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Superconductivity from spoiling magnetism in the Kondo lattice model

Mohammad Zhian Asadzadeh, Michele Fabrizio, and Federico Becca
Democritos Simulation Center CNR-IOM Istituto Officina dei Materiali and International

School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy

We find evidence that superconductivity intrudes into the paramagnetic-to-magnetic transition of
the Kondo lattice model if magnetic frustration is added. Specifically, we study by the variational
method the model on a square lattice in the presence of both nearest- (t) and next-nearest-neighbor
(t′) hopping of the conduction electrons. We find that, when t′/t > 0, a d-wave superconducting
dome emerges between the magnetic and paramagnetic metal phases and close to the compensated
regime, i.e., the number of conduction electrons equals the number of localized spin-1/2 moments.
Superconductivity is further strengthened by a direct antiferromagnetic exchange JH between the
localized moments, to such an extent that we observe coexistence with magnetic order.

PACS numbers: 71.27.+a, 71.30.+h, 71.10.Fd

I. INTRODUCTION

The emergence of superconductivity in strongly-
correlated electron systems has become quite a common
phenomenon, observed by now in a wealth of different
materials that include also so-called heavy-fermion com-
pounds, where unconventional superconductivity was
first reported in CeCu2Si2.

1 The characteristic properties
of heavy fermions derive from the coexistence of itinerant
electrons and localized moments residing on partly filled
f -shells of rare earth or actinide ions. The pairing mecha-
nism in heavy fermions has been the subject of an intense
debate, also in connection with high-temperature super-
conductors,2,3 with which heavy fermions share uncon-
ventional pairing symmetry. For instance, recent scan-
ning tunnelling spectroscopy on CeColn5 unveiled the
presence of nodal points in the superconducting gap com-
patible with a dx2−y2 symmetry,4 just like in cuprates.
The widely accepted picture is that pairing is medi-
ated by spin fluctuations of a nearby antiferromagnetic
phase, as suggested for CePd2Si2 and CeIn3.

5,6 This view
is supported by the evidence that superconductivity in
heavy fermions almost always appears in the vicinity
of the quantum critical point that separates a param-
agnetic metal phase from a magnetically-ordered one.7

Even more remarkably, some compounds show a coexis-
tence of magnetism and superconductivity, as observed
in CeRhSi2,

8 CeRhIn5,
9 and CeCo(In1−xCdx)5.

10

From the theoretical side, the Kondo lattice model
(KLM), which has been introduced by Doniach in 1977,11

is believed to capture the basic properties of heavy
fermions. While in one spatial dimension its physical
behavior is well understood,12 the more relevant two-
and three-dimensional cases are much less known, espe-
cially concerning (possible) superconducting properties.
Most of the analytical understanding is based upon slave
bosons and large-N approaches,13 which find that d-wave
superconductivity can be indeed stabilized in two dimen-
sions through the resonating-valence bond (RVB) mech-
anism, similarly to what has been suggested long ago
by Anderson for high-temperature superconductors.14 As

far as numerical calculations are concerned, unfortu-
nately quantum Monte Carlo methods suffer from sign
problems away from the compensated regime (where the
number of itinerant electrons equals the number of lo-
calized spin-1/2 moments), while exact diagonalization
and density-matrix renormalization group (DMRG) are
limited to small clusters. Nonetheless, DMRG calcula-
tions suggest that the standard KLM does not support
superconductivity.15 This is also the conclusion of varia-
tional Monte Carlo calculations, which show that d-wave
pairing is indeed present in the paramagnetic sector of
the KLM, but it is easily defeated by magnetism.16 In-
stead, recent dynamical mean-field theory (DMFT) re-
sults obtained some evidence for an unexpected s-wave
superconductivity close to the compensated regime and
relatively large Kondo coupling.17

In general, the weakness of superconductivity seems
the consequence of the strength of magnetism, reinforced
in the model calculation by the bipartite square lattice
and by the unfrustrated hopping. Since lack of mag-
netic frustration is rather exceptional in real materials,
it is worth and legitimate to investigate how frustration
modifies the phase diagram of the KLM.18 Frustration
in real heavy-fermion materials may take various forms.
In certain cases, it can appear as a direct geometric frus-
tration, as in the pyrochlore material Pr2Ir2O7

19 and in
the Shastry-Sutherland lattice compound Yb2Pt2Pb,

20

in others by competing interactions of various kinds. The
role of frustration in the KLM has been investigated in
different works, especially focusing on magnetic proper-
ties.21–24 More recently, dynamical cluster approximation
(DCA) calculations on the periodic Anderson model also
suggested that frustration may lead to d-wave supercon-
ductivity in the vicinity of an antiferromagnetic quantum
critical point.25

There is another ingredient worth to be included to
better reproduce the phase diagram of heavy fermions.
Realistically, one expects that f -electrons are mutually
coupled mostly through the conduction electrons, i.e., via
the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange.
However, most of the approximate methods used to study
the KLM are unable to account for the RKKY interac-
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tion, unless long-range magnetic order is explicitly as-
sumed. This inserts a bias in the calculations, since mag-
netic solutions can profit from the RKKY interaction,
while non-magnetic ones cannot even exploit short-range
magnetic correlations, e.g., to stabilize superconductiv-
ity. A way to mitigate this flaw is to add a direct f−f

exchange JH mimicking the actual RKKY interaction.
The role of JH for reproducing the magnetic properties
of heavy fermions has been highlighted several times.26–31

Moreover, there are also suggestions that JH may be im-
portant to understand superconductivity in UPd2Al3.

32

In this paper, we show that the underlying supercon-
ducting properties of the Kondo lattice model naturally
emerge whenever magnetism is frustrated and/or local
Cooper pairs are reinforced by a direct f−f exchange.
Here, the mechanism leading to superconductivity can
be captured by the standard approach where spin fluctu-
ations mediate pairing; however, without these extra in-
gredients, pairing is not strong enough to overcome mag-
netic long-range order. One of the main signatures of this
mechanism is the dx2−y2 symmetry of the order parame-
ter, which arises from the indirect coupling of conducting
electrons through localized moments.
The paper is organized as follow: in Sec. II, we intro-

duce the KLM and describe the numerical method, in
Sec. III, we present the results, and finally, in Sec. IV, we
draw our conclusions.

II. MODEL AND METHOD

We explore the phase diagram of an extended KLM on
a square lattice described by the Hamiltonian:

H =− t
∑

〈i,j〉,σ

(

c
†
i,σcj,σ + h.c.

)

− t′
∑

〈〈i,j〉〉,σ

(

c
†
i,σcj,σ + h.c.

)

+ J
∑

i

Si · si + JH
∑

〈i,j〉

Si · Sj , (1)

where 〈i, j〉 and 〈〈i, j〉〉 imply that i and j are nearest
neighbors and next-nearest neighbors, respectively; Si is
the spin 1/2-operator of the local moment at site i, and si

that of the conduction electrons. Hereafter, we shall re-
fer to the frustrated Kondo lattice model (FKLM) when
t′ 6= 0 but JH = 0, and to the Kondo-Heisenberg lat-
tice model (KHLM) in the opposite case of t′ = 0 but
JH 6= 0. We take t = 1 as the energy unit, and study the
phase diagram in the the uncompensated regime, where
the density of c-electrons nc < 1, by varying the frus-
trating hopping t′, the Kondo coupling J , and the super-
exchange JH .
We study the ground state of Eq. (1) by variational

Monte Carlo technique. The variational wave function is
defined by:

|Ψv〉 = Pf |ΦMF〉, (2)

where Pf is the Gutzwiller projector that enforces single
occupancy of f electrons on each site, while |ΦMF〉 is an

uncorrelated wave function defined as the ground state
of a non-interacting variational Hamiltonian, HMF, that
in general contains as variational parameters c−c, c−f
and f−f hybridization terms, an energy shift of the f -
orbitals, staggered magnetic fields acting on c- and f -
electrons, as well as BCS coupling terms.16 Depending
on HMF we can describe different uncorrelated states:
1) A paramagnetic normal metal, which we denote by

PM:

HPM =
∑

k,σ

[

c
†
k,σ f

†
k,σ

]

[

χcc
k V

V χ
ff
k

]

[

ck,σ
fk,σ

]

. (3)

2) A singlet superconductor with inversion symmetry,
denoted by PM+BCS:

HPM+BCS =
∑

k

[

c
†
k,↑ c−k,↓ f

†
k,↑ f−k,↓

]

×









χcc
k ∆cc

k V ∆cf
k

∆cc
k −χcc

k ∆cf
k −V

V ∆cf
k χ

ff
k ∆ff

k

∆cf
k −V ∆ff

k −χ
ff
k



















ck,↑
c
†
−k,↓

fk,↑
f
†
−k,↓











.

(4)

3) An antiferromagnetic metal:

HAF =
∑

k∈MBZ,σ

[

c
†
k,σ c

†
k+Q,σ f

†
k,σ f

†
k+Q,σ

]

×









χcc
k mfσ V 0

mfσ −χcc
k 0 V

V 0 χ
ff
k mcσ

0 V mcσ −χ
ff
k



















ck,σ
ck+Q,σ

fk,σ
fk+Q,σ











,

(5)

where the sum over k is restricted to the reduced Brillouin
zone and Q = (π, π). In the latter case, two possible
states can be variationally obtained that differ by the
topology of their Fermi surface,33 either electron- or hole-
like, which we refer to as AFe and AFh, respectively.
In all the previous cases, χcc

k = −2(coskx + cos ky) −

4t̃′ cos kx cos ky and χ
ff
k = −2t̃f(cos kx +cos ky)− µf ; t̃

′,

t̃f , and µf being variational parameters, as well as hy-
bridization V and magnetizations for c and f electrons
(mc and mf ). The best variational energies are obtained
allowing a superconducting pairing with dx2−y2 symme-
try, compared to on-site or extended s-wave symmetry.
The most relevant ones are ∆cc

k = 2∆c(cos kx − cos ky)

and ∆ff
k = 2∆f (cos kx − cos ky) (∆c and ∆f being addi-

tional variational parameters).
4) Whenever antiferromagnetism coexist with su-

perconductivity, we label the states as AFh+BCS or
AFe+BCS (we do not write the explicit form of the 8× 8
matrix representing the uncorrelated Hamiltonian).
We would like to mention that we do not consider mag-

netic states with incommensurate or inhomogeneous pat-
terns, since, in general, incommensurate spirals are frag-
ile and do not give rise to sizable energy gains, while
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FIG. 1: (Color on-line) Left panel: energy (per site) differ-
ence between the superconducting state and the paramagnetic
metal as a function of the Kondo coupling J for different val-
ues of positive t′. Right panel: energy (per site) difference of
magnetic and superconducting phases with respect to para-
magnetic metal versus J for t′ = 0.4. The cluster has L = 8
and the density of conduction electrons is nc ≃ 0.94.
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FIG. 2: (Color on-line) Left panel: superconducting conden-
sation energy (per site) versus the Kondo exchange J for dif-
ferent values of JH and nc ≃ 0.94. Right panel: the same
quantity for fixed value of J versus JH .

inhomogeneous phases are not expected in the antiferro-
magnetic Kondo lattice model (on the contrary, the lat-
ter ones have been found in models with ferromagnetic
Kondo super-exchange).34,35 The variational parameters
are obtained by minimizing the total energy by quantum
Monte Carlo simulations.36 Calculations have been per-
formed on L × L square clusters with L ranging from 8
to 20.

III. RESULTS

We start by discussing the results for the FKLM of
Eq. (1) with JH = 0. First, we focus on the paramag-
netic sector, namely on PM and PM+BCS states. We re-
port in Fig. 1 the condensation energy, computed as the
energy difference between the optimized superconduct-
ing state and the best paramagnetic metal, for nc ≃ 0.94

TABLE I: Energies per site of the paramagnetic metal and the
best superconducting state for t′ = 0.4, J = 2.1 and nc ≃ 0.94
on L× L clusters.

L nc EPM EPM+BCS ∆E = EPM+BCS − EPM

8 0.937 -2.18660(2) -2.18912(2) -0.00252(4)

12 0.930 -2.18274(2) -2.18429(2) -0.00155(4)

14 0.938 -2.18721(2) -2.18866(2) -0.00145(4)

16 0.937 -2.18650(2) -2.18784(2) -0.00134(4)

18 0.926 -2.18016(2) -2.18126(2) -0.00110(4)

20 0.940 -2.18782(2) -2.18910(2) -0.00128(4)

and different values of t′. The presence of a positive next-
nearest-neighbor t′ is found to considerably enhance the
condensation energy, while negative values considerably
suppresses it (not shown). The enlargement of the stabil-
ity region of superconductivity for t′ > 0 is also remark-
able: while for t′ = 0 the condensation energy vanishes
for J ≃ 1.5, for t′ = 0.4 superconductivity survives up to
J ≃ 2.3.

Let us now consider magnetic states. We recall that,
in the absence of frustration, the magnetic solution has
always lower energy than the superconducting one, when
the latter is stable, hence the actual phase diagram does
not include superconductivity at all.16,33 This situation
changes when frustration is added. In Fig. 1, we report
the optimized energy of PM+BCS, AFh, and AFe states
relative to the PM one, for t′ = 0.4 and nc ≃ 0.94 (in
this case, we do not find any appreciable gain by allowing
both magnetism and superconductivity). The first obser-
vation is that the AFh state is strongly hindered by t′,
while the AFe state lowers its energy. The most impor-
tant feature is that now the superconducting state takes
over antiferromagnetism in a wide range of parameters.

The existence of a superconducting phase close to the
paramagnetic to magnetic transition is confirmed by per-
forming the size scaling up to L = 20. In Table I, we
report the energies of the paramagnetic metal and the
best superconducting state (as well as their difference)
for t′ = 0.4, J = 2.1, and nc ≃ 0.94. Due to finite-size ef-
fects, it is not possible to fix exactly the same value of nc

for all clusters, nevertheless, the differences in the elec-
tron concentration is very similar in all cases. Although
the condensation energy is quite reduced from L = 8 to
L = 12, it remains essentially constant from L = 12 to
L = 20, indicating a finite value in the thermodynamic
limit. In light of these results, we believe that a true
superconducting phase does exist in the vicinity of the
magnetic transition (especially for large values of J and
t′). Finally, further away from compensated regime (i.e.,
for nc

<
∼ 0.8) the superconducting phase is defeated by

the AFe state, and eventually disappears.

We now turn to the KHLM, with t′ = 0 but JH > 0
in Eq. (1). We observe that a variational wave function
could in principle account for the RKKY exchange, hence
not require any JH , through spin-spin Jastrow factors.
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FIG. 3: (Color on-line) Energy (per site) difference of mag-
netic and superconducting phases with respect to paramag-
netic state as a function of the Kondo exchange J , for different
values of JH and nc ≃ 0.94. The cases with JH = 0 (bottom
left), JH = 0.01 (bottom right), JH = 0.05 (top left), and
JH = 0.1 (top right) are reported.

FIG. 4: (Color on-line) Schematic phase diagrams in the plane
of nc and J for frustrated Kondo lattice model (left panel,
with t′ = 0.4) and Kondo-Heisenberg lattice model (right
panel, with JH = 0.1).

However, in practice this is unfeasible unless spin SU(2)
symmetry is explicitly broken. Therefore, even though
our variational approach is more accurate than Hartree-
Fock, we still need to include a direct f−f exchange to
add magnetic short-range correlations provided in reality
by the RKKY interaction.
As before, we start by the paramagnetic sector. Also

in this case the superconducting pairing has dx2−y2 sym-
metry. In Fig. 2, we show the condensation energy for
different values of JH at nc ≃ 0.94. The case of JH = 0
has been also reported for comparison. The maximum
gain remains peaked around J = 0.5 but increases mono-
tonically with JH . Remarkably, even tiny values of JH
substantially enhance the condensation energy. The in-
clusion of JH not only enlarges the condensation energy
but also the stability region of superconductivity. While
at JH = 0 the transition to a normal metal occurs at
J ≃ 1.5, for JH = 0.1 the superconducting state remains
stable up to J ≃ 2.2.
To assess whether superconductivity does exist in the

phase diagram, we now examine also magnetic states.
Obviously, a direct antiferromagnetic interaction JH en-

TABLE II: Energies per site of the paramagnetic metal and
the best superconducting state for JH = 0.1, J = 1.8 and
nc ≃ 0.94 on L× L clusters.

L nc EPM EPM+BCS ∆E = EPM+BCS − EPM

8 0.937 -1.99355(2) -1.99570(2) -0.00215(4)

12 0.930 -1.98825(2) -1.98961(2) -0.00136(4)

14 0.938 -1.99448(2) -1.99584(2) -0.00136(4)

16 0.937 -1.99353(2) -1.99469(2) -0.00116(4)

18 0.926 -1.98471(2) -1.98558(2) -0.00087(4)

20 0.940 -1.99539(2) -1.99645(2) -0.00106(4)

hances the tendency towards Néel order, hence enlarges
the stability region of antiferromagnetism. In Fig. 3, we
show the energy of magnetic and superconducting states
relative to the paramagnetic state, for different values
of JH and nc ≃ 0.94. The case JH = 0 has been also
included for comparison. Interestingly, upon increasing
JH the superconducting phase finally gets energetically
more favorable than AFh. The stability of a pure super-
conducting phase close to the paramagnetic to magnetic
transition is confirmed by a size scaling of the condensa-
tion energy, see Table II. Also in this case, all evidences
point to a condensation energy that remains finite in
the thermodynamic limit. Therefore, a superconducting
region in the vicinity of the magnetic quantum critical
point emerges as before, this time thanks to a finite JH .
Furthermore, JH also stabilizes coexistence of pairing

and magnetism, especially close to the quantum critical
point. Indeed, we find a substantial energy gain when
adding superconducting parameters on top of the AFh
state, giving rise to a AFh+BCS phase. In other words,
upon reducing the Kondo coupling, the paramagnetic
metal first becomes superconducting through a second-
order transition and then acquires magnetic order, still
displaying a sizable electron pairing, see Fig. 3. By fur-
ther reducing the Kondo exchange, a first-order transi-
tion to a AFe state occurs. Its energy can be slightly
lowered by allowing for a BCS coupling, see Fig. 3. This
gain decreases with increasing L, possibly indicating that
the coexistence of magnetism and superconductivity will
disappear in the thermodynamic limit, see Table III.
For lower electron densities, namely for nc

<
∼ 0.8 the

AFh state cannot be stabilized anymore, similarly to the
JH = 0 case. In addition, the pure superconducting
phase PM+BCS is now defeated by the AFe state, al-
though the latter may still allow for a coexisting super-
conductivity.

IV. CONCLUSIONS

In summary, we have shown that magnetic frustration
in the Kondo lattice model has the important role of sup-
pressing magnetic order hence uncovering superconduc-
tivity, which we find intrudes between the paramagnetic
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TABLE III: Energies per site of the magnetic state (AFe)
and the one with both magnetism and superconductivity for
JH = 0.1, J = 0.5 and nc ≃ 0.94 on L× L clusters.

L nc EAFe EAFe+BCS ∆E = EAFe+BCS − EAFe

8 0.937 -1.70758(2) -1.70972(2) -0.00214(4)

12 0.930 -1.69280(2) -1.69442(2) -0.00162(4)

14 0.938 -1.69733(2) -1.69877(2) -0.00144(4)

16 0.937 -1.69240(2) -1.69353(2) -0.00113(4)

18 0.926 -1.69588(2) -1.69686(2) -0.00098(4)

20 0.940 -1.69372(2) -1.69419(2) -0.00047(4)

and antiferromagnetic metal phases, see Fig. 4. Super-
conductivity is further stabilized by short-range magnetic
correlations, which in reality are yielded by the RKKY
exchange but which we had to enforce in our variational

calculation through a direct antiferromagnetic exchange
JH between the localized moments. Even for quite small
JH , a superconducting dome appears between the anti-
ferromagnet and the paramagnetic metals, for nc

>
∼ 0.8,

see Fig. 4. We also have indications for a coexistence of
magnetism and superconductivity when the Kondo ex-
change is small.

Therefore, both the occurrence of a superconduct-
ing dome right in the vicinity of the quantum critical
point separating the magnetic metal from the paramag-
netic one, the typical example being CePd2Si2,

5,6 and
the coexistence of antiferromagnetism and superconduc-
tivity, observed in CeRhSi2,

8 CeRhIn5,
9 and, more re-

cently, CeCo(In1−xCdx)5,
10 are reproduced by an en-

riched Kondo lattice model.

This work was partially supported by PRIN 2010-11.
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