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Introduction

The general framework of this thesis is the study of multicomponent strongly interacting fermions moving
on a lattice. These are defined as systems of many particles obeying the Fermi-Dirac statistics, having
more degrees of freedom than the usual particle spin (or at least more than two spin states) and being
subject to non-negligible two-body interaction potentials. This broad definition covers a variety of topics
that are nowadays the subject of a great research effort, such as the study of exotic quantum phases
of electrons in solids (including high-temperature superconductivity, excitonic condensates, magnetism,
topological states etc.) and the study of the low temperature behavior of atomic gases trapped in optical
lattices. Among the latter, fermionic isotopes of alkaline-earth-like atoms have drawn attention in the last
decade, as their electronic and nuclear properties, along with the possibility to experimentally control
their interaction strength and kinetic energy, are particularly suitable to realize tunable multicomponent
systems. In particular, the vanishing angular momentum of the two low-lying electronic states 1S0 and 3P 0

induces a nearly perfect decoupling between electronic and nuclear degrees of freedom, which eventually
results in a SU(N) symmetric interaction scheme, where N is the number of nuclear angular momentum
states. The nuclear state can thus be regarded as an internal “flavor” index (which reduces to a pseudospin
index if N = 2) with up to N possible values; while the electronic state provides an extra “orbital”
component. In the present work, we mostly focus on implementations of multicomponent systems that can
be realized in experiments with alkaline-earth-like atoms trapped in optical lattices and we investigate
several phenomena where the strong interactions play a crucial role.

We investigate the equilibrium properties of multicomponent fermionic systems by using an hybrid
approach, combining numerical methods and analytic (or semi-analytic) results. Among the numerical
methods, we mention the exact diagonalization of systems on a lattice with a small number of sites, and the
dynamical mean field theory (DMFT). In chapter [1] we give a practical introduction to DMFT, adopting a
slightly different approach with respect to the usual way of presenting the topic. There are two reasons
behind this choice: first of all, the presentation is adapted to the models that we have studied throughout
the thesis and it is meant to explain how our code is built; the second is a pedagogical motivation, since
our purpose is to provide a total beginner with the main instruments to quickly get involved in the topic,
sacrificing a little bit the more general theoretical framework. Among the analytic or semi-analytic methods,
we mention the Hartree-Fock mean-field approximation and the Schrieffer-Wolff transformation; we don’t
devote a specific chapter to these methods, instead we introduce them progressively, before discussing the
corresponding results.

We can schematically divide our study in two main directions. First of all, in chapters [2] and [3] we
investigate the low-temperature equilibrium states of systems where the SU(N) symmetry is explicitly
broken by coupling the atoms with an external pair of laser beams, which induce optical Raman transitions
with a space-dependent phase. In this context, a laser-induced Raman transition is the excitation and
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subsequent disexcitation of the electronic state to an excited state characterized by significant hyperfine
coupling to the nucleus (typically the 3P1 state): if the photon fields are suitably polarized, the atom
exchanges quanta of angular momentum with light in the process and the final result is a nuclear spin flip.
The equilibrium states of the system display a chiral behavior: they are characterized by persistent flavor-
dependent currents flowing in opposite directions, that can be experimentally detected via time-of-flight
measurements on the momentum distribution of each fermionic component.

We begin by considering a single “orbital” in the remarkable cases N = 2, 3 and, after introducing
the theoretical and experimental framework, we analyze the non-interacting limit, where many analytic
results can be found, particularly for the flavor currents. After that, we consider the interacting case (both
in one and two spatial dimensions), where we first derive semi-analytic results within the Hartree-Fock
approximation and then we include dynamical quantum correlations by means of DMFT. Specifically, we
investigate how the flavor currents are affected by the Hubbard repulsion between particles, spanning
the whole range of parameters, from the weak to the strong coupling regimes. We observe that the flavor
currents have a sharp increase at the phase transition, and in the “insulating” phase are much larger than
in the “metallic” state. We then support our results with more analytic calculations performed in the limit
of very strong coupling, where – at integer filling factors and low temperatures – the charge fluctuations
are completely quenched, and the only relevant degree of freedom is the flavor state. This provides an
intuitive picture to understand the smooth hyperbolic decrease of the flavor currents at increasing values
of the interaction.

Finally we consider systems with two orbitals, which are physically realized preparing an admixture
of particles in the two low-lying electronic states. The extra component enriches the interaction scheme
introducing new interorbital couplings, in particular the spin exchange, a process that swaps the flavor
of two particles localized at the same lattice site with opposite orbital indexes. In absence of interorbital
coupling, Raman transitions generated by a single pair of laser beams induces a chiral behavior in only one
of the two orbitals, leaving the other unaffected. The reason is that, in order to effectively induce nuclear
spin flips, the frequencies of the two Raman beams should be nearly resonant to the natural frequency of an
electronic transition involving 3P 1 (in fact slightly detuned), hence they can’t be at the same time resonant
to both 3P1 ↔1S0 and 3P1 ↔3P0. This scenario is completely modified by the presence of spin-exchange
dynamics, as the latter can induce effective nuclear spin flips also in the orbital that is not interacting
with the external photon fields, therefore providing that orbital with a chiral behavior. We apply both the
Hartree-Fock method and DMFT to investigate how the spin exchange affects the flavor currents in the two
orbitals, also taking into account the possible presence of antiferromagnetic order. Our result is that the
flavor currents, in the orbital that does not interact with photons, are sharply enhanced at the critical value
of the spin exchange which marks the transition between antiferromagnetic and normal phase. Moreover,
we find that these currents are slightly larger than the currents in the other orbital and they both decrease
smoothly at large values of the spin exchange.

The second direction that we investigate is within the framework of the quantum simulation of electronic
properties in solids by means of ultracold fermionic atoms. In chapter [4] we begin by considering the
physics of Hund’s metals, i.e. materials (such as transition metal oxides) where the metallic character
survives at large values of the Hubbard interaction, as a consequence of the presence of a Hund’s coupling,
which tends to maximize the local spin and angular momentum. We overview the physics of transition
metal oxides, showing how the atomic d orbitals of the metal are modified by the environment of ligands,
as described by the crystal field theory, which leads to the formulation of the Hund’s model. We solve this
model by means of an exact numerical diagonalization on a minimal lattice of three sites that includes
nearest-neighbors spatial correlations, and draw a phase diagram based on the Drude weight (the DC
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component of optical conductivity), which is the most natural candidate to probe the metallic character
of a state. We observe the presence of a metallic phase which is resilient to the Hubbard interaction and
which results from the competition of two insulating phases with different character: the Hund’s metal.
We complement previous results obtained with DMFT, where spatial fluctuations were not captured and
the quasiparticle weight was used as an indicator of metallicity, finding a very good agreement and thus
showing that the DMFT result is robust against the presence of nearest-neighbors quantum correlations.

The quantum simulation of a Hund’s metal with ultracold fermions is extremely challenging, due to
the difficulty of coherently manipulating atoms in a mixture of three different electronic states, which
are necessary to mimic the three t2g orbitals. Nevertheless, the theoretical mechanism underlying the
formation of an interaction-resilient metal is quite general: it stems from the energetic competition of two
distinct insulating solutions, characterized by Fock states which are connected to each other by hopping
processes. We thus propose a model where the ground state is governed by the exact same mechanism, but
which is at reach for modern experiments with ultracold alkaline-earth-like fermions. The model describes
atoms with N = 3 flavors trapped in an optical lattice with an extra superlattice potential that lifts the
on-site energy of one lattice site out of three. Again, we numerically solve the model on a minimal cluster
of three sites, and we draw the phase diagram based on the Drude weight, discussing similarities and
differences with respect to the Hund’s physics.

Finally, in chapter [5] we consider the problem of superconductivity in multiorbital systems, which is
particularly relevant to provide simple guidelines to understand the high-temperature superconductors
(such as the cuprates and the iron-based compounds). These materials are all characterized by multiple
degenerate bands around the Fermi level, hence a thorough mathematical description should account for
all of them and for all the possible interactions between electrons in different bands. The interplay between
so many degrees of freedom is non trivial and, as a matter of fact, a completely satisfactory description
of high-temperature superconductors is still lacking. A possible strategy to investigate such a problem
is to disentangle the role of the different contributions, considering them one by one. Here we make a
little step forward in this direction, considering a system with two superconducting bands described by an
attractive Hubbard model and coupled by a Josephson coupling, i.e. a local interband hopping of fermionic
pairs. We compare a solution obtained within the Hartree-Fock approximation to the numerical solution
provided by DMFT, which is exact when the system is on an inifnite-dimensional Bethe lattice. Spanning
the whole BCS-BEC crossover, we find that the presence of a Josephson coupling has two distinct effects
on the superfluid behavior of the system: in the BCS regime, it enhances the order parameters of both
channels; while in the BEC limit it hinders superconductivity, favoring an insulating solution with spatially
localized pairs that are delocalized between the bands. While the former effect is predicted within the
Hartree-Fock approximation, the latter is not, since it is induced by dynamical quantum correlations.

The recent experimental realizations of the orbital Feshbach resonance with alkaline-earth-like atoms
opens the door to the possibility of simulating a two-channel BCS-BEC crossover, as the typical energy
shift between open and closed channels is much smaller than in typical magnetic Feshbach resonances.
Moreover, the spin-exchange dynamics provides a coupling between the two channels and, under a suitable
unitary transformation, it becomes a Josephson coupling. Yet, in order to fully describe an orbital Feshbach
resonance, we should generalize our model to include other non-negligible interorbital interactions, as well
as a “crystal field splitting” between the two bands. We devote the last section to discuss this problem and
to set up the correct model and the reasonable approximations, but we leave the numerical investigation
as a purpose for future work.

As a final remark, before moving to the first chapter, we briefly explain the style that we use throughout
the thesis, which is essentially pedagogical. In contrast with what we usually do in research papers, where
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we direct our message to a public of peer experts of the field, here we deliberately try to speak to younger
students who are approaching the field with an important preliminary knowledge, but don’t necessarily
know the specific topics discussed here. On the one hand, this implies that sometimes we go straight to the
point, especially when discussing the methods, cutting off an important part of the theoretical background
(that the interested reader can always find in the appropriate references), while giving all the relevant
information to reproduce the analysis. On the other hand, mostly when we discuss the physical background
of the systems under investigation, we provide as many details as possible, at the cost of specifying things
that to the expert reader might appear trivial and/or boring. This approach will hopefully help a student
avoid wasting precious time desperately browsing papers with a non-entry-level language in order to find
relevant pieces of information to fully understand our results.
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Chapter 1

Introduction to multicomponent Fermi
systems

A multicomponent fermionic system is, in general, a system of interacting particles obeying the Fermi-Dirac
statistics, which have several internal degrees of freedom, typically spanning more than the two values
associated to the spin 1

2 that usually characterizes fermionic elementary particles. These internal degrees
of freedom can originate from different physical scenarios, for example in solid state systems with multiple
degenerate electronic energy bands around the Fermi level, besides the spin states, the electrons have
another degree of freedom labeled by the band index. Other remarkable examples are fermionic isotopes
of atomic species, which feature a large value of the total angular momentum F (sum of nuclear and
electronic angular momenta): in this case the particles have 2F +1 internal states labeled by the projection
of such angular momentum along a given axis. This chapter is mainly devoted to provide an overview of
these two specific examples, along with the general description of dynamical mean field theory (DMFT),
a theoretical and computational method which has proved successful in dealing with such systems. The
chapter is organized as follows: in sec. [1.1] we introduce the most general version of the multiorbital
Hubbard model which stems from writing the screened Coulomb interaction in the second quantized form;
in sec. [1.2] we introduce the model that describes a mixture of alkaline-earth-like atoms in the two
low-lying electronic states and trapped in an optical lattice, along with the resulting SU(N) symmetric
local interaction. Finally, sec. [1.3] is devoted to provide a practical guide to dynamical mean field theory.

1.1 Multiorbital Hubbard model in solid state physics

The theoretical description of experimentally observed properties of solids, such as resistivity, specific heat,
thermal conductivity etc., within the Born-Oppenheimer approximation, reduces to two problems: the
study of interacting electrons moving on a regular lattice of positively charged ions and the study of the
dynamics of ions induced by the interaction with electrons. The former problem has been extensively
investigated within the framework of quantum mechanics over the past decades, and many important
results have been established; however an exhaustive comprehension of the behavior of electrons in solids
is still missing, especially when the electrons have multiple components, such as a band index.

For systems of electrons where the states close to the Fermi level originate from the same band, i.e.
when all these states stem from the spectral broadening of the same atomic orbital, a qualitatively simple
– yet very rich – description of the low temperature physics is provided by the well-known Hubbard
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1. Introduction to multicomponent Fermi systems

Hamiltonian:
H = −t

∑
⟨ij⟩, σ

(
c†iσcjσ + h.c.

)
+ U

∑
j

nj↑nj↓ − µ
∑
j,σ

njσ. (1.1)

This model describes electrons moving on a periodic potential provided by the crystal structure of the
atomic nuclei and subject to a screened Coulomb interaction. The second quantized operators c†iσ (ciσ)
create (annihilate) a particle on the i-th lattice site in the spin state σ, and they satisfy the usual fermionic
anticommutation rules {ciσ, c†jρ} = δijδσρ and {ciσ, cjρ} = {c†iσ, c

†
jρ} = 0; while the number operators are

defined as njσ = c†jσcjσ. The first term in eq. [1.1] describes tunneling events of electrons between nearest
neighbor sites of the lattice, it stems from the tight binding model and represents the contributions of
the kinetic energy and the potential energy of the background. The second term represents the repulsive
Coulomb interaction between electrons, and it penalizes the double occupation of any site by an energy
amount U > 0. The Coulomb interaction, which is a long range interaction in vacuum, is here considered
extremely short-ranged (actually purely local) to account for the screening effect due to the presence
of other filled bands. Finally, in the last term, µ is the chemical potential used to describe the system
within the grand canonical ensemble and it determines the average density of the system. The half filling
condition, i.e. the situation where the system contains on average one particle per lattice site, is realized at
µ = U

2 , for which Hamiltonian [1.1] becomes particle-hole symmetric.
The success of the Hubbard model is mostly due to the possibility to explain the existence of Mott

insulators, i.e. materials that should be metals according to standard band theory [4, 5] (which fully
neglects the electronic repulsion), but are instead insulators. Remarkable examples of Mott insulators are
some transition metal oxides such as MnO [6], VO2 [7, 8], Cr-doped V2O3 [9], etc. Moreover, the Hubbard
model is able to describe the Mott transition, a phase transition from a metallic to an insulating state which
is typically driven by a linear strain of the sample (resulting in a variation of the ratio U/t). Finally, the
Hubbard model can be solved exactly in some specific cases, for example via Bethe ansatz when the lattice
is a one-dimensional chain [10, 11], or by means of dynamical mean field theory (DMFT) in the limit of
infinite-dimensional lattices [12] (as we will discuss in sec. [1.3]).

Despite the great success obtained by the Hubbard model, many materials have, according to band
theory, electronic states with different band indexes around the Fermi level. Such states arise by the
spectral broadening of different degenerate atomic orbitals. For instance, in coordination complexes of
transition metals, according to crystal field theory, the degeneracy of the five valence d-orbitals of the
metal ion can be split in several ways, depending on the geometry of ligands. This mechanism generates a
plethora of possible band structures, where the number of degenerate bands at the Fermi level goes from
one to five. An accurate mathematical description of such systems should clearly consider all the Norb
degenerate bands on equal grounds by including the band index a = 1, . . . , Norb as an internal electronic
degree of freedom. The screened Coulomb interaction now leads to a variety of terms, coupling electrons
on the same site with all the possible combinations of band and spin indexes. A generalized version of
the Hubbard model to the multiorbital case, known as Hubbard-Kanamori model [13], is described by the
Hamiltonian:

H =
∑

⟨ij⟩, ab, σ

tabij

(
c†iaσcjbσ + h.c.

)
− µ

∑
jaσ

njaσ +
∑
j, a

Uanja↑nja↓ + U ′
∑
j, a̸=b

nja↑njb↓

+ U ′′
∑

j, a<b, σ

njaσnjbσ + Jph

∑
j, a̸=b

c†ja↑c
†
ja↓ cjb↓cjb↑ + Jse

∑
j, a̸=b

c†ja↑cja↓ c
†
jb↓cjb↑. (1.2)

In this model, the hopping term is generalized to include the possibility that electrons with different orbital
states have different tunneling amplitudes taaij and to include orbital hybridization via the off-diagonal
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1. Introduction to multicomponent Fermi systems

hopping term tabij (a ̸= b). The local interaction contains several terms: an orbital dependent intraorbital
density-density interaction of amplitude Ua, an interorbital density-density interaction of amplitude U ′

for electrons with opposite spins and U ′′ for electrons with the same spins, a pair-hopping interaction
of amplitude Jph describing tunneling of electronic pairs from one orbital to another, and finally a spin-
exchange interaction of amplitude Jse describing a simultaneous spin flip of two electrons with opposite
spins in different orbitals.

The interplay of so many parameters leads to a rich physics which has not yet been fully explored;
however some important results have been established. For example, this model accounts for the existence
of the so called Hund’s metals [14, 15], metallic states that survive at large values of the intraorbital
electronic repulsion (we will discuss more extensively this topic in sec. [4.1]), as well as for the orbital
selective Mott transition [16]. Moreover, the Hubbard-Kanamori model provides a suitable description of
the parent compounds of recently discovered high temperature superconductors, such as the iron-based
superconductors, which are characterized by up to five degenerate active bands [17, 18].

1.2 SU(N) symmetric multiorbital Hubbard model in ultracold fermionic
atoms

The theoretical importance of the Hubbard-Kanamori model has paved the way to the quantum simulation
of similar systems with platforms of ultracold fermionic atoms trapped in optical lattices. The promising
perspective provided by ultracold atoms is the flexibility to tune several physical parameters of the system,
such as dimensionality, hopping amplitudes, interaction parameters, particle density etc. by exploiting the
magneto-optical properties of the atomic species. Although a quantum simulation that perfectly matches
the Hamiltonian of a realistic material is extremely challenging, due to many technical difficulties, it is still
possible to realize simplified versions of eq. [1.2]. On the one hand, studying a simplified model is still
useful to disentangle the effects of all the processes on the equilibrium states of the system; while on the
other hand, it opens the possibility to investigate novel quantum states that are not realized in solid state
systems.

1.2.1 Atomic properties of alkaline-earth atoms

In this respect, growing attention has been devoted to fermionic isotopes of atoms having the electronic
configuration of alkaline-earth elements (with two electrons in the s valence shell), such as 87Sr and
173Yb. The former is an alkaline-earth metal, located in the second group of the periodic table, with an
electronic configuration of the ground state given by [Kr]5s2. The latter is in fact a heavy lanthanide, but
the electronic configuration of its ground state, which is [Xe]4f146s2, closely resembles that of alkaline-
earth elements, featuring two electrons in the valence s shell. In spectroscopic notation, the electronic
ground state is 1S0 ≡ |g⟩, with the two valence electrons in a singlet spin state, vanishing orbital angular
momentum and consequently vanishing total angular momentum J = 0. The first excited state is 3P0 ≡ |e⟩,
with the electrons forming a triplet state (S = 1) and acquiring orbital angular momentum (L = 1), while
maintaining a vanishing total angular momentum (J = 0). The atomic transition 3P0 ↔ 1S0 doesn’t change
the total electronic spin, hence it is forbidden by the selection rule ∆S ̸= 0. However, |e⟩ is not stable,
but rather a long-lived metastable state and it is typically associated to a very narrow spectral line (clock
transition). For example, in 173Yb, the lifetime of |e⟩ is ≈ 20 s and the width of the spectral line is 38.5
mHz, which is extremely small compared to typical linewidths of non-clock transitions (hundreds of kHz to
few MHz) [19, 20].
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1. Introduction to multicomponent Fermi systems

The reason behind the finite lifetime of |e⟩ is the presence of a small but significant hyperfine coupling
to the nuclear degrees of freedom. This stems from the interaction of electrons with the magnetic field
produced by the nucleus, and it is present whenever electrons have non-vanishing spin or orbital angular
momentum. This implies that L, S and J are not good quantum numbers or, equivalently, that the state
3P0 is no longer an eigenstate of the atomic Hamiltonian when a hyperfine coupling is taken into account.
Treating the hyperfine Hamiltonian as a small perturbation and applying perturbation theory at first order,
a better approximation of the first excited state is obtained as a superposition of several unperturbed
states: |e⟩ = α|3P0⟩+ β|3P1⟩+ γ|1P1⟩, where α≫ β, γ. Consequently, the presence of an overlap with the
electronic state 1P1, which is a spin-singlet state, ensures that the selection rule ∆S = 0 can be respected
and makes the transition possible. In spite of the finite lifetime, the state |e⟩ remains stable for a sufficiently
long time to perform measurements of the equilibrium properties. Therefore, it is possible to prepare a
stable mixture of atoms in the two states |g⟩ and |e⟩, identifying these states as orbital degrees of freedom
of the particles.

On the other hand, the “spin” degrees of freedom are provided by the internal states of the nucleus,
which are labeled by the projection along the z axis of the total nuclear angular momentum Iz. The
important difference with respect to electrons on a solid is that the nuclear angular momentum is typically
very large, for example I = 5

2 for 173Yb and I = 9
2 for 87Sr, so there are in principle 2I + 1 = 6 nuclear

states in the former case and 2I + 1 = 10 in the latter. These numbers are clearly much larger than the 2
spin states of electrons; however it is possible to prepare the system in a mixture of nuclear states which
are a subset of the whole manifold and, as we will discuss below, the number of particles in each state will
not change upon interactions. Therefore it is possible to restrict the dynamics to an arbitrary subset of
nuclear states and in particular to only 2 nuclear states, thus mimicking the electron spin. However, the
large nuclear angular momentum provides a way to explore multiorbital fermionic systems with more than
2 internal states, opening interesting scenarios for the quantum simulation of more exotic quantum states.

In order to describe the interaction between particles, we consider only two-body collisions and neglect
collisions involving a larger number of particles, which typically occur with lower probability. The two-
particle wave function is a tensor product of a spatial part, an orbital part (describing the electronic
state) and a “spin” part (describing the nuclear state) and because the atoms are fermions, it is overall
anti-symmetric with respect to particle exchange. We consider two arbitrary nuclear states and label them
with |↑⟩ and |↓⟩; moreover we observe that the probability of a contact collision is significantly enhanced
when the spatial part of the wave function ψ(r1 − r2) is symmetric, as there is a non vanishing probability
to observe the two particles in the same position. This limits the relevant scattering channels to those with
an orbital triplet and a spin singlet (first row), or with an orbital singlet and a spin triplet (second row)
[21]:

|gg⟩⊗|↑↓⟩ − |↓↑⟩√
2

⊗ψ(r1−r2); |ee⟩⊗|↑↓⟩ − |↓↑⟩√
2

⊗ψ(r1−r2);
|ge⟩+ |eg⟩√

2
⊗|↑↓⟩ − |↓↑⟩√

2
⊗ψ(r1−r2);

|ge⟩ − |eg⟩√
2

⊗|↑↑⟩⊗ψ(r1−r2);
|ge⟩ − |eg⟩√

2
⊗|↓↓⟩⊗ψ(r1−r2);

|ge⟩ − |eg⟩√
2

⊗ |↑↓⟩+ |↓↑⟩√
2

⊗ψ(r1−r2).

(1.3)
Two-body collisions between neutral atoms at low energy are described by scattering theory [22], and

are characterized by the s-wave scattering length, which depends on the “collisional channel”, i.e. on the
specific two-body state of the colliding particles. More precisely, in alkaline-earth like atoms, the scattering
length only depends on the electronic component of the state, but it is (almost) perfectly independent on
the nuclear component. This is a consequence of the nearly vanishing hyperfine interaction, which ensures
an almost perfect decoupling between electronic and nuclear degrees of freedom: since only the electronic
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1. Introduction to multicomponent Fermi systems

cloud is involved in a collision, the nuclear state of the two colliding particles does not affect the scattering
length. In conclusion, there are only four independent scattering lengths: agg, aee, aeg+ , aeg− , associated
respectively to the orbital states |gg⟩, |ee⟩, (|ge⟩+ |eg⟩)/

√
2 and (|ge⟩ − |eg⟩)/

√
2. As we will discuss below,

this property is the physical origin of the SU(N) symmetry (where N ≤ 2I + 1) of the resulting interaction
Hamiltonian and, remarkably, it is specific of alkaline-earth like atoms. The differential scattering lengths
δa, obtained when the particles are prepared in all the possible combinations of nuclear states, have been
estimated for 87Sr in [23]. The result is a nearly perfect independence when the two colliding particles are
in the electronic ground state with no hyperfine interaction: δagg ≈ 10−9agg; while the independence is
less robust when at least one of the particles is in the electronic excited state and there is indeed a weak
hyperfine interaction: δaee ≈ 10−3aee and δage± ≈ 10−3age± .

An important issue related to the scattering properties of alkaline-earth atoms which is worth mention-
ing is the problem of losses. When both colliding particles populate the excited electronic state, there is
a significant probability of inelastic scattering, i.e. that they decay in the ground state, converting their
potential energy into kinetic energy and escaping from the magneto-optical trap. Mathematically, this
reflects in a relatively large imaginary part of the scattering length aee, which can be of the same order of
magnitude as the real part. This mechanism drives the system out of thermal equilibrium, resulting in a
more challenging theoretical description and in a defective quantum simulation of solid state systems. The
problem of losses can be diminished by reducing the density of particles populating the |e⟩ state, in order
to reduce the average number of collisions resulting in a loss. Alternatively, a better solution would be to
use a mixture of two different atomic species, both of them in their electronic ground state, rather than
using a single species in a mixture of ground and metastable electronic states. On the one hand, this would
completely avoid particle losses and would strengthen the SU(N) symmetry, as no hyperfine coupling
would be present whatsoever; but on the other hand it would be experimentally more challenging to deal
with the simultaneous cooling and optical confinement of two different species having different atomic
properties (such as mass, polarizability, natural frequencies of optical transitions etc.). Furthermore, the
fact that two particles are now distinguishable, reduces the number of independent scattering lengths to
three (for the three channels |gg⟩, |ee⟩ and |ge⟩) and results in age+ = age− . As we will discuss below, this
results in the absence of a spin exchange coupling, enhancing the symmetry of the resulting Hamiltonian,
but excluding the possibility to observe interesting phenomena such as the orbital Feshbach resonance
[24, 25] that we briefly introduce in sec. [5.3], and the multiorbital chirality discussed in sec. [3.5].

1.2.2 SU(N) symmetric multiorbital Hubbard model and its symmetries

In this section, we introduce an Hamiltonian model to describe a mixture of |g⟩ and |e⟩ alkaline-earth like
atoms on an optical lattice with two-body interactions determined by the four scattering lengths introduced
above. The two-body interaction potential is a function of the relative atomic coordinate r = r1 − r2
and typically it has a spherical symmetry. The specific functional form V (r) is well approximated by the
Lennard-Jones function: it is weakly attractive at long distances, and strongly repulsive at short distances,
comparable to the atomic radius r0. However, the asymptotic two-body wave function at r ≫ r0 is only
determined by the s-wave scattering length in that specific two-body interaction channel |X⟩, and it does
not depend on the specific functional form of the interaction potential, as long as it provides the correct
scattering length. Therefore, a typical choice to simplify the calculations is to assume a zero-range contact
interaction potential proportional to the Dirac delta function δ(r) with a suitable prefactor:

V (r) =
∑

X=gg, ee, eg+, eg−

4πℏ2aX
m

δ(r) |X⟩ ⟨X| , (1.4)
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1. Introduction to multicomponent Fermi systems

where m is the atomic mass and |X⟩ ⟨X| is the projector onto the state with orbital part labeled by X. The
presence of a Dirac delta function can lead to a singular behavior of the wave function, hence we stress
that this is not the only possible choice and in some cases it is useful to use a regular potential, for instance
a finite potential well. Another common way to regularize eq. [1.4] is to multiply the delta function by
∂
∂r (r·) when the potential operator is applied to a state: this is known as Lee-Huang-Yang pseudopotential.
We will make use of this regularization in sec. [5.3].

From eq. [1.4], after observing that the labels ↑, ↓ can be extended to any pair of nuclear states, we can
readily obtain the second-quantized version of the Hamiltonian following standard prescriptions [23, 26]:

H = −
∑

⟨ij⟩, a, σ

taaij

(
c†iaσcjaσ + h.c.

)
− µ

∑
j,a,σ

njaσ +
∑
j, a

Ua

2
nja(nja − 1) + V

∑
j, a̸=b, σ>ρ

njaσnjbρ

+ (V − Vex)
∑

j, a<b, σ

njaσnjbσ − Vex

∑
j, a̸=b, σ>ρ

c†jaσcjaρ c
†
jbρcjbσ. (1.5)

Considering only two nuclear states, this is a specific version of the Hubbard-Kanamori model [1.2] for
a system with two orbitals, where the interorbital interaction is described by only two parameters (V
and Vex) instead of four; in particular we have the identification U ′ = V , U ′′ = V − Vex, Jph = 0 and
Jse = −Vex. Moreover, the hopping matrix tabij is diagonal in the orbital index, as there is no hybridization
between the band structures of |g⟩ and |e⟩. All the parameters in eq. [1.5] can be written in terms of the
four scattering lengths and of Wannier functions wa(r) associated to the orbital-dependent potential Va(r)
of the optical lattice:

taaij =

∫
d3r wa(r)

[
− ℏ2

2m
∇2

r + Va(r)

]
wa(r−Rij),

Ugg =
4πℏ2agg
m

∫
d3r |wg(r)|4, Uee =

4πℏ2aee
m

∫
d3r |we(r)|4, (1.6)

V =
4πℏ2

m

aeg+ + aeg−

2

∫
d3r |wg(r)|2|we(r)|2, Vex =

4πℏ2

m

aeg+ − aeg−

2

∫
d3r |wg(r)|2|we(r)|2,

where Rij is the lattice vector connecting site i and site j.
The peculiar feature of this model is that the number of fermionic “spin” states N is not limited to 2,

but it can be as large as 2I + 1. Moreover, the SU(2) spin symmetry of the Hubbard-Kanamori model is
enhanced to a SU(N) “flavor” symmetry, which can be formally proved by introducing a set of generators

Sσρ =
∑
j,a

c†jaσcjaρ (1.7)

and showing that the Hamiltonian [1.5] commutes with all of them: [Sσρ, H] = 0. More precisely, the
operators Sσρ are a set of N2 operators, while the generators of SU(N) are only N2 − 1. The reason is that
these are in fact the generators of U(1)×SU(N), where the U(1) symmetry stems from the conservation
of the total number of particles. This can be easily seen by observing that

∑
σ Sσσ, which, being a linear

combination of the generators, is an element of the corresponding Lie algebra, is the total number operator.
The structure constants of the Lie algebra u(1)⊕ su(N) can be extracted from the commutation relations
of Sσρ:

[Sαβ, Sγδ] = δβγSαδ − δαδSγβ. (1.8)

We observe that the operators Sσσ ≡ Nσ represent the total number of particles with a given flavor σ,
which are conserved quantities as a result of the symmetry. In particular, if the system is prepared in a
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state with Nσ = 0 for a specific σ, then the state σ will never be populated by atomic collisions. Therefore,
at least in principle, the number of active flavors N can be tuned arbitrarily by depleting the population of
the remaining nuclear states, the upper bound being the number of nuclear states 2I + 1.

Remarkably, the Hamiltonian [1.5] has a more structured symmetry U(1)×U(1)×SU(N), as it commutes
with the total number of particles populating the state |g⟩ (Ng) and the state |e⟩ (Ne), so the total number
of particles per orbital is a conserved quantity: [Ng, H] = [Ne, H] = 0. However we emphasize that this
is true only as long as losses in the |e⟩ channel can be neglected. This symmetry is particularly useful in
practice as it can be exploited to greatly simplify the computational cost of several numerical methods,
such as exact diagonalization and dynamical mean field theory (see sec. [1.3.2]).

1.3 Dynamical mean field theory: an overview

One of the most successful and well established methods to study quantum interacting systems on a lattice
is the dynamical mean field theory (DMFT) [27]. The great success of DMFT has several motivations. First
of all, it is an unbiased method to investigate interacting systems, namely it is not based on perturbation
theory, so it does not imply any assumption on the values of the interaction parameters; in fact it is exact
in two opposite regimes of parameters: the non-interacting limit (U = U ′ = U ′′ = Jp.h. = Js.e. = 0) and
the atomic limit (tabij = 0). Secondly, DMFT provides exact equations when the lattice geometry of the
system is infinite dimensional: this situation, which at first glance could appear unphysical, turns out
sufficient to reasonably describe three-dimensional systems, avoiding complications due to the details of
the lattice. Moreover, it is a very flexible tool that can be generalized to investigate different physical
scenarios, including states with spontaneously broken symmetries (such as superconductors, magnetic
systems and excitonic insulators [28]), interacting bosons (also out of equilibrium [29]), fermions coupled
to bosonic modes (also with multiple orbitals [30]), systems in mesoscopic non-periodic structures such
as “carbon nanoflakes” [31] and many more. Finally, over the last two decades, several limitations of
the “standard” formulation of DMFT have been overcome by suitable extensions of the method, including
real space DMFT (see sec. 1.3.4), dynamical cluster approximation (DCA+DMFT) [32], cluster DMFT
[33, 34, 35, 36], out of equilibrium DMFT [37, 38, 39].

The purpose of this section is not to give an exhaustive review of the theoretical framework behind
DMFT, that the interested reader can find in ref. [27], but rather to give a practical guide to the
implementation of the method and to discuss its strengths and limitations. In this spirit, here we follow
a different path with respect to the classical way of presenting the topic: since the heart of DMFT is a
mapping of the original lattice problem onto a suitably generalized Anderson impurity problem, whose
parameters should be determined self-consistently, we begin by discussing the generalized Anderson
impurity model and showing numerical methods to solve it, and we explain the self-consistent relation to
the original lattice problem afterwards. After that, we introduce real-space DMFT, a generalized version of
the method which accounts for the lack of translation invariance in the system and that we will use in sec.
[3.5]. Finally, we discuss some tricks on how to compute some of the most relevant observables for the
present work.

1.3.1 The Anderson impurity model

The Anderson impurity model describes a magnetic impurity hybridized with a Fermi sea, and it has been
originally proposed by Philip Warren Anderson to explain the Kondo effect [40]. The model describes a
single site ℓ = 0 (impurity) with on-site energy ε0 embedded in a bath of states labeled by ℓ = 1, . . . , Nbath
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1. Introduction to multicomponent Fermi systems

with energy εℓ. When two fermions with opposite spins are in the impurity site, they experience a Hubbard
repulsive interaction of strength U , while they do not interact in the bath. The impurity and the bath are
hybridized, in the sense that fermions can hop from the impurity to any state of the bath with hopping
amplitude Vℓ. Remarkably, there is no underlying geometrical structure. The Anderson impurity model is
thus described by the following Hamiltonian:

HAIM =

Nbath∑
ℓ=1

∑
σ=↑↓

εkc
†
ℓσcℓσ +

Nbath∑
k=1

∑
σ=↑↓

(
Vℓc

†
ℓσc0σ + h.c.

)
+ Un0↑n0↓ + (ε0 − µ)n0. (1.9)

Although this model contains a very rich physics, we will limit the discussion to the features which are
more relevant for DMFT, in particular we want to compute the impurity component of the Green function.
In the non-interacting case (U = 0), we can easily find an analytic expression for the latter quantity:
organizing the fermionic operators on the spinor Ψ†

σ = (c†0σ, c
†
1σ, . . . , c

†
Nbathσ

), the non-interacting part of
[1.9] can be recast in the matrix notation

HAIM =
∑
σ

Ψ†
σĤΨσ, Ĥ =


ε0 − µ V1 V2 . . .
V ∗
1 ε1 0 . . .
V ∗
2 0 ε2 . . .
...

...
...

. . .

 (U = 0). (1.10)

The full Green function is given by the resolvent operator Ĝ(z) = (z − Ĥ)−1, which has (Nbath + 1)2

components Gℓ,p(z) organized in the matrix structure

Ĝ(z) =


G0,0(z) G0,1(z) G0,2(z) ...
G1,0(z) G1,1(z) G1,2(z) ...
G2,0(z) G2,1(z) G2,2(z) ...

...
...

...
. . .

 . (1.11)

To compute the impurity Green function G0,0(z) we can explicitly write some components of the defining
equation (z − Ĥ)Ĝ = 1:

(z − ε0 + µ)G0,0 +
∑
ℓ

VℓGℓ,0 = 1 component (0, 0)

V ∗
ℓ G0,0 + (z − εℓ)Gℓ,0 = 0 component (ℓ > 0, 0) (1.12)

and solve the set of coupled equations for G0,0:

G−1
0,0(z) = z − ε0 + µ−

Nbath∑
ℓ=1

|Vℓ|2

z − εℓ
. (1.13)

So far we have discussed the conventional version of the Anderson impurity model, with SU(2)
spin symmetry and no orbital degrees of freedom; however, to implement DMFT in the context of
multicomponent Fermi systems such as [1.2] and [1.5], we need a generalized version of the model. We
will keep the discussion as general as possible, to include effects due to explicit breaking of the SU(N)
symmetry (chapter [3]) or superconducting order (chapter [5]). A multicomponent Anderson impurity
model can be simply written by introducing a set of impurity and bath spinors Ψℓ that include the flavor
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and orbital degrees of freedom. The structure of Ψℓ in terms of fermionic operators depends on the
specific physical problem under investigation (e.g. it depends on the number of flavors and orbitals, on
the presence of superconducting order etc.). For example, the suitable spinor for a system with two flavor
states σ =↑, ↓, two orbitals g, e and no superconducting order could be Ψ†

k = (c†ℓg↑, c
†
ℓg↓, c

†
ℓe↑, c

†
ℓe↓). The

general structure of the multi-component Anderson impurity model reads:

HAIM =

Nbath∑
ℓ=1

Ψ†
ℓ ε̂ℓΨℓ +

Nbath∑
ℓ=1

(
Ψ†

ℓV̂ℓΨ0 + h.c.
)
+Ψ†

0ε̂0Ψ0 +Hint, (1.14)

where now ε̂ℓ and V̂ℓ are square matrices of dimension N ·Norb, the chemical potential is absorbed in the
definition of ε̂0 and Hint is the interaction Hamiltonian on the impurity site, which coincides with the local
interaction Hamiltonian of the original lattice problem.

The impurity Green function can be readily computed in the non-interacting case Hint = 0 by introduc-
ing the spinor Ψ† = (Ψ†

0, Ψ
†
1, Ψ

†
2, . . . ) and recasting the problem in matrix notation

HAIM = Ψ†ĤΨ, Ĥ =


ε̂0 V̂1 V̂2 . . .

V̂ †
1 ε̂1 0 . . .

V̂ †
2 0 ε̂2 . . .
...

...
...

. . .

 (Hint = 0). (1.15)

The resolvent operator Ĝ(z) now has a block structure, with (Nbath+1)2 blocks Ĝℓ,p(z), each of them having
dimension N ·Norb, and the impurity part can be obtained by solving the defining equation (z1− Ĥ)Ĝ = 1,
which now leads the coupled matrix equations:

(z − ε̂0)Ĝ0,0 +
∑
ℓ

V̂ℓĜℓ,0 = 1

V̂ †
ℓ Ĝ0,0 + (z − ε̂ℓ)Ĝℓ,0 = 0. (1.16)

The solution for the inverse impurity Green function reads

Ĝ0,0(z)
−1 = z − ε̂0 −

Nbath∑
ℓ=1

V̂ †
ℓ (z − ε̂ℓ)

−1 V̂ℓ. (1.17)

In the following, we will mostly need the impurity Green function (instead of the full Green function), so
for the sake of simplicity we will drop the subscripts and adopt a slight abuse of notation, referring to it
with Ĝ instead of Ĝ0,0.

1.3.2 Exact diagonalization and the Lanczos method

The problem of computing the impurity Green function becomes dramatically more complicated in
the presence of interactions. In this case, we could either apply analytic methods introducing some
approximations (e.g. the Hartree-Fock mean field approximation [41]), or switch to numerical methods.
Among the latter, a good candidate is the exact numerical diagonalization (ED), which amounts to write
the Hamiltonian matrix in the basis of Fock states and find out the whole spectrum of eigenvalues En
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and corresponding eigenvectors |n⟩, from which any observable can be computed. In particular, we can
compute the impurity Green function via the Lehmann representation [42]:

Gαβ(z) =
1

Z
∑
m,n

⟨n|Ψ0α|m⟩⟨m|Ψ†
0β|n⟩

z − Em + En

(
e−βEm + e−βEn

)
, (1.18)

where β = 1/T is the inverse temperature1 and Z =
∑

n e
−βEn is the partition function. However, the

dimension of the Hilbert space is 2N ·Norb·(1+Nbath), which is exponentially increasing with the number of
fermionic components and bath sites. This is a significant drawback of the method, as the computational
cost is huge even with a relatively small number of components.

A first improvement can be obtained by exploiting the symmetries of the Hamiltonian: if Qi is a set
of symmetry operators such that [Qi, HAIM] = 0 and [Qi, Qj ] = 0 ∀ij, then every Qi and HAIM have the
same eigenstates. This means that, if we write the Hamiltonian matrix in a basis that diagonalizes the set
Qi, then it will be block-diagonal, and each block will be labeled by specific eigenvalues of the symmetry
operators {q1, q2, . . . }. Every Hilbert subspace spanned by the eigenstates of the symmetry operators with
a given list of eigenvalues is called a sector; the “sectorization” process is sketched in fig. [1.1]. Remarkably,
we only expect the Hamiltonian matrix to be block-diagonal (not fully diagonal) because every sector has
in general a large dimension: on the one hand this simplifies the choice of a basis set; on the other hand
it is very unlikely that the chosen basis diagonalizes the Hamiltonian. For example, if the Hamiltonian
commutes with the total number of particles, then we can group the Fock states in sectors with 0 particles,
1 particle, 2 particles, etc. The sector with 0 particles contains just the completely empty state; while for
example the sector with 1 particle contains all the possible Fock states where the particle is accommodated
in any of the bath states or in the impurity site. The problem of diagonalizing a very large matrix is thus
reduced to the problem of diagonalizing a set of matrices with smaller sizes, with significant improvements
in the computational cost; however the blocks can still be very large (even for small systems), and the full
diagonalization is still numerically challenging.

A massive improvement of the computational cost is possible if we work at a very low temperature,
where we can only compute a few eigenstates of the Hamiltonian instead of the full spectrum, since there
are several numerical methods that allow to compute very efficiently a small set of the largest/smallest
eigenvalues of a given hermitian matrix.2 A remarkable example is the Lanczos method [43, 44, 45]. The
idea behind this method is to minimize the energy functional E[Φ] = ⟨Φ|H|Φ⟩/⟨Φ|Φ⟩ over the space of
states |Φ⟩. Starting from a random point Φ0 in the space of states, we need to find the direction Φ1 where
the functional decreases most rapidly, which is given by the negative gradient evaluated at |Φ0⟩:

|Φ1⟩ = −∂E[Φ]

∂⟨Φ|

∣∣∣∣
Φ0

=
E[Φ0]|Φ0⟩ −H|Φ0⟩

⟨Φ0|Φ0⟩
.

The functional will thus decrease along the line Φ0 + αΦ1, at least for small values of the free parameter α,
so we can now minimize E[Φ0 + αΦ1] with respect to α. This problem boils down to find a normalized
vector |v⟩ in the Krylov subspace span(|Φ0⟩, |Φ1⟩) ≡ span(|Φ0⟩, H|Φ0⟩) that minimizes ⟨v|H|v⟩. If now we
find an orthornormal basis {|v0⟩, |v1⟩} of the Krylov subspace via a Gram-Schmidt procedure (where |v0⟩ is
just the normalized version of |Φ0⟩), the Hamiltonian projected in the Krylov subspace and written in this

1Here we are following the most widespread convention of working in natural units kB = ℏ = 1. Units of the international system
can be reintroduced by mapping T → kBT and (later) ωn → ℏωn.

2We can only evaluate many-body eigenstates having a Boltzmann weight e−β(En−E0) larger than an arbitrary threshold: as the
temperature approaches T = 0, the number of eigenvalues to be computed decreases significantly.
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Original Hamiltonian Sectorized Hamiltonian

Lanczos
from

Lanczos
from

Figure 1.1: The top row shows a matrix plot of the “sectorization” process. The Hamiltonian matrix written
in the original randomly chosen basis does not have any particular structure, but when written in terms of
eigenstates of a symmetry operator (in this case the total number of particles N), it is block-diagonal, and
each block is labeled by a specific eigenvalue of N . The ground state |0⟩ has non-zero components only on
a specific sector (N = 4 in this example). The bottom row sketches the Lanczos procedure to compute the
Green function: Ψ†

0α|0⟩ and Ψ0α|0⟩ are vectors with components in the sectors with one more and one less
particle respectively and are used as starting vectors for the Lanczos method to obtain the corresponding
Krylov Hamiltonians.

basis will take the form

HKrylov =

(
a0 b1
b1 a1

)
, a0 = ⟨v0|H|v0⟩, a1 = ⟨v1|H|v1⟩, b1 = ⟨v1|H|v0⟩. (1.19)

The smallest eigenvalue of HKrylov represents the value of the energy functional at the new point (i.e. an
estimate of the ground state energy), and the associated eigenvector (α0, α1) multiplied by the orthonormal
basis α0|v0⟩+α1|v1⟩ gives the searched vector |v⟩ (i.e. an estimate of the ground state ofH). This procedure
can now be iterated starting from |v⟩ and repeated several times until convergence. Alternatively, observing
that at the n-th iteration the “optimal” vector lies in the Krylov subspace span(|v0⟩, H|v0⟩, . . . , Hn|v0⟩), we
can apply the Gram-Schmidt procedure to this space, finding an orthonormal basis {|v0⟩, |v1⟩, . . . , |vn⟩}
and the projected Hamiltonian in this basis takes the n× n dimensional tridiagonal form

HKrylov =


a0 b1 0 0 . . .
b1 a1 b2 0 . . .
0 b2 a2 b3 . . .
0 0 b3 a3 . . .
...

...
...

...
. . .

 , ak = ⟨vk|H|vk⟩, bk = ⟨vk|H|vk−1⟩. (1.20)
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1. Introduction to multicomponent Fermi systems

Once again, the smallest eigenvalue of HKrylov is the estimate of the ground state energy, and the cor-
responding eigenvector (α0, α1, . . . , αn) provides the list of coefficients for the estimated ground state
vector

∑n
k=0 αk|vk⟩. The procedure should again be repeated increasing n until convergence; however the

convergence is typically obtained for n much smaller than the size of H [44].
When the system is at zero temperature (T = 0), the calculation of static observables only requires

the ground state of H (including possible degeneracies) that we can obtain via the Lanczos algorithm,
considerably speeding up the exact diagonalization. However, computing dynamical response functions
such as the Green function, still requires in principle the whole spectrum: when T = 0, the Lehmann
representation in eq. [1.18] reduces to

Gαβ(z) =
∑
n

⟨0|Ψ†
0β|n⟩⟨n|Ψ0α|0⟩
z + En − E0

+
∑
n

⟨0|Ψ0α|n⟩⟨n|Ψ†
0β|0⟩

z − En + E0
, (1.21)

which still contains the full spectrum En and |n⟩. However, it is still possible to avoid the full diagonalization
while getting a convergent Green function by using two more runs of the Lanczos method [44, 46].
Considering at first the diagonal components Gαα(z), we can recast eq. [1.21] as

Gαα(z) = ⟨0|Ψ†
0α

1

z +H − E0
Ψ0α|0⟩+ ⟨0|Ψ0α

1

z −H + E0
Ψ†

0α|0⟩. (1.22)

As illustrated in fig. [1.1], the two terms in eq. [1.22] can be computed starting two Lanczos runs from
the vectors Ψ0α|0⟩ and Ψ†

0α|0⟩ respectively, obtaining the Krylov Hamiltonian blocks Hh
Krylov and Hp

Krylov of
the corresponding sectors. We can now approximate eq. [1.22] using the Krylov matrices instead of the
Hamiltonian blocks:

Gαα(z) ≈ ⟨0|Ψ†
0α

1

z +Hh
Krylov − E0

Ψ0α|0⟩+ ⟨0|Ψ0α
1

z −Hp
Krylov + E0

Ψ†
0α|0⟩

= ⟨0|Ψ†
0αΨ0α|0⟩

[
z +Hh

Krylov − E0

]−1
∣∣∣∣
(1,1)

+ ⟨0|Ψ0αΨ
†
0α|0⟩

[
z −Hp

Krylov + E0

]−1
∣∣∣∣
(1,1)

(1.23)

where we take the top-left (1, 1) components of the inverse matrices because, by construction, upon
normalization Ψ0α|0⟩ and Ψ†

0α|0⟩ are the first vectors of the basis of the respective Krylov subspaces.
This method is not suitable to compute off-diagonal components of Gαβ(z), as the vector Ψ0β|0⟩ is

not necessarily an element of the basis of the Krylov subspace constructed from Ψ0α|0⟩, which implies
that e.g. ⟨0|Ψ†

0β[z + Hh
Krylov − E0]

−1Ψ0α|0⟩ does not correspond to a specific element of the inverse. In
turn, this means that we need to evaluate the full inverse matrix, instead of a single element, with a
considerable increase in computational cost. A smart method to avoid the full evaluation of the inverse is
to compute the purely diagonal Green functions GO(z) and GP(z) associated to the linear combinations of
operators O = Ψ0α +Ψ0β and P = Ψ0α − iΨ0β (α ̸= β) with the method outlined above, and then to use
the algebraic relations

Gαβ(z) =
1

2
[GO(z)− iGP(z)− (1− i) (Gαα(z) +Gββ(z))]

Gβα(z) =
1

2
[GO(z) + iGP(z)− (1 + i) (Gαα(z) +Gββ(z))] . (1.24)

If the ground state is degenerate, the Green function can be computed repeating this procedure for all
the degenerate states and then averaging over all the resulting functions. The reason why replacing the
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1. Introduction to multicomponent Fermi systems

Hamiltonian block with the Krylov matrix captures so well the spectral properties is that the Lanczos
method reproduces exactly the first n moments of the spectral function [44, 47, 48].

Although sectorizing the Hamiltonian and using Lanczos to determine the ground state and the Green
function considerably speeds up the exact diagonalization, the number of bath sites that we can include
is still relatively small (roughly Nbath ≲ 10, but it depends on the physical problem and on the available
computer memory), as a consequence of the exponential increase of the Hilbert space as a function of
Nbath. However, as we discuss in the next section, in the context of DMFT this is generally enough to get
reliable results, because the bath is merely used as a fitting tool for the Weiss field.

1.3.3 The self-consistency equation

Now that we have seen how to compute the impurity Green function of a multi-component Anderson
impurity model, we discuss how DMFT relates the original problem on the lattice to an auxiliary impurity
problem. The following procedure originates from the cavity method in quantum field theory [27], but
here we just give a brief outline of the algorithm.

First of all, let’s consider the non-interacting lattice problem: if the system is translation invariant,
we can Fourier transform the lattice fermionic operators in momentum space (ciασ → ckασ) and, after
organizing these operators in a suitable spinor Ψk, the non-interacting Hamiltonian assumes the general
form ∑

k∈BZ

Ψ†
kĤkΨk,

where the sum runs over the first Brillouin zone of the specific lattice (BZ). If the system is not translation
invariant, the single site DMFT outlined in this section is not adequate and more sophisticated extensions
of DMFT should be implemented. Among these we mention real-space DMFT, which is discussed in sec.
[1.3.4], and cluster-DMFT [33].

Now we determine the general structure of the auxiliary impurity problem. The interaction Hamiltonian
Hint in eq. [1.14] must be exactly equivalent to the local interaction Hamiltonian on the lattice. We assume
throughout this work that the interaction is purely local, with the general Hubbard-Kanamori structure
presented in sec. [1.1]. The general structure of the bath, i.e. possible symmetries in ε̂k and V̂k, should
be decided a priori with an educated guess based on the physical intuition. Specific numerical values of
the independent components of ε̂k and V̂k instead should be determined self-consistently with a suitable
iterative procedure. The self-consistency is met when the impurity Green function matches the local lattice
Green function on a discrete set of Matsubara frequencies ωn = (2n− 1)πT labeled by an integer n:

Ĝ(iωn) = Ĝloc(iωn). (1.25)

Remarkably, in the limit of zero temperature T → 0, the Matsubara frequencies are not discrete, but
rather form a continuum, which means that for any numerical purpose we need to introduce a fictitious
temperature TMats to discretize the frequencies as ωn = (2n− 1)πTMats. This numerical parameter can be
adjusted to achieve the desired resolution for the correlation functions. The local lattice Green function is
given by the Dyson equation as

Ĝloc(iωn) =
1

Nsites

∑
k∈BZ

1

iωn − Ĥk − Σ̂(k, iωn)
, (1.26)

where Nsites is the number of lattice sites (or, equivalently, the number of points in the Brillouin zone) and
Σ̂(k, iωn) is the self-energy, which encodes the information about interactions.
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Initial guess for

Impurity solver

(ED + Lanczos)

Impurity model Self Consistency

Minimize their distance and update

If converged, exit

Figure 1.2: Schematic illustration of the DMFT recursion. The impurity problem sketched here has three
fermionic components illustrated with different colors. The impurity site is shown with darker colors, while
the three bath sites coupled to the impurity are shown with lighter colors.

A key assumption of DMFT is that the self-energy does not depend on momentum: Σ̂(k, iωn) ≈ Σ̂(iωn),
which amounts to neglect the spatial quantum fluctuations induced by the interaction, while fully retaining
the dynamical quantum fluctuations. An immediate consequence of this assumption is that the self-energy
of the lattice problem is the same as the self-energy of the impurity problem, as both systems have the
same interaction Hamiltonian. Interestingly, if the lattice is infinite-dimensional, one can prove that the
self-energy does not depend on k [27] and this is no longer an approximation, hence the solution of
the self-consistency equation of DMFT [1.25] is in principle the exact Green function. In particular, a
lattice that simplifies several calculations is the Bethe lattice in the limit of infinite coordination z → +∞
(z being the number of nearest neighbors of any given site). On a Bethe lattice, the concept of space
translational symmetry and consequently the crystal momentum can’t be properly defined; however one
can still compute the density of states. If the hopping occurs only between nearest neighbors, and if we
simultaneously consider z → +∞ and t→ 0 in such a way that the quantity t

√
z = D/2 remains finite, the

density of states has a semicircular shape of radius D [49, 50]:

D(ε) =
2

πD2

√
D2 − ε2. (1.27)

Remarkably, D(ε) can be regarded as an approximated spectral function of an energy band, where the
detailed spiky structure typical of real materials is smoothed out. Therefore, since the lattice enters in our
equations only through the density of states, working on an infinitely coordinated Bethe lattice is in many
cases a reasonable approximation, despite the exotic geometrical structure. This becomes questionable
when the real band structure significantly differs from a semicircle, or when the problem cannot be recast
on a Bethe lattice, for example when a gauge field is minimally coupled to the crystal momentum.

The self-consistency procedure starts by an educated initial guess on the specific values of the bath
parameters {ε̂ℓ, V̂ℓ}, from which one can compute the impurity Green function both in the interacting case
Ĝ(iωn), via ED and the Lanczos method, and in the non-interacting case Ĝ(iωn) using eq. [1.17]. One can
now use these functions to compute the self-energy Σ̂(iωn) = Ĝ−1(iωn)− Ĝ−1(iωn), which in turn can be
used to compute the local Green function via eq. [1.26]. The bath parameters should now be updated
self-consistently, i.e. in such a way to satisfy eq. [1.25]. This can be done as follows: let’s first rewrite the
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1. Introduction to multicomponent Fermi systems

latter equation as

Ĝ−1(iωn) = Ĝ−1
loc(iωn) + Σ̂(iωn), (1.28)

where the quantity Ĝ−1
loc(iωn) + Σ̂(iωn) ≡ Ŵ (iωn) is called Weiss field, and observe that Ĝ−1(iωn) has a

functional dependence on the bath parameters {ε̂ℓ, V̂ℓ}, which is formally expressed in eq. [1.17]. We can
thus recast this into an optimization problem, where we need to find the specific values of {ε̂ℓ, V̂ℓ} that
minimize a suitably defined “distance” between the numerically computed Weiss field and the functional
expression [1.17]. A natural choice for the definition of a “distance” function is

χ({ε̂ℓ, V̂ℓ}) =
NMats∑
n=1

∑
αβ

wn

∣∣∣G−1
αβ (iωn)−Wαβ(iωn)

∣∣∣2 , (1.29)

where NMats is the number of Matsubara frequencies that we use to sample the correlation functions and
wn represents a list of frequency dependent weights that can be chosen in order to give more or less
importance to low-frequency features of the Weiss field. Typical choices include wn = 1/NMats for all n;
or wn = 1/NCutoff for n ≤ NCutoff and wn = 0 for n > NCutoff. The sum over spinor indexes α, β can be
restricted to some specific values of the indexes depending on the physical symmetries of the problem, in
order to avoid a bias towards fitting diagonal or off-diagonal components. The optimal parameters are
chosen as the input for starting the loop over, while the minimum value of the distance function is the
fit residue and it gives a numerical estimate of how good the chosen Nbath is to capture the features of
the Weiss field. This recursive procedure is repeated until some convergence criterion is met, for example
until the distance between the self-energy at the current iteration and at the previous iteration is below an
arbitrary threshold. A schematic illustration of the DMFT loop described so far is shown in fig. [1.2].

As a final remark, we emphasize that the number of bath sites of the impurity problem (Nbath) is not
related to the number of lattice points (Nsites). While the latter is the number of crystal momenta that we
use to compute the local Green function, the former determines the number of parameters that we use to
perform the fitting procedure of the Weiss field. This observation has two consequences: first of all, in the
framework of DMFT we can treat very large lattices with a computational cost that scales linearly with the
number of sites; and secondly it is generally fine to use a relatively small number of bath sites as long as
the self-consistent procedure converges.

1.3.4 Real-space DMFT

In this section we give an introductory overview on how to go beyond the assumption of spatial translation
invariance in DMFT. If the system is subject to processes that break the translational symmetry, we cannot
Fourier transform the spinor to a momentum space representation, hence we have to use the real space
representation Ψj , where j labels a lattice site. In this case, the non-interacting Hamiltonian takes the form

H = Ψ†ĤΨ =
∑
ij

Ψ†
i ĤijΨj (non-interacting),

where i, j = 1, . . . , Nsites, Ψ† = (Ψ†
1, . . . ,Ψ

†
Nsites

) and Ĥij is a block of the full Hamiltonian Ĥ. Consistently,
the self-energy has the same structure: Σ̂ij(iωn); however we still neglect non-local spatial fluctuations
of the self-energy, which implies that it is diagonal in the lattice indexes: Σ̂ij(iωn) = Σ̂j(iωn)δij . We also
define the full self-energy as the block-diagonal matrix Σ̂ = diag(Σ̂1, . . . , Σ̂Nsites).
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Since now there are Nsites independent self-energies to be determined at each DMFT iteration, we
need to solve Nsites independent Anderson impurity problems, all of them being described by the same
Hamiltonian, but with independent bath parameters. The computational cost to solve the impurity problems
is considerably enhanced by a factor Nsites, however it is straightforward to parallelize the calculation on
different CPUs, as there is no communication required between different threads. Furthermore, we can
exploit residual lattice symmetries (such as lattice inversion symmetry or residual translation invariance)
to speed up the evaluation by avoiding repeated calculations on sites that are physically symmetric.

From the self-energy we can compute the lattice Green function

Ĝij(iωn) = [(iωn − Ĥ − Σ̂(iωn))
−1]ij , (1.30)

whose diagonal components Ĝjj(iωn) represent the local Green functions on site j. In analogy to single-
site DMFT, the Weiss field of the impurity problem associated to site j can be computed as Ŵj(iωn) =
Ĝ−1

jj (iωn) + Σ̂j(iωn). Finally, we can find the bath parameters to start a new DMFT loop by repeating the
fitting procedure outlined in the previous section for all the Nsites Weiss fields. Once again, this procedure
can be parallelized on all the available CPUs and it can be simplified by implementing residual lattice
symmetries.

This extension of DMFT, where translation invariance is not required, but we still assume locality of
quantum fluctuations is known as real-space DMFT, or R-DMFT and it has been used to investigate several
problems, including the effect of an external DC voltage in multicomponent Fermi systems [51], or the
effect of harmonic trapping potentials in the antiferromagnetic order of interacting fermions [52]. In
the present work, real-space DMFT will be useful in chapter [3] to deal with antiferromagnetic order in
multicomponent Fermi systems, which breaks translational symmetry of the original lattice, differentiating
the system properties on two distinct sublattices A and B. As a future perspective, we mention that
real-space DMFT can be used to take into account the presence of a trapping potential in cold-atomic
platforms, or to investigate the effect of tilting the optical lattice, which has recently lead to the measure of
the Hall coefficient in synthetic ladders [53].

1.3.5 Observables

In this section we briefly discuss some of the subtleties related to the calculation of the most relevant
physical observables in the context of DMFT. In principle, the expectation value of any single-particle
operator can be computed from the converged self-energy Σ̂(iωn). For example, let’s consider the quantity
⟨Ψ†

kαΨkβ⟩, which can be rewritten in terms of the lattice Green function as follows:

⟨Ψ†
kαΨkβ⟩ = − lim

τ→0−
⟨T
(
Ψkβ(τ)Ψ

†
kα(0)

)
⟩ = Gβα(k, τ → 0−)

= lim
τ→0−

T
∑
iωn

Gβα(k, iωn)e
−iωnτ = lim

η→0+
T
∑
iωn

Gβα(k, iωn)e
iωnη, (1.31)

where T denotes the imaginary time ordered product, and T is the temperature used as a spacing for
Matsubara frequencies. The sum runs over all the positive and negative integer numbers n; however in
the DMFT loop we generally compute dynamical correlations only on a finite set of positive Matsubara
frequencies, labeled by n = 1, . . . , NMats. This is due to a remarkable symmetry property of the Green
function Ĝ(−iωn) = Ĝ†(iωn), which stems from the definition Ĝ(iωn) = [iωn − Ĥ]−1:

Ĝ(−iωn) = [−iωn − Ĥ]−1 = [−iωn − Ĥ†]−1 =
{
[iωn − Ĥ]−1

}†
= Ĝ†(iωn),
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where we have used the fact that the Hamiltonian is a hermitian matrix. Due to this symmetry, dynamical
correlations at negative frequencies provide redundant information, thus we can consider only ωn > 0
during the DMFT loops and use the computational resources to achieve a finer frequency resolution.
However, the contribution of ωn < 0 must be included in the calculation of observables.

The other subtle point is related to the contribution of large frequencies with |n| > NMats. Assuming
that this contribution is just negligible is a strong assumption which can lead to significant numerical
errors, especially when the self-energy remains finite at large frequencies (a typical circumstance in phases
with broken symmetries). This issue can be solved (at least partially) by giving an analytic estimate of the
contribution of the “tails” of Ĝ(k, iωn). Let us assume that the large-ωn expansion of the self-energy takes
the form

Σ̂(iωn) ∼
n→+∞

Σ̂0 +O
(
1

n

)
, Σ̂(iωn) ∼

n→−∞
Σ̂†
0 +O

(
1

n

)
, (1.32)

where Σ̂0 is a constant matrix. Here we have also used the fact that the self-energy inherits the same
symmetry property as the Green function, i.e. Σ̂(−iωn) = Σ̂†(iωn). This assumption is true for all the
systems studied in the present work. The corresponding large-ωn expansion of the Green function is

Ĝ(k, iωn) ∼
n→∞

1

iωn
+
Ĥk + Σ̂0

(iωn)2
+O

(
1

n3

)
, Ĝ(k, iωn) ∼

n→−∞

1

iωn
+
Ĥk +Σ†

0

(iωn)2
+O

(
1

n3

)
. (1.33)

We can now define the “tail” Green function by extending the large-ωn expansion to all the Matsubara
frequencies:

Ĝtail(k, iωn) =


1

iωn
+ Ĥk+Σ̂0

(iωn)2
n > 0

1
iωn

+
Ĥk+Σ̂†

0
(iωn)2

n ≤ 0
. (1.34)

Adding and subtracting Ĝtail(k, iωn) to eq. [1.31] we get

⟨Ψ†
kαΨkβ⟩ = lim

η→0+
T
∑
iωn

(
Gβα(k, iωn)−Gtail

βα(k, iωn)
)
eiωnη + lim

η→0+
T
∑
iωn

Gtail
βα(k, iωn)e

iωnη (1.35)

and the advantage is that not only the last sum can be evaluated analytically, but also the first sum can be
restricted to −NMats < n ≤ NMats because Ĝ(k, iωn)− Ĝtail(k, iωn) = 0 +O(n−3) out of that interval. The
sum over all Matsubara frequencies of the tail Green function is

lim
η→0+

T
∑
iωn

Gtail
βα(k, iωn)e

iωnη =
δβα
2

− 1

8T

[
Hk,βα +H∗

k,αβ +Σ0,βα +Σ∗
0,αβ

]
(1.36)

where we have used the fact that

lim
η→0+

T
∑
iωn

eiωnη

iωn
= lim

η→0+
Res

(
eizη

z
f(z); z = 0

)
= f(0) =

1

2

lim
η→0+

T
∑
n>0

eiωnη

(iωn)2
=− 1

π2T

∞∑
n=1

1

(2n− 1)2
= − 1

π2T

π2

8
= − 1

8T
(1.37)

where f(z) =
[
ez/T + 1

]−1
is the Fermi function.
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Splitting the sum into two sums over positive and negative Matsubara frequencies and using the
properties outlined above we get

⟨Ψ†
kαΨkβ⟩ = T

NMats∑
n=1

[
Gβα(k, iωn)−

δβα
iωn

+
Hk,βα +Σ0,βα

ω2
n

]

+T

NMats∑
n=1

[
G∗

αβ(k, iωn) +
δαβ
iωn

+
H∗

k,αβ +Σ∗
0,αβ

ω2
n

]
+
δβα
2

− 1

8T

[
Hk,βα +Σ0,βα +H∗

k,αβ +Σ∗
0,αβ

)
.

(1.38)

The terms ∝ 1/ωn cancel out and finally we get

⟨Ψ†
kαΨkβ⟩ = T

NMats∑
n=1

[
Gβα(k, iωn) +

Hk,βα +Σ0,βα

ω2
n

]
+
δαβ
4

− 1

8T
(Hk,βα +Σ0,βα) + h.c. (1.39)

The parameter Σ̂0 can be determined by fitting the high-frequency behavior of the converged self-energy
with a constant matrix. Further corrections can be taken into account by repeating the calculation above
expanding the self-energy to first order in 1/ωn as Σ̂ ∼ Σ̂0 + Σ̂1/iωn and fitting the parameters Σ̂0 and Σ̂1

to the high-frequency behavior of Σ̂(iωn).

In some cases we may also need to evaluate expectation values of two-particle operators, for example
local correlations of the form N−1

sites
∑

i⟨Ψ
†
iαΨ

†
iβΨiγΨiδ⟩. In order to compute objects like this, in principle

we need the four-points Green function, which is obtained by solving the Bethe-Salpeter equation using
the converged self-energy [54]. This approach can be technically quite complicated, but there is a simple
way to circumvent it. Since we expect that in the converged impurity problem, the impurity site mimics
the local physics of the original lattice system, as long as we are interested in local correlations, we can
assume that they coincide with local correlations of the impurity. The latter can be computed via exact
diagonalization by simply building the corresponding operator in the chosen basis of the Hilbert space and
evaluating the expectation value on the ground state manifold. A remarkable example of local correlation
is the double occupancy in the single-band Hubbard model, which represents the fraction of doubly occupied
sites on a given state and is given by the two-particle operator N−1

sites
∑

i ni↑ni↓.

28



Chapter 2

Hubbard model with broken SU(N)
symmetry and artificial gauge fields

One of the most challenging problems for the quantum simulation of electrons in materials with platforms
based on cold alkaline-earth atoms, that we have introduced in the previous chapter, is the fact that
electrons are electrically charged, whereas atoms are neutral. This implies that their interaction with an
external electromagnetic field is completely different: electrons are point-like charges with spin, while
atoms are coupled to the external field via their electric and magnetic dipole moment.

For example, when electrons on a square lattice interact with an external static magnetic field, the
minimal coupling results in a complex phase of the hopping matrix elements, and the system is described by
the Harper-Hofstadter model [55]. On the other hand, if a static magnetic field is applied to alkaline-earth
atoms arranged in an optical square lattice, it would not induce complex phases in the hopping and the
system would not be described by the same model.

This raises the intriguing challenge to realize a system of neutral cold atoms that are effectively coupled
to an external gauge field [56], thus mimicking the presence of a static magnetic field acting on a system
of electrons. So far, the realization of artificial gauge field has been achieved either via Floquet engineering
(i.e. via suitable protocols of time-periodic shaking of the optical lattice) [57], or via the synthetic dimension
approach. The latter can be realized either exploiting the “orbital” degrees of freedom via laser-induced
clock transitions [58], or by effectively coupling the nuclear states via optical Raman transitions, which is
the main subject of this chapter.

The discussion is organized as follows: in sec. [2.1] we provide a general overview of optical Raman
transitions; in sec. [2.2] we discuss the experimental realization of a synthetic dimension with Raman
transitions in 173Yb; then in sec. [2.3] we introduce the most relevant observables for our investigation,
the current operators; finally, sec. [2.4] is devoted to discuss important analytic results for a system of
fermions with an extra synthetic dimension and coupled to a synthetic gauge field.

2.1 Optical Raman transitions

A Raman scattering process is the interaction between a system of electrically charged particles having
at least three available quantum states and two photon fields in a coherent quantum state, which can be
described by two classical electromagnetic fields. For the present work, the charged particles are valence
electrons of an atomic species and the two classical electromagnetic fields are monochromatic waves
provided by two laser beams with wave vectors k1,2 and frequencies ω1,2. We first consider the case of three
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2. Hubbard model with broken SU(N) symmetry and artificial gauge fields

quantum states that, in ascending order of associated energy, are labeled by |g1⟩, |g2⟩ and |e⟩ respectively.
For concreteness, we can think of |g1⟩ and |g2⟩ as two states of the electronic ground state manifold, whose
degeneracy has been lifted by, for example, an external magnetic field; and we can regard |e⟩ as an excited
electronic state. In fact there is an infinite amount of excited states available for the electrons of an atom;
however for now we assume that only |e⟩ is significantly populated: this is the case if the frequencies of
the electromagnetic fields are nearly resonant to the atomic transitions |g1⟩ ↔ |e⟩ and |g2⟩ ↔ |e⟩. At the
end of this section, we spend a few words on the case where multiple excited states are involved in the
Raman transition.

2.1.1 Rotating wave approximation

We begin providing a simplified Hamiltonian description of the many-electron system within the rotating
wave approximation. Setting the zero of energy to the energy level of |g1⟩ and calling ω0,1 and ω0,2 the
frequencies associated to the aforementioned atomic transitions, the Hamiltonian describing the free
electron dynamics is:

Hmat = ℏω0,1|e⟩⟨e|+ ℏ(ω0,1 − ω0,2)|g2⟩⟨g2|, (2.1)

where |α⟩⟨α| is the projector operator on the corresponding many-body state |α⟩. In the dipole ap-
proximation, the interaction Hamiltonian describing the coupling to the external field takes the form
Hint = −E(r, t) · d̂ [59], with the electric field defined by

E(r, t) =
∑
i=1,2

E0i

(
aie

iki·r−iωitui + h.c.
)
, (2.2)

where ai is a phase factor, E0i is the field amplitude and ui is the Jones polarization vector of the
corresponding wave; and the dipole operator defined by

d̂ = ⟨g1|d̂|e⟩|e⟩⟨g1|+ ⟨g2|d̂|e⟩|e⟩⟨g2|+ ⟨g1|d̂|g2⟩|g2⟩⟨g1|+ h.c., (2.3)

where ⟨α|d̂|β⟩ are the matrix elements of the dipole operator (we recall that, due to symmetry reasons,
matrix elements of the form ⟨α|d̂|α⟩ vanish identically [60]).

The interaction Hamiltonian contains in total 24 terms of the form

−E0iaiui · ⟨α|d̂|β⟩︸ ︷︷ ︸
ℏΩi,αβ

e±iki·re∓iωit and −E0ia
∗
iu

∗
i · ⟨α|d̂|β⟩∗︸ ︷︷ ︸

ℏΩ∗
i,αβ

e±iki·re∓iωit,

where we have introduced the complex Rabi frequencies Ωi,αβ , which are functions of the laser polarization
and intensity (the latter being proportional to E2

0i). All these terms contain the full information about
fast and slow dynamics of the system; but typically we are mostly interested in the slow dynamics, which
occurs over relatively long timescales; the reason is that it is extremely difficult (and sometimes impossible)
to experimentally detect fast oscillations characterized by very small timescales. The standard approach
to integrate out the fast dynamics is known as rotating wave approximation (RWA), and it consists of the
following steps. First of all, we rewrite H in the Dirac’s interaction picture via the unitary transformation

HD = eiHmatt/ℏHe−iHmatt/ℏ. (2.4)

The matrix HD expresses the time dependence via several phase factors, such as ei(ωi+ω0,i)t, ei(ωi−ω0,i)t, etc.
Assuming for example that the detunings δωi = |ωi − ω0,i| are small compared to the natural frequencies
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2. Hubbard model with broken SU(N) symmetry and artificial gauge fields

of the transitions ω0,i, i.e. that the i-th laser beam is nearly resonant to the transition |gi⟩ ↔ |e⟩, we can
approximate HD retaining only terms proportional to e±i(ωi−ω0,i)t, which describe slow dynamics, and
drop all the others, which account for faster oscillations. The approximated Hamiltonian HD

RWA, written in
the basis {|g1⟩, |g2⟩, |e⟩}, reads

HD
RWA =

 0 0 ℏΩ1,eg1e
−ik1·rei(ω1−ω0,1)t

0 ℏ(ω0,1 − ω0,2) ℏΩ2,eg2e
−ik2·rei(ω2−ω0,2)t

ℏΩ∗
1,eg1

eik1·re−i(ω1−ω0,1)t ℏΩ∗
2,eg2

eik2·re−i(ω2−ω0,2)t ℏω0,1

 . (2.5)

Finally, we transform the approximated Hamiltonian back to the Schrödinger picture via the inverse
transformation

HRWA = e−iHmatt/ℏHD
RWAe

iHmatt/ℏ (2.6)

and, using the simplified notation Ωi,egi ≡ Ωi, we get

HRWA = ℏ

 0 0 Ω1e
−ik1·reiω1t

0 ω0,1 − ω0,2 Ω2e
−ik2·reiω2t

Ω∗
1e

ik1·re−iω1t Ω∗
2e

ik2·re−iω2t ω0,1

 . (2.7)

2.1.2 Effective two-level system

Now that the time dependence of the Hamiltonian has been considerably simplified, it is possible to
perform a unitary transformation that makes the Hamiltonian time independent. Formally, this amounts to
describe the dynamics on a different “rotating” frame of reference, where the system is only subject to
stationary processes. The general idea is to map the state |ψ(t)⟩ into another state |ψ′(t)⟩ = U(t)|ψ(t)⟩,
where U(t) is a suitable time-dependent unitary operator with U †(t) = U−1(t). The state |ψ′(t)⟩ evolves
according to the Schrödinger equation with a time independent Hamiltonian H ′:

iℏ∂t|ψ′(t)⟩ = H ′|ψ′(t)⟩. (2.8)

Using the definition of |ψ′(t)⟩ given above, we can recast this equation as

iℏ[∂tU(t)]|ψ(t)⟩+ iℏU(t)∂t|ψ(t)⟩ = H ′U(t)|ψ(t)⟩;

then using the Schrödinger equation in the original frame iℏ∂t|ψ(t)⟩ = H(t)|ψ(t)⟩ and right-multiplying by
U †(t), we get H ′ in terms of H(t) and U(t):

H ′ = U(t)H(t)U †(t) + iℏ [∂tU(t)]U †(t). (2.9)

A possible choice for U(t) that makes H ′ static is the following:

U(t) =

 e−iω1t 0 0
0 e−iω2t 0
0 0 1

 ei(ω0,1+∆)t, (2.10)

where ∆ is the average of the detunings ∆ = (δω1 + δω2)/2, which leads to

H ′ = ℏ

 − δω2−δω1
2 0 Ω1e

−ik1·r

0 δω2−δω1
2 Ω2e

−ik2·r

Ω∗
1e

ik1·r Ω∗
2e

ik2·r −∆

 . (2.11)
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Remarkably, in the rotating reference frame, the spacing between energy states is modified, as one
can immediately observe setting for example Ωi = 0. In particular, since U †(t)H(t)U(t) has the same
eigenvalues of H(t), but i[∂tU(t)]U †(t) = diag (δω1 −∆, ω2 − ω0,1 −∆, −ω0,1 −∆), the eigenvalues of
H(t) are shifted by different amounts by this transformation and their spacing is consequently distorted.

Expanding a generic state in the basis of the Hilbert space as ψg1(t)|g1⟩+ ψg2(t)|g2⟩+ ψe(t)|e⟩, we can
derive dynamical equations for the coefficients through the Schrödinger equation:

i∂tψg1 = (δω1 −∆)ψg1 +Ω1e
−ik1·rψe

i∂tψg2 = (δω2 −∆)ψg2 +Ω2e
−ik2·rψe (2.12)

i∂tψe = Ω∗
1e

ik1·rψg1 +Ω∗
2e

ik2·rψg2 −∆ψe,

where the time-dependence is implied. An effective two-body dynamics can be obtained in the limit
∆ ≫ Ω1, Ω2 and ∆ ≫ δω2−δω1

2 through the process of adiabatic elimination, which amounts to eliminate
the fast oscillating part of ψe(t), keeping only the slowly oscillating component ψ̃e(t). We can now make
the substitution ψe(t) → ψ̃e(t) in eq. [2.12], where we can also assume that the time derivative of ψ̃e(t) is
negligible with respect to the other terms, resulting in the equation:

∂tψ̃e = 0 → ψ̃e =
Ω∗
1

∆
eik1·rψg1 +

Ω∗
2

∆
eik1·rψg2 . (2.13)

However, it is difficult to justify this assumption a priori: in fact this is a consequence of the full solution
of eq. [2.12], as shown in ref. [61]. Summarizing, the solution takes the form ψe(t) =

∑3
a=1Cae

ixa∆t

where, if Ωa
∆ and |δω2−δω1|

2∆ are proportional to a small parameter ε, then x1 = − |δω2−δω1|
2∆ + O(ε2), x2 =

|δω2−δω1|
2∆ +O(ε2) and x3 = 1+O(ε2). Moreover, the coefficients Ca depend on the initial condition, but in

general they are O(ε), whereas ψg1(t) ≈ O(1) and ψg2(t) ≈ O(1). Clearly, the fast oscillating term of ψe(t)
is C3e

ix3∆t, which means that we can define the slowly oscillating component ψ̃e(t) =
∑

a=1,2Cae
ixa∆t.

We can recast the last row of eq. [2.12] as

−x1C1e
ix1∆t︸ ︷︷ ︸

O(ε2)

−x2C2e
ix2∆t︸ ︷︷ ︸

O(ε2)

+(1− x3)C3e
ix3∆t︸ ︷︷ ︸

O(ε3)

=

O(ε)︷ ︸︸ ︷
Ω∗
1

∆
eik1·rψg1 +

O(ε)︷ ︸︸ ︷
Ω∗
2

∆
eik1·rψg2 −

O(ε)︷ ︸︸ ︷
ψ̃e(t)

and if we only consider terms of order O(ε), we obtain eq. [2.13], which is then justified. Substituting
ψe(t) → ψ̃e(t) also in the remaining equations, which again can be justified a posteriori from the full
solution, we finally obtain a Schrödinger equation restricted to the Hilbert subspace {|g1⟩, |g2⟩}:

iℏ∂t
(
ψg1(t)
ψg2(t)

)
= Heff

(
ψg1(t)
ψg2(t)

)
; Heff =

(
ε1 ℏΩRe

iϕei(k2−k1)·r

ℏΩRe
−iϕei(k1−k2)·r ε2

)
, (2.14)

where we have introduced the complex effective Rabi frequency ΩRe
iϕ and the level energies ε1,2 given by:

ΩRe
iϕ =

Ω∗
2Ω1

∆
, εi = ℏδωi − ℏ∆+ ℏ

|Ωi|2

∆
. (2.15)

The quantity |Ωi|2/∆ is called light shift of the i-th level and it is responsible of the AC Stark effect.
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It is interesting to mention that the procedure outlined above to obtain the effective two-level dynamics
can be condensed and generalized in the following formula [61]:

Heff = lim
z→E0

Pg

[
H ′ + V Pe

(
z − PeH

′Pe

)−1
V
]
Pg, (2.16)

where Pg and Pe are projectors operators onto the subspaces {|g1⟩, |g2⟩} and {|e⟩} respectively, E0 is the
average energy of the two states |g1⟩ and |g2⟩ in H ′ (E0 = 0 in our case) amd V is the part of H ′ that
describes the interaction with the photon field (i.e. the off-diagonal part).

Finally, we emphasize that in the effective two level system, the transitions |g1⟩ ↔ |g2⟩ are characterized
by a phase factor which is dependent on the specific position of the atom r. For a single atom this is just a
complex constant that can be absorbed in the definition of ϕ; however for multiple atoms it is important
to keep track of this factor. The induced phase shift of Raman processes in two atoms at positions ri and
rj is given by (k2 − k1) · (rj − ri), which is the projection of the difference of the laser wave vectors on
the direction connecting the atoms. As we will discuss in sec. [2.2], this is the key feature that allows to
perform a quantum simulation of synthetic structures pierced by an effective artificial gauge field.

2.1.3 Raman transitions through multiple excited states

For the purpose of the present work, it is interesting to discuss a generalization of Raman processes to
the case where there are multiple excited states nearly resonant to the two laser fields. Consider then
a manifold of excited states |en⟩, where n = 1, . . . , Nstates having energy ℏ(ω0,1 + δn) with respect to the
reference energy of |g1⟩, where we assume that δn ≪ ω0,1, i.e. that the splittings in the manifold of excited
states are small compared to the natural frequency of the transition |g1⟩ ↔ |e⟩ in absence of splitting. This
scenario is typically realized when the degeneracy of a manifold of excited states is split e.g. by an external
constant magnetic field via Zeeman effect. The problem is schematically represented in fig. [2.1 (a)].

The Hamiltonian within the rotating wave approximation can be simply generalized by introducing
multiple Rabi couplings Ωi,n, which describe the amplitude of the transition |gi⟩ ↔ |en⟩ stimulated by the
i-th laser beam:

HRWA = ℏ


0 0 Ω1,1e

−ik1·reiω1t Ω1,2e
−ik1·reiω1t . . .

0 ω0,1 − ω0,2 Ω2,1e
−ik2·reiω2t Ω2,2e

−ik2·reiω2t . . .
Ω∗
1,1e

ik1·re−iω1t Ω∗
2,1e

ik2·re−iω2t ω0,1 + δ1 0 . . .

Ω∗
1,2e

ik1·re−iω1t Ω∗
2,2e

ik2·re−iω2t 0 ω0,1 + δ2 . . .
...

...
...

...
. . .

 . (2.17)

The generalized unitary transformation to the rotating frame of reference is

U(t) =


e−iω1t 0 0 0 . . .

0 e−iω2t 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .

 ei(ω0,1+∆)t, (2.18)
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(a) (b) (c)Rotated frame Effective two level 
system

Original frame

Figure 2.1: Schematic representation of the Raman transition with multiple excited states described in the
text. Panel (a) shows the original problem, with the multilevel system coupled to an external electromag-
netic field made of two superimposed monochromatic waves of frequencies ω1 and ω2 quasiresonant to the
transitions |g1⟩ ↔ |en⟩ and |g2⟩ ↔ |en⟩ respectively. Panel (b) shows the system in the rotated frame after
the rotating wave approximation, with a stimulated coupling to the manifold of excited states. Panel (c)
shows the effective two level system obtained after adiabatic elimination of the coupling to the excited
states (for graphical reasons we have omitted the spatial-dependent phase factor).

and, applying eq. [2.9], we get to the static Hamiltonian in the new frame:

H ′ = ℏ


δω1 −∆ 0 Ω1,1e

−ik1·r Ω1,2e
−ik1·r . . .

0 δω2 −∆ Ω2,1e
−ik2·r Ω2,2e

−ik2·r . . .
Ω∗
1,1e

ik1·r Ω∗
2,1e

ik2·r δ1 −∆ 0 . . .

Ω∗
1,2e

ik1·r Ω∗
2,2e

ik2·r 0 δ2 −∆ . . .
...

...
...

...
. . .

 , (2.19)

which is depicted in fig. [2.1 (b)].
The adiabatic elimination process is done on equal grounds for all the excited states and it amounts to

substitute all the coefficients ψen in the expansion of a generic state with their slowly varying part ψ̃e,n and
to assume that:

∂tψ̃en = 0 → ψ̃en =
Ω∗
1,n

∆− δn
eik1·rψg1 +

Ω∗
2,n

∆− δn
eik1·rψg2 .

After adiabatic eliminating all the excited states, we are left with an effective Schrödinger equation for the
ground states, and hence with an effective two-level Hamiltonian, formally equivalent to [2.14], with a
suitable correction of the effective Rabi frequency and of the AC Stark shifts:

ΩRe
iϕ =

∑
n

Ω∗
2,nΩ1,n

∆− δn
εi = δωi −∆+

∑
n

|Ωi,n|2

∆− δn
. (2.20)

In conclusion, we briefly mention the interesting case of a ground state manifold having three states
|g1⟩, |g2⟩ and |g3⟩ of energy 0, ℏ(ω0,1 − ω0,2) and 2ℏ(ω0,1 − ω0,2), where |g1⟩ and |g2⟩ are coupled to an
excited state |e1⟩, while |g2⟩ and |g3⟩ are coupled to a second excited state |e2⟩. Essentially, we are assuming
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that matrix elements of the electric dipole operator connecting |g1⟩ with |e2⟩ vanish, as well as those
connecting |g3⟩ and |e1⟩: this can happen when these transition do not respect conservation laws, such as
the conservation of angular momentum, as we will discuss in the next section. As a matter of fact, we can
think about this situation as a combination of two independent problems like the ones we have studied
above: one involving {|g1⟩, |g2⟩, |e1⟩} and the other involving {|g2⟩, |g3⟩, |e2⟩}, where the two problems
are characterized by different detunings and different dipole matrix elements. Applying the formalism
introduced above, we obtain an effective three-level dynamics where the three states are characterized by
different AC light shifts and where the hopping processes connect |g1⟩ with |g2⟩ and similarly |g2⟩ with |g3⟩
with a different amplitude, but with the same space-dependent phase factor. The same qualitative picture
holds in the case where |e1⟩ and |e2⟩ are manifolds.

2.2 Artificial gauge field with Raman transitions in 173Yb

We have shown that optical Raman transitions provide a valuable tool to implement the quantum simulation
of a lattice system coupled to an artificial gauge field with alkaline-earth like atoms [20, 62, 63]. In a
nutshell, the idea is to couple two or more nuclear states exploiting Raman transitions (and hence explicitly
breaking the SU(N) symmetry) and to regard this processes as tunneling events along a “synthetic
dimension”, which is the abstract direction of internal states. Since the effective Rabi frequency between
these states has a complex phase, which depends on the specific position of the atom in the optical lattice,
this mimics the effect of a static magnetic field acting perpendicular to the synthetic direction (see fig.
[2.3]).

Consider for example a gas of alkaline-earth-like atoms prepared in the electronic ground state 1S0 and
in a single specific nuclear state |m1⟩ and let us call this state |g1⟩ = |1S0⟩ ⊗ |m1⟩. Using optical Raman
transitions, we can couple this state to another state |g2⟩ = |1S0⟩ ⊗ |m2⟩ with a different nuclear state
|m2⟩, a process that would be otherwise forbidden by the SU(N) symmetry of interactions. The manifold
of auxiliary excited states comes from the electronic state |e⟩ = 3P1. We emphasize that this is not an
eigenstate of the atomic Hamiltonian, as its total electronic angular momentum is J = 1, which implies
that there is a significant hyperfine coupling to the nuclear states, hence the eigenstates are labeled by
the total angular momentum F = I + J (nuclear + electronic) and by its component along a given axis
mF . The allowed values are given by standard sum rules, for example 173Yb has I = 5

2 and therefore
F = 3

2 ,
5
2 ,

7
2 , with mF = −F, . . . ,+F . The necessary energy splitting between the two otherwise degenerate

ground states is provided by an external uniform and static magnetic field B = Bẑ via Zeeman effect:
ℏ(ω0,1−ω0,2) = µBgg(m2−m1)B, where µB is the Bohr magneton and gg the nuclear Landé g-factor when
the electronic state is 1S0. It should be noted that this magnetic field also induces extra Zeeman splittings
in the manifold of excited states.

Raman transitions are induced by two laser beams with wave vectors k1, k2 perpendicular to B and
frequencies ω1, ω2 having a slight detuning δω1 = δω2 = ∆ with respect to an arbitrary electronic transition
taken as a reference. The geometry of the laser beams controls the spatial dependence of the phase field
associated to the effective Rabi transitions: φ(r) = (k1 − k2) · r+ ϕ, where we can set the constant term
ϕ = 0 without loss of generality.

The correct choice of polarization vectors u1, u2 is a crucial and subtle point. First of all, this choice
determines the angular momentum that the photon field can exchange with the atom, as the process
should obey the conservation of angular momentum. For example, let’s focus on u1 and consider an even
linear combination u1 = (u+

1 + u−
1 )/

√
2 of two Jones polarization vectors u±

1 describing right-handed
and left-handed polarization states with respect to the propagation direction k1. This results in a linearly
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polarized wave with the electric field perpendicular to ẑ and k1. Such a field can only induce σ± transitions,
i.e. it can only change the ẑ component of the total angular momentum by ∆mF = ±1. The reason is that,
in the dipole approximation, where the atom is treated as a point-like electric dipole, this electric field is
indistinguishable from the electric field of a wave propagating along ẑ and being in an even superposition
of the two corresponding circular polarizations, as sketched in fig. [2.2 (d)]. As another example, let’s
consider the linear combination u1 = i(u+

1 − u−
1 )/

√
2 describing a linearly polarized light with the electric

field parallel to ẑ: such a field can only induce π transitions, i.e. transitions between states with ∆mF = 0.
In general, if the light is linearly polarized along any direction perpendicular to k1, it will induce both σ±

and π transitions with different probabilities, depending on the specific angle between the polarization
direction and the ẑ axis. Secondly, the projection of the atomic dipole moment along the polarization
direction affects the couplings Ωi,αβ and consequently the effective Rabi frequency and the AC Stark
light-shifts (see eq. [2.20]). Depending on the specific polarization and detuning chosen for the beams, it
is possible to induce effective tunneling events in a subset of N different nuclear states out of the 2I + 1
available. The remaining states are cut off either by conservation of angular momentum, or by a large
value of the AC light shift, such that the effective energy of that state is too high.

Let us give a concrete example focusing on the specific case of 173Yb. The typical intensity of the
Zeeman magnetic field is ≈ 150 G, and the induced energy splitting between two nuclear states with
successive values of m is ≈ ℏ× 31 kHz. If the atomic cloud is initially polarized in the nuclear state with
lowest energy (m = −5

2) and we choose for both beams a linear polarization perpendicular to B, then
only σ± electronic transitions are allowed. This implies that two-photon processes can only induce an
overall change of the ẑ component of angular momentum ∆m = ±2, effectively coupling three states
(m = −5

2 , −
1
2 , +

3
2) and cutting off the other three. This coupling is actually realized by choosing the laser

frequencies in such a way that ω1 − ω2 ≈ ∆m × 31 kHz ≈ 62 kHz. Furthermore, in order to minimize
inelastic collisions in the excited channel, ω1 and ω2 are blue-detuned by ≈ 1.88 GHz with respect to the
reference atomic transition 1S0 → 3P1(F = 7

2) (measured in absence of magnetic field). In principle, three
out of six nuclear states are involved in the dynamics; but the AC Stark light-shift of the state m = +3

2 is
much larger than the other two, which are instead comparable. This further restricts the dynamics to only
two states out of six: m = −5

2 , −
1
2 , as the state m = +3

2 is effectively cut-off by the large energy barrier
required to populate it. In this case, the synthetic direction is very short, and in fact limited to only two
sites.

The realization of a synthetic direction with three sites requires to have almost equivalent light-shifts
for the three states, which can be obtained by tuning the polarization of laser light. This result has been
achieved by means of linearly polarized light along a direction forming an angle of ≈ 55 degrees with respect
to ẑ; however, this allows σ±-π electronic transitions with an overall exchange of angular momentum
∆m = ±1. As a result, none of the six nuclear states is exactly cut-off from the dynamics; but choosing
ω2 − ω1 ≈ 62 kHz actually makes these spurious σ±-π processes off-resonant, limiting the significant
population to the states m = −5

2 , −
1
2 , +

3
2 . Tuning the light-shifts inevitably introduces asymmetries in

the effective Rabi frequencies, providing different hopping amplitudes to different bonds in the synthetic
dimension; yet a compromise between equivalent light-shifts and equivalent Rabi frequencies can be found.
With the experimental setting reported above, the ratio of Rabi frequencies is Ω− 1

2
,+ 3

2
≈ 1.41Ω− 5

2
,− 1

2

(while Ω− 5
2
,+ 3

2
= 0 as a consequence of the beams setup); while the light-shifts are ε− 5

2
= ε− 1

2
and

ε 3
2
≈ ε− 5

2
+ 0.16Ω− 5

2
,− 1

2
.

Further increasing the number of sites N along the synthetic direction is possible in principle, but it
represents a technical challenge due to the problem of light-shifts. In particular, the light-shifts associated
to all of the N states should be at least comparable, if not equivalent; moreover, the light-shifts of the
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Figure 2.2: Realization of synthetic dimension and artificial gauge fields with 173Yb at LENS (adapted from
[20]). (a) Laser-induced σ± Raman transitions through the 3P1 manifold effectively couple a subset of
nuclear states: m = −5

2 , −
1
2 ,+

3
2 . (b) Geometry of Raman laser beams hitting an optical lattice loaded with

173Yb in presence of a Zeeman magnetic field. (c) Sketch of the effective model: the state m = +3
2 has a

large light-shift and is cut off from the dynamics. (d) Polarization of laser light that induces σ± transitions.

remaining (2I + 1)−N states should be large to cut these states off the dynamics, or these states should
be decoupled as a result of conservation laws. Realizing this with only two laser beams requires a very
difficult balance of all the properties of light; however one could in principle use more than two lasers to
have more tunable degrees of freedom.

Taking into account the presence of an optical lattice and neglecting differences in the light-shifts, we
can finally describe this system with the following Hamiltonian:

H = −t
∑
⟨ij⟩

∑
σ

(
c†iσcjσ + h.c.

)
+
∑
j, ρ>σ

(
Ωσρe

iφ(rj)c†jσcjρ + h.c.
)
+
U

2

∑
j

nj(nj − 1)− µ
∑
j

nj (2.21)

where Ω∗
σρ = Ωρσ and Ωσρ = 0 if ρ ̸= σ±1. Moreover, we have included ℏ in the definition of Ωρσ. We have

introduced two indexes σ and ρ labeling the N states involved in the dynamics and we have conventionally
chosen their numerical values to run from −N−1

2 to N+1
2 at steps of 1: this choice is motivated by the

fact that, when N = 2I + 1, these labels coincide with the quantum number m of the nuclear state. This
model can be regarded as a system of spinless fermions moving on a (d + 1)-dimensional geometrical
structure, where d is the dimensionality of the optical lattice [64]. Every site in this structure is labeled
by two indexes: rj , the d-dimensional vector labeling the optical lattice sites, and the “flavor” index σ,
which labels the nuclear state. The SU(N) symmetry is explicitly broken by Raman processes; however the
scattering lengths are not modified and the interaction part of Hamiltonian [2.21] is still SU(N) symmetric.
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2. Hubbard model with broken SU(N) symmetry and artificial gauge fields

The resulting interaction is peculiar, as it is local with respect to the real lattice dimensions, but completely
long-range in the synthetic dimension, as the occupation of two sites (rj , σ) and (rj , ρ) is penalized by an
energy cost U for any σ ̸= ρ. Furthermore, this model features the presence of an artificial gauge field,
specifically an artificial static magnetic field perpendicular to the synthetic direction. This can be seen by
computing the geometric phase acquired by a particle hopping all around a closed plaquette

(ri, σ) → (rj , σ) → (rj , σ + 1) → (ri, σ + 1) → (ri, σ),

where i and j denote nearest neighbors in the real directions, see for example fig. [2.3 (b)]. The result is
φ(rj)− φ(ri) and it represents the dimensionless artificial magnetic flux through the plaquette.

Written in this form, the Hamiltonian [2.21] is not manifestly invariant under translations along the
real directions (a circumstance that complicates the numerical analysis with methods such as DMFT).
However, it can still be made translation invariant by performing a unitary transformation of the fermionic
operators:

cjσ → eiσφ(rj)cjσ, c†jσ → e−iσφ(rj)c†jσ, njσ → njσ, (2.22)

which transforms [2.21] into

H = −t
∑
⟨ij⟩

∑
σ

(
eiσ[φ(rj)−φ(ri)]c†iσcjσ + h.c.

)
+
∑
j, σ

Ωσ

(
c†jσcjσ+1 + h.c.

)
+
U

2

∑
j

nj(nj − 1)− µ
∑
j

nj . (2.23)

In this new gauge, the phase of Raman processes is uniform over the whole real lattice; but in turn it
is the hopping along real directions that acquires a flavor-dependent phase factor, as shown in fig. [2.3
(c)]. However, the geometric phase accumulated by hopping around a plaquette, which is the physical
observable, remains unchanged. The Hamiltonian [2.23] is now manifestly translation invariant, as the
phase factor φ(rj)−φ(ri) = (k1 −k2) · (rj − ri) depends on the difference rj − ri; however hopping along
different directions of the optical lattice can occur with different phase factors. This works only if Raman
processes connect nearest neighbors along the synthetic direction: Ωσρ = Ωσ(δρ,σ+1 + δρ,σ−1) (where we
assume that Ωσ is real without loss of generality), which is consistent with the experimental realization.

Interestingly, if the (d + 1)-dimensional structure is bipartite, (i.e. if we can group the sites in two
sublattices A and B such that every nearest neighbor of a site in A belongs to B and vice versa), the
Hamiltonian [2.23] is particle-hole symmetric at µ = 0. The reason is that it is invariant under the
particle-hole transformation cjσ → (−1)Rjσc†jσ, where Rjσ = 1 if (rj , σ) ∈ A and Rjσ = 0 otherwise. This
implies that the half-filling condition, i.e. the condition to have N ×Nsites/2 atoms on the structure, is
realized setting µ = 0.

2.3 Current operators

The most remarkable feature of synthetic ladders is the fact that their low-temperature equilibrium states
are characterized by the presence of flavor-dependent persistent currents that are experimentally detectable.
Therefore, it is important to provide proper definitions of current operators and to understand their general
properties, which is the purpose of this section.

The definition of current operators stems from the continuity equation for every node of the structure,
which states that the variation of local density over time equals the net current flow on the node. By
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2. Hubbard model with broken SU(N) symmetry and artificial gauge fields

definition, a node is a site on the (d+ 1)-dimensional structure and it is labeled by a lattice vector ri and a
flavor index σ. The continuity equation at any node can be computed from the Heisenberg equation for
the density operator niσ at that node:

dniσ
dt

=
i

ℏ
[H,niσ] . (2.24)

Computing the commutator with [2.23], working in natural units ℏ = kB = 1 and introducing a set of
lattice vectors ea (a = 1, . . . , d), we get

dniσ
dt

= −
d∑

a=1

(
I(ri,σ); (ri+ea,σ) − I(ri−ea,σ); (ri,σ)

)
−
(
I(ri,σ); (ri,σ+1) − I(ri,σ−1); (ri,σ)

)
, (2.25)

where1

I(ri,σ); (rj ,ρ) = −iteiσ[φ(rj)−φ(ri)]c†iσcjρ + h.c. (2.26)

I(ri,σ); (ri,ρ) = iΩσρc
†
iσcjρ + h.c.. (2.27)

As we have mentioned, eq. [2.25] is a discretized version of the continuity equation, where the right-hand
side corresponds to the divergence of a current operator. The quantity I(ri,σ); (rj ,ρ) introduced in eq. [2.26]
can thus be interpreted as the current flowing along the bond connecting the two (nearest neighbor)
nodes (ri, σ) and (rj , ρ). In any equilibrium or stationary state, where d⟨niσ⟩/dt = 0 on every node, the
expectation value of eq. [2.25] can be also interpreted as a Kirchhoff’s current law for the circuit, and it is
a useful consistency check for any numerical method.

We can now define the average current flowing along a real direction ea associated to fermions of
flavor σ (flavor current) and the total current flowing along the synthetic direction on the real site rj (local
current),

Ia,σ =
1

Nsites

∑
i

I(ri,σ);(ri+ea,σ) flavor current, (2.28)

Ii =
∑
σ

I(ri,σ);(ri,σ+1) local current. (2.29)

An interesting observation is that the current operators in eqs. [2.28, 2.29] can be written as derivatives
of the Hamiltonian with respect to auxiliary variables, called Peierls phases [65]. These are fictitious
complex phase factors that are included in the hopping matrix elements and that are just used as derivation
variables. For example, the flavor paramagnetic current operator Ia,σ can be obtained by attaching a
phase factor eiϕa,σ to the hopping matrix element on that specific flavor σ and direction a: ta,σ → ta,σe

iϕa,σ

(Peierls substitution), and then deriving with respect to ϕa,σ at ϕa,σ = 0:

Ia,σ =
1

Nsites

∂H

∂ϕa,σ

∣∣∣∣
ϕa,σ=0

. (2.30)

Similarly, the local paramagnetic current operator on a rung labeled by ri can be obtained by a Peierls
substitution in the Raman hopping matrix elements of that specific rung: Ωi;σ,σ+1 → Ωi;σ,σ+1e

iϕi , and then
taking the derivative

Ii =
∂H

∂ϕi

∣∣∣∣
ϕi=0

. (2.31)

1We can write them in units of the international system setting t→ t/ℏ and Ωσρ → Ωσρ/ℏ.
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2. Hubbard model with broken SU(N) symmetry and artificial gauge fields

When the system satisfies periodic boundary conditions (PBC) along the real directions, we can use
the Fourier transformation in momentum space of the fermionic operators (see eq. [2.44]) to rewrite the
flavor current [2.28] in a more transparent and practical fashion:

Ia,σ =
2t

Nsites

∑
k∈BZ

sin (k · ea + σγa)nkσ, (2.32)

where nkσ = c†kσckσ is the number operator with momentum k and flavor σ and

γa = φ(ri + ea)− φ(ri) = (k1 − k2) · ea (2.33)

represents the synthetic flux on a plaquette with one side along the direction ea. Under PBC, the local
current [2.29] is the same on every lattice site and in momentum space it is given by

Ii =
∑
kσ

iΩσ

(
c†kσckσ+1 − c†kσ+1ckσ

)
. (2.34)

Finally, we define the total paramagnetic current along the real directions as the sum of all the flavor
currents: I =

∑
σ Iσ. This concept is not peculiar of systems with broken SU(N) symmetry, but it is used in

many contexts to measure the metallic character of a system, as we discuss in more detail in chapter [4].
Sometimes it is also called “Drude current”, since it can be used to compute the Drude weight, as shown in
appendix [B].

Eq. [2.32] emphasizes the connection between the flavor-current and the experimentally accessible
flavor-resolved momentum distribution. The latter can be measured by absorption imaging exploiting the
1S0 ↔1P0 transition, after removing the Raman lasers and the optical lattice to realize a freely expanding
gas. The momentum distribution of a specific flavor is obtained by removing particles with all the other
flavors from the expanding cloud via suitable optical processes before performing absorption imaging
[20, 62].

2.3.1 Chiral current

In the specific case of uniform Raman coupling Ωσ ≡ Ω, Hamiltonian [2.23] features a point reflection
symmetry about the central point of the (d+ 1)-dimensional structure, namely it is invariant under the
transformation cri,σ → c−ri,−σ [66]. The same symmetry is inherited by the eigenstates, therefore one can
prove that the expectation values of the flavor currents satisfy ⟨I−σ⟩ = −⟨Iσ⟩. An immediate consequence
of this property is that, when N is odd, the expectation value of the current in the central flavor vanishes:
⟨I0⟩ = 0. In the present work we will mostly deal with systems having N = 2 or N = 3 flavors and point
reflection symmetry: these systems only have one non-trivial independent flavor current, so it is common
use to encode the relevant information in the definition of chiral current as the difference of currents in the
two outermost flavors:

Ichir = I−N−1
2

− IN−1
2
. (2.35)

In systems with N > 3, the current does not necessarily flow only along the edge flavors, hence multiple
chiral currents I−σ − Iσ should be defined (more precisely, the independent currents are N/2 if N is even
and (N − 1)/2 if N is odd). Making use of the Peierls substitution discussed above, it is straightforward to
prove that the chiral current can be written (up to a constant prefactor) as the derivative of the Hamiltonian
with respect to the synthetic flux:

Ichir,a = − 2

Nsites(N − 1)

∂H

∂γa
. (2.36)

40



2. Hubbard model with broken SU(N) symmetry and artificial gauge fields

The expectation value of the chiral current operator in a thermal equilibrium state of the system at a
generic temperature T can be computed as

⟨Ichir,a⟩ = − 2

Nsites(N − 1)

∑
n

e−βEn

Z
⟨n|∂H

∂γa
|n⟩, (2.37)

where |n⟩ is the n-th eigenstate of the Hamiltonian H, En is the associated energy and Z =
∑

n e
−βEn is

the partition function. Strictly speaking, a properly defined paramagnetic current on a state has a residual
dependence on the auxiliary Peierls phase that comes from the energies En(ϕ) and the eigenstates |n(ϕ)⟩,
which are computed starting from the Peierls-transformed Hamiltonian H(ϕ). However, in the following
we are interested in the case where there is no external field applied, so we can take the limit ϕ→ 0, or
we can directly use the eigenstates of the original Hamiltonian En(ϕ = 0) and |n(ϕ = 0)⟩. As we will see,
the crucial feature of fermions coupled to a synthetic gauge field is precisely the fact that they support
paramagnetic persistent currents even in absence of external driving fields. In fact it is the synthetic
field that provides the necessary driving force to support a persistent current. That being said, we can
make progresses using the Hellmann-Feynman theorem:

⟨Ichir,a⟩ = − 2

Nsites(N − 1)

∑
n

e−βEn

Z
∂En

∂γa
=

2T

Nsites(N − 1)

1

Z
∂

∂γa

∑
n

e−βEn ,

and we finally get2

⟨Ichir,a⟩ =
2T

Nsites(N − 1)

∂

∂γa
logZ. (2.38)

Therefore, the chiral current along êa is, up to a normalization constant, the derivative of the grand-
canonical potential Ω = − 1

β logZ with respect to the synthetic flux γa.

If the particles are not interacting, we can obtain a more explicit version of eq. [2.38], writing the
chiral current in terms of the band structure. The partition function Z of non-interacting fermions with
energy bands of momentum dispersion εkℓ, where ℓ = 1, . . . , N is the band index, is given by

Z =
∑
n

e−βEn =
∏
k∈BZ

N∏
ℓ=1

(
1 + e−β(εkℓ−µ)

)
. (2.39)

Using eq. [2.38] and introducing the Fermi function f(x) = 1/(eβx + 1), we obtain the formal expression

⟨Ichir,a⟩ = − 2

Nsites(N − 1)

∑
k∈BZ

N∑
ℓ=1

f(εkℓ − µ)
∂εkℓ
∂γa

. (2.40)

In the following sections, we use this formalism to evaluate analytically the chiral current for non-interacting
two-leg and three-leg ladders, while in chapter [3] we also include the interactions.

2Units of the international system are restored multiplying the chiral current by kB/ℏ.
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2.4 Non interacting ladders

2.4.1 Non interacting two-leg ladder

We begin our analysis by neglecting the atom-atom local interaction, i.e. setting U = 0 in eq. [2.21], and
particularizing the discussion to the case of two flavors (N = 2) and one real dimension (d = 1), where
analytic results can be obtained. In the following, we also identify the state σ = +1

2 with the symbol ↑
and σ = −1

2 with the symbol ↓. In this case there is only one independent element in the Raman hopping
matrix: Ω↑↓ = Ω↓↑ ≡ Ω. Therefore the resulting Hamiltonian reduces to

H = −t
Nsites∑
j=1

∑
σ=↑↓

(
c†jσcj+1σ + h.c.

)
+Ω

Nsites∑
j=1

(
eiγjc†j↑cj↓ + h.c.

)
− µ

∑
j

nj . (2.41)

In the following we will mostly assume periodic boundary conditions (PBC) along the real direction, unless
otherwise stated.

The purpose of this section is to characterize the low-temperature equilibrium state of the system
described by Hamiltonian [2.41] as a function of the parameters t, Ω and γ, assuming the half-filling
condition (one particle per lattice site on average), which is realized for µ = 0. The unitary transformation
[2.22] that enforces translation invariance reduces to

cjσ → eiσγjcjσ, c†jσ → e−iσγjc†jσ; (2.42)

and the Hamiltonian written in this new gauge is

H = −t
∑
j

∑
σ=± 1

2

(
eiσγc†jσcj+1σ + h.c.

)
+Ω

∑
j

(
c†j↑cj↓ + h.c.

)
. (2.43)

As shown in fig. [2.3], this transformation changes the phase factors of all the tunneling matrix elements,
but it does not change the “magnetic” flux per plaquette of the ladder, i.e. the phase accumulated by a
particle hopping all around a plaquette and coming back to the starting point, which is always γ. Being
manifestly translation invariant, [2.43] can be easily rewritten in the momentum space representation by
introducing the spinor Ψj and its Fourier transform Ψk:

Ψj =

(
cj↑
cj↓

)
=

1√
Nsites

∑
k∈BZ

eikjΨk, Ψk =
1√
Nsites

∑
j

e−ikjΨj ; (2.44)

where, as a consequence of the periodic structure of the real lattice, the variable k can assume Nsites distinct
values that are equally spaced in the first Brillouin zone (BZ): k = −π + 2πn

Nsites
, where n = 0, . . . , Nsites − 1.

Moreover, with the convention adopted here, the momentum is a dimensionless quantity. Remarkably, when
the number of lattice sites is large, the spacing between adjacent momentum values 2π

Nsites
is very small, and

the discrete sum can be replaced by an integral according to the simple prescription
∑

k∈BZ → Nsites
2π

∫
BZ dk.

The resulting Hamiltonian, written in momentum space, reads

H =
∑
k∈BZ

Ψ†
kĤkΨk; Ĥk =

(
ε(k + γ

2 ) Ω
Ω ε(k − γ

2 )

)
, (2.45)

where ε(k + σγ) = −2t cos (k + σγ).
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unitary
transformation

(a)

(b) (c)

Figure 2.3: (a) Schematic representation of the two-leg ladder with one real (horizontal) and one synthetic
(vertical) dimension. Each “leg” represents a fermionic flavor, i.e. a specific nuclear state and it is labeled
by σ = ±1

2 ; while each “rung” is labeled by the real site index j = 1, . . . , Nsites. (b) Original hopping
scheme with a j-dependent complex phase associated to Raman processes, as in eq. [2.41]. (c) Hopping
scheme after the unitary transformation [2.42], where Raman processes have now a real amplitude, while
real tunneling processes have a complex σ-dependent phase, as in eq. [2.43]. The arrows in (b) and
(c) represent the hopping direction associated with the specified phase factor; hoppings in the opposite
direction have the complex conjugate phase factor. Remarkably, the flux per plaquette is γ with both
choices.

We can now diagonalize Hamiltonian [2.45] by means of a unitary transformation on the fermionic
spinor Ψk → Φk = P̂ †

kΨk, where P̂ †
k is a unitary matrix (P̂kP̂

†
k = 1) that diagonalizes the 2× 2 matrix Ĥk:

P̂kĤkP̂
†
k = diag[ε−(k), ε+(k)], with eigenvalues

ε±(k) = −2t cos
γ

2
cos k ± Ω

√
1 +

4t2

Ω2
sin2 k sin2

γ

2
(2.46)

representing the dispersion relation of the band structure. It is instructive to study the Fermi points of this
band structure: since by particle-hole symmetry the chemical potential is guaranteed to vanish at half
filling (µ = 0), then the Fermi points are solutions to the algebraic equations ε±(k) = 0. After separating
the square root from the rest, and after squaring both sides, we finally get the equation:

cos2 k = sin2
γ

2
+

(
Ω

2t

)2

.

We can distinguish three cases:

• the equation does not admit any real solution if the right hand side is larger than 1, namely if

sin2
γ

2
+

(
Ω

2t

)2

> 1 → |Ω| > 2t cos
γ

2
;
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polarization

Figure 2.4: Band structure of the one dimensional two legs ladder shown in fig. [2.3]. The left panel
represents the metallic phase at Ω < Ωc, with four Fermi points located at k = ±k0 and k = ±(π − k0).
The right panel represents the insulating phase at Ω > Ωc with no Fermi points. The color scheme reflects
the flavor-polarization of a state with given momentum k.

in this case there are no Fermi points, the spectrum is gapped at the Fermi level and – in analogy to
the language of Solid State Physics – we can call this phase an insulator;

• if the right hand side is equal to 1, i.e. when |Ω| = 2t cos γ
2 , the solutions to cos2 k = 1 are k = 0,±π;

however, by direct substitution, one can see that k = 0 is such that only ε+(k) = 0; whereas k = ±π
are such that only ε−(k) = 0. This means that the lower band touches the Fermi level at k = ±π,
while the upper band touches the Fermi level at k = 0.

• If the right hand side is smaller than 1, there are 4 symmetric solutions formally given by k = ±k0,
and k = ±(π − k0), where we have introduced the quantity

k0 = arccos

√sin2
γ

2
+

(
Ω

2t

)2
.

Again by direct substitution one can prove that k = ±k0 are the solutions of ε+(k) = 0 and describe
the points where the upper band crosses the Fermi level, while k = ±(π − k0) are the solutions of
ε−(k) = 0 and describe the points where the lower band crosses the Fermi level. In analogy with the
language of Solid State Physics this phase can be named a metal.

The band structure described above is schematically represented in fig. [2.4]. To summarize, varying t,
Ω and γ, the system undergoes a quantum phase transition from a metallic state at Ω < Ωc, where both
bands are partially populated, to an insulating state at Ω > Ωc, where only the lower band is populated.
The critical value of the Raman coupling is given by Ωc = 2t cos γ

2 .
We can now use eq. [2.40] and the information about the band structure to compute the chiral current.

Its behavior as a function of the physical parameters is shown in fig. [2.5]. The most salient feature is the
presence of a sharp peak in correspondence of the quantum phase transition at zero temperature, followed
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(a) (b)

(c)

ga
p

Figure 2.5: (a) Chiral current [top panel] and spectral gap [bottom panel] in the ground state of the
non-interacting two-leg ladder as a function of Ω/t across the phase transition for several values of the
flux γ (colored lines). The dashed line represents the location of the peak chiral current as a function of
γ. (b) Color-plot of the chiral current as a function of the Raman coupling Ω/t and temperature T/t. (c)
Schematic picture of the ladder showing the direction of the chiral current.

by a monotonic decrease in the insulating phase as the spectral gap increases. Another important aspect
is the presence of a significantly large chiral current at finite temperatures, up to values comparable to
the hopping scale t, which has enabled the experimental observation with currently available platforms
[67]. However, chirality remains overall a peculiar feature of low-temperature equilibrium states, while it
is completely hindered by large thermal fluctuations.

At zero temperature we can support these observations with simple analytic results. The grand
canonical potential at T = 0 and µ = 0 reduces to the internal energy, which is the energy of the many
body ground state E0. We can easily compute E0 across the phase transition by summing the energies of
all the occupied single particle states. At zero temperature, only states with energy below the chemical
potential are populated, hence we get

E0 =
Nsites

2π

[∫ π−k0

−(π−k0)
ε−(k)dk +

∫ k0

−k0

ε+(k)dk

]
metal

E0 =
Nsites

2π

∫ π

−π
ε−(k)dk insulator (2.47)

These integrals can be formally evaluated by means of the incomplete elliptic integral of the second kind
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Ξ[b,m] =
∫ b
0

√
1−m sin2 x dx, and the result is:

E0 = −Nsites

π

{
4t cos

γ

2
sin k0 + |Ω|

[
Ξ

(
π − k0, −

4t2 sin2 γ
2

Ω2

)
− Ξ

(
k0a, −

4t2 sin2 γ
2

Ω2

)]}
metal

E0 = −Nsites

π
|Ω|Ξ

(
π, −

4t2 sin2 γ
2

Ω2

)
. insulator (2.48)

From eq. [2.38], the chiral current reduces to the negative derivative of the internal energy per particle:
⟨Ichir⟩ = − 2

Nsites

∂E0
∂γ . While the result is a little cumbersome for Ω < Ωc, it is instead relatively simple and

instructive in the insulating phase:

⟨Ichir⟩ =
Ω

π
cot

γ

2

[
Ξ

(
π,−

4t2 sin2 γ
2

Ω2

)
− F

(
π,−

4t2 sin2 γ
2

Ω2

)]
, (Ω ≥ Ωc); (2.49)

where F [b,m] =
∫ b
0 dx(1 − m sin2 x)−1/2 is the elliptic integral of the first kind. As shown in fig. [2.5

(a)], the chiral current features a sharp peak exactly at the phase transition, and the peak value can be
computed by taking the limit Ω → Ω+

c in eq. [2.49]:

Imax
chir =

Ωc

π
cot

γ

2

[
Ξ
(
π,− tan2

γ

2

)
− F

(
π,− tan2

γ

2

)]
. (2.50)

Searching for the maximum of this curve, we find that chirality is maximized when the synthetic flux is
γ = π

2 . The locus of peak currents as a function of the flux γ is shown with a dashed line in fig. [2.5 (a)].
In the deeply insulating regime, where Ω ≫ t, this expression can be expanded in powers of t/Ω and it
yields the simple expression

⟨Ichir⟩ ≈
t2

Ω
sin γ +O

(
t3

Ω3

)
, (2.51)

which explains the hyperbolic tails shown in fig. [2.5 (a)].
The same result can be obtained by computing the expectation value ⟨c†kσckρ⟩ on the ground state,

which is the (σ, ρ) component of the N × N dimensional matrix ⟨(Ψ†
k)

TΨT
k ⟩, where Ψk is the spinor

introduced in eq. [2.44] and T indicates matrix transposition. The diagonal components represent the
density of fermions with a given momentum k and a given flavor σ, while the off-diagonal terms are
tunneling amplitudes along the synthetic direction between flavor ρ and σ. This object can be computed
by moving to the basis that diagonalizes the Hamiltonian, i.e. using Ψk = P̂kΦk:

⟨(Ψ†
k)

TΨT
k ⟩ = P̂ ∗

k ⟨(Φ
†
k)

TΦT
k ⟩P̂ T

k (2.52)

and observing that, by construction, the matrix ⟨(Φ†
k)

TΦT
k ⟩ must be diagonal, and the diagonal term

at position (ℓ, ℓ) represents the fermionic population of the corresponding state in the ℓ-th band with
momentum k, which is given by the Fermi function f(εℓ(k)− µ). The result is particularly simple for the
specific case T = 0, Ω ≫ t, where again we can expand in powers of t/Ω to get:

⟨nk↓⟩ ≈
1

2

(
1 +

2t

Ω
sin

γ

2
sin k

)
+O

(
t3

Ω3

)
,

⟨nk↑⟩ ≈
1

2

(
1− 2t

Ω
sin

γ

2
sin k

)
+O

(
t3

Ω3

)
,
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⟨c†k↑ck↓⟩ = ⟨c†k↓ck↑⟩ ≈ −1

2

(
1− 2t2

Ω2
sin2

γ

2
sin2 k

)
+O

(
t3

Ω3

)
. (2.53)

We can now use eq. [2.32] to compute the flavor current and hence the chiral current, obtaining once
again the result in eq. [2.51].

2.4.2 Non interacting three-leg ladder

As we have discussed in sec. [2.2], using the polarization dependence of the AC light-shifts, it is possible to
tune the polarization of Raman light to include three nuclear states in the dynamics, realizing a three-leg
ladder with 173Yb. In the experimental realization outlined above, the light shift of the state m = +3

2 is
slightly larger than the other two, and there is a difference between the Rabi frequencies connecting the
central leg with the two outer legs. Nevertheless, since these discrepancies are relatively small, we can
study a simplified version of the problem assuming that the three flavors are perfectly degenerate and that
the tunneling amplitude along the synthetic direction is uniform [68]. This choice allows to investigate the
salient qualitative features of the model by introducing a minimal amount of tunable parameters. Moreover,
we limit our investigation to a filling factor of 1, where the number of atoms matches the number of sites
in the optical lattice. On the one hand, this choice is motivated by the fact that, in chapter [3], we want
to discuss how the chiral current is affected by the interaction-driven Mott transition, and this effect is
expected to be particularly relevant for integer filling factors. On the other hand, with this choice we are
keeping the same number of particles that we have considered for the two-legs ladder; so we can study
how the exact same system behaves when the particles have an extra flavor degree of freedom available.
From the experimental perspective, this is a straightforward extension of the two-legs ladder discussed in
sec. [2.4.1], as the system preparation is the same and the only difference is the polarization direction of
Raman light.

The resulting three-legs ladder is sketched in fig. [2.6 (b)] and it is described by the Hamiltonian

H = −t
∑
⟨ij⟩

∑
σ=±1,0

(
eiσγc†jσcj+1σ + h.c.

)
+Ω

∑
j

∑
σ=−1,0

(
c†jσcjσ+1 + h.c.

)
− µ

∑
j

nj , (2.54)

where now µ has to be adjusted to realize the desired filling factor, and it results in a non-trivial function
of Ω/t and γ. A much simpler approach (at least for T = 0) is to work in the canonical ensemble, writing
the Hamiltonian without the chemical potential term, finding the list of energy levels in ascending order
and setting µ = EF , where EF is the Fermi energy (Nsites-th element of the list). Assuming PBC along the
real direction, we can switch to the momentum space representation

H =
∑
k∈BZ

Ψ†
kĤkΨk, Ĥk =

 ε(k + γ) Ω 0
Ω ε(k) Ω
0 Ω ε(k − γ)

 (2.55)

where ε(k) = −2t cos k and Ψ†
k = (c†k,+1, c

†
k,0, c

†
k,−1). The dispersion relation of the energy bands can be

obtained by numerically evaluating the eigenvalues of Ĥk, and it is shown in fig. [2.6 (a)]. From the band
structure, one can compute the chiral current, either using eq. [2.40], or computing the flavor resolved
momentum distribution ⟨nkσ⟩ and then using eq. [2.32]. The chiral current is shown as a function of
Ω/t and γ in fig. [2.6 (c)]. The current flowing along the central leg (σ = 0) vanishes identically at
equilibrium, as a result of the point reflection symmetry. This is not exactly true when an asymmetry
between the two Raman hopping amplitudes is considered and the point reflection symmetry is broken;
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polarization
(a)

(b) (c)

Figure 2.6: (a) Band structure of the three legs ladder in the metallic phase (left) and in the insulating
phase (right). The color code reflects the flavor polarization of a given state. (b) Geometrical structure
of the three legs ladder. (c) Chiral current as a function of Ω/t and γ with the sharp peak at the phase
transition and a smaller peak at low fluxes and low Ω.

however ⟨I0⟩ is expected to be small as long as the hopping imbalance is small. This is confirmed looking
at the experimental results in ref. [67].

The qualitative picture is for many aspects similar to the two-flavor case, with some differences that
we emphasize here. First of all, as in the two-flavor case, we observe that increasing Ω above a critical
value Ωc eventually results in the opening of a spectral gap, leading to a quantum phase transition from a
“metallic” phase to an “insulating” phase. In correspondence to the quantum phase transition, the chiral
current features a sharp peak, followed by a hyperbolic decay ≈ t/Ω in the insulating phase. This tail has
a simple analytic expression that we can compute by means of perturbation theory in the limit t ≪ Ω.
In particular, we can first compute the dispersion of the lowest energy band εℓ=1(k) to second order in
t/Ω, then integrate it over the Brillouin zone to get the ground state energy E0 (in the insulating phase
all the particles only populate the whole lowest band) and finally apply eq. [2.38]. Taking t = 0 as the
unperturbed system, the zero order term is ε(0)ℓ=1(k) = −

√
2Ω, then treating t as a small perturbation, we

get

ε1(k) = −Ω

[
√
2 +

t

Ω
(1 + cos γ) cos k +

t2

Ω2

sin2 γ
2√

8
(5 + 3 cos γ − (3 + 5 cos γ) cos 2k) +O

(
t3

Ω3

)]
.

Now, integrating over the Brillouin zone, all the terms with cos k and cos 2k are canceled out (which is the
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crossings polarization

Figure 2.7: Band structure for the small flux γ = π/4. Deep in the metallic regime (left), the highest bands
cross and all the bands are partially occupied. Increasing Ω, eventually the bands detach and one of them
moves above the Fermi level (right), while the other two are still partially occupied (i.e. the phase is still a
metal). The latter configuration induces a small boost in the chiral current.

reason why we have to go to second order to get a non trivial dependence of E0 on γ), and we get

E0

Nsites
≈ −Ω

√
2− t2

Ω

sin2 γ
2√

8
(5 + 3 cos γ) , (2.56)

which finally leads to

Ichir = − 1

Nsites

∂E0

∂γ
≈ t2

Ω

1 + 3 cos γ√
8

sin γ. (2.57)

Interestingly, we observe that this function is maximized for γ ≈ 0.283π.
A closer look to the metallic phase reveals the main differences with respect to the two-flavor case.

From fig. [2.6 (c)] we observe that, for small values of the flux, the chiral current features a smaller peak
deep in the metallic regime. We can explain this property by looking at the corresponding band structure,
drawn for γ = π/4 in fig. [2.7], and comparing it to the same plot drawn for a larger flux γ = π/2 in fig.
[2.6 (a)]. For every flux, at small values of Ω/t, the two highest bands cross at k = 0, but when Ω/t is
increased, the two bands form an avoided crossing and eventually detach. If γ is sufficiently small, the
detaching occurs in the metallic phase, then for some Ω < Ωc the highest band will be totally depopulated,
while the other two will be partially occupied (right panel of fig. [2.7]). This configuration gives a small
boost to the chiral character of the ground state. On the other hand, if γ is large, the detaching occurs in
the insulating phase, as we observe in fig. [2.6 (a)], then none of the bands is depopulated below Ωc and
the effect disappears.

A subtle point to address when discussing a three-leg ladder is the role of topology. A thorough and
complete discussion of this aspect is beyond the scope of this work; nevertheless we take a moment to
discuss some literature results that we have independently verified [66]. First of all, the three-leg ladder
can be regarded as a minimal version of the Harper-Hofstadter Hamiltonian with only three sites along one
of the directions and open boundary conditions (OBC) on the same direction. From this observation, we
are induced to think that the chiral current is the manifestation of an edge mode associated to the opening
of boundary conditions on top of a topologically non trivial state. However, this statement is not precise
for several reasons.
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• The topologically non trivial state should be found by enforcing PBC along the synthetic direction,
i.e. considering a modified version of [2.54], where we also include a term Ω̃

∑
j c

†
j,+1cj,−1 + h.c.

and imposing the identification of the neighbor of the top leg σmax + 1 with the bottom leg σmin:
ei(σmax+1)γ = eiσminγ , where σmax = +1 and σmin = −1. This translates into a specific condition for
the flux, which should be γ = 2πn/3, where n is an integer. Besides the trivial case γ = 0, where no
topological order can be found, there are only two “magic” fluxes that guarantee PBC: γ = 2π/3 and
γ = 4π/3; however we have shown that the chiral current is present for any generic non-trivial flux.

• The typical manifestation of a topological insulator is that, when one moves from PBC to OBC, some
states appear in the middle of the former spectral gap, and those states are typically localized at the
opened edges of the system. When the three-legs ladder with magic flux and synthetic PBC is opened
along the synthetic edge, however, this mechanism is not manifestly present.

• The problem at the base of the previous considerations is that, for such a small number of legs,
there is no synthetic bulk or synthetic edge that can be properly defined. In particular, for the case
N = 3, even considering PBC along the synthetic direction, the system is made up by a single unit
cell connected to itself, which is clearly a pathological version of the Harper-Hofstadter model.

Nevertheless, the topological nature of the insulating phase on a three-leg ladder can be investigated
computing the topological invariant known as Zak phase [66]:

Zℓ =
i

2π

∫ π

−π
dk⟨uℓk|∂k|uℓk⟩, (2.58)

where ℓ = 1, 2, 3 is the band index and |uℓk⟩ is a single-particle momentum eigenstate of the Hamiltonian.
This Zak phase measures the geometric phase accumulated moving along the Brillouin zone: it vanishes in
topologically trivial states; otherwise it is a non-zero integer. In the insulating state considered here, the
particles occupy the lowest band, so we are interested in Z1. From a numerical calculation carried setting
the magic flux γ = 2π/3, we observe that Z1 = 0 if Ω̃ = 0 (this is the case of synthetic OBC considered in
this section); while Z1 = 1 if Ω− < Ω̃ < Ω+, where Ω± are functions of Ω and t, in agreement with [66]. A
spectral mode in the middle of the band-gap can be found by starting from a topological state (e.g. Ω̃ = Ω)
and moving to OBC along the real direction. Looking at the spatial distribution of this spectral mode, we
observe that indeed it is localized along the real edges (not the synthetic edges). Furthermore, it turns out
that this state is protected by the point reflection symmetry, i.e. it is robust against the introduction of
perturbations that don’t break this symmetry (a typical feature of topological edge modes). To summarize,
the insulating phase in three-leg ladders with synthetic PBC is in fact a topological insulator, but the
associated edge modes are disclosed opening the chain along the real edges.

In view of all these considerations, we are inclined to conclude that the chiral currents discussed in this
section are not a direct manifestation of a topologically non trivial state, even though we do not exclude
that this can be the case for ladders with a larger number of legs and a non pathological lattice structure
along the synthetic direction.
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Chapter 3

Chiral currents in strongly interacting
systems

In the previous chapter we have discussed how synthetic ladders with artificial gauge fields can be
experimentally realized with alkaline-earth-like atoms; then we have considered the non-interacting
two-leg and three-leg ladders, computing the chiral current as a function of the effective Raman coupling
with analytic methods. However, in the concrete experimental realization of synthetic ladders, not only
two-body interactions are present; but they are also tunable via the depth of the optical lattice. This
raises the intriguing question of how two-body interactions affect the characteristic chiral behavior of
the system. Furthermore, we have seen that the presence of a metastable electronic excited state allows
to realize two-orbital models with a non-trivial interaction scheme, characterized in particular by the
presence of interorbital spin-exchange dynamics. It is then interesting to study the interplay between the
Raman-induced chiral behavior of one of the orbitals and the spin exchange dynamics.

The purpose of this chapter is to investigate the role of interactions in the chiral behavior of synthetic
ladders, both in the single-orbital and in the two-orbital case. We perform the study by applying several
complementary methods and comparing the results, in particular the Hartree-Fock (static) mean-field
theory, DMFT, perturbation theory in the strong coupling limit and exact numerical diagonalization. The
discussion is organized as follows: in sec. [3.1] we introduce the Hartree-Fock method and we apply it to
obtain semi-analytic results for the chiral currents of the interacting system; in sec. [3.2] we go beyond the
static mean-field and include dynamical quantum correlations by means of DMFT; in sec. [3.3] we take
into account the presence of open boundary conditions along the real direction and investigate the spatial
pattern of currents by diagonalizing exactly the Hamiltonian on a small lattice; in sec. [3.4] we support
the analysis finding an effective low-energy spin model valid in the strongly interacting regime; finally, in
sec. [3.5] we consider the two-orbital case and discuss how the spin exchange allows a transfer of chirality
from one orbital to another. We conclude with a summary of our results and a brief comment on future
perspectives in sec. [3.6].

3.1 Hartree-Fock mean field method

We begin our analysis of the interacting system by applying the static mean field theory, also known as
the Hartree-Fock method. Since later in this chapter we will compare this method to DMFT, here we
underline the similarities and differences between the two approaches by presenting the former in a slightly
unconventional way.
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The strong approximation behind the static mean field theory is that the self-energy, which is in
principle a complicated function of momentum k and Matsubara frequency iωn, is instead static (i.e.
frequency-independent): Σ̂(k, iωn) ≈ Σ̂k. In turn, this means that the interacting system is treated as
a set of effectively non interacting quasiparticles. To prove this statement, we can simply consider the
Green function of the system and observe that, under this assumption, it is formally the Green function of
a non-interacting system with a renormalized Hamiltonian Ĥeff

k = Ĥk + Σ̂k:

Ĝ(k, iωn) ≈
[
iωn − Ĥk − Σ̂k

]−1
=
[
iωn − Ĥeff

k

]−1
.

In other words, the Hartree-Fock method neglects the role of quantum dynamical fluctuations and
interparticle correlations, as it tries to describe the system with an equivalent system of noninteracting
particles. The self-energy (and hence the effective Hamiltonian) is parametrized via a physically motivated
variational ansatz, and the specific values of the parameters are determined self-consistently by minimizing
the grand canonical potential of the system.1 Furthermore, the variational parameters have the physical
interpretation of thermal expectation values of single-particle operators. The choice of parameters to be
included should be made a priori and based on physical considerations. In sec. [3.1.1] we begin by a
uniform ansatz on the local inter-flavor hopping on the two-leg ladder; then in sec. [3.1.2] we also include
a non-uniform behavior in the form of antiferromagnetic order; finally in sec. [3.1.3] we move to the
three-leg ladder, again with a uniform ansatz.

3.1.1 Spatially uniform two-flavor systems

In order to illustrate the mean-field decoupling, we begin with the half-filled two-leg ladder in absence
of spatial antiferromagnetism, where symmetry requires that ⟨ni↑⟩ = ⟨ni↓⟩ = 1/2. The only relevant
variational parameters in this case are the expectation values of the spin ladder operators s = ⟨S+

i ⟩ =
⟨c†i↑ci↓⟩ and s∗ = ⟨S−

i ⟩ = ⟨c†i↓ci↑⟩. In principle s and s∗ are complex conjugate; however, without loss of
generality, we can assume that they are real, hence s = s∗.

The interaction part of Hamiltonian [2.21] can be rewritten in the more convenient form U
2 ni(ni− 1) =

Uni↑ni↓, and then it can be decoupled to make it quadratic by the following Hartree-Fock prescription:

ni↑ni↓ ≈ ⟨ni↑⟩ni↓ + ⟨ni↓⟩ni↑ − ⟨ni↑⟩⟨ni↓⟩ − ⟨c†i↑ci↓⟩c
†
i↓ci↑ − ⟨c†i↓ci↑⟩c

†
i↑ci↓ + ⟨c†i↑ci↓⟩⟨c

†
i↓ci↑⟩

=
1

2
ni − s

(
c†i↑ci↓ + c†i↓ci↑

)
+ |s|2 − 1

4
. (3.1)

The effective mean field Hamiltonian, written in momentum space, up to irrelevant constants that don’t
contain s, reads

Heff
k =

∑
k

Ψ†
k

(
ε
(
k+ γγγ

2

)
+ U

2 − µ Ω− Us

Ω− Us ε
(
k− γγγ

2

)
+ U

2 − µ

)
Ψk + Us2Nsites, (3.2)

and the chemical potential that enforces half filling is now µ = U
2 . It is a widespread convention to absorb

the constant U/2 into the definition of chemical potential, introducing the quantity µ̃ = µ − U/2. We
emphasize that the last term, despite being a constant, can’t be neglected, as it is important to obtain the
correct self-consistency equation (as we discuss below). Remarkably, the only effect of the interaction
within the mean-field approximation is a renormalization of the Raman coupling, which has the effective
1This is the finite temperature extension of the method, which was originally formulated at T = 0.
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value Ω− Us. This amounts to assume that the self-energy is uniform and static: Σ̂ = −Usσ̂x, where σ̂x is
the first Pauli matrix.

The self-consistency condition can be obtained as follows. If the system is translation invariant along
the real direction, every lattice site is indistinguishable from the others, so we can write s as the average of
all the local expectation values: s = 1

Nsites

∑
i⟨c

†
i↑ci↓⟩. We can use this observation to write s in terms of the

expectation value of the derivative of the Hamiltonian operator H with respect to the Raman coupling Ω:

2s =
1

Nsites

∑
i

⟨c†i↑ci↓ + c†i↓ci↑⟩ =
1

Nsites

〈
∂H

∂Ω

〉
=

1

Nsites

1

Z
∑
n

e−βEn⟨n|∂H
∂Ω

|n⟩.

Using the Hellmann-Feynman theorem to write ⟨n|∂H∂Ω |n⟩ = ∂En
∂Ω , observing that

∑
n e

−βEn ∂En
∂Ω = −T ∂Z

∂Ω ,
and using the fact that 1

Z
∂Z
∂Ω = ∂

∂Ω logZ, we obtain the self-consistency condition

s = − T

2L

∂

∂Ω
logZ(s) (3.3)

Since the system is made up of effectively non interacting particles, the partition function is formally
equivalent to [2.39], where the energy bands εkℓ(s) are just like those given in eq. [2.46], with the mean
field renormalized Raman coupling Ω → Ω− Us. This leads to a more explicit version of eq. [3.3]:

s =
1

2Nsites

∑
k

∑
ℓ=1,2

f(εkℓ(s)− µ̃)
∂εkℓ(s)

∂Ω
. (3.4)

As we have anticipated, the self-consistency equation [3.3] can also be regarded as a minimization of
the grand canonical potential2 F (s) = −T logZ(s) with respect to the variational parameter s. This can
be simply proved starting from the minimization condition ∂F

∂s = 0, and observing that F (s) depends on
s via the quantity Ω − Us, the only exception being the additive term Us2Nsites (which comes from the
internal energy), so that

∂F

∂s
= 0 → −U ∂F

∂Ω
+ 2UNsitess = 0 → s =

1

2Nsites

∂F

∂Ω
= − T

2Nsites

∂

∂Ω
logZ, (3.5)

which is exactly eq. [3.3]. In finding the self consistency equation via this approach, as we have emphasized,
it is important to keep track of constant terms in the Hamiltonian that depend on the variational parameters,
such as Us2Nsites in this case.

The solution of eq. [3.3] is obtained iteratively: we start from an initial guess s = s0 and evaluate
the right-hand side at s0 to get an updated value s = s1, then we evaluate the right-hand site at s1 to get
s = s2 and so on, until the convergence condition |sn − sn−1| < ε (where ε is an arbitrary convergence
threshold) is satisfied.

3.1.2 Antiferromagnetism in two-flavor systems

An important feature of low temperature Hubbard-like systems is the tendency towards the formation of
an antiferromagnetic phase with long range order. On a bipartite lattice, the antiferromagnetic phase is
characterized by a spontaneous breaking of the lattice translational symmetry and of the global SU(2)

2We denote the grand canonical potential with F instead of the more conventional Ω to avoid conflicts of notation. This is
motivated by the fact that, for the half-filled system, it coincides with the Helmholtz free energy, typically denoted by F .
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spin symmetry, and the system has different properties on two sublattices A and B, such that every site
in sublattice A has sites of sublattice B as nearest neighbors and vice versa. All the sites within the same
sublattice, however, have indistinguishable local properties. This can be included in the Hartree-Fock
scheme outlined above by generalizing the ansatz on the local density:

⟨ni↑⟩ =
1

2
+ (−1)Rim, ⟨ni↓⟩ =

1

2
− (−1)Rim, (3.6)

where Ri = 0 if site i belongs to sublattice A, and Ri = 1 if i belongs to sublattice B. The variational
parameter m, which represents the order parameter, can be rewritten as m = 1

2Nsites

∑
i(−1)Ri⟨ni↑ − ni↓⟩

and therefore it is called staggered magnetization. The non magnetic case is simply recovered setting m = 0.
From a geometrical point of view, such a bipartite lattice can be regarded as a Bravais lattice with two

sites per unit cell. For example, the one-dimensional lattice with spacing a can be regarded as another
one-dimensional lattice with spacing 2a and the unit cell made up of two sites A and B at a distance a.
The two dimensional bipartite square lattice of spacing a instead can be regarded as a square lattice of
spacing

√
2a, rotated by 45 degrees with respect to the original, with a unit cell of two sites separated by a

distance a, as shown in fig. [3.1 (a)]. Every lattice site can now be labeled by an index j = 1, . . . , Nsites
2

running over all the unit cells and a sublattice index α = A,B. The mean field effective Hamiltonian can
be naturally rewritten in terms of the 4-component spinor Ψ†

j = (c†jA↑, c
†
jA↓, c

†
jB↑, c

†
jB↓) and its Fourier

transformed counterpart

Ψ†
k =

√
2

Nsites

∑
j

Ψ†
je

−ik·rj , (3.7)

where k belongs to the first Brillouin zone of the new Bravais lattice, which is often called restricted or
magnetic Brillouin zone (MBZ). The MBZ is sampled uniformly with Nsites

2 values of k, where Nsites is the
total number of lattice sites (including both sublattices). For the one dimensional lattice, the MBZ is
defined as k = −π

2 + 2πn
Nsites

, with n = 0, . . . , Nsites
2 − 1; whereas for the square lattice it is shown in fig. [3.1

(c)].
The effective mean field Hamiltonian can be written in the momentum space representation by standard

prescriptions; however the calculation can be lengthy and cumbersome, particularly in higher dimensional
lattices; so it is instructive to discuss a graphical approach, which exploits a physical intuition to readily
get the result. First of all, Heff

k is a 4× 4 Hermitian matrix, where the two diagonal 2× 2 blocks describe
local processes in sublattice A and B respectively, while the off-diagonal 2× 2 blocks represent hopping
processes. Therefore, Heff

k has the following general structure (at half filling):

Heff
k =


−Um Ω− Us −tgk↑ 0
Ω− Us Um 0 −tgk↓
−tg∗k↑ 0 Um Ω− Us

0 −tg∗k↓ Ω− Us −Um

 (3.8)

The top-right off-diagonal block describes tunneling events from sublattice B to A, and it can be built
according to the following graphical rules:

• every tunneling process B→A is represented by an arrow pointing in the direction of hopping;
however, due to the residual translational symmetry of the new Bravais lattice, there is just a
small subset of inequivalent hopping processes. The full hopping scheme can be reconstructed by
periodically repeating this subset along the directions of the primitive lattice vectors. The relevant
subset for the square lattice is shown in fig. [3.1 (b)].
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• Next to every arrow, we write a phase factor which represents the phase accumulated by a particle
of momentum k subject to the corresponding hopping process. This is given by the product of two
factors: one coming from the synthetic flux, and the other one coming from the Fourier transform.

– The gauge flux contribution is determined by the orientation of the arrow: if it is opposite to x̂,
the factor is eiσγx , else it is e−iσγx; if it is opposite to ŷ, the factor is eiσγy , else it is e−iσγy .

– The momentum contribution is given by a factor eik·(rj−ri), where rj and ri are the lattice
vectors in the reduced Bravais lattice labeling the two unit cells that are connected by the
hopping process rj → ri.

• The functions gkσ are given by the sum of all the previously identified phase factors with that specific
σ = ±1

2 .

For instance, for a one-dimensional lattice we have

gkσ = eiσγ + e−iσγe−2ika, σ = ±1

2
;

while for the square lattice we have

gkσ = eiσγx + e−iσγxe−2ikxa + e−iσγye−i(kx+ky)a + eiσγyei(−kx+ky)a, σ = ±1

2
; (3.9)

where we used the Bravais primitive vectors e1 = a(x̂− ŷ) and e2 = a(x̂+ ŷ).
The four eigenvalues of the mean field Hamiltonian [3.8] are

εkℓ = ±
√
U2m2 + (Ω− Us)2 + t2

|gk↑|2 + |gk↓|2
2

± 1

2

√
t4(|gk↑|2 − |gk↓|2)2 + 4(Ω− Us)2t2|gk↑ + gk↓|2

(3.10)
with the four possible combinations of plus and minus signs. The self consistency equation [3.3] for the
parameter s is formally unchanged, the only difference being that εkℓ are given in eq. [3.10]; but now we
also need to introduce a similar equation for m. This stems from the definition of m given above:

m =
1

2Nsites

∑
k∈MBZ

⟨nkA↑ − nkA↓ − nkB↑ + nkB↓⟩ = − 1

2NsitesU

〈
∂Heff

∂m

〉

where we used the identity
∑Nsites/2

j=1 njασ =
∑

k∈MBZ nkασ, and we introduced the Hamiltonian operator

Heff =
∑

k∈MBZ Ψ
†
kH

eff
k Ψk. We can now rewrite the right-hand side in terms of derivatives of the partition

function, following the same steps that we outlined in the derivation of eq. [3.3], and the result is:

m =
T

2NsitesU

∂

∂m
logZ(s,m). (3.11)

Finally, the set of self-consistency equations to be solved for a two-flavor system with spatial antiferromag-
netism is:

s = − 1

2NsitesU

∑
k∈MBZ

4∑
ℓ=1

f(εkℓ(s,m)− µ̃)
∂εkℓ
∂s

, m = − 1

2NsitesU

∑
k∈MBZ

4∑
ℓ=1

f(εkℓ(s,m)− µ̃)
∂εkℓ
∂m

(3.12)

where we have emphasized the symmetry of the two equations by using ∂εkℓ
∂Ω = 1

U
∂εkℓ
∂s .
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unit cell

(a) (b)

(c)

Brillouin zone

Magnetic 
Brillouin zone

sublattice A sublattice B

Figure 3.1: (a) Geometrical structure of a bipartite two-dimensional square lattice: the vectors e1,2 are
the primitive lattice vectors and there are two sites per unit cell (belonging to sublattices A and B). (b)
Representation of all the “independent” hopping processes, with the related phase factor entering the
momentum space Hamiltonian. The red labels are the Bravais vectors labeling the unit cells where the
sites are located. The hopping scheme for the full lattice can be obtained by periodically repeating this
pattern and including the reverse hopping processes with a complex conjugate phase factor. (c) Brillouin
zone and Magnetic (reduced) Brillouin zone of the square lattice, with the high symmetry path ΓXMΓ
highlighted in red.

After solving the self-consistency equations and finding the optimal values of s and m, any observable
can be computed using the energy bands εkℓ(s,m) evaluated at the converged values of the variational
parameters. For instance, the chiral current can be computed via a straightforward generalization of eq.
[2.40]:

⟨Ichir,a⟩ = − 2

Nsites

∑
k∈MBZ

4∑
ℓ=1

f(εkℓ(s,m)− µ̃)
∂εkℓ(s,m)

∂γa
. (3.13)

The converged values of s and m at Ω = 0.5t and γ = π/2 for several temperatures T and interaction
strengths U , along with the chiral current are shown in fig. [3.2] for the two-leg ladder. We have chosen
γ = π/2 to maximize the chiral behavior and a small value of Ω, since this is where we expect the richest
physical scenario: the system is metallic at U = 0, and we expect that the interaction will drive the system
towards an insulating phase. First of all, let’s consider the behavior of s as a function of U at T = 0: it is
always negative and its absolute value increases upon increasing U , until it rapidly saturates to |s| ≈ 0.5
at U = Uc ≈ 4t. Consequently, the effective Rabi coupling saturates to the value ≈ Ω + U/2, which is
proportional to U . In this regime, antiferromagnetism is completely frustrated (m = 0), while for U < Uc

there is antiferromagnetic order with m exponentially vanishing as U goes to zero. Since for any m ̸= 0
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Figure 3.2: Results of the mean-field analysis for the two-flavor system in one spatial dimension at
representative values of the parameters: Ω = 0.5t, γ = π

2 and Nsites = 500. The converged values of s and
m as functions of U and T are presented in panel (a) and (b) respectively. The chiral current across the
U -driven metal-insulator phase transition is shown for some representative temperatures in panel (c) and
as a color plot in panel (d). We find similar results also for the (2+1)-dimensional system.

there is a spectral gap of order ≈ Um opening at the Fermi level, according to the Hartree Fock method,
the system at T = 0 is an antiferromagnetic insulator for U < Uc and a band insulator similar to the
non-interacting one for U > Uc. However, it turns out that the antiferromagnetic order is fragile with
respect to thermal fluctuations, as it only survives in a small “dome” of the space of parameters (U, T )
(see fig. [3.2 (b)]). In particular, it never survives at T ≳ 0.3t. The chiral current as a function of U has
the same qualitative behavior as the one observed in the non interacting case as a function of Ω, with a
peak at U = Uc and a hyperbolic tail at U > Uc. This is explained by the fact that the phase at U > Uc is
formally equivalent to the non-interacting insulating phase with Ω → Ω+ U/2, so we have Ichir ≈ t2 sin γ

Ω+U/2 .
As a function of temperature, the chiral current is progressively lowered, and the sharp peak at T = 0 gets
smoothed, lowered in intensity and pushed to larger values of U (see fig. [3.2 (c)]). However, it is still
maximized at intermediate values of U and it slowly decays for larger U . Eventually, at large temperatures
(of order T ∼ 2t), the current effectively vanishes and the high temperature equilibrium states are non-
chiral. In real experimental setups, the lowest achievable temperature is typically a few tenths of the
hopping scale, so we expect that at least qualitatively this phenomenon could be experimentally observed.
On the other hand, these thermal fluctuations can hinder the antiferromagnetic state, hence it can be
neglected in the following.
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As a final remark, we clarify that, in principle, a more general and conservative approach to the
variational problem is to introduce two s parameters for the two sublattices as

sA =
2

Nsites

Nsites/2∑
j=1

⟨c†jA↑cjA↓⟩, sB =
2

Nsites

Nsites/2∑
j=1

⟨c†jB↑cjB↓⟩;

while here we have implicitly assumed sA = sB = s. Following the same conceptual steps that we have
outlined above, we can write a set of three self-consistency equations for sA, sB and m. However, the
numerical solution of these equations shows that, within the specified numerical tolerance, as a matter of
fact sA = sB. This result justifies a posteriori the assumption made here, which on the other hand, allowed
us to illustrate the steps of the procedure avoiding technical complications.

3.1.3 Spatially uniform three-flavor system

In the case N > 2 the scenario is much richer, since other mean-field parameters should be taken into
account. For instance, the flavor-exchange processes are, in general, described by N(N − 1)/2 variational
parameters sσρ = ⟨c†jσcjρ⟩, with σ ̸= ρ and sσρ = sρσ. For N = 3, we have to include three flavor exchange
parameters, which reduce to two by symmetry for the Raman tunneling scheme studied in this work:
s−1,0 = s0,1 := s and s−1,1 := s̃. Besides flavor exchange, another parameter should be introduced
when more than two flavors are available, namely the imbalance in the population of different flavors
nσ = ⟨c†jσcjσ⟩. These variational parameters satisfy the constraint

∑
σ nσ = 1, which means that the

independent parameters are N − 1. For N = 3 we would need two parameters to describe the flavor-
population imbalance, but the point reflection symmetry offers another constraint n−1 = n1 and limits the
number of independent parameters to one. We can thus write a simplified variational ansatz by means
of only three parameters: δ, which measures the imbalance between the population of the outer and
inner flavors (n0 = 1/3 − δ; n−1 = n1 = 1/3 + δ/2); s, which renormalizes the Raman matrix element
(Ωeff → Ω−Us); and s̃, which introduces an effective hopping between the external flavors with amplitude
−Us̃. The mean field Hamiltonian, written in the canonical ensemble, reads

H =
∑
k

Ψ†
k

 ε(k+ γγγ) + Uδ
2 Ω− Us −Us̃

Ω− Us ε(k)− Uδ Ω− Us

−Us̃ Ω− Us ε(k− γγγ) + Uδ
2

Ψk + U

(
2s2 + s̃2 +

3

4
δ2
)
Nsites (3.14)

where now the spinor has three components Ψ†
k = (c†k,1, c

†
k,0, c

†
k,−1).

Once again, the optimal values of the three variational parameters are obtained by minimizing the
Helmholtz free energy F (s, s̃, δ). At zero temperature, the free energy reduces to the internal energy of the
system E0(s, s̃, δ), so we can avoid the problem of computing the chemical potential by working in the
canonical ensemble, as sketched in sec. [2.4.2]. For a given set of parameters {s, s̃, δ} we can compute the
internal energy by summing the Nsites lowest eigenvalues of H (including the constant term). Since any
numerical routine for finding the minimum of a target function only requires the possibility to evaluate
that function at any given point, this is enough to optimize the internal energy. The optimized parameters
with the corresponding chiral current are shown in fig. [3.3] for a representative case.

We observe that the interaction induces an imbalance in the flavor-resolved density, a renormalization
of the Rabi coupling Ωeff = Ω− Us and most importantly it induces an effective Rabi coupling Ω̃eff = −Us̃
between the unconnected flavors σ = −1 and σ = +1. Since the variational parameters are nearly constant
in the insulator, where moreover we can assume U ≫ Ω, we conclude that the ratio between effective
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Figure 3.3: Optimized variational parameters (left) and corresponding chiral current (right) obtained by
a spatially uniform mean-field analysis carried at T = 0 on a three-leg ladder for a representative set of
parameters: Ω = 0.2t, γ = 3π/8.

Rabi couplings is Ω̃eff/Ωeff ≈ s̃/s, which is roughly ≈ −1 for the parameters used here. This suggests the
intriguing idea that the interaction can drive the system to a topologically non-trivial insulator, at least
at the quasiparticle level; however, a calculation of the Zak phase through eq. [2.58] reveals that this is
not the case, as Z1 = 0 when the effective Rabi couplings have opposite sign. Even though the interaction
introduces this new process on top of the non interacting system, the qualitative behavior of the chiral
current is unaltered. However, unlike the two-legs ladder, the quantitative estimate of the hyperbolic tail is
not simply given by replacing Ω → Ωeff in eq. [2.57].

The role of temperature can be studied moving back to the grand canonical ensemble and numerically
computing the chemical potential µ̃ which satisfies the constraint on the total density

∑
kℓ f(εkℓ(s, s̃, δ)−

µ̃) = Nsites. The results (not shown) confirm the qualitative picture observed for N = 2: the current peak
is rounded off and lowered in intensity, but the current survives up to temperatures T ≈ t. Here we have
described the mean-field method for a spatially uniform system, neglecting any form of spatial magnetic
ordering. The study of magnetic orderings in three-flavor systems can be very tricky, but at the same time
we expect that in this context they should be fragile with respect to experimental deviations from ideality,
such as thermal fluctuations, presence of a local potential, etc.

3.2 Including dynamical correlations with DMFT

So far we have investigated the system under the assumption that we can treat the interacting particles via
an effective non-interacting Hamiltonian or, alternatively, that the self-energy is a constant. This is generally
a very strong assumption when studying interacting many-body systems, as in general they are subject
to significant quantum fluctuations. A remarkable example is the Mott transition, where the quantum
fluctuations are responsible for an interaction-driven metal-insulator phase transition. Such fluctuations
are captured by the momentum and frequency dependence of the self-energy Σ̂(k, iωn); however, finding
an approach that allows to compute the full dependence on momentum and frequency with no further
assumptions is very complicated. We can take a step in this direction by means of DMFT, as described in
sec. [1.3], assuming that the self-energy does not depend on momentum, while making no assumptions
about the frequency dependence: Σ̂(k, iωn) ≈ Σ̂(iωn). This assumption is generally expected to be more
solid as the coordination number of the lattice increases and to be exact in the limit of infinite coordination
[27].
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A suitable Anderson impurity model can be constructed by choosing a spinor representation for the
bath and the impurity, for example we can mimic the structure of the spinor Ψ†

k by choosing Ψ†
ℓ =

(c†
ℓ,N−1

2

, . . . c†
ℓ,−N−1

2

), so the impurity on-site energy is

ε̂0 =

(
−µ Ω
Ω −µ

)
(N = 2); ε̂0 =

 −µ Ω 0
Ω −µ Ω
0 Ω −µ

 (N = 3)

and the interaction term mimics the local physical interaction: U
2 n0(n0 − 1), where n0 = Ψ†

0Ψ0. The bath
on-site energies and hybridization matrices ε̂ℓ and V̂ℓ should mimic the structure of Ĥk, so we can assume
them to be real symmetric matrices. This is not the only possible choice: for example one can perform
a unitary transformation Ψk → Ψ̃k that diagonalizes Ĥk on the original lattice problem and adapt the
Anderson impurity model in this new basis [69]. With the latter approach we can assume ε̂ℓ and V̂ℓ to be
diagonal, thus reducing the number of parameters used to fit the Weiss field and speeding up the fitting
process. However, this can be tricky to generalize to multiorbital problems such as those discussed in sec.
[3.5].

In the following sections we present results obtained with DMFT solving the Anderson impurity
problem with exact diagonalization at T = 0, where we only need to evaluate the ground state (including
its degeneracy). The calculation can also be extended at finite temperature using the exact diagonalization
as an impurity solver: in this case we need to evaluate all the excited states having a Boltzmann weight
that exceeds a given numerical threshold (again including degeneracies). This can be tricky, since at a
given temperature we don’t know beforehand the exact number of low-lying eigenstates that we need
to compute, but it has to be determined dynamically. Moreover, in order to compute the impurity Green
function, we have to repeat the Lanczos method multiple times, once per every relevant eigenstate: this
can considerably slow down the computation time, especially at large temperatures. Alternatively, one
could use a different impurity solver, more suitable for finite temperature calculations, for example the
quantum Monte-Carlo solver based on the Hirsch-Fye algorithm [70] or its extensions [71]. This is left as
a purpose for future work.

Moreover, since we expect the antiferromagnetic order to be fragile with respect to thermal fluctuations
and since we are also interested in the interplay between chirality and the Mott transition, we first discuss
results obtained from single-site DMFT by explicitly frustrating antiferromagnetism and we comment on
spontaneous symmetry breaking at the end.

3.2.1 Chiral current

After convergence, we can compute the chiral current by evaluating ⟨c†kσckρ⟩ via eq. [1.39], whose diagonal
components are the flavor-resolved momentum distribution of the density ⟨nkσ⟩, and from the latter we get
the chiral current using eq. [2.32]. The results are shown in fig. [3.4] for different lattice dimensionalities
and number of flavors. In the figure we also compare these results with the Hartree-Fock method discussed
in sec. [3.1.1] and with a strong coupling limit approach discussed in sec. [3.4]. We always consider a
small Rabi coupling Ω < Ωc in order to have a metallic state at U = 0 and study the evolution towards an
insulator as U increases.

All the curves feature a relatively smooth growth for small U , interrupted by a cusp-like maximum
at a critical value Uc, where the system undergoes the U -driven metal-insulator transition, followed by
a ∼ 1/U behavior in the insulating phase. In other words, the behavior of Ichir is qualitatively the same
for different lattice dimensions d and number of flavors N ; however, chirality is more pronounced for the
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DMFT

MFT

SC

Figure 3.4: Chiral current as a function of U/t for a (1 + 1)-dimensional structure (first row) and a
(2 + 1)-dimensional structure (second row); both for N = 2 (left column) and N = 3 (right column).
The different colors represent results obtained with different methods: a static mean field Hartree-Fock
approach (MF), dynamical mean field theory (DMFT) and the effective strong-coupling limit (SC) discussed
in sec. [3.4]. All the techniques confirm the presence of a non differentiable peak in the function Ichir(U)
at the transition and a 1/U tail in the insulating phase.

simplest case d = 1, N = 2, while it progressively becomes more fragile as the lattice coordination or the
number of flavors increase. Moreover, the chiral current is typically larger in the insulating phase than in
the metallic phase, and it is maximized at the metal-insulator transition, similarly to what we found in
the non-interacting limit, where the transition (in that case driven by Ω) has a more conventional band
character.

Surprisingly, we observe that the Hartree-Fock method captures the correct quantitative behavior both
at weak coupling U ≪ t and at strong coupling U ≫ t; while it is less accurate at intermediate couplings,
where it underestimates Uc and overestimates the peak current.

3.2.2 Spectral properties

In order to get a more solid understanding of the role of interactions, we can look at the spectral properties.
For example, we can compute the single-particle spectral function

A(k, ω) = − 1

π
lim

η→0+

N∑
σ=1

Im[Gσσ(k, ω + iη)], (3.15)
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(a)

LHB

UHB

LHB

UHB

(b)

Figure 3.5: (a) Evolution of the spectral function for representative values of U in the weak, intermediate
and strong coupling regimes respectively. The spectral quasiparticle peak around the Fermi level coexists
with an incoherent part of the spectrum formed by a lower Hubbard band (LHB) and an upper Hubbard
band (UHB). The color scheme reflects the flavor polarization of a specific state. (b) Non-vanishing
components of the self energy (in units of t) as a function of Matsubara frequencies for the same repre-
sentative values of U . At intermediate couplings, the diagonal part develops a non-negligible dynamical
structure, while moving to weak and strong coupling it progressively reduces to a constant (left panel).
The off-diagonal components are nearly constant and the value represents the effective Rabi coupling Ωeff
in the Hartree-Fock picture (right panel). Model parameters: N = 2, γ = π/2, Ω = 0.4t.

which provides information on the whole many-body spectrum. In particular, it represents both coherent
and incoherent excitations available for a single particle3, and therefore it can be regarded as a generalized
version of the band structure for an interacting system. The momentum-dependent retarded Green
function can be computed from the converged self-energy evaluated at real frequencies Σ̂(ω) through
Ĝ(k, ω + iη) = [ω + iη − Ĥk − Σ̂(ω)]−1. In turn, Σ̂(ω) is obtained from the impurity problem by applying
the Lanczos method to obtain the impurity Green function at real frequencies. Numerically, the parameter
η is taken as a small arbitrary constant (of order η ≈ 10−2) and it provides an artificial spectral broadening,
transforming singular Dirac-delta peaks into regular Lorentzian peaks with a dispersion ∝ η.

The evolution of A(k, ω) as a function of the interaction strength U is shown in fig. [3.5 (a)] taking
a two-leg ladder as an example. While in the symmetric Hubbard model the quasiparticle peak at the
Fermi level disappears continuously at the Mott transition as its spectral width goes to zero, leaving
a preformed gap of order U , in SU(N)-broken systems a rather large quasiparticle peak survives just
before the transition, and the insulating gap arises from a splitting of such peak into two features. As a

3With the word “coherent”, we mean long-lived quasi-particle excitations, characterized by a large lifetime; while we use
“incoherent” to denote short-lived states, where the single-particle excitation rapidly decays in the many-body state.
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consequence the gap is not proportional to the Hubbard U . At the same time, analogously to the standard
scenario, spectral weight moves towards high-energy features separated by an energy U already in the
metallic state, which are usually referred to as precursors of the Hubbard bands. Upon increasing U , the
band gap increases, and the central spectral features (where the band gap has opened) are continuously
pushed towards the preformed Hubbard bands, until they finally merge at very large U .

We can also look at the dynamical structure of the self-energy in Matsubara frequencies Σ̂(iωn), which
encodes the role of dynamical quantum correlations beyond the static mean field. The relevant components
for a two-leg ladder are shown in fig. [3.5 (b)] (all the other components are either vanishing or related to
these by symmetry properties). First of all, we observe that the off-diagonal component is nearly constant
as a function of ωn for every representative value of U . This is consistent with the Hartree-Fock analysis
and we can interpret the constant value as the effective Rabi coupling Ωeff. This is particularly clear at
strong coupling, where – using the specific parameters of the example shown in the figure – we have
Σ↑↓(iωn) ≈ 4t and the effective Rabi coupling is Ωeff ≈ Ω + U/2 ≈ 4t. As we will see in chapter [5],
a nearly constant real part of the off-diagonal self-energy is a common feature of systems with broken
symmetries. Secondly, we notice that the imaginary part of the diagonal component has a mild dynamical
structure at U ≪ t or U ≫ t, but it has a significant frequency dependence at intermediate couplings,
especially close to the phase transition. This explains why the Hartree-Fock method, which neglects the
frequency dependence, captures so well the behavior of the chiral current both for very weak and very
strong interactions, while it fails to correctly predict the position of the peak. The enhanced dynamical
dependence of Σ̂(iωn) is typical in a correlated metal close to the Mott transition; however, in a standard
Mott insulator (without symmetry breaking), the self-energy diverges at ωn → 0 as ≈ 1/iωn. Here instead,
not only the self-energy is regular in the insulating phase, but it also gets progressively less dynamical
increasing U .

A quantity that reflects one of the most relevant effects of dynamical correlations at low frequency is
the quasiparticle weight. We observe that in the limit ωn → 0, the self-energy is typically linear in frequency,
and it can be expanded as

Σσσ =

(
1− 1

zσ

)
iωn +O(ω2

n) → zσ =

(
1− ∂Σσσ(iωn)

∂iωn

∣∣∣∣
iωn→0

)−1

. (3.16)

If zσ = 1 we have a non-interacting system, while if zσ → 0 we have a Mott insulator, as this expansion
of the self-energy breaks down due to a low-frequency divergence. Moreover, the lower zσ, the higher
the slope of Σσσ(iωn), which suggests that the dynamical dependence is significant and that quantum
correlations are important. We argue that the above picture is essentially the same for higher dimensionality
and for three flavors by plotting the quasiparticle weight for d = 2 and N = 3 as a function of U , along with
the corresponding fraction of doubly occupied sites D = N−1

sites
∑

i,σ<ρ⟨niσniρ⟩, in fig. [3.6]. We observe
that at the phase transition, where D drops rapidly leading to a state with almost one particle per site, the
quasiparticle weight is small but finite, denoting a significant degree of correlation; but in the insulating
phase it jumps back to ≈ 1, supporting the general validity of the previous considerations.

In conclusion, U drives the system towards a state which can be considered a Mott state since it is
stabilized by a strong suppression of doubly occupied sites, but, at the same time, is similar to a band-
insulator and it can be described by static mean-field. From an intuitive point of view, the key point is that
in our system with broken SU(N) symmetry there is no competition between the states selected by the
Hubbard U (any state with one fermion on every site) and those favored by the symmetry-breaking field,
which are specific single-fermion states obtained as linear combinations of the different components. As a
result, increasing U favors the stabilization of a band insulator by reducing the weight of states with more

63



3. Chiral currents in strongly interacting systems

Figure 3.6: Quasiparticle weights (top panel) and double occupancies (lower panel) as a function of the
Hubbard U for the two-dimensional system with N = 2 (left) and N = 3 (right). For practical reasons,
the three zσ are associated to “effective flavors”, i.e. they are computed using the diagonal part of the
self-energy written in a basis that diagonalizes the non-interacting lattice Hamiltonian. This explains why
z−1 ̸= z+1, but the physical interpretation is not affected.

than one fermion per site. In other words, the Mott localization and the formation of the band insulator
are not competitive effects and they can actually cooperate to stabilize the same insulating state. As a
matter of fact, our interaction-driven transition is very similar to the band-insulator transition that we have
found and discussed in the non-interacting system.

The picture above closely resembles the insulating phase reported in ref. [51], that the authors
described as “a Mott insulator disguised as a conventional band insulator”. This is a sort of hybrid between
a Mott insulator, characterized by the suppression of local density fluctuations and by the presence of
preformed Hubbard bands, and a conventional band insulator, characterized by a frequency-independent
self-energy and an effective non-interacting description.

3.3 Effect of open boundary conditions

So far we have considered a virtually infinite system using a numerically large value of Nsites and imple-
menting periodic boundary conditions and translational symmetry along the real directions. However,
from an experimental perspective, one might argue that in a real situation the system is necessarily open at
the real edges. For this reason, here we consider a system with open boundary conditions and investigate
the spatial pattern of currents along the bonds. In order to obtain unbiased results, we have considered a
relatively small three-legs ladder with 8 sites along the real direction and we have computed the exact
numerical ground state, from which we have extracted the currents.

We summarize the results in fig. [3.7], which shows the current pattern along the three-legs ladder
in two representative situations: the metallic state U < Uc (left) and the insulating state U > Uc (right).
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Figure 3.7: Current pattern in the metallic (U = 2.0t, left panel) and in the insulating (U = 8.5t, right
panel) regimes. The color of every circle represents a flavor index, while the area is proportional to the
density ⟨njσ⟩. Similarly, the length of each arrow is proportional to the corresponding current along
that bond. In the former case, vertical bonds are, in general, flown by a non-zero current resulting in
multiple vortexes; while in the latter case the current flows only along the edges of the ladder, resulting in
a single-vortex structure, reminiscent of the Meissner effect in superconductors. Results are obtained by
means of the exact diagonalization of the interacting three-legs ladder with Nsites = 8 and open boundary
conditions both along the real and the synthetic direction. The model parameters are Ω = 0.5t, γ = 2π/7.

We can appreciate that the edge current observed in the insulating phase is larger than the edge current
in the metal, in agreement with our previous results. A more accurate investigation [3] shows that the
exact solution features the characteristic hyperbolic behavior of the chiral current in the insulator and that
there is a sharp peak at the transition point. This corroborates the idea that the qualitative behavior of the
current outlined in this work can be observed experimentally.

This result is not only a check of robustness, but it also provides more information on the system.
In particular, we can now spatially resolve the pattern of persistent currents in the ground state. At
weak-coupling, the currents along the synthetic dimension (vertical arrows) are non-vanishing and their
magnitude and sign are site-dependent, leading to a pattern of vortexes with opposite “charge” alternating
in real space. This configuration has been observed in analogous bosonic systems [72, 73, 74] and is
dubbed vortex phase. On the other hand, in the strong-coupling regime, the currents in the synthetic
dimension are zero everywhere except for the two outermost sites in the physical dimension. In other
words, the currents are expelled from all inner bonds and can circulate only along the outer boundary of the
(1+1)-dimensional structure, a circumstance which is reminiscent of the Meissner effect in superconductors.
Due to this similarity, the latter phase is named Meissner phase.

Remarkably, moving from PBC to OBC, the point-reflection symmetry discussed in sec. [2.3.1] is
preserved. With spatially non uniform currents, this translates in the constraints:

⟨Ij⟩ = −⟨I−j⟩ and ⟨I(j,σ); (j+1,σ)⟩ = −⟨I(−j−1,−σ); (−j,−σ)⟩, (3.17)

where the sites are labeled symmetrically with respect to the geometric center of the ladder (the pivot of
the symmetry). For example, with an odd number of sites, we can label the central site with j = 0 and
those at its right (left) with j = ±1, . . . ,±Nsites−1

2 respectively. For an even number of sites instead we can
label the site using half integers: j = ±1

2 , . . . ,±
Nsites−1

2 . We observe as a consistency check that the current
pattern in fig. [3.7] reflects this symmetry. Moreover, this symmetry could be exploited to further reduce
the dimension of the Hamiltonian blocks, improving the computational efficiency and allowing to further
increase the number of sites. However this is left as a purpose for future optimization work on our codes.
As a final consistency check, we have verified that the pattern of currents obeys the continuity equation
[2.25] at every node, which at equilibrium reduces to a Kirchhoff current law, i.e. we have checked that
the sum of currents flowing into a node equals the sum of currents flowing outward.
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3.4 Strong coupling limit

The study of interacting particles with Hubbard-like interactions at low temperatures can be significantly
simplified in the strongly coupled regime, when the Hubbard U is the dominant energy scale. In this case,
configurations featuring multiple particles on the same lattice site are energetically penalized with respect
to configurations where particles spread out over all the available lattice sites. The energy cost required to
increase the number of multiply occupied sites is of order ∼ U , which means that such configurations are
essentially not populated by thermal fluctuations at sufficiently low temperatures T ≪ U or, in other words,
they contribute to any equilibrium state with a vanishing statistical weight. The immediate consequence
is that we can build an effective low-energy theory by restricting the original Hilbert-Fock space to the
subspace of states with the lowest possible number of multiply occupied lattice sites. Moreover, if the
number of particles is equivalent to the number of lattice sites, the relevant subspace is made of states with
exactly one particle per site, and no multiple occupancies whatsoever. This implies that the only relevant
degree of freedom is the local flavor, thus the particles can be regarded as local magnetic moments (or
their multiflavor generalization) rather than fermions.

3.4.1 Generalized Schrieffer-Wolff transformation

Let’s consider, for concreteness, a system of multiflavor fermions with external Raman coupling and
interacting via a Hubbard like interaction, as described by Hamiltonian [2.21], which has the general
structure H = Ht +HΩ +HU , where:

Ht =
∑
⟨ij⟩

∑
σ

(
tσc

†
iσcjσ + h.c.

)
, HΩ =

∑
i, σρ

(
Ωi,σρc

†
iσciρ + h.c.

)
, HU =

U

2

∑
i

ni(ni − 1). (3.18)

The classical idea to build the effective low energy Hamiltonian in the strong Hubbard interaction
regime is, generally speaking, to perform a suitable unitary transformation on H, known as Schrieffer-
Wolff transformation, of the form H → eSHe−S , where the generator of the transformation S must be
determined in order to fulfill the desired constraint that, at lowest order in tσ, the transformed Hamiltonian
does not contain terms that change the number of doubly occupied sites [75]. However, this method
has been recently embedded in the framework of the Floquet theory [76] and generalized to multiflavor
Hubbard-like systems [77]. This modern formulation of the method allows for a more natural and flexible
calculation of the effective Hamiltonian, so we will briefly revise the method in the following, with
particular attention on the specific system described above (see e.g. [78] for a review on the basics of
Floquet theory).

The main idea is to rephrase the problem in a “rotating” frame of reference, which is defined by the
transformation of any time-dependent state |ψ(t)⟩ into |ψrot(t)⟩ = eiHU t|ψ(t)⟩. In the rotating frame, the
Hamiltonian Hrot(t) is time dependent and time periodic, as we deduce from the Schrödinger equation:

i∂t|ψrot(t)⟩ = Hrot(t)|ψrot(t)⟩,

which, using the Schrödinger equation in the original frame i∂t|ψ(t)⟩ = H|ψ(t)⟩, leads to

Hrot(t) = −HU + eiHU tHe−iHU t. (3.19)

The second term in eq. [3.19] can be expanded as a sum of nested commutators by means of the
Baker-Campbell-Hausdorff identity and it yields

Hrot(t) = −HU +H + it[HU , H] +
(it)2

2!
[HU , [HU , H]] +

(it)3

3!
[HU , [HU , [HU , H]]] + . . . (3.20)
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3. Chiral currents in strongly interacting systems

Since [HU , HU ] = [HU , HΩ] = 0, the only non trivial commutator is [HU , Ht], which can be evaluated as
follows. First of all, let’s introduce the projection operator Pi,n which projects a state into another state
with exactly n particles on site i, so for instance the operator Pi,n c

†
iσcjσ Pj,n′ moves a particle with flavor

σ from site j, where at the beginning there are n′ particles, to site i, where in the end there are n particles.
The hopping Hamiltonian can be split as a sum of such operators, in particular:

Ht =
N∑

n,n′=1

Ht,nn′ , Ht,nn′ =
∑
⟨ij⟩,σ

(
tσPi,n c

†
iσcjσ Pj,n′ + t∗σPj,n c

†
jσciσ Pi,n′

)
. (3.21)

The main advantage of such decomposition is that the commutator of HU and Ht,nn′ is proportional to
Ht,nn′:

[HU , Ht,nn′ ] = (n− n′)UHt,nn′ , (3.22)

which allows an easy evaluation of all the nested commutators in eq. [3.20]:

[HU , . . . , [HU , Ht,nn′ ]]︸ ︷︷ ︸
p times

= (n− n′)pUpHt,nn′ .

The rotating frame Hamiltonian thus reads

Hrot(t) = HΩ +
∑
nn′

∞∑
p=0

[iUt(n− n′)]p

p!
Ht,nn′ = HΩ +

∑
nn′

eiUt(n−n′)Ht,nn′ = HΩ +
∑
m

eiUtmHt,m, (3.23)

where Ht,m =
∑

n′ Ht,n′+m,n′ and the label m can assume, in general, only integer values from −(N − 1)
to (N − 1). This formulation represents the Fourier series of Hrot(t), which manifestly shows its time
periodicity with period T = 2π/U and frequency U . The theoretical framework for the study of time
periodic Hamiltonians is Floquet theory [78]. One of the main results of Floquet theory is that it is
possible to average out the fast dynamics via a high-frequency expansion of the time periodic Hamiltonian,
obtaining an effective static Hamiltonian that describes the slow dynamics of the system [76]. Since the
rotation frequency U is the largest energy scale, here we can apply the high-frequency expansion and the
resulting effective static Hamiltonian is:

Heff = HΩ +Ht,0 +
∑
m ̸=0

Ht,mHt,−m

mU
+O

(
t2

U2

)
. (3.24)

3.4.2 Two-flavor system

For a two flavor system (N = 2), the label m can only assume three values: 0, +1 and −1. The term Ht,0

includes hopping processes that leave the number of double occupancies unchanged; while Ht,±1 include
hopping processes that increase (+1) or decrease (−1) the number of double occupancies by 1. Some
examples of these processes are schematically represented in fig. [3.8 (a)]. The effective Hamiltonian is

Heff = HΩ +Ht,0 +
1

U
(Ht,+1Ht,−1 −Ht,−1Ht,+1) (3.25)

and it contains all the processes that can occur at strong coupling, regardless of the filling factor, including
spin interactions and double-holon dynamics. However, we are mostly interested in the particular case of
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(a)

3-site process

2-site process

(b)

Figure 3.8: Schematic representation of the hopping processes described by Ht,0, Ht,±1 (a) and Ht,−1Ht,+1

(b). Lighter (darker) circles represent the position of particles before (after) the tunneling event, and the
colors represent different flavors.

half filling, which means that we want to project Heff into the subspace of the Hilbert-Fock space made
of states with exactly one fermion per site. First of all, we observe that the projection of Ht,0 on this
subspace vanishes, as its only effect is to move around double occupancies and empty sites (doublon-holon
dynamics), which are not present in the subspace. Similarly, Ht,+1Ht,−1 vanishes when it is projected, as
it involves processes that destroy a double occupancy and then create it back elsewhere, but the states
within the subspace don’t have doubly occupied sites. On the other hand, Ht,−1Ht,+1 describes processes
where a double occupancy is created first, and then destroyed, and hence it can be successfully projected
on the subspace. Expanding the latter term in a one dimensional lattice (which makes the notation more
transparent while maintaining the general idea), we get

Ht,−1Ht,+1 =
∑
ij, σρ

[
tσtρPi,1c

†
iσci+1σPi+1,2Pj,2c

†
jρcj+1ρPj+1,1 + tσt

∗
ρPi,1c

†
iσci+1σPi+1,2Pj+1,2c

†
j+1ρcjρPj,1

+t∗σtρPi+1,1c
†
i+1σciσPi,2Pj,2c

†
jρcj+1ρPj+1,1 + t∗σt

∗
ρPi+1,1c

†
i+1σciσPi,2Pj+1,2c

†
j+1ρcjρPj,1

]
=
∑
i, σρ

[
tσtρPi,1c

†
iσci+1σPi+1,2c

†
i+1ρci+2ρPi+2,1 + tσt

∗
ρPi,1c

†
iσci+1σPi+1,2c

†
i+1ρciρPi,1

+t∗σtρPi+1,1c
†
i+1σciσPi,2c

†
iρci+1ρPi+1,1 + t∗σt

∗
ρPi+1,1c

†
i+1σciσPi,2c

†
iρci−1ρPi−1,1

]
.

(3.26)

The first and the last terms describe three-site hoppings, where a particle is transferred from a site
to a next-nearest neighbor, passing through the intermediate site and “temporarily” creating a double
occupancy on that site, while keeping the total number of double occupancies unchanged. These processes
are not relevant in the subspace of interest, as they imply the presence of doubly occupied or empty sites,
and thus can be neglected. The second and third terms, on the other hand, describe an exchange of
particles between nearest neighbors, and such processes give a non trivial contribution to the effective
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Hamiltonian. Examples of these two types of processes are sketched in fig. [3.8 (b)]. Using Pi,2 = ni↑ni↓
and tσ = −teiϕσ , we get

Ht,−1Ht,+1 = 2t2
∑
i

[
(ni↑ni+1↓ + ni↓ni+1↑)− ei(ϕ↑−ϕ↓)S+

i S
−
i+1 − e−i(ϕ↑−ϕ↓)S−

i S
+
i+1

]
=

4t2
∑
i

[nini+1

4
− Sz

i S
z
i+1 − cos (ϕ↑ − ϕ↓)

(
Sx
i S

x
i+1 + Sy

i S
y
i+1

)
− sin (ϕ↑ − ϕ↓)

(
Sx
i S

y
i+1 − Sy

i S
x
i+1

)]
, (3.27)

where we have introduced the spin operators:

Sa
i =

1

2

∑
σρ

c†iσσ
a
σρciρ (a = x, y, z) and S±

i = Sx
i ± iSy

i , (3.28)

σ̂a being the a-th Pauli matrix. Finally, we observe that the density-density interaction is just a constant, as
every state in the subspace has a fixed local density ni = 1 on every lattice site, and the charge is not really
a degree of freedom, so the term ∝

∑
i nini+1 can be neglected. The specific form of Heff depends on the

convention used for the the phase factors of hopping matrix elements. The result is more transparent using
real matrix elements for hopping along the real direction (ϕ↑ = ϕ↓ = 0) and choosing a site dependent
phase factor for Raman processes Ωj,↑↓ = Ωeiγj . With this choice, the Raman matrix, written in terms of
the spin operators [3.28], reads

HΩ = Ω
∑
j

eiγjS+
j + h.c. = 2Ω

∑
j

[
cos (γj)Sx

j − sin (γj)Sy
j

]
= −

∑
j

B⃗j · S⃗j , (3.29)

where we have introduced the site dependent magnetic field B⃗j = 2Ω(− cos (γj), sin (γj), 0); and finally
the effective Hamiltonian is

Heff =
4t2

U

∑
i

S⃗i · S⃗i+1 −
∑
i

B⃗i · S⃗i. (3.30)

The effective strong coupling model is thus a spin-12 Heisenberg antiferromagnet with strength 4t2/U ≡
2J (as expected from the strong coupling limit of a Hubbard model), which is subject to an external
site dependent magnetic field of constant amplitude 2Ω, lying in the xy plane and due to the Raman
coupling. The angle formed between the magnetic fields acting on adjacent sites is constant and given
by the synthetic gauge flux γ. Strictly speaking, this interpretation holds in the limit U ≫ T , U ≫ t and
U ≫ Ω, as U represents the frequency of the rotating frame of reference, and the effective Hamiltonian is
obtained via a high-frequency expansion of the time-periodic Hamiltonian written in this frame.

Remarkably, every thermal equilibrium state of the system must satisfy a stationarity condition, which
stems from the fact that the expectation value on equilibrium states of the time derivative of any operator
vanishes; in particular, looking at the local spin operators, we get:

d⟨S⃗i⟩
dt

= 0 → ⟨[S⃗i, Heff]⟩ = 0 → −2J⟨S⃗i × S⃗i+1 + S⃗i × S⃗i−1⟩+ ⟨S⃗i × B⃗i⟩ = 0, (3.31)

where we have used the Heisenberg equation for the time evolution of spin operators and evaluated
the commutator with Heff. Interpreting the quantity −2JS⃗i±1 as the magnetic field exerted by the local
moment at position i ± 1 on the local moment at position i, eq. [3.31] represents the balance of three
torques acting on S⃗i. Not only this equation provides us with a set of 3L consistency conditions that any
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equilibrium state should satisfy, but it also suggests the interpretation of −2JS⃗i × S⃗i+1 as a mechanical
torque exerted on site i by its right nearest neighbor, which opens the door to the a more transparent
interpretation of the current operators.

In order to derive the effective current operators projected in the subspace of interest, we can use the
definitions of leg current [2.30] and rung current [2.31] given in terms of derivatives of the Hamiltonian
with respect to the auxiliary Peierls phases. The effective Hamiltonian depends on the Peierls phases only
through the kinetic term ∝ Ht,−1Ht,+1 computed in eq. [3.27]. For example, the chiral current is

Ichir =
1

Nsites

(
dHeff

dϕ↓
− dHeff

dϕ↑

)∣∣∣∣
ϕ↑=ϕ↓=0

= − 1

Nsites

8t2

U

∑
i

(
Sx
i S

y
i+1 − Sy

i S
x
i+1

)

Ichir = − 1

Nsites

8t2

U

∑
i

(
S⃗i × S⃗i+1

)
z

(3.32)

which, in light of the discussion above, can be interpreted as the z-component of the torque exerted
between adjacent spins, averaged over all the lattice sites. Similarly, the effective rung current is

Ii =
(
S⃗i × B⃗i

)
z

(3.33)

and it can be seen as the z-component of the torque exerted by the external magnetic field on the local spin.
Notice that the z-component of the mechanical equilibrium condition [3.31] is nothing but the Kirchhoff’s
current law at one of the nodes connected to the i-th rung.

The effective spin model outlined above provides a semiclassical picture that we can use to compute
observables in some particular cases. For example, a relevant regime to compare this model with previous
results is the limit Ω ≫ J , where the local magnetic field prevails over the Heisenberg coupling in eq.
[3.30] and in the ground state all the spins are aligned to the local field (thus lying on the xy plane).
The spin at site i+ 1 is oriented at an angle γ with respect to the spin at site i, which implies that the z
component of the torque between the two is 1

4 sin γ, where the factor 1/4 is due to the fact that the spin

is 1/2. From eq. [3.32] we readily obtain ⟨Ichir⟩ ≈ 2t2 sin γ
U , which is plotted in fig. [3.4] and is consistent

with the mean field prediction when U ≫ Ω. A more accurate estimate to higher orders in t/U and Ω/U
can be obtained by applying perturbation theory.

Finally we briefly mention that, in the opposite regime J ≫ Ω, the spins form an antiferromagnet
oriented along z, resulting in a vanishing torque between nearest neighbors, since two adjacent spins are
antiparallel and consequently in a vanishing chiral current. This suggests that, consistently with the mean
field analysis, the ground state is antiferromagnetic at intermediate U .

3.4.3 Three-flavor and multi-flavor system

This section is mainly devoted to the derivation of an effective strong coupling Hamiltonian for a three
flavor system with filling factor of one particle per site; however we try to keep the discussion as general as
possible with respect to the number of flavors. In the specific case of three flavors, eq. [3.24] reduces to

Heff = HΩ − 1

U
Ht,−1Ht,+1 −

1

2U
Ht,−2Ht,+2,

where Ht,±2 describe those processes that increase (or decrease) by one the number of triple occupancies.
Once again, we have dropped terms proportional to Ht,+1Ht,−1 and Ht,+2Ht,−2, as these terms involve
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processes where a double (or triple) occupancy is destroyed and then created back, and such processes are
not possible in the subspace of singly occupied sites. Generally speaking, for any multi-flavor system, every
term of the form Ht,mHt,−m, where m ≥ 1, is irrelevant in the manifold of singly occupied sites. Another
key simplification, due to the projection process, is the fact that all the terms of the form Ht,−mHt,m vanish
for m ≥ 2. The reason is that these terms involve processes mediated by the intermediate formation of
a multiple occupancy with (m+ 1) particles on some site; however it is impossible to populate this site,
which is initially singly occupied, with (m+ 1) particles via a single hopping process, unless m = 1. The
general form of the effective Hamiltonian for an arbitrary number of flavors is thus given by

Heff = HΩ − 1

U
Ht,−1Ht,+1,

and the problem reduces to a general evaluation of Ht,−1Ht,+1.
We can follow the same steps shown in eq. [3.26], neglecting terms describing three-site processes,

and using the explicit expression for the projector on doubly occupied sites4

Pi,2 =
∑
σ>ρ

nσnρ
∏

τ ̸=σ,ρ

(1− nτ )

we get
Ht,−1Ht,+1 = 2t2

∑
i

∑
σ ̸=ρ

(
niσni+1ρ − ei(ϕσ−ϕρ)Si,σρSi+1,ρσ

)
, (3.34)

where we have introduced the generalized “flavor ladder operators”

Si,σρ = c†iσciρ. (3.35)

Using
∑

σ ̸=ρ niσni+1ρ = nini+1 −
∑

σ Si,σσSi+1,σσ and neglecting the density-density interaction, which is
just a constant, we finally get

Heff = Ω
∑
j

N−1∑
σ=1

(
eiγjSj,σ,σ+1 + h.c.

)
+

2t2

U

∑
i

∑
σρ

Si,σρSi+1,ρσ. (3.36)

Here we have assumed that the Raman hopping scheme connects only adjacent flavors (σ and σ + 1) with
the same hopping amplitude Ω and a site dependent phase eiγj; however the generalization to an arbitrary
Raman hopping scheme is straightforward, and the first term reads

∑
i,σρΩi,σρSi,σρ.

Similarly to the N = 2 case, the current operators can be computed as derivatives of Heff with respect
to the corresponding Peierls phases. The flavor current results

Iσ =
1

Nsites

∂Heff

∂ϕσ

∣∣∣∣
ϕ⃗=0

=
2t2i

Nsites

∑
i,ρ ̸=σ

(Si,σρSi+1,ρσ − h.c.) ; (3.37)

while the rung current reads

Ij = iΩ
∑
j

N−1∑
σ=1

(
eiγjSj,σ,σ+1 − h.c.

)
. (3.38)

So far we have described the strong coupling effective model in terms of the “flavor ladder operators”
Si,σρ, which are generators of the local su(N) algebra. This is a set of N2 operators (per lattice site); of

4For N = 3, the projector is given by Pi,2 = n+1n0(1− n−1) + n+1(1− n0)n−1 + (1− n+1)n0n−1.
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which only N2 − 1 are independent, as they satisfy the constraint
∑

σ Siσσ =
∑

σ niσ = ni = 1 (the local
density operator ni in fact is just the identity operator, because every site contains exactly one particle). In
particular, since they act on the N -dimensional Hilbert space of local flavors, they are the fundamental
irreducible representation of su(N), and they obey the following fundamental commutation relation [79]:

[Si,αβ, Sj,γδ] = δij (δβγSi,αδ − δαδSi,γβ) . (3.39)

However, at least for N = 3, it is possible to rephrase eq. [3.36] in terms of just three operators (per every
lattice site), which can be obtained as linear combinations of Si,σρ and generate an su(2) subalgebra of
su(N), and thus can be interpreted as spin operators. In particular, for the specific case N = 3, the spin
operators are given by the following linear combinations of flavor ladder operators:

Σx
i =

1√
2
(Si,−1,0 + Si,0,+1 + h.c.) , Σy

i =
i√
2
(Si,−1,0 + Si,0,+1 − h.c.) , Σz

i = Si,+1,+1 − Si,−1,−1;

(3.40)
and one can easily prove that they are a su(2) subalgebra of su(3), as they satisfy the standard commutation
rule [Σa

i ,Σ
b
j ] = iδijεabcΣ

c
i . Moreover, since they act on a 3-dimensional space, they are a 3-dimensional

irreducible representation of su(2), and hence the associated spin is S = 1 [80].
In order to rewrite any operator in terms of the spin operators [3.40], we need to express every flavor

ladder operator in terms of the latter, which is not a trivial task; however this is possible by using quadratic
combinations of spin operators, as we explicitly show in appendix [A]. Rewriting the effective Hamiltonian
[3.36], we get

Heff =
2t2

U

∑
⟨ij⟩

[
Σ⃗i · Σ⃗j +

(
Σ⃗i · Σ⃗j

)2]
−
∑
i

B⃗i · Σ⃗i, (3.41)

up to a constant term ∝
∑

i nini+1, where the local magnetic field is B⃗j =
√
2Ω(− cos (γj), sin (γj), 0). In

this case, the effective strong coupling model is a spin-1 Heisenberg antiferromagnet of strength 2t2/U ,
subject to a frustration term ∝ (Σ⃗i · Σ⃗j)

2 having the same strength, and to an external magnetic field of
constant amplitude

√
2Ω, lying on the xy plane and due to the Raman processes. Similarly to the previous

case, the angle between magnetic fields acting on nearest neighbor sites is the constant γ. A similar
mapping for the SU(3) Heisenberg model with no Raman field has been proposed in [81], although with
a slightly different choice of the su(2) subalgebra. The presence of a Raman field, however, makes the
choice [3.40] the most natural to provide a spin interpretation as close as possible to the N = 2 case. In
absence of an external magnetic field (Ω = 0), this model is known as the Lai-Sutherland model [82, 83].

Similarly we can express the chiral current operator as:

Ichir =
2t2

U

∑
⟨ij⟩

(
Σ⃗i × Σ⃗j

)
z
+

2t2

U

∑
⟨ij⟩

[
(Σ⃗i · Σ⃗j)

(
Σ⃗i × Σ⃗j

)
z
+
(
Σ⃗i × Σ⃗j

)
z
(Σ⃗i · Σ⃗j)

]
(3.42)

which once again can be regarded as the average “torque” between nearest neighbors associated to the
Lai-Sutherland interaction, and the rung current operator as:

Ij =
(
Σ⃗j × B⃗j

)
z
, (3.43)

which is the torque exerted by the local magnetic field.
In the limit Ω ≫ J , the spins align to the local magnetic field, forming an angle γ between nearest

neighbors. The expectation value of (Σ⃗i × Σ⃗i+1)z can be computed with a semiclassical approach, treating
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spins as classical vectors and it is ≈ sin γ (with no prefactors as we are dealing with spin-1 operators).
The expectation value of the quartic term in eq. [3.42] is a little tricky and cannot be evaluated by a
naive classical approach. The reason is that it contains quadratic combinations of local spins that can’t be
evaluated classically due to intrinsic quantum fluctuations of the spin operators.5 Still, the ground state is
a tensor product over the lattice sites, which leads to the expectation value

⟨Ichir⟩ ≈
t2

2U
(2 sin γ + sin 2γ) Ω ≫ 2t2

U
. (3.44)

We show this estimate, together with MFT and DMFT results in fig. [3.4].

3.5 Chirality induced by spin-exchange in multiorbital systems

In the previous sections we have discussed how Raman processes can be used to induce a chiral behavior
in a single-orbital Hubbard model with N internal flavors and we have argued that chirality survives in the
strongly interacting regime, where it is in fact enhanced. We can now take one step further and discuss
how the chiral current behaves in a multiorbital interacting system, where we can expect an interesting
phenomenology. In this section we present early encouraging results in this direction, without presumption
of being exhaustive.

As we have introduced in chapter [1], it is possible to realize two-orbital Hubbard-Kanamori models
with alkaline-earth-like atoms by exploiting the electronic ground and metastable states 1S0 = |g⟩ and
3P0 = |e⟩ as orbital degrees of freedom. The resulting Hamiltonian is given in eq. [1.5] and it is SU(N)
symmetric; however we can once again realize a synthetic dimension by inducing Raman transitions
through the auxiliary state 3P1. If for example we choose the frequencies of the two Raman laser beams
nearly resonant to the 1S0 ↔3P1 transition, in general they won’t be resonant to 3P0 ↔3P1 as well. For
example, in 173Yb, the optical transition 1S0 ↔3P1 has a natural frequency of 518.7 THz (wavelength 556
nm), while 3P0 ↔3P1 has a much lower frequency of 20.5 THz [20]. This implies that the effective Rabi
coupling between different nuclear states is only induced in those atoms that are in their 1S0 electronic
state. One could naively think that, as a direct consequence of this property, only |g⟩ particles display a
chiral current, whereas |e⟩ particles are non-chiral. However, in the present section we show that this is
not necessarily the case and in fact also |e⟩ particles can develop a chiral current, provided that there is a
spin-exchange interaction between the two orbitals.

We can understand this statement by means of symmetry considerations. The symmetry group of the
Hamiltonian [1.5] is in general U(1)×U(1)×SU(N), generated by Ng −Ne and by the ladder operators
Sσρ defined in eq. [1.7] as the sum of orbital-wise ladder operators. On the other hand, in the special
case Vex = 0, the symmetry is enhanced to U(1)×SU(N)×U(1)×SU(N), because the orbital-wise ladder
operators Sa,σρ =

∑
i c

†
iaσciaρ separately commute with H, i.e. [Sa,σρ, H] = 0, and therefore generate two

distinct U(1)×SU(N) symmetry groups. In the latter case, the introduction of Raman processes explicitly
breaks one of the two copies of SU(N), in particular the one generated by “ground” ladder operators Sg,σρ,
while leaving the other copy of SU(N) unbroken. We can thus expect a chiral behavior of |g⟩ particles and
a non-chiral behavior of |e⟩ particles. In contrast to this case, when Vex ̸= 0, Raman processes involving
|g⟩ particles break the overall SU(N) symmetry (and there is no residual SU(N) symmetry in this case),
thus potentially leading to chiral behavior of |e⟩ particles. Reversing our perspective, we can use chirality
of |e⟩ particles as a hallmark of the presence of a spin-exchange interaction and ideally we can use the
experimentally measured value of the chiral current to extrapolate the value of Vex.
5More explicitly, quantum spin fluctuations imply that, for example, ⟨Σ2

ix⟩ ≠ ⟨Σix⟩2.
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Intuitively, this effect will be stronger in the presence of a large spin-exchange interaction, which makes
173Yb a good candidate for an experimental implementation. The spin-exchange interaction is in fact a
non-negligible energy scale in mixtures of 173Yb atoms in the 1S0 and 3P0 electronic states.6 To appreciate
the order of magnitude of the different interaction terms, we can look at the experimentally measured
values of scattering lengths in 173Yb [20, 26]:

agg ≈ 200a0, aee ≈ 300a0, aeg+ ≈ 3300a0, aeg− ≈ 219a0,

where a0 is the Bohr radius. From eq. [1.6] we immediately see that with these scattering lengths, the spin
and direct exchange parameters are roughly equal: Vex ≈ 0.9V .

To study how a Rabi coupling in the |g⟩ channel drives chirality in the |e⟩ channel through the spin-
exchange coupling, we can start by building a simplified model that captures the essential features described
above with a minimal number of free parameters. We begin by assuming Vex = V , which only holds for
atomic species with |aeg+ − aeg− | ≈ |aeg+ + aeg− | (or equivalently |aeg− | ≪ |aeg+ |) like 173Yb. Moreover,
we can exclude complications due to different band structures in the two channels by assuming that the
hopping scales are the same tg = te. This is in fact perfectly reasonable, as some atomic species have
the same electric polarizability in the electronic ground and excited states at specific wavelengths of the
optical lattice light, called magic wavelengths. Electric polarizability directly affects the trapping forces
impressed by laser light on the atoms, so at the magic wavelengths the two channels are subject to the same
lattice potential Vg(r) = Ve(r), which results in the same hopping scale. For example, one of the magic
wavelengths of 173Yb is 759.34 nm [20] (the other magic wavelengths in the visible spectrum are too close
to electronic transitions to be effectively used). We further assume that the local intraorbital interaction is
the same for the two channels: Ugg = Uee ≡ U . For an optical lattice at the magic wavelengths, where the
Wannier functions of the two channels are the same: wg(r) = we(r), this amounts to assume that agg ≈ aee.
This is only approximately true for 173Yb, where we have Uee ≈ 1.5Ugg. Finally, we can start by considering
only two flavor states σ = ±1/2 for simplicity.

In summary, all these assumptions lead to the following Hamiltonian:

H = −t
∑
⟨ij⟩

∑
a=g,e

∑
σ=↑↓

(
c†iaσcjaσ + h.c.

)
+Ω

∑
j

(
eiφ(rj)c†jg↑cjg↓ + h.c.

)
− µ

∑
jaσ

njaσ

+
U

2

∑
j, a=g,e

nja(nja − 1) + Vex

∑
j

(njg↑nje↓ + nje↑njg↓)− Vex

∑
j

(
c†jg↑cjg↓ c

†
je↓cje↑ + h.c.

)
. (3.45)

In order to switch to an equivalent translation invariant Hamiltonian, we need to identify a suitable unitary
transformation of the fermionic operators. If Vex = 0, it is sufficient to apply the unitary transformation
[2.22] only to fermionic operators of the |g⟩ channel, while leaving cjeσ and c†jeσ unchanged. If instead
Vex ̸= 0, this is no longer the case, as the spin-exchange term will acquire a space-dependent phase factor.
In order to remove this factor, we are forced to apply the same unitary transformation to operators of the
|e⟩ channel as well, namely:

cjaσ → eiσφ(rj)cjaσ, c†jaσ → e−iσφ(rj)c†jaσ, njaσ → njaσ, (a = g, e), (3.46)

6This is a key ingredient in the mechanism of orbital Feshbach resonance in alkaline-earth-like atoms, that we discuss in sec. [5.3].
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which leads to

H = −t
∑
⟨ij⟩

∑
a σ

(
eiσ[φ(rj)−φ(ri)]c†iaσcjaσ + h.c.

)
+Ω

∑
j

(
c†jg↑cjg↓ + h.c.

)
− µ

∑
jaσ

njaσ

+
U

2

∑
j, a

nja(nja − 1) + Vex

∑
j

(njg↑nje↓ + nje↑njg↓)− Vex

∑
j

(
c†jg↑cjg↓ c

†
je↓cje↑ + h.c.

)
. (3.47)

In the following sections, we analyze the ground state properties of this model by using the Hartree-Fock
method and DMFT. We carry the analysis as follows: first of all, we consider a representative case with a 2-
dimensional optical square lattice, t = Ω = 0.25, γx ≡ φ(ri+êx)−φ(ri) = π

2 , γy ≡ φ(ri+êy)−φ(ri) = 0 and
U = 3, so we are in the regime U ≫ t,Ω. Furthermore, for simplicity we consider the case where both bands
are half-filled, i.e. Ng = Ne = Nsites (from the general discussion of sec. [1.2.2], we recall that Ng and Ne

are good quantum numbers). This condition is enforced setting µ = (U + Vex)/2, which is the condition
to make Hamiltonian [3.47] invariant under a particle-hole transformation ciaσ → (−1)Ric†iaσ. With this
choice, when the two bands are perfectly decoupled (Vex = 0), the ground state is an antiferromagnetic
insulator in the |e⟩ channel and the hybrid Mott-band insulator described in sec. [3.2] in the |g⟩ channel.
Since excited particles are not coupled to Raman photons, we expect that antiferromagnetism is more
robust against thermal fluctuations in the |e⟩ band7 than in the |g⟩ band (where we know it is very fragile),
so we take antiferromagnetic ordering into account. We then study the ground state properties as a
function of the spin-exchange interaction Vex expressed in units of the magnetic superexchange coupling
J = 2t2/U .

Hartree-Fock analysis
We begin our analysis by applying the Hartree-Fock method outlined in sec. [3.1], including possible
antiferromagnetic ordering in both channels. The relevant variational parameters are two copies of the
previously defined m and s, corresponding to the two channels |g⟩ and |e⟩ respectively: {mg, me, sg, se}.
Similarly, introducing two copies of the spinor: Ψkg and Ψke and performing the mean-field decoupling,
we finally get the effective Hamiltonian:

H =
∑

k∈MBZ

∑
a=g,e

Ψ†
kaHkaΨka +Nsites

[
U |sg|2 + U |se|2 + 2Vexsgse + Um2

g + Um2
e

]
,

Heff
ka =


−Uma − Vexmā Ωa − Usa − Vexsā −tgk↑ 0
Ωa − Usa − Vexsā Uma + Vexmā 0 −tgk↓

−tg∗k↑ 0 Uma + Vexmā Ωa − Usa − Vexsā
0 −tg∗k↓ Ωa − Usa − Vexsā −Uma − Vexmā

 (3.48)

where for brevity we have defined Ωg = Ω and Ωe = 0 and ā denotes the band index opposite to a. The
self-consistency equations can be explicitly derived by a straightforward generalization of eq. [3.12];
however here we find the optimal parameter by numerically minimizing the grand canonical potential
F (sg, se,mg,me) with the constraints −1

2 ≤ sa ≤ 1
2 and −1

2 ≤ ma ≤ 1
2 (which stem from the definitions of

sa and ma). At T = 0 and global half-filling, the latter can be computed by summing the energies of the 4
lowest bands (two per every band index) and adding the constant terms containing variational parameters.
Finally, the chiral current on a given band can be evaluated by adapting eq. [3.13].

7In fact it can be proved that in the single band Hubbard model, the critical temperature for antiferromagnetic order is proportional
to the superexchange coupling: Tc ≈ t2/U for U ≫ t, which means that it decreases upon increasing the Hubbard-U .
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A B

impurity
problems

Figure 3.9: Illustration of the R-DMFT self-consistent procedure in the presence of two sublattices.

DMFT analysis
To take into account antiferromagnetism within the framework of DMFT, we implement the R-DMFT
method described in sec. [1.3.4]. Antiferromagnetism breaks the translational symmetry of the original
lattice, differentiating the properties of the two sublattices A and B, but it preserves a residual translational
symmetry within the two sublattices, as shown in fig. [3.1 (a)]. To match the formalism introduced
in sec. [1.3.4], we write the blocks of the non-interacting Hamiltonian in the antiferromagnetic spinor
representation (Ψ̂†

kA, Ψ̂
†
kB) as Ĥk,ij , where the indexes i, j run over the two sublattices i, j = {A,B} and k

runs over the magnetic Brillouin zone. Every block Ĥk,ij has an internal structure labeled by spin and band
indexes. Neglecting non-local quantum fluctuations, we assume that the self-energy is block diagonal in the
antiferromagnetic spinor representation, i.e. Σ̂ij(iωn) = Σ̂j(iωn)δij . By exactly solving two independent
impurity problems, we evaluate the two diagonal 2× 2 blocks Σ̂A(iωn) and Σ̂B(iωn). Applying eq. [1.30]
we obtain the local components of the lattice Green function on the two sublattices as:

Ĝjj(iωn) =
2

Nsites

∑
k∈MBZ

[(iωn − Ĥk − Σ̂(iωn))
−1]jj , (3.49)

and the corresponding Weiss fields ŴA(iωn) = Ĝ−1
AA(iωn)+ Σ̂A(iωn) and ŴB(iωn) = Ĝ−1

BB(iωn)+ Σ̂B(iωn).
The bath parameters of the two impurity problems are adjusted to fit the corresponding Weiss fields and
this procedure is repeated iteratively until convergence. This procedure is schematically illustrated in fig.
[3.9].

With the converged Green function, we can compute objects like ⟨Ψ†
kαΨkβ⟩ by following the prescrip-

tions of sec. [1.3.5], where the indexes α, β include spin, band and sublattice indexes: α, β = {↑, ↓
} ⊗ {g, e} ⊗ {A,B}. From this, we immediately get the orbital-wise antiferromagnetic magnetization and
the parameters sa:

ma =
1

Nsites

∑
k∈MBZ

⟨nkA↑a − nkA↓a⟩, sa =
2

Nsites

∑
k∈MBZ

⟨c†kA↑ackA↓a⟩. (3.50)

as well as the chiral current, which can be computed from eq. [2.36] as:

Ichir,a = − 2

Nsites

∑
k∈MBZ

(∇γ⃗Hk;iσa,jρa)⟨Ψ†
k,iσaΨk,jρa⟩. (3.51)

Results
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Figure 3.10: Self-consistent parameters ma and sa (left) and chiral currents along êx (right) in the ground
state of Hamiltonian [3.45] as a function of Vex/J for t = Ω = 0.25, U = 3, γx = π/2 and γy = 0 on a
2-dimensional optical square lattice at global half filling.

The values of the main observables computed in the ground state are reported in fig. [3.10], where
we compare the two methods. We immediately notice the good agreement between Hartree-Fock and
DMFT, which suggests that the interorbital coupling does not introduce significant dynamical quantum
fluctuations in this regime of parameters, simplifying the interpretation. First of all, as expected, when
Vex = 0 the two bands are decoupled: particles in the |e⟩ channel are described by a Hubbard model
with large U and they form an antiferromagnet with large magnetization me ≈ 1/2 and no effective
Rabi coupling se = 0; while particles in the |g⟩ channel are coupled to Raman photons and they form
a Mott-band hybrid insulator with large U , characterized by no antiferromagnetism mg = 0 and large
effective Rabi coupling sg ≈ −1/2 (hence Ωeff

g ≈ Ω+ U/2). Consistently, |e⟩ particles are non-chiral, while
there is a significant chiral current in the |g⟩ channel. Increasing Vex, the magnetic character of |e⟩ particles
quickly decreases, while se quickly increases in module (in fact it is negative) and so does the effective
Rabi coupling Ωeff

e = −Use − Vexsg. At the same time, |g⟩ particles develop a very weak antiferromagnetic
order, while sg is stable and Ωeff

g = Ω−Usg − Vexse slightly increases. At Vex ≈ 2.5J there is a critical point
where mg and me vanish together and translational symmetry over the full lattice is restored. Moreover,
sg and se saturate to ≈ 1/2, and the effective Rabi couplings are given by Ωeff

g ≈ Ω + (U + Vex)/2 and
Ωeff
e ≈ (U + Vex)/2 respectively. For larger values of the spin-exchange, both |g⟩ and |e⟩ are in a hybrid

Mott-band insulating phase, perfectly equivalent to the one we have described in sec. [3.2]. Consistently,
the excited channel develops a chiral current which is even larger than the chiral current in the ground
channel. The reason why it’s larger is rather simple: since DMFT shows that quantum fluctuations are
suppressed in this regime and since sg = ee = 1/2 and mg = me = 0, the two channels can be treated as
independent non-interacting two-flavor systems with effective Rabi couplings Ωeff

a , and the corresponding
chiral currents are given by the analytic estimate [2.51]:

Ichir,g ≈ 2t2 sin γ

2Ω + U + Vex
êx, Ichir,e ≈

2t2 sin γ

U + Vex
êx, (U ≫ t,Ω; Vex ≫ J). (3.52)
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From these relations we clearly see that Ichir,e > Ichir,g and we see that they decrease hyperbolically
with Vex (this is not obvious from the plot because we should extend the calculation to larger values of
spin-exchange).

In conclusion, when a Raman field is applied to one of the two bands of the multiorbital system, it
induces a chiral behavior on that band; however, only in presence of a spin-exchange interaction, the chiral
band drives the other one – which does not interact with Raman photons – into a chiral state characterized
by an even larger chiral current. Reversing the perspective, measuring a chiral current in a band which is
not coupled to Raman photons can be regarded as a hallmark of the spin-exchange interaction and it can
be used – at least in principle – as a tool to experimentally measure Vex.

3.6 Conclusion and outlook

In this chapter we have investigated the fate of chiral currents in presence of strong interparticle interactions,
both on a single-orbital model and on a multi-orbital model. We have tackled several aspects of the
problem with several complementary analytical and numerical methods such as Hartree-Fock, R-DMFT,
exact diagonalization and the Schrieffer-Wolff transformation. We have clarified the following important
points:

• interaction-driven insulating phases support chiral currents that are typically larger than in the
metallic phases, despite a lower mobility of the particles. The chiral current is maximized at the
phase transition from the metallic to the insulating state, similarly to what we have observed for
the non-interacting system. The effect is not peculiar of (1+1)-dimensional synthetic ladders, but
it is also observed in (2+1)-dimensional structures and it is present both in systems with N = 2
and N = 3 at integer filling. When the system has open boundaries along the real direction (as it is
the case in experiments due to the harmonic confinement), in the metallic state the currents form a
spatial pattern of alternating vortices and antivortices (with large currents on the internal rungs);
while in the insulating state, the currents are expelled from the bulk and only flow along the edge, in
a way which is reminiscent of the Meissner effect in superconductors.

• The U -driven insulator is characterized by a hybrid character between a band and a Mott insulator
and by the fact that quantum dynamical fluctuations are suppressed (at least far from the phase
transition). Consequently, despite the strong interaction, they can be described by means of effective
non-interacting quasiparticles, a circumstance which allows to give analytical estimates of the
observables. An alternative description of such insulators can be given in terms of effective spins
subject to a local magnetic field with a space periodicity determined by the gauge flux and a
nearest-neighbor interaction, which is the Heisenberg interaction for N = 2, while it is a quartic
Lai-Sutherland interaction for N = 3. In this picture, the chiral current is the z component of the
mechanical torque associated to the specific interaction between spins.

• In multiorbital systems, a chiral current can be induced in an orbital where particles are not subject
to Raman processes, as a consequence of the spin-exchange interaction with another orbital subject
to laser-induced Raman transitions. In principle, this phenomenon could be experimentally used as a
hallmark of the presence of a spin-exchange interaction.

We conclude commenting on the perspectives for future work on this subject. First of all, it would be
interesting to consider a more realistic description of the experiments, including the presence of a finite
temperature and of a magneto-optical harmonic trap, and test the robustness of our results when these
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complications are taken into account. By heuristic arguments, we expect that the behavior of the chiral
current across the U -driven phase transition is not affected by temperature and harmonic confinement,
at least qualitatively, as long as these effects are relatively small (for example if the temperature is a
small fraction of the hopping and the harmonic frequency of the potential is smaller than the Hubbard-U).
Nevertheless, it would be interesting to provide a more quantitative estimate and point our experimental
colleagues in the right direction in the concrete research for this phenomenon. From the technical point of
view, we can include the temperature by computing the low-lying excited states of the impurity problem
(as discussed in sec. [3.2]), and the harmonic confinement either via a local density approximation (LDA)
in the spirit of [84]8, or by performing R-DMFT. The most challenging part of both these approaches is
the determination of the chemical potential that gives the correct number of particles: the LDA+DMFT
or R-DMFT algorithm should be launched multiple times at several values of µ for every single point
in the phase diagram, which takes a considerably long time. An important speedup is provided by the
point-reflection symmetry of the system, which holds also in the presence of a harmonic trap and reduces
the number of independent lattice sites by a factor 2.

The two-orbital system discloses exciting perspectives, as it is thus far an almost unexplored territory. A
first step would be to expand the proof of concept outlined in this thesis to a wider range of parameters
relevant for the experimental implementation with 173Yb. For instance, after characterizing the two-orbital
metal-insulator phase transition, we could compute the flavor currents as a function of the depth of the
optical lattice, which is the experimentally tunable parameter. The path towards a more realistic and
experiment-oriented calculation is even more challenging in this case, since one should also take into
account the particle losses due to two-body collisions in the excited channel. A first possibility is to work in
the limit Ne ≪ Nsites, where two-body collisions in the |e⟩ channel are infrequent and can be neglected;
but for a more rigorous calculation it is necessary to include a non-hermitian term of the form ∆

∑
iσ cieσ

in the Hamiltonian, which induces a non-unitary dynamics that is already challenging to treat at the static
mean-field level, as it requires to solve the Lindblad equation [85].

Intriguing scenarios are disclosed regardless of the presence of an artificial gauge flux or of a spin
exchange coupling. In a very recent work [86], the authors have considered the symmetric case Ω = 0,
studying the interplay between several magnetically ordered phases as a function of the average filling
of the two orbitals, using tensor networks methods. In other recent works [87, 88], the authors have
investigated a cold-atomic analogue of an orbital-selective Mott phase by using a single-orbital interacting
three-leg ladder with only two flavors coupled by Raman processes. They have proved that the two coupled
flavors localize at a smaller interaction with respect to the uncoupled one, thus realizing a flavor-selective
phase, which is reminiscent of the orbital-selective Mott phase in solids (see chapter [4] for more details).
The quantum simulation of an orbital-selective Mott phase can be made even more accurate by using an
alkaline-earth-like gas with two orbitals and N = 2, with a Raman-induced flavor coupling in one of the
orbitals. The study of Mott-selective two-orbital systems with cold atoms is a purpose for the near future.

8The idea is to assume that the chemical potential is space dependent µ(ri) = µ− V (ri), where V (r) = 1
2
mω2r2 is the harmonic

confinement of frequency ω and µ is the chemical potential at the center of the trap, which must to be adjusted to match the
correct filling factor.
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Chapter 4

Quantum simulation of Hund’s physics with
ultracold fermionic atoms

In sec. [1.1] we have introduced the Hubbard-Kanamori model, described by Hamiltonian [1.2], which
contains all the possible electronic interaction processes stemming from the screened Coulomb repulsion
in a material characterized by multiple active bands. The presence of so many independent parameters in
the Hamiltonian makes the universal characterization of its spectral properties a very challenging task. The
general approach to overcome this difficulty is to work case-by-case, identifying the most relevant physical
processes for the specific materials under investigation, and building a simplified version of [1.2] with a
reduced number of free parameters. For example, in this chapter we only take into account the competition
between the Hubbard repulsion and the Hund’s coupling, realizing the so-called Hund’s model, which is
particularly relevant for the study of transition metal oxides. We compute the ground state with an exact
numerical diagonalization, complementing previous studies based on other methods and confirming the
existence of a conductive state surviving to strong interactions.

A one-to-one quantum simulation of these materials with platforms of ultracold fermionic atoms is
extremely challenging, due to the presence of too many orbitals and of a pair-hopping coupling, which
is not reproducible with Hamiltonian [1.5]. However, the physical mechanism that stabilizes a metallic
behavior in spite of large interactions is quite general and stems from the degeneracy of competing
insulators. Thus we propose a different model which exhibits the same mechanism but is more reasonable
to implement with alkaline-earth-like atoms, as it takes advantage of the SU(N) symmetry and of the
flexibility of the optical lattice potential.

The chapter is organized as follows: in sec. [4.1] we provide an introductory background on the
transition metal oxides, deriving the Hund’s model; in sec. [4.2] we present the results of our exact
diagonalization of the Hund’s model and compare it to previous literature; in sec. [4.3] we introduce our
proposal for a cold-atomic analogue of Hund’s physics, discussing the phase diagram of the model; finally,
sec. [4.4] is devoted to final remarks and outlook.

4.1 Hund’s coupling in transition metal oxides

An isolated transition metal atom is characterized by a valence shell of 5-fold degenerate d atomic orbitals
with different geometries labeled as dx2−y2 , dz2 , dxy, dxz and dyz with respect to three coordinate axes
x, y, z. When it is embedded in a crystal environment of ligands, this degeneracy is lifted by the interaction
of its electrons with other electrons of the ligands. Intuitively, this is a direct consequence of the different
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Figure 4.1: Schematic representation of crystal field splitting of atomic d orbitals of a transition metal
embedded in a octahedral geometry of ligands. (a) Sketch of the octahedral geometry. (b) Splitting into
t2g and eg orbitals. (c) Geometric structure of the atomic d orbitals: dz2 and dx2−y2 have the lobes oriented
along x, y and z, resulting in a significant overlap with orbitals of the ligand.

geometry of the five d orbitals: those with a larger overlap with atomic orbitals of the ligand are subject
to a greater hybridization and are involved in chemical bonds. In particular, they form pairs of bonding-
antibonding molecular orbitals, where the former are lower in energy with respect to the original energy
level (therefore they are fully occupied by electrons, which ensures the chemical bond and the structural
stability of the coordination complex), while the latter are higher in energy. On the other hand, d orbitals
that mildly overlap with the ligands approximately maintain their original energy level. The specific
energetic hierarchy of split d-orbitals depends on the geometrical arrangement of ligands around the
transition metal. The theory of how the degeneracy of atomic orbitals of a transition metal is lifted by the
electric field provided by the environment of ligands in the crystal is known as crystal field theory [89, 90].

For example, a common geometry is octahedral, with six ligands surrounding the transition metal and
positioned along the three perpendicular directions x, y, z used to label the five d orbitals, as shown in fig.
[4.1]. In this geometry, dx2−y2 and dz2 have significant overlaps with atomic orbitals of the ligands, as their
lobes are oriented along the coordinate axes, hence they form pairs of bonding-antibonding molecular
orbitals hybridizing with all the valence atomic orbitals of the six ligands. We can ignore all the bonding
orbitals because they have very low energy and are fully occupied, ensuring the chemical bonds. The
manifold of antibonding orbitals is instead pushed to higher energies and the two lowest levels of this
manifold, which are always degenerate in this geometry, are called eg orbitals. The three d-orbitals dxy,
dxz and dyz instead do not overlap with orbitals of the ligands, leaving their energy essentially unchanged;
in particular, they remain degenerate and are called t2g orbitals. It is conventional to choose real-valued
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wave functions for the t2g and eg orbitals by performing suitable linear combinations of atomic d-orbitals:
the interested reader may refer to ref. [91], in particular eqs. [1.31, 1.32].

If the gap between t2g and eg orbitals is large, and the number of electrons not involved in chemical
bonds with the ligands is 6 or less, they will only populate t2g orbitals. In this case, the three active bands
around the Fermi level originate from a spectral broadening of the three t2g degenerate orbitals and we
can set Norb = 3 (instead of 5) in eq. [1.2]. Furthermore, the bands degeneracy and the hypothesis of no
orbital hybridization imply tabij ≡ tijδab and Ua ≡ U . A careful evaluation of the Coulomb integrals with
the t2g wave functions [91, 92] shows that, in this context, the five interaction parameters in eq. [1.2]
can be written in terms of only three independent parameters U , U ′ and J; in particular: U ′′ = U ′ − J ,
Jph = J and Jse = −J . Another simplification is obtained by assuming that the screened Coulomb potential
is spherically symmetric: this assumption introduces another constraint on the interaction parameters:
U ′ = U − 2J , thus reducing the independent parameters to only U and J .

Strictly speaking, this calculation provides an approximated scheme for the local interaction in crystals
of transition metal oxides. In a solid, the screened Coulomb potential is not spherically symmetric in
general; moreover the Coulomb integrals should be computed using Wannier functions instead of atomic
orbitals. Clearly, this is an idealization of the problem, nevertheless it captures several important features
of materials formed by transition metals, while maintaining the theoretical framework quite general and
not particularized to specific crystal structures.

If U and J are computed from the Coulomb integrals, then they are both positive, so we assume U > 0,
J > 0 throughout this chapter. However, when the coupling of electrons to phonon modes is taken into
account, the effective electronic Hamiltonian (obtained after integrating out the phonons) is similar, but
with renormalized values of U and J , which in some cases can also be negative1 [30].

To summarize, Hamiltonian [1.2] reduces to:

H =
∑

⟨ij⟩, a, σ

tij

(
c†iaσcjaσ + h.c.

)
− µ

∑
jaσ

njaσ + U
∑
j, a

nja↑nja↓ + (U − 2J)
∑
j, a̸=b

nja↑njb↓

+ (U − 3J)
∑

j, a<b, σ

njaσnjbσ + J
∑
j, a̸=b

c†ja↑c
†
ja↓ cjb↓cjb↑ − J

∑
j, a̸=b

c†ja↑cja↓ c
†
jb↓cjb↑. (4.1)

The interaction term of [4.1] commutes with all the following operators:

nj =
∑
aσ

njaσ, Sj =
1

2

∑
a,σρ

c†jaσ σσσσρ cjaρ, Lj =
∑
bc,σ

c†jbσℓℓℓbccjcσ (ℓabc = −iεabc) , (4.2)

representing the local number of particles, the local spin and the of the local orbital angular momentum
respectively. In eq. [4.2], σσσ is the vector of Pauli matrices, ℓabc is the a-th component of ℓℓℓbc and εabc denotes
the Levi-Civita antisymmetric tensor. The tensor ℓabc is a 3-dimensional fundamental representation of the
rotation group SO(3), which implies that the orbital angular momentum of a single particle is l = 1. The
interaction term is thus symmetric under the action of U(1)×SU(2)×SO(3), where U(1) is the charge
symmetry generated by nj , SU(2) the spin symmetry generated by Sj and SO(3) is the rotational symmetry
generated by Lj , which stems from the assumption of spherically symmetric interactions. This suggests
that the interaction term can be rewritten more conveniently in terms of the generators of the group, and
the result is

H =
∑

⟨ij⟩, a, σ

tij

(
c†iaσcjaσ + h.c.

)
− µ

∑
jaσ

njaσ +
U − 3J

2
n̂j(n̂j − 1)− J

(
2S2

j +
1

2
L2
j −

5

2
n̂j

)
. (4.3)

1Remarkable examples of materials displaying a negative J as a consequence of electron-phonon coupling are alkali-doped
fullerides [14, 93].
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Written in the form [4.3], the Hamiltonian is particularly illuminating, as it provides a lot of information
without performing lengthy calculations.

First of all, let us focus on the atomic limit tij = 0, where all the lattice sites are decoupled and consider
an arbitrary site j. At a given filling factor, nj is just a constant and the only degrees of freedom are Sj

and Lj , so the Hamiltonian reduces to −2JS2
j − J

2L
2
j . The ground state is given by a configuration of nj

electrons that maximize their total spin and their total orbital angular momentum: an observation which is
formulated in the first two well-known Hund’s rules2. The third Hund’s rule instead is not captured by this
simplified model, as it would require to include the effect of electronic spin-orbit interactions.

Secondly, let’s reintroduce the hopping and consider J = 0. In this situation, the interaction reduces to
a Hubbard-like local charge repulsion, where U prevents spatial charge fluctuations. This is essentially a
SU(6) Hubbard model, where 6=2·3 is the number of fermionic components (including spin and orbital
degrees of freedom): therefore, we expect to observe a Mott transition as a function of U at integer filling
factors. The Mott insulator will be a uniform quantum superposition of all the possible Fock states with
a fixed number of particles per site which is specified by the filling factor. When a small J is included,
the ground state will be adiabatically connected to the case J = 0, so we still expect a Mott transition,
where now, in the Mott insulator, different Fock states will have different weights; in particular, we expect
enhanced weights for states respecting the Hund’s rules and diminished weights for states violating the
rules.

Finally, if J > U/3, the density-density interaction becomes attractive and the electrons tend to
accumulate on some of the lattice sites. However, configuration that maximize the charge disproportion are
not necessarily favored, since the energy of a local configuration is lifted by the term −2JS2

j − J
2L

2
j , which

penalizes a state when it violates the Hund’s rules. The resulting state depends on the specific filling factor,
as it is governed by a non-trivial competition (or cooperation) between the tendency towards inducing
charge fluctuations and towards respecting the Hund’s rules.

4.2 Interaction resilient Hund’s metal

In a series of pioneer works [15, 94, 95], the authors applied DMFT to investigate how the filling factor
and the Hund’s coupling J affect the interaction-driven metal-insulator phase transition, unraveling a
surprising scenario. For materials with half-filled t2g bands, such as SrMnO3 and SrTcO3, the presence of a
Hund’s coupling favors the Mott localization by reducing the critical value Uc/t. Conversely, for materials
with t2g bands less than (or more than) half-filled, such as SrVO3, SrCrO3, SrRuO3, etc.3, in the presence
of a significant Hund’s coupling, the critical Uc/t is pushed to much higher values than in the case J = 0,
stabilizing a metallic solution. This is typically a bad metal characterized by a small quasiparticle peak
at the Fermi level or, equivalently, by a large effective electronic mass; nevertheless it can survive to very
large values of the Hubbard-U , hence we name it “interaction resilient metal”. Interestingly, this happens
when U − 3J ≈ 0, a condition that makes the density-density term in eq. [4.3] vanish, thus effectively
decoupling the charge degrees of freedom associated to different orbitals. On the one hand, the Hund’s
coupling increases the critical Hubbard interaction Uc that stabilizes a Mott phase; on the other hand,

2Hund’s rules are 3 simple rules to construct the ground state of many independent electrons on atomic orbitals avoiding lengthy
calculations. 1: In the ground state, electrons tend to maximize their total spin S. 2: For a given spin, the state with lowest
energy has the maximum orbital angular momentum L. 3: Given S and L, the state with lowest energy is the one with largest
total angular momentum j if the valence subshell is more than half-filled, otherwise it is the state with smallest j.

3In compounds of the form SrXO3, the transition metal X has oxidation number +4, leading to a filling factor k− 4, where k is the
group index in the periodic table, i.e. the valence number including two electrons in the closest filled s shell, which are involved
in bonds with ligands as well. In general, if n0 is the oxidation number of the transition metal, the filling factor is k − n0.
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it enhances the effective particle mass, reducing the mobility of carriers: this two-faced effect is usually
named Janus effect4. A similar effect has been observed in the normal state of iron chalcogenides (which
have been recently discovered as high-temperature superconductors [17]), where the gap between t2g and
eg is sufficiently small and the population of eg bands has to be included [96, 97].

A thorough investigation of the phase diagram for a filling factor 2 was performed in [14] by applying
“rotation invariant slave bosons” (RISB) [98] in the local approximation. In ref. [99] non-local effects
have been also included using dynamical cluster approximation DCA+DMFT, but the results are limited to
finite temperatures. Here, we present a different approach based on the exact diagonalization method
performed on a small cluster of three sites, which is the minimal number of sites that can host all the
relevant insulating solutions found in [14], as we discuss later on. This method gives access to the spectral
properties in an unbiased way, in particular it automatically accounts for spatial fluctuations without
introducing approximations. In order to explore the physics of an interaction-resilient metal, we choose a
filling factor of 2 throughout the analysis.

4.2.1 Atomic limit

For the purpose of a more quantitative analysis, it is useful to list all the local configurations that are
allowed by the constraint of global antisymmetry of the electronic wave function, together with the
corresponding interaction energy computed from eq. [4.3]. This is done in tab. [4.1], where every
configuration, which is named multiplet in the following, is labeled by three quantum numbers {nj , Sj , Lj}
and it is (2Lj + 1)(2Sj + 1)-fold degenerate.

{nj , Lj , Sj} Eint

{0, 0, 0} 0

{1, 1, 12} 0

{2, 2, 0} U − J

{2, 1, 1} U − 3J

{2, 0, 0} U + 2J

{nj , Lj , Sj} Eint

{3, 2, 12} 3U − 6J

{3, 1, 12} 3U − 4J

{3, 0, 32} 3U − 9J

{nj , Lj , Sj} Eint

{6, 0, 0} 15U − 30J

{5, 1, 12} 10U − 20J

{4, 2, 0} 6U − 11J

{4, 1, 1} 6U − 13J

{4, 0, 0} 6U − 8J

Table 4.1: List of all the possible local atomic multiplets with the corresponding interaction energy. Adapted
from the supplementary material of ref. [14].

We can characterize the nature of a given state |ψ⟩ by computing its overlap with atomic multiplets,
namely pn,L,S = 1

3

∑3
j=1 |⟨ψ|P{nj ,Lj ,Sj}|ψ⟩|2, where P{nj ,Lj ,Sj} is the projector onto the subspace of all the

Fock states having a local state {n,L, S} on site j. The quantity pn,L,S is called multiplet population and it
represents the average number of sites having n particles, orbital angular momentum L and spin S. The
evolution of pn,L,S for the most relevant set of quantum numbers {n,L, S}, computed in the ground state
as a function of J/U at large U/t, is shown in fig. [4.2].

• We observe that, if J ≪ U , the only relevant atomic multiplet is {n = 2, L = 1, S = 1}, which clearly
indicates that the state is a Mott insulator with two particles per site. The only difference is that the
preferred local configuration is the one with highest allowed spin, in agreement with the first Hund’s

4In ancient Roman mythology, Janus was the god of duality, and he was usually represented with two faces. Metaphorically, this
represents the two opposite tendencies of the Hund’s coupling.
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rule. Looking at tab. [4.1] we can immediately compute the approximated ground state energy in
this state, which is E0 ≈ 3(U − 3J).

• In the opposite regime, where J ≫ U (not shown), the only relevant multiplets are n = 6 with prob-
ability ≈ 1/3 and n = 0 with probability ≈ 2/3, denoting a tendency towards charge accumulation,
which is not surprising since in this regime the attractive density-density interaction is the dominant
energy scale. This regime is not considered here, since in realistic materials J is typically a fraction
of the Hubbard U . The associated energy is E0 ≈ 15U − 30J .

• When J is significant but not huge, i.e. U/3 ≲ J ≲ 3U/4, the only relevant multiplets are {n = 0, L =
0, S = 0} with probability p0,0,0 ≈ 1/3 and {n = 3, L = 0, S = 3

2} with probability p0,0,3/2 ≈ 2/3.
This is a totally different scenario, where the ground state is characterized by two triply occupied
sites and an empty site. Since spontaneous symmetry breaking is forbidden in a finite system by the
analytical nature of the partition function, this is a symmetric state (i.e. a quantum superposition
of all the possible combinations of two triply occupied sites and an empty site). In the occupied
sites, the local spin is 3

2 , consistently with the first Hund’s rule. The ground state energy in the
corresponding atomic limit is readily computed from tab. [4.1]: E0 ≈ 2(3U − 9J). Comparing the
energy of this state to the energies of the previous two, we can verify that this is the ground state in
the range U/3 < J < 3U/4.

• In the crossover region J ≈ U/3, there are three relevant multiplets having roughly the same
probability ≈ 1/3: {n = 3, L = 0, S = 3

2}, {n = 1, L = 1, S = 1
2} and {n = 2, L = 1, S = 1}. The

ground state is now a quantum superposition of Fock states with one singly occupied site, one doubly
occupied site with high spin and one triply occupied site with high spin. In this regime, the two more
realistic solutions outlined above become degenerate: 3(U − 3J) = 2(3U − 9J) = 0 at J = U/3.

4.2.2 Phase diagram based on the Drude weight

A standard approach to probe the conduction properties of the Hund’s model is to compute the quasiparticle
weight z, which, in absence of band-insulating phases, directly reflects on the metallic character of a
state, since m/z can intuitively be regarded as the interaction-dressed electronic mass. However, here
we choose a complementary approach and compute the Drude weight, which is the DC component of the
electrical conductivity [100, 101, 102, 103]. More precisely, for a system with no disorder, the longitudinal
electrical conductivity σ(ω), which determines the current response to an external electric field, is given
by the sum of a zero-frequency singular peak Dδ(ω) (DC component) and of a regular function σreg(ω)
(AC component). In metals and superconductors D ̸= 0, while D = 0 in any insulating state [65, 104].
Computing the Drude weight is a rich and subtle topic, which deserves a dedicated dissertation: here we
only consider the most important concepts relevant to our system and we address some of the subtleties in
appendix [B].

In ref. [104], Kohn derived a simple formula for the Drude weight at T = 0, showing that it is given by
the curvature of the ground state energy E0(ϕ) with respect to an auxiliary Peierls phase ϕ introduced in
the hopping term t→ teiϕ computed at its minimum ϕ = ϕ0; for a one-dimensional ring we have

D =
1

Nsites

∂2E0

∂ϕ2

∣∣∣∣
ϕ=ϕ0

. (4.4)

This formula apparently suggests that we have to sample the ground state energy for several fluxes and
then fit with a parabola to get the curvature; however this requires multiple exact diagonalizations for
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Figure 4.2: Populations of the atomic multiplets pn,L,S relevant to the ground state of Hamiltonian [4.1] as
functions of the control parameter J/U . Calculations are perfomred in the strong coupling regime t = 1,
U = 22 at filling factor 2 (6 particles on the 3-site system). The gray vertical line J/U = 1/3 is the point
where the two distinct solutions (Mott insulator and Hund insulator) become degenerate.

every set of parameters (U , J), which is computationally demanding. Fortunately, we can considerably
speed up the method by connecting the the Drude weight to the total persistent current induced on the
system by the external flux via the Aharonov-Bohm effect [105]:

I(ϕ) =
1

Nsites
⟨ψ(ϕ)|∂H

∂ϕ
|ψ(ϕ)⟩ ≈ D(ϕ− ϕ0) (ϕ ≈ ϕ0). (4.5)

We stress that here I(ϕ) is the total current, not the paramagnetic contribution. As we argue in appendix
[B], for the Hund’s model on a three-site ring geometry with filling factor 2, it turns out that ϕ0 = 0 and
that the linear dependence of I(ϕ) on ϕ is dramatically broken at ϕ ≈ ϕc = π/Nsites. Therefore, we can
compute D by choosing a specific flux ϕ sufficiently close to ϕ0 = 0 and sufficiently far from ϕc = π/3, then
computing the total current I(ϕ) at this flux (which requires a single exact diagonalization) and, exploiting
the proportionality relation [4.5], using D = I(ϕ)/ϕ. In the results shown here, we choose ϕ = 0.1π/3 for
every point in the phase diagram, so if we normalize the Drude weight to the Drude weight computed at
U = J = 0, we have D/D|U=J=0 = I(ϕ)/IU=J=0(ϕ). Before we move to the results, we emphasize that –
as discussed in appendix [B] – the specific values of ϕ0 and ϕc depend on the number of fermions, lattice
sites and fermionic components. This means that the approach can be easily generalized to similar systems
with the only attention of choosing ϕ in advance depending on the specific values of these parameters.

The resulting Drude weight in the plane (U, J) is shown in fig. [4.3] with a color-plot. We can
clearly see the presence of two insulating solutions with D ≈ 0: a Mott insulator for small J and large U ,
characterized by a uniform charge distribution and a local spin S = 1, and a Hund insulator at J > U/3,
characterized by a charge disproportion between the lattice sites and a large local spin S = 3/2 in the
occupied sites. The most interesting feature is the fact that, around the crossover line J = U/3, which
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Figure 4.3: Color-plot of the Drude weight as a function of U/t and J/t in the physically realistic region
0 < J < 3U/4. The Drude weight is computed relatively to the non-interacting case U = J = 0 and is
given by the ratio of the respective total currents D/DU=J=0 = I(ϕ)/IU=J=0(ϕ) computed at ϕ = 0.1π/3.
The red line is the crossover line U − 3J = 0, where the two insulating solutions are degenerate in the
atomic limit. We can clearly see an enhanced Drude weight along this line, indicating the presence of an
interaction-resilient metal, consistently with [14]. The insert sketches representative Fock states having a
large weight in the ground state in the three relevant regimes.

is the line where the two insulators become degenerate in the atomic limit, there is a significant Drude
weight. This clearly indicates the presence of a bad metallic state surviving despite the large values of the
two interaction parameters U and J , i.e. an interaction-resilient metal. This state is usually called Hund’s
metal. To understand why a conductive state can be present despite the presence of large interactions, we
can look at the atomic multiplets in the crossover region. In the atomic limit we can write the ground state
in this region as

|ψ⟩ = c1|1, 2, 3⟩+ c2|3, 1, 2⟩+ c3|2, 3, 1⟩+ c4|2, 1, 3⟩+ c5|3, 2, 1⟩+ c6|1, 3, 2⟩ (t = 0, J =
U

3
),

where cj are suitable complex coefficients (all of them of comparable amplitude and significantly different
from 0) and we label a Fock state on the three-site cluster with the local occupancy |n1, n2, n3⟩ (notice
that nj uniquely identifies a Fock state because we imply that it is the corresponding state with largest
spin in tab. [4.1]). If we assume t ≪ U, J , we can treat the hopping term as a small perturbation and
apply standard perturbation theory. The first order correction to the atomic ground state energy is given
by the expectation value of the hopping Hamiltonian ⟨ψ|Hhop|ψ⟩. We don’t compute this object in detail,
however we argue that this is non vanishing, as it includes terms that, for example, are proportional to
⟨2, 1, 3|c†1,aσc2,aσ|1, 2, 3⟩ = ±1. Carefully checking that all these terms in fact don’t cancel out, we obtain
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a correction of order ∼ t to the internal energy. Conversely, in the insulating states, the first order
contribution vanishes identically: ⟨ψ|Hhop|ψ⟩ = 0 and we need to expand to higher orders in t. The reason
is that Fock states contributing to the ground state in the atomic limit are not connected to one another
by single hopping processes (for example we can’t transform |3, 0, 3⟩ into |3, 3, 0⟩ with a single hopping
process). This directly reflects on the Drude weight, which is the curvature of E0(ϕ) leading to larger
values in the crossover region. We sketch this simple argument in the insert of fig. [4.3].

4.2.3 Correlation functions

One of the advantages of exact diagonalization is the possibility to have easy access to all the observables
of interest in an unbiased way, including those that other methods can not provide, such as non-local
correlation functions. Here we analyze local and non-local correlation functions related both to the charge
and to the spin degrees of freedom. In particular, we define the intraorbital and interorbital charge
correlation functions:

C intra
ij =

Norb∑
a=1

(⟨nianja⟩ − ⟨nia⟩⟨nja⟩) , C inter
ij =

∑
a̸=b

(⟨nianjb⟩ − ⟨nia⟩⟨njb⟩) . (4.6)

We also define the total charge correlation function, which is their sum Ctot
ij = C intra

ij + C inter
ij . Similar

definitions hold for the spin-spin correlation functions:

M intra
ij =

Norb∑
a=1

(
⟨S⃗ia · S⃗ja⟩ − ⟨S⃗ia⟩ · ⟨S⃗ja⟩

)
, M inter

ij =
∑
a̸=b

(
⟨S⃗ia · S⃗jb⟩ − ⟨S⃗ia⟩ · ⟨S⃗jb⟩

)
, (4.7)

and their sum M tot
ij =M intra

ij +M inter
ij . All these correlation functions are shown in fig. [4.4], where they

are computed in the ground state for the same range of parameters used for the multiplet population of fig.
[4.2].

The behavior of the on-site charge correlation function resembles the results obtained with local mean
fields [106]. The total correlations are very small in the small J/U region, where the system is a Mott
insulator, and they gradually increase as J/U increases and the system reaches the Hund’s insulator. We
notice, in particular, that charge fluctuations are not maximal in the metallic region, but they are even
larger in the Hund’s insulator, a circumstance which reflects the charge disproportion. The evolution as a
function of J of the charge correlations is entirely due to the interorbital component, while the intraorbital
contribution is totally unaffected by J and it only depends on U/t. The results for nearest-neighbor
correlations follow a similar qualitative trend, with the total correlator vanishing in the Mott insulator and
increasing (in absolute value) as J/U grows. Once again, the interorbital component crosses zero around
the Hund’s metal region, reflecting the decoupling between charge excitations in different orbitals [107].
Therefore, we find that the charge decoupling, which has been so far reported for on-site correlations,
extends also to nearest-neighbor quantities, thereby strengthening its relevance. This property is at the
origin of the orbital-selective Mott transition: when an asymmetry between the bandwidths [108] or
a small crystal field splitting between t2g bands [109] are included, some bands become significantly
more correlated than others and they undergo Mott-localization for smaller critical values of U . In other
words, for a suitable regime of parameters, some bands are Mott-localized, while others are still (poorly)
conductive, hence the name “orbital-selective”.

Local spin correlations are positive and they grow with J/U , reflecting the increased on-site magnetic
moment. Since intraorbital spin fluctuations are constant throughout the whole explored range of J/U ,
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Figure 4.4: Correlation functions (averaged over the three lattice sites) in the ground state of [4.3] close
to the atomic limit: t = 1, U = 22. Charge and spin correlations are shown in the left and right panels
respectively. Local correlations are in the first row, while non-local in the second. In every plot, we resolve
intra-orbital, inter-orbital and total correlations. The Hund’s metal around J = U/3 is accompanied by
vanishing interorbital charge correlations, both locally and non-locally (orbital decoupling).

the only contribution comes from inter-orbital spin alignment due to the Hund’s coupling. The total
nearest-neighbors correlator M tot

j,j+1 is negative, signalling antiferromagnetic spin correlations between
the large local magnetic moments. The absolute value grows with J/U without any anomaly when the
Hund’s metal region is reached and crossed and an antiferromagnetic ordering is found also in the Hund’s
insulator. In this case, intraorbital correlations are negative and they have a mild dependence on J/U
which combines with the larger dependence of the interorbital terms to provide the final result.

4.2.4 Analysis of the excited states

The exact numerical diagonalization on a small cluster gives access to the full excitation spectrum of the
Hamiltonian, and hence to finite temperature properties. In fig. [4.5], we plot the first 3500 out of the
18564 energy levels Ei = ⟨ψi|H|ψi⟩ of Hamiltonian [4.3] as a function of the control parameter J/U .5 We
identify the presence of different “bundles” of energy levels, which come together or move apart upon
varying J/U , each of them corresponding to a specific class of excitations. All the states in a given bundle
are degenerate in the atomic limit, but they display small splittings for finite t due to virtual hopping
processes depending on the specific arrangement of the fermions in each state.

5The Hilbert space dimension is 18564 =
∑

N↑,N↓

(
NsitesNorb

N↑

)
·
(
NsitesNorb

N↓

)
δN↓,Nparticles−N↑ with Norb = 3, Nsites = 3 and Nparticles = 6.
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Figure 4.5: First 3500 energy levels of Hamiltonian [4.3] as a function of J/U in the regime U ≫ t (in
particular, U = 22, t = 1). The gray vertical line at J/U = 1/3 represents the degeneracy condition
between the Mott and Hund insulators in the atomic limit.

We can understand the nature of excitations by using this adiabatic connection to the atomic limit and
counting the number of states in each bundle. As an example, we first focus on the Mott insulating state at
J/U = 0.1, where we recognize five bundles of states.

• The lowest bundle is composed by 729 = 93 energy levels, which is easily understood because each
of the 3 lattice sites is characterized by a multiplet with ni = 2, Si = 1, and Li = 1, which is
(2Li + 1)(2Si + 1) = 9-fold degenerate.

• The second lowest bundle is formed by 1215 = 92 · 5 · 3 levels. This is the number of possible states
such that only one out of three sites features the minimal violation of Hund’s rules ni = 2, Si =
0, Li = 2. The degeneracy of this single-site configuration is 5, while the other two sites remain
9-fold degenerate, hence an overall 92 · 5 · 3 degeneracy, where the factor 3 counts all the possible
combinations of one site violating Hund’s rules. The energy gap between this bundle and the lowest
one is 2J .

• With a similar reasoning, one can verify that the third lowest bundle, which includes 675 = 9 · 52 · 3
levels, corresponds to states where two sites feature ni = 2, Si = 0, Li = 2 and the energy gap to the
ground state is about 4J .

• The fourth bundle includes 243 = 92 · 1 · 3 levels (where 1 is the degeneracy of the single-site
configuration ni = 2, Si = 0, Li = 0) and it has an energy gap 5J . We can appreciate the linear
behavior with progressively increasing slope of all these bundles close to J/U = 0.1 (0, 2, 4 and 5
respectively).
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• Following this logic, we can now expect to encounter excitations where two sites violate the Hund’s
rule with Si = Li = 0; however the energetic cost of this excitation is 10J , which is of order U for our
choice J = 0.1U . The result is that these states are mixed with the charge excitations, i.e. states in
which the Mott condition ni = 2 is violated. The energy gap of charge excitations is, for small values
of J/U , U − 3J , which depends on both U and J , and closes exactly at J/U = 1/3, where Hund’s
metallicity is found. This gap closure is clearly visible in the figure, and, indeed, it corresponds to the
lowering of the energy of the charge excitation as J/U grows.

In the opposite limit, for example at J/U = 0.45, we identify two bundles.

• The lowest bundle is made up of 48 = 4 · 4 · 1 · 3 levels, where two sites have a 4-fold degeneracy due
to the single-site configuration ni = 3, Si = 3/2, Li = 0, and the remaining site is in the state ni = 0,
Si = 0, Li = 0, which is not degenerate (again, the factor 3 counts the fact that each of the three
sites can be in the state ni = Si = Li = 0).

• As opposed to the case of small Hund’s coupling, here the second lowest bundle already involves
charge excitations. In fact, it includes 1296 = 9 · 4 · 6 · 6 levels, where one factor 6 is the degeneracy of
the single-site configuration n1 = 1, S1 = 1/2, Li = 1, and the other factor 6 represents the number
of possible permutations of site indices. Notice that the gap of this bundle is of the order of 6J − 2U
and that this gap tends to close approaching J/U = 1/3 as well.

In spite of the rather complex dependence of the energy levels on the control parameter J/U , we have
now a clear picture in which, approaching the limit J/U = 1/3, the charge gap collapses coming from both
the Mott insulator and the Hund insulator, leading to the metallization.

4.3 Cold-atomic analogue of Hund’s physics

The direct quantum simulation of Hund’s physics by means of ultracold fermionic atoms in optical lattices
is a very challenging purpose at least for two reasons. The first difficulty is related to the large number
of fermionic components required, in particular one has to realize the equivalent of three stable orbital
degrees of freedom (for example using metastable electronic states with moderate cross sections for
inelastic scattering) and two spin degrees of freedom (for example using nuclear states), while ensuring the
SU(2) spin symmetry (for example choosing electronic states that are not subject to hyperfine coupling).
For alkaline-earth-like atoms, besides 1S0 and 3P0, we don’t have any obvious candidate to simulate
the third orbital. The second reason is that the Hund’s coupling involves a pair hopping term in the
Hamiltonian, which is not realized by alkaline-earth-like atoms (see eq. [1.5]).

We thus change our perspective and propose a different model that still captures the essential mech-
anism of interaction-resilient metallicity, but that, at the same time, is simpler to realize with platforms
of alkaline-earth-like atoms. In particular, we consider a one dimensional single-band SU(3)-symmetric
Hubbard model subject to a periodic superlattice potential that divides the system in three sublattices
A, B and C, lowering the on-site energy by an amount µ on two of them (for example A and C). In this
section, µ does not denote the chemical potential, but rather the on-site energy difference provided by the
superlattice. The resulting Hamiltonian is

H = −t
Nsites∑
j=1

N∑
σ=1

(
c†jσcj+1,σ + h.c.

)
+
U

2

Nsites∑
j=1

nj(nj − 1) +

Nsites∑
j=1

µjnj , (4.8)
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where we recognize the usual SU(3) symmetric hopping and Hubbard terms and

µj = −µ if j = 1 mod 3; µj = 0 if j = 2 mod 3; µj = −µ if j = 0 mod 3. (4.9)

This model is for many aspects similar to the Hund’s model given in eq. [4.3], where the flavor index is
an analogue of the orbital degrees of freedom, while there is no analogue for the electronic spin.6 The
localizing effect provided by the Hund’s coupling J is mimicked by the presence of a staggered potential.
To further enhance this similarity, we work again at filling factor 2. Due to the absence of analogues to the
spin, in eq. [4.8] the Hubbard U is purely interorbital; however it is the same for all the possible flavor
pairs (as a consequence of the SU(3) symmetry), just like the density-density interorbital coupling is the
same for every pair of orbitals in the Hund’s model. An obvious difference which is worth pointing out is
that in Hamiltonian [4.8] the full translational symmetry is explicitly broken by the superlattice potential
(although a residual translational symmetry in every sublattice is still present); whereas the Hund’s model
has full translational symmetry. This broken symmetry will obviously reflect on the structure of the ground
state.

Once again, we study the system by means of exact numerical diagonalization working on a three-site
ring (Nsites), which is the minimal geometry that can host all the relevant phases. In this case, due
to the absence of an effective spin degree of freedom, extending the lattice to Nsites ≈ 9 is not very
computationally demanding if the Hamiltonian matrix is properly written in a symmetrized basis. In fact
we have checked the robustness of the following results increasing the ring size; however we haven’t found
any particular difference and here we just report results for Nsites = 3. We emphasize that it is also possible
to implement real-space DMFT for a system like this; however this is left for future investigation.

4.3.1 Atomic limit

To begin with, we study the ground state |ψ⟩ in the atomic limit by computing the relevant multiplets
pn =

∑
j |⟨ψ|Pnj |ψ⟩|2, where Pnj projects a state into the subspace of all the Fock states having n particles

on site j. The result is shown in fig. [4.6], from which we can make the following observations.

• If µ < U , we have p2 ≈ 1, which indicates that the system is a Mott insulator with exactly two
particles per lattice site and no charge fluctuations. The energy of this state is E0 = 3U − 4µ (when
we set t = 0).

• If µ > 2U , we have p3 ≈ 2/3 and p0 ≈ 1/3, which is a charge-ordered state with 3 particles in the
low-energy sites and 0 particles in the high-energy site. This state resembles a Hund’s insulator,
with the difference that it is not translation invariant. In this case, the energy in the atomic limit is
E0 = 6U − 6µ.

• If U < µ < 2U , we have p1 ≈ p2 ≈ p3 ≈ 1/3, which means that in the low-energy sites there are
3 and 2 particles, while in the high-energy site there is 1 particle. Again, this state is not fully
translation invariant, however it is invariant upon exchange of the low energy sites j = 1 ↔ j = 3
(i.e. under spatial inversion). This is a strange phase because, applying perturbation theory for small
hopping t, we get ⟨ψ|Hhop

ij |ψ⟩ ̸= 0 for i = 1, j = 3 (or vice versa) and 0 otherwise. In other words,
low energy sites are subject to charge fluctuations and therefore they allow charge transport from

6This is not mathematically rigorous, because the orbital degrees of freedom in the Hund’s model transform under the action of
SO(3), generated by Lj , while here the flavors transform under the action of SU(3), generated by the ladder operators Sj,σρ

defined in eq. [1.7].
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Figure 4.6: Population of the atomic multiplets pn relevant to the ground state of Hamiltonian [4.8] as a
function of the control parameter µ/U . The calculations are performed in the atomic limit t = 1, U = 22
at a filling factor of 2 (6 fermions on the 3-siste system). The gray vertical lines µ = U and µ = 2U
correspond to the points where different solutions become degenerate.

one to another; but on the high-energy site the charge is frozen and transport is not allowed. We
thus expect that this phase really depends on the lattice dimensionality: in d = 1 this is an insulator,
because a particle can’t move freely all around the ring, as it encounters obstacles along the way. In
different lattice geometries anyway it is still possible that a particle moves from one side to the other
of the sample by finding a connected path of low-energy sites, leading to a metallic state. In this
intermediate regime, the ground state energy is E0 = 4U − 5µ.

• Along the two lines µ = U and µ = 2U , the intermediate regime becomes degenerate with the
Mott regime and the (analogue of the) Hund’s regime respectively, namely 3U − 4µ = 4U − 5µ at
µ = U and similarly 6U − 6µ = 4U − 5µ at µ = 2U . The resulting ground state is now a quantum
superposition of all the Fock states that characterize the two degenerate regimes, as we discuss
below, and this reflects on the multiplets population. For µ = U we have p0 ≈ 0, p3 ≈ p1 ≈ 1/6 and
p2 ≈ 1/3; whereas for µ = 2U we have p0 ≈ p1 ≈ p2 ≈ 1/6 and p3 ≈ 1/2.

4.3.2 Phase diagram based on the Drude weight

We are now ready to evaluate the Drude weight in the space of parameters U/t and µ/t following the
prescriptions given in sec. [4.2]; there is only one subtlety which is worth pointing out first. In this
specific system with Nsites = 3 and filling factor 2, the energy function E0(ϕ) has a minimum located
at ϕ = ϕ0 = π/Nsites, unlike the Hund’s model, where it was located at ϕ = 0. Moreover, the critical
flux where the linear proportionality I(ϕ) ≈ D(ϕ − ϕ0) breaks down is now ϕc = 0 (see appendix [B]
for more details). Once again, we can compute D from the persistent current I(ϕ) with a single exact
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Figure 4.7: Color-plot of the Drude weight as a function of U/t and µ/t. The Drude weight is computed
relatively to the non-interacting case U = µ = 0 and is given by the ratio of the respective total currents
D/DU=µ=0 = I(ϕ)/IU=µ=0(ϕ) at ϕ = π/3 − 0.1π/3. The red lines are the two crossover lines µ = U
and µ = 2U , where two different insulating solutions become degenerate in the atomic limit. The insert
sketches representative Fock states having a large weight in the ground state in the three relevant insulating
regimes.

diagonalization per every point in the phase diagram at a suitably chosen ϕ via D = I(ϕ)/(ϕ− ϕ0). The
chosen flux ϕ should be close to ϕ0 = π/3 and far from ϕc = 0, hence we choose ϕ = ϕ0 − 0.1π/3.

We report the resulting phase diagram obtained from the Drude weight with a color plot in fig. [4.7].
We observe that, when µ≫ t and U ≫ t, there are three insulating regions with D ≈ 0, corresponding to
the three regimes detailed above with µ < U , U < µ < 2U and µ > 2U respectively. The three regions are
separated by two stripes where the Drude weight is finite, yet smaller than in the trivial metallic phase
t≫ µ,U , and the system is a bad conductor, but not an insulator. The two stripes of interaction-resilient
conductivity develop around the two lines µ = U and µ = 2U where two out of the three atomic-limit
solutions are degenerate. The metallic character of these two stripes can be explained by looking at the
relative weights that the Fock states have in the ground state.

For example, considering the line µ = U , where the Mott and the intermediate insulators are degenerate,
Fock states typical of the former (with 2 particles on every site) and of the latter (with 3 and 2 particles in
the low energy sites and 1 particle in the high energy site), which transform into one another upon hopping
processes, have roughly the same weights in the ground state. This means that, treating the hopping term
as a small perturbation, we have a contribution of first order in t, as ⟨ψ|Hhop|ψ⟩ ̸= 0. This suggests that
the kinetic energy is larger compared to what we find in the insulators, where first order corrections in t
vanish and we have only higher order terms. We can understand this result more intuitively by considering
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a specific Fock state, for example |2rg, 2gb, 2rb⟩ (insert of fig. [4.7]), where the three numbers represent the
number of fermions on each site, while r, g, b are labels for the flavors (they refer to the colors used in the
figure: r is red, g is green, b is blue). This state is a good representative of relevant Fock states in the Mott
insulator and, for example under the action of the hopping term c†1bc2b, it transforms into |3rgb, 1g, 2rb⟩,
a representative state of the intermediate insulating phase, which is strongly suppressed if µ ≪ U , but
acquires a relevant weight when µ ≈ U . After a careful thought, we can convince ourselves that when
µ ≈ U , every hopping term c†iσcjσ for all (ij, σ) transforms a relevant Fock state into another relevant
Fock state, and this is precisely what guarantees a conductive behavior. In contrast, this is not the case
when µ≪ U , as every hopping process transforms a state of the relevant subspace |2 , 2 , 2 ⟩ into a state
orthogonal to the subspace, e.g. |3 , 1 , 2 ⟩. A similar analysis holds for the other degeneracy line µ = 2U

This picture is similar to what we have found in fig. [4.3] for the Hund’s model, with the obvious
difference that now we have three insulators and two distinct interaction-resilient metallic phases. Despite
their differences, the two models are ruled out by the same deep mechanism: a degeneracy of insulating
phases favors charge fluctuations in the ground state that are compatible with hopping processes, thus
leading to a residual conductive behavior which survives to the strong interactions.

4.4 Conclusion and outlook

In this chapter, we have studied the general mechanism that stabilizes an interaction-resilient metal, i.e. a
paradigm that generalizes the popular Hund’s metal. In particular, we have uncovered the existence of a
similar metallic phase in two rather different models of strongly correlated fermions. We have compared a
three-orbital Hubbard model and a three-component SU(3) Hubbard model with a three-site patterned
potential. In both models, the standard Hubbard repulsion, which tends to stabilize a Mott insulator,
competes with a term of the Hamiltonian which favours a different state with inhomogeneous density
distribution, namely the Hund’s coupling in the first model and a non-uniform single-particle potential in
the second. In both cases, the competition between the two terms leads to different insulating solutions
which are separated in the respective phase diagrams by families of states which exhibit a persistent
metallic character, even in the presence of strong Coulomb repulsion, hence the name “interaction-resilient
metals”.

The exact results on the small cluster provide information on the nearest-neighbor correlation functions
of the model, which are difficult to compute with other approaches like single-site DMFT, where the
self-energy is purely local. In particular, we have demonstrated that, in the Hund’s metal region, the
nearest-neighbor inter-orbital charge correlations vanish just like the onsite components, strengthening the
relation between the Hund’s metal and the effective orbital decoupling. In other words, the charge degrees
of freedom of different orbitals are decoupled in the Hund’s metal, hence the introduction of a crystal
field splitting or of a hopping imbalance results in an asymmetric Mott localization between the bands,
where localized electrons in some bands coexist with partially delocalized electrons in others. Moreover
we have found that the nearest-neighbor spin correlators are always negative implying a tendency towards
antiferromagnetic ordering in all the regions of the phase diagram, including the Hund’s metal and the
Hund’s insulator. We have further supplemented previous studies with a detailed analysis of the many-body
low-lying energy spectrum across the phase diagram, showing how different “bundles” of excitations
characterize different states.

In sec. [4.3], we have performed a similar analysis for the SU(3) Hubbard model with a three-site
energy pattern (one site out of three with a higher energy). Here, we find a richer phase diagram,
characterized by two different lines along which metallic solutions survive at large interactions, in analogy
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with the Hund’s metal. This result is understood by inspecting the probability distribution of different local
configurations in the ground state, and is connected with the similar physical scenario emerging within
the Hund’s model. We have therefore provided evidence that an interaction-resilient metallic state is not
peculiar of the Hund’s physics, where it has been widely discussed, but it is a more general feature which
is present for a wide class of models featuring competing insulating states associated with different local
configurations. Tuning the parameters to make the insulating states degenerate or nearly degenerate, a
correlation-resistant metal exists as long as the local configurations corresponding to the two insulators are
connected by hopping processes.

In this work, we have considered a minimal three-site cluster to provide unbiased results by means of
exact diagonalization. For the Hund’s model, the three-site cluster does not show significant differences with
the scenario obtained with other methods, including DMFT, RISB, and slave-spin mean field. This agreement
between different approaches represents a mutual validation of the different methods and confirms that
the existence of the Hund’s metal is an intrinsic feature of the multiorbital Hubbard model. Moreover,
exact result for small clusters can be used to reconstruct the properties of infinite lattices using quantum
cluster methods such as cluster perturbation theory [110], variational cluster approximation [111], or
cluster extensions of DMFT [32, 33, 112]. The discussed results represent, in this perspective, the basic
building block from which the lattice physics can be built. These approximations are particularly accurate
for the strongly correlated insulating solutions, where we expect short-ranged quantum correlations [113],
but they should not alter significantly the shape of the phase diagram including the region where the
interaction-resilient metal is stable.
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Chapter 5

Superconductivity in multiorbital systems

A phenomenon which is particularly relevant both in the study of solids and of ultracold atoms is super-
conductivity (or, respectively, superfluidity). In this chapter we consider superconductivity in multiorbital
fermionic systems, starting from a very general theoretical question: how is the superconducting order
affected by the presence of interorbital couplings? One can encounter this problem in a broad range
of physical situations. For example, recently discovered high-temperature superconductors (such as the
iron-based [17] and nickel-based compounds [114], alkali-doped fullerides [93, 115] and MgB2 [116])
are characterized by several active bands around the Fermi level and by strong interorbital electronic
interactions. Another example is the study of thin superconducting films, composed of few stacked
layers [117]: in this case, every layer can be regarded as an independent orbital and the interlayer
interaction as an effective orbital coupling. Among these, the twisted bilayer graphene, which displays
remarkable superconducting properties [118], has been recently subject of a great research effort (see e.g.
[119, 120, 121] and related works).

The simultaneous presence of several interactions in the Hubbard-Kanamori model makes it difficult to
understand what is the role of every single term: a possible way to disentangle their role is to consider
them one by one. Here we begin by studying the effect of a Josephson local pair hopping coupling on the
superconducting character of the orbitals, providing an exact numerical solution of the DMFT equations
on the infinite-dimensional Bethe lattice. This model is particularly instructive, as it shows the dangers
of neglecting the role of quantum dynamical fluctuations when applying a static mean-field theory (even
to states with spontaneously broken symmetry). This specific choice is also motivated by similar models
proposed to describe a two-channel BCS-BEC crossover controlled by the orbital Feshbach resonance of
173Yb [24, 122]. Even though our model does not contain all the necessary ingredients to accurately
investigate the orbital Feshbach resonance, we discuss possible directions for future investigations in this
regards.

This chapter is organized as follows: in sec. [5.1] we provide an overview of the standard BCS theory,
discussing the BCS-BEC crossover and reviewing the concept of superfluid stiffness; in sec. [5.2] we
extend the theory to a two-orbital system with a Josephson coupling, starting with a static mean-field
approximation and then including the role of dynamical correlations with DMFT; in sec. [5.3] we briefly
review the concept of orbital Feshbach resonance and describe how our model could be generalized to
accurately describe it; finally we devote sec. [5.4] to concluding remarks.
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5.1 Single channel BCS theory

We begin this chapter by giving an overview of how the well-known BCS theory can be obtained from
the attractive single-band Hubbard model. This section is mainly devoted to introduce relevant notations
and concepts and has no presumption of completeness. The interested reader can find more details in the
original paper by Bardeen, Cooper and Schrieffer [123], in ref. [124] for BCS theory and its generalizations
to a variety of phenomenology involving superconductors, or in refs. [125, 126, 127] for a quantum field
theory of superconductors. Other classical resources are refs. [42, 128, 129, 130, 131].

The section is organized as follows: we begin with an overview of the attractive Hubbard model and its
symmetries, then we also discuss the standard BCS theory based on a mean-field treatment of Hamiltonian
[5.1]; after that, we introduce the Nambu many-body formalism relevant to perform DMFT and finally we
introduce and compute the superfluid stiffness, which gives an hint on the finite-temperature behavior at
large U .

5.1.1 Attractive Hubbard model and its symmetries

In this section, we consider the attractive single-orbital Hubbard model on a generic lattice:

H = −t
∑
⟨ij⟩

∑
σ

(
c†iσcj,σ + c†j,σci,σ

)
− U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ, (5.1)

where U > 0 is a local attraction. In materials, a similar attractive interaction can be provided by a coupling
to vibrational modes of the crystal (phonons) and eq. [5.1] has to be regarded as an effective model for the
electrons obtained after integrating out the phonons and neglecting retardation effects (see e.g. [30, 132]
and references therein).

The attractive Hubbard Hamiltonian is symmetric under the action of the group SU(2)spin×U(1)charge,
where SU(2) is generated by the spin operators Sa (a = x, y, z) and U(1) by the number operator.
Actually, on bipartite lattices the symmetry is more structured, as it is SU(2)spin×SU(2)pseudospin, where the
pseudospin algebra is generated by the operators [133]:

ηx =
1

2

∑
j

(−1)Rj

(
c†j↑c

†
j↓ + cj↓cj↑

)
, ηy =

i

2

∑
j

(−1)Rj

(
−c†j↑c

†
j↓ + cj↓cj↑

)
, ηz =

1

2

∑
j

(nj − 1), (5.2)

which indeed satisfy the angular momentum commutation relation [ηa, ηb] = iεabcη
c.

Under the unitary transformation c†j↓ → (−1)Rjcj↓, the attractive Hubbard model is mapped into
the repulsive Hubbard model (and vice versa), and the symmetry generators are swapped: Sa ↔ ηa,
hence SU(2)spin ↔ SU(2)pseudospin. The chemical potential term is mapped into an external uniform
magnetic field µN → µSz and vice versa; however at half filling this term is not present. Furthermore, the
transformation also acts on the Fock states; in particular, a given state labeled by the quantum numbers
(N,Sz), representing the total number of particles and the total magnetization along z respectively, is
mapped into a state with different quantum numbers according to (N,Sz) → (Nsites+S

z, N −Nsites) [134].
The half-filled sector (Nsites, 0) remains invariant under this mapping, but a magnetized sector in the
repulsive picture is mapped into a doped sector in the attractive picture and vice-versa.

Consequently, just like the ground state of the repulsive Hubbard model on a bipartite lattice is
characterized by an antiferromagnetic phase that spontaneously breaks SU(2)spin, similarly in the attractive
model the ground state spontaneously breaks SU(2)pseudospin. In the repulsive case, the order parameter
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for antiferromagnetism is given by the expectation value of the staggered magnetization (Néel vector)
Ma = N−1

sites
∑

i(−1)RiSa
i , which in the attractive model is mapped into

Mx → 1

2Nsites

∑
i

(c†i↑c
†
i↓ + h.c.), My → − i

2Nsites

∑
i

(c†i↑c
†
i↓ − h.c.), M z → 1

2Nsites

∑
i

(−1)Ri(ni − 1).

For the staggered xy magnetization, it is more conventional to consider the mapping of ladder operators
M± =Mx ±My:

M+ → 1

Nsites

∑
i

c†i↑c
†
i↓; M− → 1

Nsites

∑
i

ci↓ci↑. (5.3)

The transformed version of M± are complex order parameters for superconductivity, while the transformed
M z describes a charge-density wave.

The charge-density wave and the superconducting phase are degenerate in the half-filled attractive
Hubbard model, however even a small deviation from the half-filling condition favors superconductivity
[135]. In this section we work at half-filling, but we neglect the presence of a charge-density wave, focusing
on superconductivity instead.

5.1.2 Mean field on the attractive Hubbard model

By standard Fourier transform, eq. [5.1] can be rewritten in momentum space, where the connection to
standard BCS theory becomes more transparent:

H =
∑
kσ

(εk − µ)c†kσckσ − U

Nsites

∑
kpq

c†k+q↑c
†
−k↓c−p+q↓cp↑ (5.4)

where εk is the dispersion relation on the given lattice. Eq. [5.4] is known as BCS Hamiltonian as the
standard BCS theory can be obtained by a mean-field Hartree-Fock decoupling of the interaction in the
superconducting channels:

∆(q) =
U

Nsites

∑
p

⟨c−p+q↓cp↑⟩, ∆∗(q) =
U

Nsites

∑
k

⟨c†k+q↑c
†
−k↓⟩, (5.5)

where ∆(q) is called gap parameter. We now assume that the gap parameter is uniform in real space,
namely that the only relevant momentum mode is q = 0: ∆(q) = ∆δq,0: this amounts to assume that
the center of mass of a Cooper pair has a vanishing momentum. The same decoupling can be obtained
by performing a similar mean-field decoupling directly from the real-space Hubbard Hamiltonian [5.1],
using ∆ = UN−1

sites
∑

i⟨ci↓ci↑⟩ and ∆∗ = UN−1
sites

∑
i⟨c

†
i↑c

†
i↓⟩ as order parameters. We observe that ∆ and ∆∗

are, except for the prefactor U , the order parameters that we have deduced based on a mapping to the
repulsive model in eq. [5.3].

Introducing a suitable spinor Ψ†
k = (c†k↑, c−k↓), known as Nambu spinor, and using ∆ = |∆|eiφ the

resulting mean field Hamiltonian reads:

H =
∑
k

Ψ†
k

 εk − µ −|∆|eiφ

−|∆|e−iφ −(ε−k − µ)

Ψk +
∑
k

(εk − µ) +Nsites
|∆|2

U
. (5.6)

From now on, we assume to work on lattices with a symmetric momentum dispersion ε−k = εk, which is
fine for hypercubic lattices; however it does not necessarily hold for more sophisticated geometries.
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When ∆ ̸= 0, this Hamiltonian explicitly breaks the U(1)charge symmetry, as it no longer commutes with
the particle number [H,N ] ̸= 0. Intuitively, this mean-field model represents a Fermi sea coupled to an
external reservoir of particle pairs with zero total momentum and zero total spin, and ∆ represents the
tunneling amplitude from the reservoir to the system (or vice versa). Since the pair susceptibility of the
non interacting Fermi system diverges logarithmically with temperature, we expect this perturbation to
have a significant effect in the ground state.

We can diagonalize the mean-field Hamiltonian via a unitary transformation on the Nambu spinor:
Ψk → Φk = P̂ †

kΨk, where P̂k is a unitary matrix (this ensures that the components of the transformed
spinor Φk can still be regarded as fermionic operators, as they satisfy the correct anticommutation rules).
The diagonalized matrix takes the form P̂ †

kĤkPk = diag(λk, −λk), where λk =
√
(εk − µ)2 + |∆|2 and the

corresponding transformation is in fact real and symmetric:

P̂ †
k =

 −e−iφ cos θk sin θk

sin θk eiφ cos θk

 , sin θk =

√
1

2

(
1− εk − µ

λk

)
, cos θk =

√
1

2

(
1 +

εk − µ

λk

)
.

(5.7)
The resulting Hamiltonian, written in terms of the components of the Nambu spinor in the new basis
Φ†
k = (α†

k↑, α−k↓), reads

H =
∑
kσ

λkα
†
kσαkσ +

∑
k

(εk − µ− λk) +Nsites
|∆|2

U
. (5.8)

This form allows for an intuitive physical interpretation: since λk ≥ |∆| for any finite gap, the presence of
α-quasiparticles in a state (k, σ) increases the internal energy by +λk, bringing the system to an excited
state; we can thus consistently name these quasiparticles excitations. The energetic cost of creating an
excitation is at minimum |∆|, hence the name gap. Therefore, the ground state is the vacuum state of
excitations |0α⟩. This state can be related to the vacuum of normal electrons |0c⟩ by building a state that
maps any annihilation operator αkσ to zero: |0α⟩ =

∏
k αk↑α−k↓ |0c⟩; transforming back to the original

fermionic operators, we get the celebrated BCS ground state:

|0α⟩ = N
∏
k

(
e−iφ cos θk + sin θkĉ

†
k↑ĉ

†
−k↓

)
|0c⟩ , (5.9)

where N is a normalization constant. We pause here for a moment to make a few important observations.

• In the BCS ground state, the grand canonical potential is Ω(∆) =
∑

k(εk − µ− λk) +Nsites|∆|2/U .
In particular, we observe that if ∆ ̸= 0, λk > |εk|, which implies that – for some finite values of ∆ –
the BCS ground state has a lower Ω than the non-interacting Fermi sea, for which it is

∑
k(εk − µ).

In other words, the presence of a pairing field (albeit small) makes the Fermi sea an unstable state.
Furthermore, we observe that the internal energy depends on ∆ only through |∆| and not through
the phase φ, hence there is a continuous manifold of degenerate ground states labeled by φ ∈ [0, 2π[.

• The ground state depends on the phase of the gap parameter φ, which implies that it can be written
as a coherent state for the creation operator B†

q =
∑

k tan θk c
†
k+q↑c

†
−k↓ with a fixed phase:

|0α⟩ = N ′ exp
{
eiφB†

0

}
|0c⟩,
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where we have absorbed some factors in the new normalization constant N ′. Consistently, although
the average particle number ⟨0α|N |0α⟩ corresponds to the filling factor, the BCS ground state is
characterized by a fluctuating number of particles, namely ⟨0α|N2|0α⟩ ̸= ⟨0α|N |0α⟩2. This reflects
the fact that |0α⟩ is not symmetric under U(1)charge generated by the number operator. At first this
does not surprise, because the mean-field Hamiltonian [5.6] is not invariant under U(1)charge either;
however, in the thermodynamic limit, this is actually the ground state of the attractive Hubbard
model [5.1], hence it is a state that spontaneously breaks the charge symmetry [136].

• The components of Φ†
k can be also rewritten in terms of two fermionic creation operators as

(β†k↑, β
†
−k↓). With this choice, the mean field Hamiltonian reads

H =
∑
k

(λkβ
†
k↑βk↑ − λkβ

†
k↓βk↓) +

∑
k

(εk − µ) +Nsites
|∆|2

U
;

in this case, adding ↑ quasiparticles increases the energy by λk, while adding ↓ quasiparticles
decreases the energy by −λk. In this language, the ground state is obtained by fully populating the ↓
band and the advantage is that the spectral function of quasiparticles has a symmetric structure.

In the spirit of the Hartree-Fock method, the gap parameter should be determined self-consistently. The
self-consistency equation at any temperature T is obtained by minimizing the grand-canonical potential
Ω = E0 − TS − µN , where E0 is the internal energy and S is the entropy. Since the excitations obey
the Fermi statistics, we have ⟨α†

kσαkσ⟩ = f(λk), where f is the Fermi function, and the grand-canonical
potential reads

Ω =
∑
k

λkf(λk)−
∑
k

λk +Nsites
|∆|2

U
− T

∑
k

[f(λk) log f(λk) + (1− f(λk)) log (1− f(λk))] (5.10)

up to inessential constants. Assuming φ = 0 and replacing the momentum sum with an integral over the
energy band weighted by the density of states D(ε) = N−1

sites
∑

k δ(ε− εk), the self-consistency equation
reads:

∂Ω

∂∆
= 0 → ∆ =

U

2

∫
dεD(ε)

∆

λ(ε)
tanh

(
λ(ε)

2kBT

)
. (5.11)

Simple analytical solutions (different from the unstable solution ∆ = 0) can be obtained under suitable
conditions. The result is that the ground state as a function of U/D features a smooth crossover between
two distinct regimes: the “BCS regime” at weak coupling and the “BEC regime” at strong coupling.

If ∆ is large (more precisely ∆ ≫ D, where D is the half bandwidth) and T = 0, we have λ(ε) ≈ ∆
and tanh ∆

2T → 1, which in turn leads to ∆ ≈ U/2. This is a consistent solution when U ≫ D (so
that also ∆ ≫ D). Moreover, we can formally get the critical temperature Tc at which the system gets
back to a normal Fermi gas by simplifying ∆ in both sides and then setting ∆ = 0, which leads to the
implicit equation 1 = U

2

∫
dεD(ε)

|ε| tanh ( |ε|
2Tc

). If Tc ≫ D, then we can expand the hyperbolic tangent as

tanh |ε|
2Tc

≈ |ε|
2Tc

, which simplifies the integral and results in Tc ≈ U/4, then this is again consistent if U ≫ D.
This is called “BEC regime”, because the coherence length of a Cooper pair is so small that the fermions are
effectively bound in bosonic molecules which undergo Bose-Einstein condensation (hence the acronym
BEC) at low temperature.1 According to the mean-field picture, the superconducting order is broken when
1This is just an approximation, since the operator B†

q does not satisfy exact bosonic commutation relations. It turns out that only
expectation values of the commutation relations are consistent with the Bose statistics in the limit q → 0, U ≫ D and for small
filling factors.
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the thermal fluctuations are large enough to break the bosonic molecule; but, as we will discuss in the next
section, this is not correct and much lower thermal fluctuations are sufficient to break superconductivity.

Analytic results for the opposite limit U ≪ D, known as “BCS regime”, depend on the specific lattice,
but in general the gap increases exponentially with U . We can give a more accurate analytic estimate for
the Bethe lattice of infinite coordination, which is particularly relevant for the following sections. Setting
T = 0 in eq. [5.11], the hyperbolic tangent is ≈ 1 and we can recast the equation as:

1 =
U

πD2

∫ D

−D
dε

√
D2 − ε2√
ε2 +∆2

=
2U

πD

∫ 1

0
dx

√
1− x2

∆2

D2 + x2
.

In this form, the integral is difficult to expand for ∆/D ≪ 1 because it diverges when ∆ = 0 (thus we can’t
make a simple Taylor expansion). Fortunately, this divergence is easy to heal integrating by parts: using∫
dx 1√

a2+x2
= log (x+

√
a2 + x2), we get

1 =
2U

πD

√1− x2 log

(
x+

√
∆2

D2
+ x2

)∣∣∣∣∣
1

0

+

∫ 1

0
dx

2x√
1 + x2

log

(
x+

√
∆2

D2
+ x2

) .
The first term evaluates to − log ∆

D and it contains a logarithmic divergence in the limit ∆ → 0; while the
integral in the second term can now be expanded in powers of ∆

D as it is no longer singular for ∆ → 0.
The zero-th order expansion is obtained setting ∆ = 0 and using the result

∫ 1
0 dx

2x log 2x√
1+x2

= 2 log 2− 1 we
finally get

1 =
2U

πD

[
− log

∆

D
+ 2 log 2− 1 +O

(
∆

D

)]
→ ∆ ≈ 4De−

πD
2U

−1, (5.12)

which shows that ∆ ̸= 0 even for infinitesimal values of U , reflecting the Cooper instability of the Fermi
gas. Moreover, it can be proved that the critical temperature has the same exponential behavior, hence
small thermal fluctuations can significantly populate the excitation band and break superconductivity.

Here we have assumed a purely local interaction potential V (r) ∝ δ(r), which is then uniform in
momentum space; however it is also interesting to mention the general case where the interaction potential
has a non-trivial momentum dependence Vkp =

∫
drei(k−p)·rV (r). In this case, the gap parameter depends

on the “internal momentum” and it is defined as ∆k(q) =
∑

p Vkp⟨c−p+q↓cp↑⟩. Again we can assume
q = 0, but the residual momentum dependence of the gap can lead to a spatially non-uniform solution of
the self-consistency equation2, giving gaps with p-wave or d-wave symmetries that have been reported in
some high-temperature superconductors [138, 139, 140, 141].

5.1.3 Many-body formalism and DMFT

A generalization of the Green’s function to describe also the superconducting order is given in terms of the
(imaginary-time) Nambu spinor Ψ†

k(τ) = (c†k↑(τ), c−k↓(τ)):

Ĝ(k, τ) = −⟨T (Ψk(τ)Ψ
†
k(0))⟩ = −

〈
T

 ck↑(τ)c
†
k↑(0) ck↑(τ)c−k↓(0)

c†−k↓(τ)c
†
k↑(0) c†−k↓(τ)c−k↓(0)

〉 , (5.13)

2In this case, the self-consistency equation reads [124, 137]: ∆k = N−1
sites

∑
p

Vkp∆p

λp
tanh

(
λp

2kBT

)
.
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(where we have used a mixed momentum-time representation). In this representation, we recognize a
“normal” diagonal component (G), where a particle in state (k, σ) is created at time 0 and destroyed at a
later time τ (as in the standard definition) and an “anomalous” off-diagonal component (F ), where two
particles are destroyed in different states (−k, ↓) and (k, ↑) at time 0 and τ respectively:

Gσσ(k, τ) = −⟨T (ckσ(τ)c
†
kσ(0))⟩; F (k, τ) = −⟨T (ck↑(τ)c−k↓(0))⟩. (5.14)

Assuming spin symmetry and Fourier transforming to Matsubara frequencies, we get

Ĝ(k, iωn) =

 G(k, iωn) F (k, iωn)

F ∗(k, iωn) −G(−k,−iωn)

 (5.15)

and the local Green function is obtained by summing over all momenta Ĝloc(iωn) = N−1
sites

∑
k Ĝ(k, iωn) or,

equivalently, integrating over the energies weighted by the density of states: Ĝloc(iωn) =
∫
dεD(ε)Ĝ(ε, iωn).

Finally, the self-energy can be computed from the Dyson equation and it shares the same matrix structure
and the same symmetry properties as the Green function:

Σ̂(k, iωn) = Ĝ−1
0 (k, iωn)− Ĝ−1(k, iωn) =

 Σ(k, iωn) S(k, iωn)

S∗(k, iωn) −Σ(−k,−iωn)

 , (5.16)

where Ĝ−1
0 (k, iωn) = diag[iωn − εk, iωn + ε−k] is the inverse non-interacting Green function. The mean-

field theory outlined in the previous section is simply obtained by a constant self-energy with a vanishing
normal component Σ(k, iωn) = 0 and an anomalous part coincident with the gap S(k, iωn) = ∆.

We can particularize the general framework of DMFT to the study of superconductivity by means of
the Nambu formalism. We begin by introducing a suitable Anderson impurity model, where the bath
exchanges particles with an external reservoir of pairs. Following the notation of sec. [1.3.1], we introduce
the set of spinors Ψ†

ℓ = (c†ℓ↑, cℓ↓) on the ℓ-th site and we parameterize the bath via a set {εℓ, Vℓ,∆ℓ} as:

ε̂0 =

 ε0 − µ 0

0 −(ε0 − µ)

 ; ε̂ℓ =

 εℓ −∆ℓ

−∆ℓ −εℓ

 ; V̂ℓ =

 Vℓ 0

0 −Vℓ

 , (5.17)

where ε0 = 0.3 The Weiss field Ĝ−1(iωn) can be readily computed from eq. [1.17] and the impurity Green
function in the interacting case can be obtained following the steps of sec. [1.3.2]; then the self-consistency
procedure is realized applying the prescriptions of sec. [1.3.3]. The converged gap ∆ = Uϕ can be
obtained by evaluating ϕ = N−1

sites
∑

k⟨c−k↓ck↑⟩ which, by virtue of eqs. [1.31] and [5.14], is given by
ϕ = T

∑
iωn

Floc(iωn). A numerical evaluation which accounts for the large-ωn tail can be obtained by
applying eq. [1.39].

Solving the DMFT self-consistency equation on the infinite-dimensional Bethe lattice at T = 0, the
order parameter is consistent with the mean-field prediction: in particular, for U ≫ D we have ϕ→ 1/2
and ∆ → U/2; while for U ≪ D we obtain ϕ ≈ e−D/U . On the other hand, a finite temperature DMFT
calculation, carried out in ref. [142], shows that the critical temperature at large U scales approximately
like Tc ∼ 1/U , in stark contrast with the mean-field prediction (Tc ∼ U). The reason of this discrepancy

3We have included ε0 even though it vanishes in this context because it is useful when generalizing to multiple orbitals subject to
a crystal field splitting.
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is ultimately the fact that the mean-field theory is not capable of accounting for quantum and spatial
fluctuations of the phase field φ(r, τ); however these fluctuations are the “soft” Goldstone mode, i.e. the
low energy excitations of the system [127], at least when U is large. When the phase fluctuations are too
large, the phase coherence of the order parameter is broken, which in turn determines a breakdown of the
superfluid behavior.

5.1.4 Superfluid stiffness

To explain the behavior of Tc in the large-U limit (BEC regime), we can introduce the concept of superfluid
stiffness [65] Ds. This quantity is central to characterize the phenomenology of superconductors, including
the Meissner effect, a perfectly diamagnetic response of a superconductor to an externally applied magnetic
field, as opposed to the standard weakly paramagnetic response of a Fermi gas. The external magnetic
field penetrates the sample only within a distance ≈ λL (known as London penetration depth) from the
surface, while it is screened at larger distances. The London depth is given by λL =

√
m/(µ0nse2), where

m and e are the electronic mass and charge respectively, µ0 is the vacuum magnetic permeability and ns is
the density of carriers having this anomalous superfluid behavior4. The phenomenological equation that
explains this effect is the London equation, which states that the current density j is proportional to the
magnetic vector potential A in the Coulomb gauge ∇ ·A = 0, more precisely j = −nse2

m A. This expression
is in fact quite different from the current on a conventional metal, where Ohm’s law states that the current
is proportional to the electric field j = σE or, in other words, to the time derivative of the vector potential
j = −σ∂tA (which holds in the specific gauge where we set the scalar potential to zero), where σ is the
electrical conductivity. In general, the latter is a tensor with spatial and temporal dependence, and Ohm’s
law has to be generalized in the form of a convolution integral; however it can be written in much simpler
terms in momentum-frequency space as j(q, ω) = iωσ̂(q, ω)A(q, ω).

Applying the machinery of linear response theory on a d-dimensional hypercubic lattice system, it is
possible to prove that the linear response of a current density to an externally applied vector potential is
ji(q, ω) = Kij(q, ω)Aj(q, ω), where the linear response function is given by

Kij(q, ω) = −e2
[
χij(q, ω)−

a2

ℏ2
⟨Ekin

i ⟩δij
]
. (5.18)

Here we recognize two contributions: a paramagnetic term and a diamagnetic term. The diamagnetic term
is given by the expectation value of a “component” of the kinetic energy ⟨Ekin

i ⟩, which is given only by
hopping processes along the direction êi (the counterpart of this term for a uniform system is proportional
to the particle density). The paramagnetic term instead is given by the current-current response function
χij that, according to the Kubo formula, is given by

χij(q, ω) =
1

iℏ

∫ ∞

0
dt eiωt⟨[Ii(q, t), Ij(−q, 0)]⟩, (5.19)

where ⟨. . . ⟩ denotes the expectation value on an unperturbed equilibrium state, I(q, 0) is a generalization
of the paramagnetic current introduced in sec. [2.3]:

Ij(q) =
∑
kσ

vj,k,qc
†
k,σck+q,σ =

∑
k

vj,k,qΨ
†
k1Ψk+q, vj,k,q =

ita

ℏ

(
e−i(k+q)·aêj − eik·aêj

)
(5.20)

4In this section we adopt units of the international system.
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(a)

(b)

Bubble diagram

Figure 5.1: (a) Ladder expansion for a correlation function χAB(q, iωn) in terms of the irreducible vertex
function. The operator A is defined as A(q) =

∑
k,αβ Ψ

†
kαAk,q,αβΨkβ and a similar definition holds for

B(−q). (b) Detail of the “bubble diagram”, the only Feynman diagram that contributes in the non-
interacting case or in the limit of infinite dimensionality. The summation over all the internal indexes is
implied, i.e. kBTN−1

sites
∑

k,iνn,αβγδ
.

and its time evolution is given by Ii(q, t) = eiHt/ℏIi(q)e
−iHt/ℏ, H being the unperturbed Hamiltonian. The

coefficient vi,k,q is known as current vertex and its explicit expression depends on the specific lattice (a is
the lattice spacing). For a non interacting system, the Kubo formula [5.19] can be considerably simplified,
as it can be written drawing a bubble Feynman diagram as shown in fig. [5.1], which finally yields an
expression in terms of the Green function:

χij(q, iωn) =
1

Nsites

∑
k

vi,k,qvj,k+q,−q kBT
∑
iνn

Tr
[
Ĝ(k, iνn)Ĝ(k+ q, iνn + iωn)

]
, (5.21)

where iωn = 2πnkBT is a bosonic Matsubara frequency, whereas iνn = (2n + 1)πkBT is a fermionic
frequency. The real frequency version is simply obtained by analytic continuation iωn → ℏω + i0+ after
performing all the internal sums. Remarkably, this expression is also exact for an interacting system in the
limit of infinite dimensionality, because all the corrections to the bubble diagram involving the irreducible
vertex function (which is momentum independent in this limit) vanish identically [27, 143].

In this formalism we can investigate the superfluid behavior of a system by studying the response
to a divergenceless static magnetic vector potential, which in momentum space is perpendicular to its
momentum: q ·A = 0 (for instance, if q = qêy, then the external field is along the x direction: A(q, 0)êx).
For simplicity we can consider a field with a smooth spatial variation, i.e. characterized by a small
momentum compared to the lattice cutoff: qa ≪ 1. Thus we have to compute the response function
Kxx(q → 0, ω = 0) (where, importantly, the static limit has to be taken before we set q → 0 [100]). If for
example we find Kxx(q → 0, ω = 0) = −Ds for a finite constant Ds, this is a clear hallmark of superfluidity,
as this condition suggests that the current density is proportional to the vector potential itself: jx = −DsAx,
similarly to the London equation. If this is the case, the constant Ds is called superfluid stiffness and it is
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defined as

Ds = e2
(
χxx(qy → 0, ω = 0)− a2

ℏ2
⟨Ekin

x ⟩
)

(5.22)

where implicitly we assume that all the other components of q are zero. Building a low energy lagrangian
theory for the superconductor [144], it is possible to prove that Ds is proportional to the energy cost
required to excite quantum and spatial fluctuations of the phase field, hence the name stiffness: it determines
how “stiff” the coherent phase field in the ground state is with respect to fluctuations. Furthermore, it is
related to the London penetration depth via λL =

√
1/(µ0Ds).

In the limit of infinite dimensionality d→ ∞, which is relevant for DMFT, we have to take a vanishing
hopping t → 0 such that t

√
2d = t̃ is finite (2d is the lattice coordination for an hypercubic geometry).

To make eq. [5.22] non-trivial in this case, we have to slightly change the definition multiplying by the
dimension: Ds → Dsd. Then we can write χxxd ≈

∑d
i=1 χii because the contribution parallel to the

applied momentum becomes negligible compared to the sum of all the other d− 1 components in the limit
d → ∞ and all the latter are equivalent by symmetry; and similarly ⟨Ekin

x ⟩d = ⟨Ekin⟩. Both analytic and
numeric summation over momenta are extremely unpractical when d→ ∞ (and they are also ill defined
for a Bethe lattice), hence we should express eq. [5.22] in terms of an integral over the density of states
D(ε). This is straightforward for the diamagnetic term, since the momentum dependence comes through
the dispersion relation εk, hence using eq. [1.31]:

⟨Ekin⟩ = 1

Nsites

∑
k

εkkBT
∑
iνn

[G(εk, iνn)−G∗(ε, iνn)] = kBT

∫
dε εD(ε)

∑
iνn

[G(ε, iνn)−G∗(ε, iνn)] .

The paramagnetic term instead requires more work: we can multiply by the Dirac delta function δ(ε− εk)

and integrate over the variable ε to get: N−1
sites

∑
k,i v

2
i,k,0δ(ε− εk) =

a2

ℏ2V (ε)D(ε), where the function V (ε)
can be determined by requiring that the optical conductivity satisfies the f -sum rule [145]. The latter
condition leads to the simple differential equation

∂

∂ε
[V (ε)D(ε)] = −εD(ε) → V (ε) = − 1

D(ε)

∫
dε εD(ε). (5.23)

The solution is V (ε) = 1
3(D

2 − ε2) for the infinite-dimensional Bethe lattice [145, 146] and V (ε) = t̃2

for the infinite-dimensional hypercubic lattice [143, 147] (whose density of states is given by a gaussian
D(ε) = 1

t̃
√
2π

exp
{
− ε2

2t̃2

}
, where t̃ = t

√
2d).

Putting it all together, we get

Ds =
e2a2

ℏ2
kBT

∑
iνn

∫
dεD(ε)

[
V (ε) Tr

(
Ĝ(ε, iνn)

2
)
− 2εG(ε, iνn)

]
. (5.24)

We can make further progresses by using the Nambu representation in eq. [5.15], which implies Tr Ĝ2 =
G2 +G∗2 + 2|F |2 and integrating by parts the diamagnetic term, where we integrate the factor −εD(ε) =
∂ε[V (ε)D(ε)] and differentiate G(ε, iνn); using ∂εG = G2 +G∗2 − 2|F |2, which stems from the fact that
the self-energy does not depend on ε, we finally get

Ds =
4e2a2

ℏ2
kBT

∑
iνn

∫
dεD(ε)V (ε)|F (ε, iνn)|2. (5.25)
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We can clearly appreciate how the superfluid behavior appears only in presence of a non-trivial anomalous
Green function.

Finally we can use eq. [5.25] to compute the superfluid stiffness in the context of the BCS mean-field
theory. Setting Σ(iνn) = 0 and S(iνn) = ∆, the summation over Matsubara frequencies becomes relatively
simple:

kBT
∑
iνn

|F (ε, iνn)|2 = kBT
∑
iνn

1

[(iνn)2 − λ2(ε)]2
=
f ′(λ(ε)) + f ′(−λ(ε))

4λ2(ε)
+

1− 2f(λ(ε))

4λ3(ε)

T→0−−−→ 1

4λ3(ε)
.

Here we have used the observation that the complex function f(z)(z2 − λ(ε)2)−2 has two poles of second
order in z = ±λ(ε) and we have evaluated the residues accordingly; furthermore we have used the
zero temperature approximations f(λ(ε)) ≈ Θ(−λ(ε)) = 1 (Θ being the Heaviside step function) and
f ′(±λ(ε)) ≈ −δ(±λ(ε)) = 0 because λ(ε) is always positive for any ∆ ̸= 0. Writing the remaining energy
integral in terms of dimensionless variables we arrive at

Ds =
4

3

e2a2D

ℏ2

(
∆

D

)2 ∫ 1

0
dx

[
1− x2

(∆/D)2 + x2

]3/2
(BCS), (5.26)

which can be evaluated analytically in terms of the elliptic functions introduced in sec. [2.4]:

Ds =
4

3

e2a2D

ℏ2
∆

D

{(
1 + 2

∆2

D2

)
Ξ

[
π

2
,−D

2

∆2

]
− 2

(
1 +

∆2

D2

)
F

[
π

2
,−D

2

∆2

]}
. (5.27)

Once again it is interesting to look at the two limit situations: U ≫ D (or equivalently ∆ ≫ D) and
U ≪ D (or ∆ ≪ D):

Ds ≈
4

3

e2a2D

ℏ2
, U ≪ D; Ds ≈ π

(ea
ℏ

)2 D2

2U
, U ≫ D. (5.28)

We can make a few observations on this result. First of all, if U ≪ D the superfluid stiffness saturates
to a constant value; however at U = 0 we find Ds = 0 because the anomalous Green function vanishes:
this is not surprising, since the BCS theory has a singular behavior at U = 0. At larger values of U , the gap
increases and the stiffness decreases monotonically, then in the strong coupling limit it is characterized
by a hyperbolic tail ∝ D/U . Consistently, the London penetration depth has a minimal value at very
weak coupling, then it increases moving at strong coupling, indicating a progressively worse diamagnetic
behavior. From another point of view, we can say that, at weak coupling, the phase is very coherent (or
“stiff”), even in presence of large thermal fluctuations; whereas the gap is small and it closes at relatively
low temperatures. In the strong coupling limit we have an opposite scenario: the gap is very large, but the
stiffness is small, which means that thermal fluctuations can easily spoil the phase coherence, while the
gap is only closed at much larger temperatures. The critical temperature for the superconductive phase
is thus small both at weak and strong coupling, while it is maximized at intermediate values of U . At
weak coupling, small thermal fluctuations close the gap, leaving a very coherent gas of weakly interacting
particles that are not paired, this is a manifestation of the instability of the Fermi gas with respect to
small attractive forces. At strong coupling, small thermal fluctuations are enough to destroy the phase
coherence, leaving a gas of incoherent paired particles, while much higher temperatures are required to
break the “molecular” pairs (see e.g. the phase diagram sketched in [148]). Remarkably, this is an effect of
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the underlying lattice structure, while for a free gas the critical temperature is expected to saturate to a
constant value at strong coupling [149, 150]. The superconductive phase is more robust against thermal
fluctuations at intermediate couplings, where there is a compromise between a relatively large gap and
a relatively large stiffness. This mechanism has been explored with DMFT at finite temperature in refs.
[142, 151].

5.2 Two channel BCS theory with Josephson coupling

In this section we investigate the equilibrium properties of two s-wave superconductors described by
the attractive Hubbard model, that are coupled by local pair hopping processes, where the particles are
transferred in pairs from one superconductor to the other on the same lattice site (Josephson coupling).
The system is described by the following Hamiltonian

H = −
∑
a=1,2

ta
∑
⟨ij⟩

∑
σ=↑↓

(
c†iaσcjaσ + h.c.

)
− µ

∑
a=1,2

∑
i

∑
σ=↑↓

niaσ − U
∑
a=1,2

∑
i

nai↑nia↓

−J
∑
i

(
c†i1↑c

†
i1↓ci2↓ci2↑ + h.c.

)
, (5.29)

where we assume U > 0 and J > 0. The two superconductors are characterized by the same intraorbital
Hubbard attraction Ua = U , but the hopping amplitudes can be different in the two orbitals: in particular
we assume t1 = t and t2 = αt, where conventionally α ∈ [0, 1]. This is a specific realization of eq. [1.2],
where Jp.h. = −J , Ua = −U , tab = taδab and U ′ = U ′′ = Js.e. = 0. We choose to work on the Bethe lattice,
where we can exactly solve the model by means of DMFT; however the formalism outlined in the following
can be easily generalized to other geometries. In this geometry, the non-interacting spectral functions
associated to the two bands are semicircular shapes of the form [1.27] with different half-bandwidths
D1 = D and D2 = αD and they are centered around the same energy level. In other words, we are not
accounting for a crystal field splitting between the two bands; however this might be an interesting point
to address in future investigations, as we will discuss later. Finally, we work at global half filling, which is
enforced by setting µ = 0 to make eq. [5.29] particle-hole symmetric.

This model (or its generalized version) can be used to provide a basic description of different physical
systems. The most natural application is the study of a material with two active bands around the Fermi
level [152], where some microscopic mechanism (e.g. coupling with specific phonon modes) induces local
intraband attraction and favors the interorbital pair hopping on top of other interaction processes. Secondly,
we can use it to describe a particular Josephson junction, where two superconducting parallel 2d-layers
are separated by a dielectric material, which in this description only enters as a potential barrier through
which particles can hop in pairs (hence the name Josephson coupling). A caveat of this interpretation is
that 2d materials have a non-interacting density of states characterized by Van Hove singularities, which
are not well captured by the Bethe lattice, hence one should complement our analysis by using a more
fitting lattice geometry. Finally, a suitable generalization of this model can describe a two-channel BCS-BEC
crossover, that can be observed wth the orbital Feshbach resonance of alkaline-earth atoms, hence we
devote sec. [5.3] to a more detailed discussion of this point.

5.2.1 Mean-field analysis

We begin by applying the Hartree-Fock method as for all the other investigations in this thesis. First of
all we observe that, if J = 0, we are simply describing two perfectly decoupled BCS superconductors,
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both described by the formalism of sec. [5.1], in particular by an orbital-wise order parameter ϕa =
N−1

sites
∑

k⟨cia↓cia↑⟩. If J > 0, we can decouple the pair-hopping term in the two superconducting channels

∑
i

(c†i1↑c
†
i1↓ci2↓ci2↑ + h.c.) ≈

(
ϕ∗1
∑
i

ci2↓ci2↑ + ϕ2
∑
i

c†i1↑c
†
i1↓ −Nsitesϕ

∗
1ϕ2

)
+ h.c., (5.30)

which leads to the mean-field Hamiltonian (on a generic lattice)

H =
∑

k,a=1,2

Ψ†
ka

 εka − µ −∆a

−∆∗
a −(ε−ka − µ)

Ψka +Nsites
(
U |ϕ1|2 + U |ϕ2|2 + Jϕ∗1ϕ2 + Jϕ∗2ϕ1

)
, (5.31)

where ∆1 = Uϕ1 + Jϕ2 and ∆2 = Uϕ2 + Jϕ1. Following the lines of sec. [5.1], after defining λka =√
(εka − µ)2 + |∆a|2, we can write an explicit expression for the grand-canonical potential:

Ω =
∑
ka

λkaf(λka)−
∑
ka

λka +Nsites
(
U |ϕ1|2 + U |ϕ2|2 + Jϕ∗1ϕ2 + Jϕ∗2ϕ1

)
−T

∑
ka

[f(λka) log f(λka) + (1− f(λka)) log (1− f(λka))] .
(5.32)

and derive the self consistency equations by solving ∂Ω
∂ϕ∗

a
= 0 for a = 1, 2. Rearranging the two equations

we get the explicit form:

ϕa =
∆a

2

∫
dεDa(ε)

tanh
(

1
2T

√
ε2 +∆2

a

)
√
ε2 +∆2

a

, a = 1, 2, (5.33)

which is very useful to implement the self-consistent procedure: we start by an educated guess on ϕ1,2,
compute the gap parameters ∆1,2 and use eq. [5.33] to update ϕ1,2, then we repeat until convergence.

The converged order parameters are shown in fig. [5.2] as a function of U , J and α. First of all, we
observe that both ϕ1 and ϕ2 are in principle complex variables with a modulus and a phase: ϕa = |ϕa|eiφa;
however the grand canonical potential only depends on the relative phase between the two φ2 − φ1. We
thus expect a manifold of ground states, where the degenerate states are labeled by φ1 and connected to
each other by a transformation of the U(1) symmetry group generated by φ1. Therefore we can arbitrarily
set φ1 = 0, i.e. require ϕ1 to be real, and leave only φ2 as a free variational parameters to be determined
via the optimization process. We find that, for all the relevant regimes of parameters, φ2 = 0, i.e. ϕ2 is
real and positive just like ϕ1 and the two superfluids associated to the two bands (or layers) are coherent.
The relative phase depends on the sign of J and we can easily guess that, if J < 0 (not considered here),
we would get a similar solution for |ϕa| with a phase difference φ2 − φ1 = π, because the phase factor
ei(φ2−φ1) = −1 would compensate the negative sign of J in the expression [5.32] for the grand canonical
potential. Secondly, we observe that the order parameter ϕ is enhanced by the presence of a pair hopping
for all the values of U , but the effect is particularly visible at weak coupling; in particular, in the limit
U → 0 there is a finite order parameter when J > 0. We can motivate this observation by a simple
analytical argument: if we set ϕ1 = ϕ2 ≡ ϕ (which holds by symmetry if α = 1, since we have seen that the
two phase factors are the same), then ∆1 = ∆2 = (U + J)ϕ and eq. [5.33] reduces to the single channel
equation [5.11] upon the substitution U → U + J . The two superfluids are then effectively decoupled,
except for the phase coherence, and they are both described by BCS theory with a renormalized interaction
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Figure 5.2: Superfluid order parameters as a function of the Hubbard-U obtained by the self-consistent
Hartree-Fock method solving eq. [5.33]. The left panel shows the case with symmetric bands (α = 1) for
several values of the pair hopping. The right panel shows the result for an asymmetric case at a fixed J
compared to the symmetric case.

U + J , which explains why ϕ is finite at U = 0, J > 0. More precisely, we have ϕ ≈ 1/2 for U ≫ D or
J ≫ D; while – by virtue of eq. [5.12] – we have ϕ ≈ 4D

U+J exp
[
− π

2(U+J) − 1
]

for U, J ≪ D. Finally, when
we include a different bandwidth (α ̸= 1), we observe that both ϕ1 and ϕ2 are enhanced with respect
to their original value in the symmetric case α = 1. The effect is more pronounced for ϕ2, which is the
superfluid order parameter for the orbital with “heavier” particles (i.e. with a narrower band). We can
understand this result intuitively: if J = 0, the superfluid with smaller hopping (a = 2) has a larger
order parameter, because U/D2 > U/D1. Then for a finite J the other superfluid (a = 1) is coupled to an
effective reservoir of pairs with an amplitude ∆1 = Uϕ1 + Jϕ2 proportional to ϕ2; since now ϕ2 is larger
than in the symmetric case, the coupling is enhanced as well.

Computing the superfluid stiffness for a multiorbital system requires some attention, as in general it is
not simply given by the sum of orbital-resolved contributions. The correct approach is illustrated in [28],
where the “naive” method leads to a counter-intuitive and in fact wrong result for the excitonic condensate
investigated by the authors. In general, not only the diamagnetic term is given by the expectation value
of the total kinetic energy (including interorbital hybridization terms), but also the paramagnetic term
is given by the response function of the total paramagnetic current Itot(q, 0) =

∑
a Ia(q, 0). The latter is

given by χij =
∑

ab χ
ab
ij , where χab

ij is the response function associated to the two orbital current operators
Iia and Ijb and is proportional to the off-diagonal component of the Green function in the orbital indexes:

χab
ij (q, iωn) = a2dNsites

∑
k

vai,k,qv
b
j,k+q,−q kBT

∑
iνn

Tr
[
Ĝab(k, iνn)Ĝba(k+ q, iνn + iωn)

]
. (5.34)

In our case however, there are no interorbital components of the kinetic energy, hence it is given by the
sum of the orbital-wise kinetic energies ⟨Ekin⟩ =

∑
a⟨Ekin

a ⟩; moreover the Green function is diagonal in
the orbital indexes, so the paramagnetic term is given by a sum of orbital-wise contributions as well:
χij =

∑
a χ

aa
ij . We conclude that, in our specific case, we can compute the stiffness as the sum of the orbital

stiffnesses Ds =
∑

aD
a
s . The latter can be computed by replacing ∆ with ∆a in eq. [5.27], which leads to

the intuitive result that Ds saturates to a constant when U, J ≪ D and decreases hyperbolically with U and

112



5. Superconductivity in multiorbital systems

J in the opposite limit, where either U ≫ D or J ≫ D. The low stiffness at strong coupling suggests once
again that the superfluid order is broken by small thermal fluctuations that destroy the phase coherence,
while leaving the particles paired. However, as we will discuss in the next section, the strong coupling
picture provided by the Hartree-Fock method is completely changed by introducing dynamical effects.

5.2.2 Including dynamical correlations with DMFT

In order to investigate the effect of dynamical quantum correlations (or fluctuations) induced by strong
interactions, we have solved this model on the Bethe lattice with infinite coordination by means of DMFT;
and in this section we outline some technical details and the main results concerning the ground state
properties.

We begin by defining the impurity problem, which again takes the general form of eq. [1.14], where we
define the spinor Ψ†

ℓ = (c†ℓ1↑, cℓ1↓, c
†
ℓ2↑, cℓ2↓). However, we assume that there are two independent baths,

one per every orbital, i.e. that the 4×4 matrices ε̂ℓ and V̂ℓ are block diagonal in the orbital indexes. We can
recast the Anderson impurity model as

HAIM =

Nbath∑
ℓ=1

∑
a=1,2

Ψ†
ℓaε̂ℓaΨℓa +

Nbath∑
ℓ=1

∑
a=1,2

(
Ψ†

ℓaV̂ℓaΨ0a + h.c.
)
+Ψ†

0aε̂0aΨ0a +Himt, (5.35)

where Ψ†
ℓa = (c†ℓa↑, cℓa↓), Hint is the interaction part of eq. [5.29] and

ε̂0a =

 ε0a − µ 0

0 −(ε0a − µ)

 ; ε̂ℓa =

 εℓa −∆ℓa

−∆ℓa −εℓa

 ; V̂ℓa =

 Vℓa 0

0 −Vℓa

 . (5.36)

Here we also set ε0a = 0 and µ = 0, however the general matrices written above allow to include a crystal
field splitting and/or to work out of half filling. This generalized Anderson impurity model commutes
with the total orbital-wise spin-z operators Sz

a =
∑

ℓ c
†
ℓaσσ̂

z
σρcℓaρ = Na↑ −Na↓, where Naσ denotes the total

number of particles on orbital a with spin σ; hence Sz
a is a conserved quantity. This can be understood

intuitively, because the particles on a given orbital are always created or destroyed in pairs with vanishing
spin-z, either by exchange with an effective reservoir, or by pair hopping processes. We can exploit this
symmetry to simplify the exact diagonalization, performing a sectorization based on two quantum numbers
Sz
1 and Sz

2 .
The other important simplification is that, as we have anticipated, all the many body functions are

diagonal in the orbital indexes, a circumstance which reduces the number of independent components
to evaluate from 6 to 4 (two normal components Gaa(iωn) and two anomalous components Faa(iωn),
with a = 1, 2). In particular, this reduces the number of Lanczos runs necessary to evaluate the full
impurity Green function, which is typically the bottleneck of our algorithm in terms of computational
cost. Furthermore, if α = 1 we can also exploit the orbital symmetry, i.e. symmetry upon relabeling
a = 1 ↔ a = 2, computing the Green function for only one of the orbitals (say, a = 1) and simply
assuming Ĝ22(iωn) = Ĝ11(iωn), limiting the number of independent components to 2. Accordingly, the
self-consistency equation can be implemented orbital-wise as

Ĝ−1
aa (iωn) = Ĝ−1

loc,aa(iωn) + Σ̂aa(iωn) (a = 1, 2), (5.37)

where Ĝloc,aa(iωn) =
∫
dεD(ε)[iωn − (ε− µ)σ̂z − Σ̂aa(iωn)]

−1 and again, if α = 1, we can use the orbital
symmetry to limit the self-consistent procedure to only one representative orbital.
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Figure 5.3: Superfluid order parameters as a function of the Hubbard-U obtained solving the DMFT
self-consistent procedure. At weak coupling, the scenario is similar to the mean-field result; while at
strong coupling we appreciate an increasing fragility of the superconductive order when J increases or α
decreases. (Left) Case with symmetric bands (α = 1) for several values of the pair hopping. For any finite
J , the order parameter has a maximum value at a specific Umax, it decreases at larger U and eventually
vanishes at a critical point Uc. (Right) Result for asymmetric bandwidths at a fixed J compared to the
symmetric case. The superfluid order is even more fragile in this situation, since both ϕ1 and ϕ2 vanish at a
smaller Uc with respect to the symmetric case.

We begin our discussion by commenting on the order parameter, which is shown in fig. [5.3].
Consistently with the Hartree-Fock result, we observe that ϕ1 and ϕ2 have the same phase factor in the
regime of parameters studied here. Moreover, the weak coupling behavior for U, J ≪ D is perfectly
consistent with the mean-field picture: the presence of a pair hopping enhances the order parameters with
respect to the case of perfect orbital decoupling. Furthermore, when we include an hopping imbalance
α < 1, both ϕ1 and ϕ2 increase with respect to the corresponding value in the orbital-symmetric case,
and the effect is more pronounced for ϕ2, which is connected to the less mobile particles. However, at
intermediate and strong couplings, the scenario is totally different with respect to the mean-field picture.
In the presence of a pair hopping, no matter how small, the order parameter is no longer a monotonically
increasing function of U ; instead it features a maximum value at U = Umax and then it decreases for larger
values of U . Even more surprisingly, the order parameter eventually vanishes for sufficiently large values
of the Hubbard interaction that exceed a critical value Uc. The situation is qualitatively similar also in
presence of a hopping imbalance, where both order parameters feature a maximum value and eventually
vanish together at a critical value of U . If α < 1, the effect is even more pronounced, as both Umax and Uc

are pushed to smaller values when α decreases and the mobility on one of the bands is gradually quenched.
Rather intuitively, ϕ2 > ϕ1 as long as they are finite, indicating that the “heavier” particles are slightly
more superfluid than the “lighter” ones. The critical value Uc(J, α), as well as the location of the maximum
Umax(J, α) are functions of J and α: this can be visualized more explicitly from the phase diagram drawn
in fig. [5.4]. The diagram clearly suggests that the system undergoes a quantum phase transition from a
superconducting phase, which only survives for U, J ≪ D and α ≫ 0, to a non-superconducting phase
that we shall further characterize below. The vanishing of the order parameters is a direct consequence
of the fact that, for U > Uc, the anomalous Green function converges to zero: Fa(k, iωn) ≈ 0, which in
turn implies that also the superfluid stiffness vanishes by virtue of eq. [5.25], enforcing the idea that the
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Figure 5.4: Phase diagram of the ground state of Hamiltonian [5.29] drawn with a color plot of the order
parameter obtained with DMFT. We appreciate the superconductive phase (brighter) and the insulating
phase of interband “resonant” pairs described in the text (darker). (Left) Phase diagram as a function of U
and J for the case of symmetric bands. (Right) Phase diagram as a function of U and α at fixed J . We
show two color plots, based on ϕ1 and ϕ2 respectively, represented in a symmetric diagram with respect
to the variable α. Even though ϕ1 and ϕ2 are characterized by different level curves, they always vanish
“simultaneously”, as we can see from the mirror-symmetry of the dark region.

ground state does not break the symmetry generated by N .
The large-U phase can be investigated by comparing our solution to the normal state, i.e. the solution

of the DMFT self-consistency equation obtained when the superconducting order is explicitly frustrated by
setting ∆ℓ = 0 in the impurity problem. In this case, the number of particles within one of the orbitals is
still not a good quantum number, as the pair-hopping processes can transfer pairs from one orbital to the
other. However, the total number of spin-up particles N↑ and the total number of spin-down particles N↓
are now conserved quantities, because the system no longer exchanges particles with an effective reservoir,
hence we can base our sectorization process on these two quantum numbers. We begin by looking at
the local density-density correlation functions. We can define an intraorbital component ⟨n2a⟩ − ⟨na⟩2,
which coincides with the orbital-resolved fraction of doubly occupied sites5, and an interorbital component
⟨n1n2⟩ − ⟨n1⟩⟨n2⟩, where na = N−1

sites
∑

iσ niσ is the local density operator associated to orbital a. As we
have discussed in sec. [1.3.5], we can evaluate the correlation functions directly from the impurity problem
via exact diagonalization, where naσ is the number operator associated to the impurity site, which – at
convergence – is a representative of any arbitrary lattice site. The results are shown in fig. [5.5] both
for the normal state and for the more general solution with a superconducting bath. We can further
characterize the phase diagram by looking at the dynamical structure of the self-energy, which is shown in
fig. [5.6]. Here we mostly focus on the symmetric case α = 1, but the analysis is general.

If J = 0, the normal state is characterized by a Mott transition from a correlated metallic state at U ≪ D
to the attractive-U version of a Mott insulator at U ≫ D, i.e. a correlated electronic state where single

5One can prove this by writing na = na↑ + na↓, which implies ⟨n2
a⟩ − ⟨na⟩2 = ⟨na↑na↓⟩.
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Figure 5.5: Local correlation functions computed from the converged impurity problem. The top row
shows interorbital correlations, while the bottom row intraorbital correlations (or orbital-resolved double
occupancies). The left column shows results for the normal state, obtained enforcing ∆ℓ = 0 in the bath;
while the right column shows the full solution, where superconductivity is allowed. For any J > 0, at
sufficiently large U the former and the latter coincide.

occupations are quenched in favor of double occupancies and empty sites. Accordingly, the quasiparticle
weight is finite in the metallic state and vanishes in the insulator, indicating a singularity of the self-energy
at iωn → 0. If a superconducting order is taken into account, the system is superconductive at every U , the
anomalous component of the self-energy is approximately a finite constant and the normal component
is nearly vanishing, consistently with BCS theory, and this reflects on the quasiparticle weight, which is
roughly z ≈ 1 for every U . The fraction of double occupations increases with U and eventually saturates to
1/2, describing the BCS-BEC crossover of the state [5.9]: at small U the state is a small perturbation on
top of the Fermi sea, where Fock states with any number of particles acquire a small weight (the fractions
of double occupancies, empty sites, singly occupied with spin up or spin down coincide); at large U the
state becomes a balanced superposition of all the possible Fock states with any number of pairs and empty
sites (but single occupancies are quenched).

When J > 0, the normal state once again features a quantum phase transition from a correlated metal
to a correlated insulator characterized by the suppression of single occupancies; however the insulating
phase is now characterized by a large (and negative) interorbital density-density correlation. We can
expect that, for large U , the ground state is adiabatically connected to the atomic limit solution |ψD=0⟩:

|ψD=0⟩ =
Nsites⊗
i=1

1√
2

(
c†i1↑c

†
i1↓ + c†i2↑c

†
i2↓

)
|0⟩ =

Nsites⊗
i=1

1√
2

| ↑↓︸︷︷︸
a=1

, 0︸︷︷︸
a=2

⟩+ | 0︸︷︷︸
a=1

, ↑↓︸︷︷︸
a=2

⟩

 , (5.38)
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Figure 5.6: (Left) Quasiparticle weight for the normal state with enforced ∆ℓ = 0 (top) and for the full
solution with allowed superconductivity (bottom). (Right) Dynamical structure of the relevant components
of the self-energy for a specific subset of parameters across the quantum phase transition (taken from
the unconstrained solution). As U increases, both the normal and the anomalous components acquire a
progressively enhanced dynamical structure at small Matsubara frequencies, indicating a strongly correlated
insulator.

where |0⟩ is the vacuum state. This is a state where every lattice site contains an “orbital-resonating”
pair, a pair of particles which are fully delocalized between the two orbitals, being in the symmetric
quantum superposition of the two possible states. Configurations with paired fermions are favored by the
pair hopping, hence increasing J , the critical value of U progressively decreases and the metallic state
is less resilient to the interaction. Looking at the phase transition that occurs when the symmetry is not
enforced, we observe that the superconducting phase is characterized by progressively larger interorbital
density-density correlations as U increases and eventually, at the critical point (and beyond), the correlation
is ≈ −1. Furthermore, the quasiparticle weight progressively reduces and eventually vanishes after the
critical point. This suggests that the large-U phase is the same insulator that we find enforcing the
symmetry constraint, i.e. a strongly-correlated insulator with large interorbital density fluctuations due to
the orbital-resonating pairs. Remarkably, the superconducting phase survives to larger values of U with
respect to the symmetric metallic phase, hence we never observe a transition from a superconductor to a
metal in the ground state.

The solution outlined above is spatially uniform, but this is a direct consequence of how we carried out
the calculation, as we have explicitly excluded possible bipartite orders such as charge-density wave (CDW).
A thorough study of spatially non-uniform solutions is a purpose for further work on the subject; however
we can make a few observations here. Starting from the insulating phase at large U , we can treat the kinetic
term of the Hamiltonian as a small perturbation on top of the atomic-limit ground state. We expect that the
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Fock states which allow nearest-neighbor hopping will gain a larger weight over the others in the ground
state. For example, if i and j are two nearest neighbors in the sublattices A and B respectively, we expect
that a Fock state like |↑↓, 0⟩i ⊗ |0, ↑↓⟩j would have larger weight with respect to |↑↓, 0⟩i ⊗ |↑↓, 0⟩j , because
the former is compatible with nearest-neighbor hopping processes, while the latter is not. This suggests
the presence of an instability towards the formation of a charge-density-wave (CDW) where the average
density is staggered on the two sublattices and translational symmetry is broken.6 In particular, the two
staggered densities in the two orbitals will have an opposite phase, where a lattice site featuring enhanced
density for orbital a = 1 will have at the same time a depleted density for orbital a = 2 and vice versa.
Guessing the fate of the superconducting phase on a bipartite lattice is much less trivial. As a matter of fact,
the ground state of the attractive Hubbard model at half-filling on bipartite lattices features a degeneracy
between a superconducting state and a charge-density-wave state; but this degeneracy is broken moving
out of half-filling, and the superconducting order is energetically favored over the CDW. Our educated
guess, based on the considerations about relative weights of different Fock states, is that at half filling the
CDW would be favored by the pair hopping, while for a sufficiently doped system, superconductivity could
be stabilized. A rigorous proof of this guess is left for future investigation.

We conclude the section discussing a technical subtlety that can be rather puzzling at a first glance.
Looking at fig. [5.6], we can see an unexpected behavior of the self-energy across the superconductor-
insulator phase transition. In particular, we observe that the normal component in the insulator becomes
Fermi-liquid like, albeit with a significant dynamical structure that makes the quasiparticle weight very
small, and it does not match the solution obtained in the normal state, where it diverges like Σ(iωn) ≈
1/iωn. At the same time, the anomalous part of the self energy survives in the insulator and it becomes
frequency-dependent, with a significant low-frequency peak. Again, this is not what one would expect
from a solution with conserved number of particles, where the anomalous component should vanish at
every frequency. Nevertheless, it turns out that the local Green functions obtained with constrained and
unconstrained symmetry coincide at U > Uc, hence all the relevant observables coincide as well. This
puzzling behavior of the self-energy can be understood by looking at the converged Weiss field, which
features a non-vanishing anomalous component G−1

12 (iωn) ̸= 0, therefore the presence of an anomalous
self-energy balances this effect and eventually provides a vanishing anomalous Green function. The point
is that, at given J , we are starting the DMFT loop for a certain U by using the converged solution from the
previous smaller value of U as an initial guess; but because DMFT is affected by the initial guess on the
bath, the Weiss field typically does not change much. When we cross Uc, DMFT stabilizes an insulating
symmetric phase by keeping a non vanishing anomalous Weiss field, which is similar to the initial guess
and already leads to a gapped spectrum, but compensating with a diverging anomalous self-energy to
eventually provide a non superconducting phase. We conclude that the specific frequency dependence of
the self-energy can depend on the bath parameters used as an initial guess; however one of the components
diverges at iωn → 0, always leading to the same local Green function and hence describing the same
phase.

5.3 Pair hopping with the orbital Feshbach resonance

A Feshbach resonance is a physical phenomenon where the low energy scattering properties (for instance
the s-wave scattering length) of two-body collisions are modified by strong atomic interactions, which
determine a quantum superposition of the initial scattering state with a bound state. The modified value of
6This mechanism is equivalent to the stabilization of antiferromagnetism over the paramagnetic state in the repulsive model.
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the scattering length can be controlled via an externally applied magnetic field, which makes the Feshbach
resonance a tool to experimentally control the effective two-body interaction. Originally it has been
studied for fermionic alkali atoms, and it has been used to investigate both theoretically [153, 154, 155]
and experimentally [156] a single-channel BCS-BEC crossover [157, 158]. In this context, it is usually
named magnetic Feshbach resonance, as it takes advantage of the strong hyperfine coupling between
electronic and nuclear angular momentum in alkali atoms. More recently, it has been shown that a tunable
Feshbach resonance also exists for alkaline-earth-like atoms, despite the (nearly) perfect decoupling
between electronic and nuclear degrees of freedom. In this case it takes the name of orbital Feshbach
resonance, because – as we discuss below – it is a direct consequence of the interorbital spin exchange
coupling.

Let’s consider, for concreteness, a gas of alkaline-earth-like atoms (for instance 173Yb) prepared in a
balanced mixture of |e ↑⟩ and |g ↓⟩ particles. The relevant scattering channel between two particles is
a state with a spatially symmetric wave function and an anti-symmetric spin-orbital component, as the
particles are more likely to be very close to each other and hence to collide. As a consequence of the Pauli
exclusion principle, this prevents collisions of two atoms that are both in the same single-particle state,
and the only scattering channel is |o⟩ = (|e ↑, g ↓⟩ − |g ↓, e ↑⟩)/

√
2: this is called open channel7.

Let’s now focus on another two-body state: |c⟩ = (|e ↓, g ↑⟩ − |g ↑, e ↓⟩)/
√
2. If the particles were

perfectly non interacting (and in absence of an external magnetic field), this state would be degenerate to
|o⟩, but it would be inaccessible, because we have prepared the gas with no |g ↑⟩ or |e ↓⟩ particles, hence
we call it closed channel. An external static magnetic field B has the effect of lifting the degeneracy between
|o⟩ and |c⟩, pushing the latter to higher energies. This might sound surprising at first, because naively
we could expect to observe the same Zeeman splitting between the single particle states |g ↑⟩, |g ↓⟩ and
|e ↑⟩, |e ↓⟩, which would shift the energies of |c⟩ and |o⟩ by the same amount, preserving their degeneracy.
However, as a consequence of the small hyperfine coupling of the |e⟩ electronic state, there is a difference
in the nuclear Landé g-factor for atoms in the electronic |e⟩ =3P0 or |g⟩ =1S0 states: ge ̸= gg. Therefore,
the Zeeman splitting between |g ↑⟩, |g ↓⟩ is given by ∆Eg = µBggB∆m, where µB is the Bohr magneton
and ∆m is the difference of nuclear angular momentum between the nuclear states labeled by ↑ and ↓;
while the splitting between |e ↑⟩, |e ↓⟩ is ∆Ee = µBgeB∆m. The resulting energy splitting between the
open and the closed channel is ∆E = µB(ge − gg)B∆m ̸= 0 and in particular it is experimentally tunable
via the intensity of the magnetic field. This is illustrated in fig. [5.7 (a)].

We now consider the effect of interactions and, for the sake of clarity, we introduce the interaction
processes one by one. To begin with, particles in the open channel experience a two-body potential Vo(r)
(where r is the relative coordinate) that we can realistically depict as a Van der Waals potential, weakly
attractive at long distances, and strongly repulsive at short distances. Similarly, when two particles are
in the closed channel, they experience a two-body potential Vc(r) which can once again be regarded as a
Van der Waals potential. Crucially, we assume that the potential Vc(r) features a bound state at an energy
−εb measured with respect to the continuum threshold of the closed channel, i.e. to ∆E, considering
the Zeeman splitting and setting the zero of energy at Vc(r → ∞) = Vo(r → ∞) = 0. We illustrate these
potentials in fig. [5.7 (c)]. It is now clear that, when ∆E ≈ εb, the bound state of the closed channel
becomes perfectly degenerate to the continuum threshold of the open channel, while if ∆E < εb it is
energetically favored; still, if |o⟩ and |c⟩ are perfectly decoupled, this bound state is unavailable for two
particles colliding in the open channel.

The key feature to realize a Feshbach resonance is an interaction that couples the open and the closed

7In the following we do not write the spatial component explicitly: it is always intended to be the spatially symmetric function
ψ(r1 − r2), where 1 and 2 label the particles.
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Figure 5.7: (a) Zeeman splittings ∆Eaσ = µBgamσB of the four atomic states. Intensely colored circles
with solid edge are the states forming the open channel; while faintly colored circles with dashed edge
are states of the closed channel. The purple arrows represent a transition from |o⟩ to |c⟩, which causes an
energy decrease −(∆Ee↑ −∆Eg↑) and an energy increase ∆Ee↓ −∆Eg↓, resulting in an overall energy
increase of ∆E = ∆Ee −∆Eg. (b) Rescaled level spacing after adding the constant term in eq. [5.47] to
the Hamiltonian. (c) Two-body interaction potentials for the open and closed channels. The latter also
contains the Zeeman splitting term and it features a bound state with binding energy εb. The resonance
occurs when ∆E ≈ εb and the bound state is degenerate to the continuum threshold of Vo(r). (d) Effective
scattering length of the open channel as a function of the applied magnetic field obtained from eq. [5.43]
using specific numerical parameters of 173Yb and ∆m = 1.

channels: for alkaline-earth-like atoms this is provided by the spin exchange coupling, which destroys
a pair in the open channel and recreates it in the closed channel or vice versa. Consequently, during a
scattering event between two atoms in the open channel, the particles can “temporarily” form a bound state
in the closed channel (Feshbach molecule), a circumstance which strongly affects the scattering properties.

A first approach to provide a mathematical description of an orbital Feshbach resonance is to apply
scattering theory and make an ansatz for the two-body wave function, treating the closed channel as
a bound state with a localized wave function, thus neglecting the possibility of free propagation in the
closed channel [20, 24, 25, 26]. Solving the Schrödinger equation, we obtain an effective wave function
for the open channel, from which we extract a renormalized scattering length that includes the effect of
interactions through the closed channel. The wave function for two colliding particles, each having mass
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m and momentum ±k relative to the center of mass, takes the form8

ψ(r) =

(
eik·r + fo(k)

eikr

r

)
|o⟩+ fc(k)

e−
√

m∆E/ℏ2−k2r

r
|c⟩, (5.39)

where fo(k) and fc(k) have to be determined. Assuming that the kinetic energy of the pair is well below
the Zeeman splitting between the channels: ℏ2k2

m ≪ ∆E, the component of ψ(r) on the closed channel is
localized, as the exponential is real and decreasing with r: this reflects the fact that we do not allow free
propagation in the closed channel. The interaction Hamiltonian depends on the orbital symmetry of the
two-body state, as discussed in sec. [1.2], which in this context boils down to only two possibilities: |eg±⟩.
The other two orbital-triplet states |gg⟩ and |ee⟩ are negligible if we exclude free propagation in the closed
channel. The reason is that |e ↓⟩ and |g ↑⟩ particles always form bound molecules in this approximation,
so for example there are no free |e ↓⟩ particles to interact with |e ↑⟩ particles via two-body collisions.
Observing that |eg±⟩ = 1√

2
(|c⟩ ∓ |o⟩), we can recast the two-body potential in eq. [1.4] as

V (r) =
4πℏ2

m

[
aeg+ + aeg−

2
(|o⟩⟨o|+ |c⟩⟨c|)−

aeg+ − aeg−

2
(|o⟩⟨c|+ |c⟩⟨o|)

]
δ(r)

4πr2
∂

∂r
(r·), (5.40)

where we have used the Lee-Huang-Yang regularization and the fact that δ(r) = δ(r)/(4πr2) when the
Dirac delta is multiplied by a spherically symmetric function. The kinetic energy term includes the Zeeman
splitting and it can be written as H0 = −ℏ2∇2

m |o⟩⟨o|+ (∆E − ℏ2∇2

m )|c⟩⟨c|; however, due to the presence of a
Dirac-delta potential, the Laplacian operator in spherical coordinates should be modified with an extra
Dirac-delta term [159]:

∇2ψ(r) = −k2eik·r|o⟩ − 1

r

[
∂2

∂r2
− ℓ(ℓ+ 1)

r2
− δ(r)

r

] [
uo(r)|o⟩+ uc(r)|c⟩

]
, (5.41)

where uo(r) = fo(k)e
ikr and uc(r) = fc(k)e

−
√

m∆E/ℏ2−k2r and the Schrödinger equation should be
integrated over a small spherical domain of radius ε around r = 0 [20]: limε→0

∫ ε
0 4πr2dr(H0 + V (r) −

E)ψ(r) = 0. We are interested in the solution in the s-wave scattering channel ℓ = 0 and with free
propagation energy E = ℏ2k2

m , which leads to the two equations [24]:

(1 + ikad)fo(k) + aexfc(k)

√
m∆E

ℏ2
− k2 + ad = 0

ikaexfo(k)−

(
1−

√
m∆E

ℏ2
− k2

)
fc(k) + aex = 0 (5.42)

where ad = (aeg+ + aeg−)/2 and aex = (aeg+ − aeg−)/2 are the direct and exchange scattering lengths
respectively. Finally, the effective scattering length in the open channel is, by applying the standard
definition of scattering theory, given by:

as = −fo(0) =
−ad +

√
m∆E/ℏ2(a2d − a2ex)

ad
√
m∆E/ℏ2 − 1

. (5.43)

8More precisely, we have recast the two-body collision problem as a single particle of momentum k scattering off a potential V (r).
This means that the wave function is not symmetric under r → −r and the original wave function for the two-body problem is
obtained by explicitly symmetrizing: 1

2
[ψ(r) + ψ(−r)].
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In absence of an external field, the effective scattering length reduces to the direct value ad; while the
resonance occurs at ∆E = ℏ2

ma2d
, where as diverges, hence ℏ2

ma2d
represents the energy of the bound state in

the closed channel at resonance εb. In fig. [5.7 (d)] we show the dependence of as on the external field B
for 173Yb (but the qualitative behavior is the same for other species).

These theoretical predictions for the effective scattering length as a function of the applied magnetic
field have been experimentally verified with 173Yb in refs. [20, 25, 160]. The atomic gas is prepared in the
open channel by realizing a balanced mixture of |g ↓⟩ and |e ↑⟩, where ↑ and ↓ can be any pair of nuclear
states, and it is initially confined in a three-dimensional cigar-shaped harmonic trap. After removing the
harmonic confinement and applying an external static magnetic field, the shape of the atomic cloud is
measured as a function of time via imaging techniques. For comparison, the same measure is performed
with a different initial state, for instance the closed channel, or a mixture of |g ↑⟩ and |g ↓⟩, where the
orbital Feshbach resonance does not occur. In presence of an orbital Feshbach resonance, the enhanced
cross-section of two-body collisions leads to a different time-evolution of the atomic cloud and this can be
used to measure the scattering length. More recently, methods for the coherent manipulation of Feshbach
molecules have been implemented [161], including cycles of photoassociation and photodissociation and
Raman-induced exchange of the internal nuclear state of a molecule.

Similarly to well-established literature on the magnetic Feshbach resonance of alkali atoms, the system
can be described by a single-channel Hamiltonian with an attractive local interaction that, in absence of an
optical lattice, is given in terms of the momentum representation [5.4] with U/Nsites → g/V , where V is
the system volume and g/V has the unit of energy. The effective scattering length [5.43] determines the
bare interaction g via the implicit equation:

m

4πℏ2as
= −1

g
+

1

V

∑
k, k<Λ

m

ℏ2k2
, (5.44)

where the summation over momenta is cut-off at a momentum threshold Λ, which is physically related to
the range of the scattering potential r0 via Λ ∼ 1/r0 [162, 163, 164]. Defining Λ = π/(2r0) and performing
the momentum integration (for a three-dimensional gas), we can recast eq. [5.44] in the more transparent
form

1

g
=

m

4πℏ2

(
1

r0
− 1

as

)
, (5.45)

from which we observe that there is an effective attraction (g > 0) for as < 0 or as > r0. In the limit
of very short-range interparticle potential considered above, the effective interaction is always attractive
for every value of the scattering length. This hints at the possibility to realize a single-channel BCS-BEC
crossover as described by the attractive Hubbard model by means of the orbital Feshbach resonance.

The single-channel approximation outlined above, however, might not be fully accurate for orbital
Feshbach resonances: the reason is that typically the Zeeman splitting between open and closed channel is
rather small and comparable to the Fermi energy [24], which implies that two particles in the closed channel
are not always bound in a molecule, but they can have independent scattering dynamics [165, 166]. For
example, in 173Yb the direct scattering length is ad ≈ 1750a0, so the Feshbach resonance occurs roughly at a
Zeeman splitting ∆E = ℏ2

mad
≈ 2πℏ×6.74 kHz; while the Fermi energy for a typical density n ≈ 5 ·1019m−3

is EF = ℏ2
2m(3π2n)2/3 ≈ 2πℏ × 2.26 kHz. We can see that the two energy scales are comparable, as

opposed to magnetic Feshbach resonances of alkali fermions, that occur at a much larger Zeeman splitting
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∆E ≈ 2πℏ× 100MHz. This encourages us to take into account the full many-body Hamiltonian for the
two channels that, in the presence of an optical lattice, is given by eq. [1.5] with an extra term given by
the Zeeman splitting sketched in fig. [5.7]:

HZeeman =
∑
a=g,e

∑
σ=↑↓

∆EaσNaσ, (5.46)

where ∆Eaσ = µBgamσB and Naσ are number operators. We can recast this term in a more symmetric
fashion by adding constant terms proportional to conserved quantities like Nσ, Na or N : in particular,
choosing

−∆Eg↑N −
(
∆Ee↑ −∆Eg↑ +

∆E

2

)
Ne +

∆E

2
N↑ − (∆Eg↓ −∆Eg↑)N↓ (5.47)

we get an Hamiltonian where the two states of the open and closed channel are respectively degenerate

HZeeman =
∆E

2
(Ne↓ +Ng↑) , (5.48)

which is illustrated in fig. [5.7 (b)]. To see how this is related to the pair-hopping model, it is convenient
to relabel the indexes as follows:

|g ↓⟩ → |1 ↓⟩, |e ↑⟩ → |1 ↑⟩, |g ↑⟩ → |2 ↓⟩, |e ↓⟩ → |2 ↑⟩. (5.49)

Assuming that the gas is loaded into an optical lattice, we can apply this mapping to Hamiltonian [1.5],
including also the Zeeman term [5.48] and we get

H = −
∑

⟨ij⟩,aσ

ta

(
c†iaσcjaσ + h.c.

)
− µ

∑
iaσ

niaσ +
∆E

2

∑
iσ

ni2σ + Ugg

∑
i

ni1↓ni2↓ + Uee

∑
i

ni1↑ni2↑

+V
∑
ia

nia↑nia↓ + V
∑
i

(ni1↑ni2↓ + ni2↑ni1↓)− Vex

∑
i

(
c†i1↑c

†
i1↓ci2↓ci2↑ + h.c.

)
. (5.50)

We can see that the spin exchange is mapped into a pair-hopping term with amplitude Vex, and that the
two bands are characterized by the same intraorbital Hubbard repulsion V . In the absence of an optical
lattice, we can simply use the Fourier-transformed version of eq. [5.50]. For the specific case of 173Yb, we
can neglect Ugg and Uee compared to the other energy scales, and we can assume V ≈ Vex, similarly to
what we have done in sec. [3.5].

The resulting model is obviously quite different from what we have studied in sec. [5.2], because
of the repulsive intraorbital interaction, the presence of a Zeeman splitting term and the presence of an
interorbital density-density interaction involving particles with opposite spins. Nevertheless, the interesting
questions are similar: does this model support a two-channel BCS-BEC crossover? In what regime of
parameters? One can try to address these questions performing a mean-field decoupling of the interaction in
the two intraorbital pairing channels ϕ1 and ϕ2. The resulting mean-field model reduces to the Hamiltonian
studied in refs. [24, 167], which at ∆E = 0 is essentially the mean-field model that we have studied in sec.
[5.2.1], with the major difference that the gap parameters are given by ∆a = V ϕa − Vexϕā and the two
contributions come with opposite signs.9 From our previous discussion, we conclude that the solution to
the mean-field equations should be similar to the one illustrated in fig. [5.2], with the important difference

9We recall that in sec. [5.2.1], the gap parameters were defined as ∆a = Uϕa + Jϕā where U > 0 and J > 0; while here we have
∆a = V ϕa − Vexϕā where V > 0 and Vex > 0.
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that now ϕ1 and ϕ2 have an opposite sign, i.e. a relative phase π; this is indeed consistent with what
the authors find in [24]. However, we have shown that the pair-hopping can cause significant dynamical
correlations and consequently modify the mean-field picture even at T = 0, a circumstance which raises
the important issue of including dynamical correlations to the study of eq. [5.50]. This is also motivated
by the presence of a non negligible interorbital density-density coupling V

∑
i(ni1↑ni2↓ + ni1↓ni2↑), which

is completely irrelevant within an intraorbital BCS mean-field decoupling and which is a potential source
of more dynamical correlations. A thorough investigation of this problem can be performed by means of
DMFT (as long as we consider the presence of an optical lattice) and it is a goal for future work.

5.4 Conclusion and outlook

In this chapter we have revised how the BCS-BEC crossover stems from a mean-field solution of the
attractive Hubbard model, emphasizing the strengths and limitations of this approach. Despite being
well-understood and used in research papers, it is difficult to find a pedagogical introduction to this subject;
hence we have tried to bridge this gap, hopefully providing to the reader an easier access to the topic. An
important drawback of the mean-field approach is the overestimation of the critical temperature in the
BEC regime, which can be corrected by including dynamical correlations with DMFT. The correct behavior
of Tc ≈ 1/U in the BEC regime can be qualitatively understood by a zero-temperature mean-field estimate
of the superfluid stiffness, which is Ds ≈ 1/U for U ≫ D and saturates to a constant for U ≪ D. This
means that, while in the BCS regime thermal fluctuations at T ≈ Tc bring the system to the normal state by
populating the band of excitations, in the BEC limit they induce large dynamical fluctuations of the phase,
spoiling the phase coherence of the condensate, while leaving the fermions bound in (approximately)
bosonic molecules. We have taken the opportunity to review the concept of superfluid stiffness in an
organic way, from the general definition to the concrete calculation under our working assumptions.

Then, we have considered two attractive Hubbard models coupled via a local pair-hopping interaction
(Josephson coupling) of amplitude J , considering the system at T = 0 on a Bethe lattice with infinite
coordination, where the momentum-dependence of the self-energy is quenched. We have first neglected
also the dynamical dependence by applying the static mean-field approximation with two superconducting
amplitudes in the two orbitals. We have obtained a two-channel BCS-BEC crossover, where the two order
parameters have the same phase and they increase exponentially with U and J in the limit U, J ≪ D,
then saturate to 1/2 when either U or J are sufficiently large. Within this approximation, the interorbital
coupling only enters in the self-consistent amplitudes ∆1, ∆2 of pair-exchange processes with the effective
reservoir: for example, the first orbital exchanges pairs with amplitude ∆1 = Uϕ1 + Jϕ2 that depends on
both the self-consistent order parameters.

When we include dynamical fluctuations with DMFT, this picture is confirmed only in the regime
U, J ≪ D, while it completely changes at strong coupling where, instead of entering the BEC regime, the
system undergoes a quantum phase transition to a normal state with no broken symmetry. This phase
is stabilized when either J or U are large: in particular, if for instance J is very small, we observe this
phase at sufficiently large values of U , but as J increases, the critical U decreases considerably. From
the quasiparticle weight and the intraorbital double occupancy, we find that this phase is an insulator
characterized by the suppression of single occupancies; while looking at the local interorbital density
correlation, we can argue that the fermionic pairs are localized in real space, but completely delocalized
between the orbitals (orbital resonating pairs). This is a clear manifestation of strong quantum correlations,
as the phase transition is accompanied by a divergence of the self-energy at zero frequency.

The presence of an hopping imbalance between the two orbitals enhances both the order parameters
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at weak coupling, but at the same time pushes the critical value of the phase transition to smaller values
compared to the balanced case; moreover, the two order parameters vanish simultaneously at the critical
point. The reason is that the localization of Cooper pairs in the orbital with lower kinetic energy is favored
compared to the balanced case: in the weak coupling limit this favors superconductivity in that orbital
(and consequently also in the other), pushing the system towards the BCS regime; while at strong coupling
this favors the formation of orbital resonating pairs.

This system can be regarded as a general paradigmatic theoretical model that explains the specific role
of the local interorbital pair-hopping, witnessing the importance of including dynamical fluctuations even
when the system features a phase with spontaneously broken symmetry. Suitable generalizations of this
model can be used to describe a variety of physical scenarios, such as stacked bilayer superconducting
materials, Josephson junctions of parallel superconducting films, phonon-driven superconductivity in
multiorbital materials, etc. However, the most important application in the context of this thesis is the
investigation of a two-channel BCS-BEC crossover with the orbital Feshbach resonance in alkaline-earth-like
atoms. In sec. [5.3] we have discussed the orbital Feshbach resonance, presenting a well-established single
channel formalism, where the system is described in terms of a single-band attractive Hubbard model, and
the Hubbard-U is determined by the effective scattering length in the open collisional channel. Within
this approach, the closed channel is merely considered as a bound state coupled to the open channel, but
scattering states in the closed channel are neglected, as in the typical formulation of magnetic Feshbach
resonances in alkali atoms. With the orbital Feshbach resonance, however, the energy of scattering
states of the closed channel is much smaller, and thermal fluctuations could in principle populate these
states significantly. We have proposed a many-body Hamiltonian that complements the mean-field model
introduced in [24] to describe the two-channel dynamics. We have shown that the pair-hopping is a key
ingredient of this description, as its amplitude is given by the spin-exchange parameter Vex, which is crucial
in the orbital Feshbach resonance; however we have also discussed the importance of considering other
terms, in particular a Zeeman splitting and an intra- and interorbital Hubbard repulsion (with an amplitude
given by the “direct” coupling V ).

A concrete purpose for a future work is to investigate the ground state of Hamiltonian [5.50] by means
of DMFT, to include dynamical quantum correlations on top of the mean-field results outlined in ref. [24].
In particular, we are mostly interested in studying the fate of the two-channel BCS-BEC crossover driven by
the external magnetic field in presence of all these processes.
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Appendix A

Ladder operators

In this appendix we show the explicit expression of the flavor ladder operators Sσρ = c†σcρ in terms of the
spin operators defined in eq. [3.40] for the three-flavor case. These relations are the building blocks to
write any operator in terms of spins. In order to keep a simple notation, we omit the site index and we put
the component labels x, y and z as subscripts. The relations are:

S+1,0 =
1

2
√
2
(Σx + iΣy + {Σx + iΣy,Σz}) ,

S0,+1 =
1

2
√
2
(Σx − iΣy + {Σx − iΣy,Σz}) ,

S+1,−1 =
1

2
(Σx + iΣy)

2 ,

S−1,+1 =
1

2
(Σx − iΣy)

2 ,

S0,−1 =
1

2
√
2
(Σx + iΣy − {Σx + iΣy,Σz}) ,

S−1,0 =
1

2
√
2
(Σx − iΣy − {Σx − iΣy,Σz}) ,

n+1 = S+1,+1 =
1

2

(
Σ2
z +Σz

)
,

n0 = S0,0 = 1− Σ2
z,

n−1 = S−1,−1 =
1

2

(
Σ2
z − Σz

)
,

where {A,B} = AB+BA is the anticommutator and 1 is the identity matrix. Remarkably these expressions
are quadratic in the spin operators. Moreover we observe that the constraint

∑
σ Sσσ = 1 is satisfied.
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Appendix B

Drude weight

This appendix is devoted to provide notions about the concept of Drude weight introduced in sec. [4.2]
and used in chapter [4] to realize the phase diagram of the Hund’s model and of its cold-atomic analogue.
First of all, we point out that this is a very rich and subtle topic, characterized by several tricky aspects
which are not treated exhaustively here. In this context, we limit the discussion to those aspects that are
more relevant to the present thesis.

The Drude weight D is defined as the DC component of the frequency-dependent electrical conductivity
σ(ω), namely the coefficient in front of the Dirac-delta peak at zero frequency in absence of disorder:

σ(ω) = Dδ(ω) + σreg(ω), (B.1)

where σreg(ω) is a regular function that encodes the AC electrical conductivity. For a disordered system,
the conductivity function becomes regular in ω = 0 and the Dirac-delta peak is broadened: in this case the
Drude weight is not well-defined and one can just use σ(ω = 0) as a measure of DC conductivity.

In ref. [104], Kohn applied linear response theory and derived a simple formula for the Drude weight
of a many-body system at T = 0, showing that it is given by the curvature of the ground state energy
E0(ϕ) with respect to an auxiliary Peierls phase ϕ introduced in the hopping term, evaluated at the energy
minimum ϕ = ϕ0. For a one-dimensional ring lattice in suitable units it is given by:

D =
1

Nsites

∂2E0

∂ϕ2

∣∣∣∣
ϕ=ϕ0

. (B.2)

If the Peierls phase is physically provided by a magnetic flux threading a ring of charged particles that
are minimally coupled to this field via their electric charge q, and we work in units of the international
system, we have to consider a prefactor π(q/ℏ)2a, where a is the lattice spacing. However, the Peierls
phase can also describe a physical rotation of the ring. As one would intuitively expect, in metals and
superconductors D ̸= 0, while D = 0 in any insulating state [65, 104].

The Drude weight is also related to the persistent current carried by the ground state of the system and
induced by the Peierls phase. Consider the application of an auxiliary Peierls phase ϕ to all the hopping
processes in the Hamiltonian: tααi,i+1 → tααi,i+1e

iϕ for all the fermionic components α and the lattice sites i;
we can define the average Drude current per bond in the ground state |ψ(ϕ)⟩ as

I(ϕ) =
1

Nsites
⟨ψ(ϕ)|∂H

∂ϕ
|ψ(ϕ)⟩. (B.3)
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We emphasize that this is the total current (paramagnetic + diamagnetic), not the paramagnetic contribu-
tion defined in sec. [2.3], where the derivative was taken at ϕ = 0. By virtue of the Hellmann-Feynmann
theorem, we can write I(ϕ) = ∂E0

∂ϕ , from which we notice that I(ϕ0) = 0 because ϕ = ϕ0 is a stationary
point of the energy, and we immediately get the link to the Drude weight:

1

Nsites

∂I

∂ϕ

∣∣∣∣
ϕ=ϕ0

= D → I(ϕ) ≈ D(ϕ− ϕ0) at ϕ ≈ ϕ0. (B.4)

Essentially, the Drude weight determines the linear response of the total current to an externally applied
Peierls flux: if D = 0, then the current is insensitive to the presence of a flux and the system is an insulator;
else it responds to the external flux with a proportional current and it is a metal.

Here comes the first important subtlety: for interacting systems characterized by local interactions of the
form c†iαc

†
iβciγciδ or on-site potentials proportional to the local density, the value of ϕ0 is independent from

the interaction parameters and it can be predicted in advance by simply looking at the corresponding non-
interacting system. This stems from the invariance of the local interaction under a gauge transformation of
the form cjα → e−iϕjcjα [168].

The value of ϕ0 in the non-interacting system essentially depends on the number of particles and of
available degrees of freedom. For example, let’s consider the two rings studied in chapter [4], where
Nsites = 3 and Nparticles = 6 in both cases, with only 3 available momentum states in the Brillouin zone
k = 0,±2π

3 . An important difference between the two systems is that the Hund’s model [4.3] has spin and
orbital degeneracy, resulting in a total of N ·Norb = 2 · 3 = 6 degrees of freedom per every momentum
index k, while its analogue [4.8] has only flavor degeneracy and 3 degrees of freedom per momentum k.

The band diagram, internal energy E0(ϕ) and Drude current I(ϕ) for the non-interacting Hund’s model
are presented in fig. [B.1]. The band structure in absence of external flux ϕ = 0 has a minimum in k = 0,
where all the 6 electrons can be accommodated to realize the lowest energy configuration. Since the
ground state comes with vanishing total momentum, the resulting Drude current is zero: I(0) = 0, which
means that the function E0(ϕ) has a minimum in ϕ0 = 0. Furthermore, the ground state energy, as well
as the Drude current, have a periodicity of 2π/Nsites with respect to the flux ϕ and, most importantly,
they feature a non-analytic point right in the middle of a period, at ϕc = π/Nsites. In particular, E0(ϕ) is
non-differentiable at this point, and consistently I(ϕ) features a “jump” discontinuity. This is essentially
the point where the ground state manifold becomes degenerate to the first excited manifold (not shown):
E0(ϕc) = E1(ϕc). In conclusion, the total current is proportional to the flux I(ϕ) ≈ Dϕ at ϕ ≈ ϕ0 = 0
and this is a reasonably good approximation as long as ϕ ≪ ϕc = π/Nsites. In sec. [4.2] we have used
this property to evaluate the Drude weight: we have chosen a specific value of ϕ = 0.1π/3 which is much
smaller than ϕc = π/3 and reasonably close to ϕ0 = 0, we have computed the total current I and we have
used the linearity of I(ϕ) to extract the Drude weight D = I/ϕ.

For the Hund’s analogue discussed in sec. [4.3], the story is completely different, as we can see from fig.
[B.2]. From the band diagram computed with ϕ = 0, it is clear that we can’t accommodate the 6 particles
in a momentum-symmetric configuration: 3 of them occupy the low-lying state k = 0, but there are 3 more
particles to assign to the two degenerate single-particle states k = ±2π/3. We can either put 2 of them in
k = +2π/3 and 1 in k = −2π/3 (or vice versa) or put all 3 of them in k = +2π/3 (or in the other state),
resulting in a clear degeneracy of the many-body ground state. The momentum imbalance suggests that
the zero-flux total current is non-vanishing, hence ϕ0 ̸= 0; moreover, the zero-flux degeneracy suggests
that in fact ϕc = 0. To find the correct value of ϕ0 we have to look for a specific flux that allows to create a
many-body state with no total current, i.e. where the single-particle momentum states are symmetrically
occupied with respect to −ϕ0. We stress that we are looking for a state that makes the total current vanish,
not just the paramagnetic contribution: this is why we want to symmetrize momentum with respect to
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Figure B.1: (Left) Band structure of electrons on a non-interacting three-site ring threaded by an auxiliary
magnetic flux ϕ with 2 spin and 3 orbital states, for a total of 6 degrees of freedom. If ϕ = 0, the 6 electrons
are all accommodated in the low-lying 6-fold degenerate single particle state at k = 0. (Right) Periodic
behavior of the many-body ground state energy E0(ϕ), total current I(ϕ) and paramagnetic current Ipara(ϕ)
as a function of ϕ. The two points ϕ0 and ϕc indicate respectively the location of an energy minimum,
where I(ϕ) can be expanded linearly, and the location of a non-analytic point, where I(ϕ) is discontinuous.

−ϕ0 rather than 0. This condition is realized at ϕ0 = π/Nsites = π/3, where 3 particles occupy k = 0 and
the other 3 occupy k = −2π/3, two states that are in fact symmetric with respect to −π/3. Consistently,
the ground state energy is minimized at ϕ0 and the total current can be expanded as I(ϕ) ≈ D(ϕ− ϕ0).
Once again, the periodicity is 2π/Nsites. In conclusion, to evaluate the Drude weight from the current in
this case, we have to choose a specific value of ϕ which is close to ϕ0 = π/3 and far from ϕc = 0: in the
main text we’ve chosen ϕ− ϕ0 = −0.1π/3, evaluated the current at ϕ and computed D = I/(ϕ− ϕ0).

Finally, there is another subtlety related to the analytic evaluation of the Drude weight in the thermo-
dynamic limit which is worth mentioning here. Even though in chapter [4] we have only worked with
finite-size systems, it is still useful to take a look at the thermodynamic limit Nsites → +∞ for any future
purpose. The subtle point is related to the correct order in which we have to evaluate the second derivative
and the thermodynamic limit, because the two operations don’t commute. The correct approach is to
evaluate the energy curvature first and take the thermodynamic limit afterwards [100]. To convince
ourselves about this point, let’s consider the simple example of spinless fermions moving on a half-filled
one-dimensional ring threaded by a flux ϕ. The energy dispersion is given by εk(ϕ) = −2t cos (k + ϕ),
where t is the hopping scale. At half filling, we have µ = 0 and the occupied momentum states are labeled
by k such that εk(ϕ) < 0, i.e. −π/2− ϕ < k < π/2− ϕ (whether or not to include states at the Fermi level

133



B. Drude weight

Figure B.2: (Left) Ground state of fermions with 3 flavor states on a non-interacting three-site ring
threaded by an auxiliary flux ϕ at the representative values ϕ = 0 and ϕ = π/3. If ϕ = 0, 3 particles are
accommodated in the low-lying 3-fold degenerate single particle state k = 0, and the remaining 3 in one of
the two degenerate single particle states k = +2π/3. This is one of the possible degenerate many-body
states. If ϕ = π/3, the particles are equally divided between the degenerate single-particle states k = 0
and k = −2π/3, in a symmetric configuration with respect to −π/3. This state is not degenerate. (Right)
Periodic behavior of the many-body ground state energy E0(ϕ), total current I(ϕ) and paramagnetic
current Ipara(ϕ) as a function of ϕ. The two points ϕ0 and ϕc indicate respectively the location of an energy
minimum, where I(ϕ) can be expanded linearly, and the location of a non-analytic point, where I(ϕ) is
discontinuous.

will be clarified below). If we do the wrong thing and evaluate the thermodynamic limit at finite ϕ first,
we get to the conclusion that E0(ϕ) is a constant, and consequently that the Drude weight vanishes. In this
case, the momentum states form a continuum and we can compute the internal energy per particle from
the integral:

E0(ϕ)

Nsites
=

1

2π

∫ π
2
−ϕ

−π
2
−ϕ

−2t cos (k + ϕ)dk =
1

2π

∫ π
2

−π
2

−2t cos k′dk′ = −2t

π
(wrong approach),

where we don’t need to worry about the problem of including states at Fermi or not, because the result
doesn’t change. We see that E0(ϕ) is constant, so we evaluate D = 0, which is clearly unphysical, as we
expect that this system is an ideal conductor.

The correct approach is to keep Nsites finite and compute the energy curvature at ϕ = ϕ0 first. For
concreteness, we assume ϕ0 = 0, which amounts to assume that the ground state in absence of external
flux is not degenerate. On a finite-size half-filled system, we encounter a degeneracy whenever there are
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two single-particle states at the Fermi level with k = ±π/2: in this case we can accommodate only one
particle in these two states and we have a choice. This happens if −π + n∆k = π/2 for some integer n,
where ∆k = 2π/Nsites is the spacing in the Brillouin zone, which is verified if Nsites is divisible by 4. We
conclude that ϕ0 = 0 only for Nsites ̸= 4, 8, 12, . . . , otherwise we have ϕ0 = π/Nsites. So, assuming ϕ0 = 0,
we can now choose a value of the flux ϕ arbitrarily close to 0 to compute the derivative. If we choose ϕ
small enough, then for every Nsites (except 4, 8, 12,...) the set of occupied momentum states is constant
with respect to ϕ and lies in the interval −π/2 < k < π/2, hence we can expand the internal energy for
small fluxes as:

E0(ϕ) ≈ −2t
∑

k occupied

cos (k + ϕ) (ϕ ≈ 0), (B.5)

hence the correct formula for the Drude weight in terms of the curvature:

D =
1

Nsites

∂2E0

∂ϕ2

∣∣∣∣
ϕ=0

=
2t

Nsites

∑
k occupied

cos k. (B.6)

Evaluated the curvature for a finite system, we can now move to the thermodynamic limit by replacing the
sum with an integral, and the result is

D =
2t

Nsites

Nsites

2π

∫ π
2

−π
2

cos k dk → D =
2t

π
. (B.7)

This result states that the system is a good conductor and in particular that the DC electrical conductivity is
proportional to the kinetic energy of the electrons.

The reason why the thermodynamic limit and the second derivative do not commute ultimately lies in
the fact that the position of the non-analytic point ϕc scales as ϕc ≈ 1/Nsites [100]. If we incorrectly take
the thermodynamic limit first, then ϕc → 0 and it is no longer possible to follow adiabatically the manifold
E0(ϕ), as it merges with higher energy manifolds already at ϕ ≈ 0, hence we can’t compute the correct
curvature.
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[25] M. Höfer, L. Riegger, F. Scazza, C. Hofrichter, D. R. Fernandes, M. M. Parish, J. Levinsen, I. Bloch,
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[56] Nathan Goldman, G Juzeliūnas, Patrik Öhberg, and Ian B Spielman. Light-induced gauge fields for
ultracold atoms. Reports on Progress in Physics, 77(12):126401, 2014.

[57] Monika Aidelsburger, Michael Lohse, Christian Schweizer, Marcos Atala, Julio T Barreiro, Sylvain
Nascimbène, NR Cooper, Immanuel Bloch, and Nathan Goldman. Measuring the Chern number of
Hofstadter bands with ultracold bosonic atoms. Nature Physics, 11(2):162–166, 2015.

[58] L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M. Frittelli, F. Levi, D. Calonico, J. Catani,
M. Inguscio, and L. Fallani. Synthetic dimensions and spin-orbit coupling with an optical clock
transition. Phys. Rev. Lett., 117:220401, Nov 2016.

[59] Luca Salasnich. Quantum Physics of Light and Matter: A Modern Introduction to Photons, Atoms and
Many-Body Systems. Springer, 2014.

[60] Daniel A Steck. Quantum and atom optics. 2007.

[61] Etienne Brion, Line Hjortshøj Pedersen, and Klaus Mølmer. Adiabatic elimination in a lambda
system. Journal of Physics A: Mathematical and Theoretical, 40(5):1033, 2007.

[62] Marco Mancini et al. Quantum simulation with Ytterbium atoms in synthetic dimensions. 2016.

[63] Leonardo Fallani. Multicomponent spin mixtures of two-electron fermions. arXiv preprint
arXiv:2308.06591, 2023.

[64] O. Boada, A. Celi, J. I. Latorre, and M. Lewenstein. Quantum simulation of an extra dimension.
Phys. Rev. Lett., 108:133001, Mar 2012.

140

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.235119
https://link.aps.org/doi/10.1103/PhysRevLett.117.176401
https://iopscience.iop.org/article/10.1088/1367-2630/10/9/093008/meta
https://iopscience.iop.org/article/10.1088/1367-2630/10/9/093008/meta
https://www.science.org/doi/full/10.1126/science.add1969
https://d-nb.info/1277531625/34#page=235
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.14.2239
https://iopscience.iop.org/article/10.1088/0034-4885/77/12/126401/meta
https://www.nature.com/articles/nphys3171
https://link.aps.org/doi/10.1103/PhysRevLett.117.220401
https://hal.science/hal-02492149/document
https://arxiv.org/abs/2308.06591
https://arxiv.org/abs/2308.06591
https://link.aps.org/doi/10.1103/PhysRevLett.108.133001


BIBLIOGRAPHY

[65] D. J. Scalapino, S. R. White, and S. C. Zhang. Superfluid density and the Drude weight of the
Hubbard model. Phys. Rev. Lett., 68:2830–2833, May 1992.

[66] Simone Barbarino, Marcello Dalmonte, Rosario Fazio, and Giuseppe E. Santoro. Topological phases
in frustrated synthetic ladders with an odd number of legs. Phys. Rev. A, 97:013634, Jan 2018.

[67] Marco Mancini, Guido Pagano, Giacomo Cappellini, Lorenzo Livi, Marie Rider, Jacopo Catani, Carlo
Sias, Peter Zoller, Massimo Inguscio, Marcello Dalmonte, et al. Observation of chiral edge states
with neutral fermions in synthetic Hall ribbons. Science, 349(6255):1510–1513, 2015.

[68] Alessio Celi, Pietro Massignan, Julius Ruseckas, Nathan Goldman, Ian B Spielman, G Juzeliūnas, and
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twisted bilayer graphene. Phys. Rev. B, 98:220504, Dec 2018.

[122] Haiyang Zhang, Fazal Badshah, Abdul Basit, and Guo-Qin Ge. Orbital feshbach resonance of fermi
gases in an optical lattice. Journal of Physics B: Atomic, Molecular and Optical Physics, 51(18):185301,
2018.

[123] John Bardeen, Leon N Cooper, and John Robert Schrieffer. Theory of superconductivity. Physical
review, 108(5):1175, 1957.

[124] Michael Tinkham. Introduction to superconductivity. Courier Corporation, 2004.

[125] Vitaly L Ginzburg, Vitaly Lazarevich Ginzburg, and LD Landau. On the theory of superconductivity.
Springer, 2009.

[126] Lev Petrovich Gor’kov. Microscopic derivation of the Ginzburg-Landau equations in the theory of
superconductivity. Sov. Phys. JETP, 9(6):1364–1367, 1959.

[127] Alexander Altland and Ben D Simons. Condensed matter field theory. Cambridge university press,
2010.

[128] Richard D Mattuck. A guide to Feynman diagrams in the many-body problem. Courier Corporation,
1992.

[129] Richard P Feynman, Albert R Hibbs, and Daniel F Styer. Quantum mechanics and path integrals.
Courier Corporation, 2010.

[130] James F Annett. Superconductivity, superfluids and condensates, volume 5. Oxford University Press,
2004.

144

https://www.sciencedirect.com/science/article/pii/S2666675821001272#bib76
https://www.nature.com/articles/35065039
https://www.nature.com/articles/natrevmats201694
https://www.nature.com/articles/natrevmats201694
https://www.science.org/doi/full/10.1126/science.aav1910?casa_token=wnCjlSxs33IAAAAA%3ApuMKzfRGrmqtwKhfA8ahsD9KL4rxeORAsRWTgLiYeqsjWsUQZ1fP8ffT1LL1VuOFBJ6ge-k-pknwY_7G
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.031089
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.257001
https://link.aps.org/doi/10.1103/PhysRevB.98.220504
https://iopscience.iop.org/article/10.1088/1361-6455/aad83b/meta
https://journals.aps.org/pr/abstract/10.1103/PhysRev.108.1175
https://journals.aps.org/pr/abstract/10.1103/PhysRev.108.1175
http://www.jetp.ras.ru/cgi-bin/dn/e_009_06_1364.pdf


BIBLIOGRAPHY

[131] Sebastian Doniach and Ernst Sondheimer. Green’s functions for solid state physicists. World Scientific,
1998.

[132] Sijia Zhao, Zhaoyu Han, Steven A. Kivelson, and Ilya Esterlis. One-dimensional Holstein model
revisited. Phys. Rev. B, 107:075142, Feb 2023.

[133] Atsushi Masumizu and Kiyoshi Sogo. Ward-Takahashi relations for so(4) symmetry in the Hubbard
model. Phys. Rev. B, 72:115107, Sep 2005.

[134] A. F. Ho, M. A. Cazalilla, and T. Giamarchi. Quantum simulation of the Hubbard model: The
attractive route. Phys. Rev. A, 79:033620, Mar 2009.

[135] Debayan Mitra, Peter T Brown, Elmer Guardado-Sanchez, Stanimir S Kondov, Trithep Devakul,
David A Huse, Peter Schauß, and Waseem S Bakr. Quantum gas microscopy of an attractive
Fermi–Hubbard system. Nature Physics, 14(2):173–177, 2018.

[136] Aron Beekman, Louk Rademaker, and Jasper van Wezel. An introduction to spontaneous symmetry
breaking. SciPost Physics Lecture Notes, page 011, 2019.

[137] Rafael M Fernandes. Lecture notes: BCS theory of superconductivity, 2015.

[138] LJ Buchholtz and G Zwicknagl. Identification of p-wave superconductors. Physical Review B,
23(11):5788, 1981.

[139] Gabriel Kotliar and Jialin Liu. Superexchange mechanism and d-wave superconductivity. Physical
Review B, 38(7):5142, 1988.

[140] Th. Maier, M. Jarrell, Th. Pruschke, and J. Keller. d-wave superconductivity in the Hubbard model.
Phys. Rev. Lett., 85:1524–1527, Aug 2000.

[141] P. Monthoux and G. G. Lonzarich. p-wave and d-wave superconductivity in quasi-two-dimensional
metals. Phys. Rev. B, 59:14598–14605, Jun 1999.

[142] A. Toschi, M. Capone, and C. Castellani. Energetic balance of the superconducting transition across
the bcs—bose einstein crossover in the attractive hubbard model. Phys. Rev. B, 72:235118, Dec
2005.

[143] Th. Pruschke, D. L. Cox, and M. Jarrell. Hubbard model at infinite dimensions: Thermodynamic
and transport properties. Phys. Rev. B, 47:3553–3565, Feb 1993.

[144] Martin Greiter. Is electromagnetic gauge invariance spontaneously violated in superconductors?
Annals of Physics, 319(1):217–249, 2005.

[145] A. Chattopadhyay, A. J. Millis, and S. Das Sarma. Optical spectral weights and the ferromagnetic
transition temperature of colossal-magnetoresistance manganites: Relevance of double exchange to
real materials. Phys. Rev. B, 61:10738–10749, Apr 2000.

[146] Woonki Chung and J. K. Freericks. Charge-transfer metal-insulator transitions in the spin-12 Falicov-
Kimball model. Phys. Rev. B, 57:11955–11961, May 1998.

[147] E Müller-Hartmann. Correlated fermions on a lattice in high dimensions. Zeitschrift für Physik B
Condensed Matter, 74(4):507–512, 1989.

145

https://link.aps.org/doi/10.1103/PhysRevB.107.075142
https://link.aps.org/doi/10.1103/PhysRevB.72.115107
https://link.aps.org/doi/10.1103/PhysRevA.79.033620
https://www.nature.com/articles/nphys4297#:~:text=The%20attractive%20Fermi%E2%80%93Hubbard%20model,of%20fermions%20on%20a%20lattice.
https://www.scipost.org/10.21468/SciPostPhysLectNotes.11?acad_field_slug=physics
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.23.5788
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.38.5142
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.38.5142
https://link.aps.org/doi/10.1103/PhysRevLett.85.1524
https://link.aps.org/doi/10.1103/PhysRevB.59.14598
https://link.aps.org/doi/10.1103/PhysRevB.72.235118
https://link.aps.org/doi/10.1103/PhysRevB.47.3553
https://www.sciencedirect.com/science/article/abs/pii/S0003491605000515
https://link.aps.org/doi/10.1103/PhysRevB.61.10738
https://link.aps.org/doi/10.1103/PhysRevB.57.11955
https://link.springer.com/content/pdf/10.1007/BF01311397.pdf
https://link.springer.com/content/pdf/10.1007/BF01311397.pdf


BIBLIOGRAPHY

[148] Tilman Esslinger. Fermi-Hubbard physics with atoms in an optical lattice. Annu. Rev. Condens.
Matter Phys., 1(1):129–152, 2010.

[149] AJ Leggett. Modern trends in the theory of condensed matter. Modern Trends in the Theory of
Condensed Matter, Proc. XVI Karpacz Winter School of Theoretical Physics, 1980, 1980.

[150] Ph Nozières and S Schmitt-Rink. Bose condensation in an attractive fermion gas: From weak to
strong coupling superconductivity. Journal of Low Temperature Physics, 59:195–211, 1985.

[151] A Toschi, P Barone, Massimo Capone, and C Castellani. Pairing and superconductivity from weak to
strong coupling in the attractive Hubbard model. New Journal of Physics, 7(1):7, 2005.

[152] Giovanni Midei and Andrea Perali. Sweeping across the BCS-BEC crossover, reentrant, and hidden
quantum phase transitions in two-band superconductors by tuning the valence and conduction
bands. Phys. Rev. B, 107:184501, May 2023.

[153] Luca Salasnich, Nicola Manini, and Alberto Parola. Condensate fraction of a Fermi gas in the
BCS-BEC crossover. Phys. Rev. A, 72:023621, Aug 2005.

[154] Wilhelm Zwerger. The BCS-BEC crossover and the unitary Fermi gas, volume 836. Springer Science
& Business Media, 2011.

[155] Rudolf Haussmann, Walter Rantner, Stefano Cerrito, and Willhelm Zwerger. Thermodynamics of
the BCS-BEC crossover. Physical Review A, 75(2):023610, 2007.

[156] Martin W Zwierlein, Jamil R Abo-Shaeer, Andre Schirotzek, Christian H Schunck, and Wolfgang
Ketterle. Vortices and superfluidity in a strongly interacting Fermi gas. Nature, 435(7045):1047–
1051, 2005.

[157] Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory of ultracold atomic Fermi gases.
Rev. Mod. Phys., 80:1215–1274, Oct 2008.

[158] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ultracold gases.
Rev. Mod. Phys., 80:885–964, Jul 2008.

[159] AA Khelashvili and TP Nadareishvili. Singular behavior of the Laplace operator in polar spherical
coordinates and some of its consequences for the radial wave function at the origin of coordinates.
Physics of Particles and Nuclei Letters, 12:11–25, 2015.

[160] G. Pagano, M. Mancini, G. Cappellini, L. Livi, C. Sias, J. Catani, M. Inguscio, and L. Fallani.
Strongly interacting gas of two-electron fermions at an orbital Feshbach resonance. Phys. Rev. Lett.,
115:265301, Dec 2015.

[161] G. Cappellini, L. F. Livi, L. Franchi, D. Tusi, D. Benedicto Orenes, M. Inguscio, J. Catani, and
L. Fallani. Coherent manipulation of orbital Feshbach molecules of two-electron atoms. Phys. Rev. X,
9:011028, Feb 2019.

[162] Paivi Torma and Klaus Sengstock. Quantum Gas Experiments: Exploring Many-Body States, volume 3.
World Scientific, 2014.

[163] E. K. Laird, Z.-Y. Shi, M. M. Parish, and J. Levinsen. Frustrated orbital Feshbach resonances in a
Fermi gas. Phys. Rev. A, 101:022707, Feb 2020.

146

https://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-070909-104059
https://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-070909-104059
https://link.springer.com/article/10.1007/bf00683774
https://iopscience.iop.org/article/10.1088/1367-2630/7/1/007/pdf
https://link.aps.org/doi/10.1103/PhysRevB.107.184501
https://link.aps.org/doi/10.1103/PhysRevA.72.023621
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.75.023610
https://www.nature.com/articles/nature03858
https://link.aps.org/doi/10.1103/RevModPhys.80.1215
https://link.aps.org/doi/10.1103/RevModPhys.80.885
https://link.springer.com/article/10.1134/S1547477115010148
https://link.aps.org/doi/10.1103/PhysRevLett.115.265301
https://link.aps.org/doi/10.1103/PhysRevX.9.011028
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.022707


BIBLIOGRAPHY

[164] Mohit Randeria, Ji-Min Duan, and Lih-Yir Shieh. Bound states, Cooper pairing, and Bose condensa-
tion in two dimensions. Phys. Rev. Lett., 62:981–984, Feb 1989.

[165] Yi-Cai Zhang, Shanshan Ding, and Shizhong Zhang. Collective modes in a two-band superfluid of
ultracold alkaline-earth-metal atoms close to an orbital feshbach resonance. Phys. Rev. A, 95:041603,
Apr 2017.

[166] Taro Kamihori, Daichi Kagamihara, and Yoji Ohashi. Superfluid properties of an ultracold Fermi gas
with an orbital Feshbach resonance in the BCS-BEC crossover region. Phys. Rev. A, 103:053319,
May 2021.

[167] Junjun Xu, Ren Zhang, Yanting Cheng, Peng Zhang, Ran Qi, and Hui Zhai. Reaching a Fermi-
superfluid state near an orbital Feshbach resonance. Phys. Rev. A, 94:033609, Sep 2016.

[168] Thierry Giamarchi and B. Sriram Shastry. Persistent currents in a one-dimensional ring for a
disordered Hubbard model. Phys. Rev. B, 51:10915–10922, Apr 1995.

147

https://link.aps.org/doi/10.1103/PhysRevLett.62.981
https://link.aps.org/doi/10.1103/PhysRevA.95.041603
https://link.aps.org/doi/10.1103/PhysRevA.103.053319
https://link.aps.org/doi/10.1103/PhysRevA.94.033609
https://link.aps.org/doi/10.1103/PhysRevB.51.10915

	Introduction to multicomponent Fermi systems
	Multiorbital Hubbard model in solid state physics
	SU(N) symmetric multiorbital Hubbard model in ultracold fermionic atoms
	Atomic properties of alkaline-earth atoms
	SU(N) symmetric multiorbital Hubbard model and its symmetries

	Dynamical mean field theory: an overview
	The Anderson impurity model
	Exact diagonalization and the Lanczos method
	The self-consistency equation
	Real-space DMFT
	Observables


	Hubbard model with broken SU(N) symmetry and artificial gauge fields
	Optical Raman transitions
	Rotating wave approximation
	Effective two-level system
	Raman transitions through multiple excited states

	Artificial gauge field with Raman transitions in 173Yb
	Current operators
	Chiral current

	Non interacting ladders
	Non interacting two-leg ladder
	Non interacting three-leg ladder


	Chiral currents in strongly interacting systems
	Hartree-Fock mean field method
	Spatially uniform two-flavor systems
	Antiferromagnetism in two-flavor systems
	Spatially uniform three-flavor system

	Including dynamical correlations with DMFT
	Chiral current
	Spectral properties

	Effect of open boundary conditions
	Strong coupling limit
	Generalized Schrieffer-Wolff transformation
	Two-flavor system
	Three-flavor and multi-flavor system

	Chirality induced by spin-exchange in multiorbital systems
	Conclusion and outlook

	Quantum simulation of Hund's physics with ultracold fermionic atoms
	Hund's coupling in transition metal oxides
	Interaction resilient Hund's metal
	Atomic limit
	Phase diagram based on the Drude weight
	Correlation functions
	Analysis of the excited states

	Cold-atomic analogue of Hund's physics
	Atomic limit
	Phase diagram based on the Drude weight

	Conclusion and outlook

	Superconductivity in multiorbital systems
	Single channel BCS theory
	Attractive Hubbard model and its symmetries
	Mean field on the attractive Hubbard model
	Many-body formalism and DMFT
	Superfluid stiffness

	Two channel BCS theory with Josephson coupling
	Mean-field analysis
	Including dynamical correlations with DMFT

	Pair hopping with the orbital Feshbach resonance
	Conclusion and outlook

	Ladder operators
	Drude weight

