
bump (see Sect. 2.3.2) through pixel-based and power-spectrum-based analysis methods. The
WMAP nine-year data release cites 𝜏 = 0.089 ± 0.014 (Hinshaw et al., 2013), a value that later
turned out to be biased high due to Galactic dust emission (Planck Collaboration XI, 2016; Natale
et al., 2020). The Planck 2018 legacy polarization data products at large scales are known to be
affected by residual contamination from instrumental systematic effects. Planck’s Low Frequency
Instrument (LFI) polarization data at 70 GHz contain less large-scale systematics than the High
Frequency Instrument (HFI) data at 100 GHz and 143 GHz, motivating the Planck Collaboration
to perform map-based analysis on LFI data and cross-spectrum analysis on HFI data. The Planck
2018 legacy release cites 𝜏 = 0.063± 0.020 as inferred from LFI data and 0.051± 0.009 from HFI
data (Planck Collaboration V, 2020). The cross-spectrum analysis method of Planck HFI data at
143 GHz and 100 GHz yields the tightest constraint to date (Pagano et al., 2020; de Belsunce et al.,
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2021), while avoiding bias from uncorrelated noise in the individual frequency channels.
As investigated in Planck Collaboration VI (2014) and Delouis et al. (2019), the most impor-

tant systematic effects at Planck 143 GHz and 100 GHz are temperature-to-polarization (T-to-P)
leakage due the analog-to-digital converter nonlinearity (ADCNL), uncertainties on the detector
orientation and polarization efficiencies, T-to-P leakage due to bandpass mismatch and inaccurate
Galactic foreground modeling, and a varying time constant associated with the heat transfer to the
bolometers. In general, these systematic effects follow non-Gaussian statistical distributions and
are expected to correlate among different channels, mainly because they are partially sourced by the
temperature signal. Improved mapmaking algorithms, such as SRoll2 (Delouis et al., 2019), and
NPIPE (Planck Collaboration Int. LVII, 2020), have been designed to mitigate those systematics.
However, while the NPIPE maps are largely filtered at low ℓ, the SRoll2 map still have residuals
that need to be taken into account in the estimation of 𝜏. For this reason, Pagano et al. (2020) use an
empirical likelihood built from realistic simulations (Planck Collaboration V, 2020; Gerbino et al.,
2020). The difficulty of accounting for or modeling the systematic residuals in the SRoll2 maps
therefore calls for an alternative, likelihood-free methodology, for example NN-based inference.

This work represents the first map-level cosmological inference on CMB data that is entirely
based on neural networks. We use NNs to infer the optical depth to reionization 𝜏 and its statistical
uncertainty from polarized Planck multifrequency maps at 100 and 143 GHz at scales ≳ 4 degrees,
employing realistic simulations to build our model (training) and an independent subset to validate
our findings. By adopting a suitable strategy for training we were able to constrain 𝜏 to a value in
agreement with previous work, although with larger error bars. The remainder of this chapter is
structured as follows. We present the simulations and data used in this work in Sect. 5.1, followed
by the neural network inference method in Sect. 5.2. In order to validate this method, we apply it
to a series of simulations and present the results in Sect. 5.3. We discuss the final results on the
Planck SRoll2 maps in Sect. 5.4.

5.1 Simulations and data

A neural network is a high-dimensional parametric function that maps a set of numbers called “input
features” (such as the pixels of one or several CMB maps) to a set of output features (such as a 𝜏
value and its statistical uncertainty). In order to achieve the necessary arithmetic sophistication to
perform complex tasks, NNs consist of a large number of independent elementary building blocks,
called neurons, each of which performs a simple nonlinear operation that can be tuned by a set of
free parameters called the NN weights. Neural networks can easily contain tens of thousands of
independent weights that are optimized (“learned”) during a training process as described below.
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Several neurons in parallel can act as a set of independent functions called a layer. A NN can have
many serially connected layers, with each layers’ output acting as an input to the subsequent one.
The first NN layer is connected to the input features, while the last layer gives us the desired output
features.

Training a NN involves repeatedly exposing it to a set of training data, of which we know the
truth value of interest (in our case, the input 𝜏 value). The degree of closeness between the NN
output and the truth value is assessed by a “loss function”, which we can choose according to the
task at hand. The NN training consists of a series of “epochs”, during which we compare the NN
output to the truth and adapt the NN weights, iteratively walking down the gradient of the loss
function until, in the ideal case, we reach a global minimum. During each epoch we use validation
data that the NN has not been exposed to yet, and evaluate the loss function without changing
the NN weights as an independent cross-check. The training process is complete once the loss
function, evaluated at the validation data, consistently falls below a certain threshold.

After training, we may still wish to assess the performance of the finished NN, for which we
then use yet another set, called test data. This is important because of a known risk related to NNs,
known as “overfitting”. This means that the network weights adapt excellently to the input features
of the training data, while the NN still fails to make correct predictions on similar but independent
test data sets.

The goal of our analysis is the estimation of 𝜏 from real SRoll2 Planck maps. Therefore, we
need a training set of simulated maps that are representative of the SRoll2 data. As we discuss in
more detail in Sect. 5.3, we explored several different strategies for training, starting with a single
frequency channel, and then going to two channels. Also, as we shall see later, we use different
types of simulations, initially training only on Gaussian simulations with Planck noise levels, then
moving to simulated SRoll2 maps with non-Gaussian systematics, and finally combining both in
a hybrid “retraining” approach. To achieve all this, we needed a large number of simulations to
perform NN training, validation, and testing. We generated simulated maps that include CMB
emission, noise, and instrumental systematic effects, as well as possible spurious signals coming
from our Galaxy. In this section, we describe the simulations, the data, and the sky masks needed
to avoid the highly contaminated Galactic plane region.

5.1.1 Simulated CMB maps

As we saw in Sect. 2.3, CMB temperature and polarization anisotropies can be described by the six
parameters of the ΛCDM model. Analyses of small-scale temperature data from the Planck 2018
legacy release place a 0.5% constraint on the parameter combination 109 𝐴𝑠 𝑒

−2𝜏 = 1.88 ± 0.01
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(Planck Collaboration VI, 2020). Varying the two parameters (𝐴𝑠, 𝜏) simultaneously conditioned
on 109 𝐴𝑠 𝑒

−2𝜏 = 1.884, coherent with previous studies (Planck Collaboration Int. XLVI, 2016;
Planck Collaboration V, 2020; Pagano et al., 2020; Planck Collaboration Int. LVII, 2020), we used
the Boltzmann solver CAMB (Lewis et al., 2000) to generate a lookup table of EE power spectra
computed with the ΛCDM model. In order to robustly train and validate a NN, we need a set of
simulations that span the entire distribution of plausible “real-world” data, which should at least
include all cosmologies that we deem realistic and wish our model to be sensitive to. Therefore, to
build the simulated CMB maps, we discretized 𝜏 ∈ [0.01, 0.13] with step sizeΔ𝜏 = 5×10−4. Since
the otherΛCDM parameters have no substantial impact on polarized CMB spectra at low multipoles,
we fixed them to the Planck 2018 legacy best-fit values 𝐻0 = 67.32 km/s/Mpc, Ω𝑏ℎ

2 = 0.02237,
Ω𝑐ℎ

2 = 0.1201, 𝑛𝑠 = 0.9651, 𝑚a = 0.06. From the tabulated power spectra, we uniformly drew
200,000 samples based on which we generated 200,000 pairs of full-sky Stokes Q and U maps using
the HEALPix package (Górski et al., 2005). We fixed the Q and U maps’ angular pixel resolution by
choosing 𝑁side = 16 (or a pixel size of about 4 degrees) and smooth each map with a cosine beam
window function (Benabed et al., 2009), in analogy with the procedure used to generate the Planck
SRoll2 maps (see Sect. 5.1.4). These large scales retained in our maps correspond to multipoles
ℓ ≲ 50, where the reionization bump leaves an observable imprint in the CMB EE spectrum.

5.1.2 Simulated Gaussian noise

Planck maps contain Gaussian instrumental noise which, in pixel space, is well described by the
covariance matrix published alongside Planck’s 8th Full Focal Plane simulations (FFP8, Planck
Collaboration XII, 2016). We drew samples from them for the Planck 100 and 143 GHz polarization
channels (Planck Collaboration VI, 2014; Planck Collaboration XIII, 2016), obtaining 200,000
Gaussian noise maps at pixel resolution 𝑁side = 16 for both channels, respectively. We coadded the
training maps of CMB and noise to obtain 200,000 Planck-like simulations on the full sky, out of
which we selected 190,000 for training and 10,000 for validation. For the testing phase, we drew
new noise samples in the same fashion as before, but coadded CMB simulations with fixed input
values 𝜏 = 0.05, 0.06, and 0.07 and different seeds than the ones used for training and validation.
In this way, we obtained three sets of 10,000 independent Gaussian test simulations with the fixed
input cosmologies.

5.1.3 SRoll2 simulations

Several updated mapmaking codes exist that include improved systematics cleaning algorithms
of the low-multipole Planck maps, such as SRoll2 (Delouis et al., 2019), and NPIPE (Planck
Collaboration Int. LVII, 2020). The SRoll2 algorithm, an upgraded version of the Planck Collab-

95



oration’s SRoll algorithm (Planck Collaboration Int. XLVI, 2016), iteratively cleans systematics
from Planck’s time-ordered data products. Major improvements in SRoll2 encompass a new
gain calibration model that accounts for second-order ADCNL, updated foreground templates, and
an internal marginalization over the polarization angles and efficiencies for each bolometer. The
SRoll2 data products contain a significantly lower level of spurious systematic effects and a dipole
residual power reduced by 50% with respect to the Planck 2018 legacy data, falling below the
noise level. The SRoll2 EE cross-frequency power spectrum between 100 GHz and 143 GHz is
dominated by the cosmological signal at all scales that were considered in the analysis (2 < ℓ < 30).

The SRoll2 simulations are the result of applying the SRoll2 cleaning algorithm to a set of
500 Planck-like realistic sky simulations containing modeled noise, foregrounds, and instrument
systematics. We chose them as our reference for systematic effects present in the SRoll2 Planck
data. All simulated maps are cleaned from Galactic foregrounds through a template fitting proce-
dure, as described in Pagano et al. (2020). In order to produce our training set, we started with
400 of the 500 original SRoll2 simulations containing pairs of Q and U full-sky maps at pixel
resolution 𝑁side = 16 and two channels at 100 and 143 GHz. To augment our original SRoll2
simulation set, we randomly drew SRoll2 maps from the original 400 maps (with repetition),
keeping corresponding Q and U maps together. This allowed us to assemble a total of 200,000
SRoll2 simulations. After coadding them with CMB simulations, we obtained a set of 200,000
polarized full-sky simulations, used for training and validation. For the testing phase, we made
3 × 100 copies of the 100 remaining, previously unused SRoll2 maps and coadded them with
10, 000 CMB maps with fixed input 𝜏 = 0.05, 0.06, and 0.07, respectively. In this way we obtained
a set of 3 × 10, 000 full-sky SRoll2 test simulations.

5.1.4 Planck maps

The goal of this work is the analysis of the SRoll2 Planck polarization data products (Delouis et al.,
2019). They consist of Stokes Q and U maps at the 100 and 143 GHz HFI frequency channels,
stored at pixel resolution 𝑁side = 16. The Planck maps are first smoothed by a pair of cosine beam
window functions, and then cleaned from foreground contamination through a template fitting
procedure (Pagano et al., 2020). Figure 5.1 shows the map products in Galactic coordinates. We
note that close to the Galactic plane, Q and U on both channels are visibly contaminated by residual
systematic effects, which we masked prior to the analysis in order to avoid bias. The arc-shaped
features in the northern and southern Galactic hemisphere likely indicate residual gain variations
caused by the ADCNL systematic effect. As shown by Delouis et al. (2019), these features show
lower residual power than the CMB in the 100×143 GHz EE cross-spectrum but may still amount
to a nonnegligible bias in cosmological analyses.
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Figure 5.1: SRoll2 data products of the Planck Q and U maps at frequencies 100 and 143 GHz,
after component separation, used in this chapter, displayed in Galactic coordinates.

5.1.5 Masks

At low Galactic latitudes, the Milky Way emits polarized foreground radiation which dominates
the CMB signal in intensity and polarization. Even after component separation, residuals of this
emission need to be excluded from the analysis to avoid biasing cosmological analyses. We therefore
applied masks to all maps described in the previous sections. We considered two of the binary
polarization masks published in Pagano et al. (2020), retaining sky fractions of 𝑓sky = {0.5, 0.6}.
We smoothed them with Gaussian beams of corresponding full width at half maximum (FWHM) of
15 and 16 degrees, respectively, and apply a binary threshold, setting all pixels with a value larger
than 0.5 to one and all others to zero. This procedure allows us to avoid fuzzy borders and mitigate
groups of isolated masked pixels. The smoothed masks are shown in Fig. 5.2. Our baseline mask in
this work is the 𝑓sky = 0.5 smoothed mask, as it retains enough large-scale information to constrain
𝜏 but avoids excessive levels of foregrounds in the Galactic plane.

5.2 NN inference

NNs can have different architectures that are commonly categorized by how different layers of
neurons are connected and arranged in relation to each other. Choosing a certain architecture
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Figure 5.2: Smoothed version of the SRoll2 sky masks at sky fractions 0.5 and 0.6 used in this
chapter, displayed in Galactic coordinates.

can crucially affect the ability of a NN to perform certain types of tasks. For example, in a fully
connected architecture, every neuron in a given layer feeds its output value to every neuron in
the subsequent layer, thus maximizing the number of connections. Depending on the number of
layers, such an architecture may excel at emulating complex arithmetic operations, but less so at
recognizing sparse patterns in a large, noisy data set, such as a melody in a digital piece of music,
or an object in a digital image. Another architecture is the convolutional neural network (CNN),
which uses a much lower number of connections between subsequent layers, in a way so that local,
sparse patterns can be much more efficiently identified. If we think of the input data as a digital
image, then every layer is a convolutional filter that singles out specific, recurring visual patterns.
For this reason, CNNs have become exceedingly popular in the context of digital image recognition.

5.2.1 CNN architecture for 𝜏 estimation

CNNs are the industry standard of pattern recognition in two-dimensional images, performing both
classification (e.g., identifying families of objects) and regression tasks (e.g., estimating continuous
parameters on maps). The success of CNNs in extracting low-dimensional information from visual
input is due to a multilayer image filtering algorithm. This typically involves searching for distinct
sets of local features in the original image (through convolution) and compressing the data (via a
type of operation called “pooling”), going to lower and lower resolution, before inferring the desired
summary statistic. In this work, we use CNNs to perform cosmological inference using simulation-
based regression models that estimate 𝜏 from spherical images of the polarized microwave sky in
the form of HEALPix maps. The NN architecture must therefore be able to filter images, but also
massively compress the data in order to converge to a final two-number output. As we shall see in
this section, this is achieved by combining several convolutional layers with a set of fully connected
layers.

We want to retrieve information from data projected on the sphere, requiring convolutions on
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Figure 5.3: Schematic of the convolutional layers of the neural network used in this chapter. This
represents the first part of the architecture, performing image filtering.

the spherical domain. To this end, we made use of the NNhealpix1 algorithm which allows to build
spherical CNNs taking advantage of the HEALPix tessellation. In particular, NNhealpix convolves
pixels on the 2-sphere by only considering the first neighbors for each given pixel, and subsequently
downgrades the map resolution by assigning the average over quartets of pixels to a single pixel
at the next lower resolution, thus reducing the 𝑁side parameter by one. This is known as “average
pooling”. We refer to Krachmalnicoff & Tomasi (2019) for additional details on how the algorithm
works, as well as its advantages and disadvantages. In the work described in this chapter, we used
NNhealpix in combination with the public keras2 python package to build our CNN architecture,
and to perform training, validation, and testing.

The first part of our CNN, performing image filtering, consists of four CNN building blocks,
as illustrated in Fig. 5.3. We accept 𝑁map input maps, which in our case represent one or two
frequency channels and Stokes Q and U maps, hence 𝑁map = 2 or 4. Each convolutional layer
introduces 32 filters with nine trainable pixel weights, respectively, and is followed by a Rectified
Linear Unit (ReLU) activation layer. Mathematically, this means each image pixel 𝑝𝑖 undergoes a
linear transformation 𝑓 followed by a nonlinear transformation 𝑔

𝑝𝑖 ↦→ 𝑝′𝑖 = ( 𝑓 ◦ 𝑔) (𝑝𝑖) , (5.1)

𝑓 (𝑝𝑖) = 𝑝𝑖𝑤0 +
𝑁neigh (𝑖)∑︁
𝑗=1

𝑝𝑘 𝑗 (𝑖)𝑤 𝑗 , (5.2)

𝑔(𝑥) ≡ max(0, 𝑥) , (5.3)

1https://github.com/ai4cmb/NNhealpix

2https://keras.io
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Figure 5.4: Schematic of the fully connected layers of the neural network used in this chapter. This
represents the second part of the architecture, performing data compression.

where 𝑘 𝑗 (𝑖), 𝑗 = 1, . . . , 𝑁neigh(𝑖) runs over the indices of all neighboring pixels in the HEALPix
map (which can be either seven or eight, depending on the pixel location). Then, an “average
pooling” degradation layer reduces the map resolution from 𝑁side to 𝑁side/2, assigning to every
low-resolution pixel the average of its four children at the next higher resolution. Up to this point,
the application of the four CNN building blocks transform the array of input maps at 𝑁side = 16
(or 𝑁pix = 3072 pixels) into an array of 32 filtered maps at 𝑁side = 1 (or 𝑁pix = 12 pixels).
This represents the image filtering part, meaning the transformation of the original inputs into 32
maximally compressed feature maps that, ideally, retain all the desired (cosmological) information.
We still need to “learn” the mapping from theses feature maps to the output numbers 𝜏NN and
𝜎NN(𝜏). Compression is achieved by two fully connected (or dense) layers. We address both of
these operations in the following section.

A fully connected layer is a linear map from 𝑀-dimensional input feature space to 𝑁-
dimensional output feature space and is commonly used for data compression (in which case
𝑁 < 𝑀). A fully connected layer of output dimension 𝑁 is said to contain 𝑁 neurons associated to
a vector of trainable weights that parameterize the layer. In each of its 𝑁 neurons, a fully connected
layer linearly contracts the input vector 𝑥 of length 𝑀 to a number by means of a weights vector
𝑣 (𝑖) ,

𝑥𝑖 ↦→ 𝑥′𝑖′ =
𝑀∑︁
𝑗=1
𝑣
(𝑖′)
𝑗
𝑥 𝑗 . (5.4)

The second part of our CNN, the data compression block, is shown in Fig. 5.4 and contains a
dropout and flattening layer, a fully connected layer with 48 neurons, a ReLU nonlinear activation
layer, concluded by a final fully connected layer with two neurons that outputs 𝜏NN and 𝜎NN(𝜏)
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as described in the following section. The dropout layer acts as a selective off switch for parts of
the following fully connected layer, deactivating at random 20% of its 48 neurons at a time, thus
mitigating the overfitting problem common for neural networks (Srivastava et al., 2014). With
the described architecture the total number of weights that need to be optimized during training is
𝑁w ≈ 4.7 × 104.

5.2.2 Training

When we train a neural network, we effectively tune its many free parameters until the task at hand,
such as estimating parameters from maps, would be optimally performed on the training data. In
the following, we describe this procedure in detail.

At each training step we passed one batch of 𝑁batch = 32 training simulations through the
network, meaning we simultaneously considered the results from all simulations that belong to a
single batch. Input maps need to be masked with the same mask that is used in the analysis. The
output values of the two neurons of the final layer, representing the estimated parameters 𝜏NN 𝑗 ,
𝜎NN(𝜏) 𝑗 ( 𝑗 = 1, . . . , 𝑁batch), as well as the truth values 𝜏𝑗 , are then inserted into the loss function
(Jeffrey & Wandelt, 2020)

L
[
𝜏,

(
𝜏NN 𝑗 , 𝜎NN(𝜏) 𝑗

) ]
=

𝑁batch∑︁
𝑗=1

[
(𝜏𝑗 − 𝜏NN 𝑗 )2 +

(
(𝜏𝑗 − 𝜏NN 𝑗 )2 − 𝜎NN(𝜏)2

𝑗

)2
]
. (5.5)

We then updated all 𝑁w network parameters subject to minimizing this loss function. For
doing so, we employed the Adam optimizer, a widely used stochastic gradient descent algorithm
implemented in keras, for which we found an initial training rate of 𝐿𝑅 = 10−3 and first- and
second-moment exponential decay rates 𝛽1 = 0.9 and 𝛽2 = 0.999 to be appropriate (see Kingma
& Ba, 2014, for more details). Repeating the described procedure for the entire training set of size
𝑁train = 190, 000 made up one training epoch3. We trained on a maximum of 45 epochs, using the
keras callback function ReduceLROnPlateau to allow for learning rates to decrease by a factor
of 0.1 if the loss of the validation set did not improve over the course of five epochs. Moreover, the
callback function EarlyStopping allows for training to stop after a minimum number of epochs
(in our case 20) without improvement in the validation loss. Using both of these callback functions
allowed for a faster convergence and suppressed unwanted oscillations in the loss function during
the training phase. Training on a 32-core Intel Xeon CPU node took about three hours, while
training on eight NVIDIA Tesla V100 GPU cores took about 30 minutes.

3Among the total 200,000 simulations generated as described in Sect. 5.1, we actually used 190,000 to optimize
the NN’s parameters, while we used the remaining 10,000 as a validation set.
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5.2.3 Testing

After training, we fix the neural network parameters, which in principle completes the model
building. However, trained NNs may not perform well for two main reasons: firstly, the loss
function may have not converged to its global minimum, causing model predictions to be biased.
Secondly, the model may overfit the input, meaning that the network learns the training set’s features
with an excellent accuracy, but fails to make correct predictions on similar, independent test sets.
One usually addresses both problems by testing the model’s predictions on simulations that have
not been fed into the network before. We used 2×3 test sets of 10,000 sky simulations with fixed
input 𝜏 = {0.05, 0.06, 0.07}, described in detail in Sects. 5.1.2 and 5.1.3.

We note that, by inferring only 𝜏NN and 𝜎NN(𝜏), we implicitly assumed Gaussian posteriors,
which we exhaustively validated on simulations by checking for biases in the Gaussian mean and
variance (see Sect. 5.3). If, instead, our algorithm had provided an entire, potentially non-Gaussian
probability distribution function or higher statistical moments, we would have needed to perform
more extensive sanity checks and indicate credible intervals instead of Gaussian standard deviations.

5.3 Results on simulations

Before arriving at the estimation of 𝜏 from the Planck SRoll2 data, we considered several setups
to train our CNN model, increasing the complexity of the training simulations. This allowed us to
get valuable insight into the learning process. In particular, we started by training the CNN on a set
of simulations including CMB with Gaussian noise (see Sect. 5.1.2), either on a single frequency
channel, or on two channels. We then moved to simulations including non-Gaussian systematic
effects (i.e., SRoll2 simulations), trying different possible strategies to obtain unbiased 𝜏 estimates
in the presence of complex residuals. Only once we achieved this, we applied our trained model
to real Planck data. In all the cases presented in this section, we trained and tested the CNNs
considering the 𝑓sky = 0.5 mask as our reference (see Fig. 5.2). A summary of all analysis cases,
along with their corresponding results tables and figures, can be found in Table 5.1.

5.3.1 Gaussian training

As aforementioned, we first tested the ability of our CNN to estimate the value of 𝜏 considering
only Gaussian noise. These simulations have noise amplitudes and pixel-pixel correlations directly
estimated from Planck maps, and therefore serve as a good description of the Gaussian noise
present in real data. At the same time, they lack for realism, since they do not include non-Gaussian
residual systematic effects, contamination due to Galactic foregrounds, both known to be present
on the Planck SRoll2 maps. We therefore expected these models (which we refer to as “Gaussian
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Table 5.1: References to results tables and figures in this chapter.

Gaussian simulations SRoll2 simulations Planck data

Gaussian NN Table 5.2; Table 5.3;
(one channel) Fig. 5.5 Fig. 5.5

Gaussian NN Table 5.2; Table 5.3; Table 5.5;
(two channels) Figs. 5.5, 5.8 Figs. 5.5, 5.8 Figs. 5.9, 5.10

HL likelihood Table 5.2 Table 5.3
SRoll2 training Table 5.4
SRoll2 retraining Table 5.4; Fig. 5.8 Table 5.5; Figs. 5.9, 5.10
Empirical likelihood Table 5.5; Fig. 5.10

models”) to induce a bias on 𝜏 when applied to the more realistic SRoll2 simulations, or to real
Planck data.

Single channel. We began by training our CNN on Stokes Q and U maps with Gaussian
Planck-like noise and CMB at 143 GHz only, thus feeding 𝑁map = 2 maps to the network. In the
left-hand side of Table 5.2, we show the results of testing 𝑁sims = 10, 000 Gaussian simulations
of CMB and noise generated with fiducial 𝜏 = 0.05, 0.06, and 0.07, respectively. The average
learned mean posterior values 𝜏NN are close to unbiased and deviate at the 0.2𝜎 level. The average
learned posterior standard deviations 𝜎NN(𝜏) are within 5% agreement with the sample scatter
across simulations, 𝜎(𝜏NN).

To assess the performance of the Gaussian model also on non-Gaussian Planck-like maps, we
tested this model on 10,000 SRoll2 simulations generated with fiducial 𝜏 = 0.06 (see Sect. 5.1.3).
As illustrated in the upper right panel of Fig. 5.5, this leads to a bias of more than 1𝜎 on 𝜏NN.
These tests on a single frequency channel leave us with two conclusions: on the one hand, CNNs
are able to correctly retrieve 𝜏 and its statistical uncertainty from a single Planck-like simulation of
the 143 GHz channel containing correlated Gaussian noise. On the other hand, systematic effects
present in the Planck SRoll2 simulations bias the single-channel CNN inference, as expected.
To improve our results, we added another frequency channel to the inference pipeline, seeking to
mitigate this bias. We expected that combining two channels should lead to a lower error bar and
a lower bias on the SRoll2 simulations, in a similar way as cross-spectra achieve lower noise bias
than auto-spectra.

Two channels. As a second test, we added the HFI 100 GHz channel in the training and
testing procedures, simulated as CMB plus the corresponding Gaussian correlated noise, so that
𝑁map = 4 maps were fed into the neural network. The results from testing on Gaussian noise are
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Table 5.2: 𝜏 predictions from 10, 000 Gaussian CMB + noise simulations generated with three
different, fixed fiducial 𝜏 values. The results correspond to the Gaussian NN training on one and
two channels, and the Bayesian inference with a power spectrum likelihood. We show the posterior
mean 𝜏NN/HL and standard deviation 𝜎NN/HL(𝜏) averaged over all simulations, as well as the scatter
of 𝜏NN/HL over all simulations.

Test on Gaussian simulations

143 GHz 143+100 GHz 143×100 GHz
Gaussian training Gaussian training HL likelihood

fiducial 𝜏 𝜏NN 𝜎NN(𝜏) 𝜎(𝜏NN) 𝜏NN 𝜎NN(𝜏) 𝜎(𝜏NN) 𝜏HL 𝜎HL(𝜏) 𝜎(𝜏HL)
0.05 0.0508 0.0059 0.0066 0.0503 0.0054 0.0057 0.0496 0.0046 0.0047
0.06 0.0608 0.0065 0.0067 0.0600 0.0056 0.0059 0.0596 0.0048 0.0048
0.07 0.0712 0.0067 0.0070 0.0702 0.0057 0.0063 0.0697 0.0048 0.0049

shown in Table 5.2. We note two positive effects: firstly, the small bias observed for Gaussian
noise on a single channel reduces to below 1% of a standard deviation. Secondly, the learned
𝜎NN(𝜏) decreases by more than 10% when training on two frequency channels. Meanwhile, the
prediction of the posterior standard deviation stays within 5% of the sample standard deviation
of the inferred 𝜏NN. The same results are presented in Fig. 5.5 for fiducial 𝜏 = 0.06, showing
significant improvement of the two-channel CNN inference in the lower panels with respect to the
one-channel results (upper panels). We proceeded to test this two-channel Gaussian model on the
SRoll2 simulations. As shown in the right panel of Fig. 5.5, for fiducial 𝜏 = 0.06, the addition
of a second channel allows for a significant reduction of the systematic-related bias in 𝜏NN and to
a better statistical constraint. This leads us to conclude that CNNs are able to recognize common
features across channels, combining the information to reduce the statistical uncertainty and the
bias due to uncorrelated systematic effects.

The corresponding quantitative results, for all the three 𝜏 values used during testing, are listed
in Table 5.3: adding a second channel in the Gaussian training model leads to improved results on
the SRoll2 test simulations for all considered values of 𝜏. However, a residual bias is still present,
especially for 𝜏 = 0.05, when the CMB signal is smallest.

Moreover, we noticed that, when applied to the SRoll2 test maps, the models trained on
Gaussian simulations returned values of 𝜎NN(𝜏) that disagree with the actual spread of estimates
𝜎(𝜏NN), with the latter being up to about 25% larger. This implies that the learned error is not
accurate in this case, hence could not be used to describe the uncertainties of our inferred 𝜏 values
on SRoll2 maps. We address this issue in Sect. 5.3.4.
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Figure 5.5: Predictions of 𝜏NN from 10, 000 simulations with input 𝜏 = 0.06, containing either
CMB with Gaussian noise (left panels) or CMB with SRoll2 noise + systematics (right panels).
The two rows denote different CNN models trained on CMB with Gaussian noise on a single
frequency channel (top), on two frequency channels (bottom).

Table 5.3: Same as Table 5.2 but testing on CMB and SRoll2 simulations instead of CMB and
Gaussian noise simulations.

Test on SRoll2 simulations

143 GHz 143+100 GHz 143×100 GHz
Gaussian training Gaussian training HL likelihood

fiducial 𝜏 𝜏NN 𝜎NN(𝜏) 𝜎(𝜏NN) 𝜏NN 𝜎NN(𝜏) 𝜎(𝜏NN) 𝜏HL 𝜎HL(𝜏) 𝜎(𝜏HL)
0.05 0.0669 0.0065 0.0074 0.0536 0.0055 0.0067 0.0478 0.0050 0.0079
0.06 0.0738 0.0067 0.0076 0.0609 0.0056 0.0070 0.0585 0.0050 0.0073
0.07 0.0813 0.0069 0.0074 0.0690 0.0057 0.0071 0.0688 0.0049 0.0069
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5.3.2 Comparison with Bayesian inference from cross-QML 𝐶ℓ estimates

In this section we compare NN inference results with results coming from a standard Bayesian
approach applied to E-mode power spectra. In particular, we considered QML estimates (see
Sect. 3.1.3) of the 100×143 GHz EE cross-spectrum and drew posterior samples using the HL
likelihood (Hamimeche & Lewis, 2008, see also Sect. 3.2.2). The HL likelihood provides a good
approximation to the non-Gaussian distribution of the exact power spectrum likelihood, which
markedly differs from Gaussianity at the low multipoles 2 ≤ ℓ ≲ 30 that are most relevant for
constraining 𝜏. Evaluating the HL likelihood requires a power spectrum covariance matrix, which
we obtained directly from simulations of Gaussian noise and CMB realized with the same 𝜏 values
used for generating the test simulations (Sect. 5.1). For the HL likelihood we assumed a theoretical
model of the CMB E-modes, computed with CAMB, considering the multipole range 2 ≤ ℓ ≤ 30,
and sampling only for the 𝜏 parameter, keeping 109𝐴𝑠𝑒

−2𝜏 = 1.884 fixed. Our final results are the
best-fit value 𝜏HL, the standard deviation 𝜎HL(𝜏) of the posterior, and the scatter 𝜎(𝜏HL) computed
from the set of test simulations.

We ran the HL likelihood on 3 × 10, 000 Gaussian sky simulations with input 𝜏 = 0.05, 0.06,
and 0.07. As shown in the last three columns of Table 5.2, we find unbiased best-fit results with
average posterior standard deviation 𝜎HL(𝜏) and best-fit parameter scatter 𝜎(𝜏HL) of about 0.0048.
We note that the uncertainties derived from sampling the HL likelihood are about 20% lower
than the ones from NN estimates. Part of the scatter of 𝜏NN comes from the intrinsic stochastic
nature of the training process. We could reduce this scatter by taking the average over multiple
NN models (as discussed in Sect. 5.3.4). Nevertheless, these results reveal that although we were
able to retrieve unbiased 𝜏 values with NNs from Gaussian simulations, our estimator does not
achieve minimum variance. Further development of the method, including an optimization of the
convolution algorithm on the sphere, the NN architecture, and the training procedure, are required
and will be explored in future work in the light of improving the estimator’s variance.

In addition to Gaussian simulations, we applied the cross-spectrum inference pipeline on
3 × 10, 000 SRoll2 simulations and show the corresponding results in the last three columns of
Table 5.3. We stress that the HL likelihood contains the same covariance matrix as before, calculated
from Gaussian simulations. This is done in analogy with the case of Gaussian NN training applied
to SRoll2 simulations, therefore neglecting the presence of systematic effects. We retrieve biased
estimates on 𝜏, confirming our expectation that the power spectrum model implemented in the
likelihood is an inaccurate representation of the SRoll2 simulations, which include spurious non-
Gaussian signals. Interestingly, this affects the NN and HL estimates in different ways, leading
to biases in opposite directions for 𝜏 = 0.05 and 0.06. To study the relative behavior of the two
estimators, it is instructive to look at a one-by-one comparison of the NN and HL results on the
same 10,000 test simulations, as presented in Fig. 5.6 for 𝜏 = 0.06. The scatter plot of the estimated
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Figure 5.6: Per-simulation comparison between the HL likelihood estimate 𝜏 and the NN estimate
𝜏NN for a test set of 10,000 simulations realized with 𝜏 = 0.06. Gaussian simulations are shown in
bright red, SRoll2 simulations in dark green. The correlation coefficients between both estimators
are 76% (Gaussian) and 63% (SRoll2).

.

𝜏NN and 𝜏HL on Gaussian simulations and on SRoll2 simulations are shown in bright red and
dark green, respectively. In the Gaussian case the correlation of the estimated 𝜏 values is at a
level of about 76%, while for SRoll2 it is at about 63%. We conclude that map-level systematic
effects, which are partially unaccounted for in the estimates, decrease the correlation and increase
the differences between 𝜏HL and 𝜏NN when changing from Gaussian to SRoll2 test simulations.
This indicates that spurious non-Gaussian signals impact the two estimators in different ways.

5.3.3 Training including systematic effects

As previously seen, the two-channel Gaussian training allowed to improve our 𝜏 estimates on
SRoll2 simulations. However, the continued occurrence of bias, even though small, motivated
us to evolve the training setup by including systematic effects in the training set. Our goal was to
achieve fully unbiased results before applying our NN models to real Planck maps. In this section
we explore two possible ways of including systematics: training on SRoll2 simulations from the
very beginning and performing a SRoll2minimal retraining update on previously trained Gaussian
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Table 5.4: 𝜏 predictions from 10, 000 CMB + SRoll2 test simulations generated with three different
fiducial 𝜏 values. These results correspond to two frequency channels, either training on SRoll2
from the start or retraining on SRoll2 maps. Displayed are the average posterior mean, average
predicted standard deviation 𝜎NN(𝜏), and the scatter 𝜎(𝜏NN) calculated across the test simulations.

Test on SRoll2 simulations

143+100 GHz 143+100 GHz
SRoll2 training SRoll2 retraining

fiducial 𝜏 𝜏NN 𝜎NN(𝜏) 𝜎(𝜏NN) 𝜏NN 𝜎NN(𝜏) 𝜎(𝜏NN)
0.05 0.0526 0.0059 0.0066 0.0508 0.0077 0.0091
0.06 0.0622 0.0062 0.0070 0.0606 0.0079 0.0088
0.07 0.0722 0.0064 0.0070 0.0707 0.0081 0.0087

networks.

Training on SRoll2 simulations. The SRoll2 simulations (Delouis et al., 2019) are de-
signed to accurately describe Planck’s Gaussian noise component and non-Gaussian polarization
systematics. Motivated by this, we trained a CNN from the start on the 200,000 SRoll2 training
simulations described in Sect. 5.1.3. As usual, we used 190,000 simulations to perform weight
optimization, and 10,000 for validation. We trained on Planck’s 143 GHz and 100 GHz channels
simultaneously and used the same hyperparameter values as for the Gaussian training, described
in Sect. 5.2.2. We stress that even though artificially augmented by forming new channel pair
combinations, the SRoll2 training set was essentially built from 400 sampled skies only. We
tested on 3 × 10, 000 SRoll2 simulations with fixed 𝜏 = 0.05, 0.06, and 0.07, generated from the
remaining 100 independent realizations that the CNN did not “see” during training.

Table 5.4 shows the results obtained with this approach. For the three input 𝜏 values we find a
positive bias of about 0.4𝜎. For 𝜏 = 0.06, the average learned error 𝜎NN(𝜏) = 0.0062 is slightly
larger than for the two-channel Gaussian training but smaller than the scatter 𝜎(𝜏NN) = 0.0070. We
see similar results both for the Gaussian CNN and the HL likelihood inference (see Table 5.3). As
in the case of Gaussian NN training, the learned error does not agree with the SRoll2 simulation
scatter, therefore it cannot be used to infer the statistical uncertainty on 𝜏NN.

We ascribe the main reason for the bias on 𝜏 to overfitting. Figure 5.7 illustrates this problem.
We compared the 𝜏 predictions on a set of 10,000 test simulations with the ones coming from 10,000
training simulations. The results show a bias and standard deviation of Δ𝜏 = 0.0023 ± 0.0069 for
the test set, while the training set is unbiased, with Δ𝜏 = 0.0001 ± 0.0068. This is clear evidence
for overfitting: while the model performs well on the 400 SRoll2 simulations that the training set
is built from, these are not enough to generalize to the remaining 100 SRoll2 simulations used to
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Figure 5.7: Neural network accuracy in predicting the true 𝜏 input from 10, 000 simulations. Step-
filled histograms show the results on unseen test simulations, black outlines show the results on a
subset of the actual training simulations. We compare a network exclusively trained on SRoll2
simulations (left panel) with a Gaussian network retrained on SRoll2 simulations (right panel).

build the test set, leading to the observed bias on 𝜏 in the latter case.

Minimal retraining with SRoll2 simulations. We recognized the bias described above as a
critical problem that needed to be addressed. The obvious option, training on a considerably larger
simulation set, was unavailable to us due to the limited number of SRoll2 realizations. Therefore,
we applied a transfer learning technique to inform our previously trained Gaussian networks on the
SRoll2 systematics. As shown in the previous sections, our Gaussian NN model is not affected
by overfitting issues and, if trained on two channels, performs reasonably well even on SRoll2
simulations. This motivated us to leverage the existing results on Gaussian networks to solve the
overfitting issue with as little changes as possible. To this end, we chose the approach of retraining
the two-channel Gaussian model on the full set of SRoll2 training simulations, while targeting two
specific goals:

(i) The retrained CNN should learn to extract information on the systematic effects present in
the SRoll2 simulations and update its CNN weights just enough to achieve fully unbiased
results on the SRoll2 training set.

(ii) At the same time, we wanted to ensure that the information already learned was not destroyed
during the new training phase (an issue sometimes referred to as “catastrophic forgetting”, see
e.g., Kirkpatrick et al., 2017; Ramasesh et al., 2021), avoiding going back to the overfitting
situation described in the previous section.

We achieved this by performing what we call minimal retraining: we chose the hyperparameters
of the NN such that we obtained unbiased results on the SRoll2 test simulations while making
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Figure 5.8: Predictions of 𝜏NN on 10, 000 SRoll2 simulations with input 𝜏 = 0.05, 0.06, and 0.07
(first, second, and third row, respectively). The two columns display two different NN models
trained on two channels of Gaussian simulations (left panels) and retrained on two channels of
SRoll2 simulations (right panels). All results correspond to 𝑓sky = 0.5.

minimal changes to the original network. We found an optimal setup with five retraining epochs, a
learning rate of LR = 10−7, and no additional changes to the original network architecture.

The right panel of Fig. 5.7, in analogy to the left panel, compares the distribution of Δ𝜏 from
the SRoll2-retrained model on training simulations (black contours), or test simulations (green
filled histogram). We find both histograms to be in good agreement, indicating that unlike the
SRoll2-trained model, the retrained model does not suffer from overfitting, thus achieving our
goal (ii) defined above. Table 5.4 on the right-hand side lists the results of the SRoll2-retrained
model on SRoll2 test simulations. We find 𝜏NN = 0.0508, 0.0606, and 0.0707 for the respective
input values of 𝜏 = 0.05, 0.06, and 0.07. This amounts to a bias below Δ𝜏 = 8 × 10−4, or ≲ 0.1𝜎.
In Fig. 5.8, we show a comparison of the results on SRoll2 test sets obtained by Gaussian and
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SRoll2-retrained CNNs. The reduction of the bias is evident, in particular for 𝜏 = 0.05. Therefore,
we chose the retrained approach as our baseline model to estimate 𝜏 on real Planck data. At the
same time, this approach brings an increase in 𝜎(𝜏NN), an effect not seen with the SRoll2 training
procedure described in Sect. 5.3.34. This could be the consequence of the typical variance-bias
trade-off observed between statistical estimators: with minimal retraining we are able to achieve
unbiased estimates (goal (i) above) at the cost of a larger 𝜎(𝜏NN). In addition to that, we are still
unable to retrieve values of the learned 𝜎NN(𝜏) that agree with 𝜎(𝜏NN) for SRoll2 simulations
(and therefore also for Planck data). We conclude that, except for the case in which we test the
Gaussian model on Gaussian simulations, we cannot use the learned error as an estimate of the
uncertainty of the inferred 𝜏NN.

5.3.4 NN errors

The loss function in Eq. (5.5) provides an estimate for the posterior standard deviation 𝜎NN(𝜏).
However, as seen in the previous sections, the learned 𝜎NN(𝜏) tends to underestimate the actual
spread of the inferred values of 𝜏NN on test set maps, especially in the case of SRoll2 maps. We
therefore proceeded to empirically estimate our errors from simulations.

In doing so, we needed to make an additional consideration: training a NN is an intrinsically
stochastic procedure that relies upon the use of a stochastic optimizer, randomly initialized NN
weights and random realizations of the maps in the training set. This results in the fact that each
NN prediction can be described as the sum of two random variables: 𝜏NN = 𝜏 +ΔNN, and therefore

𝜎2(𝜏NN) = 𝜎2(𝜏) + 𝜎2(ΔNN) + 2 Cov(𝜏,ΔNN) , (5.6)

where the first source of uncertainty,𝜎(𝜏), is due to noise and cosmic variance of test simulations
or observed data, while the second, 𝜎(ΔNN), represents the stochasticity of the NN estimator. These
two terms are sometime referred to as “aleatory” and “epistemic” error, respectively (Hüllermeier
& Waegeman, 2021).

We can measure the uncertainty related to the NN stochasticity by training an ensemble of
models, all based on the same architecture and hyperparameters, but with different initial weights
and training set realizations. Our estimate of 𝜎(ΔNN) is given by the standard deviation of the
models’ 𝜏 predictions when tested on a single test map. In practice, we define the “model ID” of a
trained NN as the fixed random seed controlling the initialization of network weights. We generated
a new training set with map realizations (of CMB, noise, and potentially systematics) that were
fully determined by the model ID. Following this recipe, we created 100 independent Gaussian
training sets and used them to train 100 Gaussian networks. Repeating this procedure with 100

4Compare the fourth column in Table 5.4 with the seventh column in Table 5.3
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Table 5.5: Results from Planck data on two different sky masks, using Gaussian NNs, SRoll2-
retrained NN models, and the empirical 𝐶ℓ-based likelihood presented in Pagano et al. (2020). The
NN results are averaged over 100 models, and 𝜎(𝜏NN) is computed from 10,000 simulations with
input 𝜏 = 0.058.

Predictions on Planck SRoll2 data

143+100 GHz 143+100 GHz 143x100 GHz
Gaussian training SRoll2 retraining 𝐶ℓ likelihood

𝑓sky 𝜏NN 𝜎(𝜏NN) 𝜏NN 𝜎(𝜏NN) 𝜏 𝜎(𝜏)
50% 0.0588 0.0063 0.0579 0.0082 0.0566 0.0062
60% 0.0593 0.0059 0.0583 0.0078 0.0577 0.0054

SRoll2 training sets, we retrained the set of 100 Gaussian networks to obtain 100 SRoll2-retrained
networks. Using a single test map with input 𝜏 = 0.06, we find 𝜎(ΔNN) ≃ 0.0024 for Gaussian
NN models tested on Gaussian maps, and 𝜎(ΔNN) ≃ 0.0034 for minimally retrained NN models
tested on SRoll2. In both cases this represents about 40% of the corresponding value of 𝜎(𝜏NN)
reported in Tables 5.2 and 5.4, respectively.

We can reduce the impact of the NN stochasticity by taking, for each test map, the ensemble
average of the 𝜏 estimates over the 100 trained NNs. By doing so, for the case with 𝑓sky = 0.5
and input 𝜏 = 0.06, we find 𝜎(𝜏NN) ≃ 0.0054 for Gaussian models applied to Gaussian maps and
𝜎(𝜏NN) ≃ 0.0083 for retrained models applied to SRoll2 simulations.

We also evaluated the correlation coefficient between the predictions of pairs of models ( 𝑗 , 𝑘),
tested on the same 10,000 simulations, for both Gaussian and SRoll2 training and testing, respec-
tively. In both cases, we find 𝜌 𝑗 𝑘 ≃ 0.84, in agreement with what is expected if Eq. (5.6) holds and
the models’ epistemic errors are uncorrelated,

Cov(Δ 𝑗

NN,Δ
𝑘
NN) = 𝛿

K
𝑗 𝑘
𝜎2(ΔNN) , (5.7)

where 𝛿K is the Kronecker symbol. In the following section we describe how we applied our
CNN models to Planck maps to infer the value of 𝜏 from real data, estimating its uncertainty from
simulations and using the ensemble average over 100 trained models to reduce the impact of the
NN stochasticity.

5.4 Results on Planck data

As shown in Sects. 5.3.3 and 5.3.4, by retraining on the SRoll2 simulations, we are able to obtain
a CNN-based model that yields unbiased results on unseen SRoll2 test simulations generated with
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Figure 5.9: NN predictions of 𝜏 from Planck 100+143 GHz data, resulting from training 100
equivalent models with different random initial weights and random seeds for training data, con-
sidering Gaussian two-channel training (blue tones) versus SRoll2 retraining (orange tones), and
𝑓sky = 0.5 (downward triangles) versus 𝑓sky = 0.6 (upward triangles). Colored triangle markers
show the best-fit values for the single models and horizontal lines in the corresponding colors show
the ensemble average of 𝜏 (bold lines in the middle) ± the 68% central CL (thin lines on the bottom
and the top).
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Figure 5.10: Results on 𝜏 obtained from Planck SRoll2 data. The values correspond to Table 5.5.
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fixed 𝜏 ∈ {0.05, 0.06, 0.07}. Having thus confirmed the robustness of our method, we moved to
real Planck data and proceeded to predict 𝜏 from the 100 and 143 GHz SRoll2 HFI maps.

We obtained our baseline 𝜏 estimate by taking the average of the inferred values from the 100
minimally retrained NNs applied to Planck data for a sky mask with 𝑓sky = 0.5, resulting in a mean
estimate of 𝜏NN ≃ 0.0058. Figure 5.9 shows the obtained 𝜏 values for each of these NN models.
Following the conclusions of the previous sections, since the learned 𝜎NN(𝜏) is inadequate as an
error prediction, we estimated the uncertainty from simulations. In practice, we generated a set
of 10,000 SRoll2 simulations realized with 𝜏 = 0.058 and average the 𝜏NN estimates over 100
networks. Afterwards, we computed the standard deviation over 10,000 simulations. Our final
inference on Planck maps in this baseline case results in:

𝜏NN = 0.0579 ± 0.0082 (Planck 100 + 143 GHz) . (5.8)

This value is in very good agreement with the 𝜏 estimates obtained with an empirical likelihood
based on cross-QML power spectra, presented in Pagano et al. (2020) (hereafter P2020), applied
to the same Planck maps and constructed from the same SRoll2 simulations that we use in this
chapter. In particular, P2020 obtained 𝜏 = 0.0566+0.0053

−0.0062 on the 𝑓sky = 0.5 sky mask. We note
that the uncertainty from our NN method is about 30% larger. As previously described, this is
due to the fact that our NN estimator does not reach minimum variance and that we relied on the
retraining strategy leading to larger errors. However, the fact that we obtain a 𝜏 value in agreement
with the literature while using an inherently different inference approach that is, for the first time,
fully based on NNs, represents a remarkable result of this work.

We also applied the Gaussian NN model to Planck data, deriving the best-fit parameter value
and error bars analogously. We note that, although the Gaussian model leads to results that are
mildly biased by up to about 0.5𝜎 when applied to SRoll2 maps with low CMB input signal
(𝜏 = 0.05), the bias is below 0.15𝜎 when 𝜏 = 0.06, as displayed in the fifth column of Table 5.3.
In this case, using the same 𝑓sky = 0.5 mask, we obtained 𝜏NN = 0.0588 ± 0.0063. The statistical
uncertainty is lower for this second method, as we omitted retraining on systematics, and similar to
the one obtained from the empirical likelihood presented in P2020.

Lastly, as a robustness test, we applied these same methods to a second sky mask, with a larger
sky coverage of 𝑓sky = 0.6. The parameter estimates remain stable for both the retrained and the
Gaussian model, with lower uncertainties. A model-by-model comparison of the NN predictions
for every single network on 𝑓sky = 0.6 and 𝑓sky = 0.5 is displayed in Fig. 5.9. A summary of our
results on Planck maps is shown in Fig. 5.10 and Table 5.5.
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5.5 Summary

In this chapter, we present the first NN-based cosmological parameter inference that operates
directly on CMB polarization maps. We estimated the optical depth 𝜏 from the largest angular
scales of the Planck SRoll2 polarization maps, which contain significant non-Gaussian residual
contamination from instrumental and foreground systematics, which are difficult to write down
in a model. Pagano et al. (2020) approach this issue by means of an empirical power spectrum
likelihood built from SRoll2 simulations. In our novel approach, we try to solve this by using a
NN-based inference algorithm on the map domain that maps Stokes Q and U maps to a 𝜏 value,
merely requiring realistic simulations for NN training. Our convolutional network algorithm is fully
compatible with spherical maps, using the NNhealpix code (Krachmalnicoff & Tomasi, 2019).
We considered training on a single channel and two channels, and explored training on Gaussian
maps with Planck noise levels, SRoll2 simulations, and a hybrid minimal retraining approach. We
validated the NN pipeline against unseen simulations and, in the case of Gaussian data, a Bayesian
𝐶ℓ-based inference pipeline.

By extensively testing our NN algorithms on simulations, we obtained several key results that
we summarize in the following.

• When trained and applied to Gaussian simulations, the NN models retrieve unbiased 𝜏

values directly from maps. Training them on two frequency channels that share the same
cosmological signal leads to substantial improvement in accuracy and precision compared to
one channel alone. This allows the straightforward combination of data sets to help reduce
the impact of noise and systematic effects without the need for a joint model, and is a key
advantage of the NN approach. However, on Gaussian maps, the NN estimator does not
reach the optimality of the QML power spectrum estimator.

• Testing on the non-Gaussian SRoll2 simulations, we find that residual systematic effects
mildly bias both the Gaussian two-channel NN model and the HL likelihood. To address
this, we incorporated instrumental systematic effects by minimally retraining the Gaussian
NN models on a limited set of 400 SRoll2 simulations, leading to unbiased 𝜏 estimates
with an error increased by 30%. Lastly, we found that the empirical 𝜏 standard deviation
retrieved from the test simulations overestimated the real uncertainty due to an intrinsic NN
stochasticity. To overcome this issue, we evaluate the final error on 𝜏 through simulations,
by taking the ensemble average of 100 NN models.

• After validating the performance of the NNs on simulations, we applied our trained models
to Planck SRoll2 data at 100 and 143 GHz. For the minimally retrained model, which is
the one that leads to fully unbiased results on the SRoll2 simulations, we obtain 𝜏NN =
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0.0579 ± 0.0082. The value is in excellent agreement with P2020, which uses an SRoll2
simulation-based likelihood but relies on an inherently different analysis method. Our final
simulation-based uncertainty estimate on 𝜏NN is about 30% larger. This is because our NN
estimator is intrinsically suboptimal and minimal retraining further enlarges its variance.

• To test the robustness against systematic-induced “unknown unknows”, we repeated the
Planck analysis with the Gaussian network, which achieved good results on SRoll2 sim-
ulations for 𝜏 = 0.06 while being agnostic to non-Gaussian map features. We obtain
𝜏NN = 0.0588 ± 0.0063, in agreement with the estimate reported in the literature, and with
a similar level of uncertainty. As a second robustness check, we used a mask with a larger
𝑓sky = 0.6 and find consistent results, confirming the stability of our 𝜏NN estimates.

The main limitations of our NN estimator are its intrinsic suboptimality (meaning it does not
reach minimum variance even if trained and tested on Gaussian simulations), the slightly biased NN
estimate of statistical uncertainty, and the insufficient SRoll2 training data for the model to learn
the features of the SRoll2 data without overfitting. We expect that future improvements regarding
the intrinsic suboptimality can be achieved through algorithmic developments. Further refinements
in the algorithm are also needed to achieve unbiased NN-based uncertainty estimates, which we did
not use for our final results on real data. While we circumvented the SRoll2 overfitting problem
by means of the minimal retraining method, we anticipate that larger non-Gaussian training sets
are indispensable to achieve a significantly higher precision on 𝜏 with Planck data. It is important
to stress that obtaining reliable results on real data required a significant effort to validate and test
our models on different setups and to develop training strategies that can effectively cope with
systematic effects. This highlights the fact that NN models developed to perform well on simplified
simulations cannot always be straightforwardly applied to real data and need careful consideration
of the training and validation procedures.

Nonetheless, the consistent and robust results we obtain demonstrate that NNs represent a
promising tool that could complement standard statistical data analysis techniques for CMB obser-
vations, especially in cases where the Gaussian CMB signal is contaminated by spurious effects that
cannot be analytically described in a likelihood model. This is particularly relevant for the ongoing
search for primordial gravitational waves, constrained by large- to intermediate-scale 𝐵-modes
which are targeted by a number of near-future experiments such as SO, LiteBIRD, or CMB-S4.
For a further outlook on improvements and applications, we refer to the Conclusions.
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CHAPTER 6

Efficient parameter marginalization for LSS analysis

In the matter-dominated Universe, linear perturbations of the matter density, widely believed to
originate from primordial quantum fluctuations, kept growing gravitationally and eventually formed
the cosmic large-scale structure, which consists of massive clusters and superclusters hosting dark
matter halos and galaxies that we observe today. Cosmologists describe the formation of the
LSS by models of hierarchical growth which, once implemented in numerical simulations, are
able to predict the LSS morphology to remarkable accuracy. The growth of cosmic structure is
highly sensitive to the parameters of the ΛCDM model, such as the fractional densities of dark
energy, dark matter, baryons, and neutrinos, each of which influence the growth dynamics in their
own characteristic way. Real data of the LSS can therefore be used for cosmological inference
that complements CMB data analysis in that it constrains late-time gravitational dynamics (Press
& Schechter, 1974; Bond et al., 1996; Springel et al., 2005). A particular challenge for future
LSS analyses is the tension affecting the measurement of the amplitude of matter fluctuations,
𝑆8 ≡ (𝜎8Ω𝑚/0.3)0.5, where 𝜎8 is the root mean square of matter fluctuations on an 8 Mpc/ℎ scale,
and Ω𝑚 is the fractional energy density in non-relativistic matter. In particular, the latest prediction
from Planck CMB data finds its value (Planck Collaboration VI, 2020) to be about 2𝜎 to 3𝜎 higher
than the analogous measurement from surveys such as the Kilo-Degree Survey (KiDS), the Dark
Energy Survey (DES), and Hyper Suprime-Cam (HSC) (Heymans et al., 2021; DES Collaboration,
2022, 2018; MacCrann et al., 2015; Hamana et al., 2020).

As we go to smaller scales, our models become more and more sensitive to small-scale astro-
physical processes, such as star formation, baryonic feedback from massive stars, or mass accretion
by black holes at the centers of active galactic nuclei. Since including such processes in detail
would be too expensive for present-day numerical simulations, they are often included as effective
parameters. Another example of an effective parameterization is galaxy bias, a phenomenological
model that quantifies the poorly understood relation between the two-point statistics of the galaxy
distribution and the total matter distribution (including dark matter). While these “astrophysical
systematics” may not be of immediate interest to the cosmological analysis, they must be jointly
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constrained with the cosmological parameters, which often leads to degeneracies between large-
scale cosmology and small-scale astrophysics.

As one of the most common LSS data analysis techniques, tomographic “3x2pt” analysis jointly
investigates three different observables that we can effectively use to constrain the morphology of
the LSS. These are:

• Galaxy clustering autospectra: angular power spectra between galaxy number densities
observed in different tomographic bins at various redshifts (“redshift bins”), realized by
means of observations with different photometric filters,

• Weak lensing shear autospectra: angular power spectra of small distortions in the observed
shapes of galaxies (“galaxy shear”) between different redshift bins, caused by the weak
gravitational lensing effect (“weak lensing”) from intervening massive structures along the
line of sight,

• cluster-shear cross-spectra: angular cross-power spectra between the galaxy number den-
sity in one redshift bin and the weak lensing shear in another one.

Future tomographic 3x2pt analyses have the potential to break degeneracies between cosmo-
logical and astrophysical parameters and shed light on known cosmological tensions, such as the
one regarding the 𝑆8 parameter. To be able to push current limits on the cosmological parameters,
current and future LSS analyses require accurate knowledge of the astrophysical systematics, in
particular galaxy bias. Current experiments, such as DES (DES Collaboration, 2022), model such
systematics by O(20) redshift-dependent parameters that are included in the data model together
with the cosmological parameters and then marginalized over. Ignoring astrophysical systematics
would introduce critical inaccuracies, especially in the 𝑆8 parameter.

In Bayesian inference, effective parameters that are not of primary interest to the analysis are
sometimes called “nuisance parameters”. Marginalizing over many nuisance parameters, however,
leads to long convergence times if we use traditional parameter sampling methods, such as MCMC,
which rely on sampling the full high-dimensional posterior distribution. In the case of 3x2pt
analysis of the LSS, this may result in convergence times of up to a few weeks for state-of-the-art
data sets, critically delaying the overall data analysis. This calls for more efficient methods that
take into account large sets of nuisance parameters without this numerical overhead. Addressing
this issue is the main focus of this chapter.

In this final chapter, we present a recent work, Hadzhiyska, Wolz, et al. (2023), that introduces
an analytical method, based on the Laplace approximation, to efficiently marginalize over nuisance
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parameters in Bayesian inference. We apply this to real and simulated future data of the LSS
of the Universe, where alleviating this issue is of immediate relevance to current and near-future
data analysis. Specifically, the contributed work carried out in the context of this Thesis has been
the writing of a code that implements an analytical approximate likelihood for 3x2pt analysis of
the LSS. We stress that our method is not strictly limited to this application but can be readily
applied to other Bayesian inference problems where the marginalization over nuisance parameters
considerably slows analyses down.

This is also relevant for CMB polarization analysis, specifically the search for primordial B-
modes. As we show in Chpt. 3, for near-future experiments such as SO, standard power spectrum
analysis methods rely on marginalizing over foreground systematics to obtain robust results. A
similar exercise is likely needed to optimally account for instrumental systematic effects described
in Sect. 2.7. More sensitive experiments such as LiteBIRD and CMB-S4 are expected to force up
the number of nuisance parameters even more. Therefore, analytical marginalization may become
a time-critical requirement for future CMB experiments.

This chapter is structured as follows. We start by presenting our new method in Sect. 6.1,
summarizing its advantages and disadvantages, and deriving the mathematics. We then discuss
volume effects, a problem that can arise when marginalizing over many nuisance parameters, and
identify them in the context of our approximation. In Sect. 6.2, we apply our method to LSS data
analysis and present results and conclusions.

6.1 New efficient bias parameter marginalization

In order to solve the problem of computational efficiency that comes with marginalizing over many
nuisance parameters, we propose a new analytical technique based on the Laplace approximation.
This method is a general semi-analytical formalism that assumes that upon fixing the key parameters
(in our case, the cosmological ones), we can locally describe the joint probability density of the
remaining nuisance parameters by a multivariate Gaussian. The Laplace approximation is, under
certain conditions that we discuss below, a good approximation to the exact marginal posterior. It
comes with the clear advantage of faster convergence, since it reduces a high-dimensional sampling
problem to a low-dimensional sampling plus a (fast to evaluate) maximization problem. Like
standard numerical marginalization, this analytical marginalization may lead to so-called “volume
effects” that bias the analysis, requiring us to carefully choose our set of parameters and priors.
Moreover, as this method is an approximation, we need to know when we can safely apply it.

Our goal is to explore the posterior distribution of a set of parameters that can be divided into
parameters 𝛀 of cosmological interest, and nuisance parameters 𝒏 that quantify systematic biases
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we wish to marginalize over. The full (joint) posterior is proportional to the likelihood 𝑃(𝒅 |𝛀, 𝒏)
times the prior 𝑃(𝛀, 𝒏) via Bayes theorem, and is given by

𝑃(𝛀, 𝒏|𝒅) ∝ 𝑃(𝒅 |𝛀, 𝒏) 𝑃(𝛀, 𝒏) . (6.1)

We find the marginal cosmological posterior by integration over the nuisance parameters,

𝑃(𝛀|𝒅) =
∫

d𝒏 𝑃(𝛀, 𝒏|𝒅) . (6.2)

The marginal posterior is the main quantity of interest that we wish to evaluate as fast and accurately
as possible. To do so, we use the Laplace approximation, as described the following.

6.1.1 Laplace approximation

The Laplace approximation makes use of the fact that most unimodal distributions can be sufficiently
well described by a Gaussian centered at their maximum. Defining the 𝜒2 function as the negative
log-posterior modulo an irrelevant normalization constant 𝐾1,

𝜒2(𝛀, 𝒏) ≡ −2 ln 𝑃(𝛀, 𝒏|𝒅) + 𝐾1 , (6.3)

the Laplace approximation can be written as

𝜒2(𝛀, 𝒏) ≃ 𝜒2(𝛀, 𝒏∗) + 𝚫𝒏𝑇F (𝛀, 𝒏∗)𝚫𝒏 , (6.4)

where 𝒏∗ = 𝒏∗(𝛀) maximizes the full posterior locally, meaning at a fixed set of cosmological
parameter values, 𝚫𝒏 ≡ 𝒏 − 𝒏∗. Moreover,

F𝑖 𝑗 (𝛀, 𝒏) ≡
1
2
𝜕2𝜒2

𝜕𝑛𝑖𝜕𝑛 𝑗
(𝛀, 𝒏) (6.5)

is the (negative) Hessian matrix of the log-posterior in the subspace of the nuisance parameters,
locally evaluated at 𝒏∗(𝛀) given a fixed cosmology 𝛀. The Laplace approximation is thus a
second-order Taylor expansion in the nuisance parameters at a fixed cosmology around the local
posterior maximum 𝒏∗. We can now take the Laplace approximation (6.4) and marginalize over
the nuisance parameters to find

−2 ln 𝑃(𝛀|𝒅) ≃ 𝜒2(𝛀, 𝒏∗) + ln det F (𝛀, 𝒏∗) + 𝐾2 , (6.6)

where 𝐾2 is another irrelevant constant.
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Equation (6.6) describes the marginal posterior in the local Laplace approximation at fixed
𝛀. Its accuracy depends on how well the local posterior follows a Gaussian distribution. Let us
have a closer look at the right hand side of (6.6). The first term is identical to the frequentist
“profile likelihood”, obtained by locally maximizing the nuisance parameters at a given set of
cosmological parameters (Cole et al., 2013). If the local distribution of data is sufficiently close
to Gaussian, we can obtain confidence levels on 𝛀 by means of the 𝜒2 distribution (Feldman &
Cousins, 1998). By construction, the profile likelihood is centered at the best-fit parameters and
is therefore independent of the choice of the nuisance parameters (Hamann et al., 2007; Herold
et al., 2022; Campeti & Komatsu, 2022), as we discuss in the following section. The second term,
dubbed “Laplace term” (also known as “Occam’s razor term”) measures the volume in nuisance
parameter space enclosed by the Gaussian approximation. The Laplace term is associated with
volume effects that introduce a dependence between the cosmological parameters and the choice
of the nuisance parameters with their associated priors. Calculating the Laplace approximation
is especially efficient using common minimization algorithms, as finding the optimal step size in
these algorithms often requires evaluating the Hessian of the function being minimized. Therefore,
the matrix F entering the Laplace term in Eq. (6.2) is already a product of minimizing the function
𝜒2(𝛀, ·) to find the point 𝒏∗.

6.1.2 Volume effects

It is instructive to study the Laplace approximation when the data follows a Gaussian distribution
and the nuisance parameters enter the data model in a linear way. In this case, the Laplace
approximation is exact and can be evaluated analytically, meaning that the local posterior (at fixed
cosmological parameters 𝛀) is exactly Gaussian in 𝒏. The Laplace term neither depends on the
nuisance parameters 𝒏 nor on the data 𝒅, but it generally varies with the cosmological parameters,
acting as an 𝛀-dependent correction to the profile likelihood. This induces a so-called “volume
effect”. To gain some intuition on what a volume effect entails, let us now consider noise-dominated
data and assume the priors are wide and therefore negligible. Naı̈vely, one would expect the data
to favor no region of parameter space whatsoever. In the noise-dominated regime, the profile term
is given by the sum of least squares between the data and the model, which averages to the number
of data points and does not depend on the model, as expected. However, the Laplace term, as we
argued above, depends on the cosmological parameters, even in the absence of data. Therefore,
volume effects tend to be important if the model parameters are poorly constrained by both the data
and the priors.

In general, volume effects are shifts in the peak of the marginal posterior 𝑃(𝛀|𝒅) with respect to
the profile likelihood 𝑃(𝛀, 𝒏∗ |𝒅). It arises in multivariate Bayesian inference when marginalization
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favors regions of parameter space that cover a larger volume of the probability density. The size and
direction of volume effects depend on the definition of the nuisance parameters and, if informative,
the associated priors. Another simple example is fitting noisy data to a power-law model of the
form 𝑛𝑥Ω, where 𝑥 is an independent variable that takes values larger than one. Let us assume the
noise makes the data scatter around zero. If we try to fit the power-law model, Ω prefers large
negative values, since the amplitude parameter 𝑛 can then take a larger range of possible values that
provide a reasonable fit to the noisy data. Re-defining the model to 𝑛(𝑥/𝑥0)Ω, where 𝑥0 is larger
than all values assumed by 𝑥, the best-fit Ω will instead favor large positive values.

The finding that volume effects reside in the Laplace term is closely related to the concept of
Jeffreys priors. The Jeffreys prior (Jeffreys, 1946) is a common choice to eliminate the dependence
on model parameterization, and thus to partially mitigate the impact of volume effects. It is defined
as

2 ln 𝑃𝐽 (𝜽) ≡ ln det 𝐹 (𝜽) , (6.7)

where 𝐹 (𝜽) is the Fisher matrix of the parameters 𝜽 . While the Fisher matrix generally differs from
the Hessian matrix F defined above (the former is the data average of the latter), it is straightforward
to show that both are identical for Gaussian data that have a parameter-independent covariance and
a model that linearly depends on parameters. If we take the Jeffreys prior at fixed 𝛀, we find that:

• the full Laplace approximation (6.6) and the marginal posterior (6.2) are equal,

• the marginal posterior including the Jeffreys prior, and the profile term (first term on the right
hand side of Eq. (6.6)) are equal.

Thus, in this limit, the volume effects residing in the Laplace term (second term on the right hand
side of Eq. (6.6)) would be exactly canceled if we chose to use a Jeffreys prior. In this scenario, we
can also confirm the general tendency that we found above: volume effects become negligible if
the constraints on nuisance parameters are either driven by the data (in which case the profile term
dominates over the Laplace term), or by the priors (in which case the Laplace term is constant and
does not vary with 𝛀).

6.2 Application to LSS analysis

In this section, we apply our new method to the problem of marginalizing over astrophysical
systematic effects in two-point analyses of the large-scale structure of the Universe. A significant
contribution to this work, carried out in the context of this Thesis, was the implementation of the
analytical approximate likelihood in a python code framework.
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Current and future LSS data analysis is based on observables that trace the matter and galaxy
distributions, in particular galaxy number counts and galaxy weak lensing shear. Galaxies, being
subject to many complex astrophysical processes during their evolution, do not accurately trace the
underlying cosmological quantity that is the matter distribution. This uncertainty is quantified by
a large set of parameters 𝒃 that include galaxy bias, intrinsic noise in the shape of galaxies, and
intrinsic alignment. Next-generation experiments rely on tightly constraining those bias parameters
to obtain accurate cosmological results, but the large number of bias parameters needed (currently,
more than 20 bias parameters versus six cosmological parameters for DES, (DES Collaboration,
2022)) brings a high numerical cost that is expected to grow with the sensitivity of the instrument.

One of the most widely used LSS analysis techniques relies on radially subdividing the three-
dimensional volume into two-dimensional slices of different redshifts (“tomographic redshift bins”)
and measuring angular power spectra between those redshift bins. Crucially, in tomographic power
spectrum analysis, the theory model 𝐶𝑿𝒀

ℓ
between two tracers 𝑿 and 𝒀 generally depends on the

bias parameters 𝒃 through a second-order polynomial, with coefficients that only depend on the
cosmological parameters, 𝛀:

𝐶𝑿𝒀
ℓ (𝛀, 𝒃) = 𝜖𝑋𝜖𝑌𝐶𝑋0𝑌0

ℓ
(𝛀) +

∑︁
𝑖

𝑏𝑋𝑖 𝜖
𝑌𝐶

𝑋𝑖𝑌0
ℓ

(𝛀) + {𝑋 ↔ 𝑌 } +
∑︁
𝑖, 𝑗

𝑏𝑋𝑖 𝑏
𝑌
𝑗𝐶

𝑋𝑖𝑌 𝑗

ℓ
(𝛀) . (6.8)

Here, the sums go over different bias terms related to a single biased tracer, and 𝜖𝑋 is either
one or zero, depending on whether or not that tracer has an “unbiased” component that directly
traces the matter distribution. {𝑋 ↔ 𝑌 } on the right-hand-side of Eq. (6.8) implies a repetition of
the preceding term with 𝑋 and 𝑌 exchanged. Assuming a Gaussian likelihood with a parameter-
independent covariance matrix (a common assumption valid under sufficiently general conditions,
as shown in Kodwani et al. (2019)), this leads to a quartic dependence on the bias parameters in
the log-likelihood. Hence, we do not expect the Laplace approximation, which is quadratic by
construction, to exactly reproduce the bias-marginalized posterior.

We make use of the simple analytical form of the likelihood given by Eq. (6.8), and implement
a two-level parameter sampler that distinguishes between bias and cosmological parameters. At
the outer level, we sample over the five-dimensional space of cosmological parameters and, at
every step, evaluate the angular matter power spectrum over all unique pairs of redshift bins using
the Halofit code (Smith et al., 2003). At the inner level, we use a Newton-Raphson minimizer
to compute the profile likelihood and the Laplace term in the subspace of bias parameters for a
fixed cosmology. Combining both levels, we obtain the five-dimensional profile likelihood and
our analytical approximation to the marginalized posterior. To compare these methods with the
established “brute-force” sampling, we also sample the full joint posterior using the cobayaMCMC
sampler (Torrado & Lewis, 2019, 2021) and numerically marginalize over the bias parameters. The
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main work that we carried out in the context of this Thesis, was to implement this two-level
likelihood starting from an existing one-level likelihood that had been designed to sample over the
full, high-dimensional parameter distribution. In particular, our work entailed writing the code
for the data model, defined by (6.8), and re-organizing the full parameter vector into a vector of
nuisance parameters to analytically marginalize over, and a vector of cosmological parameters to
include in the MCMC sampler.

To test our method in realistic current and near-future scenarios, we consider simulated data of
a future high-sensitivity experiment similar to LSST (LSST Dark Energy Science Collaboration,
2012), and the first-year data release of DES (DES Collaboration, 2022). Let us briefly summarize
both data sets:

• LSST-like mock data: This is a simulated idealized 2x2pt data set, consisting only of the
clustering-clustering and clustering-shear power spectra. It is important to test our method in
the low-noise regime, where the inferred posterior strongly depends on degeneracies between
cosmological and bias parameters, and where the final error budget is more dominated by
these effects. By excluding the shear-shear autocorrelation, the model is more sensitive to the
complexity of the galaxy bias parameterization. To define the clustering and shear samples
we follow the same procedure outlined in Nicola et al. (2023), using six redshift bins for
galaxy clustering and five redshift bins for galaxy shear, with associated number densities
and redshift distributions in line with expectations for LSST (see The LSST Dark Energy
Science Collaboration et al., 2018; Alonso et al., 2015, for more details). For simplicity, we
use a Gaussian covariance to describe the uncertainties of the resulting data vector, calculated
assuming a sky fraction 𝑓sky = 0.4. The LSST data vector was generated assuming a true
cosmology with parameters (Ω𝑚, Ω𝑏, ℎ, 𝑛𝑠, 𝜎8) = (0.3, 0.05, 0.7, 0.96, 0.8).

• DES-Y1 data: We use the clustering-clustering, clustering-shear, and shear-shear power
spectra and covariance matrix provided in Garcı́a-Garcı́a et al. (2021), constructed from
the DES-Y1 data. DES is a five-year photometric survey which has observed 5000 deg2

of the sky using five different filter bands from the 4m-aperture Blanco Telescope at the
Cerro Tololo Inter-American Observatory (CTIO) in Chile. The galaxy clustering sample is
divided into five redshift bins, defined in Elvin-Poole et al. (2018), and we employ the fiducial
redshift distributions released by DES to model the angular power spectra. For the galaxy
shear analysis, we use the official sample used in the DES-Y1 analysis (Zuntz et al., 2018),
including all cuts and definitions of the four tomographic bins (Hoyle et al., 2018). Galaxy
shapes were determined using the Metacalibration algorithm (Huff & Mandelbaum, 2017;
Sheldon & Huff, 2017). We refer to Nicola et al. (2021) for further details regarding the
estimation of the shear power spectra and covariance.
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Figure 6.1: Demonstration of volume effects for simulated and real LSS power spectrum data,
modeled with six cosmological parameters and 25 and 21 bias parameters, respectively. This plot
shows the 2D marginal posterior (with contours indicating the 68% and 95% credible levels) of
the rescaled amplitude of matter fluctuations, 𝑆8, and the fractional matter density Ω𝑚, which are
the two cosmological parameters that are most sensitive to astrophysical systematics. To recover
the best-fit parameter values (denoted with a star), when applying brute-force marginalization,
one needs to employ a Jeffreys prior (compare solid with dashed black line). Similarly, when
analytically marginalizing over the bias parameters, one needs to remove the Laplace term to avoid
biasing the constraints (compare blue and red contours). Left panel: constraints for a 2x2pt analysis
with a simulated LSST-like data set. Right panel: DES-Y1 data set. In the latter case, the volume
effects become more pronounced, as the data has less constraining power.
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Figure 6.1 shows the cosmological results after applying our new method to both LSS data
sets described above. Both panels show the posterior of the matter density parameter Ω𝑚 and
the rescaled matter fluctuation parameter 𝑆8 after marginalizing over the bias parameters using
four different methods. We compare the results of the standard, brute-force marginalization with
and without a Jeffreys prior (solid black line and dashed black line, respectively), with our new
analytical method including both profile and Laplace terms (red area), and including only the profile
term (blue shades). Orange stars denote the best-fit parameter values. In general, these results
confirm our conclusions from the previous section, stating that in specific cases, volume effects are
quantified by the Laplace term and can be mitigated by marginalizing over a Jeffreys prior.

In the LSST test case shown on the left panel of Fig. 6.1, we find that these conclusions hold
almost exactly, and the exact brute-force method coincides perfectly with the analytical method.
We find a clear shift of about 0.8𝜎 in the posterior, caused by the volume effects associated with
marginalizing over the 25 bias parameters.

The right panel of Fig. 6.1 shows the DES-Y1 case. The lower sensitivity of this data set
compared to LSST should reduce its ability to constrain all 21 bias parameters, and increase the
impact of volume effects. We find that the Laplace approximation starts to fail, as the corresponding
contours manifest slight deviations of about 0.3𝜎 to 0.5𝜎 with respect to the exact marginalized
constraints. At the same time, as expected, the lower sensitivity of DES causes larger volume
effects, leading to shifts of up to 3𝜎 with respect to the best-fit parameters, indicated by the orange
star.

The observed difference between our analytical results and the brute-force marginalized poste-
rior in the DES-Y1 scenario allows a preliminary validity assessment of our method. In general,
as the Laplace term becomes larger (and with it the volume effects), higher-order terms tend to
become relevant, leading to a growing discrepancy between the exact marginal posterior and the
Laplace approximation. As a “rule of thumb”, we can therefore consider the following: if a
significant (> 1𝜎) shift is found between the marginalized contours obtained using the profile
likelihood and those obtained accounting also for the Laplace term, the approximation may start
to fail, and a brute-force marginalization over the nuisance parameters using a Jeffreys prior is
needed to obtain accurate results. Nonetheless, even in those cases, the Laplace approximation
can be useful as an efficient, preliminary characterization of the credible regions that can then be
refined by more accurate sampling methods. Another good criterion for testing the accuracy of
the Laplace approximation in the case of linear parameters is to explore the difference between the
Laplace approximation treatment, computed with the Hessian matrix F (defined in Eq. (6.5)), and
the Jeffreys prior treatment, computed with the Fisher matrix 𝐹, since this difference should be
non-zero only when the parameters are non-linear and would otherwise demarcate the breakdown
of our approximation.
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Importantly, our analytical method brings substantial improvements in the convergence time by
a factor 2.7 in the LSS case (17.2 hrs for brute-force marginalization including a Jeffreys prior vs.
6.4 hrs using the Laplace approximation) and by a factor 5.6 in the DES-Y1 case (45.5 hrs vs 8.1
hrs) with none or only mild method-related bias, respectively.

6.3 Summary

The cosmic LSS holds rich information on the late-time growth of cosmic structure, complementing
the cosmological information ingrained in the CMB. Future 3x2pt data analyses constrain O(5)
cosmological parameters but rely on marginalizing over O(20) nuisance parameters that quantify
“astrophysical systematics”, for example galaxy bias parameters. Numerical methods, such as
MCMC, take a long time to converge risk becoming a bottleneck for future LSS data analysis,
which calls for more efficient methods.

In this chapter, we proposed an analytical method to efficiently marginalize over high-dimensional
sets of nuisance parameters in cosmological inference. We investigated the issue of volume effects
biasing cosmological parameters in the case of Gaussian data and found approximate relations
between the marginal posterior in the Laplace approximation, the profile likelihood, and the exact
marginal posterior using a Jeffreys prior. We applied our new method to tomographic power spec-
trum data in LSS analysis, where the need of marginalizing over astrophysical systematics prevents
the fast inference of cosmological parameters. Our results bring a speedup by a factor of about 3
to 5 and a good agreement with exact methods. We offer a simple “rule of thumb” to help judging
the accuracy of our method on a case-by-case basis.

The main limitations of our analytical marginal likelihood approximation are volume effects,
its breaking down in highly nonlinear cases, and its lack of generality regarding the shape of the
likelihood. The first issue, volume effects, influence the exact marginal likelihood and reside mostly
in the Laplace term of the analytical approximation, but can be mitigated approximately by using
the profile likelihood. We propose to use the Jeffreys prior for Gaussian data where the nuisance
parameters depend on the model in a general nonlinear way. Secondly, our method may break
down if the parameter dependence of the data model is highly nonlinear, which can be roughly
estimated from the size of the Laplace term. Thirdly, this method only applies to Gaussian data
described by model parameters that reside in the data model, and not in the covariance matrix. In
the case of non-Gaussian distributions, it is often possible to apply a transformation to the nuisance
parameters that Gaussianizes the posterior (e.g., via normalizing flows) without introducing any
pathologies, such as singularities. This may extend the range of applications of this method and is
worth investigating in future studies.
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Conclusions

In this Thesis, we present state-of-the-art methods to analyze cosmological data sets, focusing on
CMB polarization B-modes from the primordial Universe, CMB E-modes from reionization, and
galaxy clustering statistics from the cosmic LSS. Thanks to past CMB experiments, cosmologists
have, for the first time, a single model that consistently describes the time evolution of the Universe
at supergalactic scales: from a hot, dense plasma filled with the fundamental particles of the
standard model, all the way until the formation of the first stars, galaxies and the cosmic LSS that
we observe today. Near-future CMB experiments target the first detection of polarized B-modes
of primordial origin, which would serve as a powerful probe for models of the very early Universe
including inflation, less than 10−32 seconds after the big bang.

In the current era of precision cosmology, systematic effects dominate the error budget in most
cosmological data sets. The need for controlling those systematics leads to a natural tendency of
growing complexity in real data sets. Examples are Galactic foregrounds that dominate polarization
B-mode measurements, galaxy bias that crucially affects LSS analysis, as well as instrumental
systematics. The increase in data complexity requires more sophisticated data reduction and
analysis methods. The power spectrum is still a highly useful and versatile statistic and finds its
application in Planck data analysis, the SO BB pipelines described in Chpts. 3 and 4, and LSS data
analysis as described in Chpt. 6. However, in many cases, we cannot predict the broad variety of
poorly known non-Gaussian systematic effects from first principles, but must infer them empirically
from real data. This calls for alternative analysis strategies that tend to be less bottom-up and more
adapted to a specific problem, such as phenomenological models in the style of the 𝐶ℓ-moments
model (see Chpt. 3), hybrid cleaning methods in the style of the SO map-based pipeline with dust
marginalization (see Chpt. 4), or NN-based likelihood-free inference methods (see Chpt. 5).

In the following, we summarize the main results of this Thesis, and outline future prospectives.

In Chpt. 3, we introduce the BB power spectrum pipeline designed to infer primordial grav-
itational waves with SO. The pipeline features a parametric model of coadded BB power spectra
with lensed CMB, Galactic dust, and synchrotron emission, in order to infer cosmological and
foreground parameters by means of a Bayesian sampling algorithm. In the context of this Thesis,
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our main work consisted of the parallel implementation of this pipeline, the co-development and
testing of the BBPower code, and the validation of the simulation-based covariance matrix.

Although the 𝐶ℓ pipeline performs well on the simulated sky, algorithmic developments are
ongoing to ensure that the complexity of real data can be controlled in a robust way and does
not bias cosmological parameters. We anticipate several future refinements that account for addi-
tional systematic effects, such as the filtering of atmosphere- and ground-related contamination, or
foreground-related non-Gaussianity in the power spectrum covariance matrix. Atmospheric and
ground contamination requires the timestream-level filtering of the sky signal and is expected to lead
to a significant loss in large-scale power, coupling of modes, as well as potential E-to-B leakage.
Upcoming studies aim at capturing these effects in an empirical transfer function approach (see e.g.,
Sect. 7.3 of BICEP2/Keck Collaboration, 2016a). As shown in a recent study (Abril-Cabezas et al.,
2023), modeling non-Gaussianity from Galactic foregrounds in the BB power spectrum covariance
is expected to not affect the statistical uncertainty on 𝑟 , while achieving a better accuracy of the
likelihood. Other future works aim at boosting the pipeline performance, such as the inclusion
of map-based delensing, the inclusion of external foreground channels to improve the cleaning
performance, or the inclusion of a Jeffreys prior to mitigate volume effects during the inference.
Including map-based delensing in the SO pipelines will considerably reduce the cosmic variance by
partially subtracting the lensing B-modes from the conjectured primordial signal, and is expected
to improve 𝜎(𝑟) by at least 30% (see Sect. 4.3). This extension to the SO 𝐶ℓ pipeline is currently
under development (Hertig et al., 2023). Including external frequency channels (e.g., from Planck
or WMAP) is crucial for SO to achieve the necessary foreground sensitivity during the first-year
analysis, and requires further work, specifically on the construction of the joint data likelihood.
Finally, the 𝐶ℓ-moments parameters may lead to volume effects if the real foregrounds can only
weakly constrain them. In future analyses, a Jeffreys prior, as explained in Chpt. 6, may be used to
prevent these volume effects.

Chapter 4 describes the SO B-mode pipeline comparison project, assessing the performance
of three component separation algorithms that target a measurement of primordial B-modes, and
published in Wolz et al. (2023a). These are the SO𝐶ℓ pipeline in the𝐶ℓ-fiducial and the𝐶ℓ-moments
model variants, a “blind” NILC cleaning pipeline (Basak & Delabrouille, 2013), and a parametric
map-based cleaning pipeline (Stompor et al., 2008) with an optional “dust marginalization” option.
We find that the three algorithms and two extensions agree in the simplest tested foreground
scenarios and confirm the statistical sensitivity on 𝑟 anticipated by SO Collaboration (2019). In the
presence of simulated complex foregrounds, fully mitigating the bias requires extended pipeline
designs, such as the 𝐶ℓ-moments model or the dust marginalization option.

With the imminent arrival of the first data from SO, scrutinizing the robustness of a possible 𝑟
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detection is crucial. Besides ensuring mutually consistent results from the three B-mode pipelines
(and their extensions), more robustness tests are needed to exclude any potential source of bias on
𝑟, such as Galactic foreground residuals and unchecked instrumental systematic effects. Examples
of possible robustness tests include a) comparing 𝑟 values inferred on different sky regions within
the SO patch as a check for signal isotropy, b) removing single channels from the SO data analysis
as a check for frequency-dependent systematics, c) adding external data that overlap with the
SO sky patch (e.g., WMAP, Planck, S-PASS (Krachmalnicoff et al., 2018), FYST/CCAT-Prime
(CCAT-Prime Collaboration et al., 2023)) as a check for instrument-specific systematics, d) cross-
correlating SO CMB maps with external foreground tracers (e.g., HI maps, the Planck 353 GHz
channel, or the S-PASS 2.3 GHz channel) as checks for residual foreground contamination, or,
for the same purpose, e) comparing measures of non-Gaussianity (e.g., Minkowski functionals)
between SO pure-B-mode CMB maps and simulated foreground maps (e.g., Hervı́as-Caimapo &
Huffenberger, 2022; Vansyngel et al., 2017; Zonca et al., 2021) .

Further algorithmic developments are expected to make the inference of 𝑟 by the SO B-mode
pipelines more robust and precise. One example is the hybrid component separation method pro-
posed in Azzoni et al. (2023), which combines a map-based parametric component separation
step with a power-spectrum-based cleaning step applying the 𝐶ℓ-moments model on the cleaned
CMB component map. Step one removes the spatially constant part of foreground emission, while
the residuals expected to originate mainly from the spatial variability of foreground SEDs can be
accurately cleaned in step two. The SO NILC pipeline may adopt a more advanced treatment of
spatially varying foreground emission in order to achieve fully unbiased results on the most complex
foreground scenarios. An example of such an advanced method is Multi-Clustering NILC (MCNILC,
Carones et al., 2023), which performs the NILC variance minimization within separate sky regions
that are chosen to have similar foreground B-mode emission properties.

In Chpt. 5, based on Wolz et al. (2023b), we present the first cosmological inference on CMB
polarization maps that is performed entirely by neural networks, estimating the optical depth to
reionization, 𝜏, from Planck data, which contain spurious non-Gaussian instrumental systematics
that are hard to model analytically. We approached this by a NN-based parameter estimator, which
does not require an analytical data model but relies solely on simulations to train a regression
model. In order to find the best training method, we started from simulated maps at a single
frequency that contained coadded CMB with Gaussian correlated noise. Step by step, we then
moved to more complex setups that involved two frequency channels of coadded CMB, noise, and
systematic effects. We obtain unbiased results when training and testing on Gaussian simulations.
When including a second channel, we observe a significant improvement on both the estimator’s
accuracy and its precision, which shows that NN models can effectively combine multiple data
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sets. Applying our method on real Planck data, we find 𝜏NN = 0.0579 ± 0.0082 with the unbiased
retrained NN model, in full agreement with literature results, albeit with a 30% larger error bar.
The main limitations of our NN estimator are its intrinsic suboptimality, a slight bias on the “learnt”
statistical uncertainty 𝜎𝑁𝑁 (𝜏), and the limited size of training data that prevents the NN model
from learning Planck’s systematics without overfitting.

Our consistent and robust results demonstrate that NNs represent a promising tool that could
complement standard statistical data analysis techniques for future, systematics-dominated CMB
data, such as large-scale B-modes. We anticipate that several improvements will be necessary
before the NN estimator can be used to robustly estimate the tensor-to-scalar ratio 𝑟 from polarized
maps. First, the NN estimator may be optimized by improving the NNhealpix implementation
of pixel-based convolution on the 2-sphere (Krachmalnicoff & Tomasi, 2019), and similarly, by
optimizing the NN architecture. While we tested our 𝜏 estimator on one and two frequency
channels, typical near-future experiments include O(10) channels, which will require considerable
efforts in training and testing new models. Second, in order to inform accurate NN estimators about
potential large-scale B-mode systematics, real data sets must be studied extensively so that accurate
simulations can be built. Well-tested NN pipelines will potentially be able to provide efficient and
robust alternatives to established methods whenever analytical models are difficult to construct.

Next-generation CMB data analysis offers ample opportunities for prospective applications of
NN-based estimators. One great potential of NN estimators, the straightforward combination of
multiple data sets to perform joint analysis, may be of use for the delensing of future B-mode
data with SO, which will depend on combining low-resolution SAT maps and high-resolution LAT
maps. Moreover, cross-correlations between LSS and CMB data promise to set new constraints
on late-time cosmology, including dark energy and the total neutrino mass, but currently rely on
expensive simulations to estimate cross-probe covariances. NNs may potentially provide faster
and cheaper alternatives. Analogously, the robust measurement of primordial B-modes relies upon
combining data at different frequencies and from multiple experiments, which may be signifi-
cantly simplified and accelerated with the aid of NN estimators. Finally, NNs could be used to
assess the level of spurious systematics within clean CMB B-mode maps, for example by com-
plementing traditional estimators when characterizing foreground-related residual non-Gaussianity.

Finally, in Chpt. 6, we describe a novel analytical method, based on the Laplace approximation
and published in Hadzhiyska, Wolz, et al. (2023), to efficiently marginalize over large numbers of
nuisance parameters in Bayesian inference. Accurately estimating cosmological parameters often
depends on marginalizing over systematic effects that we cannot calibrate a priori, for example
galaxy bias parameters in tomographic power spectrum analysis of the LSS. We apply our method
to simulated and real galaxy clustering and galaxy shear data and find that our method agrees well
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with current standard methods, while improving on the running time by a factor of 3 to 5. As a
second result of this work, we find that the Jeffreys prior in the subspace of nuisance parameters is
closely related to the second-order term in the Laplace approximation. Volume effects, shifts in the
marginal posterior with respect to the global posterior maximum, can be mitigated by constructing
the full posterior with a Jeffreys prior. In the context of our method, this approximately corresponds
to considering only the lowest-order term, also known as the “profile likelihood”. We propose a
“rule of thumb” to judge the validity of the Laplace approximation.

This work offers a promising perspective for the efficient marginalization of nuisance param-
eters. This is vital for precision cosmology, which relies upon our ability to keep systematic
effects under ever-tighter control, requiring growing numbers of nuisance parameters. In particu-
lar, combining multiple cosmological probes that each might introduce their own set of respective
nuisance parameters requires fast inference algorithms. Our method could, for example, be useful
in cross-correlation studies of the CMB and the LSS to assess late-time observables, such as the
total mass of neutrinos. As a current limitation, this method only applies to Gaussian data described
by model parameters that reside in the data model, and not in the covariance matrix. In the case
of non-Gaussian distributions, it is often possible to apply a transformation to the nuisance param-
eters that Gaussianizes the posterior (e.g., via normalizing flows) without introducing unwanted
behavior, such as singularities. This may extend the range of applications of this method and is
worth investigating in future studies.

Many challenges and chances lie ahead of us in today’s era of precision cosmology. Future
data will be of unparalleled precision and their accuracy will be subject to systematic effects.
Controlling these effects is challenging, and requires ever-more flexible analysis frameworks and
problem-tailored solutions. Examples are CMB foreground cleaning pipelines targeting primordial
B-modes, NN-based parameter estimators for the optical depth 𝜏, or phenomenological models
that quantify galaxy bias in analyses of the cosmic LSS. The anticipated diversity of estimators,
models, and analysis pipelines calls for a large variety of validation strategies. Going forward, it
will be crucial to devise tests that assess the robustness of those new methods, make them easier to
interpret, and help with selecting the right model for a given task.

The coming decade will see cosmological experiments that may allow us to tackle some of the
great open questions in cosmology. Examples are the nature of dark energy and dark matter, which
may be constrained by upcoming experiments that measure the cosmic LSS and galaxy clustering
properties, such as DESI (DESI Collaboration, 2016), the Vera C. Rubin Observatory (Ivezić et al.,
2019), and Euclid (Amendola et al., 2018), in combination with CMB experiments, such as SO
and CMB-S4 (Abazajian et al., 2019). Those experiments might also be able to shed light on the
apparent inconsistency of some standard-model cosmological parameters (the Hubble constant,
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𝐻0, or the rescaled matter fluctuation parameter, 𝑆8) between measurements of early- and late-time
probes. Finally, high-sensitivity CMB polarization experiments such as SO, LiteBIRD (LiteBIRD
Collaboration, 2023), and CMB-S4, may be able to find evidence for the inflationary paradigm
and further constrain the space of viable models, possibly exploring the hitherto unknown particle
content of the Universe within the first 10−32 seconds after the big bang.
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APPENDIX A

Chi-squared goodness of fit

As a particularly versatile, simple, and fast to evaluate robustness check, the 𝜒2 goodness-of-fit test
is suited to detect biases either at the sky model level, the estimator stage, or the likelihood level.
For general Gaussian data with known covariance, the 𝜒2 test assesses the statistical agreement
among the data model 𝒎(𝜽), the data 𝒅 and the inverse covariance Σ−1. It is defined as

𝜒2(𝒅 |𝜽) ≡ [𝒅 − 𝒎(𝜽)]𝑇Σ−1 [𝒅 − 𝒎(𝜽)] , (A.1)

which, for Gaussian data, equals twice the negative log-likelihood,−2 ln(𝐿 (𝒅 |𝜽)) (minus a constant
term − ln det(Σ)). Pearson (1900) and Cramér (1946) showed that the minimum 𝜒2 statistic follows
a 𝜒2 distribution with 𝑁 − 𝑃 degrees of freedom,

𝑇 (𝒅) ≡ min
𝜽
𝜒2(𝒅 |𝜽) ∼ 𝑓𝑁−𝑃 , (A.2)

where 𝑁 and 𝑃 are the dimensions of data and parameters, respectively. Note that this statement is
independent of the functional form of the parameter model, and 𝑡 is quickly evaluated by numerical
methods, such as gradient descent. When testing set of simulations {𝒅 (𝑖)}, we can compute
the empirical probabilities to exceed, PTE =

∫
𝑡 ({𝒅 (𝑖) }) 𝑓𝑁−𝑃 (𝑡

′) d𝑡′, which converge to a uniform
distribution 𝑈 (0, 1) under the null hypothesis. We can use the minimum 𝜒2 method to test a
model’s goodness of fit, or the accuracy of a given inverse covariance matrix as compared to a set
of simulated data. On the other hand, the 𝜒2 goodness of fit is not very restrictive for models with
many parameters, in which case it generally allows for large variations in the data while still fitting
reasonably well. This is an undesirable feature when models with different degrees of freedom shall
be compared, in which case measures such as the AIC (Akaike, 1974), the Bayesian Information
Criterion (BIC, Schwarz, 1978), or Bayesian model comparison methods (Jeffreys, 1939; Trotta,
2008) might be better alternatives.
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Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, Astrophys. J., 622, 759

137



Grain, J., Tristram, M., & Stompor, R. 2009, Phys. Rev. D, 79, 123515

Guillet, V., Fanciullo, L., Verstraete, L., et al. 2018, Astron. Astrophys., 610, A16

Guth, A. H. 1981, Phys. Rev. D, 23, 347
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