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ABSTRACT

We study the statistics of various large-scale structure tracers in gravity-only cosmological simulations including baryons and
cold dark matter (CDM) initialized with two different transfer functions, and simulated as two distinct fluids. This allows us
to study the impact of baryon-CDM relative perturbations on these statistics. In particular, we focus on the statistics of cosmic
voids, as well as on the matter and halo real-space 2-point correlation function and baryon acoustic oscillations (BAO) peak.
We find that the void size function is affected at the 1-2 percent level at maximum, and that the impact is more important
at higher redshift, while the void density profile and void bias are roughly unaffected. We do not detect a sizeable impact of
relative baryon-CDM perturbations on the real-space correlation functions of matter and haloes or the BAO peak, which is in
line with results from previous works. Our results imply that it would be hard to use voids or real-space correlation functions
to constrain baryon-CDM relative perturbations, but also that we might not have to include them in models for the analysis of

future cosmological surveys data.
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1 INTRODUCTION

The different evolution of baryons and cold dark matter (CDM) due to
photon pressure before recombination causes relative perturbations
between the two fluids in the early Universe. These perturbations
can be both in the density and peculiar velocity of the two fields but,
importantly, they keep the total matter perturbations unchanged, and
are thus referred to as relative baryon-CDM density perturbations and
relative baryon-CDM velocity perturbations (Dalal, Pen & Seljak
2010; Tseliakhovich & Hirata 2010; Barkana & Loeb 2011; Yoo,
Dalal & Seljak 2011; Yoo & Seljak 2013; Slepian & Eisenstein
2015; Blazek, McEwen & Hirata 2016; Schmidt 2016; Beutler,
Seljak & Vlah 2017; Slepian et al. 2018; Khoraminezhad et al.
2021). After recombination, these primordial relative perturbations
are slowly erased by gravitational evolution with baryons falling in
CDM potential wells. In standard studies of Large-Scale Structure
(LSS), this process is assumed to be complete before redshift zero,
and baryons and CDM are treated as one single comoving matter
fluid. However, this assumption is not exactly correct, and there
were several recent efforts to describe the evolution of baryons and
CDM as two distinct fluids across cosmic history (see in particular
Tseliakhovich & Hirata 2010; Barkana & Loeb 2011; Schmidt
2016; Beutler et al. 2017; Chen, Castorina & White 2019; Rampf,
Uhlemann & Hahn 2021). Notice that similar perturbations can also
be generated in some inflationary scenarios, and are then referred
to as Compensated Isocurvature Perturbations (CIPs) (Polarski &
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Starobinsky 1994; Linde & Mukhanov 1997; Langlois & Riazuelo
2000; Liddle & Mazumdar 2000; Notari & Riotto 2002; Lyth,
Ungarelli & Wands 2003; Ferrer, Rasanen & Valiviita 2004; Li
et al. 2009; Grin, Dore & Kamionkowski 2011; Valiviita et al. 2012;
Christopherson 2014; Huston & Christopherson 2014; He, Grin & Hu
2015; Heinrich & Schmittfull 2019; Barreira et al. 2020b). However,
in this work, we do not treat these CIPs, and we focus only on
relative baryon-CDM perturbations induced by photon pressure prior
to recombination.

2-fluid simulations in which baryons and CDM are initialized with
two different transfer functions and are considered as two distinct
fluids coupled gravitationally are starting to play an important role
in this line of study (see Yoshida, Sugiyama & Hernquist 2003;
O’Leary & McQuinn 2012; Angulo, Hahn & Abel 2013; Bird et al.
2020; Hahn, Rampt & Uhlemann 2021; Khoraminezhad et al. 2021;
Michaux et al. 2021). Crucially, these are gravity-only simulations
(i.e. they do not include any late-time hydrodynamics), and early-
universe baryonic effects only enter through the use of different
transfer functions to initialize baryons and CDM.

Relative velocity perturbations were identified for the first time by
Tseliakhovich & Hirata (2010), while relative density perturbations
were first pointed out in Barkana & Loeb (2011). In both cases, they
are expected to affect structure formation (Ahn 2016), as well as the
clustering of LSS tracers (Schmidt 2016; Beutler et al. 2017; Barreira
etal.2020a; Khoraminezhad et al. 2021). This is because the coupling
of baryons to photons before recombination prevents baryons from
evolving gravitationally together with CDM, and consequently acts
against structure formation and clustering, an effect that might need
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to be taken into account in studies of LSS. The formalism to include
baryon-CDM relative perturbations in the statistics of LSS tracers
was first discussed in Schmidt (2016) using the bias formalism (see
Desjacques, Jeong & Schmidt (2018) for a complete review on this
formalism). The main point is the need to add new terms proportional
to these relative perturbations to the bias expansion, which links the
density of tracers such as haloes or galaxies §,, to various underlying
perturbations. At linear order, these terms consist of the relative
density perturbation 8. (with 8, = §, — 8.) and relative velocity
divergence perturbation 6, (with 6,. = 6, — 6.) multiplied by their
respective bias parameters b;,. and by, , and the overdensity of haloes
can be written as (note that here x, indicates the Eulerian position)

3n(X, 2) = b1(2)dn (X, 2) + b5, (2)3pc(X) + bo,,. (2)0pe (X, 2), ey

where b, is the standard linear bias. The parameters bs,, and by, were
studied in previous works (see for example Barkana & Loeb 2011;
Schmidt 2016; Beutler et al. 2017; Chen et al. 2019; Hotinli et al.
2019; Barreira et al. 2020a; Khoraminezhad et al. 2021). Specifi-
cally, Barreira et al. (2020a) used the separate universe simulations
technique to do the first measurement of bs,, (corresponding to
CIPs generated during Inflation), while Khoraminezhad et al. (2021)
measured b, using gravity-only 2-fluid simulations (corresponding
to relative perturbations generated by photon pressure), and showed
the two parameters to be equal. This work is a follow-up of Kho-
raminezhad et al. (2021), and we will investigate the effects that such
perturbations could induce on specific structures and cosmological
probes. It is worth mentioning that one of the first usage of the
separate universe technique for isocurvature perturbations appeared
in Jamieson & Loverde (2019). This was done for the case of dark
energy/CDM relative perturbations but is nevertheless somewhat
related to the perturbations we consider here, and pioneered the
use of separate universe simulations for isocurvature perturbations.
The first structures we consider are cosmic voids. Cosmic voids
are defined as large underdense regions of the cosmic web, they
are the largest structures in the Universe and make up most of
its volume (Cautun et al. 2014; Falck & Neyrinck 2015). Histor-
ically, their existence was one of the earliest predictions of the
concordance cosmological model (Hausman, Olson & Roth 1983),
and their observational detection goes back to roughly 40 yr ago
(Gregory, Thompson & Tifft 1978; Kirshner et al. 1981). Voids
are in particular extremely underdense near their centres, and their
spherically averaged density profile shows a characteristic shape
(Colberg et al. 2005; Ricciardelli, Quilis & Planelles 2013; Hamaus,
Sutter & Wandelt 2014a; Nadathur et al. 2014b; Ricciardelli, Quilis &
Varela 2014). Recently, cosmic voids are becoming a promising
cosmological probes: first they could represent a population of sta-
tistically ideal spheres with a homogeneous distribution at different
redshifts which size evolution could be used to probe the expansion
of the Universe using Alcock & Paczynski tests (Alcock & Paczynski
1979; Lavaux & Wandelt 2012; Sutter et al. 2012; Sutter et al. 2014b;
Hamaus et al. 2015; Hamaus et al. 2016; Mao et al. 2017; Hamaus
et al. 2022). Moreover, due to their low density, voids are naturally
sensitive to dark energy and thus the interest to use them as probe
of alternative Dark Energy models and modified gravity scenarios is
increasing (Odrzywotek 2009; Lavaux & Wandelt 2010; D’ Amico
et al. 2011; Li 2011; Bos et al. 2012; Clampitt, Cai & Li 2013;
Gibbons et al. 2014; Barreira et al. 2015; Cai, Padilla & Li 2015;
Pisani et al. 2015; Zivick et al. 2015; Pollina et al. 2016; Baldi &
Villaescusa-Navarro 2018), as well as the possibility of using them
to put constraints on neutrinos masses (Massara et al. 2015; Kreisch
et al. 2019; Contarini et al. 2021). Their imprint on the observed
Cosmic Microwave Background (CMB) is also becoming an en-
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couraging new cosmological probe, either through their Integrated
Sachs-Wolfe (ISW) imprint (Baccigalupi, Amendola & Occhionero
1997; Baccigalupi 1999; Granett, Neyrinck & Szapudi 2008; Cai
et al. 2014; Granett, Kovacs & Hawken 2015; Hotchkiss et al. 2015;
Ade et al. 2016; Nadathur & Crittenden 2016; Kovécs et al. 2017;
Kovics et al. 2019; Hang et al. 2021), or their lensing imprint
(Cai et al. 2017; Raghunathan et al. 2020; Vielzeuf et al. 2021).
Furthermore, the observed cold spot of the CMB could be explained
as the imprint of the ISW sourced by very large voids along the line
of sight (Rees, Sciama & Stobbs 1968; Kovac et al. 2013; Finelli
et al. 2014; Nadathur et al. 2014a). Moreover, some works such
as Jamieson & Loverde (2019) studied the properties of the voids
via the separate universe technique. Finally, some studies tried to
link high redshift intergalactic voids in the transmitted Lyman-o
flux to the gas density (Viel, Colberg & Kim 2008). Because they
are almost empty regions, their evolution during cosmic history is
at most weakly non-linear and their properties could possibly be
impacted by the primordial density fields from which they formed.
This fact motivates us to investigate the effects of baryon-CDM
relative perturbations on these objects and their statistics.

Secondly, we will consider the real-space correlation function
of various fields in our simulations. We will in particular focus
on the Baryon Acoustic Oscillation (BAO) feature. Measuring the
BAO feature in the distribution of galaxies is one of the most
powerful tools for precision cosmology. For instance, the latest
cosmological implications from final measurements of clustering
using galaxies, quasars, and Ly« forests from the Sloan Digital
Sky Survey (SDSS) reported the following cosmological constraints:
Hy = 6820+ 0.81 kms~'Mpc~! and og = 0.8140 £ 0.0093 al-
lowing for a free curvature and a time evolving equation of state
for the dark energy (Alam et al. 2021). Furthermore, combining
the full-shape and BAO analyses of galaxy power spectra of the
final Baryon Oscillation Spectroscopic Survey (BOSS) data release,
Philcox et al. (2020), recently obtained a 1.6 per cent precision
measurement of Hj,. Recent works suggest that relative baryon-
CDM perturbations 85, and 6. could provoke possible systematics
in the estimation of the BAO peak position (Dalal et al. 2010;
Barkana & Loeb 2011; Yoo & Seljak 2013; Schmidt 2016; Beutler
et al. 2017; Barreira et al. 2020a), and thus could potentially bias the
cosmological constraints as a systematic shiftin D4 (z), H(z), and fo'g
measurements.

The goal of this paper is to assess the impact of relative baryon-
CDM perturbations on one side cosmic voids, and on the other side
on the real-space correlation functions of various fluids, in particular
the position of the BAO peak. We do this using the aforementioned
2-fluid simulations, and compare the results with those obtained
in a standard gravity-only 1-fluid simulations. We emphasis that
we work in configuration space, in contrast with our first paper
where we worked in Fourier space (Khoraminezhad et al. 2021).
We first give a detailed description of our numerical arrangement
in Section 2, including details of our simulation setup and the
halo finding procedure (Section 2.1), as well as the void finding
algorithm (Section 2.2). We then investigate the impact of baryon-
CDM perturbations on the void size function (VSF) using different
tracers of the underlying matter field to identify cosmic voids (namely
particles and haloes) in Section 3. In Section 4, we measure the
void—void and halo—void correlation functions (Section 4.1), the
void density profile (Section 4.2), and the void bias (Section 4.3)
in presence of baryon-CDM perturbations. We further explore the
effect of such perturbations on the real-space matter and halo 2-
point correlation functions (2PCF) in Section 5, and in particular, we
compare the position of the BAO peak in the 2PCF of total matter,
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Table 1. Principal parameters of our numerical setup. Lyox denotes the length
of the side of the box, N}, and N, are the number of baryon and CDM particles,
respectively, n;, and m, denote their corresponding mass in units of 10'°M,
h~L, and Nyey is the number of realizations.

Name Liox Np N, myp me Nreal
(10"M (10"M¢

- Mpch™h - - hh hh -

1-fluid 500 0 5123 - 1.0051 8

2-fluid 500 5123 5123 0.1583 0.8468 8

haloes, CDM, baryons, and the relative density &, in Section 5.2.
Finally, we draw our conclusions in Section 6.

2 NUMERICAL SETUP

2.1 Simulations and halo finding

Our N-body simulation suite is based on the one presented in
Khoraminezhad et al. (2021), and consists of

(i) asetof collision-less gravity-only simulations in which baryons
and CDM are evolved as two distinct fluids initialized from two
distinct primordial power spectra as predicted by early universe
physics. We refer to this set of simulations as ‘2-fluid’.

(ii) asetof astandard gravity-only simulation in which the baryons
and CDM are considered as perfectly comoving and are hence
simulated as one total matter field. We refer to this set as ‘1-fluid’.

Our cosmology is consistent with Planck 2018 (Aghanim et al.
2020) ACDM, namely: €2,, = 0.3111, €, = 0.0490, Q. = 0.2621,
Q, = 0.6889, n;, = 0.9665, o0g = 0.8261, and h = 0.6766. In
this work, we enlarge our previous simulation box size to Lpox =
500 h~! Mpc on each side to be large enough for void finding.
We perform eight realizations of each types of simulations (1-
fluid/2-fluid) with 5123 particles of each species. Importantly, each
realization was initialized with a different random seed but the seeds
used for total matter in 1-fluid simulations are the same as the ones
used for CDM in 2-fluid ones in order to minimize cosmic variance.
The details of the simulations are given in Table 1.

To generate the initial conditions of the density and velocity
perturbations we used the publicly available initial condition code
‘MUSIC’ (Hahn & Abel 2011) at redshift z; = 49. For the 1-
fluid case, we compute the matter power spectrum at z = 0 using
the publicly available Boltzmann code CAMB (Lewis, Challinor &
Lasenby 2000) and back-scale it to the initial redshift, while for the 2-
fluid scenario we use the two different transfer functions for baryons
and CDM directly at z; = 49. We use the first-order Lagrangian
perturbation theory, Zel’dovich approximation, (Zeldovich 1970) to
estimate the velocity as well as the density fields. In order to reduce
the effect of cosmic variance, we use the fixed-mode amplitude
technique implemented in the MUSIC code (Angulo & Pontzen
2016). Importantly, we keep the total matter power spectrum the
same for the 1-fluid and 2-fluid scenarios, and we use the same
random seeds to initialize 1-fluid simulations and CDM particles in
the 2-fluid case.

We perform our simulations using the cosmological N-body code
GADGET-II (Springel 2005). In the case of 2-fluid simulations, as
was discussed in Angulo et al. (2013), Khoraminezhad et al. (2021),
since we have two different fluids (baryons as the light fluid and CDM
as the heavy one), and a too high force resolution for a given mass
resolution would lead to a spurious coupling between baryons and
CDM, we use adaptive gravitational softening (AGS) (lannuzzi &
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Dolag 2011) for baryons only, which allows the softening length to
vary in space and time according to the local density, and alleviates
the spurious coupling arising between CDM and baryon particles, as
was discussed in Angulo et al. (2013), Khoraminezhad et al. (2021).
In more details, in the 2-fluid simulation suite, the force affecting
baryonic particles is softened adaptively using an SPH kernel with
a size set by the 14th closest neighbours. Moreover we set the
floor minimum softening length € = 254~ 'kpc, which corresponds
to 1/40-th of the mean interparticle separation of the baryons. We note
that the CDM softening length is kept constant through space and
time to € = 25h~'kpc, which corresponds to the 1/40-th of the mean
CDM interparticle separation as well. These settings are tested and
validated in details in Section 3.3 and Appendix B of Khoraminezhad
et al. (2021). Finally, we insist again that since we are interested in
computing the effect of early baryon-CDM perturbations on LSS, we
neglect the late-time impact of baryonic processes and do not include
hydrodynamical forces in the simulations. We refer the reader to
Khoraminezhad et al. (2021) for all the details and validating tests
of our numerical setup.

We use the spherical overdensity (SO) algorithm Amiga Halo
Finder (AHF) (Gill, Knebe & Gibson 2004; Knollmann & Knebe
2009) to identify haloes. The definition of the virial radius is the
one of a sphere in which the average density is given by p,;-(z) =
A (2) pn(z), where p,, is the background total matter density. We
chose the overdensity threshold as A,, = 200, and set the minimum
number of particles per halo to 20. For this work, we only used main
haloes and discarded subhaloes from the catalogues. We identify
haloes at redshift z =0, z=05,z=1,z=15,z=2,and z =
3. In the case of 2-fluid simulations, we use both CDM and baryon
particles to identify haloes. We compared the halo mass function in
the 1-fluid and 2-fluid simulations and found good agreement (see
fig. 3 of Khoraminezhad et al. 2021).

2.2 Void finder

We use the publicly available REVOLVER (REal-space VOid
Locations from surVEy Reconstruction)! void finder to build our
void catalogues with the ZOBOV (ZOnes Bordering On Voidness)
algorithm (Neyrinck 2008), which is a 3D void finder and has been
widely used both in simulations and observed catalogues (Nadathur
et al. 2020; Contarini et al. 2021; Jeffrey et al. 2021). The ZOBOV
algorithm performs a Voronoi tessellation of a set of points, identifies
depressions in the density distribution of these points, and merges
them into group of Voronoi cells using a watershed transform (Platen,
van de Weygaert & Jones 2007) without pre-determined assumptions
about voids shape, size, or mean underdensity, which is the most
appealing aspect of the watershed method. Here we briefly outline
the basic steps of the void-finding technique in ZOBOV and we refer
the interested readers to the main ZOBOV paper (Neyrinck 2008)
for a detailed description. One can describe the ZOBOV mechanism
with the four following main steps:

(i) Voronoi tessellation field estimator (Schaap 2007): the algo-
rithm divides the space into cells around each tracer i (haloes or
particles in this work) in which the region inside the cell is closer to
particle i than to any other one. It then estimates the density of each
Voronoi region using the volume of each cell 1/V(i).

(i1) Definition of the minimum density: after estimating the density
in each cell in the first step, the algorithm finds the minimum density

Thttps://github.com/seshnadathur/Revolver
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cells, defined as Voronoi cells with a density lower than all their
neighbouring ones.

(iii) Formation of basins: the algorithm then joins adjacent higher
density cells to the minimum-density cell until no neighbour cell
with a higher density can be found. It means that the void finder links
all the particles to their minimum density neighbour. This procedure
defines basins as the zones of these cells. At this point, these basins
themselves could be considered as voids because they are depression
regions in the density field, but one single basin may also arise from
spurious Poisson fluctuations due to the discreteness of the particles.

(iv) Watershed transform: the last step is when these basins are
joined together using a watershed algorithm (Platen et al. 2007). For
each basin b, the ‘water’ level is set to the minimum density of b. It
is then slowly elevated so that it can flow to the neighbour basins,
joining all of them to basin b. The process stops when the ‘water’
flows into a basin with a lower minimum, which defines the final
void distribution.

Void centres are then defined as the centre of the largest sphere
completely empty of tracer that can be inscribed within the void.
Indeed, this is the best predictor of the location of the minimum of
the matter density field (Nadathur & Hotchkiss 2015). The effective
radius of the void, R,, is computed using the total volume of the
underdense region and assuming sphericity

N
4
Veia =Y Vi = 37 R}, 2
i=1

where V/ is the volume of the Voronoi cell of the ith tracer, and N
represents the number of points that are included in the void.

We run the ZOBOV algorithm for all realizations of our 1-fluid and
2-fluid simulations presented in Section 2.1 at redshift z =0, z =
05, z=1,z=1.5 z=2, and z = 3 for two tracers:

(i) Haloes
(ii) Dark matter particles.

In order to better handle the computational cost of running the
void finder in the particle field, we have made a down-sampling
routine to randomly select CDM particles of the simulation snapshots
down to a constant average density of 6.71 x 10° particles per
cubic box-size (5004~' Mpc), which corresponds to 5 per cent of
the particles at each redshift, and insures us to be conservative
with the density. We have verified that the different void statistics
we study here were not affected when using a different random
sample. We note that in the case of the 2-fluid simulation scenario,
even if we have both types of particles (baryons & CDM) in the
simulation, we only used the down-sampled positions of CDM
particles. We should in principle select voids in the total matter
density field, including baryons, however, the ZOBOV algorithm
cannot discriminate between different populations of particles with
different masses. Therefore, we must identify the voids in one of
the two density fields only. Since CDM particles are much more
massive than baryons, they are more representative of the underlying
total mater field, and are the stronger contributor to the evolution of
cosmic structures. We emphasize that we do not expect the inclusion
of baryons or not in the void finding procedure to strongly affect our
results.

We note that the total number of voids identified in the particle-field
is significantly greater (from ~20 times for z = 0 to ~200 times for
z = 3) than the number of voids in the halo field due to the difference
in the mean tracer densities (Kreisch et al. 2019). Moreover, for both
types of simulations when one uses haloes as tracer of the matter
field, the total number of voids gradually decreases with increasing
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redshift (for instance for the 1st realization of our 1-fluid simulation
we found 2085, 1950, 1621, 1225, 860, and 289 voids at z =0, z =
0.5,z=1,z=1.5, z =2, and z = 3, respectively) which is due to
the fact that the number of haloes formed at higher redshift is smaller
than the ones at lower redshift which decreases the tracer density at
higher redshift, and consequently the number of voids. On the other
hand, in the case where CDM particles are used as tracer, the total
number of voids increases as the redshift increases since we kept the
tracer density constant at all redshift in this case (for example, for
the same 1st realization of the 1-fluid simulation in the particle field
we found 32544, 42208, 52 188, 61 642, 70076, and 83430 voids
atz=0,z=05,z=1,z= 1.5,z =2, and z = 3, respectively).
In order to understand these features in the statistics of the voids in
a better way, we will look at the distribution in size of cosmic voids
in the next section.

3 VOID SIZE FUNCTION

The Void Size Function (VSF), or void abundance (Sheth & van de
Weygaert 2004; Furlanetto & Piran 2006) is the number of voids in
a given radius bin at a given redshift. The VSF is a relatively recent
tool that nowadays is becoming promising to probe dark energy
(Pisani et al. 2015; Verza et al. 2019) as well as constraining neutrino
masses (Massara et al. 2015; Kreisch et al. 2019; Contarini et al.
2021). In addition to that, some recent works have also explored the
differences between VSF in the concordance model of cosmology
ACDM and modified gravity theories (see Cai et al. 2015), Galileon
or non-local gravity (see Barreira et al. 2015), or the possibility
of couplings between CDM and dark energy (see Pollina et al.
2016). Here we will present the comparison between the VSF in
1-fluid and 2-fluid simulations to assess the impact of baryon-CDM
relative perturbations on these statistics. Each time we focus on voids
identified both in the CDM density field (downsampled) and in the
distribution of collapsed haloes to highlight how the use of different
tracers with different bias might resultin a different relative behaviour
in the VSF. Notice that the impact of these perturbations has been
studied in Khoraminezhad et al. (2021) for key observables of
overdense regions of the density field (halo mass function and power
spectrum, and the contribution of the baryon-CDM perturbation bias
term to the halo power spectrum was found to be at maximum
0.3 per cent at k = 0.1hMpc~!, at z = 0). However, they remain
unexplored for underdense regions observables.

3.1 VSF in the halo field

The left-hand panel of Fig. 1 shows the void size function of voids
identified in the halo field both for the 1-fluid (solid line) and 2-
fluid (dashed line) simulations. Based on the fact that no relevant
differences have been observed between the halo mass function of
the two types of simulations (see fig. 3 of Khoraminezhad et al.
2021), we are not expecting the void size function to be strongly
affected either. We do however notice that the number of small voids
identified in the halo field in the 2-fluid simulation is higher than
the one in the 1-fluid simulation for all redshifts considered, while
for larger voids (R, > 40Mpch~') we can see the opposite trend
(we identified more large voids in the 1-fluid simulation rather than
the 2-fluid one). Nevertheless, these differences are relatively small
and almost remain inside the errorbars (which shows the error on the
mean obtained from the eight different realizations). This can be seen
more directly in the lower left-hand panel of Fig. 1 that shows the
ratio of the void size function in the 2-fluid and 1-fluid simulations.
We see the most significant difference between 1-fluid and 2-fluid
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Figure 1. Cumulative void size function (number density of voids with radii above R,) in the 2-fluid simulations in dashed and 1-fluid simulations in solid
lines in the halo field (left-hand panel) and in the particle field (right-hand panel) for different redshift illustrated by the colour bar. The lower panels show the
ratio of the VSF as ‘2-fluid/1-fluid’ to see the difference better. The grey dotted line in the lower panels stand for the situation in which the VSF is equal in both
types of simulations. The shaded area in each case depicts the 1o error on the mean obtained from the eight different realizations.

simulations for small voids at z = 3, where we observe more small
voids in 2-fluid simulations with a significance of roughly 1.50. We
see the opposite effect for larger voids but with larger errorbars
and consistent with 1. We emphasize the fact that the observed
trend is something that we are expecting, since clustering is slightly
diminished in 2-fluid simulations. Indeed, in Khoraminezhad et al.
(2021), Fig. 9, we have shown that the amplitude of the ratio of the
halo—halo power spectrum in 2-fluid simulation over the 1-fluid case
is below 1, confirming the fact that baryon—photon coupling in the
early universe decreases the clustering in 2-fluid simulations. Hence,
we expect to have more small voids and less large voids in 2-fluid
simulations, and we expect this effect to be more important at higher
redshift since gravitational evolution washes out relative baryon-
CDM perturbations after decoupling. We also note that the effect of
baryon-CDM perturbations on the cumulative VSF is smaller than
the effect caused by massive neutrinos (see for instance fig. 2 of
Massara et al. (2015) in which the authors observed an impact due
to neutrino masses up to ~ 30 per cent for Y m, = 0.6eV at z =
0). Finally, the left-hand panel of Fig. 1 shows that in both types of
simulations, ZOBOV found more small voids at lower redshift and
more large voids at higher redshift as can be seen in the redshift trend
shown by the colour bar. This is also something that we expect, as
discussed at the end of Section 2.2.

3.2 VSF in the particle field

The right-hand panel of Fig. 1 presents the VSF for voids found in the
particle field. While we found more large voids and less small voids
with increasing redshift in the case of halo field voids, here we see
that we find more small voids at higher redshift (and symmetrically
less large voids). The redshift trend, in this case, is hence different
than for halo field voids for which we recall that the average density
of tracers in the box is evolving with redshift which is not the case
for particles. This confirms, as was shown in various previous works,
that the void population depends on the tracer type one is using,
in particular on the tracer density and tracer bias (see for example
Sutter et al. 2014a; Contarini et al. 2019). The particle field voids

are smaller and found in greater numbers than the voids in the halo
field. This is due to the fact that the distribution of collapsed haloes
is sparser than that of cold dark matter particles. These results are
again expected, as we discussed at the end of Section 2.2.

For particle field voids, the difference in the number of voids found
in the 1-fluid and 2-fluid simulations is even reduced compared to
the halo field void case, and we do not observe any redshift evolution
trend of the effect on these VSF caused by the 2-fluid formalism.
Hence baryon—-CDM relative perturbations impact the VSF of voids
identified in haloes more importantly, which suggests that they might
also impact the VSF of voids found using luminous tracers (such as
galaxies) in observations.

4 VOIDS 2-POINT STATISTICS

‘We now move on to the 2-point statistics of voids, focusing first on
the full correlation functions before analysing the voids profile and
voids bias in more details.

4.1 Full correlation functions

The 2-point correlation function (2PCF) of a set of objects is a
measurement of the degree of clustering of the considered objects
defined as the excess probability of finding an object at a given
distance from another one with respect to a homogeneous distribution
of objects. Estimators of the 2PCF, £(r), in which r denotes the
comoving separation, have been studied by various authors (see for
example Peebles & Hauser 1974; Hewett 1982; Davis & Peebles
1983; Hamilton 1993; Landy & Szalay 1993). Among them, we use
the so-called ‘natural’ estimator (Peebles & Hauser 1974) which has
been implemented in the nbodykit pipeline’ (Hand et al. 2018) to
measure the void and halo auto/cross 2PCF in our simulation boxes.

4y = DDO)
5= RreH

L, 3)

Zhttps://github.com/bcep/nbodykit
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Figure 2. Void—void (orange), halo-halo (green), and halo—void (blue) 2PCF as a function of separation r using voids found in the halo field (left-hand panel)
and the particle field (right-hand panel) at z = 0. The results for the 1- and 2-fluid cases are shown by solid and dashed lines, respectively. The shaded area in

each case shows the 1o error obtained from eight realizations.

which calculates the 2PCF using a data catalogue D, and a synthetic
random catalogue R. DD(r) and RR(r) represent the pair counts with
separation r in the data and random catalogues, respectively. Notice
that, in order to reduce computational cost, nbodykit analytically
estimates the random pairs RR(r) in the case of uniform periodic
randoms such as for simulated boxes.

Fig. 2 shows the void—void, halo—void, and halo—halo auto(cross)-
correlation functions at z = 0 in 1- and 2-fluid simulations (solid and
dashed lines, respectively), for voids identified both in the halo field
(left-hand panel) and in the CDM particle field (right-hand panel).
These correlations are computed for all haloes and voids without
binning in size. For all cases, the 2PCF is monotonically decreasing
as a function of distance. In both panels, the amplitude of the halo—
void correlation function stands between the halo—halo and void—void
ones for all separations r. The halo-halo correlation function (green
curve) is the same in both panels (since it obviously does not depend
on the tracer used to find voids), and serves as reference to compare
the two cases. In the case of voids in the halo field, the amplitude of
the halo—void and void—void cross/auto correlations is higher than the
halo-halo case, while in the particle field, the halo—void and void—
void 2PCFs are lower than the halo—halo one. This demonstrates that,
as expected, voids identified in the halo field are more correlated with
haloes than the voids found in the particle field. Another important
feature here is that since voids are larger in the halo field than in the
CDM particle field, the void—void 2PCF (orange curve) in the left-
hand panel starts to be non-zero at larger separation than the one in
the right-hand panel due to the exclusion effect. Indeed, since voids
are low-density regions extending several tens of megaparsecs (hence
with little amount of tracers inside them), the signal at scales inside
the void radius becomes really low (or even zero) when computing
the correlation function (or power spectrum) due to the lack of objects
inside the voids, (see for instance Platen, van de Weygaert & Jones
2008; Chan, Hamaus & Desjacques 2014; Hamaus et al. 2014b).
This also has for effect to increase the amplitude of the correlation
on larger scales in the halo field since larger voids (corresponding to a
merging of small ones) can form in the halo field. Finally, we further
note that due to the much larger number of haloes in comparison to
voids (~ 150 times larger) the signal to noise is much higher for the
cross-correlation than the autocorrelation of voids. This for instance
will have a consequence on the precision of the void bias estimation
(see Section 4.3).

We now inspect in more details the impact of baryon-CDM relative
perturbation on the 2PCFs by comparing results in the 1- and 2-fluid
cases (solid versus dashed lines). We see that all differences are very
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small and well within 1o errorbars. The largest difference is seen
in the case of the halo—void correlation function for voids identified
in the particle field (blue lines in the right-hand panel), with the
2PCF computed in the 2-fluid case being slightly smaller at small
scales and slightly larger at larger scales. Moreover, we see a small
trend on the halo-halo 2PCF, where the 2PCF computed using 2-
fluid simulations seems always slightly below the one computed
from 1-fluid simulations. This suggests that baryon-CDM relative
perturbations tend to lower the clustering, which is in agreement
with the expectation of baryon—photon coupling slowing down the
clustering process (as discussed in Khoraminezhad et al. 2021).
However, this effect is quite small and still within our errorbars.
Note that this effect is also in agreement with the one we mentioned
in Section 3.1 for the VSF, regarding the fact that since we have less
clustering in 2-fluid simulations we identify more small voids and
less large ones.

4.2 Density profiles

Cosmic voids are underdense regions close to their centre with an
overdense compensation wall at r ~ 2R, r being the radial distance
from the centre of the void. Moreover, the deepness of the void centre,
as well as the amplitude of the compensation wall have been shown to
strongly depend on the void population considered (see for example
Ricciardelli et al. 2013; Hamaus et al. 2014a; Ricciardelli et al. 2014).
The density profile of voids encodes the same information as the void-
tracer cross-correlation function since the radial profile of voids is
indeed equal to the way that we count the number of tracers at distance
r from the centre of the void (see Hamaus et al. 2015; Pollina et al.
2017 for a detailed explanation). In more details, the average radial
number density of tracers at distance r from the void centre, p,,(r)
(also known in the literature as the void stacked profile), can be
written as

pu(r) 1 P4 (r)
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1 1 D . .center 1
"W 2,V 2 e

1 D, center
vy [
ij

1 Pu(X) pr(x +71) 4
S PRYTD) Py = 1+ £,(r), 4
v] g gy rEITEO “@

L p 3
—x)ﬁté (x—x;—i—r)d X

€20z AelN g1 uo 1esn vSSIS Aq $0Z72G9/SEEY/E/ L L G/BI0IHE/SeIuW/WOd dno olwapede//:sdiy woly papeojumoq


art/stac331_f2.eps

Voids and BAO with baryon-CDM perturbations — 4339
% 0.0 T T T T T T T N'U 0.0 T B — T T T
Q. o
s s
T -0.5 — z=0 z=2 T -05 — z=0 z=2 ]
% ' voids in halo field ~ —_ 270% w % voids in particle field 3% "
E—l.ow“"’ —— z=1.5 —— 1fluid A ‘é—l.O —— z=15 —— 1fluid
e [— | I ! I ! I ! wr | Il Il Il I
t + t + t t t 2F t t t t +
£t ] £
(0] Q
~ ~
= =1 ]
G V2 t— G
| e I
| [ ———— «0
o~ o~
Laa & =
10 20 30 40 50 60 70 80 5 10 15 20 25 30

r[h~*Mpc]

rlh~*Mpc]

Figure 3. Halo—void cross-correlation corresponding to the void stacked profile for voids in the halo field (left-hand panel) and in the particle field (right-hand
panel) at different redshift, and for 1-fluid and 2-fluid simulations (solid and dashed lines). We computed &, for all voids in our catalogues (i.e. without applying

any cut in radius). Lower panels show the difference between 1-fluid and 2-fluid simulations over the parameter ‘err’, defined as err = /errézf + err,> . Note
it

that the curves at z = 0 are equivalent to the blue curves in Fig. 2, with a vertical axis in linear scale.

where N, and N, are the number of voids and tracers, respectively
(with (p,) and (p,) their respective mean density), V is the total
observed volume, x denotes the position (we use the index i to run
over voids and j to run over tracers), and §? is the Dirac delta function.
We have used the definition of the density of tracers within the void as
asum of Dirac deltas in the second equality, which can then be written
as a convolution of the number density of the centre of the voids p,
and the number density of tracers p, (third and fourth equality), which
is finally the definition of the void-tracer cross-correlation function
§u(r).

We use this definition and compute the mean void profile as the
halo—void cross-correlation function for voids identified both in the
halo and particle field. The void density profile for different redshift
and different simulations scenarios (1-fluid and 2-fluid) are presented
in Fig. 3. The left-hand and right-hand panels display the density
profiles of the voids identified in halo and particle fields, respectively.
Note that Fig. 3 is similar to the blue curve in Fig. 2 but with a linear
vertical axis, and for different redshift represented by the colour bar.
In Fig. 3, we can distinguish three different scales with three different
behaviours in the density profile:

(i) The innermost scales (~r < R,/2) (R, is the mean void
radius) in which &,;, approximately tends to —1 at the void centres.
Note that since the central part of voids is not totally empty, the
cross-correlation is not exactly equal to —1.

(ii) The intermediate scales (~ R,/2 < r < 2R,) or the void
profile regime, on which we can see the compensation wall of the
voids, which is a positive correlation around the void at all redshift.
Notice that for voids identified in the halo field (left-hand panel) the
compensation wall moves to higher scales with increasing redshift.
This is caused by the fact that the VSF at higher redshift is shifting
towards larger radius voids (see Fig. 1, left-hand panel). On the
contrary, in the case of particle field voids (right-hand panel), we
see that the compensation wall moves towards lower scales with
increasing redshift, which corresponds to the fact that the VSF of
particle field voids at higher redshifts is shifting towards smaller
radius voids (Fig. 1, right-hand panel).

(iii) The linear regime (~ r > 2R,) in which we see that the
compensation wall disappears and &,, — 0. This is the regime in
which we will compute the void bias in Section 4.3.

Comparing the left-hand and right-hand panels of Fig. 3, we can
also see that halo field voids have a much larger mean size than that
of the particle field ones. This behaviour is confirmed by the VSF in

Fig. 1. The bottom panels of Fig. 3 present the difference between 2-
fluid simulations and the 1-fluid case over the error parameter which
describes the quadrature summation of the errors in each case. We
see that for the halo field voids, for small scales that are inside the
void radius, the difference between the 2-fluid and 1-fluid correlation
functions is slightly lower than zero at all redshifts, suggesting that 1-
fluid voids are somewhat smoother (recall that the density is negative
on those scales). This effect is within errorbars but can be seen for
the mean value of the difference for halo field voids. Moreover, this
effect is not seen in particle field voids (right-hand panel) due to the
fact that the signal is more noisy since we correlate particle field
voids with haloes. Finally, we note that errorbars in the void centre
are quite large due to the low-density definition of voids, and thus
the lower amount of haloes to compute the correlation.

The density profile of voids has been shown to depend on
the void size (see for example Hamaus et al. 2014a; Sutter
et al. 2014a), and we next explore whether or not the effect
due to baryon-CDM perturbations could also vary with voids
size. We divided our catalogues of void identified in the halo
field in three different radius bins: 10 < R, < 20 h~! Mpec, 20 <
R, <30 h™'Mpc, 30 < R, <40 h~!'Mpc, and the catalogues
of void identified in the particle field in four radius bins: 1 <
R, <5 h™'"Mpc,5 < R, < 10 h~'Mpc, 10 < R, < 15 h~! Mpc,
15 < R, <20 A~ Mpc. The void profile (i.e. the void—halo cross-
correlation function) for each radius bin for each type of voids and at
different redshift are shown in Fig. 4 (for halo field voids) and Fig. 5
(for particle field voids). In Fig. 4, we do not show results at z =
3 since the number of voids is quite small and the cross-correlation
signal becomes too noisy. For both types of voids and for all different
void size bins, we observe the same three different regimes mentioned
above (the innermost scale, the intermediate scale, and the linear
regime). We note that for all types of voids (found in haloes or
particles) the compensation wall found at intermediate scales (the
void profile regime) is more pronounced at smaller radius: in Fig. 4,
we see a clear positive bump in the first panel for smallest halo
field voids, and as we move to the second and third panels (to larger
voids), the bump becomes less prominent and it disappears in the last
panel for the largest voids. We observe the same behaviour in Fig. 5
for particle field voids. The results found here are qualitatively in
agreement with Ceccarelli et al. (2013), Hamaus et al. (2014a) and
Clampitt, Jain & Sanchez (2016).

In the same manner as for the void profiles of all voids (without
classifying them by their radius), we show the difference of the results
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Figure 4. Void profile of halo field voids for three different bins of void radius

R, for 1-fluid (in solid line) and 2-fluid (in dashed line) simulations at five

different redshift (colour coded). In each bin and at all redshift the cross-correlation approaches —1 close to the centre of the void (~(r < R,/2)). On scales
~(Ry/2 < r < 2R,), the void profile shows a prominent compensatory ridge of haloes for smaller voids 10 < R, < 20 i~ Mpc, which disappears for the
largest voids 30 < R, < 40 h~! Mpc. In each bin, this compensation wall moves to lower radius (smaller voids) with decreasing redshift, which is the same
behaviour as we noticed in Fig. 3. Lower panels show the difference between the 1-fluid and 2-fluid case over the error defined as err = /errg2f + el for

each void size bin, where we see that voids in the 2-fluid case tend to be slightly less dense in their centre.
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Figure 5. Same as Fig. 4 but for voids in the particle field in four different bins of void radius R,. Since the number of voids identified in the particle field is
larger than in the halo field, we divided them into more radius bins than halo field voids. The results of the 1-fluid scenario are shown by the solid lines and
the ones of the 2-fluid by the dashed lines. The colour bar represent different redshift. The void profile shows a sizable compensation wall for the voids in the
smallest size bin (1 < R, < 5 h~! Mpc). When moving to larger voids this structure becomes less prominent. The lower panels show the difference between

the 1-fluid and 2-fluid case over the error defined as err = /errgZf +ertg for each void size bin.

from the 2-fluid scenario and the 1-fluid one over the quadrature
summation of the errors in each case in the lower panels of Figs 4
and 5. For halo field voids (Fig. 4), inside the voids, we see that
Evnor < Eunar at all redshift which tells us again that 1-fluid voids
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are slightly smoother. We do not observe this for particle field
voids (Fig. 5), because the signal is much more noisy again. We
note that the effect of baryon-CDM perturbations on void profiles
does not seem to depend on the void radius as we observe that

€202 e\ | uo Josn YSSIS Ad #02#2S9/€EEY/E/ | L G/oI0IME/SBIUW/WOD dNO"DlWBpede//:Sd]Y WOl papeojumoq


art/stac331_f4.eps
art/stac331_f5.eps

Voids and BAO with baryon-CDM perturbations

————— 10 <R, < 20(fit)
——- 20 <R, < 30(fit)
—— 30 <R, <40(fit)
- 10<R, <20 p
20<R, <30
30<R, <40 -
L

1 L 1 L 1

40 60 40 60 80 40 60 80
rlh~*Mpcl]

4341

100,1:0 Jz=05 Jz=1 ]
O Lo ‘ e
A
8 —100F T T 5
3 e R S f—+ ¥ S S SVl
N> Z=
5001 T T b
QT sl E L e = 10 <R, < 20(fit)
——- 20 <R, <30(fit)
0 —— 30<R, <40(fit) ]
«— 10<R,<20
« 20<R, <30
—500r T T « 30<R,<40 ]
L L L L X L L L
40 60 80 40 80 40 60 80

60
rlh~1Mpcl]

Figure 6. b;"** (left-hand panel) and (bﬁ““’)2 (right-hand panel) as a function of scale (equations 6—7) and an example of the fit with a zeroth order polynomial
to obtain the mean void bias value. Both panels present results from 2-fluid simulations for voids in the halo field. Each subpanel with different colour presents
results at a different redshift. Different markers and line styles show the measurement and associated fit at different void radius R,,. The vertical line in each line
style is showing the 2R, value for each bin. The errorbars show the 1o error on the mean obtained from eight realizations. Since the number of voids is roughly
~150 times less than the number of haloes, we have very large errors when computing (bﬁ““’)z.

the difference seems to be similar inside the voids in all panels.
Finally, we emphasis that these differences are always compatible
with 1 within lo errorbars, therefore we conclude that there are no
significant differences between void profiles in 1-fluid and 2-fluid
simulations, and hence that baryon-CDM relative perturbations due
to photon pressure do not significantly impact this quantity. The
results in each radius bin in Figs 4 and 5 are compatible with those
obtained for all voids without binning in size (Fig. 3).

4.3 Void bias

In addition to the different void observables presented above, we also
aim in this work to quantify the impact of baryon-CDM perturbations
on the linear bias of cosmic voids. Indeed, the estimation of the
clustering bias of cosmic voids is an essential element to achieve
competitive cosmological inference from voids, in the same way as
galaxy bias in the case of galaxies (Desjacques et al. 2018; Pezzotta
etal. 2021; Schmidt 2021, and references therein). In this perspective,
the interest in understanding it and modelling is raising (Sheth & van
de Weygaert 2004; Chan et al. 2014; Hamaus et al. 2014b). Moreover,
the possibility of using void bias directly to constrain cosmology is
also recently gaining interest (see for example Chan, Hamaus &
Biagetti 2019; Schuster et al. 2019; Chan et al. 2020). Here, we will
measure the bias of our voids following the methodology described
in Clampitt et al. (2016), for both 1-fluid and 2-fluid simulations at
different redshift, and considering both voids identified in the halo
field and in the particle field. Similarly to Clampitt et al. (2016),
we define the void bias using two different expressions, the first one
using the halo—void cross-correlation as

blc/ross — %_Uh , (5)
bh ‘i:mm

in which the halo bias can be obtain using the halo autocorrelation

signal as by, = /&n,/&nm- Thus one can rewrite equation (5) as

bgross — Suh ( 6)

hY% shh Smm '

The second definition uses the void—void autocorrelation as follows

v
baulo — Zt , 7
e ()

where in all the above equations &,,, is the matter—matter autocor-
relation function measured directly from the simulation snapshots

(using only CDM in 2-fluid simulations), and &, is the halo-halo
autocorrelation function shown in Fig. 2. For b2, we first measure
the bias squared and then we chose the sign of the square root using
the sign of b} °* (identically to what has been done in Clampitt et al.
2016). Considering the number of voids in each bin, we expect b2"'
to be much more noisy. Nevertheless, it is interesting to cross-check
to see if both bias measurements give comparable values.

Fig. 6 presents, as an example, the cross (left-hand panel) and
auto (right-hand panel) bias as a function of scale for halo field
voids at various redshift and void radius. Each small panel with
different colour presents a different redshift. Considering the few
number of voids identified at z = 3 and the low signal-to-noise ratio
resulting, we do not show the bias analysis results at z = 3. We use
different markers for different void size bins. The markers here show
the mean value of the bias and the errorbars are the 1o error over
eight realizations. As expected, in the linear regime both bias are
showing a constant behaviour. We then obtained the values for b§™°%
and (b™°)? as a function of redshift and void size by fitting a zeroth
order polynomial on linear scales (horizontal lines in the figure).
In both cases, we use only scales between 2R, < r(Mpc/h) < 80
for the fit. The lower limit assures that we are using only pairs
of distinct voids, and the upper limit assures us to avoid the BAO
scale on which dividing by &, would create a high noise. We use
different line styles to show the fit in different size bins, and we show
here the fit over the mean values taking into account the errorbars
over different realizations. We also did the same fit for each of the
realization to find the errorbars over the mean value of the bias from
eight realizations. As expected, we observe a higher amount of noise
in (bﬁ““’)2 than in 5" (notice the difference in y-axis range) due
to the fact that the pair counts in &,, are much smaller than &,,. In
addition, the errorbars are increasing with redshift due to the smaller
amount of voids found at higher redshift. Regarding the values of
b and (b™°)2, since the linear bias of haloes is increasing with
redshift (e.g. Tinker et al. 2010), one can expect the voids identified
with this tracer to also become less biased as time evolves, which
is indeed what we observe. We also see that the void bias slightly
decreases with increasing void size which is in agreement with the
results in Clampitt et al. (2016), Hamaus et al. (2014b).

We then show in Fig. 7 the mean void bias as a function of the void
radius integrated over the scales mentioned above (i.e. the value of
the fits obtained on scales 2R, < r < 80 h~! Mpc). We show both
void bias results from cross-correlation, b;"*, and autocorrelation
b*"'° using different tracers (in left-hand panels we present results in
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Figure 7. Mean, scale-independent void bias as a function of mean void radius R, obtained from the fits on Fig. 6. Left-hand panels: b5 and b2 obtained
using voids identified in the halo field for all different redshift (colour coded), for both 1-fluid (solid lines) and 2-fluid (dashed lines) simulations. We see that
both b$™ and H2™° slightly decrease with increasing void size, and that both increase with increasing redshift. Right-hand panels: same as the left-hand panels
but for voids found in the CDM particle field. In this case, we see that both biases depend more strongly on the void radius, and larger voids become negatively
biased at all z. We further see that all voids become more positively bias and more negatively biased with increasing redshift. We observe only small differences
that are all within 1o errorbars between the void bias measured from 1- and 2-fluid simulations.

the halo field and the right-hand panels show results in the particle
field). Different colours show different redshift as before. Since in the
particle field we have a much larger number of voids, the errorbars
are quite smaller compared to the halo field results. Moreover, the
number of voids in both halo and matter fields drops significantly with
increasing redshift, resulting in more noisy correlation measurement,
and consequently, the errorbars of our void bias measurement are also
increasing with redshift. This is the main reason why we do not show
results at z = 3.

Inspecting Fig. 7 in more details, we see that measurements of the
bias from the two definitions, i.e. using either the auto (equation 7)
or the cross (equation 6) correlation signals, are broadly consistent
for all void size bins considered, both for halo field and for particle
field voids, except for the highest radius bin of the particle field
voids. However, this is probably due to the fact that the signal in
this case is really noisy due to the low number of objects, which
affects our measurements and might lead to a slight underestimation
of the errorbars. A detailed investigation is beyond the scope of this
work in which we focus on the comparison between 1- and 2-fluid
simulations. If we now inspect the difference between halo field and
particle field voids, we see that choosing different tracer significantly
affects the void bias: voids identified in the halo field are more biased
than the particle field voids which is something expected since dark
matter haloes are biased themselves. Furthermore, we find that in the
case of the voids in the halo field, the mean value of the void bias
is a slightly decreasing function of the void size (almost consistent
with a constant considering the errorbars), while for the particle
field, the void bias is a decreasing function as the size of the voids
is increasing. In the right-hand panel of Fig. 7, we observe that the
particle field void bias changes sign at a specific ‘turning scale’,
which is a similar behaviour as observed by Clampitt et al. (2016),
with however a different turning scale. This turning scale is roughly
at ~ 15 h~! Mpc for our voids in the particle field while roughly at
~ 25 h~! Mpc for SDSS voids in Clampitt et al. (2016). However,
we do not expect to observe the change of sign at the exact same
scale since these authors find voids in a different tracer field using a
different void finder.

Comparing the void bias from 1-fluid and 2-fluid simulations (solid
versus dashed lines), we see that voids from the 2-fluid simulations
are slightly more biased for both voids from the halo field and the
particle field. This difference is within 1o errorbars, but the trend
of the 2-fluid simulation bias being slightly larger is expected: since
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the 2-fluid halo-halo 2PCF (the green curves in Fig. 2) is showing
less clustering than in the 1-fluid scenario, the linear halo bias b, is
expected to be smaller in 2-fluid simulations as well. Then we can
see from equations (5)—(7) that the void bias should be slightly larger
in the 2-fluid case.

5 BARYON ACOUSTIC OSCILLATIONS

In this section, we extend the computation of the real-space 2-
point correlation function in 2-fluid simulations from voids to
each component of the simulations, i.e. total matter, baryons only,
CDM only, baryon-CDM relative perturbations (8,.), and haloes. In
particular, we focus on modulations of the BAO feature and BAO
peak position by comparing our results for the total matter and halo
fields in 1- and 2-fluid simulations. This is a direct extension of our
previous work (Khoraminezhad et al. 2021) where we focused on
Fourier space quantities.

Relative velocity perturbations between baryons and CDM can
possibly shift the BAO scale because they are sourced by the same
physical effect which imprinted the BAO peak itself. The shift in the
BAO scale is crucial for cosmology since it could lead to a potential
systematic shift in measurements of the angular diameter distance
D4(z), the Hubble factor H(z), and the growth factor fo g (Dalal et al.
2010; Yoo & Seljak 2013; Beutler et al. 2017; Barreira et al. 2020a).
This effect might also be important to obtain unbiased results when
one is investigating the effect of massive neutrinos on the BAO scale
(Peloso et al. 2015) or when one is using reconstruction methods
to measure the BAO location in 21 cm intensity mapping surveys
(Obuljen et al. 2017; Villaescusa-Navarro, Alonso & Viel 2017).

5.1 Full-shape correlation function

In this subsection, we first focus on the full shape of the 2-point
correlation function. To compute the 2-point correlation function
in real-space, we use the Fast Fourier Transform (FFT) estimator
introduced in Taruya et al. (2009) in which the density field is
computed on a grid in Fourier space, squared, inverse Fourier
transformed, and averaged in radial bins

Esm(r) = > FFT [I8001°] (), ®)

Fmin <|7'| <rmax

N modes
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Figure 8. The redshift evolution of the full-shape total matter 2-point correlation function in 1-fluid (solid) and 2-fluid (dashed) simulations in real space as
measured by equation (8). We multiply the 2PCF by 72 to see the BAO peak better. The shaded area show the 1o errorbar on the mean obtained from the
standard deviation over all realizations. The lower panel presents the difference between 2-fluid and 1-fluid sets: r2 A&y, = r2 (X — .’;’,i,’;n). We see that any

small difference between the two cases is within the errorbars on all scales.

where the sum runs over all radii r in the bin and N is the
number of modes in the bin. We use the Cloud-In-Cell (CIC) mass-
assignment scheme to compute the density field on the Fourier grid
8(k). To compute the total matter field §,, in 2-fluid simulations is
given by the weighted sum of the CDM field §,., and the baryon field
8p, s 8y, aS 8 = f6p + (1 — f3)d., Where f, = Q,/2,,. Moreover,
we choose the edges of the bins ry;, and ry, such that each bin as a
width given by the mean interparticle separation, which in our case is
512~ Mpc/500 ~ 1 h~! Mpc. We take advantage of the fact that
this estimator is implemented in the PYLIANS library,’> which we
use to obtain our results. Finally, we restrict ourselves to the real-
space 2-point correlation function in 1-fluid and 2-fluid simulations
without considering redshift space. The estimator introduced here to
calculate the 2PCF is much faster than the natural estimator we were
using to compute the void correlation functions and density profiles
in Section 4. There we were using the natural estimator since the
sparsity of voids and exclusion effects introduce large noise which
prevented us to use the Taruya estimator to obtain the void profile.
Here, since we are interested in the correlation function of particles
and haloes, which are by far more numerous, we can use the FFT
estimator to significantly reduce the computation time while keeping
a high-level of accuracy.

Fig. 8 shows the total matter—matter 2PCF computed in 1- and
2-fluid simulations (solid and dashed lines, respectively) using
equation (8) for different redshift (colour coded). We recognize
the standard shape of the correlation function which decreases as
rincreases, as well as the BAO peak at around r ~ 105 2~! Mpc. We
also see that both the correlation and the BAO peak increase with
decreasing redshift since the clustering becomes more important at
lower redshift. We observe small differences between the two cases
with the correlation function being slightly lower on smaller scales
in 2-fluid simulations, while on the scales of the BAO peak, the 2-
fluid simulations give us a higher value of the 2PCF, and the effect
is more important at low redshift due to non-linear evolution (recall
that the total matter linear power spectrum is kept constant between
1- and 2-fluid simulations). Notice that these differences are within
1o errorbars obtained over different realizations on all scales. These

3https://github.com/franciscovillaescusa/Pylians

mm

results confirm that baryon-CDM relative perturbations have a rather
small impact on the matter clustering (under the detection threshold
corresponding to our simulation volume) as was already pointed out
in Angulo et al. (2013), Khoraminezhad et al. (2021).

We now turn to a more detailed investigation of the cross-
correlation of each fluid component in 2-fluid simulations in Fig. 9.
The top and middle panels show the two different component of
the matter field (baryon and CDM) 2PCF divided by the square of
the linear growth factor D?. In case of baryons, we can see that the
correlation function exhibits a strong BAO peak at high redshift,
and that then the amplitude of the peak decreases with redshift
due to gravitational interactions with CDM particles (note that with
decreasing redshift the 1o error on the mean value increases). We
checked that the evolution of the baryon—baryon and CDM-CDM
correlation functions, without multiplying by D~2(z), is the same
as the total matter one (Fig. 8). Multiplying the baryon—baryon and
CDM-CDM correlation functions by D(z)~2 effectively removes the
linear growth of structure and hence leaves only the fact that the BAO
peak decreases with time. We can also see a small scale-dependent
suppression of the correlation function at scales r < 80 2~! Mpc to
accommodate for the growing peak. We see a somewhat different
behaviour for CDM in the middle panel of Fig. 9: from z =39to z =
7, we see the BAO peak slightly increasing as CDM particles fall in
the baryon potential well on these scales, imprinting the feature from
the baryon field into the CDM field gradually (note that we observe
the same position of the peak in baryons and CDM). The peak reaches
its maximum relative amplitude at roughly z = 7, the moment at
which mild non-linear effects appear. At redshift lower than z =7, we
observe then a small decrease in the peak amplitude. On small scales,
we note the same scale-dependent suppression for CDM fluctuations
that appeared as well in the baryon fluctuations. The results here
are in agreement with the ones in fig. 9 of Angulo et al. (2013). In
addition, as we saw for the halo—halo 2PCF in Fig. 2 (green curves),
and also for the halo-halo power spectrumin fig. 9 of Khoraminezhad
etal. (2021), baryon-CDM relative perturbations tend to diminish the
clustering. We however observed a slight increase of clustering on
scales around the position of the BAO peak in the matter—matter
2PCF in Fig. 8. We can now understand this in light of Fig. 9: the
pronounced baryon BAO feature increases the total matter BAO peak
in 2-fluid simulations.

MNRAS 511, 4333-4349 (2022)

€20z AelN g1 uo 1esn vSSIS Aq $0Z72G9/SEEY/E/ L L G/BI0IHE/SeIuW/WOd dno olwapede//:sdiy woly papeojumoq


art/stac331_f8.eps
https://github.com/franciscovillaescusa/Pylians

4344  H. Khoraminezhad et al.

D~2(2) Ecc(r) D™2(2) Epp(r)
o o o o o o
o o o o o o
o o o o o o
N W = NW

T

rszcbc(r)
S
°
o
N
T

60 80

100 120 140
rlh~1Mpcl]

Figure 9. Top panel: Baryon 2-point correlation function measured in the 2-fluid simulations at different redshift (colour coded). We see clearly how the BAO
peak of the baryon 2-point correlation function scaled by D~2(z), diminishes with time in this field. Middle panel: Same as top panel but for the CDM fluid. In
this case and in this range of z, the BAO peak of the CDM 2-point correlation function scaled by D~2(z), remains roughly constant. We note that the evolution
of the baryon—baryon and CDM—CDM correlation functions, without multiplying by D~2(z), is the same as what we have shown in Fig. 8 which is representing
the total matter correlation function. Bottom: The 8. relative perturbation autocorrelation function. In this case, we show results down to z = 3 only since the
noise becomes too important at later times. The BAO feature is clearly visible and is negative in this field. Furthermore, we see no redshift evolution, which
is consistent with the fact that &, is constant in time, as discussed in e.g. Schmidt (2016), Hahn et al. (2021), Khoraminezhad et al. (2021). Note that the two
upper panels are divided by the square of the growth factor D?(z) to see the difference in evolution of BAO in baryons and CDM, while in the bottom panel we
multiplied the 2PCF of 8. by 2 in order to show the BAO feature better. The shaded area on each curve represent the 1o error, and we see that with increasing

redshift the error becomes less prominent.

Finally, we compute the 2-point correlation function of the baryon-
CDM perturbation field 8, in the bottom panel of Fig. 9. We show
this 2PCF only down to redshift z = 3 because the noise increases
as we reach lower redshift, and the 2PCF becomes consistent with
zero on all scales. We see that this 2PCF is roughly constant close
to zero, except for the BAO feature which is a BAO dip instead
of the BAO peak in this case. This is because the BAO feature in
the baryon field gradually imprints itself into the CDM field, which
creates a skewed distribution of CDM with a sharp fall inside the
BAO scale but with a larger tail on scales slightly larger than the
BAO one (even though the position of the BAO peak is observed to
be identical for baryons and CDM). Therefore we expect to observe
an anticorrelation signal for §,. on scales slightly larger than the
BAO scale (8, is too small) in a skewed way, as can be seen in
the bottom panel of Fig. 9. We do not observe any notable redshift
evolution for this 2PCF which is consistent with the fact that &,
itself is constant in time, as discussed in e.g. Schmidt (2016), Hahn
et al. (2021), Khoraminezhad et al. (2021). Notice that this kind of
correlation function was also predicted using 2LPT in Chen et al.
(2019). While we do not conduct a detailed quantitative comparison
of their prediction with our results, we note that they found the same
kind of dip for correlation functions including relative baryon-CDM
density perturbations.

Finally, we investigate the halo-halo 2PCF at redshift zero in
Fig. 10. We present results for two halo mass bins centred around
logM = 12.2Mg h~! and logM = 12.7M, h~'. Recall that haloes
in the 2-fluid simulations are identified by considering both types
of particles (baryons and CDM). As we see the halo—halo 2PCF is
more noisy than the one obtained from particles due to the lower
number of haloes in comparison to particles. We see that results
obtained in the 2-fluid simulations are fully consistent with the ones
from 1-fluid simulations. This once again reflects the smallness of
the impact of baryon-CDM perturbations on galaxy clustering at low
redshift and implies that these effects will probably not need to be
included in the modelling of correlation functions for the analysis
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of future surveys BAO peak estimation. This has a positive impact
for such analysis since it will reduce the number of free parameters
entering the model. These results are in line with previous results in
the literature: Barreira et al. (2020a), Khoraminezhad et al. (2021)
estimated that the impact of baryon-CDM perturbations on the late-
time halo power spectrum should not exceed 1 — a few percent;
Beutler et al. (2017) conducted an analysis of the BOSS DR12 data
with a model including baryon-CDM relative density and velocity
perturbations, and obtained results for the bias parameters associated
with such perturbations consistent with zero, indicating an effect too
small to be detected; finally, using 2LPT, Chen et al. (2019) showed
the effect to be at most one order of magnitude smaller than the halo
2PCF itself.

5.2 Position of the BAO peak

We now focus more specifically on the position of the BAO peak
estimation for our two sets of simulation. Anselmi et al. (2018)
showed that the position of the BAO linear point, namely the midpoint
scale between the peak and the dip of the 2PCF, can be extracted
from the 2PCF measured in N-body simulations or galaxy data sets
in a model-independent way by introducing a polynomial function
to smooth the 2-point correlation function, and using a root-finding
algorithm to estimate the zero-crossing of the first derivative of the
2PCF. To measure the linear point one needs to estimate the position
of the BAO peak as well as the BAO dip through this modelling,
but here we will just focus on the maximum of this fit. We use the
following polynomial fit

N
)= an". ©)
=0

Following Anselmi et al. (2018), we obtain the best-fitting parameter
for the degree of the polynomial N by minimizing the x2. We
use scales in the range 85 — 115/h~! Mpc, and we choose N = 7,
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Figure 10. Halo-halo 2-point correlation function at z = 0 for 1-fluid (in pink) and 2-fluid (in blue) simulations for two different halo mass bins. The shaded
area show the 1o error over eight realizations of each set of simulations. Again we multiply the 2PCF by 7 to better see the BAO feature. We do not detect any

impact of baryon-CDM relative perturbations on this 2PCF either.

which allows us to obtain good fits in the sense that the reduced
%2 is close to 1 for all correlation functions we consider here while
avoiding overfitting. We have also checked that the results for the
position of the BAO peak depend only weakly on the degree of the
polynomial (for example, the results for the matter—matter correlation
function are consistent for polynomials of degree 4 to 8). Having the
polynomial fit, to identify the peak position, we find the point the fit
where the first derivative of the 2PCF is equal to zero, and the second
derivative is negative.

Fig. 11 illustrates this process by showing the matter—matter,
CDM-CDM, and baryon-baryon correlation functions, and the
related position of the BAO peak in each case (dotted-dashed vertical
line with 1o error) at z = 0. Each time the solid line shows the
measurement while the dashed line shows the fit. We see that the
position of the peak extracted from the baryon—baryon and CDM-
CDM 2PCFs align with each other and with the total matter one in
2-fluid simulations. The position of the peak in 1-fluid simulation is
slightly higher but the difference between the two cases lies within
the 1o errorbars. As we explained in the discussion of Fig. 9, this
is expected since the BAO feature originates in the baryon field
through baryon oscillations sourced by photon pressure, and then is
imprinted into the CDM field with the same position but a lightly
skewed distribution towards higher values. This results in a slightly
overestimated position of the peak when assuming that the two fluids
perfectly comove as is done in 1-fluid simulations.

The values of the position of the BAO peak for each fluid and
for several redshift are reported in Table 2 as well as in Fig. 12 in
details. Fig. 12 shows the 2-fluid measurements in nuances in blue
for different fields and the 1-fluid case in red. We note that in the
case of bcbc we show the position of the BAO dip both in Fig. 12
and Table 2. Since the position of the BAO peak in all cases remains
the same within errorbars (at least with the eight realizations that we
used here), we can argue that the BAO peak remains a standard ruler
even in the presence of baryon-CDM perturbations. Notice that to
decrease the errorbars by at least a factor of 5, we would need at least
900 realizations of each types of simulations but this would still not
assure that we would see any significant differences.

Using the results in Fig. 10, we also computed the BAO peak
position in the halo—halo 2-point correlation function for 2-fluid and

1-fluid simulations for the high mass bin. The results are shown in the
last column of Table 2. As was already visible in the left-hand panel
of Fig. 10, the positions of the peak are compatible within errorbars
between the two cases.

Finally, we compute the position of the BAO feature in the bc-
be cross-correlation function from Fig. 9. In this case we use the
same polynomial fitting formula (equation 9) but looking now for
the minimum of our fit. As we mentioned before, results at low
z become noisy which is why the errorbars on the peak position
increase. The results are shown in the fourth column of Table 2. We
do observe a somewhat higher value of the scale of the BAO dip
with respect to that of the BAO peak of all other fields we consider
(except haloes), which is expected as explained before.

To conclude, from Table 2, we do not detect any significant impact
of relative baryon-CDM perturbations on the BAO peak position
measured from the matter or halo correlation function. This is in
line with results from the previous section where we found no
evidence for a change in the broad-band correlation function from
such perturbations. This is also again in line with previous results
from Beutler et al. (2017) who found no evidence for non-zero
bias parameters associated to these perturbations from the BOSS
galaxy power spectrum. Furthermore, Barreira et al. (2020a) also
forecasted that the BAO peak position should be shifted by less than
1 per cent for halo samples similar to the one we consider here (their
section 4).

We end this section by a small word of caution. In this work,
we only considered the effects of baryon-CDM relative perturba-
tions generated by baryon—photon coupling prior to recombination.
However, as we already mentioned in the introduction, compensated
isocurvature perturbations (CIP) can also be generated in some
Inflation scenarios. As was discussed in Heinrich & Schmittfull
(2019), Barreira et al. (2020b), such CIPs can also locally affect
the position of the BAO peak or the galaxy power spectrum, and
these statistics could hence be used to constrain them as well
as inflationary scenarios. A direct measurement of the impact
of CIPs on the BAO peak position could be done using 1-fluid
separate universe simulations as described in Barreira et al. (2020a),
Khoraminezhad et al. (2021), but this is beyond the scope of
this work.

MNRAS 511, 4333-4349 (2022)

€20z AelN g1 uo 1esn vSSIS Aq $0Z72G9/SEEY/E/ L L G/BI0IHE/SeIuW/WOd dno olwapede//:sdiy woly papeojumoq


art/stac331_f10.eps

4346  H. Khoraminezhad et al.

0.0015 ———————————————

2fluid
1fluid

wSo.000sF T it

_ L
L o0.0010F
E L

0.0015 H—+—————+—+—+———+——+

< 0.0010f
S b
Q L
W 0.0005F

| I IR

0.0015 H——+———+—+—+—+——+—+—+—

—_

0.0010F

Ecelr

0.0005F e

90 95

100 105 110 115

rlh~*Mpc]

Figure 11. Top panel: Comparison between the matter—matter 2PCF in 1-fluid (pink) and 2-fluid (cyan) simulations. Middle and bottom panels: baryon—baryon
and CDM-CDM 2-point correlation functions, respectively, in 2-fluid simulations. Each time we show the 2PCF in real space at z = 0, computed using
equation (8). The shaded area show the 1o error over eight realizations in each simulation. The vertical dotted-dashed lines show the position of the BAO peak
obtained from a 7th degree polynomial fit of the form of equation (9). The polynomial fit is plotted in each case with the dashed line style and the same colour
for each type of correlations. The position of the BAO peak in each case for all different redshifts are presented in Table 2.

Table 2. Position of the BAO peak of the halo and matter fields in 1-fluid and 2-fluid simulations for different redshifts. In the case of 2-fluid
set, we also compute the position of the peak for CDM, baryons, and the §,. fields separately. We see that any shift in the peak position is

within 1o errorbars.

2fluid Redshift CDM Baryon She Total matter Halo (12.45 < logM < 12.95)
z=0 102.0 £ 0.9 102.0 £ 1.0 1023 £ 5.7 102.0 £ 0.9 101.2 £3.5
z=05 102.8 £ 1.5 102.8 £ 1.5 99.7+7.5 1029 £ 1.5 101.4 £+ 1.8
z=1 1029 £ 1.2 103.0 £ 1.1 1052 £ 2.8 1029+ 1.2 104.5 £4.9
z=15 1029 £ 0.9 1029 £ 0.8 106.5 £ 2.0 102.9 £ 0.9 1049 £2.3
z=2 102.7 £ 0.7 102.8 £ 0.7 104.7 £ 1.5 102.7 £ 0.7 107.4 £2.1
z=3 102.5 £ 0.5 1025+ 0.5 106.2 £ 2.6 102.5 £ 0.5 1059 £ 2.8
1fluid Redshift CDM Baryon Spe Total matter Halo (12.45 < logM < 12.95)
z=0 — — - 1024+ 1.0 99.1 +£9.7
z=05 — — - 103.0 £ 1.8 1022 + 1.8
z=1 — — — 1029+ 1.2 101.9 £ 3.5
z=15 — — - 102.8 £ 0.8 1049 + 1.9
z=2 — — — 102.7 £ 0.7 105.6 £ 2.1
=3 — — — 102.5 £ 0.5 106.4 + 1.9

6 SUMMARY AND CONCLUSION

In this paper, we performed 2-fluid gravity-only simulations building
on our previous work in Khoraminezhad et al. (2021), to study
the impact of baryon-CDM relative perturbations due to photon
pressure prior to recombination on voids statistics, density profile,
and clustering, as well as the 2PCF and position of the BAO peak
in real space of various fluid components. The main findings of this
study can be summarized as follows:

(1) The VSF depends strongly on the tracer used to identify voids
(there are more small voids and less large ones in the particle field
than in the halo field). The VSF of particle field voids is unaffected by
baryon-CDM relative perturbations, while the VSF of halo field voids
is affected at 1 — 2 per cent level: smaller voids are more abundant
in presence of such perturbations and larger voids less, which is a
consequence of the fact that these perturbations act against clustering
(Fig. 1).

(ii) We did not detect any statistically significant impact of baryon-
CDM relative perturbations on the void, matter or halo auto- and
cross-2PCF. We found hints that these perturbations diminish the
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clustering on scales smaller than the BAO one, and enhance the BAO
peak amplitude (Fig. 2, and Figs 8-10), which is in agreement with
our expectations.

(iii) The density profiles of voids in halo and particle fields display
the three known regimes (negative deep inside the void followed by
the void profile regime with the positive compensation wall, and
the linear regime where the halo—void correlation function becomes
zero), and voids in the halo field are larger on average. We found no
significant impact of baryon-CDM relative perturbations on any of
the profiles, but a hint for voids in 2-fluid simulations to be emptier
(Figs 3-5).

(iv) The void bias depends significantly on the tracer used to find
voids (the bias is almost constant over void size for halo field voids
but it decreases for larger voids in the particle field), but we found
consistent results for bias obtained from cross- and autocorrelation
functions. Again we did not find any significant difference for the
bias in 1- and 2-fluid simulations, but found hints that it is slightly
larger in the latter case, as we expect (Fig. 7).

(v) The amplitude of the BAO peak in the baryon 2PCF decreases
with time due to gravitational evolution. It is gradually imprinted in
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Figure 12. Position of the BAO peak (or dip) for 1- and 2-fluid simulations for different fields for different redshifts. These results correspond to those of
Table 2. 2-fluid measurements are shown in nuances of blue according to the legend, and 1-fluid ones in red. We present the matter—matter case with circle
markers and the halo—halo case with square markers. We see no statistically significant differences between these two cases. The points have been slightly
displaced horizontally to increase clarity. Each field is shown with a different line style.

the CDM 2PCF where the amplitude of the peak grows down to z ~
7 and then decreases down to z = 0 due to non-linear effects (Fig. 9).

(vi) The relative density perturbation ;. autocorrelation function
presents a dip as BAO feature on scales slightly larger than the BAO
peak, which is consistent with the fact that on these scales CDM
particles lag behind baryons (Fig. 9).

(vii) We directly measured the impact that baryon-CDM pertur-
bations have on the BAO peak position of halo and matter for the
first time to our knowledge, and found no evidence for a statistically
significant impact (Figs 11, 12 and Table 2), which is in agreement
with previous works (Beutler et al. 2017).

The halo field VSF is the only quantity that we found to be affected
with statistical significance by baryon-CDM relative perturbations
due to photon pressure prior to recombination. This effect might
hence also affect the VSF of voids obtained from galaxy fields
in observational data, and this statistics could hence be used to
constraint such perturbations. We note however that the effect
remains quite small. Our results for the matter—matter and halo—halo
2PCF added to ones from previous works confirm that the impact
of baryon-CDM perturbations on cosmological constraints from the
BAO feature in current and future galaxy surveys should be negligible
at low redshift (z < 3). This has important consequences for future
galaxy clustering surveys since it means that these effects will not
have to be included in the modelling of leading-order quantities used
for the analysis of their data.

Finally, in the future, it would be interesting to use our extended
set of simulations to reproduce the analysis in Khoraminezhad et al.
(2021) including the two leading-order relative velocity bias param-
eters. This would allow us to constraint their amplitude and their
impact on the galaxy power spectrum. It would also be interested to
reproduce this study, at least partially, using separate universe simu-
lations described in Barreira et al. (2020a) in order to measure the im-
pact of CIPs generated during Inflation on voids statistics and BAO.
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