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“Any good theorem should have several proofs, the more the better.”

Michael Atiyah

1 Introduction

In this note, we establish a connection between three distinct sets of ideas — the Atiyah-

Patodi-Singer η-invariant [1], mock Jacobi forms [2] and associated quantum modular

forms [3], and supersymmetric path integrals. The link between these three is provided by

the temperature-dependent Witten index of a noncompact theory. For a supersymmetric

quantum field theory in a d-dimensional spacetime, the Witten index [4] is defined by

W (β) := Tr
H

[
(−1)F e−βH

]
(1.1)

– 1 –



J
H
E
P
1
1
(
2
0
1
9
)
0
8
0

where β is the inverse temperature, H is the Hamiltonian, F is the fermion number and

H is the Hilbert space of the theory. As usual, this trace can be related to a supersym-

metric Euclidean path integral over a d-dimensional Euclidean base space Σ with periodic

boundary conditions for all fields in the Euclidean time direction.

If the quantum field theory is compact in the sense that the spectrum of the Hamilto-

nian is discrete, then the Witten index is independent of the inverse temperature β. This

follows from the observation that the states with nonzero energy come in Bose-Fermi pairs

and do not contribute to the Witten index [4]. Only the zero energy states graded by

(−1)F contribute and consequently, the Witten index is a topological invariant. This is the

case, for example, for a supersymmetric sigma model with a compact target space. By an

appropriate choice of the sigma model, the Witten index in the zero temperature (β →∞)

limit can be related to some of the classic topological invariants such as the Euler character

or the Dirac index of the target manifold. Using temperature independence of the index,

one can evaluate it in the much simpler high temperature (β → 0) limit using the heat

kernel expansion to prove the Atiyah-Singer index theorem [5]. Evaluating the path inte-

gral corresponding to the Witten index in this high-temperature semiclassical limit gives

another derivation of the index theorem [6, 7].

If the field space is noncompact and the spectrum is continuous, then the above ar-

gument can fail because now instead of a discrete indexed sum, one has an integral over

a continuum of scattering states. To define the noncompact Witten index properly, one

needs a framework to incorporate the non-normalizable scattering states into the trace.

We address this issue in section 3.1 and give a suitable definition using the formalism

of Gel’fand triplet. In general, the bosonic density of states in this continuum may not

precisely cancel the fermionic density of states, and the noncompact Witten index can

be temperature-dependent. We relate this temperature dependence to the Atiyah-Patodi-

Singer η-invariant and mock modularity and compute it using deformation invariance and

localization of the supersymmetric path integral. The temperature-dependent piece is no

longer topological but is nevertheless ‘semi-topological’ in that it is independent of any

deformations that do not change the asymptotic. Note that in a general non-compact sit-

uation, temperature independence and deformation invariance are logically distinct as will

become clear later.

The relation to the APS η-invariant can be seen as follows. Consider a compact mani-

foldM with a boundary N . One can define Atiyah-Patodi-Singer boundary conditions [1]

for the Dirac operator assuming thatM has a product form near the boundaryM∼ N×I
where I is a finite interval. It is useful to introduce a noncompact manifold M̂ obtained

by a trivial extension of the manifold M by glueing it to a half-cylinder N ×R+. One can

define the Witten index Ŵ (β) where the hat is added as a reminder that it corresponds

to the noncompact theory with M̂ as the target space. By construction, the solutions

to the Dirac operator on M with APS boundary conditions are in one-one correspon-

dence with the solutions to the Dirac operator on the M̂ with the square-integrable norm.

However, the spectrum of the Dirac Hamiltonian on M̂ also contains delta-function nor-

malizable scattering states with continuous energies, in addition to the square-integrable

bound states with discrete energies. We assume that the continuum is separated from the
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ground states by a gap. In the β → ∞ limit, only the ground states corresponding to

the square-integrable solutions of the Dirac operator contribute and hence the APS index

for the original compact manifold M equals Ŵ (∞). There is a bulk contribution to the

APS index coming from the integral of a local index density which can be computed in the

β → 0 limit as in the compact case. However, now there is a left-over piece coming from

the contribution of the continuum. Using scattering theory on M̂ we relate the continuum

contribution to the η-invariant of N by the relation

η = 2
(
Ŵ (0)− Ŵ (∞)

)
. (1.2)

This yields a new proof of the APS theorem. The η-invariant is nonzero precisely because

the noncompact Witten index is temperature-dependent.

The relation to mock modularity arises similarly as a consequence of noncompactness

of the field manifold for a superconformal field theory on a base space Σ which is a 2-torus

with a complex structure parameter τ . The elliptic genus of an SCFT is a generalization

of the Witten index that counts the right-moving ground states with arbitrary left-moving

excitations. It is a priori a function of τ and τ̄ . For a compact SCFT, by an argument

similar to the above, it is independent of the ‘right-moving temperature’ and hence of τ̄ ,

and is a (weakly) holomorphic Jacobi form. Once again, for a noncompact SCFT with

M̂ as the target space, this argument fails. There is a ‘holomorphic anomaly’ because the

right-moving bosonic density of states does not precisely cancel the right-moving fermionic

density of states. In this case, the elliptic genus is no longer a Jacobi form but is rather

a completion of a mock Jacobi form — a new mathematical object introduced in [2].

The holomorphic anomaly is once again governed by the temperature dependence of the

‘noncompact right-moving Witten index’.

An advantage of mapping the APS index to the Witten index on the noncompact

manifold M̂ is that it becomes easier to obtain its path integral representation. Defining a

path integral measure in a target space with a boundary is in general rather complicated.

Even for a very simple system like a particle in a box, the path integral formulation

was achieved relatively recently [8–13]. For a path integral on a manifold M̂ without a

boundary, even if it is noncompact, one can use the canonical measure. The path integral

facilitates computations using supersymmetric localization. We derive the APS result by

relating it to a Callias-Bott-Seeley [14, 15] index theorem as we explain in section 4.2. A

path integral representation also makes the modular invariance manifest making it easier

to see the connection with mock modularity.

Apart from its intrinsic importance in differential topology, the η-invariant has a num-

ber of interesting physics applications, for example, in the analysis of global gravitational

anomalies [16], in fermion fractionization [17, 18] , in relation to spectral flow in quan-

tum chromodynamics [19, 20], and more recently in the description of symmetry-protected

phases of topological insulators (see [21] for a recent review). Similarly, apart from their

intrinsic interest in number theory [22, 23], mock modular forms and their cousins have

come to play an important role in the physics of quantum black holes and quantum holog-

raphy [2, 24–32], in umbral moonshine [33, 34], in the context of WRT invariants [35–38],
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and more generally in the context of elliptic genera of noncompact SCFTs [39–44]. We

expect our results will have useful implications in these diverse contexts.

The paper is organized as follows. In section 2.1 we review the supersymmetric quan-

tum mechanics for index theory on a compact manifold without a boundary and in sec-

tion 2.2 we describe the Atiyah-Patodi-Singer construction for a compact manifold with a

boundary. In section 2.3 we present the definition of the elliptic genus of an SCFT and

its relation to Jacobi forms. In section 3.1 we define the noncompact Witten index using

the Gel’fand triplet. Then we use this formalism to present a proof of the APS theorem

in section 3.2. In section 4 we discuss the path integral representation of the η-invariant.

In section 4.2 we apply localization to reduce the path integral for the η-invariant to an

ordinary super-integral evaluated in section 4.1 and relate it to the Callias index. We use

these results to compute the η-invariant of the finite cigar in section 4.3 and to compute

the elliptic genus for the infinite cigar in section 5.2. We review the definitions of mock

Jacobi forms in section 5.1 and discuss the connection with the η-invariant and quantum

modular forms in section 5.3.

The examples considered in this paper are simple but sufficiently nontrivial and il-

lustrative. Our results indicate that these interesting connections are a rather general

consequence of noncompactness. Supersymmetric methods have been used successfully to

obtain a path integral derivation of the Atiyah-Singer index theorem for a compact target

manifold, but to our knowledge, no such derivation exists for a manifold with a boundary.1

Using our formulation in terms of a noncompact Witten index, it should be possible to

obtain a more complete path integral derivation of the APS index theorem, for example,

even for the manifolds that do not have product form near the boundary [46]. It would

also be interesting to generalize the construction to elliptic genera of generic noncompact

superconformal field theories. We will return to these problems in the future.

2 Supersymmetry and index theorems

We will be interested in the supersymmetric path integrals for d-dimensional quantum field

theories with d = 2, 1, 0. The Euclidean base space Σ in the three cases is a 2-torus T 2, a

circle S1, and a point which we will refer to as the worldsheet, worldline, and worldpoint

respectively. All our examples are obtained by reductions of Euclidean Wick-rotated version

of a 1 + 1 dimensional worldsheet with (1, 1) supersymmetry which we describe below. It

is convenient to use the superspace sΣ with real superspace coordinates {σα, θA}. See

section A for the conventions. We write σ1 = σ and σ0 = t or σ0 = τ in the Lorentzian or

Euclidean version respectively.

Let {Xi(σ, θ)} be real super-fields with expansion

Xi(σ) = xi(σ) + θ̄ψi(σ) +
1

2
θ̄θF i(σ) (2.1)

where {xi} are the coordinates of 2n dimensional real field manifoldM, ψiA are real Grass-

mann fields and F i are auxiliary fields. The components of the superfield can be thought

1Indeed, this was posed by Atiyah a decade ago as a problem for the future [45].
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of as the coordinates of a supermanifold sM. The Lorentzian action is

I(X) = − 1

2πα′

∫
sΣ
d2σ d2θ

[
1

2
gij(X)D̄XiDXj + 2h(X)

]
(2.2)

where gij(x) is the metric onM, h(X) is the superpotential, and D is the superspace covari-

ant derivative on the (base) superspace. We have introduced α′ for easy comparison with

other normalizations in the literature. The action is invariant under diffeomorphisms in the

target space M. It is also invariant under translations of t generated by the Hamiltonian

H and translations of σ generated by P as well as under the Z2 action of (−1)F :

ψi→− ψi , xi → xi . (2.3)

Moreover, it is invariant under the (1, 1) supersymmetry generated by a real constant spinor

εA under which the superfield transforms as δX = (ε̄Q)X and its components transform as

δxi = ε̄ψi

δψi = (−iγα∂αxi + F i)ε (2.4)

δF i = −iε̄γα∂αψi .

With α′ = 1, the action (2.2) in superfield components is given by

I = − 1

2π

∫
Σ
d2σ

[
1

2
gij
(
∂αx

i∂αxj − iψ̄i /∇ψj − F iF j
)

+
1

4
∂k∂lgij(x)(ψ̄kψl)(ψ̄iψj) − 1

4
∂kgijψ̄

iψjF k +
1

4
∂kgij(F

iψ̄j + F jψ̄i)ψk (2.5)

+
∂h

∂xi
F i − 1

2

∂2h

∂xi∂xj
(ψ̄iψj)

]
where the covariant derivative

∇αψi = ∂αψ
i + Γijk ∂αx

jψk (2.6)

is defined using the Christoffel symbols Γijk(x) in the target space. When the superpotential

is zero, eliminating the auxiliary fields yield the familiar quartic fermionic term involving

the Riemann curvature tensor [47, 48]. It is convenient to introduce an orthonormal basis

of forms, ea = eaidx
i, using the vielbein eai and the inverse vielbein eia with 1 ≤ a, b ≤ 2n

as the tangent space indices. The metric can then be expressed as gij = eaie
b
jδab, and one

can define the spin connection ωakb associated with the Christoffel symbols.

The target space M may be compact with or without boundary, or noncompact. As

explained in the introduction, each of these cases has to be treated differently with an

appropriate definition of the Witten index.

2.1 Compact Witten index

To set the stage, we first consider a superparticle on compactM used in the classic [4, 6, 7]

path-integral derivation of the Atiyah-Singer index theorem. The Lorentzian action is

given by

I =
1

2

∫
dt

[
gij(x)

dxi

dt

dxj

dt
+ i δabψ

a

(
dψb

dt
+ ωakb

dxk

dt
ψb
)]

, (2.7)
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which can be obtained as a specialization of (2.2) by setting

F i = 0 , h = 0 , ψa− = 0 ,
∂

∂σ
= 0 , ψa+ = ψa . (2.8)

We have defined ψa = eaiψ
i using the vielbein. The conjugate variables are

πa :=
∂L

∂ψ̇a
=
i

2
ψa pi :=

∂L

∂ẋi
= ẋi +

i

2
ψaωiabψ

b (2.9)

where the dot refers to t-derivative. The nonvanishing canonical commutation relations are2

{ψa, ψb} = δab , [xi, pj ] = iδij . (2.10)

The Hilbert space H furnishes a Dirac representation of 2n-dimensional γ-matrices with√
2ψj = −iγj . The chirality matrix γ̄ for the Dirac representation

γ̄ = inγ1γ2 . . . γ2n , (γ̄)2 = 1 (2.11)

can be identified with (−1)F . For a review see [49] which uses slightly different conventions.

The worldline supersymmetry is now parametrized by a single Grassman parameter

ε = −ε−

δxi = iεψi , δψi = −εẋi . (2.12)

The corresponding Noether supercharge is

εQ = −ε
√

2ψiẋi , (2.13)

Upon quantization, we get

Q = γiDi = /D with Di = ∂i +
1

4
ωiabγ

aγb . (2.14)

which is the Dirac operator on manifold M. The canonical commutations imply the com-

mutation relations

{Q,Q} = 2H , [H,Q] = 0 , {Q, (−1)F } = 0 , {γ̄, γa} = 0 (2.15)

where H is the worldline Hamiltonian. In the basis in which γ̄ is diagonal, the Dirac spinor

Ψ(x) on field space can be written as

Ψ =

(
Ψ−
Ψ+

)
, (2.16)

2The naive anticommutator obtained from the Poisson bracket of π and ψ would imply {ψa, ψb} =

2δab apparently in conflict with the anticommutator of ψ with itself, {ψa, ψb} = 0. However, since π is

proportional to ψ, we have a constraint on the phase space and must use Dirac brackets instead of Poisson

brackets to obtain the correct quantization {ψa, ψb} = δab, roughly as an average of the naive commutators.

– 6 –
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where the ± denote the chiralities (not to be confused with the chirality of the Grassman

field ψA(σ) on the worldsheet). The Dirac operator and the Hamiltonian take the form

/D =

(
0 L

L† 0

)
, H =

(
LL† 0

0 L†L

)
:=

(
H− 0

0 H+

)
. (2.17)

Using (2.14) and (2.15), the Hamiltonian above can be identified with the Hamiltonian of

supersymmetric quantum mechanics. The index I of the Dirac operator on the manifold

M is then defined as:

I = dim KerL− dim KerL† = n+ − n− (2.18)

where n+ is the number of zero modes of L with positive chirality and n− is the number

of zero modes of L† with negative chirality, equivalently the number of zero modes of the

Hamiltonians H+ and H− respectively i.e.

I = dim KerL†L− dim KerLL† = lim
β→∞

Tr(exp−βH+ − exp−βH−) (2.19)

Positive and negative chirality spinors on the field space correspond to positive and negative

eigenstates of the operator (−1)F in the Hilbert space H and can thus be interpreted as

bosonic and fermionic states in the worldline Hilbert space H and the index I is naturally

identified with the Witten index of the supersymmetric quantum mechanics.

I = lim
β→∞

Tr
H

(−1)F exp−βH = lim
β→∞

W (β) (2.20)

For a compact manifold the eigenvalues of H are discrete. It then follows from (2.15) that

if |E,+〉 is a bosonic eigenstate with energy eigenvalue E > 0, then Q|E,+〉 := |E,−〉
is a fermionic eigenstate with the same energy eigenvalue. Hence, eigenstates with non-

zero eigenvalues of H come in Bose-Fermi pairs and cancel out of the trace. The Witten

index in this case receives contribution only from the ground states and is a topological

invariant [4, 5].

The Witten index (1.1) of this worldline theory has a path integral representation

W (β) =

∫
dx 〈x|(−1)F e−βH |x〉

=

∫
[dX] exp (−S[X,β]) , (2.21)

where the path integral is over superfield configurations that are periodic in Euclidean time

with period β, so the Euclidean base space Σ is a circle of radius β. The Euclidean time τ

is related to the Lorentzian time t as usual by Wick rotation t = −iτ and the Euclidean

action is:

S[X,β] =
1

2

∫ β

0
dτ

[
gij(x)

dxi

dτ

dxj

dτ
+ ψa

(
δab

dψb

dτ
+ ωkab

dxk

dτ
ψb
)]

. (2.22)
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M

Figure 1. Manifold M with a collar N × I shown in red.

The measure [dX] is induced from the supermeasure3 on the supermanifold sM introduced

after (2.1). One can now use the deformation invariance of the supersymmetric path

integral to obtain

I =

∫
M
α(x) (2.23)

where α(x) is the topological index density given by the Dirac genus.

2.2 Atiyah-Patodi-Singer η-invariant

Consider a compact manifold M with a single boundary ∂M = N where N is a compact,

connected, oriented manifold with no boundary. Usual local boundary conditions like

Dirichlet or Neumann do define a self-adjoint Dirac operator. However, because of the

reflection at the boundary, such local boundary conditions mix the positive and negative

chirality and do not allow one to define the index. To preserve chirality, it is necessary

to impose the nonlocal Atiyah-Patodi-Singer boundary conditions [1], assuming M has a

product form in the ‘collar’ region N × I near the boundary (figure 1). In local coordinates

{ym ;m = 1, 2, . . . , 2n− 1} on N and u ≤ 0 on the interval I with the boundary located at

u = 0, the metric takes the form

ds2 = du2 + gmn|N dymdyn , (2.24)

The Dirac operator near the boundary becomes

/D = γu∂u + γmDm . (2.25)

It can be expressed as

γu(∂u + γ̄B) (2.26)

where B = γ̂mDm is the boundary Dirac operator with γ̂m defined by

γm = (γuγ̄)γ̂m (2.27)

which satisfy the same Clifford algebra as the original γ matrices:

{γm, γn} = −2 gmn , {γ̂m, γ̂n} = −2 gmn . (2.28)

3It is well-known that the supermeasure is flat even if the manifold M is curved because the factor

of
√
g in the bosonic measure dx := d2nx

√
g cancels against a similar factor in the fermionic measure

dψ := d2nψ 1√
g
.
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M̂

Figure 2. The noncompact M̂ is a trivial extension of M obtained by gluing N × R+.

The eigenvalue equation for the Dirac operator near the boundary takes the form(
0 L

L† 0

)(
Ψ−
Ψ+

)
=
√
E

(
Ψ−
Ψ+

)
(2.29)

The eigenfunctions can be written as

Ψ−(u, y) =
∑
λ

Ψλ
−(u) eλ(y) (2.30)

Ψ+(u, y) =
∑
λ

Ψλ
+(u) eλ(y) (2.31)

where {eλ(y)} are the complete set of eigenmodes of B. For each mode we obtain(
d

du
+ λ

)
Ψλ

+(u) =
√
EΨλ

−(u)(
− d

du
+ λ

)
Ψλ
−(u) =

√
EΨλ

+(u) . (2.32)

To motivate the APS boundary conditions consider a noncompact ‘trivial’ extension M̂
obtained by gluing a semi-infinite cylinder N×R+ where R+ is the half line u ≥ 0 (figure 2).

Near the boundary, the zero energy solutions on M have the form

Ψλ
±(u) = exp (∓λu)Ψλ

±(0) (2.33)

One can ask which of these solutions can be extended to square-integrable or L2-norma-

lizable solutions on the noncompact manifold M̂. Since u is positive on the semi-infinite

cylinder, the solutions are normalizable if the argument of the exponent is negative. This

is consistent with the APS boundary condition [50]. One sets the exponentially growing

mode to zero which amounts to Dirichlet boundary condition for half the modes:

Ψλ
+(0) = 0 ∀ λ < 0

Ψλ
−(0) = 0 ∀ λ > 0 . (2.34)

For the remaining half, one uses Robin boundary conditions

dΨλ
+

du
(0) + λΨλ

+(0) = 0 ∀ λ > 0

−
dΨλ
−

du
(0) + λΨλ

−(0) = 0 ∀ λ < 0 . (2.35)
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which are consistent with supersymmetry as one sees from (2.32). By construction, im-

posing the APS boundary condition onM is equivalent to requiring L2-normalizability for

the solutions of Dirac equation on the noncompact extension M̂.

The APS index theorem states that the index of Dirac operator with APS boundary

conditions on the compact Riemannian manifold M with boundary N is given by

I =

∫
M
α(x)− 1

2
(η ± h) (2.36)

where
∫
M α(x) is Atiyah-Singer term present also in the compact case, η is the Atiyah-

Patodi-Singer η-invariant and h is the number of zero modes of the boundary operator. η

is a measure of the spectral asymmetry which is equal to the regularized difference in the

number of modes with positive and negative eigenvalues of the boundary operator B on

N . Let {λ} be the set of eigenvalues of B, then

η =
∑
λ 6=0

sgn(λ) . (2.37)

here sgn is the sign function which is defined as

sgn(λ) = 1 for λ > 0

sgn(λ) = −1 for λ < 0 (2.38)

sgn(λ) = regular dependent for λ = 0

The case of a zero eigenvalue can be treated by slightly deforming the boundary operator

but the answer depends on the direction in which one approaches zero. This sign ambiguity

is also present in the original APS formula in equation (2.36).

This infinite sum can be regularized in many ways. A natural regularization that arises

from the path integral derivation is (3.15)

η̂(β) :=
∑
λ 6=0

sgn(λ) erfc
(
|λ|
√
β
)
. (2.39)

Another regularization used in the original APS paper [1] is the ζ-function regularization

ηAPS(s) =
∑
λ 6=0

λ

|λ|s+1
=
∑
λ 6=0

sgn(λ)

|λ|s
. (2.40)

The two regularization schemes are related by a Mellin transform

ηAPS(s) =
s
√
π

Γ( s+1
2 )

∫ ∞
0

dββ
s
2
−1η̂(β) . (2.41)

One can prove [50] that ηAPS(s) is analytic near s = 0, so the η-invariant is given by

η = lim
s→0

ηAPS(s) . (2.42)

It is expected that the answer is independent of the regularization up to local counter-terms

that are implicit in the definition of a path integral.
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The factor of half in front of η in (2.36) has the following consequence. As one varies the

metric on N , the eigenvalues of B can pass through a zero and η would change by ±2. The

index then changes by ∓1 as expected for an integer. It also shows that neither the index

nor the η-invariant are strictly topological and can change under smooth deformations.

They are nevertheless semi-topological in the sense they change only if the asymptotic

data near the boundary is changed to alter the spectrum of B to cause level crossing.

2.3 Elliptic genera and Jacobi forms

If the target spaceM is Kähler, then the worldsheet action in (2.2) has (2, 2) supersymme-

try. We assume that the theory is Weyl-invariant. The nonlinear sigma model then defines

a (2, 2) superconformal field theory with left-moving and right-moving super Virasoro al-

gebras. The elliptic genus of an SCFT is defined by

χ(τ, z) = Tr
H

(−1)J̃+Je2πiτ(L0− c
24)e−2πiτ̄(L̃0− c̃

24)e2πizJ . (2.43)

where L0 and L̃0 are the left and right-moving Virasoro generators respectively, c and c̃

are the central charges, and J and J̃ are the R-symmetry generators. In our normalization

H = L0 + L̃0− (c+c̃)
24 generates time translations on the cylindrical worldsheet, P = L0− L̃0

generates the space translations, and J̃ can be identified with the right-moving fermion

number. Since J commutes with the right-moving fermion number J̃ , the elliptic genus

can be thought of as a right-moving Witten index. Writing τ = τ1 + iτ2, one can identity

β = 2πτ2 and think of 2πτ1 and 2πz as the chemical potentials for the operators P and

J respectively. In the path integral representation, the presence of additional insertions

has the effect of twisting the boundary conditions along the time direction for the fields

charged under P and J .

For a compact SCFT with central charge c, the elliptic genus is a weak Jacobi form

of weight w = 0 and index m = c/6. Recall that a Jacobi form4 φ(τ, z) of weight w and

index m is a holomorphic function of both τ and z which is ‘modular in τ ’ and ‘elliptic in

z’. Thus, under modular transformation it transforms as

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)w e

2πimcz2

cτ+d φ(τ, z) ;

(
a b

c d

)
∈ SL(2,Z) (2.44)

and under translations of z it transforms as

φ (τ, z + λτ + µ) = e−2πim(λ2τ+2λz)φ(τ, z) with λ, µ ∈ Z (2.45)

A Jacobi form can be expanded in terms of ϑ-functions i.e.

φ(τ, z) =
∑

`∈Z/2mZ

h`(τ)ϑm,`(τ, z) (2.46)

where h`(τ) is a modular form and ϑm,l(τ, z) is the index m theta function

ϑm,`(τ, z) :=
∑
n∈Z

q(`+2mn)2/4my`+2mn (q := e2πiτ , y := e2πiz) . (2.47)

4Our convention differs from [2] where k was used for weight and m for index. We use w for the weight

here because in section 4.3 for the cigar coset, k corresponds to the level of the SL(2,R) WZW model.
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The modular invariance of the elliptic genus follows from its path integral representation.

The path integral is diffeomorphism invariant when regulated covariantly using a covariant

regulator such as a short proper time cutoff. It is also Weyl invariant for a conformal field

theory on the flat worldsheet.5 Consequently, it is invariant under the mapping class group

SL(2,Z) which is the group of global diffeomorphisms of the torus worldsheet modulo Weyl

transformations. Similarly, the elliptic transformation properties of the elliptic genus follow

from the spectral flow [51] of the left-moving superconformal field theory, and the theta

expansion can be understood [52] physically by bosonizing the U(1) R-symmetry current J .

For a compact SCFT, the spectrum of L̃0 is discrete and is paired by supersymmetry.

Hence, only the right-moving ground states contribute to the elliptic genus and the elliptic

genus is independent of τ̄ . This is essentially the same argument we used to show that the

Witten index is independent of β. The holomorphic elliptic genus thus counts right-moving

ground states with arbitrary left-moving oscillators.

For a non-compact target space, this argument fails. Therefore, the noncompact elliptic

genus need not be holomorphic. However, it is clear from its path integral representation

that it must nevertheless have modular and elliptic transformation properties of a Jacobi

form. As we explain in section 5 it is given instead by the completion of mock Jacobi form.

3 Witten index and the η-invariant

At zero temperature, only the ground states contribute to the Witten index. Thus, by

definition, the index I of the Dirac operator equals W (∞):

I := W (∞) . (3.1)

For a compact manifold M without boundary or with a boundary and APS boundary

conditions, the Dirac Hamiltonian is self-adjoint. It has a discrete spectrum and its eigen-

vectors span the Hilbert space H. As a result, the Witten index is independent of β and,

in particular,

W (∞) = W (0) . (3.2)

This equality is the essential step in the proofs of both the Atiyah-Singer and the Atiyah-

Patodi-Singer index theorems because one can then evaluate the Witten index in the much

simpler β → 0 limit using the high-temperature expansion of heat kernels.

For a compact target space without a boundary, the index of a supersymmetric quan-

tum mechanics (1.1) has a path integral representation, which is the starting point to

obtain a derivation of the AS theorem using localization. One would like to similarly apply

localization when M has a boundary, but there is an obvious difficulty. In general, path

integral formulation is much more subtle for a target space with a boundary because one

cannot use the canonical measure. For this reason, it is convenient to map the problem to

the computation of the Witten index Ŵ of a noncompact manifold M̂ without boundary.

It will also lead to a ‘spectral theoretic’ reformulation of the APS theorem.

5We consider nonchiral theories so there is no possibility of gravitational anomalies.
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3.1 Noncompact Witten index

The APS boundary conditions imply that for every solution of the Dirac Hamiltonian H

on M, there is a L2-normalizable solution of the extended Dirac Hamiltonian Ĥ on M̂.

One can, therefore, aim to express the Dirac index in terms of the noncompact Witten

index Ŵ (∞) at zero temperature, which admits a simpler path integral representation.

One immediate problem with this idea is that the spectrum of Ĥ is expected to contain

delta-function normalizable scattering states with a continuous spectrum in addition to the

L2-normalizable states. It is not clear then that the operator (−1)F e−βĤ is ‘trace class’

in the conventional sense because it may not have a convergent trace after including the

scattering states. Thus, even before trying to develop the path integral for Ŵ (β), it is

necessary to first give a proper definition for it in the canonical formulation that correctly

generalizes (1.1).

A natural formalism for this purpose is provided by ‘rigged Hilbert space’ or ‘Gel’fand

triplet’ which generalizes the Von Neumann formulation of quantum mechanics based on a

Hilbert space [53, 54]. An advantage of this formalism is that one can discuss the spectral

theory of operators with a continuous spectrum with ‘generalized’ eigenvectors which may

not be square-integrable. We review some of the relevant concepts as they apply in the

present context.

The first Von Neumann axiom states that every physical system is represented (up

to a phase) by a vector in a Hilbert space H with the unit norm. This is essential for

the Born interpretation because the total probability of outcomes of measurements for any

physical system must be unity. The second axiom requires that every physical observable

corresponds to a self-adjoint operator on H. This, however, is not always possible. A

simple counterexample is a free particle on a line R with the Hamiltonian H = p2. The

self-adjoint operator corresponding to H on H has no normalizable eigenvectors, so the

set of eigenvalues of this operator is empty. On the other hand, on physical grounds one

expects the free particle to have continuous energy with a sensible classical limit. To deal

with such more general physical situations, it is necessary to relax the second axiom and

represent physical observables by operators defined on a domain in a rigged Hilbert space

using a Gel’fand triplet rather than on a domain in a Hilbert space.

For a quantum particle on a real line, the Gel’fand triplet consists of a Hilbert space

H, the Schwartz space S, and the conjugate Schwartz space S×. The Hilbert space H is

isomorphic to the space L2(dx,R) of square-integrable wave functions on R:

H = {|ψ〉} with 〈ψ|ψ〉 :=

∫
dxψ∗(x)ψ(x) <∞ ; (3.3)

The Schwartz space is the space of infinitely differentiable ‘test functions’ with exponential

fall off. The conjugate Schwartz space S× is the set {|φ〉} such that

|φ〉 ∈ S× if 〈ψ|φ〉 <∞ ∀ |ψ〉 ∈ S . (3.4)

The Gel’fand triplet provides a rigorous way to define the bra and ket formulation of

Dirac and offers a way to discuss the spectral theory of operators with continuous eigen-

values [53, 54]. The notion of the Schwartz space is motivated by the fact that it is left
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invariant by unbounded operators like the position operator x. The conjugate Schwartz

space S× is where objects like the Dirac delta distribution δ(x) and plane waves eipx reside.

The elements of S× need not have finite inner product with themselves and hence may not

be square-integrable, but they have finite overlap with ‘test functions’ belonging to S.

Consider now a self-adjoint Hamiltonian H defined on a domain S ⊂ H. One can

define the conjugate Hamiltonian H× acting on |φ〉 ∈ S× by the equation

〈ψ|H×|φ〉 = 〈Hψ|φ〉 ∀ |ψ〉 ∈ S (3.5)

With this definition, the eigenvalue equation for H×

H×|E〉 = E|E〉 , |E〉 ∈ S× (3.6)

should be interpreted in terms of the overlap with test functions:

〈ψ|H×|E〉 = E〈ψ|E〉 ∀ |ψ〉 ∈ S . (3.7)

A ‘generalized eigenvector’ |E〉 may lie outside the Hilbert space H and may not be nor-

malizable. This means that it cannot be prepared in any experimental setup. Nevertheless,

the set {|E〉} provides a complete basis in the sense that any state in H can be expanded

in terms of {|E〉}. This is the content of the Gel’fand-Maurin spectral theorem [53, 55].

For the example of a free particle discussed earlier, the operator H× has the same

formal expression as H as a differential operator:

H× = − d2

dx2
. (3.8)

However, the domain D(H×) is much larger than the domain D(H). This extension of

the Hamiltonian is diagonalizable in the larger space S× with generalized eigenfunctions

{eipx} and eigenvalues {p2}. In any lab with a finite extent, one can never experimentally

realize an exact plane wave but only a wave packet that is sufficiently close to the energy

eigenfunction. Nevertheless, the plane waves form a complete basis in the sense that

a square-integrable function in H can be Fourier-expanded in terms of plane waves. We

denote the total space of generalized eigenvectors of H× by Sp which may contain both the

square-integrable bound states with discrete energies as well as nonnormalizable scattering

states with continuous energies.

Normally, one can gloss over these niceties essentially because of the locality. A particle

on an infinite line is an extreme idealization in a universe which may be finite. One expects

that measurements of local quantities such as scattering cross-sections in a particle physics

experiment in a lab should not be affected by boundary conditions imposed at the end

of the universe. One should arrive at the same physical conclusions whether one uses

periodic or Dirichlet boundary conditions in a large box, as one indeed finds in textbook

computations.

In the present situation, we are interested in global properties that depend sensitively

on the boundary conditions. For example, one cannot impose Dirichlet boundary condition

while preserving supersymmetry. The Gel’fand triplet provides an appropriate formulation
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so that one can discuss the scattering states without the need to put any boundary con-

ditions to ‘compactify’ space. With these preliminaries, one can define the noncompact

Witten index by

Ŵ (β) := Tr
SP

[
(−1)F e−βĤ

]
(3.9)

On the face of it, this definition is still not completely satisfactory. Even though the

spectrum Sp over which one traces now has a precise meaning, it is not clear that the

trace thus defined actually converges. For example, for a free particle, the heat kernel is

well-defined6

K(x, y;β) = 〈x|e−βH |y〉 =
1√
4πβ

exp

[
−(x− y)2

4β

]
. (3.10)

However, if we try to define a trace then there is the usual ‘volume’ divergence:∫
dx〈x|e−βH |x〉 =

1√
4πβ

∫
dx→∞ . (3.11)

One might worry that the noncompact Witten index is also similarly divergent. Fortu-

nately, the Witten index is a supertrace or equivalently a trace over the difference between

two heat kernels corresponding to the bosonic and fermionic Hamiltonians H+ and H−
respectively. If there is a gap between the ground states and the scattering states, then

the two Hamiltonians differ from each other only over a region with compact support in

R. As a result, the volume divergent contribution cancels in the supertrace. In the path

integral representation, this corresponds to the fact that the supertrace involves integrals

over the ‘fermionic zero modes’ in addition to the ‘bosonic zero-mode’ x. Under suitable

conditions, the fermionic Berezin integration localizes the bosonic integral to a compact

region on the real line to yield a finite answer. In particular, the path integral receives

vanishing contribution from the asymptotic infinity in field space. We elaborate on this

point in section 4.1 and use it for applying localization using (4.19).

Within this framework, one can now express the index of the Dirac operator on the

original manifoldM with a boundary in terms of a noncompact Witten index Ŵ (β) on M̂.

Assuming that the continuum states in Sp are separated from the ground states by a gap,

at zero temperature only the L2-normalizable ground states contribute to Ŵ (∞). Since

these states are in one-one correspondence with the ground states in the original Hilbert

space H on M with APS boundary conditions, we conclude

I = Ŵ (∞) . (3.12)

In the limit of β → 0, one can evaluate the Witten index by using the short proper time

expansion of the heat kernels to obtain a local expression. It must correspond to the

Atiyah-Singer term but now evaluated over M̂:

Ŵ (0) =

∫
M̂
α =

∫
M
α (3.13)

6In what follows, we will use H instead of H× when there is no ambiguity to unclutter the notation.
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M

Figure 3. The doubled compact manifold M without boundary.

where the second equality follows from the fact that the topological index density vanishes

on the half-cylinder N × R+. We can therefore write

I = Ŵ (0) + (Ŵ (∞)− Ŵ (0)) . (3.14)

The term in the parantheses is no longer zero and is in fact related to the η-invariant as

will show in section 3.2. It is convenient to consider a regularized quantity

η̂(β) := 2(Ŵ (β)− Ŵ (∞)) (3.15)

which in the limit β → 0 reduces to the bracket in (3.14). This provides a natural regular-

ization described earlier in (2.39). With these identifications, equation (3.14) can be viewed

as the statement of the APS theorem; the discussion above together with section 3.2 can be

viewed as a rederivation of the APS result. The noncompact Witten index is in general β-

dependent because at finite temperature the scattering states also contribute. The bosonic

and fermionic density of states in this continuum may not be exactly equal and need not

cancel precisely. The η-invariant of the boundary manifold N thus measures the failure of

the Witten index of the noncompact manifold Ŵ to be temperature independent.7

3.2 Scattering theory and the APS theorem

There is a simpler way to compute Ŵ (0) that makes this connection with the bulk Atiyah-

Singer term (3.13) more manifest and easier to relate it to a path integral. One can simply

double the manifold toM by gluing its copy as in figure 3 as was suggested in [1]. SinceM
is a manifold without a boundary, there is no contribution from the η-invariant. Moreover,

by the reasoning before (3.13) the β → 0 expansion is local and gives the Atiyah-Singer

index density. In summary,

Ŵ (0) =
1

2
W (0) =

∫
M
α (3.16)

To prove the APS theorem, we would like to show that the term in the parentheses

in (3.14) equals the η-invariant. We note that the spectrum Sp(H) of the Hamiltonian

on M̂ is a direct sum of the discrete spectrum of bound states Spb(H) and the contin-

uum spectrum of scattering states Sps(H). Therefore the Witten index admits a spectral

decomposition

Ŵ (β) = Tr
SPb

[
(−1)F e−βĤ

]
+ Tr

SPs

[
(−1)F e−βĤ

]
(3.17)

7This was noticed earlier in [56] in a special example.
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Since the continuum of states is separated from the zero energy states, it is clear that the

first term can be identified with the index I and hence with Ŵ (∞). To prove (3.15), we

thus need to show that the contribution from the continuum equals the η-invariant:

2Tr
SPs

[
(−1)F e−βĤ

]
= η̂(β) . (3.18)

We show this by relating the supertrace to the difference in the density of bosonic and

fermionic scattering states8 on M̂ which in turn can be related to the difference in phase

shifts.

Asymptotically, the metric on M̂ has the form (2.24) with 0 < u < ∞. We can use

separation of variables to first diagonalize the operator B on N with eigenvalues {λ}. The

Dirac operator on manifold M̂ can be expressed in terms of eigenvalues λ of the boundary

operator B as in (2.32). Here, we assume that the boundary operator has no zero eigenvalue.

The asymptotic form of the scattering wave functions is then

ψλk+ (u) ∼ cλ+

[
eiku + eiδ

λ
+(k)−iku

]
ψλk− (u) ∼ cλ−

[
eiku + eiδ

λ
−(k)−iku

]
(3.19)

where δλ±(k) are the phase shifts. The trace (3.18) over scattering states can be expressed as

2
∑
λ

∫
dk
[
ρλ+(k)− ρλ−(k)

]
e−βE(k) (3.20)

where ρλ+(k) and ρλ−(k) are the density of bosonic and fermionic states of the theory for

the λ subsector. Using a standard result (C.13) from scattering theory, which we review

in section C, we can relate the difference in the density of states to the difference in phase

shifts

ρλ+(k)− ρλ−(k) =
1

π

d

dk

[
δλ+(k)− δλ−(k)

]
. (3.21)

In general the individual phase shifts and density of states are nontrivial functions of k

that depend on the details of the manifold M̂. After all, they contain all the information

about the S-matrix. The exact form of the scattering states similarly has a complicated

functional dependence on u. Generically, it would be impossible to compute any of them

exactly. Remarkably, the difference between the phase shifts is determined entirely by

the asymptotic data as a consequence of supersymmetry relation (2.32) in the asymptotic

region. By substituting the asymptotic wave-functions (3.19) into (2.32) we obtain

cλ+
√
E
[
eiku + ei2δ

λ
+ e−iku

]
= cλ−

[
(−ik + λ)eiku + ei2δ

λ
− (ik + λ)e−iku

]
(3.22)

with E = k2 + λ2. This implies

cλ+
cλ−

=
(−ik + λ)√

E
,

ei2δ
λ
+

ei2δ
λ
−

= −(ik + λ)

(ik − λ)
(3.23)

8Index theory on non-compact manifold and its relation to scattering theory has been considered earlier

to compute threshold bound states [57–60] without making the connection to APS index theorem and η

invariant. The relation between η invariant and scattering theory was observed earlier in special cases

in [61–63].
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and therefore,

2δλ+(k)− 2δλ−(k) = −i ln

(
ik + λ

ik − λ

)
+ π (3.24)

in each eigensubspace with eigenvalue λ.

Now we use the formula (3.24) in (C.13) to get

ρλ+(k)− ρλ−(k) = − λ

π(k2 + λ2)
(3.25)

After summing over all λ we obtain

2Tr
SPs

[
(−1)F e−βĤ

]
=
∑
λ

∫ ∞
0

dk
[
ρλ+(k)− ρλ−(k)

]
e−β(k2+λ2)

=
∑
λ

sgn(λ) erfc

(
|λ|
√
β

2

)
(3.26)

This is precisely the regulated expression (3.15) for the η-invariant of the boundary oper-

ator. We have thus proven

I = Ŵ (0) + (Ŵ (∞)− Ŵ (0)) =

∫
M

α− 1

2
η (3.27)

which is the Atiyah-Patodi-Singer index theorem.

4 The η-invariant and path integrals

Given the definition of the noncompact Witten index in section 3.1 one can use its path-

integral representation and use localization methods to compute it. In section 4.3 we show

how this works for the two-dimensional surface of a finite cigar with a boundary by relating

its index to the Witten index of the infinite cigar. In this simple example, one can explicitly

evaluate the Witten index using localization and compare with the η-invariant obtained

from operator methods.

Can one find a way to formulate a path integral that directly computes the η-invariant

without the bulk Atiyah-Singer piece? This can be achieved as follows. As we have observed

in section 3.2, given a manifold with boundary M such that metric is of the product form

near the boundary we can trivially extend the manifold to a non-compact manifold M̂.

In M̂, the η-invariant gets contribution only from the scattering states of M̂. Now the

scattering states of M̂ are the same as the scattering states of R+×N with APS boundary

condition at the origin. We use this physical picture to find a path integral representation

to compute η invariant. First, we will explain the space-time picture and then we will map

it to a world-line computation.

The Dirac operator on the half line is given by /̃D = γu(∂u + γ̄B). We can diago-

nalize the boundary operator as in (2.30), (2.31). Effectively, for each eigenvalue λ of the

boundary operator B, we have a supersymmetric quantum mechanics on a half line. The

APS boundary condition is essentially Dirichlet boundary condition for one chirality and
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M̃

Figure 4. The doubled noncompact cylinder M̃ = N × R.

Robin boundary condition for the other chirality. To obtain a path integral representation

with these boundary conditions, it is more convenient to ‘double’ the manifold R+ × N
to obtain a noncompact cylinder M̃ := R × N (see figure 4) without any boundary. We

extend it in a manner that is consistent with the APS boundary conditions. The manifold

M̃ := R×N has parity symmetry

P : u→ −u , ψ± → −ψ± (4.1)

that is consistent with supersymmetry and leaves the supercharge invariant. The path

integral on the original manifold R+ ×N with APS boundary conditions can be obtained

by considering the path integral on the manifold M̃ := R×N projected onto P invariant

states. This is effected by the insertion of the following operator

1

2

[
1 + P

]
(4.2)

where P is the parity operator. Invariance under the reflection of u keeps only parity-even

wave functions in the trace for one chirality, effectively imposing Dirichlet boundary con-

dition on the half line. Supersymmetry ensures that the other chirality satisfies the Robin

boundary condition as required by the APS boundary conditions. See, for example, [10, 64]

for a more detailed discussion.

Since we are interested in the operator /̃D = γu(∂u + γ̄B) on the half-line, the extension

of this operator should transform as an eigen-operator under parity. Given u transform as

in (4.1) we are left with the choice

B → −B. (4.3)

This ensures that Dirac operator as a whole is invariant. The extended Dirac operator on

the doubled cylinder thus takes the form

/̃D = γu(∂u + ε(u)γ̄B) (4.4)

instead of (2.25) where ε(u) is a step function with a discontinuity at u = 0. One can

also take ε(u) to be a smooth smearing function which interpolates between −1 to 1 as u

varies from −∞ to +∞ to obtain a smooth Dirac operator. One example of such function

is tanh(u). This does not change the conclusions because the η-invariant does not change

under deformations that do not change the asymptotics.

Now we return to the world-line picture. For each eigenvalue of B we can map this

problem to a world-line path integral problem. The effect of the eigenvalue of the boundary
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operator can be incorporated by adding a super-potential h. It reduces the problem to

computing Witten index W̃ (β) in the presence of a super-potential with a target space

being half-line appropriately extended to the full line. The Witten index can be computed

using path integral. The corresponding supersymmetric quantum mechanics will have a

superpotential h(u) = ε(u)λ determined by the eigenvalue λ. With this construction, we

conclude

η̂(β) = η̃(β) = 2(W̃ (β)− W̃ (∞)) (4.5)

It is straightforward to write a path integral representation for η̃(β) on the non-compact

cylinder M̃ which is much simpler than the path integral on M̂. In section 4.2, we compute

it using localization and relate it to Callias index [14, 15].

4.1 Supersymmetric worldpoint integral

Some of the essential points about a noncompact path integral can be illustrated by a

‘worldpoint’ path-integral where the base space Σ is a point and the target space M is a

the real line −∞ < u <∞. We discuss this example first before proceeding to localization.

The supersymmetric worldpoint action is given by

S(u, F, ψ−, ψ+) =
1

2
F 2 + iF h′(u) + ih′′(u)ψ−ψ+ (4.6)

where

h′(u) :=
dh

du
, h′′(u) =

d2h

du2
. (4.7)

The action can be obtained from the euclidean continuation9 of (2.6) by setting

∂

∂τ
=

∂

∂σ
= 0 , g11(u) = 1 . (4.8)

The path integral is now just an ordinary superintegral with flat measure

W (β) = −i
∫ ∞
−∞

du

∫ ∞
−∞

dF

∫
dψ− dψ+ exp [−βS(U)] . (4.9)

The normalization factor −i can be understood as follows. For 2n real fermions we have

γ̄ = inγ1 . . . γ2n = (−2i)nψ1
0 . . . ψ

2n
0 .

Moreover, Tr γ̄2 = 2n which is the dimension of the spinor representation

Tr γ̄2 = N

∫
(−2i)nψ1

0 . . . ψ
2n
0 dψ1

0 . . . dψ
2n
0

which implies N = (−i)n. We have two real fermions, hence n = 1 and N = −i.
A particularly interesting special case is

h′(u) = λ tanh(au) , (4.10)

9Note that in the Euclidean continuation F → iF . So, the limit ∂
∂τ

= 0 of the Euclidean and the

Lorentzian actions gives different actions for the supersymmetric integral.
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for real λ. Integrating out the fermions and the auxiliary field F gives

W (β) = −
√

β

2π

∫ ∞
−∞

dxh′′(u) exp

[
−β

2
(h′(u))2

]
(4.11)

One can change variables

y =

√
β

2
h′(u) , dy =

√
β

2
h′′(u)dx (4.12)

As u goes from −∞ to∞, y(u) is monotonically increasing or decreasing depending on if λ

is positive or negative; the inverse function u(y) is single-valued, and the integral reduces to

W (β) = − 1√
π

∫ √
β
2
λ

−
√
β
2
λ
dy e−y

2

= −sgn(λ) erf

(√
β

2
|λ|

)
(4.13)

The worldpoint integral illustrates several important points.

1. Without the fermionic integrations, the integral has a volume divergence because

h′(u) is bounded above for large |u|. Inclusion of fermions effectively limits the

integrand to the region close to the origin where h′(u) varies, and makes the integral

finite.

2. In the limit λ→ 0, the action reduces to that of a free superparticle. In this case, the

integral is of the form ∞× 0 and is ill-defined. Regularizing with λ yields different

answers depending on whether we approach 0 from positive or negative side. This is

related to the jump in the η-invariant when an eigenvalue of the boundary operator

B crosses a zero in a spectral flow as explained before figure 5.

3. The answer depends only the asymptotic behaviour of h′(u) at±∞ and is independent

of any deformations that do not change the asymptotics. In particular, one would

obtain the same result in the limit a→∞ in (4.10), when h′(u) can be expressed in

terms of the Heaviside step function:

h′(u) = λ
[
θ(u)− θ(−u)

]
. (4.14)

4. The error function (4.13) which appears naturally in this integral makes its appear-

ance in the proof of the APS theorem [1, 50] and also in the definition of the com-

pletion (5.13) of a mock modular form and, in particular, in (5.6). This is not a

coincidence. The two turn out to be related through a path integral which localizes

precisely to the ordinary superintegral considered above. For this reason, this exam-

ple is particularly important for our discussions of the η-invariant and its connection

to mock modularity.
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The worldpoint integral does not have an operator interpretation in terms of a trace over

a Hilbert space. To see the connection with the canonical formalism, we consider in sec-

tion 4.2 the worldline version corresponding to the path integral for a supersymmetric

quantum mechanics, and relate it to Callias-Seeley-Bott index theorem [14, 15]. After local-

ization, the worldline path integral will reduce to the worldpoint integral considered above.

4.2 Callias index theorem and the η-invariant

In this section, we compute the η invariant by computing path integral for supersymmetric

quantum mechanics with target space M̃. As discussed in section 3.2 we can use separation

of variables to first diagonalize the operator B on N with eigenvalues {λ} but now for the

entire manifold M̃. For each eigenvalue λ, the problem reduces to a supersymmetric

quantum mechanics with a one-dimensional target space and a superpotential h(u). The

path integral for this problem can be readily written down and has been considered earlier

in [65]. The action for SQM can be obtained as a specialization of (2.2) with target space

as R by setting
∂

∂σ
= 0 . (4.15)

The Euclidean action for the components of the superfield U is

S[U, β] =

∫ β

0
dτ

[
1

2
u̇2 +

1

2
ψ−ψ̇− +

1

2
ψ+ψ̇+ +

1

2
F 2 + ih′(u)F + ih′′(u)ψ−ψ+

]
(4.16)

with h′(u) = λ tanhu (where λ 6= 0). To compute the η-invariant we need to have to

evaluate the projected Witten index (4.2)

W̃ (β) =
1

2
Tr
[
(−1)F (1 + P (−1)F )

]
=

1

2
Tr
[
(−1)F

]
+

1

2
Tr [P ]

=
1

2
W̃1(β) +

1

2
W̃2(β) (4.17)

The path integral for the first term is the same as before with periodic boundary conditions

for bosons and fermions. In the path integral for the second term both the bosons and the

fermions have anti-periodic because of the insertion of P (−1)F .

Given a path integral representation for the Witten index (2.21), one can apply local-

ization methods by deforming it by a Q-exact term:

W̃ (β, ξ) =

∫
[dX] e−S[X,β]−ξQV [X] . (4.18)

The integral is over the supermanifold {X(σ)} of maps from Σ to the supermanifold sM
with a Q-invariant supersymmetric measure. The functional V is chosen such that QV ≥ 0

(so that adding QV to the action does not blow up the path integral) and Q2V = 0. This

implies

d

dξ
W̃ (β, ξ) =

∫
[dX]QV [X] e−S[X,β]−ξQV [X] =

∫
[dX]Q

(
V [X] e−S[X]−ξQV [X]

)
(4.19)

The supercharge Q is a fermionic vector field on this supermanifold so one can use Stokes

theorem to show that the above integral vanishes. Usually one use the compactness of the
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manifold M to argue that there are no boundary terms. In the noncompact case, there

can be a contribution from the asymptotics in the field space but it can still vanish by the

arguments outlined in our discussion of the noncompact Witten index. Hence W (β, ξ) is

independent of ξ. This implies that one can perform the integral W (β, ξ) for any value

of ξ and in particular for ξ → ∞. In this limit, the functional integral localizes onto the

critical points of the functional QV [X]. A canonical choice of V is

V =
∑
i

(Qψi)†ψi . (4.20)

The critical points of this function are simply the Q-invariant supersymmetric configura-

tions {X0(µ)} satisfying Qψ = 0 and (Qψ)† = 0. The critical manifold is parametrized

the collective coordinates {µ}. The path integral localizes to an integral on the critical

manifold

W̃ (β) =

∫
X

[dµ] e−S[X0(µ),β] 1

SDet(µ)
(4.21)

where SDet(µ) is the superdeterminant of the quadratic fluctuation operator coming from

QV action expanded around X0(µ). See [66] for a recent review.

For the problem at hand, we choose

V = ψ+(Q+ψ+) = iψ+u̇

Q+V = u̇2 + ψ+ψ̇+

where Q+ is a real supercharge. The path integral localizes to constant modes of u and

ψ+. Fluctuations around the constant modes are given by

u = u0 +
1√
ξ
ũ ψ+ = ψ+0 +

1√
ξ
η (4.22)

with ũ and η satisfying periodic boundary conditions. So we have,

W̃1[β] = −i
∫
du0[dF ][dũ][dψ−]dψ+0[dη] exp

(
−S[X0, β]− ξ(Q+V )[2]

)
Expanding the ψ− in modes and after evaluating the non-zero mode integrals we obtain

W̃1(β) = −i
∫

du0√
2πβ

dψ−0 dψ+0 exp

(
−β

2
(h′(u0))2 − iβ(h′′(u0)ψ−0ψ+0

)
(4.23)

The factor of 1√
2πβ

comes from the determinants computed in section D. The integral (4.23)

is identical to the worldpoint superintegral (4.11). Hence we obtain

W̃1(β) = −sgn(λ) erf

(
|λ|
√
β

2

)
(4.24)

It remains to compute the other piece due to insertion of P (−1)F . In this case, the path-

integral localizes to u = 0 = ψ+. Small fluctuations around the saddle point is given by

u = 0 +
1√
ξ
ū ψ+ = 0 +

1√
ξ
η̄ (4.25)
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Here ū and η̄ satisfy anti -periodic boundary condition.

W̃2[β] = −i
∫

[dF ][dū][dψ−][dη̄] exp
(
−S[X0, β]− ξ(Q+V )[2]

)
= 1 (4.26)

So the full answer is given by (4.17)

W̃ (β) = −1

2
sgn(λ) erf

(
|λ|
√
β

2

)
+

1

2
(4.27)

We have performed the computation for a single eigenvalue λ. We get (4.27) for each

eigenvalue. From (4.5) we get the η invariant to be

η̃(β) =
∑
λ

sgn(λ)

[
1− erf

(
|λ|
√
β

2

)]
=
∑
λ

sgn(λ)erfc

(
|λ|
√
β

2

)
(4.28)

which reproduces the expression (3.26) for η̂(β) obtained from scattering theory. Hence

η̃(β) = η̂(β) (4.29)

In conclusion, the Witten index for the worldline quantum mechanics is temperature-

dependent as a consequence of the noncompactness of the target manifold.

4.3 The η-invariant of a finite cigar

It is instructive to apply the general considerations in earlier sections to an explicit com-

putation for a simple and illustrative example where M is a two dimensional finite cigar

with metric

ds2 = k (dr2 + tanh2 r dθ2) (4.30)

where θ is a periodic with period 2π and 0 ≤ r ≤ rc. The manifold has a boundary at

r = rc with a product form N × I where N is the circle parametrized by θ with radius
√
k.

The non-zero Christoffel symbols are

Γrθθ = −1

2
k ∂r(tanh2 r) Γθθr = Γθrθ =

1

2
k ∂r(tanh2 r) (4.31)

The orthonormal forms and the nonzero vielbeins are

e1 =
√
kdr e2 =

√
k tanh(r)dθ

e1
r =
√
k e2

θ =
√
k tanh(r) (4.32)

The cigar has a Killing isometry under translations of θ with the Killing vector

Ki = (0, 1) Ki = gijK
j = (0, k tanh2 r) . (4.33)

The N = (0, 1) supersymmetric action can be obtained from (2.5) by setting

F i = 0 ψi− = 0 ψ+ = ψi . (4.34)
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The Lorentzian action is given by:

I =
1

4π

∫
d2σ gij

(
∂τX

i∂τX
j − ∂σXi∂σX

j + iψiDτ−σψ
j
)

(4.35)

We dimensionally reduce along the worldsheet σ direction to convert the action on the

2-torus to a collection of actions on a circle.

Scherk-Schwarz reduction [67] along the sigma direction using the Killing vector gives

Xi(σ + 2π) = Xi(σ) + 2πwKi (4.36)

where w is the winding number. We have

∂σX
i = wKi and ∂σψ

i = −w∂jKiψj (4.37)

where the derivative of ψi is deduced from the transformation of the superfield Xi =

xi + θ̄ψi + θ̄θF i under the Killing symmetry. Using (4.37) in action (4.35) and integrating

over the σ direction we get the Euclidean action after a Wick rotation:

S =
1

2

∫
dτ
(
Gij∂τX

i∂τX
j +Gijw

2KiKj +Gijψ
iDτψ

j − iwψiKijψ
j
)

(4.38)

Plugging (4.30) in the action (4.38) we get:

S[β; k,w] =

∫ β

0
dτ

1

2

(
kṙ2 + k tanh2 rθ̇2 + w2k tanh2 r + kψrψ̇r − kψr∂r(tanh2 r)θ̇ψθ

+k tanh2 rψθψ̇θ − iwψθ∂r(k tanh2 r)ψr
)

(4.39)

Our goal is to evaluate the path integral on the infinite cigar using localization and

then connect it to the η-invariant for a finite cigar. To deform the action we choose

V = Grrψ
rδψr = kψrṙ (4.40)

This localizes the integral to constant modes of r and ψr. We have:

Ŵ (β) = −i
∫
dr0dψ

r
0[dθ][dψθ] exp

[
−
∫ β

0
dτL(r0, ψ

r
0, θ, ψ

θ)− ξ
∫ β

0
QV [2]

]
(4.41)

To compute the quadratic fluctuations QV [2] we set

r = r0 +
1√
ξ
χ ψr = ψr0 +

1√
ξ
ηr (4.42)

so that the quadratic fluctuations are given by

ξ

∫ β

0
dτ QV [2] =

∫ β

0
dτ(kχ̇2 + kηrη̇r) . (4.43)

The transformation (4.42) has unit Jacobian. We can now mode expand θ and ψθ and

we have

θ(τ) =
2πpτ

β
+
∑
m

θme
2πimτ/β ψθ(τ) = ψθ0 +

∑
m

ψθme
2πimτ/β (4.44)
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After integrating out the fluctuations and non-zero modes of θ and ψθ, we have

Ŵ (β; k,w) =− 2πi

2πβ

∫
dr0dθ0dψ

r
0dψ

θ
0

∑
p

exp

[
−
∫ β

0
dτ S(r0, ψ

r
0, ψ

θ
0)

]

=− i
β

∑
p

∫ ∞
0
dr0

1

2
k∂r(tanh2 r)

∣∣∣
r0

(
−iw +

2πp

β

)
e
− 1

2
βk tanh2(r0)

((
2πp
β

)2
+w2

)
(4.45)

The factor of 1
2πβ from the determinants as before. Substituting y = 1

2βk tanh2 r0, we

obtain

Ŵ (β; k,w) = − i
β

∑
p 6=0

∫ 1
2
βk

0
[dy]

(
−iw +

2πp

β

)
exp

[
−y

((
2πp

β

)2

+ w2

)]

= − i
β

∑
p 6=0

1

(iw + 2πp
β )

[
e
− 1

2
βk
(

( 2πp
β

)2+w2
)
− 1

]
(4.46)

After Poisson resummation with respect to p (see equation (B.7)) we obtain,

Ŵ (β) =
∑
n

e−βnw
[
− 1

2
sgn

(n
k
− w

)
erfc

(√
kβ

2

∣∣∣n
k
− w

∣∣∣)+ sgn(βn) Θ
[
w
(n
k
− w

)]
+sgn(wβ)Θ(nβ sgn(wβ))

]
(4.47)

where Θ is the Heaviside step function.10 Now we can take the limit11 β → 0.

Ŵ (0) =
∑
n

1

2
sgn

(
w − n

k

)
(4.48)

It is easy to check that Ŵ (∞) vanishes. Using (3.15), we obtain

η(0) = 2(Ŵ (0)− Ŵ (∞)) =
∑
n

sgn
(
w − n

k

)
(4.49)

It is instructive to compare this result with a target space computation of the spectral

asymmetry of the boundary operator B on a boundary located at r = rc. Using the inverse

vielbeins from (4.32), the Dirac operator near the boundary takes the form

i /D = γr(i∂r − wKr) + γθ(i∂θ − wKθ)

= iγr
[
∂r −

1

tanh r

(
−1 0

0 1

)
(i∂θ − w k tanh2 r)

]
(4.50)

For large rc, the boundary manifold is a circle S1. Identifying r with u and comparing

with (2.25) we find the boundary operator

B = −(i∂θ − w k) . (4.51)

10The e−βnw is due to the presence of the non-zero central charge of cigar supersymmetric quantum

mechanics.
11The last two terms vanish in this limit which is easier to see before Poisson resummation.
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Here assume that wk is not an integer in order to avoid zero eigenvalue of the boundary

operator. The η-invariant of this operator can be computed readily. Since θ direction is

periodic, the eigenfunctions are given by the set

{e−inθ|n ∈ Z} (4.52)

with eignevalues

{wk − n|n ∈ Z} (4.53)

The radius of the cigar is
√
k. As long as k is not an integer, the boundary operator B has

no zero modes. The η invariant is then given by:

η =
∑
n∈Z

sgn(w k − n) =
∑
n∈Z

sgn
(
w − n

k

)
(4.54)

where in the last step we have used the fact that k is positive. This matches with the η

invariant computed from the path integral (4.49).

In the infinite sum, one can absorb the integer part bwkc of wk into n, and hence the

η invariant is expected to depend only on the fractional part 〈wk〉 of wk defined by

〈wk〉 = wk − bwkc

where bwkc is the greatest integer less that wk. The regularized version of the η-invariant is

η(s) = −
∞∑
n=1

1

(n− 〈wk〉)s
+
∞∑
n=0

1

(n+ 〈wk〉)s
. (4.55)

The η-invariant can now be expressed in terms of the modified ζ function

ζ(s, q) =

∞∑
n=0

1

(n+ q)s
, ζ(0, q) = −q +

1

2
(4.56)

to obtain

η(0) = −ζ(0, 1− 〈wk〉) + ζ(0, 〈wk〉) = 1− 2〈wk〉 (4.57)

Note that for k and w both integers, the η-invariant vanishes. As one varies k the η-

invariant changes and every time k crosses, an integer it jumps by −2. This is as expected

from level-crossing because precisely when k is an integer, the boundary operator has a

zero eigenvalue. There is an ambiguity in the APS theorem about sign of the contributions

from zero (see discussion below (2.38)). This behavior is plotted in figure 5 with η on the

y-axis and wk on the x-axis.

5 Mock modularity and the η-invariant

In this section, we take k to be a positive integer and consider a worldsheet path integral

for the superconformal field theory for an infinite cigar. The SCFT has a representation

as a coset conformal field theory12 of SL(2,R)/U(1) WZW model at level k. The elliptic

12For the noncompact SL(2,R) WZW model, the parameter k need not in general be an integer.
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wk

Figure 5. Spectral asymmetry.

genus for the ZN -orbifold of this theory was computed in [39, 68] using the path integral

for the coset theory

χ̂(τ, τ̄ |z) = e
2π
τ2

(ĉ|z|2− k+4
k
z22) k

N

∑
a,b∈ZN

∫
C

d2u

τ2

∣∣∣∣∣ϑ1(τ,−u+
(
1 + 2

k

)
z)

ϑ1

(
τ,−u+ 2

kz
) ∣∣∣∣∣

2

e
πk
τ2
|u+aτ+b

N |
2

(5.1)

where ϑ1(τ, z) is the odd Jacobi theta function

ϑ1(τ, z) = 2 sinπz q1/8
∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn) . (5.2)

We display the τ̄ dependence explicitly to emphasize the nonholomorphicity. The cigar

elliptic genus was a computed in [40] using free field calculation and modular properties

and was shown to be given by (in a notation slightly different from [40])

χ̂(τ, τ̄ |z) = − iϑ1(τ, z)

η(τ)3
Â1,k

(
τ, τ̄ ;

z

k

)
(5.3)

where η(τ) is the Dedekind eta function. The completion Â1,k of the Appel-Lerch sum A1,k

A1,k(τ, z) =
∑
t∈Z

qkt
2
y2kt

1− y qt
. (5.4)

is given by

Â1,k (τ, τ̄ ; z) = A1,k (τ, z) +
∑

Z/2mZ

g∗` (τ, τ̄)ϑk,l (τ, z) (5.5)

with

g∗` (τ, τ̄) = −1

2

∑
r=`+2kZ

sgn (r) erfc

(
|r|
√
πτ2

k

)
q−r

2/4k (5.6)

It was shown in [39] that (5.1) agrees with (5.3) for N = 1. The same result was obtained

in [42, 43] using localization of the generalized linear sigma model that flows to the cigar

geometry. The cigar elliptic genus was re-derived in [44, 64] using canonical methods.

Our aim is to re-re derive the elliptic genus of an infinite cigar using localization of

the path integral directly in the nonlinear sigma model connecting the computation to the
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earlier discussion of the η-invariant for the boundary of the finite cigar. For this purpose,

it is convenient to re-express [2] the Appell-Lerch sum in the range |q| < |y| < 1 as

A1,k(τ, z) =

(
−
∑
s≥0

∑
l≥0

∗
+
∑
s<0

∑
l<0

∗
)
qks

2+sly2ks+l (5.7)

where the asterisk in the sum indicates that the term ` = 0 is counted with multiplicity

1/2. This is the form in which we will encounter it in section 5.2.

5.1 Mock Jacobi forms

In section 2.3 we defined the elliptic genus of a compact SCFT. One can generalize the

definition to a noncompact SCFT by generalizing the trace to include the scattering states

as for the noncompact Witten index

χ̂(τ, τ̄ |z) = Tr
SP

(−1)J̃+Je2πiτL0e−2πiτ̄ L̃0e2πizJ . (5.8)

One can then write a path integral representation of the elliptic genus which can be a

starting point for using localization methods. Even in the noncompact case, the path

integral of the SCFT with a covariant regulator is manifestly diffeomorphism and Weyl

invariant. Hence it is expected to be modular. Moreover, the spectral flow symmetry for

the current J guarantees that it will be elliptic. Consequently, by the arguments outlined

in section (2.3), we expect the elliptic genus to transform as a Jacobi form of weight 0

and index m as in the compact case. However, unlike in the compact case, it need not be

independent of τ̄ . The elliptic genus for the cigar turns out to be a completion of a mixed

mock Jacobi form which is nonholomorphic but transforms like a Jacobi form.

We recall a few definitions about (mixed) mock Jacobi forms and their completions.13

A completion of a mixed mock Jacobi form admits the following theta expansion:

φ̂(τ, τ̄ |z) = f(τ, z)
∑

l∈Z/2mZ

ĥl(τ, τ̄)ϑk,l(τ |z) (5.9)

where f(τ, z) is a jacobi form of weight u and index α. The theta expansion can once

again be seen by bosonizing the current J as in the compact case. The theta coefficients

are the completion of a vector valued mock modular form of weight (w − u − 1
2). The

nonholomorphic sum ĥ`(τ, τ̄) := h`(τ) + g∗` (τ, τ̄) transforms like a vector-valued modular

form where g∗` (τ, τ̄) is a solution of the following differential equation.

(4πτ2)v
∂g∗` (τ, τ̄)

∂τ̄
= −2πi g`(τ) . (5.10)

where v = w − u − 1
2 . The holomorphic modular form gl(τ) of weight 2 − v. Using the

completion of ĥ`, (5.9) can be written as

φ̂(τ, τ̄ |z) = φ(τ, z) + f(τ, z)
∑

`∈Z/2mZ

g∗` (τ, τ̄)ϑm,`(τ |z) (5.11)

13Our definitions are a slight variant of the definitions in [2], better suited to the problem at hand.
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where

φ(τ, z) = f(τ, z)
∑

l∈Z/2mZ

hl(τ)ϑk,l(τ |z) (5.12)

Given that g`(τ) has the Fourier expansion g(τ) =
∑

n≥0 b`,n q
n, we fix the choice of g∗` by

setting

g∗` (τ, τ̄) = b̄0
(4πτ2)−v+1

v − 1
+
∑
n>0

nv−1 b̄`,n Γ(1− v, 4πnτ2) q−n , (5.13)

where τ2 = Im(τ) and Γ(1 − v, x) denotes the incomplete gamma function defined as

in (B.5), and where the first term must be replaced by −b̄0 log(4πτ2) if v = 1.

Note that the series in (5.13) converges despite the exponentially large factor q−n

because Γ(1− v, x) = O(x−ve−x) . If we assume either that v > 1 or that b0 = 0, then we

can define g∗` alternatively by the integral

g∗` (τ, τ̄) =

(
i

2π

)v−1 ∫ ∞
−τ̄

(z + τ)−v g(−z̄) dz . (5.14)

(The integral is independent of the path chosen because the integrand is holomorphic in

z.) Since φ(τ, z) is holomorphic, (5.10) implies that the completion of h is related to its

shadow by

(4πτ2)v
∂φ̂(τ, τ̄ |z)

∂τ̄
= −2πi f(τ, z)

∑
`∈Z/2mZ

gl(τ) ϑm,`(τ |z) . (5.15)

We will apply these definitions in the next section to the special case of our interest.

5.2 Elliptic genus of an infinite cigar

The computation of η-invariant for a finite cigar can be used to compute the full elliptic

genus for a N = (2, 2) SCFT on an infinite cigar.14 Notice that for the cigar case, the

R-symmetry generator J appearing in the definition of elliptic genus (5.8) commutes with

the right moving supercharge. Hence for the right movers the computation reduces to

computing the non-compact Witten index computed in section 4.3. The full elliptic genus

is given by

χ̂(τ, τ̄ |z) = Tr
H

(−1)J̃e−2πτ2(L0+L̃0)e2πiτ1(L0−L̃0)e2πizJ

= Ŵ (2πτ2) · Zoscill e
2πiτ1mw e2πizJ (5.17)

where Ŵ (2πτ2) is the Witten index with β = 2πτ2, Zoscill is the contribution coming from

left-moving oscillators and n, w are KK momenta and winding respectively along the cigar

θ direction. The contribution coming from the oscillators is given by

Zoscill =
∞∏
n=1

[
(1− qny)(1− qny−1)

(1− qn)2

]
= (2 sinπz)−1 θ1(τ, z)

η(τ)3
(5.18)

14The SL(2,R)/U(1) coset has is a non-trivial background ‘spacetime’ dilaton

Φd(r) = Φd0 − log cosh r (5.16)

which ensures that the theory is conformal even though the target space is not Ricci flat. Since the dilaton

couples to the worldsheet curvature, it plays no role if the worldsheet is a torus as in our case.
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We get a contribution of (2i sinπz) from the zero modes of left moving fermions since they

are charged under U(1)R. Now we can substitute the contribution. Using equation (4.47)

and the contribution from left movers, we conclude that the elliptic genus for the cigar is

given by

χ̂(τ, τ̄ |z) = −iϑ1(τ, z)

η3(τ)

∑
w

∑
n

[
1

2
sgn

(n
k
− w

)
erfc

(√
kπτ2

∣∣∣w − n

k

∣∣∣)
−sgn(βn) Θ

[
w
(n
k
− w

)] ]
q−(n−wk)2/4kq(n+wk)2/4kyJL (5.19)

To obtain the above expression we have dropped the last term in (4.47) using the following

reasoning. At the tip of the cigar an infinite number of winding modes become massless

leading to a divergence for this term. This is a consequence of the fact that winding

number is strictly not a conserved quantum number at r = 0 as we have assumed. We can

deal with it by regularizing the Witten index Ŵ (2πτ2) near r = 0 by putting an ε cutoff

in the r0 integral in (4.45) and then taking ε → 0 in the end. With this regularization,

the contribution from the last term in (4.47) vanishes and we get (somewhat surprisingly)

the correct answer by this slightly heuristic procedure. In any case, this affects only the

holomorphic piece and not the holomorphic anomaly which is our main interest. Since

the holomorphic anomaly is determined by the scattering states, winding-number in the

asymptotic region is a good quantum number for our purposes. As a result the holomorphic

anomaly is not affected by this regularization.

Note that on the cigar, the R-current is given by

J = i

√
1

k
∂θ − iψrψθ (5.20)

and as a consequence not only the fermions but bosons are also charged under R-symmetry.

With this normalization15 [40], the left-moving fermions have charge −1 and the bosons

have charge 1/k. In terms of the left moving momenta, the R-current is given by J =√
1/k pL. The left and right moving momentas are given by:

pL =
( n
R

+ wR
)
, pR =

( n
R
− wR

)
(5.21)

The expression for the elliptic genus is non-holomorphic but it is modular if k is an integer.

More precisely, it transforms as a completion of a mock Jacobi form of weight 0 and index m.

The holomorphic piece is given by:

χ̂h(τ, τ̄ |z) = i
ϑ1(τ, z)

η3(τ)

[∑
w≥0

∑
n−wk≥0

−
∑
w<0

∑
n−wk<0

]
qnwy

n+wk
k (5.22)

We can replace the sum in (5.19) over by n and w by the sum over s and s′ by noting that

` = (n+ wk) = (n− wk) mod 2k . (5.23)

15We use α′ = 1 so that asymptotic radius R of the cigar is
√
k while [40] uses α′ =

√
2.
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Or equivalently

n− wk = `+ 2ks , n+ wk = `+ 2ks′ . (5.24)

Hence the holomorphic piece can be written as

χ̂h(τ, z) = i
ϑ1(τ, z)

η3(τ)

[∑
w≥0

∑
`≥0

−
∑
w<0

∑
`<0

]
qw

2k+w`y
`+2kw
k = −iϑ1(τ, z)

η3(τ)
A1,k

(
τ,
z

k

)
(5.25)

which matches with the result obtained in [40].

To find the shadow, let us focus only on the non-holomorphic piece χ̂nh(τ, τ̄ |z) which

equals

− iϑ1(τ, z)

η3

∑
`∈Z/2kZ

∑
s,s′

1

2
sgn (`+ 2ks) erfc

(
|`+ 2ks|

√
πτ2

k

)
q−(`+2ks)2/4kq(`+2ks′)2/4ky

`+2ks′
k

= −iϑ1(τ, z)

η(τ)3

∑
`∈Z/2kZ

∑
r=`+2kZ

1

2
sgn (r) erfc

(
|r|
√
πτ2

k

)
q−r

2/4kϑk,`

(
τ,
z

k

)
(5.26)

Combining the holomorphic (5.25) and non-holomorphic (5.26) contribution, the elliptic

genus of cigar is given by

χ̂(τ, z) = −iϑ1(τ, z)

η3(τ)
Â1,k

(
τ,
z

k

)
(5.27)

Comparing (5.26) and (5.11) we conclude that our elliptic genus is a mixed mock Jacobi

form with

f(τ, z) = −iϑ1(τ, z)

η3(τ)
, g∗` (τ, τ̄) =

∑
r=`+2kZ

1

2
sgn(r) erfc

(
|r|
√
πτ2

k

)
q−r

2/4k . (5.28)

and with w = 0 u = −1 and hence v = 1/2. The total index is m = 1
2 + 1

k which matches16

with the expected index m = c/6 where c is the central charge of the coset. We can now

compute the holomorphic anomaly using (5.15) with v = 1
2

(4πτ2)1/2 ∂χ̂(τ, τ̄ |z)

∂τ̄
= −

√
π

2k

ϑ1(τ, z)

η3(τ)

∑
`∈Z/2kZ

ϑ
(1)
k,`(τ)ϑk,`

(
τ,
z

k

)
(5.29)

where ϑ
(1)
k,` is the unary theta function which is defined as

ϑ
(1)
k,`(τ) =

1

2πi

d

dz
ϑk,`(τ, z)

∣∣∣∣
z=0

=
∑

r≡` (mod 2m)

r qr
2/4k (5.30)

Comparing (5.15) and (5.29) we find that shadow vector is

g`(τ) = − 1√
8πk

ϑ
(1)
k,`(τ) (5.31)

16Note that Â1,k(τ, z) is a Jacobi form with index k but Â1,k

(
τ, z

k

)
has index 1

k
because of the rescaling

of z. The theta function ϑ1(τ, z) transforms with index 1
2
.
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The shadow vector {g`(τ)} is an unary theta series as in (5.30). In this case with v = 1
2 ,

the incomplete gamma function in (5.13) can be expressed in terms of the complementary

error function erfc(x) using (B.6).

In an interesting recent paper [69] the holomorphic anomaly was related to a one-point

function on the torus, which by our analysis should be determined by the scattering states.

5.3 The η-invariant and quantum modular forms

We consider the radial limit (τ2 → 0+) of the non-holomophic part g?` (τ, τ̄) in (5.6) to

obtain

lim
τ2→0

g∗` (τ, τ̄) = −1

2
f`(τ1) , τ1 ∈ Q (5.32)

where

f`(τ1) =
∑

r=`+2kZ

sgn (r) e−2πiτ1r2/4k . (5.33)

The characteristic sgn(r) that appears in the η-invariant appears here too but now in a sum

weighted with a phase. This infinite sum is not convergent but can be regularized to get a

finite answer at rational points on the real line. Thus, the function is defined only over Q
and not over R. However, the difference between the function and its modular transform

has ‘nice’ properties over R. More precisely, the vector f(τ1) transforms as

f(τ1)− (cτ1 + d)wf

(
aτ1 + b

cτ1 + d

)
= hγ(τ1) (5.34)

where γ =

(
a b

c d

)
∈ SL(2,Z) and the ‘period integral’ hγ(τ1) has some property of conti-

nuity and analyticity for every element γ and τ1 ∈ R. In the terminology of [3], {f`(τ1)}
transform as (vector-valued) ‘quantum modular forms’ of weight 1

2 and are naturally re-

garded as the theta-coefficients of a ‘quantum Jacobi form’ [70].

We obtained the quantum modular form as a limit of the completion of a mock modular

form defined on the upper half τ plane H+ (τ2 > 0) but it can equally well be obtained as

a limit of a false theta function defined on the lower half plane H− (τ2 < 0). Consider the

false theta function [71, 72] defined by

Fa,b(q̃) =
∑
n∈Z

sgn(n) q̃a(n+ b
2a

)2 (q̃ := e−2πiτ ) . (5.35)

With r = `+ 2kn, one can rewrite the f`(τ1) as

f`(τ1) =
∑
n∈Z

sgn (`+ 2kn) e−2πiτ1(`+2kn)2/4k (5.36)

which can be viewed as a τ2 → 0− limit of the false theta function for a = k and b = l

using the fact that sgn (`+ 2kn) = sgn(n) for positive k and 0 ≤ l < 2k. In this limit,

the functions f`(τ1) have appeared in the computation of topological invariants of Seifert

manifolds with three singular fibers [38]. See [38] for a discussion of quantum modular

forms and the relation to mock and false theta functions in the context of Chern-Simons
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theory and WRT invariants [35–37, 73, 74]. Further discussion of quantum modular forms

can be found in [22, 74]. It would be interesting the explore further these connections with

the nonholomorphic elliptic genus.

Motivated by our expression for the η-invariant (3.15), one can consider

η(τ1|z) = 2
[
χ̂(τ, τ̄ |z)

∣∣
τ2→0

− χ̂(τ, τ̄ |z)
∣∣
τ2→∞

]
. (5.37)

Going back to the definition of the elliptic genus in terms of the trace, we can interpret

η(τ1|z) as a particular ‘character-valued’ η-invariant of the elliptic genus

η(τ1|z) = Zoscill

∑
w

2
(
Ŵ (0)− Ŵ (∞)

)
e2πiτ1(L0−L̄0)yJ . (5.38)

Evaluating the limits, we find

lim
τ2→0

χ̂(τ, τ̄ |z) = −iθ1(τ1, z)

η(τ1)3

∑
w

∑
n

(
−sgn(n) +

1

2
sgn

(n
k
− w

))
e2πiτ1nwy

n+wk
k (5.39)

lim
τ2→∞

χ̂(τ, τ̄ |z) = 0 (5.40)

Substituting into (5.37), the ‘character-valued η-genus’ takes the form

η(τ1|z) = −2i
ϑ1(τ1, z)

η(τ1)3

 ∑
`∈Z/2kZ

f`(τ1)ϑk,`

(
τ1,

z

k

)
+A1,k

(
τ1,

z

k

) . (5.41)

The second term must also transform ‘nicely’ with the same period integrals for its theta

coefficients up to a sign, consistent with the fact that χ̂(τ, τ̄ |z) transforms as a Jacobi form.

One peculiarity of the cigar conformal field theory is that the R-symmetry acts not only

the fermions but also on the bosons by shifting the theta coordinate of the cigar. This

is different from what happens for the compact elliptic genus. Consequently, the precise

interpretation of this η-invariant from the perspective of a tower of Dirac operators is not

completely clear to us.

If we think of the elliptic genus as a right-moving Witten index, another perhaps more

natural limit is to consider the τ̄ → 0 to obtain

lim
τ̄→0

g∗` (τ, τ̄) = −1

2

∑
r=`+2mk

sgn (r) erfc

(
|r|
√
πτ

2ik

)
q−r

2/4k . (5.42)

The τ̄ → −i∞ limit gives zero. It is not clear to us how to interpret this expression.
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A Conventions and (1, 1) superspace

We use indices {α, β, . . .} with values in {0, 1} to label the components of a worldsheet

vector and {A,B, . . .} with values in {+,−} to label the components of a worldsheet

spinor. On field space, we use 1 ≤ i, j, . . . ≤ 2n as the coordinate indices 1 ≤ a, b, . . . ≤ 2n

as the tangent space indices. We use the worldsheet metric to be ηαβ = diag(−,+).

A convenient basis for the two dimensional Dirac matrices is

ρ0 =

(
0 −i
i 0

)
, ρ1 =

(
0 i

i 0

)
(A.1)

which satisfy {ρα, ρβ} = −2ηαβ . The worldsheet chirality ρ̄ and charge conjugation matrix

C are

ρ̄ = −ρ0ρ1 =

(
−1 0

0 1

)
CAB = ρ0

AB (A.2)

A two-dimensional Majorana spinor is a two-component real spinor. The usual definition

of Majorana spinor is that ψ̄ = ψ†C. In this case, C = ρ0 and hence you get the above

condition.

ψ =

(
ψ−
ψ+

)
ψ = ψ∗ (A.3)

We use the superspace sΣ with real superspace coordinates {σα, θA} to write down the

supersymmertic lagrangian. We use the following convention for superspace derivatives

and integrals

∂

∂θA
θB = δBA ,

∂

∂θ̄A
θ̄B = δBA and

∫
dθdθ̄ θ̄θ = 1. (A.4)

In superspace, the supercharge is given by

QA =
∂

∂θ̄A
+ i(ραθ)A∂α (A.5)

which satisfy the N = (1, 1) supersymmetry algebra

{QA, QB} = 2i(ρα∂α)AB (A.6)

To write actions invariant under the supersymmetry, one needs a supercovariant derivative.

Supercovariant derivative is invariant under supersymmetry and it is defined by

DA =
∂

∂θ̄A
− i(ραθ)A∂α (A.7)

It satisfies the following anticommutations

{DA,DB} = −2i(ρα∂α)AB (A.8)
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Since ρ̄AB is symmetric, it allows for a central extension of the supersymmetry

{Q̂A, Q̂B} = 2i(ρα∂α)AB + 2i(ρ)AB (A.9)

In presence of central charge the super-charge and the covariant derivative are modified as

Q̂A = QA + i(ρ̄ θ)AZ , D̂A = DA − i(ρ̄ θ)AZ (A.10)

The presence of the killing vector in the target space allows a central term in the super-

symmetry algebra. The central charge is related to the killing vector as Ki = Zxi. The

action (2.5) modifies to

I −→ I + gijK
iKj + iψ̄iDjKiρ̄ψj (A.11)

where Dj is a covariant derivative on M [47]. For an off-shell formulation see [48].

B Error function and incomplete Gamma function

The error function and the complementary error functions are defined by

erf(z) :=
2√
π

∫ z

0
dy e−y

2
, erfc(z) :=

2√
π

∫ ∞
z

dy e−y
2
. (B.1)

They satisfy the following relation

erfc(z) = 1− erf(z) (B.2)

Note that erf(z) is an odd function because the integrand is an even function

erf(−z) = −erf(z) . (B.3)

For the purpose of this paper it is convenient to use the expression

erf(z) = sgn(z) erf(|z|) ,
erfc(z) = 1− sgn(z) erf(|z|) (B.4)

for z ∈ R to make contact with the η-invariant.

The upper incomplete Gamma function encountered in section 5.1 is defined by

Γ(s, x) =

∫ ∞
x

ts−1 e−t dt , x ≥ 0 . (B.5)

A special case that we encounter is

Γ(
1

2
, x) =

√
π erfc(

√
x) . (B.6)

One of the integrals (involving error function) which is useful in our computation is the

following

f(m) =− i
β

∫
dp

1

(iw + 2πp
β )

[
exp
− 1

2
βk

(
(2πp)2

β2

)
−2πin·p

]

=−1

2
sgn
(n
k
− w

)
erfc

(√
βk

2

∣∣∣w−n
k

∣∣∣) e−βnw+βk
2
w2

+ sgn(βn) Θ
[
w
(n
k
− w

)]
e−βnw

(B.7)
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C Scattering theory

We review how the density of states can be related to the phase shifts in scattering theory.

Consider the scattering problem for the Hamiltonian (See for example [75])

H = H0 + V e−ε|t| (C.1)

where we have added an adiabatic switching factor for the interaction V so that in the far

past and and in the far future one obtains the free Hamiltonian H0. The time evolution

operator in the Dirac picture is given by

UD(t, t′) = eiH0t U(t, t′) e−iH0t′ (C.2)

where U(t, t′) is the time evolution operator of the Heisenberg picture. The Dirac evolution

operator satisfies the Schroödinger equation

i
d

dt
UD(t, t′) = VD(t)UD(t, t′) , with VD(t) = eiH0t V e−ε|t| e−iH0t (C.3)

with the initial condition UD(t, t) = 1. The solution is given by

UD(t, t′) = 1− i
∫ t

t′
dt′′V (t′′)UD(t′′, t′) (C.4)

We can now define the ‘Möller operators’

U± = UD(0,±∞) (C.5)

Consider and energy eigenstate |φE〉 of the free Hamiltonian H0. Using the Möller operators

one can obtain the eigenstate of the full hamiltonian:

|ψ±E 〉 = U±|φE〉 (C.6)

where |ψ−E 〉 are the in-states that resemble the free eigenstates in the far past and |ψ−E 〉 are

the out-states that resemble the free eigenstates in the far future. Solving (C.4) recursively

gives the Dyson series expansion

U±|φE〉 = |φE〉+
V

E −H0 ∓ iε
|φE〉+

(
V

E −H0 ∓ iε

)2

|φE〉+ . . . (C.7)

This geometric series can be easily summed to obtain

U±|φE〉 =
E −H0 ∓ iε
E −H ∓ iε

|φE〉 (C.8)

It follows that |ψ±E 〉 satisfy the Lippman-Schwinger equations

|ψ±E 〉 = |φE〉+
V

E −H0 ∓ iε
|φE〉 . (C.9)
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The S-matrix in the interaction picture is just the time evolution operator UD(∞,−∞)

which can be expressed in terms of the Möller operators as

S = U †+ U− . (C.10)

The derivative of the S-matrix is given by

d lnS

dE
= S−1 dS

dE
= S†

dS

dE
(C.11)

and using the above formula it is possible show that

d lnS

dE
= 2πiρ(E) = 2πi

[
δ(E −H)− δ(E −H0)

]
(C.12)

The density of states is then given by the so called ‘Krein-Friedel-Lloyd’ formula:

ρ(E) =
1

2πi
Tr

(
S†
dS

dE

)
=

1

π

dδ

dE
. (C.13)

If the S-matrix is diagonal, then in each one-dimensional subspace we obtain

S(E) = ei2δ(E) , ρ(E) =
1

π

dδ(E)

dE
. (C.14)

D Determinants and ultralocality

The quadratic fluctuations of a single boson {x(τ)} give a Gaussian path integral

Z =

∫
[Dx(τ)] e

− 1
2β
〈x|Ax〉

. (D.1)

where the inner product over the field space and the operator A are defined by

〈x|y〉 :=

∫ β

0
dτx(τ)y(τ) , A = − d2

dτ2
(D.2)

The field x(τ) can be expanded in terms of the modes of the operator A on the base circle:

x(τ) =
∑
n∈Z

e
2πinτ
β xn , x∗n = x−n . (D.3)

The Gaussian integral can then be written as

Z =

∫
dx0

∏
n>0

[∫
dx−n dxn exp

[
−β
(

2πn

β

)2

x−nxn

]]
=

∫
dx0

∏
n>0

[
β2

4πn2

]
(D.4)

The infinite product can be regularized using a zeta function

ζ(s) =
∞∑
n=1

1

ns
=

1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx (D.5)
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Another formula that would be useful is the following

d

ds
ζ(s) =

d

ds

∞∑
n=1

e−s lnn = −
∞∑
n=1

e−s lnnlnn (D.6)

Hence we get,

lnZ =
∑
n

ln

(
2πn2

β

)
= ln

(
2π

β

)∑
n

1− 2
∑
n

ln (n) (D.7)

Using (D.5) the first summation gives ζ(0) and using (D.6) the second summation gives ζ ′(0)

ln

(
2π

β

)
ζ(0)− 2ζ ′(0) =

1

2
ln(2πβ) (D.8)

to obtain

Z =

∫
dx0√
2πβ

1√
det′(A)

(D.9)

where det′(A) is the renormalized determinant of A over nonzero modes. The factor of
1√
2πβ

for a bosonic zero mode can be deduced more directly by using ‘ultralocality’ as we

explain below. Separating the path integral (D.4) into integral over the zero mode x0 and

non-zero modes x′ of the operator A, we get∫
dx0[dx′]e

− 1
2β
〈x|Ax〉

=

∫
dx0[dx′]e

− 1
2β
〈x′|Ax′〉

=
1√

det′(A)

∫
dx0[dx′]e

− 1
2β
〈x|x〉

(D.10)

We now to set the normalization by setting∫
[dx]e

− 1
2β
〈x|x〉

= 1 . (D.11)

It follows from the fact that the measure for this integral involves only the local metric on

the base (and not its derivatives). Hence, it can be normalized to unity by an ultralocal

counter-term corresponding to the ‘cosmological constant’. We then obtain∫
[dx′]e

− 1
2β
〈x|x〉

=
1∫

dx0 exp
(
− x20

2β

) =
1√
2πβ

. (D.12)

Substituting in (D.10) we reproduce (D.9). This argument makes it apparent that for each

bosonic zero mode we get a factor of 1√
2πβ

.
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