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The perils of minimal coupling to electromagnetic field in quantum many-body
systems
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Consistency with the Maxwell equations determines how matter must be coupled to the electro-
magnetic field (EMF) within the minimal coupling scheme. Specifically, if the Hamiltonian includes
just a short-range repulsion among the conduction electrons, as is commonly the case for models
of correlated metals, those electrons must be coupled to the full internal EMF, whose longitudinal
and transverse components are self-consistently related to the electron charge and current densi-
ties through Gauss’s and circuital laws, respectively. Since such self-consistency relation is hard to
implement when modelling the non-equilibrium dynamics caused by the EMF, as in pump-probe
experiments, it is common to replace in model calculations the internal EMF by the external one.
Here we show that such replacement may be extremely dangerous, especially when the frequency of
the external EMF is below the intra-band plasma edge.

I. INTRODUCTION

Modern ultrafast time resolved pump-probe spec-
troscopy offers the possibility to access the real-time dy-
namics of a material perturbed by a laser pulse, thus pro-
viding information complementary to more traditional
experimental techniques. Furthermore, properly tailor-
ing the pump pulse allows ultrafast photoinducing phase
transitions into states that may not even exist in ther-
mal equilibrium [1, 2]. Strongly correlated materials
appeared as ideal candidates for such kind of experi-
ments [3–11], because of their rich phase diagrams that
include different insulating and conducting states, often
displaying notable properties, such as high-Tc supercon-
ductivity [12–14].

The experimental activity has, in turn, stimulated a
great theoretical effort aimed to interpret the measure-
ments, as well as to achieve control over new states of
matter that might be stabilised by a properly designed
laser pulse, see for instance Refs. [15–18]. Evidently, this
task requires a proper treatment of the interaction with
the electromagnetic field. The minimal coupling scheme,
describing the light-matter interaction when only the
monopole of the charged particles is taken into account,
is explicitly derived in many textbooks [19, 20] and rou-
tinely used to model the electromagnetic field coupling in
electronic systems. However, its precise meaning in the
case of many-body systems is often largely overlooked,
ultimately leading to a possible fallacious description of
the effects of light.

In the following we shall show that the inconsiderate
use of the simple minimal coupling recipe hides in re-
ality some approximations which are not always justi-
fied. In particular we review a correct treatment of the
electromagnetic field coupling in a system of electrons
within linear regime, pointing out the implicit assump-
tions which may not be verified in metallic systems. We
discuss a simple paradigmatic, yet generic, case in which
the difference in the treatment of the external field can

lead to rather different results.

II. DISCUSSION

We assume a system of charged particles in presence of
external sources of the electromagnetic field that can be
described in terms of the external scalar, φext(r, t), and
vector potentials, Aext(r, t). We decompose Aext(r, t) =
A||ext(r, t)+A⊥ext(r, t), where A||ext(r, t) and A⊥ext(r, t)
are the longitudinal and transverse components, respec-
tively. In the following we shall work in the Coulomb
gauge ∇ ·Aext(r, t) = 0, so that the vector potential is
purely transverse [20].

Since our system is made of charged particles, they ac-
tually feel “internal” scalar and vector potentials, φ(r, t)
and A⊥(r, t), respectively, which do not in general co-
incide with the external ones. Because of the linearity
of the Maxwell equations, we can express such internal
fields as:

φ(r, t) = φext(r, t) + φsys(r, t) ,

A⊥(r, t) = A⊥ext(r, t) + A⊥sys(r, t) ,
(1)

where the system φsys(r, t) and A⊥sys(r, t) potentials are
obtained through the Gauss’s law

−∇2φsys(r, t) = 4π ρsys(r, t) , (2)

and the circuital law(
∂2

∂t2
− c2∇2

)
A⊥sys(r, t) = 4π cJ⊥sys(r, t) , (3)

with ρsys(r, t) the system charge density, and J⊥sys(r, t)
the transverse component of the system current density.
Consequently, the internal gauge-invariant electric and
magnetic fields are defined in terms of the internal scalar
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and vector potentials through

E||(r, t) = −∇φ(r, t) ,

E⊥(r, t) = −1

c

∂A⊥(r, t)

∂t
,

B⊥(r, t) = ∇ ∧A⊥(r, t) .

(4)

Using the above definitions, the Hamiltonian that de-
scribes our system coupled to the electromagnetic field,
which we assume to be classical, reads, in the minimal
coupling scheme [19, 20] and neglecting the Zeeman term,

H =

∫
dr

{[∑
σ

Ψ†
σ(r)

1

2m

(
− i~∇ +

e

c
A(r, t)

)2

Ψσ(r)

]
+ V (r) Ψ†

σ(r) Ψσ(r)

}

+
e2

2

∑
σσ′

∫
dr dr′ Ψ†

σ(r) Ψ†
σ′(r

′)
1∣∣r− r′
∣∣ Ψσ′(r

′) Ψσ(r) +

∫
drφext(r, t) ρ(r, t) ,

(5)

where Ψσ(r) is the Fermi field of spin σ electrons, V (r)
the periodic potential of an underlying lattice of immobile
ions that also provide a positive charge density, ρion(r),
neutralising the electron one. Thus we have: ρ(r) ≡
ρion(r)− e ∑σ Ψ†

σ(r) Ψσ(r).
It is worth emphasising that Eqs. (2) and (3), where

ρsys(r, t) = 〈 ρ(r) 〉 ,

J⊥sys(r, t) = −c
〈 δH
δA⊥(r, t)

〉
,

(6)

to be verified require that

1. one must explicitly include the Coulomb interaction
among the electrons in order for the Hamiltonian
(5) to involve only the external longitudinal field
φext(r, t);

2. the transverse vector potential A⊥(r, t) is the in-
ternal one, i.e., the sum of the external potential
A⊥ext(r, t) plus the one generated by the electrons,
A⊥sys(r, t), through Eq. (3).

The issue is that both points 1. and 2. make it dif-
ficult modelling the system dynamics during and af-
ter the action of an electromagnetic pulse. To pro-
ceed further, some approximations have to be assumed.
Concerning point 1., we note that correlated materi-
als are commonly described in terms of lattice models
with short range electron-electron interactions, e.g., the
paradigmatic Hubbard model. Although such models
are in general not exactly solvable, powerful techniques
are available to investigate them in controlled approx-
imation schemes, such as dynamical mean field theory
(DMFT)[21], originally designed to treat just short range
interaction. Several attempts to add non-local correla-
tions in equilibrium DMFT have been put forward [22–
24], still the inclusion of the true long-range Coulomb
interaction remains a serious challenge. The extension of
some of those attempts to the out-of-equilibrium regime
has been achieved in simple cases[17, 25, 26], but a more
systematic development and a proper description of the
dynamics in presence of a longitudinal field is yet to come.

However, since the laser frequency in experiments usu-
ally ranges from far to near infrared, i.e. wavelengths

λ ≥ 1µm, the difference between longitudinal and trans-
verse components of the electromagnetic field is negligi-
ble. In this case, one can in principle focus only on the
transverse response, which is seemingly less sensitive to
the long range tail of the Coulomb repulsion [27].

However, the long range nature of the coupling to the
transverse field is hidden in point 2. above, which entails
the self-consistency condition (3) that is not easy to im-
plement in an actual calculation. One can avoid that self-
consistency by treating the transverse field quantum me-
chanically, and integrating out the photons. The result
would be that only the external vector potential would
now appear in the minimal coupling scheme, at the cost
of introducing a current-current interaction among the
electrons, non-local both in time and space. At the end,
one faces again the same problems as in the longitudinal
response, worsened by the non-locality in time.

In view of the above difficulties, it is rather common
to simply ignore points 1. and 2. above, and just con-
sider models of correlated electrons interacting via a short
range repulsion, and minimally coupled to a uniform vec-
tor potential assumed to coincide with the external one,
A(t) = Aext(t), see, for example, Refs. [17] and [18].

Our aim here is not to revise all results that have been
so far obtained under those simplifications, but just to
select few examples that can be explicitly worked out and
where the difference between taking or not into account
points 1. and 2. is most dramatic.

For simplicity, we consider the half-filled single-band
Hubbard model in a three dimensional cubic lattice with
nearest neighbour hopping −t, and in the presence of a
uniform AC vector potential. Using the Peierls substitu-
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tion method, the Hamiltonian reads

H(t) =
∑
kσ

ε
(
k +

e

~c
A(t)

)
c†kσ ckσ

+
1

2

∑
i,j

(
ni − 1

)
Uij
(
nj − 1

)
= H0 +

∑
kσ

(
ε
(
k +

e

~c
A(t)

)
− ε(k)

)
c†kσ ckσ

= H0 + δH(t) ,
(7)

where

ε(k) = −2t
3∑

n=1

cos kna , (8)

with a the lattice constant, A(t) the internal vector po-
tential, transverse and longitudinal loosing their meaning
in the present uniform case, and Uij the Coulomb inter-
action.

Focusing on the response to the internal A(t), we can
sensibly discard the long-range tail of Uij [27], and thus
approximate Uij = U if i = j, and zero otherwise, i.e.,
the standard local Hubbard repulsion.

We assume to be in a linear response regime, and
that the probing measurement is performed well beyond
the characteristic relaxation time of the system [28–30].
With those assumptions the Hamiltonian is

H(t) '
∑
kσ

(
ε(k)

(
1− e2a2

6~2c2
A(t) ·A(t)

)
+

e

~c
∂ε(k)

∂k
·A(t)

)
c†kσ ckσ +

U

2

∑
i

(
ni − 1

)2
, (9)

and the equation relating the internal field to the external
one has the simple solution, in the frequency space,

A(ω) =
Aext(ω)

ε(ω)
, (10)

with the uniform dielectric constant

ε(ω) = 1 + i
4π

ω
σ(ω) , (11)

where σ(ω) is the optical conductivity that, in linear re-
sponse, is defined by

J sys(ω) = σ(ω)E(ω) =
iω

c
σ(ω)A(ω) , (12)

and can be calculated through the current-current re-
sponse function. We shall here focus on two physical
quantities that can be readily obtained once the optical
conductivity and the dielectric constant are known.

The first is the expectation value of the hopping

T
(
A(t)

)
=
〈 ∂H(t)

∂t

〉
' T (0)

(
1− e2a2

6~2c2
A(t) ·A(t)

)
,

(13)

which is renormalised downwards by the electromagnetic
field, with potentially interesting consequences, see, e.g.,
[15, 16, 31]. We choose to quantify this reduction through
the relative variation of the hopping expectation value
averaged over one period τ = 2π/ω of a monochromatic
field of frequency ω, which reads

δT

T
=

∫ τ

0

dt

τ

∣∣∣∣∣ T
(
A(t)

)
− T (0)

T (0)

∣∣∣∣∣ =
e2a2

12~2ω2

∣∣E(ω)
∣∣2

−2 −1 0 1 2

ω

0.0

0.2

0.4

0.6

0.8

A
(ω

)

U=0.1

U=1

U=2

U=3

FIG. 1. (Color online) Evolution of the local spectral function
A(ω) of the single-band Hubbard model on the cubic lattice.
Data are for different values of U = 0.1, 1 ,2, 3, from the
weakly correlated metal up to the Mott insulator.

=
e2a2

12~2ω2

∣∣Eext(ω)
∣∣2∣∣ε(ω)

∣∣2 . (14)

The reduction thus becomes significant when δT/T = 1,
which corresponds to a threshold field∣∣Eth

ext(ω)
∣∣ =

√
12 ~ω
ea

∣∣ε(ω)
∣∣ . (15)

We observe that, if one discards point 2., i.e., assumes
A(t) to coincide with Aext(t), the threshold field changes
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into
∣∣Eth

ext(ω)
∣∣
appx

related to the true one of Eq. (15)

through ∣∣Eth
ext(ω)

∣∣
appx∣∣Eth

ext(ω)
∣∣ =

1∣∣ε(ω)
∣∣ ≡ Y1(ω) . (16)

We shall use Y1(ω) as first estimate of the error one can
do by replacing the internal vector potential with the
external one in the minimal coupling scheme (5).

The other physical quantity we consider is the power
dissipated by the monochromatic electromagnetic field
during one period, defined as, see Eq. (7),

P (ω) =

∫ τ

0

dt

τ

∂

∂t
〈 H0 〉 = −i

∫ τ

0

dt

τ
〈
[
H0 , H(t)

]
〉

=
1

2
Reσ(ω)

∣∣E(ω)
∣∣2 =

1

2

Reσ(ω)∣∣ε(ω)
∣∣2 ∣∣Eext(ω)

∣∣2 .
(17)

As before, if one uses Aext(t) instead of A(t) in the
Hamiltonian, the power dissipated takes the approximate
expression

Pappx(ω) =
1

2
Reσ(ω)

∣∣Eext(ω)
∣∣2 . (18)

P (ω) is the energy of the electromagnetic field that is
actually absorbed by the system per unit time. If the
system thermalises, such supplied energy is transformed
into heat that yields an effective temperature raise ∆T
given by

∆T =
P (ω) τpulse

cV
, (19)

where τpulse is the laser pulse duration, and cV the sys-
tem specific heat. Seemingly, if one identifies the vector
potential in the minimal coupling with the external one,
and thus uses the approximate expression (18), the tem-
perature raise changes into ∆Tappx, where

∆Tappx
∆T

=
Pappx(ω)

P (ω)
=
∣∣ε(ω)

∣∣2 ≡ Y2(ω) . (20)

Y2(ω) is the other quantity, besides Y1(ω) of Eq. (16),
that we shall study to evaluate how wrong the replace-
ment of A(t) by Aext(t) in the minimal coupling scheme
may be.

III. RESULTS

We calculate at zero temperature the optical proper-
ties of the Hubbard Hamiltonian (9) at half-filling by
means of DMFT [21], using numerical renormalisation
group (NRG) as impurity solver [32–34]. Specifically,
we calculate the single-particle Green’s function, through
which we obtain the local single-particle spectral func-
tion, A(ω), and the uniform current-current response
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FIG. 2. (Color online) Top panel: absorption spectrum from
the internal field as obtained from the optical conductivity.
Inset: low energy behavior in logarithmic scale. Bottom
panel: absorption spectrum from the external field. See main
text for the defintion
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FIG. 3. (Color online) Reflectivity as function of frequency.
Data are for the same values of U of previous figures. The ver-
tical lines indicate the positions of the intra-band plasmons.
Note that the U = 3 Mott insulator case is nearly vanishing.

function [21, 35–38], which, in turn, allows computing
the optical conductivity and thus the dielectric constant.
In what follows we shall use as units of measurement the
half-bandwidth 8t = 1, the lattice constant a = 1, the
electric charge e = 1 and finally ~ = 1.

To fix ideas, we show in Fig. 1 the evolution of the local
single-particle spectral functions A(ω) with increasing U
from the weakly correlated metal, U = 0.1, up to the
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FIG. 4. (Color online) The behavior of the functions Y1(ω)
(top panel), Eq. (16), and Y2(ω) (bottom panel), Eq. (20).
Data are for the same values of U as in previous figures. The
vertical lines indicate the roots of the real-part of the dielectric
constant.

Mott insulator, U = 3. We note that for the intermedi-
ate interaction strength (U = 2) coherent quasiparticles
narrowly peaked at the chemical potential ω = 0 coexist
with the lower and upper forming Hubbard sidebands,
centred at ω ∼ ±U/2, respectively.

We now discuss the optical properties of the model
from the weak coupling metal to the Mott insulator [21,
35, 39, 40]. According to Eq. (17), the absorption spec-
trum from the internal field is the real part of the optical
conductivity, Reσ(ω), while that from the external field
is instead Reσ(ω)/|ε(ω)|2, shown, respectively, in the top
and bottom panels of Fig. 2.

Looking at the top panel of Fig. 2, we observe that
the optical conductivity of the weakly correlated metal
at U = 0.1 just shows a very narrow Drude peak. This
peak broadens upon increasing the interaction strength
U . Two additional absorption peaks emerge, which are
most visible for U = 2: an intermediate one involving
an excitation from/to the quasiparticle peak to/from the
Hubbard bands, and a high-energy peak corresponding
to an excitation between the two Hubbard bands. The
latter is the only one that survives in the Mott insulator
at U = 3.

The absorption spectrum from the external field

Reσ(ω)∣∣ε(ω)
∣∣2 = − ω

4π
Im

(
1

ε(ω)

)
, (21)

is presented in the bottom panel of Fig. 2. This quantity

is rather different from the internal field absorption spec-
trum, being dominated by the plasmon modes, i.e., the
peaks of Im(−1/ε(ω)). At weak coupling, U = 0.1, there
is just a single and very sharp intra-band plasmon. The
plasmon peak shifts to lower frequencies upon increasing
U . Meanwhile, additional inter-band, i.e., involving the
Hubbard sidebands, broad plasma modes emerge, see the
intermediate coupling case at U = 2. In Fig. 3 we show
the corresponding reflectivity, where the plasma edges
become clearly visible.

We can now return to our original aim, and try to
quantify through the behavior of the quantities Y1(ω) in
Eq. (16) and Y2(ω) in Eq. (20) the error generated by us-
ing the external vector potential in place of the internal
one within the minimal coupling scheme. We show the
functions Y1(ω) and Y2(ω) in Fig. 4. From the behaviour
of Y1(ω), top panel of Fig. 4, we conclude that, in the
metal phase and for frequencies smaller than the intra-
band plasmon modes, defined by the roots of Re(ε(ω)),
the external field required to significantly reduce the ex-
pectation value of the hopping is orders of magnitude
larger than what is predicted by assuming that A(t) in
the Hamiltonian (5) can be replaced by the external field
Aext(t). Within that same assumption and in the same
range of frequencies, the temperature raise produced by
the field would be huge compared to the actual value,
see bottom panel in Fig. 4. On the contrary, and not
surprisingly, A(t) ' Aext(t) works well in the insulating
phase at U = 3.

In conclusion, we have shown that replacing in the min-
imal coupling scheme the internal vector potential, which
is self-consistently determined by the system charges, by
the external vector potential may be quite dangerous, in
particular in a metal and when the frequency of light is
small compared with the intra-band plasma edge, which
is where screening effects are maximal. In correlated met-
als the precise value of such plasma edge, which origi-
nates from the itinerant carriers and is proportional to
the square root of their contribution to the optical sum
rule [41–43], is material dependent [42, 44–46] and typ-
ically ranges from mid to near infrared. This in turn
implies that in common pump-probe experiments the in-
ternal field A(t) is rather different from the external one
Aext(t), hence replacing the former by the latter in model
calculations is simply incorrect.

We end mentioning that mixing up the response to
the internal field with that to the external one is a mis-
take that tends to recur. It was, e.g., at the origin of
early claims that the conductance of Luttinger liquids is
renormalised by interaction; a wrong statement corrected
in [47] by similar arguments as ours.

We acknowledge support by the European Research
Council (ERC) under H2020 Advanced Grant No.
692670 “FIRSTORM”.
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