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Abstract
In this note we describe explicitly, in terms of Lie theory and cameral data, the covariant
(Gauss–Manin) derivative of the Seiberg–Witten differential defined on the weight-one vari-
ation of Hodge structures that exists on a Zariski open subset of the base of the Hitchin
fibration.
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1 Introduction

The base of the Hitchin integrable system [14] supports a family of cameral curves, and, as a
consequence, carries various Hodge-theoretic and differential-geometric structures [6, 7, 20].
In particular, the Zariski open subset of the base, corresponding to smooth cameral curves
with generic ramification carries a weight-one variation of Hodge structures (VHS) with a
Seiberg–Witten differential. Our goal in this note is to describe the covariant (Gauss–Manin)
derivative of the Seiberg–Witten differential explicitly in terms of Lie theory and cameral
data.

We recall now the main ingredients and constructions, starting with the Hodge-theoretic
ones.

Let B be a complex manifold. Recall that a polarised R-VHS of weight w ∈ Z on B
consists of data (V,∇,VR,F•, S), where:

• V is a holomorphic vector bundle on B
• ∇ : V → V⊗�1

B is a flat (holomorphic) connection, called the Gauss–Manin connection
• VR ⊆ V is a real, ∇-flat subbundle, satisfying V = VR ⊗ OB, called real structure
• F• is a decreasing filtration of V = F0, the Hodge filtration
• S : V ⊗ V → C∞

B is a non-degenerate, (−1)w-symmetric, ∇-flat pairing, R-valued on
VR, called polarisation

such that

(1) ∇(F p) ⊆ F p−1 ⊗ �1
B Griffiths transversality

(2) V = F p ⊕ Fw+1−p Hodge structure,

or, in terms of the Hodge bundles Hp,w−p := F p ∩ Fw−p,

(2’) V = ⊕
p Hp,w−p

(3) S(F p,Fw+1−p) = 0
(4) i2p−w S(v, v) > 0 for v ∈ �(Hp,w−p), v 
= 0.

The notions of polarised Z-VHS or Q-VHS are introduced analogously, by replacing VR

with appropriate locally constant sheaves VZ or VQ of Z- or Q-modules, respectively.
The prototypical example is that of a geometric VHS, i.e., one arising from a family of

compact Kähler (e.g., projective) manifolds.
By Griffiths Transversality, ∇ induces an OB -module homomorphism

F p/F p+1 −→ F p−1/F p ⊗ �1
B

and hence, taking a direct sum over the different p, an OB -module homomorphism

θ = [∇] :
⊕

p

F p/F p+1 −→
(
⊕

p

F p/F p+1

)

⊗ �1
B,

which satisfies θ ∧ θ = 0.
The pair

(
E = ⊕

p F p/F p+1, θ
)
is an example of a Higgs bundle on B. This example

played an important rôle in Carlos Simpson’s study of Higgs bundles on higher-dimensional
varieties [22, 23].
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Consider a polarised Z-VHS (V,∇,VZ,V•, S, . . .) of weight w = 1. An abstract
Seiberg–Witten differential on it is a section λSW ∈ H0(B,V1), for which the OB-module
homomorphism

TB −→ V0, v �−→ ∇vλSW

factors through an isomorphism

TB  V1. (1)

Given such data, we obtain a refinement of the weight-1 filtration

V1 ⊆ V0

to a weight-3 filtration

F3
︸︷︷︸

=λSW OB

⊆ F2
︸︷︷︸
V1

⊆ F1
︸︷︷︸

=(F3)⊥
⊆ F0
︸︷︷︸
V0

.

For links to projective special Kähler geometry (“N = 2 supergravity”) and weight-3
VHS, satisfying the Calabi–Yau condition, one can check [13, §4, §8.3].

Furthermore, given such data, there is an associated fibration of complex tori J :=
V/(V1 + VZ) → B, whose vertical bundle is Vert = V/V1. The polarisation S gives rise to
an isomorphism Vert  (V1)∨, and hence λSW induces, by composition with the dual of its
defining isomorphism TB  V1, an isomorphism iλ : Vert → T ∨

B . Such an isomorphism is
also induced by a choice of symplectic form on J . There is unique symplectic form ωλ on
J , which induces iλ and such that the 0-section is Lagrangian.

We next recall the construction of the family of cameral covers over the Hitchin base, and
introduce a weight-1 VHS with a Seiberg–Witten differential on it.

First, we fix the following data:

• A simple complex Lie group G of rank l, together with a choice of Borel and Cartan
subgroups T ⊂ B ⊂ G. We denote by t ⊂ b ⊂ g the respective Lie algebras and by W
the corresponding Weyl group.

• A compact (connected) Riemann surface X of genus g ≥ 2 (or equivalently, a non-
singular proper algebraic curve over C). We do not need to fix a particular projective
embedding of X .

Additionally, we choose:

• Homogeneous generators I1, . . . , Il of the ring C[t]W ⊂ C[t]. We write dk = deg Ik .

• Simple (positive) roots {α1, . . . , αl}.
These additional choices are not necessary for the entire discussion, but are needed for

the explicit calculation in Theorem A.
Two explicit examples of invariant polynomials—for SL3(C) and G2—are given in

Eqs. (30) and (32), respectively.
Notice that while t/W is a priori just a cone, the choice of generators {Ik} allows us

to identify it with C
l . Notice also that we may interpret {Ik} as elements of C[g]G , via

Chevalley’s theorem.
The chosen simple roots determine an isomorphism t  C

l , v �→ (α1(v), . . . , αl(v)),

using which we further identify χ : t → t/W with a finite map I : C
l → C

l . We may abuse
the notation for these maps, e.g., write χ = (I1, . . . , Il) instead of I, etc.
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We proceed by constructing from these data two rank-l vector bundles on X . The first one
is t ⊗C K X  K ⊕l

X , whose total space will be denoted by M :

M = tot t ⊗C K X .

The group W acts (fibrewise, via its action on t) on M . The resulting quotient U is a priori
just a cone bundle, but the choice of {Ik} allows us to give it the structure of a vector bundle
of rank l:

U = t ⊗C K X/W 
l⊕

k=1

K dk
X . (2)

We can also think of U\{0} as the C
×-bundle with fibre t/W , associated to the C

×-bundle
K X\{0}.

The morphism χ : t → t/W induces a morphism χ : M → tot U of X -varieties (not of
vector bundles!):

M = tot t ⊗C K X
χ=(I1,...,Il ) ��

π

����
���

���
���

� tot U

����
��
��
��

X

. (3)

We write B for the Hitchin base—the space of global sections of U :

B := H0(X ,U)  H0

(

X ,

l⊕

k=1

K dk
X

)

 C
dim G(g−1).

Any b ∈ B determines a W -cover pb : X̃b → X as the pullback of χ : M → tot U via
(the evaluation map of) the section b:

X̃b

pb

��

�� tot t ⊗C K X = M

χ

��
X

evb �� tot t ⊗C K X/W = tot U

This W -cover is called the cameral cover of X (corresponding to b). We may occasionally
write p : X̃ → X if the point b ∈ B is fixed or understood.

By construction X̃b is a closed subscheme of M that can be singular or non-reduced. The
cameral cover X̃b ⊂ M inherits from M a W -action (and thus has lots of automorphisms). For
a generic choice of b it is a non-singular ramified Galois W -cover with simple ramification.
We write B ⊆ B for the open set of generic cameral covers.

The vector bundle p∗
bU is in fact isomorphic to NX̃b/M , the normal bundle of X̃b ⊆ M,

see Sect. 2.1.

Example 1.1 Let G = SL2(C). Then W = Z/2Z, U  K 2
X , B = H0(X , K 2

X )  C
3g−3 and

pb : X̃b → X is a 2 : 1 cover. The open set B ⊆ B consists of quadratic differentials with
simple roots. For b ∈ B, the cover has genus g(X̃b) = 4g − 3.

Example 1.2 Let G = G2. Then W = D6 (dihedral group of order 12) and U  K 2
X ⊕ K 6

X .

Consequently B = H0(X , K 2
X ) ⊕ H0(X , K 6

X )  C
14(g−1). The cameral covers pb : X̃b →

X are 12 : 1 covers, with g(X̃b) = 84(g − 1) + 1.
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There is a weight-1 Z-variation of Hodge structures V1 ⊆ V0 over B ⊆ B, whose fibres
are respectively V1

b = H0(X̃b, t⊗C K X̃b
)W and V0

b = H1(X̃b, t)
W . Intrinsically, it is defined

as follows. Let	 ⊆ t be the cocharacter lattice and p : X → B the universal cameral curve.
Let also pW∗ be the W -invariant pushforward functor. Then we set VZ = R1 pW∗ (	) and

V := VZ ⊗Z OB  R1 pW∗ (t ⊗C �•
X /B ). The bundle V1 = R0 pW∗

(
t ⊗C �1

X /B

)
, and

the Hodge filtration is induced by the naive filtration �
•≥1
X /B [−1] ⊆ �•

X /B . The Gauss–
Manin connection can be identified with the d1 differential of the spectral sequence, induced
by the Koszul–Leray filtration on �•

X . The polarisation pairing S is given by Sb(α, β) =〈
α ∪ β,

[
X̃b
]〉

. For more details, see Sect. 3.2 and the references therein, as well as [13, 8.1]
and [9].

On M there is a canonical t-valued Liouville form λ, see Sect. 2.4. The Liouville form λ

determines a Seiberg–Witten differential, λSW ∈ �(B,V1), via λSW (b) = λ|X̃b
, and, as in

(1), we have that the map

B = TbB � g �−→
(
∇G M
g λSW

)

b
∈ V0

b (4)

factors through an isomorphism TbB  V1
b , i.e.,

(∇G MλSW
)

b : H0
(

X ,
⊕l

k=1 K dk
X

)  ��H0(X̃b, t ⊗C K X̃b
)W . (5)

In [16, Proposition 2.11], an isomorphism with the same domain and codomain as in (5)
is described as the composition of pullback on global sections (by π), contraction with ω

and restriction to X̃b, see also Proposition 3.1. In [13, Proposition 8.2] it is shown, using a
hypercohomology calculation, that the isomorphism described by Hurtubise and Markman
coincides with the isomorphism (4). Some of the above relations for G = SL2 are discussed
in [5, Proposition 1], see also [21, Eq.(3)].

The above isomorphism can also be considered from an integrable systems viewpoint.
Indeed, consider the universal family of generic cameral curves p : X → B ⊆ B. The
relative Prym fibration PrymX /B → B is in fact an algebraic completely integrable system.
The fibre Prym X̃b

over b ∈ B is an abelian variety, whose tangent space is Serre dual to

H0(X̃b, t ⊗C K X̃b
)W , the right hand side of (5). The isomorphism (5) actually amounts to

lifting a tangent vector in TB,b to a vector field along the fibrePrym X̃b
and then pairing it with

the symplectic form on the Prym fibration. This is the viewpoint, taken, e.g., by Hurtubise
and Markman.

Our goal in this note is to provide an explicit and global (on X and X̃b) description of (5)
in terms of Lie theory and the covering pb : X̃b → X .

The simplest case, that of G = SL2, is given in Example 5.1, where we show that Eq. (5)
specialises to

H0(X , K 2
X ) � g �−→

(
∇G M
g λSW

)

b
= p∗g

2α2 λSW

∣
∣
∣
∣

X̃b

∈ H0(X̃b, K X̃b
)
Z/2
− ,

where α2 ∈ H0(M, π∗K 2
X ) is the tautological section and λSW is the Liouville (Seiberg–

Witten) form. The expression on the right hand side can in fact also be rewritten as− p∗g
2λ , and

in this form it coincides (up to scaling factors) with [21, (4)], who referenceDouady–Hubbard
[5, §2].

Our main result is a general formula for ∇G M
g λSW for the case of an arbitrary (complex,

simple) group G.
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Let DI be the Jacobi matrix of the adjoint quotient I = (I1, . . . , Il) : C
l → C

l and ι

the natural algebra homomorphism from Sym(t∨) into H0
(
M,
⊕

n≥0 π∗K n
X

)
, introduced

in Eq. (22). Finally, αi = ι(αi ) and λi = ei ⊗ αi , where {ei } is the basis of t, dual to {αi }.
In this notation, the Liouville form is λSW = ∑

i λi .

Theorem A Once the main and additional data are chosen, the isomorphism (5) ∇G MλSW

maps g ∈ TbB = H0(X ,
⊕

i K di
X ) to the section

(
∇G M
g λSW

)

b
= −

l∑

i=1

(
ι(DI)−1 · π∗g

)
i

αi
λi

∣
∣
∣
∣
∣

X̃b

= − ι(DI)−1 · π∗g
∣
∣

X̃b
. (6)

In particular, for l = 2 we have that
(
∇G MλSW

)

b
: H0(X , K d1

X ⊕ K d2
X ) −→ H0(X̃b, K ⊕2

X̃b
)W

sends g =
[

g1
g2

]

to

(
∇G M
g λSW

)

b
= −

⎛

⎜
⎜
⎝

∣
∣
∣
∣
π∗g1 ι∂2 I1
π∗g2 ι∂2 I2

∣
∣
∣
∣

α1 det ιDI
λ1 +

∣
∣
∣
∣
ι∂1 I1 π∗g1
ι∂1 I2 π∗g2

∣
∣
∣
∣

α2 det ιDI
λ2

⎞

⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣

X̃b

= − 1

det ιDI

⎡

⎢
⎢
⎢
⎢
⎣

∣
∣
∣
∣
π∗g1 ι∂2 I1
π∗g2 ι∂2 I2

∣
∣
∣
∣

∣
∣
∣
∣
ι∂1 I1 π∗g1
ι∂1 I2 π∗g2

∣
∣
∣
∣

⎤

⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X̃b

.

(7)

Knowledge of λSW and ∇G MλSW is essential for describing various geometric structures
on B. We mention only two examples as an illustration.

First, for the Hitchin integrable system, the Donagi–Markman cubic [6], which is
essentially the infinitesimal period map for the family of Hitchin Pryms, is given by the
Balduzzi–Pantev formula [2, Theorem 1]. If we consider the cubic as a global section c of
Sym3T ∨

B = Sym3B∨ ⊗ OB , then the Balduzzi–Pantev formula states that the value of c at
b ∈ B is

cb(g1, g2, g3) = 1

2

∑

m∈Ram pb

Res2m

(

p∗
b
Lg1D

D

∣
∣
∣
∣{b}×X

(
∇G M
g2 λSW

)

b
∪
(
∇G M
g3 λSW

)

b

)

.

(8)

Here D is the discriminant (see also Sect. 5) and L denotes Lie derivative. In our previous
work [3, Theorem A] we have shown that the Balduzzi–Pantev formula holds along the
(good) symplectic leaves of the generalised Hitchin system.

The second example which is worth mentioning is the special Kähler metric gSK on B.

It is known that for the case of G = SL2(C), the special Kähler metric is given by

gSK (g, g)b = 2
∫

X̃b

|∇G M
g λSW |2, (9)

see [11, 2.40], [21, §2.3], [8].
We shall discuss additional applications of Theorem A to various aspects of the geometry

of B in a forthcoming work.
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2 Preliminaries

2.1 The embedding of the cameral curve

We are now going to work at a fixed point b ∈ B (generic), and hence will write mostly
p : X̃ → X for the cameral cover. To understand (5) we need to understand K X̃ and for that
we need to know more about the normal bundle N of the closed embedding X̃ ⊆ M . This is
not difficult, since X̃ is in fact the zero locus of a section of a vector bundle on M .

First, notice that the morphism χ : M → U (see (3)) induces a tautological section
σ ∈ H0(M, π∗U) in a standard way, via

M
χ

��
id

��

σ

��
π∗U

��

�� U

��
M

π �� X

, (10)

which on closed points is simply σ(m) = (m, χ(m)) ∈ M ×X tot U = tot π∗U .

Next, the adjunction morphism U → π∗π∗U induces on global sections the pullback
map B = H0(X ,U) → H0(M, π∗U), which we write as b �→ π∗b.

Thus the cameral curve X̃b is the zero locus

X̃b = zeros(sb), sb = σ − π∗(b) ∈ H0(M, π∗U), (11)

i.e., is cut out by the equation(s)

χ(m) = b(π(m)) (12)

in M = tot t ⊗C K X . Having fixed basic invariant polynomials {Ik}, and hence an isomor-
phism U  ⊕l

k=1 K dk
X , we can express this as the system of equations

∣
∣
∣
∣
∣
∣
∣

I1(m) = b1(π(m))
...

Il(m) = bl(π(m))

, (13)

for m ∈ M, with b = (b1, . . . , bl) ∈ B fixed. These are “global” equations and no choice
of local trivialisation is used here: the k-th equation takes values in (the total space of) K dk

X .

Another global description is given in Eq. (23).
From Eq. (11) follows

Proposition 2.1 The normal bundle of X̃b ⊆ M is

NX̃b/M  p∗
bU = t ⊗C p∗

b K X/W 
l⊕

k=1

p∗
b K dk

X . (14)

Proof While in general one uses the Koszul complex to compute the normal bundle, here we
have that both X̃b and M are smooth, and moreover, X̃b is a complete intersection. This case
is handled by a standard geometric argument, given in, e.g. [10, Proposition 6.15].

The isomorphism NX̃b/M  p∗
bU is induced by the (vertical component of the) differential

dsb : TM → s∗
b Tπ∗U of the section sb : M → tot π∗U . ��

123
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Similarly to the above argument, since M is the total space of a vector bundle (namely
t ⊗C K X ) on X , its tangent bundle TM is an extension of π∗TX by t ⊗C π∗K X . Restricting
to X̃ and combining with the previous result, one gets the diagram

0

��
TX̃

��
0 �� t ⊗C p∗K X �� TM |X̃

��

��

p∗TX �� 0

t ⊗C p∗K X/W

��
0

(15)

Now, consider g = (g1, . . . , gl) ∈ TB,b = B, with gi ∈ H0(X , K di
X ). It determines a

1-parameter family of deformations of X̃b, given by the equation

χ(m) = b(π(m)) + εg(π(m)), (16)

that is,
{

X̃b+εg
}
ε
. For ε in a sufficiently small disk �ρ ⊆ C the section b + εg ∈ B remains

generic—which we assume to be the case from now on. The total space of the 1-parameter
family is cut out in M × �ρ by the Eq. (16).

The section g determines a section of NX̃b/M = t ⊗C p∗
b K X/W , namely, p∗

bg.

2.2 Local description

It is not hard to describe the objects from the previous section in local coordinates. A choice
of a local (analytic) chart ψ on X , identifying an open U ⊆ X with a disk � ⊆ C,

determines a local trivialisation of K X and a compatible bundle chart φ on M, identifying
MU = π−1(U ) → U with pr1 : � × t → �, as usual:

MU = π−1(U )
φ ��

π

��

� × t

pr1

��
X ⊇ U

ψ �� � ⊆ C

. (17)

Such a local chart determines a trivialisation of K di
X over U and hence a section bi ∈

H0(X , K di
X ) is represented locally as (ψ−1)∗bi = βi (z)dz⊗di on U , where βi : � → C is

a holomorphic function.
Using the simple roots as a basis for t  C

l , we identify X̃U = p−1
b (U ) (via φ) with

the set of solutions of I(α1, . . . , αl) = β(z) for (z, α) ∈ � × C
l , giving a local version of

Eq. (13).

123
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Next, the trivialisations of K di
X (i = 1 . . . l) and the choice of roots provide an induced

trivialisation TMU

∣
∣

X̃U
and

(ψ−1)∗TMU

∣
∣

X̃U
= (C ⊕ t) ⊗C Oφ(X̃U )  Oφ(X̃U )

〈
∂

∂z
,

∂

∂α1
, . . . ,

∂

∂αl

〉

(18)

and, consequently, a local description of the diagram (15):

0

��
(ψ−1)∗TX̃U

��
0 �� t ⊗C Oφ(X̃U )

(
0
1

)

�� (C ⊕ t) ⊗C Oφ(X̃U )

(
1 0

)

��

(−β ′ DI
)

��

Oφ(X̃U )
�� 0

C
l ⊗C Oφ(X̃U )

��
0

. (19)

Here the bottom vertical map is, in more detail,

(−β ′ DI
) =

⎛

⎜
⎝

−β ′
1 ∂1 I1 . . . ∂l I1

...
...

...
...

−β ′
l ∂1 Il . . . ∂l Il

⎞

⎟
⎠ ∈ Matl×(l+1)

(
�
(
Oφ(X̃U )

))
, (20)

having rank l everywhere on X̃U , under the assumption that b = (b1, . . . , bl) ∈ B is generic.
This is the matrix of the map pr2 ◦ds from Proposition 2.1. We write DI or Dχ for the Jacobi
matrix of I = (I1, . . . , Il) : C

l → C
l .

Finally, given a tangent vector g = (g1, . . . , gl) ∈ TB,b = B, with (ψ−1)∗gi =
γi (z)dz⊗di on U , the corresponding 1-parameter (analytic) family of deformations of X̃b

is cut out locally (in � × C
l × �ρ) by I(α) = β(z) + εγ (z), where �ρ ⊆ C is as before.

We may occasionally suppress the pullbacks by φ and ψ, except for the cases when there
is a risk of confusion, as when discussing (co)roots and some associated objects.

2.3 Objects, associated with roots

Any linear map α ∈ t∨ = Hom(t, C) determines, by extension of scalars, a vector bundle
homomorphism t ⊗C K X → K X , denoted by the same letter. Hence, just as χ in Eq. (10),
such an α determines a tautological section α ∈ H0(M, π∗K X ), which on (closed) points
maps m ∈ M to α(m) = (m, α(m)) ∈ M ×X tot K X . Furthermore, restricting α to X̃ ⊂ M
gives a section α X̃ ∈ H0(X̃ , p∗K X ). Occasionally, we suppress the subscript X̃ , i.e., the
restriction.

The section α vanishes along a “hyperplane divisor” tot (ker α ⊗C K X ) ⊆ M, a rank-
(l −1) subbundle of t⊗C K X . The respective restrictions αi X̃ (of sections arising from roots)
vanish along divisors Dαi in X̃ , which are the ramification divisors of p : X̃ → X .
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If we choose a local chart (U , ψ) and φ : MU  � × t, as in (17), α is represented by
(z, u) �→ α(u)dz, where α(u) = 〈α, u〉 is the natural pairing between t and t∨. If we further
identify the preimage of π−1(U ) in tot π∗K X → M with�×t×C, via φ and a trivialisation
of K X , then the evaluation map of α is represented by

� × t � (z, u) �−→ (z, u, α(u)) ∈ � × t × C.

The linear functional α ∈ t∨ determines a function on � × t, that we may denote pr∗2α
if the distinction from α is important. Furthermore, given the choice of φ, we may consider
α (or rather, pr∗2α) a function φ∗α ∈ OMU (MU ) on MU . Consequently, upon restriction to
X̃U , we get a local function φ∗α ∈ OX̃U

(X̃U ) on the cameral curve. Of course, one should
really write φ∗pr∗2α

∣
∣

X̃U
here.

The distinction between the various objects associated to a root αi becomes important
when one considers their differentials. Since π∗K X ⊆ �1

M , dαi ∈ �2
M (M). At the same

time, dφ∗αi ∈ �1
MU

(MU ) and d(pr∗2αi ) ∈ �1(� × t). Naturally, we are going to write dαi

for the penultimate expression, so the distinction between dαi and dαi is essential. Finally,
we keep in mind that dαi = αi ∈ Hom(t, C), as with any linear map.

The assignment αi �→ αi determines an (injective) C-algebra homomorphism

ι : Sym(t∨) ↪→ H0

⎛

⎝M,
⊕

n≥0

π∗K n
X

⎞

⎠ (21)

and, consequently, a homomorphism

End(Cl) ⊗ Sym(t∨) ↪→ End(Cl) ⊗ H0

⎛

⎝M,
⊕

n≥0

π∗K n
X

⎞

⎠ , (22)

denoted by ι as well. Given a Sym(t∨)-valued endomorphism A with non-zero determinant
det A ∈ Sym(t∨), we write ι(A)−1 for the inverse of ι(A) in the ring of l × l matrices with
coefficients in the field of fractions Frac H0

(
M,
⊕

n≥0 π∗K n
X

)
, and in fact, in End(Cl) ⊗

H0
(
M,
⊕

n≥0 π∗K n
X

) [ 1
det ι(A)

]
.

We can, more generally, rewrite the global equations for X̃b as
∣
∣
∣
∣
∣
∣
∣

I1(α1, . . . ,αl) = π∗b1
...

Il(α1, . . . ,αl) = π∗bl

(23)

that is, the linear system ι(Ik) = π∗bk, k = 1 . . . l.

2.4 Liouville form

On M = tot t⊗C K X there is a t-valued 2-formω ∈ H0(M, t⊗C�2
M ). Probably the simplest

way to introduce it is by setting

ω = −dλ,

where λ ∈ H0(M, t⊗C π∗K X ) ⊆ H0(M, t⊗C �1
M ) is a tautological section, the “t-valued

Liouville form”.
We recall some explicit expressions for λ—although, as usual in symplectic geometry,

there are various sign ambiguities in the possible definitions.
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The chosen simple roots {α1, . . . , αl} form a basis of t∨, and we let {e1, . . . , el} stand for
the corresponding dual basis of t (consisting of fundamental coweights).

One can then set λi = ei ⊗C αi , a global section of t⊗C π∗K X ⊆ t⊗C π∗�1
M , and write

the Liouville form and the 2-form as

λ =
l∑

i=1

λi =

⎡

⎢
⎢
⎢
⎣

α1

α2
...

αl

⎤

⎥
⎥
⎥
⎦

, ω = −
l∑

i=1

ei ⊗C dαi =

⎡

⎢
⎢
⎢
⎣

−dα1

−dα2
...

−dαl

⎤

⎥
⎥
⎥
⎦

. (24)

Finally, if we choose local coordinates as in Eq. (17), we obtain for the pullback of λ and
ω to � × t

(φ−1)∗λ =
n∑

i=1

ei ⊗C αi dz =
⎡

⎢
⎣

α1dz
...

αl dz

⎤

⎥
⎦ , (φ−1)∗ω =

l∑

i=1

ei ⊗C dz ∧ dαi =
⎡

⎢
⎣

dz ∧ dα1
...

dz ∧ dαl

⎤

⎥
⎦ .

3 Background: two results

3.1 A result of Hurtubise andMarkman

We begin with the special case of a result of Hurtubise and Markman [16, Proposition 2.11]
mentioned in the introduction. We spell out some of the details of their argument for this
special case.

Proposition 3.1 For each generic b ∈ B, the pullback of global sections via pb, followed by
the isomorphism (14) and contraction with ω induces an isomorphism

β : B = H0(X ,U)
 ��H0(X̃b, p∗

bU)W  ��H0(X̃b, t ⊗C K X̃b
)W , (25)

or, using the choice of invariant polynomials {Ik}, an isomorphism

H0

(

X ,

l⊕

k=1

K dk
X

)

 H0

(

X̃b,

l⊕

k=1

p∗
b K dk

X

)W

 H0
(

X̃b, K ⊕l
X̃b

)W
.

Thus, the isomorphism β (25) is a composition of two maps. The first one is pullback
(adjunction) g �−→ p∗

bg, for g ∈ B = H0(X ,U). The second one is the map on global
sections, induced by the map of bundles

NX̃ −→ t ⊗C K X̃ (26)

s �−→ ω(̃s, )|X̃ ,

where s̃ is a lift of s to a section of TM . One may denote this map simply by � ω (contraction
with ω), but should keep in mind the restriction to X̃ .

The proof of Proposition 3.1 relies on a dimension count, combined with good under-
standing of the bundle map (26) and the induced map on fibres at m ∈ X̃ . For that, the
cases when m is not a ramification point and when it is one should be considered separately.
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Notice that if m is not a ramification point, then TX̃ ,m � π−1(π(m)) = t⊗C K X ,p(m), while
TX̃ ,m ⊆ π−1(π(m)) if m is a ramification point.

So let us choose a point m ∈ M and consider the fibre of π : M → X , passing through
m. We set L := π−1(π(m)) = t ⊗C K X ,π(m) ⊆ M, and write NL for the normal bundle of
the vector space L ⊆ M .

Using the local description of ω, we obtain that � ω fits in the following diagram:

TL,m ⊗ NL,m
� � �� TM,m

∣
∣
L ⊗ NL,m

�ω ��

		

t ⊗ T ∨
M,m

∣
∣
∣
L

⊗ NL,m

t ⊗ N∨
L,m ⊗ NL,m = t

��





Since NL = TX ,π(m) ⊗C OL and TL = L ⊗C OL = t ⊗C K X ,π(m) ⊗C OL , there is a
canonical trivialisation TL ⊗ NL = t ⊗C OL .

Using the normal sequence for L ⊆ M, one obtains:

Lemma 3.1 The map � ω induces a trivialisation TL ⊗ NL ω t ⊗C OL , which coincides
up to sign with the canonical trivialisation. That is,

TL ⊗ NL

can

ω �� t ⊗C OL

t ⊗C OL

−id
������������

.

Thus, in particular, �ω induces, for any m ∈ L, a W -equivariant isomorphism TL,m ⊗
NL,m  t. A similar result is stated, in a much more general setup, in [16][Theorem 2.8 (5)].

Lemma 3.2 Consider a point m ∈ X̃ that is not a ramification point of p : X̃ → X . The map
on fibres, induced by the bundle map (26) is an isomorphism

� ω : NX̃ ,m
 �� t ⊗C K X̃ ,m .

This is again a local calculation, using the explicit form of ω. Notice that since m is not a
ramification point, the composition

L = TL,m
� � �� TM,m �� �� NX̃ ,m

is an isomorphism. However, at ramification points the behaviour of �ω is different. In fact,
at such points the map (26) is not an isomorphism of bundles if l > 1, as is clear from the
next Lemma.

Lemma 3.3 Let m ∈ X̃ be a ramification point of p : X̃ → X . Then

NX̃ ,m
�ω ��

�����
����

����
����

�� t ⊗C K X̃ ,m ω TL,m ⊗ NL,m ⊗ K X̃ ,m

TX̃ ,m ⊗ NL,m ⊗ K X̃ ,m
��





commutes.
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This result is shown by a local calculation, which in turn boils down to a linear-algebraic
result, using the explicit form of ω. It is also stated in [16, Lemma 2.10].

Proof of Proposition 3.1 Themap β, i.e., (25) is a composition of twomaps, both of which are
injective. Indeed, H0(X ,U) ↪→ H0(X̃ , p∗U), and the image is contained in H0(X̃ , p∗U)W .

Furthermore, Lemma 3.2 implies that the map (26) induces an injection on global sections,
H0(X̃ , t⊗C p∗K X/W ) ↪→ H0(X̃ , t⊗C K X̃ ), and it preserves W -invariant sections. Finally,
by Serre duality (and the fact that taking duals commutes with taking invariants), we get

B = H0(X ,U) ↪→ H0(X̃ , p∗U)W ↪→ H0(X̃ , t ⊗C K X̃ )W  H1 (X̃ , t ⊗C OX̃

)W∨
.

But H1
(
X̃ , t ⊗C OX̃

)W
is the tangent space of the generalised Prym variety, and by the

complete integrability of the Hitchin system, its dimension equals the dimension of the base
B. Hence both injections are isomorphisms, and so is their composition. ��

3.2 A result of Hertling, Hoevenaars and Posthuma

We introduced earlier a certain weight-1 Z-VHS (V,∇G M ,VZ,V•, S) on B ⊆ B.

The bundle of lattices VZ was defined as R1 pW∗ (	), where p : X → B is the universal
cameral cover, and the vector bundle V = VZ ⊗Z OB  R1 pW∗ (t ⊗C p∗OB ). The relative
holomorphic Poincaré Lemma gives a quasi-isomorphism p−1OB quis �•

X /B , leading to

V  R1 pW∗ (t ⊗C �•
X /B ).

TheHodge bundles, as for geometricVHS, are determined by the naive filtration of�•
X /B ,

see [26, §10.2] and [27, §5.1]. In our case of weight one, �•≥1
X /B [−1] ⊆ �•

X /B determines

a subbundle V1 ⊆ V, as R1 pW∗ (t ⊗C �
•≥1
X /B [−1])  R0 pW∗ (t ⊗C �1

X /B ).

The Gauss–Manin connection ∇G M : V → V ⊗ �1
B can be defined in either topological

or holomorphic terms. The topological description relies on Ehresmann’s theorem, i.e., on
the C∞-local triviality of p : X → B. In this case, the homotopy-invariance of de Rham
cohomology implies that VZ is a locally constant sheaf and ∇G M can be described by a
Cartan–Lie formula. For geometric VHS this is described, e.g., in [26, §8.2].

The holomorphic description of ∇G M is discussed in [13, §8], following [18], see also
[4] and [27, §5.1]. The Koszul–Leray filtration on �•

X gives rise to a spectral sequence, for

which (E•,0
1 , d1) is identified with (�•

B (V),∇G M ).

One has the following result.

Theorem 3.1 [13, Proposition 8.2] The isomorphisms ∇G MλSW and β (25) coincide. That
is,

∇G M
ξ λSW = β(ξ),

for all tangent vectors ξ ∈ TbB and all b ∈ B.

The result is proved by an explicit hypercohomology calculation, using the Čech resolution
of the relative de Rham complex (�•

X /B , d).

4 Proof of Theorem A

We now turn to the proof of our main result, Theorem A. Recall that in the statement of
the theorem we use the algebra homomorphism ι from Eq. (22), so ι(DI)−1 is a global
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meromorphic section of End
(
C

l ⊗C

⊕
k≥0 π∗K k

X

)
with poles along the zeros of det ιDI.

That is, the homogeneous polynomials ∂i I j ∈ Symd j −1(t∨) are considered as global sections

of π∗
b K

d j −1
X , or, after restriction to X̃b, as sections of p∗

b K
d j −1
X .

Using Cramer’s formula and the fact that ι is an algebra homomorphism, we can rewrite
the right side of (6) as a linear combination of (restrictions of) λi with coefficients of the
kind

det
[
ι∂1I, . . . , p∗

bg, . . . , ι∂lI
]

αi det ιDI

∣
∣
∣
∣
∣

X̃b

∈ K(X̃b),

i.e., global meromorphic functions on X̃b, since both the numerator and the denominator

belong to H0
(

X̃b, p∗
b K

∑
i di −l+1

X

)
.

Now we prove Theorem A. Let us fix g ∈ TbB = H0(X ,
⊕

i K di
X ) and denote by s ∈

H0(X̃b, t ⊗C K X̃b
) the image of g under the isomorphism (5). Let us also denote by s̃ the

section from the right hand side of Eq. (6), i.e.,

s̃ = −
l∑

i=1

(
ι(DI)−1 · π∗g

)
i

αi
λi

∣
∣
∣
∣
∣

X̃b

.

This is a meromorphic section of t ⊗C K X̃b
with poles at most along the ramification of

pb : X̃b → X . We are going to prove that s = s̃. We use Theorem 3.1 and the representation
of the isomorphism β from Eq. (25) is a composition of two maps.

As a first step, we show that

s|X̃b\Ram(pb) = s̃|X̃b\Ram(pb) . (27)

For that we restrict the cameral cover to the complements of the ramification and branch
divisors

pb : X̃b\Ram(pb) −→ X\Bra(pb)

and choose U ⊆ X\Bra(pb), biholomorphic to an open disk (via ψ : U → �). In this case,
X̃U ⊆ X̃ ∩ (det ιDI 
= 0) has |W | (analytic) connected components, each isomorphic to U ,

labelled by the different Weyl chambers

X̃U = X̃1
U

∐
. . .
∐

X̃ |W |
U .

We choose (an analytic) local coordinate z on U and use z (i.e., its pullback p∗
b z) as a

coordinate on X̃U ⊆ X̃b\Ram(pb).

Then, setting γ for the coordinate vector of p∗
bg,

(φ−1)∗γ = (−β ′ DI|φ(X̃U )

)
(

0
(DI)|−1

φ(X̃U )
((φ−1)∗γ )

)

∈ O⊕l
� (�),

i.e., we obtain a lift γ̃ of γ

(φ−1)∗γ̃ =
l∑

i=1

( (DI)−1
∣
∣
φ(X̃U )

(φ−1)∗γ )i
∂

∂αi
∈ �

(
φ(X̃U ), (φ−1)∗TM

∣
∣

X̃U

)
. (28)

Note that the expression for γ̃ is well-defined on X̃U : away from ramification, we can
solve locally-analytically for αi in terms of z, so (DI)−1, when restricted to a connected
component of φ(X̃U ), is actually a section of End(Cl) ⊗C Oan

� .
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Then, using the lift g̃ from Eq. (28), we obtain

g̃�ω|X̃U
= −φ∗

(
l∑

i=1

(
(DI)|−1

φ(X̃U )
· γ
)

i
⊗ ei ⊗ [dz]

)

−
l∑

i=1

φ∗
(

(DI)|−1
φ(X̃U )

· γ
)

i

αi
λi

∣
∣
∣
∣
∣
∣
∣

X̃U

,

as (φ−1)∗λi = αi [dz] ⊗ ei . We write [dz] rather than dz since the cotangent sheaf of X̃U is

a quotient of �1
MU

∣
∣
∣

X̃U
. This is precisely the expression for s̃ from Eq. (6), written locally.

Having shown (27), we now note that the sheaf of meromorphic sections of a holomorphic
vector bundle on a smooth curve is trivial (see e.g. [12, p.76]; see also [25, Lemma 31.25.3]).
As two meromorphic functions that coincide away from a finite set of points are equal,
Eq. (27) shows that s = s̃. Since the two sections s and s̃ are equal, and s is known to be
W -invariant, so is s̃. ��

5 Examples

5.1 SL2(C)

For completeness, we start with the simplest case of G = SL2(C). The Cartan subalgebra
t of diagonal traceless 2 × 2 matrices is identified with C via α(A) = A11 and we take the
Z/2Z-invariant polynomial I = det, i.e., I (α) = −α2. The cameral (and spectral) curve
X̃b ⊆ tot K 2

X has equation α2 = π∗b, for b ∈ B = H0(X , K 2
X ). Then, for generic b, the

isomorphism (5)

(∇G MλSW
)

b : TbB = H0(X , K 2
X )

 ��H0(X̃b, K X̃b
)
Z/2
−

is given by

g �−→
(
∇G M
g λSW

)

b
= π∗g

2α2 λSW

∣
∣
∣
∣

X̃b

= − π∗g
2σ

λ

∣
∣
∣
∣

X̃b

= π∗g
2λSW

∣
∣
∣
∣

X̃b

(29)

where σ = −α2 ∈ H0(M, π∗K 2
X ) is the tautological section (10) of U = K 2

X and λSW = α

is the Liouville (Seiberg–Witten) form.

5.2 SL3(C)

Consider G = SL3(C), with the standard choices of Borel (upper-triangular) and Cartan
(diagonal) subgroups. Here t ⊆ sl3(C) is the subspace of diagonal traceless 3 × 3 matrices
and W = S3. If we set α1(A) = A11 − A22, α2(A) = A22 − A33 (two simple positive roots),
then we can choose the invariant polynomials to be

∣
∣
∣
∣

I1(α1, α2) = α2
1 + α1α2 + α2

2
I2(α1, α2) = −2α3

1 − 3α2
1α2 + 3α1α

2
2 + 2α3

2 .
(30)

In fact, these are I1(A) = −3(A11A22 + A11A33 + A22A33) and I2(A) = −27 det A.
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Consequently, the cameral curve X̃b, corresponding to a generic section b = (b1, b2) ∈
B = H0(X , K 2

X ) ⊕ H0(X , K 3
X ) is cut out in M = tot (K 2

X ⊕ K 3
X ) by the equations

∣
∣
∣
∣
α2
1 + α1α2 + α2

2 = π∗b1
−2α3

1 − 3α2
1α2 + 3α1α

2
2 + 2α3

2 = π∗b2
(31)

and
(
∇G M
g λSW

)

b
= 1

det ιDI

[
3α2

1 − 6α1α2 − 6α2
2 2α2 + α1

−6α2
1 − 6α1α2 + 3α2

2 −2α1 − α2

] [
g1
g2

]∣
∣
∣
∣

X̃b

,

where

det ιDI = 27α1α2(α1 + α2).

5.3 G2

It is well-known [17, p.103] that the G2 root system can be embedded in the B3 root system—
and that in fact, this can be done in a way that simple roots of the former are expressed as
linear combinations of simple roots of the latter. An explicit description of such an embedding
can be obtained by extending the calculations in [1, §4], but we do not need this now. Using
this embedding, we can take the g2 Cartan subalgebra t to consist of diagonal matrices of the
form h = diag(−a − b,−a,−b, 0, b, a, a + b), for a, b ∈ C. Two simple roots α1, α2 ∈ t∨
are, e.g., b and a − b, i.e.,

α1 (h) = h55, α2 (h) = h66 − h55.

The six positive roots are then α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2. The
characteristic polynomial of h ∈ t is

det(h − λE7) = −λ7 + λ52I1(h) − λ3 I 21 (h) + λI2(h),

where, if we use α1 and α2 as coordinates on t, we have for the invariants
∣
∣
∣
∣

I1(α1, α2) = 3α2
1 + 3α1α2 + α2

2
I2(α1, α2) = 4α6

1 + 12α5
1α2 + 13α4

1α
2
2 + 6α3

1α
3
2 + α2

1α
4
2 .

(32)

The eigenvalues of a matrix from g2 ⊆ so7 are 0,±λ1,±λ2,±λ3,
∑3

i=1 λi = 0. The two
invariants are, respectively, 1

2 (λ
2
1 + λ22 + λ23) and (λ1λ2λ3)

2.

Consequently, the cameral curve X̃b, corresponding to a generic section (b1, b2) ∈ B =
H0(X , K 2

X ) ⊕ H0(X , K 6
X ) is cut out in M = tot (K 2

X ⊕ K 6
X ) by the equations

∣
∣
∣
∣
3α2

1 + 3α1α2 + α2
2 = π∗b1

4α6
1 + 12α5

1α2 + 13α4
1α

2
2 + 6α3

1α
3
2 + α2

1α
4
2 = π∗b2.

(33)

Now, identifying the adjoint quotient χ : t → t/W with I = (I1, I2) : C
2 → C

2, we
obtain that under the isomorphism fromTheoremA a section g = (g1, g2)T ∈ H0(X , K 2

X )⊕
H0(X , K 6

X ) = TbB is mapped to
(
∇G M
g λSW

)

b
, i.e.,

1

det ιDI

[ −2α2
1(6α

3
1 + 13α2

1α2 + 9α1α
2
2 + 2α3

2) 3α1 + 2α2

2α1(12α4
1 + 30α3

1α2 + 26α2
1α

2
2 + 9α1α

3
2 + α4

2) −6α1 − 3α2

] [
π∗g1
π∗g2

]∣
∣
∣
∣

X̃b

,

where

det ιDI = −2α1α2(α1 + α2)(2α1 + α2)(3α1 + α2)(3α1 + 2α2). (34)
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We see that in all examples det DI is a constant multiple of the product of all positive roots.
In fact, this follows from a classical result of Steinberg [24]. Hence (det DI)2 is proportional
to the discriminant D of g—the product of all roots. Being W -invariant, the discriminant
can be expressed as a polynomial in the generators of C[t]W—here, I1 and I2. We sketch a
possible way of obtaining this expression without toomuch brute force. Using the embedding
g2 ⊆ so7, we can identify α1 and α2 as λ1 and λ2 −λ1, up to reordering λi ’s. Consequently,

D = α2
1(α1 + α2)

2(2α1 + α2)
2α2

2(3α1 + α2)
2(3α1 + 2α2)

2

= λ21λ
2
2λ

2
3(λ1 − λ2)

2(λ1 − λ3)
2(λ2 − λ3)

2. (35)

The product of the first three terms is I2. The product of the last three terms is a polynomial of
degree 6, and hencemust be a linear combination of I 31 and I2, and so one checks immediately
that

D = I2(4I 31 − 27I2).

Consequently, the restriction of ιD to the universal cameral cover X is the pull-back of a
section of OB ⊗ H0(X , K 12

X ), namely,

B � (b1, b2) �−→ b2(4b31 − 27b2).

It is the Lie derivative of this section that enters the Balduzzi–Pantev formula and its gener-
alization [2, 3].

We refer the reader to the beautiful papers [15, 19] for additional details on the G2-Hitchin
system, including Langlands duality and the description of Hitchin fibres.
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