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Abstract

This thesis is devoted to the study of some dynamic viscoelastic models with memory in
time-dependent domains. In the first chapter we consider a domain with prescribed time-
dependent cracks, while in the second chapter also the cracks have to be determined. In
the third chapter we regard the same viscoelastic material with memory in the contest of
a one-dimensional debonding problem, with assigned debonding front.
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Introduction

This thesis is devoted to the study of some dynamic viscoelastic models with memory in
time-dependent domains. More precisely, in the first two chapters we consider the case of a
domain with time-dependent cracks, while in the third chapter we study a one-dimensional
debonding model (with assigned debonding front).

In the literature there are several results for hyperbolic equations on noncylindrical
domains, namely time-dependent domains. For the wave equation, we refer to [3], [51],
[14], [15], [25], [40], [45], and [50], where the problem is studied with different techinques
(e.g. Galerkin methods, change of variable, semigroup theory). We also refer to [2], [4],
[7], [34], and [36], for different evolution equations in time dependent domains.

Moreover, for the particular case of domains with time-dependent cracks one of the
first work is [17], while for the debonding problem we refer to [20]. In [17] and [20] the
authors considered the wave equation (see also, e.g., [21, 8, 9, 24, 42]), which is used to
study elastic materials without damping. In recent years more attention has been paid
to materials exhibiting viscoelastic behaviour, in particular to viscoelastic materials with
memory.

We now describe in more details the viscoelastic problem with memory we study in this
thesis. Let T > 0 and let {Ωt}t∈[−∞,T ] be a time-dependent family of open subset of Rd,
with d ≥ 1. The viscoelastic problem with memory we are considering in this thesis has
the form

ü(t, x)− div((C(x) + V(x))Eu(t, x)) + div
Äˆ t

−∞
eτ−tV(x)Eu(τ, x) dτ

ä
= f(t, x), (1)

for (t, x) ∈ ∪s∈(−∞,T ){s} × Ωs, where u, Eu, and ü, are the displacement, the symmetric
part of its gradient, and its second derivative with respect to time, C and V are the elasticity
and viscosity tensors, while f is the external load. For the system in (1) the stress is given
by

σ(t, x) = C(x)Eu(t, x) + V(x)Eu(t, x)−
ˆ t

−∞
eτ−tV(x)Eu(τ, x) dτ. (2)

Moreover, as in [16, 31] we assume that we know the displacement u on (−∞, 0] and we
want to solve (1) on [0, T ]. It is convenient to write (1) in the form

ü(t, x)− div(σ0(t, x)) = l0(t, x) (t, x) ∈ ∪s∈(0,T ){s} × Ωs, (3)

xi
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where

σ0(t, x) = C(x)Eu(t, x) + V(x)Eu(t, x)−
ˆ t

0
eτ−tV(x)Eu(τ, x) dτ, (4)

l0(t, x) := f(t, x)− divF0(t, x), (5)

F0(t, x) :=

ˆ 0

−∞
eτ−tV(x)Eu0(τ, x) dτ (6)

and u0 is a function that represents the displacement on (−∞, 0], namely u(t, x) = u0(t, x)
for every (s, x) ∈ ∪s∈(−∞,0]{s} × Ωs. Moreover, system (3) is is complemented by suitable
initial and boundary conditions.

When the domains are constant in time, viscoelastic problems with memory similar to
(1) and (3) have a long history and were studied by Boltzmann ([5], [6]) and Volterra ([48],
[49]), while recent results can be found in [26], [31], [32], and [46].

In this thesis we consider the case of time-dependent domains, more precisely we study
the particular cases related to crack growth and to a one dimensional debonding problem.
In the first case we have Ωt = Ω \ Γt, where Ω is an open bounded subset of Rd and Γt is
a (d− 1)-dimensional closed subset of Ω increasing with respect to time, which represents
the crack at time t ∈ [0, T ] (see Chapter 1 and 2). In the debonding problem we have
Ωt = (0, ℓ(t)), where ℓ is an increasing function, which represents the debonding front at
time t ∈ [0, T ] (see Chapter 3).

The thesis is organized in three chapters.

Chapter 1: A viscoelastic problem with prescribed time dependent cracks

This chapter is devoted to the study of the viscoelastic model (3), when d ≥ 2, Ωt = Ω\Γt,
and {Γt}[0.T ] is prescribed. This is a preliminary step to solve the dynamic crack problem,
where {Γt}[0.T ] is not prescribed (see Chapter 2).

The system without damping terms, which reduces to the elastodynamics system, is

ü(t, x)− div(C(x)Eu(t, x)) = f(t, x) t ∈ [0, T ], x ∈ Ω \ Γt, (7)

and is studied in [17, 21, 8, 9, 24]. Regarding viscoelastic materials, the well known Kelvin-
Voigt’s model leads to the system

ü(t, x)− div(C(x)Eu(t, x))− div(V(x)Eu̇(t, x)) = f(t, x) t ∈ [0, T ], x ∈ Ω \ Γt, (8)

which is studied in [17, 47, 10]. As explained in details in the introduction of Chapter 2,
this model can not be used in dynamic crack growth because it leads to the Viscoelastic
Paradox (i.e., the crack can not increase). This is the reason why we study a different
problem, namely the model with memory given by (3).

The existence of a solution u for problem (3) (with prescribed cracks t 7→ Γt) is given
by [43], together to an energy inequality.
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In this chapter we present the results obtained in [11], in collaboration with G. Dal
Maso, on the uniqueness of the solution u (Theorem 1.1.9) and on its continuous dependence
on the data, in particular on the cracks {Γt}t∈[0,T ] (Theorem 1.3.2). For the case of the
pure elasticity or the Kelvin-Voigt’s model the argument adopted to prove uniqueness is
based on an change of variable, which allows to recast the original problem in a new one
with a more complex equation, but with domain constant in time (see [21, 8, 9, 10]).
Unfortunately, this technique can not be applied to (3), due to the difficulties given by the
integral term.

To overcome this problem, we consider a new argument, relying on a fixed point argu-
ment. More precisely, we write problem (3) in the equivalent form

ü(t, x)− div((C(x) + V(x))Eu(t, x)) = l0(t, x)− divFu(t, x) t ∈ [0, T ], x ∈ Ω \ Γt (9)

where

Fu(t, x) :=

ˆ t

0
eτ−tVEu(τ, x) dτ. (10)

In (9) we regard the viscoelastic problem with memory as an elastic problem with forcing
term depending on u. This allows us to estimate u in terms of Fu using the energy inequality
for the solution of (7). Then we estimate Fu in terms of u using just the its definition, and
uniqueness is obtained from the combined estimate (Subsection 1.2.2). In order to apply
this argument, in Subsection 1.2.1 we have to extend the results known in the literature
for (7) to more general forcing terms, which will be needed to study (9).

Our second result (Theorem 1.3.2) is the continuous dependence of the solutions of (3)
on the cracks. More precisely, we consider a sequence Γnt of time dependent cracks and
the solutions un of problem (3) with Γt replaced by Γnt . Under suitable assumption on
the convergence of Γnt to Γt we prove that the sequence un converges to the solution u of
(3). Our assumptions of Γnt are similar to those considered in [21] and [8] to prove the
corresponding result for (7).

To prove the continuous dependence we write our problem in the form (9) and we
regard un as a fixed point for a suitable operator depending on n, which is a contraction
if T is small enough. Under this assumption the convergence of un is a consequence of a
general results on fixed points of contractions (Lemma 1.3.3). To show that its hypotheses
are satisfied, we use the continuous dependence on the cracks of the solutions of problem
(7) (see [21] and [8]) and we obtain the result for (3) if T is small enough. If T is large we
divide the interval [0, T ] into smaller intervals, where we can apply the previous result.

The chapter is organized as follows:

• in Section 1.1 we give the precise formulation of problem (3):

– in Subsection 1.1.1 we make precise the hypotheses on the data and we recall
some basic results in crack theory;
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– in Subsection 1.1.2 we define the function spaces involved in the weak formula-
tion of the problem;

• in Section 1.2 we prove the uniqueness for problem (3):

– in Subsection 1.2.1 we generalized some results of [21] and [8] regarding energy
estimates for the wave equations;

– in Subsection 1.2.2 we prove the uniqueness for (3) (Theorem 1.1.9);

• in Section 1.3 we study the continuous dependence on the data:

– in Subsection 1.3.1 we prove some preliminary results, extending the results of
[21] and [8];

– in Subsection 1.3.2 we prove the continuous dependence (Theorem 1.3.2).

Chapter 2: Dynamic crack growth in viscoelastic materials with memory

This chapter is devoted to the study of dynamic crack growth in viscoelastic materials
governed by system (3). The original results of this chapter are contained in [12].

In the same spirit of [18] and [19], we can describe the problem of dynamic crack growth
as following. Given a (d − 1)-dimensional closed set Γin ⊂ Ω (the crack at initial time),
we want to find a family of (d− 1)-dimensional closed sets {Γt}t∈[0,T ] (the cracks at every

time) and a displacement function u(t): Ω \ Γt → Rd such that

i) u satisfy (3) on
⋃
s∈(0,T ){s}× (Ω \Γs) with prescribed initial conditions at t = 0 and

boundary conditions on ∂Ω and Γt;

ii) Γ0 = Γin and Γs ⊂ Γt if s < t;

iii) u and {Γt}t∈[0,T ] satisfy a dynamic energy-dissipation balance, a dynamic version of
Griffith’s criterion (see [35], [39], and [37]), namely

E(t) +D(t) +Hd−1(Γt \ Γin) = E(0) +W(t), for every t ∈ [0, T ], (11)

where E(t) is the sum of kinetic and elastic energy at time t, andD(t) is the energy dis-
sipated by viscosity in the time interval [0, t], Hd−1(Γt\Γin) is the (d−1)-dimensional
Hausdorff measure of Γt \ Γin (interpreted as the energy dissipated to produce the
crack), and W(t) is the work done by the external forces in the interval [0, t];

iv) {Γt}t∈[0,T ] satisfies a maximal dissipation condition, which forces the crack to run as
fast as possible (see Definition 2.3.1).
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Conditions i) and iii) provide a coupling between the displacement u and the cracks
{Γt}t∈[0,T ]. For this reason, a pair (u, {Γt}t∈[0,T ]) satisfying conditions i)-iv) is called a
solution of the coupled problem.

Note that, if in i) the model with memory is replaced by Kelvin-Voigt’s model described
by (8), then it is known (see [17] and [47]) that the corresponding solution (u, {Γt}t∈[0,T ])
of the coupled problem satisfies Γt = Γ0 for every t ∈ [0, T ], namely the crack never grows.
This phenomenon is known in the mechanical literature as the Viscoelastic Paradox (see,
e.g., [46]). It motivates our choice of the viscoelastic model (3) in i).

In this chapter we study problem i)-iv) when Ω ⊂ R2 (namely d = 2) and assuming very
strong regularity conditions on the shape of the cracks {Γt}t∈[0,T ] and on their dependence
on t. Under this a priori assumptions, we prove the existence of a solution of the coupled
problem (Theorem 2.3.3).

The proof of this result follows the lines of [18] and [19], where the case of pure elasticity
is considered. To deal with the memory term given by (10), we use the results of Chapter 1.
In particular the continuous dependence on the data is a fundamental tool for a compactness
argument that plays a key role in the proof of Theorem 2.3.3.

The chapter is organized as follows:

• in Section 2.1 we give the precise formulation of the problem and all the preliminary
results:

– in Subsection 2.1.1 we describe the a priori bounds on the geometry of the cracks
and on their time evolution;

– in Subsection 2.1.2 we define the function spaces for the weak formulation of
the problem;

– in Subsection 2.1.3 we extend some preliminary results of Chapter 1;

• in Section 2.2 we deal with the energies involved in the problem:

– in Subsection 2.2.1 we make precise the formulation of the dynamic energy-
dissipation balance;

– in Subsection 2.2.2 we define the class of cracks {Γt}t∈[0,T ] such that the energy-
dissipation balance is satisfied, we show that the this class is non-empty, and
we prove a compactness result;

• in Section 2.3 we define the maximal dissipation condition and we prove the main
result of the chapter (Theorem 2.3.3).

Chapter 3: A viscoelastic problem with prescribed debonding front

This chapter is devoted to the study of a debonding problem for a viscoelstic bar with
memory. The reference configuration of the bar is the interval [0, L], for a given L > 0. We
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assume that at every time t the portion [ℓ(t), L] is attached to a rigid substrate, while the
behaviour of the detached part of the bar is governed by the equation

utt(t, x)−uxx(t, x)+
ˆ t

0

eτ−t

2
uxx(τ, x) dτ=f(t, x)−Fx(t, x), t ∈ [0, T ], x ∈ (0, ℓ(t)). (12)

In the previous formula u represents the longitudinal displacement of the reference con-
figuration (extended as u = 0 outside {(t, x) | t ∈ [0, T ], x ∈ (0, ℓ(t))}), while the right
hand side denotes the forcing terms. Equation (12) is a particular case of (3) when d = 1,
Ωt = (0, ℓ(t)), and C = V = 1

2 .
Since the bar is attached on [ℓ(t), L], we have that the displacement satisfies u(t, x) = 0

for every t ∈ [0, T ] and x ∈ [ℓ(t), L]. The number ℓ(t) represents the debonding front at
time t and, since we assume that the debonding process is irreversible, the function ℓ is
increasing. In the debonding problem besides (12) one considers another equation that
couples ℓ and u and one has to solve the coupled problem.

In this chapter we consider only (12) assuming that the function ℓ is a prescribed
Lipschitz function satisfying 0 ≤ ℓ̇(t) ≤ 1. Our main result is the existence and uniqueness
of the solution of (12) with prescribed initial and boundary conditions (see Theorem 3.2.18).
Moreover, we obtain some regularity results for the solution u and for its energy considered
as a function of time (see Theorem 3.3.5).

As done in the previous chapters, in order to solve (12) we study the auxiliary problem
without viscosity given by

utt(t, x)−uxx(t, x)=f(t, x)−Fx(t, x), t ∈ [0, T ], x ∈ (0, ℓ(t)). (13)

Existence and uniqueness for problem (12) are then obtained by a fixed point argument.
Problem (13) is studied in [20] when f = F = 0 and in [42] when F = 0. Since the

spatial derivative Fx is defined only in the sense of distributions, we cannot apply the
previous results directly. However, we are able to prove that the solution of (13) is given
by an explicit formula, which extends the classical d’Alembert’s formula. We note that
this formula is much more complex than to the corresponding one for F = 0 (obtained in
[42]). Thanks to this formula we also get some extra regularity for the solution, which will
be crucial for some final results regarding energy balance.

Using these results we are able to prove in Section 3.3 that the total energy correspond-
ing to (12) is absolutely continuous with respect to time. This is a crucial step in order
to define the the equation coupling ℓ and u, and to study in a future work (see [13]) the
coupled problem, where also ℓ is unknown.

The chapter is organized as follows:

• in Section 3.1 we give some basic definitions;

• in Section 3.2 we prove existence and uniqueness for the auxiliary problem (13) and
the original viscoelstic problem (12), more precisely
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– in Subsection 3.2.1 we describe deal with some geometric considerations;

– in Subsection 3.2.2 we prove the representation formula and some regularity
results;

– in Subsection 3.2.3 we prove existence and uniqueness for (12);

• in Section 3.3 we study the total energy of the system:

– in Subsection 3.3.1 we prove that it is absolutely continuous with respect to
time;

– in Subsection 3.3.2 we explain the main ideas that will be used in future works
to study the debonding problem with non.prescribed debonding front.





Notations

Basic notation

Let d and m be positive integers.

Rm×d Space of real m× d matrices.

Rd×dsym Space of real symmetric m× d matrices.

AT Transpose of A ∈ Rd×d.

A−1 Inverse of A ∈ Rd×d.

Asym Symmetric part of A ∈ Rd×d.

I Identity matrix in Rd×d.

A : B Euclidian scalar product between A,B ∈ Rm×d.

a⊗ b Tensor product between two vectors a, b ∈ Rd.

Ld The d-dimensional Lebesgue measure in Rd.

Hd−1 The (d− 1)-dimensional Hausdorff measure in Rd.

Br(x) The ball of radius r and center x in Rd.

max{α, β} Maximum between α, β ∈ R.

min{c1, c2} Minimum between α, β ∈ R.

∂xi Partial derivatives with respect to the variable xi.

Du Jacobian matrix of the function u.

Eu Jacobian matrix of the function u, namely Eu := 1
2(∇u+∇uT ).

divT Divergence with respect to rows of a tensor T .

xix
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Function spaces

Let X, Y be two metric spaces, let Ω ⊂ Rd be an open set, let (a, b) ⊂ R be an open
interval, let X be a Banach space and let p ∈ [1,+∞].

C0(X;Y ) Space of continuous functions from X to Y .

Lip(X;Y ) Space of Lipschitz functions from X to Y .

Ck(Ω;Rm) Space of Rm-valued functions with k continuous derivatives.

Ckc (Ω;Rm) Space of Ck(Ω;Rm) functions with compact support in Ω.

C∞
c (Ω;Rm) Space of functions that belong to Ckc (Ω;Rm) for every k.

Ck,1(Ω;Rm) Space of Ck(Ω;Rm) functions whose k-derivatives are Lipschitz.

D′(Ω) Space of distributions on Ω.

Lp(Ω;Rm) Lebesgue space of p-integrable functions.

W k,p(Ω;Rm) Sobolev space with k derivatives and p-integrable.

Hk(Ω;Rm) Sobolev space with k derivatives and 2-integrable.

Lp((a, b);X) Bochner-Lebesgue space of p-th power integrable functions.

W k,p((a, b);X) Bochner-Sobolev space with k derivatives and p-integrable.

Hk((a, b);X) Bochner-Sobolev space with k derivatives and 2-integrable.

Ck([a, b];X) Bochner space of functions with k continuous derivatives.

AC([a, b];X) Bochner space of absolutely continuous functions.

C0
w([a, b];X) Bochner space of weakly continuous functions.

Remark 0.0.1. When m = 1, we omit Rm in the previous spaces, e.g. we write Hk(Ω)
instead of Hk(Ω;Rm).

Remark 0.0.2. With a slight abuse of notation, we use φ̇ to denote both the Bochner
derivative with respect to time (if φ = φ(t, x)) and the derivative with respect to a single
variable (if φ = φ(s)), depending on the context.

Remark 0.0.3. Every function in W k,p(a, b;X) is always identified with its continuous
representative on [a, b].
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Remark 0.0.4. Wemake the usual identifications for Bochner spaces, e.g. L2(a, b;L2(Ω)) ≃
L2((a, b)× Ω) and H1(a, b;L2(Ω)) ∩ L2(a, b;H1(Ω)) ≃ H1((a, b)× Ω).





Chapter 1

A viscoelastic problem with
prescribed time dependent cracks
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In this chapter we study the viscoelastic problem with memory on domains with pre-
scribed time dependents cracks. More precisely, we consider

ü(t)− div((C+ V)Eu(t)) + div
Äˆ t

0
eτ−tVEu(τ) dτ

ä
= ℓ(t) in Qcr, (1.0.1)

where Ω ⊂ Rd is the reference configuration, [0, T ] is the time interval, {Γt}t∈[0,T ] is the
prescribed crack, Qcr := {(x, t) : t ∈ [0, T ], x ∈ Ω \ Γt}, u(t), Eu(t), and ü(t) are the
displacement at time t, the symmetric part of its gradient, and its second derivative with
respect to time, C and V are the elasticity and viscosity tensors, and ℓ(t) is the external
load at time t. Problem (1.0.1) is complemented by initial conditions at t = 0 for u and u̇
and by boundary conditions on ∂Ω and Γt. See the Introduction for more details on the
physical interpretation of (1.0.1).
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2 1.1. Formulation of the problem

The chapter is organized ad follows. In Section 1.1 we give the precise formulation of
problem (1.0.1). More precisely, we give the hypotheses on the data (in particular on the
cracks) and we define the weak formulation of the problem.

Section 1.2 is devoted to the proof of the uniqueness for problem (1.0.1). In particular,
in Subsection 1.2.1 we generalized some results of [21] and [8] regarding energy inequalities
for the elastodynamic equation (that is problem (1.0.1) without the memory term), namely

ü(t)− div((C+ V)Eu(t)) = ℓ(t) in Qcr. (1.0.2)

These inequalities will be crucial in order to have some estimates of the norm of the solution
of the wave equations in terms of the norm of the data. Using this estimates and a fixed
point argument, in Subsection 1.2.2 we prove the uniqueness for (1.0.1) (Theorem 1.1.9).

In Section 1.3 we study the continuous dependence on the data, in particular on cracks.
More precisely, in Subsection 1.3.1 we extend the results of [21] and [8] by proving some
results concerning the wave when the forcing term is more general and the formulation of
the problem is weaker. Finally, in Subsection 1.3.2 we prove the continuous dependence
(Theorem 1.3.2), which will be foundamental for the proof of the results of Chapter 2.

All the original results of this chapter are based on [11].

1.1 Formulation of the problem

The reference configuration of our problem is a bounded open set Ω ⊂ Rd, d ≥ 1, with
Lipschitz boundary ∂Ω. We assume that ∂Ω = ∂DΩ ∪ ∂NΩ, where ∂DΩ and ∂NΩ are dis-
joint (possibly empty) Borel sets, on which we prescribe Dirichlet and Neumann boundary
conditions respectively.

1.1.1 Basic notions

For every x ∈ Ω the elasticity tensor C(x) and the viscosity tensor V(x) are prescribed
elements of the space L(Rd×dsym;Rd×dsym) of linear maps from Rd×dsym into Rd×dsym, where Rd×dsym is the
space of reald d×d symmetric matrices. The euclidean scalar product between the matrices
A and B is denoted by A : B. We assume that the functions C, V: Ω → L(Rd×dsym;Rd×dsym)
satisfy the following properties, for suitable constants α0 > 0 and M0 > 0:

(H1) (regularity) C is of class C1 and maxx∈Ω|C(x)|≤M0;

(H2) (symmetry) C(x)A : B = A : C(x)B for every x ∈ Ω and A, B ∈ Rd×dsym;

(H3) (coerciveness) C(x)A : A ≥ α0|A|2 for every x ∈ Ω and A ∈ Rd×dsym;

(H4) (regularity) V is of class C1 and maxx∈Ω|V(x)|≤M0;
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(H5) (symmetry) V(x)A : B = A : V(x)B for every x ∈ Ω and A, B ∈ Rd×dsym;

(H6) (coerciveness) V(x)A : A ≥ α0|A|2 for every x ∈ Ω and A ∈ Rd×dsym.

Throughout the chapter we study the problem in the time interval [0, T ], with T > 0.
For t ∈ [0, T ] the crack at time t is given by a subset Γt of the intersection between Ω and
a suitable d− 1 dimensional manifold Γ (regarded as the crack path). We assume that

(H7) Γ is a complete (d− 1)-dimensional C2 manifold with boundary;

(H8) Ω ∩ ∂Γ = ∅ and Hd−1(Γ ∩ ∂Ω) = 0, where Hd−1 denotes the (d − 1)-dimensianal
Hausdorff measure;

(H9) for every x ∈ Γ ∩ ∂Ω there exists an open neighborhood Ux of x in Rd such that
Ux ∩ (Ω \ Γ) is the union of two non empty disjoint open sets U+

x and U−
x with

Lipschitz boundary;

(H10) Γt is closed, Γt ⊂ Γ∩Ω for every t ∈ [0, T ], and Γs ⊂ Γt for every s < t (irreversibility
of the fracture process).

Moreover we assume that there exist Φ,Ψ : [0, T ]×Ω → Ω with the following properties:

(H11) Φ,Ψ are of class C2,1;

(H12) Ψ(t,Φ(t, y)) = y and Φ(t,Ψ(t, x)) = x for every x, y ∈ Ω;

(H13) Φ(t,Γ) = Γ, Φ(t,Γ0) = Γt, and Φ(t, y) = y for every t ∈ [0, T ] and every y in a
neighborhood of ∂Ω;

(H14) Φ(0, y) = y for every y ∈ Ω;

(H15) for every y ∈ Ω

|Φ̇(t, y)|2< mdet(Ψ)α0

Mdet(Ψ)K
,

where the dot denotes the derivative with respect to t, mdet(Ψ) := min detDΨ,
Mdet(Ψ) := maxdetDΨ and K is the constant in Korn’s inequality in Lemma 1.1.2
below.

We shall prove that our hypotheses imply that Korn’s inequality holds on Ω \ Γ. We
begin with the following technical lemma.

Lemma 1.1.1. Under hypotheses (H7)-(H9), the set Ω \ Γ is the union of a finite number
of connected open sets with Lipschitz boundary.
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Proof. Since Γ is a C2 manifold of dimension d − 1, for every x ∈ Γ ∩ Ω there exists an
open neighborhood Ux of x in Rd such that Ux ∩ (Ω \ Γ) is the union of two non empty
disjoint open sets U+

x and U−
x with Lipschitz boundary.

By our hypothesis on Γ ∩ ∂Ω the same property holds, more in general, for every
x ∈ Γ∩Ω. Since Γ∩Ω is compact, there exists a finite number of points x1, ..., xm ∈ Γ∩Ω
such that

Γ ∩ Ω ⊂ ∪mi=1Uxi .

Since Ω has Lipschitz boundary, for every y ∈ ∂Ω \ ∪mi=1Uxi ⊂ ∂Ω \ Γ there exists
an open neighborhood Vy of y in Rd such that Vy ∩ (Ω \ Γ) has Lipschitz boundary. By
compactness there exists a finite number of points y1, ..., yn ∈ ∂Ω \ ∪mi=1Uxi such that
∂Ω \ ∪mi=1Uxi ⊂ ∪nj=1Vyj .

Since Ω \ (∪mi=1Uxi ∪ ∪nj=1Vyj ) is compact and is contained in the open set Ω \ Γ, there
exists an open set W with Lipschitz boundary such that

Ω \ (∪mi=1Uxi ∪ ∪nj=1Vyj ) ⊂W ⊂ Ω \ Γ

Therefore

Ω \ Γ =W ∪
m⋃
i=1

U+
xi ∪

m⋃
i=1

U−
xi ∪

n⋃
j=1

(Vyj ∩ (Ω \ Γ)).

Since every open sets with Lipschitz boundary is the union of a finite number of connected
open sets with Lipschitz boundary, the conclusion follows.

For every u ∈ H1(Ω \ Γ;Rd) Du denotes jacobian matrix in the sense of distributions
on Ω \ Γ and Eu is its symmetric part, i.e.,

Eu :=
1

2
(Du+DuT ).

Lemma 1.1.2. Under hypotheses (H7)-(H9), there exists a constant K, depending only on
Ω and Γ, such that

∥Du∥2≤ K(∥u∥2+∥Eu∥2) (1.1.1)

for every u ∈ H1(Ω \ Γ;Rd), where ∥·∥ denotes the L2 norm.

Proof. The result is a consequence of the second Korn’s inequality (see, e.g., [41, Theorem
2.4]), applied to the sets with Lipschitz boundary provided by Lemma 1.1.1.

Remark 1.1.3. Under hypotheses (H7)-(H9), using a localization argument (see the proof
of Lemma 1.1.1) we can prove that the trace operator is well defined and continuous from
H1(Ω \ Γ;Rd) into L2(∂Ω;Rd).
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1.1.2 Function spaces

We now introduce the function spaces that will be used in the precise formulation of
problem (1.0.1). We set

V := H1(Ω \ Γ;Rd) and H := L2(Ω;Rd). (1.1.2)

For every finite dimensional Hilbert space Y the symbols (· , ·) and ∥·∥ denote the scalar
product and the norm in the L2(Ω;Y ), according to the context. The space V is endowed
with the norm

∥u∥V := (∥u∥2+∥Du∥2)1/2. (1.1.3)

For every t ∈ [0, T ] we define

Vt := H1(Ω \ Γt;Rd) and V D
t := {u ∈ Vt | u|∂DΩ= 0}, (1.1.4)

where u|∂DΩ denotes the trace of u on ∂DΩ. We note that Vt and V D
t are closed linear

subspaces of V .
We define

V := {v ∈ L2(0, T ;V ) ∩H1(0, T ;H) | v(t) ∈ Vt for a.e. t ∈ (0, T )}, (1.1.5)

which is a Hilbert space with the norm

∥v∥V := (∥v∥2L2(0,T ;V )+∥v̇∥2L2(0,T ;H))
1
2 , (1.1.6)

where the dot denotes the distibutional derivative with respect to t. Moreover we set

VD := {v ∈ V | v(t) ∈ V D
t for a.e. t ∈ (0, T )} (1.1.7)

and note that it is a closed linear subspace of V.

Remark 1.1.4. Since H1(0, T ;H) ↪→ C0([0, T ];H) we have

V ↪→ C0([0, T ], H).

In particular v(0) and v(T ) are well defined as elements of H, for every v ∈ V.

We set
H̃ := L2(Ω;Rd×dsym). (1.1.8)

On the forcing term ℓ(t) of (1.0.1) we assume that

ℓ(t) := f(t)− divF (t), (1.1.9)

where
f ∈ L2(0, T ;H) and F ∈ H1(0, T ; H̃) (1.1.10)

are prescribed function.
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Remark 1.1.5. As usual the divergence of a matrix valued function is the vector valued
function whose components are obtained taking the divergence of the rows.

As for the Dirichlet boundary condition on ∂DΩ, it is obtained by prescribing a function

uD ∈ H2(0, T ; H) ∩H1(0, T ; V0). (1.1.11)

We impose that for a.e. t ∈ [0, T ] the trace of the solution u(t) is equal to the trace uD(t)
on ∂DΩ, i.e.,

u(t)− uD(t) ∈ V D
t .

About the initial data we fix

u0 ∈ V0 and u1 ∈ H. (1.1.12)

Moreover, we assume the compatibility condition

u0 − uD(0) ∈ V D
0 . (1.1.13)

We are now in a position to give the precise definition of solution of problem (1.0.1).

Definition 1.1.6 (Solution for visco-elastodynamics with cracks). We say that u is a weak
solution of problem (1.0.1) of visco-elastodynamics on the cracked domains Ω \ Γt, with
external load ℓ = f − divF , Dirichlet boundary condition uD on ∂DΩ, natural Neumann
boundary condition on ∂NΩ ∪ Γt, and initial conditions u0 and u1, if

u ∈ V and u− uD ∈ VD, (1.1.14)

−
ˆ T

0
(u̇(t), φ̇(t)) dt+

ˆ T

0
((C+ V)Eu(t), Eφ(t)) dt−

ˆ T

0

ˆ t

0
eτ−t(VEu(τ), Eφ(t)) dτdt

=

ˆ T

0
(f(t), φ(t)) dt+

ˆ T

0
(F (t), Eφ(t)) dt,

for all φ ∈ VD with φ(0) = φ(T ) = 0, (1.1.15)

u(0) = u0 in H and u̇(0) = u1 in (V D
0 )∗, (1.1.16)

where (V D
0 )∗ denotes the topological dual of V D

t for t = 0.

Remark 1.1.7. If u satisfy (1.1.14) and (1.1.15), it is possible to prove that u̇ ∈ H1(0, T ; (V D
0 )∗)

(see [43, Remark 4.6]), which implies u̇ ∈ C0([0, T ]; (V D
0 )∗). In particular u̇(0) is well de-

fined as an element of (V D
0 )∗.

Remark 1.1.8. Under suitable regularity assumptions, u is a solution in the sense of
Definition 1.1.6 if and only if u(0) = u0, u̇(0) = u1, and for every t ∈ [0, T ]

ü(t)− div((C+ V)Eu(t)) + div
Äˆ t

0
eτ−tVEu(τ) dτ

ä
= f(t)− divF (t) in Ω \ Γt,
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u(t) = uD(t) on ∂DΩ,Ä
(C+ V)Eu(t)−

ˆ t

0
eτ−tVEu(τ) dτ

ä
ν = F (t)ν on ∂NΩ,Ä

(C+ V)Eu(t)−
ˆ t

0
eτ−tVEu(τ) dτ

ä±
ν = F (t)±ν on Γt,

where ν is the unit normal and the symbol ± denotes suitable limits on each side of Γt.

The last two conditions represent the natural Neumann boundary conditions on ∂NΩ
and on the faces of Γt.

To describe the boundedness properties of the solutions of problem (1.1.14)-(1.1.16),
we introduce the space

V∞ := {v ∈ L∞(0, T ;V ) ∩W 1,∞(0, T ;H) | v(t) ∈ Vt for a.e. t ∈ (0, T )}, (1.1.17)

which is a Banach space with the norm

∥v∥V∞ := ∥v∥L∞(0,T ;V )+∥v̇∥L∞(0,T ;H). (1.1.18)

As for the continuity properties, it is convenient to introduce the space of weakly continuous
functions with values in a Banach space X with topological dual X∗, defined by

C0
w([0, T ];X) := {v : [0, T ] → X | t 7→ ⟨h, v(t)⟩ is continuous for every h ∈ X∗}.

We are now in position to state one of the main results of the chapter.

Theorem 1.1.9. Assume (H1)-(H15) and (1.1.10)-(1.1.13). Then there exists a unique
solution of problem (1.1.14)-(1.1.16). Moreover u ∈ V∞, u ∈ C0

w([0, T ];V ), and u̇ ∈
C0
w([0, T ];H).

The existence of a solution is proved in [43] under much weaker assumptions on the
cracks Γt. The uniqueness will be proved in the next section.

1.2 Uniqueness

In our proof of Theorem 1.1.9 we shall use some known results about existence and unique-
ness for the system of elastodynamics on cracked domains, where the memory terms is not
present. We set

A := C+ V (1.2.1)

and we consider A as the elasticity tensor of the auxiliary problem defined below.
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1.2.1 The auxiliary problem

Definition 1.2.1 (Solution for elastodynamics with cracks). We say that v is a weak
solution of problem (1.0.2) of elastodynamics on the cracked domains Ω \Γt, with external
load ℓ = f − divF , Dirichlet boundary condition uD on ∂DΩ, natural Neumann boundary
condition on ∂NΩ ∪ Γt, and initial conditions u0 and u1, if

v ∈ V and v − uD ∈ VD, (1.2.2)

−
ˆ T

0
(v̇(t), φ̇(t)) dt+

ˆ T

0
(AEv(t), Eφ(t)) dt =

ˆ T

0
(f(t), φ(t)) dt

+

ˆ T

0
(F (t), Eφ(t)) dt for all φ ∈ VD with φ(0) = φ(T ) = 0, (1.2.3)

v(0) = u0 in H and v̇(0) = u1 in (V D
0 )∗. (1.2.4)

The following technical lemma will be used in the proof of Theorem 1.2.3.

Lemma 1.2.2. Let v be a weak solution according to Definition 1.2.1 satisfying v̇(0) = 0
in the sense of (V D

0 )∗. Then (1.2.3) holds for every φ ∈ VD such that φ(0) ∈ V D
0 and

φ(t) = 0 in a neighborhood of T , even if the condition φ(0) = 0 is not satisfied.

Proof. Let φ as in the statement. For every ε > 0, we define

φε(t) :=

{
t
εφ(0) for t ∈ [0, ε],

φ(t− ε) for t ∈ (ε, T ].

Then φε ∈ VD and φε(0) = φε(T ) = 0, for ε small enough (1.2.3) holds for φε. We observe
that

ˆ T

0
(v̇(t), φ̇ε(t)) dt =

1

ε

ˆ ε

0
(v̇(t), φ(0)) dt+

ˆ T

ε
(v̇(t), φ̇(t− ε)) dt

→
ˆ T

0
(v̇(t), φ̇(t)) dt

as ε → 0, where we have used the initial condition in the first term and the continuity of
translations in the second one. In a similar way we can pass to the limit in the other terms
of equation (1.2.3).

We are now in a position to state the existence and uniqueness result for the solutions
of elastodynamics with cracks.

Theorem 1.2.3. Assume (H1)-(H15) and (1.1.10)-(1.1.13). Then there exists a unique
solution v of problem (1.2.2)-(1.2.4). Moreover v ∈ V∞, v ∈ C0

w([0, T ];V ), and v̇ ∈
C0
w([0, T ];H).
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Proof. In the case F = 0 the existence result, together with an energy bound, is proved in
[8] and [47] (a previous result in the scalar case is proved in [17]). When F is present, the
same proof can be repeated with obvious modifications (for instance it is enough to repeat
the arguments of [43] with V = 0).

As for uniqueness, it can be proved as in [24, Example 4.2 and Theorem 4.3]. Since
in that paper the initial conditions are given in a different sense, we have to replace [24,
Proposition 2.10] by our Lemma 1.2.2.

The uniqueness result and the existence of a solution with bounded energy imply that
the solution satisfies v ∈ V∞. This fact, together with the continuity of v in H and
v̇ ∈ (V D

0 )∗ (Remark 1.1.7), implies that v ∈ C0
w([0, T ];V ) and v̇ ∈ C0

w([0, T ];H) (see, e.g.,
[30, Chapitre XVIII, §5, Lemme 6]).

We now deal with some energetic considerations that will be crucial in the next section.
For every v ∈ C0

w([0, T ];V ), with v̇ ∈ C0
w([0, T ];H), the energy of v is defined for every

t ∈ [0, T ] as

Ev(t) :=
1

2
∥v̇(t)∥2+1

2
(AEv(t), Ev(t)). (1.2.5)

Under the same assumption on v, when uD = 0 the work done by the external forces on
the displacement v in the time interval [0, t] ⊂ [0, T ] can be written as

Wv(t) :=

ˆ t

0
(f(s), v̇(s)) ds−

ˆ t

0
(Ḟ (s), Ev(s)) ds

+ (F (t), Ev(t))− (F (0), Ev(0)), (1.2.6)

see for instance [43, Remarks 5.9 and 5.11].

We now give an inequality regarding the energy of the system.

Theorem 1.2.4. Under the assumptions of Theorem 1.2.3, if uD = 0, then the unique
solution v of problem (1.2.2)-(1.2.4) satisfies the energy inequality

Ev(t) ≤ Ev(0) +Wv(t) for all t ∈ [0, T ]. (1.2.7)

For a proof we refer to [24, Corollary 3.2] and [43, Remark 5.11].

Proposition 1.2.5. Under the assumptions of Theorem 1.2.3, suppose in addition that
uD = 0 and u0 = 0. Then there exists a positive constants A, depending on the constant
K in Korn’s inequality (1.1.1) and on the constant α0 in (H3), but not on T , f , F , and
u1, such that the solution v of problem (1.2.2)-(1.2.4) satisfies

∥v∥V∞≤ A(1 + T )
Ä
∥u1∥+∥F∥L∞(0,T ;H̃)+T

1/2(∥Ḟ∥L2(0,T ;H̃)+∥f∥L2(0,T ;H))
ä
. (1.2.8)
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Proof. Under our assumption we have

Wv(t) :=

ˆ t

0
(f(s), v̇(s))ds−

ˆ t

0
(Ḟ (s), Ev(s)) ds+ (F (t), Ev(t)),

Ev(0) =
1

2
∥u1∥2.

Recalling (H3), (H6), and (1.2.7) we have

1

2
∥v̇(t)∥2+α0

2
∥Ev(t)∥2 ≤ T 1/2∥Ḟ∥L2(0,T ;H̃)∥Ev∥L∞(0,T ;H̃)

+ ∥F∥L∞(0,T ;H̃)∥Ev∥L∞(0,T ;H̃)

+ T 1/2∥f∥L2(0,T ;H)∥v̇∥L∞(0,T ;H)+
1

2
∥u1∥2.

for all t ∈ [0, T ]. We set

S := sup
t∈[0,T ]

(∥v̇(t)∥2+∥Ev(t)∥2)1/2.

From the previous inequality we obtain

min{1/2, α0/2}S ≤ T 1/2∥Ḟ∥L2(0,T ;H̃)+∥F∥L∞(0,T ;H̃) (1.2.9)

+ T 1/2∥f∥L2(0,T ;H)+∥u1∥. (1.2.10)

Since v(t) =
´ t
0 v̇(s) ds we have supt∈[0,T ]∥v(t)∥≤ TS. Using Korn’s inequality (1.1.1) we

obtain supt∈[0,T ]∥Dv(t)∥≤ K1/2S. Therefore

∥u∥V∞≤ S +K1/2S + TS,

which, together with (1.2.9), gives (1.2.8).

1.2.2 Proof of the uniquenes

Let L : V∞ −→ H1(0, T ; H̃) be the linear operator defined by

(Lu)(t) :=
ˆ t

0
eτ−tVEu(τ) dτ (1.2.11)

for every u ∈ V∞ and t ∈ [0, T ]. Since

(
˙̂Lu)(t) = VEu(t)−

ˆ t

0
eτ−tVEu(τ) dτ,

it is easy to check that L is bounded. Indeed we have

∥Lu∥L∞(0,T ;H̃)≤ T∥V∥∞∥u∥V∞ , (1.2.12)

∥ ˙̂Lu∥L2(0,T ;H̃)≤ (T 1/2 + T 3/2)∥V∥∞∥u∥V∞ . (1.2.13)
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Corollary 1.2.6. Under the assumptions of Theorem 1.2.3 there exists a positive constant
B, depending on the constant K in Korn’s inequality (1.1.1) and on the constant α0 in
(H3), but not on T and V, such that, if u satisfies (1.2.2)-(1.2.4) with u0, u1, uD, and f
replaced by zero and F replaced by Lu, then

∥u∥V∞≤ B(T + T 3)∥V∥∞∥u∥V∞ . (1.2.14)

Proof. By Proposition 1.2.5, (1.2.12), and (1.2.13) we have

∥u∥V∞≤ A
Ä
(1 + T )T + (T 1/2 + T 3/2)2

ä
∥V∥∞∥u∥V∞ ,

which implies (1.2.14).

We are now in a position to prove the existence and uniqueness result.

Proof of Theorem 1.1.9. The existence result is obtained in [11] under more general hy-
potheses. To prove uniqueness, we assume by contradiction that there exist two distinct
solution u1 and u2 of problem (1.1.14)-(1.1.16). Then u := u1−u2 is a solution of the same
problem with u0, u1, uD, f , and F replaced by zero. Therefore u satisfies (1.2.2)-(1.2.4)
with u0, u1, uD, and f replaced by zero and F replaced by Lu. By Theorem 1.2.3 this
implies that u ∈ Cw([0, T ];V ) and u̇ ∈ Cw([0, T ];H).

We set
t0 := inf{t ∈ [0, T ] |u(t) ̸= 0}.

Since u is not identically zero, we have t0 < T . We fix δ ∈ (0, T − t0) such that

B(δ + δ3)∥V∥∞< 1, (1.2.15)

where B is the constant in (1.2.14), and we define t1 := t0 + δ. In order to study the
problem on [t0, t1] we define the spaces VDt0,t1 and V∞

t0,t1 as VD and V∞ (see (1.1.7) and
(1.1.17)), with 0 and T replaced by t0 and t1.

It is clear that u ∈ VDt0,t1 and since Eu(τ) = 0 for every τ ∈ [0, t0] we have

−
ˆ t1

t0

(u̇(t), φ̇(t)) dt+

ˆ t1

t0

(AEu(t), Eφ(t)) dt

−
ˆ t1

t0

ˆ t

t0

eτ−t(VEu(τ), Eφ(t)) dτdt = 0

for every φ ∈ VDt0,t1 such that φ(t0) = φ(t1) = 0. Moreover, since u ∈ Cw([0, T ];V ),
u̇ ∈ Cw([0, T ];H), and u is identically zero on [0, t0], we have that u(t0) = 0 and u̇(t0) = 0.
By (1.2.14), applied with 0 and T replaced by t0 and t1, we have

∥u∥V∞
t0,t1

≤ B(δ + δ3)∥V∥∞∥u∥V∞
t0,t1

.

Using (1.2.15) we obtain u = 0 on [t0, t1]. This contradicts the definition of t0 and concludes
the proof.
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This section concludes the proof of existence and uniqueness. Moreover, we have proved
some inequalities concerning the enrgy of the system that will be useful for the next section.

1.3 Continuous dependence on the data

In this section we consider a sequence {Γnt }t∈[0,T ] of time dependent cracks and we want
to study the convergence, as n → +∞, of the solutions of the corresponding viscoelastic
problems. For completeness we assume that also the other data of the problem depend
on n.

1.3.1 Preliminary results for the continuous dependence

For every n ∈ N, let Cn, Vn: Ω → L(Rd×dsym;Rd×dsym), let Γn be a (d − 1)-dimensional C2

manifold, let {Γnt }t∈[0,T ] be a family of closed subsets of Γn, and let Φn, Ψn: [0, T ]×Ω → Ω.
We assume that

(H16) Cn, Vn satisfy (H1)-(H6) with constants α0 and M0 independent of n;

(H17) Γn and {Γnt }t∈[0,T ] satisfy (H7)-(H10);

(H18) Φn, Ψn satisfy (H11)-(H15) (with Γ and Γt replaced by Γn and Γnt ), the latter with
the constant K that appears in (1.3.7).

Let Rd×d be the space of d× d real matrices. For every pair of normed spaces X and Y let
L(X;Y ) be the space of linear and continuous maps between X and Y . For every x ∈ Ω
it is convenient to consider the extensions Ce(x), Ve(x), Cne (x), Vne (x) ∈ L(Rd×d;Rd×dsym) of
the linear maps C(x), V(x), Cn(x), Vn(x) defined as

Cne (x)[A] := Cn(x)[Asym] and Vne (x)[A] := Vn(x)[Asym] for all A ∈ Rd×d, (1.3.1)

Ce(x)[A] := C(x)[Asym] and Ve(x)[A] := V(x)[Asym] for all A ∈ Rd×d, (1.3.2)

where Asym is the symmetric part of the matrix A. Moreover we set

Ane := Cne + Vne and Ae := Ce + Ve. (1.3.3)

For technical reasons we use a change of variable which maps Γn0 into Γ0. This is done
by means of diffeomorphisms Θn, Ξn: Ω → Ω such that

(H19) Θn and Ξn are of class C2,1;

(H20) Θn(Ξn(x)) = x and Ξn(Θn(x)) = x for every x ∈ Ω;

(H21) detDΘn(x) > 0 for every x ∈ Ω;
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(H22) Θn(Γ ∩ Ω) = Γn ∩ Ω, and Θn(Γ0) = Γn0 ;

(H23) Θn(∂DΩ) = ∂DΩ and Θn(∂NΩ) = ∂NΩ.

We now introduce the function spaces that will be used in the formulation of the n-th
viscoelastic problem. For every n ∈ N and t ∈ [0, T ] let V n, V n

t , and V
n,D
t be defined as V ,

Vt, and V
D
t (see (1.1.2) and (1.1.4)) with Γ and Γt replaced by Γn and Γnt . Let Vn, Vn,D,

and Vn,∞ be defined as V, VD, and V∞ (see (1.1.5), (1.1.7), and (1.1.17)) with Vt and V
D
t

replaced by V n
t and V n,D

t .

For every n ∈ N we fix

u0,n ∈ V n
0 , u1,n ∈ H, unD ∈ H2(0, T ; H) ∩H1(0, T ; V n

0 ), (1.3.4)

fn ∈ L2(0, T ;H), Fn ∈ H1(0, T ; H̃), (1.3.5)

and we suppose that u0,n and unD satisfy the compatibility condition

u0,n − unD(0) ∈ V n,D
0 . (1.3.6)

Now we give the detailed regularity and convergence hypotheses on the data. First of
all we assume that there exists a constant K > 0 such that for every n ∈ N the following
Korn inequality is satisfied:

∥Dv∥2≤ K(∥v∥2+∥Ev∥2) for everyv ∈ H1(Ω \ Γn;Rd). (1.3.7)

We set H = L2(Ω,Rd×d). Concerning the convergence of our data we assume that

∥Φn − Φ∥C2→ 0, ∥Ψn −Ψ∥C2→ 0, (1.3.8)

∥Cn − C∥C1→ 0, ∥Vn − V∥C1→ 0 (1.3.9)

∥unD − uD∥H2(0,T ;H)→ 0, ∥DunD −DuD∥H1(0,T ;H)→ 0, (1.3.10)

∥fn − f∥L2(0,T ;H)→ 0, ∥Fn − F∥H1(0,T ;H̃)→ 0, (1.3.11)

∥u0,n − u0∥→ 0, ∥Du0,n −Du0∥→ 0, ∥u1,n − u1∥→ 0, (1.3.12)

∥Θn − Id∥C2→ 0, ∥Ξn − Id∥C2→ 0. (1.3.13)

It follows from (H19)-(H21) and (1.3.13) that

mdet(Ψ
n) → mdet(Ψ) and Mdet(Ψ

n) →Mdet(Ψ
n) as n→ ∞. (1.3.14)

For every n ∈ N we consider the solution un of the problem

un ∈ Vn and un − unD ∈ Vn,D, (1.3.15)
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−
ˆ T

0
(u̇n(t), φ̇(t)) dt+

ˆ T

0
((Cn + Vn)Eun(t), Eφ(t)) dt

−
ˆ T

0

ˆ t

0
eτ−t(VnEun(τ), Eφ(t)) dτdt =

ˆ T

0
(fn(t), φ(t)) dt

+

ˆ T

0
(Fn(t), Eφ(t)) dt for all φ ∈ Vn,D with φ(0) = φ(T ) = 0, (1.3.16)

un(0) = u0,n in H and u̇n(0) = u1,n in (V D,n
0 )∗. (1.3.17)

We also consider the solution vn of the problem

vn ∈ Vn and vn − unD ∈ Vn,D, (1.3.18)

−
ˆ T

0
(v̇n(t), φ̇(t)) dt+

ˆ T

0
(AnEvn(t), Eφ(t)) dt =

ˆ T

0
(fn(t), φ(t)) dt

+

ˆ T

0
(Fn(t), Eφ(t)) dt for all φ ∈ Vn,D with φ(0) = φ(T ) = 0, (1.3.19)

vn(0) = u0,n in H and v̇n(0) = u1,n in (V D,n
0 )∗. (1.3.20)

Remark 1.3.1. The notion of convergence for un as n→ ∞ can’t be given directly because
they don’t belong to the same space. To overcome this problem we need to embed V n into
a common space. This will be done using the standard embedding

V n ↪→ H ×H

given by v 7→ (v, Dv), where the distrubutional gradient Dv on Ω \ Γn is regarded as a
function defined a.e. on Ω, which belongs to H.

We are now in a position to state one the main result of this section.

Theorem 1.3.2. Assume (H1)-(H23), (1.1.10)-(1.1.13), and (1.3.4)-(1.3.13). Let u be
the solution of (1.1.14)-(1.1.16) and let (for every n ∈ N) un be the solution of (1.3.15)-
(1.3.17). Then

(un(t), Dun(t), u̇n(t)) → (u(t), Du(t), u̇(t)) in H ×H ×H

for every t ∈ [0, T ]. Moreover there exists a constant C > 0 such that

∥un(t)∥+∥Dun(t)∥+∥u̇n(t)∥≤ C

for every n ∈ N and t ∈ [0, T ].

The proof is based on the following lemma.
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Lemma 1.3.3. Let X a complete metric space, let Gn, G:X → X with n ∈ N be maps
with same contraction constant λ ∈ (0, 1), and let xn, x be the corresponding fixed points.
Suppose that Gn(y) → G(y) for every y ∈ X. Then xn → x.

Proof. We have d(xn, x) = d(Gn(xn), G(x)) ≤ d(Gn(xn), Gn(x)) + d(Gn(x), G(x))
≤ λd(xn, x) + d(Gn(x), G(x)), hence

(1− λ)d(xn, x) ≤ d(Gn(x), G(x)) → 0

as n→ +∞.

In order to apply the previous lemma we will identify un and u with the fixed points
of suitable operators defined in the Banach space

W := L2((0, T );H ×H ×H), (1.3.21)

where on H ×H ×H we consider the Hilbert product norm defined by

∥(h1, h2, h3)∥H×H×H :=
Ä
∥h1∥2+∥h2∥2+∥h3∥2

ä1/2
(1.3.22)

for every (h1, h2, h3) ∈ H ×H ×H.
In order to define the sequence of maps whose fixed points are (un, Dun, u̇n) and

(u,Du, u̇), we consider the linear operators

T n : W −→ H1(0, T ; H̃) and T : W −→ H1(0, T ; H̃) (1.3.23)

defined as

(T nw)(t) :=

ˆ t

0
eτ−tVnew2(τ) dτ and (T w)(t) :=

ˆ t

0
eτ−tVew2(τ) dτ, (1.3.24)

where w(t) = (w1(t), w2(t), w3(t)) and Vne , Ve are as in (1.3.1) and (1.3.2). Arguing as in
(1.2.12) and (1.2.13) we get that

∥T w∥L∞(0,T ;H̃)≤ T 1/2∥V∥∞∥w∥W , (1.3.25)

∥ ˙̃T w∥L2(0,T ;H̃)≤ (1 + T )∥V∥∞∥w∥W , (1.3.26)

and the same estimate holds for T nw with V replaced by Vn, namely

∥T nw∥L∞(0,T ;H̃)≤ T 1/2∥Vn∥∞∥w∥W , (1.3.27)

∥
˙̄

T nw∥L2(0,T ;H̃)≤ (1 + T )∥Vn∥∞∥w∥W . (1.3.28)
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Let

G : W → W

be the operator defined for every w ∈ W by

G(w) = (z,Dz, ż), (1.3.29)

where z is the solution of problem (1.2.2)-(1.2.4) with F replaced by F + T w. From the
definition of G it follows that (u,Du, u̇) is a fixed point of map G if and only if u is the
solution of the problem considered in Theorem 1.3.2.

Similarly, let

Gn : W → W

be the operator defined for every w ∈ W by

Gn(w) = (zn, Dzn, żn), (1.3.30)

where zn is the solution of problem (1.3.18)-(1.3.20) with F replaced by Fn + T nw. From
the definition of Gn it follows that un is the solution of problem (1.3.15)-(1.3.17) if and
only if (un, Dun, u̇n) is a fixed point of map Gn.

The following lemma provides a uniform Lipschitz estimate for the operators Gn.

Proposition 1.3.4. There exist a positive constants B, independent of n and T , such that

∥Gn(w1)− Gn(w2)∥W≤ B(T + T 3)∥w1 − w2∥W , (1.3.31)

for every w1, w2 ∈ W.

Proof. Let us fix w1, w2 ∈ W and set w := w1 − w2. We observe that

Gn(w1)− Gn(w2) = (zn, Dzn, żn)

where zn is the solution of problem (1.3.15)-(1.3.17) with Fn replaced by T nw and unD, f
n,

u0,n, u1.n replaced by zero. From Theorem 1.2.5 and from the uniform bound of the data
there exists a positive constants A, independent of n and T , such that

∥zn∥V∞≤ A(1 + T )∥T nw∥L∞(0,T ;H̃)+A(T
1/2 + T 3/2)∥ ˙̄T nw∥L2(0,T ;H̃). (1.3.32)

Using (1.3.25) and (1.3.26) we get

∥(zn, Dzn, żn)∥W≤ A
Ä
(1 + T )T + (T 1/2 + T 3/2)2

ä
∥Vn∥∞∥w∥W (1.3.33)

which gives (1.3.31) taking into account (1.3.9).
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To apply Lemma 1.3.3 we have to prove that

Gn(w) → G(w) in W,

for every w ∈ W. In order to prove this we will use the results for the wave equation
developed in [9]. Unfortunately these results can not be applied directly because they are
obtained under the assumptions:

(a) Γn0 = Γ0 for all n ∈ N,

(b) the forcing terms belong to L2(0, T ;H).

To overcome the difficulties due to (a) we need some preliminary results. The first one is
an uniform bound of the solution of problems (1.3.18)-(1.3.20).

Proposition 1.3.5. Assume (H1)-(H23), (1.3.4)-(1.3.10), and (1.3.12)-(1.3.13). Let let
vn be the solution of (1.3.18)-(1.3.20). Then the there exists a positive constant C such
that

∥vn∥Vn,∞≤ C for every n ∈ N. (1.3.34)

Proof. We note that

vn0 (t) := vn(t)− u0,n + unD(0)− unD(t)

is the solution of (1.3.18)-(1.3.20) with u0 replaced by 0, u1,n replaced by u1,n− u̇nD(0), unD
replaced by 0, fn replaced by fn−ünD, and Fn replaced by Fn−AnEunD−AnE(un,0−unD(0)).
Then we can apply Proposition 1.2.5 and (1.3.8)-(1.3.13) to obtain that

∥vn0 ∥Vn≤ C.

By (1.3.10) and (1.3.12) we get (1.3.34).

The next proposition deals with the case of solution of (1.3.18)-(1.3.20) when Fn is
replaced by 0.

Proposition 1.3.6. Assume (H1)-(H23), (1.3.4)-(1.3.10), and (1.3.12)-(1.3.13). Given
g ∈ L2(0, T ; H), let vn be the solution of (1.3.18)-(1.3.20) with fn replaced by g and Fn

replaced by 0. Let v be the solution in (1.2.2)-(1.2.4) with f replaced by g and F replaced
by 0. Then for every t ∈ [0, T ] we have

(vn(t), Dvn(t), v̇n(t)) → (v(t), Dv(t), v̇(t)) in H ×H ×H. (1.3.35)

In order to prove this proposition it is convenient to use the following elementary result,
whose proof, based on a change of variables, is omitted (for a similar result see [21, Lemma
A.7]).
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Lemma 1.3.7. For every n ∈ N let hn, h ∈ H and let Λn, Λ : Ω → Ω be C1 diffeomor-
phisms. Assume that hn → h in H and Λn → Λ in C1. Assume also that detDΛn(x) > 0
and detDΛ(x) > 0 for every x ∈ Ω and n ∈ N. Then

hn ◦ Λn → h ◦ Λ

as n→ ∞ in H.

Proof of Proposition 1.3.6. To overcome the difficulty due to the fact that we may have
Γn0 ̸= Γ0, by a change of variables we transform our problem into a problem with new
cracks Γ̂nt satisfying Γ̂n0 = Γ0 for every n, to which we can apply the results of [8] and [9].

For every n and t we define Γ̂nt := Ξn(Γnt ) ⊂ Γ and observe that Γ̂nt satisfies (H10). The
vector spaces V̂ n

t and V̂ n,D
t are defined as V n

t and V n,D
t (see (1.1.4)) with Γt replaced by

Γ̂nt , while V̂n and V̂n,D are defined as Vn and Vn,D (see (1.1.5) and (1.1.7)) with Vt and
V D
t replaced by V̂ n

t and V̂ n,D
t .

For every t ∈ [0, T ] let v̂n(t) := vn(t) ◦ Θn, ûnD(t) := unD(t) ◦ Θn, û0,n := u0,n ◦ Θn,

û1,n := u1,n ◦ Θn, and ĝn(t) := g(t) ◦ Θn. It is easy to see that v̂n ∈ V̂n, v̂n − ûnD ∈ V̂n,D,
v̂n(0) = û0,n, ˙̂vn(0) = û1,n.

To write the equation satisfied by v̂n we introduce

Ân: Ω → L(Rd×d;Rd×d)

defined as

Ân(y)[A] := Ane (Θn(y))[ADΞn(Θn(y))](DΞn(Θn(y)))T for all A ∈ Rd×d, (1.3.36)

where An is defined in (1.3.3). We note that Ân is of class C1, with equibounded C1 norm.
Moreover it is symmetric on L(Rd×d,Rd×d).

Setting hn(x) := ∇[detDΞn(x)], we introduce

Ln: Ω → L(Rd×d;Rd)

defined as

Ln(y)[A] = Ane (Θn(y))[ADΞn(Θn(y))]hn(Θn(y)) detDΘn(y) for all A ∈ Rd×d.

Let φ ∈ V̂n,D with φ(0) = φ(T ) = 0. Using (φ(t) ◦ Ξn) detDΞn as test function in the
equation for vn(t) we get

−
ˆ T

0
( ˙̂vn(t), φ̇(t)) dt+

ˆ T

0
(ÂnDv̂n(t), Dφ(t)) dt+

ˆ T

0
(LnDv̂n(t), φ(t)) dt =

ˆ T

0
(ĝn(t), φ(t)) dt.
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By Proposition (1.3.5) the sequence ||vn||Vn is bounded and in particular ∥Dvn(t)∥ is
uniformly bounded with respect to n and t. By the definition of v̂n and (1.3.13) also
∥Dv̂n(t)∥ is uniformly bounded with respect to n and t. Since detDΞn → 1 in C1(Ω), we
have ∇[detDΞn] → 0 in C0(Ω, Rd), which implies that Ln → 0 uniformly as n → +∞.
From this fact and the uniform bound on ∥Dv̂n(t)∥ we get

∥LnDv̂n(t)∥→ 0 as n→ +∞, (1.3.37)

uniformly in t. Therefore, setting

f̂n := ĝn − LnDv̂n, (1.3.38)

we conclude that

v̂n ∈ V̂n and v̂n − ûnD ∈ V̂n,D, (1.3.39)

−
ˆ T

0
( ˙̂vn(t), φ̇(t)) dt+

ˆ T

0
(ÂnDv̂n(t), Dφ(t)) dt =

ˆ T

0
(f̂n(t), φ(t)) dt,

for all φ ∈ V̂n,D such that φ(0) = φ(T ) = 0, (1.3.40)

v̂n(0) = û0,n in H and ˙̂vn(0) = û1,n in (V D
0 )∗. (1.3.41)

In order to apply the results of [9] we define

Φ̂n(t, y) := Ξn(Φn(t,Θn(y))), Ψ̂n(t, x) := Ξn(Ψn(t,Θn(x))).

We observe that Φ̂n and Ψ̂n satisfy (H11)-(H14) with Γt replaced by Γ̂nt . Since in general
Ân[A] ̸= Ân[Asym] for some A ∈ Rd×d, we cannot apply the results of [8].

However it is possible to use the results of [9] which hold under more general assump-
tions involving the tensor

B̂n(t, y)[A] := Ân(Φ̂n(t, y))[ADΨ̂n(t, Φ̂n(t, y))]DΨ̂n(t, Φ̂n(t, y))T

−A ˙̂
Ψn(t, Φ̂n(t, y))⊗ ˙̂

Ψn(t, Φ̂n(t, y)),

for all A ∈ Rd×d, t ∈ [0, T ], y ∈ Ω. We claim that there exists two constants c0, c1 > 0
(independent of n) such that, for n large enough, we have

(B̂n(t)Dφ, Dφ) ≥ c0∥φ∥2V0−c1∥φ∥
2 (1.3.42)

for all φ ∈ V0 and t ∈ [0, T ]. This is the hypothesis on B̂n required in [9].
To prove the claim we use (H3), (H15), and (1.3.13) (which are satisfied uniformly in

n) and by standard computations (see, for instance, [9, Section 1.2]) we obtain

(B̂n(t)Dφ, Dφ) ≥
ˆ
Ω
|Dφ(y)DΞn(Θn(y))DΨn(t,Φn(t,Θn(y)))|2ωn(t, y) dy
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− α0 min
[0,T ]×Ω

{detDΞn detDΨn}
ˆ
Ω
|φ(Ξn(Ψn(t, y)))|2 dy (1.3.43)

where

ωn(t, y) :=
α0mdet(Ψ

n)

KMdet(Ψn)
min
Ω

{detDΞn}min
Ω

{detDΘn} − |Φ̇n(t,Θn(y))|2,

while mdet(Ψ
n), Mdet(Ψ

n), α0, and K are the constants that appear in (H15), (H16), and
(1.3.7).

Since the inverse of the matrices DΞn(x)DΨn(t,Φn(t, x)) are bounded uniformly with
respect to n, t, and x, there exists a constant β > 0 such thatˆ

Ω
|Dφ(y)DΞn(Θn(y))DΨn(t,Φn(t,Θn(y)))|2ωn(t, y) dy ≥ β

ˆ
Ω
|Dφ(y)|2ωn(t, y) dy

for all n and t. Moreover by (1.3.8) and (1.3.13) there exists a constant γ > 0 such that

α0 min
[0,T ]×Ω

{detDΞn detDΨn}
ˆ
Ω
|φ(Ξn(Ψn(t, y)))|2 dy ≤ γ

ˆ
Ω
|φ(y)|2 dy

for all n and t. Therefore (1.3.43) gives

(B̂n(t)Dφ, Dφ) ≥ β

ˆ
Ω
|Dφ(y)|2ωn(t, y) dy − γ

ˆ
Ω
|φ(y)|2 dy. (1.3.44)

To conclude the proof of the claim, we define

ω(t, y) :=
α0mdet(Ψ)

KMdet(Ψ)
− |Φ̇(t, y)|2.

By (1.3.8), (1.3.13) and (1.3.14), we have ωn → ω uniformly on [0, T ]× Ω. By (H15) and
by continuity there exists ε > 0 such that ω(t, y) ≥ 2ε for all (t, y) ∈ [0, T ]×Ω. By uniform
convergence there exists nε such that ωn(t, y) ≥ ε for all (t, y) ∈ [0, T ] × Ω and for all
n > nε. This inequality together with (1.3.44) implies (1.3.42) and concludes the proof of
the claim.

By (1.3.8) and (1.3.13) we get Φ̂n → Φ and Ψ̂n → Ψ in C2, while (1.3.36) and (1.3.13)
give Ân → A in C1. Moreover applying Lemma 1.3.7 to the functions and their derivatives
we can prove that û0,n → u0 in V0, û

1,n → u1 in H, ûnD → uD in H2(0, T ;H)∩H1(0, T ;V0),

and ĝn → g in L2(0, T ;H). Using (1.3.37) and (1.3.38) we have that f̂n → g in L2(0, T ;H).
We are now in a position to apply [9, Theorem 1.4.1] to problem (1.3.39)-(1.3.41) and we
obtain

(v̂n(t), Dv̂n(t), ˙̂vn(t)) → (v(t), Dv(t), v̇(t)) in H ×H ×H

for every t ∈ [0, T ]. Since

vn(t, ·) = v̂n(t,Ξn(·)), Dvn(t, ·) = Dv̂n(t,Ξn(·))DΞn(·),
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v̇n(t, ·) = ˙̂vn(t,Ξn(·)),

using Lemma 1.3.7 we get (1.3.35) for every t ∈ [0, T ].

To use Proposition 1.3.6 in the proof of the convergence Gn(w) → G(w) we need the
following approximation result.

Lemma 1.3.8. Let G ∈ H1((0, T ); H̃). For every ε > 0 there exists a compact neighbor-
hood Kε of Γ ∩ Ω and Gε ∈ H1((0, T ); H̃) such that Gε(t) ∈ C∞

c (Ω \Kε; Rd×dsym) for every
t ∈ [0, T ] and

∥Gε −G∥L∞(0,T ;H̃)+∥Ġε − Ġ∥L2(0,T ;H̃)< ε.

Remark 1.3.9. By (H22) and (1.3.13) for every ε > 0 there exists nε such that Γn ⊂ Kε,
for n > nε. From the properties of Gε follows that

(Gε(t), Ev) = −(divGε(t), v) (1.3.45)

for all t ∈ [0, T ] and for all v ∈ Vn, for n > nε.

Proof of Lemma 1.3.8. Given a partition of [0, T ], we can consider the piecewise affine
interpolation of the values of F at the nodes. It is well known that this interpolation
converges in H1(0, T ; H̃) to F as the fineness of the partition tends to zero. To conclude, it
is enough to approximate in H̃ the values of F at the nodes by elements of C∞

c (Ω\Γ; Rd×dsym)
and to consider the corresponding piecewise affine interpolation.

Proposition 1.3.10. Assume (H1)-(H23) and (1.3.7)-(1.3.13). Let vn be the solution of
(1.3.18)-(1.3.20) and let v be the solution of (1.2.2)-(1.2.4). Then for every t ∈ [0, T ] we
have

(vn(t), Dvn(t), v̇n(t)) → (v(t), Dv(t), v̇(t)) in H ×H ×H. (1.3.46)

Moreover

(vn, Dvn, v̇n) → (v, Dv, v̇) in W = L2((0, T );H ×H ×H). (1.3.47)

Proof. Let ε > 0, let Gε the function in Lemma 1.3.8 with G = F . Let vnε solution of
(1.3.18)-(1.3.20) with fn and Fn replaced by f and Gε, let v

ε solution of (1.2.2)-(1.2.4)
with F replaced by Gε. By (1.3.11) there exists nε such that

∥fn − f∥L2(0,T ;H)+∥Fn −Gε∥L∞(0,T ;H̃)+∥Ḟn − Ġε∥L2(0,T ;H̃)< ε (1.3.48)

for every n > nε. The function vn− vnε is the solution of problem (1.3.18)-(1.3.20) with fn

and Fn replaced by fn − f and Fn −Gε and u
n
D, f

n, un,0, u1.n replaced by zero. Then by
Proposition 1.2.5 there exists a constant C(T ) depending on T (independent of n and ε)
such that

∥vn − vnε ∥Vn,∞≤ C(T )ε. (1.3.49)
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for every n > nε. Similarly we can prove

∥v − vε∥V∞≤ C(T )ε. (1.3.50)

Changing the value of nε, by (1.3.45) we have that vnε is the solution of (1.3.18)-(1.3.20)
with fn replaced by gε := f−divGε and F

n replaced by 0, while vε is the solution of (1.2.2)-
(1.2.4) with f replaced by gε := f − divGε and F replaced by 0. By Proposition 1.3.6 for
every t ∈ [0, T ] we have

(vnε (t), Dv
n
ε (t), v̇

n
ε (t)) → (vε(t), Dvε(t), v̇ε(t)) in H ×H ×H. (1.3.51)

Since

∥(vn(t), Dvn(t), v̇n(t))− (v(t), Dv(t), v̇(t))∥≤ ∥vn − vnε ∥Vn,∞

+ ∥(vnε (t), Dvnε (t), v̇nε (t))− (vε(t), Dvε(t), v̇ε(t))∥+∥v − vε∥V∞ ,

by (1.3.49)-(1.3.51) we get

lim sup
n→+∞

∥(vn(t), Dvn(t), v̇n(t))− (v(t), Dv(t), v̇(t))∥≤ 2C(T )ε

for every t ∈ [0, T ]. By the arbitrareness of ε we obtain (1.3.46). Finally, using the estimate
in Proposition 1.3.5 and the Dominated Convergence Theorem we obtain (1.3.47).

Corollary 1.3.11. Assume (H1)-(H23) and (1.3.7)-(1.3.13). Then for every w ∈ W we
have

Gn(w) → G(w) W.

Proof. By (1.3.9) we get

T nw → T w

in H1(0, T ; H̃) for every w ∈ W. The result follows from Proposition 1.3.10 with Fn and
F replaced by Fn + T nw and F + T w.

1.3.2 Proof of the continuous dependence

As a consequence of Lemma 1.3.3, Proposition 1.3.4, and Corollary 1.3.11 we obtain the
continuous dependence result when T is small enough.

Theorem 1.3.12. Assume that B(T + T 3) < 1, where B is the constant in Proposition
1.3.4. Then the conclusion of Theorem 1.3.2 holds.

Proof. By Corollary 1.3.11

Gn(w) → G(w)
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in W for every w ∈ W. By Proposition 1.3.4 the maps Gn have the same contraction
constant B(T + T 3) < 1. Then we are in a position to apply Lemma 1.3.3 and we get

wn := (un, Dun, u̇n) → (u, Du, u̇) =: w in W = L2((0, T );H ×H ×H). (1.3.52)

From this convergence and (1.3.9), we obtain T nwn → T w inH1(0, T ; H̃) and we can apply
Proposition 1.3.10, with forcing term Fn and F replaced by Fn+T nwn and F +T w. Since

Fn + T nwn → F + T w

in H1(0, T ; H̃) we get

(un(t), Dun(t), u̇n(t)) → (u(t), Du(t), u̇(t)) in H ×H ×H

for every t ∈ [0, T ]. We can apply Proposition 1.3.5 with Fn replaced by Fn + T nwn and
we obtain that there exists a constant C > 0 such that

∥un(t)∥+∥Dun(t)∥+∥u̇n(t)∥≤ C

for every n ∈ N and t ∈ [0, T ].

We are now in a position prove Theorem 1.3.2 without additional assumptions on T .

Proof of Theorem 1.3.2. There exists k ∈ N such that T0 := T/k satisfies B(T0 + T 3
0 ) < 1.

By Theorem 1.3.12 we have

(un(t), Dun(t), u̇n(t)) → (u(t), Du(t), u̇(t)) in H ×H ×H for all t ∈ [0, T0], (1.3.53)

and moreover

(un, Dun, u̇n) → (u, Du, u̇) in L2((0, T0);H ×H ×H). (1.3.54)

If k = 1 the proof is finished, otherwise we consider the problem on the interval [T0, 2T0].
Note that

un(T0) ∈ V n and u̇n(T0) ∈ H

are well defined, because u ∈ C0
w([0, T0];V

n) and u̇ ∈ C0
w([0, T0];H). Since un(t) ∈ V n

t for
a.e. t ∈ (0, T0), it easy to see that un(T0) ∈ V n

T0
.

In order to study the problem on [T0, 2T0] we define the spaces VT0,2T0 , VDT0,2T0 , V
∞
T0,2T0

,

VnT0,2T0 , V
n,D
T0,2T0

, Vn,∞T0,2T0
, and WT0.2T0 as V, VD, V∞, Vn, Vn,D, Vn,∞, and W with 0 and T

replaced by T0 and 2T0.
For every t ∈ [T0, 2T0] we set

G(t) := F (t) +

ˆ T0

0
eτ−tVEu(τ)dτ,
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Gn(t) := Fn(t) +

ˆ T0

0
eτ−tVnEun(τ)dτ.

Let v be the solution of the problem

v ∈ VT0,2T0 and v − uD ∈ VDT0,2T0 ,

−
ˆ 2T0

T0

(v̇(t), φ̇(t)) dt+

ˆ 2T0

T0

(AEv(t), Eφ(t)) dt−
ˆ 2T0

T0

ˆ t

T0

eτ−t(VEv(τ), Eφ(t)) dτdt

=

ˆ 2T0

T0

(f(t), φ(t)) dt+

ˆ 2T0

T0

(G(t), Eφ(t)) dt

for every φ ∈ VDT0,2T0with φ(T0) = φ(2T0) = 0,

v(T0) = u(T0) in H and v̇(T0) = u̇(T0) in (V D
T0 )

∗.

For every n ∈ N let vn be the solution of the problem

vn ∈ VnT0,2T0 and vn − unD ∈ Vn,DT0,2T0
,

−
ˆ 2T0

T0

(v̇n(t), φ̇(t)) dt+

ˆ 2T0

T0

(AnEvn(t), Eφ(t)) dt−
ˆ 2T0

T0

ˆ t

T0

eτ−t(VnEvn(τ), Eφ(t)) dτdt

=

ˆ 2T0

T0

(fn(t), φ(t)) dt+

ˆ 2T0

T0

(Gn(t), Eφ(t)) dt

for every φ ∈ Vn,DT0,2T0
with φ(T0) = φ(2T0) = 0,

vn(T0) = un(T0) in H and v̇n(T0) = u̇n(T0) in (V n,D
T0

)∗.

We note that, by the definition of G and Gn, the restrictions of u and un to [T0, 2T0]
satisfy the problems for v and vn. By uniqueness we have that v = u and vn = un on
[T0, 2T0].

For every x ∈ Ω and [T0, 2T0] we define

ΦT0(t, x) := Φ(t,Ψ(T0, x)), ΨT0(t, x) := Ψ(t,Φ(T0, x))

ΦnT0(t, x) := Φn(t,Ψn(T0, x)) Ψn
T0(t, x) := Ψn(t,Φn(T0, x))

which satisfy (H11)-(H15), (1.3.8) with 0 and T replaced by T0 and 2T0. For every x ∈ Ω
we define

Θn
T0(x) := Φn(T0,Θ

n(Ψ(T0, x))), ΞnT0(x) := Φ(T0,Ξ
n(Ψn(T0, x)))

and we observe that they satisfy (H19)-(H23) and (1.3.13) with 0 and T replaced by T0
and 2T0.
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By (1.3.53) we have that (un(T0), Du
n(T0), u̇

n(T0)) → (u(T0), Du(T0), u̇(T0)) in H ×
H ×H while (1.3.9), (1.3.11), and (1.3.54) give Gn → G in H1(0, T ; H̃). We are now in a
position to apply Theorem 1.3.12 on [T0, 2T0] to obtain

(un(t), Dun(t), u̇n(t)) → (u(t), Du(t), u̇(t)) in H ×H ×H,

for all t ∈ [T0, 2T0]. Moreover there exists a constant C > 0 such that

∥un(t)∥+∥Dun(t)∥+∥u̇n(t)∥≤ C

for every n ∈ N and t ∈ [T0, 2T0]. The conclusion can be obtained by repeating this process
a finite number of times.
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We now study the problem of planar crack growth for the viscoelastic system when
the crack evolution is not prescribed. More precisely, as explained in the Introduction, we
consider

ü(t, x)− div(σ0(t, x)) = ℓ0(t) t ∈ [0, T ], x ∈ Ω \ Γt, (2.0.1)

u(t, x) = uD(t, x) t ∈ [0, T ], x ∈ ∂DΩ, (2.0.2)

σ0(t, x)ν = F0(t, x)ν t ∈ [0, T ], x ∈ ∂NΩ, (2.0.3)

σ±0 (t, x)ν = F±
0 (t, x)ν t ∈ [0, T ], x ∈ Γt, (2.0.4)

u(0, x) = u0(x) and u̇(0, x) = u1(x) x ∈ Ω \ Γt (2.0.5)

27
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for every t ∈ [0, T ], where σ is the stress tensor defined as

σ(t, x) := C(x)Eu(t, x) + V(x)Eu(t, x)−
ˆ t

0
eτ−tVEu(τ, x) dτ, (2.0.6)

uD is the Dirichlet condition, u0 is the initial condition for the displacement, u1 is the
initial condition for the velocity, ν is the unit normal, and the symbol ± in (2.0.4) denotes
suitable limits on each side of Γt. The reference configuration is an open subset of the
plane, namely Ω ⊂ R2, and the cracks {Γt}t∈[0,T ] is an unknown family of 1-dimensional

increasing closed subsets of Ω such that Γ0 = Γin, where Γin is a prescribed initial crack.
When the cracks are prescribed for every time, we refer to Chapter 1. We couple the
previous system with conditions on the cracks:

a) an energy dissipation balance (see Definition 2.2.3): the sum of the kinetic and elastic
energies and of the energies dissipated by viscosity and crack growth balances the
work done by the forces acting on the system;

b) a maximal dissipation condition, depending on a parameter η > 0 (see Definition
2.3.1), which forces the crack to run as fast as possible.

The main result of this chapter is that, given initial and boundary conditions satisfying
suitable hypotheses, there exists a couple (u, {Γt}t∈[0,T ]) satisfying the viscoelastic equation
with memory and conditions a) and b) (see Theorem 2.3.3). The proof follows the lines of
[19] and use the results of Chapter 1.

The chapter is organized as follows. In Section 2.1 we give the precise formulation of
the problem. More precisely, in Subsection 2.1.1 we describe the geometry of the cracks
while in Subsection 2.1.2 we define the function spaces for the weak formulation and in
Subsection 2.1.3 we extend some preliminary results of Chapter 1. In Section 2.2 is divided
in Subsection 2.2.1, where we define the dynamic energy-dissipation balance, and Subsec-
tion 2.2.2, where we define the class of cracks satisfying the energy-dissipation balance.
Finally, in Section 2.3 we define the maximal dissipation condition and we prove the main
result.

The original results of this chapter are based on [12].

2.1 Formulation of the problem

The reference configuration of our problem is a bounded open set Ω ⊂ R2, with Lipschitz
boundary ∂Ω and we assume that ∂Ω = ∂DΩ∪∂NΩ, where ∂DΩ and ∂NΩ are disjoint (pos-
sibly empty) Borel sets, on which we prescribe Dirichlet and Neumann boundary conditions
respectively. Moreover, we fix a time interval [0, T ], with T > 0.
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2.1.1 The geometry of the cracks

We give a precise definition of the admissible cracks of our model using a suitable class of
curves. The following definitions and results are based on [18] and [19]. The curves are
always parameterized using the arc-length parameter s and for a given curve γ : [aγ , bγ ] →
R2 we define Γγ := γ([aγ , bγ ]) and Γγs := γ([aγ , s]), for every s ∈ [aγ , bγ ]. When it is clear
from the context we omit the dependence on γ and we write Γ and Γs instead of Γγ and Γγs .
In order to describe the initial crack, we fix a curve γ0 : [a0, 0] → Ω such that γ0(a0) ∈ ∂Ω,
γ0(s) ∈ Ω for every s ∈ (a0, 0] and we define the initial crack as

Γ0 := γ0([a0, 0]).

We suppose that γ0 is of class C3,1 and that it is transversal to ∂Ω at γ0(a0) (there exists
an isosceles triangle contained in Ω with vertex in γ0(a0) and axis parallel to γ′0(a0)). We
fix two constants r > 0 and L > 0 and we now define the space of admissible crack paths.

Definition 2.1.1. Let Gr,L be the space of simple curves γ : [a0, bγ ] → Ω of class C3,1,
with a0 < 0 ≤ bγ , such that

(a) γ(s) = γ0(s) for every s ∈ [a0, 0],

(b) |γ′(s)|= 1 for every s ∈ [a0, bγ ],

(c) the two open disks of radius r tangent to Γ at γ(s) do not intersect Γ,

(d) dist(γ([0, bγ ]), ∂Ω) ≥ 2r,

(e) |γ(3)(s)|≤ L, |γ(3)(s2)− γ(3)(s1)|≤ L|s2 − s1| for any s, s1, s2 ∈ [a0, bγ ],

where γ(i) denotes the i−th derivative of γ.

We fix γ0, r, and L such that Gr,L ̸= ∅.

Remark 2.1.2. By (a) and (d) we have |a0|≥ 2r. Condition (c) implies |γ(2)(s)|≤ 1/r for
every s ∈ [a0, bγ ].

Definition 2.1.3. Let γk be a sequence of curves in Gr,L and let γ ∈ Gr,L. We say that
γk converges uniformly to γ if bγk → bγ and for every b ∈ (0, bγ) we have γk|[a0,b]→ γ|[a0,b]
uniformly in [a0, b].

Lemma 2.1.4. There exist two constants r̂ and L̂, with 0 < r̂ < r and L̂ > L, depending
only on r and L, such that for every γ: [a0, bγ ] → Ω with γ ∈ Gr,L there exists an extension

γ̂: [a0, bγ + r̂] → Ω

of γ with γ̂ ∈ Gr̂,L̂, whose image will be indicated by Γ̂. Moreover, the extension can be
chosen in such a way that the uniform convergence of γk implies the uniform convergence
of the corresponding extensions γ̂k.
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Lemma 2.1.5. Let γk be a sequence of curves in Gr,L. Then there exist a subsequence, not
relabelled, and a curve γ ∈ Gr,L such that γk converges to γ uniformly.

For a proof of the previous two lemmas see [19].
We have to describe the dependence of the crack length on the time. We fix two

constants µ > 0 and M > 0 which bound the speed of the crack tip and some higher order
derivatives of the crack length, respectively.

Definition 2.1.6. Let T0 < T1. The class Sregµ,M (T0, T1) is composed of all nonnegative
functions satisfying the following conditions:

s ∈ C3,1([T0, T1]), (2.1.1)

0 ≤ ṡ(t) ≤ µ (2.1.2)

|s̈(t)|≤M, | ...s (t)|≤M, | ...s (t1)−
...
s (t2)|≤M |t1 − t2|, (2.1.3)

for t, t1, t2 ∈ [T0, T1], where dots denote derivatives with respect to time. We denote
by Spiecµ,M (T0, T1) the set of all functions s ∈ C0([T0, T1]) such that there exists a finite
subdivision

T0 = τ0 < τ1 < ... < τk = T1

for which s|[τj−1,τj ]∈ Sregµ,M (τj−1, τj). The minimal set {τ0, τ1, ..., τk} for which this property
holds is denoted by sing(s).

Given 0 ≤ T0 < T1 ≤ T , γ ∈ Gr,L, s ∈ Spiecµ,M (T0, T1), with s(T1) ≤ bγ , the time
dependent cracks corresponding to these functions are given by

Γγs(t) := γ([a0, s(t)]) for all t ∈ [T0, T1],

and the corresponding cracked domains are

Ωγs(t) := Ω \ Γγs(t) for all t ∈ [T0, T1].

For simplicity of notation we sometimes denote Γγs(t) by Γs(t), when γ is clear from the
context.

In [8], [9], and [11] the cracks are described using a family of time-dependent diffeo-
morphism Φ,Ψ : [0, T ]×Ω → Ω. Thanks to the following result it is possible to obtain the
same maps also in our case. For a proof see [18, Lemma 2.8].

Lemma 2.1.7. Let ε > 0 and let ρ ∈ (0, r̂/2), where r̂ is the constant that appears in
Lemma 2.1.4. Then there exists two constants δ ∈ (0, ρ/µ) and C > 0 depending only on
r, L, µ, M , ε, and ρ, with the following property: for every γ ∈ Gr,L, for every t0 < t1,
and for every s ∈ Sregµ,M (t0, t1), with t1 − t0 ≤ δ, s(t1) ≤ bγ, we can define two functions

Φ,Ψ: [t0, t1]× Ω → Ω of class C2,1 with the following properties:
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(a) for every t ∈ [t0, t1] we have Φ(t,Ω) = Ω, Φ(t, Γ̂) = Γ̂ (where Γ̂ is the set that appears
in Lemma 2.1.4), Φ(t,Γs(t0)) = Γs(t), and Φ(t, y) = y on Ω \B(γ(s(t0)), 2ρ);

(b) Φ(t0, y) = y for every y ∈ Ω;

(c) for every t ∈ [t0, t1], Ψ(t, ·) is the inverse of Φ(t, ·) on Ω;

(d) for every t ∈ [t0, t1] we have

1− ε ≤ detDΦ(t, y) ≤ 1 + ε,

1− ε ≤ detDΨ(t, y) ≤ 1 + ε

for every x, y ∈ Ω, where D denotes the spatial jacobian matrix.

(e) for every t ∈ [t0, t1] we have |∂tΦ(t, y)|≤ µ(1 + ε) for every y ∈ Ω;

(f) the absolute values of all partial derivatives of Φ and of Ψ of order less than or equal
to two, as well as the Lipschitz constants of all second derivatives, are bounded by C;

(g) if γk ∈ Gr,L converges to γ uniformly, if sk ∈ Sregµ,M (t0, t1) converges to s uni-
formly, with sk(t1) ≤ bγk for every k, then the corresponding diffemorphisms satisfy
Φk(t, x) → Φ(t, x) for every t ∈ [t0, t1] and for every x ∈ Ω.

2.1.2 The functional spaces for the viscoelastic problem

We now define the functional spaces that will be used in order to give the definition of
weak solution of the viscoelastic problem.

We define R2×2 as the space of real 2 × 2 matrix and R2×2
sym as the space of real 2 × 2

symmetric matrices. The euclidean scalar product between the matrices A and B is denoted
by A : B. For every A ∈ R2×2 the symmetric part Asym ∈ R2×2 is defined as Asym =
1
2(A+AT ), where AT denotes the transpose matrix of A. For any pair of vector spaces we
define L(X;Y ) as the space of linear and continuous maps form X into Y . Let 0 < λ < Λ
be two fixed constants. We now define the space of tensors that will be used in the chapter.

Definition 2.1.8. We define E(λ,Λ) as the set of all maps L : Ω → L(R2×2;R2×2) of class
C2 such that for every x ∈ Ω we have

L(x)A = L(x)Asym ∈ R2×2
sym for every A ∈ R2×2, (2.1.4)

L(x)A : B = L(x)B : A for every A, B ∈ R2×2, (2.1.5)

λ|Asym|2≤ L(x)A : A ≤ Λ|Asym|2 for every A ∈ R2×2. (2.1.6)
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We now fix the following maps

C,V ∈ E(λ,Λ), A := C+ V (2.1.7)

where C(x) and V(x) respectively represent the elasticity and viscosity tensor at the point
x ∈ Ω.

Given γ ∈ Gr,L, 0 ≤ T0 < T1 ≤ T , and s ∈ Spiecµ,M (T0, T1), with s(T1) ≤ bγ , we
now introduce the function spaces that will be used in the precise formulation of problem
(2.0.1)-(2.0.5).

We recall that
Γ := γ([a0, bγ ];R2). (2.1.8)

For every u ∈ H1(Ω \ Γ;R2) Du denotes jacobian matrix in the sense of distributions on
Ω \ Γ and Eu is its symmetric part, i.e.,

Eu :=
1

2
(Du+DuT ).

The following lemma is an extension of the second Korn’s inequality (see, e.g., [41]) to
the case of cracked domain. For a proof see, e.g., [11].

Lemma 2.1.9. Let γ ∈ Gr,L and let Γ := γ([a0, bγ ];R2). Then there exists a constant K,
depending only on Ω and Γ, such that

∥Du∥2≤ K(∥u∥2+∥Eu∥2) (2.1.9)

for every u ∈ H1(Ω \ Γ;R2), where ∥·∥ denotes the L2 norm.

Remark 2.1.10. Let γ ∈ Gr,L and let Γ := γ([a0, bγ ];R2). Then, using a localization argu-
ment (see, e.g., [11]), we can prove that the trace operator is well defined and continuous
from H1(Ω \ Γ;R2) into L2(∂Ω;R2).

We set

V γ := H1(Ω \ Γ;Rd), H := L2(Ω;Rd), and H := L2(Ω;Rd×d) (2.1.10)

Since L2(Γ) = 0, we have the embedding

V γ ↪→ H ×H (2.1.11)

given by v 7→ (v, Dv) and we can see the distrubutional gradient Dv on Ω\Γ as a function
defined a.e. on Ω, which belongs to H.

For every finite dimensional Hilbert space Y the symbols (· , ·) and ∥·∥ denote the scalar
product and the norm in the L2(Ω;Y ), according to the context. The space V γ is endowed
with the norm

∥u∥V γ := (∥u∥2+∥Du∥2)1/2. (2.1.12)
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For every s ∈ [a0, bγ ] we define

V γ
s := H1(Ω \ Γs;R2) and V γ,D

s := {u ∈ V γ
s | u|∂DΩ= 0}, (2.1.13)

where Γs = γ([a0, s]) and u|∂DΩ denotes the trace of u on ∂DΩ. We note that V γ
s and

V γ,D
s are closed linear subspaces of V γ . For every t ∈ [T0, T1] the spaces V

γ
s(t) and V

γ,D
s(t) are

defined as in (2.1.13) with s = s(t).
We define

Vγ,s(T0, T1) := {v ∈ L2(T0, T1;V
γ) ∩H1(T0, T1;H) | v(t) ∈ V γ

s(t) for a.e. t∈(T0, T1)},
(2.1.14)

which is a Hilbert space with the norm

∥v∥Vγ,s := (∥v∥2L2(T0,T1;V γ)+∥v̇∥2L2(T0,T1;H))
1
2 , (2.1.15)

where the dot denotes the distibutional derivative with respect to t. Moreover we set

VDγ,s(T0, T1) := {v ∈ Vγ,s(T0, T1) | v(t) ∈ V D
s(t) for a.e. t ∈ (T0, T1)}, (2.1.16)

which is a closed linear subspace of Vγ,s(T0, T1) and we define

V∞
γ,s(T0, T1) :={v∈L∞(T0, T1;V

γ) ∩W 1,∞(T0, T1;H) | v(t)∈V γ
s(t) for a.e. t∈(T0, T1)},

(2.1.17)
which is a Banach space with the norm

∥v∥V∞
γ,s

:= ∥v∥L∞(T0,T1;V γ)+∥v̇∥L∞(T0,T1;H). (2.1.18)

Moreover, it is convenient to introduce the space of weakly continuous functions with values
in a Banach space X with topological dual X∗, defined by

C0
w([T0, T1];X) := {v : [T0, T1] → X | t 7→ ⟨h, v(t)⟩ is continuous for every h ∈ X∗}.

When it is clear from the context we will omit the dependence on γ or s in the functional
spaces, writing V , Vs(t), V

D
s(t), V(T0, T1), V

D(T0, T1), and V∞(T0, T1) instead of V γ , V γ
s(t),

V γ,D
s(t) , Vγ,s(T0, T1), V

D
γ,s(T0, T1), and V∞

γ,s(T0, T1).
Since

H1(T0, T1;H) ↪→ C0([T0, T1];H), (2.1.19)

we have
V(T0, T1) ↪→ C0([T0, T1], H). (2.1.20)

In particular v(T0) and v(T1) are well defined elements of H, for every v ∈ V(T0, T1).
We set

H̃ := L2(Ω;R2×2
sym). (2.1.21)
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On the forcing term ℓ(t) of (2.0.1) we assume that

ℓ(t) := f(t)− divF (t), (2.1.22)

where

f ∈ L2(0, T ;H) and F ∈ H1(0, T ; H̃) (2.1.23)

are prescribed function and the divergence of a matrix valued function is the vector valued
function whose components are obtained taking the divergence of the rows.

The Dirichlet boundary condition on ∂DΩ is obtained by prescribing a function

uD ∈ H2(0, T ; H) ∩H1(0, T ; V0). (2.1.24)

where V0 is Vs for s = 0. It is not restrictive to assume that for every t ∈ [0, T ]

uD(t) = 0 a.e. on {x ∈ Ω | dist(x, ∂Ω) ≥ r}. (2.1.25)

Moreover we will prescribe the natural Neumann boundary condition on ∂NΩ ∪ Γt.

We are now in a position to give the definition of weak solution for the viscoelastic
problem.

Definition 2.1.11 (Solution for visco-elastodynamics with cracks). Let γ ∈ Gr,L, 0 ≤
T0 < T1 ≤ T , s ∈ Spiecµ,M (T0, T1), with s(T1) ≤ bγ , and assume (2.1.7), (2.1.23)-(2.1.25). Let

u0 ∈ Vs(T0), such that u0−uD(T0) ∈ V D
s(T0)

and let u1 ∈ H. We say that u is a weak solution

of the problem of visco-elastodynamics on the cracked domains Ω \ Γs(t), t ∈ [T0, T1], with
initial conditions u0 and u1, if

u ∈ V(T0, T1) and u− uD ∈ VD(T0, T1), (2.1.26)

−
ˆ T1

T0

(u̇(t), φ̇(t)) dt+

ˆ T1

T0

(AEu(t), Eφ(t)) dt

−
ˆ T1

T0

ˆ t

T0

eτ−t(VEu(τ), Eφ(t)) dτdt =
ˆ T1

T0

(f(t), φ(t)) dt

+

ˆ T1

T0

(F (t), Eφ(t)) dt for all φ ∈ VD(T0, T1) with φ(T0) = φ(T1) = 0, (2.1.27)

u(T0) = u0 in H and u̇(T1) = u1 in (V D
s(T0)

)∗, (2.1.28)

where (V D
s(T0)

)∗ denotes the topological dual of V D
s(T0)

.

Remark 2.1.12. If u satisfy (2.1.26) and (2.1.27), it is possible to prove that u̇ ∈
H1(0, T ; (V D

s(T0)
)∗) (see [43, Remark 4.6]), which implies u̇ ∈ C0([T0, T1]; (V

D
s(T0)

)∗). In

particular u̇(T0) is well defined as an element of (V D
s(T0)

)∗.
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Remark 2.1.13. In the case of smooth functions problem (2.1.26)-(2.1.28) is satisfied in
a stronger sense. Namely, u and {Γs(t)}t∈[T0,T1] satisfy

ü(t)− div((C+ V)Eu(t)) + div
Äˆ t

T0

eτ−tVEu(τ) dτ
ä
= ℓ(t) in Ω \ Γs(t), (2.1.29)

u(t) = uD(t) on ∂DΩ, (2.1.30)Ä
(C+ V)Eu(t)−

ˆ t

T0

eτ−tVEu(τ) dτ
ä
ν = F (t)ν on ∂NΩ, (2.1.31)Ä

(C+ V)Eu(t)−
ˆ t

T0

eτ−tVEu(τ) dτ
ä±
ν = F (t)±ν on Γs(t), (2.1.32)

u(T0) = u0 and u̇(T0) = u1 (2.1.33)

for every t ∈ [T0, T1], where

ℓ(t) := f(t)− divF (t), (2.1.34)

ν is the unit normal, and the symbol ± in (2.1.32) denotes suitable limits on each side of
Γs(t).

2.1.3 A more general result on existence, uniqueness, and continuous
dependence

Existence of the solution for the viscoelastic problem (2.1.26)-(2.1.28) is given by [43] for
Ω ⊂ Rd with d ≥ 1 and under more general assumptions on the regularity of the cracks.
Uniqueness and continuous dependence on the data are proved in [11] under the assumption
that the constant µ, which controls the speed of the crack tip in Definition 2.1.6, satisfies

0 < µ < µ0, (2.1.35)

where the constant µ0 is not explicitly defined in terms of the data of the problem. Using
the fact that d = 2 in our work, we will prove that uniqueness and continuous dependence
can be obtained under the explicit assumption

0 < µ <
√
λ/2, (2.1.36)

where λ are the constants that appears in Defintion 2.1.8 respectively.

In order to prove this results, we have to define an auxiliary problem, which can be
interpreted as the elastodynamics problem with elasticity tensor replaced by A.

Definition 2.1.14 (Solution for elastodynamics with cracks). Let γ ∈ Gr,L, 0 ≤ T0 <

T1 ≤ T , s ∈ Spiecµ,M (T0, T1), with s(T1) ≤ bγ , and assume (2.1.7), (2.1.23)-(2.1.25). Let

u0 ∈ Vs(T0), such that u0 − uD(T0) ∈ V D
s(T0)

and let u1 ∈ H. We say that v is a weak
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solution of the problem of elastodynamics on the cracked domains Ω \ Γs(t), t ∈ [T0, T1],
with initial conditions u0 and u1, if

v ∈ V(T0, T1) and v − uD ∈ VD(T0, T1), (2.1.37)

−
ˆ T1

T0

(v̇(t), φ̇(t)) dt+

ˆ T1

T0

(AEv(t), Eφ(t)) dt =
ˆ T1

T0

(f(t), φ(t)) dt

+

ˆ T1

T0

(F (t), Eφ(t)) dt for all φ ∈ VD(T0, T1) with φ(T0) = φ(T1) = 0, (2.1.38)

v(T0) = u0 in H and v̇(T1) = u1 in (V D
s(T0)

)∗, (2.1.39)

Remark 2.1.15. In the case of smooth functions problem (2.1.37)-(2.1.39) is satisfied in
a stronger sense. Namely, v and {Γs(t)}t∈[T0,T1] satisfy

v̈(t)− div(AEv(t)) = ℓ(t) in Ω \ Γs(t), (2.1.40)

v(t) = uD(t) on ∂DΩ, (2.1.41)

(AEv(t))ν = F (t)ν on ∂NΩ, (2.1.42)

(AEv(t))±ν = F (t)±ν on Γs(t), (2.1.43)

v(T0) = u0 and v̇(T0) = u1 (2.1.44)

for every t ∈ [T0, T1], where ℓ(t) := f(t)− divF (t), ν is the unit normal, and the symbol ±
in (2.1.43) denotes suitable limits on each side of Γs(t).

Existence and uniqueness for the system of elastodynamics with cracks (2.1.37)-(2.1.39)
under the assumption (2.1.36) is given by [19], where the authors consider a slight different
formulation of the problem which is stronger in time. The proof, which is based on a
localization argument, works also for the formulation given in Definition 2.1.14. Then we
can state the following result.

Theorem 2.1.16. Let γ ∈ Gr,L, 0 ≤ T0 < T1 ≤ T , s ∈ Spiecµ,M (T0, T1), with s(T1) ≤ bγ, and

assume (2.1.7), (2.1.23)-(2.1.25) and (2.1.36). Let u0 ∈ Vs(T0), such that u0 − uD(T0) ∈
V D
s(T0)

and let u1 ∈ H. Then there exists a unique solution v of problem (2.1.37)-(2.1.39).

Moreover v ∈ V∞(T0, T1), v ∈ C0
w([T0, T1];V ), and v̇ ∈ C0

w([T0, T1];H).

With the following result we obtain a better regularity with respect to time.

Proposition 2.1.17. Under the same assumption of Theorem 2.1.16, let v be the unique
solution of problem (2.1.37)-(2.1.39). Then

v ∈ C0([T0, T1], V ) ∩ C1([T0, T1], H). (2.1.45)
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Proof. In the case F = 0, a solution for the elastodynamics with cracks in the sense of [19] is
also a solution in the sense of Definition 2.1.14. By uniqueness, the two solutions coincide.
In particular, we get that, if F = 0, the solution is in C0([T0, T1], V ) ∩ C1([T0, T1], H).

If the forcing term F is not zero, we can use same approximation argument used in [11,
Lemma 5.7]. Then for every ε > 0 there exists Fε ∈ H1(0, T, H̃) such that

Fε(t) ∈ C∞
c (Ω \ Γ; Rd×dsym) (2.1.46)

for every t ∈ [0, T ] and

∥Fε − F∥L∞(0,T ;H̃)+∥Ḟε − Ḟ∥L2(0,T ;H̃)< ε. (2.1.47)

We define vε as the solution of the elastodynamic problem in Definition 2.1.14 with F
replaced by Fε. Since Fε is regular in space we have that

(Fε(t), Eψ) = −(divFε(t), ψ) (2.1.48)

for all t ∈ [0, T ] and for all ψ ∈ V . It follows that vε is a solution in the sense of Definition
2.1.14 with f and F respectively replaced by f − divFε and 0. By the results of [19] we
have that

vε ∈ C0([T0, T1], V ) ∩ C1([T0, T1], H). (2.1.49)

Using the continuous dependence on the forcing terms given by [11, Proposition 4.5] and
(2.1.47), we obtain that

sup
t∈[0,T ]

∥vε(t)− v(t)∥V+ sup
t∈[0,T ]

∥v̇ε(t)− v̇(t)∥→ 0 as ε→ 0.

In particular, we get that v ∈ C0([T0, T1], V ) ∩ C1([T0, T1], H).

We now fix the notation that will be useful in order to give the main results concerning
continuous dependence on the data.

Let 0 ≤ T0 < T1 ≤ T , let γk ∈ Gr,L be a sequence of cracks paths, and let sk ∈
Spiecµ,M (T0, T1), with sk(T1) ≤ bγk , be a sequence of crack lengths, we define V γk , ∥·∥V γk ,

V γk
sk(t)

, V γk,D
sk(t)

, Vγk,sk(T0, T1), ∥·∥Vγk.sk
, VDγk,sk(T0, T1) as in (2.1.10)-(2.1.16) with Γ and Γs(t)

replaced by
Γγk := γk([a0, bγk ]) and Γγksk(t) := γk([a0, sk(t)]). (2.1.50)

Let u0k ∈ V γk
sk(T0)

, with u0k − uD(T0) ∈ V γk,D
sk(T0)

, u1k,∈ H,

fk ∈ L2(0, T ;H) and Fk ∈ H1(0, T ; H̃). (2.1.51)

We define uk as the weak solution of k-th viscoelastic problem on the cracked domains
Ω \ Γγksk(t), t ∈ [T0, T1], that is

uk ∈ Vγk,sk(T0, T1) and uk − uD ∈ VDγk,sk(T0, T1), (2.1.52)
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−
ˆ T1

T0

(u̇k(t), φ̇(t)) dt+

ˆ T1

T0

(AEuk(t), Eφ(t)) dt

−
ˆ T1

T0

ˆ t

T0

eτ−t(VEuk(τ), Eφ(t)) dτdt =
ˆ T1

T0

(fk(t), φ(t)) dt

+

ˆ T1

T0

(Fk(t), Eφ(t)) dt for all φ ∈ VDγk,sk(T0, T1) with φ(T0) = φ(T1) = 0, (2.1.53)

uk(T0) = u0k in H and u̇k(T1) = u1k in (V γk,D
sk(T0)

)∗. (2.1.54)

Moreover, we define vk as the weak solution of k-th problem of elastodynamics on the
cracked domains Ω \ Γγksk(t), t ∈ [T0, T1], that is

vk ∈ Vγk,sk(T0, T1) and vk − uD ∈ VDγk,sk(T0, T1), (2.1.55)

−
ˆ T1

T0

(v̇k(t), φ̇(t)) dt+

ˆ T1

T0

(AEvk(t), Eφ(t)) dt =
ˆ T1

T0

(fk(t), φ(t)) dt

+

ˆ T1

T0

(Fk(t), Eφ(t)) dt for all φ ∈ Vγk,sk(T0, T1) with φ(T0) = φ(T1) = 0, (2.1.56)

vk(T0) = u0k in H and v̇k(T1) = u1k in (V γk,D
sk(T0)

)∗. (2.1.57)

We now state the result concernig continuous dependence on the data for the problem
of elastodynamics. It will be used to prove the same result for the viscoelastic problem.

Theorem 2.1.18. Let γ ∈ Gr,L, 0 ≤ T0 < T1 ≤ T , s ∈ Spiecµ,M (T0, T1), with s(T1) ≤ bγ, and

assume (2.1.7), (2.1.23)-(2.1.25) and (2.1.36). Let u0 ∈ V γ
s(T0)

, with u0 − uD(T0) ∈ V γ,D
s(T0)

and let u1 ∈ H. Let γk ∈ Gr,L, let sk ∈ Spiecµ,M (T0, T1), with sk(T1) ≤ bγk . Let u0k ∈ V γk
sk(T0)

,

with u0k − uD(T0) ∈ V γk,D
sk(T0)

, u1k,∈ H, and assume (2.1.51). Let v be the weak solution of

problem (2.1.37)-(2.1.39) on the cracked domains Ω \ Γγs(t), t ∈ [T0, T1]. Let vk the weak

solution problem (2.1.55)-(2.1.57) on the cracked domains Ω \ Γγksk(t), t ∈ [T0, T1]. Assume
that

∥fk − f∥L2(0,T ;H)→ 0, ∥Fk − F∥H1(0,T ;H̃)→ 0, (2.1.58)

sk → s uniformly, γk → γ uniformly, (2.1.59)

u0k → u0 in H, Du0k → Du0 in H, u1k → u1 in H. (2.1.60)

Then
vk(t) → v(t) in H, (2.1.61)

Dvk(t) → Dv(t) in H, (2.1.62)

v̇k(t) → v̇(t) in H, (2.1.63)

for every t ∈ [T0, T1].
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Proof. In the case fk = f , Fk = F = 0 for any k ∈ N, it is a consequence of [19, Theorem
3.5]. In the general case, the result follows from the same approximation argument used
in [11, Lemma 5.7, Proposition 5.9].

Now we are in a position to obtain the same results for the viscoelastic system.

Theorem 2.1.19. Let γ ∈ Gr,L, 0 ≤ T0 < T1 ≤ T , s ∈ Spiecµ,M (T0, T1), with s(T1) ≤ bγ, and

assume (2.1.7), (2.1.23)-(2.1.25) and (2.1.36). Let u0 ∈ Vs(T0), such that u0 − uD(T0) ∈
V D
s(T0)

and let u1 ∈ H. Then there exists a unique solution u of problem (2.1.26)-(2.1.28).

Moreover u ∈ V∞(T0, T1), u ∈ C0
w([T0, T1];V ), and u̇ ∈ C0

w([T0, T1];H).

Proof. We can not apply directly [11, Theorem 4.10] because in general (2.1.35) is not
satisfied. However, assuming (2.1.36) instead of (2.1.35) we can repeat all arguments of
the proof of that theorem, which is based on existence and uniqueness for elastodynamics
with cracks (in our case given by Theorem 2.1.16 and Theorem 2.1.18) and on a fixed point
argument.

Proposition 2.1.20. Under the same assumption of Theorem 2.1.19, let u be the unique
solution of problem (2.1.26)-(2.1.28). Then u ∈ C0([T0, T1], V ) ∩ C1([T0, T1], H).

Proof. It is enough to apply Proposition 2.1.17 with F (t) replaced by

F (t) +

ˆ t

T0

eτ−tVEu(τ)dτ,

for all t ∈ [T0, T1].

The following theorem provides the continuous dependence on the data for the solution
of the viscoelastic problem.

Theorem 2.1.21. Let γ ∈ Gr,L, 0 ≤ T0 < T1 ≤ T , s ∈ Spiecµ,M (T0, T1), with s(T1) ≤ bγ, and

assume (2.1.7), (2.1.23)-(2.1.25) and (2.1.36). Let u0 ∈ V γ
s(T0)

, such that u0 − uD(T0) ∈
V γ,D
s(T0)

and let u1 ∈ H. Let γk ∈ Gr,L, let sk ∈ Spiecµ,M (T0, T1), with sk(T1) ≤ bγk . Let

u0k ∈ V γk
sk(T0)

, such that u0k − uD(T0) ∈ V γk,D
sk(T0)

, u1k,∈ H, and assume (2.1.51). Let u be the

weak solution of problem (2.1.26)-(2.1.28) on the cracked domains Ω\Γγs(t), t ∈ [T0, T1]. Let

uk the weak solution problem (2.1.52)-(2.1.54) on the cracked domains Ω\Γγksk(t), t ∈ [T0, T1].
Assume that

∥fk − f∥L2(0,T ;H)→ 0, ∥Fk − F∥H1(0,T ;H̃)→ 0, (2.1.64)

sk → s uniformly, γk → γ uniformly, (2.1.65)

u0k → u0 in H, Du0k → Du0 in H, u1k → u1 in H. (2.1.66)

Then
uk(t) → u(t) in H, (2.1.67)
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Duk(t) → Du(t) in H, (2.1.68)

u̇k(t) → u̇(t) in H, (2.1.69)

for every t ∈ [T0, T1]. Moreover there exists a constant C > 0 such that

∥uk(t)∥+∥Duk(t)∥+∥u̇k(t)∥≤ C

for every k ∈ N and t ∈ [T0, T1].

Proof. As in the proof of Theorem 2.1.19, we cannot apply directly [11, Theorem 6.1],
because in general (2.1.35) is not satisfied. However, assuming (2.1.36) instead of (2.1.35)
we can repeat all arguments of the proof of that theorem, which is based on the continuous
dependence on the data for elastodynamics with cracks (in our case given by Theorem
2.1.18) and on a results concerning the convergence of fixed points of a sequence of functions
(see [11, Lemma 4.2]).

2.2 Energy balance

In this section we study the problem of the dynamic energy-dissipation balance on a given
cracked domain Ω \ Γγs(t) for a solution of a viscoelastic problem.

2.2.1 Dynamic dissipation energy balance

Let γ ∈ Gr,L, 0 ≤ T0 < T1 ≤ T , s ∈ Spiecµ,M (T0, T1), with s(T1) ≤ bγ . It is convenient to
define the operator

LT0 :V(T0, T1) → H1(T0, T1;H), (2.2.1)

(LT0u)(t) :=
ˆ t

T0

eτ−tVEu(τ)dτ, (2.2.2)

for all u ∈ V(T0, T1), for all t ∈ [T0, T1]. Since

(
˙̄LT0u)(t) = VEu(t)−

ˆ t

T0

eτ−tVEu(τ) dτ,

it is easy to check that LT0 is bounded. Indeed, using the Hölder inequality it is possible
to prove that

∥LT0u∥L∞(T0,T1;H̃)≤ (T1 − T0)
1/2∥V∥∞∥u∥V(T0,T1), (2.2.3)

∥ ˙̄LT0u∥L2(T0,T1;H̃)≤ (1 + T1 − T0)∥V∥∞∥u∥V(T0,T1). (2.2.4)

Assume (2.1.7), (2.1.23)-(2.1.25) and let v ∈ C0([T0, T1], V )∩C1([T0, T1], H). For every
t ∈ [T0, T1] the sum of kinetic and elastic energy is given by

Ev(t) =
1

2
∥v̇(t)∥2+1

2
(CEv(t), Ev(t)). (2.2.5)
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For an interval [t1, t2] ⊂ [T0, T1] the dissipation due to viscosity between time t1 and t2 is
given by

Dv(t1, t1) =
1

2
(VEv(t2), Ev(t2))−

1

2
(VEv(t1), Ev(t1))

− ((LT0v)(t2), Ev(t2)) + ((LT0v)(t1), Ev(t1))

+

ˆ t2

t1

(VEv(t), Ev(t))dt−
ˆ t2

t1

((LT0v)(t), Ev(t))dt. (2.2.6)

Moreover, we assume that the energy dissipated in the process of crack production on
the interval [t1, t2] is proportional to s(t2)− s(t1), which represent the length of the crack
increment. For simplicity we take the proportionality constant equal to one. Finally, the
work done between time t1 and t2 by the boundary and volume forces is

Wv(t1, t2)=

ˆ t2

t1

Ä
(f(t), v̇(t)− u̇D(t)) + ((C+ V)Ev(t), Eu̇D(t))− ((LT0v)(t), Eu̇D(t))

ä
dt

−
ˆ t2

t1

(Ḟ (t), Ev(t)− EuD(t))dt−
ˆ t2

t1

(v̇(t), v̈D(t))dt+ (v̇(t2), u̇D(t2))

−(v̇(t1), u̇D(t1))+(F (t2), Ev(t2)− EuD(t2))−(F (t1), Ev(t1)− EuD(t1)).
(2.2.7)

Remark 2.2.1. When F = F0 as in (6) and all terms are regular enough, formulas (2.2.6)
and (2.2.7) can be obtained from (1) in (−∞, T ], using the explicit expression of the stress
tensor (2) and integrating by parts. For more details when viscosity is not present see also
to [18, Section 3] and [19, Section 4].

Remark 2.2.2. We stress that (2.2.6) and (2.2.7) make sense for every weak solution of
problem (2.1.26)-(2.1.27), thanks to Proposition 2.1.20.

We now define the class of cracks whose solutions of the viscoelastic problem satisfy
the dynamic energy-dissipation balance.

2.2.2 The class of admissible cracks

Definition 2.2.3. Let 0 ≤ T0 < T1 ≤ T , s0 ≥ 0, and γ ∈ Gr,L, with bγ = s0, and assume

(2.1.7), (2.1.23)-(2.1.25) and (2.1.36). Let u0 ∈ V γ
s0 , such that u0 − uD(T0) ∈ V γ,D

s0 and let
u1 ∈ H. The class

Breg(T0, T1) = Breg(T0, T1, s0, γ,C,V, f, F, uD, u0, u1)

is composed of all pairs (γ, s), with

γ ∈ Gr,L, (2.2.8)
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γ|[a0,s0]= γ|[a0,s0], (2.2.9)

s ∈ Sregµ,M ([T0, T1]). (2.2.10)

s(T0) = s0, s(T1) ≤ bγ , (2.2.11)

such that the unique weak solution u of the viscoelastic problem (2.1.26)-(2.1.28) satisfies
the energy-dissipation balance

Eu(t2)− Eu(t1) +Du(t1, t2) + s(t2)− s(t1) = Wu(t1, t2) (2.2.12)

for every interval [t1, t2] ⊂ [T0, T1]. Similarly, the class

Bpiec(T0, T1) = Bpiec(T0, T1, s0, γ,C,V, f, F, uD, u0, u1)

is defined in the same way replacing s ∈ Sregµ,M ([T0, T1]) by s ∈ Spiecµ,M ([T0, T1]).

The class Breg(T0, T1) is nonempty, as clarified by the following result, whose proof
follows the lines of [23, Lemma 1] and [22, Proposition 2.7].

Proposition 2.2.4. Under the assumption of Definition 2.2.3, the pair (γ, s), with s(t) =
s0 for every t ∈ [T0, T1], belongs to Breg(T0, T1).

Proof. We prove the result in the case of homogeneous boundary condition, i.e. uD = 0.
Indeed, the case of non-homogeneous data can be obtained considering the equation for
u−uD. It is convenient to extend our data on [0, 2T ] by setting f(t) = 0 and F (t) = F (T )
for t ∈ (T, 2T ]. It is clear that f ∈ L2(0, 2T,H), F ∈ H1(0, 2T, H̃), and that, by uniqueness,
the solution u of the viscoelastic problem on [T0, 2T ] is an extension of the solution on
[T0, T1]. Since the domain is constant with respect to time we deduce from (2.1.26)-(2.1.27)
that u ∈ H2([T0, 2T ]; (V

D
s0 )

∗) and

⟨ü(t), φ⟩+ ((C+ V)Eu(t), Eφ)− (LT0u(t), Eφ) = (f(t), φ) + (F (t), Eφ). (2.2.13)

for all φ ∈ V D
s0 and for a.e. t ∈ [T0, 2T ].

Given a Banach space X and a function r : [T0, 2T ] → X, for every h > 0 we define
σhr, δhr : [T0, 2T − h] → X by

σhr(t) := r(t+ h) + r(t), (2.2.14)

δhr(t) := r(t+ h)− r(t). (2.2.15)

For a.e. t ∈ [T0, 2T − h] we have σhu(t), δhu(t) ∈ V D
s0 . We consider (2.2.13) at time t and

a time t+ h, in both cases with φ = δhu(t). We sum the two expressions and we integrate
on [t1, t2] ⊆ [T0, T1]. We get

ˆ t2

t1

(Kh(t) + Eh(t) +Dh(t)) dt =

ˆ t2

t1

Lh(t) dt, (2.2.16)
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where the terms that appear in (2.2.16) are defined as

Kh(t) := ⟨σhü(t), δhu(t)⟩,
Eh(t) := ((C+ V)σhEu(t), δhEu(t)),
Dh(t) := −(σh[LT0u(t)], δhEu(t)),
Lh(t) := (σhf(t), δhu(t)) + (σhF (t), δhEu(t)).

We have that

ˆ t2

t1

Kh(t) dt = −
ˆ t2

t1

(σhu̇(t), δhu̇(t)) dt+ (σhu̇(t2), δ
hu(t2))− (σhu̇(t1), δ

hu(t1))

= −
ˆ t2

t1

(∥u̇(t+ h)∥2dt− ∥u̇(t)∥2)dt+ (σhu̇(t2), δ
hu(t2))− (σhu̇(t1), δ

hu(t1))

= −
ˆ t2+h

t1+h
∥u̇(t)∥2dt+

ˆ t2

t1

∥u̇(t)∥2dt+ (σhu̇(t2), δ
hu(t2))− (σhu̇(t1), δ

hu(t1))

= −
ˆ t2+h

t2

∥u̇(t)∥2dt+
ˆ t1+h

t1

∥u̇(t)∥2dt+ (σhu̇(t2), δ
hu(t2))− (σhu̇(t1), δ

hu(t1))

and dividing by h we get

ˆ t2

t1

Kh(t)

h
dt = −

 t2+h

t2

∥u̇(t)∥2dt+
 t1+h

t1

∥u̇(t)∥2dt+ (σhu̇(t2),
δhu(t2)

h
)− (σhu̇(t1),

δhu(t1)

h
).

Then

ˆ t2

t1

Kh(t)

h
dt→ −∥u̇(t2)∥2+∥u̇(t1)∥2+2∥u̇(t2)∥2−2∥u̇(t1)∥2= ∥u̇(t2)∥2−∥u̇(t1)∥2, (2.2.17)

as h→ 0+, where we have used the fact that u ∈ C1([T0, 2T ], H). Moreover

ˆ t2

t1

Eh(t) dt =

ˆ t2

t1

((C+ V)Eu(t+ h), Eu(t+ h))dt−
ˆ t2

t1

((C+ V)Eu(t), Eu(t))dt

=

ˆ t2+h

t1+h
((C+ V)Eu(t), Eu(t))dt−

ˆ t2

t1

((C+ V)Eu(t), Eu(t))dt

=

ˆ t2+h

t2

((C+ V)Eu(t), Eu(t))dt−
ˆ t1+h

t1

((C+ V)Eu(t), Eu(t))dt (2.2.18)

which give us

ˆ t2

t1

Eh(t)

h
dt→ ((C+ V)Eu(t2), Eu(t2))− ((C+ V)Eu(t1), Eu(t1)) (2.2.19)
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as h→ 0+, where we have used the fact that u ∈ C0([T0, 2T ], V ). Regarding the term Dh

we have

−
ˆ t2

t1

Dh(t) dt =

ˆ t2

t1

(σh[LT0u(t)], Eu(t+ h))dt−
ˆ t2

t1

(σh[LT0u(t)], Eu(t))dt

=

ˆ t2+h

t1+h
(σ−h[LT0u(t)], Eu(t))dt−

ˆ t2

t1

(σh[LT0u(t)], Eu(t))dt

=

ˆ t2+h

t1+h
(LT0u(t− h)− LT0u(t+ h), Eu(t))dt

−
ˆ t1+h

t1

(σh[LT0u(t)], Eu(t))dt+
ˆ t2+h

t2

(σh[LT0u(t)], Eu(t))dt

=

ˆ t2

t1

(LT0u(t)− LT0u(t+ 2h), Eu(t+ h))dt

−
ˆ t1+h

t1

(σh[LT0u(t)], Eu(t))dt+
ˆ t2+h

t2

(σh[LT0u(t)], Eu(t))dt, (2.2.20)

which give us
ˆ t2

t1

Dh(t)

h
dt = −

ˆ t2

t1

ÄLT0u(t)− LT0u(t+ 2h)

h
,Eu(t+ h)

ä
dt

+

 t1+h

t1

(σh[LT0u(t)], Eu(t))dt−
 t2+h

t2

(σh[LT0u(t)], Eu(t))dt

→ 2

ˆ t2

t1

((
˙̄LT0u)(t), Eu(t))dt

+ 2(LT0u(t1), Eu(t1))− 2(LT0u(t2), Eu(t2))

= 2

ˆ t2

t1

(VEu(t)− LT0u(t), Eu(t))dt

+ 2(LT0u(t1), Eu(t1))− 2(LT0u(t2), Eu(t2)), as h→ 0+, (2.2.21)

where we have used again that u ∈ C0([T0, 2T ], V ).
With similar arguments, we have that

ˆ t2

t1

Lh(t)

h
dt→ 2

ˆ t2

t1

(f(t), u̇(t))dt− 2

ˆ t2

t1

(Ḟ (t), Eu(t))dt

+ 2(F (t2), Eu(t1))− 2(F (t1), Eu(t1)), as h→ 0+. (2.2.22)

Dividing by h Equation (2.2.16) and using Equations (2.2.17), (2.2.19), (2.2.21), and
(2.2.22), we get the following identity

∥u̇(t2)∥2+((C+ V)Eu(t2), Eu(t2)) + 2

ˆ t2

t1

(VEu(t)− LT0u(t), Eu(t))dt
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− 2(LT0u(t2), Eu(t2)) = ∥u̇(t1)∥2+((C+ V)Eu(t1), Eu(t1))− 2(LT0u(t1), Eu(t1))

+ 2

ˆ t2

t1

(f(t), u̇(t))dt− 2

ˆ t2

t1

(Ḟ (t), Eu(t))dt+ 2(F (t2), Eu(t1))− 2(F (t1), Eu(t1)),

(2.2.23)

that is the energy-dissipation balance (2.2.12) when uD = 0 and s(t) = s0 for all t ∈
[T0, T1].

The following remark deals with the concatenation of solutions on adjacent time inter-
vals.

Remark 2.2.5. Under the assumption of Definition 2.2.3, let 0 ≤ T0 < T1 < T2 ≤ T ,

(γ1, s1) ∈ Bpiec(T0, T1, s0, γ,C,V, f, F, uD, u0, u1),

(γ2, s2) ∈ Bpiec(T1, T2, s1(T1), γ1,C,V, f, F, uD, u(T1), u̇(T1)).

Let s: [T0, T2] → R be defined as

s(t) :=

{
s1(t) if t ∈ [T0, T1],

s2(t) if t ∈ [T1, T2].
(2.2.24)

Then (γ2, s) ∈ Bpiec(T0, T2, s0, γ,C,V, f, F, uD, u0, u1).

Using the continuous dependence Theorem 2.1.21 we are in a position to prove a com-
pactness result for Breg, which will be useful for the proof of the main result of the chapter
(see Theorem 2.3.3).

Theorem 2.2.6. Under the assumption of Definition 2.2.3, let (γk, sk) ∈ Breg(T0, T1).
Then there exists a not relabelled subsequence and there exists (γ, s) ∈ Breg(T0, T1) such
that γk → γ uniformly (in the sense of Definition 2.1.3) and sk → s in C3([T0, T1]).

Proof. By Lemma 2.1.5 there exists a subsequence (not relabelled) γk and γ ∈ Gr,L such
that γk → γ uniformly (in the sense of Definition 2.1.3). By Ascoli-Arzelà Theorem
there exists s ∈ C3([T0, T1]) and a further subsequence sk converging to s in C3([T0, T1]).
Moreover, if we pass to the limit ad k → +∞ in the conditions in Definition 2.1.6 for sk,
we get that s ∈ Sregµ,M ([T0, T1]). We defined u as the solution of the viscoelastic problem

(2.1.26)-(2.1.28) on the time-dependent cracked domain t 7→ Ω \ Γγs(t) with t ∈ [T0, T1] and
we define uk as the solution of the viscoelastic problem on the time-dependent cracked
domain t 7→ Ω \ Γγksk(t) with t ∈ [T0, T1]. Since (γk, sk) ∈ Breg(T0, T1) we have

1

2
∥u̇k(t2)∥2+

1

2
((C+ V)Euk(t2), Euk(t2))− (LT0uk(t2), Euk(t2))

−1

2
∥u̇k(t1)∥2−

1

2
((C+ V)Euk(t1), Euk(t1)) + (LT0uk(t1), Euk(t1))
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−
ˆ t2

t1

(VEuk(t), Euk(t))dt−
ˆ t2

t1

(LT0uk(t), Euk(t))dt+ sk(t2)− sk(t1)

=

ˆ t2

t1

Ä
(f(t), u̇k(t)− u̇D(t)) + ((C+ V)Euk(t), Eu̇D(t))− (LT0uk(t), Eu̇D(t))

ä
dt

−
ˆ t2

t1

(Ḟ (t), Euk(t)− EuD(t))dt+ (F (t2), Euk(t2)− EuD(t2))− (F (t1), Euk(t1)− EuD(t1))

−
ˆ t2

t1

(u̇k(t), üD(t))dt+ (u̇k(t2), u̇D(t2))− (u̇k(t1), u̇D(t1)), (2.2.25)

for every interval [t1, t2] ⊂ [T0, T1]. Using Theorem 2.1.21 and the bounds (2.2.3)-(2.2.4),
we can pass to the limit as k → +∞ in (2.2.25) and we get the energy-dissipation balance
(2.2.12) for u. This proves that (γ, s) ∈ Breg(T0, T1) and concludes the proof.

2.3 Existence for the coupled problem

In this section we prove an existence result for the crack evolution (described by the
functions γ and s). In order to do this we define a maximal dissipation condition (see
also [18] and [19]), which forces the crack tip to choose a path which allows for a maximal
speed.

Definition 2.3.1. Assume (2.1.7), (2.1.23)-(2.1.25) and (2.1.36). Let u0 ∈ V0, such that
u0−uD(0) ∈ V D

0 , and let u1 ∈ H. Given η > 0 we say that (γ, s) ∈ Bpiec(0, T ) satisfies the
η−maximal dissipation condition on [0, T ] if there exists no (γ̂, ŝ) ∈ Bpiec(0, τ1), for some
τ1 ∈ (0, T ], such that

(M1) sing(ŝ) ⊂ sing(s),

(M2) ŝ(t) = s(t) and γ̂(ŝ(t)) = γ(s(t)) for every t ∈ [0, τ0], for some τ0 ∈ [0, τ1),

(M3) ŝ(t) > s(t) for every t ∈ (τ0, τ1] and ŝ(τ1) > s(τ1) + η.

Remark 2.3.2. We refer to the discussion in [19, Section 1] for some comments on the
presence of the parameter η > 0.

We are now in position to prove the main result of the chapter. The proof follows the
lines of [18] and [19], devoted to the case of elastodynamics without viscosity terms.

Theorem 2.3.3. Under the assumption of Definition 2.3.1, for every η > 0 there exists a
pair (γ, s) ∈ Bpiec(0, T ) satisfying the η-maximal dissipation condition on [0, T ].

Proof. Let us fix η > 0 and a finite subdivision 0 = T0 < T1 < ... < Tk = T of the time
interval [0, T ] such that

Ti − Ti−1 <
η

µ
, (2.3.1)
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for every i ∈ {0, 1, 2, ..., k}. We will define the solution using a recursive procedure on each
subinterval [Ti−1, Ti], for every i ∈ {0, 1, 2, ..., k}. In order to define this procedure, we set

X1 :=
{
(γ, s) ∈ Bpiec(0, T1, 0, γ0,C,V, f, F, uD, u0, u1) | s ∈ Sregµ,M (0, T1), s(0) = 0

}
,

(2.3.2)
where γ0 is the function that appears in Definition 2.1.1. By Proposition 2.2.4 we have
that (γ0, 0) ∈ X1 and in particular we have X1 ̸= ∅. Moreover, we choose (γ1, s1) ∈ X1 such
that ˆ T1

T0

s1(t) dt = max
(γ,s)∈X1

ˆ T1

T0

s(t) dt,

where the existence of (γ1, s1) is guaranteed by Lemma 2.3.4 below. If k = 1, we define
(γ, s) := (γ1, s1) and we have to prove that this couple satisfies the η-maximal dissipation
condition. Otherwise, we fix i ∈ {2, ..., k} and we set

Xi :=
{
(γ, s) ∈ Bpiec(0, Ti, 0, γ0,C,V, f, F, uD, u0, u1) | s|[Ti−1,Ti]∈ Sregµ,M (Ti−1, Ti),

s(t) = si−1(t), γ(s(t)) = γi−1(si−1(t))∀ t ∈ [0, Ti−1]
}
. (2.3.3)

We note that Xi ̸= ∅. Indeed, if we define s̃i−1 as

s̃i−1(t) :=

{
si−1(t) for t ∈ [0, Ti−1],

si−1(Ti−1) for t ∈ [Ti−1, Ti],

we can apply Proposition 2.2.4 and Remark 2.2.5 to obtain (γi−1, s̃i−1) ∈ Xi. Assume that
the pair (γi−1, si−1) ∈ Xi−1 has already been defined, then we choose (γi, si) ∈ Xi such
that ˆ Ti

Ti−1

si(t) dt = max
(γ,s)∈Xi

ˆ Ti

Ti−1

s(t) dt, (2.3.4)

where the existence of (γi, si) is guaranteed by Lemma 2.3.4 below.

We now define (γ, s) := (γk, sk), where (γk, sk) is the the pair defined in the final step
of the procedure defined above. It remains to prove that (γ, s) satisfies the η-maximal
dissipation condition on the interval [0, T ]. Assume, by contradiction that there exist
0 ≤ τ0 < τ1 ≤ T and (γ̂, ŝ) ∈ Bpiec(0, τ1) such that:

(i) sing(ŝ) ⊂ sing(s) ⊂ {T1, ..., Tk−1}

(ii) s(t) = ŝ(t) and γ(s(t)) = γ̂(ŝ(t)) for every t ∈ [0, τ0],

(iii) s(t) < ŝ(t) for every t ∈ (τ0, τ1] and ŝ(τ1) > s(τ1) + η.
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Since τ0 < T , there exists an index j ∈ {1, ..., k} such that τ0 ∈ [Tj−1, Tj). We claim that
τ1 > Tj . Indeed, the using the monotonicity of s and the points (ii) and (iii), we have that

ŝ(τ1) > s(τ1) + η ≥ s(τ0) + η = ŝ(τ0) + η, (2.3.5)

and in particular ŝ(τ1)− ŝ(τ0) > η. On the other hand, since ŝ ∈ Spiecµ,M (0, τ1) we have

ŝ(τ1)− ŝ(τ0) ≤ µ(τ1 − τ0) (2.3.6)

which together with the previous inequality give us τ1 − τ0 > η/µ. Since the subdivision
of the interval was choosen such that Ti−1 − Ti < η/µ for every i ∈ {1, ..., k}, we get that
τ1 > Tj .

Using (i) we have that ŝ|[Tj−1,Tj ]∈ Sregµ,M (Tj−1, Tj) and taking (ii) into account we get
that (γ̂, ŝ) ∈ Xj . By construction s = sj on [Tj−1, Tj ], where sj is the function defined in
(2.3.4) for i = j. As a consequence of (iii) we get ŝ(t) > s(t) = sj(t) for every t ∈ (τ0, Tj ],
which contradicts (2.3.4).

We close this section with the following Lemma used to prove Theorem 2.3.3. The
proof follows the lines of [19, Lemma 5.3] with obvious modifications.

Lemma 2.3.4. For every i = 1, ..., k there exists (γi, si) ∈ Xi such that

ˆ Ti

Ti−1

si(t) dt = max
(γ,s)∈Xi

ˆ Ti

Ti−1

s(t) dt, (2.3.7)

where Xi is the space defined in (2.3.2) and (2.3.3).

Proof. Let i ∈ {1, ..., k} be fixed and let us define

S := sup
(γ,s)∈Xi

ˆ Ti

Ti−1

s(t) dt.

For every n ∈ N let (γn, sn) ∈ Xi be such that

ˆ Ti

Ti−1

sn(t) dt ≥ S − 1

n
. (2.3.8)

Let ui−1 be the unique solution of the viscoelastic system (2.1.26)-(2.1.28) on the time-
dependent domain t 7→ Ω \ Γγi−1

si−1(t)
for t ∈ [0, Ti−1]. By Theorem 2.2.6 there exists a (not

relabelled) subsequence of (γn, sn|[Ti−1,Ti]) and an element

(γi, s̃) ∈ Breg(Ti−1, Ti, si−1(Ti−1), γi−1,C,V, f, F, uD, ui−1(Ti−1), u̇i−1(Ti−1)),
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such that γn → γi uniformly (in the sense of Definition 2.1.3) and sn|[Ti−1,Ti]→ s in
C3([Ti−1, Ti]). We now define

si(t) :=

{
si−1(t) for t ∈ [0, Ti−1],

s̃(t) for t ∈ [Ti−1, Ti].

By definition of Xi, we have that γn(si−1(t)) = γn(sn(t)) = γi−1(si−1(t)) for all t ∈ [0, Ti−1].
Passing to the limit as n→ +∞ we obtain that γi(si(t)) = γi−1(si−1(t)) for all t ∈ [0, Ti−1],
which together to Remark 2.2.5, give us (γi, si) ∈ Xi. Finally, passing to the limit as
n→ +∞ in Equation (2.3.8), we get Equation (2.3.7) and this concludes the proof.
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In this chapter we consider the one-dimensional debonding model for a viscoelastic
material described in the introduction, with assigned debonding front.

Given T > 0 and a positive and prescribed increasing function ℓ: [0, T ] → R, the problem
considered in this chapter is a particular case of (3), namely

utt(t, x)−uxx(t, x)+
ˆ t

0

eτ−t

2
uxx(t, x) dt=f(t, x)−Fx(t, x), (t, x) ∈ Ωℓ, (3.0.1)

u(t, 0)=uD(t), t ∈ (0, T ), (3.0.2)

u(t, ℓ(t))=0, t ∈ (0, T ), (3.0.3)

u(0, x)=u0(x), x ∈ (0, ℓ0), (3.0.4)

ut(0, x)=u
1(x), x ∈ (0, ℓ0). (3.0.5)
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where Ωℓ = {(t, x) ∈ R2 | t ∈ (0, T ), x ∈ (0, ℓ(t))}, u is the longitudinal displacement
(extended as u = 0 on ((0, T ) × (0, ℓ(T ))) \ Ωℓ), f and F are the forcing terms, uD is the
Dirichlet condition, and u0 and u1 are the initial conditions. For more details on this model
and is physical interpretation we refer to the Introduction of this thesis. The aim of this
chapter is to prove existence, uniqueness and regularity results for problem (3.0.1)-(3.0.5).
In order to study this problem, we first work on the auxiliary problem without damping
term given by

utt(t, x)− uxx(t, x) = f(t, x)− Fx(t, x), (t, x) ∈ Ωℓ, (3.0.6)

u(t, 0) = uD(t), t ∈ (0, T ), (3.0.7)

u(t, ℓ(t)) = 0, t ∈ (0, T ), (3.0.8)

u(0, x) = u0(x), x ∈ (0, ℓ0), (3.0.9)

ut(0, x) = u1(x), x ∈ (0, ℓ0). (3.0.10)

and, similarly to the previous chapters, we use fixed point arguments to get the results for
(3.0.1)-(3.0.5).

The chapter is organized as follows. In Section 3.1 we give the basic definition in order
to define the weak formulation of (3.0.1)-(3.0.5) and (3.0.6)-(3.0.10). Section 3.2 is divided
in Subsection 3.2.1, where we describe some geometric considerations on the debonding,
and Subsection 3.2.2, where we prove the representation formula, and in Subsection 3.2.3
we prove existence and uniqueness for (3.0.1)-(3.0.5). Finally, in Section 3.3 we deal with
some energetic results. More precisely, in Subsection 3.3.1 we prove that the total energy
(as a function of time) is absolutely continuous, while in Subsection 3.3.2 we give the main
ideas in order to study the debonding problem with a non-prescribed debonding front (this
case will be studied in a future research project).

The original results of this chapter will be contained [13] (work in preparation).

3.1 Preliminary results

In this chapter we set the notations and we give the main definition following the same
presentation of [20] and [42]. We fix T > 0, ℓ0 > 0 and a function

ℓ: [0, T ] → R (3.1.1)

such that
ℓ ∈ C0,1([0, T ]), (3.1.2)

ℓ(0) = ℓ0, and 0 ≤ ℓ̇(t) ≤ 1 for a.e. t ∈ [0, T ]. (3.1.3)

We introduce the following two auxiliary functions

φ, ψ: [0, T ] → R (3.1.4)
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defined for every t ∈ [0, T ] as

φ(t) := t− ℓ(t) and ψ(t) := t+ ℓ(t). (3.1.5)

We set L := ℓ(T ). The function ψ is invertible and we can define

ω: [ℓ0, ℓ0 + L] 7→ R, ω(y) := φ ◦ ψ−1(y), (3.1.6)

which is a Lipschitz function whose derivative satisfies for a.e. y ∈ [ℓ0, ℓ0 + L]

0 ≤ ω̇(y) =
1− ℓ̇(ψ−1(y))

1 + ℓ̇(ψ−1(y))
≤ 1. (3.1.7)

For every t∗ ∈ (0, T ] we define

Ωt∗ := {(t, x) | t ∈ (0, t∗), x ∈ (0, ℓ(t))} (3.1.8)

and
Qt∗ := {(t, x) | t ∈ (0, t∗), x ∈ (0, L)}. (3.1.9)

In the case t∗ = T we omit the dependence on t∗ and we simply write Ω and Q instead of
ΩT and QT . We stress that, unlike the previous chapters, here Ω is a space-time domain
and not a spatial domain.

Regarding the boundary and initial conditions we assume

u0 ∈ H1(0, ℓ0), (3.1.10)

u1 ∈ L2(0, ℓ0), (3.1.11)

uD ∈ H1(0, T ), (3.1.12)

with the compatibility conditions

u0(0) = uD(0) and u0(ℓ0) = 0. (3.1.13)

For the forcing term we set

f ∈ L2(0, T ;L2(0, L)), F ∈ H1(0, T ;L2(0, L)) and f = F = 0 a.e. on Q \ Ω. (3.1.14)

Remark 3.1.1. We recall the following identifications: L2(0, T ;L2(0, L)) ≃ L2(Q) and
H1(0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L)) ≃ H1(Q).

Remark 3.1.2. With a slight abuse of notation, we use ẇ to denote both the Bochner
derivative with respect to time (if w = w(t, x)) and the derivative with respect to a single
variable (if w = w(s)), depending on the context.

Remark 3.1.3. Let X be a Banach space. As done before, we identify a function in
H1(0, T ;X) with its continuous representative on [0, T ].
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Definition 3.1.4 (Solution of the viscoelastic debonding problem). We say that a function
u ∈ H1(Ω) is a solution of the viscoelastic problem (3.0.1)-(3.0.5) if equation (3.0.1) holds
in the sense of D′(Ω), the boundary conditions (3.0.2)-(3.0.3) are intended in the sense of
traces and the initial conditions (3.0.4)-(3.0.5) are satisfied in the sense of L2(0, ℓ0) and
H−1(0, ℓ0), respectively.

We recall that C∞
c (Ω) is the set of smooth functions with compact support on Ω.

Remark 3.1.5. Let u be as in Definition 3.1.4. Then (3.0.1) in the sense of D′(Ω) means

−
ˆ
Ω
ut(t, x)ϕt(t, x) dtdx+

ˆ
Ω
ux(t, x)ϕx(t, x) dtdx−

ˆ
Ω

ˆ t

0

eτ−t

2
ux(τ, x) dτ ϕx(t, x) dtdx

=

ˆ
Ω
f(t, x)ϕ(t, x) dtdx+

ˆ
Ω
F (t, x)ϕx(t, x) dtdx, for all ϕ ∈ C∞

c (Ω). (3.1.15)

Remark 3.1.6. Taking into account condition (3.0.3), a solution u in the sense of Defi-
nition 3.1.4 is extended on Q (still denoting it by u), by setting u = 0 on Q \ Ω and the

extensions belong to H1(Q). In particular, the term (t, x) 7→
´ t
0
eτ−t

2 ux(τ, x) dτ is well
defined for a.e. (t, x) ∈ Ω.

Remark 3.1.7. The initial conditions in Definition 3.1.4 are well posed. Indeed, a solution
u ∈ H1(Ω) must satisfies u ∈ H1((0, T )× (0, ℓ0)) ≃ H1(0, T ;L2(0, ℓ0))∩L2(0, T ;H1(0, ℓ0))
which implies u ∈ C0(0, T ;L2(0, ℓ0)). Moreover, using (3.0.1), one can prove that ut ∈
H1(0, T ;H−1(0, ℓ0)) ↪→ C0(0, T ;H−1(0, ℓ0)) (see also [20])

3.2 Existence, uniqueness, and representation formula

In order to prove existence and uniqueness for the viscoelastic problem (3.0.1)-(3.0.5) we
have to consider the auxiliary problem (3.0.6)-(3.0.10).

3.2.1 The auxiliary problem

Definition 3.2.1 (Solution of the elastic debonding problem). We say that a function
v ∈ H1(Ω) is a solution of elastic problem (3.0.6)-(3.0.10) if equation (3.0.6) holds in
the sense of D′(Ω), the boundary conditions (3.0.7)-(3.0.8) are intended in the sense of
traces and the initial conditions (3.0.9)-(3.0.10) are satisfied in the sense of L2(0, ℓ0) and
H−1(0, ℓ0), respectively.

Remark 3.2.2. Let v be as in Definition 3.2.1. Then (3.0.6) in the sense of D′(Ω) means

−
ˆ
Ω
ut(t, x)ϕt(t, x) dtdx+

ˆ
Ω
ux(t, x)ϕx(t, x) dtdx =

ˆ
Ω
f(t, x)ϕ(t, x) dtdx+

ˆ
Ω
F (t, x)ϕx(t, x) dtdx, for all ϕ ∈ C∞

c (Ω). (3.2.1)
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Remark 3.2.3. The initial conditions in Defintion 3.2.1 are well posed for the same argu-
ment used in Remark 3.1.7.

Remark 3.2.4. Taking into account condition (3.0.8), a solution v in the sense of Definition
3.2.1 can be extended on Q (still denoting it by v), by setting v = 0 on Q \ Ω and the
extensions belong to H1(Q).

In order to prove existence and uniqueness for problem (3.0.6)-(3.0.10) we find an
explicit formula for the solution v on a particular subset of Ω. Since in (3.0.6) the term
Fx does not belongs to L2(0, T ;L2(0, L)), we can not apply the formula of [20, 42] to our
case, but we have to compute a new one. Moreover, we stress that this result is a natural
extension of the classical D’Alembert’s formula.

We define some subsets that will be used to define the explicit formula. We fix the
following sets

Ω′
1 := {(t, x) ∈ Ω | t ≤ x, t+ x ≤ ℓ0}, (3.2.2)

Ω′
2 := {(t, x) ∈ Ω | t > x, t+ x < ℓ0}, (3.2.3)

Ω′
3 := {(t, x) ∈ Ω | t < x, t+ x > ℓ0}, (3.2.4)

Ω′ := Ω′
1 ∪ Ω′

2 ∪ Ω′
3, (3.2.5)

and the following functions

γ1(τ ; t, x) =


x− t+ τ (t, x) ∈ Ω′

1,

|x− t+ τ | (t, x) ∈ Ω′
2,

x− t+ τ (t, x) ∈ Ω′
3,

(3.2.6)

γ̂1(τ ; t, x) =


x− t+ τ (t, x) ∈ Ω′

1,

max{x− t+ τ, 0} (t, x) ∈ Ω′
2,

x− t+ τ (t, x) ∈ Ω′
3,

(3.2.7)

γ2(τ ; t, x) =


x+ t− τ (t, x) ∈ Ω′

1,

x+ t− τ (t, x) ∈ Ω′
2,

τ − ω(x+ t) (t, x) ∈ Ω′
3, τ ≤ ψ−1(x+ t),

x+ t− τ (t, x) ∈ Ω′
3 τ > ψ−1(x+ t),

(3.2.8)

γ̂2(τ ; t, x) =


x+ t− τ (t, x) ∈ Ω′

1,

x+ t− τ (t, x) ∈ Ω′
2,

ℓ(ψ−1(x+ t)) (t, x) ∈ Ω′
3, τ ≤ ψ−1(x+ t),

x+ t− τ (t, x) ∈ Ω′
3 τ > ψ−1(x+ t),

(3.2.9)
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Moreover, for every (t, x) ∈ Ω′ we define

R(t, x) := {(τ, y) ∈ Ω′ | 0 < τ < t, γ1(τ ; t, x) < y < γ2(τ ; t, x)}, (3.2.10)

T+(t, x) := {(τ, y) ∈ Ω′ | 0 < τ < t, x < y < γ̂2(τ ; t, x)}, (3.2.11)

T−(t, x) := {(τ, y) ∈ Ω′ | 0 < τ < t, γ̂1(τ ; t, x) < y < x}, (3.2.12)

T+
0 (t, x) := {(τ, y) ∈ Ω′ | 0 < τ < ψ−1(x+ t), γ2(τ ; t, x) < y < γ̂2(τ ; t, x)} (3.2.13)

T−
0 (t, x) := {(τ, y) ∈ Ω′ | 0 < τ < t− x, γ̂1(τ ; t, x) < y < γ1(τ ; t, x)} (3.2.14)

Remark 3.2.5. We note that T+
0 (t, x) = ∅ if (t, x) ∈ Ω1 ∪ Ω2 and T−

0 (t, x) = ∅ if (t, x) ∈
Ω1 ∪ Ω3.

We denote by A the solution of (3.0.6)-(3.0.10) in the case f = F = 0 and we recall
that in [20] is proved that A can be written as

A(t, x) = a1(x+ t) + a2(t− x), for every (t, x) ∈ Ω, (3.2.15)

for two suitable functions a1, a2 ∈ H1(R). In general it is not easy to give an explicitic
representation of a1 and a2 due to the superpositions of waves generated by “bouncing”
against the sets {(t, x) | t ∈ [0, T ], x = ℓ(t)} and {(t, x) | t ∈ [0, T ], x = 0} but in [20] is
proved that if we consider the restriction of A to Ω′ we have

A(t, x) =



u0(x+ t) + u0(x− t)

2
+

1

2

ˆ x+t

x−t
u1(s) ds, (t, x) ∈ Ω′

1,

u0(x+ t)− u0(t− x)

2
+

1

2

ˆ x+t

t−x
u1(s) ds+ uD(t− x), (t, x) ∈ Ω′

2,

u0(x− t)− u0(−ω(x+ t))

2
+

1

2

ˆ −ω(x+t)

x−t
u1(s) ds, (t, x) ∈ Ω′

3.

(3.2.16)

So we have that a1: (0, 2t
ℓ
0) → R is defined as

a1(z) =


1

2
u0(z) +

1

2

ˆ z

0
u1(s) ds, z ∈ (0, ℓ0],

−1

2
u0(−ω(z)) + 1

2

ˆ −ω(z)

0
u1(s) ds, z ∈ (ℓ0, 2t

ℓ
0),

(3.2.17)

while a2: (−ℓ0, ℓ0) → R is is given by

a2(z) =


1

2
u0(−z)− 1

2

ˆ −z

0
u1(s) ds, z ∈ (−ℓ0, 0],

uD(z)−
1

2
u0(z)− 1

2

ˆ z

0
u1(s) ds, z ∈ (0, ℓ0),

(3.2.18)
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where we set

tℓ0 := min{T, inf{t ∈ [ℓ0, T ] | t = ℓ(t)}}, (3.2.19)

with the convention inf{∅} = +∞. Moreover, in [42] is proved that the solution of (3.0.6)-
(3.0.10) with F = 0 is given by the sum between A and the integral of f on a suitable
moving domain, according to the Duhamel’s principle. We will extend this results to the
case F ̸= 0 and we will prove (in Theorem 3.2.10) that the solution v of (3.0.6)-(3.0.10) is

v(t, x) =
1

2

ˆ
R(t,x)

f(τ, y) dτdy − 1

2

ˆ
T+(t,x)

Fτ (τ, y) dτdy +
1

2

ˆ
T−(t,x)

Fτ (τ, y) dτdy

− 1

2

ˆ
T+
0 (t,x)

Fτ (τ, y) dτdy +
1

2

ˆ
T−
0 (t,x)

Fτ (τ, y) dτdy +A(t, x) +B(t, x), (t, x) ∈ Ω′

(3.2.20)

where the term B is defined as

B(t, x) =



−1

2

ˆ x+t

x
F (0, y) dy +

1

2

ˆ x

x−t
F (0, y) dy, (t, x) ∈ Ω′

1,

1

2

ˆ x

0
F (0, y) dy +

1

2

ˆ t−x

0
F (0, y) dy − 1

2

ˆ x+t

x
F (0, y) dy, (t, x) ∈ Ω′

2,

1

2

ˆ x

x−t
F (0, y) dy − 1

2

ˆ ℓ(ψ−1(x+t))

x
F (0, y) dy

−1

2

ˆ ℓ(ψ−1(x+t))

−ω(x+t)
F (0, y) dy, (t, x) ∈ Ω′

2,

(3.2.21)

We need some technical lemma regarding the regularity of some terms that appear in
the representation formula for v on Ω′.

Lemma 3.2.6. Let us assume (3.1.1)-(3.1.7) and (3.1.10)-(3.1.14). Let A: Ω′ → R be the
function defined in (3.2.16) and let B: Ω′ → R be the function defined in (3.2.21). Then

A and B are continuous on Ω
′
and they belongs to H1(Ω′). Moreover, setting A ≡ B ≡ 0

outside Ω we have

A, B ∈ C0([0,
ℓ0
2
];H1(0,+∞)) ∩ C1([0,

ℓ0
2
];L2(0,+∞)) (3.2.22)

Proof. The regularity of A is proved in [42, Lemma 1.10]. The proof for B easily follows
from similar considerations.

Since we have to deal with integral functions, we recall the following result.
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Theorem 3.2.7 (Leibniz differentiation rule). Let ϕ ∈ C0,1([0, T ]) be nondecreasing and

let a ≤ ϕ(0). Consider the set ΩϕT := {(t, x) ∈ R2 | 0 ≤ t ≤ T, a ≤ y ≤ ϕ(t)} and let

h: ΩϕT → R be a measurable function such that:

i) for every t ∈ [0, T ] it holds h(t, ·) ∈ L1(a, ϕ(t)),
ii) for a.e. y ∈ [a, ϕ(T )] it holds h(·, y) ∈ AC(Iy), where Iy = {t ∈ [0, T ] | y ≤ ϕ(t)},

c) the partial derivative
∂h

∂t
(t, y) := lim

ε→0

h(t+ ε, y)− h(t, y)

ε
(which for a.e. y ∈ [a, ϕ(T )]

is well defined for a.e. t ∈ Iy) is summable in ΩϕT .

Then the function H(t) :=

ˆ ϕ(t)

a
h(t, y)dy belongs to AC([0, T ]) and for a.e. t ∈ [0, T ]

Ḣ(t) := H(t, ϕ(t))ϕ̇(t) +

ˆ ϕ(t)

a

∂h

∂t
(t, y)dy (3.2.23)

For a proof of previous theorem see, e.g., [42, Theorem A.8]. From this results we
obtain the following regularity results for integral functions in the plane.

Lemma 3.2.8. Let us assume (3.1.1)-(3.1.7). Let g ∈ L2(Ω′) and for every (t, x) ∈ Ω′ let

H1(t, x) :=

ˆ
R(t,x)

g(τ, y) dτdy, H2(t, x) :=

ˆ
T+(t,x)

g(τ, y) dτdy, (3.2.24)

H3(t, x) :=

ˆ
T−(t,x)

g(τ, y) dτdy, H4(t, x) :=

ˆ
T+
0 (t,x)

g(τ, y) dτdy, (3.2.25)

H5(t, x) :=

ˆ
T−
0 (t,x)

g(τ, y) dτdy. (3.2.26)

Then H1, H2, H3, H4, and H5 are continuous on Ω
′
and they belongs to H1(Ω′).

Moreover, setting Hi ≡ 0 for i = 1, ..., 5 outside Ω we have

Hi ∈ C0([0,
ℓ0
2
];H1(0,+∞)) ∩ C1([0,

ℓ0
2
];L2(0,+∞)) for i = 1, ..., 5. (3.2.27)

Proof. The proof of claim for H1 is given by [42, Lemma 1.1]. With small modifications,
the same proof works also for i = 2, ..., 5.

Moreover, we need the following result regarding slicing for non cylindrical domains.

Lemma 3.2.9. Let A ⊆ R2 be open and let w ∈ L2(A) such that

ˆ
A
w(x, y)ϕx(x, y) dxdy = 0 for any ϕ ∈ C∞

c (A). (3.2.28)
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Then, for a.e. y ∈ π2(A) := {y ∈ R | ∃x ∈ R s.t. (x, y) ∈ A} we have

ˆ
Ay

w(x, y)α̇(x) dx = 0 for any α ∈ C∞
c (Ay), (3.2.29)

where Ay := {x ∈ R | (x, y) ∈ A}.

Proof. Let L1
n, L

2
n be a sequence of open intervals such that the

⋃
n∈N(L

1
n×L2

n) = A. For a
fixed n ∈ N we denote by {αkn}k∈N a sequence dense in C∞

c (L1
n) with respect to the C1(L1

n)
convergence. For every βn ∈ C∞

c (L2
n) and for every k ∈ N we define ϕkn(x, y) := αkn(x)βn(y),

which belongs to C∞
c (A) and we use it as test function in (3.2.28) obtaining

ˆ
L2
n

ˆ
L1
n

w(x, y)α̇kn(x) dxβn(y) dy = 0. (3.2.30)

By the arbitrariness of βn we get that there exist I2n,k ⊂ L2
n such that L1(I2n,k) = 0 and for

all y ∈ L2
n \ I2n,k ˆ

L1
n

w(x, y)α̇kn(x) dx = 0. (3.2.31)

We now define I2n :=
⋃
k I

2
n,k ⊂ L2

n which satisfies L1(I2n) = 0 and for every y ∈ L2
n \ I2n we

have ˆ
L1
n

w(x, y)α̇kn(x) dx = 0, for every k ∈ N. (3.2.32)

Since {αkn}k∈N is a dense in C∞
c (L1

n) with respect to the C1(L1
n) convergence, we can pass

to limit as k → +∞ an we get that for every y ∈ L2
n \ I2n it holds

ˆ
L1
n

w(x, y)α̇n(x) dx = 0 for every αn ∈ C∞
c (L1

n). (3.2.33)

In order to extend the results to a generic test function, it is enough to use the localization
property of distribution. More precisely, let us define I2 :=

⋃
n I

2
n which satisfies L1(I2) =

0, let y ∈ π2(A) \ I2 and consider α ∈ C∞
c (Ay). We know that supp(α) ⊂ K for some

compact K ⊂ Ay and we note that the set {Ay ∩ L1
n}n∈N is an open cover of K. By

compactness of K we can find a finite subcover and considering a smooth partition of
unity subordinate to this subcover, we can conclude.

3.2.2 The representation formula and more regularity

It is convenient to consider a localized problem.
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Theorem 3.2.10 (Local existence and uniqueness). Let us assume (3.1.1)-(3.1.7) and
(3.1.10)-(3.1.14). A function v ∈ H1(Ω′) is a solution of the elastic problem (3.0.6)-(3.0.10)
on the domain Ω′ (in the sense of Definition 3.2.1) if and only if

v(t, x) =
1

2

ˆ
R(t,x)

f(τ, y) dτdy − 1

2

ˆ
T+(t,x)

Fτ (τ, y) dτdy +
1

2

ˆ
T−(t,x)

Fτ (τ, y) dτdy

− 1

2

ˆ
T+
0 (t,x)

Fτ (τ, y) dτdy +
1

2

ˆ
T−
0 (t,x)

Fτ (τ, y) dτdy +A(t, x) +B(t, x), (3.2.34)

for a.e. (t, x) ∈ Ω′.

Proof. It is easy to check that (3.2.34) satisfies (3.0.6)-(3.0.10) on the domain Ω′ using
Lemma 3.2.6 and Lemma 3.2.8 to compute the spatial and time derivatives of the right
hand side of (3.2.34).

It remains to prove that if v ∈ H1(Ω′) is a solution in Ω′ of (3.0.6)-(3.0.10) then (3.2.34)
holds. First of all, it is convenient to make some changes in the right hand side of (3.0.6).
Indeed, taking into account (3.1.14) we have that Ft ∈ L2(0, T ;L2(0, L)) and we obtain
that (3.0.6) is equivalent to

vtt − vxx = g + Ft − Fx in D′(Ω′) (3.2.35)

where g := f − Ft ∈ L2(0, T ;L2(0, L)). We define the change of variable{
ξ = t− x,

η = t+ x.
(3.2.36)

Then the function ṽ(ξ, η) := v( ξ+η2 , η−ξ2 ) belongs to H1(Ω̃′), where Ω̃′ is the image of Ω′

through (3.2.36), and satisfies

4ṽξη = g̃ + 2F̃ξ in D′(Ω̃′), (3.2.37)

where g̃(ξ, η) := g( ξ+η2 , η−ξ2 ) and F̃ (ξ, η) := F ( ξ+η2 , η−ξ2 ). Equation (3.2.37) can be written
as

−4

ˆ
Ω̃′
ṽη(ξ, η)ϕξ(ξ, η) dξdη =

ˆ
Ω̃′
g̃(ξ, η)ϕ(ξ, η) dξdη − 2

ˆ
Ω̃′
F̃ (ξ, η)ϕξ(ξ, η) dξdη (3.2.38)

for every ϕ ∈ C∞
c (Ω̃′). In particular, identity (3.2.38) is valid for every ϕ ∈ C∞

c (Ω̃′
1), where

Ω̃′
1 is the image of Ω′

1 through (3.2.36), that is

−4

ˆ
Ω̃′

1

ṽη(ξ, η)ϕξ(ξ, η) dξdη =

ˆ
Ω̃′

1

g̃(ξ, η)ϕ(ξ, η) dξdη − 2

ˆ
Ω̃′

1

F̃ (ξ, η)ϕξ(ξ, η) dξdη (3.2.39)
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for every ϕ ∈ C∞
c (Ω̃′

1). Defined G̃(ξ, η) :=

ˆ ξ

−η
g̃(z, η) dz we can apply Lemma 3.2.9 to the

function −4ṽη + G̃+ 2F̃ and we get that for a.e. η ∈ (0, ℓ0)ˆ
Ω̃′

1,η

[− 4ṽη(ξ, η) + G̃(ξ, η) + 2F̃ (ξ, η)]α̇(ξ) dξ = 0 for any α ∈ C∞
c (Ω̃′

1,η), (3.2.40)

where Ω̃′
1,η := {ξ ∈ R| (ξ, η) ∈ Ω̃′

1} = (−η, 0). Using the fundamental lemma of calculus of
variations and Fubini’s Theorem we have that

−4ṽη(ξ, η) + G̃(ξ, η) + 2F̃ (ξ, η) = C(η) for a.e. (ξ, η) ∈ Ω̃′
1, (3.2.41)

where C ∈ L2(R) is an arbitrary function. This give us that

ṽ(ξ, η) =

ˆ η

−ξ

1

4
[G̃(ξ, s) + 2F̃ (ξ, s)] ds+Φ(η) + Ψ(ξ) for a.e. (ξ, η) ∈ Ω̃′

1, (3.2.42)

where Φ ∈ H1(R) and Ψ ∈ L2(R) are arbitrary functions. Using the inverse of (3.2.36) we
have

2v(t, x) =

ˆ
R(t,x)

f(τ, y) dτdy −
ˆ
T+(t,x)

∂tF (τ, y) dτdy +

ˆ
T−(t,x)

∂tF (τ, y) dτdy

−
ˆ x+t

x
F (0, y) dy +

ˆ x

x−t
F (0, y) dy + 2Ψ(x− t) + 2Φ(x+ t) for a.e. (t, x) ∈ Ω′

1. (3.2.43)

Taking into account that v ∈ H1(Ω′), Φ ∈ H1(R) and using Lemma 3.2.8, we get from
(3.2.43) that Ψ ∈ H1(R). Moreover, using again Lemma 3.2.8, we have that the right hand
side of equation (3.2.43) is continuous on Ω′

1 and we can use it as continuous representative
for v. In particular, equation (3.2.43) is true for every (t, x) ∈ Ω′

1. In order to determine Φ
and Ψ we have to use the initial conditions (3.0.9) and (3.0.10) (in the sense of Definition
3.2.1). Using again regularity property given by Lemma 3.2.8 and imposing (3.0.9)-(3.0.10)
we get {

Ψ(x) + Φ(x) = u0(x), for every x ∈ (0, ℓ0),

−Ψ̇(x) + Φ̇(x) = u1(x), for a.e. x ∈ (0, ℓ0).
(3.2.44)

which give us that

Ψ(x− t) + Φ(x+ t) =
u0(x+ t) + u0(x− t)

2
+

1

2

ˆ x+t

x−t
u1(s) ds, for any (t, x) ∈ Ω′

1.

(3.2.45)
Thanks to (3.2.45) we have that (3.2.34) is proved on Ω′

1.
In order to obtain (3.2.34) also on Ω′

2 and Ω′
3, it is enough to follow the same computa-

tions done on Ω′
1 with small modifications and using the boundary conditions (3.0.7)-(3.0.8)

in order to determine the arbitrary functions.
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Remark 3.2.11 (Regularity). As a consequence of Theorem 3.2.10 and taking into account
Lemmas 3.2.6 and 3.2.8, we get that the solution v of problem (3.0.6)-(3.0.10) admits a
representative, given by the right-hand side of (3.2.34) and still denoted by v, which is
continuous on Ω′ and belongs to C0([0, ℓ02 ];H

1(0,+∞)) ∩ C1([0, ℓ02 ];L
2(0,+∞)) (where

we extend v ≡ 0 outside Ω′). In particular v(0) and vt(0) are well defined as elements of
H1(0,+∞) and L2(0,+∞). Moreover, the continuous representative satisfies the boundary
and initial conditions in a sense stronger that Definition 3.2.1, namely

v(t, 0) = uD(t) for every t ∈ (0, T ),

v(t, ℓ(t)) = 0 for every t ∈ (0, T ),

v(0, x) = u0(x) for every x ∈ (0, ℓ0),

vt(0, x) = u1(x) for a.e. x ∈ (0, ℓ0),

and for t→ 0+ we have {
v(t) → u0 in H1(0, ℓ0),

vt(t) → u1 in L2(0, ℓ0).

We are in a position to prove existence and uniqueness of the solution of (3.0.6)-(3.0.10)
on the whole domain Ω.

Theorem 3.2.12 (Existence and uniqueness for the elastic problem). Let us assume
(3.1.1)-(3.1.7) and (3.1.10)-(3.1.14). Then, there exists a unique solution v of the elas-
tic problem (3.0.6)-(3.0.10) on the domain Ω (in the sense of Definition 3.2.1). Moreover
v has a continuous representative on Ω, still denoted by v, and (setting v ≡ 0 outside Ω),
it holds

v ∈ C0([0, T ];H1(0,+∞)) ∩ C1([0, T ];L2(0,+∞)). (3.2.46)

Proof. Thanks to Theorem 3.2.10 we know that there exists a unique function satisfying
(3.0.6)-(3.0.10) on the domain Ω′ ⊂ Ω and in particular on Ωℓ0/2 ⊂ Ω′, where Ωℓ0/2 is
defined as in (3.1.8) with t∗ = ℓ0/2, namely

Ωℓ0/2 = {(t, x) | t ∈ (0, ℓ0/2), x ∈ (0, ℓ(t))}. (3.2.47)

We denote the solution on Ωℓ0/2 as vℓ0/2. Thanks to Remark 3.2.11 we have that vℓ0/2
admits a representative (still denoted by vℓ0/2) continuous on Ωℓ0/2 and such that vℓ0/2 ∈
C0([0, ℓ02 ];H

1(0,+∞))∩C1([0, ℓ02 ];L
2(0,+∞)). In particular vℓ0/2(ℓ0/2) and (vℓ0/2)t(ℓ0/2)

are well defined elements of H1(0,+∞) and L2(0,+∞), respectively. We consider the
elastic problem (3.0.6)-(3.0.10) on

Ωℓ0 \ Ωℓ0/2 = {(t, x) | t ∈ (ℓ0/2, ℓ0), x ∈ (0, ℓ(t))} (3.2.48)
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with initial condition u0 and u1 replaced by vℓ0/2(ℓ0/2) and (vℓ0/2)t(ℓ0/2). We can apply
again Theorem 3.2.10 and we get that there exists a unique solution denoted by vℓ0 . We
can repeat this procedure on

Ωkℓ0/2 \ Ω(k−1)ℓ0/2 = {(t, x) | t ∈ ((k − 1)ℓ0/2, kℓ0/2), x ∈ (0, ℓ(t))} for k = 3, ..., ⌈2T
ℓ0

⌉.
(3.2.49)

and we denote by vkℓ0/2 the solution the elastic problem (3.0.6)-(3.0.10) on Ωkℓ0/2\Ω(k−1)ℓ0/2

for k = 3, ...,
⌈
2T
ℓ0

⌉
with initial condition u0 and u1 replaced by v(k−1)ℓ0/2((k − 1)ℓ0/2) and

(v(k−1)ℓ0/2)t((k − 1)ℓ0/2). For (t, x) ∈ Ω we define

v(t, x) := vkℓ0/2(t, x) (3.2.50)

for a suitable k = 1, ...,
⌈
2T
ℓ0

⌉
such that (t, x) ∈ Ωkℓ0/2 \ Ω(k−1)ℓ0/2 (with the convention

that Ω(k−1)ℓ0/2 = ∅ if k = 1). It is easy to see that v ∈ H1(Ω) and that it is a solution of
(3.0.6)-(3.0.10) on Ω. Moreover, tanking into account Remark 3.2.11, we get that

v ∈ C0([0, T ];H1(0,+∞)) ∩ C1([0, T ];L2(0,+∞)). (3.2.51)

In order to prove uniqueness it not restrictive to assume u0 = u1 = uD = f = F = 0,
thanks to the linearity of the problem. From (3.2.34) we get that vℓ0/2 = 0 on Ωℓ0/2.
Iterating this argument we get that vkℓ0/2 = 0 for every k and in particular v = 0 on Ω.
This proves the uniqueness of the solution and concludes the proof.

Remark 3.2.13. From the proof of Theorem 3.2.12 we have that the solution v of the
elastic problem (3.0.6)-(3.0.10) on the domain Ω (in the sense of Definition 3.2.1) can be
represented on each

Ωkℓ0/2 \ Ω(k−1)ℓ0/2 = {(t, x) | t ∈ ((k − 1)ℓ0/2, kℓ0), x ∈ (0, ℓ(t))} for k = 3, ..., ⌈2T
ℓ0

⌉.

with a formula similar to (3.2.34).

3.2.3 Proof of the existence and uniqueness for the viscoelastic problem

We are now in a position to prove existence and uniqueness for the viscoelastic problem
(3.0.1)-(3.0.5).

It is convenient to define the operator

Ldeb:H1(Q) → H1(0, T ;L2(0, L)), (3.2.52)

(Ldebu)(t) :=
1

2

ˆ t

0
eτ−tux(τ)dτ, (3.2.53)

for all u ∈ H1(Q), for all t ∈ [0, T ].
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Remark 3.2.14. From Remark 3.1.6 we have that if u ∈ H1(Ω) is a solution of viscoelastic
problem (3.0.1)-(3.0.5), then it is extended as u ∈ H1(Q). In particular, Ldebu is well
defined.

Taking into account that for a.e. t ∈ [0, T ]

(
˙̆Ldebu)(t) =

1

2
ux(t)− (Ldebu)(t), (3.2.54)

we can prove that Ldeb is bounded. More precisely, we have

∥Ldebu∥L∞(0,T ;L2(0,L))≤
T 1/2

2
∥u∥H1(Q), (3.2.55)

∥ ˙̆Ldebu∥L2(0,T ;L2(0,L))≤
(1 + T )

2
∥u∥H1(Q). (3.2.56)

We now prove a particular energy estimate for elastic problem (3.0.6)-(3.0.10) that will
be used in a fixed point argument in the proof of existence and uniqueness of viscoelastic
problem (3.0.1)-(3.0.5).

Proposition 3.2.15. Let us assume (3.1.1)-(3.1.7) and (3.1.10)-(3.1.14). Moreover sup-
pose that uD = u0 = u1 = f = 0. Then the corresponding solution v ∈ H1(Ω) of the elastic
problem (3.0.6)-(3.0.10) satisfies the following inequality

1

2
∥v̇(t)∥2L2(0,ℓ(t))+

1

2
∥vx(t)∥2L2(0,ℓ(t))≤ (F (t), vx(t))L2(0,ℓ(t)) −

ˆ t

0
(Ḟ (s), vx(s))L2(0,ℓ(s)) ds,

for every t ∈ [0, T ].

The proof is based on a time discretization argument, in the spirit of [38, Theorem 1.8].

Proof. Let n ∈ N and define the sequence tnk := kT/n for k = 0, 1, ..., n. For every
k = 1, ..., n we denote by vnk the unique solution of the elastic problem on the cylinder
Qnk := (tnk−1, t

n
k)× (0, ℓ(tnk−1)) defined as

(vnk )tt(t, x)− (vnk )xx(t, x) = −Fx(t, x), (t, x) ∈ Qnk , (3.2.57)

vnk (t, 0) = 0, t ∈ (tnk−1, t
n
k), (3.2.58)

vnk (t, ℓ(t
n
k−1)) = 0, t ∈ (tnk−1, t

n
k), (3.2.59)

vnk (t
n
k−1, x) = unk−1(t

n
k−1, x), x ∈ (0, ℓ(tnk−1)), (3.2.60)

(vnk )t(t
n
k−1, x) = (unk−1)t(t

n
k−1, x), x ∈ (0, ℓ(tnk−1)). (3.2.61)

with the conventions that un0 (0, x) = 0, (un0 )t(0, x) = 0 for x ∈ (0, ℓ0). Moreover, we extend
vnk to 0 in ((tnk−1, t

n
k) × (0, ℓ(T ))) \ Qk and the extension (still denoted by vnk ) belongs to

H1((tnk−1, t
n
k)× (0, ℓ(T ))). By known results we have that

u ∈ C0([tnk−1, t
n
k ];H

1(0, ℓ(T ))) ∩ C1([tnk−1, t
n
k ];L

2(0, ℓ(T ))) (3.2.62)
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and the initial conditions (3.2.60)-(3.2.61) are satisfied in C0([tnk−1, t
n
k ];H

1(0, ℓ(T ))) and
C0([tnk−1, t

n
k ];L

2(0, ℓ(T ))), respectively. Moreover, for every t ∈ [tnk−1, t
n
k ] it holds:

1

2
∥v̇nk (t)∥2L2(0,ℓ(tnk−1))

+
1

2
∥(vnk )x(t)∥2L2(0,ℓ(tnk−1))

=
1

2
∥v̇nk (tnk−1)∥2L2(0,ℓ(tnk−1))

+
1

2
∥(vnk )x(tnk−1)∥2L2(0,ℓ(tnk−1))

+(F (t), (vnk )x(t))L2(0,ℓ(tnk−1))
− (F (tnk−1), (v

n
k )x(t

n
k−1))L2(0,ℓ(tnk−1))

−
ˆ t

tnk−1

(Ḟ (s), (vnk )x(s))L2(0,ℓ(tnk−1))
ds. (3.2.63)

By summing (3.2.63) for j ∈ {2, ..., k} we get that for every t ∈ [tnk−1, t
n
k ]

1

2
∥v̇nk (t)∥2L2(0,ℓ(T ))+

1

2
∥(vnk )x(t)∥2L2(0,ℓ(T ))= −

k−1∑
j=1

ˆ tj

tnj−1

(Ḟ (s), (vnj )x(s))L2(0,ℓ(tnj−1))
ds

−
ˆ t

tnk−1

(Ḟ (s), (vnk )x(s))L2(0,ℓ(tnk−1))
ds+ (F (t), (vnk )x(t))L2(0,ℓ(T )), (3.2.64)

where we have used the initial conditions and the fact that vnk = 0 outside Qk. We define

vn(t) :=

{
vnk (t), t ∈ [tnk−1, t

n
k) for a suitable k,

vnk (T ), t = T,

and (3.2.64) can be written as

1

2
∥v̇n(t)∥2L2(0,ℓ(t))+

1

2
∥vnx(t)∥2L2(0,ℓ(t))= (F (t), vnx(t))L2(0,ℓ(t)) −

ˆ t

0
(Ḟ (s), vnx(s))L2(0,ℓ(s)) ds,

(3.2.65)
for every t ∈ [0, T ]. Moreover, it is easy to check that vn belongs to C0([0, T ];H1

0 (0, ℓ(T )))∩
C1([0, T ];L2(0, ℓ(T ))), satisfies the initial conditions (3.2.60)-(3.2.61) and for every ϕ ∈
C∞
c ((0, T )× (0, ℓ(T ))) with supp(ϕ) ⊂ ∪nk=1[t

n
k−1, t

n
k)× (0, ℓ(tnk−1)) it holds

−
ˆ
Q
vnt (t, x)ϕt(t, x) dtdx+

ˆ
Q
vnx(t, x)ϕx(t, x) dtdx =

ˆ
Q
F (t, x)ϕx(t, x) dtdx. (3.2.66)

Applying Grönwall Lemma to (3.2.65) we get that there exists a constant C independent
on t and n such that

1

2
∥v̇n(t)∥2L2(0,ℓ(t))+

1

2
∥vnx(t)∥2L2(0,ℓ(t))≤ C (3.2.67)

for every t ∈ [0, T ]. Then, there exists a function v such that, up to subsequences, vn ⇀ v
weakly in L2(0, T ;H1

0 (0, ℓ(T )))∩H1(0, T ;L2(0, ℓ(T ))). Passing to the limit as n→ +∞ in
(3.2.66) and in the initial and boundary conditions, we get that v is the (unique) solution
of the elastic problem (3.0.6)-(3.0.10) (given by Theorem 3.2.12). We can integrate (3.2.65)
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between two arbitrary times 0 ≤ α ≤ β ≤ T and using standard semicontinuity results as
n→ +∞ we get that

ˆ β

α

Ä1
2
∥v̇(t)∥2L2(0,ℓ(T ))+

1

2
∥vx(t)∥2L2(0,ℓ(T ))

ä
dt ≤

ˆ β

α
(F (t), vx(t))L2(0,ℓ(T )) dt−

ˆ β

α

ˆ t

0
(Ḟ (s), vx(s))L2(0,ℓ(s)) ds dt. (3.2.68)

Since α and β are arbitrary, we get

1

2
∥v̇(t)∥2L2(0,ℓ(T ))+

1

2
∥vx(t)∥2L2(0,ℓ(T ))≤ (F (t), vx(t))L2(0,ℓ(T )) −

ˆ t

0
(Ḟ (s), vx(s))L2(0,ℓ(s)) ds,

(3.2.69)

for a.e. t ∈ (0, T ). To prove the previous inequality for every time t⋆ ∈ [0, T ] it is enough to
consider a sequence tk → t⋆ such that (3.2.69) is satisfied for every tk. Passing to the limit
as k → +∞ and taking into account that v ∈ C0([0, T ];H1(0, ℓ(T )))∩C1([0, T ];L2(0, ℓ(T )))
we can conclude.

Remark 3.2.16. The argument in the proof of Proposition 3.2.15 can be used also to
prove existence of a solution of time-dependent problems in dimension bigger than one.
See [38, Theorem 1.8] for more details.

Lemma 3.2.17. Under the assumptions of Proposition 3.2.15 we have that

∥v∥H1(Ω)≤ 2T 1/2(2 + T )(T 1/2∥Ḟ∥L2(0,T ;L2(0,ℓ(T )))+∥F∥L∞(0,T ;L2(0,ℓ(T )))). (3.2.70)

Proof. From Proposition 3.2.15 we have that for every t ∈ [0, T ]

1

2
∥v̇(t)∥2L2(0,ℓ(T ))+

1

2
∥vx(t)∥2L2(0,ℓ(T ))≤ ∥F (t)∥L2(0,ℓ(T ))∥vx(t)∥L2(0,ℓ(T ))

+

ˆ T

0
∥Ḟ (t)∥L2(0,ℓ(T ))∥vx(t)∥L2(0,ℓ(T )) ds, (3.2.71)

which implies that for every t ∈ [0, T ]

1

2
∥v̇(t)∥2L2(0,ℓ(T ))+

1

2
∥vx(t)∥2L2(0,ℓ(T ))≤ Mu(T

1/2∥Ḟ∥L2(0,T ;L2(0,ℓ(T )))+∥F∥L∞(0,T ;L2(0,ℓ(T )))),

where Mv := supt∈[0,T ]
Ä
∥v̇(t)∥2L2(0,ℓ(T ))+∥vx(t)∥2L2(0,ℓ(T ))

ä 1
2
. We get

M2
v ≤ 2Mv(T

1/2∥Ḟ∥L2(0,T ;L2(0,ℓ(T )))+∥F∥L∞(0,T ;L2(0,ℓ(T )))).

Finally, since ∥v∥H1(Ω)≤ T 1/2(2 + T )Mv, we obtain (3.2.70).
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Theorem 3.2.18 (Existence and uniqueness for the viscoelastic problem). Let us assume
(3.1.1)-(3.1.7) and (3.1.10)-(3.1.14). Then, there exists a unique solution u of the viscoelas-
tic problem (3.0.1)-(3.0.5) on the domain Ω (in the sense of Definition 3.1.4). Moreover u
has a continuous representative on Ω, still denoted by u, and (setting u ≡ 0 outside Ω), it
holds

u ∈ C0([0, T ];H1(0,+∞)) ∩ C1([0, T ];L2(0,+∞)). (3.2.72)

Proof. By definition, we have that a function u is a solution of the viscoelastic problem
(3.0.1)-(3.0.5) (in the sense of Definition 3.1.4) if and only if

utt(t, x)− uxx(t, x) = f(t, x)− ∂x(F (t, x) + (Ldebu)(t, x)), (t, x) ∈ Ω,

u(t, 0) = uD(t), t ∈ (0, T ),

u(t, ℓ(t)) = 0, t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, ℓ0),

ut(0, x) = u1(x), x ∈ (0, ℓ0),

where Ldeb is defined in (3.2.52). This means that u is a solution of the elastic problem
(3.0.6)-(3.0.10) (in the sense of Definition 3.2.1) with forcing term F replaced by F+Ldebu.
Let

R : H1(Ω) → H1(Ω) (3.2.73)

be the operator defined for every w ∈ H1(Ω) by R(w) = z, where z is a solution of elastic
problem (3.0.6)-(3.0.10) with F replaced by F + Ldebw. The operator R is well posed as
consequence of Theorem 3.2.12. From the definition it follows that u is a fixed point of map
R if and only if u is the solution of the viscoelastic problem considered in (3.0.1)-(3.0.5).
In order to get existence and uniqueness of the solution, we have to prove that the operator
R is a contraction.

By definition of R and linearity of Ldeb, we have that for every w1, w2 ∈ H1(Ω) the
function R(w1)−R(w2) is the solution of elastic problem (3.0.6)-(3.0.10) with F replaced
by Ldeb(w1 − w2) and uD = u0 = u1 = f = 0. We apply Lemma 3.2.17 obtaining that

∥R(w1)−R(w2)∥H1(Ω) ≤ 2T (2 + T )∥
˙̌ �Ldeb(w1 − w2)∥L2(0,T ;L2(0,ℓ(T )))

+ 2T 1/2(2 + T )∥Ldeb(w1 − w2)∥L∞(0,T ;L2(0,ℓ(T ))). (3.2.74)

We can combine the previous inequality with (3.2.55) and (3.2.56), to get

∥R(w1)−R(w2)∥H1(Ω) ≤ (T (1 + T )(2 + T ) + T (2 + T ))∥w1 − w2∥H1(Ω). (3.2.75)

If T is satisfies (T (1 + T )(2+T )+T (2 + T )) < 1 then the map R is a contraction and the
Banach-Caccioppoli fixed point theorem give us that there exists a unique fixed point and
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the proof is finished. Otherwise, it is enough to consider a partition 0 = T0 < T1 < ... <
TN = T such that Tk − Tk−1 satisfies

((Tk − Tk−1)(1 + Tk − Tk−1)(2 + Tk − Tk−1) + (Tk − Tk−1)(2 + Tk − Tk−1)) < 1,

for every k = 1, ..., N . Then there exists a unique solution u1 ∈ H1(ΩT1), where ΩT1 =
{(t, x) ∈ Ω | t ∈ [0, T1]} for the viscoelastic problem (3.0.1)-(3.0.5) on the time interval
[0, T1]. We consider the viscoelastic problem (3.0.1)-(3.0.5) on the time interval [T1, T2] with
initial conditions u(T1) = u1(T1) and ut(T1) = (u1)t(T1) and we apply again the fixed point
argument to get a unique solution u2 ∈ H1(ΩT1,T2), where ΩT1.T2 = {(t, x) ∈ Ω | t ∈ [T1, T2]}
for the viscoelastic problem on the time interval [T1, T2]. It easy to see that the function
defined as

ũ :=

{
u1 in ΩT1 ,

u2 in ΩT1,T2 .
(3.2.76)

belongs to H1(ΩT2), where ΩT2 = {(t, x) ∈ Ω | t ∈ [0, T2]}, and that is the unique solution of
viscoelastic problem on the time interval [0, T2]. Repeting this procedure a finite number of
times, we have that there exists a unique solution of (3.0.1)-(3.0.5) on Ω. Finally, (3.2.72)
it is a conseguence of (3.2.46) and that fact that Ldebu ∈ H1(0, T ;L2(0, L)).

3.3 Energetic analysis

In this section we study the total energy of problem (3.0.1)-(3.0.5) and (3.0.6)-(3.0.10).

3.3.1 Regularity of the total energy

Definition 3.3.1. Let us assume (3.1.1)-(3.1.7) and (3.1.10)-(3.1.14). Let v be the solution
of (3.0.6)-(3.0.10). Then we define the total energy of the elastic problem at time t ∈ [0, T ]
as

E totv (t) := Ev(t)−Wv(t) (3.3.1)

where Ev(t) is the sum of kinetic and elastic energy at time t, namely

Ev(t) :=
1

2

ˆ ℓ(t)

0
v2t (t, x) + v2x(t, x) dx, (3.3.2)

while Wv(t) is the work done by the external loads and the boundary conditions in the
time interval [0, t], that is

Wv(t) =

ˆ t

0

ˆ ℓ(s)

0
f(s, x)vt(s, x) dxds−

ˆ t

0

ˆ ℓ(s)

0
Ft(s, x)vx(s, x) dxds

+

ˆ ℓ(t)

0
F (t, x)vx(t, x) dx−

ˆ ℓ0

0
F (0, x)u0x(0, x) dx
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−
ˆ t

0
u̇D(s)β(s)ds (3.3.3)

where β(s) := u̇0(s) + u1(s)− F (0, s) +
´ s
0 (f(τ,−τ + s)− ∂1F (τ,−τ + s))dτ − u̇D(s) and

∂1F denotes the derivative of F with respect to the first variable.

Remark 3.3.2. When all data are regular it is possible to perform suitable integrations
by parts that prove that the work Wv in Definition 3.3.1 coincide with the classical one
from mechanics (see e.g. [46]).

Theorem 3.3.3. Let us assume (3.1.1)-(3.1.7) and (3.1.10)-(3.1.14). Let v be the solution
of (3.0.6)-(3.0.10). Then the total energy for the elastic problem belongs to AC([0, T ]) and
for a.e. t ∈ (0, ℓ0/2) we have

Ė totv (t) =
ℓ̇(t)

2

ℓ̇(t)− 1

1 + ℓ̇(t)

[ ˆ t

0
(f(τ, τ + ℓ(t)− t) + ∂1F (τ, τ + ℓ(t)− t))dτ

− u̇0(ℓ(t)− t) + u1(ℓ(t)− t) + F (0, ℓ(t)− t)

]2

. (3.3.4)

Proof. In order to prove that E totv ∈ AC([0, T ]) it is enough to prove (3.3.4) on [0, ℓ0/2]

and then repeat the same argument on [(k− 1)ℓ0/2, kℓ0/2] for k = 1, ...,
⌈
2T
ℓ0

⌉
. Taking into

account the representation formula (3.2.34) and Lemmas 3.2.6 and 3.2.8, we have that

vt(t, x) = α1(x+ t) + α2(x− t) + h1(t, x) + h2(t, x), (3.3.5)

vx(t, x) = α1(x+ t)− α2(x− t) + h1(t, x)− h2(t, x) + F (t, x), (3.3.6)

for a.e. (t, x) ∈ Ωℓ0/2 = {(t, x) ∈ Ω | t ∈ (0, ℓ0/2)}, where

α1(z) =


1

2
u̇0(z) +

1

2
u1(z)− 1

2
F (0, z), z ∈ (0, ℓ0],

−1

2
F (0,−ω(z))ω̇(z) + 1

2
u̇0(−ω(z))ω̇(z)− 1

2
u1(−ω(z))ω̇(z), z ∈ (ℓ0, 2t

ℓ
0),

α2(z) =


−1

2
u̇0(−z)− 1

2
u1(−z) + 1

2
F (0,−z) + u̇D(−z), z ∈ (−ℓ0, 0],

−1

2
u̇0(z) +

1

2
u1(z) +

1

2
F (0, z), z ∈ (0, ℓ0),

with tℓ0 := min{T, inf{t ∈ [ℓ0, T ] | t = ℓ(t)}} and
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h1(t, x) =



1

2

ˆ t

0
f(τ,−τ + x+ t) dτ − 1

2

ˆ t

0
∂1F (τ,−τ + x+ t) dτ, (t, x) ∈ Ω′

1,

1

2

ˆ t

0
f(τ,−τ + x+ t) dτ − 1

2

ˆ t

0
∂1F (τ,−τ + x+ t) dτ, (t, x) ∈ Ω′

2,

1

2

ˆ t

ψ−1(x+t)
f(τ,−τ + x+ t) dτ − 1

2

ˆ ψ−1(x+t)

0
f(τ, τ − ω(x+ t)) dτ ω̇(x+ t)

−1

2

ˆ t

ψ−1(x+t)
∂1F (τ,−τ + x+ t) dτ− 1

2

ˆ ψ−1(x+t)

0
∂1F (τ, τ − ω(x+ t)) dτ ω̇(x+ t), (t, x) ∈ Ω′

3,

while

h2(t, x) =



1

2

ˆ t

0
f(τ, τ + x− t) dτ +

1

2

ˆ t

0
∂1F (τ, τ + x− t) dτ, (t, x) ∈ Ω′

1,

1

2

ˆ t

t−x
f(τ, τ + x− t) dτ − 1

2

ˆ t−x

0
f(τ,−τ + t− x) dτ

+
1

2

ˆ t

t−x
∂1F (τ, τ + x− t) dτ +

1

2

ˆ t−x

0
∂1F (τ,−τ + t− x) dτ, (t, x) ∈ Ω′

2,

1

2

ˆ t

0
f(τ, τ + x− t) dτ +

1

2

ˆ t

0
∂1F (τ, τ + x− t) dτ, (t, x) ∈ Ω′

3.

We can substitute the expression in (3.3.5) and (3.3.6) in Ev and we get

Ev(t) =
1

2

ˆ ℓ(t)

0
v2t (t, x) + ((vx(t, x)− F (t, x)) + F (t, x))2 dx

=
1

2

ˆ ℓ(t)

0
(α1(x+ t) + α2(x− t) + h1(t, x) + h2(t, x))

2 dx

+
1

2

ˆ ℓ(t)

0
(α1(x+ t)− α2(x− t) + h1(t, x)− h2(t, x))

2 dx

+
1

2

ˆ ℓ(t)

0
2F (t, x)vx(t, x)− F 2(t, x) dx

which implies
E totv (t) = A(t) +B(t),

where

A(t) =

ˆ ℓ(t)

0
(α1(x+ t) + h1(t, x))

2 dx

+

ˆ ℓ(t)

0
(α2(x− t) + h2(t, x))

2 dx, (3.3.7)
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and

B(t) = −
ˆ t

0

ˆ ℓ(s)

0
f(s, x)vt(s, x) dxds+

ˆ t

0

ˆ ℓ(s)

0
Ft(s, x)vx(s, x) dxds

+

ˆ ℓ0

0
F (0, x)u0x(0, x) +

ˆ t

0
u̇D(s)β(s)ds dx− 1

2

ˆ ℓ(t)

0
F 2(t, x)dx. (3.3.8)

Using Theorem 3.2.7, it is easy to check that B in (3.3.8) is absolutely continuous. In
order to study the regularity of (3.3.7), we perform a suitable change of variable, that is

A(t) =

ˆ ℓ(t)+t

t
(α1(y) + h1(t, y − t))2 dy +

ˆ ℓ(t)−t

−t
(α2(y) + h2(t, y + t))2 dy. (3.3.9)

Taking into account the definitions of α1, α2, h1, h2, we have that right hand side of (3.3.9)
satisfies the conditions of Theorem 3.2.7. Finally, by deriving A and B it is easy to check
that we get (3.3.4).

We deal now with the case of the viscoelastic problem (3.0.1)-(3.0.5).

Definition 3.3.4. Let us assume (3.1.1)-(3.1.7) and (3.1.10)-(3.1.14). Let u be the solution
of (3.0.1)-(3.0.5). Then we define the total energy of the elastic problem at time t ∈ [0, T ]
as

E totu (t) := Eu(t) +Du(t)−Wu(t) (3.3.10)

where Eu(t) is the sum of kinetic and elastic energy at time t, namely

Eu(t) :=
1

2

ˆ ℓ(t)

0
u2t (t, x) + u2x(t, x) dx, (3.3.11)

the term Du(t) is the dissipation due to viscosity in [0, t] which is defined as

Du(t) :=

ˆ t

0

ˆ ℓ(s)

0
(
1

2
ux(s, x)− (Ldebu)(s, x))ux(s, x) dxds−

ˆ ℓ(t)

0
(Ldebu)(t, x)ux(t, x) dx,

(3.3.12)
while Wu(t) is the work done by the external loads and the boundary conditions in the
time interval [0, t], that is

Wu(t) =

ˆ t

0

ˆ ℓ(s)

0
f(s, x)ut(s, x) dxds−

ˆ t

0

ˆ ℓ(s)

0
Ft(s, x)ux(s, x) dxds (3.3.13)

+

ˆ ℓ(t)

0
F (t, x)ux(t, x) dx−

ˆ ℓ0

0
F (0, x)u0x(0, x) dx (3.3.14)

−
ˆ t

0
u̇D(s)ξ(s)ds (3.3.15)
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where

ξ(s) := u̇0(s) + u1(s)− F (0, s)− u̇D(s)

+

ˆ s

0
(f(τ,−τ + s)− ∂1F (τ,−τ + s)− 1

2
ux(τ,−τ + s) + (Ldebu)(τ,−τ + s))dτ

and ∂1F denotes the derivative of F with respect to the first variable.

Theorem 3.3.5. Let us assume (3.1.1)-(3.1.7) and (3.1.10)-(3.1.14). Let u be the solution
of (3.0.1)-(3.0.5). Then the total energy for the elastic problem belongs to AC([0.T ]) and
for a.e. t ∈ [0, ℓ0/2] we have

Ė totu (t) =
ℓ̇(t)

2

ℓ̇(t)− 1

1 + ℓ̇(t)

[
F (0, ℓ(t)− t)− u̇0(ℓ(t)− t) + u1(ℓ(t)− t)

+

ˆ t

0
(f(τ, τ + ℓ(t)− t) + ∂1F (τ, τ + ℓ(t)− t))dτ

+

ˆ t

0
(
1

2
ux(τ, τ + ℓ(t)− t)− (Ldebu)(τ, τ + ℓ(t)− t))dτ

]2

. (3.3.16)

Proof. The result follows replacing F with F + Ldebu in Theorem 3.3.3 and taking into
account (3.2.54) and that (Ldebu)(0, x) = 0.

3.3.2 Applications and future research

In this subsection we give the main ideas to define the coupled problem, namely the prob-
lem where both the displacement u and the debonding evolution ℓ: [0, T ] → [ℓ0,+∞) are
unknown, following [20] and [42]. We have no claims of completeness and the aim of this
subsection is only to show, without technical details, what will be studied in the future
work [13]. In this subsection we assume (3.1.1)-(3.1.7) and (3.1.10)-(3.1.14) and moreover

ℓ̇(t) < 1 a.e. t ∈ [0, T ]. (3.3.17)

The definition of coupled problem is based on energetic considerations regarding the
debondig ℓ. Let 0 < c1 < c2 and let κ: [0, T ] → [c1, c2] a bounded measurable function.
Given 0 ≤ x1 < x2 we define the energy dissipated to debond the segment [x1, x2] as

Ddeb(x1, x2) :=

ˆ x2

x1

κ(x) dx, (3.3.18)

where κ represents the local toughness. This means that the energy dissipeted in the
debonding process on the interval [0, t], for every time t ∈ (0, T ], is given by

Ddeb(ℓ0, ℓ(t)) =

ˆ ℓ(t)

ℓ0

κ(x) dx. (3.3.19)
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Inspired by the case of crack theory (see the Introduction and Chapter 2), we require
that our model satisfies the Griffith’s criterion, namely the following energy balance holds:

E totu (t) +Ddeb(ℓ0, ℓ(t)) = E totu (0) for every t ∈ (0, T ], (3.3.20)

where E totu is the total energy for the viscoelastic system (3.0.1)-(3.0.5) given in Definition
3.3.4. Using Theorem 3.3.5 we can derive (3.3.20) with respect to time obtaining

κ(ℓ(t))ℓ̇(t) = G(t)ℓ̇(t) for a.e. t ∈ (0, T ), (3.3.21)

where

G(t) := −1

2

ℓ̇(t)− 1

1 + ℓ̇(t)

[
F (0, ℓ(t)− t)− u̇0(ℓ(t)− t) + u1(ℓ(t)− t)

+

ˆ t

0
(f(τ, τ + ℓ(t)− t) + ∂1F (τ, τ + ℓ(t)− t))dτ

+

ˆ t

0
(
1

2
ux(τ, τ + ℓ(t)− t)− (Ldebu)(τ, τ + ℓ(t)− t))dτ

]2

, (3.3.22)

is the dynamic energy release rate for the viscoelastic system, which is the energy dissipated
by the system (per unit lenght). Equation (3.3.21) gives us an ordinary differential equation
for ℓ. The function ℓ(t) ≡ ℓ0 is clearly a solution so, in order to avoid trivial cases, we
postulate in our model a maximum dissipation principle that forces the debonding front to
move with the maximum speed allowed by the energy balance. A more precise definition
of dynamic energy release and maximum dissipation principle will be given in [13] (see also
[20] and [42]). It is possible to prove that these conditions are equivalent to the following
system: for a.e. t it holds 

0 ≤ ℓ̇(t),

G(t) ≤ κ(ℓ(t)),î
G(t)− κ(ℓ(t))

ó
ℓ̇(t) = 0.

(3.3.23)

The first condition means that the debonding can only increase, while the second one
asserts that the dynamic energy release rate is bounded by the local toughness. The last
conditions states that the debonding front increase with non null speed only when the
energy release rate is critical, that is G(t) = κ(ℓ(t)). The conditions (3.3.23) can be used
to write an explicit ordinary differential equation for ℓ (depending also on the displacement
u) which, coupled with system (3.0.1)-(3.0.5), can be used to study the dynamic evolution
of debonding when both u and ℓ are not given.

Thanks to the results of this chapter (in particular Theorem 3.3.5) in [13] we will be in
a position to prove existence and uniqueness for the coupled problem, following the ideas
of [20, 42].
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[49] V. Volterra: Leçons sur les fonctions de lignes, Gauthier-Villars, Paris, 1913.

[50] F. Zhou, C. Sun, and X. Li, Dynamics for the damped wave equation on time-dependent
domains, Discr. Cont. Dyn. Syst. Series B, 23 (2018), pp. 1645–1674.

[51] J-P. Zolésio: Galerkin approximation for wave equation in moving domain, Stabiliza-
tion of flexible structures (Montpellier, 1989), 191–225, Lect. Notes Control Inf. Sci.,
147, Springer, Berlin, 1990.


	Introduction
	Notations
	A viscoelastic problem with prescribed time dependent cracks
	Formulation of the problem
	Basic notions
	Function spaces

	Uniqueness
	The auxiliary problem
	Proof of the uniquenes

	Continuous dependence on the data
	Preliminary results for the continuous dependence
	Proof of the continuous dependence


	Dynamic crack growth in viscoelastic materials with memory
	Formulation of the problem
	The geometry of the cracks
	The functional spaces for the viscoelastic problem
	A more general result on existence, uniqueness, and continuous dependence

	Energy balance
	Dynamic dissipation energy balance
	The class of admissible cracks

	Existence for the coupled problem

	A viscoelastic problem with prescribed debonding front
	Preliminary results
	Existence, uniqueness, and representation formula
	The auxiliary problem
	The representation formula and more regularity
	Proof of the existence and uniqueness for the viscoelastic problem

	Energetic analysis
	Regularity of the total energy
	Applications and future research


	Bibliography

