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2Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy

3Department of Quantum Matter Physics, University of Geneva,
Quai Ernest-Ansermet 24, 1211 Geneva, Switzerland

4Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy

Time reversal symmetric topological insulators are generically robust with respect to weak local
interaction, unless symmetry breaking transitions take place. Using dynamical mean-field theory we
solve an interacting model of quantum spin Hall insulators and show the existence, at intermediate
coupling, of a symmetry breaking transition to a non-topological insulator characterised by exciton
condensation. This transition is of first order. For a larger interaction strength the insulator evolves
into a Mott one. The transition is continuous if magnetic order is prevented, and notably, for any
finite Hund’s exchange it progresses through a Mott localization before the condensate coherence is
lost. We show that the correlated excitonic state corresponds to a magneto-electric insulator which
allows for direct experimental probing. Finally, we discuss the fate of the helical edge modes across
the excitonic transition.

The concept of symmetry protected topology has in-
troduced a new paradigm for the description of electronic
band structures [1, 2]. The early identification of topo-
logical states in semi-conducting quantum wells [3, 4] and
three-dimensional chalcogenides [5–8] boosted intense re-
search activity that finally reached a mature symmetry
groups classification for weakly-interacting insulators and
semi-metals. The discovery of topological properties in
more correlated materials [9, 10], such as monolayers of
early transition-metals dichalcogenides (TMD)s [11–13]
or some Fe-based compounds [14–18], raised interest in
the role of the ever-present electron-electron interaction
in topological phases of matter.

The electron localization tendency brought in by
strong correlations can generically lead to dramatic mod-
ifications of the band structure topology [19]. Contrary
to näıve expectations, Coulomb repulsion can in some
cases favour the formation of a non-trivial electronic state
[10, 20], trigger the existence of novel purely interacting
topological phases [21], or drive a dynamical change in
the thermodynamic character of the topological quantum
phase transition [22–25]. Yet, the most impactful effect
of strong electronic correlations is often the emergence
of ordered phases. At strong coupling, the existence of
large spin-exchanges and spin-orbit coupling paves the
way to magnetically ordered states. For weaker interac-
tion strength, the situation can get more intriguing since
diverse degrees of freedom are equally active and possibly
cooperate with the non-trivial topology of the electronic
bands. In these conditions, different instabilities compete
and it becomes hard to predict the electronic properties
of a correlated topological insulator.

One of the most interesting effect of electronic interac-
tion in systems hosting a small energy gap is to induce in-
gap excitons [26–31]. Although excitons have been stud-
ied for long, recent evidences supporting the existence of
excitonic phases in TMDs mono-layers [11–13, 32] gave
strong impulse to the investigation of excitons in topo-
logical insulators [26, 28, 30]. For instance, the anomalies

observed in the topological Kondo insulator SmB6 have
been predicted to be caused just by excitons [33–37].

Here, we show that exciton phase transition generically
occurs due to electronic correlations in a model quan-
tum spin Hall insulator (QSHI). In particular, using a
non-perturbative approach based on Dynamical Mean-
Field Theory (DMFT) [38–40], we demonstrate that, in
presence of a sufficiently strong interaction, the QSHI
becomes unstable towards an excitonic phase with an
in-plane spin polarisation [28, 41] that breaks the time-
reversal, spin U(1) and parity symmetries [30] that pro-
tect topological order. The transition between the QSHI
and the Excitonic Insulator (EI) is of first order within
DMFT. The excitonic phase shows a finite magneto-
electric susceptibility [42, 43], which allows a direct ex-
perimental identification of such state of matter.

The rest of the paper is organized as follows. In the
Sec. I we introduce the interacting QSHI model and
briefly recall the method used to solve it. In the follow-
ing section II we discuss the excitonic phase transitions
occurring for generic values of the parameters, distin-
guishing the two cases corresponding to the presence or
the absence of Hund’s exchange. We summarize part of
the findings in terms of phase-diagram in Sec. III. In the
section IV we discuss observables consequences of the
excitonic transition in the QSHI. Finally, in Sec. V we
draw the conclusions of our work and discuss some per-
spectives.

I. MODEL AND METHODS

We consider an interacting two-orbital Hubbard model
on a two dimensional square lattice [3, 22], described by
the Hamiltonian

H =
∑
k

ψ†kH(k)ψk +Hint , (1)
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with the spinor ψ†k =
[
c†k1↑, c

†
k2↑, c

†
k1↓, c

†
k2↓

]
and where

c†kασ creates an electron on orbital α = 1, 2, with spin
σ =↑, ↓ at momentum k. Orbital 1 and 2 transform as
the ` = 0 and ` = 1 spherical harmonics, respectively [3],
and, more specifically,

(2, ↑) ≡ (` = 1, `z = +1, ↑) ,
(2, ↓) ≡ (` = 1, `z = −1, ↓) ,

are the jz = ±3/2 components of j = 3/2 spin-orbit
multiplet.

We introduce the 4 × 4 matrix basis Γαa = σα ⊗ τa,
where σα=0,1,2,3 and τa=0,1,2,3 are Pauli matrices, includ-
ing the identity, in spin and orbital subspaces, respec-
tively. The non-interacting Hamiltonian matrix reads

H(k) = M(k) Γ03 + λ sin(kx) Γ31 − λ sin(ky) Γ02 , (2)

where M(k) = M − ε
(

cos kx + cos ky), M ≥ 0 being
the energy separation between the two orbitals, ε the
hopping amplitude and λ the inter-orbital hybridization
that lacks an on-site component because of inversion sym-
metry. Hereafter, we take ε = 1 as our unit of energy,
λ = 0.3, and assume two electrons per site, i.e. half-
filling. The non-interacting Hamiltonian is invariant un-
der Time Reversal Symmetry T (TRS), inversion sym-
metry P, U(1) spin rotations around the z-axis, and the
fourfold C4 spatial rotations around z. We assume that
the interaction is also invariant under the same symme-
tries, and, in particular, we take

Hint =
1

4

∑
r

(
2U−3J

)
N̂2

r − J Ŝ2
zr + 2J T̂ 2

zr , (3)

where r labels the sites of the lattice, and the operators

N̂r = ψ†r Γ00 ψr ,

Ŝzr =
1

2
ψ†r Γ30 ψr ,

T̂zr =
1

2
ψ†r Γ03 ψr ,

with ψr the Fourier transform of ψk, are, respectively,
the density, the spin polarization along z and the orbital
polarization at site r. The interaction (3) is not the most
general symmetry allowed one. However, it enforces the
first Hund’s rule of maximum spin, whose role we aim to
analyse here.

We treat the interaction non-perturbatively by single-
site DMFT using exact diagonalization as impurity solver
[44]. Within DMFT, the self-energy is approximated by a
momentum independent but frequency dependent matrix
function in spin and orbital space. A symmetry invariant
self-energy matrix is diagonal, with spin-independent ele-
ments. Deviations from such matrix structure signal the
onset of symmetry breaking [24, 28, 41, 45–49]. The non-
interacting model has a topological quantum phase tran-
sition between a QSHI for M < 2 and a trivial Band In-
sulator (BI) for M > 2. In the presence of a finite Hund’s

Figure 1. Evolution of the low-energy spectra of the in-
plane triplet component of the exciton-exciton susceptibility
χimp
1 (ω) as a function of the interaction strength U . Data for
J/U = 0.25 and M = 3.5. The arrow indicate the softening
of the lowest energy peak before Mott insulator sets in (white
solid line).

exchange J and for large U , see Eq. (3), a high-spin Mott
insulator sets in [22, 48, 50] and describes two electrons
localized on each site and forming a spin Sz = ±1 config-
uration, thus with vanishing orbital polarization Tz = 0.

II. THE EXCITONIC PHASE-TRANSITION

In order to asses the possible instability of the model
towards an excitonic phase it is instructive to start from
the atomic limit with two electrons per site. The Hamil-
tonian in the two-electron subspace reads

Hat =
∑
r

−J Ŝ2
zr + 2J T̂ 2

zr + 2M T̂zr .

The eigenstates can be labelled by the eigenvalues Sz, Tz
and `z, respectively, of the operators Ŝzr, T̂zr and

ˆ̀
z = n2↑r − n2↓r ,

with nασr = c†ασrcασr. Thus the states |(`z, Sz, Tz), r〉
have eigenvalues E (`z, Sz, Tz):

E(0, 0,+1) = 2J + 2M ,

E(0, 0,−1) = 2J − 2M ,

E(+1,+1, 0) = E(−1,−1, 0) = −J ,
E(+1, 0, 0) = E(−1, 0, 0) = 0 .

(4)

For 3J > 2M the atomic ground state is the high-spin
doublet with Sz = ±1, otherwise is the state |(0, 0,−1), r〉
with two electrons in orbital 2. Our aim is to study
the competition between those states, and therefore we
hereafter drop the other three states, |(0, 0,+1), r〉 and
|(±1, 0, 0), r〉.

Moreover, we define a pseudo spin operator Ir =
(Ixr, Iyr, Izr) through

Iz,r|(+1,+1, 0), r〉 ≡ Iz|+ 1, r〉 = |+ 1, r〉 ,
Iz,r|(0, 0,−1), r〉 ≡ Iz|0, r〉 = 0 ,

Iz,r|(−1,−1, 0), r〉 ≡ Iz| − 1, r〉 = −| − 1, r〉 ,

so that the three states become the components of an I =
1 pseudo spin. In this subspace the following equivalences
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hold

ψ†rΓ11ψr ≡
√

2Ixr, ψ†rΓ21ψr ≡
√

2Iyr,

ψ†rΓ12ψr ≡ −
√

2 {Iyr, Izr} , ψ†rΓ22ψr ≡ −
√

2 {Ixr, Izr} ,
ψ†rΓ03ψr ≡ 2

(
1− I2

zr

)
, ψ†rΓ30ψr ≡ 2Izr,

while ψ†rΓαaψr with all other Γ matrices different from
the identity have vanishing matrix elements.

The atomic Hamiltonian projected onto the subspace
|0, r〉 and | ± 1, r〉 becomes, dropping constants:

Hat ' ∆E
∑
r

(
1− I2

zr

)
, ∆E = 3J − 2M .

Our interest is studying how the hopping processes be-
yond the atomic limit modify the level crossing between
| ± 1, r〉 and |0, r〉 when ∆E changes sign. For that, we
treat those processes at second order in perturbation the-
ory and, after projection onto the above subspace, we find
an effective Heisenberg Hamiltonian for the I = 1 pseudo
spins

H∗ = ∆E∗
∑
r

(
1− I2

zr

)
+ J+

∑
<rr′>

(
2 Izr Izr′ −

∑
a=x,y

Iar Iar′
)

+ J−
∑
<rr′>

(
KzrKzr′ −

∑
a=x,y

KarKar′

)
,

(5)

where Kar =
{
Iar, Izr

}
, while

∆E∗ = ∆E + 8J− , J± =
1± λ2

4U
.

When ∆E∗ � J+ > J−, the ground state is a Néel anti-
ferromagnet with 〈 Izr 〉 = (−1)r. On the contrary, when
∆E∗ � −|J+|, each site in the ground state is locked into
the Iz = 0 eigenstate of the pseudo-spin triplet, which is
just the trivial band insulator since the topological one
does not survive in the atomic limit. These two states
might cross in energy when ∆E∗ ' 0, but that crossing
is preempted by the quantum fluctuations brought about
by J+ and J− that, in turn, compete against each other.
Since J+ is larger, we can safely neglect J−. In that case,
the Hamiltonian (5) describes an easy-axis spin-1 Heisen-
berg antiferromagnet with a single-ion anisotropy ∆E∗,
which suggests that the transition between the Néel anti-
ferromagnet and the band insulator might occur through
an intermediate phase characterised by the order param-
eter

∆(φ) = 〈Ixr + Iyr〉 =
1√
2
〈ψ†r (Γ11 + Γ21)ψr〉

≡ ∆11 + ∆21 = ∆ cos(φ) + ∆ sin(φ)

(6)

which breaks T , inversion symmetry P and spin U(1)
symmetry for any fixed value of φ ∈ [0, 2π) [30]. This

2 4 6 8 10 12
U

0.0

0.5

1.0

1.5

2.0
(a)
J/U=0.25

P1
Tz
P1
Tz

2 4 6 8 10
U

0.0

0.5

1.0

1.5

2.0
(b)

Tz
P0
Tz
P1

J/U=0.00

M=1.5

M=3.5

M=0.30

M=0.05

Figure 2. Orbital polarization Tz (dashed lines) and exciton
order parameter P1 (solid line and symbols) as a function of
the interaction strength U at J = 0.25U , left panel, and J =
0. For the J = 0 case, we also show the order parameter P0

corresponding to the formation of an odd-parity spin-singlet
excitonic state, which is always zero at J = 0.25U .

phase actually describes a condensate of odd-parity spin-
triplet excitons, with the spin lying in the x− y plane.

To assess whether such excitonic phase indeed
exists and does survive at intermediate coupling,
we have calculated the dynamical susceptibility
χimp11 (ω) = 1

N

∫
dteiωt〈Tt[�11(t)�11(0)]〉 forcing all

symmetries within the effective impurity problem of
the DMFT [38] and where �αa = ψ†Γαaψ [28, 30]
are impurity operators. Although this quantity does
not necessarily correspond to the local susceptibility
of the bulk model, nonetheless it provides suitable
informations about its instabilities. In Fig. 2(a) we

report the evolution of χimp11 (ω), which is equivalent to

χimp21 (ω) by spin U(1) symmetry, as a function of energy
ω and U at M = 3.5, thus along the path from the
band to the Mott insulator. In the weakly interacting
regime, this function displays several high energy peaks.
Increasing U leads to red shift of the lowest energy peak
until it softens before the Mott transition sets in. The
softening is just the signal of the excitonic instability.

However, the conclusive proof of excitonic transition
can be obtained allowing for symmetry breaking, which
we do though forcing, for simplicity, translational sym-
metry. Our results are reported in Fig. 2 for J = 0.25U ,
left panel, and J = 0, right panel.

A. The J > 0 case

For any M > 0 we observe the formation of an EI with

P1 = 〈ψ†r Γ11 ψr 〉 6= 0 ,

which is related to 〈ψ†r Γ21 ψr 〉 under spin U(1), see
Eq. (6). The transition from the band or topological
insulators to the excitonic one is of first order, while that
from the EI to the high-spin Mott insulator (hs-MI) is
of second order. We cannot exclude that also the latter
transition may become first order allowing for transla-
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Figure 3. DMFT phase diagrams of the interacting model
as a function of U and M . Left panel (a) for J/U = 0.25.
Right panel (b) for J = 0. The nature of the leading exci-
tonic order parameter is indicated in the plot using text and
color code. First order transition are indicated with dashed
lines. Continuous transitions are indicated with solid lines.
Transitions to/from EI are indicated in black. Gray lines in
the background indicate the transitions occurring without al-
lowing for exciton condensation.

tional symmetry breaking, and thus for an antiferromag-
netic Mott insulator [24].

The order parameter P1 as a function of U displays a
bell-like structure, which is centred at increasing values
of U as M grows. Interestingly, the peak value is attained
at different positions depending on the nature of the un-
correlated insulator. For M < 2 (QSHI) the peak value is
reached immediately after the transition while for M > 2
(BI) the peak is well inside the excitonic region. We also
observe that the orbital polarisation Tz vanishes before
the Mott transition, i.e., when P1 is still finite.

B. The J = 0 case

At J = 0, the atomic levels (4) include the ground
state |0, 0,−1〉, followed at energy 2M above by the
fourfold multiplet | ± 1,±1, 0〉 and | ± 1, 0, 0〉, and, fi-
nally, by |0, 0,+1〉 at energy 4M above the ground state.
For large U , the hopping at second order in perturba-
tion theory generates superexchange processes of order
1/U . Therefore, the model at U → ∞ and finite M
describes just the band insulator with two electrons in
orbital 2. However, the situation may change if M scales
as 1/U . In that case, and if we discard the highest en-
ergy atomic level |0, 0,+1〉, the superexchange processes
mix the atomic ground state |0, 0,−1〉 with the first ex-
cited multiplet on nearest neighbour sites. Similarly to
the J > 0 case, these processes may lead to finite ex-
pectation values of the local operators that have finite
matrix elements between |0, 0,−1〉 and the fourfold mul-
tiplet | ± 1,±1, 0〉 ⊕ | ± 1, 0, 0〉. We already showed that
at λ 6= 0 the mixing between |0, 0,−1〉 and the doublet
|+ 1,+1, 0〉 ⊕ |−1,−1, 0〉 stabilises the order parameters
P1 = 〈ψ†r Γ11 ψr 〉 and its spin-U(1) partner 〈ψ†r Γ21 ψr 〉.
Similarly, the order parameters P0 = 〈ψ†r Γ01 ψr 〉 and
its C4 partner 〈ψ†r Γ32 ψr 〉, which thus break C4 and in-
version symmetries, are favoured by the mixing between
|0, 0,−1〉 and the doublet |+1, 0, 0〉 ⊕|−1, 0, 0〉 at λ 6= 0.

2 4 6 8 10 12
U

0.0

0.2

0.4

0.6

0.8
J/U=0.25

θ
11

q=0
(ν→   0) θ

11

q=0
(ν→   0)

M=0.50
M=1.00
M=1.50
M=1.90
M=2.30
M=2.90
M=3.50

2 4 6 8 10
U

0.00

0.05

0.10

0.15

0.20
J/U=0.0 M=0.05

M=0.10
M=0.20
M=0.30

(a) (b)

Figure 4. Static and uniform limit of the magnetic-electric
susceptibility as a function of the interaction strength U
across the exciton phase transition. Data are for different val-
ues of M , as indicated in the panels, and for (a) J/U = 0.25,
(b) J/U = 0.00.

Our explicit DMFT calculations predict that, at M ∼
1/U , P1 is always stabilised except at very small M ,
where the order parameter P0 prevails, see right panel
of Fig. 2. We further observe that at J = 0 the tran-
sition from the QSHI to the EI is still first order, while
that from the EI to the BI is continuous.

C. Phase diagrams

We summarize our DMFT results in the two U vs. M
phase diagrams at J > 0 and J = 0, respectively, left and
right panels in Fig. 3. In both cases, the non-interacting
QSHI-BI transition point at M = 2 transforms at weak-
coupling into a critical line determined by the condition

Meff ≡M + 1
4Tr

(
Γ03Σ(ω = 0)

)
= 2 ,

where Σ(ω) is the self-energy matrix. The critical line
corresponds to a second order phase transition up to a
critical value of the interaction Uc. For U > Uc, the tran-
sition turns first order [22, 23, 51], thus without crossing
a Dirac-like gapless point.

For J > 0 and large enough U , the ground state de-
scribes a high-spin Mott insulator. An extended EI re-
gion with P1 order parameter intrudes between the QSHI
and the hs-MI, see Fig. 3(a). Remarkably, the EI phase
entirely covers the discontinuous topological transition
occurring between the BI and the QSHI. The transitions
from either the BI or the QSHI to the EI are of first
order, while the transition from the EI to the hs-MI is
continuous.

At J = 0, we observe an EI region between the QSHI
and the BI at small M < 0.5. The QSHI-to-EI and EI-to-
BI transitions are, respectively, of first and second orders.
For very large U , the EI phase appears at M scaling as
1/U . As we mentioned, the exciton condensate with or-
der parameter P0, breaking C4 and inversion symmetries,
for very small M , while for larger values, the order pa-
rameter P1 prevails, breaking inversion, time-reversal and
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Figure 5. Top panel: Bottom panels: Evolution of the low
energy band structure of the interacting model at M = 1
and J = 0.25U on a slab geometry across the QSHI to EI
transition.

spin U(1). The transition between P1 and P0 is expected
to be first order.

III. MAGNETO-ELECTRIC NATURE OF THE
EXCITONIC INSULATOR

In the EI phase with P1 order parameter, the break-
down of the symmetries protecting the non-trivial topol-
ogy of the QSHI, i.e., time-reversal T , inversion P
and spin U(1) (yet not the product PT ), dramatically
changes the response to an electromagnetic field. Specif-
ically, the triplet in-plane spin polarization nature of the
excitonic order parameter forbids a direct coupling to the
electric field and, independently, to the magnetic field.
However, the lack of both T and P symmetries allows the
system to couple to the product of magnetic and electric
field, i.e. a linear magneto-electric (ME) response [52].
Here, we show that the EI admits a finite ME susceptibil-
ity and thus corresponds to a ME insulator. Notably, this
state should not be expected to be multi-ferroic because
of the absence of magnetic and electric order [52].

In order to study the ME properties, we evaluate the
electric dipole response to a magnetic perturbation. Us-
ing Green-Kubo formalism and neglecting vertex correc-
tions, we obtain the following expression:

Θab
q (νm) =∑

k,n

Tr
[
G(k, iωn)pa(k)G(k+q, iωn+iνm)M b

]
βνm

(7)

where a, b = 1, 2 ≡ x, y are the in-plane directions,
Ma = 1

2Γa0 is the a component of the spin operator,
pa(k) is the momentum operator along a, iωn and iνm
are, respectively, fermionic and bosonic Matsubara fre-

quencies and

G(k, iωn) =
(
iωn + µ−H(k)− Σ(iωn)

)−1

,

is the interacting Green’s function matrix. Given the
multi-orbital nature of the Hamiltonian (2) the momen-
tum operator should be evaluated using a generalized
Peierls approximation [53–58]. The latter includes addi-
tional contributions, stemming from on-site inter-orbital
processes that are dipole allowed. Specifically,

paαβ(k) = ∂aHαβ(k) + iΩαβ(k)da

where Ωαβ(k) = [Eα(k) − Eβ(k)], Eα(k) are the eigen-

values of the non-interacting Hamiltonian (2), and ~d =
(Γ02,Γ32) is the dipole operator.

In the following we consider the static, ν → 0, and uni-
form, q = 0, limit of the ME susceptibility. Our results
are presented in Fig. 4, where we shows the evolution
of Θ11

q=0(ν = 0) as a function of U for finite and zero
values of J . Since the contribution of the group velocity
∂kaHαβ(k) vanishes by symmetry, the ME response is en-
tirely determined by the intra-atomic dipole transitions,
which have finite expectation values in the EI phase. In-
deed, Θ11

q=0 is finite only within the EI phase and vanishes
otherwise. The magneto-electric susceptibility shows the
same dome structure of the order parameter P1 as a func-
tion of U . The results at J = 0 reported in Fig. 4(b)
point out that the ME response vanishes when P0 6= 0,
as expected by symmetry. In the EI phase with P1 6= 0,
the ME susceptibility is finite and its peak value shifts
to lower U with increasing M .
At J > 0, see Fig. 4(a), we observe a substantial change
in the magnitude of the ME response. For M < 2,
thus starting from the QSHI, the susceptibility is globally
small, while for larger M the weight of Θ11

q=0 increases,
with seven times larger peak values. Remarkably, for any
given J the largest ME response is reached in proximity
of the quantum critical point which, without allowing for
P1 6= 0, separates the continuous from the first order
topological quantum phase transition [22, 24].

IV. SLAB GEOMETRY AND EDGE STATES

Finally, we explore the evolution across the QSHI-to-
EI phase transition at J > 0 in a slab geometry, i.e. with
open boundary conditions along, say, the y axis, and pe-
riodic in the perpendicular direction. In this geometry,
the electrons at the boundary experience an effectively
larger interaction strength because of the reduced coor-
dination. This effect becomes detectable near the phase
transition. In the top panel of Fig. 5, we show the evolu-
tion of the P1 order parameter across the QSHI-EI first
order transition with M = 1. Before the transition, a
finite value of the order parameter appears at the bound-
ary, and fast decays in the bulk interior. This is akin a
wetting phenomenon that arise since the more correlated
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surface favours the nucleation of the EI phase near the
first order QSHI-EI transition. This result is remarkable,
since it predicts that a QSHI might display a surface layer
of excitonic insulator without topological edge states but
with finite magnetoelectric response. Increasing U above
the value of the bulk transition, drives the sudden forma-
tion of a finite order parameter throughout the sample,
as expected for a first order transition. In this case, the
order parameter near the boundary is instead reduced
with respect to the bulk, consistently with the behaviour
of P1 versus U for M < 2, see left panel in Fig. 2.

Further insights can be gained investigating the fate of
the helical edge states, see bottom panels of Fig. 5. The
plots show the low-energy electronic band structure of
the interacting system across the QSHI to EI transition.
At small coupling U = 3.3, well inside the QSHI (left
panel), gapless helical edge states well separated from the
bulk spectrum are visible. However, at U = 4.1 (middle
panel), where the bulk is still a QSHI but an EI wetting
layer has formed, see top panel of Fig. 5, edge states still
exist but are gapped. On the contrary, for U = 4.5 (right
panel), where also the bulk is an EI, the edge states have
disappeared inside the bulk continuum.

V. CONCLUSIONS

In conclusions, we have investigated a canonical model
of interacting quantum spin Hall insulators and showed

that for a strong enough electronic correlation the sys-
tem gets generally unstable towards an excitonic insula-
tor that breaks time-reversal and inversion symmetries,
as well as the residual spin U(1) rotations. This state fur-
ther evolves into a magnetic Mott insulator upon increas-
ing the interaction strength, where inversion and spin-
U(1) symmetry are recovered. We explicitly show that
the excitonic insulator has non-zero magneto-electric sus-
ceptibility, and thus is a good candidate platform for the
realization of correlated multi-ferroic materials. Another
remarkable phenomenon that we uncovered is the possi-
ble existence of an excitonic insulator wetting layer in a
quantum spin Hall insulator.
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and Y. G. Rubo, Supercell approach to the optical prop-
erties of porous silicon, Phys. Rev. B 59, 15381 (1999).

[54] T. G. Pedersen, K. Pedersen, and T. Brun Kriestensen,
Optical matrix elements in tight-binding calculations,
Phys. Rev. B 63, 201101 (2001).

[55] J. M. Tomczak and S. Biermann, Optical properties of
correlated materials: Generalized peierls approach and
its application to vo2, Phys. Rev. B 80, 085117 (2009).
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