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1 Introduction and summary

The AdS/CFT correspondence has allowed us to understand the Bekenstein-Hawking entropy
for a large class of supersymmetric black holes as a semiclassical limit of the Boltzmann entropy
of supersymmetric gauge theories [1–29]. Subleading corrections beyond the semiclassical
result, which could be perturbative or logarithmic in the semi-classical expansion, and which
could come from α′ corrections, as well as from other quantum effects, have been also
computed and exactly matched across both sides of the duality, see for example [30–41].
Despite these remarkable quantitatively precise advances, not much is understood yet about
more drastic quantum gravity processes such as perturbing black holes with D-branes.

A pioneering attempt in this direction has been recently put forward in the context
of AdS5/CFT4 in [42]. In this reference the authors studied the effect of perturbing a
supersymmetric black hole in AdS5 [43–48] with a D3-brane1 extending across the time,

1There are two non-trivial properties that need a closer analysis regarding how to preserve supersymmetry
when inserting the D3-brane: the first is to check that it is possible for the D3-brane to be supersymmetric
and the second is whether or not this supersymmetry is compatible with the one preserved by the black hole.
Only a necessary condition called κ-projection condition, for this D3 brane configuration to be supersymmetric
has been verified in [42]. A rigorous derivation of the Killing spinors in the background in the presence of
the probe D3 brane is certainly needed but this lies beyond the scope of the present paper and thus we will
assume supersymmetry is preserved.
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radial, one compact direction in AdS5 and one compact direction in the internal space S5. In
the dual gauge theory, which is the four-dimensional SU(N) N = 4 SYM, inserting this probe
D3-brane corresponds to inserting a surface operator [49], compatible with the supercharges
used to construct the 4d superconformal index.

In the probe approximation, the authors of [42] found that the free energy of the black
hole/D3-brane system reduces to the sum of the free energy of the unperturbed black hole
solution and the Dirac-Born-Infeld on-shell action of the D3-brane in the geometry of the
unperturbed black hole solution, respectively. It may seem natural to assume that in the
very same probe approximation the entropy of the total system reduces to the sum of the
entropies of the two unperturbed components. Indeed, if one commits to this intuition then
the charges of the D3-brane are fixed in terms of the charges of the embedding black hole
solution. Unfortunately, the charges and entropy of the D3-brane fixed by this procedure
turn out to be complex.2 As also stated in [42], this result is intriguing, because the dual
microstates that one counts in the field theory do indeed have real charges, and certainly
their Boltzmann entropy is not complex.

This naive contradiction strongly suggests that another procedure must be used to define
the thermodynamic properties of the combined system. The goal of this paper is to find
such a procedure. Indeed, we propose that the entropy of the system black hole/D3-brane
is recovered by means of the natural holographic translation of the method used to count
states in the holographic dual 4d-2d field theory system: the Laplace transform of the defect
superconformal index.3

For the case of the superconformal index without the insertion of the surface defect, the
Laplace transform — in the leading order in the semiclassical large charge approximation —
picks up two leading complex conjugated saddle points whose contributions add up to give a
real entropy [18, 50, 51]. Similarly, as we show here, we find this also to be the case when
the defect is introduced in the system. In the gravitational picture, these leading saddle
points correspond to two complex geometries that serve as saddle points of the Euclidean
gravitational path integral. Borrowing the field-theory procedure to the holographic dual
setup implicitly defines how to compute the corrections to the entropy that the D3-brane
induces when probing the black hole.

Using a Cardy-like expansion, we depart from the leading Cardy-like limit studied in [42],
thus we confirm their results for the free energy of the 4d-2d field theory, and extend them,
both to finite N and beyond the probe approximation. We find that at leading order in the
Cardy-like expansion, inserting the defect does not change the shape of the saddle point
governing the growth of the unperturbed 4d superconformal index. Surprisingly, this tells
us that the naive probe approximation is sufficiently precise to exactly describe the 4d-2d
system at large charges. In the string-theory side of the duality, this result predicts a fully
backreacted answer for the entropy of the perturbed black hole at leading order in the
Cardy-like expansion. It would be very interesting to understand whether the 1

N corrections
2In contradistinction to the unperturbed system, in the presence of the D3-brane there is no non-linear

constraint among real charges for which the extremal value of the corresponding entropy function becomes
real and thus identifiable with the asymptotic value of a Boltzmann entropy.

3This Laplace transforms only depends on the charges of the combined system and not on the charges of
its individual components.
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induced by the presence of the D3-brane can be understood, geometrically, as a change in
the area of the horizon. In order to answer this question we would need to understand how
the D3-brane backreacts the geometry in the bulk. We leave that problem for future work.

The paper is organized as follows. Section 2 summarizes the supergravity theory, and
other useful background information. We motivate and present our prescription to study
the thermodynamics of the combined black hole/D3-brane system and perform the Laplace
transform to extract the microcanonical entropy. In section 3 we study the field theory dual
description and we revisit the 4d computation in the absence of defect and recall how to
evaluate the asymptotic growth of the index in that case. In section 4 we compute the defect
index. We analyze the 2d index of the surface defect at large charges by implementing a
systematic Cardy-like expansion. In section 5 we conclude with brief remarks and questions for
the future. Appendix A reviews the thermodynamic procedure used in [42] while appendix B
summarizes useful mathematical identities.

2 The gravity theory

The probe D3-brane takes a certain embedding profile in the ten-dimensional supergravity
theory and requires us to include the DBI action to the theory. We describe this in detail in
this section. Moreover, we consider the five-dimensional black hole of [44] from the consistent
truncation on S5 of the supergravity theory. The bosonic sector contains the graviton, three
gauge fields and two scalars. We consider the additional truncation to minimal gauged
supergravity where the electric charges are set to be equal, thus leading to a theory where
no scalars are present. We then discuss the thermodynamic properties of the system and
its supersymmetric limit. We carry on to study the effects of adding the probe D3-brane
and the thermodynamics of the combined system.

2.1 The black hole solution

We consider five-dimensional minimal gauged supergravity whose action takes the form

S = 1
16πG5

∫ [
(R+ 12g2) ⋆ 1− 2

3g2F ∧ ⋆F + 8
27g3F ∧ F ∧A

]
, (2.1)

where F = dA and g is the inverse length of AdS. The five-dimensional coordinates describing
the solution are {t, r, θ, ϕ, ψ} where 0 ≤ ϕ, ψ ≤ 2π and 0 ≤ θ ≤ π

2 . The equations of motion
can be derived from (2.1)

0 = Rµν −
1
2gµνR− 6g2gµν −

4
3g2

(1
2F

2
µν −

1
8gµνF

2
)
, 0 = d ⋆ F + 2

3gF ∧ F. (2.2)

We review the known nonextremal nonsupersymmetric black hole solution with one electric
charge and two rotations as was studied in [44]. The solution of the metric and gauge
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field are given by

ds2
AdS5 = −∆θ

[(
1 + g2r2) ρ2dt+ 2qν

]
dt

ΞaΞbρ2 + 2qνω
ρ2 + f

ρ4

(∆θdt

ΞaΞb
− ω

)2
+ ρ2dr2

∆r
+ ρ2dθ2

∆θ

+ r2 + a2

Ξa
sin2 θdϕ2 + r2 + b2

Ξb
cos2 θdψ2, (2.3)

A = 3q
2ρ2

(∆θdt

ΞaΞb
− ω

)
+ α5dt,

where we have added a pure gauge term α5dt with α5 being a constant. The remaining
functions in the metric and 1-form are

ν= bsin2 θdϕ+acos2 θdψ, ∆r = g2
(
r2+a2

)(
r2+b2

)(
1+ 1

g2r2

)
+ q2+2abq

r2 −2m,

ω= asin2 θ
dϕ

Ξa
+bcos2 θ

dψ

Ξb
, ∆θ =1−a2g2 cos2 θ−b2g2 sin2 θ, (2.4)

ρ2 = r2+a2 cos2 θ+b2 sin2 θ, Ξa=1−a2g2,

f =2mρ2−q2+2abqg2ρ2, Ξb=1−b2g2.

For the general non-extremal solution with no supersymmetry, there are four independent
parameters that characterize the black hole

{a, b,m, q}. (2.5)

Moreover, we may sometimes find it convenient to swap one of the parameters, namely, q
with the outer horizon radius r+, i.e.,

q = −ab± r+

√
−a2 (b2g2 + g2r2

+ + 1
)
− b2 (g2r2

+ + 1
)
− g2r4

+ + 2m− r2
+. (2.6)

The electric charges and angular momentum can be computed via the Komar integrals

QBH = 1
16πG5

∫
S3

( 4
3g2

)
⋆ F − 8

9g3F ∧A = 1
G5

πq

2gΞaΞb
, (2.7)

J1,BH = 1
16πG5

∫
S3
⋆dξϕ = 1

G5

π
[
2am+ qb

(
1 + a2g2)]

4Ξ2
aΞb

, (2.8)

J2,BH = 1
16πG5

∫
S3
⋆dξψ = 1

G5

π
[
2bm+ qa

(
1 + b2g2)]

4Ξ2
bΞa

, (2.9)

where ξϕ and ξψ are dual to Killing vector −∂ϕ and −∂ψ respectively such that

ξϕ = −gµϕdxµ, ξψ = −gµψdxµ. (2.10)

The charges are evaluated at the asymptotic boundary and for this reason, the Chern Simons
term in the integral for the electric charge does not contribute to the charge. In fact there
are different notions of charge and we refer the reader to [52] for more details. The energy
can be found from the AMD formalism

EBH = 1
G5

mπ (2Ξa + 2Ξb − ΞaΞb) + 2πqabg2 (Ξa + Ξb)
4Ξ2

aΞ2
b

. (2.11)
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The Hawking temperature is derived by requiring appropriate periodic identifications in
Euclidean time, which leads us to

TBH = β−1
BH = r4

+
[(
1 + g2 (2r2

+ + a2 + b2)]− (ab+ q)2

2πr+
[(
r2

+ + a2) (r2
+ + b2)+ abq

] . (2.12)

The angular velocities Ω1 and Ω2 are found to be

Ω1,BH = a
(
r2

+ + b2) (1 + g2r2
+
)
+ bq(

r2
+ + a2) (r2

+ + b2)+ abq
, Ω2,BH = b

(
r2

+ + a2) (1 + g2r2
+
)
+ aq(

r2
+ + a2) (r2

+ + b2)+ abq
. (2.13)

We can now define the null Killing vector field

χµ∂µ = ∂t +Ω1∂ϕ +Ω2∂ψ, (2.14)

and the electrostatic potential is

ΦBH = χµAµ|r→r+
− χµAµ|r→∞ = 3gqr2

+
2
((
r2

+ + a2) (r2
+ + b2)+ abq

) . (2.15)

The entropy can be computed via the area of the horizon

SBH = 1
G5

π2 [(r2
+ + a2) (r2

+ + b2)+ abq
]

2ΞaΞbr+
. (2.16)

Once we have computed these thermodynamic quantities, we may deduce the on-shell action
from the quantum statistical relation

IBH = βBHEBH − SBH − βBHΩ1,BHJ1,BH − βBHΩ2,BHJ2,BH − βBHΦBHQBH

= πβ

4G5ΞaΞb

(
m− g2

(
a2 + r2

+

) (
b2 + r2

+

)
−

q2r2
+(

a2 + r2
+
) (
b2 + r2

+
)
+ abq

)
.

(2.17)

2.2 The supersymmetric limit

We are interested in solutions that admit a Killing spinor, i.e., preserve N = 2 supersymmetry.
The BPS bound

EBH = gJ1,BH + gJ2,BH + 3
2gQBH , (2.18)

is saturated for

q = m

1 + (a+ b)g . (2.19)

This can be found by imposing (2.7), (2.8), (2.9) and (2.11) into (2.18). Keeping in mind (2.6),
we find that the parameter q simplifies to the following

q = −ab+ agr2
+ + bgr2

+ + r2
+ ± ir+

(
abg + a+ b− gr2

+

)
= (a− n0ir+)(b− n0ir+)(−1 + n0igr+).

(2.20)

From now on, we denote n0 = ±1 for the upper/lower sign in (2.20) respectively. This choice
of sign can be interpreted as a choice in one of two branches that dominate the path integral
and denote a growth of states. We shall come back to this point in great detail in section 2.4.
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Once (2.18) is imposed, we find that if we want to preserve the reality of the parameters
a, b, q and m, we find that

r⋆ =
√
a+ b+ abg

g
, (2.21)

and this is the exact value where the discriminant of r2∆r is zero, i.e., the inner and outer
horizons coincide and we land in the extremal regime of the solution. This analysis leads
us to conclude that supersymmetric Lorentzian solutions must be extremal if we preserve
the reality of roots of ∆r to avoid naked singularities.

In the supersymmetric limit, the temperature, angular velocities and electrostatic po-
tential in (2.12), (2.13) and (2.15) are complex

TBH = g
(
r2

+ − r2
⋆

) (
2r+(ag + bg + 1) + in0g

(
r2
⋆ − 3r2

+
))

2π (a− in0r+) (b− in0r+) (gr2
⋆ + in0r+)

, (2.22)

Ω1,BH = g
(
ar+ − in0r

2
⋆

)
(1− in0gr+)

(a− in0r+) (r+ − in0gr2
⋆)

, (2.23)

Ω2,BH = g
(
br+ − in0r

2
⋆

)
(1− in0gr+)

(b− in0r+) (r+ − in0gr2
⋆)

, (2.24)

ΦBH = 3gr+ (1− in0gr+)
2r+ − 2in0gr2

⋆

, (2.25)

and we can equivalently find a linear constraint among the angular velocities and electrostatic
potentials of the black hole

βBH (g +Ω1,BH +Ω2,BH − 2ΦBH) = 2πin0. (2.26)

Imposing both these conditions (2.19) and (2.21) leads to the following thermodynamic
relations

Q⋆BH = − 1
G5

π(a+ b)
2g(1− ag)(1− bg) ,

J⋆1,BH = 1
G5

π(a+ b)(2a+ b+ abg)
4g(1− ag)2(1− bg) ,

J⋆2,BH = 1
G5

π(a+ b)(a+ 2b+ abg)
4g(1− ag)(1− bg)2 ,

E⋆BH = 1
G5

π(a+ b)
4g(1− ag)2(1− bg)2 ((1− ag)(1− bg) + (1 + ag)(1 + bg)(2− ag − bg)),

S⋆BH = 1
G5

π2(a+ b)
√
a+ b+ abg

2g3/2(1− ag)(1− bg)
,

(2.27)

which are now all real-valued expressions. We shall call the BPS limit the limit of the solution
where both extremal and supersymmetric conditions are imposed and we denote this by ⋆.
The family of solutions has now been reduced to two free parameters, a and b. Revisiting
the quantum statistical relation, we introduce the variables

ω1,BH = βBH
2πi (Ω1,BH −Ω⋆1,BH), ω2,BH = βBH

2πi (Ω2,BH −Ω⋆2,BH),
3
2φBH = βBH

2πi (ΦBH −Φ⋆BH),
(2.28)

– 6 –
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with

Ω⋆1,BH = g, Ω⋆2,BH = g, Φ⋆BH = 3g
2 . (2.29)

Note that the BPS values of the chemical potentials are independent of which saddle we
consider. Imposing these new variables into (2.26), we find the new linear constraint among
the chemical potentials takes the form

ω1,BH + ω2,BH − 3φBH = n0. (2.30)

With some manipulation, as the supersymmetric limit must be taken carefully, the quantum
statistical relation can now be rewritten as a statement independent of the temperature

IBH, SUSY = −SBH − ω1,BHJ1,BH − ω2,BHJ2,BH − φBHQBH = π2i

2g3G5

φ3
BH

ω1,BHω2,BH
, (2.31)

and via the holorgraphic dictionary, we arrive at the following on-shell action

IBH, SUSY = πiN2 φ3
BH

ω1,BHω2,BH
. (2.32)

2.3 The combined system: black hole and probe D3-brane

Next we move on to introduce the methodology we follow to compute the O(N) corrections to
the entropy induced by the probe D3-brane. It is important to emphasize that even when α′

corrections are included, the entropy of the supersymmetric black hole receives corrections
of O(N0) [37–40] and so for the purposes of this paper, they can be ignored.

Assuming unequal black hole angular momentum and equal black hole electric charges, [42]
found that the supersymmetric on-shell action of the D3-brane is

ID3, SUSY = −2πiN φ̃2

ω̃1
. (2.33)

This result comes from regularizing the Dirac-Born-Infeld and the Wess-Zumino contribu-
tions [42]. The wide tilde denotes the variables in the perturbed system and not just of
the unperturbed black hole, e.g., φ̃ ̸= φBH .

To understand physically the dependence on the chemical potentials in the on-shell
action, let us review how the brane is extended into the bulk. On the AdS5 coordinates,
the coordinates θ and ψ are fixed

AdS5 : (t, r, θ = θ0, ϕ, ψ = ψ0), (2.34)

while on the S5, the D3-brane only wraps around one of the coordinates while the others
remain fixed

S5 : (ϕ1, ϕ2 = ϕ2,0, ϕ3 = ϕ3,0, θ = θ0, ψ = ψ0). (2.35)

As the angular momentum of the system comes from the symmetries associated to the Killing
vectors ∂ϕ and ∂ψ, only one is set to be free which means that the on-shell action may
only depend on the chemical potential conjugate to the angular momentum associated to

– 7 –
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∂ϕ. On the other hand, the electric charges come from the S5, in particular, from ϕi and
we expect that the on-shell action depends on the two potentials associated to the electric
charges from the fixed angles ϕ2 and ϕ3.

Although we have studied the black hole at equal electric charges and potentials, once
the D3-brane is introduced into the system, the potentials acquire a subleading correction
in the 1/N -expansion. Denoting the perturbed potentials as φ̃1, φ̃2 and φ̃3 we expect the
on-shell actions for the fully refined system to be

Ĩ = IBH, SUSY + ID3, SUSY, (2.36)

where

IBH, SUSY = πiN2 φ̃1φ̃2φ̃3
ω̃1ω̃2

, ID3, SUSY = −2πiN φ̃2φ̃3
ω̃1

. (2.37)

This expectation is reassured by microscopic computations of the fully refined 4d supercon-
formal index [3–5] and our calculation of the 2d index in section 4.1. To prove (2.37), one
would need to study the BPS limit of the fully refined AdS5 black hole solution of [47].

Since we want to ensure from a thermodynamic perspective that supersymmetry is
preserved when the D3-brane is included, we conjecture that there should be a linear
constraint of a similar form as in (2.30) among φ̃1,2,3 and ω̃1,2. This also ensures the usual
prescription, where one takes the supersymmetric limit of the quantum statistical relation
to find the form of the on-shell action, i.e.,

Ĩ = −S̃ −
2∑

k=1
ω̃kJ̃k −

3∑
I=1

φ̃IQ̃I . (2.38)

2.4 The extremization

The entropy of the total system can be found by extremizing the entropy function

S̃ = −Ĩ − 2πi
3∑
I=1

φ̃IQ̃I − 2πi
2∑

k=1
ω̃kJ̃k + 2πiΛ̃

( 3∑
I=1

φ̃I −
2∑

k=1
ω̃k + n0

)
. (2.39)

As we show in appendix A, this is in direct contrast to the method in [42], where they consider
the Legendre transform of each subsystem separately.

We impose the linear constraint among the chemical potentials via the Lagrange mul-
tiplier Λ.4

The extremization of (2.39) leads to the following constraints

0 = 2πi(Λ̃− Q̃I)− iπN2 φ̃1φ̃2φ̃3
ω̃1ω̃2φ̃I

+ 2iπN δ2
I φ̃3 + δ3

I φ̃2
ω̃1

, I = 1, 2, 3, (2.40)

0 = −2πi(Λ̃ + J̃k) + iπN2 φ̃1φ̃2φ̃3
ω̃1ω̃2ω̃k

− 2iπNδ1
k

φ̃2φ̃3
(ω̃1)2 , k = 1, 2 . (2.41)

4We note that in the gauge theory side the two choices n0 = ±1 correspond to two different saddle points
of a multi-dimensional Laplace transform used to exchange from canonical to microcanonical ensemble as well
as to impose the gauge-singlet constraint. We will further elaborate on this in section 4.
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Solving for the charges and substituting back into (2.39) we find the extremal value of the
entropy function

S̃ = 2πin0Λ̃ , (2.42)

which has the same structure as the result obtained in the absence of the probe D3-brane,
although the value of Λ̃ as a function of charges changes for the perturbed system.

In order to identify (2.42) with the entropy, which is a real-valued quantity, one may
constrain the charges of the system to the locus Im(S̃) = 0. In the absence of the D3-brane,
this is the well-known non-linear constraint among charges that happens to be equivalent
to the vanishing of the Bekenstein-Hawking temperature. In the presence of the D3-brane
and for real charges, there is no solution to the locus Im(S̃) = 0 . As explained in the
introduction, the field-theoretic analysis will provide the solution to this puzzle: at large
charges of order N2 for large N the entropy of the system approaches, asymptotically, to
the real part of entropy functional S̃ of the dominating saddle points,

Entropy ∼ Re(S̃) , (2.43)

without the need of imposing further constraints on the charge locus. This result comes
from the addition of contributions coming from two complex conjugated saddles, each of
them with its own on-shell entropy functional. This addition yields a real-valued asymptotic
entropy. Let us elaborate. With four of the extremization equations in (2.40) and (2.41),
we solve for φ̃1, φ̃2, φ̃3, and ω̃2

φ̃1 = 2ω̃1(J̃1N + Λ̃(Λ̃ +N − Q̃3) + Q̃2(Q̃3 − Λ̃))2

N2(J̃2 + Λ̃)(Q̃2 − Λ̃)(Q̃3 − Λ̃)
,

φ̃2 = − ω̃1(J̃1 + Λ̃)
Q̃2 − Λ̃

,

φ̃3 = − ω̃1(J̃1 + Λ̃)
Q̃3 − Λ̃

,

ω̃2 = ω̃1(J̃1 + Λ̃)(J̃1N + Λ̃(Λ̃ +N − Q̃3) + Q̃2(Q̃3 − Λ̃))
(J̃2 + Λ̃)(Λ̃− Q̃2)(Λ̃− Q̃3)

.

(2.44)

Note that the dependence on ω̃1 is trivial. Imposing these relations into the remaining
extremization equation in (2.40) and (2.41) leads to the following equation for Λ̃

0 = 2(Λ̃− Q̃1)(Λ̃− Q̃2)(Λ̃− Q̃3)−N2(Λ̃ + J̃1)(Λ̃ + J̃2) + 2N(Λ̃ + J̃1)(Λ̃− Q̃1). (2.45)

From (2.45), we can see that the first two terms have the same form as the cubic equation
for Λ for the black hole in absence of the D3-brane, but now the charges correspond to the
combined system. The last term in (2.45) is of order O(N) and can be treated perturbatively.
To keep track of the leading terms in N , we consider a rescaling of the form

Λ̃ = N2Λ, J̃k = N2Jk,BH+D3, Q̃I = N2QI,BH+D3. (2.46)
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To ease presentation we remove the subscript “BH+D3” in the remaining of this section.
Then, we find

0 = 2(Λ−Q1)(Λ−Q2)(Λ−Q3)− (Λ + J1)(Λ + J2) +
2
N

(Λ + J1)(Λ−Q1). (2.47)

Moreover, the first two terms, with the probe D3-brane turned off, is the usual cubic equation
for Λ that appears when only considering the black hole [3–5]. We analyze the cubic equation
in a perturbative expansion in N by first considering the general form of the cubic polynomial

P (aℓ,Λ) ≡ a0 +a1Λ+a2Λ2 +a3Λ3 = (Λ−Λ+)(Λ−Λ0)(Λ−Λ−) = 0 , a0, 1, 2, 3 ∈ R , (2.48)

where Λ± and Λ0 are the three roots of the cubic equation.
With the combined system, each coefficient in the polynomial as well as the Lagrange

multiplier may also receive corrections

aℓ = a
(0)
ℓ + 1

N
a

(1)
ℓ , Λ = Λ(0) + 1

N
δΛ(1), ℓ = 0, 1, 2, 3. (2.49)

The given values of a(0)
ℓ and a

(1)
ℓ are

a
(0)
0 = −2Q1Q2Q3 − J1J2, a

(1)
0 = 2J1Q1, (2.50a)

a
(0)
1 = 2(Q1Q2,+Q2Q3 +Q1Q3)−

2∑
k=1

Jk, a
(1)
1 = 2(Q1 − J1), (2.50b)

a
(0)
2 = −2

3∑
I=1

QI − 1, a
(1)
2 = −2, (2.50c)

a
(0)
3 = 2, a

(1)
3 = 0. (2.50d)

We can expect that the roots of (2.48) are shifted by a subleading correction in N

3∑
l=0

(
a

(0)
l + 1

N
a

(1)
l

)(
Λ(0) + 1

N
Λ(1)

)l
= 0. (2.51)

Expanding for large N , we find

P (aℓ,Λ) = P (a(0)
ℓ ,Λ(0))+ 1

N

3∑
ℓ=0

∂P (a(0)
ℓ ,Λ(0))
∂aℓ

a
(1)
ℓ + 1

N

∂P (a(0)
ℓ ,Λ(0))
∂Λ Λ(1) +O(N−2). (2.52)

Note that the expansion is only valid up to O(N−1) as higher corrections must also be
supplemented, for example, by higher derivative corrections from the black hole. Evaluating
at the roots Λ(0)

k=±,0, the zeroth order term vanishes, as expected, while the subleading terms
are in general nonzero

3∑
ℓ=0

∂P (a(0)
ℓ ,Λ(0)

k )
∂aℓ

a
(1)
ℓ = a

(1)
0 + a

(1)
1 Λ(0)

k + a
(1)
2 (Λ(0)

k )2 + a
(1)
3 (Λ(0)

k )3, (2.53a)

∂P (a(0)
ℓ ,Λ(0)

k )
∂Λ = a

(0)
1 + 2a(0)

2 Λ(0)
k + 3a(0)

3 (Λ(0)
k )2

= 1
2

∑
m ̸=n ̸=k

(Λ(0)
k − Λ(0)

m )(Λ(0)
k − Λ(0)

n ).
(2.53b)
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Figure 1. Here we show the complex Λ plane with several values of two different sets of roots
of (2.45) for N = 20, Q1 = Q2 = Q3 = Q and J1 = J2 = J satisfying the non-linear constraint that
ensures a real entropy in the pure black hole case. The first set of roots corresponds to the black hole
without D3-brane, whereas the second corresponds to the combined system. The nonlinear constraint
no longer remedies the two complex roots of Λ to be purely imaginary when a probe D3-brane is
introduced in the system.

Using (2.53a) and (2.53b), we arrive at an expression for the subleading correction to the
roots of the cubic equation

Λ(1)
k = 2(Λ(0)

k +Q1)(Λ(0)
k + J1)

1
2
∑
m ̸=n ̸=k(Λ

(0)
k − Λ(0)

m )(Λ(0)
k − Λ(0)

n )
. (2.54)

This solution is only valid when there are three distinct roots. In the case of degenerate roots,
the corrections are modified and the analysis must be done carefully. Since the coefficients of
the cubic equation for Λ are real, we expect two cases for the types of roots we may encounter:
A) one real root and two complex conjugated roots or B) all real roots.5

We shall focus on case A first and for simplicity, we choose a regime of charges, where all
angular momenta are equal denoted by J and likewise all electric charges are equal denoted
by Q. We now revisit the problem of the nonlinear constraint

(6Q+ 1)
(
3Q2 − J

)
=
(
2Q3 + J2

)
, (2.55)

in the case of no probe brane. Then we find that the roots Λk are given by

Λ(0)
± = ±i

√
3Q2 + 1

2

(
−6Q+

√
(1− 4Q)3 + 1

)
, Q <

2
9 , (2.56a)

Λ(0)
0 = 1

2 − 3Q , (2.56b)

5The regime where the roots are all real are defined by a constraint on the discriminant of (2.48):
disc = −4a3a3

1 + a2
2a2

1 + 18a0a2a3a1 − a0
(
4a3

2 + 27a0a2
3
)

> 0.
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where Λ(0)
± are complex conjugated to each other and Λ(0)

0 is real. We plot the functions
of these roots on the left hand side of figure 1. With the probe brane extended in the
bulk, we impose yet again the nonlinear constraint (2.55) with the charges promoted to
the total charge of the combined system. We then see that the two purely imaginary roots
pick up a real part and therefore get shifted while the real root also takes a smaller value,
as shown in the right plot of figure 1.

The key observation here is that in contradistinction to the unperturbed black holes,
there is no generalization of the nonlinear constraint enforcing the reality of the entropy when
the D3-brane is introduced. Instead, the reality of the entropy comes from the addition of
the two leading gravitational saddles corresponding to the constraints n0 = 1 and n0 = −1.6

Therefore, in the case of not imposing (2.55), we find two of the roots take the general form

Λ± = Λx ± iΛy, (2.57)

where Λx and Λy are real and can be found by taking the real and imaginary parts of (2.54).
The entropy of the system can be found by considering the sum of the two gravitational
saddles, where the first saddle corresponds to the constraint n0 = 1 for the choice Λ− and
the second saddle corresponds to n0 = −1 for the choice Λ+

eS ∼ e2πiΛ− + e−2πiΛ+ ∼ e2πi(Λx−iΛy) + e−2π(Λx+iΛy) = 2e2πΛy cos(2πΛx) ∼ e2πΛy , (2.58)

where

Λy =
γ
(√

3ξ
(
3δ2(γ − 3) + γ − 1

)
+ 9δ3(3γ − 1)

)
6
(
ξ (54δ4 + 18δ2 + 1) + 6

√
3 (27δ2 + 2) δ3

) (2.59)

and

γ3 = 6δ2
(√

3ξδ + 9δ2 + 3
)
+ 1, δ2 = J +Q, ξ2 = 27J + 27Q+ 2. (2.60)

We stress that this result is not assuming a non-linear constraint amongst charges and we
have assumed equal charges for simplicity.

Finally, we make a brief comment about scenario B. In this case, there is no predicted
growth of states as the extremized value of the entropy function is purely imaginary. It
would be interesting to study what happens to the growth of BPS states in this regime of
charges realized in the field theory dual.

3 The 4d superconformal index: a brief review

In this section we focus on the undeformed 4d superconformal index and its integral repre-
sentation. We also review the Laplace transform procedure that extracts state-degeneracies
at large charges and finite values N .

6Although the existence of both saddles has been discussed, their combined contribution was not considered
in the analysis of the entropy in [42].
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The superconformal index counts (with sign) BPS states that can not combine to form
long representations of the superconformal algebra. For N = 1 theories on S1 × S3, the
superconformal index was defined in [53, 54] and takes the form

I4d(ω; ξ) = TrH(S1×S3)
[
(−1)F e−β{Q,Q†}e2πiξaQae2πiσ(J1+ r

2 )e2πiτ(J2+ r
2 )
]
, (3.1)

where Qa are the flavor charges with chemical potentials given by ξa that will be later traded
by ∆a ≡ ξa + 1

2ra(σ + τ), where ra is the R-charge. The combination J1,2 + r
2 , where J1,2 are

the angular momenta on S3 and r is the R-charge, commute with the supercharge Q. The
chemical potentials σ and τ are associated to J1 + r

2 and J2 + r
2 , respectively.

In particular, the superconformal index I4d(σ, τ ;∆) counts 1
16−BPS states for N = 4

SYM theory and we shall focus on this theory from now on. The matter content is given
by the three chiral fields Φ1,2,3 appearing in the superpotential

W = Tr (Φ1 [Φ2,Φ3]) , (3.2)

with the associated chemical potentials being ∆1,2,3. For an SU(N) gauge group, I4d(σ, τ ; ∆)
can be written as a multidimensional contour integral over the gauge holonomies uij ≡ ui−uj
that imposes the gauge singlet constraint

I4d (σ, τ ; ∆) =
∫

SU(N)
[DU ]Z4d(u, σ, τ ; ∆) (3.3)

= κN

∫ 1

0

N−1∏
k=1

duk

∏3
a=1

∏
i ̸=j Γ̃ (uij +∆a;σ, τ)∏
i ̸=j Γ̃ (uij ;σ, τ)

,

where

κN =
(
e2πiσ; e2πiσ)N−1

∞
(
e2πiτ ; e2πiτ )N−1

∞
(N − 1)!

3∏
a=1

(
Γ̃(∆a;σ, τ)

)N−1
. (3.4)

We have used a modified version of the elliptic gamma function Γ̃(u; τ, σ), as described
in appendix B. The evaluation of (3.3) has been the subject of several works [3–13, 15–
22, 25, 26, 28, 29, 34, 55, 56]. As long as the angular velocities τ and σ are of the form
ω = s−1

1 σ = s−1
2 τ for some coprime integers s1, s2, then (3.3) can be evaluated using the

Bethe-Ansatz approach [19] or a Cardy-like expansion along the lines of [22, 34]. Since the
insertion of the defect will be studied using a Cardy-like expansion, we will hereafter align
to this method. The final outcome is of the following form

I4d(σ, τ ; ∆) = N exp
[
−(N2 − 1) iπ

στ

3∏
I=1

(
{∆I}ω − 1− n0

2

)]
. (3.5)

We have ignored exponentially suppressed corrections in 1/|ω|. The function {·}ω is defined
in (B.5) and the value of n0 = ±1 indicates the domain of chemical potentials

Im
(
− 1
ω

)
> Im

(∆
ω

)
> 0, n0 = 1, (3.6a)

Im
(
− 1
ω

)
< Im

(∆
ω

)
< 0, n0 = −1. (3.6b)
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Moreover, the chemical potentials satisfy the constraint
3∑
I=1

{∆I}ω = σ + τ + 3− n0
2 . (3.7)

In case of real chemical potentials with |∆I | < 1, for I = 1, 2, 3, the leading contribution
obtained in the large N limit of (3.5) gives

I4d(σ, τ ; ∆) = N exp
[
−πi(N

2 − 1)
στ

∆1∆2∆3

]
, (3.8)

where the linear constraint (3.7) simplifies to

3∑
I=1

∆I − τ − σ = −n0. (3.9)

As we see, the 4d index crucially depends on the domain of chemical potentials, i.e., the
value of n0.

3.1 Extracting degeneracies: changing ensemble

Now we would like to extract the degeneracies of the 1
16 -BPS states counted by the super-

conformal index, see for example [18, 50, 51]. This means that we have to change (3.5) from
the grand canonical ensemble — with fixed chemical potentials — to the microcanonical
ensemble. To do so, we are instructed to perform the following Laplace transformation

d(J ;Q) =
∫
d∆dτdσe− log I4d−2πi

∑3
I=1 ∆IQI−2πi(σJ1+τJ2)+2πiΛ

(∑3
I=1 ∆I−τ−σ+n0

)
. (3.10)

This integration can be approximately solved in the large N limit or in the Cardy-like limit
(|τ | , |σ| ≪ 1)7 using the saddle point approach. We then must find the extrema of the
exponent and sum over the saddle points that dominate. Let us consider a family of critical
points {∆n0 , ωn0}, as shown schematically in figure 2, such that the effective action has the
same real part when evaluated at these points. In other words, both saddles are equally
leading in the saddle point approximation which then gives us

d(J ; Q) ≈
∑

n0=±1

(
e− log I4d−2πi

∑3
I=1 ∆IQI−2πi(σJ1+τJ2)+2πiΛ

(∑3
I=1 ∆I−τ−σ+n0

)) ∣∣∣
∆n0

. (3.11)

Note that here we identify the critical points using only ∆n0 because the constraint (3.9)
already determines the critical values of ωn0 . The extremization leads us to the following
relations

∂ log I4d
∂∆I

= 2πi(Λ−QI), I = 1, · · · 3 , (3.12a)

∂ log I4d
∂σ

= 2πi(J1 + Λ), (3.12b)
∂ log I4d
∂τ

= 2πi(J2 + Λ), (3.12c)

7See [6–11, 57] for extensive work on the Cardy-like limit of the superconformal index.
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10−1

ωω − 1 ω + 1
∆+

∆−

Figure 2. The figure shows the complex plane of chemical potentials for a generic ∆ where the
region corresponding to n0 = 1 (3.6a) is shown in gray and the region specified by n0 = −1 (3.6b) is
shown in light blue. The thick blue arrows running over the interval Re(∆) ∈ (−1; 1) represent the
integration contour for ∆I . With dashed curves we schematically show a deformation of the initial
contour such that it passes through the critical values of chemical potentials ∆±.

under the constraint (3.9). This implies

2
3∏
I=1

(QI − Λ) = N2(J1 + Λ)(J2 + Λ). (3.13)

The relation (3.13) have precisely the same structure as (2.45), without the last term that
accounts for the D3-brane contributions and assuming the charges are the ones of the 4d
1
16 -BPS states counted by the superconformal index. The degeneracy of states is then given by

d(J ; Q) ∼
∑

n0=±1

∑
k=±,0

e−2πin0Λk . (3.14)

Generically, if we require a growth of states, then (3.13) must have two complex conjugated
solutions for Λ, which we have called Λ± in (2.57), that upon application of (3.14) generate
a dominant saddle for each value of n0. These dominant saddles correspond to the roots
satisfying Re(2πin0Λ±) > 0. If we appropriately label Λ± such that the subindex corresponds
to the sign of its imaginary part, we have

d(J ; Q) ∼ e−2πiΛ+ + e2πiΛ− = 2e2πΛy cos (2πΛx) ∼ e2πΛy . (3.15)

If the imaginary part of Λ± vanishes, then we see that the microcanonical expression for
the index is a pure oscillatory term that does not probe the growth of states compatible
with black hole entropy.

4 The defect superconformal index

The computation of the defect index requires the consistent embedding of the 2d N = (2, 2)
superconformal algebra into the 4d N = 4 superconformal algebra. This has been done in
detail for N = 2 [58] as well as for N = 4 [42]. In these works, the fugacities used in the
2d description are related to those in 4d. For this reason, we write the full defect index
purely in terms of the 4d chemical potentials.
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The defect worldvolume M2d extends along the S1 and wraps a circle inside the S3.
The surface operator with support on this M2d will be such that it commutes with the
supercharge selected to construct the 4d superconformal index, and this is ensured in practice
by appropriately choosing the orientation of the surface operator during the embedding
procedure. The defect index is then given by

ID =
∫

SU(N)
[DU ]Z4d(u, σ, τ ; ∆)Z2d(u, σ, τ ; ∆) . (4.1)

It has been proposed that (4.1) provides the microscopic definition of a dual gravity system
which includes black holes interacting with a probe D3-brane [42]. We revisit this matter
carefully in this section.

It is possible to work in the approximation where the saddles of (3.3) are not affected by
the insertion of Z2d in (4.1). This regime corresponds holographically to the probe limit of
the black hole/D3-brane system. In this probe limit we can write

ID =
∑

û∈4d−saddles
Z4d(û, σ, τ ; ∆)Z2d(û, σ, τ ; ∆) + · · · , (4.2)

where the · · · correspond to the subleading saddles. Instead of directly implementing the
probe limit (4.2), we first study the 2d index in the context of a systematic Cardy-like
expansion along the lines of [34, 59]. This enables us to have better control over the effect
of backreaction coming from the 2d defect on the 4d index. If we denote the fundamental
domains of chemical potentials ∆(n0), n0 = ±1 then we will see in subsection 4.1 that for
n0 = 1, the integrand Z2d in (4.1) becomes independent of the holonomies up to corrections
exponentially suppressed in 1/|ω|

I(1)
D = Z2d(σ, τ ; ∆(1))

∑
û∈4d−saddles

Z4d(û, σ, τ ; ∆(1)) . (4.3)

Moreover, for the other domain of chemical potentials labelled by n0 = −1, the leading
order in the Cardy-like limit is given by

I(−1)
D

∣∣∣
ω→0

= Z2d(σ, τ ; ∆(−1))
∑

û∈4d−saddles
Z4d(û, σ, τ ; ∆(−1)) . (4.4)

We now turn to study the 2d index in the systematic Cardy-like expansion.

4.1 The Cardy-like expansion of the 2d index

Following [42, 58], we start with the 2d index given as

Z2d =
N∑
i=1

exp
[∑
j ̸=i

log θ0(−uij −∆2 + σ; σ)
θ0(−uij +∆1 − τ ; σ) + log θ0(uij −∆1 −∆2 + τ + σ; σ)

θ0(uij ; σ)

]
. (4.5)

Now using the elliptic theta functions in (B.2a) and (B.2b), the 2d index can be recast
in the form

Z2d =
N∑
i=1

exp

∑
j ̸=i

log

(
e2πi(−uij−∆2+σ); e2πiσ

)
∞

(
e2πi(uij+∆2); e2πiσ

)
∞(

e2πi(−uij+∆1−τ); e2πiσ
)
∞

(
e2πi(uij−∆1+τ+σ); e2πiσ

)
∞

(4.6)

+
∑
j ̸=i

log

(
e2πi(uij−∆1−∆2+τ+σ); e2πiσ

)
∞

(
e2πi(−uij+∆1+∆2+τ); e2πiσ

)
∞(

e2πi(uij); e2πiσ
)
∞

(
e2πi(σ−uij); e2πiσ

)
∞

 .
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We consider the following change of variables uij = (xijσ + yijτ) and τ = s1
s2
σ such that

uij = σ(xij + s1
s2
yij) ≡ σzij . Note that we are not taking the continuum limit nor specifying

how the holonomies are distributed, therefore this change of variables is simply an intermediate
step that aids the systematic Cardy-like expansion.8 Later on, we shall recover the original
uij variables. Upon using the asymptotic expansion (B.3), we find

Z2d =
N∑
i=1

exp

 1
2πiσ

∑
j ̸=i

∞∑
r=0

(−1)r (2πiσ)
r

r!
(
Br(zij)Li2−r

(
e2πi(−∆2)

)
+Br (1− zij)Li2−r

(
e2πi(∆2)

)
+Br

(
−s1
s2

− zij

)
Li2−r

(
e2πi(−∆1−∆2)

)
+Br

(
1 + s1

s2
+ zij

)
Li2−r

(
e2πi(∆1+∆2)

)
−Br

(
1 + s1

s2
+ zij

)
Li2−r

(
e2πi(∆1)

)
−Br

(
−s1
s2

− zij

)
Li2−r

(
e2πi(−∆1)

)
−Br (1− zij)Li2−r

(
e2πi(ϵ)

)
−Br (zij)Li2−r

(
e2πi(−ϵ)

)) ]
.

(4.7)

In the last line we have regulated the Polylogarithms via a small ϵ > 0 regulator. We will
see that we can safely take ϵ → 0 at the end of the manipulations. Utilizing the property
of Bernoulli polynomials,

Br(1− x) = (−1)rBr(x), r ≥ 0 , (4.8a)
Br(0) = (−1)rBr(1) , (4.8b)

the 2d index is simplified to

Z2d =
N∑
i=1

exp

 1
2πiσ

∑
j ̸=i

∞∑
r=0

(2πiσ)r
r!

[
Br(zij)

(
(−1)rLi2−r

(
e2πi(−∆2)

)
+ Li2−r

(
e2πi(∆2)

))
+Br

(
−s1
s2

− zij

)(
(−1)rLi2−r

(
e2πi(−∆1−∆2)

)
+ Li2−r

(
e2πi(∆1+∆2)

))
−Br

(
−s1
s2

− zij

)(
Li2−r

(
e2πi(∆1)

)
+ (−1)rLi2−r

(
e2πi(−∆1)

))
(4.9)

−Br(zij)
(
Li2−r

(
e2πi(ϵ)

)
+ (−1)rLi2−r

(
e2πi(−ϵ)

))] ]
.

The final simplification requires us to use the property of Polylogarithm functions

Lin(e2πiz) + (−1)nLin(e−2πiz) = −(2πi)n
n! Bn({z}), n = 1, 2, 3, · · · , (4.10a)

Li−n(e2πiz) + (−1)nLi−n(e−2πiz) = 0, n = 0, 1, 2, 3, · · · , (4.10b)

8See [59] for a similar implementation to the 3d superconformal index.
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for 0 ≤ Re(z) < 1 and Im(z) ≥ 0 or 0 < Re(z) ≤ 1 and Im(z) < 0. Now (4.9) becomes

Z2d =
N∑
i=1

exp

 1
2πiσ

∑
j ̸=i

1∑
r=0

(2πi)2−r

(2− r)!
(2πiσ)r
r! (−Br(zij) (B2−r ({∆2})−B2−r)

−(−1)2−rBr(−
s1
s2

− zij) (B2−r ({−∆1 −∆2})−B2−r ({−∆1}))+
)]

=
N∑
i=1

exp

2πi(N − 1)
σ

 3∏
a=2

({∆a} − n) + δn0,−1

∑
j ̸=i

uij
N − 1 − σ

2

 ,

(4.11)

where we have recovered the original holonomy variables, namely uij = zij

σ and for compactness
we have defined n ≡ 1−n0

2 . The function {z} defined in (B.6) is such that it forces the Bernoulli
polynomials to have the same periodicity properties as the Polylogarithm functions. Note
that (4.10a) ensures that the terms with the ϵ regulator produce a finite result as the right
hand side is a finite quantity at z = 0. Focusing on the n0 = −1 saddle, we would like to find
the saddle point configuration for uij . A generalization of a lemma derived in [10] shows that
for any periodic potential in uij , the uniform distribution along the period are the saddle
point configurations where not all the holonomies collapse to a single point. In fact the
potential in (4.11) is σ-periodic, hence the saddle point configurations are of the form

uij =
i− j

N
σ, (4.12)

then we have:

Z2d =
N∑
i=1

exp
{
2πi(N − 1)

σ

[ 3∏
a=2

({∆a} − n) +
(∑

j ̸=i(i− j)
N(N − 1) − 1

2

)
σ

]}

= N exp
[
2πi(N − 1)

σ

( 3∏
a=2

({∆a} − n)
)] (4.13)

We note that, for s1 = 1, (4.12) coincides with the basic Bethe-Ansatz solutions dominating
the large N of the 4d superconformal index. There are two main observations to make
regarding the transition from (4.11) to (4.13):

• For the fundamental domain of chemical potentials labelled by n0 = 1, the holonomies
drop from the expression (4.11), rendering our result (4.13) valid at finite N up to
exponentially supressed corrections in 1/|ω|. This domain of chemical potentials
corresponds to (4.3) and clearly in this case there is no need to work in the probe limit.

• For n0 = −1 there is a linear dependence of the holonomies in (4.11) that accounts
for backreaction of the D3-brane when considering the combined 4d-2d system and
the dominant distribution is given by (4.12). This allow us to factor out the 2d index
contribution to the 4d defect superconformal index, as anticipated in (4.4).

The next step is to explicitly evaluate (4.1) and extract the microcanonical degeneracies
implementing the Laplace transformation.
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Figure 3. The figure shows the complex plane of chemical potentials for a generic ∆ where the
region corresponding to n0 = 1 (3.6a) is shown in gray and the region specified by n0 = −1 (3.6b) is
shown in light blue. The thick blue arrows running over the interval Re(∆) ∈ (−1; 1) represent the
integration contour for ∆I . Now we represent the deformed contour in the presence of the D3-brane in
black dashed lines passing through the new saddles labeled as ∆̃±. We have kept the contour (dashed
orange curve) for the case of the black hole in the absence of D3-brane just for reference.

4.2 The combined 4d-2d system: extracting degeneracies

We now consider the combined 4d-2d system up to non-perturbative corrections in the
Cardy-like expansion. From (3.5), (4.3), (4.4) and (4.13), the total defect index is given by

ID = Nexp
[
iπ(N − 1)

σ

(
−(N + 1)

τ

3∏
I=1

({∆I}ω − n) + 2
3∏

a=2
({∆a} − n)

)]
. (4.14)

Note that for purely imaginary σ, τ as well as for purely real arguments, the functions {·}ω
and {·} coincide, which allows the expressions for Z2d and Z4d to be written in terms of the
same combinations of chemical potentials. The expression (4.14) considerably simplifies in
the regimes of real chemical potentials ∆I such that |∆I | < 1

ID = Nexp
[
iπ(N − 1)

σ

(
−(N + 1)

τ
∆1∆2∆3 + 2∆2∆3

)]
, (4.15)

∆3 = σ + τ −∆1 −∆2 − n0 . (4.16)

From now on we proceed to extract the microcanonical degeneracies from the grandcanonical
expression for the defect index given in (4.15). Implementing the Laplace transform using
the saddle point method requires the following extremization process

∂ log ID
∂∆I

= 2πi(Λ−QI), I = 1, · · · 3 , (4.17)

∂ log ID
∂σ

= −2πi(J1 + Λ) , (4.18)
∂ log ID
∂τ

= −2πi(J2 + Λ) , (4.19)

under the constraint (3.9). It is worth pointing out that in this case the charges Q1,2,3 and
J1,2 are the total charge of 4d and 2d states.
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From this point on, the mathematical problem is essentially equivalent to (2.40). In
the field theoretical language we have to repeat the calculation of section 3.1 just replacing
I4d by ID in (3.10). If we focus on the large N regime, following the logic of section 2.4,
we find a new set of saddle points through solving a modified cubic equation completely
equivalent to (2.45). In figure 3, we show a schematic picture of how the new saddles in the
complex domain of chemical potentials can be changed by the 1/N corrections introduced by
considering the contribution of the 2d defect states to the degeneracy.

5 Final comments and open questions

We have presented the thermodynamic analysis for the combined black hole/D3-brane system
in a way that ensures the reality of the charges and the entropy. To do so, we took into
account both leading saddles of the gravitational path integral and likewise, on the gauge
dual, the two leading saddles of the integral over the holonomies that represent the defect
superconformal index. Following this procedure we obtain real charges and entropy without
the need of imposing a nonlinear constraint among the charges.

There are various interesting extensions of this work. The first is to compute the
backreaction of the D3-brane in the geometry. One first step in this direction may be solving
the Killing spinor equations for the combined system of a black hole/D3-brane. Presumably,
while doing so, we would be forced into computing relevant backreaction effects. This may
allow us to answer questions like whether the exact change in entropy predicted by the field
theory side of the duality can be interpreted as a change in the area of the black hole horizon.
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A Revisiting a previous approach

In this appendix we briefly review the procedure in [42]. We illustrate that following that
procedure, a real entropy can not be obtained even if the two dominant saddles of the
Legendre transform are combined. The difference with our approach is that we consider
the Legendre transform of the total action which is different from the sum of the Legendre
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transforms of the subsystems. Recalling that at the level of the on-shell action

I = IBH + ID3 (A.1)

and requiring that

S = SBH + SD3, (A.2)

then the first law of thermodynamic of the total system would unequivocally constrain the
thermodynamic charges of the D3-brane to be

J1,D3 = − 1
β

∂ID3
∂Ω1

, J2,D3 = − 1
β

∂ID3
∂Ω2

, QD3 = − 1
β

∂ID3
∂Φ , (A.3)

provided the chemical potentials do not receive subleading corrections in 1/N , or equivalently,
that they are the very same chemical potentials of the unperturbed black hole. To evaluate
the right hand sides of the equations in (A.3), we must invert the Jacobian matrix

∂(Ω1,Ω2,Φ, β)
∂(a, b, q, r+)

. (A.4)

In this way we find the expressions for the electric charges and angular momentum of the
D3-brane reported in [42].

A.1 Legendre transform with just the D3-brane

The entropy of the D3-brane is defined from the Legendre transform

SD3 = −ID3 −2πi
3∑
I=1

φI,BHQI,D3 −2πi
2∑

k=1
ωk,BHJk,D3 +2πiΛ

( 3∑
I=1

φI,BH −
2∑

k=1
ωk,BH + n0

)
,

(A.5)
where Λ is a Lagrange multiplier implementing the corresponding linear constraint, and we
have reinstated the subindex BH to recall that these are the very same potential as the black
hole solution. The extremization leads to the following equations

0=− ∂ID3
∂φI,BH

−2πi(QI,D3−Λ)=2πi
(
N
φ2,BHφ3,BH
φI,BHω1,BH

(δI2 +δI3)−QI,D3+Λ
)
, I =1,2,3,

0=− ∂ID3
∂ωk,BH

−2πi(Jk,D3+Λ)=−2πi
(
N
φ2,BHφ3,BH
ωk,BHω1,BH

δk1 +Jk,D3+Λ
)
, k=1,2. (A.6)

Imposing (A.6), we find that the entropy is given by

SD3 = 2πin0Λ. (A.7)

Solving for φ2,BH and φ3,BH in the equation for I = 2 and I = 3, we find

φ2,BH = −ω1,BH
Λ−Q3,D3

N
, φ3,BH = −ω1,BH

Λ−Q2,D3
N

. (A.8)
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and imposing this into the equation for k = 1, we have

0 = (Λ−Q2,D3) (Λ−Q3,D3) +N(J1,D3 + Λ)
= Λ2 + Λ(−Q2,D3 −Q3,D3 +N) + (Q2,D3Q3,D3 +NJ1,D3).

(A.9)

As this is a quadratic polynomial with real coefficients, the solutions can either be two real
roots or two complex roots, conjugate to each other. Therefore, we have

Λ± = 1
2

(
Q2,D3 +Q3,D3 −N ±

√
(−Q2,D3 −Q3,D3 +N) 2 − 4 (NJ1,D3 +Q2,D3Q3,D3)

)
.

(A.10)
In general, using the expression for the charges found in [42], Λ± are complex valued roots,
but not necessarily complex conjugate to each other. Moreover, we have the extremization
equations

Λ = Q1,D3 , Λ = −J2,D3 . (A.11)

In the regime that (A.10) and (A.11) are satisfied, we find a complex-valued entropy.

B Elliptic functions and their asymptotic behavior

Here we gather definitions and useful identities of elliptic functions.
The Pochhammer symbol is defined as

(z; q)∞ =
∞∏
k=0

(1− zqk). (B.1)

The elliptic theta functions have the following product forms

θ0(u; τ) =
∞∏
k=0

(1− e2πi(u+kτ))(1− e2πi(−u+(k+1)τ)) (B.2a)

=
(
e2πiu; e2πiτ

)
∞

(
e2πi(τ−u); e2πiτ

)
∞
. (B.2b)

Consider an asymptotic expansion in τ with fixed 0 < arg τ < π as given in [60]:

(zeaπiτ ; e2πiτ )∞ = exp
(

1
2πiτ

∞∑
r=0

(−1)rBr
(
1− a

2

) (2πiτ)r
r! Li2−r(z)

)
. (B.3)

The elliptic gamma function and the ‘tilde’ elliptic gamma function are defined as

Γ(z; p, q) =
∞∏

j,k=0

1− pj+1qk+1z−1

1− pjqkz
, (B.4a)

Γ̃(u;σ, τ) =
∞∏

j,k=0

1− e2πi[(j+1)σ+(k+1)τ−u]

1− e2πi[jσ+kτ+u] . (B.4b)

To study asymptotic behaviors of elliptic functions, we introduce a τ -modded value of a
complex number u, namely {u}τ , as

{u}τ ≡ u− ⌊Reu− cot(arg τ)Imu⌋ (u ∈ C), (B.5)
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and define {x} such that

{x} ≡ x− ⌊Rex⌋ , (B.6)

where {x}τ = {x} for purely imaginary τ .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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