
 

 

Mathematics Area – PhD course in 

Geometry and Mathematical Physics 

 

 

 

 

 

 

Topological Invariants of 

Plumbed 3-Manifolds 

 

 

 

 

 

 

Candidate: 

Song Jin Ri 

 

Advisor: 

Prof. Pavel Putrov 

 

Academic Year 2022-23 





iii

Abstract

In this thesis, we deal with topological invariants of plumbed 3-manifolds by
means of not only mathematical analysis but also deep machine learning with
Graph Neural Networks (GNN).

We first introduce a two-variable refinement Ẑa(q, t) of plumbed 3-manifold
invariants Ẑa(q), which were previously defined for weakly negative definite
plumbed 3-manifolds. For plumbed 3-manifolds with two high-valency vertices,
we analytically compute the limit by using the explicit integer solutions
of quadratic Diophantine equations in two variables. Based on numerical
computations of the recovered Ẑa(q) for plumbings with two high-valency
vertices, we propose a conjecture that the recovered Ẑa(q), if exists, is an invariant
for all tree plumbed 3-manifolds. Then we suggest a formula of the Ẑa(q, t) for
the connected sum of plumbed 3-manifolds in terms of those for the components.

Next, we test the efficiency of applying Geometric Deep Learning to the
problems in low-dimensional topology in a certain simple setting. Specifically,
we consider the certain class of 3-manifolds described by plumbing graphs
and apply GNNs to the problem of deciding whether a pair of graphs give
homeomorphic 3-manifolds. We use supervised learning to train a GNN that
provides the answer to such a question with high accuracy. Moreover, we also
consider reinforcement learning by a GNN to find a sequence of Neumann moves
that relates the pair of graphs if the answer is positive.





v

Preface
This thesis is based on the following publications:

• Song Jin Ri, “Refined and Generalized Ẑ Invariants for Plumbed
3-Manifolds”, SIGMA 19(2023), 011, arXiv:2205.08197.

• Song Jin Ri and Pavel Putrov, “Graph Neural Networks and 3-Dimensional
Topology”, Mach. Learn.: Sci. Technol. vol.4 035026 (2023).

“Topological invariants of plumbed 3-manifolds” © 2023 by Song Jin Ri is
licensed under CC BY-NC-SA 4.0. To view a copy of this license, visit here.

https://arxiv.org/abs/2205.08197
https://doi.org/10.1088/2632-2153/acf097
http://creativecommons.org/licenses/by-nc-sa/4.0/




vii

Acknowledgements
First of all, I am deeply thankful to my supervisor, Professor Pavel Putrov,

who has willingly shared his precious time to help me with his useful comments
and remarks through each stage of my entire process. I would like to
acknowledge professors: Jacopo Stoppa, Alessandro Tanzini, Tamara Grava, and
Rafael Torres. They gave me plenty of knowledge to lead me to the beautiful
world of mathematics by their great efforts through wonderful lectures at the first
year of my PhD. Many thanks to my PhD collegues who supported me greatly
and were always willing to help me.

I would like to express the deepest appreciation to Professor Jin U Kang
and Professor Hak Chol Pak in Kim Il Sung University, who continually and
convincingly conveyed a spirit of adventure in regard to research, and an
excitement in regard to teaching. I would also like to thank Kwang Il Ryom for
always being with me in thicks and thins of 5-years-life in Trieste.

Last but not least, I would like to express my very profound gratitude to my
family for providing me with unfailing support and continuous encouragement
throughout 4 years of study and through the process of researching and writing
this thesis.

Song Jin Ri
October 13, 2023

Trieste, Italy





ix

Contents

Abstract iii

Preface v

Acknowledgements vii

1 Introduction 1

2 Preliminaries 5
2.1 Plumbed 3-manifolds and q-series . . . . . . . . . . . . . . . . . . . 5

2.1.1 Plumbing graphs . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Identification of Spinˆc structures . . . . . . . . . . . . . . . . 8
2.1.3 WRT invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 The q-series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Graph neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Refined and generalized Ẑ-invariants 17
3.1 The (q,t)-series invariants . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Recovering the q-series . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Connected sum of plumbed 3-manifolds . . . . . . . . . . . . . . . . 43

4 Graph Neural Networks and Plumbed 3-Manifolds 47
4.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 48
4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 The environment . . . . . . . . . . . . . . . . . . . . . . . . . 53

State space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Action space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



x

4.2.2 The deep RL algorithm . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A Quadratic Diophantine equation in two variables 65
A.1 Pell’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.2 Generalized Pell’s equation . . . . . . . . . . . . . . . . . . . . . . . 67
A.3 Quadratic Diophantine equation in two variables: revisited . . . . . 68

B Algorithms 69

Bibliography 73



xi

To my family, for their constant love and support.





1

Chapter 1

Introduction

It is well-known that Dehn surgery provides a method to produce nontrivial
3-manifolds starting from a framed link in R3 and this method establishes
a pivotal relation between links in R3 and closed oriented 3-manifolds [29,
44]. It also gives rise to an important relation between invariants of links and
3-manifolds. A typical example is the colored Jones polynomial for framed
oriented links and the Witten–Reshetikhin–Turaev (WRT) invariant for closed
oriented 3-manifolds [38, 45].

Khovanov homology [23] is another well-known invariant for knots and links.
Furthermore, it is a categorification of the Jones polynomial, that is, the Euler
characteristic of Khovanov homology is the Jones polynomial. Therefore, it is
natural to ask if there is an invariant of 3-manifolds not only as the counterpart
of Khovanov homology but also as a categorification of the WRT invariants. This
is one of the major open questions in quantum topology.

Some progress in this direction has been made in [15, 14], where a
physical definition of certain new invariants of 3-manifolds, often referred to as
homological blocks, Gukov–Pei–Putrov–Vafa (GPPV) invariant, or as Ẑ invariant,
denoted by Ẑa(q), was formulated by the study of 3d N = 2 supersymmetric
theory obtained by compactification of 6d N = (2, 0) theory on a 3-manifold.
The 3d N = 2 theory depends on the choice of a Lie group G and the case
G = SU(2) is mostly studied in [13, 15, 14] since it corresponds to the Jones
polynomial. In this paper, we will also assume G = SU(2). The cases for other
gauge groups, especially for G = SU(N) are studied in [36]. The invariant Ẑa(q)
is a power series in q with integer coefficients and a denotes a Spinc structure
of the 3-manifold. Moreover, a general relation between Ẑ invariants and WRT
invariants was conjectured. The conjecture says that the limit of a certain linear
combination of Ẑa(q) over all possible a as q goes to a root of unity would be equal
to the WRT invariant. A rigorous mathematical definition of the invariants for
general 3-manifolds is yet to be found. A concrete mathematical formula of Ẑa(q)
and its invariance are given in [13] and [15] only for weakly negative definite



2 Chapter 1. Introduction

plumbed 3-manifolds.
The main context of this thesis is divided into two parts. In the first part of

this thesis we introduce a refined and generalized version of these q-series, which
is defined for a much larger class of plumbed 3-manifolds. To do this, we first
construct a refinement, the (q, t)-series, by introducing a new regulator variable
t, which is also an invariant of reduced plumbed 3-manifolds. This (q, t)-series
has a nice property that for weakly negative definite plumbings the evaluation
at t = 1 is equal to the q-series Ẑa(q). However, for weakly positive definite
plumbings we can switch the (q, t)-series into the q-series in [13] by taking t = 1
and transforming the expansion in q−1 into an expansion in q as in [5]. Also, the
(q, t)-series for negative definite plumbings is reminiscent of the 2-variable series
introduced in [1], which is obtained by combining the lattice cohomology and the
q-series.

Another property of the (q, t)-series is that the exponents of t are intimately
related to non-negative integer solutions of quadratic Diophantine equations.
Therefore, we can recover the q-series from the (q, t)-series by computing the
limit t→ 1 even for a certain class of strongly indefinite plumbings by solving the
corresponding quadratic Diophantine equations. In cases when the limit is finite,
the recovered q-series is conjecturally also an invariant of plumed 3-manifolds.

In the second part of this thesis, we examine the Graph Neural Networks
(GNN) approach to the problems in 3-dimensional topology, which ask whether
two given plumbing graphs represent a same 3-manifold or not, and how to find
out the sequence of Neumann moves that connects two plumbings if they are
equivalent.

Geometric Deep Learning (GDL) [3] is an area of Machine Learning (ML) that
has been under very active development during the last few years. It combines
various approaches to ML problems involving data that has some underlying
geometric structure. The neural networks used in GDL are designed to naturally
take into account the symmetries and the locality of the data. It has been
successfully applied to problems involving computer vision, molecule properties,
social or citation networks, particle physics, etc (see [4] for a survey). It is natural
to apply GDL techniques also to mathematical problems in topology. In general,
ML has been already used in various problems in low-dimensional topology,
knot theory in particular, [19, 20, 16, 9, 21, 8, 43, 22, 30, 17], as well as various
physics-related problems in geometry (for a recent survey see [18]). However,
the used neural network models were mostly not specific to GDL.

The goal of the second part of this thesis is to test the efficiency of GDL
in a very simple setting in low-dimensional topology. Namely, we consider a



Chapter 1. Introduction 3

special class of 3-manifolds known as plumbed, or graph, 3-manifolds. Those
are 3-manifolds that are specified by a choice of a graph with particular features
assigned to edges and vertices. Such 3-manifolds are therefore very well
suited for analysis by Graph Neural Networks (GNN). GNN is one of the most
important and used types of neural networks used in GDL. In general, GNN are
designed to process data represented by graphs.

In this thesis, we use GNNs for the following problems involving plumbed
3-manifolds. Different (meaning not isomorphic) graphs can correspond to
equivalent, i.e. homeomorphic, 3-manifolds. Note that in 3 dimensions (or
less) any topological manifold has a unique smooth structure and the notions of
homeomorphism and diffeomorphism are equivalent. It is known that a pair of
graphs that produce two equivalent 3-manifolds must be related by a sequence of
certain moves, commonly known as Neumann moves [34]. These moves establish
a certain equivalence relation on the graphs (in addition to the standard graph
isomorphism). First, we consider a neural network that, as the input has a pair
of plumbing graphs, and, as the output gives the decision whether the graphs
correspond to homeomorphic 3-manifolds or not, i.e. whether the two graphs are
equivalent, or not, in the sense described above. Supervised Learning (SL) is then
used to train the network. The training dataset consists of randomly generated
graph pairs, for which it is known whether the corresponding 3-manifolds are
homeomorphic or not. The trained neural network, up until the very last layer,
can be understood to produce an approximate topological invariant of plumbed
3-manifolds.

Second, we consider a neural network for which the input is a plumbing graph
and the output is a sequence of Neumann moves that “simplifies” the graph
according to a certain criterion. The aim is to build a neural network such that if it
is applied to equivalent graphs it simplifies them to the same graph. If the result is
successful this can be used to provide an explicit demonstration that a given pair
of graphs give two homeomorphic 3-manifolds. Reinforcement Learning (RL)
is used to train the network. For both cases, SL and RL, we consider different
architectures of the neural networks and compare their performance.

Note that in principle there is an algorithm for determining whether two
plumbing graphs give homeomorphic 3-manifolds or not, which was already
presented in [34]. It involves bringing both graphs to a certain normal form
(which is, in a sense, similar to the “simplification” process in the RL setup
mentioned above) and then checking that normal forms are the same (i.e.
isomorphic graphs). However, it is known that just checking isomorphism of
graphs already goes beyond polynomial time. The plumbing graphs can be



4 Chapter 1. Introduction

considered as a particular class of more general Kirby diagrams that can be
used to describe arbitrary closed oriented 3-manifolds, with Neumann moves
being generalized to the so-called Kirby moves. Even in this case, in principle
there exists an algorithm of checking whether two Kirby diagrams produce
homeomorphic 3-manifolds or not [26]. There is a also of version of Kirby
diagrams and moves for smooth 4-manifolds. Moreover, in this case, however,
an algorithm for the recognition of diffeomorphic pairs does not exist. In 4
dimensions the notion of diffeomorphism and homeomorphism are not the same.
In particular, there exist pairs of manifolds that are homeomorphic but not
diffeomorphic. While the classification of 4-manifolds up to homeomorphisms
(with certain assumptions on the fundamental group) is relatively not difficult,
classification up to diffeomorphisms is an important open question. The setup
with plumbed 3-manifolds that we consider in this thesis can be understood as
a toy model for the problem of recognition of diffeomorphic pairs of general 3-
and 4-manifolds, for which one can try to apply neural networks with similar
architecture in the future.

The rest of the thesis is organized as follows. In Chapter 2, we review basic
preliminaries about the plumbed 3-manifolds, the q-series Ẑa(q), and some GNN
architectures needed for the analysis that follows. In Chapter 3, we provide the
formula for the Ẑa(q, t) invariants of reduced plumbed 3-manifolds, and prove
that they are independent of the plumbing representation. We give an analytical
study on the recovering process for plumbings with two high-valency vertices by
using the solutions of quadratic Diophantine equations in two variables. Also,
we propose a conjecture that the recovered q-series is an invariant of arbitrary
plumbed 3-manifolds. Then we provide a relation between the (q, t)-series of the
disjoint union of two plumbing graphs and those of component plumbings. In
Chapter 4, we first consider various GNN architectures for supervised learning
of whether a pair of plumbing graphs provide homeomorphic 3-manifolds or
not. We also consider reinforcement learning of the process of simplification of
a plumbing graph representing a fixed (up to a homeomorphism) 3-manifold.
Then we discuss the obtained results and mention possible further directions. In
Appendices A and B, we provide a brief review on the solutions of quadratic
Diophantine equations in two variables, the results of which are used in Chapter
3, and some basic algorithms that are specific to the problems considered in
Chapter 4.



5

Chapter 2

Preliminaries

2.1 Plumbed 3-manifolds and q-series

In this section we review some known facts about plumbed 3-manifolds and their
invariants, and we set up notational conventions.

2.1.1 Plumbing graphs

A plumbing graph is a finite weighted graph Γ, that is, a graph consisting of a finite
number of vertices and edges together with the data of integer weights associated
to vertices. In Section 2.1–3.2, we will assume that Γ is a tree, and we will consider
disconnected plumbings in Section 3.3.

Let V be the set of vertices of Γ. For each vertex v ∈ V, mv denotes the weight
of the vertex v, and the degree deg(v) describes the number of edges connected
to the vertex. Let s = |V| be the cardinality of the set V. Then we define the
symmetric s× s matrix M = M(Γ), called linking matrix of Γ, by

Mv1,v2 =


mv, if v1 = v2 = v,

1, if v1, v2 are connected by an edge,

0, otherwise.

vi ∈ V.

From Γ, we can construct plumbed 3-manifolds in the following way: we
first obtain the framed link L(Γ) in S3 = ∂B4 by taking an unknot with framing
mv for each vertex v and making these unknots forming Hopf links whenever
corresponding vertices are connected by an edge, e.g., see Figure 2.1. By attaching
two-handles to B4 along L(Γ), we get the 4-manifold, denoted by W(Γ). It can be
also obtained by plumbing disk bundles over S2 with Euler numbers mv. Then
its boundary Y = Y(Γ) = ∂W(Γ) is the closed and oriented 3-manifold obtained



6 Chapter 2. Preliminaries

−7

−3

−2

−1

−7

−1

−3

−2

FIGURE 2.1: A plumbing graph Γ on the left and its associated
framed link L(Γ) on the right.

by Dehn surgery from L(Γ) whose first homology is

H1(Y) ∼= Zs/MZs.

Two different plumbing graphs can represent the same homeomorphism class
of Y(Γ) as following theorem [34, Theorem 3.2].

Theorem 2.1. If Γ1 and Γ2 are connected plumbings with no cycles, then Γ1 and Γ2 are
related by Neumann moves depicted in Figure 2.2.

Since Neumann moves of type (d) is relevant to disconnected plumbings, we
will restrict ourselves to a certain class of plumbing graphs (defined explicitly
later) such that any two plumbings that represent the homeomorphic 3-manifolds
are related by only three types of Neumann moves, i.e., type (a), (b), and (c).

For our purpose, we establish some terminology of plumbings that can be
helpful for understanding the structures of plumbing graphs. Given a graph
Γ, we divide the set V of vertices into three disjoint subsets V1, V2 and Vh with
respect to the degree of vertices as following:

V1 = {v ∈ V | deg(v) = 1}, V2 = {v ∈ V | deg(v) = 2},
Vh = {v ∈ V | deg(v) = 2 + pv ≥ 3, pv ∈ Z>0}.

Then we name the elements of V1, V2 and Vh by valency one, valency two and
high-valency vertices, respectively.

Definition 2.2. Suppose that Γ has at least one high-valency vertex.

(i) An arm is a connected component of Γ \Vh.

(ii) An arm is called a bridge if its two endpoints are in Vh.

(iii) An arm is called branch if one endpoint is in Vh and the other is in V1.



2.1. Plumbed 3-manifolds and q-series 7

Γ𝑛

𝑒0

Γ1

Γ1  ⊔ Γ2 ⊔ ⋯ ⊔ Γ𝑛 ≃

1) Type (a) 2) Type (b) 3) Type (c)

4) Type (d)

FIGURE 2.2: There are 4 different types of Neumann moves, which
preserve the resulting 3-manifold up to homeomorphism. For

Neumann moves of type (d), e can be any finite integer.

For example, two graphs in Figure 2.2 (b) have bridges between m1 and m2

for the bottom one or from m1 ± 1 to m2 ± 1 for the top, respectively, and the top
graph in Figure 2.2 (c) has a branch from m1 ± 1 to ±1.

Since a branch Γwv from w to v can be thought as a linear plumbing, the
following continued fraction

m′w = mw −
1

u1 −
1

u2 −
1

. . . −
1

mv

(2.1)

can give us the information of the branch. It is actually a complete invariant
under the Neumann moves creating or annihilating valency two vertices along
the branch. In (2.1), mw is the weight of the starting high-valency vertex of
the branch Γwv, uis represent the weights of valency two vertices on the linear
plumbing between w and v, and mv is the weight of the ending valency one
vertex. If the continued fraction m′w of Γwv is an integer, the branch is called pseudo
branch because it can be annihilated or removed by a sequence of Neumann
moves. For example, the top graph in Figure 2.2 (b) has a pseudo-branch



8 Chapter 2. Preliminaries

Γm1±1,±1.1 A high-valency vertex is w ∈ Vh called a pseudo high-valency vertex if
it satisfies the following condition

deg(w)− nw = 1, 2,

where nw denotes a number of pseudo branches connected to the vertex w. This
means that a pseudo high-valency vertex can be turned into a valency one or
two vertex once we annihilate or collapse all of its pseudo branches by using
Neumann moves.

For a given bridge Γw1,w2 between two high-valency vertices w1, w2 ∈ Vh, we
also examine the continued fraction of valency two vertices laid on the bridge if
they exist. The bridge is called a pseudo bridge if it contains at least one valency
two vertex and the continued fraction is zero. A pseudo bridge can also be
annihilated by a sequence of Neumann moves of type (a) and (c).

In order to exclude Neumann moves of type (d), we also define a bad branch to
be a branch which has a segment, including valency one vertex, whose continued
fraction is equal to 0.

We define a plumbing graph to be reduced if there is at least one vertex
with degree greater than two and there is no pseudo high-valency vertices and
bad branches. One can change any plumbing tree into a reduced plumbing by
removing pseudo high-valency vertices by using Neumann moves. Note that
removing pseudo high-valency vertex could create another pseudo high-valency
vertex, hence it is needed to keep removing all pseudo high-valency vertices as
they appear until there is no pseudo high-valency vertex anymore. We also notice
that a plumbing without any high-valency vertex represents a lens space.

2.1.2 Identification of Spinc structures

Let us review briefly the identification of Spinc structures on plumbed
3-manifolds in terms of plumbing data. The affine space Spinc(Y) in the case
of Y = Y(Γ) for a plumbing tree Γ has already been studied in the Heegard–Floer
homology literature [35], and a slightly different description has been used
in order to construct an invariant Ẑa(q) of the plumbed 3-manifold equipped
with the Spinc structure a in [13]. Here we recall Spinc structures on plumbed
3-manifolds Y(Γ) by following [13].

The Spinc structures on Y can be inherited by those on the 4-manifold
W = W(Γ) with boundary Y. More explicitly, a natural identification for Spinc

1By abuse of notation, we often use the weights to denote the vertices where the meaning is
clear in the context.



2.1. Plumbed 3-manifolds and q-series 9

structures on W
Spinc(W) ∼= 2Zs + m⃗

translates into a natural identification for the plumbed 3-manifold Y

Spinc(Y) ∼=
(
2Zs + m⃗

)
/
(
2MZs),

where m⃗ is the vector made of the weights mv for v ∈ V. Note that both
identifications take the conjugation of Spinc structures to the involution a ↔ −a
on the right-hand side.

Another natural identification

Spinc(Y) ∼=
(
2Zs + δ⃗

)
/
(
2MZs) ∼= 2 Coker M + δ⃗, (2.2)

can be obtained by using the map

ϕ :
(
2Zs + m⃗

)
/
(
2MZs) ∼=−→ ((

2Zs + δ⃗
)
/
(
2MZs)),[⃗

ℓ
]
→
[⃗
ℓ−Mu⃗

]
,

where δ⃗ is the vector of the degrees of the vertices in Γ, and u⃗ = (1, 1, . . . , 1).

2.1.3 WRT invariants

The physical definition of WRT invariants was originally inspired by a more
physical approach by Witten [45]. For a closed, connected, oriented 3-manifold
M3, WRT invariant is defined by the following functional integral in a QFT with
Chern-Simons action:

ZCS(M3; k) =
∫
ASU(2)(M3)

DA exp [2πi(k− 2)CS(A)],

where we set
q = eh̄ = e2πi/k,

and A ∈ Ω1(M3, su2) is a connection 1-form of a SU(2) principal bundle on M3.
Also, CS(A) is a Chern-Simons action given by

CS(A) = 1
8π2

∫
M3

Tr
(
AdA+

2
3
A3
)
∈ C mod Z.



10 Chapter 2. Preliminaries

The functional integral is performed over ASU(2)(M3), the space of all
connections modulo gauge transformation

A → gAg−1 + gdg−1, g : M3 → SU(2).

Then we get

ZCS(S2 × S1; k) = 1, ZCS(S3; k) =
q1/2 − q−1/2

i
√

2k
.

In the math literature, the other choice of normalization

τk(M3) =
i
√

2k
q1/2 − q−1/2 ZCS

is used such that
τk(S3) = 1

and the invariant behaves nicely under connected sum operation as follows:

τk(M3♯N3) = τk(M3)τk(N3).

2.1.4 The q-series

The q-series has been firstly proposed in [15] aimed to categorify the WRT
invariant. It has the integrality property and it is ordinary power series in q.
For rational homology spheres, its relation to WRT invariants is conjectured as
follows [15, 13].

Conjecture 2.3. Let M be a closed 3-manifold and Spinc(M) be the set of Spinc

structures of M, with the action of Z2 by conjugation. Set

T := Spinc(M)/Z2.

Then, for every a ∈ T, there exists

∆a ∈ Q, c ∈ Z+, Ẑa(q) ∈ 2−cq∆aZ[[q]],

with Ẑa(q) converging in the unit disk |q| < 1 such that, for infinitely many k, the radial
limits limq→e2πi/k Ẑa(q) exist and can be used to recover the Chern-Simons path integral



2.1. Plumbed 3-manifolds and q-series 11

in the following way:

ZCS(M; k) = (i
√

2k)−1 ∑
a,b∈T

e2πik·lk(a,a)|Wb|−1SabẐb(q)|q→e2πi/k .

Here the coefficients Sab are given by

Sab =
e2πi·lk(a,b) + e−2πi·lk(a,b)

|Wa| ·
√
|H1(M; Z)|

,

where the group Wx = StabZ2(x) is Z2 if x = x̄ and is 1 otherwise. The linking numbers
lk(a, b) are the usual linking numbers on H1(M; Z) and a non-canonical isomorphism
Spinc(M) ∼= H1(M; Z) is used.

The simplest version of Conjecture 2.3 happens when M is an integral
homology 3-sphere. Then we have T = 0, S00 = 1, and the conjecture predicts
the existence of a single series Ẑ0(q) that converges to

2(q1/2 − q−1/2)τk(M) = 2i
√

2k · ZCS(M; k)

as q→ e2πi/k.
The q-series was originally defined for plumbed 3-manifolds coming from

negative definite plumbing graphs. For a later convenience, we recall the formula
of the q-series Ẑa(q) for weakly negative definite plumbed 3-manifolds following
[13] and [15].

Let Γ be a plumbing graph satisfying the weakly negative definite condition,
that is, the linking matrix M = M(Γ) is invertible and M−1 is negative
definite on the subspace of Zs spanned by the high-valency vertices. Using
identifications (2.2), fix a representative a⃗ ∈ 2Zs + δ⃗ of a class

a ∈
(
2Zs + δ⃗

)
/
(
2MZs).

Then the q-series Ẑa(q) is defined by

Ẑa(q) = (−1)πq
3σ−∑v mv

4 ·CT⃗z

{
D(⃗z) ·ΘM

a (⃗z)
}

, (2.3)

where

D(⃗z) = ∏
v∈V

(
zv −

1
zv

)2−deg(v)
(2.4)

and
ΘM

a (⃗z) = ∑
ℓ⃗∈2MZs+⃗a

q−
(⃗ℓ,M−1⃗ℓ)

4 ∏
v∈V

zℓv
v . (2.5)



12 Chapter 2. Preliminaries

In (2.3), CT⃗z is the operation of taking the constant terms of the formal power
series in zv. Also, for the factors in front of the operation CT⃗z, π = π(M) denotes
the number of positive eigenvalues of the linking matrix M and σ = σ(M) is the
signature of M, i.e., σ = 2π − s.

Note that all rational functions in (2.4) should be understood as the symmetric
expansion, that is, the average of the expansion as zv → 0 and zv → ∞. For
example, given a high-valency vertex w ∈ Vh with deg(w) = 2 + pw, we have

(
zw −

1
zw

)−pw

=
1
2

(
zw −

1
zw

)−pw
∣∣∣∣∣
|zw|<1

+
1
2

(
zw −

1
zw

)−pw
∣∣∣∣∣
|zw|>1

=
1
2

[(
−

∞

∑
i=0

z2i+1
w

)pw

+

(
∞

∑
i=0

z−(2i+1)
w

)pw]

=
1
2

∞

∑
rw=0

A(rw, pw)
[
(−1)pw z2rw+pw

w + z−2rw−pw)
w

]
, (2.6)

where A(r, p) is a binomial coefficient

A(r, p) =
(

r + p− 1
r

)
=

(r + 1)(r + 2) · · · (r + p− 1)
(p− 1)!

.

Remark. The weakly negative definite condition should be imposed to ensure that
Ẑa(q) is well-defined. In fact, together with this condition, (2.5) implies that the
exponents of q in Ẑa(q) has a lower bound, and that only finitely many terms can
contribute to the same exponent of q.

Remark. The condition that M is invertible means the corresponding plumbed
3-manifold is a rational homology sphere. We will mostly be interested in the
case where M is invertible. The q-series for plumbings satisfying det M = 0 was
dealt in [7, 6].

Remark. Recently, Conjecture 2.3 is proved for plumbed 3-manifolds in [33] under
the assumption of negative definite condition. However, the convergence of
Ẑa(q) for general 3-manifolds to the WRT invariants, as q approaches a root of
unity, has not yet proved rigorously in the literature.

2.2 Graph neural networks

Here we provide a brief review on some of GNNs for a later purpose. In general,
GNNs are deep machine learning-based models that operate on graphs. In the
literature of GNNs, graphs are a data structure which models a set of objects



2.2. Graph neural networks 13

(called nodes) and their relationships (called edges). Since graph data can be
easily found in our everyday life, for example, world wide web, social networks,
scientific citations, brain and protein networks, traffic networks and so on, GNNs
have recently become a very hot topic in the community of machine learning. One
of the motivations of GNNs roots in the long-standing history of neural networks
for graphs.

There are 3 main computational modules to build a typical GNN architecture:
propagation modules, sampling modules and pooling modules. The propagation
module is designed to capture the aggregated information of a specific node or
edge, or the entire graph by propagating the local information between nodes
connected by edges. Among various propagation modules, the convolution
operators and recurrent operators are commonly used modules. Sampling
modules are usually used to conduct propagation on large graphs and they are
often combined with the propagation module. When we need the representations
of high-level subgraphs or graphs, pooling modules are needed to extract
information from nodes. Since in this paper we will use only convolution
operators, which are one of the most frequently used propagation modules, we
focus on some of convolution operators. For a broad review on various modules,
we refer the reader to [48].

A general pipeline for designing a GNN model usually consists of 4 steps:

• Find graph structure.
In this step, we have to find out the graph structure for the specific
application. These are usually two scenarios: structural scenarios and
non-structural scenarios.

• Specify graph type and scale.
Here we have to investigate the graph type and scale. Graphs are
usually categorized as directed or undirected graphs, homogeneous or
heterogeneous graphs, and static or dinamic graphs. Note that those types
of graphs can be combined, for example, plumbing graphs are undirected,
homogeneous, and static graphs, and that there are also several other
graph types designed for different tasks. There is no universal criterion
to distinguish “small” and “large” graphs. The criterion often depends on
the computation devices and its performance.

• Design loss function.
The loss function is based on the task types and the training settings.
For GNNs, there are usually three types of tasks: node-level, edge-level
and graph-level tasks. For example, our task in Chapter 4 is graph-level



14 Chapter 2. Preliminaries

classification problem. We can also categorize graph learning tasks
into three different training settings: supervised, unsupervised and
reinforcement learning setting. In Section 4.1, we deal with the supervised
learning setting and in Section 4.2, we work in the reinforcement learning
setting. Once we determine the task type and training setting, we can
design a specific loss function for the task.

• Build model using computational modules.
Based on the above three steps, we can start building the model by
combining various computational modules to obtain better representations.

Let us now look at the convolution operators, which are the mostly used
operators for the GNN models. The convolution operators are motivated by
convolutional neural networks (CNN), which have achieved a notable progress
in various areas dealing with Euclidean structured data such as images, videos,
and texts. In general, the role of convolution operators can be described as

x(k)i = γ(k)

x(k−1)
i ,

⊕
j∈N (i)

ϕ(k)
(

x(k−1)
i , x(k−1)

j , ej,i

) ,

where x(k)i ∈ RF denotes node features of node i in the k-th layer and ej,i ∈ RD

denotes edge features of the edge connecting from node j to node i. We also
note that

⊕
over a neighborhood N (i) of node i is a differentiable, permutation

invariant function such as sum, mean and max, and γ and ϕ denote differentiable
functions such as Multi Layer Perceptrons (MLPs).

Convolutional operators are often categorized as spectral operators and
spatial operators. Spectral methods are theoretically based on graph signal
processing and define the convolution operator in the spectral domain by
using the graph Fourier transform, while spatial methods define convolution
operations with differently sized neighborhoods on the graph based on the graph
topology by maintaining the local invariance of CNNs.

Among various convolution operators existing in the literature, the following
will appear in the next sections.

• Graph Embedding Network (GEN) [28]
GEN is designed for deep graph similarity learning and embeds each graph
into a vector, called a graph embedding. More explicitly, it first computes
initial node embeddings x(1)i from the node features x(0)i through MLP

x(1)i = MLP
(

x(0)i

)
,



2.2. Graph neural networks 15

then it executes the single message propagation to compute node
embeddings x(2)i by the information in its local neighbourhood N (i) 2

x(2)i = MLP

x(1)i , ∑
j∈N (i)

MLP
(

x(1)i , x(1)j

) .

Once the node embeddings x(2)i are computed, an aggregator computes a
graph embedding by aggregating the set of node embeddings. In Section
4.1.1, we describe the details of the aggregator which we will apply not
only to GEN but also the other models GCN and GAT.

• Graph Convolutional Network (GCN)
GCN is introduced in [24] as a variant of convolutional neural networks for
graphs. It operates as the following formula:

zi = Θ⊺ ∑
j∈N (i)∪{i}

1√
d̂jd̂i

xj,

where zi is the output for the i-th node, Θ is a matrix of filter parameters,
and d̂i is the degree of i-th node.

• Graph Attention Network (GAT)
GAT is proposed in [42], which incorporates the attention mechanism into
the message propagation. The mechanism of GAT can be formulated as

x′i = αi,iΘxi + ∑
j∈N (i)

αi,jΘxj.

Here the attention coefficients α are given by

αi,j =
exp

(
LeakyReLU(a⊺[Θxi∥Θxj)]

)
∑k∈N (i)∪{i} exp (LeakyReLU(a⊺[Θxi∥Θxk)])

,

where the attention mechanism a is implemented by a single-layer
feedfoward neural network, and ∥ is the concatenation operator.

All the neural networks including GNNs are implemented based on PyTorch
[37] and PyTorch Geometric [11]. 3

2It is also possible to apply a finite number of propagation process iteratively, but we will only
consider single propagation here.

3Python code is available on Github.

https://github.com/songjin91/LearningPlumbings/tree/main




17

Chapter 3

Refined and generalized Ẑ-invariants

This chapter deals with a two-variable refinement Ẑa(q, t) of plumbed 3-manifold
invariants Ẑa(q), which were previously defined for weakly negative definite
plumbed 3-manifolds. We provide a number of explicit examples in which
we argue the recovering process to obtain Ẑa(q) from Ẑa(q, t) by taking a limit
t → 1. For plumbed 3-manifolds with two high-valency vertices, we analytically
compute the limit by using the explicit integer solutions of quadratic Diophantine
equations in two variables. Based on numerical computations of the recovered
Ẑa(q) for plumbings with two high-valency vertices, we propose a conjecture
that the recovered Ẑa(q), if exists, is an invariant for all tree plumbed 3-manifolds.
Finally, we provide a formula of the Ẑa(q, t) for the connected sum of plumbed
3-manifolds in terms of those for the components.

3.1 The (q, t)-series invariants

In this section we construct the formula of the (q, t)-series Ẑa(q, t) for a certain
class of plumbed 3-manifolds by introducing a regulator t into the q-series Ẑa(q),
previously defined only for weakly negative definite plumbings.

3.1.1 Definition

Let Γ be a reduced plumbing graph, that is, a tree plumbing that has at least
one high-valency vertex, but does not have any pseudo high-valency vertex. We
assume that its linking matrix M = M(Γ) is invertible. We keep our notations as
in Section 2.1.

Definition 3.1. The (q, t)-series Ẑa(q, t) for a reduced plumbing, equipped with
some Spinc structure a⃗ ∈ 2Zs + δ⃗, is defined by

Ẑa(q, t) = (−1)πq
3σ−∑v mv

4 ·CT⃗z

{
1
|S| ∑

ξ∈S
∏

w∈Vh

Dw (⃗z, t)|ξw
·ΘM

a (⃗z)

}
. (3.1)



18 Chapter 3. Refined and generalized Ẑ-invariants

Let us elaborate on the various elements of this formula.
For the factors in front of the CT⃗z operation, the π = π(M) and σ denote

the number of positive eigenvalues and the signature of the linking matrix M,
respectively. The theta function is the same as the one in (2.5) for the q-series,
and CT⃗z denotes the operation of taking the constant term of the Laurent series
in zv ∈ V.

The S is a set of vectors ξ ∈ {±1}Vh that satisfy the following property

ξw1ξw2 = (−1)π(Γw1,w2 )+1 for each pseudo bridge Γw1,w2 in Γ,

where ξw denotes the element in a vector ξ corresponding to the high-valency
vertex w ∈ Vh, and π(Γw1,w2) is the number of positive eigenvalues of the linking
matrix associated to Γw1,w2 . One can easily see that the set S for a given Γ is
well-defined as long as Γ is a tree. Moreover, the cardinality |S| of the set S is
equal to 2 to the power of the number of high-valency vertices minus the number
of pseudo bridges in Γ. A vector ξ ∈ S is called a chamber for Γ.

For a given chamber ξ, the discriminant function at this chamber is defined
by

Dw (⃗z, t)|ξw
:=

(−1)pw
∞

∑
rw=0

A(rw, pw)t2rw+pw z2rw+pw
w ∏

v∈Iw

Dφ(v)
v (zv, t) for ξw = +1,

∞

∑
rw=0

A(rw, pw)t2rw+pw z−2rw−pw
w ∏

v∈Iw

D−φ(v)
v (zv, t) for ξw = −1.

(3.2)

Here Iw, associated to each w ∈ Vh, is the set of valency one vertices that are
end-points of all branches starting from w. And the discriminant Dφ(v)

v of the
valency one vertex v ∈ Iw depends on φ(v) by

Dφ(v)
v :=


zvt− 1/zvt for φ(v) = +1,

zv/t− t/zv for φ(v) = −1,

zv − 1/zv for φ(v) = 0.

The function φ(v) returns a sign, determined by the branch Γwv, as follows: if the
branch Γwv from w to v is not a pseudo-branch, then φ(v) = 0. If the branch Γwv

is a pseudo-branch, by definition, the weights of the vertices laid on the branch



3.1. The (q,t)-series invariants 19

should satisfy

m′w = mw −
1

u1 −
1

u2 −
1

. . . −
1

mv

,

for some finite integer m′w. Then we define

φ(v) = (−1)π(Γwv)−π(Γm′w
),

where Γm′w is the graph that consists of the single vertex weighted by m′w. Recall
that the notation π(Γwv) denotes the number of positive eigenvalues of the
linking matrix corresponding to Γwv, so it is immediate to see (−1)π(Γm′w

)
=

sgn(m′w).
For completeness, we define Ẑa(q, t) = Ẑa(q) if there is no high-valency vertex

in Γ. The (q, t)-series is well-defined even when Γ does not satisfy the weakly
negative (or positive) definite because there are only finitely many contributions
to any monomial tnt qnq .

Remark. Comparing (3.2) with (2.6), one can see that the new variable t is
introduced as the regulator that appears in the standard ζ-regularization process.
Moreover, if Γ is weakly negative definite, then we can recover Ẑa(q) from Ẑa(q, t)
by taking t = 1.

Remark. In [13], two-variable series FK(x, q) for plumbed knot complements is
introduced as the analogue of the invariants Ẑa(q). It is also possible to construct
the t-deformation of FK as the analogue of Ẑa(q, t) for knot complements in the
same way. We note that another version of t-deformation and a-deformation has
been discussed in [10].

Remark. Another two-variable series ˆ̂Za(q; t) is introduced in [1] based on the
lattice cohomology. This two-variable series is also considered as the refinement
of the q-series, but it is only defined for negative definite plumbings. Even for
negative definite plumbings, any direct relation between the two-variable series
and our (q, t)-series has not been found.

3.1.2 Invariance

For the (q, t)-series Ẑa(q, t) to be an invariant of the plumbed 3-manifold Y
equipped with the Spinc structure a, it should be independent on the presentation



20 Chapter 3. Refined and generalized Ẑ-invariants

of Y as a plumbing, that is, it has to be unchanged under the Neumann moves in
Figure 2.2.

Proposition 3.2. If two reduced plumbings represent a same 3-manifold, then there
exists a sequence of Neumann moves such that none of those Neumann moves creates
any pseudo high-valency vertices.

Proof. Since two reduced plumbings Γ and Γ′ realize the same 3-manifold, there
exists a sequence of plumbings G = {Γ0 = Γ, Γ1, Γ2, . . . , Γn−1, Γn = Γ′} such
that any adjacent two plumbings Γi−1 and Γi are related by a Neumann move
depicted in Figure 2.2 for i = 1, . . . , n. It is important to note that in this proof we
consider a Neumann move as an action applied to a certain vertex on a branch or
on a bridge, instead of regarding it as a transformation from a plumbing graph to
another.

As a first step, we pick up a subsequence of Neumann moves such that the
first move in the subsequence creates a pseudo branch or a pseudo bridge, the
last move deletes the pseudo branch or bridge, and all the moves in between
are actions on the branch or bridge. It is clear that the subsequence is redundant
since the relevant continued fraction should be preserved, therefore, we are going
to remove all such subsequences. Notice that another subsequence with this
property can be appeared after removing a subsequence, so we keep removing
subsequences until they will not appear anymore. We also note that the
remaining sequences of Neumann moves are still well-defined since all the moves
in this subsequence are limited on a redundant branch or bridge.

If the relevant plumbings are all reduced after removing subsequences, then
the proof is done. Therefore, without loss of generality, let us assume that there
exists at least one non-reduced plumbing in the sequence G. For simplicity,
suppose that all non-reduced plumbings in the sequence G contain only one
pseudo high-valency vertex, because the cases with more than one pseudo
high-valency vertex can be extended in a similar way. Among non-reduced
plumbings, choose the non-reduced plumbings Γj and Γk with the smallest index
j and the largest one k. This means that Γj−1 and Γk+1 are reduced plumbings.
Furthermore, since we have removed all redundant subsequences of Neumann
moves, there are only two possible ways to create the pseudo-high valency vertex
in Γj. The first is that the pseudo high-valency vertex in Γj is created by adding
a pseudo branch to a valency two vertex on a pseudo bridge in Γj−1. The other
is that a high-valency vertex with degree more than 3 in Γj−1 is split into two
high-valency vertex connected by a pseudo bridge, one of which is the pseudo
high-valency vertex.



3.1. The (q,t)-series invariants 21

51

3

2

2

3

2

5

1

1

5

1

1

0

2

3

2

5

1

1

0

2

3

1 3
1

1

5

2

3

(A) (B) (C)

(D) (E)

FIGURE 3.1: A sequence of plumbings in which the first and last
plumbings are reduced, but there are two non-reduced plumbings

in between.

Since two cases are related to a pseudo bridge, the key is to collapse the
pseudo bridge by using Neumann moves. More explicitly, we insert a plumbing
Γ′j−1 between Γj−1 and Γj where Γ′j−1 is obtained by collapsing the pseudo bridge
on which the pseudo high-valency vertex is laid in Γj. Then we get Γ′i from Γi

for i = j, j + 1, . . . , k by collapsing the relevant pseudo bridge. We also insert a
plumbing Γ′k+1 between Γ′k and Γk+1 by rebuilding a pseudo bridge as same as
the one in Γk+1 if it exists in Γk+1.

Then the sequence {Γ0, . . . , Γj−1, Γ′j−1, Γ′j, . . . , Γ′k, Γ′k+1, Γk+1, . . . , Γn} satisfies
the statement of the proposition. Notice that Γ′j−1 and Γ′k+1 might not appear
in the sequence case by case.

An example of Proposition 3.2 is depicted in Figure 3.1 and Figure 3.2. The
plumbings (A), (B), and (E) shown in Figure 3.1 are reduced, while the plumbings
(C) and (D) are clearly not reduced. From this sequence, one can construct
the sequence of reduced plumbings depicted in Figure 3.2 by using method
mentioned in the proof of Proposition 3.2.

Theorem 3.3. The series Ẑa(q, t) defined in (3.1) is an invariant for the reduced plumbed
3-manifolds.

Proof. Since Ẑa(q, t) is equal to Ẑa(q) for the plumbings without high-valency
vertices by definition, we can assume that Vh(Γ) is not an empty set. We use a
prime to distinguish the quantities associated to the top graphs in Figure 2.2. For



22 Chapter 3. Refined and generalized Ẑ-invariants

51

3

2

3
1

1

5

2

3

2

3

2

5

1

(A) (B) (C)

FIGURE 3.2: A sequence of reduced plumbings obtained from the
sequence shown in Figure 3.1 by Proposition 3.2.

example, M is the linking matrix for the bottom graph Γ, and M′ denotes the one
for the top graph Γ′. According to the result of Proposition 3.2, it is enough to
consider Neumann moves that does not create a pseudo high-valency vertex. Let
us consider by each type of Neumann moves depicted in Figure 2.2.

Before we dive into the main consideration on each type of Neumann moves,
we recall the defining formulae of Ẑa(q, t) for a convenience. We defined the
(q, t)-series in Section 3.1.1 by

Ẑa(q, t) = (−1)πq
3σ−∑v mv

4 ·CT⃗z

{
1
|S| ∑

ξ∈S
∏

w∈Vh

Dw (⃗z, t)|ξw
·ΘM

a (⃗z)

}
,

with the following discriminant function

Dw (⃗z, t) |ξw

:=


(−1)pw

∞

∑
rw=0

A(rw, pw)t2rw+pw z2rw+pw
w ∏

v∈Iw

Dφ(v)
v (zv, t) for ξw = +1,

∞

∑
rw=0

A(rw, pw)t2rw+pw z−2rw−pw
w ∏

v∈Iw

D−φ(v)
v (zv, t) for ξw = −1.

For Neumann moves of type (b)
Consider first the move (b) in Figure 2.2, with the signs on top being −1. By
linear algebra, it is immediate to see that we have σ′ = σ− 1, π′ = π, hence the
quantity 3σ−∑v mv does not change. Furthermore, the factors in front of the CT⃗z

operation in (3.1) does not change either.
For the bottom graph Γ, let us write a vector ℓ⃗ ∈ Zs as a concatenation

ℓ⃗ =
(⃗
ℓ1, ℓ⃗2

)
,



3.1. The (q,t)-series invariants 23

such that ℓ⃗1 describes the left part of the graph including the vertex m1 and ℓ⃗2

describes the right part. Then we can construct a vector ℓ⃗′ for the top graph Γ′ by

ℓ⃗′ =
(⃗
ℓ1, 0, ℓ⃗2

)
∈ Zs+1,

that satisfies (⃗
ℓ, M−1⃗ℓ

)
=
(⃗
ℓ′, (M′)−1⃗ℓ′

)
. (3.3)

Moreover, it is shown in [13] that ℓ⃗′ has the property ℓ⃗′ ∈ 2M′Zs+1 + a⃗′ whenever
ℓ⃗ ∈ 2MZs + a⃗, where a⃗′ is a representative of the Spinc structure a′ for Y(Γ′) that
is the counterpart of a through the isomorphism Y(Γ) ∼= Y(Γ′).

Taking these into account, when the move happens inside a branch Γwv from
a high-valency vertex w ∈ Vh to a valency one vertex v ∈ Iw, observe that there
is no change for φ(v) whether the branch is pseudo or not. This implies that the
discriminant function does not change, hence we obtain the same result.

For the case when the move happens inside a bridge between two
high-valency vertices, two discriminants for Γ′ and Γ have the same structure,
therefore they yield the same Ẑa(q, t).

Let us now consider the case of the move (b) with the sign +1 for the top
graph in a similar way. As before, the quantity 3σ − ∑v mv is still unchanged,
but we have π′ = π + 1, so (−1)π switches the sign. Given ℓ⃗ =

(⃗
ℓ1, ℓ⃗2

)
for the

bottom graph, a vector for the top graph

ℓ⃗′ =
(⃗
ℓ1, 0, −⃗ℓ2

)
satisfies (3.3) [13].

For the move on a bridge that is not pseudo, the discriminant does not change,
but due to the change of sign in ℓ⃗2, the theta function changes as if we do the
substitutions zv → z−1

v for all the vertices v corresponding to ℓ⃗2. From this, we
obtain extra −1 sign, that cancels out the disagreement of signs by (−1)π. Note
that the powers of t remain the same by the substitutions zv → z−1

v . If the move
happens on a pseudo-bridge, the proof is similar, but the only difference is that
due to the minus sign in −⃗ℓ2 for ℓ⃗′ the choice of the chamber for the top graph
should be opposite than that for the bottom, because the move increases by 1 the
number of the positive eigenvalues of the linking matrix associated to the bridge.

If the move appears on a non-pseudo branch Γwv, then the mechanism is same
as one for the move on a bridge, so we get the same result. However, if the move
appears on a pseudo-branch Γwv, then we need to care about the change of φ(v)
for the discriminant function because the move (b) with the sign +1 increases



24 Chapter 3. Refined and generalized Ẑ-invariants

the number π(Γwv) of positive eigenvalues of the linking matrix associated to
the branch by 1. In this case, v is the only vertex corresponding to ℓ⃗2, hence the
change of the sign for ℓv produces the extra sign, but it gives the same powers of t
because of the change of φ(v). Also, the extra sign remedies the change of (−1)π.
For Neumann moves of type (c)
Next, we consider the move (c) when the sign for the blow-up vertex is −1. We
have π′ = π, σ′ = σ− 1, and the quantity 3σ−∑v mv for the top graph is 1 lower
than that for the bottom one. This yields an extra factor q−1/4 for the top graph.

For the bottom graph Γ, we write vectors as

ℓ⃗ =
(⃗
ℓ2, ℓ1

)
,

where ℓ1 denotes the vertex with weight m1. Then we define corresponding
vectors for the top graph Γ′

ℓ⃗′± =
(⃗
ℓ2, ℓ1 ± 1,∓1

)
.

By simple linear algebra, one can observe that

(⃗
ℓ, M−1⃗ℓ

)
=
(⃗
ℓ′±, (M′)−1ℓ⃗′±

)
+ 1. (3.4)

The extra factor +1 in (3.4) gives rise to q1/4 for the top graph that cancels with
q−1/4 coming from the factor in front of the operation CT⃗z.

Let us consider the case where the vertex w decorated with m1 is a
high-valency vertex in the bottom graph. We assume that the high-valency vertex
does not have a pseudo bridge. One can follow the similar argument for the case
when it has a pseudo bridge.

The corresponding part of the discriminant function for Γ is given by

1
2

∞

∑
r=0

A(r, p)t2r+p[(−1)pz2r+p
1 D+ + z−2r−p

1 D−
]
,

where D± are the contributions from vertices in Iw corresponding to ℓ⃗2, and p is
determined by deg(w) = 2 + p. From the role of the operation CT⃗z in (3.1), it
follows that ℓ1 has values in the form of ℓ1 = ±(2r + p) for non-negative integers
r. Without loss of generality, suppose that ℓ1 = 2r + p. Then the vectors ℓ⃗ =(⃗
ℓ2, 2r + p

)
pick up monomials in t given by

1
2

A(r, p)t2r+p.



3.1. The (q,t)-series invariants 25

For the top graph, the discriminant function has the following portion

1
2 ∑

s=0
A(s, p + 1)t2s+p+1

×
[
(−1)p+1z2s+p+1

1

(
z0t− 1

z0t

)
D+ + z−2s−p−1

1

(
z0

t
− t

z0

)
D−
]

,

where z0 is the variable for the newly introduced blow-up vertex in Γ′.
Corresponding to ℓ⃗ =

(⃗
ℓ2, 2r + p

)
, we have vectors of the form

ℓ⃗′± =
(⃗
ℓ2, 2r + p± 1,∓1

)
.

Therefore, the monomials chosen by those vectors are

−1
2

A(r− 1, p + 1)t2r+p−1 · t + 1
2

A(r, p + 1)t2r+p+1 · 1
t
=

1
2

A(r, p)t2r+p.

This means that we get the same answer for Ẑa(q, t).
For the case when the move applies to a valency one vertex v1 ∈ Iw for some

w ∈ Vh, it is essential to check that the discriminant for Γ′ can be obtained from
the one for Γ by the substitution z1 → z0 since we have φ(v1) = φ(v0). Then,
vectors for Γ are described by

ℓ⃗ =
(⃗
ℓ2,±1

)
and the corresponding vectors for Γ′ are given by

ℓ⃗′ =
(⃗
ℓ2, 0,±1

)
.

Since we have the same part of discriminant function corresponding to the
high-valency vertex for top and bottom plumbings, the proof can be done in the
same way as in [13, Proposition 4.6].

Move (c) with the sign +1 is similar, but we use the vectors of the form

ℓ⃗′ =
(⃗
ℓ2, ℓ1 ± 1,±1

)
.

For Neumann moves of type (a)
At last, let us move on to the move (a). Here we have π′ = π + 1 that yields an
extra sign, and the factor 3σ−∑v mv is unchanged. For the top graph Γ′, we write
vectors as

ℓ⃗′ =
(⃗
ℓ1, ℓ1, 0, ℓ2, ℓ⃗2

)
,

where ℓ⃗1 is corresponding to the left side of the graph (not including v1) and ℓ⃗2 is



26 Chapter 3. Refined and generalized Ẑ-invariants

corresponding to the right side of the graph (not including v2). From ℓ⃗′ we define
a vector for the bottom graph Γ as

ℓ⃗ =
(⃗
ℓ1, ℓ1 − ℓ2, −⃗ℓ2

)
,

that satisfies the following equality

(⃗
ℓ, M−1⃗ℓ

)
=
(⃗
ℓ′, (M′)−1⃗ℓ′

)
.

Let v1, v0, v2 be the vertices shown in the top graph and vb the vertex shown in
the bottom one. There are four different cases depending on where those vertices
are placed in the graph as follows:

(i) Three vertices v1, v0, v2 form a segment of a non-pseudo bridge. In this case,
it is obvious that v0 should be a valency two vertex. Then both of v1 and
v2 cannot be high-valency vertices because they are laid on a non-pseudo
bridge. Either of v1 and v2 can be a valency one vertex.

(ii) Three vertices form a pseudo bridge. Thus, v1 and v2 are high-valency
vertices at the boundary of the pseudo bridge and v0 is a valency two vertex.

(iii) Three vertices form a pseudo branch. In this case, v1 is a high-valency vertex
and v2 is a valency one vertex. As always, v0 is a valency two vertex.

(iv) Three vertices form a part of a bridge. In this case, v1 can be either a
high-valency vertex or a valency two vertex. Then v2 is a valency two vertex
if v1 is a high-valency vertex, or valency one vertex if v1 is a valency two
vertex.

Let us deal with all possible cases one by one. First, we consider the case when
v1, v0, v2 are laid on a non-pseudo bridge, but at least one of v1 and v2 is not a
high-valency vertex. Then the discriminant functions for Γ and Γ′ have the same
structure, and the minus sign in front of ℓ⃗2 in ℓ⃗′ =

(⃗
ℓ1, ℓ1, 0, ℓ2, −⃗ℓ2

)
produces the

opposite sign for monomials in t to the sign from ℓ⃗ =
(⃗
ℓ1, ℓ1 − ℓ2, ℓ⃗2

)
. This sign

difference is recovered by the extra sign from (−1)π. Thus we get the same result
for Ẑa(q, t).

If the vertices v1, v0, v2 are laid on a pseudo bridge, we should put into our
consideration the change of choice of chambers for the top graph since the move
creates a positive eigenvalue of the linking matrix.

The second case is when v1, v0, v2 form a bridge between v1 and v2, that is, v1

and v2 are both high-valency vertices, and v0 is a valency two vertex. This case



3.1. The (q,t)-series invariants 27

is just the one depicted in Figure 2.2 (A). For the bottom graph Γ, we can assume
that the vertex vb does not have a pseudo bridge, then the corresponding portion
of the discriminant function is given by

1
2

∞

∑
r=0

A(r, p)t2r+p[(−1)pz2r+p
b D+

1 D
+
2 + z−2r−p

b D−1 D
−
2
]
,

where D1 and D2 denote the discriminant functions of valency one vertices in Ivb

corresponding to ℓ⃗1 and ℓ⃗2, respectively. Then the vectors of the form

ℓ⃗ =
(⃗
ℓ1, 2r + p, ℓ⃗2

)
choose the following monomials by the role of the operator CT⃗z

1
2

A(r, p)t2r+p.

For the top graph, since the elements ξv1 and ξv2 of a chamber ξ should be
opposite, we have

1
2

[
∞

∑
r1=0

(−1)p1 A(r1, p1)t2r1+p1z2r1+p1
1 D+

1

∞

∑
r2=0

A(r2, p2)t2r2+p2z−2r2−p2
2 D−2

+
∞

∑
r1=0

A(r1, p1)t2r1+p1z−2r1−p1
1 D−1

∞

∑
r2=0

(−1)p2 A(r2, p2)t2r2+p2(−1)p2z2r2+p2
2 D+

2

]
,

where p1 = deg(v1)− 2 and p2 = deg(v2)− 2 such that p = p1 + p2. Associated
to ℓ⃗ =

(⃗
ℓ1, 2r + p, ℓ⃗2

)
, we have the following vectors

ℓ⃗′ =
(⃗
ℓ1, 2r1 + p1, 0,−2r2 − p2, −⃗ℓ2

)
.

Here the sum of r1 and r2 should be equal to r. From such vectors, we obtain

−1
2 ∑

r1+r2=r
A(r1, p1)A(r2, p2)t2r1+2r2+p1+p2 = −1

2
A(r, p)t2r+p,

where we have used A(r, p) = ∑r1+r2=r A(r1, p1)A(r2, p2).
Thirdly, let us consider when v1, v0, v2 are vertices on a branch from v1 to

v2 through v0. Then, the discriminant function for the bottom graph Γ has the
following part

1
2

∞

∑
r=0

A(r, p)t2r+p[(−1)pz2r+p
b D+ + z−2r−p

b D−
]
.



28 Chapter 3. Refined and generalized Ẑ-invariants

The vectors ℓ⃗ =
(⃗
ℓ1, ℓb

)
=
(⃗
ℓ1, 2r + p

)
pick up the factors of the form

1
2

A(r, p)t2r+p.

On the other hand, for the top graph Γ′ we have

1
2

∞

∑
s=0

A(s, p + 1)t2s+p+1

×
[
(−1)p+1z2s+p+1

1

(
z2

t
− t

z2

)
D+ + z−2s−p−1

1

(
z2t− 1

z2t

)
D−
]

,

where we have used φ(v2) = −1 since the branch Γ′v1v2
is a pseudo-branch and

the move increases the number of positive eigenvalues by 1. Corresponding to
ℓ⃗ =

(⃗
ℓ1, 2r + p

)
, we have two vectors ℓ⃗′ =

(⃗
ℓ1, 2r + p + 1, 1

)
and ℓ⃗′ =

(⃗
ℓ1, 2r +

p− 1,−1
)
, which produce the following factors:

1
2

A(r, p + 1)t2r+p+1 · 1
t
+

1
2

A(r− 1, p + 1)t2r+p−1 · t = −1
2

A(r, p)t2r+p.

The minus sign in the right side of the above equation cancel with the extra sign
from (−1)π. Therefore, we obtain the same result.

At last, if v1, v0, v2 are a part of a branch, then the degree of the relevant
high-valency vertex remains the same by the move and this implies the same
structure of the discriminant function for bottom and top plumbings. Therefore
the proof gets much easier by the similar way to the corresponding case in [13,
Proposition 4.6].

Now we present a simple example of the (q, t)-series for a 3-manifold realized
by the plumbing shown in Figure 3.3. It is known as Poincaré homology sphere.
It is also an example of a Brieskorn 3-sphere, denoted by Σ(2, 3, 5). The overline
denotes the reverse of the orientation compared to the standard one.

The linking matrix for the plumbing is given by

M =


1 1 1 1
1 2 0 0
1 0 3 0
1 0 0 5

 ,

and we have
π = 3,

3σ−∑v mv

4
= −5

4
.



3.2. Recovering the q-series 29

5

3

2

1

FIGURE 3.3: A plumbing graph that realizes Poincaré homology
sphere Σ(2, 3, 5).

As H1
(
Σ(2, 3, 5), Z

) ∼= 0, there is a unique value a = 0 to consider. The
formula (3.1) for the manifold reads as

Ẑ0(q, t) = −1
2

q−
5
4 CT⃗z

{
∞

∑
r=0

t2r+1
(

z−2r−1
1 − z2r+1

1

)

×
(

z2 −
1
z2

)(
z3 −

1
z3

)(
z4 −

1
z4

)
× ∑

ℓ⃗∈2MZ4+δ⃗

q−
(⃗ℓ,M−1⃗ℓ)

4

4

∏
v=1

zℓv
v

 .

Due to the operation CT⃗z, the values of ℓv should be

ℓ1 = ±(2r + 1), and ℓv = ±1 for v = 2, 3, 4.

Observe that such vectors ℓ⃗ also satisfy the condition ℓ⃗ ∈ 2MZ4 + δ⃗. Then, we
obtain the (q, t)-series for Σ(2, 3, 5) as

Ẑ0(q, t) = tq−
3
2
(
1− q− q3 − q7 + tq8 + q14

+ q20 + t2q29 − q31 − t2q42 − t2q57 + · · ·
)
.

(3.5)

Since the plumbing graph in Figure 3.3 has the weakly negative definite
property, Ẑ0(q, t) has a lower bound on the exponents of q, and Ẑ0(q, t = 1)
recovers the q-series for Σ(2, 3, 5).

3.2 Recovering the q-series

Let Γ be a reduced plumbing graph that realizes a 3-manifold Y = Y(Γ). By
applying the formula (3.1), we have the invariants Ẑa(q, t) for Y, which can be



30 Chapter 3. Refined and generalized Ẑ-invariants

expressed by

Ẑa(q, t) =
1
|S|q

∆a ∑
ξ∈S

∑
n∈Z

Cξ,n(t)qn,

where ∆a ∈ Q, S is the set of all possible chambers for Γ, and Cξ,n(t) ∈ Z[[t]] is
in general the formal power series in t as the coefficient of qn inside a chamber
ξ ∈ S .

As we have seen in the example of Section 3.1, Cξ,n(t) turns out to be a
finite polynomial in t if Γ has the weakly negative (or positive) definite property.
Furthermore, by simply setting t = 1, we can recover the q-series from the
(q, t)-series. Being inspired by this, it would be nice if we can recover the q-series
by taking a limit t → 1−. However, without weakly definite property, Cξ,n(t)
is in general infinite series and limt→1− Cξ,n(t) might be ill-defined. This means
that it would be not easy to recover the q-series for such plumbings. By abuse
of notation, we will denote the limit from below t → 1− by t → 1. We notice
that Cξ,n(t) is convergent for |t| < 1 due to the boundedness of its coefficient
polynomial.

Fortunately, there are some examples of plumbings, for which it is possible to
recover the q-series by computing the limit t → 1. Since the (q, t)-series Ẑa(q, t)
for reduced plumbings are invariant under Neumann moves, its recovered
version, ẐR

a (q) = limt→1 Ẑa(q, t) , are also invariant, therefore indeed define a
topological invariant of plumbed 3-manifolds.

Remark. The recovered q-series ẐR
a (q) is exactly same as previously defined

q-series Ẑa(q) when plumbings are weakly negative definite. However, there
are some examples where the recovered q-series are not equal to previously
defined q-series Ẑa(q), for example, weakly positive definite plumbings [5, 13].
Furthermore, when plumbings have strongly indefinite property, q-series Ẑa(q)
for them have not been defined, while ẐR

a (q) still exists in certain cases.

Example 3.4. The first example we consider is to compute the (q, t)-series for two
reduced plumbings, shown in Figure 3.4, that are equivalent by a Neumann move
of type (a) in Figure 2.2. The interesting point here is that the plumbing depicted
Figure 3.4 (a) has the weakly negative definite property but another plumbing in
Figure 3.4 (b) which is obtained by applying one Neumann move to the plumbing
(a) does not have the weakly negative definite property. This means the plumbing
(a) has the q-series by applying the formula (2.3) while the plumbing (b) does not
have it. We are going to overcome such drawback by the recovering process.

By the formula (2.3), the q-series for the plumbing (a) is given by

Ẑ0(q) = q
417

2
(
1− q29 − q211 + q252 − q393 + q442 − q667 + q726 + · · ·

)
, (3.6)



3.2. Recovering the q-series 31

1

−31

25

3

0−2 3

5 2

3 −31

(𝑎) (𝑏)

FIGURE 3.4: A Neumann move from a plumbing (a) to (b) does not
preserve the weakly negative definite property.

where we notice that the determinant of the linking matrix for the plumbing is 1
and it has the unique q-series.

The formula (3.1) for the plumbing (a) reads as

Ẑ0(q, t) = −1
2

q
23
4 CT⃗z

{
∞

∑
r=0

(r + 1)t2r+2(z2r+2
1 + z−2r−2

1
)

×
(

z2 −
1
z2

)(
z3 −

1
z3

)(
z4 −

1
z4

)(
z5 −

1
z5

)
× ∑

ℓ⃗∈2MZ5+δ⃗

q−
(⃗ℓ,M−1⃗ℓ)

4

5

∏
v=1

zℓv
v

}
,

which gives us the following result

Ẑ0(q, t) = q
417
2 t2(1− q29 − q211 + q252 − q393 + q442 − q667 + q726 + · · ·

)
. (3.7)

It is clear that the limit t→ 1 of (3.7) is the same as q-series in (3.6).
Moreover, one can also check that (q, t)-series for the plumbing (b) is equal to

(3.7), which is obvious by Theorem 3.3. We note that q-series for the plumbing
(b) does not exist because of non-weakly negative definite property, but we can
associate the recovered q-series to it.

Example 3.5. Let us consider a plumbing depicted in Figure 3.5. This is not a
reduced plumbing since it has a bad branch. As we will see in Section 3.3 by
using Neumann move of type (d), this plumbing represents a 3-manifold which
is diffeomorphic to the disjoint union of two 3-manifolds. In order to compute



32 Chapter 3. Refined and generalized Ẑ-invariants

−3 1

−2 2

−2 0

FIGURE 3.5: A plumbing graph that does not satisfy the weakly
definite property.

the (q, t)-series, the first step is as usual to get the linking matrix

M =



−3 1 1 1 0 0
1 1 0 0 1 1
1 0 −2 0 0 0
1 0 0 −2 0 0
0 1 0 0 0 0
0 1 0 0 0 2


,

and its inverse

M−1 =
1
8



−4 0 −2 −2 4 0
0 0 0 0 8 0
−2 0 −5 −1 2 0
−2 0 −1 −5 2 0
4 8 2 2 −8 −4
0 0 0 0 −4 4


.

Then, we have the following quantities

det M = 16, π = π(M) = 2,
3σ−∑v mv

4
= −1

2

and the set of chambers is given by

S = {(1, 1), (1,−1), (−1, 1), (−1,−1)},

because no pseudo bridge is contained in the plumbing. Notice that the
submatrix of M corresponding to the high-valency vertices

Mh =

(
−1/2 0

0 0

)

is obviously not negative or positive definite, which means that the q-series Ẑ(q)
is ill-defined.



3.2. Recovering the q-series 33

Among 16 Spinc structures, in this example for simplicity we consider only
one of them, that is coming from (0, 0, . . . , 0) ∈ Coker M by the following
identification

Spinc(Y) ∼= 2 Coker M + δ⃗.

Then the application of the formula (3.1) to the plumbing leads to the following
result:

Ẑ0(q, t) =
1
4

q
5
8
[
· · ·+

(
−t6 + t8 − t10 + t12 − t14 + · · ·

)
q−3

+
(
−t4 + t6 − t8 + t10 − t12 + · · ·

)
q−2

+
(
−t2 + t4 − t6 + t8 − t10 + · · ·

)
q−1

+
(
t2 − 2t4 + t6 − t8 + t10 + · · ·

)
q0 (3.8)

+
(
2t4 − 3t6 + t8 − t14 + t16 + · · ·

)
q

+
(
−t4 + 3t6 − 2t8 − t12 + t14 + · · ·

)
q2

+
(
t4 − t6 + 2t8 − 3t10 + t12 + · · ·

)
q3

+
(
t6 − 2t8 + 3t10 − 2t12 − t20 + · · ·

)
q4 + · · ·

]
.

Now let us compute limt→1 Ẑ0(q, t) to recover the q-series. To do this, we need
to find out the analytical property of the series Cξ,n(t), the coefficients of the term
qn in (3.8) from the contribution of the chamber ξ ∈ S . By the role of the action
CT⃗z in (3.1) it follows that the vectors ℓ⃗ = (ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6) should be of the
form

ℓ1 = ξ1(2r + 1), ℓ2 = ξ2(2s + 1), ℓi = ±1 for i = 3, 4, 5, 6,

where ξ1 and ξ2 are the coordinates of the chamber vector ξ = (ξ1, ξ2) ∈ {±1}2.
Therefore, Cξ,n(t) is given by

Cξ,n(t) =
∞

∑
r,s=0

∑
εi∈{±1}

ξ1ξ2ε3ε4ε5ε6 t2r+2s+2
∣∣∣
− 1

2−
(⃗ℓ,M−1⃗ℓ)

4 = 5
8+n

, (3.9)

where ℓ⃗ is the vector of the form

ℓ⃗ =
(
ξ1(2r + 1), ξ2(2s + 1), ε3, ε4, ε5, ε6

)
and the convention

∑
r,s

∑
εi

∣∣∣
Q(⃗ℓ)=0



34 Chapter 3. Refined and generalized Ẑ-invariants

denotes that the only r, s and εi satisfying the quadratic equation Q(⃗ℓ) = 0
contribute to the summations.

By swapping the order of sums in (3.9), we get

Cξ,n(t) = ∑
εi∈{±1}

ξ1ξ2ε3ε4ε5ε6

∞

∑
r,s=0

t2r+2s+2
∣∣∣
− 1

2−
(⃗ℓ,M−1⃗ℓ)

4 = 5
8+n

, (3.10)

which means that given a chamber ξ ∈ S and chosen εi’s, we have the sum of
monomials in t with powers of 2r + 2s+ 2 from all non-negative integer solutions
of the quadratic equation in two variables r and s

−1
2
−
(⃗
ℓ, M−1⃗ℓ

)
4

=
5
8
+ n,

moreover, the product ξ1ξ2ε3ε4ε5ε6 determines the sign of the sum over r and s.
Therefore, we naturally move on to the solutions of the quadratic Diophantine
equations (QDEs). In Appendix A, we briefly review the algorithm to solve the
QDEs in two variables for convenience.

In general, the quadratic form from a plumbing with two high-valency
vertices

3σ−∑v mv

4
−
(⃗
ℓ, M−1⃗ℓ

)
4

= ∆a + n

is a quadratic equation with rational coefficients, but multiplying it by 4 det M
we can obtain the one with integer coefficients. For a fixed chamber ξ ∈ S and
chosen εi’s, we denote the quadratic equation with integer coefficients by

Qξ ,⃗ε = 4 det M

(
3σ−∑v mv

4
−
(⃗
ℓ, M−1⃗ℓ

)
4

− ∆a − n

)
= 0.

By putting the solutions of quadratic equations into (3.10), we obtain the
explicit formula for Cξ,n(t), for example, n = 2 as follows:

Cξ++, 2(t) = −t2 + t4 + 2t6

+
∞

∑
k=1

(
t4k2+6k−4 + t4k2+10k + t4k2+6k−2 + t4k2+2k−4),

Cξ+−, 2(t) = −t4 − 3t6 − 2t8

+
∞

∑
k=1

(
−t4k2+14k+4 − t4k2+10k−2 − t4k2+6k−4 − t4k2+10k), (3.11)

where ξ++ = {+1,+1} and ξ+− = {+1,−1}. We notice that Cξ++,n(t) =

Cξ−−,n(t) and Cξ+−,n(t) = Cξ−+,n(t) due to the quadratic form. Therefore, it is



3.2. Recovering the q-series 35

enough to evaluate the limit of the form

lim
t→1

∞

∑
k=0

ta(k+b)2+c, for a > 0.

First, we change the variable by using t = e−ϵ, then we have

lim
t→1

∞

∑
k=0

ta(k+b)2+c = lim
ϵ→0+

∞

∑
k=0

e−ϵ(a(k+b)2+c).

We recall the Euler–Maclaurin formula

N f

∑
k=Ni

f (k) =
∫ N f

Ni

f (x)dx +
1
2
( f (N f ) + f (Ni))

+
j

∑
i=2

bi

i!
[

f (i−1)(N f )− f (i−1)(Ni)
]
−
∫ N f

Ni

Bj({1− x})
j!

f (j)(x)dx,

where Ni and N f are real numbers such that N f −Ni is a positive integer number,
Bj and bj denote Bernoulli polynomials and numbers, respectively, j is any
positive integer and {x} denotes the fractional part of a real number x. Applying
the Euler–Maclaurin formula, we have

∞

∑
k=0

e−ϵ(a(k+b)2+c) =
∫ ∞

0
e−ϵa(x+b)2−ϵcdx + 1 + O(ϵ) as ϵ→ 0,

then the evaluation of Gaussian integral returns

∞

∑
k=0

e−ϵ(a(k+b)2+c) = 1− b +
1
2

√
π

ϵa
+ O

(√
ϵ
)
, (3.12)

where we have used the error function’s Maclaurin series

erf(x) =
2√
π

∫ x

0
e−y2

dy =
2√
π

∞

∑
j=0

(−1)jx2j+1

j!(2j + 1)
.

By substituting (3.12) into (3.11), we obtain

Cξ++,2(ϵ) = 3 +
√

π

ϵ
+ O

(√
ϵ
)
, Cξ+−,2(ϵ) = −5−

√
π

ϵ
+ O

(√
ϵ
)
.

Even though the term
√

π
ϵ is singular at ϵ → 0, this singularity will disappear

when we take a sum over all possible chambers. Thus, we see that the coefficient
of q

21
8 in the recovered q-series is finite and equal to −5.



36 Chapter 3. Refined and generalized Ẑ-invariants

1 2

−10 5

3 2

FIGURE 3.6: A plumbing graph that has the strongly indefinite
property and whose linking matrix has determinant equal to 1.

By using a similar approach, we obtain the following recovered q-series

ẐR
0 (q) = lim

t→1
ẐR

0 (q, t) = q
5
8
(
· · ·+ q−3 + q−2 + q−1 − 1− q− q2 − q3 − q4 + · · ·

)
,

where the superscript denotes the recovered q-series.

In the previous example, we have seen that for some plumbings without
weakly definiteness the (q, t)-series can be recovered into the q-series by
computing the limit t→ 1. However, this does not hold for all strongly indefinite
plumbings. The next example shows a such case.

Example 3.6. We consider a reduced plumbing shown in Figure 3.6. We note that
just for simplicity we choose a plumbing whose linking matrix has determinant
1 such that there is a unique Spinc structure a = 0.

For this plumbing, the linking matrix and its inverse are given by

M =



1 1 1 1 0 0
1 2 0 0 1 1
1 0 3 0 0 0
1 0 0 −10 0 0
0 1 0 0 2 0
0 1 0 0 0 5


,

M−1 =



−390 300 130 −39 −150 −60
300 −230 −100 30 115 46
130 −100 −43 13 50 20
−39 30 13 −4 −15 −6
−150 115 50 −15 −57 −23
−60 46 20 −6 −23 −9


.

From the linking matrix, we obtain the following quantities

π = π(M) = 4,
3σ−∑v mv

4
=

3
4

.



3.2. Recovering the q-series 37

Since there is no pseudo bridge in the plumbing, the set S of all possible chambers
is given by

S = {(1, 1), (1,−1), (−1, 1), (−1,−1)}.

Therefore, the formula (3.1) reads

Ẑ0(q, t) =
1
4

q
3
4 CT⃗z

{
∞

∑
r=0

t2r+1(z2r+1
1 − z−2r−1

1
) ∞

∑
s=0

t2s+1(z2s+1
2 − z−2s−1

2
)

×
(

z3 −
1
z3

)(
z4 −

1
z4

)(
z5 −

1
z5

)(
z6 −

1
z6

)
(3.13)

× ∑
ℓ⃗∈2MZ6+δ⃗

q−
(⃗ℓ,M−1⃗ℓ)

4

6

∏
v=1

zℓv
v

 .

The application of the formula (3.13) gives the following result:

Ẑ0(q, t) =
1
2

q
1
2
[
· · ·+

(
2t30 + t46 − t108 + · · ·

)
q−4 +

(
t8 − t10 − t22 + · · ·

)
q−3

+
(
2t6 − t8 − t16 + · · ·

)
q−2 +

(
t8 + t12 + t28 + · · ·

)
q−1

+
(
2t2 − t12 − t564 + · · ·

)
+
(
−t2 + t16 + t36 + · · ·

)
q

+
(
−t6 − t18 − t34 + · · ·

)
q3 +

(
−t12 − t20 − t60 + · · ·

)
q4 + · · ·

]
.

We note that all the coefficients of qn in this result are infinite series in t because
of the strong indefiniteness of the linking matrix.

For a chosen chamber ξ = (ξ1, ξ2) ∈ {±1}2, we know that the vectors ℓ⃗ =

(ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6) should be of the form

ℓ1 = ξ1(2r + 1), ℓ2 = ξ2(2s + 1), ℓi = ±1 for i = 3, 4, 5, 6,

and Cξ,n(t) is given by

Cξ,n(t) = ∑
εi∈{±1}

ξ1ξ2ε3ε4ε5ε6

∞

∑
r,s=0

t2r+2s+2
∣∣∣

3
4−

(⃗ℓ,M−1⃗ℓ)
4 = 1

2+n
. (3.14)

According to the algorithm in Appendix A, the nonnegative integer solutions
of

Qξ ,⃗ε =
3
4
−
(⃗
ℓ, M−1⃗ℓ

)
4

− 1
2
− n = 0



38 Chapter 3. Refined and generalized Ẑ-invariants

are determined by a finite number of families of solutions, and each family
{(rk, sk)}k of solutions has the following form:

rk = αr Ak + βr A−k + ηr, sk = αs Ak + βs A−k + ηs,

where k ≥ k0 ∈ Z+. Here the real numbers αr, αs, βr, βs, ηr, ηs are constants
which do depend on the choice of the chamber ξ and the vector ε⃗. However, the
A does not depend on ξ and ε⃗. This is because all QDEs Qξ ,⃗ε = 0 from different
ξ and ε⃗ can be transformed into the same generalized Pell’s equation. From the
requirement for non-negative solutions, it follows that αr and αs are positive real
numbers and A > 1.

For each family of solutions, we obtain a series in t by (3.14) as following:

∑
k≥k0

t2(αr+αs)Ak+2(βr+βs)A−k+2(ηr+ηs).

In order to compute the limit t→ 1, we use the substitution t→ e−ϵ

∑
k≥k0

e−2ϵ[(αr+αs)Ak+(βr+βs)A−k+ηr+ηs].

By applying doubly exponential series transformations of Ramanujan [2], we
can estimate the above series as follows:

∑
k≥k0

e−2ϵ[(αr+αs)Ak+(βr+βs)A−k+ηr+ηs]

∼1
2
+

1
log A

[− log ϵ− γ− log 2− log(αr + αs)]

−k0 + O(ϵ) + 2
∞

∑
k=1

√√√√ log A

2k sinh 2kπ2

log A

(3.15)

× cos
(

2kπ

log A
log

kπ

ϵ(αr + αs) log A
− 2kπ

log A
− π

4
− B2 log A

4kπ
+ · · ·

)
,

where γ is the Euler’s constant γ = 0.57721 . . . and Bk denotes the kth Bernoulli
number defined by

z
ez − 1

=
∞

∑
k=0

Bk
k!

zk, |z| < 2π.

Now let us analyse the terms in the right side of (3.15). First, the second term
proportional to log ϵ has a singularity at ϵ→ 0, but this term will be cancelled out
by taking a sum of Cξ,n(t) over all choices of chambers ξ ∈ S , which allows us
to ignore this term. Next, the infinite series of oscillating terms has a singularity



3.2. Recovering the q-series 39

1 3

2 −1

3 −1

FIGURE 3.7: A non-reduced plumbing graph that realizes the
3-manifold Σ(2, 3, 5).

as well. Furthermore, this terms do not disappear by a sum of Cξ,n(t). Thus, we
conclude that due to such series of oscillating terms the limit t → 1 is ill-defined
and the recovered q-series does not exist.

Example 3.7. In this example, we consider a non-reduced plumbing shown in
Figure 3.7, which can be obtained by Neumann moves from the one in Figure
3.3. Hence, the 3-manifold realized by the plumbing graph in Figure 3.7 is
homeomorphic to the Brieskorn sphere Σ(2, 3, 5). One can easily check that the
high-valency vertex with weight 3, placed in the right side of the plumbing, is a
pseudo high-valency vertex because the branches are both pseudo.

We have already computed the (q, t)-series (3.5) in the last part of Section 3.1.
Now we are going to compute the (q, t)-series for the non-reduced plumbing in
Figure 3.7 and compare it with the result in (3.5).

The linking matrix of the plumbing is given by

M =



1 1 1 1 0 0
1 3 0 0 1 1
1 0 3 0 0 0
1 0 0 2 0 0
0 1 0 0 −1 0
0 1 0 0 0 −1


,

and its inverse is

M−1 =



−30 6 10 15 6 6
6 −1 −2 −3 −1 −1

10 −2 −3 −5 −2 −2
15 −3 −5 −7 −3 −3
6 −1 −2 −3 −2 −1
6 −1 −2 −3 −1 −2


.



40 Chapter 3. Refined and generalized Ẑ-invariants

The formula (3.1) reads

Ẑ0(q, t) =
1
4

q−
7
4 CT⃗z

{
∞

∑
r=0

t2r+1(z2r+1
1 − z−2r−1

1
) (

z3 −
1
z3

)(
z4 −

1
z4

)
×

∞

∑
s=0

t2s+1
[

z2s+1
2

(
z5t− 1

z5t

)(
z6t− 1

z6t

)
− z−2s−1

2

(
z5

t
− t

z5

)(
z6

t
− t

z6

)]

× ∑
ℓ⃗∈2MZ6+δ⃗

q−
(⃗ℓ,M−1⃗ℓ)

4

6

∏
v=1

zℓv
v

 ,

and its computation gives an interesting result as follows:

Ẑ0(q, t) =
1 + t2

2
× q−

3
2
(
1− q− q3 − q7 + tq8 + q14 + q20 + t2q29 − q31 − t2q42 + · · ·

)
.

Here one might be curious about the result that coefficients of monomials in q
are finite polynomials in t even though the plumbing is strongly indefinite. The
key to the answer is that there are cancellations between each pair of vectors
ℓ⃗1 = (. . . ,+1) and ℓ⃗2 = (. . . ,−1), where ±1 denotes the element of the vector ℓ⃗
associated to valency one vertex on any pseudo branch.

We notice that except an extra factor 1+t2

2t , this result completely agrees with
(3.5), furthermore the recovered q-series by taking t = 1 are the same.

Let us reiterate that Theorem 3.3 says that the (q, t)-series for a reduced
plumbing defined in (3.1) is unchanged by the Neumann moves, thus the
recovered q-series also remains unchanged if the limit t → 1 exists. The
Example 3.7 tells us that the (q, t)-series for a non-reduced plumbing is changed
by Neumann moves, but the recovered q-series might be still preserved. This
property indeed holds for non-reduced plumbings with at most two high-valency
vertices.

Proposition 3.8. Assume that the (q, t)-series for a given plumbing can be finitely
recovered q-series in a sense that the limit t → 1 is finite. Then the recovered q-series
is preserved by arbitrary Neumann moves even for non-reduced plumbings with at most
two high-valency vertices.

Proof. Since the (q, t)-series gets changed only when a Neumann move creates a
pseudo high-valency vertex, it is sufficient to show that the recovered q-series
remains unchanged for such a Neumann move. Therefore, we are going to



3.2. Recovering the q-series 41

𝑚0𝑚1 𝑚2
𝑚0 − 1

𝑚1

𝑚2

−1

≃

(𝑎) (𝑏)

FIGURE 3.8: A reduced plumbing (a) with one high-valency vertex
turns out to be a non-reduced plumbing (b) with two high-valency

vertices by a Neumann move.

consider a case shown in Figure 3.8, where the left plumbing (a) is a reduced
one with one high-valency vertex weighted by m1 and the right plumbing (b) has
an extra pseudo high-valency vertex created by a Neumann move of type (c) in
Figure 2.2. The cases for other types of Neumann moves creating a new pseudo
high-valency vertex can be handled in a similar way.

Let Γ be the left plumbing and Γ′ be the right one in Figure 3.8. We use a prime
to denote the quantities for the right plumbing. Let us write a vector ℓ⃗ by

ℓ⃗ =
(⃗
ℓ1, 0, ℓ2

)
,

where ℓ⃗1 corresponds to the left part of the graph Γ including the vertex m1. As
we have already seen in the proof of Theorem 3.3, we have corresponding vectors
for Γ′

ℓ⃗′± =
(⃗
ℓ1,±1, ℓ2,∓1

)
,

which give the exactly same contribution as ℓ⃗. However, due to the existence
of pseudo high-valency vertex in Γ′, we have the following extra vectors ℓ⃗′

corresponding to ℓ⃗

ℓ⃗′1,± =
(⃗
ℓ1, 2s + 1, ℓ2,±1

)
, ℓ⃗′2,± =

(⃗
ℓ1,−2s− 1, ℓ2,±1

)
for s ∈ N. It is immediate that those infinitely many extra vectors generate extra
t-series. Therefore, we need to show that the limit t → 1 of those extra t-series is
equal to zero.

Let us consider the extra t-series coming from the vectors ℓ⃗′1. The case for the
vectors ℓ⃗′2 is similar. For some n ∈ Z and ∆a ∈ Q, the t-series coefficient of q∆a+n

from those vectors is determined by

∞

∑
r=0

∞

∑
s=1

{
t2r+2s+pr+2

∣∣∣
Q(⃗ℓ′1,+)

− t2r+2s+pr
∣∣∣
Q(⃗ℓ′1,−)

}
,



42 Chapter 3. Refined and generalized Ẑ-invariants

where pr = deg(v1)− 2 and Q
(⃗
ℓ′
)

denotes the following quadratic equation

3σ′ −∑I m′I
4

−
(⃗
ℓ′, M′−1⃗ℓ′

)
4

= ∆a + n.

This means that those extra t-series would be zero after taking the limit t → 1 if
the non-negative solutions of two quadratic equations Q

(⃗
ℓ′1,±

)
are expressed by

the families of solutions with the same patterns.
Indeed, this is the case. As we have mentioned in Appendix A, the first step

to solve general quadratic Diophantine equation (A.1) is to transform it into the
form of generalized Pell’s equation (A.3) by using the following transformations

D = b2 − 4ac, E = bd− 2ae, F = d2 − 4a f , N = E2 − DF.

Therefore, the solutions of (A.1) are expressed by the factors D, E and F together
with the solutions of the generalized Pell’s equation. We have already seen that
two quadratic equations Q

(⃗
ℓ′1,±

)
are transformed into the same generalized Pell’s

equation. Moreover, it is an algebraic exercise that these equations have the same
transforming factors D, E and F. Thus, the solutions of two quadratic equations
have the same patterns, which completes the proof.

Based on Proposition 3.8, we naturally suggest the following conjecture:

Conjecture 3.9. The recovered q-series, obtained from the (q, t)-series in the sense of
t → 1, is an invariant of 3-manifolds realized by arbitrary (i.e., possibly non-reduced)
plumbings.

Remark. As we have seen in Sections 3.1 and 3.2, Ẑa(q, t) is defined for
reduced plumbings and it has a nice property that it is not only an invariant
of 3-manifolds realized by reduced plumbings but also a refined version of
Ẑa(q), i.e., limt→1 Ẑa(q, t) = Ẑa(q) for weakly negative definite plumbings.
Furthermore, it provides a key to define Ẑa(q) even for strongly indefinite
plumbings if its limit as t→ 1 exists.

For non-reduced plumbings, it is dependent on the presentation of plumbings
and it undergoes changed by the Neumann moves. However, as we demonstrates
in Example 3.7 and Proposition 3.8, the limit limt→1 Ẑa(q, t), if exists, is still an
invariant for non-reduced plumbings with at most two high-valency vertices.
Thus, if Conjecture 3.9 holds, then we could construct an invariant of all tree
plumbed 3-manifolds by obtaining the recovered q-series under the assumption
of the existence of the limit t→ 1.



3.3. Connected sum of plumbed 3-manifolds 43

𝑒0

Γ1

Γ𝑛

Γ =

FIGURE 3.9: A plumbing graph Γ that is equivalent to the disjoint
union of Γ1, Γ2, . . . , Γn. Here the weight e can be any integer.

3.3 Connected sum of plumbed 3-manifolds

Let Γ1 and Γ2 be plumbing graphs and Y1, Y2 be 3-manifolds realized by Γ1, Γ2,
respectively. It is well-known that the connected sum Y1♯Y2 can be realized by the
disjoint union Γ1 ⊔ Γ2. The following proposition [34] says that the disjoint union
of finite number of plumbing graphs is equivalent a certain single plumbing
graph.

Proposition 3.10. If a plumbing graph Γ has the form of Figure 3.9, then the 3-manifold
Y(Γ) is homeomorphic to the connected sum of Y(Γ1), Y(Γ2), . . . , Y(Γn).

Let Ẑaj(Γj; q, t) be the (q, t)-series for Γj with Spinc structure aj, where j =

1, 2. Then, according to Proposition 3.10, the connected sum of Y1 = Y(Γ1) and
Y2 = Y(Γ2) can be realized by a plumbing Γ in the form of Figure 3.9. Just for
simplicity, we assume that Γj is connected to the vertex e through a valency one
vertex of a non-pseudo branch in Γj. This assumption is just to avoid creating a
new high-valency vertex or a new pseudo bridge.

We now present a formula for the (q, t)-series Ẑa(Γ; q, t).

Proposition 3.11. The (q, t)-series of Γ can be expressed in terms of the product of
Ẑaj(Γj; q, t), j = 1, 2 as following:

Ẑa(Γ; q, t) =
1
2

∞

∑
r=0

t2r+1(q− 2r+1
2 − q

2r+1
2
)
· Ẑa1(Γ1; q, t)Ẑa2(Γ2; q, t). (3.16)

It is worth to notice here that the series

1
2

∞

∑
r=0

(
q−

2r+1
2 − q

2r+1
2
)



44 Chapter 3. Refined and generalized Ẑ-invariants

is the symmetric expansion of a rational function

1
q1/2 − q−1/2 ,

that is just the inverse of the q-series of 3-sphere.

Proof. Suppose that the linking matrices of Γ1 and Γ2 are given by

M1 =


a11 · · · a1n
... . . . ...

a1n · · · ann

 , M2 =


b11 · · · b1m
... . . . ...

b1m · · · bmm

 ,

then the linking matrix of Γ is expressed by

M =



a11 · · · a1n 0 · · · · · · · · · 0
... . . . ...

... . . . . . . . . . ...
a1n · · · ann 0 1 0 · · · 0
0 · · · 0 0 1 0 · · · 0
0 · · · 1 1 e 1 0 · · ·
0 · · · 0 0 1 b11 · · · b1m
... . . . . . . . . . ...

... . . . ...
0 · · · · · · · · · 0 b1m · · · bmm


. (3.17)

Also, (3.17) implies

det M = −det M1 · det M2,

σ(M) = σ(M1) + σ(M2),

π(M) = π(M1) + π(M2) + 1. (3.18)

Furthermore, the inverse matrix M−1 reads as following:

M−1 =



A11 · · · A1n −A1n 0
... . . . ...

...
...

A1n · · · Ann −Ann 0
−A1n · · · −Ann Ann + B11 − e 1 −B11 · · · −B1m

0 · · · 0 1 0 0 · · · 0
−B11 0 B11 · · · B1m

...
...

... . . . ...
−B1m 0 B1m · · · Bmm


, (3.19)



3.3. Connected sum of plumbed 3-manifolds 45

where

M−1
1 =


A11 · · · A1n

... . . . ...
A1n · · · Ann

 , M−1
2 =


B11 · · · B1m

... . . . ...
B1m · · · Bmm


are the inverse matrices of M1 and M2, respectively. From (3.18), we have
following relations:

(−1)π(M) = −(−1)π(M1) · (−1)π(M2),

q
3σ−∑I mI

4 = q
3σ1−∑I1

mI1
4 · q

3σ2−∑I2
mI2

4 · q− e
4 .

Now let us write vectors ℓ⃗ as

ℓ⃗ =
(
ℓ1, . . . , ℓn ± 1,±1, ℓe, ℓ′1 ± 1, . . . , ℓ′m

)
,

with the entry ℓe being for the vertex e and ±1 being for the vertex weighted by
0. Then, it follows from the explicit expression (3.19) for M−1 that we have

(⃗
ℓ, M−1⃗ℓ

)
=
(
ℓ⃗1, M−1

1 ℓ⃗1
)
+
(
ℓ⃗′2, M−1

2 ℓ⃗′2
)
− e− 2ℓe,

which implies

Θ−M
a (⃗z) = Θ−M1

a1 (z⃗1)

(
zn −

1
zn

)
Θ−M2

a2 (z⃗2)

(
z′1 −

1
z′1

)
∑
ℓe

q
e+2ℓe

4 zℓe
e .

Putting all together into the defining formula (3.1), it is straightforward to get
(3.16).





47

Chapter 4

Graph Neural Networks and
Plumbed 3-Manifolds

In this chapter, we consider the class of 3-manifolds described by plumbing
graphs and use Graph Neural Networks (GNN) for the problem of deciding
whether a pair of graphs give homeomorphic 3-manifolds. We use supervised
learning to train a GNN that provides the answer to such a question with high
accuracy. Moreover, we consider reinforcement learning by a GNN to find a
sequence of Neumann moves that relates the pair of graphs if the answer is
positive. The setting can be understood as a toy model of the problem of deciding
whether a pair of Kirby diagrams give diffeomorphic 3- or 4-manifolds.

4.1 Supervised Learning

In this section we use supervised learning to decide whether or not two plumbing
graphs represent a same plumbed 3-manifold. We build 3 models GEN+GAT,
GCN+GCN and GCN+GAT and examine their performance for the task.1

4.1.1 Models

All the models are designed to have two convolution operators, one aggregation
layer and one classification layer. The models are named by concatenating the
names of two convolution operators. For a fair comparison, we use the common
aggregation layer and the classification layer, and all the layers have the same
dimensions for both input and output.

Since we have already reviewed the convolution operators in Section 2.2,
let us now elaborate on the common aggregation layer and classification layer.

1Since our task is a graph similarity learning, we had expected that GEN could perform well
and we performed GEN combined with various GNNs known in the literature. GEN+GAT
performed best among different architectures we tried, and two models GCN+GCN and
GCN+GAT are used for a benchmark because GCN and GAT are most commonly used GNNs.



48 Chapter 4. Graph Neural Networks and Plumbed 3-Manifolds

The aggregator computes a graph embedding by aggregating all of its node
embeddings, passed from convolution operators. We use the aggregation layer
proposed in [27], which is formulated by

hG = MLPG

(
∑
i∈V

Softmax(MLPgate(xi))⊙MLP(xi)

)
,

where hG is a graph-level output and ⊙ denotes element-wise multiplication.
The classification layer plays a role to determine, for a given pair of plumbing

graphs, whether or not they are equivalent. This layer has the concatenation of
two graph embeddings as its input and classifies into two classes, class 0 and class
1. Here class 1 means two plumbing graphs are equivalent while class 0 denotes
they are inequivalent. We implement the classification layer by using MLP with
two hidden layers.

A detailed information of the architecture for 3 models are presented in Table
4.1, and the pipeline for GEN+GAT model is depicted in Figure 4.1. For each
layer in the table, the first element in the bracket followed by a name of model
denotes the dimension of input vectors of the layer while the second one denotes
the dimension of output embedding.

TABLE 4.1: The architecture of 3 models with parameter values.

Layers GEN+GAT GCN+GAT GCN+GCN

First
convolution GEN(1, 128) GCN(1, 128)

Second
convolution GAT(128, 128) GCN(128, 128)

Aggregation Aggregator(128, 32)

Classification MLP(64, 2)

4.1.2 Experimental Settings

For training and validation, we put together datasets including 80,000 random
pairs of plumbings generated by algorithms presented in Appendix B. More
explicitly, the datasets consists of

• 40,000 pairs of equivalent plumbings generated by EQUIVPAIR, Algorithm
3, with Nmax = 40.
To generate a pair of equivalent plumbings, the algorithm starts with



4.1. Supervised Learning 49

GEN(1, 128)

GAT(128, 128)

Aggregator(128, 32)

51

3

2

3 1

1

5

2

3

⨁

MLP(64, 2)

plumbing (A) plumbing (B)

node features

Input:
A mini-batch of plumbing pairs

node embeddings

node embeddings

Concatenation

graph embeddings

Classification

Input plumbing

propagations

graph embeddings

Loss function

➢ supervised Learning
➢ graph-level classification
➢ cross-entropy loss function
➢ learning rate 0.001

FIGURE 4.1: The architecture of GEN+GAT model.



50 Chapter 4. Graph Neural Networks and Plumbed 3-Manifolds

a random plumbing created by RANDOMPLUMBING, Algorithm 1, and
iteratively applies Neumann moves using RANDOMNEUMANNMOVE,
Algorithm 2, up to Nmax times, to each plumbing in the pair.

• 30,000 pairs of inequivalent plumbings generated by INEQUIVPAIR,
Algorithm 4, with Nmax = 40.
It has a similar process to EQUIVPAIR, but it starts with a pair
of inequivalent plumbings, each of which is separately generated by
RANDOMPLUMBING.2

• 10,000 pairs of inequivalent plumbings generated by TWEAKPAIR,
Algorithm 5, with Nmax = 40.
This algorithm generates a pair of inequivalent plumbings, one of which is
obtained by tweaking the other. Here, by tweaking a plumbing, we mean
that we make a small change of the weight (or node feature) of a randomly
chosen node in the plumbing. Since tweaking is different from Neumann
moves, this process creates an inequivalent plumbing to the original one.
After tweaking, it also applies RANDOMNEUMANNMOVE iteratively up
to Nmax. These pairs are added into the datasets in order for the models
to make the decision boundary more accurate, since for a pair generated
by INEQUIVPAIR, two plumbings might be quiet different due to random
generators.

We divide the datasets into training and validation sets by the ratio 8:2. We
train our models on training sets containing 64,000 pairs of plumbings up to 150
epochs. For each model, we use cross-entropy loss for a loss function and Adam
for an optimizer with the learning rate 0.001.

4.1.3 Results

The comparison of the performance between 3 models is plotted in Figure
4.2. We find that GEN+GAT model significantly outperforms the other
models GCN+GAT and GCN+GCN. The model GCN+GAT seems to outperform
GCN+GCN by few percent, but the performance difference is negligible. 3

We have also tried other models such as GEN+GEN, GEN+GCN and
GAT+GAT to figure out which convolution operators has an important role.

2We note that two plumbings, generated in INEQUIVPAIR and TWEAKPAIR by running
RANDOMPLUMBING twice, could be accidentally equivalent and this might affect the accuracy
of models in training. However, we will ignore this since it is statistically insignificant.

3For GCN+GAT and GCN+GCN models, we have checked that increasing weight dimensions
and longer training phases did not lead to better performance.



4.1. Supervised Learning 51

0 30 60 90 120 150
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac
cu
ra
cy

GEN+GAT
GCN+GAT
GCN+GCN

(A) Performance comparison on validation
sets.

0 30 60 90 120 150
Epoch

0.0

0.2

0.4

0.6

Ac
cu
ra
cy

GEN+GAT
GCN+GAT
GCN+GCN

(B) Loss comparison on validation sets.

FIGURE 4.2: Overview of the performance and loss comparison
between GEN+GAT, GCN+GAT and GCN+GCN models.

The model GEN+GCN shows similar performance with GEN+GAT, but slightly
underperforms, and the performance of GAT+GAT is somewhere between that
of GEN+GAT and GCN+GAT. This means that GEN plays a significant role to
evaluate equivalence or inequivalence for a pair of plumbing graphs. However,
we found that GEN+GEN does not perform as good as GEN+GAT or GEN+GCN.

We used the following datasets to test our models:

• Test set 1
It contains 5,000 pairs of equivalent plumbing graphs generated by
EQUIVPAIR with Nmax = 40 and 5,000 pairs of inequivalent plumbings
generated by INEQUIVPAIR with Nmax = 40.

• Test set 2
This dataset is similar to Test set 1, but with Nmax = 60.

• Test set 3
This set is also similar to Test set 1, but with Nmax = 80.

• Test set 4
It contains 64 pairs of plumbings generated in a manual way such that,
for each pair, the determinants of adjacency matrices (with weights on the
diagonal) of two plumbings are the same. We use this Test set in order
to check that graph embeddings from the models are not just functions
of the determinant of the adjacency matrix of a plumbing. All types of
Neumann moves have the property that it preserves the determinant of the
adjacency matrix of the plumbing, which is the order of the first homology
group of the corresponding 3-manifold. We wish graph embeddings to not
depend on the determinant only, but be more sophisticated (approximate)
invariants of plumbed 3-manifolds.



52 Chapter 4. Graph Neural Networks and Plumbed 3-Manifolds

GEN+GAT GCN+GAT GCN+GCN
40

50

60

70

80

90

100

Ac
cu
ra
cy
 (%

)

92.3

71.05
69.04

88.89

71.2 70.47

90.03

70.67
68.34

95.31

50

43.75

Performance comparison on various Test sets between 3 models
Test set 1
Test set 2
Test set 3
Test set 4

FIGURE 4.3: Performance comparison between 3 models,
GEN+GAT, GCN+GAT and GCN+GCN on various Test sets.
The error bars are not displayed in the figure since the standard
errors on Test set 1, 2, and 3 are too small (smaller than 0.7) to notice.
The standard errors on Test set 4 are about 2.64, 6.25, and 6.20 for

GEN+GAT, GCN+GAT and GCN+GCN models, respectively.

The results are depicted in Figure 4.3 and they enlighten us with the following
two points. The first point is that the accuracy for Test set 2 and Test set 3 is almost
the same level as Test set 1 even though Test set 2 and 3 contain plumbing pairs
with larger Nmax than Test set 1. It is perhaps surprising that such somewhat
counter-intuitive property holds even for GCN+GAT and GCN+GCN models,
which show less training accuracy than GEN+GAT. The second point is that
GEN+GAT model still outperforms the others for Test set 4 and it can distinguish
correctly even inequivalent pairs with the same determinants. Since GEN is
designed for graph similarity learning and to have a good generalization, we can
see that the model GEN+GAT outperforms significantly the others GCN+GCN
and GCN+GAT, designed for general classification problems (with a relatively
small number of classes), on various Test sets.

4.2 Reinforcement Learning

In this section, we consider reinforcement learning of a neural network that
allows, for a given pair of plumbings, not only to recognize whether they are
equivalent or not, but also to find out their simplest representations.



4.2. Reinforcement Learning 53

1 2
≃

0 −2

FIGURE 4.4: Two plumbings are equivalent and they have same
number of nodes. The right-hand side plumbing is simpler than the

left one in the sense of (4.1).

4.2.1 The environment

State space

In our RL environment, the plumbing graph defines the state and the state
space is infinity. In order to handle the start state and terminal stats in an easy
way, we set the start state for an episode is set to be a plumbing generated
by RANDOMPLUMBING, Algorithm 1, with number of nodes equal to 10, then
applying Neumann moves N = 15 times.

Between two equivalent plumbings, we define a relation as follows: for two
equivalent states s1 and s2, one state is said to be simpler than the other if

f (s1) < f (s2),

where f (s) for a state s is defined by

f (s) := 5|V(s)|+ ∑
v∈V(s)

|w(v)|. (4.1)

It is easy to check that this relation is well-defined in a set of all equivalent
plumbings.

One might think that number of nodes in a state is enough to decide which
state is simpler. The reason why we add the sum of the absolute values of the
weights of nodes is to make the simplest state generically unique4. For example,
two plumbings depicted in Figure 4.4 have same number of nodes and it is easy
to check that they are equivalent by applying 2 Neumann moves. In this example,
we say that the plumbing on the right-hand side is simpler than the other from
(4.1).

4There still could be specific examples with different plumbings in the same equivalence
class that minimize f (s). However, as the results below suggest, such cases are statistically
insignificant.



54 Chapter 4. Graph Neural Networks and Plumbed 3-Manifolds

By using this comparison relation, we set the terminal state to be a state equal
to or simper than the initial state in the episode. We also terminate each episode
after taking 15 time steps.

Action space

An action for the agent in a state is defined to be a Neumann move applied to
one of the nodes. There are 8 possible Neumann moves: 5 blow-up moves and
3 blow-down moves. However, blow-down moves are not always available for
all nodes and this could raise a problem that there might be too many of such
illegal actions. Therefore, we incorporate 3 blow-down moves into one such that
it takes an available blow-down if the corresponding node satisfies one of three
following conditions:

• the degree of the node is 2 and its weight is equal to ±1,

• the degree of the node is 1 and its weight is equal to ±1,

• the degree of the node is 1 and its weight is equal to 0.

Then, for a given state, the total number of possible actions is equal to 6 (5
blow-up moves and 1 blow-down move) times number of nodes in the state. If
the agent takes an illegal action, then the next state remains the same state as the
current state and the agent will be punished with a negative reward, on which
we will elaborate soon.

Rewards

Since the goal for the RL agent is to find out the simplest representation for an
initial state, it is natural to use − f (s′) as a reward (or punishment + f (s′)) for
taking an action in the current state s, where s′ denotes the next state obtained
by taking an action to the current state s. Since all the rewards are negative
and simpler state is less punished, it helps the agent not only make the current
representation as simple as possible, but also do this job as fast as possible. It is
also important to note that some states must get a new blow-up node in order
to be simplified, which means the agent has to sacrifice the immediate reward at
some time steps to maximize the total return. As we have seen previously, there
are some illegal actions in the action space for each state. The reward for such
illegal actions is set to be equal to −2 f (s′) for the next state s′, which remains the
same as the current state s as we have discussed above.

We set the discount factor as γ = 0.99, very close to 1.



4.2. Reinforcement Learning 55

4.2.2 The deep RL algorithm

We remind that the RL task is to obtain the simplest representation from a
given initial state by using Neumann moves. To accomplish this task, we
used Asynchronous Advantage Actor-Critic (A3C) [31] as an RL algorithm,
which is the asynchronous version of Actor-Critic (AC) [25], with feedforward
GNNs. A3C executes multiple local AC agents asynchronously in parallel to
decorrelate the local agent’s data into a more stationary process. It also provides
practical benefits of being able to use only multi-core CPU, not having to rely on
specialized hardware such as GPUs.

The Actor network defines the policy function π(a|s), whose output shows
the probability of taking action a in state s, while the Critic network is to
approximate the value function Vπ(s), which represents the expected return from
state s. Since the inputs of the Actor and Critic are plumbing graphs, in the
context of GNNs, the Actor network can be thought as the GNNs for node-level
action-selection problem and the Critic is for graph-level estimation problem. The
architecture of the Actor is designed by using two graph convolutional layers
GCN+GCN and two single-layer feedforward neural networks. The Critic has a
similar structure, but it has an extra aggregation layer, for which we used a simple
mean function. In both Actor and Critic networks, we used skip connections that
connect the inputs of the networks to the inputs of a feedforward neural networks
in order to accelerate the training process of GNNs [47]. Those two GNNs are
depicted in Figure 4.5. We have also tried GEN+GAT and GEN+GCN for the
convolutional layers in the Actor and Critic networks. They seemed to perform
well, but it takes a bit longer time for training than GCN+GCN. Since the results
with GCN+GCN were already pretty good, we ended up using GCN+GCN.

We trained the agents for 8× 104 episodes using 8 CPU cores and no GPU,
which takes around 8 hours. We used Adam optimizer with learning rate 5 ×
10−4. For a comparison, we have also implemented Deep Q-Network (DQN) [32]
with feedforward GNNs GCN+GCN with the same settings as those for A3C.

4.2.3 Results

Our RL agents can be used to find the simplest representative in the equivalence
class of a given plumbing graph. Furthermore, it also can be used to check
whether a pair of plumbing graphs represents the same 3-manifold or not. For the
latter purpose, we run the RL agents on a pair of plumbings to get the simplest
representations for two plumbings, then we compare those to decide whether
two equivalent plumbings are isomorphic or not. This process provides us with



56 Chapter 4. Graph Neural Networks and Plumbed 3-Manifolds

GCN(1, 128)

GCN(128, 1)

Linear(2, 64)

51

3

2

Linear(64, 5)

node
features

node
embeddings

Policy 
function

Input: mini-batch of plumbings

node
embeddings

node
embeddings

skip
 co

n
n

ectio
n

GCN(1, 128)

GCN(128, 1)

Linear(2, 64)

51

3

2

Linear(64, 1)

node
features

node
embeddings

Value 
function

node
embeddings

node
embeddings

Actor Network Critic Network

⨁
concatenation

skip
 co

n
n

ectio
n

⨁
concatenation

FIGURE 4.5: The architectures of Actor and Critic Networks.



4.2. Reinforcement Learning 57

another advantage that, given two equivalent plumbings, we can get a sequence
of Neumann moves that change one plumbing into the other, even though such
sequence of Neumann moves is not necessarily the optimal one between two
plumbings. From this perspective, we are going to check the performance of
the RL agents by running them on pairs of plumbings that represent the same
3-manifolds.

For the initial inputs of the agents, we generate 10,000 random pairs of
plumbings by EQUIVPAIR, Algorithm 3, but with a fixed number of Neumann
moves N ∈ {20, 40, 60, 80, 100}. At each time step, the agents choose a Neumann
move and apply it to each plumbing in a pair, then we get another pair of
plumbings as the next input for the agents. After taking each action, we compare
two plumbings and check if they are isomorphic. If yes, we consider it as the
success of finding out a sequence of Neumann moves connecting two plumbings
in the initial pair. Otherwise, we move on to the next step and we repeat the
process until the number of time steps exceeds 5N. We define the accuracy of the
performance as the ratio the number of successes divided by the number of total
episodes. An example of a pair of equivalent graphs with the successful result by
the A3C trained agent is shown in Figure 4.9.

The results of the RL agents is presented in Figure 4.6. The plot on the left in
Figure 4.6 shows the accuracy comparison between A3C and DQN. The accuracy
for A3C tends to slightly decrease as N gets larger, but it’s around 93% for all
pairs of plumbings. However, the accuracy for DQN drops significantly from
around 86% to 42% when N increases from N = 20 to N = 100.

On the right in Figure 4.6, we show the average number of actions that the
agent takes until obtaining a pair of exactly same two plumbings from an initial
pair of equivalent plumbings. For A3C agent, the average numbers of actions do
not exceed around 1.35 times N, which means the trained A3C agent has a good
efficiency to make a plumbing simpler. The DQN agent needs similar number of
actions to the A3C for N = 20 and N = 40. However, it takes almost twice as
many number of actions as A3C for larger N.

We have also studied the distribution of Neumann moves (or actions) that the
A3C agent performs before and after training to simplify plumbings generated
with N = 100. In Figure 4.7, we plot the number of each Neumann move taken
by the agent divided by N. In the plot, moves 1–5 denote blow-up moves and
moves 6–8 denote blow-down moves.

It is natural to observe that all blue dots in Figure 4.7 lay on the line y =

0.125, because the untrained agent takes each action equally often from a uniform
distribution. On the other hand, red dots for trained agent show that the agent



58 Chapter 4. Graph Neural Networks and Plumbed 3-Manifolds

20 40 60 80 100
Number of Neumann Moves

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Accurcay vs Number of Neumann Moves

A3C
DQN

20 40 60 80 100
Number of Neumann Moves

20
40
60
80

100
120
140
160
180

Av
er
ag

e 
tim

e 
st
ep

s

Average time steps vs Number of Neumann Moves

A3C
DQN

FIGURE 4.6: Performance comparison between A3C and DQN
algorithms.



4.2. Reinforcement Learning 59

move 1 move 2 move 3 move 4 move 5 move 6 move 7 move 8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Fr

ac
tio

n 
of

 N
eu

m
an

n 
m

ov
es

 p
er

fo
rm

ed

0.002

0.051 0.063 0.064 0.069

0.152

0.37

0.227

0.126 0.128 0.121 0.124 0.126 0.125 0.123 0.127

Fraction of Neumann moves performed by A3C agent
Trained A3C
Untrained A3C

FIGURE 4.7: Comparison of the number of Neumann moves taken
by a trained A3C agent and an untrained A3C agent to simplify
plumbing. The values shown are the total number of Neumann
moves of a given type divided by the total number of actions

performed, aggregated over multiple examples.

takes blow-down moves (moves 6–8) with a probability of around 75% and takes
blow-up moves (moves 1–5) with the remaining probability. This makes sense
from the fact that blow-down moves can actually make the plumbing simpler and
get a less punishment than blow-up moves. Especially, we see that the move 7,
blow-down move of type (b), is the most frequent action and the move 1, blow-up
move of type (a), is the least frequent action. This is explained by the fact that the
move 1 is not helpful for the agent to get a simpler plumbing.

Before we jump into the conclusion, it is interesting to check whether or not
the trained A3C agent is indeed maximizing the total return instead of immediate
rewards by a simple example depicted in 4.8. The left plumbing in Figure 4.8
is a standard representation that realizes a 3-manifold known as a Brieskorn
3-sphere Σ(2, 3, 5), while the plumbing on the right represents a homeomorphic
3-manifold which can also be considered as the boundary of the E8 manifold.
As one can see immediately, the plumbing on the right in Figure 4.8 does not
have nodes available for blow-down moves. Therefore, in order to get the left
plumbing from the right one, the RL agent should take appropriate blow-up
moves first, then taking available blow-down moves. This is why we take this



60 Chapter 4. Graph Neural Networks and Plumbed 3-Manifolds

−5

−3

−2

−1
−2

−2

−2

−2

−2

−2 −2 −2

FIGURE 4.8: Two equivalent representations of a plumbed
3-manifold Σ(2, 3, 5).

example for the test. We notice that 6 actions are needed to turn one plumbing
into the other in an optimal way.

The trained A3C agent successfully simplify the E8 plumbing to the plumbing
Σ(2, 3, 5) by taking 16 actions, while the trained DQN does not find a solution
until the number of actions exceeds 50. This test ensures that the A3C agent
indeed pursues not short-term rewards, but its maximal long-term return.

4.3 Conclusion and Future Work

4.3.1 Conclusion

In this chapter we have examined the GNN approach to the problems in
the 3-dimensional topology, which ask whether two given plumbing graphs
represent a same 3-manifold or not, and whether or not it is possible to find
out the sequence of Neumann moves that connects two plumbings if they are
equivalent.

In Section 4.1, we used supervised learning to solve the binary classification of
whether or not a pair of plumbings is equivalent. We built 3 models by combining
graph convolution operators GEN, GCN and GAT, together with a certain graph
aggregation module and an MLP as a classifier. We found that GEN+GAT
model outperformed GCN+GCN and GCN+GAT models on randomly generated
training datasets with maximal number Nmax = 40 of applied Neumann moves.
GEN+GAT achieved about 95% accuracy while accuracy for the others is below
80%. We also tested those 3 models on randomly generated testsets with larger
Nmax = 60 and Nmax = 80. Even though those models were trained by a training
sets with Nmax = 40, it is an interesting point that, on such testsets, they still
performed on a similar level to their training performance.



4.3. Conclusion and Future Work 61

In Section 4.2, we utilized reinforcement learning to find out the sequence
of Neumann moves that relates to a given pair of equivalent plumbings. We
trained the agent such that it could find the simplest representation of a plumbing
by using Neumann moves as its actions. We define the simplicity as a certain
linear combination of number of nodes and sum of the absolute value of node
features. We ran the trained agent on each of two equivalent plumbings until it
arrived at two isomorphic plumbings. In this way, we can construct a sequence of
Neumann moves connecting two equivalent plumbings. Using A3C algorithm,
we see that the agent can find a sequence of Neumann moves in over 90% of
randomly generated equivalent plumbing pairs even with Nmax = 100. This
outperforms the DQN agent by a factor of around 1.5 when N = 60, and by
more than a factor of 2 when N = 100.

4.3.2 Future work

In this chapter we have used Geometric Deep Learning, GNN in particular,
in the problem of classification of 3-manifolds up to homeomorphisms. We
restricted to a special simple class of 3-manifolds corresponding to tree plumbing
graphs. We hope to apply similar neural network models for more general
3-manifolds and also 4-manifolds in the future. One direct generalization
would be considering 3-manifolds corresponding to general plumbing graphs
described in [34], possibly disconnected, with loops, and with non-trivial genera
assigned to the vertices5. This, in particular, would involve considering extra
features associated to the vertices and also to the edges of graphs, as well
as additional set of moves relating equivalent graphs. A more interesting
generalization would be considering general Kirby diagrams for 3-manifolds.
A Kirby diagram of a 3-manifold is a planar diagram of a link with an integer
framing number assigned to each link component. The 3-manifold corresponding
to the diagram is then obtained by performing Dehn surgery on this framed
link. Two diagrams produce homeomorphic 3-manifolds if and only if they
can be related by a sequence of Reidemeister moves (that do not change the
isotopy class of the link) together with the so-called Kirby, or equivalently,
Fenn-Rourke moves that do change the link but not the resulting 3-manifold
(up to homeomorphism). Such a diagram can be understood as a 4-regular
plane graph with additional data specifying the types of crossings in the link
diagram and the framings of the link components. Alternatively, one can

5In such a more general setting, a vertex with weight w and genus g corresponds to a circle
fibration of Euler class w over a closed oriented surface of genus g. The case considered in this
chapter is recovered when g = 0 for each vertex.



62 Chapter 4. Graph Neural Networks and Plumbed 3-Manifolds

consider Tait graph associated to a checkboard coloring of the link diagram.
For practical purposes, this presentation most likely will be more efficient. The
Reidemeister, as well as Kirby/Fenn-Rourke moves then can be understood
again as certain local operations on graphs associated with Kirby diagrams.
The main new challenge would be incorporating the structure of the planar
embedding of the graph in GNN. This can be done, for example, by specifying
the cyclic order of edges at each vertex, or cyclic order of edges for each face
of the plane graph. This additional structure should be taken into account
in the layers of the network. This is not considered in most standard GNN
architectures. A further step would be the problem of recognizing whether a
pair of Kirby diagrams for 4-manifolds produces a diffeomorphic pair. Such
Kirby diagrams are again framed link diagrams that also contain special “dotted”
link components. There is a corresponding set of local Kirby moves that relate
diagrams realizing diffeomorphic 4-manifold. For a comprehensive reference
about the Kirby diagrams of 3- and 4-manifold we refer to [12].



4.3. Conclusion and Future Work 63

7 103
-1

-20

-1

-14

-6

-14

-7

-16

-1

-2

-2
1

-1

5

-3

17

0

0

-2

-8

-3

2

-1 -3
-2

-1

-1

18-2
-2

-1
-3

1

-1

-1

01

1
-17

-1

-1

-1

1

-1

0
12

-1

-1

1

-1

1

0
-20

-2 -2 -2

-1

-1

1

-1

-1

1

-1

-1

6

11

5

2

-1

-15
-5

-14

-6

-3

-1
3

2

-2

0

16

-3 0

-16

6

0

-1

-2

2

1

2

2

-1

-5

-1

0

4
-1

-1

-1

0

-1

-1

0

-8

1

-1

-2

-2

-2

-2

0
-17

-1-1

1

-2

FIGURE 4.9: An example of a pair of equivalent plumbing graphs
generated by EQUIVPAIR with the number of Neumann moves
fixed to N = 40. The graphs are successfully recognized
as equivalent both by the RL agent trained by A3C algorithm
considered in Section 4.2 and the GEN+GAT neural network

considered in Section 4.1.





65

Appendix A

Quadratic Diophantine equation in
two variables

We are going to review here how to solve the general quadratic Diophantine
equation

ax2 + bxy + cy2 + dx + ey + f = 0, (A.1)

where the coefficients are all integers, i.e., a, b, c, d, e, f ∈ Z. We assume that not
all of a, b, c are zero. The classical method of solving (A.1) was firstly given by
Lagrange over 300 years ago.

Let D = b2 − 4ac, E = bd− 2ae and F = d2 − 4a f . We will examine (A.1) in
several cases, mainly depending on the values of D.

At first, suppose D = 0, then without loss of generality, we can assume a ̸= 0.
Equation (A.1) can be written as

Y2 = 2Ey + F,

where Y = 2ax + by + d. In the case of E = 0 and F = 0, then there could be
either a line of integer solutions for (A.1) if gcd(2a, b) divides d, or no solution
otherwise. It is clear that there is no integer solution of (A.1) if E = 0 and F < 0
or if E = 0 and F is positive but not a perfect integral square. If E = 0 and F is a
perfect square, then one can obtain either a line of integer solutions if gcd(2a, b)
divides

√
F± d , or no solution otherwise. In the case of E ̸= 0, (A.1) boils down

to the congruence
Y2 ≡ F mod |2E|. (A.2)

Clearly, there are no integer solutions for (A.1) if (A.2) does not have integer
solutions. In the case that (A.2) has integer solutions, it is not difficult to observe
that the integer solutions (x, y) of (A.1) lie on a parabola if they exist.



66 Appendix A. Quadratic Diophantine equation in two variables

Now suppose that D ̸= 0. Then by putting N = E2 − DF, (A.1) turns out to
be

X2 − DY2 = N, (A.3)

where X = Dy + E. It is clear that (A.3) has a finite number of solutions if D < 0,
or if D is a positive perfect integral square, or if N = 0. Therefore, the only
remaining non-trivial case happens when N ̸= 0 and D > 0 is not a perfect
square. In this case, (A.3) is called a generalized Pell’s equation and it has infinite
number of solutions if it has at least one.

A.1 Pell’s equation

A Pell’s equation is a Diophantine equation of the form

T2 − DU2 = 1, (A.4)

where D is a positive integer that is not a perfect square. The trivial solutions
are (T, U) = (±1, 0). Among all non-trivial solutions, the pair (t, u) is called
the fundamental solution if t and u are both positive and they are minimal. It
is well-known from the work of Lagrange in 1768 that any Pell’s equation has
a non-trivial solution. Furthermore, once we find a solution, there is a way to
generate all the solutions of (A.4). A pair (T, U) of positive integers is a solution
of (A.4) if and only if there exists n ∈N such that

T + U
√

D =
(
t + u

√
D
)n. (A.5)

Sometimes it might be much more convenient to express (A.5) in a matrix form
as follows:(

Tn

Un

)
=

(
t Du
u t

)n(
1
0

)

=

(√
D −

√
D

1 1

)((
t + u

√
D
)n 0

0
(
t− u

√
D
)n

)(√
D −

√
D

1 1

)−1(
1
0

)

=

 1
2

((
t + u

√
D
)n

+
(
t− u

√
D
)n)

1
2
√

D

((
t + u

√
D
)n −

(
t− u

√
D
)n)
 ,



A.2. Generalized Pell’s equation 67

where in the second line we have diagonalized the matrix

(
t Du
u t

)
=

(√
D −

√
D

1 1

)(
t + u

√
D 0

0 t− u
√

D

)(√
D −

√
D

1 1

)−1

by using its eigenvectors and eigenvalues. Thus, any positive solution of (A.4)
has the form of

Tn =
1
2
((

t + u
√

D
)n

+
(
t− u

√
D
)n),

Un =
1

2
√

D

((
t + u

√
D
)n −

(
t− u

√
D
)n), (A.6)

and clearly (±Tn,±Un) will also be solutions.

A.2 Generalized Pell’s equation

So far we have seen that Pell’s equation (A.4) has an infinite number of solutions.
Using those solutions one can describe a method to obtain all solutions of a
generalized Pell’s equation (A.3). Indeed, Lagrange showed that every solution
of (A.3) can be expressed by a power of t + u

√
D times X + Y

√
D, that is,

Xn + Yn
√

D =
(
X + Y

√
D
)(

t + u
√

D
)n for some n ∈ Z, (A.7)

where (t, u) are the fundamental solution of the corresponding Pell’s equation
T2 − DU2 = 1 and (X, Y) is a solution of (A.3) such that

|X| ≤
√
|N|
√

t + u
√

D/2 and |Y| ≤
√
|N|
√

t + u
√

D/
(
2
√

D
)
.

In other words, there exists a finite set S of solutions for (A.3) such that every
solution (Xn, Yn) can be obtained by (A.7) with some (X, Y) ∈ S . It follows from
(A.6) and (A.7) that

Xn = XTn + DYUn =
1
2
[(

X + Y
√

D
)

An +
(
X−Y

√
D
)

A−n],
Yn = XTn + DYUn =

1
2
√

D

[(
X + Y

√
D
)

An −
(
X−Y

√
D
)

A−n], (A.8)

where we denoted A = t + u
√

D > 1.



68 Appendix A. Quadratic Diophantine equation in two variables

A.3 Quadratic Diophantine equation in two

variables: revisited

Now we circle back to the solutions of our Diophantine equation (A.1). We have
already seen that in the case when N ̸= 0 and D > 0 is not a perfect square, the
solutions of (A.1) is related to those of generalized Pell’s equation (A.3). Once we
obtain all solutions of (A.3), we need to identify for each (X, Y) ∈ S , those values
of n ∈ Z such that Xn ≡ E mod D,

Yn ≡ b(Xn − E)/D + d mod 2a,

or equivalently, Xn ≡ E mod D,

DYn ≡ bXn − bE + Dd mod 2aD.

The efficient way [39] is to check a necessary condition

2a | X− bY. (A.9)

If (A.9) and

D
∣∣∣∣ dD− bE− DY + bX

2a

hold, then (A.8) produces solutions for (A.1) for all even n. If (A.9) and

D
∣∣∣∣ dD− bE− DYt + bXt

2a

hold, then (A.8) produces solutions for (A.1) for all odd n. If none of these holds,
then there is no solution of (A.1).



69

Appendix B

Algorithms

In this appendix, we provide details of the algorithms which have been used to
generate datasets for training and testing both SL and RL models in Section 4.1
and Section 4.2.

• RANDOMPLUMBING

This algorithm generates a random plumbing tree by creating a random
array for node features and building an adjacency matrix. It starts to
choose a random integer as a number of nodes between 1 and 25. In
general, there are NN−2 different plumbing trees with N nodes if we don’t
consider node features. Therefore, the upper limit 25 is large enough to
generate around 106 random plumbing tress with statistically insignificant
overlapping plumbings. The array of node feature is also created by
randomly choosing an integer in the interval (−20, 20) for each node. Then
we define the adjacency matrix for the plumbing tree, and the algorithm
returns a pair of node feature array and adjacency matrix as data for the
output plumbing. Note that all random process is done by using a uniform
distribution.

• RANDOMNEUMANNMOVE

The role of this algorithm is to apply a randomly chosen Neumann move to
a random node of the input plumbing, then returns the resulting plumbing.
A random Neumann move is characterized by 3 variables, i.e., type,
updown, and sign. Here type ∈ {1, 2, 3} denotes 3 types of Neumann moves
depicted in Figure 2.2, updown ∈ {1,−1} points out blow-up (updown = 1)
or blow-down (updown = −1), and sign ∈ {1,−1} denotes the sign of the
new vertex for blow-up Neumann moves of type (b) and (c). Notice that
other moves does not require sign.

The algorithm first takes a random node of the input and fixes a random
tuple (type, updown, sign) from a uniform distribution. Then it builds
new node feature array and adjacency matrix for the plumbing obtained



70 Appendix B. Algorithms

by applying the Neumann move to the chosen node. If the Neumann
move determined by a tuple (type, updown, sign) is an illegal move, the
output plumbing is the same as the input. The algorithm also returns
another variable done ∈ {TRUE, FALSE}, which makes it possible to notice
whether the Neumann move to be applied is legal (done = TRUE) or illegal
(done = FALSE). This variable done will be used to decide the rewards of
actions in Section 4.2.

• EQUIVPAIR and INEQUIVPAIR

These are used to generate an equivalent plumbing pair (EQUIVPAIR) or an
inequivalent plumbing pair (INEQUIVPAIR). At the first step, EQUIVPAIR

generates an initial pair of isomorphic plumbings, while INEQUIVPAIR

generates two inequivalent plumbings, by using RANDOMPLUMBING.
Then they have the same process, in which they apply Neumann moves
iteratively up to Nmax times to each plumbing in the initial pair. Then they
return the resulting pair as well as a variable, named label, which will be
used for classification problem in Section 4.1. Notice that label = 1 for
EQUIVPAIR and label = −1 for INEQUIVPAIR.

• TWEAKPAIR

This algorithm generates an inequivalent pair of plumbings, but with the
same graph structure. One plumbing is generated by RANDOMPLUMBING,
and the other is obtained by tweaking a copy of the first plumbing, i.e.,
by making a small change to a feature of a randomly chosen node. These
two plumbings form an initial pair. Since the adjacency matrices of two
plumbings are same, they have the same graph structure. However, due
to the small change, two plumbings are inequivalent. Then the algorithm
has the same structure as in EQUIVPAIR and INEQUIVPAIR to apply random
Neumann moves iteratively to each plumbing in the initial pair.

Algorithm 1 RANDOMPLUMBING

n← random integer between 1 and 25 ▷ number of nodes
x← array of n random integers between −20 and 20 ▷ node features
a← n× n matrix of zeros ▷ initialize the adjacency matrix
for i = 2 to n do ▷ construct the adjacency matrix

j← random integer between 1 and i− 1
ai,j, aj,i ← 1

end for
G ← (x, a) ▷ G defines the plumbing
return G



Appendix B. Algorithms 71

Algorithm 2 RANDOMNEUMANNMOVE

Require: a plumbing G
v← a random node of G
type← a random choice in {1, 2, 3}
updown← a random choice in {1,−1}
if updown = 1 then ▷ blow-up move

if type = 1 then
G′ ← a plumbing applied a blow-up move of type (a) to the node v

else
sign← a random choice in {1,−1}
G′ ← a plumbing applied a blow-up move determined by (type, sign)

end if
done← TRUE

else ▷ blow-down move
if v can be removed by a blow-down move then

G′ ← a plumbing applied a blow-down move to the node v
done← TRUE

else
G′ ← G ▷ returns the input plumbing for a forbidden move
done← FALSE

end if
end if
return (done, G′)

Algorithm 3 EQUIVPAIR

Require: Nmax ∈ Z+

G ← a plumbing by RANDOMPLUMBING
G1 ← G
n1 ← a random integer between 1 and Nmax
for i = 1 to n1 do ▷ Apply Neumann moves n1 times

G1 ← RANDOMNEUMANNMOVE(G1)
end for
G2 ← G
n2 ← a random integer between 1 and Nmax
for j = 1 to n2 do ▷ Apply Neumann moves n2 times

G2 ← RANDOMNEUMANNMOVE(G2)
end for
label ← 1
return G1, G2, label



72 Appendix B. Algorithms

Algorithm 4 INEQUIVPAIR

Require: Nmax ∈ Z+

G1 ← a plumbing by RANDOMPLUMBING
G2 ← another plumbing by RANDOMPLUMBING
n1 ← a random integer between 1 and Nmax
for i = 1 to n1 do ▷ Apply Neumann moves n1 times

G1 ← RANDOMNEUMANNMOVE(G1)
end for
n2 ← a random integer between 1 and Nmax
for j = 1 to n2 do ▷ Apply Neumann moves n2 times

G2 ← RANDOMNEUMANNMOVE(G2)
end for
label ← −1
return G1, G2, label

Algorithm 5 TWEAKPAIR

Require: Nmax ∈ Z+

G1 ← a plumbing by RANDOMPLUMBING
G2 ← G1
v← a random node in G2
t← a random integer between -3 and 3, not 0.
x← node feature of G2
a← adjacency matrix of G2
xv ← xv + t
G2 ← a plumbing with (x, a)
n1 ← a random integer between 1 and Nmax
for i = 1 to n1 do ▷ Apply Neumann moves n1 times

G1 ← RANDOMNEUMANNMOVE(G1)
end for
n2 ← a random integer between 1 and Nmax
for i = 1 to n2 do ▷ Apply Neumann moves n2 times

G2 ← RANDOMNEUMANNMOVE(G2)
end for
label ← −1
return G1, G2, label



73

Bibliography

[1] Rostislav Akhmechet, Peter K. Johnson, and Vyacheslav Krushkal. “Lattice
cohomology and q-series invariants of 3-manifolds”. In: J. Reine Angew.
Math. 796 (2023), pp. 269–299. DOI: 10.1515/crelle-2022-0096. eprint:
2109.14139. URL: https://doi.org/10.1515/crelle-2022-0096.

[2] Bruce C. Berndt and James Lee Hafner. “Two remarkable doubly
exponential series transformations of Ramanujan”. In: Proc. Indian Acad.
Sci. Math. Sci. 104.1 (1994), pp. 245–252. DOI: 10.1007/BF02830888. URL:
https://doi.org/10.1007/BF02830888.

[3] Michael M. Bronstein et al. Geometric Deep Learning: Grids, Groups, Graphs,
Geodesics, and Gauges. 2021. arXiv: 2104.13478 [cs.LG].

[4] Wenming Cao et al. “A comprehensive survey on geometric deep
learning”. In: IEEE Access 8 (2020), pp. 35929–35949.

[5] Miranda C. N. Cheng et al. “3d modularity”. In: J. High Energy Phys. 2019.10
(2019), no. 10, 010, 93 pages. DOI: 10.1007/jhep10(2019)010. eprint: 1809.
10148. URL: https://doi.org/10.1007/jhep10(2019)010.

[6] Sungbong Chun et al. “3d-3d correspondence for mapping tori”. In: Journal
of High Energy Physics 2020.9 (Sept. 2020). DOI: 10.1007/jhep09(2020)152.
URL: https://doi.org/10.1007%2Fjhep09%282020%29152.

[7] Francesco Costantino, Sergei Gukov, and Pavel Putrov. “Non-semisimple
TQFT’s and BPS q-series”. In: SIGMA 19 (2023), 010, 71 pages. DOI: 10.
3842/SIGMA.2023.010. eprint: 2107.14238. URL: https://doi.org/10.
3842/SIGMA.2023.010.

[8] Jessica Craven et al. “Learning knot invariants across dimensions”. In:
SciPost Phys. 14.2 (2023), p. 021. DOI: 10.21468/SciPostPhys.14.2.021.
arXiv: 2112.00016 [hep-th].

[9] Alex Davies et al. “Advancing mathematics by guiding human intuition
with AI”. In: Nature 600.7887 (2021), pp. 70–74.

https://doi.org/10.1515/crelle-2022-0096
2109.14139
https://doi.org/10.1515/crelle-2022-0096
https://doi.org/10.1007/BF02830888
https://doi.org/10.1007/BF02830888
https://arxiv.org/abs/2104.13478
https://doi.org/10.1007/jhep10(2019)010
1809.10148
1809.10148
https://doi.org/10.1007/jhep10(2019)010
https://doi.org/10.1007/jhep09(2020)152
https://doi.org/10.1007%2Fjhep09%282020%29152
https://doi.org/10.3842/SIGMA.2023.010
https://doi.org/10.3842/SIGMA.2023.010
2107.14238
https://doi.org/10.3842/SIGMA.2023.010
https://doi.org/10.3842/SIGMA.2023.010
https://doi.org/10.21468/SciPostPhys.14.2.021
https://arxiv.org/abs/2112.00016


74 Bibliography

[10] Tobias Ekholm et al. “Ẑ at large N: from curve counts to quantum
modularity”. In: Comm. Math. Phys. 396.1 (2022), pp. 143–186. DOI: 10.1007/
s00220-022-04469-9. eprint: 2005.13349. URL: https://doi.org/10.
1007/s00220-022-04469-9.

[11] Matthias Fey and Jan E. Lenssen. “Fast Graph Representation Learning
with PyTorch Geometric”. In: ICLR Workshop on Representation Learning on
Graphs and Manifolds. 2019. URL: https://arxiv.org/abs/1903.02428.

[12] Robert E Gompf and András Stipsicz. 4-manifolds and Kirby calculus. Vol. 20.
Graduate Studies in Mathematics. American Mathematical Soc., 1999.

[13] Sergei Gukov and Ciprian Manolescu. “A two-variable series for knot
complements”. In: Quantum Topol. 12.1 (2021), pp. 1–109. DOI: 10.4171/
qt/145. eprint: 1904.06057. URL: https://doi.org/10.4171/qt/145.

[14] Sergei Gukov, Pavel Putrov, and Cumrun Vafa. “Fivebranes and 3-manifold
homology”. In: J. High Energy Phys. 2017.7 (2017), no. 7, 071, 81 pages. DOI:
10.1007/JHEP07(2017)071. eprint: 1602.05302. URL: https://doi.org/
10.1007/JHEP07(2017)071.

[15] Sergei Gukov et al. “BPS spectra and 3-manifold invariants”. In: J. Knot
Theory Ramifications 29.2 (2020), 2040003, 85 pages. DOI: 10 . 1142 /

S0218216520400039. eprint: 1701.06567. URL: https://doi.org/10.1142/
S0218216520400039.

[16] Sergei Gukov et al. “Learning to Unknot”. In: Mach. Learn. Sci. Tech. 2.2
(2021), p. 025035. DOI: 10.1088/2632- 2153/abe91f. arXiv: 2010.16263
[math.GT].

[17] Sergei Gukov et al. Searching for ribbons with machine learning. 2023. arXiv:
2304.09304 [math.GT].

[18] Yang-Hui He, Elli Heyes, and Edward Hirst. “Machine Learning in Physics
and Geometry”. In: (Mar. 2023). arXiv: 2303.12626 [hep-th].

[19] Mark C Hughes. “A neural network approach to predicting and computing
knot invariants”. In: Journal of Knot Theory and Its Ramifications 29.03 (2020),
p. 2050005.

[20] Vishnu Jejjala, Arjun Kar, and Onkar Parrikar. “Deep Learning the
Hyperbolic Volume of a Knot”. In: Phys. Lett. B 799 (2019), p. 135033. DOI:
10.1016/j.physletb.2019.135033. arXiv: 1902.05547 [hep-th].

[21] LH Kauffman, NE Russkikh, and IA Taimanov. “Rectangular knot
diagrams classification with deep learning”. In: Journal of Knot Theory and
Its Ramifications 31.11 (2022), p. 2250067.

https://doi.org/10.1007/s00220-022-04469-9
https://doi.org/10.1007/s00220-022-04469-9
2005.13349
https://doi.org/10.1007/s00220-022-04469-9
https://doi.org/10.1007/s00220-022-04469-9
https://arxiv.org/abs/1903.02428
https://doi.org/10.4171/qt/145
https://doi.org/10.4171/qt/145
1904.06057
https://doi.org/10.4171/qt/145
https://doi.org/10.1007/JHEP07(2017)071
1602.05302
https://doi.org/10.1007/JHEP07(2017)071
https://doi.org/10.1007/JHEP07(2017)071
https://doi.org/10.1142/S0218216520400039
https://doi.org/10.1142/S0218216520400039
1701.06567
https://doi.org/10.1142/S0218216520400039
https://doi.org/10.1142/S0218216520400039
https://doi.org/10.1088/2632-2153/abe91f
https://arxiv.org/abs/2010.16263
https://arxiv.org/abs/2010.16263
https://arxiv.org/abs/2304.09304
https://arxiv.org/abs/2303.12626
https://doi.org/10.1016/j.physletb.2019.135033
https://arxiv.org/abs/1902.05547


Bibliography 75

[22] Abdullah Khan, Alexei Vernitski, and Alexei Lisitsa. “Untangling braids
with multi-agent q-learning”. In: 2021 23rd International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE.
2021, pp. 135–139.

[23] Mikhail Khovanov. “A categorification of the Jones polynomial”. In: Duke
Math. J. 101.3 (2000), pp. 359–426. DOI: 10.1215/S0012-7094-00-10131-7.
eprint: math.QA/9908171. URL: https://doi.org/10.1215/S0012-7094-
00-10131-7.

[24] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph
Convolutional Networks. 2017. arXiv: 1609.02907 [cs.LG].

[25] Vijay Konda and John Tsitsiklis. “Actor-Critic Algorithms”. In: Advances in
Neural Information Processing Systems. Ed. by S. Solla, T. Leen, and K. Müller.
Vol. 12. MIT Press, 1999. URL: https://proceedings.neurips.cc/paper\
_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.

pdf.

[26] Greg Kuperberg. “Algorithmic homeomorphism of 3-manifolds as a
corollary of geometrization”. In: Pacific Journal of Mathematics 301.1 (2019),
pp. 189–241.

[27] Yujia Li et al. Gated Graph Sequence Neural Networks. 2017. arXiv: 1511.05493
[cs.LG].

[28] Yujia Li et al. Graph Matching Networks for Learning the Similarity of Graph
Structured Objects. 2019. arXiv: 1904.12787 [cs.LG].

[29] W. B. R. Lickorish. “A representation of orientable combinatorial
3-manifolds”. In: Ann. of Math. 76 (1962), pp. 531–540. DOI: 10 . 2307 /

1970373. URL: https://doi.org/10.2307/1970373.

[30] Alexei Lisitsa, Mateo Salles, and Alexei Vernitski. “Supervised Learning for
Untangling Braids”. In: 15th International Conference on Agents and Artificial
Intelligence (ICAART 2023). 2023.

[31] Volodymyr Mnih et al. Asynchronous Methods for Deep Reinforcement
Learning. 2016. arXiv: 1602.01783 [cs.LG].

[32] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning. 2013.
arXiv: 1312.5602 [cs.LG].

[33] Yuya Murakami. A proof of a conjecture of Gukov-Pei-Putrov-Vafa. 2023. arXiv:
2302.13526 [math.GT].

https://doi.org/10.1215/S0012-7094-00-10131-7
math.QA/9908171
https://doi.org/10.1215/S0012-7094-00-10131-7
https://doi.org/10.1215/S0012-7094-00-10131-7
https://arxiv.org/abs/1609.02907
https://proceedings.neurips.cc/paper\_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper\_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper\_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1904.12787
https://doi.org/10.2307/1970373
https://doi.org/10.2307/1970373
https://doi.org/10.2307/1970373
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2302.13526


76 Bibliography

[34] Walter D. Neumann. “A calculus for plumbing applied to the topology of
complex surface singularities and degenerating complex curves”. In: Trans.
Amer. Math. Soc. 268.2 (1981), pp. 299–344. DOI: 10.2307/1999331. URL:
https://doi.org/10.2307/1999331.

[35] Peter Ozsváth and Zoltán Szabó. “On the Floer homology of plumbed
three-manifolds”. In: Geom. Topol. 7 (2003), pp. 185–224. DOI: 10.2140/gt.
2003.7.185. eprint: math.SG/0203265. URL: https://doi.org/10.2140/
gt.2003.7.185.

[36] Sunghyuk Park. “Higher rank Ẑ and FK”. In: SIGMA 16 (2020), 044,
17 pages. DOI: 10.3842/SIGMA.2020.044. eprint: 1909.13002. URL: https:
//doi.org/10.3842/SIGMA.2020.044.

[37] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: NIPS-W.
2017.

[38] N. Reshetikhin and V. G. Turaev. “Invariants of 3-manifolds via link
polynomials and quantum groups”. In: Invent. Math. 103.3 (1991),
pp. 547–597. DOI: 10.1007/BF01239527. URL: https://doi.org/10.1007/
BF01239527.

[39] R. E. Sawilla, A. K. Silvester, and H. C. Williams. “A new look at an
old equation”. In: Algorithmic Number Theory. Vol. 5011. Lecture Notes in
Comput. Sci. Springer, Berlin, 2008, pp. 37–59. DOI: 10.1007/978-3-540-
79456-1\_2. URL: https://doi.org/10.1007/978-3-540-79456-1_2.

[40] Franco Scarselli et al. “The graph neural network model”. In: IEEE
transactions on neural networks 20.1 (2008), pp. 61–80.

[41] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. “Graph neural
networks in particle physics”. In: Machine Learning: Science and Technology
2.2 (2020), p. 021001.

[42] Petar Veličković et al. “Graph Attention Networks”. In: International
Conference on Learning Representations. 2018. URL: https://openreview.
net/forum?id=rJXMpikCZ.

[43] Alexei Vernitski, Alexei Lisitsa, et al. “Reinforcement learning algorithms
for the Untangling of Braids”. In: The International FLAIRS Conference
Proceedings. Vol. 35. 2022.

[44] Andrew H. Wallace. “Modifications and cobounding manifolds”. In:
Canadian J. Math. 12 (1960), pp. 503–528. DOI: 10.4153/CJM-1960-045-7.
URL: https://doi.org/10.4153/CJM-1960-045-7.

https://doi.org/10.2307/1999331
https://doi.org/10.2307/1999331
https://doi.org/10.2140/gt.2003.7.185
https://doi.org/10.2140/gt.2003.7.185
math.SG/0203265
https://doi.org/10.2140/gt.2003.7.185
https://doi.org/10.2140/gt.2003.7.185
https://doi.org/10.3842/SIGMA.2020.044
1909.13002
https://doi.org/10.3842/SIGMA.2020.044
https://doi.org/10.3842/SIGMA.2020.044
https://doi.org/10.1007/BF01239527
https://doi.org/10.1007/BF01239527
https://doi.org/10.1007/BF01239527
https://doi.org/10.1007/978-3-540-79456-1\_2
https://doi.org/10.1007/978-3-540-79456-1\_2
https://doi.org/10.1007/978-3-540-79456-1_2
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.4153/CJM-1960-045-7
https://doi.org/10.4153/CJM-1960-045-7


Bibliography 77

[45] Edward Witten. “Quantum field theory and the Jones polynomial”. In:
Comm. Math. Phys. 121.3 (1989), pp. 351–399. DOI: 10.1007/BF01217730.
URL: https://doi.org/10.1007/BF01217730.

[46] Zonghan Wu et al. “A comprehensive survey on graph neural networks”.
In: IEEE transactions on neural networks and learning systems 32.1 (2020),
pp. 4–24.

[47] Keyulu Xu et al. Optimization of Graph Neural Networks: Implicit Acceleration
by Skip Connections and More Depth. 2021. arXiv: 2105.04550 [cs.LG].

[48] Jie Zhou et al. “Graph neural networks: A review of methods and
applications”. In: AI Open 1 (2020), pp. 57–81. ISSN: 2666-6510. DOI: https:
/ / doi . org / 10 . 1016 / j . aiopen . 2021 . 01 . 001. URL: https : / / www .
sciencedirect.com/science/article/pii/S2666651021000012.

https://doi.org/10.1007/BF01217730
https://doi.org/10.1007/BF01217730
https://arxiv.org/abs/2105.04550
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012

	Abstract
	Preface
	Acknowledgements
	Introduction
	Preliminaries
	Plumbed 3-manifolds and q-series
	Plumbing graphs
	Identification of Spin^c structures
	WRT invariants
	The q-series

	Graph neural networks

	Refined and generalized -invariants
	The (q,t)-series invariants
	Definition
	Invariance

	Recovering the q-series
	Connected sum of plumbed 3-manifolds

	Graph Neural Networks and Plumbed 3-Manifolds
	Supervised Learning
	Models
	Experimental Settings
	Results

	Reinforcement Learning
	The environment
	State space
	Action space
	Rewards

	The deep RL algorithm
	Results

	Conclusion and Future Work
	Conclusion
	Future work


	Quadratic Diophantine equation in two variables
	Pell's equation
	Generalized Pell's equation
	Quadratic Diophantine equation in two variables: revisited

	Algorithms
	Bibliography

