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2 Abstract

The input-output (I-O) properties of cortical excitatory neurons have
been intensively studied in the past. Recently, theoretical work has
demonstrated that the I-O properties in the high-frequency (HF)
domain are not universally determined solely by neuronal properties,
but also depend on the interplay between these neuronal properties
and input statistics. This study aims to validate the aforementioned
theoretical work using an extensive set of numerical simulations on
state-of-the-art multi-compartmental cortical neuron models from the
Blue Brain Project (BBP). The simulations are conducted using
NEURON software with Python and Julia on high-performance
computers (HPC). The results reveal variations in the strength of the
hypothesized effect among different neurons, with some neuronal
models not exhibiting this effect at all. Additionally, a notable
anti-correlation has been identified between total dendritic length
(TDL) and sensitivity to input statistics. This suggests that more
extensive neurons are less sensitive, or even insensitive, to the
theorized effect. Instead, they tend to exhibit the previously
established universality behavior in the HF domain.
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3 Introduction

3.1 Aims of this thesis

During the last decades the dynamical properties of the neurons have been extensively

studied. Thanks to the linear response theory, it has been described the evolution

over time of the neuron membrane potential and, more in general, the excitability

of a single neuron and as well as of neuronal networks. The neuronal excitability

has been described in the frequency domain describing the gain or magnitude and

the phase shift between the output signal and the input one. It has been found out

the gain of a neuron depends over the frequency of modulation of the input, it is

affected by background noise at low and intermediate frequency, but is not at HF.

Whatever inputs have injected in a neuron (current or conductance like) the neuron

HF answer is not affected and depends only by the properties of the neuron itself.

It has been formulate the idea of the universality of the HF response of a neurons,

thus it depends only the neuronal properties themselves. On that regard a recent

theoretical work by Richardson, (Richardson, 2018) has demonstrated that the HF

response of a neuron depends by not only the neuronal properties themselves but as

well as by the statistic of the input.

My PhD project has the goal to verify the validity of the Richardson’s theory in

real neurons, using more complex models than EIF, such as the state of the art

multi-compartmental neuronal models of the excitatory neurons of the rat neocortex.

Another goal is to understand if the effect theorised by Richardson could be seen in

an experiment and give an idea of the amount of times and quantity of data ( e.g. AP

occurrence time) are needed to possibly see the aforementioned effect at HF. The

expected outcomes from my project are:

• the possibility to perform in vitro experiment to reproduce the Richardson’s

theory in real neurons such as in acute slices

8



• The excitatory neurons of the neocortex show in the HF domain the Richard-

son’s effect, confirming the interplay between the statistics of the input and

the neuronal properties of the neurons themselves.

9



3.2 Background & Motivation: cellular electrophysiology in neu-

roscience

Throughout the entire human history, the inquire about nature of the world and of

the human experience have been a constant focus. Over time, various methods have

been employed to attempt to make progress in understand. From ancient mystic

religions to philosophy and ultimately to the scientific method, the ways in which

humans approached the pursuit of knowledge changed significantly. With respect to

the nature of the brain and of the mind specifically, there was a notable shift away

from "intuitions" and "analogies" towards a more philosophical approach grounded

in "pure reason" and in subjective experience (Lamb, 1925).

After the appearance of Homo sapiens and 9000 years and the Agricultural Revo-

lution (Harari, 2015), the center of emotions and thoughts was still considered the

heart; once a person was dead its heart was weighted respected than a feather and as

a function of this comparison the person afterlife destiny was settled (Papyrus of Ani,

0 BC). Many centuries later, the first person to track up the sensory nerves up to the

brain was Alcmaeon of Croton around the 450 BC; he considered the brain the centre

of the sens organs and thoughts (Tannery, 1887). From that time on, the prototype of

the neuroscience has born. Around 100 years later, thanks to the Alcmaeon works

Plato ≈ 360 BC believed that our head was the centre of thinking and reasoning, the

logos. His idea come from the globe shape of the head, similar to Earth and since it

is at the top of the body; closer to heaven and reflecting the image of God (Lamb,

1925).

In the same ages, Aristotle had its own idea: the soul was equally located through

the body, was imperishable and self-existing and was the only sign of difference

between plants and animals. In addition, he stated that the centre of sensation and

emotion was the heart and, on the other hand, the brain was only an organ dedicated

to cool down the heat produced by heart (Hicks, 1907).
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When the Scientific revolution happened around 500 years ago, it has been recognise

the ignorance of the human kind and a new path of exploration of the unknown was

embarked (Harari, 2015). Around the 1543, Vesalius was the first to distinguish the

grey and the white matter while dissecting human corpses (Vesalius and van Calcar,

1543). Around the 18th century, the father of the microscope, van Leeuwenhoek,

observed a " fine vessels" within a nerve (van Leeuwenhoek, 1719). After 150 years,

through carmine stain "vessels", "globules" and "protoplasmic processes" have seen

as a unique cellular unit, the nerve; that later, thanks to the studies of Cajal, they will

be named as neuron by Waldeyer (Waldeyer, 1891).

As before mentioned, the father of neurons is Santiago Ramón y Cajal that from the

end of the 19th has contributed with discoveries and theories to forge the modern

Neuroscience and Neuroanatomy (Ramon y Cajal, 1909) . Using and improving the

Golgi silver stain, he was able to focus his attention on the central nervous system

cells. He proved that neurons aren’t continuous, but rather are contiguous; since they

have a gap between them, the synapses. His work furnished evidences to prove the

neuron doctrine by H. Waldeyer-Hartz later.

In 1952, Hodgkin and Huxley introduce their model that is a milestone of the neuro-

science: the Hodgkin-Huxley model. They recorded the membrane potentials of a

squid axon, to quantify for the first time the active mechanism together to the not

passive properties of the cell membrane. They were able to quantify the flowing

current and then, they fitted the experimental results with a mathematical model

composed by a set of differential equations. The model well described and quantified

the time evolution of the neuronal membrane potential (Hodgkin and Huxley, 1952).

From that time until now, the human knowledge has advanced and diversified, allow-

ing us nowadays to approach complex problems such as the complexity of the brain

or more specific how a network of neurons or a single neuron work.

On regard of that, a lot of questions are still open in neuroscience, i.e., how our
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brain can generate complex mechanisms, such as perception, memory, language,

cognition and taking decision from environmental stimuli; from a computational

point of view, the brain receives inputs, elaborates them and responds with outputs.

To investigate and dig into this exciting research field that still has big open questions,

the theoretical neuroscience comes out with experimental data interpretation in order

to make simpler the observations and build mathematical models that represent ideas

(Gerstner et al., 2012). An example of model to study the nervous system is the

black-box approach, that allows to understand, model, infer, describe how the brain

generates outputs from input stimuli. One of the main brain area in charge of this

input-output relationship is the cerebral cortex. However, it is still not completely

understood how neuron populations and networks encode the incoming information

and how they translate it. Many questions find room in these partial knowledge; how

populations of interacting neurons make possible several complex tasks? How do

they represent the information at the neuronal level with their structure and physio-

logical properties?

Even if,nowadays, quite a lot is known about the the input-output properties of

neurons, we are still far away to know,in details, how information is represented by

neuronal activity. To make deeper the comprehension on how the neuronal networks

perform the more complex tasks, it is necessary to investigate the microscopic scale

and to understand the intrinsic neuronal properties and how neurons communicate

between them as a network. Hence, to understand the brain complexity is helpful to

investigate the physiology of the most "atomic" neuronal network blocks: neurons

and synapses.

To accomplish this goal is useful to recall that the brain is composed by billion of

neurons; for example considering a single cortical column of neocortex, there are

around 105 neurons connect to each other with a number of synaptic connections as

109 (Dasgupta and Greenwald, 2001).
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A neuron is an electrically excitable cell, it mostly communicates through synapses

with other neurons releasing into the synaptic gap chemicals: the neurotransmit-

ters. Neurons can be classified in several ways through their morphology, electrical

"phenotype", on their functionality, as function of the emitted synaptic potential if

positive or negative and etc. Neurons,in general consists in three main parts: soma,

axon and dendrites. The soma is the neuron core, it contains the cell organelles and

the biochemical machinery of the neuron. The dendrites are branched extensions that

start from the soma and propagate electrical stimuli received from other cells to the

neuron. The axon is a long projection of a neuron, it conducts the electrical impulses,

the action potentials, from the soma to the external.

The synapses are structures that allow the transmission of the electrochemical signals

between neurons; they are the main structures through neurons communicate. A

synapse is composed by three main parts: a presynaptic terminal, the synaptic gap

and a postsynaptic membrane. Synapses can be classified as electrical and chemical

synapses.

So far, neurons and synapses have been introduced and they are the fundamental

bricks of neuronal networks. However how neurons communicate? They do through

action potentials, APs!

The electrochemical basis of neuronal communication is the action potential

(AP) that has similar features whatever neuron has generated it, indeed the AP is

stereotyped, hence whether the neuron generated it has always the same features.

An action potential is a sudden rise of the membrane potential values, afterwards

it overcame a certain threshold value; then, the membrane potential comes back to

a more negative values than the starting point. After a couple of milliseconds the

membrane potential is at the starting point.
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3.3 Conventional characterisation of the "electrical phenotype"

cells

As it has briefly described before the AP is the key point of the communication

between neurons; however to better understand the different phases of an action

potential; before it is essential to have a deeper understand of the membrane potential

basis.

The processing of the information depends not only by the synaptic circuitry, but

also on the neurons electrophysiological properties as well as are affected and tuned

by neuroactive substances. Considering, for example, two neurons with the same

morphological features, they could respond in different ways due to intrinsic cellular

properties (McCormick, 2004). Studying the electrophysiological and pharmaco-

logical properties of a single neuron helps to understand the functionality and the

synaptic organisation. The neuron behaviour is determined by the heterogeneous

ionic currents distribution and by the neurotransmitter action that can modulate the

amplitude and the properties of the ionic currents (McCormick, 2004).

3.3.1 The electrical activity of a neuron: the basis

One way to study the activity of a neuron of a network of them is to measure their

electrical activity. Neurons communicate between them through emission of single

or a train of action potentials (APs). An action potential is a temporary variation

of the membrane potential toward more positive values respect than a resting con-

dition. The mammals neurons in resting condition have as a values of membrane

potential -65 mV (also called resting potentials, Vrest), meaning that the inside of

a cell is more negative than outside. This negative membrane potential is due the

different concentration of the ions (Na+,K+,Cl−,Mg2+,Ca2+) inside and outside

of the cell membrane, where the main difference of concentration from the side of

the membrane is a bigger extracellular concentration of Na+ and conversely a bigger
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K+ intracellular concentration.

The cell membrane is a lipid bilayer, it is impermeable to ions and for that rea-

son an ions concentration difference is set between the inside and outside of the

membrane. As a consequence, a driving force is established and the lipid bilayer

can be electrically modelled as an insulator. The only way that ions can cross the

two sides of the membrane is through the ion channels, that are proteins into the

lipid bilayer, that acts like a pores. One feature of the ion channels is the selective

permeability to a certain ionic species, (i.e.sodium channels are called after the ion

are more permeable of); for some of them the permeability depends on their gating

properties. This means that ions channels can be open or close state. This "class"

of channels are called active channels and only in the open state ions can permeate

through. In addition, their gating properties and as consequence their permeability

are a function of several factors (i.e. membrane potentials for voltage-gated channels

and ligands concentration for chemically-gated channels). For the other channels, the

passive ones, their permeability doesn’t change in response to membrane potential

variations. Between the two side of the membrane there is a continuous exchange

,

Figure 1: Example of active ion channels into a cells membrane, taken and modified
from (Sterratt et al., 2011)

of ions also at the equilibrium, ions diffuse from one side to another, following
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their gradient, however there are some ionic pumps that keeps constant the potential

difference, such as the sodium–potassium exchanger that pushes K+ into the cell

and the Na+ outside; for each of two K+ ions pushed inside three Na+ are pumped

out. All this work against the equilibrium gradient requires energy. To describe the

flux of a particle that flows following his gradient in a free environment; so basically

its diffusion, the Fick’s law comes to help (Fick, 1855) giving us the molar flux JA,

for a certain particle A and a certain a diffusion coefficient DA, the derivative dA
dx

represents the difference in concentration of the particle A along the dimension x. It

is necessary to consider the particle follow the concentration gradient, hence, with

a positive value of the derivative,the diffusion goes towards the less concentrated

region from where the particle is more concentrated. The Fick’s law is:

Jdi f f ,A =−DA
dA
dx

. (1)

However, ions are particles with electrical charge and the difference of potential

affects their flux as well, they are accelerated by the electric field with a drift speed:

Jdri f t,A =−DA ·F · zA · [A]
RT

dV
dx

(2)

where T is temperature, R and F are, respectively the gas and Faraday constants, zA

is the ions valency and V is the electrical potential. To consider both phenomena, the

total flux is the sum of both contribution, JA = Jdi f f ,A + Jdri f t,A:

J,A =−DA · (
dA
dx

+
F · zA · [A]

RT
dV
dx

) (3)

That is called the Nernst-Plank equation.

Nevertheless, in neuroscience the ionic flux is usually described by the current I,
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where:

I = zA ·F · JA (4)

the current is relate to the difference of potential to the Ohm’s law, a milestone of

the physics of electric phenomena:

V = I ·R (5)

where R is the resistance, sometimes the law is expressed I = GV , where G is the

conductance and is the reciprocal of the R. Conductors that behave as described as

the Ohm’s law are called ohmic.

Considering the difference of V between the sides of the membrane, this value is

also affected by the different membrane permeability of the lasted to the different ion

species; the membrane is very permeable to K+,due to the passive or leak channels.

Nonetheless, the membrane is less, but still permeable to Na+ and Cl−, through

other and less numerous passive channels. A considerable amount of K+ ions from

inside to outside the membrane following the gradient concentration causes a rising

of an electrical gradient due the unbalance of positive and negative sides of the

membrane; when the two fluxes become equals in strength, the K+ equilibrium

potential is reached. It is possible to calculate the equilibrium potential of an ion

through the Nerst’s equation:

EA =
RT

F · zA
· ln

(
[A]out

[A]in

)
(6)

The different ion concentrations between outside and inside of the membrane, due to

the membrane insulator behaviour has risen a query about the capacitance value in

the past. From the work of Gentet and colleagues (Gentet et al., 2000), it has been

found that the general capacitance value for neurons is 0,9 µC
cm2 and usually accepted

17



≈ 1,0 µC
cm2 .

Summarising all the notions stated so far, such the Nernst’s equation,the Ohm’s law,

the single ions equilibrium potential, the diffusion and drift flux can be introduced

the Goldman-Hodgkin-Katz equation, that predicts the ions current IA, when the

potential has a certain value V. Considering a membrane permeable to Na+, K+,

Cl−, it can be calculated the reversal potential (so the ion potential value in which the

membrane current reverse direction) for all these ions. In addition, some assumption

are necessary:

• The current flux is zero when the voltage is equal to the equilibrium potential

• The current changes direction at the equilibrium potential when the potential V

is less than the equilibrium potential; for this reason the equilibrium is called

reversal potential

• The single ion doesn’t follow Ohm’s law since there is not proportionality

between current and potential

• the I-V characteristic of K+ and Ca2+ promotes respectively, outward and

inward rectification.

Now, it is possible calculate the reversal potential assuming that only Cl, K , and Na

ions are present:

Em =
RT
F

ln
(

PK[K+]out +PNa[Na+]out +PCl[Cl−]out

PK[K+]in +PNa[Na+]in +PCl[Cl−]in

)
(7)

with respectively PK , PNa, PCl , the membrane permeability of these ions. T
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3.3.2 The action potential

The membrane potential in a neuron is not always stable at resting potential value,its

brief changes can bring to rapid signalling in neurons. The most characteristic of

them is the action potential or spike, which can be fire once or in sequence, as train

of action potential or spike trains. Hodgkin and Huxley in their work on a squid

axon, for the first time using the voltage clamp technique recorded action potentials

(Hodgkin and Huxley, 1952). This technique allowed them to measure directly the

transmembrane current, which is responsible for the electrical neuron behaviour. In

addition, the ionic composition of the membrane had been control by Hodgkin and

Huxley; showing that the very fast action potential upswing is due to an increase

of the transient sodium current INa,t . The activation of the INa,t appears when the

depolarisation of the membrane reaches a value around —50 to —55 mV; in these

range of values the activation of the INa,t is strong enough to overcome its same

inactivation. The depolarisation of the membrane potential rapidly activated the

INa,t ,causing a increase of the Na+ ions which are entering into the cell, pushing

the membrane potential towards more positive values. The sudden depolarisation is

spread to the membrane close regions, via electronic current flow; causing the action

potential propagation along the axon. The repolarisation of the membrane potential

then occurs due to two processes: the inactivation of the INa,t and the activation of the

IK+ . The IK+ is slower than the INa+ and allows the K+ ions to leave in the cell and

is activated by the depolarisation of the membrane potential. At a certain time,while

the K+ are leaving, they overcame the Na+ entering in the cell; causing the end of

the action potential the repolarisation of the cell. From the Hodgkin and Huxley

work, it has been shown that the INa,t current is preponderant in AP generation

(Hodgkin and Huxley, 1952). In the image 2 an AP of the squid giant axon is shown;

the currents that contribute to the AP shape before mentioned are shown in the

same image. However, also other current play a role in the AP generation like Ca2+
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voltage-gated current in somatic and dendritic regions. On the contrary of the squid

axon, in dendrites and soma of mammalians the AP repolarisation is due to a variety

of IK repolarisation of action potentials currents.

Figure 2: AP in a giant squid axon, The membrane potential scale together the equi-
librium potentials are shown to the left.The k+ and Na+ conductances changes are
scaled on the right per membrane µm2 Changes in Na+ and K+ ionic conductances
are scaled on the right in terms of calculated open channels per square micrometer
of membrane. Taken and modified by (McCormick, 2004)

3.3.3 Types of ionic currents

The membrane potential of a neuron is not constant at the resting potential, through

the cell membrane there is a constant flux of ions; so several ionic current are ac-

tivated and deactivated. These currents are characterised by the ions they conduct

as well as by membrane potential and neurotransmitter sensitivity and time course
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(McCormick, 2004) (McCormick and Huguenard, 1992). The ionic currents once

discovered were classified in two type: the ones sensitive to membrane potential

changes and the one sensitive to neurotransmitter and second messengers; some of

them have been shown to belong to both classes. Many currents are activated by

membrane potential depolarisation, usually, they don’t remain activated once they

are, even if in presence of a constant depolarisation. Hence, ionic currents have

states of activation and inactivation as well. If a small displacement from the resting

membrane potential activates the current, that current is called low threshold, on the

contrary, if a non-trivial positive displacement is needed the current is called high

threshold current. Furthermore, if the membrane potential is kept constant and the

current has only a transient response, it takes the names of transient or current; on the

other hand if the current persists, it is known as persistent or long lasting current. the

ionic currents are essential to determine the neuronal firing rate and, for this reason,

have been intensively investigated. Some example of them are discussed below.

The transient and persistent sodium current INa+,t INa+,p, they differ from their

properties. They are both activated by depolarisation, however the transient sodium

current, as mentioned before, is one of the key current to generate action potentials.

On the other hand, the persistent one, brings the membrane potential from the resting

value to a close value of the action potential firing threshold. Then, adding Na+

ions enhances the neuron response to the excitatory inputs. The INa+,p determines

the neuronal baseline firing rate and in some neurons appears to keep the intrinsic

pacemaker activity also in absence of synaptic inputs (McCormick, 2004) . An

example, could be cortical pyramidal neurons 4 (McCormick and Prince, 1987).

The high-threshold calcium currents contributes to generate APs in mammalian

neurons; adding part of the depolarisation of the APs and, more significantly, allowing

the Ca2+ to enter into the cell causing an activation of the Ca2+-activated K+ current
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(Sah and Faber, 2002). On the other hand, the low-threshold calcium currents play

a role on generating in rhythmic bursts of action potentials. A very clear example

of this APs pattern is in the mammalian brain in thalamic relay neurons, which

receive from the visual system a direct input from the retina and then, transmit the

information to the visual cortex. An example of this phenomena, it is the generation

of spontaneous synchronised activity by thalamic relay cells bursting in sleeping

animals (McCormick and Bal, 1997).

On regard of the K+ currents, they are responsible of the repolarisation of the

membrane potential; therefore they have a role on determining the probability of

generation of an action potential for a given time. An example of K+ currents

which significantly affect the neuronal firing rate are the Ca2+-activated K+ currents;

which two of them have been identified IC and IAHP (Sah and Faber, 2002). In

cortical and hippocampal pyramidal neurons, they contributes on decreasing the

firing rate; a phenomena called spike frequency adaptation. The IC contributes only

for short interspike intervals due to short time course. On the other hands, the IAHP

contributes more on the timescale since it has a slower activation 4 (McCormick,

2004). Other example of K+ that affect the neuronal firing rate are the muscarinic

current IM and K+ transient current, known as IA. The first one is activated by

depolarisation (≈−60mV ) and with more positive potential is rapidly inactivated;

it responses to a sudden depolarisation of the membrane potential and its jobs is

to delay the onset of the first AP. It also play a role on to repolarise the membrane

potential, when a constant depolarisation has been kept: it can slow down the firing

frequency of a neuron; an example of its action is shown in the figure 3. The IM

is activated ≈ −65mV , when the membrane potential is depolarised: it has been

found in pyramidal neuron of hippocampus and cortex. Since it low amplitude and

slow kinetics, it doesn’t affect a single AP, but contributes to frequency adaptation,

when a constant depolarisation is kept. The figure 3 shows the effects of the currents
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previously described added on top of the Hodgkin-Huxley model. The figure 4 shows

the different spiking shapes in different brain regions;all they are due to the contribute

of the several types of currents. Some examples are the panel C where the current

INa+,p generates some potential plateau (arrowheads) in the Purkinje cells. Another

example is the strong presence of the IAHP after every action potentials in medial

Habenula, generating the intrinsic "peacemaker" discharge in panel F (arrows).

Figure 3: A combination of a classic Hodgkin-Huxley model firing pattern shown in
panel A, with several types of voltage-gated currents and the impulse firing patterns
in response of a steady depolarising current injection. B: IC and high-threshold
Ca2+IL makes easier the repolarisation of each action potential. C: the addition of the
IA, a transient K+ current activated by depolarisation. The result is in delaying the
onset of an AP. D: The addition of the K+ persistent current IM brings in a substantial
decrease of the neuronal excitability. E: The addition of the slow K+ current Ca2+

activated generates spike frequency adaptation and a slow hyperpolarisation after
a train of APs. F: Adding the slow threshold and transient Ca2+ current causes the
generation of an action potential burst at ¯85mV . G: Considering the panel F and
adding the inactivation of IT current and a depolarisation at −60mV generates a train
of two action potentials. These traces were originally in silico results from Huguenard
and McCormick, (Huguenard and McCormick, 1994).Taken by (McCormick, 2004)
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Figure 4: From different mammalian brain regions, the electrophysiological behavior
of different neurons. A: Regular firing cortical pyramidal neuron. The injected
depolarising current pulse (top trace) generates an AP train that occur undergoes to
spike frequency adaptation. B: On the other hand in other cortical pyramidal neurons,
an injection of depolarizing current pulses turns into a neuronal output "burst", so a
generation of an APs cluster on top of a slow potential. C: Response of cerebellar
Purkinje cell in response to an intracellular depolarising current pulse injection. At
the first, in the soma, a fast and high-frequency discharge of Na+-dependent action
potentials. This phenomena is modulated by the Ca2+ dendritic spikes occurrence
(asterisks). The discharge outlasts the duration of the intracellular injection( at the
top). This is due to the presence of a plateau potential, generate by the INa+,p and
calcium currents (arrowheads). D: Thalamic interneuron depolarisation generates
an AP train of four action potentials when the membrane potential is slightly more
positive than —65 mV. A burst of action potentials it is generated when the cell
is more negative or at —75 mV E: The asterisk indicates a burst discharge due
to low-threshold Ca2+ spike. F: A neuron in the medial Habenula, it generates an
intrinsic "pacemaker" discharge. From intracellular recording, it has been revealed a
large after hyperpolarisation following each AP. They affect the rate at which the
neuron fires (arrows).
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3.3.4 Conventional characterisation of the "electrical phenotype" cells

The physiological properties of the neurons, like the currents properties and their

effects on the neuronal output response, have been often studied using the black

box approach, injecting an input and recording the output of the neuron. It has led

to the study of the unique output behaviour of each different neuronal type: their

electrophysiological fingerprint. At single neuronal level, the study of the incoming

synaptic inputs and their transformation into APs trains has been extensively explored

injecting into neuronal soma depolarising DC square steps, meanwhile recording the

membrane potential. Injecting into the neuronal soma a current step lead to a certain

current values that overcome a threshold and the neurons start to fire APs. Then, it is

possible to quantify the mean firing rate as the ratio of the number of the APs fired

on the duration of the stimulus. Repeating this procedure for different current step

values ends up to build the firing rate-current curve, that is the electrical "fingerprint"

of a neuron.

In literature during the past decades, many experiments have been performed to

study the input-output properties of the neurons. The transfer function of the neurons

has been investigated in different animal species, such as rats, cats and guinea pigs

as well as in motoneurons (Granit et al., 1963) (Granit et al., 1966), cortical neurons

(McCormick et al., 1985) and visual cortical neurons in vivo (Nowak et al., 2003).

In the work of McCormick and colleagues (McCormick et al., 1985) have been

used slices of sensorimotor and anterior cingulate cortex of guinea pig to study the

electrophysiological properties of neurons throughout intracellular recordings. They

injected current square suprathreshold steps into the neuronal soma to investigate

the input output properties of the neuron, they found a linear relationship between

injected current step and mean firing rate figure 5. Their study was a pioneer work in

the neocortex that reproduced the earlier one performed on rat and cat motoneurons

by Granit and colleagues.
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Figure 5: Regular spiking response of a depolarising intracellular current injection
(McCormick et al., 1985)

In the works such of (McCormick et al., 1985) and (Nowak et al., 2003) firing

rate-current curve has been essential to classify neurons as function of exhibition or

not of adaptation as well as on the slope of the firing rate-curve slope. The mean

firing rate-current slope is considerably higher in the Fast-Spiking (FS) cells, than the

other neurons like Regular Spiking (RS), Intrinsically Bursting (IB), and chattering

neurons figure 6.
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Figure 6: Different examples of Frequency-Current (F-I) curves. The slope of
the firing rate-current curve changes significantly as function of the cell electrical
"phenotype". Every point is the mean firing rate for a given current value of between
2- 10 repetitions. The bars represent standard error (Nowak et al., 2003)
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3.4 Dynamical Systems, System identification, and input-output

characterisation

In physics, a dynamical system is a an object or an ensemble of objects which have

an evolution over time of quantities that describe its state. The time evolution is

described by one or a system of differential equations. The resolution of a differential

equation can be performed analytically, from pen and paper, when the resolution is

simple to a numerical resolution through computer if supercomputer when is too

difficult. On regard of this last mention, the numerical resolution can span from a

simple system of differential equations solvable with a short simulations up to a

numerical simulations that requires an huge number of resources in a supercomputer.

In mathematics, a dynamical system is characterised by a set of time B, a space

state A or phase state. If A is continuous, and C is a rule that describes the evolution

as C:A×B→A. For any element a of A, which are called initial state, whereas any

element of B are called evolution parameters. The rule C is called evolution function

of the dynamics system.

The birth of dynamical systems has roots in Newtonian mechanics. The study of

the dynamical system is widespread between a lot of branches of science, from math-

ematics, physics, biology, neuroscience etc. The evolution rule gives a prediction

to the next state or states for a short amount time (in future). The evolution rule is

deterministic if gives as a consequence of the only an unique consequent; otherwise

if there are more than one possibility of consequent the rule is stochastic. To solve

the system time evolution and to determine at all future times all the possible states,

it means to integrate the differential equation, iterating in a discrete way (small

time steps). If the system is solvable, given a certain initial point, it is possible to

determine all possible future states, the ensemble of them is called trajectory or

orbit. In the study of system evolution a type of a trajectory could be more important

than another one. For example, some of them can be periodic or can move between
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several different states of the system. The classification of the trajectories types has

lead to a qualitative study of the dynamical system, such as, some properties that

don’t change is presence of coordinate change. An example of dynamical system

whose a type of trajectory is solvable are the linear systems.

3.4.1 Nature and dynamical systems

The dynamical system are the focus of the dynamical system theory, which has

a very broad range of applications in several fields; such as, physics, mathemat-

ics, engineering, oncology (Gevertz et al., 2015), neuroscience (Brunel and Wang,

2003)(Fourcaud-Trocmé et al., 2003) (Qi and Gong, 2022) etc... In addition, dynami-

cal system are also a crucial matter of chaos theory and bifurcation theory.

An example of dynamical system in neuroscience is the whole brain or region of it

or its neuronal networks that compose it or, even, a single neuron. To dive in more

a level of a single neuron, consider sensory inputs coming from the external envi-

ronment to neurons in a more physiological manner respect than a simple structured

constant step of current; they have definitely a more complex time and statistical

structure. In nature there are example of a more complex inputs like sinusoidal ones

that are usually analysed in the auditory path frequency-wise (Cheng et al., 2021)

(Gerstner et al., 1996). An other example in the animal world, it is the male of

Sternopygus macrurus in a presence of a female emits a sinusoidal discharge to

attract her in his hideout(Knudsen, 1974).

Another example of sinusoidal or, more in general dynamical system, is the fireflies;

the winged beetles male of the order Coleoptera use their bio-luminescence to attract

mates(Ravignani and de Reus, 2019).

The relevance of the sinusoidal waves is not only because is a very well widespread

communication paradigm among the animal kingdom, but also because is widely
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used as a established standard to define the transfer function and the resonance

analysis of a dynamical system. From these information is possible to predict the

system response of any inputs, given the hypothesis that the system is linear.

In order to study the dynamical properties of a cortical neuron, such as the trans-

fer function, neurons have been stimulated by injection of several sinusoidal in-

puts at different frequency, (current or conductance based) (Tchumatchenko et al.,

2011)(Linaro et al., 2017) (Köndgen et al., 2008) (Boucsein et al., 2009); then, their

output has been collect and the properties of the transfer function analysed to infer

their characteristics in frequency.

3.4.2 Differential Equations

From the mathematical point of view a differential equation is an equation which

relates a function of more to their derivatives. They usually define relation between

some physical quantities and their change rates. In not mathematical pure sciences,

the important part of the differential equations are the solutions and their properties.

Very often, an analytical solution for the differential equation is not available;then,

numerical approximation is used through simple computers or high performance

ones. From the point of view of dynamical systems the qualitative resolution of a

differential equation is more important,while numerical methods are more focused

to find solutions with certain accuracy degree. The differential equation are mostly

divided in 2 "families" the ordinary and the partial ones. The "ordinary" term means

that the derivation could be on more than one independent variable in contrast with

the "partial" derivatives. The ordinary differential equations can be considered a

subclass of partial differential equations; since they correspond to functions of a

single variable.

Partial differential equations (PDE) are equations which compute partial derivatives

of a function with more than one variable and the same function. It is quite difficult to

30



write an explicit resolution formulas for PDE, hence is common in science that PDE

are widely study to find methods which provide the best numerical approximations

with a certain degree of accuracy using computers.

3.4.3 Linear Response Theory

Linear systems are mathematical models that from an input x(t) time dependent maps

an output y(t) using the black box approach.

They are part of the family of dynamical systems, however, they have features much

simpler than the non-linear ones. A dynamical system is a linear system if satisfies

the superposition principle, therefore, every linear combination of the system inputs

is a linear combination of the zero state outputs (which means an output with initial

condition set to zero) (Phillips and Riskin, 2008) (Bessai, 2005).

In addition, a dynamical system that satisfies the homogeneity and the additive

properties are consider as well linear (Sundararajan, 2008). Considering two inputs

of continuous-time system x1(t) and x2(t),their zero output-states such as y1(t) =

H(x1(t)) and y2(t) = H(x2(t)); the linear system must satisfies the follow equation:

H[α ∗ x1(t)+β ∗ x2(t)] = α ∗ y1(t)+β ∗ y2(t)

with α and β two scalars. In this fashion, complex inputs can be modeled as a sum

of simpler inputs, making easier to represent the solution for the linear system. The

above mentioned concept is at the basis of the time-invariant system input function

description as unit of impulses or frequency components; which for the continuous

case are well adapted to be analysed by the Laplace transform.
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3.4.4 Pulse Response and Fourier Domain Transfer Function

Whenever an external change acts over a dynamics system, the system reacts. The

external change is the input of the system and the reaction of the system its own

response, the output. Considering as input a brief one, like an impulse, the system

response will be the impulse response function over the time (IRF). The input pulse

contains all the frequency spectrum,for example the Dirac delta δ (t), thus, the

impulse response will define the response of a linear time-invariant system (LTI) to

that input for all frequencies. A signal continuous over time can be modeled with

a train of Dirac delta δ (t), that is a very suitable idealisation of a very short pulse

in time with a very high peak in amplitude and in the Fourier analysis contains all

the frequencies contributions making the Dirac delta a very useful test tool. Given a

LTI system continuous in time, the output signal y(t) is defined by the convolution

integral between the input x(t) and h(t) that is the impulse response of the system to

an impulse x(τ) = δ (τ)x(t):

y(t) = (x∗h)(t) =
∫

∞

−∞

h(t)x(t − τ)dτ

The transfer function is the Laplace transform of the impulse response and can be

used to characterised the LTI systems in the frequency domain. The convolution

integral in the time domain, in the frequency domain is equivalent to a multiplication

between the input X(ω) and the transfer function H(ω).

Y (ω) = X(ω)H(ω)

3.4.5 Fourier Decomposition of Input Signal

Considering an input continuous over time, x(t), it can be always decomposed into

Fourier frequencies, as a sum of trigonometric functions. The decomposition is
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performed by the Fourier Transform (FT), which maps the time domain into the

frequency one. Taking into account a single output-input differentiable dynamical

system of degree n with the input being differentiated m times, can be expressed as

following:
n

∑
k=0

ak
dky(t)

dtk =
m

∑
k=0

bk
dkH(t)

dtk (8)

where y(t) is the output and H(t) is the input. In the case under consideration,

H(t) represents the injected current to which has been applied a RELU function

as showed in (Köndgen et al., 2008), (Linaro et al., 2017). Using the linearity and

the property of the FT the linear dynamical system can be written as an algebraic

equation of the first order for y and n degree for ω in the left hand-side and an a

first order equation in H(t) on the right hand-side where n < m to ensure the transfer

function causality.

n

∑
k=0

ak(iω)kŷ(ω) =
m

∑
k=0

bk(iω)kĤ(ω) (9)

The equation 9 is equivalent to the algebraic relation ŷ(ω) = X̂(ω)Ĥ(ω) in which

the ŷ(ω) and Ĥ(ω) are the FT of y(t) and H(t) respectively, and X̂(ω) is the transfer

function defined as

X̂(ω) = A
(i ·ω + z1) · (i ·ω + z2) · ...(i ·ω + zm)

(i ·ω +π1) · (i ·ω +π2) · ...(i ·ω +πn)

π1 ·π2 · ...πn

z1 · z2 · ...zm
(10)

where i =
√
−1 and A is a real number representing the low-frequency gain and

{πi}n
i=0 and {zi}m

i=0 are the roots of the polynomial with coefficients {ai}n
i=0 and

{bi}m
i=0 called poles and zeroes of the transfer function, i.e. (Köndgen et al., 2008)

and (Linaro et al., 2017). For a band-pass filter, these roots act as upper and lower

cut-off frequencies. Considering the I-O properties, i.e. the magnitude (gain) and the

phase shift, are fully specified by A and the number and values of the unique zeroes

and poles,i.e. zi and πi. Having a look more at the high frequency (HF) domain,
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where f →+∞, the phase and the gain of X̂(ω) have a power-law as ω−α , where

α = n−m and α ∈ Z, in which n is the number of poles and m the number of

zeros (Linaro et al., 2017) (Köndgen et al., 2008). From experimental and theoretical

works, i.e. (Fourcaud-Trocmé et al., 2003), (Köndgen et al., 2008) (Linaro et al.,

2017), it has been found using the best fit, a single zero at very low frequencies and

two or three poles; the largest poles is a low pass filter cut-off frequency measure

(Linaro et al., 2017).

.
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3.5 Recent applications of System theory in Cellular Electrophys-

iology

In this brief section, there are reported some example of recent applications of

the system theory in cellular electrophysiology. The main focus are the papers of

Fuhrmann et al., 2002; Köndgen et al., 2008 and Linaro et al., 2018. The first paper

analysed the importance of the spike frequency adaptation (SFA) in neocortical

pyramidal neurons with patch-clamp experiments technique and phenomenological

model, i.e. a leaky integrated-and-fire-model by (Tuckwell, 1988) with an addition

hyperpolarising potassium current, such as the adapting current by (Treves, 1993).

The meaning of the work is studying the effect of the SFA onto the modulation of the

I-O properties in a neocortical pyramidal neuron embedded in a noisy input. It has

been found out through simulations that the preferred frequency of a single neurons

guides the large network oscillations rhythms. In this study, it is very interesting the

neuronal response to an oscillatory input; which has the following form:

I(t) = I0 + I1 sin(2π ∗ f t) (11)

On top the sinusoidal form has been added white noise. It is important to notice

that the input and the output has the same the same frequency of oscillation, most

of the time the difference between the two signals is the phase. The phase shift is

affected by the neuronal parameters of the simulations, such as the input resistance

and adaptation current parameters and by the frequency of the injection current

(Fuhrmann et al., 2002). Fuhrmann and colleagues found out that low frequency

of oscillation causes a negative phase shift of the mean firing rate response, hence

the output advances the input (negative shift) ; on the contrary higher frequency

(between 30-40 cycles/s) cause on the mean firing rate a delayed response phase,

hence a positive phase shift. The figure 7 shows the phase shift as a function of
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the oscillation frequency input. As the Bolzano’s theorem demonstrated, between

a positive and a negative quantity there is always a zero. It happens as well for the

relative phase shift of the neuronal model response, in which the zero phase shift

happens at a certain input frequency oscillation; this frequency is called preferred

frequency γ , see the figure 7. The reason behind the 0 phase shift is an equilibrium

between two opposite mechanisms; the firing rate dynamics has a time constant τe,

which tends to delay the neuronal response and it is dominant at the HF domain; on

the other hand, the dynamics of the adaption current Ia tends to cause an advance of

the phase shift and it is dominant at the lower frequencies.

the author in their work noted that the γ slightly depends of the input conductance

as well as from some parameters of the adapting neuronal model such as the input

resistance, Rin, the neuronal model parameters, (α , gk,τN), the neuronal model

capacitance C, and the time constant of the firing rate dynamics τe. See in the

following equation.

γ =
1

2π

√
RinαgkC

τe
− 1

τ2
N

(12)

They have been demonstrated that lowering the conductance input value, brings

to a lower values the γ . It has been also showed in their paper (Fuhrmann et al., 2002)

in figure 4 8.

To add a further analysis, γ some other dependencies on the input values, it has

been shown that the preferred frequency that γ has some dependencies as well on

the DC level and the amplitude oscillation level (I0 and I1) see equation 11; since

an higher value of I0 brings the membrane voltage closer to the threshold value,

lowering the constant time of the firing rate dynamics τe. However, the dependency

on the I1 is much weaker than the one of I0, an increase of I1 lowers the γ value, see

the figure 6 9 of the paper (Fuhrmann et al., 2002).

Considering a small network of identical neurons (adapting neuronal model),

driven by an external oscillatory input; when all neurons have the same discharge
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Figure 7: Response of an adapting neuronal model to an oscillatory input. The
caption A is the peristimulus histogram (PSTH) of the neuronal model response to an
oscillatory input of 4 Hz with (bottom) and without (with) noise. The mean current
value is 1 nA with plus or minus 50 pA. the noise has σI = 53pA. The caption B is
the output phase shift relative to the input as a function of injected input frequency.
To note the arrow, which indicates the preferred frequency γ in which there is 0 phase
shift relative to the input current. Image from the article of Fuhrmann et al., 2002
(Fuhrmann et al., 2002)

phase shift relative to the external input, the synchronous oscillation is achieved. In

the figure 10 there is a network of four neurons, in which only one of them receives

an oscillatory input, instead the others receive only a DC input to keep their firing

rate at the same mean rate. It is important to underline, they are identical neurons,

hence they have the phase-frequency curve (Fuhrmann et al., 2002). It has been

expected that neurons would have been synchronised at their preferred frequency γ .

Nevertheless, a new synchronisation frequency has been achieved at a lower value, in

which all the neurons phase shift is opposite to the one produced by the synapse delay

at that frequency. That frequency is called corrected preferred frequency (Fuhrmann

et al., 2002). In other words, the input frequency for which the neurons exhibit

synchronisation and have zero phase shift. It has been expected that the preferred

37



Figure 8: The phase shift as a function of the different values of gk, caption A shows
how is varying γ lowering gk. In caption B is clear the dependency between γ and gk;
increasing the input conductance means increasing the preferred frequency. Image
taken from the article of Fuhrmann et al., 2002 (Fuhrmann et al., 2002)

corrected frequency determines the neocortical network rhythms (Fuhrmann et al.,

2002).

The authors in their work have tested later the previous prediction in a large

network of two hundred identical adapting neurons, in which each of them has an in-

jection of uncorrelated noisy current with constant mean to induce spontaneous firing

rate 11. The emergent property of the population rhythm is a network property, since

the oscillation input has been injected to none of the neurons in the network. The

synchronised oscillation frequency is 6,64 Hz and remains constant over time. How-

ever, has a small expected modulation since each neuron in the network experiences

a slightly modulation due to the noisy input current and the random connections.

A representative I0 and I1 have been used to built the phase-frequency curve for

a single neuron in the homogeneous network considering the synaptic delay. The

found corrected preferred frequency of the neuron was 6,7 Hz; hence, the emerging
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Figure 9: The image shows the dependency of the phase shift of the phase-frequency
curve on changing the values of I0 and I1 in caption A and caption B respectively.
In caption A, I0 changes between 200-600 pA and I1 is kept constant at 75 pA. In
caption B, I −O is constant at 600 pA and I1 has values (70,100,130,160, 190) pA.
The results have been obtained from the neuronal adapting model. Image taken from
the article of Fuhrmann et al., 2002 (Fuhrmann et al., 2002)

network population rhythms in a large network as well can be predicted by the single

neuron corrected preferred frequency.

An obvious criticism is if the emerging network population rhythms is still predicted

by the single neuron corrected preferred frequency in a more realistic network com-

posed by heterogeneous neurons (different neuronal models). The authors verified

it using the same network and randomly distributing the value of the parameter gk,

keeping the other constant; founding the same result present in the homogeneous

network (Fuhrmann et al., 2002), see caption D in image 11.

The other two applications of System Theory to the fields of Electrophysiology and

Neurobiology are more focused on experimental data of patch clamp technique; their

result are very relevant for the HF domain of the response function of neocortical

Layer V pyramidal neuron. The first paper of reference is (Köndgen et al., 2008), in
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Figure 10: Effects of the corrected preferred frequency on a small network of
identical neurons with asymmetry in connection. In caption A, the phase-frequency
curve of each neuron related to their input. In caption B, The same as A, considering
the synaptic shift. In caption C, phase-frequency curve for each neuron relative to
their input, note the intersection of all the curve is the preferred corrected frequency
of the neurons, where the synchronisation is achieved. The mean firing rate of
the neurons is 53 cycles/s. Image taken from the article of Fuhrmann et al., 2002
(Fuhrmann et al., 2002)

which the authors for the first time studied the cortical neuronal response function

in a wide frequency range (1-1000 Hz) of input frequency analysing the role of the

background noise. The idea of a network can sustain a higher emission rate that a

single neuron is easy to image, since a neuron cannot fire higher than its peak firing

frequency, hence, it cannot fire at every cycle. In a network there are several neurons

and while one is silent (i.e. refractory period) another one can fire; this make possible

to sustain fast rhythms. Therefore, it is interesting understand how a background

noise affected the neuronal response to input varying over time (Steriade, 2001).

Some important past studies had underlined the importance of the background noise

to ease the neuronal response and to decode without mistake the input fast time

rhythms, i.e. (Gerstner, 2000) and (Knight, 1972). Another important theoretical
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Figure 11: The image shows the implication of the preferred frequency for a synchro-
nised large oscillating network composed by two hundred adapting neurons with
same parameters. In caption A, there is the raster plot of the network, only one over
three neurons have been shown. In caption B, the rhythm population emerges at 6,64
Hz. The bin size is 5 ms. In caption C, The phase-frequency curve of a single neuron
is built, taking into account the experienced synaptic delay and mean input current
parameter I0 = 253pA and I1 = 12,5pA. The corrected preferred frequency is 6,7 Hz.
In caption D, the heterogeneous network is the same network as the homogeneous
one, except for a random distributed value of gk. The population histogram has the
same bin size as caption B, the population rhythm is the same as the homogeneous
network. Image taken from the article of Fuhrmann et al., 2002 (Fuhrmann et al.,
2002)

study (Brunel et al., 2001a) had confirmed the previous studies importance, through

a more detailed mathematical model to describe the link between the time correla-

tion background inputs, such as the synaptic filtering, with the dynamic response.

However, independently from the background input noise the cut-off frequency

at HF domain is dominated by low-pass filter behaviour, which is predicted by a

linear response of conductance-bases integrate-and-fire neurons (Fourcaud-Trocmé

et al., 2003) (Fourcaud-Trocmé and Brunel, 2005). To study the neocortical layer V

pyramidal neuron dynamics response into acute slices, in vivo-like condition a noisy
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current has been injected into the neuronal soma in the current-clamp configuration.

A deterministic sinusoidally modulated current has been superimposed over the

background noise, with fmod the frequency of modulation in the range of (1-1000)

Hz:

I(t) = I0 + I1sin(2π fmodt)+ Inoise(t) (13)

In which the Inoise(t) is a realisation of the Ornestein-Uhlenbeck stochastic process

with zero mean and unitary variance (Uhlenbeck and Ornstein, 1930). The noisy

background is exponentially white filtered and is meant to mimic the in vivo barrage

of which a neuron undergoes from excitatory and inhibitory synaptic inputs at the

soma. The variance of the noise was meant to reproduce the voltage fluctuation

observed in the cortical recordings in vivo (3-5 mV) (Paré et al., 1998). The authors

approach is to transform the input signal,i.e. the sinusoids, into the firing rate r(t), in

which this transformation depends on the background noise statistics. On the other

hand, in the time domain the linear filtering is into the frequency domain comes from

equation 10. The input is filtered and then, the transformation from the time domain

domain to the frequency one happens as described in the previous section Fourier

Decomposition of Input Signal. The main result of the paper is to study the impact of

background activity on neuronal response and network oscillation. To perform it the

linear response function has been evaluated for a single neuron over its firing rater

r(t) in response to a current composed by background noise plus small sinusoids.

The firing rate r(t) has been estimated by PSTH, in the limit of small amplitude, such

as when I1 < I0 ∗0,3. The limit of small amplitude is kept to fulfill the validity of the

linear approximation, allowing to ignore higher harmonics; which could be relevant

with higher values of I1. r(t) is well described by a sinusoidal wave with the same

fmod of the input current, see figure 12 :

r(t) = r0 + r1( fmod)sin(2π fmodt +Φ( fmod)) (14)
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in which r0 is the mean firing rate, r1( fmod) is the modulation amplitude and Φ( fmod)

the phase shift relative tom the input. The values of r0 was in the range of 10-20

cycles/s, with r0 > r1 > 0. In the context of Fourier decomposition signal as an input

Figure 12: Analysis of the firing rate in response to a current sinusoidally modulated
over a noisy background mimicking the synaptic inputs. The AP occurrence times is
referred to its peak. The lower panel are the associated raster plots. The fmod are 10
Hz and 250 Hz (a,b). The upper panels in (c,d) are the PSTH revealing a sinusoidally
modulation of the firing rate r(t). In the bottom panels, for comparing the sinusoidal
componentI(t) is plotted in red, over the total I(t). Nevertheless r0 is constant, r1
and Φ are fmod dependent. Taken from (Köndgen et al., 2008)

for a neuron, the r1( fmod) and Φ( fmod) give back the information about how much a

neuron attenuates and delays every component of the input fmod . In the figure 13,

cortical layer V pyramidal neuron showed a wide magnitude bandwidth ( r1
r0

) and an

output phase-shift Φ. It has been showed that r1 decreases for fmod > 100−200 Hz,

completely unaffected by the correlation time of the noise. The membrane impedance

is dominated at low frequencies (5-10) Hz, by the voltage-dependent resonance by

h-currents and M-currents and by low-pass filter behaviour at HF domain with strong

attenuation ∼ 50Hz is not matched by the r1( fmod) behaviour. Over 200 Hz the
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magnitude decays with a negative power-law, which in the figure 13 is straight

since is a double logarithmic plot (the dashed one). The exponent estimated by the

linear regression in 13 is α =−1,80, and matches the average exponent obtained

by single experiments α = (−1,81±0,31), see figure 14. From previous theoretical

studies, It has been anticipated this results (Gerstner, 2000), (Knight, 1972) and

can be replicated by nonlinear integrate-and-fire neuron and conductance based

models (Fourcaud-Trocmé et al., 2003). A look on the HF domain of figure 13

suggests an α = 1, on the contrary figure 14 panel a suggests al pha = 2; numerical

simulations showed as well that the HF asymptotic behaviour can be reached at

higher frequencies than the cut-off frequency (Fourcaud-Trocmé et al., 2003), letting

still open the precise determination of the α value. The linear system at HF domain

the phase shift saturates, on the other hand the cortical pyramidal neurons does not

the same, see figure 14 panel b. This phenomena happens since there is a delay

between the input and the output in the range of 0,3−1,1ms and it is much larger

than the rising phase of the AP, which is in the range 0,3−0,5ms. This mismatch

observed in some neurons could be explained as an additional axo-somatic and

somato-axonic propagation time (Köndgen et al., 2008) (Palmer and Stuart, 2006).

Considering The noisy input a neuron can be brought by membrane voltage

fluctuation to spike overcoming the threshold even if its average input is subthreshold.

The authors chose to have two different discharge regimes the suprathreshold or weak-

noise regime and the strong-noise regime or subthreshold (Köndgen et al., 2008). In

the weak-noise regime, the standard deviation of the input was set at 20−50pA and I0

was set above threshold. On the contrary, in the regime of strong-noise the I0 was set

under the threshold, and the standard deviation was increased up to the r0 value was

matching the value reached in the other regime. The background noise is mimicking

the presynaptic firing their cross-correlation (Rudolph and Destexhe, 2004), affecting

the neuronal response especially at intermediate frequencies, smoothing resonances
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Figure 13: Normalised magnitude r1
r0

and phase shift Φ of response to a input current
composed by a noisy background and an oscillatory foreground. Cortical pyramidal
neurons showed that can track up to several hundred cycles per second. Their HF
response goes as the power-law r1 ∼ f−α

mod with a linear shift, Φ ∼ f . The results are
on 67 cells. The error bars represent the SE across the data (32 ± 25). The color
black stays for suprathreshold or weak-noise regime, the red stays for subthreshold
and strong-noise regime. Mean rate r0 ∼ 20. Taken from (Köndgen et al., 2008)

and flattening the the neuronal response (Fourcaud-Trocmé et al., 2003) (Knight,

1972) (Brunel et al., 2001b). The most important result, however, is that at HF ( fmod

> 100-300 Hz) the r1 is attenuated in both regimes. At low fmod , less than 20 Hz,

there is always a phase-advance; see figure 15 16.In general, the HF domain neuronal

response is not affected by background noise changes (Köndgen et al., 2008).

The timescale background fluctuations was changed systematically, the time

constant of the noise is set to mimic the synaptic current time constants. Some

previous studies have underlined the dependence of the Φ on the synaptic noise

(Brunel et al., 2001b), leading to a zeroing the phase-lag as well as reducing the

magnitude attenuation (Gerstner, 2000) and (Knight, 1972). The authors have been

explored the constant time domain, τ from 5 to 100 ms to mimic the fast (AMPA-
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Figure 14: The HF cortical pyramidal neuronal dynamics response properties. In
panel a, the modulation amplitude r1( fmod) shoes a power-law as f−α

mod with α ∼ 2.
In panel b, the phase shift decreases linearly as the increase of the fmod . Taken from
(Köndgen et al., 2008)

and GABAA−)and slow(NMDA and GABAB) synaptic currents. the r1 and Φ showed

at intermediate frequencies sensitivity to τ as showed 16.

.

The second paper of reference is from Linaro and colleagues. In their work they

investigated the I-O properties of layer V pyramidal neurons using an input modulated

in time with a noisy conductance background. Previous studies have experimentally

investigated the existence of mathematical models of AP initiation, it has been

reported a very large very large cut-off frequency in rodents (Köndgen et al., 2008)

(Tchumatchenko et al., 2011) (Ilin et al., 2013) (Boucsein et al., 2009) and even

large in humans (Testa-Silva et al., 2014). Furthermore, both experimentally and in

mathematical model, the broadband transfer has been linked to the rapidity of the

AP onset (Fourcaud-Trocmé et al., 2003) (Naundorf et al., 2006). In general, the

authors extended the previous studies of the cortical dynamical response function to a
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Figure 15: The background noise intensity affects the dynamical cortical neuronal
response. On 4 cells, the impact of the noise variance has been examined for sev-
eral values of fmod . The r1 fmod) is smoothed at intermediate frequencies. All the
panels show at the top r1( fmod) and at the bottom the Φ. the suprathreshold and the
subthreshold regime are identified by different markers and colors. Experimental
data and their best-fit from the model are plotted together. Error bars are at 95% of
confidence interval. In the HF domain the error bar are big since the signal-to-noise
is poor. Taken from (Köndgen et al., 2008)

more physiological settings (conductance -driven instead of current-driven) through

dynamic clamp in vitro; recreating the barrage of irregular synaptic background

observed in vivo (Destexhe et al., 2003). Before this study, in experiments, it has

been only used current clamp to reproduce the noisy in vivo-like synaptic background

see (Giugliano et al., 2008) in rodents (Köndgen et al., 2008) (Tchumatchenko et al.,

2011) (Boucsein et al., 2009) (Ilin et al., 2013) and in human cortical neurons
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Figure 16: The timescale of fluctuations of background affects the dynamical
cortical neuron response. the timescale effects was analysed among several fmod . In
the HF domain, cortical pyramidal neurons are not insensitive to white and colored
background noise. All the panels show at the top r1( fmod) and at the bottom the
Φ. The r1( fmod) and Φ has different shape and color for indicating the different
simulation regimes τslow (red) and τ f ast (black). Experimental data and t has heir
best-fit from the model are plotted together. τ f ast has value of 5 ms and τslow has
values between 45-100 ms. Experimental data and their best-fit from the model are
plotted together. Error bars are at 95% of confidence interval. In the HF domain the
error bar are big since the signal-to-noise is poor. Taken from (Köndgen et al., 2008)

(Testa-Silva et al., 2014). The injected current I(t) was generated in real-time by

the computer and it is described by the following formula (Destexhe et al., 2003)

(Linaro et al., 2014) (Bal and Destexhe, 2009) (Biró and Giugliano, 2015):

I(t) = GE(t)(EE −V (t)+GI(t)(EI)−V (t)), (15)
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Where GE(t) and GI(t) are the randomly fluctuations amplitude of excitatory and

inhibitory synthetic synaptic conductances, with reversal potential EE = 0mV and

EI =−80mV and membrane potential instantaneously recorded V (t). Their fluctu-

ations are the results of asynchronous activation of several presynaptic afferents,

which their own synaptic conductances and exponential decays gE , gI and τE , tauI;

they are collectively activated by a stationary point Process τk with a parameter rate

RE and RI . To study the effect of weak or strong background synaptic activity, the

authors chose two different values of excitatory presynaptic rate RE : 7 and 14 kHz.

The first goal of the paper is to investigate the generalisation of the previous work of

Ködgen and colleagues with a input time-varying current with background conduc-

tance fluctuations:

I(t) = I0 + I1sin(2π f t)+GE(t)(EE −V (t))+GI(t)(EI −V (t)), (16)

where I1 and f are the amplitude and frequency of sinusoidal injected current

oscillation and I0 is a term of offset current used to set the neurons at low (3-

9 Hz) or high (15-25 Hz) output firing rate. A more biophysical set of input is

with a time varying rate for the background conductance fluctuations; as R(t) =

R0 +R1sin(2π f t). Having the rate time-varying means that the two OU process that

reproduce the GE(t) and GI(t) have the same frequency of modulation fmod , but

not the same I0 and I1 leading to a non-stationary phenomena. To keep the neuronal

response in linear regime the amplitude of I1 and R1 has been kept between the 5-

20% of I0 and R0. In their experiments the authors explore the fmod domain between

1-1000 kHz, they evaluate the phase φ( fmod) and the normalised gain or magnitude

of the output as r1( fmod)
r0

, which have been calculated by a PSTH over a period of the

input oscillation through the estimate of the instantaneous firing rate r(t):

r(t)∼ r0 + r1( fmod)sin(2π f t +φ( fmod)), (17)
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Then, the same analysis has been repeated on surrogate data to establish the level

of significance. As explained in Ilin and colleagues (Ilin et al., 2013), from each

spike train has set 100 surrogate date obtained by shuffling the original interspike

intervals (Ilin et al., 2013); then, magnitude and phase has been evaluated as the

mean of a hundred best fit over the a hundred realisation of the surrogate data for

the each fmod. The significance level has been set as the mean of the one hundred

repetitions plus the standard deviation. The data analysis has been already discussed

previously in section Fourier Decomposition of Input Signal. The in vivo-like regime

has been recreated in vitro by dynamic-clamp technique to recreate the presynaptic

inputs injecting random synthetic fluctuations of excitatory and inhibitory input

conductances. It has been employed four different ways:

• an injection of an additional sinusoidal current, ∆I

• a weak modulation of the activation rate for excitatory ∆RE or

• for inhibitory ∆RI

• both modulation simultaneously ∆RE and ∆RI

Using as input the second protocol such as ∆RE 17 the conductance rate mean and

variance change over time by the RE(t) modulation (panel A); then, it has recorded

and analysed the neuronal sparse response and computed the PSTH for estimating

the r(t) (panel B and C). The PSTH at each fmod showed a strong attenuation over

the frequency of 300cycles/s; note that the mean firing rate is always kept the same,

even at frequencies in which a strong attenuation is present, see 17 panel C. The

output oscillations are characterised by phase, mean, and magnitude; as showed by

the panel C they depend on the fmod . The characterisation in the frequency domain

is reminiscent of the electronic filters which possess a bandwidth, a cut-off and low-

or/and high-pass frequency. On the other hand, considering the protocol in which
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∆RI is present means having an additional phase shift and upfront attenuation "in

cascade" to the neuronal response.

Figure 17: The instantaneous firing rate of a neuron is able to track the rapid
modulations of the synaptic inputs. In panel A, it is showed one of the protocol
applied, in which the mean and variance of GE(t) are modulated by sinusoidal
presynaptic input RE(t). At the bottom, the neuronal response, such as a sparsely
AP firing. The output firing rate is revealed by the raster plot and the PSTH; it is
temporal modulated by the same input frequency fmod up to 300cysles/s (panel B
and C). Note that magnitude and phase depend on fmod . Taken from (Linaro et al.,
2017)

The aim of the study is investigated the single cell contribution of the dynamical

transfer properties; measuring normalised magnitude and phase with the highest

signal-to-noise ratio for all the frequency domain (1-1000 Hz). Hence, the synap-

tic filtering has been compensated without affecting the spectral properties of the

synaptic fluctuations, see figure 18 bottom panel. If the synaptic filtering is not

compensated its attenuation doesn’t allow the investigation of modulation at higher

frequency of 30 or 15 cycles/s (Linaro et al., 2017).

The figures 19 and 20 demonstrate the dynamical transfer response of the entire

experimental dataset at different regimes and input modulation protocols. The plotted
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Figure 18: Neuronal dynamics response to fast input oscillations compensating the
injected synaptic filtering. two different protocols have been used by the authors,
instantaneous (circle markers) or induce filtered (square markers) oscillations of
the input conductances. The vertical lines are cut-off frequencies by the optimal fit
from the phenomenological model. On the left, in red, the excitatory time varying
conductance on the side, in blue the inhibitory one. The black dashed line indicates
the slope of ∼ 1

f in A. Taken from (Linaro et al., 2017)

data in figure19 and 20 are the normalised magnitude and the phase, respectively, for

each fmod . The data are averaged over the neuron number, markers indicated mean

and the bars the SEM. In figure 19 the black dashed line is the minimal significance

level of the neuronal output response; on the other hand, the red one is the best fit of

the power-law (B f>modα): where the α value is indicated in each panel. In figure 20,

the grey dashed line is used to identified to the phase value at 0 or −π . The value of

the ∆t above each panel derives from the slope of each curve. The obtained results

are underling the main features of the neuronal dynamical response:

• A broadband up to 200−400cycles/s
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• the power-law that describes the attenuation at HF domain is f α
mod , with a

negative exponent -(1.23 ± 0.15) in the range of -[0.9,1.5]

• at slow input modulation there is a phase advance

• A linear decrease which is not saturating for the phase in the HF domain.

The article work demonstrate neurons can track very rapid time-varying input signals,

much faster than single cell and passive membrane filtering respectively around

25 and 50 cycles/s; since for all the fmod the results stay above the minimum

significance level. A further addition about the phase, when injected a time varying

inhibitory conductance, there is a further phase offset of −π; basically the output rate

reaches is minimum when the input rate is at its maximum (maximum of inhibition);

resulting as an opposition of phase. Then, at HF domain the phase quickly decreasing

lagging behind the input. For higher values of fmod then the cut-off frequency in

continuous line in figure 18 the phase linearly decreases as the product of ∆t fmod ,

reminiscent of the delay time ∆t in the Fourier domain.

As showed in figures 19 and 20 there are two different regimes, the output

mean firing rate has been varied identifying two different level of activity low (4-9)

spikes/s and high (15-25) spikes/s. High and low firing rate are associate to high and

low coefficient of variability of the interspike intervals. In a similar fashion increasing

the RE from 7 to 14 kHz, it has been tuned different conductances intensities of

synaptic activity, such as, weak and strong background; hence in the end the total

possible regimes are four. As shown in figure 21 and 22 the cut-off frequencies at HF

domain and in general the bandwidth are unaltered by a change in the background

synaptic fluctuations and by a different output firing rate regime. However, it is not

the true anymore at low and intermediate frequencies where there is an attenuation.

Considering all together the result is possible to conclude that the cortical pyramidal

neurons behave as band-pass filter which is affected (not only at HF domain) by both

the output mean firing rate and by the presynaptic firing rate
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Figure 19: The neuronal normalised magnitude reveals some features, i.e.,
broadband-pass band, high cut-off frequency, and a power-law attenuation at HF
domain. The panels show the magnitude as a function of the fmod across different
physiological regimes. The continuous lines are best fit of the phenomenological
model, see section Fourier Decomposition of Input Signal. The red dashed line
are best fit for the power law f α . Row-wise are organise by the type of injected
modulation and column-wise by the type of regimes. The black dashed line is the
minimum level of significance threshold. For each panel is indicated the values from
the best fit of α and the number of cells. Taken from (Linaro et al., 2017)
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Figure 20: Across the fmod , the neuronal phase response shows: phase advance
at low frequency domain and phase lag for intermediate and HF domain. Then, a
linear increase, i.e. ∼ ∆t fmod at very HF. As the figure 19, the vertical and horizontal
organisation is the same. The grey line indicates represents 0 or −π . For each panel,
it is indicated the values from the best fit of ∆t and the number of cells. Taken from
(Linaro et al., 2017)
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Figure 21: The increase of the output mean firing rate leave at HF domain the cut-off
frequency of the gain not altered. Instead, at transfer function at slow fmod . All
the panel are under strong background fluctuations, while the several type of input
are time modulated. The circular/square markers are the magnitude of the transfer
function to an injection of instantaneously modulated conductances at low/high
output firing rate. The vertical lines are cut-off frequencies by the optimal fit from
the phenomenological model. Taken from (Linaro et al., 2017)
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Figure 22: The increase of the output mean firing rate leave at HF domain the cut-off
frequency of the gain not altered. All the panels show the magnitude of the output
instantaneous firing rate as function of fmod at low output mean firing rate,while
the several type of input are time modulated. The square/circular markers are the
magnitude of the transfer function to an injection of instantaneously modulated
conductances under weak/strong background synaptic fluctuations. The vertical lines
are cut-off frequencies by the optimal fit from the phenomenological model.Taken
from (Linaro et al., 2017)
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3.6 Studying cortical responses under in vivo-like recreated regimes

3.6.1 High-conductance state

The spontaneous activity in neurons is very different between in vitro, i.e. acute brain

slice and in vivo experiments. The main reason is the loss of a lot of connections due

to the severed 3D structure. In addition, neurons in vivo are more depolarised and

have a lower input resistance (Steriade, 2001) (Matsumura et al., 1988) (Baranyi et al.,

1993). The intact brain structure at the level of the cortex has a high connectivity

between 5-60 thousands synaptic connections; mostly of them come from the cortex

itself (DeFelipe and Fariñas, 1992); however some of them comes from external

regions such as the thalamus (Brown et al., 2012). In awake animals, neurons have

high spontaneous firing rate (Steriade, 2001), this constant and irregular synaptic

bombardment, called high conductance state, affects the neuronal response and

the mechanisms behind it are still unclear... It is surely challenging and useful

evaluated the effect of the "high-conductance state" in vivo, however it is very

difficult, since doesn’t allow the same control that is possible to reach in vitro,

such as with acute slices. Nevertheless, the use of some experimental techniques

has allowed to improved the knowledge about the synaptic integration in cortical

neurons (Williams and Stuart, 2003), it is also known that the network activity might

affect the integration property of a cortical neuron; for this reason the study of the

computational models is essential to integrate the experimental results obtained in

vitro and in vivo as well. In the end, in vitro and in vivo approach cane be merged using

dynamic-clamp, in which in vitro experiment high-conductance states are generated

by a computer are used to mimic the synaptic bombardment. The in vivo experiment

in awake animals are, usually, for mostly mechanical reasons with anaesthetized

animals, with barbiturate anaesthesia. The first experiment was obtained in motor

neurons in cat spinal cord (Brock et al., 1952); since then, recordings have been

performed in all cortical regions. Unluckily, the barbiturates profoundly suppress
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cortical excitability, leading to an electroencephalographic (EEG) similar to the

one observed to slow-wave sleep. The slow wave are associate with synchronised

bust-silence in cortical neurons; in contrast to the EEG low-amplitude, fast activity

associated to asynchronous and irregular firing. Some few studies in waking animals

(Steriade, 2001) (Matsumura et al., 1988) (Woody and Gruen, 1978) and others,

have shown a low input resistance (Rin) (5−10MΩ), a more depolarised membrane

potential (−60mV ) with stronger fluctuations σV = 2− 6mV causing an irregular

discharge in the frequency range or 5-40 Hz 23 (Steriade, 2001). Furthermore, to

have a complete characterisation of the cortical neurons during activated states,it

must perform EEG recording in parallel with intracellular recordings. Considering

the waking animals and the up state of KX anaesthesia, cortical neurons have a

lower input resistance, the Vm is depolarised, neurons fire spontaneously at rest and

experience a Vm continuous fluctuations; this state is called high conductance state.

The latter state is very different from the in vitro, where neurons lack of connections

and spontaneous firings, have higher input resistance and are hyperpolarised 23 panel

b and d. To study the contribution of synaptic activity on high-conductance states

recording of in vivo of intracellular neurons, they have been compared between the

the very same neuron before and after microperfusion of tetrodotoxin (TTX) (Paré

et al., 1998). The TTX application produces a stabilisation and an hyperpolarisation

of Vm and increases the input resistance see figure 24. After applying the TTX in

vivo, the Rin is the same as observed in vitro (Paré et al., 1998); this means that

damaging with electrode the cells with in vivo electrodes doesn’t count as important

point between in vivo and in vitro. More exactly, these experiments underline that

the difference in Rin and the depolarised Vm is due to the spontaneous activity. To

summarise the neocortical neurons are considered in "high-conductance" state if they

have the following features:

• a large membrane conductance
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Figure 23: Parallel EEG and intracellular recordings during activate states. In panel
a, it is showed an awake animal, the EEG recording is de-synchronized, on the hand
the intracellular one has a depolarised and highly fluctuating membrane potential,
which is associated with irregular firing. In panel b, the animals undergoes to ke-
tamine–xylazine (KX) anaesthesia; it is showed an oscillation between two phases
by the EEG recording, one is a de-synchronised periods (up states), indicated by
bars, with fast irregular EEG oscillations; and slow waves. In this state the fast
EEG activities are absent or strongly reduced. The intracellular recording shows
that during the de-synchronised periods (bars), there is an high fluctuations and a
depolarisation for the membrane potential, on the other hand, there is an hyperpolari-
sation during slow waves. In panel c, the animal undergoes to barbiturate anaesthesia,
slow waves are present in the EEG recording, whereas the intracellular signal has an
hyperpolarised baseline on top of which there are depolarized bursts. In panel d, in
vitro recordings are obtained in cortical slices using sharp electrodes. The network
activity is reduced, basically the activity is silent. In Panel e, it is compared the mean
value of the membrane potential and its standard deviation across different states.
Taken from (Destexhe et al., 2003)
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Figure 24: In panel c, from the left to the right, the experimental setup; a pipette was
used to perform a tetrodotoxin (TTX) microperfusion in vivo. Then, in the middle,
response to the current injection during an up state of a KX anaesthesia, individual
response at the top, averaged at the bottom. On the right, the same current response
after the TTX suppression of the activity. The Rin and time constant τm are five times
larger than the up state. The results are similar to the in vitro measurements. In panel
d, absolute values of Rin measurements in different studies in awake animals. From
left to right, data from (Steriade, 2001),(Matsumura et al., 1988), (Woody and Gruen,
1978),(Baranyi et al., 1993); KX data from (Destexhe and Paré, 1999),(Paré et al.,
1998); barbiturate and in vivo data from (Paré et al., 1998). In panel e, before and
after TTX, relative Rin values in the same cells. Taken from (Destexhe et al., 2003)
and modified

• an average Vm between (-65,-60) mV more depolarised than the natural resting

level between (-80,-70) mV

• big membrane potential fluctuations with σm between (2-6) mV up to tenfold

larger than in absence of activity.

• a dominant inhibitory conductances gi ∼ 4ge
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To study the integration properties of cortical neurons in high-conductance states,

it is necessary combined several "ingredients", such as in vivo data with detailed

biophysical dendritic excitability measurement. To perform this study are useful the

multi-compartmental models, which reconstruct the three-dimensional morpholog-

ical structure of a neuron. Neuronal simulators environments, such as NEURON

(Hines and Carnevale, 2001), make possible to integrate the cable equation over

morphological data using isopotential group or set of compartments. This model

contains as well all the biophysical information of the modelled neuron. Several

models of compartmental ones have been proposed to mimic the synaptic bom-

bardment in cortical neurons (Bernander et al., 1991) (London and Segev, 2001)

(Destexhe and Paré, 1999); more recently, the stochastic OU process is used to

reproduce the synaptic bombardment which a cortical neuron undergoes in vivo. In

figure 25 is showed some example of "synaptic noise", for example the model in

1b comes from an in vivo model of animal under KX and comes from the up states

previously discussed. This model is able to reproduce the high-conductance features,

such as 0.5−3Hz and 4−8Hz of release frequency for miniature synaptic events of

respectively,excitatory and inhibitory synapses. In the panel c 25, the approach is

different is a single-compartment model with multiple afferent synapses (Salinas and

Sejnowski, 2000) (Tiesinga et al., 2000), or already containing an "effective" synaptic

conductance (Destexhe et al., 2001). Instead the case d, the synaptic conductances

are modelled by a stochastic process, which reproduce the spectral and statistical

properties of the synaptic conductances 25. All these models are able to reproduce

the the features of high-conductance states listed above 3.6.1.
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Figure 25: The synaptic noise terminology has used to describe the barrage of the
synaptic bombardment in which a neuron undergoes. It is an in vivo subthreshold
dynamics due to the irregular discharge of a large number of presynaptic neurons.
This dynamics is indeed a information carrier, however it seems random and has a
stochastic dynamics on the Vm; it has a statistical properties as well as a broadband
power spectrum coloured noise (Destexhe et al., 2003). in the panel a, it is showed
an in vivo recordings in neocortical neurons during activated periods with EEG. In
panel b, it is showed a very detailed model of synaptic noise in a reconstructed layer
VI pyramidal neuron. It contains, in the soma and in the dendrites, both Na+ and K+

channels. A random release of excitatory and inhibitory synapses has been modeled
using AMPA and GABAA, respectively the synapses quantity was four and sixteen
thousands. In panel c, it is showed a synaptic noise "point conductance model";
a single-compartment model with two excitatory (ge) and inhibitory (gi) synaptic
conductances. In panel d, it is showed the synaptic-clamp result of an induction of
synaptic noise in neocortical neurons in vitro. From left to right, there is an example
of the Vm, the amplitude distribution and the power spectral densities is computed
with no spikes. The power spectral densities is broadband and at HF has a negative
exponent in the power-law of f α , with α = 2,6 behaving as low-pass filter. The data
used for the analysis are provided by M. Badoual and T. Bal. Taken from (Destexhe
et al., 2003) and modified 63



In general, the high conductance test has several consequences on the cortical

neurons integration. On of them is the responsiveness, that is completely different

in presence of absence of the high-conductance states; such as neurons respond

scholastically, since their behaviour is described by a probability function, see for

an example 26. The probability to evoke an AP at the soma given a certain synaptic

input shows contrasting results (Destexhe et al., 2003). In the panel b of 26, it is

compared the same compartmental model at three different states: quiescent in pink,

a green one in which the synaptic input is simulated as panel b of 25 and a blue one,

in which the synaptic activity effect was incorporated with an additional conductance

leak. The cortical neuron purely in vitro behave as all-or-none response function,

having a tiny threshold as function of the input intensity 26. However, in presence of

the "synaptic noise" the response function changes, see green in panel b, 26; on the

other hand, the presence of high-conductance states decreases the responsiveness,

see the blue panel b in 26. From the panel b of figure 26 it is possible to see that in

presence of high-conductances states there is a probability of response even with

sub-threshold inputs, see the asterisk. This is due to the stochastic resonance, which

has been found in non-linear system (Wiesenfeld and Moss, 1995), in simple models

(Doiron et al., 2001), in theoretical (Rudolph and Destexhe, 2001) and experimental

(Stacey and Durand, 2001) models. Another effect of high-conductances state is

over the temporal processing. There is a reduction of the membrane time constant

(Destexhe and Paré, 1999), (Bernander et al., 1991) which come is visible from

experimental data in response to fast injection of current see figure 24 panel c.

The reduction of the time constant should favor a finer discrimination (on the

temporal domain) of the distant synaptic inputs (Bernander et al., 1991). Considering

active dendrites structure, having a small membrane time constant facilitates a fast

AP propagation, having as consequences a less prominent location dependence of

EPSPs timing (Rudolph and Destexhe, 2003a) and a facilitation of association of
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Figure 26: the responsiveness is enhanced during high-conductance states. In panel a,
it is shown in presence of membrane potential fluctuations by spontaneous network
activity, which triggers the synaptic AP probabilistic dynamics. A cortical pyramidal
neurons has been simulated in high-conductance state using the same model of panel
b in 25. It was stimulated by synapses of AMPA (see the arrow; two different stimulus
intensities are shown). In panel b, it is shown the responsiveness enhancement by
voltage fluctuations. The response curve, such as the probability somatic spike
response as a function of stimulus amplitude has three different states: quiescent
(pink, which means no synaptic activity), static conductance (blue, an addition of
a constant conductance, such as the average conductance during high-conductance
states) and high-conductance state (green, the same in panel a). The presence of
the static conductance input shifts the response curve towards a higher threshold
(single arrow), whereas the presence of "synaptic noise" during high-conductance
states changes the slope of the response curve (double arrow). In the last case, there
are evoked subthreshold response as well as to small inputs (asterisk). Taken from
(Destexhe et al., 2003) and modified

distal inputs with higher temporal resolution. Taking all of this together, a relation-

ship between high-conductance states and the irregular and random firing of the

neocortical neurons has been found and (Rudolph and Destexhe, 2003a) (Salinas and

Sejnowski, 2000). One of the main consequence of high-conductances states in corti-

cal neurons is the possibility to track higher frequency inputs than in quiescent states

(Rudolph and Destexhe, 2003b). Other advantages have been find in computational

models due to slightly variation of the large values of the inhibitory and excitatory

conductances allowing the neurons to track faint changes of their inputs temporal

correlation (Halliday, 2000). To summarize the high-conductance states in models

has been predict to give advantages such as a finer discrimination of the input in the
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temporal, spatial and of the amplitude. However, there are also drawbacks such as

the system is stochastic and responds only with a certain probability; on the other

hand, this is highly compensated by the neuronal population which can process the

information in parallel (Shadlen and Newsome, 1998). The high-conductance states

can be recreated in intact network through an injection into the cell using the dynamic

clamp technique see figure 27 panel a, which is used to mimic the high-conductance

measured in vivo (Destexhe et al., 2001). Using the dynamic-clamp means to add

a "virtual" conductance in the neuron membrane and reproducing this technique in

cortical slices, leads to have a depolarising and fluctuating membrane, a reduced

input resistance, voltage with an irregular firing; hence all the features observed in

vivo see as reference the panel b of figure 27 and panel d of 25. The limitation of

this approach is the possibility to inject the "virtual conductances" only around the

electrode, but actually, the synaptic input are distributed all over the dendrites. On

the other hand, the dynamic-clamp, is able to catch the interplay between the current

of the proximal region and benefits of the fine control that is possible to apply in

vitro.

3.6.2 Diffusion approximation and "noise" injection

The diffusion approximation is a technique in which there is a replacement of a

complicated and intractable stochastic process by an appropriate diffusion process,

which is a strong Markov process having continuous sample paths.

The diffusion approximation approach is comparable to the normal approxima-

tion for sums of random variables, since using the central limit theorem allows to

replace intractable stochastic process with an appropriately chosen normal random

variable. In neuroscience, the diffusion approximation approach is used to inject into

a single neuron, i.e. in cortical acute slices, to recreate the synaptic bombardment

that a neocortical neuron undergoes in vivo, as discussed in the previous sectionHigh-
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Figure 27: In vitro dynamic-clamp experiment reproducing the high-conductances
states. In panel a, the dynamic-clamp protocol. In green, there is the recording of the
Vm(t) by intracellular recording combined by the computational model of stochastic
conductance ge(t) and gi(t). The result of the effective synaptic current in orange, the
resulting effective Isyn(t) = ge(t)(Ee−V (t))+gi(t)(Ei−Vm(t)); where Ee and Ei are
the reversal potentials for the excitatory and inhibitory conductances. It is injected
into the cell in the current-clamp mode, inducing a neuronal stochastic activity, see
as reference the panel c in figure 25. In panel b, It is shown an in vitro injection of
high-conductance states. At the top: in orange, the injection of noisy current (orange),
induced a stochastic activity, which is characterized by a depolarised and fluctuating
membrane potential and irregular discharges ( the green traces, as reference see the
panel d in figure 25. At the bottom: The membrane has an (induced) reduced input
resistance Rin, which causes a less prominent response to injected currents (blue
bars; see as reference the panel c in figure 24). Taken from (Destexhe et al., 2003)
and modified

conductance state. In literature, the diffusion approximation is a very well establish

approach to extent the frequency-current curve from a injection of a step of a current

to a more physiological injection of current/conductances which recreate the in

vivo synaptic bombardment, see the review (Camera et al., 2008) and other works

(Giugliano et al., 2004) (Arsiero et al., 2007) and others. Adding on top of the

synaptic bombardment a time varying signal allows to study in a more generale way

the frequency-currnet curve, which becomes the transfer function of a neuron, see

the review (Giugliano et al., 2008) some other more recent works: (Köndgen et al.,

2008), (Tchumatchenko et al., 2011), (Boucsein et al., 2009), (Linaro et al., 2017)

and others. A recent paper from Richardson (Richardson, 2018), it recreates the
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diffusion approximation as one possible case of another stochastic process, which

seems to be more general and more indicated to investigate the I-O neocortical

neuronal properties; however it will be discussed later subsection Lack of univer-

sality of the response function, for realistic synaptic input "models". The diffusion

approximation is applied in neuroscience as "synaptic noisy" input and it is recreated

with the stochastic process of OU previously mentioned. Hence, here it is a short

explanation over the stochastic OU process. The process of Ornestein-Uhlenbeck

x(t) see equation 18 is a continuous in time and values stochastic process wth a lot

of application in physics, finance and computational neuroscience. It can be defined

by the following first-order stochastic differential equation, complemented by the

(deterministic) initial condition x(t0) = x0:

τ
dx
dt

= µ − x+σ
√

2τξ (t) (18)

In equation 18, ξ (t) is not a conventional function; it is instead a Gaussian

white-noise and it is not differentiable. However, exploiting the analytical solution

of first-order ordinary differential equations it is possible to derive the statistical

properties of x(t). In the end, note that ξ (t) is characterised by zero mean, unitary

variance, autocorrelation function, and probability density distribution as follows:

< ξ (t)>= 0 (19)

< ξ (t)2 >= 1 (20)

< ξ (t)ξ (t +T )>= δ (T ) (21)

pξ (Z) = (
√

2π)−1e−Z2/2. (22)

Sometimes in literature, the equation 18 is without the leading τ on the left hand

side, or while renaming the term σ
√

2τ as
√

2D. Here, it has the advantage that the
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steady-state mean and variance are clearly identifiable by direct inspection of its

right hand side and, most importantly, as the physical units of x(t), µ , and σ are the

same (e.g. pA). The relaxation time (or autocorrelation time length) τ is measured in

the units of t ([t], e.g. ms) and ξ (t) in [t]1/2.

As equation 18 is linear, the probability density distribution of x(t) is also Gaus-

sian. Proving this statement requires deriving the Fokker-Plank equation associated

to equation 18, which is a partial derivatives differential equation where the unknown

is p(x, t) the probability density function of x at time t. It follows that the expected

value, the variance, and the autocovariance (or the autocorrelation function) of x(t)

fully determine the OU process. It has been derived all analytical derivation, of the

statistics of x(t).

The expected value of x(t) is time-varying and converging to µ , over a time of

the order of τ:

m(t) = < x(t)> = x0e−(t−t0)/τ +µ

(
1− e−(t−t0)/τ

)
−→ µ (23)

The variance of x(t) is time-varying and it converges to σ2, over a time of the

order of τ:

s(t)2 = < [x(t)−m(t)]2 > = σ
2
(

1− e−2(t−t0)/τ

)
−→ σ

2 (24)

The covariance of x(t), defined as < [x(t)−m(t)] [x(t +T )−m(t +T )]>, is also

time-varying and converges to σ2e−|T |/τ , over a time of the order of τ:

Covx(t,T ) = σ
2e−|T |/τ(1− e−2(t−t0)/τ))−→ σ

2e−|T |/τ (25)
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In the end, x(t) can be simulated numerically by the following exact iterative

expression

x(t +∆t) = e−∆t/τ x(t)+µ

(
1− e−∆t/τ

)
+σ

√
1− e−2∆t/τ φ (26)

where φ is a uncorrelated Gauss-distributed random variables, with zero-mean

and unitary variance, and where it is not required for ∆t to be infinitesimal.

3.6.3 Stein’s process and diffusion approximations

The Stein’s (S) process y(t) is another continuous-time continuous-valued stochastic

process, applied in Neuroscience in the very same contexts of OU. It is defined

by the following first-order stochastic differential equation, complemented by the

(deterministic) initial condition y(t0) = y0:

τ
dy
dt

=−y+ τJ ∑
k

δ (t − tk) (27)

In equation 27, the train of Dirac’s Delta functions ∑k δ (t − tk) captures the

effect of incoming external events, whose occurrence times {tk} are random as in a

shot-noise. These events cause the variable y to suddenly increase its current value

by a (fixed) amount (i.e. as a jump) specified by J, while in the interval between two

successive events y decays exponentially towards zero with time constant τ . This can

be easily demonstrated by integrating both sides of equation 27 around each time

of occurrence of an external event (i.e. let say in the range (t−k ; t+k ). The statistics of

occurrence of the events is independent on the previous history (i.e. renewal property)

and expressed in terms of the equation 28 as follow:

Prob [an event occurring in [t; t +δ t)] = λδ t +O(δ t) (28)
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When λ - representing the rate of occurrence is constant in time, the set {tk}

identifies a homogeneous Poisson point process. It is easy to show that the associated

probability density function of the inter-event times is exponential. One can for

instance define the survival probability S(∆) as the probability that the next event

(e.g. say tk+1) will occur after at least a time interval of length ∆, given that one

previous event occurred at the beginning of the interval (i.e. tk+1 > tk +∆). Then, one

can easily conclude that S(0) = 1 and that S(∆+dt) = S(∆)(1−λdt). Rearranging

the last expression, and also using the first one as initial condition, allows one to

prove that in the limit of dt → 0, dS(∆)/dt = −λS(∆) and hence S(∆) = e−λ∆.

The probability distribution for the inter-event times (i.e. Prob [interval < ∆]) is the

complementary of the survival probability (i.e. 1− S(∆)) so that the probability

density is the derivative of 1−S(∆) with respect to ∆, thus λ e−λ∆.

Under the hypothesis of infinitesimal J and infinitely frequent occurrence rate λ

(i.e. so that the product J λ remains finite) and whenever explicitly or implicitly under

the sign of integration, one can replace the process τJ ∑k δ (t − tk) by a Gaussian

white-noise µ +σ
√

2τξ (t), with parameters chosen as:

µ = J λ τ σ = J τ

√
λ

2τ
= J

√
λτ

2
(29)

The equation 29 diffusion approximation and allows to use the Ornstein-Uhlenbeck

through equation 18 instead of the Stein’s process through equation 27. Incidentally,

the above expressions provide in all the cases (i.e. even for finite J and λ ) steady-state

mean and standard deviation of y(t), avoiding manipulating directly the Dirac’s Delta

functions. The Stein process is more realistic than the OU one, it is a generalisation

of it to a finite value of J and finite frequency of input. As previously mentioned,

from a recent work of Richardson (Richardson, 2018), the process of Stein has

been showed as a generalisation of the diffusion approximation and provided a very

intriguing results from a mathematical integration of the Fokker-Plank equation on
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the membrane voltage evolution over time of a EIF model with a shot noise input

(Stein process). In the next paragraph it will be further discussed this topic.
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3.7 Lack of universality of the response function with realistic

synaptic input models

The characterisation of a dynamical linear system it is universal and only based on the

system features without any dependencies on the external input or stress provided to

it. Whatever will be external input, the frequency system response will only depends

on the system features themselves, an example could be taken from the electronics:

the RC circuit, which has its characteristic poles and zeros at different frequencies of

modulation of the input, which determine the pass-band behaviour of the circuit. The

RC system has its cut-off frequency starting from there the signal is attenuated from

a factor of 1√
2
. The RC circuit description has been applied over neuron to describe

their electrical behaviour over the frequency domain and neuron has been studied as

dynamical linear system. The neuronal I-O relationship considering a time-varying

input has the goal to study the neuronal behaviour in a wide brand of frequencies; as it

has been shown in the previous section section Recent applications of System theory

in Cellular Electrophysiology. From the literature, firstly, it has been established

that neurons behaves as the linear dynamic system; however from a recent study, i.e.

(Linaro et al., 2017) and (Köndgen et al., 2008), it has been showed that at low and

intermediate modulation frequency the intensity of the synaptic background and of

the output firing rate affected the magnitude of the signal. On the other hand, the HF

domain was unaffected by any of those conditions and hence, only depending on the

neuronal properties. Nevertheless, the Richardson’s study previously mentioned, it

has been shown that the diffusion approximation predict only an universal exponent

for the power-law at HF, which however is a particular case of the more general

process of Stein used in Richardson’s work, which shows a non-universal exponent

which depends on the interplay between statistic of the input and neuronal properties.

A well establish approach is to model the the synaptic barrage, which a neuron

undergoes in vivo with a Gaussian white-noise as input with high rate and very low
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amplitude and short temporal correlation (Richardson, 2018). The synaptic barrage

has been reproduce in the leaky integrate-and-fire neuron using the OU process

with a threshold reset applying the Fokker-Planck formalism (Johannesma, 1968)

(Ricciardi, 1977) to calculate the instantaneous firing rate, spike-train spectrum at the

level of single neuron or unconnected population (Lindner et al., 2002). The synaptic

potentials in quiescent tissue of neocortical pyramidal neurons have an amplitude log-

normal distribution (Song et al., 2005), having as mean value between 1-2 mV (Reyes

and Sakmann, 1999) (Perin et al., 2011). A value of 1-2 mV is huge, considering

the voltage membrane Vm fluctuations, a input of that magnitude can easily bring

the cell from the resting value to the threshold one during the network activity; this

happens since the Vm is below, but not far from the threshold value and only few

inputs are enough to provoke an AP firing (Destexhe et al., 2003) (Sanchez-Vives

and McCormick, 2000). A positive correlation within the presynaptic population

likely increase the occurrence of the presynaptic inputs at the same time, improving

the synapse pulses amplitude (Deniz and Rotter, 2017) (DeWeese and Zador, 2006),

on the other hand, short-term synaptic depression acts on the opposite way reducing

the afferent inputs in the same time window (Abbott et al., 1997). From the outcome

of experimental results it has been suggested that the synaptic amplitude distribution

is a function of the network state (in active network) and the diffusion approximation

approach is not reliable. However, the diffusion approximation approach with small

amplitude and high rate is currently used in a lot of studies and with different models;

investigating subthreshold voltage fluctuations (Wolff and Lindner, 2008) (Hohn

and Burkitt, 2001), firing properties (Cain et al., 2016) (Iyer et al., 2013) and many

others. A very good idea is to provide to the neurons a more biophysically detailed

input of synaptic drive than the diffusion approximation; for instance neurons driven

by shot-noise respond faster (Helias et al., 2011) and have a different response

to HF modulation (Richardson and Swarbrick, 2010). There is also an important
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difference to underline between the diffusion approximation and the shot-noise, the

first one has the inhibitory fluctuation which contribute to the voltage variance of

the input which contributes to bring the Vm across the threshold; on the contrary,

the shot-noise has only the excitatory component which is the one causing the APs.

Another important aspect is that the shot-noise derived results have been obtained

with the leaky integrate-and-fire neuron (LIF), which leaks of an accurate description

of the Vm over time in the region close to the threshold for spike initiation; since the

current-voltage relationship is non-linear due to the activation of the spike-generating

sodium current (Hodgkin and Huxley, 1952). Other models have been proposed to

better describe the voltage dynamics of a neurons especially during an AP initiation,

a model which shows a very accurate agreement with the experimental data is the

exponential integrate-and-fire neuron (EIF) model (Fourcaud-Trocmé et al., 2003)

of the neocortical pyramidal cells in layers II,III, IV and V (Badel et al., 2008b)

(Harrison et al., 2015) and fast-spiking interneurons (Badel et al., 2008a).

The EIF suggested a reduction to few parameters and a reduction to one variable

which has a nonlinear current-voltage relationship composed by a linear term plus and

an exponential non-linearity close to the AP initiation threshold (Fourcaud-Trocmé

et al., 2003).

From experiments, it has been measured a voltage range around the spike ini-

tiation threshold, which is between 0,5-1,5 mV, this range will be called dT. The

spike onset sharpness dT has a key role in setting the cut-off frequency at HF domain

for a population of EIF having as input a synaptic drive; smaller is dT, higher is the

cut-off frequency (Fourcaud-Trocmé and Brunel, 2005). Experimentally, the synaptic

amplitude values are around the value of 1mV , which is the same order of magnitude

of dT. The question of the author is whether there is an interplay between the input

statistic such as the mean of the synaptic input as and the dT, playing a role on the

neuronal integration.
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Considering a population of neurons, each of them has its own value of membrane

voltage v and receive and independent realisation of Poissonian shot-noise s(t) with

a rate R(t), see the general differential equation below 30.

dv
dt

= s(t)+ f (v) (30)

The Poissonian distributed pulse over time tk has as well an amplitude distribution

with coefficient ak drawn independently from A(a); in general the shot noise is

written as equation 31:

s(t) = ∑
tk

δ (t − tk)ak. (31)

The amplitude distribution A(a) is considered to go beyond the diffusion approx-

imation approach and is A(a) = δ (a− as) considering fixed, bus not necessarily

small the mean synaptic amplitude as. Later, the A(a) will be changed to match a

more physiological barrage. It is important to consider that the previously mentioned

rate of the presynaptic rate is sinusoidally modulated by f = ω

2π
, and written in its

complex form, such as the equation 32:

Rs(t) = Rs + R̂seiωt . (32)

Considering the EIF model and its voltage dynamics, the equation 30 can be rewritten

as:

τ
dv
dt

= τs(t)+−v+dTe
(v−vT )

dT (33)

together a value of threshold vre, which reset the Vm when goes to infinity. tau is the

membrane time constant and dT is smaller than vT and are positive parameters which

characterise the onset of the action potential or spike. The biophysical meaning of dT

and vT are respectively, the rapidity of the sodium current activation which generate

the APs and the threshold found which minimise the I-V of the EIF (Fourcaud-
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Trocmé et al., 2003). Combining the EIF model with the finite-amplitude synaptic

drive A(a) have been firstly investigated the HF behaviour of the model. From the

work of Badel and colleagues the model has been shown to provide an accurate

description of experimental data (Badel et al., 2008b) maintaining a good level

of mathematical tractability. The diffusion approximation driving the EIF model

through the synaptic drive has been an extensively matter of study, in the limit of an

high input rate Rs and a small amplitude of ak bringing to a Gaussian white-noise

process.

The HF behaviour firing rate response is shown 34

r̂(ω)∼ τr
iωτ

(
< a >

dT
+

< a2 >

2dT 2 ) (34)

where r is the steady-state rate. The diffusion approximation approach predicts

an universal exponent for the HF, such as r̂ ∼ 1
iωβ

where β = 1 which is universal,

since it is not depending on the parameters of the externally imposed synaptic drive.

Considering the amplitude distribution A(a) as A(a) = δ (a−as), the HF behaviour

is given:

r̂ ∼ R̂s
τr

iωτ
(e

as
dT −1) (35)

which is close to 1
ω

for small value of the fraction as
dT . Now introduce a more

physiological description for the distribution A(a):

A(a) =
e

a
as

as
(36)

where as is the mean of the distribution. From the work of Song and collaborators

(Song et al., 2005) the distribution of isolated synaptic amplitude is log-normal for

layer V pyramidal neurons; nevertheless is important to consider additional process

present in a neuronal network like short-term depression/facilitation and presynaptic
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correlation. For the author, an exponential distribution tail is a reasonable choice for

the presynaptic amplitude in a active network.

With this new more physiological input, the next step is comparing the I-O

response curve at HF and see if it changes; as expected the Stein process (the input)

will affect the I-O response curve HF domain. To perform an accurate analysis has

been distinguish three different cases:

• as smaller than dT

• as equal to dT

• as bigger than dT

Consider an output synaptic rate Rs adjusted to have a firing rate equal 5 Hz. See the

figures 28 and 29 for more details.

Considering the figure 29 the case with as smaller and equal than dT are repro-

ducing the diffusion approximation approach; on the other hand the case as bigger

than dT the input amplitudes below the vT contribute more significantly than the

local jumps. Then, considering the HF domain of the three different cases, it has

been obtained:

as < dT

r̂(ω)∼ R̂s
rτ

iωτ

as

dT −as
(37)

as = dT

r̂(ω)∼ R̂s
rτ

iωτ
log(iωτκ̃) (38)

as > dT

r̂(ω)∼ R̂s
rτIs

(iωτ)
dT
as

Γ(
dT
as

+1) (39)
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Figure 28: EIF neuron steady state properties, the driven input is a shot noise with
an amplitude distribution as in the equation 64, hence an exponential distribution.
The parameters used are τ = 20ms, vT = 10mV and dT = 0,6mV . In panel b, the
membrane voltage Vm over time for all the three cases, with as smaller, equal or
bigger than dT. The mean value of as are as = 0.2, 0.6, and 1.8 mV, respectively. The
synaptic rate Rs is r = 5 Hz. In panel c, the output firing rate r versus the synaptic
rate Rs, the intersection of the dotted line and the firing curve is the reference at
5Hz. Other parameters used are vre = 5mV and vth = 30mV . The figure is taken and
modified from (Richardson, 2018).
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Figure 29: The response of an EIF population neurons driven by synaptic rate. In
panel a, at the top, weak sinusoidal modulation from equation 32 of the synaptic rate
Rs(t); it induces a population sinusoidal modulation of the firing rate r(t) around its
steady state (middle panel and bottom one, the histogram is compared to theory).
The amplitude and phase shift of the firing-rate response are frequency dependent.
In panel b, it has been shown the amplitude (top panel) and the phase (bottom panel)
of r̂ as a function of the modulation frequency of the three cases. The steady state of
the output firing rate is 5 Hz. The amplitude is normalised over the low frequencies
amplitude and the dashed line s show the asymptotic forms in equations 39 and
38. To consider the third case, it has 50 times the amplitude of the first case at
HF (Rs = 1000Hz). The inset shows the unnormalized amplitude. In panel c, the
HF exponent as a function of the ratio of as and dT at the top; in the diffusion
approximation approach the exponent is stable at one at the HF domain; however
when as is bigger than dT the value become smaller and smaller. The same idea for
the phase shift between input and output; in this case as expected it passes from an
advance of the phase to a delay. Model parameters are the same as figure 28. The
figure is taken and modified from (Richardson, 2018).

where Γ(m) is the standard gamma function, κ̃ = κeγ−1 with gamma the Euler-

Mascheroni constant. The most important result, however is the HF domain in which

the power-law attenuation has not an universal exponent! The fraction 1
(iω)β

the

β = 1 predict by the diffusion approximation is still valid in the case of as < dT and

as = dT , in which the synaptic amplitude are small. On the other hand, when the

synaptic amplitude aren’t small, such as as > dT , the exponent is equal to β = dT
as

and is a function of the synaptic distribution. The figure 29 shows in panel c the

phase and the HF exponent behaviour as function of the ratio dT
as

.
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It is important note that these very significant results have been obtained in the

hypothesis the value of the voltage threshold value vth is infinite (value at which an

AP is recorded) and then, the Vm is reset to Vre. Although, this numerical setup is

not even close to a real experiment; therefore a finite threshold for recording an AP

is chosen as it is usual to do in an experiment. An obvious question to the author

answered was: "Are the previous results still valid, when the modulation frequency

crosses a certain value?" The authors found that the crossover frequency (cut off

frequency) grows exponentially with vth, hence the previous results remain correct.

The crossover frequency can be calculated from the following equation:

Fc ∼
1

2πτ
e

vth−vT
dT (40)

The following result showed in the figure 30, for finite thresholds atvth =12, 13, and

14 mV. In the panel a of figure 30 it is showed the EIF exponential term of f (v) and

the crossover frequency in the inset.

Moreover in the first b panel of figure 30,it is clearly showed the asymptotic

behaviour with the vth = 12 mV with a crossover at ∼ 130 Hz; this threshold is only

bigger of 0,2 mV than the unstable fixed point. If the vth is increased of 1 mV only

the crossover frequency increases to ∼ 1000Hz (middle b panel of figure 30) and

with a further of 1 mV to 2,3 mV above the unstable fixed point the crossover goes

above 6000 Hz (last b panel of figure 30).

Another important step more of realism is the synaptic filtering due to the

finite closing time of the excitatory synaptic channels. This effect can be taken into

consideration by including a dynamics for the synaptic drive. such as:

τs
ds
dt

=−s+∑
tk

δ (t − tk)ak (41)
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Figure 30: Effect of a low spike threshold on the modeled high-frequency response.
In panel a, the forcing term f (v) and in the inset the crossover frequency, the spike
threshold are marked vth = 12, 13, and 14 mV. In panel b, the firing rate response
curve for these three different thresholds, with the infinite-threshold asymptotic in
equations 38 and 39. Together there is as well the corresponding finite-threshold
HF constant asymptotic (dotted horizontal lines) for each of the three cases. The
crossover frequency are the vertical dotted line, which increase exponentially with
the threshold vth. Parameters are the same as for figure 28 unless marked. The figure
is taken from (Richardson, 2018)

where the τs is the time constant of the synaptic filtering and ak comes from the

exponential distribution of before, see the equation 36.

The synaptic filtered drive modifies as well the postsynaptic potential giving it

a two exponential form considering τ and τs in the same time scale for an isolated

input and t >0, see the following equation:

v(t) = ak
τ

τ − τs
(e

−t
τ − e

−t
τs ). (42)

From experiments, the τs time scale has a mean around 1,7 ms (Häusser and Roth,

1997) and in the range of 1,3–2 ms (Kleppe and Robinson, 1999); without consider-

ing the dendritic filtering that can increase the value up to (2,9±2,3) ms (Markram

et al., 1997). in the figure 31 panel a, around the firing-rate steady state, r = 5Hz

the τs and the Rs are numerically extracted. In the panel b the four graphs of figure

31, the normalised amplitude is measured plotted for the different τs values, from

τs = 0 ms to 3 ms. The numerical simulations are compared to the solution of the

master equation like the panel b of figure 29. In the same panel, τs spans from 0 to 3
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Figure 31: he Effect of shot noise with synaptic filtering. In panel a, the three cases
(blue, green,red) have shown their steady-state rates for different τs values 0,1,2,3,
ms. The synaptic rate for 5 Hz are showed in the panels. In panel b, the normalised
amplitude of the rate modulation comparing the three cases for four different time
constants τs. There is a very strong suppression in the HF domain. In panel c, it is
shown the amplitude ratio between the cases as > dT over as < dT for synaptic
time constants. The increased responsiveness of as > dT respect than as < dT is
still present even in presence of synaptic filtering at least up to 100 Hz. The figure is
taken from (Richardson, 2018)

ms; corresponding and an heuristic fit was perform to obtain the corresponding r̂0 in

presence of synaptic filtering:

r̂s ∼
r̂0√

1+(ωτs)2
(43)

The heuristic fit gives indications about the behaviour at intermediate frequencies of

the amplitude, but in the HF domain the modulation is suppressed (especially over

300 Hz), see the figure 31 panels b. The panel c of figure 31 shows the ratio of the

cases when as > dT over as < dT (red divided by blue) from the panel b. It is showed

the HF domain response is different and still stronger in the first case, to demonstrate

it the amplitude ratio is showed as a function of the modulation frequency for the

four different τs. The black line is the numerical solution ratio of the master equation
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for τs =0 ms. It is possible to note that the heuristic form gives the same result for

τs =0 ms, since the ratio makes τs-independent the amplitude.
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3.8 Review of neuronal dynamics in silico studies from single

neuronal model to multi-compartmental ones

3.8.1 Modelling cells: the Exponential Integrate-and-Fire model

The description of the cells electrical behaviour of excitable cells is no recent. At

the end of the 18th century, precisely 1790, Luigi Galvani, using a frog, applied an

electrical stimulus on a nerve, observing the innervated muscle contract itself. An

year later, he described his discover in his book: "De viribus electricitatis in motu

musculari". He was, more in general, sure about the electrical stimuli come from the

brain and through the nerve transmit to the muscles. Then, having a big jump over

centuries, we will arrive to the most important description of an electrical behaviour

of a neuron from an axon squid by Hogdkin and Huxley in the half of the 20th century.

From their experiments, they formulate a mathematical model able to describe the

time evolution of the cell membrane potential. The model is composed by four

ordinary differential equations (ODEs), describing the time evolution of the K+ and

Na+ concentration as well as the total current. The Hogdkin and Huxley model (HH

model) is the basis of the further conductance-based models, such as the Integrate-

and-fire models. There are many models which are HH based; some examples could

be the FitzHugh-Nagumo model which is a mathematical reduction of the HH model,

the model proposed by Wang and Buzsáki (WB) (Wang and Buzsáki, 1996); which

is a HH based modified model with 3 ODEs, describing the time evolution of the

leak current, fast Na+ current activation and the delayed rectifier K+ current. This

model very well describes the interneurons network discharge. From the work of

N. Fourcaud-Trocmé (Fourcaud-Trocmé et al., 2003), it has been introduced the

exponential integrate-and-fire neuron (EIF) as one-variable conductance based model

to describe the dynamics of neuronal membrane voltage. The model is very well

in accordance with the WB model and it replicated the exponential upswing of
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an APs due to the Na+ channel activation than the previous leaky and quadratic

integrate-and-fire models (LIF,QIF) (Fourcaud-Trocmé et al., 2003). The authors

theoretically investigated the neuronal response to fluctuating inputs over time using

analytical and numerical simulations.

Considering the model EIF and QIF, the parameters have been chosen to have

the firing onset at the injection of a constant current able to reproduce the WB model

close enough to the current threshold see figure 32

The figure 32 shows that the firing rate evoked in response to an injection of an

input current is very close in EIF and WB models ( up to 200 Hz). QIF neuronal

model well reproduce the WB model at low frequency, but not at HF. The LIF, on

the other hand, can reproduce reasonably well at the HF the WB model; however at

low frequencies it cannot since there is a difference mathematical dependency of the

firing rate over the current. Considering the figure 32 panel B; it shows the F-I curve

of the different models in response to a noisy current input. As before, the QIF and

EIF F-I match very well the WB F-I, however the match between the WB model and

the EIF one covers a broader input current range.

To have a deeper insight of the spiking dynamics of these models, the figure 33

is very accurate. The voltage traces of the different models are the neuronal answer

to the same input current. The figure 33 panel A shows the same models behaviour

in a large time scale. Nevertheless, to appreciate the difference between models, it is

necessary have a more refined look of the voltage traces as shown in panel B. The

best match with the WB neuron is the EIF model, on the contrary LIF and QIF spiked

or before or after. The same behaviour of the EIF and WB models is due both by the

same leak current present in the models and since their I-V are very similar close to

the threshold voltage (VT ). This last similarity stays since the WB model activation

curve for the fast Na+ current can be very well approximate by an exponential

function, see panel C in figure 33. As previously mentioned, the membrane potential
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Figure 32: In panel A and B are showed the LIF , QIF, EIF and WB neuronal models
that undergo to an injection of input constant current in A and a noisy input current
in B (Gaussian white noise with σ = 5mV). The firing rate range of the F-I curve of
QIF and WB models matches, however the match is smaller than the one in which
EIF and WB match as well. On the contrary the LIF model doesn’t match at low
frequencies since the different dependencies of the firing rate on the input current
doesn’t allow an accordance. On the contrary, considering the HF domain the LIF
can match the WB considering a good choice of parameters. Figure taken from
(Fourcaud-Trocmé et al., 2003).
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Figure 33: In panel A, the voltage traces of WB, EIF, QIF and LIF are shown for
the same noisy input current. In panel B, it is shown the same as A, but an higher
resolution. The focus is over a spike time; LIF and QIF spike at the wrong time, one
before and one after the WB model; on the other hand, the EIF spikes at the same
WB onset. In panel C, it is shown the I-V curve of WB and EIF neuronal models,
respectively solid and dotted lines. The threshold VT is the minimum of the I-V curve.
The slope factor ∆T is proportional at the curvature radius of the I-V at its minimum.
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dynamics at the spike onset is very close for the EIF and WB models. After the

onset, it is independent from the synaptic input and depends only by the Na+ and

K+ channel dynamics. Furthermore, the spike shape is invariant between models (at

the onset), however, after the spike peak the spike shape is different; causing a small

delay independent by the input between the two models spikes (around 0,2 ms), see

figure 33 panel C.
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3.8.2 Cable Equations

Dendrites and nerve axons have been seen as conductors since their external and

internal liquid are conducting electricity and usually are simplified and seen as

cylinder in their structure. Their electrical membrane resistance is definitely bigger

than the one along their interior or exterior core; hence a current inside of them

flows parallel to the cylinder axis for a long distance before any leakage. In this very

simple model the length of the cylinder is definitely bigger than the diameter, this

lead to:

• uniform membrane properties such as (membrane capacitance and resistance,

electromotive force, intracellular resistance)

• the cable equation can be simplified to one dimension equation, hence along

the cylinder axis the intracellular voltage Vi is a function of time and only one

direction of space (Sterratt et al., 2011).

• the intracellular potential gradient can be expressed:

∂Vi

∂x
=−riii (44)

where Ii and ri are, respectively, the intracellular current and resistivity per unit of

length.

Applying on both side the derivative over the space to the equation 44, it will be

obtained (Koch and Segev, 1998):

∂ 2Vi

∂ 2x
=−ri

∂ ii
∂x

(45)
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the derivative of the current indicates the current flux over a certain discrete unit

of δx and in absence of any external source of external current for continuity the

membrane current density can be defined as (Koch and Segev, 1998):

im =−∂ ii
∂x

(46)

Combining the the equation 45 together to 46 and multiplying both sides for rm

the membrane resistance for unit of length, it is still necessary to consider that the

extracellular potential and the resting potential Em are isopotential and independent

from time and space. In addition, considering a passive uniform neurite and its value

per unit per length of capacitance cm and a resistance rm, it is possible to express the

membrane current density as (Koch and Segev, 1998):

imrm = τm
∂V
∂ t

+(V −Em) (47)

where τm is the membrane constant time. A next step to the cable equation, is to

define the length constant λ as (Koch and Segev, 1998):

λ =

√
Rm

Ri

d
4

(48)

In the end, putting all together "the ingredients" listed above the cable equation is

ready to be introduced, hence, the analytic approach to solve the passive properties

of a neurite.

λ
2 ∂ 2V

∂x2 − (V −Em)− τm
∂V
∂ t

= 0 (49)
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Considering the equal to 0 nA the injected current Iin j, V the difference between the

internal potential and the external one, τm is the membrane time constant and λ has

previously defined 48.

In a more realistic situation such as a dendrite branch different "cables" with

different properties are connected to each other; to guarantee the continuity of the

cable equation some boundary condition are needed. As shown in figure 34 there are

three different kind of boundary conditions: sealed end, killed end and leaky end.

In a condition when the tiny end of a neurite is intact,sealed end, the final tip has a

very high resistance and there is not current flowing outside of the membrane;the

∂V
∂x = 0. In the case of a killed end, where for instance a dendrite has been cut, its

cytoplasm ans the external medium are in direct contact so the difference between

and outside is 0 mV.The leaky end boundary condition there is a current flowing

through the resistance RL, equal to (V−Em)
RL

. If a current is injected in a neurite with a

sealed end boundary condition, it gets another type of boundary condition, that is

defined as ±∂V
∂x = riI(t), where I(t) is the injected current.

Another very useful as well as basic idea is the semi-infinite cable, that starts at x=0

Figure 34: The boundary condition for the cable equation, taken from (Sterratt et al.,
2011)
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and has a sealed distance at infinite distance with an injection of current equal to

Iin j. Although it is no realistic, it is a good approximation on how much the potential

decay as a function of the length of the cable, and is simply describe by the following

equation:

V (x) = Em +R∞Iin j exp
−x
λ

(50)

with R∞ = Rm
πdλ

is the input resistance of the semi-infinite cable and λ is the necessary

distance to along the cable to decrease by a factor 1
e the membrane potential. In a

simpler scenario, with Iin j = 0nA and with a boundary condition as V= V0 at x=0.

The equation solution of this case is V (x) =V0 exp −x
λ

.

3.8.3 Multi-compartimental models

The idea is based on compartimentalisation of neurons (axons and dendrites) in

small cylinders and each of them is an isopotential and spatially uniform for its own

properties (Koch and Segev, 1998); the difference in voltage are only between the

different compartments (RaIl, 1964)(Holmes and Rall, 1992). According to this idea,

every cylinder is a compartment with a certain length l, diameter d and surface area:

a = πdl; within each compartment the current flows into the capacitance and the

resistance and can flow to the extracellular media and through the cytoplasm in a

longitudinal way. Furthermore, the extracellular media has a negligible resistance

if compared to the intracellular resistance, hence Rext ≈ 0, and it is considered as

isopotential reference, in other words the ground of the circuit (RaIl, 1964).

Every compartment represents an electrical circuit, hence we can introduce the the

N as a total number of compartment, where k ∈ [1,N]; the potential of the k-th

compartment is Vi as well the injected current Iin j,k etc. Considering three cylindrical

segments of a dendrite,which are sufficiently short to be considered isopotential

(Koch and Segev, 1998), then it is possible to reconsider the idea of the Im now can
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flow to adjacent compartment and is no longer true that every compartment is an

isolated system; hence Im is different from zero.

Figure 35: Three adjacent compartments that represent an isopotential part of a
neurite, taken and modified from (Sterratt et al., 2011)

The next equation takes care of what happens to the current between neighbouring

compartments, such as between the k-1 and k+1 compartment 35.

Iin j,k + Im,ka = Ic,ka+ Ii,ka =
Vi+1 −Vi

4Ral
πd2

+
Vi−1 −Vi

4Ral
πd2

+ Ii (51)

with Ra is the axial resistance between a compartment to another and it is defined

the resistivity properties of the intracellular medium.

Then, completing the mathematical substitutions, and dividing by the surface area

πld:

Cm
dVk

dt
=

Em −Vk

Rm
+

d
4Ra

(
Vk+1 −Vk +Vk−1 −Vk

l2

)
+

Ii,k

πdl
=

Vi+1 −Vi
4Ral
πd2

+
Vi−1 −Vi

4Ral
πd2

+Ii

(52)
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This equation can become way more difficult is the diameter of the neurite change

over its ramification. To make easier the integration of the time evolution of the

voltage membrane the neurite is divided in cylinders which fixed voltage making

a compartments varying over the diameter the sum of small cylinders of constant

d. A common rule to divide an unbranched dendrite with more cylinders could

be to divide from the starting point to each diameter increment is bigger than 0,1

µm along the dendrite. It is import with the simple geometry shape of the electric

circuit. NEURON has packages specifically designed for building compartmental

(Carnevale and Hines, 2006) providing a cylinders as the only solution to represent

a complex morphology. However, a soma that is spherical, should be translated

as a cylinder with the same surface area. In some cases there are some simulation

packages, which allow a representation that reflect the division between morphology

and electrical compartments. All of this makes easier to change the compartments

number of the electrical representation of the morphology. Once the cylinder are

set they need to be divided into electrical compartments, these last ones have been

assumed to be isopotential. Once the morphology has been represented as a set

of cylindrical sections, they must be divided into electrical compartments. Each

compartment is assumed to be isopotential. The compartmental models used in

simulations have a finite amount of compartments; big enough to make tolerable the

error on simulated the real morphology. The error come from the assumption of each

electrical compartment is isopotential. A small compartment during the simulation

makes smaller the error; on the other hand makes bigger the computational burden.

A general accepted rule is to have the compartment size no longer than 10% of the

length constant λ f . Compartmental model could be based over the morphology of

real neurons, the use of transgenic approach, tissue fixation or fluorescent dyes. In

the idea to reconstruct an entire neurons with its axons and dendrites more slices
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are needed to be aligned, There are some software that help in this process such

as Neurolucida; which is the one used to reconstruct the BBP neuronal models.

Neuronal simulator, like NEURON, can simulate big multi-compartmental models;

it could be some cases in which a simpler models more desirable. This happens

since a neuron morphology simplifications could lead to an identical electrical

compartmental models with a reduced number of compartments and complexity.

In the work of Rall 1964, (RaIl, 1964), he discovered that passive dendrites can

be equivalently modelled by a single cylinder that follows the undermentioned rules:

• The membrane resistance Rm and the axial one Ra fave to be the same in all

the branches

• The end of each terminal branch must have the same boundary conditions

• The terminal branch end need to be at the same electrotonic distance from the

tree base.

• The relation between the parent branch and the two child branches is:

d
3
2
1 = d

3
2
2 +d

3
2
3

These rules may seem very restrictive; in fact some of the real neuronal trees such

as apical trunks of cortical pyramidal neurons, violate the 3/2 rules. The difference

between following the above mentioned rules or not is on the Vm along the tree; if

the rule is followed there is a decrease like in a single and equivalent comportment;

on the other hand there is an abrupt change in the branch point.

3.8.4 NEURON simulator and robust numerical methods

NEURON (http://www.neuron.yale.edu) is a simulation environment for modelling

single neurons as well as neuronal networks. It can simulate: single neurons via

section that can be divided into individual compartments, neuronal properties, i.e.
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complex branching morphology, multiple channel types, inhomogeneous channels

distribution, secondary messenger effects and ionic diffusion (Hines and Carnevale,

2001). It provides tools for handling complex models without requiring a strong

computational or coding background. Regarding to simulate single neurons, they

are divided into sections and furthermore sections are divided as well into single

compartments. In addition, to sections can be assigned properties which can vary

continuously along the section length. In this way, it is possible to separate the

physical properties from the numerical issue of spatial compartments size helping a

more focus investigation on the biophysics/biology of the phenomena, rather than

numerical details (Hines and Carnevale, 1997). Sections can be connected together

to make cables and branched cables.

It has been mainly developed by T. Carnevale and J.W. Moore with the idea of

facilitate the simulation of complex membrane properties and where the geometry

plays important roles on it (Arbib, 1998). Later, it has been added other facilitation

for studying the longitudinal ionic diffusion and efficient computation representation

of neuronal connections (Hines and Carnevale, 2000). NEURON has as primary

interface HOC, however, currently is more used a Python interface. Parallelisation

is supported by the MPI protocol. NEURON is able to perform diffusion-reaction

models and integrating diffusion functions into cellular-network and synapses models.

The properties of the membrane channels of the neuron are simulated using compiled

mechanisms written using the NMODL language (Hines and Carnevale, 2000).

More in details, an user definition of the membrane or cytoplasmic biophysical

definitions are described in sets of differential equations and kinetic schemes (Hines

and Carnevale, 2001). These models are compiled and the membrane voltage can be

efficiently computed using an implicit integration method for branched structures

(Hines and Carnevale, 2000). More in general, NEURON is born to facilitates the

creation of computational models, which are able to matches the knowledge (Koch
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and Segev, 1998) so far and helps to further investigate the physiology of neurons and

neuronal networks in many aspects. The possible applications of NEURON make

it functional in wide range of research topics, from the basic cellular mechanisms

which shred a light on the physiology of a neuron encoding information, which is

involved in many process such as memory, learning, consciousness, perception an

even helping into the comprehension of some disease like epilepsy, multiple sclerosis,

learning and memory disorders (Hines and Carnevale, 2001).

To simulate neurons of network of them, it is necessary to consider the continuity

of time and space, chemical and electrical signals spreading are governed by partial

differential equations in which potential and flux are smooth function in time and

space (Rall, 1977) and others. An establish way to perform the resolution of the set

of equations before mentioned is solve them numerically, see for example (Crank,

1980) and(Carslaw, 1986). This approach is similar to solve the original continuous

system by another one which on the contrary is discontinuous; this is the NEURON

approach on the words of its major contributors (Hines and Carnevale, 1997). The

way in which NEURON works is computing continuously some variables over a set

of discrete space points called nodes for a certain number of time steps. NEURON

has a method to correct the integration, which is of the second of accuracy while

integrating the system via linear interpolation on the intermediate temporal and

spatial step. Obviously, the step size is a key point to simulate correctly the the

system phenomena. I want to stress about how much is important a good choice of

the best size for the time and temporal steps; a poor choice can lead to a numerical

error and a wrong interpretation of the biological phenomena which is wanted to

simulate.

In the paper of Hines and Carnevale, a set of figures, figures 36, 37 and 38

underline the importance of good choice for the time and temporal step, in figure 36

the finest dt is the best choice to emulate the analytical solution. In these figure a not
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appropriate step size can lead to wrong or not accurate solutions as well as to correct

solutions which have an exaggerated computation burden. In addition, considering

the NEURON second order of integration it can oscillate if the spatial step is too

large see figure 38 back line, however to prevent any oscillations in the numerical

solution time and spatial increments are normalised.

One of the most fundamental problem in NEURON was the spatial decay of

a transient signal. The neuronal membrane properties of a single neurons act as

low-pass filter, so fast transient signal are cut or greatly distorted and/or attenuated

with distance. Hence, to resolve an HF signal in space is necessary a fine grid.

The authors proposed a criterion based on the length constant λ f , that is computed

at a certain frequency f, that is high enough to have the transmembrane current mostly

capacitive.

this last current and the ionic one are equal at the frequency fm = 1
2πτm

, hence

Rm has a small effect on the propagation of the signals ≥ 5 fm.

Usually, cells have membrane time constant τm bigger than 8 ms ( fm ∼20 Hz),

so the distance of an adjacent node should not be bigger that a certain fraction of the

constant length at 100 Hz, λ100. This frequency is reasonably high to be insensitive

to ionic conductance shunting, however not so high compared to fast EPSPs and

spikes that are around 1 ms, that corresponds to ∼400 Hz.

λ f ∼ 0,5

√
d

πRaCm
(53)

where d is the diameter, Cm the membrane capacitance e Ra the access resistance.

In NEURON the lambda rule is implemented by the CellBuilder, which allows to

specify the anatomical distance between the grid points as a fraction of λ100, the

adjustable parameter that care of this is called d_lambda; the default values is 0,3.

The figure 39, panel A, shows how works the d_lambda rule in a model of rat
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Figure 36: In Panel A, a simple model represent a spherical cell with surface 100
mm2. The resting potential, Vrest is -70 mV and the membrane capacitance is 1 mF

cm2 , the
membrane resistance is 20Ωcm2 time constant τm = 20ms. A 1 pA of depolarising
current is injected at t =0 ms. In panel B, the orange dashed line is the analytic
solution for the first 100 ms for the Vm, the solid line are the computed solutions;
with dt 40 ms (circle) and dt =20 ms (cross). In panel C, the graph is in an expanded
scale. Circle are for a dt of 10 ms and 20 and 40 ms are labelled.

100



Figure 37: For both images there is the Vm over time at the synapse location. The
analytical solution is orange, the black is the computed one. The dt is 1ms (left).
Right, an expanded view for the first 10 ms.

Figure 38: Considering a dendritic model the response of an injection of current of
250 pA lasting 0,05 ms, applied in the midpoint. The spatial grid has 125 nodes, 20
mm of distance; the oscillation of the solution occurs at dt bigger than 0,128 ms. The
orange dashed line is the analytical solution and the black lines are the computed
solutions with dt 0,05 and 0l.025 ms. The numerical solution starting from 0,0125
ms is indistinguishable from the analytic solution.
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hippocampus granule cell from the dentate gyrus, see the model by Dennis Turner

(http://www.neuro.soton.ac.uk/cells/ cellArchive.html).

In panel B of figure 39, the time evolution of Vm at the soma is computed using

a dt of 25 ms, using three different methods for specifying the spatial grind; one

or three nodes in each branch, (thick blue and black lines) and d_lambda = 0,3.

Furthermore, solutions with dt = 25 ms and 30 ms are indistinguishable; hence the

d_lambda is a good way to fix an accuracy standard.

However, it is important to consider as well the time steps, for example to

compute a somatic ESPs with only 3 nodes and the spike timing is important a finer

grid is mandatory see figure 40 panel C. However, the best accuracy reached without

any drawbacks on accuracy has been achieved with the grid set by d_lambda = 0,3

and 110 nodes.

As same as the important of the spatial grid step, there is the time step dt. In

neuronal network as well as in single neurons some signals can vary or propagate

quickly; ergo a tiny step is a very good choice. On the other hand, it is true an adaptive

time step lead to the user the freedom to tune the local accuracy as well as make

lighter the overall computational burden. To this purpose NEURON has adopted

the CVODE (Cohen and Hindmarsh, 1994), package written in ANSI standard C

to solve ODE problems. It solves both stiff and non stiff systems. In the first case,

it has several options to treat the system Jacobian, including dense an interative

preconditioner solver (Krylov) and dense and band matrix solvers. Using CVODE

the user can specify the maximum possible absolute error instead of the dt, then, the

integrator will dynamically adjust the dt to adjust the local error of each variable

state. Talking about computational performances, a topic which I am very care about;

CVODE is able to achieved a runtime 10 time faster with the same accuracy of the

most accurate solution with a fixed time step (Hines and Carnevale, 2001). The reason

is simple, having the ability to dynamically change the dt step during the integration,
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Figure 39: In panel A, it is shown an anatomical detailed model of a rat hippocampus
granule cell from dentate gyrus. A fast AMPA synapse is attached to the some, orange
dot. In panel B, with a spatial grid of one or three nodes per branch or in dashed
orange the d_lambda value as 0,3; it is showed the Vm of the some over time.
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Figure 40: In panel A, an EPSP is evoked from a synapse activation on the soma,
which is spread along the dendrites, with a transient depolarisation becoming smaller
smaller with distance. Along the orange dashed path the panel B and C show the
timing and depolarisation magnitude changes along the orange path. In panel B, it is
showed the peak amplitude of the dendritic depolarisation along the orange path; the
model computed with nseg =3 (black line), it is identical to the accuracy standard
for d_lambda = 0,3. In panel C, along the dashed orange path is showed the peak
dendritic depolarisation time as a function of the soma distance. Between ∼ -150 to
300 mm there is an evident difference between the computed curve with 3 nodes and
the accuracy standard (thin black trace versus the orange dashed trace).
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it cans squeeze the dt only in needing steps relaxing it elsewhere. In the figure 41

panel B, it is showed the control which CVODE has over the integration steps, slicing

the time step in the there is a rapid change into 0.01 ms pieces up to relaxing the

time step up to around 4,4 ms during long interbust. The integration of CVODE in

NEURON, however has allowed the use of whatever NEURON integration method

to simulate carefully any neuronal model biophysical mechanism.

It is important to underline that the NEURON default integration is a fixed-step-

first-order implicit, which is numerically stable when extremely stiff ODEs and for

algebraic equations are present in the system; such as in presence in the model of

voltage clamps. The simulation cited so far in the article of Hines et al (Hines and

Carnevale, 2001), they have been perform with NEURON’s Crank-Nicholson like

integration method or CVODE. The Crank-Nicholson like method has algorithm

performance very close to the first-order implicit method (Hines, 1984), but when

there is linearity between the membrane channel current and voltage, it is second-

order correct. Therefore, to shorten the run-time and achieving the same accuracy of

the first-order, it is possible to use a larger dt.
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Figure 41: in panel A, the neocortical layer V pyramidal neuron somatic Vm over
time undergoes to a long depolarisation pulse. The solution computed with fixed and
variable time step are indistinguishable. In panel B, the CVODE dt varied over a
wide range, from below 0.01 ms during every AP and at three different times: at the
simulation beginning and at the sudden start and end of the current pulse injection(5
ms and 905 ms).On the other hand, for most of the simulation the dt was much larger
than 0.01 ms. The integration order ranged from 2 to 5, with most steps using second
or third-order of integration.
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3.8.5 3D reconstructions of the morphologies into NEURON

In this section of my thesis I report two very good example of 3D reconstruction of

neuronal morphologies. The two examples are the works of Markram and colleagues

(1997) and the work of Erik De Schutter and J.M. Bower (1994). In the work of

Markran et al (Markram et al., 1997), it has been experimentally performed an

all-embracing work from the morphological structure and physiology to the synaptic

connection and physiology of pyramidal neuron of layer in the rat neocortex. In

this brief section the focus will be on the morphological structure of the pyramidal

neurons. In their works they used acute slices of neocortex of juvenile rats, to perform

somatic whole-cell recordings, in which some neurons were filled with biocytin. It

has been analysed the following morphological parameters of pyramidal layer V

neurons synaptically connected. The analysis was quantitative:

• soma location within the layer 5

• soma diameters (vertical and horizontal)

• the maximum span and the number of dendritic fields of basal apical and

terminal tuft dendrites

• the distance between the soma and the fist bifurcation of the apical dendrite

• maximum horizontal and vertical extent and number of axonal collaterals.

In addition, it has been mapped the number of synaptic contacts had by two neurons

and the distance of those synapses to the two somas from the main apical trunk, basal

or apical oblique dendrites. The compartment models have been build from a camera

lucida, the dimension (length and diameter) of the neuron have been measured

from the enlargement coming from the camera lucida drawings; they haven been

tabulated in the NEURON package (Hines, 1993). Compartmental models were

constructed from camera lucida drawings of pairs of pyramidal neurons. The lengths
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and diameters of all dendritic branches were measured from enlargements of these

camera lucida drawings, tabulated and entered in the program package NEURON

(Hines, 1993). Assuming the properties of passive cable the values are Rint= 155

Ωcm, Cm = 1µF cm−2 and Rm = 7000 Ωcm, where Rint is the internal resistivity, Cm

is the membrane capacitance and Rm is the membrane resistance.

It is important to take in consideration that simulation could be subject to inac-

curacies (Markram et al., 1997). The drawings of camera lucida are morphological

projection into a plane of 3D structure. Corrections for the z-axis aren’t take into

considerations. This issue is not for all the dendrites, since the apical ones are parallel

to the plane projection. The others, instead appear to be too short from the reconstruc-

tion. The electrotonic as well as the geometric length has been estimated to be the

20% underestimated on average. The shrinkage due to the fixation procedure hasn’t

been compensated. Observing the apical dendrites, the wiggles seen there suggest

the reconstructed cells have a shrinkage of the 10% respect their environment, it may

happen to the product used to stabilise them. The shrinkage due to the biocytin-filled

neurons is around 5%, which is in agreement with the comparison results of soma

diameter measured using the IR-DIC and the camera lucida drawings.

From the figure 42 is possible to see example of adjacent thick tufted pyramidal

neurons of layer 5. The soma sizes is between 15 and 25 µm, and the probability

to have a simultaneously recording of synaptically connected neuron is ∼ 0,1 for a

sample of 500 paired recordings; however, in one brain slice, it has been found an

higher probability of connections between two pyramidal neurons.

The figure 43 shows the somatosensory cortex location of thirteen anatomically

reconstructed pyramidal neurons synaptically connected. The whole patch-clamp

voltage recordings have been obtained exclusively from layer V thick tufted pyrami-

dal neurons.
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Figure 42: Using a confocal microscopy (stack of 30 images, 1 µm of depth) a pair
of adjacent pyramidal neurons of layer V has been reconstructed, they are sinaptically
connected. They have been identified using IR-DIC microscopy and recorded with
patch-clamp pipettes. Taken from (Markram et al., 1997)
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Figure 43: Here, it has been shown the location of synaptically connected pair of
layer V pyramidal neurons morphologically reconstructed. The panels show two
drawings of the sections, Panel A, it shows the unidirectionally reconstructed location
in panel B are showed the bidirectional ones. All the neurons are located inside
the somatosensory cortex. The numbers into the circles are the internal reference
numbers.Figure taken by (Markram et al., 1997).
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fourteen neuron, so seven pairs of neurons were unidirectionally connected and

reconstructed studied in detail on the base of their dendritic location of the synaptic

contacts( both pre- and post-synaptic location). Figure 44 shows a pair of connected

neuron low magnification already filled with biocytin as figure 42. In addition, in

the other panels B-D, are showed at higher magnification the synaptic contacts at

different dendritic locations.All the neuron have been reconstructed thanks to the

camera lucida use, as well as the potential synaptic sites on the neurons have been

marked with the camera lucida as showed in figure 45.

The above mentioned unidirectionally synaptic contacts are an example of 3D

morphological reconstruction of layer 5 pyramidal neurons of the somatosensory

cortex using the camera lucida. The same method is used to reconstruct the bidi-

rectionally contacts between pair of neurons; nevertheless I will not show here.

In conclusion, here I reported an example of a past work which reconstructed the

complex morphological structure of the layer V pyramidal neurons, that later has

been implied into the NEURON simulator to simulate those reconstructed neurons.

Another very important example of a 3D reconstruction of cerebellar Purkinje

cell by Erik De Schutter and J.M. Bower. Their work is inserted in the context of

signal integration of the neuron; it is really affected by the dendritic geometry. To

underline this concept the general conclusion is the synaptic inputs dendritic location

is important (Rall et al., 1967).

The Purkinje cells have a large dendritic tree, with an huge number of excitatory

parallel fiber synapses (Harvey and Napper, 1991). The molecular layer of the

cerebellar has a morphology which the parallel fibers makes synaptic contact with

each Purkinje cell whose contact.

Hence, the distal synaptic inputs are attenuated in the Purkinje cells, since the

parallel fiber at the top of the molecular layer has a smaller impact over the Purkinje

somatic response. Since the Purkinje cells are the only output of the cerebellar cortex
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Figure 44: Unidirectionally connected couple of pyramidal neurons of layer V. In
panel A, low magnification of a connected couple of neurons filled by biocytin. the
circles show an autaptic contact (in panel B) and synaptic contact between the pair
of neurons. in higher magnification are showed in panel B,C,D. The main axons are
indicated by arrows. The contacts have been identified at the electron microscope,
scale is 100 µm in panel A and 50 in the others. Figure taken by (Markram et al.,
1997).
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Figure 45: Unidirectional dendrites connections on apical tuft dendrites. the target
neuron dendritic arborisation is in red, the axonal one in blue. The black color
indicates the dendritic morphologies of the projecting neuron, the green is the axonal
one. The green circles shown the synaptic contacts by the projection of the neuron on
the target one, hence black/green neuron to red/blue one. Figure taken by (Markram
et al., 1997).
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(Ito, 1984) many cells have smaller influence over their integration. In their paper,

they showed that Purkinje cell model (Schutter and Bower, 1994) have dendritic

active properties and that they interactions with the synaptic background inputs;

in addition, the passive electrical properties amplify the distal signal, neglecting

the distance. Their model has a very powerful results showing that all the granule

cells has the equal access to the Purkinje soma cells. All the simulations used a

compartmental model of the Purkinje cells with reconstructed dendritic anatomy

(Rapp et al., 1994). The model was simulated using GENESIS. The morphological

structure of the Purkinje cells and the dendritic spines were modeled using more than

4500 compartments; considering overall the model, all the dendritic compartments

excluding the one simulate the spines; contain:

• Ca2+ channels P- and T- type

• two Ca2+-activated K+ channels, with a persistent K+ channel

• soma fast and persistent Na+ channel

• delayed and rectifier A current, persistent K+

The soma is completely passive which allows the recording of the EPSPs. The

active membrane model was also compared to the passive one to have the same leak

conductance. The model is able to replicate the current injection of in vitro data

as well as generate correct response of synaptic inputs by climbing fibers, parallel

fibers, and inhibitory neurons (Schutter and Bower, 1994). Furthermore, this model

is able to replicate the spontaneous firing rate of Purkinje cells in vivo (Gilman and

Arbor, 1983).

The somatic EPSPs amplification is linearly related to the distance from the soma

to the input for distances beyond 100 µm; this is not due to an EPSPs amplification

big increase, since the spine head amplification is small. In the passive model

description, EPSP amplitudes in the spine heads are smaller on the proximal dendrites
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(27,0 ± 1,0) mV than the ones in the distal dendrites (41.6 ± 3.0) mV. This is due to

the sink effect present in the large, leaky soma (Jack et al., 1975). The distal inputs

big amplification come from an interaction between the P-channel activation and

the electronic structure of the neuron; this interaction is illustrated in figure 46. The

P-channel spread activation adds an additional dendrite depolarisation, nevertheless

is not enough to trigger a full-blown dendritic spike. This increased current flows P

channel into the dendrite causing a more somatic depolarisation. P-channel activation

in other dendrite parts occur only in presence of background parallel fiber inputs,

which contribute to maintain the dendrite around -50 mV, panels A and G of figure

46; very close to the channel activation threshold around -40 mV (Regan, 1991);

hence any small additional depolarisation caused by an EPSPs passive spread could

activate the channels. Meanwhile the synaptic inputs activate the P channels in the

dendrite, the geometrical structure f the Purkinje cells makes the proximal dendrites

effect less effective (in terms of amplification). In the proximal regions the current

sink caused by the soma large dimension stop further depolarisation spread to the

adjacent branchlets; not allowing any P channels current to be recruited (panel G-I in

figure 46 ). The firing model responses ha been shown to be similar to experimental

in vivo recordings of Purkinje cells response (Bower and Woolston, 1983).

In addition, the response haven’t been affected by the inputs clustering over a

single branchelet, since an input distribution over eight branchelets gave the same

response. It is important to underline that, for physiological firing frequencies the

amplification mechanism is robust for the model, on the contrary, for small firing

frequencies below 2 Hz, the model fails showing a realistic description. The failure

at low frequencies was due to the impossibility to the very low input synaptic

spontaneous activity to depolarise the dendrites and activate the P-channel current.
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Figure 46: Purkinje cell model response to a synchronous synaptic response in
a distant branchelets false color image, ( branchelet 44, from panel A to F) and
a proximal one (branchelet 3) from G to I panels. From A-C and G-I membrane
potential and submembrane [Ca2+] at the times after the input are shown. At 1 ms
the starting depolarisation is localised to the input providing branchelet (panel A
and G). For both inputs, P-channel activation have increased the depolarisation at
4,5 ms (panel and H);the consequent Ca2+ influx increased the Ca2+ concentration
(panel E). On the regard of the distal input, the surrounding parts of the dendrite were
depolarised as well (panel B) and when the neuron fire an AP (panel C), P channels
have activated in a large surrounding input area of branchelet 44 (panel F). On the
other hand, for proximal input, the activation of the P-channel and the depolarisation
are restricted only to the site of the synaptic input (panel I).
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I want to underline the morphological reconstruction of the morphological struc-

ture and the dendritic arborisation due in this work showed in figure 46their physio-

logical.

It is known that Purkinje cells are the only one adult neuron in the mammalian

kingdom which hasn’t NMDA channels. One of the reason of insensitivity of synaptic

inputs clustering could be exactly the absence of the NMDA channels. This channels

lack suggests a very different way to perform a signal integration than the pyramidal

neurons.
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3.8.6 Birth of a series of approached in "large-scale simulations" cortex, hip-

pocampus and cerebellum

In this section I want to include three work of Markram, Migliore and D’Angelo;

which are large simulation of somatosensory cortex, hippocampus and cerebellum.

The Markhran’s work is the fist microcircuitry somatosensory cortex digital of

juvenile rat. It has been reconstructed an anatomical neocortical column of the

volume (0,29 ± 0,01) mm3 containing 31 thousand neurons; in patch clamp studies

identify 55 specific morphological layers and 207 morphoelectrical sub-types of

neurons.

In the past decades neuron have been analysed and classified ion different terms:

• their electrophysiological behaviors, see (McCormick et al., 1985) (Kasper

et al., 1994)

• their morphological features, see (Larkman, 1991) (Wang, 2002)

• their different expression of Ca2+-binding peptides, see (Toledo-Rodriguez

et al., 2005) (DeFelipe, 1993).

Nevertheless, there is no agreement on an objective classification of the neuronal

types. It still lacking a comprehension of the total view of the each layer number

of neuronal types. With the help of the paired techniques, it has been possible to

study the anatomical and physiological properties of synaptic connections between

neuronal types, see (Gupta et al., 2000) (Frick et al., 2007) and others. Talking about

the functional level, neocortical slices have been studied and has been investigated

emergent behaviour (Cunningham et al., 2004) (McCormick et al., 2003), corre-

lated activity (Silberberg et al., 2004) (Hasenstaub et al., 2005), and the functional

impact of single neurons across the layers, which has been studied in vivo and the

somatosensory and other cortical areas (Wilson et al., 2012) (Reyes-Puerta et al.,

2014). Nonetheless, it still lacking a comprehension of the cellular and synaptic
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mechanisms and roles of the different layers even in the simplest behaviour. It is

known the several types of neurons are connected among them through synapses

with different dynamics and strengths, the connections are located in on dendrites,

axons, soma etc... However the functional significance of this specific organisation

remains unclear.

In this work Markran and colleagues have presented a complementary approach

to the prior computational studies and have reconstructed a column of neuronal

microcircuitry across the somatosensory cortex layers (1-6) of a two weeks old

Wistar rat. The authors recorded and digitally reconstructed neurons starting from

acute slices, the neurons have been classified in their morphological types see figure

47, then located in a proper volume estimated by experimental data into the proper

layer of belonging as shown in figure 47 and then, the connectivity between neurons

have been reconstructed as shown in figure 47. Neurons have been classified into

their electrical types (e-types), using an extended version of the work by Ascoli

and colleagues, 2008 (Ascoli et al., 2008) into electrical types (e-types), then the

models reproduced to capture their characteristic electrical behavior see figure 47.

The simulations have explored some emergent behaviours of the reconstructed micro-

circuitry, they were able to reproduce previous in vivo and in vitro providing findings

as well as clues about functioning of the neocortical microcircuitry. Differences

among neurons are a lot and really well spread, the differ in location, morphology,

electrical properties, location and functionalities, i.e. (protein expression) (Harris

and Shepherd, 2015). At the first sight, the neuronal digital reconstruction took into

account only layer, electrophysiology and local morphology. The e-types of the

Petilla convention (Ascoli et al., 2008) were used as sub-types. On the hand, they

have been included, when the whole brain tracing data were sufficient in quantity

for a decent number of neurons(e.g. L5_TTPC_CT as cortico-tectal sub-types). In

this work the authors have recorded and labelled more than 14 thousand of neurons
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Figure 47: Data-driven Reconstruction workflow of neocortical microcircuitry
Panel A, neurons morphological diversity. a) Identify the morphological types in
the microcircuit (m-types). b) The m-types are repaired and then cloned with a
statistical variations to have more exemplars in Panel B, anatomy of microcircuit, a)
the definition of the spatial dimension of an unitary microcircuit. b) Single neurons
assembly of individual neurons in the 3D space as a function of the occurrence of
m-type per layer. In panel C, Reconstruction of the microcircuit connectivity. Based
on the synaptic connectivity rules, it has been derived the number and location of the
synaptic contacts into the microcircuit between neurons. in panel D, neuron electrical
diversity, map and models of electrical types (e-types) for each m-types to consider
the morpho-electrical sub types. in panel E, neurons synaptic diversity. According
to the rules of synaptic physiology, there are map and model of the synaptic type
(s-type) found pre- and post the combination of me-types. In panel F, the virtual
reconstruction of the tissue volume. It has been as well insert synapses coming from
the thalamocortical fibers. Figure taken from (Markram et al., 2015)

.
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from all the somatosensory cortex six layers of a P14 Wistar rat. The experiments

have been performed in acute slices using patch-clamp technique. More than two

thousands of well stained neurons were necessary to classify the neuronal m-types,

the characteristic features of arborisation of axon and dendrites was the "key" for the

classification (Larkman, 1991) (Ramon y Cajal, 1909) (Wang et al., 2004). However,

some rare m-types haven’t their morphological reconstruction since they were rare

and they "substituted" with types of same morphology of close layers (Markram

et al., 2015). Even if, the "missing" m-types were reported in literature like L6 sub-

plate pyramidal cells(L6_HPC and L6_SPC) see (Ghosh and Shatz, 1993)(Hevner

et al., 2001), however the stains quality was not sufficient and they were excluded.

In the end, 55 m-types have been reconstructed, 67 if considering the missing ones

and separating neurons between layer 2 and 3; see figure (were there reported only

excitatory types) 48, which they are distinguished by their dendritic features. In

addition, it could have been introduce a more refine, but less reliable classification

between m-types since the pyramidal cells morphology changes as a function of

depth an layers figure 48. Note that one of the pyramidal cell of the layer 6 has

inverted axonal arbors. To generate an even larger pool of unique m-types exemplars

have been jittered angles, branch angles and section lengths in the clone see figure

49.

This approach was validate against the features distribution of the neuronal

features from reconstructed ones and allowed the authors to have a larger dataset

respecting the biological variability.

From the side of the morphoelectric classification, neurons have been classified

using current steps according to the criteria of Petilla convention (Ascoli et al., 2008).

Then, since there weren’t any significant traces of bursting behaviour in the excitatory

neurons, they have been classified as continuous adapting neurons (CAD).
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Figure 48: All the excitatory 3D reconstructions of m-types. Morphologies in L2 and
L3 are not separated. The axon is in blue and the dendrites in red. To have further
details look at figure FIGURE for the complete type arborisation.
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Figure 49: Classification robustness summary for L2-5 pyramidal cells in panel B1
and B2. The left one, B1 shows their relative population sizes. In the right panel there
is the accuracy scale in colors The accuracy of the classification is the ratio between
the successfully classified cells over their total amount of m-type cells. In panel
B2, results of supervising clustering of selected features of (B2) Detailed results of
supervised clustering with feature selection for pyramidal cell classes. In panel C, it
is shown the image of L5TTPC repaired fiber density. In panel D, there is a neuron
in the upper part of panel D, that has been cloned introducing variability of branch
angles and lengths. In panel E, the same neuron present in panel C, for randomly
selected clones. In panel F, fiber density plot of L5TTPCs, clones against original;
which shows the mean fiber at different heights grouped in 80 µm bins. Figure taken
and modified from (Markram et al., 2015)
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Another very crucial work on performing a large-scale simulation is the work

of Migliore and colleagues (Migliore et al., 1995) in the hippocampus. their work

focused on the simulation of the CA3 neuron of hippocampus and some of their

goals were:

• To understand if the bursting or non-bursting behaviour of CA3 was possible

to be seen in a morphologically realistic model using a certain number of

known ionic conductance behaviour

• it this model is solid among all the different morphologies.

The authors developed a model an very detailed model of membrane ions channel

distribution ans densities in the hippocampal CA3 cells (bursting) and pyramidal neu-

rons (non-bursting).The model was able to reproduce both the firing modes (Migliore

et al., 1995). Furthermore, to test the model, it has been applied on six different CA3

hippocampal pyramidal neurons morphologically accurate reconstructions. To test

model robustness, in each neuronal reconstruction, Ca2+ and its related process as

well as Ca2+ channels reproduce the bursting and the non-bursting behaviour, for

synaptic and somatic stimulations. In the end, simulations results suggested that CA3

pyramidal bursting neurons, don’t need any specific distribution of Ca2+-dependent

channels and mechanisms. Then, the different firing modes were not dependent

on Ca2+ and its related process as well as on some geometric cell constrains, on

Ca2+-dependent K+ channel distribution, but they depend on the densities and distri-

bution of the latest channels only close to the soma. One of the typical hippocampal

CA3 neurons features is they exhibit bursting behaviour (Migliore et al., 1995);

however not all of them show it. Since their critical position within the circuit of the

hippocampus, the bursting or nonbursting behaviour could have important biological

consequences. The authors run the model on the NEURON simulator, with a timestep

of 25 µs for a simulation lifetime of 1h for one CPU. The authors chose to target

the dendritic shafts with the synaptic inputs and the spines modelling haven’t a
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Figure 50: In panel A, drawings of reconstructed neurons (camera lucida reconstruc-
tion). Note that the T32 draw is not available, hence it is showed its compartmental
model. The gray areas show the regions used to simulate the synaptic stimulation;
100-250 µm from the soma In panel B, it is shown an enlarged region for every
neuron, the shaded area, as well as the somatic and proximal apical dendritic region,
where the Ca2+-independent K+ channels were placed.

significant influence over the model electrical behaviour (Migliore et al., 1995). The

figure 50 shows the neurolucida reconstruction of the neurons used in the simulations

and the distribution of the Na+ and Ca2+-independent K+ channels used in each

cells.

The used formalism for the conductances comes from the model of Hodgkin-

Huxley equations for the state of the gating particle (gKDR ,gKA ,gKM , gKAHP ).

An interesting feature of CA3 neurons is their burst ability, which are a several

APs over a slow depolarising envelope; they can be spontaneous or triggered by

injection a step of current (Migliore et al., 1995). The channel distribution of the

Ca2+-independent K+ channels was set a priori and was arbitrary, they have been
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Figure 51: In panel A, example of bursts from experiments. Pictures come from
the work of (Hablitz and Johnston, 1981) and (Wong and Prince, 1981). In panel
B, bursts of cells obtained from a short somatic stimulation 1 nA for 3 ms. In panel
C, membrane potential(–) and distal dendrite(..) are shown, after five short synaptic
stimulations for 50 ms at 100 Hz, spaces 10 ms each.

places up to 100 µm from the soma as shown in the panel B of figure 50. Later, it

was found that it does not play a very crucial role on the burst neuron ability as well

as on the shape of the burst.

The figure 51 shows recorded CA3 bursts from experiments evoked after a short

somatic stimulations.

From experiments (Wong and Prince, 1981) and (Hablitz and Johnston, 1981) and

with simulations in silico (Traub et al., 1991), it has been seen that the CA3 bursts can

be "turned off" by an appropriate hyperpolarisation pulse and it is possible to switch
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from repetitive bursting to repetitive AP increasing the somatic current injection. To

block the onset of a burst it is just necessary to increase the K+ conductance, gKDRor

gKA . To have a better agreement with the experiments the magnitude to increase is

the mean potassium conductance, gK; which is the key difference between a CA3

pyramidal neurons being bursting or non-bursting. The obtained results showed

bursting and spike frequency adaptation of CA3 hippocampal pyramidal neurons

using the same model on six different neuronal reconstructions.

The last example of "large-scale simulations" is in the cerebellum by Solinas

and collaborators from the 2010 (Solinas et al., 2010). In their work, the authors,

analysed a wide aspect of the cerebellar granular layer using a realistic computational

model to address some functional hypotheses:

• the HF response properties to bursts

• the neuron coherent oscillations in response of random activity

• the time windowing

• the center surrounded organisation.

The neuronal network has more than 4∗105 synapses and almost 4,4∗103 neurons;

(Granule cells GrCs, Golgi cells GoCs, mossy fibers mfs, parallel fibers pfs). The

authors results have shown that the input mossy fiber are firstly separated and

processed in some layer sub-circuits and afterwords passed to Purkinje cells for

more integration and pattern recognition (Dean et al., 2009). In addition, the model

prediction is that the granular layer circuits act as spatio-temporal filter, with the

features that can be adapted through long-term plasticity and can be synchronised

with low-frequency oscillations structures. By an accurate reconstruction the model

could track multiple granular layer activity dynamics recorded in vivo and in vitro to

see the dynamics look at figure 52.
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The firing pattern depends on the local excitation and inhibition, furthermore,

neurons used to have a low and irregular firing rate, but could have oscillatory

activity.

Consequently, the model demonstrates in vitro properties are enough to reproduce

in vivo activity patterns plus providing the contribution basis of a single neuron to

the network activity as well as the network influence on single neurons (Buzsáki,

2006) (Izhikevich and Edelman, 2008).
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Figure 52: GrCs and GoCs response in the network. In panel A, GoCs A1) and GrCs
A2) response of current injection. The background activity affected the neurons.
GoC activity causes mf and IPSPs activity as well (filled arrow). GrCs show EPSPs
(open arrow). GoC have low-amplitude synaptic noise, due to pf and mf EPSPs
(open arrow) and by basket and stellate cells IPSPs (filled arrow). GoC shows as well
low-frequency spiking due to pacemaker-like activity. Note that the GrC discharge is
proportional to the injected current. GoC exhibits: spike frequency adaptation during
depolarisation, reset after an HF bursts, pacemaker-like activity, sagging inward
rectification. In panel B, have shown the I-O relationships for GrC (B1) and GoC
in (B2) in response of a injection of current, since has been fitted with two straight
lines with different slopes. On the contrary, the GoC has an almost linear spike F-I
relationship up to 500 Hz. GrC has a linear spike F-I up to the 300 Hz and a very
fast adaptation which is splitting in two the firing frequency. In panel C, spikeburst
effects on GrCs (C1) and GoCs (C2,C3). With a presence of weak ESPs activation
there is a short-term depression, meanwhile with strong activation GrCs fire spike
bursts. In (C2), the traces show a reset phase that is antecedent to a pacemaker cycle
activity spike occurrence at different phases. The showed bursts are composed by
two or three spikes followed by a reset phase.
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4 Materials and Methods

4.1 Automation and reproducibility of my own work

In this in silico study, it has been simulated an injection of a sinusoidally-modulated

stochastic process, a Stein process, by patch clamp technique in current clamp

configuration, in several multi-compartmental models of cortical pyramidal neurons

(excitatory), through the NEURON simulator using Python (Hines, 2009); on top of

that Julia has been used to perform a parallelisation of the simulations.

The cortical pyramidal models used are from the Blue Brain Project (BBP)

(https://bbp.epfl.ch/nmc-portal/downloads.html), they are 65 distinct models of 13

electrical classes of excitatory pyramidal cortical neurons from rat somatosensory

cortex with soma, accurate dendritic tree branches and membrane cell properties

(Markram et al., 2015). The main steps of the current work are: Once the multi-

compartmental neuronal models have been downloaded and compiled correctly, the

first step is to determinate the dT magnitude, the sharpness of the AP onset, taking

advantages of the experimental protocol of Badel and collaborators (Badel et al.,

2008b). Then, to reproduce the theoretical work of Richardson (Richardson, 2018),

it is necessary to set the average values of the input stochastic processes amplitude

as and the event rate r(t) of the Stein Process, which together define the rate and the

mean amplitude of the input, the Poisson shot noise,for each the cortical pyramidal

neuron models. All the simulation parameters have been saved in a .npz file, which is

a dictionary-like file easy to read for both Python and Julia. Then, the neuronal mod-

els and the parameter file have been transferred to an high-performance computer,

where the numerical simulations of the Richardson’s work have been performed.

To analyse the data, the results have been download in a cloud and analyse locally

throughout scripts written in Julia and Python.

130



4.2 Determine the AP onset steepness, dT

The Badel and collaborators’ method has been reproduced in silico in a Python script,

see in the appendix (to reproduce the Badel’s experimental protocol has been used

the python script Badel_simulation.py and to perform the EIF parameters fit the

extraction EIF_Extraction.py has been used). The first step has been load the function

that produce the current input, i.e. the Ornstein–Uhlenbeck (OU), stochastic process

(Uhlenbeck and Ornstein, 1930) (generateOU.py) and the function that load the .hoc

files of the simulated neuronal models; such as morphology,biophysics, 3D structure

and others (BBP_type.py). The input OU process is the only neuronal model input,

since the simulation has been performed without any synaptic inputs. The general

form of an OU process is:

τ
dx
dt

= µ − x+
√

2σ2τξ (t) (54)

where ξ (t) is a Gaussian white-noise function with zero mean,unitary variance and

auto-correlation:

< ξ (t)>= 0 < ξ
2(t)>= 1 < ξ (t)ξ (t +T )>= δ (T ) (55)

To numerically generate the OU process time has been discretized, in dt = 0.025ms

generating an OU process as:

xk+1 = (
µ − xk

τ
)dt + xk +

√
(
2σdt)

τ
)∗ epsy (56)

with epsy a pseudo-random function generator with unitary variance and zero mean.

The injected OU process is the sum of two different OU processes, with different

statistics; which means with two different values of relaxation time, τ,τ f ast = 3ms

and τslow = 10ms and variance, σslow and σ f ast .
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To measure the dT of a neuron,the protocol considers eight injections of the

current for 40s each, separated by 3s of silence between them as in (Badel et al.,

2008b). Every 40s of the injected current, different values of mean and variance

are used. The eight inputs are the combination of the four different mean values

µ = [0.00,0.02,0.03,0.06] combined with two different set of variances σslow =

σ f ast = 0.18 and σslow = 0.25, σ f ast = 0.36, as show in image 53.

Figure 53: Values of all the combination of the mean and variance of the two OU
processes which compose the input (Badel et al., 2008b)

Then, to have as output the desired range of firing rate [1-15] cycles/s of the excitatory

neurons, the input waveform has been multiplied by α , in the range of 1-1.5 nA.
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The membrane potential and the injected current have been recorded for all the

injection time, and the voltage membrane derivative over time has been calculated to

extract the membrane capacitance of the cell, from the equation 57:

C
dV
dt

+ Im(V, t)+ Inoise = Iin j(t) (57)

where Iin j(t) is injected current, Im is the transmembrane current plus the equilibrating

currents flowing between soma and dendrites/axon. Inoise is mimicking the weak

synaptic background activity, which in this cases equal to 0 nA since the synaptic

activity are turned off. Im is the difference between Iin j and the membrane potential

derivative. The capacitance value is determined minimising the variance of the

equation 58, in which raw data from the Badel’s protocol simulation have been

filtered using the following rule (Badel et al., 2008b):

• only subthreshold voltage membrane which run up to the spike are included

• all voltage membrane data into 200 ms window after a spike are excluded

Var[
Im

Ce
− dV

dt
] =Var[(

1
C
− 1

Ce
)2 ∗ Iin j] (58)

In which C is the real capacitance to calculated and Ce is an estimate,the right-hand

side of equation 58 is minimised when Ce is equal to C, obtaining the correct value

of cellular capacitance 54.

Afterwards, the cellular capacitance estimation has been complete, the next step

is the fit of EIF parameter values of the neuronal model, considering as more valuable

the dT, the steepness of the AP upswing (Fourcaud-Trocmé et al., 2003). According

to the equation 59, the F(V) is the voltage dynamics of the neuronal model EIF

(Fourcaud-Trocmé et al., 2003), which is non-linear and contains the activation of

133



Figure 54: The reproduce method of Badel and collaborators to find capacitance.
In this specific case the neuronal model is a thick tufted L5 pyramidal neuron,
L5_TTPC1_cADpyr232_1, the C = 395pF (Badel et al., 2008b)

the spike-generating sodium currents (Fourcaud-Trocmé and Brunel, 2005).

dV
dt

= F(V )+
Iin j(t)

C
(59)

Throughout the Badel’s protocol is possible to measure directly the dynamic

curve and comparing the equation 59 and 57 is possible to define:

F(V ) =
−
Id

C (60)

where the Id is the mean over time of Im(V, t), hence:

Id(V ) = Mean[Im(V, t)] (61)

The F(V) form is the EIF model 62 (Fourcaud-Trocmé et al., 2003), it has four

parameters: the membrane constant time, τm, the resting potential Em, the spike

134



initiation threshold VT and the steepness of the AP onset, dT.

F(V ) =
1

τm
(Em −V +dT exp

V −VT

dT
) (62)

The EIF_Extraction.py is used to roughly extract the EIF parameter from the already

filtered data, later a more refine look is necessary to check the consistence with

the extremes of fit and the accordance of the fit instead with simulated data in the

exponential upswing of the non linear function. The used extremes of fit are in the

range of -90 mV and -[55,50] mV, with an exception for the model of the pyramidal

neuron of 2-3 layer, which have a broader range up to -[45,44] mV. The filtered data

used to determine the capacitance value have been filtered again to have values of

voltage membrane between -95 and -29 mV to build the non-linear function of the

neuronal model as a function of the voltage; to measure the EIF parameters. The data

have been clustered in an histogram with bin of 0.5 mV; and then, the dynamical

curve of the neuronal models have been reproduced, fitted and use to extract the dT

value. Once the EIF parameters have been estimate according to the fit extremes and

the best accordance between the in silico data and the fit; they have been saved in a

.npz file and used as input data in the next script to determine the pool value of as.

4.3 Estimating the average current value and the stationary input

frequency value

Starting from the dT determination for each of 65 neuronal models, the next step is

the determination of input mean amplitude, which is mimicking the synaptic input

amplitude, that is drawn by an exponential distribution with a mean amplitude as

(Richardson, 2018). For each neuronal model, the values of as have been set to

reproduce the theoretical work of Richardson, starting to the "case" in which as = dT
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Figure 55: The reproduce method of Badel and collaborators to estimate the dT
of the neuronal model. In this specific case the neuronal model is a thick tufted L5
pyramidal neuron, L5_TTPC1_cADpyr232_1, the dT≃0.92 mV(Badel et al., 2008b)
in the extremes of fitting (-90,-52) mV

and then to obtain the case of as > dT and as < dT has been added ± 1 mV,if the dT

is bigger than 1.15 mV. Then, in the cases dT is comprised between 1.15 and 0.6 mV,

it has been added ±0.5mV . On the other cases, the as values have been set like: as =

[dT-0.2*dT,dT,dT+0.2*dT,dT+0.4*dT] mV. After that, since the injected input is a

Poisson sinusoidally-modulated current, once the as values are set, it is necessary
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to determine the mean current values, asI,which can cause on the cell membrane

the voltage drop equal to the as values. To determinate the asI values, it has been

used the trivial approach of the trial and error; using a python script interfacing with

NEURON (Automatic_J_setter.py). To determine each value of asI starting from 0

nA, it has been added 50 pA at every injected current step in the neuronal model; the

injection of the current has been performed for 1.5s, considering a transient time of

1s, which has been discard to allow the model to stabilise around the resting potential.

The current values have been accepted when was able to cause a voltage drop equal

to as more or less the 5% of as. An extra caution has been considered, since the value

of Is was causing at time t a voltage drop less than as −0.05as and at time t+1 was

generating a membrane voltage values bigger than as +0.05as bringing to an infinite

back and forward loop. To avoid it, it has been set a step of bisection method, to set

the mean between the two alternating values as a new starting point. When the asI

have been determined, they have been saved in a .npz file and used as input for the

next script, which calculates the stationary input frequency value r0.

The next step is to set the stationary input frequency r0 of the injected current; this

current set the event rates of the Poisson shot noise to have as output frequency of the

neuronal models a value around 5 cycles/s. The Julia script (automatic_r0_setter.jl)

is using the secant method to determine the value of r0. Then, it generated The

above mentioned input, as a Poisson input with the event rate sinusoidally-modulated

by a frequency of 0 Hz and the amplitude exponentially modulated by as. The

mathematical form of the input rate is the following, in which fmod and r1 are 0 Hz

and the signal phase shift is zero as well:

r(t) = r0 + r1 ∗ cos(2∗π ∗ fmod ∗ t/1000+ ph)/λ (63)
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with λ = r0 + r1. Then, the shot noise is generated as the product of the amplitude

exponential distribution and the shot noise. A more detailed explanation will be done

in the next section about the Poisson shot noise input. Then, the input is saved on

memory and used as current input into the neuronal model throughout a Python

script (execute_calibration.py), which, performs the simulation of the calibration

for a total time of 30s, ignoring the first 500ms allowing the membrane potential to

stabilise. Then, the output frequency rout is saved on the disk and read by the Julia

script; if it is not in the wanted range value (r5.00±0.15)cycles/s; the secant method

is used once to generate the next possible value of rout and the procedure is repeated

up to the desired value of rout is reached.

4.4 Richardson’s effect reproduction on numerical simulations

Once all the parameters have been set and saved on disk for reproducing the Richard-

son’s work in a set of numerical simulations; the neuronal models and the saved

parameters have been transferred in the available high-performance computing (

Ulysse at SISSA, Marconi and G100 of the CINECA consortium). The script that

reproduced the Richardson’s work (LSHPC.jl) is launched by an automatic batch

script to the HPC queue to perform all the numerical simulations. More details

will be discussed later. For each of the 65 neuronal model, it has explored the I-O

relationship; in the frequency domain from 0 to 1000 Hz, which has been sliced in 25

frequencies (1, 3, 5, 10, 20, 50, 100, 150, 200, 250,300, 350, 400, 450, 500, 550, 600,

650, 700,750,800, 850, 900, 950, 1000 cycle/s), to which has been added a random

number to avoid numerical errors. The twenty-five frequencies have been used as a

modulation frequency of the current input, hence the fmod value. To have a sufficient

statistics to validate the obtained result every neuronal simulation has been repeated

61 times; obtaining as output around 3,05∗105 APs. This choice was imposed by the

impossibility of building a unique longer simulation due to the limited cores memory
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availability on the HPC nodes.Every simulation had a lifetime of 1∗106ms. To have

a more efficient explanation, consider the case of only one neuronal model, such as

L5_TTPC1_cADpyr232_1, to reproduce numerically the Richardson’s theory, it is

necessary the shot Poisson input with:

• the as values drawn by an exponential distribution

A(a) =
e− a

as

as
(64)

• a sinusoidally-modulated r(t) described in equation 63, with for each as value,

a r0 and r1 values and twenty-five different fmod to explore the frequency

domain for each as

To generate the input a Julia script in library_function.jl is called by a python script,

simulations_neuron.py, which is in charge to play the input inside the neuronal

model, simulating the patch-clamp technique and collecting the output as the APs.

As above mentioned, the input is the product of an exponential distribution with

mean as and the Poisson shot-noise sinusoidally-modulated by r(t). More in detail,

the shot-noise has as well over the time an exponential distribution,which generates

the time interval between events, depends on random numbers and it is normalised

over the maximum of r(t), λ = r0 + r1. Then, for each time t, the sinusoidal rate r(t)

is generated and normalised over λ and compared with a random number; if the

random number is smaller, the event is happening otherwise no event takes place.

Then, in every time interval is checked if and how many events have happened; then

a multiplication between the exponential amplitude distribution of as and the time

event distribution is set to generate the proper input to injected in the neuronal model.
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4.5 Data Analysis, from APs to the transfer function

Once the simulations on HPC have ended, all the simulations results, the APs, have

been downloaded and group by cell and as. The filename are unique for each fmod

and depend on the as, r0 and fmod . This make easy to group the data with the same

modulation frequency. An automatic bash script (Analisi.sh) make all folders to store

the data, then, check if the analysis is already performed on those data. Then, the

proper analysis starts.The analysis is performed in Julia and Python scripts. The first

script, is a Python script, KS_test_mp.py, it prepares the data for the Kolmogorov-

Smirnov test, that will be done in a later stage. At this step, starting from a train

of APs, using the circular static method (Ilin et al., 2013); the magnitude has been

calculated for every AP trains and for each modulation frequency fmod . Later, the AP

trains are organised differently and are appended all together in a "unique simulation"

for each fmod . The Julia script ("append same file", ASF.jl) check as well if there are

available data and if the data are readable and not corrupted; in those cases it raises

exceptions and the data are ignored. The third step of the analysis is another Julia

script, (Generation figures, GF.jl) It calculates the gain of the "unique simulation"

for all the twenty-five frequencies; it calculated the gain using the circular static as

describe in the following paper (Ilin et al., 2013). Considering the complex plane,

each AP occurrence time has a real and a complex part, from which the output signal

phase and magnitude can be obtained for every frequency of modulation for each as

and neuron. As before mention, the gain has been calculated for the fmod for each

neuronal model and as; then, it has been normalised over the biggest value of the

gain, at 5 cycles/s. All APs for each fmod have been divided in one hundred chunks,

for each of them has been calculated the magnitude. Then, the mean, the average

and the error of the mean over all the chunks of the same frequency of modulation

fmod have been calculated. In the end, it has been obtained twenty-five mean values

of magnitude with their error of the mean. To set an interval of confidence over
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which the results are reliable; it has been calculated the gain of the surrogate data

in the same manner as before mentioned excluding the normalisation passage. The

surrogate data are made starting from the "unique simulation" for each fmod and

have been calculated the interspike intervals and then shuffled; after that, using the

cumulative sum the AP time is reconstructed. This has been repeated for 100 times

for each action potential trains; then, the average and standard deviation have been

calculated and the mean plus two times the standard deviation has been used as the

confidence interval (Linaro et al., 2017). The last step of the automatic bash script is

making the plots of the gain as a function of the frequency modulation. All the data

are plotted together to the interval of confidence, the ones are considered reliable,

hence, they are over the interval of confidence have been kept to the next steps of

analysis. Then, the Kolmogorov-Smirnov (KS) test has been performed only over the

data considered significant, and the plot is repeated only for them. In addition, the

KS test has been performed only over the HF fmod in which the magnitude has a loss.

The test ha been done coupling the fmod of each "case" A vs B, B vs C and etc; to

prove that are statistically distinguishable and different from each other. Afterwards,

over the reliable data, it has been performed a linear regression in a logarithmic

scale in which the magnitude is plotted as a function of the fmod , in order to find

the exponent of the power law that describes the magnitude attenuation at HF for

the different "cases" (A,B,C, eventually D). From the linear regression the offset

and the slope of the straight line has been extracted; the slope parameter is, for the

logarithmic property, the exponent of the power-law of the magnitude attenuation.

For each neuronal model and "case". The starting point of the linear regression is the

cut-off frequency and continues up to all the set of fmod .
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4.6 Verifying the presence of a correlation between the slopes at

HF domain and the Total dendritic length, TDL

The script that is carrying this analysis is written in Julia and import the library

Scipy by Python; its name is "slope_vs_smth.jl". For correctly working the script

need to have as 3 inputs, the name of the file of the magnitude to correlate with

the slopes, such as "TDL.npz", the name of the magnitude, "TDL" and its unit of

measure, "micrometers". Once the script is entered one by one in the folder of the 65

neuronal models of the BBP, it checks for the presence of the "TDL.npz" and the

"fit_results.npz" files and read the TDL and slopes values and append them in the

proper vector. Then, through a linear regression calculated the slopes of the slopes

and save the result in the same directory in the file: "M_calculation.npz". Once this

part has concluded, it goes for plotting all the magnitude against the TDL, and then

calculate the Pearson test and the Tau-Kendall test for each paired magnitude taking

advantes of the Scipy library.

4.7 Automation of my own work

From the beginning of the parameters setting and up to the data analysis my own

work has been also to automatised the procedure as much as possible. The procedure

has been divided in steps and every final output of the a script has been became the

input of the next; to build more complex results step by step and in case of failure to

not lose all the work, but just going back a step backward. However, the biggest effort

has been to automatise the simulation schedule to easily perform a big number of

them as requested. The repetition of the same computational load, such as the same

calculation changing just some parameters is a typical example of embarassingly-

parallel problem. The execution of the simulation on HPC node, in which each core

has taken care of one simulation has been performed using the Julia library FLoops

(https://github.com/JuliaFolds/FLoops.jl) A bash file, "Allrun_Case_input.sh" see
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the appendix, which starting from the directory of the neuronal model, it checks on

the output directories how many simulations have been done for each "case" and

frequency of modulation fmod . For each fmod , the simulation number is checked,

if the number is less than one desired, the missing ones has been scheduled. For

each simulations a bash file is generated, (runSimulation.sh, in appendix), in which

it has been requested between 6 and 9 hours, only one node, and a core for each

fmod; hence twenty-five. This last script has been modified as a function of the

difference of the used clusters. Another common features of the runSimulation.sh are

the environmental variables to perform the simulations. The difference between the

two HPCs is the available RAM memory per node, On Ulysses on the regular2 queue

wasn’t possible to ask more than 4GB, on the other hand, on G100 and Marconi

was possible to ask up to 180 GB for each node. On CINECA HPCs, on a single

node was possible, for each core, schedules one simulations for each modulation

frequency, fmod , so twenty-five simulation for each fmod on twenty-five cores. On

the other hand, on Ulysses cluster due to the memory boundaries the the twenty-five

modulation frequencies have been divided in three groups of six, nine and ten fmod ,

each group of simulation has been scheduled independently on a node requesting the

same number of core per fmod; a scheme to help to understand the subdivision on

the different HPC is present in figure 56.
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Figure 56: The different setting of the simulation on the used HPCs. In the CINECA’s
cluster was possible to schedule all the simulation for each fmod in the same node.
For lacking of necessary RAM on Ulysses the fmod has been split into three different
groups.
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5 Results

5.1 Preliminary results on EIF model

In the previous sections, I have described the establish knowledge of the I-O re-

lationship of a neuron, especially in the HF domain. As reported in the section

section Recent applications of System theory in Cellular Electrophysiology, the HF

behaviour of the I-O neuronal properties has shown an universal behaviour only

dependent by the neuronal properties itself. On the other hand, an intriguing the-

oretical work has demonstrated the HF response function of a neuron depends by

the interplay between the neuronal properties themselves and by the statistics of

the input. The first part of the obtained results was the validation of the theoretical

work using the same neuronal model, such as the EIF neuron. However, it has been

used a different approach by the Fokker-Plank equation for evolving a probability

distribution of the membrane potential which can assume a certain voltage value. The

approach used in this work consists in evolving the membrane potential over time. As

a first step, the equivalence between the two approaches has been established through

the reproduction of the obtained results in the theoretical work for the particular test

case. The obtained results are showed in figure 57. The equivalence between the

approach and the reproduction of the same results has allowed us to investigate the

presence of the theorised model in the state-of-the-art neuronal models, which are

the more accurate possible models for real neurons. Since the Fokker-Plank equation

cannot be obtained for the multi-compartmental models, the best approach is the

evolution of state equation over time. The preliminary results are very promising

since they guide us to underline the difference between the EIF simple model and

the more accurate BBP neuronal models; BBP are not point neurons, but they have

a dendritic length that have shown to play a role in the effect, see section section

Further investigation on possible biophysical magnutide correlations. In addition,
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they have shred a light on the total time necessary to see the effect in real neurons,

suggesting the only possible approach the in silico one, since it is impossible to keep

alive a cell in acute slices up to almost 17 hours.
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Figure 57: Preliminary results obtained by a numerical simulation using Julia for five
repetition of lifetime simulation of 107 ms and a time step of 0,05 ms. It is noticeable
at HF the different slope for the three cases of different value of as. The S/N at very
HF frequency is less favourable than small and intermediate frequency, underline
some oscillation on gain (magnitude) value. The gain value are normalised over the
smallest frequency gain value. The results are all above the significance levels in
dotted lines. The code color is included in the legend.

From now on, the code color means: blue, the dT is greater than as, green dT is

equal to as red dT is smaller than as. The output frequency of the EIF model was

kept at 5 Hz. The simulation code is in the section Appendix
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5.2 Multi-compartmental models, dT extraction

The first overall result is the successfully reproduction in silico protocol of Badel

and colleagues (Badel et al., 2008b) over all the excitatory pyramidal neurons of the

neocortex. They are 65 models in total. For each of them has been extracted the dT

parameter. The obtained results are the I-V curve examples; they have been chosen

randomly as one neuron for each neocortex layer, see 58,59,60, 61. The data have

been fitted with the EIF model to extract the neuronal dT value. The obtained results

of the fit has been showed to be very sensible to the fit extremes; as a default the left

extreme has been fixed as -90 mV; on the other hand, the right one was the crucial

one for fixing how much of the exponential curve would have considered in the EIF

fit. The right extreme has been chosen along some specific arbitrary constants, such

as when the I-V curve is still growing positive and the |F(V )| is bigger than value

of 2. These choices has been put to guarantee a minimum of exponential trajectory

to fit. The reproducibility of the result, surely, has been respected. In the following

table see figure 62, it is possible to appreciate all the dT values of the 65 me-types of

the excitatory neurons of the neocortex, the dT values have the second digits after the

comma has uncertainty. To be clear, as specified in the subsection Birth of a series of

approached in "large-scale simulations" cortex, hippocampus and cerebellum :"they

are 65 distinct models of 13 electrical classes of excitatory pyramidal cortical neurons

from rat somatosensory cortex with soma" that means five different "versions" of

the same electrical type. From the histogram results of the dTs, it is possible to

appreciate the tiny interval of all the excitatory neocortex neurons dT are located

(0,76-2,26) mV. Furthermore, a total variation of the dTs values of ∆dT= 1,5 mV is

compatible with the magnitude of the synaptic input amplitude ∼ 1mV (Richardson,

2018), meaning an as variation can easily become smaller or bigger than of a certain

neuronal dT value; triggering the Richardson’s effect illustrated theoretically in his

paper (Richardson, 2018).
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Figure 58: Obtained results by the Badel’s work reproduction in silico fitted by the
EIF model. Here, the extremes value are -(90,52) mV. The vertical bars in blue are
the errors associated to the data. The neuronal model is one of the five different
models of a thick tufted pyramidal neuron of the layer 5.
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Figure 59: Obtained results by the Badel’s work reproduction in silico fitted by the
EIF model. Here, the extremes value are -(90,45) mV. The vertical bars in blue are
the errors associated to the data. The neuronal model is one of the five different
models of a pyramidal neuron of the layer 2/3.
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Figure 60: Obtained results by the Badel’s work reproduction in silico fitted by the
EIF model. Here, the extremes value are -(90,54) mV. The vertical bars in blue are
the errors associated to the data. The neuronal model is one of the five different
models of a spiny stellate neurons.
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Figure 61: Obtained results by the Badel’s work reproduction in silico fitted by the
EIF model. Here, the extremes value are -(90,52) mV. The vertical bars in blue are
the errors associated to the data. The neuronal model is one of the five different
models of a bipolar pyramidal neurons.
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Figure 62: In summary in this table, all the dT values of the 65 me-types and their
respective range of fit are shown. The first columns stays for the first me-types of the
neurons,the fifth column stays for the fifth realisation. All the fits are in the section
Appendix. The uncertainty of the measure is on the second digits after the comma.

All the other pictures of the EIF fit concerning the other 61 models are in

sectionAppendix. In the same section, it is possible to find the code used to reproduce

the Badel’s work and fit the data with EIF model.

152



0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
dT (mV)

0

2

4

6

8

10

12

14

 n
um

be
r o

f m
e-

ty
pe

s

dT variablity among the excitatory neurons of the neocortex

Figure 63: The histogram shows the dT values distribution of the neuronal multi-
compartmental models. The distribution of them stays in a tiny interval that range
from 0,76 mV to 2,26 mV. The total span of the interval is 1,5 mV, which is compati-
ble with the experimental magnitude of the synaptic input amplitude of around 1 mV
(Richardson, 2018).
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5.3 Theory of Richardson verification on multi-compartmental

models

The Richardson’s theory has been verified over all the excitatory neurons of the

neocortex of a rat. The multi-compartmental models of the neocortex has underline

a variety of behaviour, first of all the effect needs a lot of statistic to be observed.

More clearly, it was necessary repeat a lot of times the same simulation (around 61)

to reach an APs number big enough to observe the I-O relationship of the neuron

and whether the neuronal models were showing the effect theorised by Richardson

(Richardson, 2018) at HF. A total of around 3 ∗ 108 AP events was necessary to

describe the I-O neuronal behaviour in the HF domain. Then, after the data has been

analysed and as a function of all the frequencies of modulation the I-O relationship

has been shown, see 64. All the data above the minimal significance level of threshold

(dashed lines in 64) have been accepted. In the HF domain, a linear regression model

has extrapolated each slope of the different "cases" ("as < dT in blue, aS= dT in green,

as> dT in red and sometimes is present as» dT in black) in the frequency modulation

range from 200 Hz to 1000 Hz see the example 64. A Kolmogorov-Smirnov (KS)

test has been carried for each gain value in the HF domain of each case (A , B, C

and eventually D) to prove that they are different cases and are not superimposable

with each others and therefore they are distinguishable. In the results which will

follow, the KS test will be indicates as stars over each fmod 64. The slope of the linear

attenuation at HF have been obtained with a linear regression model for each case

and for each neuronal model. In the following results some multi-compartmental

model show to reproduce clearly the Richardson’s theory, furthermore, some other

slightly reproduce the effect; on the other hand, the majority of the neuronal model

seems to not reproduce the Richardson’s theory. Over 65 neuronal models analysed

in this work, around 34% (22 models) will be shown to reproduce the Richardson’s
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theory; on the contrary, the remaining 66% will not behave as predicted by the

Richardson’s theory. I will discuss more in detail about this later.

All the slope values extrapolated for each of the 65 neuronal models are reported

in the figure 70. In the following images, it will be shown some neuronal models

examples which are in agreement or not with the Richardson’s theory. The neuronal

models that show the Richardson’s theory have a clear different slopes in the HF

domain and the gain amplitudes of the "cases" is increase while as increase as well, in

other words, when as is equal to dT the gain amplitude for each frequency in the HF

domain should be bigger than when as is smaller than dT. This idea is valid as well

when as in bigger than dT compared to the other "cases", see figure 2 in the paper

of Richardson (Richardson, 2018). Here, there are some examples which show the

Richardson’s effect: the neuronal model of the thick-tufted layer V pyramidal neu-

rons, L5_TTPC1_cADpyr232_1 and the tufted pyramidal neuron of the layer 6 which

has dendritic tufts which end in the layer 1, L6_TPC_L1_cADpyr231_1 see figure

64 and figure 65; for a more numerical guide look at the figure 70. The slopes values

of the neuronal models, considering their error over the linear regression; cannot be

clearly be superimposed for both the models and for each "case". To summarise here

are reported the slope values for both models: the thick tufted pyramidal of Layer 5:

case A:(−1.24±0.04), case B:(−1.03±0.03), case C: (−0.86±0.02). The same

happens for the neuronal model L6_TPC_L1_cADpyr231_1: case A:(−0.87±0.03),

case B:(−0.80±0.03), case C: (−0.69±0.03).

Before in this subsection, I mentioned some other neuronal models which

show a slightly presence of the Richardson’s theory; some example are the models

L23_PC_cADpyr229_3 and L4_PC_cADpyr230_1, which will be shown below. The

values of the slopes are for both model different considering the linear regression

error for the extreme cases, such as case A versus case C or D, however, the middle

case (case B) it is not clearly different from the two extremes. Nevertheless, the
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Figure 64: An example of the gain as a function of the modulation frequency of one
of the 65 neuronal models, the model is the L5_TTPC1_cADpyr232_1 from the
BBP project. The gain values are normalised over their maximum located around
the fmod ∼ 5Hz. The data of the different "cases" are shown; the color blue stays
for when the dT > as, the green for when as = dT and the red for when as< dT. The
dashed lines stay for each cases as the minimal level of significance threshold. The
magenta line and the stars indicate for each fmod value that the case A and C cannot
be superimposed at the 95% of significance of the KS test. The solid lines of each
color are the HF domain linear fit used to extrapolated the HF slope of the linear
attenuation; the slopes values for each cases and neuronal models are in figure 70.
In this neuronal models, the slope in the HF domain has three different values as a
function of the mean synaptic value as if it is bigger, equal or smaller than the dT.
The slopes values are shown in the figure 70.
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Figure 65: Another example of a neuronal model which shown the Richardson’s
effect at HF, the neuronal model of tufted pyramidal neuron with dendritic tufts
terminating in layer 1. The slopes values are shown in the figure 70.
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middle case is a tiny junction between the diffusion approximation regime, when as

is smaller than dT and when happens the opposite. In this work, the presence of the

Richardson’s effect has still considered valid and present, even if, only the extremes

cases shown a different HF domain slopes together with the correct area subtend to

the I-O relationship see figure 66 and 67. To summarise here are reported the slope

values for both models: the pyramidal neuron of layer 2-3, L23_PC_cADpyr229_3,

has a very well distinguish the cases A and C, but not the case B with the others:

case A: (−1.17± 0.04), case B:(−1.10± 0.04), case C: (−0.99± 0.04). For the

pyramidal neuron of layer 4, L4_PC_cADpyr230_1 happens the same, with an ad-

ditional case the case D. Even if the case D and the case C are not distinguishable,

the extremes value has different slopes, underlining the the presence of the Richard-

son’s effect. case A:(−1.0± 0.1), case B:(−0.8± 0.1), case C:(−0.7± 0.1), case

D:(−0.7±0.1).

As before mentioned, the 66% of the neuronal models are not showing the

presence of the effect theorised in the Richardson’s theory. Some neuronal models

used as the L4_SP_cADpyr230_1 and L6_BPC_cADpyr231_1 have been chosen

to underline the necessity to show for the different "cases" (as < dT A, as = dT

B, as > dT C and sometimes as >> dT D) to have distinct linear slopes values in

the HF domain and that the "case" with as > dT should have bigger gain amplitude

than the one with the as < dT ; as reported in the paper of (Richardson, 2018). The

examples are showed in the figure 68 and 69.
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Figure 66: An example of a neuronal model, the L4_PC_cADpyr230_1, which shown
the Richardson’s effect at HF, only between the case A and Case C or D. However
the effect is till present. The slopes values are shown in the figure 70.
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Figure 67: The neuronal model of the pyramidal neuron of the layer 2-3,
L23_PC_cADpyr229_3, shows the Richardson’s effect at HF, only between the
case A and Case C or D. However the effect is still present. The slopes values are
shown in the figure 70.
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Figure 68: An example of a neuronal model, the L6_BPC_cADpyr231_1, it doesn’t
show the presence of the effect theorised by Richardson (Richardson, 2018), since
the HF domain linear regression slope values are not distinguishable. The slopes
values are shown in the figure 70.
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Figure 69: An example of a neuronal model, the L4_SP_cADpyr230_1, at the HF
domain the slopes has distinct values, however the gain amplitude vales are not
correct since the case A (as < dT has an higher amplitude than the case B as = dT).
The slopes values are shown in the figure 70.
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So far, it has been observed which in some models the effect theorised by

Richardson is present and, on the other hand, in some other neuronal models seem

to be absent. In addition, in all the me-types of the slender pyramidal neuron for

the layer 4, such as L4_SP_cADpyr230_(1,2,3,4,5) and in the bipolar pyramidal

neuron of the layer 6, L6_BPC_cADpyr231_(1,2,3,4,5) the effect is not present. All

the other figure that show the I-O properties of the others neuronal models are in

the subsection I-O properties at the HF for each neuronal models. From the results

obtained so far, it is possible to say that the Richardson’s theory is present in some

of the multi-compartmental models, which are currently the state-of-the-art neuronal

models; therefore it seems true that the interplay between the AP sharpness onset

and the mean value of the synaptic input occurs plays a role in the I-O behaviour

of an excitatory neuron in the domain of the HF. However, so far, even with further

investigation there is not a clear reason about why some times the neuronal models

show the Richardson effect and why sometimes not.
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Neuron slope_A slope_B slope_C slope_D
L5_TTPC2_cADpyr232_3 (-0.70±0.02) (-0.73± 0.03) (-0.71± 0.02) (0± 0)
L6_BPC_cADpyr231_4 (-1.09± 0.02) (-0.98± 0.05) (-0.94± 0.06) (0± 0)
L6_TPC_L4_cADpyr231_5 (-1.35± 0.06) (-1.00±0.05) (-0.86± 0.04) (0± 0)
L4_SS_cADpyr230_1 (-1.09± 0.03) (-0.92± 0.03) (-0.83± 0.02) (-0.69± 0.02)
L5_TTPC1_cADpyr232_2 (-0.84± 0.03) (-0.79± 0.03) (-0.76± 0.02) (-0.78± 0.03)
L6_TPC_L1_cADpyr231_2 (-1.04± 0.07) (-1.0±0.1) (-1.0±0.1) (-1.0±0.1)
L4_PC_cADpyr230_3 (-1.09± 0.04) (-0.94± 0.03) (-0.85± 0.03) (-0.75± 0.02)
L4_SP_cADpyr230_1 (-1.24± 0.08) (-0.88± 0.04) (-0.74± 0.06) (0± 0)
L4_SS_cADpyr230_4 (-1.06± 0.04) (-0.88± 0.02) (-0.81± 0.02) (-0.74± 0.03)
L5_TTPC2_cADpyr232_2 (-0.89± 0.02) (-0.82± 0.03) (-0.75± 0.03) (-0.92± 0.07)
L6_IPC_cADpyr231_2 (-1.6±0.1) (-1.02± 0.02) (-0.84± 0.07) (-0.78± 0.09)
L6_IPC_cADpyr231_3 (-1± 0.1) (-1.0±0.1) (-0.8± 0.1) (0± 0)
L5_STPC_cADpyr232_2 (0.80±0.05) (-0.76± 0.04) (0.70±0.03) (-0.70±0.03)
L4_PC_cADpyr230_5 (-1.25± 0.05) (-0.87± 0.08) (-0.7± 0.1) (0± 0)
L23_PC_cADpyr229_2 (-1.37± 0.06) (-1.10±0.08) (-0.72± 0.09) (-0.58± 0.09)
L6_UTPC_cADpyr231_2 (-1.30±0.04) (-0.92± 0.07) (-0.8± 0.1) (0± 0)
L5_STPC_cADpyr232_3 (-0.62± 0.08) (-0.6± 0.1) (-0.56± 0.09) (0± 0)
L5_UTPC_cADpyr232_1 (-0.8± 0.1) (-0.67± 0.06) (-0.58± 0.03) (0± 0)
L4_SS_cADpyr230_2 (-1.08± 0.04) (-0.89± 0.03) (-0.82± 0.03) (0.80±0.02)
L23_PC_cADpyr229_3 (-1.17± 0.04) (-1.10±0.04) (-0.99± 0.04) (0± 0)
L5_UTPC_cADpyr232_5 (-0.8± 0.1) (0.70±0.04) (0.70±0.03) (0± 0)
L6_UTPC_cADpyr231_5 (-1.0±0.1) (-1.0±0.1) (-0.9± 0.1) (0± 0)
L6_IPC_cADpyr231_4 (-1.04± 0.06) (-0.9± 0.1) (-0.8± 0.1) (0± 0)
L5_TTPC1_cADpyr232_5 (-0.64± 0.03) (-0.68± 0.03) (-0.68± 0.02) (0± 0)
L5_STPC_cADpyr232_1 (0.80±0.05) (-0.76± 0.04) (0.70±0.03) (0± 0)
L5_TTPC1_cADpyr232_4 (-0.80±0.04) (-0.81± 0.03) (-0.79± 0.02) (0± 0)
L5_UTPC_cADpyr232_3 (-0.68± 0.06) (-0.70±0.03) (-0.69± 0.02) (0± 0)
L6_BPC_cADpyr231_3 (-1.08± 0.03) (-0.94± 0.02) (-0.90±0.04) (0± 0)
L6_TPC_L1_cADpyr231_4 (-1.06± 0.07) (-1.0±0.1) (-0.9± 0.1) (0± 0)
L6_TPC_L4_cADpyr231_4 (-1.21± 0.05) (-1.0±0.1) (-0.8± 0.1) (0± 0)
L6_TPC_L1_cADpyr231_3 (-1.23± 0.04) (-0.93± 0.06) (-0.8± 0.1) (0± 0)
L6_UTPC_cADpyr231_3 (-1.24± 0.04) (-0.9± 0.1) (-0.8± 0.1) (0± 0)
L6_TPC_L4_cADpyr231_2 (-1.18± 0.04) (-0.98± 0.02) (-0.85± 0.03) (0± 0)
L5_TTPC1_cADpyr232_1 (-0.87± 0.03) (-0.80±0.03) (-0.69± 0.03) (0± 0)
L6_TPC_L1_cADpyr231_1 (-1.24± 0.04) (-1.03± 0.03) (-0.86± 0.02) (0± 0)
L4_PC_cADpyr230_4 (-1.18± 0.07) (-0.89± 0.05) (-0.81± 0.04) (0± 0)
L5_STPC_cADpyr232_5 (-0.8± 0.1) (-0.74± 0.07) (-0.67± 0.04) (0± 0)
L6_BPC_cADpyr231_5 (-1.07± 0.03) (-1.0±0.1) (-0.9± 0.1) (0± 0)
L5_TTPC2_cADpyr232_4 (-0.66± 0.04) (-0.73± 0.03) (-0.69± 0.02) (0± 0)
L4_SS_cADpyr230_5 (-1.09± 0.04) (-0.96± 0.03) (-0.84± 0.02) (-0.77± 0.03)
L6_IPC_cADpyr231_5 (-1.23± 0.05) (-1.07± 0.03) (-0.99± 0.03) (0± 0)
L5_STPC_cADpyr232_4 (-0.86± 0.02) (-0.76± 0.03) (-0.73± 0.03) (0± 0)
L6_BPC_cADpyr231_1 (-1.0±0.2) (-1.0±0.1) (-1.0±0.1) (0± 0)
L6_TPC_L4_cADpyr231_1 (-1.45± 0.06) (-0.94± 0.02) (-0.81± 0.05) (-0.72± 0.07)
L4_PC_cADpyr230_2 (-1.5± 0.1) (-0.83± 0.05) (-0.72± 0.07) (-0.6± 0.1)
L4_SS_cADpyr230_3 (-1.11± 0.05) (-0.90±0.03) (-0.82± 0.03) (0± 0)
L6_TPC_L4_cADpyr231_3 (-1.5± 0.1) (-0.94± 0.08) (-0.8± 0.1) (0± 0)
L23_PC_cADpyr229_1 (-1.29± 0.05) (-1.31± 0.06) (-1.13± 0.06) (-0.98± 0.06)
L6_IPC_cADpyr231_1 (-1.06± 0.05) (-1.0±0.1) (-0.9± 0.1) (-0.8± 0.1)
L5_TTPC2_cADpyr232_1 (-0.71± 0.03) (-0.75± 0.02) (-0.73± 0.02) (0± 0)
L6_UTPC_cADpyr231_4 (-1.13± 0.03) (-0.9± 0.1) (-0.8± 0.1) (0± 0)
L4_SP_cADpyr230_5 (-1.10±0.05) (-0.91± 0.04) (-0.82± 0.02) (0± 0)
L5_TTPC1_cADpyr232_3 (-0.87± 0.03) (-0.86± 0.03) (-0.81± 0.02) (0± 0)
L4_SP_cADpyr230_4 (-1.15± 0.05) (-0.91± 0.03) (-0.82± 0.03) (0± 0)
L6_UTPC_cADpyr231_1 (-1.20±0.04) (-0.96± 0.03) (-0.86± 0.04) (0± 0)
L6_TPC_L1_cADpyr231_5 (-1.09± 0.03) (-0.99± 0.03) (-0.93± 0.07) (0± 0)
L4_PC_cADpyr230_1 (-1± 0.1) (-0.8± 0.1) (-0.7± 0.1) (-0.7± 0.1)
L23_PC_cADpyr229_5 (-1.0±0.1) (-1.0±0.1) (-0.7± 0.1) (0± 0)
L4_SP_cADpyr230_3 (-1.07± 0.04) (-0.90.0±0.03) (-0.82± 0.02) (0± 0)
L5_UTPC_cADpyr232_2 (-0.7± 0.1) (-0.71± 0.04) (-0.66± 0.03) (0± 0)
L6_BPC_cADpyr231_2 (-1.1± 0.2) (-1.1± 0.2) (-0.9± 0.1) (0± 0)
L5_UTPC_cADpyr232_4 (-0.72± 0.05) (-0.73± 0.02) (-0.70±0.03) (0± 0)
L4_SP_cADpyr230_2 (-1.14± 0.05) (-1.03± 0.04) (-0.98± 0.05) (0± 0)
L5_TTPC2_cADpyr232_5 (-0.70±0.05) (-0.76± 0.02) (-0.73± 0.02) (0± 0)
L23_PC_cADpyr229_4 (-1.16± 0.04) (-1.11± 0.04) (-0.92± 0.05) (-0.88± 0.03)

Figure 70: Results of the linear regression at the HF domain (200-1000 Hz) for all
the multi-compartmental models.
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5.4 Further investigation on possible biophysical magnitudes

correlations

Some additional investigations have been performed over the slopes values and over

the dT values to verify if there was a correlation between dT with some biophysical

neuronal magnitude, such as the total dendritic length (TDL). Furthermore, also

the slopes of the HF domain for each "cases" and each neuronal model (65) have

been used to calculate their the mean, the difference (maximum slope less minimum

slope), and the slopes difference over their mean. In addition, it has been performed a

linear regression over the slopes, to find a linear slopes of the slopes for each "cases"

and neuronal model, (that will called slopes of the slopes).

The idea to correlate the dT and the HF slopes with the TDL, come from the

work of Eyal and collaborators (Eyal et al., 2014), since it has been shown in their

work that the increase of the TDL increases the sharpness of an AP as well as the

cross-over (cut-off frequency) frequency. The result of the correlation between the

dT and the different values calculated from the HF slopes has been shown in the

following figures 73, 74, 76, 75, 72, 77 and 78. However, it has not been found any

correlation between the TDL, the slopes and the dT. On the other hand, between

the TDL and the slopes mean, the slopes difference, the difference over their mean

and, in the end, the linear regression of the slopes( that will be called slopes of the

slopes;) it has been found a fair correlation confirmed by both the tests performed,

the Pearson and Kendall’s "Tau" test. It has been performed a Pearson test and a

non-parametric Kendall’s "Tau" test to verify the presence of correlation between the

magnitude considered in this analysis, both the tests agree for a fair (above ±0.4)

correlation or anti-correlation when it has been found with a p value way smaller

than the significance level of α = 0.05 see table 72. Furthermore, it has not expected

a correlation between dT and the slopes at HF domain and between TDL and dT,
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Figure 71: Here,the total dendritic length (TDL) of the 65 multi-compartmental
models are shown, the TDL results have been obtained from the morphology files of
the BBP for each model.

since this last properties is a somatic one. In the following table, 71, there will be the

total dendritic length (TDL) obtained from the 65 multi-compartmental models.

In the following table, it will be shown the presence or not of correlation and

their respective values of tau, p-value and Pearson coefficient.

Summarising all the investigations performed in this work and focusing on the

anti-correlation present between the slopes of the slopes and the TDL; it seems

that bigger neurons, or more precisely, more 3D extended neurons, hence with a

bigger TDL, have a less sensitivity of statistics of the input. The discover of this anti-

correlation lead us to add some more words: The Richardson’s effect (Richardson,

2018) is present and is valid; however, when a neuron resembles less and less a

point-neuron, the effect seems to lose its relevance and the I-O relationship in the

HF domain seems to depends only to the neuronal properties itself; going back to

the universality of the I-O properties described by (Linaro et al., 2017).
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Figure 72: Resume table of the presence or not of the correlation and their degree
of correlation/anti-correlation between the considered magnitudes. The significance
level is α = 0.05
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Figure 73: Here, it is shown the dT as a function of the total dendritic length. From
both the tests, the Pearson and the Kendall’s "Tau" there is not any correlation
between these two magnitudes. the tau value and the p-value are: τ = −0.24 and
pv=0.613 with a level of significance of al pha = 0.05. See the above for detail the
table 72
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Figure 74: Here it is shown the slopes of the slopes as a function of the total
dendritic length. From both the tests, the Pearson and the Kendall’s "Tau" there is
a fair anti-correlation between these two magnitudes. Hence, it means that bigger
neurons are less sensitive to the statistics of the neuron compared to the smaller
ones. The τ =−0.54 and the p− value ∼ 3∗10(−6) with a level of significance of
al pha = 0.05. See the above for detail the table 72
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Figure 75: Here, it is shown the difference between the maximum and minimum
values values of the slopes for each neuronal models as a function of the total
dendritic length. From both the tests, the Pearson and the Kendall’s "Tau" there is
a fair anti-correlation between these two magnitudes. It means bigger neurons are
less sensitive to the statistics of the neuron compared to the smaller ones as said
in the figure 74. The τ = −0.48 and the p− value ∼ 4 ∗ 10(− 5) with a level of
significance of al pha = 0.05. See the above for detail the table 72

169



4000 6000 8000 10000 12000 14000 16000 18000
TDL  (micrometers)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

m
ea

n 
slo

pe

mean slope as a function of the TDL

Figure 76: Here, it is shown the means of the slopes for each neuronal models as
a function of the total dendritic length. From both the tests, the Pearson and the
Kendall’s "Tau" there is a fair correlation between these two magnitudes. It means
for bigger neurons the slopes at the HF domain are bigger on average. Showing a
less prominent effect than the smaller neurons. The τ = 0.57 and the p− value ∼
1∗10(−6) with a level of significance of al pha = 0.05. See the above for detail the
table 72
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Figure 77: Here, it is shown the ratio between the difference between the maximum
and minimum values and the values means of the slopes, for each neuronal models,
as a function of the total dendritic length. From both the tests, the Pearson and the
Kendall’s "Tau" there is a fair correlation between these two magnitudes. It means
for bigger neurons the slopes at the HF domain are bigger on average. Showing a
less prominent effect than the smaller neurons. The τ = 0.46 and the p− value ∼
1∗10(−4) with a level of significance of al pha = 0.05. See the above for detail the
table 72
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Figure 78: Here, it is shown the slopes as a function of dT. From both the tests,
the Pearson and the Kendall’s "Tau" there is not any correlation between these two
magnitudes. the tau value and the p-value are: τ =−0.09 and pv=0.613 with a level
of significance of al pha = 0.05. See the above for detail the table 72
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6 Discussion

In this last part of this work, I will discuss the obtained results and add some future

perspectives. First of all, I would like to recall the context of my PhD project; with

the work of (Köndgen et al., 2008), in which the authors studied the cortical neuronal

response as a function of a wide frequency range (1-1000 Hz) of the input frequency,

analysing the role of the background noise. Their work led to discover an unexpected

ability of the neuron to track fast transients without attenuation up to 200 cycles/s.

This frequency value is the cut-off frequency, which has an higher limit than the

only passive membrane properties (∼ 50Hz) and it is not affect by any input changes.

Above the cut-off frequency, the amplitude of the magnitude decays with a power-law

f−α

mod , in which fmod is the input modulation frequency and α , the exponent, does not

depend by the membrane voltage fluctuations due to the background input. Then,

with the work of Linaro and colleagues (Linaro et al., 2017),it has been proven

that the HF I-O properties of a pyramidal neuron of the layer 5 are not affected by

the input and, in addition, the gain in the HF domain has a linear decay after the

cut-off frequency with an exponent value between -1 and -2. Furthermore, since

the HF domain of the I-O properties are not affected by the input, they depends

only by the neuronal properties, introducing the concept of universality of the I-O

properties at high frequency. More clearly, no matter what input is presented to the

neuron; its I-O properties in the HF domain depend only by the neuronal properties

themselves. On the contrary, a recent publication by Richardson (Richardson, 2018),

demonstrated that the HF I-O properties of a EIF model ( a conductance based

model, which well described the neuronal excitability of cortical pyramidal neurons)

depends by an interplay between the neuronal intrinsic properties and the statistic of

the input. The neuronal properties are represented by the dT parameter of the EIF

model by Fourcaud-Trocmé and colleagues (Fourcaud-Trocmé et al., 2003); on the

other hand, the statistic of the input is represented by the mean amplitude of the input
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as. This work is set in this context, and is a large numerical study with the goal to be

a preparatory work focused on testing the Richardson’s thesis (Richardson, 2018)

and then, to set the necessary parameters for making easier a future experimental

validation. From the results obtained by my PhD research, the first results is that

the dT parameter range of the excitatory cortical neurons spans from 0,76 mV to

2,26 mV as expected to be around 1 mV as reported in the work of Richardson

(Richardson, 2018). However, a very good results is to have proven the presence

of the Richardson’s effect in the state-of-the-art multi-compartmental model of the

BBP; although the effect is not present in all the neuronal models, since some of

them seem to exhibit it with different "intensity" or seem to not exhibit it at all.

After further researches, it has been found that the slopes of the slopes has a fair

anti-correlation (correlation value bigger than ±0.4) with the TDL (see subsection

Further investigation on possible biophysical magnitude correlations); which means

that more a neuron is extended in the three dimensional space less sensitive is to

the statistic of the input and, therefore, to the Richardson’s effect, see also figure

73. In other words, less a neuron is resembling a point-neuron, like the EIF model,

less is sensitive to the Richardson’s effect. The universality of the I-O properties in

the HF domain seems to be replaced by the Richardson’s effect for neuron with a

small TDL. On the other hand, for neuron very well extended and with a big TDL

value, it seems that the Richardson’s effect is no longer present and the universality

of the I-O properties at HF is again prominent, see figure 73 and subsection Further

investigation on possible biophysical magnitude correlations. Another results from

my work is that the Richardson’s effect is modest, more clearly it needs a lot of

exposure time to have been seen. During my simulation for each case and fmod I

need to acquire around to 3 ·108 AP to see the effect. In the domain this mean repeat

around 61 time a simulation of 106 ms, leading to a total time of the experiment of

about 17 hours; that is definitely bigger than the entire life-span of a neuron in an
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acute slices preparation. I would like to add some further words on possible further

perspectives. The first future develop could be from the point of view of the code;

most of my scripts would benefit to make them more efficient and, in particularly

an automatic minimisation of dT estimation is suggested, since doing by myself

I can have accidentally introduced a bias. It has been beneficial doing neuronal

model by neuronal model, since it was an exploration of the dT and gave me the

idea that every model is different. I can speculate that it would be possible doing

it, training a small neuronal network to perform the task replacing the user eyes,

experience and a possible presence of an introduced human bias. The second future

development for the sake of the Master of the High-Performance Computing I have

attended, could be develop a version of my code for taking advantages of the speed

up potential of the GPUs, using as a guide the following work of Roy Ben Shalom

and colleagues (Ben-Shalom et al., 2022). The third future development to prove

my previous hypothesis, such as the anti-correlation between TDL and slopes of the

slopes. The idea focus on performing a very interesting experiment, such as taking

one of the neuronal model with the highest TDL value and then "dissect it" removing

step my step a piece of the dendritic tree, reducing the TDL and veryfing my previous

hypothesis.
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7 Appendix

7.1 All comprehensive results

Neuron M_m M_diff mean_m M_diff/mean_m
L5_TTPC2_cADpyr232_3 0.005 0.04 -0.71 -0.05
L6_BPC_cADpyr231_4 0.162 0.15 -1.00 -0.15
L6_TPC_L4_cADpyr231_5 0.234 0.49 -1.07 -0.45
L4_SS_cADpyr230_1 0.253 0.40 -0.88 -0.45
L5_TTPC1_cADpyr232_2 0.045 0.08 -0.79 -0.10
L6_TPC_L1_cADpyr231_2 0.045 0.06 -1.01 -0.06
L4_PC_cADpyr230_3 0.210 0.34 -0.91 -0.37
L4_SP_cADpyr230_1 0.467 0.50 -0.96 -0.52
L4_SS_cADpyr230_4 0.186 0.32 -0.87 -0.36
L5_TTPC2_cADpyr232_2 0.079 0.16 -0.85 -0.19
L6_IPC_cADpyr231_2 0.254 0.83 -1.06 -0.78
L6_IPC_cADpyr231_3 0.091 0.17 -0.95 -0.18
L5_STPC_cADpyr232_2 0.042 0.10 -0.74 -0.14
L4_PC_cADpyr230_5 0.129 0.28 -0.95 -0.30
L23_PC_cADpyr229_2 0.322 0.80 -0.94 -0.85
L6_UTPC_cADpyr231_2 0.272 0.47 -1.02 -0.46
L5_STPC_cADpyr232_3 0.030 0.06 -0.60 -0.10
L5_UTPC_cADpyr232_1 0.101 0.21 -0.68 -0.31
L4_SS_cADpyr230_2 0.144 0.28 -0.90 -0.31
L23_PC_cADpyr229_3 0.090 0.18 -1.09 -0.16
L5_UTPC_cADpyr232_5 0.018 0.07 -0.72 -0.09
L6_UTPC_cADpyr231_5 0.062 0.13 -0.97 -0.13
L6_IPC_cADpyr231_4 0.108 0.22 -0.93 -0.23
L5_TTPC1_cADpyr232_5 -0.034 0.04 -0.66 -0.07
L5_STPC_cADpyr232_1 0.106 0.10 -0.75 -0.14
L5_TTPC1_cADpyr232_4 0.028 0.03 -0.80 -0.04
L5_UTPC_cADpyr232_3 0.007 0.02 -0.69 -0.03
L6_BPC_cADpyr231_3 0.187 0.18 -0.98 -0.19
L6_TPC_L1_cADpyr231_4 0.064 0.12 -1.00 -0.12
L6_TPC_L4_cADpyr231_4 0.211 0.40 -1.00 -0.40
L6_TPC_L1_cADpyr231_3 0.245 0.41 -0.99 -0.41
L6_UTPC_cADpyr231_3 0.245 0.45 -0.97 -0.46
L6_TPC_L4_cADpyr231_2 0.319 0.33 -1.00 -0.33
L5_TTPC1_cADpyr232_1 0.175 0.17 -0.79 -0.22
L6_TPC_L1_cADpyr231_1 0.366 0.37 -1.04 -0.36
L4_PC_cADpyr230_4 0.325 0.37 -0.96 -0.39
L5_STPC_cADpyr232_5 0.052 0.08 -0.72 -0.12
L6_BPC_cADpyr231_5 0.075 0.15 -1.00 -0.15
L5_TTPC2_cADpyr232_4 -0.005 0.07 -0.69 -0.10
L4_SS_cADpyr230_5 0.210 0.32 -0.91 -0.35
L6_IPC_cADpyr231_5 0.219 0.24 -1.09 -0.22
L5_STPC_cADpyr232_4 0.066 0.13 -0.78 -0.17
L6_BPC_cADpyr231_1 -0.019 0.03 -1.04 -0.03
L6_TPC_L4_cADpyr231_1 0.259 0.72 -0.98 -0.74
L4_PC_cADpyr230_2 0.280 0.83 -0.91 -0.92
L4_SS_cADpyr230_3 0.266 0.30 -0.95 -0.31
L6_TPC_L4_cADpyr231_3 0.351 0.65 -1.08 -0.60
L23_PC_cADpyr229_1 0.116 0.33 -1.18 -0.28
L6_IPC_cADpyr231_1 0.109 0.30 -0.92 -0.33
L5_TTPC2_cADpyr232_1 -0.010 0.04 -0.73 -0.05
L6_UTPC_cADpyr231_4 0.176 0.30 -0.95 -0.32
L4_SP_cADpyr230_5 0.262 0.28 -0.94 -0.30
L5_TTPC1_cADpyr232_3 0.061 0.06 -0.85 -0.07
L4_SP_cADpyr230_4 0.289 0.33 -0.96 -0.35
L6_UTPC_cADpyr231_1 0.170 0.34 -1.01 -0.34
L6_TPC_L1_cADpyr231_5 0.171 0.16 -1.00 -0.16
L4_PC_cADpyr230_1 0.226 0.33 -0.78 -0.42
L23_PC_cADpyr229_5 0.132 0.30 -0.92 -0.32
L4_SP_cADpyr230_3 0.235 0.25 -0.93 -0.27
L5_UTPC_cADpyr232_2 0.027 0.05 -0.68 -0.07
L6_BPC_cADpyr231_2 0.097 0.19 -1.02 -0.19
L5_UTPC_cADpyr232_4 0.016 0.02 -0.72 -0.03
L4_SP_cADpyr230_2 0.168 0.17 -1.05 -0.16
L5_TTPC2_cADpyr232_5 -0.004 0.06 -0.73 -0.08
L23_PC_cADpyr229_4 0.119 0.28 -1.02 -0.28

Figure 79: in This table are present for each neuronal model values of the mean
slopes, the difference between the maximum and the minimum values of the slopes,
the ratio between the difference aforementioned and the mean and the slopes of the
slopes.
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Figure 80: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data. The neuronal model is L23_PC_cADpyr229_1, the
dT value is in the figure 62 in the extremes range of -90, -45 mV

7.2 dT extraction of all the neuronal models

Here. all the figure of the exponential regression to estimate the dT:
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Figure 81: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data. The neuronal model is L23_PC_cADpyr229_2, dT
value is in the figure 62 in the extremes range of -90, -44 mV
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Figure 82: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data. The neuronal model is L23_PC_cADpyr229_3, dT
value is in the figure 62 in the extremes range of -90, -44 mV
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Figure 83: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data. The neuronal model is L23_PC_cADpyr229_3, dT
value is in the figure 62 in the extremes range of -90, -45 mV
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Figure 84: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L23_PC_cADpyr229_5, dT
value is in the figure 62 in the extremes range of -90, -45 mV
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Figure 85: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_PC_cADpyr230_1, dT
value is in the figure 62 in the extremes range of -90, -45 mV

miao bau
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Figure 86: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_PC_cADpyr230_2, dT
value is in the figure 62 in the extremes range of -90, -45 mV
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Figure 87: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_PC_cADpyr230_3, dT
value is in the figure 62 in the extremes range of -90, -45 mV
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Figure 88: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_PC_cADpyr230_4, dT
value is in the figure 62 in the extremes range of -90, -45 mV
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Figure 89: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_PC_cADpyr230_5, dT
value is in the figure 62 in the extremes range of -90, -45 mV
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Figure 90: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_SP_cADpyr230_1, dT
value is in the figure 62 in the extremes range of -90, -55.5 mV
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Figure 91: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_SP_cADpyr230_2, dT
value is in the figure 62 in the extremes range of -90, -54 mV
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Figure 92: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_SP_cADpyr230_3, dT
value is in the figure 62 in the extremes range of -90, -54 mV
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Figure 93: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_SP_cADpyr230_4, dT
value is in the figure 62 in the extremes range of -90, -54 mV
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Figure 94: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_SP_cADpyr230_5, dT
value is in the figure 62 in the extremes range of -90, -55 mV
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Figure 95: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_SP_cADpyr230_1, dT
value is in the figure 62 in the extremes range of -90, -54 mV

192



90 85 80 75 70 65 60 55
V(mV)

2

1

0

1

2

3

4

F(
V)

(m
V/

m
s)

Quantification of Dynamic I-V Curve
Fit to EIF Model
Dynamic I-V Data from NEURON Model

Figure 96: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_SP_cADpyr230_2, dT
value is in the figure 62 in the extremes range of -90, -55.5 mV
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Figure 97: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_SS_cADpyr230_3, dT
value is in the figure 62 in the extremes range of -90, -54 mV
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Figure 98: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_SS_cADpyr230_4, dT
value is in the figure 62 in the extremes range of -90, -54 mV
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Figure 99: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L4_SS_cADpyr230_5, dT
value is in the figure 62 in the extremes range of -90, -54 mV
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Figure 100: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_STPC_cADpyr232_1, dT
value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 101: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_STPC_cADpyr232_2, dT
value is in the figure 62 in the extremes range of -90, -49 mV
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Figure 102: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_STPC_cADpyr232_3, dT
value is in the figure 62 in the extremes range of -90, -47 mV
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Figure 103: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_STPC_cADpyr232_4, dT
value is in the figure 62 in the extremes range of -90, -47 mV
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Figure 104: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_STPC_cADpyr232_5, dT
value is in the figure 62 in the extremes range of -90, -48 mV
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Figure 105: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_TTPC1_cADpyr232_2,
dT value is in the figure 62 in the extremes range of -90, -53.5 mV
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Figure 106: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_TTPC1_cADpyr232_3,
dT value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 107: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_TTPC1_cADpyr232_4,
dT value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 108: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_TTPC1_cADpyr232_5,
dT value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 109: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_TTPC2_cADpyr232_1,
dT value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 110: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_TTPC2_cADpyr232_2,
dT value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 111: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_TTPC2_cADpyr232_3,
dT value is in the figure 62 in the extremes range of -90, -52 mV

208



90 85 80 75 70 65 60 55
V(mV)

0

2

4

6

8

10

12

14

F(
V)

(m
V/

m
s)

Quantification of Dynamic I-V Curve
Fit to EIF Model
Dynamic I-V Data from NEURON Model

Figure 112: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_TTPC2_cADpyr232_4,
dT value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 113: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_TTPC2_cADpyr232_5,
dT value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 114: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_UTPC_cADpyr232_1, dT
value is in the figure 62 in the extremes range of -90, -47 mV
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Figure 115: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_UTPC_cADpyr232_2, dT
value is in the figure 62 in the extremes range of -90, -47 mV
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Figure 116: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_UTPC_cADpyr232_3, dT
value is in the figure 62 in the extremes range of -90, -48 mV
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Figure 117: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_UTPC_cADpyr232_4, dT
value is in the figure 62 in the extremes range of -90, -48 mV
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Figure 118: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L5_UTPC_cADpyr232_5, dT
value is in the figure 62 in the extremes range of -90, -48 mV
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Figure 119: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_BPC_cADpyr231_1, dT
value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 120: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_BPC_cADpyr231_2, dT
value is in the figure 62 in the extremes range of -90, -51 mV
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Figure 121: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_BPC_cADpyr231_3, dT
value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 122: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_BPC_cADpyr231_4, dT
value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 123: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_BPC_cADpyr231_5, dT
value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 124: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_IPC_cADpyr231_1, dT
value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 125: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_IPC_cADpyr231_2, dT
value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 126: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_IPC_cADpyr231_3, dT
value is in the figure 62 in the extremes range of -90, -51 mV

223



90 85 80 75 70 65 60 55
V(mV)

4

2

0

2

4

6

8

F(
V)

(m
V/

m
s)

Quantification of Dynamic I-V Curve
Fit to EIF Model
Dynamic I-V Data from NEURON Model

Figure 127: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_IPC_cADpyr231_4, dT
value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 128: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_IPC_cADpyr231_5, dT
value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 129: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_TPC_L1_cADpyr231_1,
dT value is in the figure 62 in the extremes range of -90, -52.5 mV
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Figure 130: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_TPC_L1_cADpyr231_2,
dT value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 131: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_TPC_L1_cADpyr231_3,
dT value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 132: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_TPC_L1_cADpyr231_4,
dT value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 133: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_TPC_L1_cADpyr231_5,
dT value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 134: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_TPC_L4_cADpyr231_1,
dT value is in the figure 62 in the extremes range of -90, -52 mV

231



90 85 80 75 70 65 60 55
V(mV)

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

F(
V)

(m
V/

m
s)

Quantification of Dynamic I-V Curve
Fit to EIF Model
Dynamic I-V Data from NEURON Model

Figure 135: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_TPC_L4_cADpyr231_2,
dT value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 136: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_TPC_L4_cADpyr231_3,
dT value is in the figure 62 in the extremes range of -90, -52 mV

233



90 85 80 75 70 65 60 55
V(mV)

2

0

2

4

6

8

10

12

F(
V)

(m
V/

m
s)

Quantification of Dynamic I-V Curve
Fit to EIF Model
Dynamic I-V Data from NEURON Model

Figure 137: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_TPC_L4_cADpyr231_4,
dT value is in the figure 62 in the extremes range of -90, -52 mV
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Figure 138: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_TPC_L4_cADpyr231_5,
dT value is in the figure 62 in the extremes range of -90, -50 mV
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Figure 139: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_UTPC_cADpyr231_1, dT
value is in the figure 62 in the extremes range of -90, -50 mV
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Figure 140: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_UTPC_cADpyr231_2, dT
value is in the figure 62 in the extremes range of -90, -50 mV
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Figure 141: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_UTPC_cADpyr231_3, dT
value is in the figure 62 in the extremes range of -90, -50 mV
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Figure 142: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_UTPC_cADpyr231_4, dT
value is in the figure 62 in the extremes range of -90, -51 mV
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Figure 143: here it is shown the graph for the estimation of the dT parameter of the
EIF model of the in silico data.The neuronal model is L6_UTPC_cADpyr231_5, dT
value is in the figure 62 in the extremes range of -90, -51 mV
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7.3 I-O properties at the HF for each neuronal models

here in this subsection are present all the figures regarding all the other neuronal

models not showed in the subsectionTheory of Richardson verification on multi-

compartmental models
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Figure 144: An example of a neuronal model, the L23_PC_cADpyr229_2, which
shown the Richardson’s effect at HF. The gain values are normalised over their
maximum located around the fmod ∼ 5Hz. The dashed lines stay for each cases as
the minimal level of significance threshold. The magenta, yellow, blue lines and the
stars indicate for each fmod value that the cases A and C, A and D, B and D are not
superimposable at the 95% of significance of the KS test. The solid lines of each
color are the HF domain linear fit used to extrapolated the HF slope of the linear
attenuation; the slopes values for each cases and neuronal models are in figure 70.
The slopes values are shown in the figure 70.
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Figure 145: An example of a neuronal model, the L23_PC_cADpyr229_4, which
shown the Richardson’s effect at HF. The gain values are normalised over their
maximum located around the fmod ∼ 5Hz. The magenta, yellow, blue lines and the
stars indicate for each fmod value that the cases A and C, A and D, B and D are not
superimposable at the 95% of significance of the KS test. The solid lines of each
color are the HF domain linear fit used to extrapolated the HF slope of the linear
attenuation; the slopes values for each cases and neuronal models are in figure 70.
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Figure 146: An example of a neuronal model, the L23_PC_cADpyr229_5, which
even id the slopes are different the Richardson is not present since the gain amplitude
of the case A is higher than the amplitude present in the case B. The gain values
are normalised over their maximum located around the fmod ∼ 5Hz. The magenta
lines and the stars indicate for each fmod value that the cases A and C, are not
superimposable at the 95% of significance of the KS test. The solid lines of each
color are the HF domain linear fit used to extrapolated the HF slope of the linear
attenuation; the slopes values for each cases and neuronal models are in figure 70

.
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Figure 147: An example of a neuronal model, the L4_PC_cADpyr230_2, which
even if the slopes are different the Richardson is not present since the gain amplitude
of the case A is higher than the amplitude present in the case B. The gain values
are normalised over their maximum located around the fmod ∼ 5Hz. The magenta,
yellow, blue lines and the stars indicate for each fmod value that the cases A and C,
A and D, B and D are not superimposable at the 95% of significance of the KS test.
The solid lines of each color are the HF domain linear fit used to extrapolated the HF
slope of the linear attenuation; the slopes values for each cases and neuronal models
are in figure 70.
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Figure 148: An example of a neuronal model, the L4_PC_cADpyr230_3, which even
if the slopes are different the Richardson is not present since the gain amplitude of
the case D is smaller than all the others. The gain values are normalised over their
maximum located around the fmod ∼ 5Hz. The magenta, yellow, blue lines and the
stars indicate for each fmod value that the cases A and C, A and D, B and D are not
superimposable at the 95% of significance of the KS test. The solid lines of each
color are the HF domain linear fit used to extrapolated the HF slope of the linear
attenuation; the slopes values for each cases and neuronal models are in figure 70.
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Figure 149: An example of a neuronal model, the L4_PC_cADpyr230_4, which even
if the slopes are different the Richardson is not present since the gain amplitude of
the case A is bigger than all the others. The gain values are normalised over their
maximum located around the fmod ∼ 5Hz. The magenta line and the stars indicate
for each fmod value that the cases A and C, are not superimposable at the 95% of
significance of the KS test. The solid lines of each color are the HF domain linear fit
used to extrapolated the HF slope of the linear attenuation; the slopes values for each
cases and neuronal models are in figure 70.
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Figure 150: An example of a neuronal model, the L4_PC_cADpyr230_5, which
even if the slopes are different the Richardson is not present since the gain amplitude
of the case B is bigger than the case C. The gain values are normalised over their
maximum located around the fmod ∼ 5Hz. The magenta line and the stars indicate
for each fmod value that the cases A and C, are not superimposable at the 95% of
significance of the KS test. The solid lines of each color are the HF domain linear fit
used to extrapolated the HF slope of the linear attenuation; the slopes values for each
cases and neuronal models are in figure 70.
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Figure 151: An example of a neuronal model, the L4_SP_cADpyr230_2, which even
if the slopes are different the Richardson is not present since the gain amplitude of the
case A is bigger than the others around 200 Cycles/s. The gain values are normalised
over their maximum located around the fmod ∼ 5Hz. The magenta line and the stars
indicate for each fmod value that the cases A and C, are not superimposable at the
95% of significance of the KS test. The solid lines of each color are the HF domain
linear fit used to extrapolated the HF slope of the linear attenuation; the slopes values
for each cases and neuronal models are in figure 70.
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Figure 152: An example of a neuronal model, the L4_SP_cADpyr230_3, which even
if the slopes are different the Richardson is not present since the gain amplitude of the
case A is bigger than the others around 200 cycles/s. The gain values are normalised
over their maximum located around the fmod ∼ 5Hz. The magenta line and the stars
indicate for each fmod value that the cases A and C, are not superimposable at the
95% of significance of the KS test. The solid lines of each color are the HF domain
linear fit used to extrapolated the HF slope of the linear attenuation; the slopes values
for each cases and neuronal models are in figure 70.
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Figure 153: An example of a neuronal model, the L4_SP_cADpyr230_4, which even
if the slopes are different the Richardson is not present since the gain amplitude
of the case A is bigger than the case B. The gain values are normalised over their
maximum located around the fmod ∼ 5Hz. The magenta line and the stars indicate
for each fmod value that the cases A and C, are not superimposable at the 95% of
significance of the KS test. The solid lines of each color are the HF domain linear fit
used to extrapolated the HF slope of the linear attenuation; the slopes values for each
cases and neuronal models are in figure 70.
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Figure 154: An example of a neuronal model, the L4_SP_cADpyr230_5, which even
if the slopes are different the Richardson is not present since the gain amplitude of
the case B is bigger than the case C around 200 Hz. The gain values are normalised
over their maximum located around the fmod ∼ 5Hz. The magenta line and the stars
indicate for each fmod value that the cases A and C, are not superimposable at the
95% of significance of the KS test. The solid lines of each color are the HF domain
linear fit used to extrapolated the HF slope of the linear attenuation; the slopes values
for each cases and neuronal models are in figure 70.
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Figure 155: An example of a neuronal model, the L4_SS_cADpyr230_1, which
shown the Richardson’s effect at HF. The gain values are normalised over their
maximum located around the fmod ∼ 5Hz. The dashed lines stay for each cases as
the minimal level of significance threshold. The magenta, yellow, blue lines and the
stars indicate for each fmod value that the cases A and C, A and D, B and D are not
superimposable at the 95% of significance of the KS test. The solid lines of each
color are the HF domain linear fit used to extrapolated the HF slope of the linear
attenuation; the slopes values for each cases and neuronal models are in figure 70.

252



101 102 103

frequencies of modulation(cycles/s)

10 2

10 1

100

M
ag

ni
tu

de

Magnitude(f)

95% statistic confidence for AC
95% statistic confidence for AD
95% statistic confidence for BD
case_A
case_B
case_C
case_D

Figure 156: An example of a neuronal model, the L4_SS_cADpyr230_2, which
doesn’t have the RIchardson’effect since the amplitude of the case A is bigger than
all the others. The gain values are normalised over their maximum located around the
fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of significance
threshold. The magenta, yellow, blue lines and the stars indicate for each fmod value
that the cases A and C, A and D, B and D are not superimposable at the 95% of
significance of the KS test. The solid lines of each color are the HF domain linear fit
used to extrapolated the HF slope of the linear attenuation; the slopes values for each
cases and neuronal models are in figure 70.
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Figure 157: An example of a neuronal model, the L4_SS_cADpyr230_3, which
doesn’t have the RIchardson’effect since the amplitude of the case B is bigger
than the case C ones. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 158: An example of a neuronal model, the L4_SS_cADpyr230_4, which
doesn’t have the RIchardson’effect since the amplitude of the case A is bigger than
all the others. The gain values are normalised over their maximum located around the
fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of significance
threshold. The magenta,yellow and blue lines and the stars indicate for each fmod
value that the cases A and C,A and D and B and D are not superimposable at the
95% of significance of the KS test. The solid lines of each color are the HF domain
linear fit used to extrapolated the HF slope of the linear attenuation; the slopes values
for each cases and neuronal models are in figure 70.

255



101 102 103

frequencies of modulation(cycles/s)

10 2

10 1

100

M
ag

ni
tu

de

Magnitude(f)

95% statistic confidence for AC
95% statistic confidence for AD
95% statistic confidence for BD
case_A
case_B
case_C
case_D

Figure 159: An example of a neuronal model, the L4_SS_cADpyr230_5, which
doesn’t have the RIchardson’effect since the amplitude of the case A is bigger than
all the others. The gain values are normalised over their maximum located around the
fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of significance
threshold. The magenta,yellow and blue lines and the stars indicate for each fmod
value that the cases A and C,A and D and B and D are not superimposable at the
95% of significance of the KS test. The solid lines of each color are the HF domain
linear fit used to extrapolated the HF slope of the linear attenuation; the slopes values
for each cases and neuronal models are in figure 70.
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Figure 160: An example of a neuronal model, the L5_STPC_cADpyr232_1, which
shown a tiny presence of the Richardson’s effect at HF. The gain values are nor-
malised over their maximum located around the fmod ∼ 5Hz. The dashed lines stay
for each cases as the minimal level of significance threshold. The magenta line and
the stars indicate for each fmod value that the cases A and C are not superimposable
at the 95% of significance of the KS test. The solid lines of each color are the HF
domain linear fit used to extrapolated the HF slope of the linear attenuation; the
slopes values for each cases and neuronal models are in figure 70.
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Figure 161: An example of a neuronal model, the L5_STPC_cADpyr232_2, which
shown a tiny presence of the Richardson’s effect at HF between the case and and C,
but however a good evidence of it for the case D. The gain values are normalised
over their maximum located around the fmod ∼ 5Hz. The dashed lines stay for each
cases as the minimal level of significance threshold. The magenta line and the stars
indicate for each fmod value that the cases A and C are not superimposable at the
95% of significance of the KS test. The solid lines of each color are the HF domain
linear fit used to extrapolated the HF slope of the linear attenuation; the slopes values
for each cases and neuronal models are in figure 70.
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Figure 162: An example of a neuronal model, the L5_STPC_cADpyr232_3, which
doesn’t shown the Richardson’s effect since all the line are parallel, hence the slopes
aren’t distinguishable. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 163: An example of a neuronal model, the L5_STPC_cADpyr232_4, which
doesn’t shown the Richardson’s effect since all the line are parallel, hence the slopes
aren’t distinguishable. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 164: An example of a neuronal model, the L5_STPC_cADpyr232_5, which
doesn’t shown the Richardson’s effect since all the line are parallel, hence the slopes
aren’t distinguishable. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 165: An example of a neuronal model, the L5_TTPC1_cADpyr232_2, which
doesn’t have the RIchardson’effect since the amplitude of the case A is bigger than
all the others. The gain values are normalised over their maximum located around the
fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of significance
threshold. The magenta,yellow and blue lines and the stars indicate for each fmod
value that the cases A and C, A and D and B and D are not superimposable at the
95% of significance of the KS test. The solid lines of each color are the HF domain
linear fit used to extrapolated the HF slope of the linear attenuation; the slopes values
for each cases and neuronal models are in figure 70.
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Figure 166: An example of a neuronal model, the L5_TTPC1_cADpyr232_3, hich
shown a tiny presence of the Richardson’s effect at HF. The gain values are nor-
malised over their maximum located around the fmod ∼ 5Hz. The dashed lines stay
for each cases as the minimal level of significance threshold. The magenta line and
the stars indicate for each fmod value that the cases A and C are not superimposable
at the 95% of significance of the KS test. The solid lines of each color are the HF
domain linear fit used to extrapolated the HF slope of the linear attenuation; the
slopes values for each cases and neuronal models are in figure 70.
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Figure 167: An example of a neuronal model, the L5_TTPC1_cADpyr232_4, hich
doesn’t shown the Richardson’s effect since all the line are parallel, hence the slopes
aren’t distinguishable. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta line and the stars indicate for each fmod value
that the cases A and C, are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 168: An example of a neuronal model, the L5_TTPC2_cADpyr232_1, which
doesn’t shown the Richardson’s effect since the amplitude of the case C is smallest
instead of being the biggest. The gain values are normalised over their maximum
located around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal
level of significance threshold. The magenta line and the stars indicate for each fmod
value that the cases A and C, are not superimposable at the 95% of significance
of the KS test. The solid lines of each color are the HF domain linear fit used to
extrapolated the HF slope of the linear attenuation; the slopes values for each cases
and neuronal models are in figure 70.
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Figure 169: An example of a neuronal model, the L5_TTPC2_cADpyr232_2, which
shown the Richardson’s effect for exception the case D that has an higher slopes than
other and not distinguishable from the case A. The gain values are normalised over
their maximum located around the fmod ∼ 5Hz. The dashed lines stay for each cases
as the minimal level of significance threshold. The magenta, yellow and blue lines
and the stars indicate for each fmod value that the cases A and C, A and D and B and
D, are not superimposable at the 95% of significance of the KS test. The solid lines
of each color are the HF domain linear fit used to extrapolated the HF slope of the
linear attenuation; the slopes values for each cases and neuronal models are in figure
70.
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Figure 170: An example of a neuronal model, the L5_TTPC2_cADpyr232_3, which
does not shown the Richardson effect, since the slops are not distinguishable. The
gain values are normalised over their maximum located around the fmod ∼ 5Hz.
The dashed lines stay for each cases as the minimal level of significance threshold.
The magenta, yellow and blue lines and the stars indicate for each fmod value that
the cases A and C, A and D and B and D, are not superimposable at the 95% of
significance of the KS test. The solid lines of each color are the HF domain linear fit
used to extrapolated the HF slope of the linear attenuation; the slopes values for each
cases and neuronal models are in figure 70.
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Figure 171: An example of a neuronal model, the L5_TTPC2_cADpyr232_4, which
does not shown the Richardson effect, since the gain amplitude of the case B is
bigger than the case C one. The gain values are normalised over their maximum
located around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal
level of significance threshold. The magenta, yellow and blue lines and the stars
indicate for each fmod value that the cases A and C, A and D and B and D, are not
superimposable at the 95% of significance of the KS test. The solid lines of each
color are the HF domain linear fit used to extrapolated the HF slope of the linear
attenuation; the slopes values for each cases and neuronal models are in figure 70.
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Figure 172: An example of a neuronal model, the L5_TTPC2_cADpyr232_5, which
does not shown the Richardson effect, since the slopes are not distinguishable
between each other. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta, yellow and blue lines and the stars indicate for
each fmod value that the cases A and C, A and D and B and D, are not superimposable
at the 95% of significance of the KS test. The solid lines of each color are the HF
domain linear fit used to extrapolated the HF slope of the linear attenuation; the
slopes values for each cases and neuronal models are in figure 70.
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Figure 173: An example of a neuronal model, the L5_UTPC_cADpyr232_1, which
shows the Richardson’s effect. The gain values are normalised over their maximum
located around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal
level of significance threshold. The magenta, line and the stars indicate for each
fmod value that the cases A and C are not superimposable at the 95% of significance
of the KS test. The solid lines of each color are the HF domain linear fit used to
extrapolated the HF slope of the linear attenuation; the slopes values for each cases
and neuronal models are in figure 70.
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Figure 174: An example of a neuronal model, the L5_UTPC_cADpyr232_2, which
doesn’t shown the Richardson’s effect since all the line are parallel, hence the slopes
aren’t distinguishable. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta, line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.

271



101 102 103

frequencies of modulation(cycles/s)

10 2

10 1

100

M
ag

ni
tu

de

Magnitude(f)

95% statistic confidence for AC
case_A
case_B
case_C

Figure 175: An example of a neuronal model, the L5_UTPC_cADpyr232_3, which
doesn’t shown the Richardson’s effect since all the line are parallel, hence the slopes
aren’t distinguishable. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta, line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 176: An example of a neuronal model, the L5_UTPC_cADpyr232_4, which
doesn’t shown the Richardson’s effect since all the line are parallel, hence the slopes
aren’t distinguishable. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta, line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 177: An example of a neuronal model, the L5_UTPC_cADpyr232_5, which
doesn’t shown the Richardson’s effect since all the line are parallel, hence the slopes
aren’t distinguishable. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta, line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 178: An example of a neuronal model, the L6_BPC_cADpyr231_2, which
doesn’t shown the Richardson’s effect since the case B amplitude is bigger than
case one. The gain values are normalised over their maximum located around the
fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of significance
threshold. The magenta line and the stars indicate for each fmod value that the cases
A and C are not superimposable at the 95% of significance of the KS test. The solid
lines of each color are the HF domain linear fit used to extrapolated the HF slope of
the linear attenuation; the slopes values for each cases and neuronal models are in
figure 70.
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Figure 179: An example of a neuronal model, the L6_BPC_cADpyr231_3, which
doesn’t shown the Richardson’s effect since the case A amplitude is bigger thanthe
other ones. The gain values are normalised over their maximum located around the
fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of significance
threshold. The magenta line and the stars indicate for each fmod value that the cases
A and C are not superimposable at the 95% of significance of the KS test. The solid
lines of each color are the HF domain linear fit used to extrapolated the HF slope of
the linear attenuation; the slopes values for each cases and neuronal models are in
figure 70.
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Figure 180: An example of a neuronal model, the L6_BPC_cADpyr231_4, which
doesn’t shown the Richardson’s effect since the case A amplitude is bigger than the
other ones. The gain values are normalised over their maximum located around the
fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of significance
threshold. The magenta line and the stars indicate for each fmod value that the cases
A and C are not superimposable at the 95% of significance of the KS test. The solid
lines of each color are the HF domain linear fit used to extrapolated the HF slope of
the linear attenuation; the slopes values for each cases and neuronal models are in
figure 70.
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Figure 181: An example of a neuronal model, the L6_BPC_cADpyr231_5, which
doesn’t shown the Richardson’s effect since the case A amplitude is bigger than the
other ones. The gain values are normalised over their maximum located around the
fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of significance
threshold. The magenta line and the stars indicate for each fmod value that the cases
A and C are not superimposable at the 95% of significance of the KS test. The solid
lines of each color are the HF domain linear fit used to extrapolated the HF slope of
the linear attenuation; the slopes values for each cases and neuronal models are in
figure 70.
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Figure 182: An example of a neuronal model, the L6_IPC_cADpyr231_1, which
doesn’t shown the Richardson’s effect since the case A amplitude is bigger than the
other ones. The gain values are normalised over their maximum located around the
fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of significance
threshold. The magenta, yellow and blue lines and the stars indicate for each fmod
value that the cases A and C, A and D and B and D are not superimposable at the
95% of significance of the KS test. The solid lines of each color are the HF domain
linear fit used to extrapolated the HF slope of the linear attenuation; the slopes values
for each cases and neuronal models are in figure 70.
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Figure 183: An example of a neuronal model, the L6_IPC_cADpyr231_2, which
shows a tiny presence of the Richardson’s effect at HF. The gain values are normalised
over their maximum located around the fmod ∼ 5Hz. The dashed lines stay for each
cases as the minimal level of significance threshold. The magenta, yellow and blue
lines and the stars indicate for each fmod value that the cases A and C, A and D and
B and D are not superimposable at the 95% of significance of the KS test. The solid
lines of each color are the HF domain linear fit used to extrapolated the HF slope of
the linear attenuation; the slopes values for each cases and neuronal models are in
figure 70.
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Figure 184: An example of a neuronal model, the L6_IPC_cADpyr231_3, which
doesn’t shown the Richardson’s effect since the slopes of th straight lines are not
distinguishable. The gain values are normalised over their maximum located around
the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta, yellow and blue lines and the stars indicate for
each fmod value that the cases A and C, A and D and B and D are not superimposable
at the 95% of significance of the KS test. The solid lines of each color are the HF
domain linear fit used to extrapolated the HF slope of the linear attenuation; the
slopes values for each cases and neuronal models are in figure 70.
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Figure 185: An example of a neuronal model, the L6_IPC_cADpyr231_4, which
shows a tiny presence of the Richardson’s effect at HF. The gain values are normalised
over their maximum located around the fmod ∼ 5Hz. The dashed lines stay for each
cases as the minimal level of significance threshold. The magenta, yellow and blue
lines and the stars indicate for each fmod value that the cases A and C, A and D and
B and D are not superimposable at the 95% of significance of the KS test. The solid
lines of each color are the HF domain linear fit used to extrapolated the HF slope of
the linear attenuation; the slopes values for each cases and neuronal models are in
figure 70.
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Figure 186: An example of a neuronal model, the L6_IPC_cADpyr231_5, which
shows the Richardson’s effect at HF. The gain values are normalised over their
maximum located around the fmod ∼ 5Hz. The dashed lines stay for each cases as
the minimal level of significance threshold. The magenta, yellow and blue lines and
the stars indicate for each fmod value that the cases A and C, A and D and B and
D are not superimposable at the 95% of significance of the KS test. The solid lines
of each color are the HF domain linear fit used to extrapolated the HF slope of the
linear attenuation; the slopes values for each cases and neuronal models are in figure
70.
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Figure 187: An example of a neuronal model, the L6_TPC_L1_cADpyr231_1,
which shows the Richardson’s effect at HF. The gain values are normalised over their
maximum located around the fmod ∼ 5Hz. The dashed lines stay for each cases as
the minimal level of significance threshold. The magenta line and the stars indicate
for each fmod value that the cases A and C are not superimposable at the 95% of
significance of the KS test. The solid lines of each color are the HF domain linear fit
used to extrapolated the HF slope of the linear attenuation; the slopes values for each
cases and neuronal models are in figure 70.
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Figure 188: An example of a neuronal model, the L6_TPC_L1_cADpyr231_2, which
does not show the Richardson’s effect at HF, since the case B amplitude is bigger
than all the others. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 189: An example of a neuronal model, the L6_TPC_L1_cADpyr231_3, which
does not show the Richardson’s effect at HF, since the case A amplitude is bigger
than all the others. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 190: An example of a neuronal model, the L6_TPC_L1_cADpyr231_4, which
does not show the Richardson’s effect at HF, since the case A amplitude is bigger
than all the others. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 191: An example of a neuronal model, the L6_TPC_L1_cADpyr231_5, which
does not show the Richardson’s effect at HF, since the case A amplitude is bigger
than all the others. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 192: An example of a neuronal model, the L6_TPC_L4_cADpyr231_1, which
does not show the Richardson’s effect at HF, since the case B amplitude is bigger
than all the others. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta, yellow,blue lines and the stars indicate for each
fmod value that the cases A and C, A and D and B and D are not superimposable
at the 95% of significance of the KS test. The solid lines of each color are the HF
domain linear fit used to extrapolated the HF slope of the linear attenuation; the
slopes values for each cases and neuronal models are in figure 70.
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Figure 193: An example of a neuronal model, the L6_TPC_L4_cADpyr231_2, which
does not show the Richardson’s effect at HF, since the case B amplitude is bigger
than all the others. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 194: An example of a neuronal model, the L6_TPC_L4_cADpyr231_3, which
does not show the Richardson’s effect at HF, since the case A amplitude is bigger
than all the others. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 195: An example of a neuronal model, the L6_TPC_L4_cADpyr231_4, which
does not show the Richardson’s effect at HF, since the case A amplitude is bigger
than all the others. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 196: An example of a neuronal model, the L6_TPC_L4_cADpyr231_5, which
does not show the Richardson’s effect at HF, since the case A amplitude is bigger
than all the others. The gain values are normalised over their maximum located
around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal level of
significance threshold. The magenta line and the stars indicate for each fmod value
that the cases A and C are not superimposable at the 95% of significance of the KS
test. The solid lines of each color are the HF domain linear fit used to extrapolated
the HF slope of the linear attenuation; the slopes values for each cases and neuronal
models are in figure 70.
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Figure 197: An example of a neuronal model, the L6_UTPC_cADpyr231_1, which
shows the Richardson’s effect at HF. The gain values are normalised over their
maximum located around the fmod ∼ 5Hz. The dashed lines stay for each cases as
the minimal level of significance threshold. The magenta line and the stars indicate
for each fmod value that the cases A and C are not superimposable at the 95% of
significance of the KS test. The solid lines of each color are the HF domain linear fit
used to extrapolated the HF slope of the linear attenuation; the slopes values for each
cases and neuronal models are in figure 70.
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Figure 198: An example of a neuronal model, the L6_UTPC_cADpyr231_2, which
shows a tiny presence of the Richardson’s effect at HF. The gain values are normalised
over their maximum located around the fmod ∼ 5Hz. The dashed lines stay for each
cases as the minimal level of significance threshold. The magenta line and the stars
indicate for each fmod value that the cases A and C are not superimposable at the
95% of significance of the KS test. The solid lines of each color are the HF domain
linear fit used to extrapolated the HF slope of the linear attenuation; the slopes values
for each cases and neuronal models are in figure 70.
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Figure 199: An example of a neuronal model, the L6_UTPC_cADpyr231_3, which
does not show the Richardson’s effect at HF, since the case A gain amplitude is
bigger than the case B one. The gain values are normalised over their maximum
located around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal
level of significance threshold. The magenta line and the stars indicate for each fmod
value that the cases A and C are not superimposable at the 95% of significance
of the KS test. The solid lines of each color are the HF domain linear fit used to
extrapolated the HF slope of the linear attenuation; the slopes values for each cases
and neuronal models are in figure 70.
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Figure 200: An example of a neuronal model, the L6_UTPC_cADpyr231_4, which
does not show the Richardson’s effect at HF, since the case A gain amplitude is
bigger than the other ones. The gain values are normalised over their maximum
located around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal
level of significance threshold. The magenta line and the stars indicate for each fmod
value that the cases A and C are not superimposable at the 95% of significance
of the KS test. The solid lines of each color are the HF domain linear fit used to
extrapolated the HF slope of the linear attenuation; the slopes values for each cases
and neuronal models are in figure 70.
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Figure 201: An example of a neuronal model, the L6_UTPC_cADpyr231_5, which
does not show the Richardson’s effect at HF, since the case A gain amplitude is
bigger than the other ones. The gain values are normalised over their maximum
located around the fmod ∼ 5Hz. The dashed lines stay for each cases as the minimal
level of significance threshold. The magenta line and the stars indicate for each fmod
value that the cases A and C are not superimposable at the 95% of significance
of the KS test. The solid lines of each color are the HF domain linear fit used to
extrapolated the HF slope of the linear attenuation; the slopes values for each cases
and neuronal models are in figure 70.
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