
Master in High Performance
Computing

Performance Evaluation of
Object Detection in Different

Architectures

Supervisors :
Ivan Girotto, ICTP
Antonio Sciarappa, Leonardo SpA

Candidate:
Fernando Santana Pacheco

9th edition
2022–2023

Acknowledgements

I would like to express my gratitude to Leonardo SpA for funding this research
project and my participation in the MHPC programme.

I am deeply grateful for the availability and bright guidance provided by
Antonio Sciarappa throughout this journey.

I am also indebted to Ivan Girotto for the valuable support, as well as to
Irina Davidenkova for the insightful discussions.

I extend my thanks to the dedicated staff at SISSA and ICTP for their
assistance with administrative matters.

I also express my sincere gratitude to all my MHPC colleagues for fos-
tering an international and friendly atmosphere, which significantly enriched
the collaborative experience.

Lastly I want to express my profound appreciation to my family for en-
couraging me in this endeavor. You are very special for me.

i

Abstract

In the last decades, image processing has moved from academic research to
innovative consumer applications. One of the most valuable of these practi-
cal uses is in object detection: from an image, identify and locate elements.
One family of object detectors based on deep learning is known as YOLO.
The goal of this work is to benchmark an object detection model based on
YOLO version 5 regarding detection metrics as well as timing and energy
consumption. We evaluate the performance of a vehicle license plate detec-
tor as well as examine what software frameworks and hardware resources are
most suitable for the task. We present the literature about object detection
and discuss performance metrics. We describe the dataset of license plates
curated for the experiments and the training procedure. Then, we present
performance results for different software stacks, with PyTorch as the base-
line, and hardware equipment, CPUs and GPUs part of the DaVinci-1 cluster
at Leonardo SpA and Intel Developer Cloud Beta. Besides that, energy con-
sumption results are also discussed. Finally, we evaluated the effect of larger
image sizes on the inference time as well as of grouping images in the same
batch for processing.

ii

Contents

1 Introduction 1

2 Object Detection 3
2.1 Performance metrics . 6
2.2 YOLO . 9

3 Dataset 19
3.1 Training . 23

4 Performance evaluation 27
4.1 Warmup . 28
4.2 Baseline . 28
4.3 TensorRT . 30
4.4 Intel optimization . 31
4.5 Intel Max 1100 GPU . 32
4.6 OpenVINO . 37
4.7 Image size . 37
4.8 Batch size . 38

5 Energy consumption 45
5.1 Training . 46
5.2 Inference . 47

6 Conclusions 49

References 51

iii

List of Figures

1.1 Object detection for two classes: apple and bell pepper. 2

2.1 Input-output process for image recognition and object detec-
tion applications. 3

2.2 Example of semantic segmentation of an image: (a) original
(b) segmented (from [4]). 4

2.3 General diagram of a region-based detection network (R-CNN
and variants). 5

2.4 Example of five anchor boxes for one cell of the image. 6
2.5 Confusion matrix for binary classification. 7
2.6 Three hypothetical predictions: any of them have a large in-

tersection with the ground truth (GT) annotation. 8
2.7 Visual representation of IoU and examples of values obtained. 9
2.8 Timeline of YOLO versions (adapted from [11]). 10
2.9 The multidimensional array at the output of YOLOv1 [15]. . . 11
2.10 General process taken for YOLO [15]. 12
2.11 Architecture of the neural network of YOLOv1 [10]. 13
2.12 Architecture of YOLOv5: backbone, neck, and head [16]. . . . 14
2.13 Part of the backbone of YOLOv5 model architecture [17]. . . . 15
2.14 Block BottleNeck 1 of YOLOv5 architecture [17]. 16
2.15 Block spatial pyramid pooling fast (SPPF) at YOLOv5 archi-

tecture [17]. 16
2.16 Neck of the YOLOv5 model architecture [17]. 17

3.1 Example of bounding boxes superimposed to an image. 20
3.2 Example of problems in the original dataset: annotated license

plates are not identifiable. 22
3.3 Screenshot of the tool FiftyOne showing the tab with metadata

fields and some samples of the image dataset. 23
3.4 Some example images of the validation set including the pre-

dictions. 25

iv

3.5 Metrics from the model training with one class for vehicle
registration plate. 26

4.1 Inference time for 50 runs of an array with dimensions [1024, 3,
640, 640] (batch size 1024) with model ResNet18 in a NVidia
A100 GPU, without warmup. 29

4.2 Speedup of inference time for ResNet50 model in Intel Xeon
8480+ CPUs. 33

4.3 Zooming the speedup of inference time for ResNet50 model in
Intel Xeon 8480+ CPUs. 34

4.4 Speedup of inference time for YOLO license plate model in
Intel Xeon 8480+ CPUs. 35

4.5 Zooming the speedup of inference time for YOLO license plate
model in Intel Xeon 8480+ CPUs. 36

4.6 Evaluating the influence of image resolution and optimization
on the inference time for one core of the Intel Xeon 8480+ CPU. 39

4.7 Evaluating the influence of image resolution and optimization
on the inference time for eight cores of the Intel Xeon 8480+
CPU. 40

4.8 Evaluating the influence of image resolution and optimization
on the inference time for a full socket of the Intel Xeon 8480+
CPU. 41

4.9 Inference time per image for different batch sizes using Intel
Xeon 8480+ CPU. 43

4.10 Inference time per image for different batch sizes using Intel
Max 1100 GPU. 44

v

List of Tables

2.1 Comparison between different model sizes for YOLOv5 run-
ning in an AWS p3.2xlarge instance [13] 11

3.1 Metrics for the validation set after model training 24

4.1 Inference time for Intel 8260 CPU and NVIDIA A100 GPU . . 30
4.2 Average inference time for YOLOv5 license plate model and

different optimizations using Intel CPU and GPU 33
4.3 Inference time for OpenVINO 38
4.4 Influence of batch size on inference time (from [44]) 42
4.5 Influence of batch size on inference time for YOLO license

plate model . 42

5.1 Energy consumption and training time using different devices 46
5.2 Energy consumption and inference time for different engines . 48

vi

Chapter 1

Introduction

The advancements in camera technology and the availability of computa-
tional power transformed image processing from academic research to the
realm of innovative applications. Foremost among these tasks is object de-
tection, that aims to answer two questions given an image: what is present
and where, as show in Fig. 1.1. This dual functionality is technically at-
tributed to two operations: classification and localization. One can note in
Fig. 1.1 that not all fruits and vegetables are identified; only two categories
are annotated, that is, the classification domain is limited. Regarding lo-
calization, it is displayed by drawing rectangles, known as bounding boxes.
This image also shows the challenges in developing an application for object
detection: some fruits are occluded, the illumination varies, and the same
class “apple” refers to elements with different colors.

Notwithstanding the difficult obstacles, the increase in object detection’s
significance can be attributed to its wide-range of practical applications.
From autonomous vehicles navigating complex environments to surveillance
systems ensuring public safety, the ability to accurately identify and locate
objects is integral to numerous domains. Once elements are located, they
can be counted and tracked, and this capability serves as the backbone for
applications like augmented reality, medical imaging, and even wildlife con-
servation efforts, exemplifying its pervasive influence on contemporary tech-
nology.

When elaborating a new application, one can identify different phases in
the software development life cycle [1]. Letaw [1] recognizes five stages: re-
quirements, design, implementation, testing and maintenance. Other authors
include one or two phases and name them differently, nonetheless testing is
a integral part of any methodology. Relevant to this work is a very specific
branch of testing, that is, software performance testing. In the most simple
form, it should be accomplished to verify if the system meets requirements.

1

Figure 1.1: Object detection for two classes: apple and bell pepper.1

At the same time, it can also help to guide the implementation. In the case
of this project, it serves twofold objectives: to verify the performance of
an object detection application as well as to direct the use of new software
frameworks and hardware resources.

Considering the importance of performance testing, the goal of this work
is to benchmark an object detection application regarding detection metrics
as well as timing and energy consumption. As an requirement from Leonardo
SpA, the targets to be detected are vehicle license plates.

In Chapter 2 we discuss the state of the art in object detection. We
start presenting a classification of methods, then we introduce performance
metrics, and finally the now considered standard models using deep learning.
Next, Chapter 3 describes the dataset of license plates we curated for the
experiments and the training procedure. Chapter 4 is the main portion of
this work, where we present performance results for different software stacks
and hardware equipment. We set apart the energy consumption results in
Chapter 5 and finally Chapter 6 presents conclusions and suggestions for
future work.

1Original image from [2], license CC BY 2.0

2

Chapter 2

Object Detection

As introduced in Chapter 1, object detection applications are part of the great
area of computer vision. They are expected to identify and locate objects
within an image or video, providing extra information when compared to
an image recognition (or classification) application. Fig. 2.1 shows that
both techniques receive an image as input. A recognition task outputs the
class names and the likelihoods or confidence scores of each class considering
the whole image. On the other hand, object detection produces the class,
location information, and the likelihood for each of the elements. To this
extent, one can state object detection is more suitable to analyze realistic
cases in which multiple objects may exist in an image.

In this work, the localization is given by a set of coordinates that define
a rectangle around each object. Another possibility, not discussed here, is to
use image segmentation, where each individual pixel is assigned to a corre-
sponding class. Fig. 2.2 shows an example, where one can note that all chairs

Figure 2.1: Input-output process for image recognition and object detection
applications (original image of the macaws from [3], license CC BY 2.0).

3

Figure 2.2: Example of semantic segmentation of an image: (a) original (b)
segmented (from [4]).

are marked with the same color in the annotated image, that is, they are all
considered part of the same class. This approach is also known as dense pre-
diction, with useful applications in autonomous vehicles and medical image
diagnostics.

Returning to the topic of object detection, algorithms presented in the
literature can be categorized into three large classes:

• algorithms based on traditional computer vision, without deep learning

• two-stage deep learning based algorithms

• single-stage deep learning based algorithms

In the first class, algorithms that are now considered classic are Viola-
Jones, proposed in 2001 and applied specially for face detection, and the
histogram of oriented gradients (HOG). The last one experienced widespread
use from 2005, although it was developed earlier, in the 1980s. They are still
used for embedded applications, in systems with low computational power
or where energy consumption is an issue.

The other two categories are based on deep learning. Although the roots
of deep learning can be traced to the 1960s and 1970s, one can say that
the turning point of this technology emerged in 2012, with an architecture
called AlexNet winning the ImageNet Large Scale Visual Recognition Com-
petition (ILSVRC or simply ImageNet). In this image classification competi-
tion, AlexNet achieved 15.3% of error rate while the second best competitor,
26.2% [5]. Krizhevsky et al. [5] claimed to have trained one of the largest
convolutional neural networks (CNNs) of the time. The architecture is com-
posed by eight layers: five convolutional layers plus three fully-connected
ones. The output of the last layer has the same dimension of the number of
classes to recognize and is fed to a softmax operator. In the case of [5], there
are 1000 class labels.

Although applied to an image classification task, the work of Krizhevsky
et al. [5] is important to mention because it inspired an object detection

4

Figure 2.3: General diagram of a region-based detection network (R-CNN
and variants).

work by Girschick et al. [6] in 2014. In this work, authors introduced Regions
with CNN (R-CNN), an approach where a module generates region proposals
that are category-independent, and from each region the CNN described by
Krizhevsky et al. is used to extract a feature vector. Then, this vector is used
as the input for a set of linear support vector machines (SVMs) that classify
each region. The important point to mention is the two-stage nature: first
propose areas of interest in the image and then classify each area, as shown
in Fig. 2.3. In [6], selective search was used to extract a fixed number of
2000 regions. Other research works like the Fast-RCNN, Faster-RCNN and
Mask-RCNN followed the same two-stage approach, each one introducing
improvements regarding the speed of the overall application, changes in the
way to obtain the regions of interest, or in the classifier.

Also based on deep learning, we have the last category: single-stage object
detectors. Algorithms of this class treat object detection as a regression
problem, that is, from the image the network should directly output the
class probabilities and bounding box coordinates for a number of elements.
They skip the region proposal stage and are faster than two-stage detectors.
For the first versions, some dropping of accuracy was exchanged for speed.
Currently the loss in accuracy is minimal.

One solution to avoid the costly region proposal stage is to rely on a set
of predefined regions. Over the image, a grid is laid with boxes of different
sizes and shapes. Fig. 2.4 shows an example of five anchor boxes (bounding
box priors) for the center cell of the image. These are equivalent to the
region proposals, but obtained in a simpler way. Then, for each box in
each cell of the grid the model predicts whether an object exists. When

5

Figure 2.4: Example of five anchor boxes for one cell of the image.

using multiple boxes, overlapping detections will come out and some post-
processing is needed for filtering them out.

Well-known single-stage object detectors in the literature are the single-
shot detector (SSD), You look only once (YOLO), RetinaNet, CornerNet,
CenterNet, and DETR [7]. The YOLO algorithm will be explored in Section
2.2.

2.1 Performance metrics

A very relevant topic to discuss is how to evaluate the performance of a
model. Ideally, a metric should be easy to compute and express the quality
of the system under test. We start discussing image classification metrics
and then the particularities related to object detection.

The output of an image classifier is a label as well as the likelihood at-
tributed to it, as already shown in Fig. 2.1. In that example, the class “arara”
was identified with 90% of likelihood. Is this level of confidence enough to
consider the result as valid? This is the first choice one needs to do. If
we adopt a default threshold of 50%, “arara” would be considered a valid
prediction to be compared with the ground truth labels. If we only accept
as valid the detections with confidence greater than 95%, this output would
not be considered. Using the detections with confidence greater or equal to
a predetermined threshold, we can define the metric accuracy, a ratio of how

6

Figure 2.5: Confusion matrix for binary classification.

many predictions match the actual labels in relation to the total number of
predictions. In addition, each result provided by a classifier falls into one of
the four categories:

• true positive (TP): the predicted label matches correctly the ground
truth

• true negative (TN): the classifier does not assign a label as a result and
it is not part of the ground truth

• false positive (FP): when a predicted label is not part of the ground
truth (also called type I error in statistical hypothesis testing)

• false negative (FN): a label that is part of the ground truth is not
predicted by the classifier (type II error)

From these categories, one can derive a confusion matrix that aggregates
the four measurements into a grid, as show in Fig. 2.5. A perfect system
would have only values in the diagonal.

A problem arises when the classes are not balanced, as in the following
example given by [8]. Consider that 1000 patients were screened for an
eye disease and two of them actually have it. If one simply consider that
all patients are healthy, the output of this “model” would be correct 998
times and the accuracy would achieve 99.8%. Although impressive, this
result is a complete fail because the two cases were lost. For obtaining more
insight about the results, it is advisable to use the metrics precision and
recall defined, respectively, in 2.1 and 2.2.

precision =
TP

TP + FP
(2.1)

7

Figure 2.6: Three hypothetical predictions: any of them have a large inter-
section with the ground truth (GT) annotation.

recall =
TP

TP + FN
(2.2)

Another common metric is the harmonic mean of precision and recall,
known as F1 score

F1 score = 2
precision · recall
precision + recall

(2.3)

Basically all these metrics also apply to object detection, comparing not
the label for the entire image but each object. However, in object detection
we are interested not only in the classification of an object in an image, but
also in the correct localization of it. For this reason, more metrics should be
taken into account. One could start measuring the area of overlap between
the prediction and ground truth (GT), however, it is an inadequate metric if
alone. Any of the predictions shown in Fig. 2.6 have a good intersection with
the ground truth annotation but it is clear they are very different and some
other metric should capture this fact. For this reason, it is common practice
to compute also the area of union between prediction and ground truth and
then obtain the Intersection over Union (IoU), that is the ratio between the
areas of overlap and union, as shown in Fig. 2.7. With perfect overlap, IoU is
equal to one; without overlap, it is zero. Returning to Fig. 2.6, the first case
will have a high IoU while the the second and third predictions will result in
a much lower value, because of the larger area of union in the denominator.

Like the threshold for the predicted likelihood in image classification, IoU
can be used as the value to consider a detection as valid. This way, when the
predicted bounding box has an IoU equal or greater than the threshold, we
count a true positive. A higher threshold requires a more accurate prediction.

8

Figure 2.7: Visual representation of IoU and examples of values obtained.

With different thresholds for IoU, one can obtain different values for precision
and recall and a precision-recall curve. A summary of the curve is computed
as the area under it, usually with some previous smoothing [8], and this is
called average precision (AP).

For multiclass problems, another reduction is computed as the mean of
the average precision of each class (mAP). This metric is usually reported
together with the threshold for IoU, for instance, mAP@50 or mAP@0.5
refer to a threshold of 50% for IoU. It is also common to report the mAP
not for a single threshold, but for a range, for instance, for thresholds from
50% to 95%, with steps of 5%, written as mAP@.5:.05:.95, mAP@0.5-0.95,
or mAP@50-95. A thorough discussion of many variations is presented by
Padilla et al. [9]. The most famous competitions in the field provide their
own tools to compute a performance metric.

2.2 YOLO

You look only once (YOLO) [10] is a family of single-stage object detectors,
with the first version presented in 2016. What distinguished YOLO from
the beginning was the good balance between speed and accuracy, making it
suitable for real-time applications. In the PASCAL Visual Object Classes
(VOC) Challenge, with 20 classes, the first version of YOLO (YOLOv1)
obtained a mAP of 63.4 [10] keeping real-time performance of 45 frames per
second (FPS). One version of a Faster R-CNN could achieve mAP of 73.2,
but processing only 7 FPS, less than real-time for a standard video input.

9

Figure 2.8: Timeline of YOLO versions (adapted from [11]).

From 2016, YOLO has been actively developed, with new versions from
different developers and different licenses [11]. Fig. 2.8 shows the timeline of
the main versions and variants of YOLO from 2015 to 2023.

Because of the less restrictive license, this work refers to the version
YOLOv5. The source code for training, validation, inference, as well as for
exporting a model is available at Github [12]. Also there one can find pre-
trained weights, that is, pretrained model parameters. To be precise, in this
work we use YOLOv5 branch v7.0. Besides the specific version and branch,
there are five architecture sizes, referred to the names nano, small, medium,
large and extra large with the letters n, s, m, l, x, respectively. YOLOv5n
is the smaller model, suitable for devices with limited computing capabili-
ties. However its accuracy is lower than the other models. A comparison
of accuracy and inference time provided in the official repository at [13] is
presented in Table 2.1. Timings were obtained running the inference in an
AWS p3.2xlarge instance. The letter “b” refers to the batch size (number
of images that are processed simultaneously). The improvement when the
batch size is increased from one to 32 is clear. The GPU is an NVIDIA V100.
Number of parameters are indicated in millions. One can note that bigger
the model, better the accuracy but larger the time for processing. From
previous tests done at the company, the small model (YOLOv5s) has been
chosen for this work.

A complete explanation of all YOLO versions and architectures is out
of scope for this work, but a reader can refer to [11] as a thorough review
from the v1 to versions proposed in 2023, including variants with visual
transformers.

The common idea for all versions is to split the image into grid cells,
predict bounding boxes and select the best one regarding confidence score
and coverage (IoU) [14]. This way, an input image is divided into a S × S
grid with B bounding boxes plus confidence for C different classes per grid
element. The bounding box is described by four values: the coordinates (x, y)

10

Table 2.1: Comparison between different model sizes for YOLOv5 running
in an AWS p3.2xlarge instance [13]

Inference time per image(ms)
Model mAP50-95 CPU b1 GPU b1 GPU b32 params.(M)

nano 28.0 45 6.3 0.6 1.9
small 37.4 98 6.4 0.9 7.2
medium 45.4 224 8.2 1.7 21.2
large 49.0 430 10.1 2.7 46.5
extra-large 50.7 766 12.1 4.8 86.7

Figure 2.9: The multidimensional array at the output of YOLOv1 [15].

of the center of the box relative to the bounds of the cell, plus the width, and
height relative to the whole image. The output is a multidimensional array
with dimensions S×S×(B×5+C). For YOLOv1, as shown in Fig. 2.9, the
grid is 7 × 7, with at most 2 boxes per grid element (B = 2) and 20 classes
in the PASCAL VOC dataset. So, the output has dimensions 7× 7× 30.

At this point, bounding boxes probably overlap. So, it is necessary to
include a post-processing step with an algorithm called non-maximum sup-
pression (NMS). In a iterative way, it retains the detection candidates with
highest confidence scores, filtering out all other candidates that overlap with
the best ones. This is the reason for the name: it suppresses all candidates
that have non-maximum scores. A general view of the process taken for
YOLO is shown in Fig. 2.10. The image is divided into a grid, bounding

11

Figure 2.10: General process taken for YOLO [15].

boxes are generated, then analyzed together with the class confidence scores
to obtain the final detections. Each color in the class probability map indicate
the class with higher score.

For YOLOv1, the output layer (7× 7× 30) is the result of a sequence of
24 convolutional layers plus 2 fully connected ones, as shown in Fig. 2.11.

All the subsequent YOLO models apply strategies to facilitate training,
as well as improving the performance (accuracy and inference time). The
architecture of the convolutional layers has changed, as well as the number
of candidate bounding boxes and the way to generate them. Since the model
architectures for subsequent versions of YOLO present many more layers, one
can divide them into three parts: backbone, neck, and head. The backbone
is basically a set of convolutional layers plus normalization and activation
functions for feature extraction. The neck includes layers or other structures
to improve the feature representation [11]. The head is the final stage where
the predictions are generated, giving as output the classes, confidence scores
and the bounding boxes. Fig. 2.12 shows the architecture of YOLOv5. Since
the structure is too large for visualization, here we will zoom into each part.
Starting with the backbone in Fig. 2.13, the default image is 640x640 with
3 channels for colors. The block called ConvBNSiLU, also known as CBL, is
a convolutional layer followed by batch normalization and a sigmoid linear

12

Figure 2.11: Architecture of the neural network of YOLOv1 [10].

unit (SiLU) activation function. In Fig. 2.13, the parameters are shown as:

• kernel size k

• stride s

• padding p

• output channels c

For instance, the first CBL block (P1) applies a convolutional layer with
kernel size 6, stride 2, padding 2, and 64 channels. After P2, follows a
sequence of four blocks named C3 intercalated with CBL blocks.

Inside each C3 block, there is another block called BottleNeck 1, shown in
Fig. 2.14. This is a residual block with two skipped connections, considered
better for gradient back-propagation [16]. The C3 blocks are a variant of cross
stage partial network (CSPNet) blocks [18], that provide better behavior for
backward gradient computation. The last CNN block in the backbone is
a spatial pyramid pooling fast (SPPF), used as feature reaggregator [16],
shown in Fig. 2.15.

The neck of YOLOv5 is formed by four C3 blocks, CBL blocks, upsample,
concatenation and a block named BottleNeck 2, as shown in Fig. 2.16. They
are combined to form a path aggregation network (PANet), considered a
solution to improve the flow of information between different layers [16].
The BottleNeck 2 has the same two convolutions as the BottleNeck 1, but
without the skip connection.

The head of YOLOv5 model is the same of YOLOv3. It has three detec-
tion layers, each with a different number of grid cells (obtained by means of

13

Figure 2.12: Architecture of YOLOv5: backbone, neck, and head [16].

14

Figure 2.13: Part of the backbone of YOLOv5 model architecture [17].

15

Figure 2.14: Block BottleNeck 1 of YOLOv5 architecture [17].

Figure 2.15: Block spatial pyramid pooling fast (SPPF) at YOLOv5 archi-
tecture [17].

16

Figure 2.16: Neck of the YOLOv5 model architecture [17].

17

the parameter S discussed in the beginning of this Section). Since each cell
can detect at most one object, this multigrid approach allows detections at
different scales, alleviating a weakness of the original YOLO regarding spot-
ting small objects. For an input image with resolution of 640 × 640 pixels,
the grid cells of each of the three detection layers represent 8, 16, and 32
pixels in width and height.

Regarding the training of YOLOv5, it is worth mentioning that the loss
function is computed as the weighted sum of three components:

• class loss, calculated using binary cross entropy (BCE), is the general
classification error

• objectness loss, also from BCE, measures the error in finding an object
in a grid cell

• localization loss, obtained through complete IoU (CIoU), related to
localizing the object within the grid cell

18

Chapter 3

Dataset

One fundamental part of supervised learning is obtaining data for training
as well as for validation. The data consists of not only images but also
associated labels. For object detection, the labels, also known as image
annotations, comprise the localization of objects in the image and the class
or category of the object. There are different annotation approaches, the one
we use here is the bounding box, that is, rectangular boxes, as shown in Fig.
3.1.

There are many annotation formats, saved in different file types. For
instance, the dataset Common Objects in Context (COCO) uses .json, PAS-
CAL VOC uses .xml, and YOLO uses a .txt file with the same name of the
image, with one line for each object, like

<class_id> <x_center> <y_center> <width> <height>

where

• <class_id> is an integer that represents the class of the object. The
class index should start from 0. Each unique class in the dataset has
an class_id.

• <x_center> and <y_center> are the coordinates of the center of the
bounding box, normalized by the width and height of the image, re-
spectively. This way, the values are in the range of [0, 1].

• <width> and <height> are the width and height of the bounding box,
also normalized by the width and height of the image, respectively, and
in the range of [0, 1].

Since one of the requirements of this project was to test the detection of
license plates, we started evaluating some datasets that included this kind of
elements:

19

Figure 3.1: Example of bounding boxes superimposed to an image.1

• “Car License Plates Dataset” with 433 images and bounding boxes
(PASCAL VOC format) [19]

• Annotation of 2026 character bounding boxes for 209 license plate im-
ages [20]

• UFPR-ALPR dataset, which includes 4,500 fully annotated images
(over 30,000 LP characters) from 150 vehicles [21]

Other datasets are mentioned in the literature. Laroca et al. [22] uses
eight publicly available datasets: Caltech Cars, EnglishLP, UCSD-Stills,
ChineseLP, OpenALPR-EU, AOLP, SSIG-SegPlate and UFPR-ALPR. The
same authors also mention some problems with duplicates in train and test
subsets [23].

After some preliminary evaluations and tests, we decided to use the Open
Images Dataset V6 [25]. In total, it has more than 16 million bounding boxes
annotated in 1.9 million images. Of the 600 classes, there is one specific for
“Vehicle registration plate”. Besides object detection, this dataset can also be
used for other applications, since it has annotations for object segmentation,
visual relationships (e.g. “woman playing guitar”), and localized narratives.

Open Images is divided into train, test and validation subsets, with almost
all bounding boxes manually drawn by professional annotators. The license

1Original image from [24], license CC BY 2.0

20

of the annotations is CC BY 4.0, while images are listed as conforming to
CC BY 2.0. Both of them allow commercial use.

One could simply download the entire dataset and write scripts to filter
it. However, given the massive size, a more adequate option is to consider
some tool to make evaluation and visualization more friendly. Here we use
FiftyOne [26], a Python tool for visualizing datasets, with an open-source
core library.

Then, to download the three sets (train, validation and test), and filtering
them to obtain only the images with at least one label “Vehicle registration
plate” becomes as simple as shown in Listing 3.1.

1 import fiftyone as fo

2 import fiftyone.zoo as foz

3

4 classes = ["Vehicle registration plate"]

5

6 train_val_test_dataset = foz.load_zoo_dataset(

7 "open -images -v6",

8 splits =["train", "validation", "test"],

9 label_types =["detections"],

10 classes=classes

11)

Listing 3.1: Download dataset and filter label using FiftyOne

Applying this first filtering, we obtain 5368 images for training, 724 for
validation, and 2065 for test. The number of labels is greater than the simple
sum of the images, since some images have more than one label. This way,
in 8157 images, there are 11682 occurrences of license plates.

We will discuss in Section 3.1 the strategy to train new models. In a
summary, we point out that, since we can use pretrained weights, the need
for data is reduced and this number of images is enough.

In fact, after some preliminaries tests and inspection of the dataset, we
noticed that some “garbage” is introduced for training and it affects the
overall performance. The detection is only the first step of a full automatic
license plate recognition (ALPR) system, so labels where the plate is too
small, too far away, or in an angle that is almost impossible to identify where
excluded. In Fig. 3.2 we show some examples of these problems.

Besides the class identification and bounding box coordinates, Open Im-
ages has some metadata information for each object, as shown in Fig. 3.3.
Then, we created a script to obtain only the objects that:

• are not occluded

• are not truncated

21

Figure 3.2: Example of problems in the original dataset: annotated license
plates are not identifiable.

22

Figure 3.3: Screenshot of the tool FiftyOne showing the tab with metadata
fields and some samples of the image dataset.

• have a minimum aspect ratio of 2, favoring license plates that appear
rectangular in the images

• present a minimum bounding box area of 0.08% of image area

For an image with 640 x 640 pixels, 0.08% of the area represents, for
instance, a license plate with 25 x 13 pixels.

After these filtering step, the number of images is 2300 in the training
split, 352 for validation and 988 for testing.

3.1 Training

The authors of YOLOv5 provide a script for training in train.py available
at [27]. It loads the weights of a pretrained model and starts the optimization
process, that uses stochastic gradient descent. The difference between the

23

Table 3.1: Metrics for the validation set after model training

Metric Value

Precision 0.913
Recall 0.938
mAP50 0.960
mAP50-95 0.698

default model and this new one is the number of output classes that changes
to only one. We did a single-GPU (NVIDIA A100) training at the cluster
DaVinci-1, with 25 epochs, that took around 6 minutes to complete. The
model’s size is 14.4 MB, with 157 layers and 7,012,822 parameters. The
validation results are summarized in Table 3.1. In the set with 352 images,
371 instances of license plates were detected.

Following the standard practice in the area, the test split is used only
at the end of the training process, as a final check. The visualization tool
FiftyOne was again used, helping to gain insight about the results.

Fig. 3.4 shows a mosaic of 16 images from the validation set together
with the predictions. There are 17 plates annotated in the ground truth, and
all are correctly detected. There is also an additional detection for the car’s
plate in the background of image fc0f46431cb1dbe9 (1st row, 2nd column).

The metrics from the training with 25 epochs are shown in Fig. 3.5.
The loss is split between box (localization) and object (presence in image)
and also between train and validation. One can notice the loss decreases for
both sets and objectives. As expected, the box loss is higher that the object
loss. From the training, it seems we could run some more epochs, because a
plateau was not achieved. On the other hand, the validation and the mAP
seem already adequate.

The report for the filtered test set is shown below where support means
the number of annotated elements. The number 1060 is larger than the
number of images (988) because some present multiple license plates.

precision recall f1-score support

Vehicle registr.plate 0.88 0.94 0.91 1060

mAP = 0.92

Confusion matrix:

Prediction

Vehicle reg. plate none

Truth plate 992 68 (miss or false negative)

none 136 (false positive) 0

24

Figure 3.4: Some example images of the validation set including the predic-
tions.

25

Figure 3.5: Metrics from the model training with one class for vehicle regis-
tration plate.

26

Chapter 4

Performance evaluation

In this Chapter we present the performance evaluation of neural networks
for object detection, specially the model trained for detecting license plates
discussed in Chapter 3. The main focus of this Chapter is on timing the
inference operation while Chapter 5 discusses energy issues. Tests were con-
ducted using different software frameworks and hardware setups described
below.

The first hardware equipment is the cluster DaVinci-1 [28] at Leonardo
Company, with two partitions: CPU and GPU. The software for cluster
management is Altair PBS. Each node in the CPU partition has two sockets
of Intel Xeon Platinum 8260 CPUs with 24 physical cores per socket. These
CPUs were known as Cascade Lake, with full specifications available at [29].
The nominal clock is 2.4 GHz, with a maximum of 3.9 GHz. The total
RAM memory is 768 GB. Nodes in the GPU partition of DaVinci-1 have two
sockets of AMD EPYC 7402 CPUs (specifications at [30]), with 24 physical
cores per socket, 512 GB of memory plus 4 GPUs NVIDIA A100-SXM4 with
40 GB of memory [31].

We also conducted tests in the Intel Developer Cloud Beta [32], where
each compute node has two sockets of Intel Xeon Platinum 8480+ CPUs,
with 56 physical cores per socket, and 512 GB of RAM memory. This CPU
was formerly known as Sapphire Rapids, with base frequency of 2.0 GHz and
maximum clock of 3.8 GHz. Full specifications are available at [33]. Each
node also has an Intel Data Center GPU Max 1100, with 48 GB of memory.
This GPU was previously named as Ponte Vecchio and the full specifications
can be found in [34]. The company made available the Intel Developer Cloud
Beta on July 2023 and, for limited time, the system could be accessed without
additional costs. Slurm is the job scheduler in this cluster.

Regarding the software, PyTorch [35] version 2.0 was employed as the
baseline framework. From it, a model can be exported to other inference

27

engines, each one with optimizations for CPUs or specific GPUs. They are
discussed in the next sections. We evaluated:

• Intel Optimization for PyTorch (IPEX)

• NVIDIA TensorRT

• Intel OpenVINO

• TorchScript

Besides that, we also evaluate the influence of batch size (number of
images that are processed as a block) and image resolution.

4.1 Warmup

A very important consideration when doing timing analysis is the starting
state of the computing device. For energy saving reasons, CPUs and GPUs
can reduce their power levels, shutting down subsystems of the hardware.
When some computing job is started, the awaking process from these low
power states can consume very significant time. For instance, when timing
50 runs of inference of a ResNet18 model, with batch size 1024, using a
NVidia A100 GPU, we obtained an average time of 379 ms. However, when
checking each time measurement of the 50 runs, as shown in Fig. 4.1, one
can note there is some accommodation period until results start to be more
stable. While the second run takes more than 8 s, after the fourth run results
are very similar, around 78 ms.

For this reason, it is common practice in the industry to not include the
first runs when doing timing benchmarks. It means to include a warmup
stage with random data as input with the same dimensions as the true data.
Following the recommendations from [36], [37], we included this warmup
stage before the time measurements. Another recommended practice is to
average the time of a large number of runs and to fix the device clock. Un-
fortunately, we were not able to setup the clock in any of the systems under
analysis because this was an operation restricted to the administrator.

For CPUs the warmup is not so critical, nonetheless it was also applied.

4.2 Baseline

At DaVinci-1, the YOLO license plate model with batch size 1 has achieved
the results presented in Table 4.1.

28

0 10 20 30 40 50
Number of run

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
pe

r b
at

ch
 (m

s)

Inference time per batch using A100 GPU

0

100

200

Figure 4.1: Inference time for 50 runs of an array with dimensions [1024, 3,
640, 640] (batch size 1024) with model ResNet18 in a NVidia A100 GPU,
without warmup.

29

Table 4.1: Inference time for Intel 8260 CPU and NVIDIA A100 GPU

Runtime + Inf. time
Cores (avg.) (ms)

PyTorch CPU 1 111.5
PyTorch CPU 8 28.2
PyTorch CPU 24 25.0
PyTorch CPU 48 33.1
PyTorch GPU 7.4

One can note that using more cores the time decreases but not as a
linear scaling. The speedup is 3.95 times for 8 cores and 4.46 times for 24,
considering one core as the reference. When changing from 24 to 48 cores,
that is, starting to use the two sockets of the node, timing becomes worst.
Using the GPU, the speedup is 3.38 taking as reference one socket of the
CPU.

4.3 TensorRT

TensorRT is a software development kit (SDK), provided by NVIDIA, for
optimizing inference [38]. The most simple approach it applies is to fuse
operations. It can also be used to convert models to different numerical
representations, like half precision (float16) and int8. First results we present
here are from applying the YOLO export.py script with default parameters
to convert a model from original .pt to a TensorRT file. The conversion is
not direct, it passes to an intermediate ONNX model. It has a slight decrease
in detection performance (mAP50-95 from 0.6320 to 0.6318) compensated by
a huge gain in inference time. In our tests, it provided the best results when
compared with any other of the engines under test. With TensorRT, the
inference time is 1.5 ms for NVIDIA A100, while PyTorch takes 7.4 ms in
the same GPU and 25 ms in a socket of the 8260 CPU (Table 4.1).

As explored in Section 4.8, another gain can be obtained by increasing
the batch size. For TensorRT, the only issue is that each model is exported
for a fixed dimension, so more than one model is needed if doing inference
with different batch sizes.

30

4.4 Intel optimization

Intel has released a package called Intel Extension for PyTorch (IPEX) to
optimize the performance of PyTorch on Intel hardware (CPUs and GPUs)
[39]. Current Intel CPUs are equipped with the AVX-512 Vector Neural Net-
work Instructions (AVX512 VNNI) and Advanced Matrix Extensions (Intel
AMX). However, to deliver the best performance, some support from the
software stack is needed and this is the main goal of IPEX. For this work, we
used the version 2.0.110+xpu, that applies both for CPUs and discrete GPUs
(according to Intel, “the ‘X’ in ‘XPU’ stands for any compute architecture
that best fits the need of your application” [40]).

Applying the optimization to a previously trained model is simple. One
needs to load the module and call the optimize function, as shown in lines
3 and 8 of Listing 4.1.

1 import torch

2 import torchvision.models as models

3 import intel_extension_for_pytorch as ipex

4 device="cpu" # or "xpu"

5 model = models.resnet50(weights="ResNet50_Weights.DEFAULT")

6 model.eval()

7 model = model.to(device)

8 model = ipex.optimize(model)

9 with torch.no_grad ():

10 d = torch.rand(1, 3, 224, 224)

11 d = d.to(device)

12 model = torch.jit.trace(model , d)

13 model = torch.jit.freeze(model)

Listing 4.1: One solution to optimize a model with IPEX [39].

However, much better results can be obtained combining it with what is
called graph mode. Using PyTorch, a neural network can be executed in eager
or graph mode. In eager mode, each operation is immediately performed,
what is very convenient for an interactive environment, when experimenting
with different architectures and parameters. However, this approach is not
the most efficient because optimizations are better achieved only after the
full graph is built [41]. As a simple example (more advanced strategies are
discussed in [42]), one can consider matrices A, B, and C, and the operation
AB + AC. Using the mathematical distributive property, it would be more
efficient to carry out A(B + C), but this is not possible in the eager mode.
However, if all operations are firstly tracked, a computational graph can be
built and then optimized. The process of traversing a set of operations on
tensors is called tracing. Then, a just-in-time compiler (with TorchScript)
can be applied, being recommended by Intel. The call of the tracing routine

31

to record the operations performed on tensors is executed in line 12 of Listing
4.1, with some data as input (created in line 10). After that, in line 13, the
call to freeze optimizes the model.

One of our experiments evaluated the gains when using this module. For
this, we tested two models: Resnet50 and our own trained YOLO license plate
detection. Many benchmarks use Resnet as an standard model, because it
has many convolutional layers. Another reason to use it is that we would
like to see if optimizations also scale to different architectures.

Using one core of the Intel 8480 CPU, the baseline ResNet50 model,
directly from torchvision, takes 65.5 ms for inference. There is some im-
provement when applying IPEX optimization and tracing, specially when
using more cores of the same CPU, as shown in Fig. 4.2. Zooming the area
from 1 to 20 cores (Fig. 4.3), one can note that tracing provides linear scal-
ing, showing how advantageous is to apply such process. Returning to Fig.
4.2, it is interesting to note that including more cores is not always benefi-
cial, specially when we start using both sockets of the same motherboard.
Probably there are issues when accessing memory that is not close to the
socket.

Similar behavior happens for the YOLO license plate model shown in
Fig. 4.4. When using 32 cores, there is an improvement of around 6 times
compared to the baseline result for 1 core (126.2 ms). Still for 32 cores,
after applying IPEX+tracing, a speedup of around 3 times is achieved, and
the overall speedup from the 1 core baseline model is almost 18 times. The
improvement using the Intel optimization plus tracing is also clear in Fig.
4.5, where we zoom the area between 1 and 20 cores.

4.5 Intel Max 1100 GPU

We also took the opportunity to test the new Intel Max 1100 GPUs available
through Intel Developer Cloud Beta. Using the same module for PyTorch
optimization, the only change in Listing 4.1 is at line 4: device="xpu". We
applied warmup and collected the inference time for 1000 runs and computed
the average. Table 4.2 shows the results for the GPU together with the CPU
(here only for 1 and 56 cores) for comparison purposes. One can note that this
GPU presents results 18% faster than a full socket (56 cores) for the baseline
PyTorch model. This could be considered good, however the improvement is
much more pronounced when applying IPEX plus tracing. Then the inference
time using the GPU is 2.63 times faster than a full socket.

32

0 20 40 60 80 100
Num. of CPU cores

0

5

10

15

20

Sp
ee

du
p

(1
 re

pr
es

en
ts

 6
5.

5
m

s)

So
ck

et
 0

So
ck

et
 1

Speedup of inference time for ResNet50 - Intel Xeon 8480L CPUs

Baseline model
With IPEX optim.
Plus tracing

Figure 4.2: Speedup of inference time for ResNet50 model in Intel Xeon
8480+ CPUs.

Table 4.2: Average inference time for YOLOv5 license plate model and dif-
ferent optimizations using Intel CPU and GPU

Inference time (ms)
CPU 8480+ GPU Max

Model 1 core 56 cores 1100

YOLO License Plate 126.2 18.4 15.5
+Intel optim. 103.7 11.1 4.0
+tracing 97.7 7.1 2.7

33

1 2 4 8 12 16 20
Num. of CPU cores

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

du
p

(1
 re

pr
es

en
ts

 6
5.

5
m

s)

Zoom speedup inf. time for ResNet50 - Intel Xeon 8480L CPUs
Baseline model
With IPEX optim.
Plus tracing
linear scaling

Figure 4.3: Zooming the speedup of inference time for ResNet50 model in
Intel Xeon 8480+ CPUs.

34

0 20 40 60 80 100
Num. of CPU cores

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sc
al

in
g

(1
 re

pr
es

en
ts

 1
26

.2
 m

s)

So
ck

et
 0

So
ck

et
 1

Speedup inf. time own-trained Yolo model - Intel Xeon 8480L CPUs

Baseline model
With IPEX optim.
Plus tracing

Figure 4.4: Speedup of inference time for YOLO license plate model in Intel
Xeon 8480+ CPUs.

35

1 2 4 8 12 16 20
Num. of CPU cores

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

du
p

(1
 re

pr
es

en
ts

 1
26

.2
 m

s)

Zoom speedup inf. time own Yolo - Intel Xeon 8480L CPUs
Baseline model
With IPEX optim.
Plus tracing
linear scaling

Figure 4.5: Zooming the speedup of inference time for YOLO license plate
model in Intel Xeon 8480+ CPUs.

36

4.6 OpenVINO

OpenVINO is a model optimizer for CPUs and GPUs, developed by Intel
[43]. As TensorRT, it rebuilds the computational graph.

We tested OpenVINO version 2023.0.1 for the Intel CPUs at DaVinci-
1. The installation was accomplished simply with pip and the module
openvino-dev==2023.0.1. Then, a change in the source code of YOLO
export.py, line 197, was needed because this version of OpenVINO depre-
cated an argument named --data_type in favor of --compress_to_fp16.
The output of diff is shown in Listing 4.2.

194 LOGGER.info(f’\n{prefix} starting export with openvino {

ie.__version__ }...’)

195 f = str(file).replace(’.pt’, f’_openvino_model{os.sep}’)

196

197 - cmd = f"mo --input_model {file.with_suffix (’.onnx ’)} --

output_dir {f} --data_type {’FP16’ if half else ’FP32 ’}"

198 + cmd = f"mo --input_model {file.with_suffix (’.onnx ’)} --

output_dir {f} --compress_to_fp16 {half}"

Listing 4.2: Change in the source code of export.py in YOLOv5 branch 7.0
to use OpenVINO 2023.0.1.

An OpenVINO model is generated by means of export.py, using a Py-
Torch .pt model as input:

python export.py --weights model.pt --include openvino

We did some experiments fixing the number of threads with numactl.
Results are shown in Table 4.3. The row marked with asterisk was obtained
with OMP_NUM_THREADS=48 running on 24 physical cores:

env OMP_NUM_THREADS =48 numactl --cpunodebind =0 --physcpubind

=+0-23 python detect.py --weights=’openvino_model/’ --

device=’cpu’ --source=’img/data/*’

It seems that even with HyperThreading disabled, OpenVINO can take
advantage of some parallelism if two threads are assigned to the same core.
For the Intel 8260 CPU with batch size one, the result of 9.8 ms is the best
so far in our tests.

4.7 Image size

We investigated the influence of the image resolution on the inference time.
Although the default size for YOLOv5s is 640×640 pixels, one can use other
image resolutions. We considered the following dimensions for images with
equal width and height: 224, 480, 640, and 1280. Figures 4.6, 4.7, and 4.8

37

Table 4.3: Inference time for OpenVINO

Runtime + Inf. time
Threads (avg.) (ms)

OpenVINO CPU 1 95.9
OpenVINO CPU 24 14.2
OpenVINO CPU 48* 9.8
OpenVINO CPU 48 14.2

present the inference times for 1, 8 and 56 cores of the Intel Xeon 8480+
CPU, respectively.

First let’s examine the results for one core (Fig. 4.6). An image of
1280×1280 pixels has 33 times more pixels than one with resolution 224×224
and this is also approximately the increase in inference time: 30 times for
the baseline model and 31 times for the optimized and traced on. So, with
only one core no “magic” optimization can save time, the scaling in time is
linear. On the other hand, there is an advantage in using the IPEX+trace:
approximately 40% faster than the baseline model.

For 8 cores (Fig. 4.7), the increase in inference time when moving from
a resolution of 224 to 1280 is around 14 times, while the number of pixels
increases 33 times. With more cores, the advantages of IPEX and tracing
are more evident: inference times are 2, 2.1, 1.8 and 1.78 times faster than
the baseline model for each resolution, respectively.

For a full socket, 56 cores (Fig. 4.8), changing the resolution from 224
to 1280 the inference time increases 7 times, approximately. Applying IPEX
plus tracing, inference times are 3, 3.2, 2.86, 2.61 faster than the baseline
model for each resolution, respectively.

4.8 Batch size

The inference can be executed image by image or in blocks. The number
of images that are collected and then processed as a single multidimensional
array is the batch size. A study about it is presented at [44], that we repro-
duce in Table 4.4, doing inference in a NVIDIA A100 GPU with 40 GB of
memory.

Doing a similar study using the GPU at DaVinci-1, for the YOLO license
plate model, when moving batch size from 1 to 8, PyTorch inference reduced
from 7 ms to 1.96 ms. With TorchScript (that is, with tracing and optimiza-
tion), from 5.51 to 1.2 ms and TensorRT, from 1.47 ms to 0.6 ms (results

38

224 480 640 1280
Image size in pixels

0

100

200

300

400

500

In
fe

re
nc

e
tim

e
pe

r i
m

ag
e

(m
s)

19

75

126

567

16
60

104

450

13
55

97

406

Inf. time for dif. image sizes using 1 core Xeon 8480
Original
IPEX optim.
Plus tracing

Figure 4.6: Evaluating the influence of image resolution and optimization on
the inference time for one core of the Intel Xeon 8480+ CPU.

39

224 480 640 1280
Image size in pixels

0

20

40

60

80

100

In
fe

re
nc

e
tim

e
pe

r i
m

ag
e

(m
s)

8

19
27

105

13
19

25

90

4
9

15

59

Inf. time for dif. image sizes using 8 cores Xeon 8480
Original
IPEX optim.
Plus tracing

Figure 4.7: Evaluating the influence of image resolution and optimization on
the inference time for eight cores of the Intel Xeon 8480+ CPU.

40

224 480 640 1280
Image size in pixels

0

10

20

30

40

50

60

In
fe

re
nc

e
tim

e
pe

r i
m

ag
e

(m
s)

9

16
20

60

7

13 11

38

3 5 7

23

Inf. time for dif. image sizes using 56 cores Xeon 8480
Original
IPEX optim.
Plus tracing

Figure 4.8: Evaluating the influence of image resolution and optimization on
the inference time for a full socket of the Intel Xeon 8480+ CPU.

41

Table 4.4: Influence of batch size on inference time (from [44])

Inference time YOLOv5 models (ms)
Batch size nano small medium large extra large

1 9.0 9.3 12.2 14.5 18.9
2 5.0 5.0 6.6 7.7 10.2
4 2.6 2.7 3.4 4.2 5.0
8 1.3 1.3 1.7 2.3 3.4
16 0.7 0.9 1.4 1.9 3.1
32 0.5 0.8 1.3 1.9 3.0
64 0.4 0.7 1.2 1.7 2.8
128 0.4 0.6 1.1 1.7 2.8

in Table 4.5. We can say it is advantageous to increase the batch size, tak-
ing into account the requirements of the final application. It is important
to remember that some time is spent building a batch of images before the
inference. If one considers 30 frames per second (FPS), for a single camera
system the collection of 8 frames would imply in a delay of 267 ms. However,
for systems that collect images from multiples cameras, a composition (like a
multicamera “mosaic”) could be a solution to assemble a batch with minimal
delay.

Table 4.5: Influence of batch size on inference time for YOLO license plate
model

Inference time (ms)
Batch size PyTorch TorchScript TensorRT

1 7.0 5.51 1.47
2 0.9
4 0.7
8 1.96 1.2 0.6
16 0.5
32 0.5

We conducted a similar study using the Intel Dev Cloud Beta. The results
of inference time per image are presented in Fig. 4.9 for 8 cores of the Intel
8480 CPU and batch sizes 1, 2, 4, 8, and 16. In the CPU we do not note any
speedup, even when applying the IPEX plus tracing optimization. The time
even increases for batch size 16, so there is no advantage here.

For the Intel Max 1100 GPU (Fig. 4.10), there is some improvement,

42

1 2 4 8 16
Batch size

0

5

10

15

20

25

30

In
fe

re
nc

e
tim

e
pe

r i
m

ag
e

(m
s)

Inf. time for different batch sizes using Intel 8480 CPU
Own Yolo
Plus tracing

Figure 4.9: Inference time per image for different batch sizes using Intel Xeon
8480+ CPU.

43

1 2 4 8 16
Batch size

0

2

4

6

8

10

12

14

16

In
fe

re
nc

e
tim

e
pe

r i
m

ag
e

(m
s)

Inf. time for different batch sizes using Intel GPU
Own Yolo
Plus tracing

Figure 4.10: Inference time per image for different batch sizes using Intel
Max 1100 GPU.

however not scaling as for the NVIDIA A100. Maybe these mixed results
for the Intel Dev Cloud Beta can be attributed to more users accessing the
system. We noticed that even when requesting a full node for the experiments
sometimes the access to resources were shared. The occupancy of this cluster
increased significantly during the months it was freely available.

44

Chapter 5

Energy consumption

In the last few years, for reasons of environmental awareness and cost reduc-
tion, benchmarking the energy consumption of machine learning applications
has become fundamental [45].

The approaches to measure energy consumption can be divided into three
classes [46]:

• physical measurements with external power meters

• on-chip power sensors

• predictive models

External measurement is the most reliable but it was not available for
this work. Depending on the system, it has no fine grain resolution, i.e., one
can not obtain individual measurements from the CPU, memory or GPU.
Predictive models suffer with insufficient training data and usually do not
present adequate precision [46]. The only option available in this work was
to read on-chip power sensors, when system policy allowed standard users to
access them.

On Intel machines, CPU energy readings are available in the Running
Average Power Limit (RAPL) registers. They can be read directly, for
instance, with cat "/sys/class/powercap/intel-rapl:0/energy_uj" or
through perf. However, as mentioned, it depends on the access policy. These
measurements were considered very unreliable in the past, although newer
CPU architectures seem to provide trusty data. Even without full agreement
about the reliability, it is the most common way to measure energy in the
literature [45]–[48].

For the GPUs, each vendor makes available one tool. NVIDIA software
framework includes a tool called nvidia-smi. A Python binding to the

45

NVIDIA Management Library is available through the pynvml package. Intel
has a similar tool named xpu-smi, although a Python binding is not of our
knowledge.

Still in Python, a package called codecarbon [49] aggregates data from
CPUs and NVIDIA GPUs in a very convenient way, enabling the measure-
ment for a whole script or even a single line of code. For CPUs, we verified
the values agree with those obtained with perf. When available (in our case,
at DaVinci-1), we report measurements from this tool. For the Intel GPU,
we call the xpu-smi tool inside Python using psutil.Popen.

We were not able to obtain energy measurements for the Intel CPUs at
the Intel Dev Cloud Beta because the system policy restricted access to the
RAPL registers. For the AMD CPUs at DaVinci-1, values were only an
estimate based on the CPU model (assumes constant consumption mode),
and since they are not reliable we do not present here.

5.1 Training

Using the tool codecarbon, we obtained the energy consumption for part
of the training of the YOLOv5 license plate model at DaVinci-1. Energy
and training times are shown for 1, 2, and 4 GPUs and for 48 cores of the
Intel Xeon 8260 CPU in Table 5.1. It is clear that GPU training is much
more advantageous regarding time and energy efficiency, consuming around
8 times less energy than using the CPUs.

Table 5.1: Energy consumption and training time using different devices

Hardware Energy Energy Time Total
GPU (Wh) CPU (Wh) 3 epochs time (s)

1 GPU 5.707 1.968 50 78
2 GPUs 5.986 1.782 29 71
4 GPUs 5.258 1.996 22 79

48 CPU cores 0 60.924 814 848

Note that the energy measurement is for the whole process, it means it is
not only the epoch training, but loading the base model, checking and aug-
menting images, and other initial operations. The tool we had available for
measurement also computes the energy for the idle GPUs. For this training
that is relatively small for a GPU (17 s for one epoch), it means that using
more GPUs seems not worth because the total time for training is almost
the same as using only one.

46

Since this training was relatively short, we did another experiment using a
larger model and larger training set. For the YOLO5l model, COCO dataset
(118 thousand images), 4 GPUs, batch size 64, one epoch took 6 minutes
to complete, similar to the value (5min57s) reported by [50]. The consumed
energy by the GPUs was 115 Wh and 19 Wh for the CPU.

Returning to the model YOLOv5s but with the larger COCO dataset
and 4 GPUs, 1 epoch completed in 3min50s and the consumed energy was
62 Wh for GPUs and 15 Wh for CPUs. If we train the same model using
one full node with the Intel Xeon Platinum 8260 CPUs, 10% of the epoch
took 95 Wh of energy and 22 minutes. We interrupted the training at that
point. Extrapolating that the total energy for one epoch would be 950 Wh
and it would take 220 minutes, we can say the energy consumption is 12
times higher and the time spent 57 times longer using this CPUs compared
to the GPUs.

5.2 Inference

With the same tool codecarbon we conducted experiments regarding the
energy consumption of inference. Since the resolution of the tool is not
precise for measuring the inference of only one image, we use the full test
dataset with 2065 images. Table 5.2 reports the energy measurements at
DaVinci-1 using the NVIDIA A100 GPU and Intel 8260 CPUs for the 2065
images with batch size equal to one. As a reference, it is also included the
average inference time per image (discussed in Chapter 4) in the last column,
considering batch size equal to one.

The baseline PyTorch inference, running in only one core, consumes more
than 7 Wh for the whole test set. Results show the best energy performance
is obtained using eight cores or occupying the full socket (24 cores), which
has an advantage in inference time. The rows marked with an asterisk were
obtained with OMP_NUM_THREADS=48 running on 24 physical cores. This is not
advantageous for PyTorch inference, but presents the best result for Open-
VINO. Regarding it, one can note time and energy consumption decreasing
as the number of cores increases from one to 24. For OpenVINO, saturat-
ing the CPU is desirable, as the best energy and time marks achieve 2.219
Wh and 9.8 ms, respectively. For the GPU, NVIDIA TensorRT optimizes
the model and obtains 1.5 ms of inference time and a combined energy con-
sumption of 2.778 Wh. This last result is very interesting because if time is
not the main issue in the application, it is beneficial to use OpenVINO in
the CPU for inference, since the energy consumption has a reduction of 20%
when compared with the GPU.

47

Table 5.2: Energy consumption and inference time for different engines

Runtime/ Energy Energy Inf. time
Threads GPU (Wh) CPU (Wh) (avg.) (ms)

PyTorch CPU 1 0 7.339 111.5
PyTorch CPU 8 0 3.413 28.2
PyTorch CPU 24 0 3.641 25.0
PyTorch CPU 48* 0 6.465 69.7
PyTorch CPU 48 0 5.921 33.1
OpenVINO CPU 1 0 6.691 95.9
OpenVINO CPU 24 0 2.806 14.2
OpenVINO CPU 48* 0 2.219 9.8
OpenVINO CPU 48 0 4.136 14.2
PyTorch GPU 1 2.597 1.091 7.4
TensorRT 1 1.961 0.817 1.5

48

Chapter 6

Conclusions

This work presented a performance evaluation of a object detection model
based on YOLOv5. We conducted timing and energy measurements for
model training and inference. We presented results for Intel and AMD CPUs,
and Intel and NVIDIA GPUs. Different software stacks were evaluated, con-
sidering PyTorch as the baseline.

We defined vehicle license plates as the targets to detect in images. We
selected and filtered an open image dataset, obtaining images and labels
for training, validation and test. Then, we trained a model from YOLOv5
weights, achieving a average precision of 96% in the validation set and 92%
for the test dataset.

If we consider the speed, among the systems we tested, NVIDIA A100
GPU is the best one, achieving an inference time per image of 1.5 ms for
batch size 1 when optimized by TensorRT. It is also a good option regarding
energy. With Intel Max 1100 GPU, the inference time we obtained was 2.7
ms after optimization and tracing. A PyTorch model without any additional
optimization in the same NVIDIA GPU needs 7.4 ms.

For the Intel 8480+ CPU, using Intel Optimization for PyTorch plus
tracing the inference time is of 7.1 ms. Good results can be also obtained
with Intel OpenVINO, of 9.8 ms for an Intel 8260 CPU. Although not the
fastest solution, OpenVINO on the CPU presented the best energy efficiency.

When using larger batch sizes, inference time can be significantly reduced.
For TensorRT and batch size 8, it drops to 0.6 ms.

Training the model using custom data with pretrained weights as a start-
ing point is fast in a GPU. It took 17 s per epoch and 25 epochs are enough
to achieve the average precision of 92%. If one has access to GPUs, model
training using CPUs is not worth. From our results for a larger training
dataset (COCO) and the YOLOv5s model, the energy consumption is 12
times higher and the time spent 57 times longer.

49

Some suggestions for future work include the evaluation of other computer
architectures, like RISC-V and ARM, for data centers and embedded appli-
cations, as well as other inference engines (Google’s BigQuery ML or Apple’s
Core ML, for instance). Another interesting research regards optimizing the
model architecture, simplifying it, experimenting different quantization levels
or applying neural architecture search.

50

References

[1] L. Letaw, Handbook of Software Engineering Methods, https://open.
oregonstate.education/setextbook/, [Accessed 10-10-2023], 2023.

[2] Jose Mesa, https://www.flickr.com/people/liferfe/, [Accessed
10-10-2023].

[3] J. Quental, Lear’s Macaw Anodorhynchus leari (cropped).jpg, https://
commons.wikimedia.org/wiki/File:Lear’s_Macaw_Anodorhynchus_

leari_(cropped).jpg, [Accessed 16-10-2023].

[4] N. Silberman, D. Sontag, and R. Fergus, “Instance segmentation of
indoor scenes using a coverage loss,” in Computer Vision – ECCV
2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., Cham:
Springer International Publishing, 2014, pp. 616–631, isbn: 978-3-319-
10590-1. doi: 10.1007/978-3-319-10590-1_40.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural In-
formation Processing Systems, F. Pereira, C. Burges, L. Bottou, and K.
Weinberger, Eds., vol. 25, Curran Associates, Inc., 2012, pp. 1097–1105.
[Online]. Available: https://dl.acm.org/doi/10.5555/2999134.
2999257.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hier-
archies for accurate object detection and semantic segmentation, 2014.
arXiv: 1311.2524 [cs.CV].

[7] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, Object detection in 20
years: A survey, 2023. arXiv: 1905.05055 [cs.CV].

[8] V. Lakshmanan, M. Görner, and R. Gillard, Practical Machine Learn-
ing for Computer Vision. O’Reilly Media, 2021, isbn: 9781098102333.

[9] R. Padilla, W. L. Passos, T. L. B. Dias, S. L. Netto, and E. A. B.
da Silva, “A comparative analysis of object detection metrics with a
companion open-source toolkit,” Electronics, vol. 10, no. 3, 2021, issn:
2079-9292. doi: 10.3390/electronics10030279.

51

https://open.oregonstate.education/setextbook/
https://open.oregonstate.education/setextbook/
https://www.flickr.com/people/liferfe/
https://commons.wikimedia.org/wiki/File:Lear's_Macaw_Anodorhynchus_leari_(cropped).jpg
https://commons.wikimedia.org/wiki/File:Lear's_Macaw_Anodorhynchus_leari_(cropped).jpg
https://commons.wikimedia.org/wiki/File:Lear's_Macaw_Anodorhynchus_leari_(cropped).jpg
https://doi.org/10.1007/978-3-319-10590-1_40
https://dl.acm.org/doi/10.5555/2999134.2999257
https://dl.acm.org/doi/10.5555/2999134.2999257
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1905.05055
https://doi.org/10.3390/electronics10030279

[10] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016, IEEE Computer Society, 2016,
pp. 779–788. doi: 10.1109/CVPR.2016.91.

[11] J. Terven and D. Cordova-Esparza, A comprehensive review of YOLO:
From YOLOv1 and beyond, 2023. arXiv: 2304.00501 [cs.CV].

[12] GitHub - ultralytics/yolov5 at v7.0, https://github.com/ultralytics/
yolov5/tree/v7.0, [Accessed 19-09-2023].

[13] Ultralytics/yolov5 at v7.0 pretrained checkpoints, https://github.
com/ultralytics/yolov5/tree/v7.0#pretrained-checkpoints,
[Accessed 16-10-2023].

[14] D. Konyrev, The history of YOLO: The origin of the YOLOv1 algo-
rithm, https://www.superannotate.com/blog/yolov1-algorithm,
[Accessed 16-10-2023].

[15] S.-H. Tsang, Review: YOLOv1, https://towardsdatascience.com/
yolov1-you-only-look-once-object-detection-e1f3ffec8a89,
[Accessed 16-10-2023], 2018.

[16] A. Mondin, YOLOV5(m): Implementation From Scratch With Py-
Torch, https://pub.towardsai.net/yolov5-m-implementation-
from-scratch-with-pytorch-c8f84a66c98b, [Accessed 16-10-2023],
2023.

[17] YOLOv5 (6.0/6.1) brief summary - Issue #6998, https://github.
com/ultralytics/yolov5/issues/6998, [Accessed 16-10-2023].

[18] C.-Y. Wang, H.-Y. M. Liao, I.-H. Yeh, Y.-H. Wu, P.-Y. Chen, and J.-W.
Hsieh, CSPNet: A new backbone that can enhance learning capability
of CNN, 2019. arXiv: 1911.11929 [cs.CV].

[19] Car License Plate Detection, https://www.kaggle.com/datasets/
andrewmvd/car-plate-detection, [Accessed 11-09-2023].

[20] License Plate Characters - Detection OCR, https://www.kaggle.
com/datasets/francescopettini/license- plate- characters-

detection-ocr, [Accessed 11-09-2023].

[21] R. Laroca, E. Severo, L. A. Zanlorensi, et al., “A robust real-time au-
tomatic license plate recognition based on the YOLO detector,” in In-
ternational Joint Conference on Neural Networks (IJCNN), Jul. 2018,
pp. 1–10. doi: 10.1109/IJCNN.2018.8489629.

52

https://doi.org/10.1109/CVPR.2016.91
https://arxiv.org/abs/2304.00501
https://github.com/ultralytics/yolov5/tree/v7.0
https://github.com/ultralytics/yolov5/tree/v7.0
https://github.com/ultralytics/yolov5/tree/v7.0#pretrained-checkpoints
https://github.com/ultralytics/yolov5/tree/v7.0#pretrained-checkpoints
https://www.superannotate.com/blog/yolov1-algorithm
https://towardsdatascience.com/yolov1-you-only-look-once-object-detection-e1f3ffec8a89
https://towardsdatascience.com/yolov1-you-only-look-once-object-detection-e1f3ffec8a89
https://pub.towardsai.net/yolov5-m-implementation-from-scratch-with-pytorch-c8f84a66c98b
https://pub.towardsai.net/yolov5-m-implementation-from-scratch-with-pytorch-c8f84a66c98b
https://github.com/ultralytics/yolov5/issues/6998
https://github.com/ultralytics/yolov5/issues/6998
https://arxiv.org/abs/1911.11929
https://www.kaggle.com/datasets/andrewmvd/car-plate-detection
https://www.kaggle.com/datasets/andrewmvd/car-plate-detection
https://www.kaggle.com/datasets/francescopettini/license-plate-characters-detection-ocr
https://www.kaggle.com/datasets/francescopettini/license-plate-characters-detection-ocr
https://www.kaggle.com/datasets/francescopettini/license-plate-characters-detection-ocr
https://doi.org/10.1109/IJCNN.2018.8489629

[22] R. Laroca, L. A. Zanlorensi, G. R. Gonçalves, E. Todt, W. R. Schwartz,
and D. Menotti, “An efficient and layout-independent automatic license
plate recognition system based on the YOLO detector,” IET Intelligent
Transport Systems, vol. 15, no. 4, pp. 483–503, 2021, issn: 1751-956X.
doi: 10.1049/itr2.12030.

[23] R. Laroca, V. Estevam, A. S. Britto, R. Minetto, and D. Menotti,
“Do we train on test data? The impact of near-duplicates on license
plate recognition,” in 2023 International Joint Conference on Neural
Networks (IJCNN), IEEE, Jun. 2023. doi: 10.1109/ijcnn54540.
2023.10191584.

[24] Truth 4 all — N05, https://www.flickr.com/people/45639276@
N05/, [Accessed 14-09-2023].

[25] A. Kuznetsova, H. Rom, N. Alldrin, et al., “The Open Images Dataset
V4: Unified image classification, object detection, and visual relation-
ship detection at scale,” International Journal of Computer Vision,
vol. 128, pp. 1956–1981, 2020. doi: 10.1007/s11263-020-01316-z.

[26] B. E. Moore and J. J. Corso, GitHub - voxel51/fiftyone: The open-
source tool for building high-quality datasets and computer vision mod-
els, https://github.com/voxel51/fiftyone, [Accessed 12-09-2023],
2020.

[27] Yolov5/train.py at v7.0, https://github.com/ultralytics/yolov5/
blob/v7.0/train.py, [Accessed 14-09-2023].

[28] DaVinci-1 - TOP500, https://www.top500.org/system/179877/,
[Accessed 18-10-2023].

[29] Intel® Xeon® Platinum 8260 Processor (35.75M Cache, 2.40 GHz)
- Product Specifications, https://www.intel.com/content/www/us/
en/products/sku/192474/intel-xeon-platinum-8260-processor-

35-75m-cache-2-40-ghz/specifications.html, [Accessed 18-10-
2023].

[30] AMD EPYC 7402 - Product Specifications, https://www.amd.com/
en/product/8816, [Accessed 18-10-2023].

[31] NVIDIA A100 Tensor Core GPU, https://www.nvidia.com/content/
dam/en- zz/Solutions/Data- Center/a100/pdf/nvidia- a100-

datasheet.pdf, [Accessed 18-10-2023].

[32] Intel Developer Cloud Beta, https://scheduler.cloud.intel.com,
[Accessed 28-09-2023].

53

https://doi.org/10.1049/itr2.12030
https://doi.org/10.1109/ijcnn54540.2023.10191584
https://doi.org/10.1109/ijcnn54540.2023.10191584
https://www.flickr.com/people/45639276@N05/
https://www.flickr.com/people/45639276@N05/
https://doi.org/10.1007/s11263-020-01316-z
https://github.com/voxel51/fiftyone
https://github.com/ultralytics/yolov5/blob/v7.0/train.py
https://github.com/ultralytics/yolov5/blob/v7.0/train.py
https://www.top500.org/system/179877/
https://www.intel.com/content/www/us/en/products/sku/192474/intel-xeon-platinum-8260-processor-35-75m-cache-2-40-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/192474/intel-xeon-platinum-8260-processor-35-75m-cache-2-40-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/192474/intel-xeon-platinum-8260-processor-35-75m-cache-2-40-ghz/specifications.html
https://www.amd.com/en/product/8816
https://www.amd.com/en/product/8816
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://scheduler.cloud.intel.com

[33] Intel® Xeon® Platinum 8480+ Processor (105M Cache, 2.00 GHz) -
Product Specifications, https://www.intel.com/content/www/us/
en/products/sku/231746/intel-xeon-platinum-8480-processor-

105m - cache - 2 - 00 - ghz / specifications . html, [Accessed 18-10-
2023].

[34] Intel® Data Center GPU Max 1100 - Product Specifications, https://
www.intel.com/content/www/us/en/products/sku/232876/intel-

data-center-gpu-max-1100/specifications.html, [Accessed 18-
10-2023].

[35] A. Paszke, S. Gross, F. Massa, et al., “PyTorch: An imperative style,
high-performance deep learning library,” in Advances in Neural Infor-
mation Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-

library.pdf.

[36] A. Geifman, The Correct Way to Measure Inference Time of Deep
Neural Networks, https://deci.ai/blog/measure- inference-
time-deep-neural-networks/, [Accessed 27-09-2023].

[37] L. Atkins and D. MacLeod, How to Accurately Time CUDA Kernels in
Pytorch, https://www.speechmatics.com/company/articles-and-
news/timing-operations-in-pytorch, [Accessed 27-09-2023], 2023.

[38] NVIDIA TensorRT, https://developer.nvidia.com/tensorrt,
[Accessed 02-10-2023].

[39] Intel Extension for PyTorch Documentation, https://intel.github.
io/intel-extension-for-pytorch, [Accessed 27-09-2023].

[40] Match Every Application to Its Optimal Architecture with XPU, https:
/ / www . intel . com / content / www / us / en / architecture - and -

technology/xpu.html, [Accessed 18-10-2023].

[41] Optimizing Production PyTorch Models’ Performance with Graph Trans-
formations, https://pytorch.org/blog/optimizing-production-
pytorch-performance-with-graph-transformations/, [Accessed
27-09-2023].

[42] W. Niu, J. Guan, Y. Wang, G. Agrawal, and B. Ren, “DNNFusion:
Accelerating deep neural networks execution with advanced operator
fusion,” CoRR, vol. abs/2108.13342, 2021. arXiv: 2108.13342.

[43] OpenVINO 2023.1 documentation, https : / / docs . openvino . ai /

2023.1/home.html, [Accessed 02-10-2023].

54

https://www.intel.com/content/www/us/en/products/sku/231746/intel-xeon-platinum-8480-processor-105m-cache-2-00-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/231746/intel-xeon-platinum-8480-processor-105m-cache-2-00-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/231746/intel-xeon-platinum-8480-processor-105m-cache-2-00-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html
https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html
https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://deci.ai/blog/measure-inference-time-deep-neural-networks/
https://deci.ai/blog/measure-inference-time-deep-neural-networks/
https://www.speechmatics.com/company/articles-and-news/timing-operations-in-pytorch
https://www.speechmatics.com/company/articles-and-news/timing-operations-in-pytorch
https://developer.nvidia.com/tensorrt
https://intel.github.io/intel-extension-for-pytorch
https://intel.github.io/intel-extension-for-pytorch
https://www.intel.com/content/www/us/en/architecture-and-technology/xpu.html
https://www.intel.com/content/www/us/en/architecture-and-technology/xpu.html
https://www.intel.com/content/www/us/en/architecture-and-technology/xpu.html
https://pytorch.org/blog/optimizing-production-pytorch-performance-with-graph-transformations/
https://pytorch.org/blog/optimizing-production-pytorch-performance-with-graph-transformations/
https://arxiv.org/abs/2108.13342
https://docs.openvino.ai/2023.1/home.html
https://docs.openvino.ai/2023.1/home.html

[44] G. Jocher, YOLOv5 Study: Batch-Size vs Speed, https://community.
ultralytics.com/t/yolov5- study- batch- size- vs- speed/31,
[Accessed 16-10-2023], 2022.

[45] Y. Sun, Z. Ou, J. Chen, et al., “Evaluating performance, power and
energy of deep neural networks on CPUs and GPUs,” in Theoreti-
cal Computer Science, Z. Cai, J. Li, and J. Zhang, Eds., Singapore:
Springer Singapore, 2021, pp. 196–221, isbn: 978-981-16-7443-3. doi:
10.1007/978-981-16-7443-3_12.

[46] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, “A
comparative study of methods for measurement of energy of comput-
ing,” Energies, vol. 12, no. 11, 2019, issn: 1996-1073. doi: 10.3390/
en12112204.

[47] S. Desrochers, C. Paradis, and V. M. Weaver, “A validation of DRAM
RAPL power measurements,” in Proceedings of the Second Interna-
tional Symposium on Memory Systems, ser. MEMSYS ’16, Alexandria,
VA, USA: Association for Computing Machinery, 2016, pp. 455–470,
isbn: 9781450343053. doi: 10.1145/2989081.2989088.

[48] A. Haidar, H. Jagode, P. Vaccaro, A. YarKhan, S. Tomov, and J.
Dongarra, “Investigating power capping toward energy-efficient scien-
tific applications,” Concurrency and Computation: Practice and Expe-
rience, vol. 31, no. 6, e4485, 2019. doi: 10.1002/cpe.4485.

[49] GitHub - mlco2/codecarbon: Track emissions from Compute and rec-
ommend ways to reduce their impact on the environment, https://
github.com/mlco2/codecarbon, [Accessed 19-10-2023].

[50] Ultralytics, Multi-GPU Training, https://docs.ultralytics.com/
yolov5/tutorials/multi_gpu_training/#results, [Accessed 19-
10-2023].

55

https://community.ultralytics.com/t/yolov5-study-batch-size-vs-speed/31
https://community.ultralytics.com/t/yolov5-study-batch-size-vs-speed/31
https://doi.org/10.1007/978-981-16-7443-3_12
https://doi.org/10.3390/en12112204
https://doi.org/10.3390/en12112204
https://doi.org/10.1145/2989081.2989088
https://doi.org/10.1002/cpe.4485
https://github.com/mlco2/codecarbon
https://github.com/mlco2/codecarbon
https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/#results
https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/#results

	Introduction
	Object Detection
	Performance metrics
	YOLO

	Dataset
	Training

	Performance evaluation
	Warmup
	Baseline
	TensorRT
	Intel optimization
	Intel Max 1100 GPU
	OpenVINO
	Image size
	Batch size

	Energy consumption
	Training
	Inference

	Conclusions
	References

