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A possible way to capture the effects of quantum gravity in spacetime at a mesoscopic scale, for
relatively low energies, is through an energy-dependent metric, such that particles with different energies
probe different spacetimes. In this context, a clear connection between a geometrical approach and
modifications of the special relativistic kinematics has been shown in the last few years. In this work, we
focus on the geometrical interpretation of the relativistic deformed kinematics present in the framework
of doubly special relativity, where a relativity principle is present. In this setting, we study the effects of a
momentum dependence of the metric for a uniformly accelerated observer. We show how the local Rindler
wedge description gets affected by the proposed observer-dependent metric, while the local Rindler causal
structure is not, leading to a standard local causal horizon thermodynamic description. For the proposed
modified metric, we can reproduce the derivation of Einstein’s equations as the equations of state for the
thermal Rindler wedge. The conservation of the Einstein tensor leads to the same privileged momentum
basis obtained in other works of some of the present authors, so supporting its relevance.
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I. INTRODUCTION

One of the main open problems of theoretical physics is
the unification of general relativity (GR) and quantum field
theory (QFT), or equivalently, the formulation of a quan-
tum gravity theory (QGT). The search for a QGT has led to
several, very diverse, theoretical frameworks, such as string
theory [1–3], loop quantum gravity [4,5], causal dynamical
triangulations [6], and causal set theory [7–9], to name a
few. In (almost) all of them, a minimum length scale
arises [10–12], which is heuristically associated with the
Planck length lP ∼ 1.6 × 10−33 cm (or the Planck mass
MP ∼ 1.22 × 1019 GeV). Such a small length (high-energy
scale) is expected to separate the regime where spacetime
displays a classical geometric structure from the one where
it develops its quantum nature.
To date, none of the aforementioned theories have

proved fully satisfactory, in the sense that they do not
provide a well-established phenomenology. Nonetheless,
much work in quantum gravity phenomenology has
been produced recently, starting from the idea that the

effects of quantum spacetime can be captured, besides a
fundamental QGT, by considering the low-energy limit of a
given scenario for the UV completion of the standard
model and general relativity, and seeking for observable
implications [13].
One of these commonly entailed scenarios is the one in

which the usual local Poincaré symmetry of spacetime
happens to be emergent at long wavelengths/low energies
[14,15]. In particular, this is achieved by modifying the
special relativistic kinematics with the introduction of a
high-energy scale often, but not necessarily, identified with
the Planck scale. There are two different possibilities that
can be explored in this sense. One can consider that local
Lorentz symmetry is violated for energies comparable
to this scale, leading to the framework of Lorentz invari-
ance violation (LIV) [16–19]. In this case, there is a
breakdown of the relativity principle that characterizes
special relativity (SR), and therefore, a privileged observer
appears. A covariant description of this phenomenology
requires the introduction of an aether field setting such a
preferred system of reference, and so leading to modified
gravity theories such as Einstein-aether theory [20] and
Hořava gravity [21].
A different scenario consists in exploring the possibility

that the very Lorentz symmetry is deformed. This is

*goffredo.chirco@unina.it
†liberati@sissa.it
‡jjrelancio@ubu.es

PHYSICAL REVIEW D 106, 064048 (2022)

2470-0010=2022=106(6)=064048(13) 064048-1 © 2022 American Physical Society

https://orcid.org/0000-0001-9538-4956
https://orcid.org/0000-0002-7632-7443
https://orcid.org/0000-0003-1130-3982
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.064048&domain=pdf&date_stamp=2022-09-27
https://doi.org/10.1103/PhysRevD.106.064048
https://doi.org/10.1103/PhysRevD.106.064048
https://doi.org/10.1103/PhysRevD.106.064048
https://doi.org/10.1103/PhysRevD.106.064048


studied in doubly (or deformed) special relativity (DSR)
theories [14]. In DSR, the Einsteinian relativity principle
is generalized by adding to the light-speed scale an extra
(high-)energy scale.
Due to the different implementation of spacetime sym-

metries within the two theories, the modifications of the
special relativistic kinematics are also different. While in
LIV effective field theories the only modification arises in a
modified dispersion relation, in DSR, in addition to this
possible ingredient (this is not the case for the well-known
kinematics of the classical basis of κ-Poincaré [22]), there is
a deformed conservation law for momenta. This last ingre-
dient is indispensable in order to have a relativity principle.
Indeed, this is ensured by the existence of some Lorentz
transformations, in the one- and two-particle systems, which
make the two previous ingredients compatible.
During the last several years, a clear connection between

a curved momentum space, which naturally leads to a
momentum-dependent geometry, and these relativistic
deformed kinematics of κ-Poincaré, has been established
[23–26]. For example, it was suggested in Ref. [27] that
DSR could be the outcome of an energy (rainbow)
spacetime, thereby showing a clear connection between
a momentum-dependent spacetime and quantum gravity.
More recently, it was rigorously shown that all the

ingredients of a relativistic deformed kinematics character-
izing DSR can be obtained from a maximally symmetric
momentum space [28]. In particular, κ-Poincaré kinematics
[29–32] can be obtained from a de Sitter momentum
space1: the translations and Lorentz isometries and the
squared distance of the metric are identified with the
deformed composition law, deformed Lorentz transforma-
tions, and the deformed dispersion relation, respectively
(the last two facts were previously contemplated in
Refs. [35,36]). In Ref. [37], the proposal of Ref. [28]
was generalized so as to allow the metric to describe a
curved spacetime, leading to a metric in the cotangent
bundle depending on all the phase-space variables. This is a
generalization of previous works in the literature, the so-
called generalized Hamilton spaces, in which metrics that
depend on the velocities (Finsler geometries) [38–40] and
momenta (Hamilton geometries) [41–43] were considered.2
Also in DSR scenarios, the study of the propagation

and interaction of particles considering a curvature in
both momentum and spacetime spaces was carried out in
Ref. [48]. In that paper, an action with some nonlocal
variables (defined by the spacetime tetrad) is considered,
allowing one to generalize the relative locality action [35]
when a curvature in spacetime is present.

In the DSR community, there is an open debate about the
possibility that different kinematics of κ-Poincaré, associ-
ated with different bases in Hopf algebras [49], or equiv-
alently, different choices of momentum coordinates in a
de Sitter momentum space, could represent different
physics [50]. This is due to the existence of an ambiguity
about the definition of momentum variables associated with
physical measurements. While in the flat spacetime/curved
momentum space geometrical setup there is such an
ambiguity, this degeneracy is broken when considering
that both spacetime and momentum space are curved [51].
Indeed, in Ref. [52] it was shown that only Lorentz
covariant metrics are allowed in the proposed geometrical
scheme when lifting the deformed symmetries to a curved
spacetime, and in Ref. [51] a way was proposed to select a
“physical” basis by imposing the conservation of the
Einstein tensor. Remarkably, the so selected special basis
was shown also to be the one in which all the definitions of
surface gravity are equivalent for Killing horizons [53], as
they are in standard GR [54].
In this context, an interesting question is if, starting from

a cotangent bundle geometry, it is possible to get the
Einstein equations by adopting a thermodynamical deriva-
tion such as that proposed by Jacobson in 1995 [55] and
based on the application of the Clausius equation on a local
Rindler wedge. A Rindler spacetime in the DSR context
was considered not long ago in Ref. [56], with regard to a
twist deformation of the algebra describing a relativistic
deformed kinematics. That paper considered the modes
of massless scalar fields using a deformed (momentum-
dependent) measure. Unfortunately, a QFT based on DSR
is still missing, albeit this issue has been the subject of
several investigations over the past two decades [57–62].
Such a dynamical theory, going beyond the usual relativ-
istic QFT, would have to take into account a relativistic
deformed kinematics, so that, while the usual QFT has at its
base the Poincaré symmetry, a DSR QFTwould have to rest
on a deformed symmetry group characterizing a relativistic
deformed kinematics.
Keeping this in mind, in this paper we will apply

the geometrical interpretation of DSR developed in
Refs. [37,51–53,63] to an accelerated observer. We will
see that the usual derivation followed in GR for construct-
ing a Rindler spacetime is compatible with our setting,
allowing us to consider at the same time a curved spacetime
and a momentum-dependent metric compatible with a
relativistic deformed kinematics. More precisely, we shall
here derive the Einstein equations from a thermodynamical
point of view (instead of considering the proposal of
Ref. [64] used in Ref. [51]). Starting from the restricted
metrics obtained in Ref. [52], we will find that the
conservation of the energy-momentum tensor leads to
the same Einstein equations of GR, replacing the metric,
the Ricci tensor, and the scalar of curvature with its
generalizations in the cotangent bundle, which agrees with

1By a similar procedure, one can generalize this construction
in order to obtain the kinematics of Snyder [33] and hybrid
models [34], and of the anti–de Sitter case.

2It is worth mentioning that a Finsler/momentum-dependent
spacetime can be introduced also as an alternative description of
Lorentz-breaking physics [44–47].
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the proposal of Ref. [64]. The only difference with respect
to the usual equations is a term proportional to the mass
of the particle probing spacetime, which, as we will see,
can be regarded as a cosmological constant. With these
equations, the energy-momentum tensor is only conserved
in the privileged momentum basis previously found in
Refs. [51,53].
The structure of the paper is as follows: In Sec. II, we

make a brief review of the main ingredients of a cotangent
bundle geometry and describe our construction of a metric
in phase space accounting for a relativistic deformed
kinematics in curved spacetimes. The derivation of the
Rindler (momentum-dependent) spacetime is carried out in
Sec. III. We check that our geometrical construction is
compatible with our generic method of building a cotangent
bundle metric. In Sec. IV, we discuss the Einstein equations
in our scheme by regarding a thermodynamical point of
view. Finally, we end with the conclusions in Sec. V.

II. COTANGENT BUNDLE IN A NUTSHELL

In this section, we review the main geometrical ingre-
dients in the metric description of the phase-space cotan-
gent bundle as first introduced in Ref. [64], as well as the
main results from the previous literature concerning the
setup of a relativistic deformed kinematics in a curved
spacetime background.

A. Main properties of the geometry
in the cotangent bundle

As mentioned in the Introduction, there are several works
in the literature trying to connect a momentum-dependent
geometry with a relativistic deformed kinematics. The most
natural way to consider a curved metric in momentum
space is by regarding the cotangent lift T�M of a spacetime
manifoldM. For a given base manifoldM, with coordinates
x, one can construct its cotangent lift T�M, with coordi-
nates ðx; kÞ. Therefore, the cotangent manifold has eight
dimensions when considering that the base manifold (the
spacetime where particles propagates) has four dimensions
and generically depends on the spacetime point. For a
fixed x, the set of all k’s is called the fiber and represents
locally the momentum space. It is important to remark that
these variables, x and k, are canonically conjugated under
the structure of Poisson brackets,

fxμ; kνg ¼ δμν : ð1Þ

On the cotangent bundle manifold, by associating with
each point u ∈ T�M [i.e., a point in phase space ðx; kÞ] the
fiber Vu (all the points with fixed x but different k), one can
obtain the so-called vertical distribution, V∶u ∈ T�M →
Vu ⊂ TuT�M with dimension n, which is generated by
∂=∂k. Here, TuT�M is the tangent space of the manifold
T�M. As shown in Fig. 1, given a point on the cotangent

bundle, one can construct the vertical distribution (the
fiber). Note that in the figure, the fiber is unidimensional for
the sake of simplicity, but in fact it has the same dimensions
as the base manifold.
In this setting, one can define a line element in the whole

cotangent bundle [64]:

G ¼ gμνðx; kÞdxμdxν þ gμνðx; kÞδkμδkν; ð2Þ

where

δkμ ¼ dkμ − Nνμðx; kÞdxν; ð3Þ

with Nνμðx; kÞ being the so-called nonlinear connection
coefficients, and where gμνðx; kÞ is the cotangent-bundle
metric tensor, which we shall discuss in detail later on. We
can see that there are two different types of privileged
curves: those for which x is fixed, leading to movements
along the momentum space (fiber), and others for which
δk ¼ 0. The latter condition in Eq. (2) leads to a GR-like
line element on which it is possible to define geodesic
motion via simple generalization of the geodesic equation,
that takes the form [64]

d2xμ

dτ2
þHμ

νσðx; kÞ
dxν

dτ
dxσ

dτ
¼ 0; ð4Þ

where

Hρ
μνðx;kÞ¼

1

2
gρσðx;kÞ

�
δgσνðx;kÞ

δxμ
þδgσμðx;kÞ

δxν
−
δgμνðx;kÞ

δxσ

�
ð5Þ

is the (metrical) affine connection of spacetime, and

δ

δxμ
≐

∂

∂xμ
þ Nνμðx; kÞ

∂

∂kν
: ð6Þ

Here, τ plays the role of the proper time or of the affine
parametrization, depending on whether one is considering a
massive or a massless particle, respectively.

FIG. 1. A visualization of the cotangent bundle structure [51].
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The choice of the nonlinear connection coefficients
Nνμðx; kÞ is not unique, but, as shown in Ref. [64], there
is one and only one choice of nonlinear connection
coefficients that leads to a spacetime affine connection
which is metric compatible and torsion free. When the
metric does not depend on the momentum, as is standard
in GR, the coefficients of the nonlinear connection are
given by

Nμνðx; kÞ ¼ kρΓρ
μνðxÞ; ð7Þ

where Γρ
μνðxÞ are the usual Christoffel symbols of GR. On

the other hand, when the metric does not depend on the
spacetime coordinates, Nμνðx; kÞ generically vanishes.
The spacetime covariant derivative of a tensor can be

defined as well [64]:

Tα1…αr
β1…βs;μ

ðx; kÞ ¼ δTα1…αr
β1…βs

ðx; kÞ
δxμ

þ Tλα2…αr
β1…βs

ðx; kÞHα1
λμðx; kÞ þ � � � þ Tα1…λ

β1…βs
ðx; kÞHαr

λμðx; kÞ
− Tα1…αr

λβ2…βs
ðx; kÞHλ

β1μðx; kÞ − � � � − Tα1…αr
β1…λ ðx; kÞHλ

βsμðx; kÞ: ð8Þ

Also, it is shown that, given a metric, there is always a
symmetric nonlinear connection coefficient (aka Nμν)
leading to the affine connections in spacetime such that
the covariant derivative of the metric vanishes:

gμν;ρðx; kÞ ¼ 0: ð9Þ

In order to study the properties of the horizon, we need to
know how the Lie derivative is deformed in this context. In
Refs. [37,41], the modified Killing equation for a metric in
the cotangent bundle was derived:

∂gμνðx; kÞ
∂xα

χα −
∂gμνðx; kÞ

∂kα

∂χγ

∂xα
kγ þ gανðx; kÞ

∂χα

∂xμ

þ gαμðx; kÞ
∂χα

∂xν
¼ 0; ð10Þ

where χα¼ χαðxÞ is momentum independent. In GR, where
the metric does not depend on the momentum, the previous
condition reduces to the standard form,

χμ;ν þ χν;μ ¼ 0: ð11Þ

Noticeably, it was shown in Ref. [51] that promoting the
metric to the cotangent bundle does not affect the spacetime
isometries, therefore preserving the Killing vectors χα of
the GR case. This point will be crucial in the following, as it
implies that the whole causal structure of the base space-
time is preserved.

B. Relativistic deformed kinematics
in curved spacetimes

The deformed kinematics of DSR are usually obtained
from Hopf algebras [65], with the κ-Poincaré kinematics
[66] being the most studied example of this kind of
construction. In Ref. [28], the deformed DSR kinematics
has been given a fully geometric interpretation. Given a
de Sitter momentum metric ḡ, translations can be used to
define the associative deformed composition law, the

Lorentz isometries lead to the Lorentz transformations,
and the (square of the) distance in momentum space is
identified with the deformed Casimir.
In Refs. [37,52], some of the present authors extended

Ref. [28] in order to consider a deformed kinematics and a
curved spacetime within the same framework. To that aim,
it is mandatory to consider the cotangent bundle geometry
discussed above [Eq. (2)]. The cotangent-bundle metric
tensor gμνðx; kÞ, depending on spacetime coordinates, can
be constructed in terms of the spacetime tetrad field, and the
metric of the momentum space, ḡ, by [37,52]

gμνðx; kÞ ¼ eαμðxÞḡαβðk̄ÞeβνðxÞ; ð12Þ

where k̄α ¼ eναðxÞkν, and eαμðxÞ denotes the tetrad of
spacetime. As discussed in Ref. [37], when constructing
the metric in this way, we assure that the momentum space
(fibers in the cotangent bundle) is maximally symmetric if
the starting metric ḡ also is. Moreover, in Ref. [52], this
construction was rederived by lifting the symmetries for flat
spacetimes to the curved case.
In Ref. [51], it was also proven that the Casimir

associated with a given metric (leading to the same
trajectories obtained from the solutions of the geodesic
equations of the metric) can be identified with the square of
the minimal geometric distance of a momentum k from the
origin of momentum space, measured by the momentum-
space length as induced by the metric. This relates the
Casimir and the metric in the following way [37]:

Cðx; kÞ ¼ 1

4

∂Cðx; kÞ
∂kμ

gμνðx; kÞ
∂Cðx; kÞ
∂kν

: ð13Þ

But, as discussed in Ref. [28], any function of such a
Casimir is also a valid Casimir, which corresponds to a
redefinition of the mass (for the massless case, they are
the same).
In Ref. [52], it was shown that the most general form

of the metric, in which the construction of a deformed
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kinematics in a curved spacetime background is allowed,
is a momentum-space metric whose Lorentz isometries
are linear transformations in momenta—i.e., a metric of
the form

ḡαβðkÞ ¼ ηαβf1ðk2Þ þ
kαkβ
Λ2

f2ðk2Þ; ð14Þ

where Λ is the high-energy scale parametrizing the
momentum deformation of the metric and kinematics,
and we use η ¼ diagð1;−1;−1;−1Þ. From Eq. (12), one
obtains the following metric in the cotangent bundle when a
curvature in spacetime is present:

gμνðx; kÞ ¼ aμνðxÞf1ðk̄2Þ þ
kμkν
Λ2

f2ðk̄2Þ; ð15Þ

where aμνðxÞ ¼ eαμðxÞηαβeβνðxÞ is the curved spacetime
metric.
Noticeably, one can then use the definition (5) to show

that the spacetime affine connection is, for the above class
of metrics, momentum independent, giving as a result the
same affine connection Γρ

μνðxÞ of GR [52]. A relevant
consequence of this fact is that for metrics of the form (15),
the Raychaudhuri equation for massless particles is also
unmodified [51]:

dθ
dλ

¼ −
1

2
θ2 þ ωαβω

αβ − σαβσ
αβ − Rαβlαlβ; ð16Þ

where θ is the expansion, ω the torsion, σ the shear, and lα

the null vector describing the geodesic congruence. This is
due to the fact that the Ricci tensor is momentum inde-
pendent, since the connection is, in this case, the GR one.
Also, this result can be easily understood from the fact that
the momentum metric [Eq. (15)] is covariant under linear
Lorentz transformations. As a consequence, the dispersion
relation is unmodified for the massless case, and so it is
the propagation of massless particles with respect to the
GR case.
The above conclusion could seem in contradiction with

the result of Ref. [48], where it was shown that the geodesic
deviation equation is generically modified in a momentum-
dependent spacetime. However, this is not the case, because
our result is strictly related to a very peculiar form of the
chosen metric. Indeed, the formalism adopted in Ref. [48]
should lead to our same conclusion once the momentum
metric is specialized to Eq. (15) and the particle is taken to
be massless.
The requirement for the momentum metric [Eq. (14)] to

be a de Sitter space, which allows us to define a relativistic
deformed kinematics, implies a relationship between
the functions f1 and f2. In particular, in Ref. [51], it
was found that in order to conserve the Einstein tensor
defined in Ref. [64]—which has formally the same
expression of GR—one has to impose that the metric

in Eq. (14) is conformally flat. Then, taking f2 ¼ 0 and
imposing a de Sitter momentum space, one obtains from
Eq. (15)

gμνðx; kÞ ¼ aμνðxÞ
�
1 −

k̄2

4Λ2

�
2

: ð17Þ

This metric is characterized by remarkable properties. In
particular, the basis corresponding to Eq. (17) is the unique
one in which the Killing equation (10) can be written
equivalently to GR as in Eq. (11). As a consequence of this,
it can be shown [53] that only for the metric (17) do the
commonly used notions of surface gravity for a Killing
horizon [54] coincide as in GR.

III. ACCELERATED OBSERVERS IN A
MOMENTUM-DEPENDENT GEOMETRY

We are interested in describing the physics of an accel-
erated observer with a metric of the form of Eq. (15). We
start by deriving the motion of such observers. Thereby, we
use a change of coordinates for writing the trajectories in
(some deformed) Rindler coordinates and studying a local
Rindler wedge description, compatibly with our construction
of a cotangent bundle metric [Eq. (15)].

A. Derivation of trajectories

First, we start by noticing from Eq. (13) that, since the
metric (14) is invariant under the usual Lorentz trans-
formations, the Casimir must be a function of the squared
momentum. Therefore, by inverting this relation, one can
write

k2 ¼ hðm2=Λ2Þ; ð18Þ

with hðm2=Λ2Þ being some function satisfying limΛ→∞ h ¼
m2. This also means that there is a simple relation between
the velocities vν and the momenta, which can be derived as
usual by taking the derivative of the Casimir with respect to
the momentum, so to obtain

kμ ¼
ffiffiffi
h

p
ημνvν: ð19Þ

Keeping this in mind, we start by computing the γ factor
relating the proper time and the temporal coordinate with
the metric (15), in the limit aμν → ημν and kα → k̄μ ¼ kμ,
following the prescription used in Ref. [63]. We can write
the line element for spacetime as

dτ2 ¼ dxμḡμνðkÞdxν: ð20Þ

Dividing the previous expression by dt2, and using
Eqs. (14) and (19), we find (for the sake of simplicity,
we will work in 1þ 1 dimensions)

SPACETIME THERMODYNAMICS IN MOMENTUM-DEPENDENT … PHYS. REV. D 106, 064048 (2022)

064048-5



�
dτ
dt

�
2

¼ f̄1ðm2Þð1 − v2Þ þ f̄2ðm2Þ
�
dτ
dt

�
2

; ð21Þ

where we have used Eq. (18), and defined f̄1 and f̄2, which
are some functions involving f1, f2, h, and m2. From the
previous equation, we get

γ ¼ dt
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f̄2

f̄1ð1 − v2Þ

s
: ð22Þ

An accelerated observer is characterized by a four-
acceleration vector

αμ ¼ ðα0; αÞ ¼ duμ

dτ
¼ γ

duμ

dt
¼ γ

�
dγ
dt

;
dðγvÞ
dt

�
: ð23Þ

We are interested in uniformly accelerated observers for
which the spatial proper acceleration can be found by going
to their instantaneous rest frame—i.e., setting v ¼ 0, and
correspondingly, γ ¼ 1 and dγ=dt ¼ 0. Therefore, from
Eq. (23), we can set

α ¼ dðγvÞ
dt

¼ const: ð24Þ

By integrating this expression, and assuming vðt ¼ 0Þ ¼ 0,
we are able to express the velocity as a function of the
acceleration and time:

v ¼
ffiffiffiffiffi
f̄1

p
αtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − f̄2 þ f̄1α2t2
p : ð25Þ

Integrating this expression in time, we can find the position

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f̄2 þ f̄1α2t2

p
ffiffiffiffiffi
f̄1

p
α

: ð26Þ

By squaring the above expression, we get the worldline of
an observer in hyperbolic motion having constant proper
acceleration α in the x direction—that is,

x2 − t2 ¼ l2; ð27Þ

with

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f̄2

p
ffiffiffiffiffi
f̄1

p
α

: ð28Þ

It is convenient to set l ¼ μ=α, with μ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f̄2

p
=

ffiffiffiffiffi
f̄1

p
carrying the effect of the momentum-dependent geometry.
We can see, e.g., from Eq. (21), that the factor μ depends
only on the mass of the particle probing the spacetime, not
on its momentum. Therefore, the worldline in Eq. (26)

defines a family of hyperbolae, where χ varies for observers
with the same uniform acceleration and different mass.
In the limit Λ going to infinity, f̄1 → 1 and f̄2 → 0, so

μ → 1, and the usual result of GR is obtained.

B. Change to Rindler coordinates

Along with Eq. (27), the worldline of the uniformly
accelerated observer can be written in hyperbolic (polar)
coordinates as

t ¼ l sinh ðκηÞ; x ¼ l cosh ðκηÞ; ð29Þ

where η is the hyperbolic angle, and κ is an arbitrary
bookkeeping parameter with the dimensions of an accel-
eration (which can always be set to 1 by a suitable rescaling
of the proper time on a given accelerated observer world-
line). Given that μ > 0 (which is always the case for on-
shell particles, since m ≪ Λ), the inertial coordinates cover
the so-called Rindler wedge region 0 < x < ∞, x > jtj.
By taking the metric in Eq. (15), in the locally flat limit,

we have

ds2¼
�
f1þf2

k20
Λ2

�
dt2þ2f2

k0k1
Λ2

dtdx−
�
f1−f2

k21
Λ2

�
dx2:

ð30Þ

Thereby, via the change of coordinates in Eq. (29), we get
the deformed Rindler line element

ds2 ¼ κ2
�
f1l2 þ f2

k020
Λ2

�
dη2 þ 2κf2

k00k
0
1

Λ2
dηdl

þ
�
−f1 þ f2

k021
Λ2

�
dl2; ð31Þ

with

g00 ¼ κ2
�
f1l2 þ f2

k020
Λ2

�
; g01 ¼ κf2

k00k
0
1

Λ2
;

g11 ¼ −f1 þ f2
k021
Λ2

: ð32Þ

Differently from the standard case, to get Eq. (32) here,
we need to take into account also that momenta change
as coordinates change. Indeed, kμdxμ is invariant under a
coordinate change of the form x0μ ¼ x0μðxÞ, and k0μ ¼ ∂xν

∂x0μ kν,
k and x being canonically conjugate variables. Because of
that, and due to the fact that k2 is invariant too, as
kμημνkν ¼ k0μaμνk0ν, we get the expression in Eq. (32). To
ease the notation, in the following we will use k instead of k0
to denote the momenta associated with the Rindler
coordinates.
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As a final sanity check, let us note that by taking the
limits f1 → 1 and f2 → 0, one recovers the usual Rindler
metric in polar coordinates:

g00 ¼ κ2l2; g01 ¼ 0; g11 ¼ −1; ð33Þ

where l would be 1=α.
Some remarks are in order at this stage. Consistently

with the assumption of linear Lorentz covariance of the
metric, we see that a Lorentz boost still generates a proper-
time translation along the uniformly accelerated observer
worldline in Eq. (27). In GR, by changing from inertial
Minkowski ðx; tÞ to hyperbolic coordinates ðl; ηÞ, one sees
that the boost symmetry is just a symmetry of rotation of
the hyperbolic angle η—i.e., χB ¼ ∂η.
In this framework, on the observer hyperbola located at

l ¼ l0, the relation between the hyperbolic angle and the
proper time is given by the Rindler line element. We have

dτ2 ¼ κ2
�
f1l2

0 þ f2
k20
Λ2

�
dη2 ≡ κ2l̃0

2dη2: ð34Þ

We see how the scaling of the Killing field
∂τ ¼ ð1=l̃0Þ∂η, generating proper time flow on this par-
ticular hyperbola, gets modified in the momentum-
deformed metric. The difference with respect to the
standard Lorentz hyperbola in the Rindler wedge lies in
the scaling factor

l̃0 ¼ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1 þ f2

h
Λ2

r
; ð35Þ

which introduces a dependence on the mass of the
accelerated observer (or more precisely, of the detector
coupled to the field in order to observe an Unruh temper-
ature): indeed, l0 is given by Eq. (28), and f1 and f2
depend on the squared momentum, which is related to some
function of the squared mass as in Eq. (18). This allows us
to interpret 1=l̃0 as a corrected uniform acceleration of the
hyperbolic worldline.
Further, we shall relate k0 with the mass of the particle

from the dispersion relation (18), as written in the Rindler
metric. We get

CðkÞ ¼ kμaμνkν ¼
k20
κ2l2

− k21 ¼ h: ð36Þ

From the above dispersion relation, we obtain the following
equations of motion:

_xμ ¼ 1

2

∂CðkÞ
∂kμ

: ð37Þ

As we are fixing l ¼ l0 ¼ const:, _l0 ¼ k1 ¼ 0, so we get
k20 ¼ hκ2l2

0, since the dispersion relation must hold.

Most importantly, from Eq. (29) we see from the quotient
limτ→∞ x=t that the Rindler (acceleration) horizon of the
wedge coincides with the Killing horizon defined by the set
jxj ¼ jtj, exactly as in GR. Therefore, the causal structure
of the Rindler wedge is not affected by the deformation of
the metric within the locally flat patch approximation.

C. Rindler horizon and Unruh temperature

Despite a complete QFT based on the symmetries of
DSR still being missing, in the following we shall assume
that such a framework exists in the specific setting given
by Eq. (15), within the locally flat limit aμν → ημν and
kα → k̄μ ¼ kμ. Moreover, we will assume that in this still
unknown framework that the Bisognano-Wichmann theo-
rem [67,68] still holds as in GR. For that, we need this
theory to be invariant under linear Lorentz and CPT
transformations. The first part is obvious from our par-
ticular choice of momentum coordinates, so the Poincaré
group is not deformed. With respect to the latter point, there
is no consensus in the present literature, given that while
some works claim that CPT-invariant formulations of DSR
field theory are possible [62,69], there are others reaching
opposite conclusions [60,70]. In any case, let us stress that
with our choice of the metric [Eq. (15)], the equation of
motion of massless particles is unmodified and hence, by
construction, CPT invariant.
Another important remark can be made comparing this

assumption with the result of Ref. [71], where it was found
that the Unruh temperature associated with the Rindler
wedge leads to a nonthermal spectrum. However, this result
was obtained for a particular basis of κ-Poincaré which
does not present a linear Lorentz invariance, in contrast
with our case of study.
Let us then consider a quantum field theory defined

on the base spacetime M endowed with a momentum-
dependent metric. In the previous section, we showed that
the worldline of a uniformly accelerated observer in the
deformed Rindler wedgeW is still an orbit of the action of a
one-parameter group (the Lorentz boost in the x direction).
Once parametrized by proper time, the flow in the hyper-
bolic angle can be interpreted as the time flow of the
accelerated observer, with the scaling factor l̃0 in Eq. (35)
playing the role of an effective acceleration. Moreover,
we discussed at the end of the previous subsection that a
Rindler (Killing) horizon structure for the deformed
Minkowski metric is preserved.
These facts together provide a compelling argument

supporting the existence also in this setting of an Unruh-
Davies temperature for a uniformly accelerated observer
in the deformed Rindler wedge W associated with the
metric (32). As the Rindler wedge causal structure is
preserved, we still have that each observer instantaneous
Cauchy surface is cut into two parts by the edge of the
wedge. The vacuum Ω has correlations across the edge,
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hence the two sets of degrees of freedom on the two sides of
the edge are entangled.
The effect of the mass-dependent deformation of the

metric is to scale the acceleration. Thence, it modifies the
proper distance of the observer worldline from the Rindler
edge (bifurcation surface). This may introduce a new scale,
but it does not affect the structure of correlations of the
vacuum.
As a consequence of the entanglement, the observer who

only has access to the restriction ofΩ toW sees the vacuum
as a thermal mixed state. From the Bisognano-Wichmann
theorem [67,68], we know that the restriction of the QFT
vacuum Ω to the Rindler wedge (more precisely, over the
algebra of the local observables in W) is given by a
canonical thermal state with density matrix

ρR ∝ e−2πK ¼ e−βRHη ; ð38Þ

where K denotes the boost generator, Hη ¼ Kℏ is the so-
called boost Hamiltonian, and βR ¼ 2π=ℏ is the (inverse of
the) Rindler temperature associated with the thermal state.
Written in terms of the accelerated observer’s quantities,

the density matrix in Eq. (38) reads

ρR ¼ e−βUHτ ; ð39Þ

where the operator Hτ ¼ ℏK=κl̃0 is the boost Hamiltonian
scaled to generate translations of this proper time, while
the corresponding (inverse) temperature is given by the
Unruh-Davies temperature

βU ¼ 2πκl̃0

ℏ
: ð40Þ

In particular, using Eqs. (35) and (28), one can see how
the Unruh temperature gets modified in our setting with
respect to GR:

TΛ
U ¼ ℏα

2π

ffiffiffiffiffi
f̄1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f̄1 þ f̄2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f̄2

p : ð41Þ

The momentum-induced deformation of the metric there-
fore reflects in a modification of the Unruh temperature,3

while the usual GR expression is recovered in the limit
Λ → ∞:

TΛ→∞
U ¼ TGR

U ¼ ℏα
2π

: ð42Þ

Accordingly, we can get the Rindler wedge TR ¼ 1=βR
from the Unruh-Davies temperature by rescaling via

the momentum-dependent gravitational Doppler factor—
that is,

TR ≈ TU
ffiffiffiffiffiffi
g00

p ¼ ℏκ
2π

: ð43Þ

The Rindler temperature TR stays constant throughout the
wedge, and it is well defined on the horizon. Therefore, the
thermal character of the Rindler state is effectively extended
from the single Rindler observer to the whole wedge.

IV. EINSTEIN’S EQUATIONS FROM SPACETIME
THERMODYNAMICS

The thermal character of the vacuum of a relativistic
quantum field theory in the Rindler wedge allows us to
think of W as a (local) thermal system bounded by a
Rindler Killing horizon membrane. The thermal behavior
of the system is due to the entanglement between the
quantum states in the right and left wedges. The very same
entanglement can be accounted for in the entropy of the
thermal wedge, measured via the von Neumann entropy of
the state ρR, and shown to be proportional to the area of the
Rindler horizon bifurcation surface

S ¼ ζA; ð44Þ

with the proportionality factor ζ a priori depending on
the nature of the quantum fields, as well as being some
complicated function of the position in spacetime. In our
setting, this factor can also depend on the momentum. In
the remarkable Ref. [55], the author showed how the
thermal equilibrium character of the quantum field system
at the local level is essentially intertwined with the Killing
character of the Rindler horizon structure, namely an on-
shell space-time geometric configuration with respect to
GR locally.4 In the same work, this relation was inverted to
show that the very Einstein equation could be derived as a
spacetime thermodynamics equation of state, starting from
a local constitutive equilibrium equation for the spacetime
degrees of freedom.
In fact, given a spacetime patch around any point p inM,

a local Rindler horizon structure can be introduced via
local Lorentz invariance in the local inertial frame in p
by a Lorentz boost to a uniformly accelerating frame.
Accordingly, once reduced to the local Rindler wedge R,
the locally Minkowski vacuum gets described by a thermal
state ρR, with the local Rindler horizon playing the role
of a diathermic membrane. For a small perturbation to the

3Note, however, that for the particular metric (17), the temper-
ature does not change with respect to the GR result.

4The essentially ultralocal and geometric nature of the thermal
behavior of the Rindler horizon finds support down to a full
quantum gravity level of description, as more recently shown in
Refs. [72,73]. See also Ref. [74].
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thermal vacuum δρR, the thermodynamic Clausius relation
between a change of entropy and an energy flux across the
local Rindler horizon holds:

TdS ¼ δQ; ð45Þ

leading, via Eq. (44), to a constitutive relation connecting
changes in the local wedge geometry, expressed in terms of
horizon area deformations δA, to fluxes of matter’s stress-
energy tensor currents intended as heat flux through the
horizon.
In the following, we shall reconsider the original

derivation in Ref. [55] for our deformed spacetime setting,
to investigate whether the thermodynamic characterization
of Einstein’s equations is affected by the momentum
dependence of the DSR metric.

A. Local Rindler horizon

Let us start by considering the approximate Killing
description of a local Rindler causal horizon in the
cotangent bundle setting. In analogy with the global
definition of a horizon as the boundary of the past of
future null infinity, one can generally consider a local
horizon at any p, in the base spacetime ðM; gμνÞ, as one side
of the boundary of the past of a spacelike 2-surface patch P
including p. Near p, the local horizon is composed of the
congruence of null geodesics orthogonal to P, character-
ized by the past-pointing tangent null vector lμ.
In particular, within a small neighborhood of p in M,

local Lorentz invariance allows us to map the local
inertial frame in p to a local Rindler frame via Lorentz
boost. Then, locally, the boundary of the past of the patch
P gets mapped to a section of an approximate Killing
horizon, centered in p. The future-pointing approximate
boost Killing vector χμ vanishes in p, and it is tangent
to the null congruence comprising the causal horizon
(see Fig. 2).
Let us now introduce, along the horizon null hypersur-

face, a time label v with respect to the approximate Killing
field, χα;αv ¼ 1. Further, we express this Killing parameter
v in terms of the null congruence affine parameter λ. For a
Killing horizon, the relation is generically given by

λ ¼ −e−κv; ð46Þ

so that the point p is located at infinite Killing parameter
and at λ ¼ 0. Note that, for dimensional consistence of
the local boost Killing flow, we keep for the Killing
parameter v along the horizon the same scaling κ we
introduced for the hyperbolic angle η defined in the
wedge.
As a consequence, one gets χμ ¼ ðdλ=dvÞlμ, with

ðdλ=dvÞ ¼ −κλ, which can in turn be used to derive some
helpful relations between the null congruence expansion θ̂

and shear σ̂ in the Killing parameter, and the respective
quantities in the affine parameter.5

θ̂ ¼
�
dλ
dv

�
θ ¼ −κλθ; σ̂ ¼

�
dλ
dv

�
σ ¼ −κλσ: ð47Þ

B. Local Rindler wedge perturbation

Following the argument in Ref. [55]—and on the base of
our previous discussion concerning the thermal state of the
Rindler wedge within our framework—we assume that the
ground state of the fields living in the base spacetime
is approximated by the Minkowski vacuum. Then, with

P

H

RL

δQ

δQ ⇒ δρR ⇒ dS ∝ δA

�µ

χB

χµ

H

R

δQQQ

χB

FIG. 2. Local Rindler horizon framework. The oriented hyper-
bola indicates the approximate boost Killing flow χB in locally
Minkowski spacetime. Given a generic point p in M, a local
horizon at p is defined as one side of the boundary of the past of a
spacelike 2-surface patch P including p. The local horizon is
composed of the congruence of null geodesics characterized by
the past-pointing tangent null vector lμ (in blue). Such a structure
coincides with a local Rindler horizon as the local inertial frame
in the neighborhood of p is boosted to a uniformly accelerated
frame. The approximate boost field on the local Rindler horizon
is denoted by χμ. Assuming the ground state of the fields living
in the spacetime to be locally approximated by the Minkowski
vacuum, we get a local description of the thermal Rindler wedge
as a consequence of the thermal character of the reduced vacuum
on the right wedge (R). An infinitesimal perturbation of the field’s
equilibrium density matrix is associated with a variation of the
horizon entropy, which reflects in an infinitesimal perturbation of
the horizon geometry.

5The twist vanishes instead due to the hypersurface orthogon-
ality of the null congruence of the horizon generators.
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respect to the approximate Killing vector flow in the
Rindler wedge, the vacuum state can be interpreted as
an approximate thermal state, with a wedge temperature
previously introduced in Eq. (43) as

TR ≈ TU
ffiffiffiffiffiffi
g00

p ¼ ℏκ
2π

: ð48Þ

Further, along with Refs. [55,75], we shall consider an
area scaling for the entanglement entropy of the field’s
reduced density matrix restricted on the right Rindler
wedge. This assumption is based on the fact that, as we
have seen above, the causal structure of the Rindler wedge
is preserved in our framework. This implies that we still
have two causally disconnected wedges linked at the
bifurcation surface. Therefore, we do expect the entangle-
ment entropy associated with one wedge will still be
proportional to the area of this surface. In particular, we
shall take S ¼ ζA, where A is the area of the bifurcation
surface of the Rindler horizon, while we are assuming the
proportionality factor ζ to be a constant. Consequently, we
can think of an infinitesimal perturbation of the thermal
Rindler system as inducing an entropy change proportional
to an infinitesimal horizon area variation—that is,

dS ¼ ζδA: ð49Þ

The variation in the area can be computed from the
expansion rate of the congruence of null geodesics com-
prising the horizon—i.e.,

δA ¼
Z
H
ϵ̃θ dλ; ð50Þ

where H indicates we are integrating along the Rindler
wedge horizon, and ϵ̃ is the 2-surface area element of the
horizon cross section. Moving away from the equilibrium
bifurcation surface at λ ¼ 0, along the null congruence, the
infinitesimal evolution of θ is given by its linear expansion
at the point p,

θ ≈ θp þ λ
dθ
dλ

����
p
þOðλ2Þ: ð51Þ

The linear coefficient can be determined from the
Raychaudhuri equation (16). This means that the entropy
can be written from Eq. (50) as

dS ¼ ζ

Z
H
ϵ̃ dλ

�
θ − λ

�
1

2
θ2 þ kσk2 þ Rμνlμlν

��
; ð52Þ

where we use the notation kσk2 ¼ σμνσ
μν.

Now, we use the thermal equilibrium description for
the quantum fields in the Rindler system. For an infini-
tesimal variation around equilibrium, the entropy change is

matched by the amount of heat transferred to the system
divided by the equilibrium temperature. This linear
response relation corresponds to the Clausius formula
in thermodynamics,

dS ¼ δQ
TR

; ð53Þ

where the heat variation δQ is here expressed as a flux
of the quantum field stress-energy tensor Tμν across the
horizon membrane

δQ ¼
Z
H
Tμνχ

μdΣν; ð54Þ

with dΣν ¼ ϵ̃dλlν. In our setting, the stress-energy tensor
can depend, in principle, also on the momentum, as it is
derived from the variation of a Lagrangian density with
respect to the deformed metric.
The previous equation, once expressed in terms of the

null congruence parameters, reads

δQ
TR

¼
Z
H
ϵ̃dλ

�
−

λ

TR
κ

�
Tμνlμlν: ð55Þ

Now, imposing a Clausius relation then amounts to
equating the integrands of Eqs. (52) and (55). At zeroth
order in λ, the heat flux at p is zero, so necessarily θp ¼ 0.
At first order, we get

2π

ℏζ
Tμνlμlν ¼ ðkσk2 þ RμνlμlνÞp: ð56Þ

When requiring that σp ¼ 0, one finds

2π

ℏζ
Tμν ¼ Rμν þΦaμν; ð57Þ

where we use the fact that, if aμνðxÞlμlν ¼ 0,
gμνðx; kÞlμlν ≠ 0, since lμ ∝ χμ, so kμχμ ≠ 0, being that
this is the definition of Killing energy, which is also valid in
this scheme [51].
The next ingredient consists in requiring the conserva-

tion of the stress energy tensor, by which we get

gρμðRμν þΦaμνÞ;ρ ¼ 0: ð58Þ

This equation is quite cumbersome to solve for Φ,
since, in this cotangent bundle scenario, the Bianchi
identities are not satisfied in general. So, we can start by
considering a simple example of a spacetime metric, a
Friedmann-Lemaître-Robertson-Walker universe. When
making a power series expansion in Λ, we find that the
only way in which Eq. (58) can be satisfied is by imposing
that f2 ¼ 0.
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This can be easily understood. For f2 ¼ 0, the Bianchi
identities can be written exactly as in GR due to the
conformally flat form of the momentum metric, since the
momentum dependence of the Ricci tensor cancels out with
the corresponding term of the metric. Explicitly,

gμνðx; kÞRðx; kÞ ¼ gμνðx; kÞgρσðx; kÞRρσðxÞ

¼
�
1 −

k̄2

4Λ2

�
2

aμνðxÞ
�
1 −

k̄2

4Λ2

�−2

× aρσðxÞRρσðxÞ
¼ aμνðxÞRðxÞ: ð59Þ

Taking into account all this, it is easy to get Φ ¼ −1=2Rþ
Λ0 þ φðk̄2Þ.
The presence of the last term ofΦ is quite obvious, since

the covariant derivative of any function of the Casimir is
zero, as shown in Ref. [51]. Further, φ must be such that
φð0Þ ¼ 0, since for Λ going to infinity we want to recover
the usual Einstein equations. Therefore, this must be a
small correction, which indeed is proportional to the
squared quotient of the mass of the particle and the
high-energy scale.
Substituting this result into Eq. (57), we finally find

2π

ℏζ
Tμν ¼ Rμν −

1

2
Rgμν þ ðΛ0 þ φÞaμν; ð60Þ

where Λ0 is some arbitrary integration constant. Thereby,
for

ζ ¼ 1

4ℏG
; ð61Þ

one gets the Einstein equations for the local thermal base
spacetime description in the cotangent bundle framework,
where now both the metric and the Ricci scalar are
substituted by their momentum-dependent version and a
new term, proportional to the square of the momentum of
the particle probing spacetime, appears. Noticeably, assum-
ing the equivalence principle holds in this setting, the above
construction can be done at any point in spacetime p, hence
Eq. (60) must hold everywhere.
In Ref. [64], a prescription for constructing the Einstein

equations in spacetime was proposed. The main difference
with respect to Eq. (60) is that the definition of the Riemann
tensor differs from that of GR, leading to a different Ricci
tensor, and the last term proportional to φ is missing.
In Ref. [51], some of the present authors also discussed

the fact that, when considering a cotangent bundle geom-
etry, there are four curvature tensors [64]: one associated
with spacetime, another one with momentum space, and
another two with mixing momentum space and spacetime.
Therefore, one can construct four Einstein equations
including these tensors [64]. If the mixing curvature tensors

do not vanish, it would require an energy-momentum
tensor for such intertwined spaces, which are very difficult
to justify from a physical point of view, given the far from
clear nature of the sources that would generate such tensors.
Assuming this prescription, one is forced to consider
that f2 ¼ 0, since it is the only metric compatible with a
vanishing energy-momentum tensor for the intertwined
spaces [51]. This is exactly the same result obtained in this
paper, even if we consider here a more general form of the
Einstein equations.
For the particular case in which φ ¼ 0, Einstein’s

equations are indeed exactly the same as those of GR,
without any momentum modification of the GR Einstein
equations. Moreover, since the right-hand side of Eq. (60)
does not depend on the momentum, this automatically
implies that the energy-momentum tensor cannot depend
on it either, so the same sources of the GR metrics are also
sources of this construction of a cotangent bundle metric.
Alternatively, one can set to zero only the integration

constant Λ0 and try to make up for the observed dark
energy component of our Universe via φ. Indeed, it is easy
to see that the φ function plays a similar role to a
cosmological constant, which even setting Λ0 ¼ 0 could
explain dark energy, if one fixes it to be equal to the
observed value Λc ¼ 10−52 m−2. For example, we can
make the following ansatz:

φ ¼ g

�
m
Λ

�
2n
λ−2C ; ð62Þ

where g is some dimensionless coupling constant, and λC is
the Compton wavelength associated with the mass scale m.
As a speculative exercise, we can take as a reference mass

scale the proton one, 1 GeV, and notice that λC ≈ 10−15 m,
so that, if one imposes φ ¼ ΛC, then

Λ ≈ ð1082 gÞ1=2n GeV: ð63Þ

In this case, taking n ¼ 2 and g ≈ 10−6, one gets for
the Lorentz deformation scale Λ ≈ 1019 GeV—i.e., the
Planck scale.
While there is an obvious high degree of arbitrariness

in such a choice of scales, we just want to stress that a
possible consequence of the cotangent bundle geometries
taken here into account is the induction of a mass-
dependent cosmological constant, where the mass scale
m could be an averaged scale over the standard model
mass scales or associated with new physics (e.g., super-
symmetry scale). Finally, note that the function φ is the
only way in which momentum dependence of the Einstein
equations can arise.

V. CONCLUSION

In this paper, we studied the Rindler spacetime with a
momentum-dependent metric that takes into account a
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relativistic deformed kinematics in curved spacetimes.
While previous work provided a description of such
spacetime from a quantum theory viewpoint [56], here
we focused on its geometrical realization. We started by
deriving the trajectories of uniformly accelerated observers
in a momentum-deformed metric, confirming they are
hyperbolae corresponding to a boost Killing flow, though
now depending on the mass of the particle probing the
spacetime. This allowed us to consider the horizon of the
Rindler wedge, hence the very Rindler causal structure,
undeformed with respect to the GR case.
Albeit a QFT based on the symmetries of DSR is still

missing, we assumed that the Bisognano-Wichmann still
holds in this framework, so as to define the temperature of
the Rindler wedge from the Unruh temperature, modified
by the momentum dependence of the metric, with a factor
solely depending on the mass of the observer, as it was in
the case of the deformed uniformly accelerated trajectories.
Such a temperature is the same as that of GR for the
privileged momentum metric obtained in Refs. [51,53].
Starting from the thermal Rindler wedge description, we

considered the derivation of the Einstein equations of GR as
a thermodynamic equation of state, as first proposed in
Ref. [55], in our momentum-deformed setting. By repro-
ducing the original derivation, we obtained deformed
Einstein’s equations with a momentum-dependent metric.
Remarkably, these equations turned out to be the same as
the one proposed in Ref. [64], but with a different definition
of the Riemann tensor and a new term depending on the
mass of the particle probing spacetime. The latter equations
are in fact (up to the new term) the same ones obtained in
previous work by some of the present authors [51], when

considering the proposal of Ref. [64] together with impos-
ing the conservation of the stress-energy tensor. We showed
that such a new term can be regarded as a cosmological
constant, as discussed in the previous section with some
numerical estimations.
The thermodynamic derivation of the Einstein equations

happens to support the idea that the energy-momentum
tensor is conserved only in the privileged momentum
metric previously obtained by some of the present authors
in Refs. [51,53]. As discussed in those papers, there is a
long debate in the DSR community about the possible fact
that a different basis could represent different physics. In
Ref. [51], a degeneracy on the choice of momentum
variables for flat spacetime was shown to exist, which is
broken when introducing a curvature on spacetime. In this
paper, we observe also this breaking of the degeneracy
when considering curved spacetimes, pointing to the
possibility that a privileged momentum basis, the one
given by Eq. (17), may in fact exist.
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