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Abstract. Any new vector boson with non-zero mass (a ‘dark photon’ or ‘Proca boson’) that
is present during inflation is automatically produced at this time from vacuum fluctuations
and can comprise all or a substantial fraction of the observed dark matter density, as shown
by Graham, Mardon, and Rajendran. We demonstrate, utilising both analytic and numerical
studies, that such a scenario implies an extremely rich dark matter substructure arising purely
from the interplay of gravitational interactions and quantum effects. Due to a remarkable
parametric coincidence between the size of the primordial density perturbations and the scale
at which quantum pressure is relevant, a substantial fraction of the dark matter inevitably
collapses into gravitationally bound solitons, which are fully quantum coherent objects. The
central densities of these ‘dark photon star’, or ‘Proca star’, solitons are typically a factor 106

larger than the local background dark matter density, and they have characteristic masses
of 10−16M�(10−5eV/m)3/2, where m is the mass of the vector. During and post soliton
production a comparable fraction of the energy density is initially stored in, and subsequently
radiated from, long-lived quasi-normal modes. Furthermore, the solitons are surrounded
by characteristic ‘fuzzy’ dark matter halos in which quantum wave-like properties are also
enhanced relative to the usual virialized dark matter expectations. Lower density compact
halos, with masses a factor of ∼ 105 greater than the solitons, form at much larger scales.
We argue that, at minimum, the solitons are likely to survive to the present day without
being tidally disrupted. This rich substructure, which we anticipate also arises from other
dark photon dark matter production mechanisms, opens up a wide range of new direct and
indirect detection possibilities, as we discuss in a companion paper.

Keywords: cosmology of theories beyond the SM, dark matter simulations, dark matter
theory, particle physics - cosmology connection
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1 Introduction and summary

Despite the overwhelming evidence for the existence of dark matter (DM), from scales span-
ning from astrophysical to cosmological, its specific nature remains unknown. Candidates
range from primordial black holes or massive super-Planckian composite states, through sub-
Planckian particles with mass & 1 eV, to particles with mass . 1 eV which are best described
as semi-classical ‘wave’ dark matter in galaxies such as the Milky Way. So far, in the particle
case, we have no information about the DM spin, and only extremely limited information
about its mass and possible non-gravitational interactions with the Standard Model (SM).
Among the numerous candidates, a minimal possibility is a new bosonic particle of spin-0 or
spin-1. The presence of such particles is expected from string theory compactifications [1–6].

Irrespective of their couplings to the SM, elementary spin-0 particles that exist as states
at high scales are automatically produced in the early Universe via the so-called misalignment
mechanism [7–9], and, if stable, form a component or all of the dark matter. There are
a variety of other production mechanisms that could lead to a cosmologically interesting
relic density of spin-0 particles, though misalignment production is attractive because of its
minimality.

For vector bosons, the abundance from misalignment is generically suppressed [6]. How-
ever, if a massive vector state is present during inflation, its longitudinal component is auto-
matically produced by inflationary fluctuations [10]. The resulting relic abundance ΩA is

ΩA

ΩDM
'
√

m

6 · 10−6 eV

(
HI

1014 GeV

)2
, (1.1)

where m is the mass of the vector, HI is the Hubble scale during inflation and ΩDM is the
observed DM abundance [10]. This expression assumes that the vector mass does not change
during evolution of the Universe from the inflationary epoch until today, and that there are no
charged or Higgs-like states close in mass or lighter than the vector boson.1 Given the current
upper bound on HI from non-observation of gravitational waves and the requirement that
m� HI , such production can provide the observed DM density for 10−5 eV . m . 108 GeV.

The vector is produced because the longitudinal component acts as a scalar during
inflation by the Goldstone equivalence theorem and — in the same way as any other scalar
present at this time — obtains an approximately scale-invariant spectrum of energy density
perturbations.2 Crucially, after inflation, the perturbations in the vector at large scales
redshift faster than they would for a scalar. Consequently, the primordial power spectrum
reaches a form that, in addition to the standard adiabatic perturbations, has an isocurvature
component peaked at cosmologically tiny scales ' 1011km (10−5eV/m)1/2, corresponding to
the size H−1 of the Hubble horizon when H = m. The suppression of the perturbations
at large scales makes the spectrum automatically consistent with bounds on isocurvature

1Such a situation is possible in, e.g. the string theory context.
2The transverse components are not produced since they are equivalent to a massless vector.
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Figure 1. A schematic representation of the dark photon dark matter distribution today. At
subgalactic scales, roughly parsec and smaller, the dark matter is bound in compact halos that arise
from the collapse of small-scale primordial inhomogeneities (centre panel). The left panel shows
structure at smaller scales: solitons, i.e. dark photon stars, their surrounding fuzzy halos, and dark
matter filaments connecting them.

perturbations, since the primordial power spectrum is essentially unconstrained at those
small distances. Production by inflationary fluctuations is therefore both robust and, at
least in the absence of further interactions, unavoidable.3

The purpose of this paper is to investigate the model-independent dynamical process of
structure formation from these small-scale primordial inhomogeneities. We will show that
they lead to a strikingly rich structure of gravitationally bound objects, depicted in figure 1,
which are normally absent in conventional cold dark matter structure formation.4 As we
will see in section 3, the typical length scale of the inhomogeneities is so tiny that the
quantum pressure of the bosons is relevant in the dynamics. Indeed, although the small-scale
inhomogeneities are already non-linear before matter-radiation equality (MRE), quantum
pressure prevents their collapse until after MRE. At that point, the overdensities collapse
into gravitationally bound objects fully supported by quantum pressure, with typical mass of
order 10−16M�(10−5eV/m)3/2. The number of bound particles is N ' 1055(10−5eV/m)5/2,
and for all vector masses m . few× 107 GeV the occupation numbers of the quantum states
are so large that this bound object is well-described as a quantum soliton of the semi-classical
vector field.

We find that these dark photon star or Proca star solitons make up an order one fraction
of the DM, a remarkable possibility given that the solitons and both macroscopic and intrin-
sically quantum. Moreover they attract surrounding DM, which therefore gets bound around
the solitons in a ‘fuzzy’ halo, see figure 1 (left). Additionally, the solitons are produced with
excited quasi-normal modes, which are long lived and decay via the emission of dark photon
(spherical) waves.

The evolution during inflation also leaves the vector field with overdensities at larger
length scales, with a k3 power spectrum. Overdensities on increasingly large scale become
non-linear after MRE, and when they collapse they induce a ‘primordial’ structure for-
mation, producing small halos, which we dub compact halos. These have mass of order

3Very massive scalars are automatically produced from inflationary fluctuations by a different process [11].
4We note that other types of interesting exotic compact objects can occur in more complex dark sectors

involving dark photons [12].
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10−11M�(10−5eV/m)3/2 and will contain some of the solitons, see figure 1 (centre). The
compact halos will become subhalos of the larger galactic halos that are produced when
the standard adiabatic almost-scale invariant fluctuations sourced by the inflaton become
non-linear.

We will see that the solitons, fuzzy halos and the densest compact halos are likely to
remain undisrupted during the formation and evolution of the Milky Way, and therefore are
likely to persist to the present day. The dark matter substructure in figure 1 is an unavoidable
property of vector boson DM produced by inflation fluctuations. It could therefore lead to
smoking-gun signatures for dark photon dark matter, singling out its particle nature and
production mechanism.

This is possible even in the most challenging scenario in which the dark photon has no
non-gravitational interactions with the SM. The dark matter substructure can be investigated
with gravitational-only probes. Depending on the mass of the substructures, the possibilities
include, at minimum, pulsar timing arrays [13–16], microlensing, [17–24] photometric mi-
crolensing [25–28], and extra-galactic strong gravitational lensing [27]. In particular, we will
see that the size and mass of the solitons and compact halos are in one-to-one correspondence
with the dark photon mass. As a result, experimental evidence of such DM substructure will
allow us to infer the mass of the dark photon. This would lead to a prediction of the Hubble
scale during inflation, which — if confirmed e.g. by observation of tensor modes in the cosmic
microwave background — would be compelling evidence for this type of dark matter.

In the presence of direct interactions of the massive vector with the SM, e.g. kinetic
mixing with hypercharge and thus the SM Z-boson and photon [29–33], the substructure
leads to a plethora of signatures in both direct and indirect detection experiments. Solitons
(and the fuzzy halos around them) have typical energy density of the order of the Universe’s
density at MRE, many orders of magnitude larger than the local DM density in the vicinity of
the Earth today. Similarly, compact halos have average density of a few orders of magnitude
larger than the local density. We will see that solitons can encounter the Earth and other
astrophysical objects frequently. These will lead to significant changes to direct detection
prospects and new astrophysical and cosmological signals. In a companion paper we discuss
the resulting detection and observational signals in detail.5

Additionally, the primordial perturbations of a vector produced from inflationary fluctu-
ations have surprisingly similar qualitative features to those in other new physics scenarios.
For example, axions in the post-inflationary scenario have qualitatively similar primordial
perturbations, although the dynamics that produces them is totally different. There are also
other model-dependent mechanisms that could lead to a relic abundance of vector dark mat-
ter [36–42] (in the same way as there are other production mechanisms besides misalignment
for scalars). These might also lead to similar initial conditions, e.g. if the vector is produced
via parametric resonance or topological defects. Therefore, although in this paper we focus
on a particularly minimal and predictive theory, we expect that our approach and results
may be at least qualitatively applicable to a wide range of scenarios.

The paper is structured as follows: in section 2 we describe the production of a vector bo-
son during inflation and calculate the power spectrum of primordial density inhomogeneities
during radiation domination, following [10] (see also [43–45] for related work). A reader
familiar with [10] or solely interested in the later development of small-scale structure and
solitons may safely skim rapidly through this section, the primary results being eqs. (2.8)
and (2.9) along with the precise numerically-derived spectrum shown in figure 2 (left panel).

5Although not the focus of our present work, we note wave-like dark matter can also have other interesting
structure [34, 35].
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In section 3 we first discuss the post-inflation dynamics of the fluctuations and the impor-
tance of the ‘quantum pressure’ term arising from the Heisenberg uncertainty principle. We
then highlight aspects of the physics of the vector solitons that are particularly important for
phenomenology, before discussing in detail the non-perturbative evolution of inhomogeneities
around the time of MRE and the formation of solitons from their collapse. In section 4 we
describe the ‘primordial’ structure formation at larger scales and the compact halos. In sec-
tion 5 we discuss the survival of the vector dark matter substructure until today and the
collision rate of solitons with the Earth. In section 6 we summarise our results, describe
improvements and extensions, and propose future directions, some of which will be covered
in our companion paper which focuses on the potential observational and experimental im-
plications of the solitons and their fuzzy halos. Appendices provide details on the initial
conditions from inflation, analytic analysis of the evolution of overdensities, our approach
to numerically solving the Schrödinger-Poisson equations, analytic treatment of the soliton
and compact halo mass distributions, and finally an extensive discussion of the survival of
solitons, fuzzy halos and compact halos to the present day.

2 Initial conditions from inflation

Consider a vector boson Aµ (we will also use the name ‘dark photon’ interchangeably) with
field strength Fµν , described by the action

S =
∫
dtd3x

√
−g

[
−1

4g
µρgνσFµνFρσ + 1

2m
2gµνAµAν

]
, (2.1)

with metric ds2 ≡ gµνdxµdxν . We remain agnostic about the dynamics giving rise to the mass
as long asm remains constant during and after the inflationary epoch, and that no other light
fields significantly coupling to Aµ are present. All that matters in the following is that the
action in eq. (2.1) describes the vector field during inflation and in the subsequent evolution
of the Universe.6 As we will see, efficient inflationary production requires m � HI .7 For
the purpose of determining the relic abundance it is sufficient to consider the homogeneous
background FRW metric ds2 = −dt2 + a2(t)d~x2.

The three propagating degrees of freedom of the vector field are ~A ≡ Ai, while the
component A0 does not have a kinetic term in eq. (2.1) and corresponds to an auxiliary field.
We can eliminate A0 by writing eq. (2.1) in terms of the Fourier modes Ãµ =

∫
d3x exp(−i~k ·

~x)Aµ, where k is the comoving momentum (we will drop the tilde in the following). The
equations of motion of A0 become algebraic, can be solved explicitly, and their solution
plugged back into eq. (2.1) to get rid of A0. This leads to S = ST + SL with

ST =
∫
a3d3k dt

(2π)3
1

2a2

[
|∂t ~AT |2 −

(
k2

a2 +m2
)
| ~AT |2

]
, (2.2)

SL =
∫
a3d3k dt

(2π)3
1

2a2

[
a2m2

k2 + a2m2 |∂tAL|
2 −m2|AL|2

]
, (2.3)

6Swampland conditions might require m & 0.3 eV for such an effective theory to be embedded in a UV
completion [46], however there are constructions that claim to evade these limits [47]. Moreover, we will see
that the case m & eV leads to interesting phenomenology and experimental signals.

7If the mass m is produced by a dark Higgs mechanism, our analysis applies if the mass of the dark Higgs
is much larger than the inflationary Hubble scale, so it can be neglected during inflation.
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where we have decomposed ~A in terms of the longitudinal and transverse modes AL and ~AT ,
defined by ~k · ~A = kAL and ~k · ~AT = 0.

The actions ST and SL describe transverse and longitudinal modes, which are decoupled
from each other given the FRW form of the metric. Eqs. (2.2) and (2.3) hold both during
inflation — when the Hubble parameter H ≡ ȧ/a = HI is approximately constant — and
subsequently in the early Universe (although we will see that the transverse and longitudinal
modes become coupled together around MRE).

We consider the evolution of a generic mode, starting from when it is subhorizon during
inflation (k/a > HI) in the vacuum state to when it becomes nonrelativistic (k/a < m) and
subhorizon, in the radiation dominated era. First note that all the modes that start subhori-
zon during inflation (k/a > HI) are relativistic during inflation, since k/a > HI � m, and
remain relativistic at horizon exit (i.e. when a = k/HI). Using conformal time dη = dt/a, the
action for the transverse modes reads ST = (2π)−3 ∫ d3kdη 1

2

(
|∂η ~AT |2 − (k2 + a2m2)| ~AT |2

)
.

Since m is negligible for relativistic modes, ST is time-translation invariant (in fact, confor-
mally invariant). The vacuum state of the transverse modes therefore does not change, and
they are not produced. We therefore set ~AT = 0 in the reminder of this section.8

On the other hand, in the relativistic limit the action for the longitudinal modes reduces
to that of a free real scalar ϕ ≡ (m/k)AL, i.e. SL =

∫
a3d3xdt1

2 [(∂tϕ)2 − |∇ϕ|2/a2], where
we Fourier transformed back to coordinate space. It is well known that the vacuum of this
theory is time-dependent [48, 49]. Modes that are in the vacuum at early times get populated
— after they exit the horizon — with a Gaussian power spectrum Pϕ = (HI/2π)2, where we
defined the power spectrum PX of a generic field X as

〈X∗(t,~k)X(t,~k′)〉 ≡ (2π)3δ3(~k − ~k′)2π2

k3 PX(t, k) . (2.4)

This implies that PAL = (kHI/2πm)2 at horizon exit, a = k/HI . The expectation value of
the energy density ρ ≡ T 00 reads

〈ρ〉 =
∫
d log k 1

2a2

[
a2m2

k2 + a2m2P∂tAL +m2PAL

]
, (2.5)

and the energy density spectrum at horizon exit is scale invariant, ∂ρ/∂ log k ' H4
I /(2π)2.

This is the well known result for a scalar field, and indeed the longitudinal component of
the vector in the relativistic limit reproduces a massless scalar by the Goldstone Equivalence
theorem.

After inflation the modes evolve classically, following the equations of motion of eq. (2.3),[
∂2
t + 3k2 + a2m2

k2 + a2m2 H∂t + k2

a2 +m2
]
AL = 0 . (2.6)

We can calculate the evolution of each mode with initial condition AL = AL,0 and
ȦL ' 0 at a = k/HI , until it reenters the horizon and becomes nonrelativistic. Since
eq. (2.6) is linear, AL will still have a Gaussian distribution during such evolution, with a
power spectrum at a generic time given by

PAL(t, k) =
(
kHI

2πm

)2(AL(t, k)
AL,0

)2

, (2.7)

8This is a standard result for a massless vector, and in the relativistic limit the transverse components act
like a massless vector by the Goldstone Equivalence theorem.
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where we used eq. (2.4).9 Unfortunately, the solution for AL cannot be evaluated analytically
for a generic k. However, it is possible to understand the behaviour of AL(t, k)/AL,0 analyt-
ically. Here we summarise the main results, leaving complete derivations to appendix A.

All the modes of interest will eventually become subhorizon and nonrelativistic, and it
is convenient to classify them into two classes: (1) Those that become nonrelativistic while
still superhorizon (‘low frequency’) and (2) Those that reenter the horizon while relativistic
(‘high frequency’), and become nonrelativistic only afterwards. We define the mode that
becomes nonrelativistic exactly when it reenters the horizon k?/a? ≡ m = H(a?), so the low
(high) frequency modes satisfy k < k? (k > k?) respectively.

While relativistic and superhorizon ρ ∝ a−2 for all modes. Modes with k < k? are
suppressed because they become nonrelativistic while superhorizon and subsequently their
energy density decreases as ρ ' m2A2

L/a
2 ∝ a−2 until they enter the horizon. This is

the crucial difference compared to a scalar field, for which ρ is frozen for nonrelativistic
superhorizon modes. The difference is due to the form of the mass term, which controls the
energy density in such modes: for a scalar, 1

2m
2ϕ2 ∝ const, while 1

2m
2gijAiAj ∝ a−2 for a

vector. Meanwhile, the modes with k > k? are suppressed because they enter the horizon
while still relativistic. They have ρ ∝ a−4 after they enter the horizon but before they become
nonrelativistic and ρ ∝ a−3 subsequently.

The result of this is that the spectrum is peaked at momentum k?. Modes with k � k?
are suppressed since they stayed in the superhorizon nonrelativistic regime the longest, and
those with k � k? are suppressed because they underwent subhorizon relativistic redshift
before becoming nonrelativistic, with larger k suppressed more since they were subhorizon
and relativistic for longer. The power spectrum of AL is, to a very good approximation,
given by

PAL(t, k) '
(
k?HI

2πm

)2 (a?
a

) (k/k?)2

1 + (k/k?)3 . (2.8)

The exact form of PAL(t, k), plotted in figure 2 (left), can be extracted by solving eq. (2.6)
numerically. The least suppressed mode, k?, corresponds to subgalactic scales today: defining
λ? ≡ 2π/k?

a0λ? = 2πa0
ma?

' 1011km
(

10−5eV
m

)1/2

, (2.9)

where a0 is the FRW scale factor today. (As we will see in the next section, perturbations
on scales k ' k? evolve nonlinearly, and clump, at around matter-radiation equality. As a
result, they do not follow the expansion of the Universe and lead to structures smaller than
a0λ?.) Moreover, the misalignment mechanism is related to the energy density in the zero
mode, which gets a huge suppression, and is therefore ineffective.

The energy density of the vector behaves as matter at late times, and forms a component
of the DM abundance. Given the peaked form of PAL , the DM abundance is approximately
given by the energy density in modes of momentum k?, redshifted from horizon exit at
a = k?/HI to a = a? and then to today when the scale factor is a ≡ a0. Therefore,
ρ(a0) ' H4

I /(2π)2((k?/HI)/a?)2(a?/a0)3 ∝ H2
Im

1/2. A full calculation leads to the relic
abundance given in eq. (1.1). The Hubble scale during inflation is bounded by the non-
observation of tensor modes in the cosmic background, assuming single field slow roll inflation.

9Note that the actual value of AL,0 is not needed for PA, so practically one can solve eq. (2.7) with
AL,0 = 1.

– 7 –



J
C
A
P
0
8
(
2
0
2
2
)
0
1
8

~�� ~�-�

��(ρ��)

��-� ��-� ��-� � ��� ���
��-��

��-�

��-�

��-�

��-�

�

�/�★

� (�)

 �★
�
  �★ ��

� π�

�

��(ρ��)

������������

���������

~�� ~�-�

��-� ��-� ��-� � ��� ���
��-��

��-�

��-�

��-�

��-�

�

�/�★

δ(�)

Figure 2. Left: the power spectrum of the longitudinal vector field component as is automatically
produced by inflationary fluctuations, during radiation domination and after the modes have become
subhorizon and nonrelativistic. The spectrum is peaked at k?, corresponding to the momentum equal
to the Hubble parameter H when H = m. Right: the power spectrum Pδ of the (non-Gaussian)
overdensity field. Importantly for later soliton formation, at matter radiation equality the quantum
Jeans momentum kJ(ρ) associated with the mean DM density (defined in section 3.1) coincides with
k? up to an order one factor, regardless of the dark photon mass.

The latest data combination from Planck and BICEP2 [50] bounds HI < 6 · 1013 GeV.10 As
a result, the vector can account for the full dark matter abundance if m & 10−5 eV.

The structure in the power spectrum of AL leads to small-scale overdensities in the
energy density field ρ = (Ȧ2

L + m2A2
L)/2. During radiation domination and once all the

relevant modes have become non-relativistic, the properties of typical fluctuations remain
constant. In figure 3 we plot a section of the vector’s energy density over a line at this stage,
normalised to its average energy density ρ ≡ 〈ρ〉. There are obvious O(1) fluctuations in the
energy density (the peaks have ρ/ρ ' 2÷ 4), with spatial size of order λ?.

It is convenient to introduce the overdensity field

δ(x) ≡ ρ(x)− ρ
ρ

. (2.10)

The distribution of inhomogeneties is encoded in the power spectrum of overdensities, Pδ,
defined from δ(x) as in eq. (2.4). Once all the relevant modes are non-relativistic, Pδ is
constant during radiation domination. Using the fact that ∂tAL and AL are Gaussian fields,
one finds

Pδ(t, k) '
√

3(k/k?)3

π
(
(k/k?)3/2 + 1

)8/3 , (2.11)

which is a useful analytic approximation that captures the asymptotic limits k/k? → {0,∞}
exactly (see appendix A and [10] for full expressions). In figure 2 (right) we plot Pδ, which
as expected is peaked at k/k? ' 1, and decreases as (k/k?)3 and (k?/k) at small and large
k, respectively. Since δ(x) does not have a Gaussian distribution (indeed, it is asymmetric
around δ = 0) it is not fully described by Pδ.11 The power spectrum however still provides
useful information about the variance of the field and the magnitude of the overdensities.

10In particular, the bound is on the tensor-to-scalar ratio r < 0.056, which is related to the Hubble scale
during inflation by HI = 8 · 1013

√
r/0.1 GeV.

11Note that ρ(x) ∼ (∂A(x))2 +A(x)2 has local (quadratic) non-Gaussianities, since A and ∂A are Gaussian
variables. Thinking of 〈ρ(x)〉 as a constant, appropriate in the large volume limit, δ(x) has the same property.
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Figure 3. A one-dimensional slice of the vector field energy density ρ, during radiation domination,
relative to its mean density ρ. The typical fluctuations are on scales λ? = 2π/k?, eq. (2.9), corre-
sponding to the Pδ peak in figure 2. There are also small overdensities at scales larger than λ? (not
distinguishable in the plot), which correspond to the (k/k?)3 part of Pδ, and considerable fluctuations
on smaller scales because of the slow (k?/k) fall-off of the power spectrum for k � k?.

Note that at length scales much larger than λ? = 2π/k?, δ(x) is Gaussian and can be fully
reconstructed from Pδ alone.12

The fluctuations in the vector’s energy density are isocurvature perturbations, since
they are induced only in the vector during inflation. As mentioned in the Introduction,
these fluctuations are only allowed to be O(1) because perturbations at much larger scales,
which are strongly constrained by observations, are automatically suppressed thanks to the
k3 behaviour. This is in contrast to a scalar field, for which the power spectrum from
inflationary fluctuations is flat at k < k?, and order one fluctuations are completely excluded
unless the scalar is a tiny fraction of the total DM. The smallest scales at which the power
spectrum has been observed are roughly kobs = 7Mpc−1 from Lyman-alpha [51], so kobs/k? '
10−11 ( eV/m)1/2, and the observed modes are far off the left of the plot in figure 2 (right)
for all relevant dark photon masses.

Inflation also sources perturbations of the inflaton, which are metric perturbations with
a change of gauge, i.e. ds2 = −(1−2Φ)dt2 +(1+2Φ)a2d~x2. The gravitational potential Φ has
small differences in different patches after inflation. These lead to the same relative pertur-
bations in all form of energy, i.e. adiabatic perturbations, including in the vector overdensity
field δ(x). Its power spectrum Pδ therefore automatically acquires also the almost-scale-
invariant contribution, as shown by the purple line in figure 2 (right), as is necessary to be
consistent with observations.

We have considered a vector with only the action of eq. (2.1), in which case the relic
density discussed in this section is an unavoidable contribution to the dark matter abundance.
The situation is more complicated if the vector has self-interactions, couples to other particles
or has a non-minimal coupling to gravity [6]. Such possibilities do not necessarily affect the
production during inflation, and indeed it would be surprising if fluctuations of order HI were
prevented. However, the subsequent evolution will be affected in some theories, which could

12This may be seen by calculating e.g. the three-point function 〈AL(k1)AL(k2)AL(k3)〉, similarly to eq. (A.2)
in appendix A, and noticing that it vanishes in the limit {k1, k2, k3}/k? → 0.
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alter the relic abundance. For instance this is the case if there are ‘dark electrons’ [52].13

A key direction for future work is to systematically study the impact of different possible
interactions.

3 Collapse of inhomogeneities: vector solitons

During radiation domination the vector field evolves freely, i.e. as in the absence of a grav-
itational potential.14 The gravitational potential becomes relevant at around MRE. If the
vector constitutes a sizeable fraction of the dark matter abundance, the large overdensities
corresponding to the peak of Pδ at k?, start evolving nonlinearly under the effect of the
gravitational interactions at around this time (more precisely, at a ' aeq/δ where aeq is the
scale factor at MRE, see appendix C.1 for further details). In what follows we will assume
that the vector makes up all the DM.

Since they are already O(1), as soon as the gravitational potential becomes important
the overdensities cannot be studied using the standard perturbative treatment of the density
field. They are expected to clump into bound objects, and — as we will see next — this
happens in the regime where the fuzzy dark matter properties of the boson, i.e. quantum
pressure, are important.

3.1 Dynamics of fluctuations and quantum pressure

The modes relevant for the DM abundance are nonrelativistic at around MRE. It is therefore
convenient to rewrite the equations of motion (EoM) of the Lagrangian in eq. (2.1) and the
component 00 of the Einstein equations in their nonrelativistic form. To do so, we work in
terms of ψi defined by

Ai ≡
1√

2m2a3
(ψie−imt + c.c.) (3.1)

in the limit where ψ is slowly evolving so ψ̇i � mψi and ψ̈i � m2ψi. In terms of ψi the EoM
become the Schrödinger-Poisson (SP) system [53](

i∂t + ∇2

2a2m
−mΦ

)
ψi = 0 , (3.2)

∇2Φ = 4πG
a

∑
i

(
|ψi|2 − 〈|ψi|2〉

)
. (3.3)

Apart from involving the three propagating components of ~A, these equations have exactly the
same form as those for a nonrelativistic scalar field. (The fourth vector field component, A0,
is non-dynamical and may be recovered from the Lorenz-Proca constraint ∇µAµ = 0 which
follows as a consistency relation from the EoM.) At around MRE when Φ is non-negligible,
the EoM are nonlinear and couple together all the components of the vector through the
gravitational potential. In particular the longitudinal and transverse modes are coupled and

13If an interaction leads to an operator of the form F 4/Λ4 in the effective theory at H?, when the most
important modes re-enter the horizon, the subsequent evolution is unaffected provided Λ � (mHI)1/2 '
(m/ eV)3/2 MeV where the last equality holds if ΩA = ΩDM. We leave the effects on the evolution of the
superhorizon modes for future work.

14This is the reason we neglected Φ in the previous section.
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no longer evolve independently. Consequently, although initially vanishing, the transverse
mode is sourced by the longitudinal mode via Φ.15

For a full treatment, eqs. (3.2) and (3.3) need to be solved numerically with initial
conditions in eq. (2.8). However we can qualitatively understand the evolution by doing the
Magdelung transformation, i.e. writing eqs. (3.2) and (3.3) in terms of density and velocity
fields, ρi and ~vi, defined by ψi =

√
a3ρie

iθi with ~vi ≡ (am)−1∇θi. The imaginary and real
parts of the Schrödinger equation become the continuity and Euler equations of a three-
component perfect fluid with local density ρi = |ψi|2/a3 and velocity ~vi, i.e.

∂tρi + 3Hρi + a−1∇ · (ρi~vi) = 0 (3.4)
∂t~vi +H~vi + a−1(~vi · ∇)~vi =− a−1(∇Φ +∇ΦQi) (3.5)

∇2Φ = 4πGa2(ρ− ρ) , (3.6)

where ρ = ∑
i ρi and ρ ≡ 〈ρ〉 is the average energy density of the vector field, and we defined

ΦQi ≡ −
~2

2a2m2
∇2√ρi√

ρi
, (3.7)

where for clarity we have restored the factors of ~ in this one expression. Their appearance
is due to the fact that the mass m of a particle is independent of ~ while, due to the ~ that
appears in the Planck-Einstein-de Broglie relation, the mass parameter that appears in the
field action, eq. (2.1), is really m/~. From now on we return to ~ = c = 1 units. From
eq. (3.5), the fluid is subject to the gravitational potential Φ and to the ‘quantum pressure’
potential ΦQ. The gravitational potential tends to increase the overdensities, while the
quantum pressure tends to make overdensities fluctuate. This can be seen from the fact that
the quantum pressure has the opposite sign as the gravitational potential, or more rigorously
in the perturbative treatment of small overdensities, which we summarise in appendix B.

The importance of ΦQ with respect to Φ can be understood by comparing the last two
terms of eq. (3.5), i.e. if ∇Φ� ∇ΦQ the quantum pressure dominates. Taking the divergence
of this relation and using eq. (3.6) we get −8πGρm2a4 � ∇2(∇2√ρ/√ρ). Going to Fourier
space, for comoving momenta k much larger than the comoving ‘quantum’ Jeans momentum
associated with physical density ρ

kJ(ρ) ≡ a(16πGρm2)1/4 , (3.8)

ΦQ is much more important than Φ, and in the opposite limit it is irrelevant. This implies
that overdensities at comoving length scales smaller than λJ ≡ 2π/kJ are prevented from
collapsing, while those at length scales much larger than λJ evolve as in the absence of
quantum pressure. Note that this is not the conventional Jeans scale, which is proportional
to the inverse of the sound speed and in this context is infinity.

15Note that the energy overdensity in baryonic matter ρb−〈ρb〉 should also appear on the right hand side of
eq. (3.3), as it contributes to the total stress energy tensor. However, before recombination (in particular at
MRE) baryons are strongly coupled to photons, and their evolution is dominated by interactions with photons,
instead of the gradient of Φ. As a result, at very subhorizon scales baryons are practically homogeneous, and
ρb − 〈ρb〉 ' 0. Therefore, effectively Φ is only sourced by DM, and baryons act as a background that only
drives the Universe’s expansion.
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3.2 The remarkable coincidence
Crucially, if the vector boson makes up an O(1) fraction of the dark matter, at the time of
MRE the quantum Jeans scale kJ(ρ) (corresponding to the average density) is parametrically
close to the typical scale of spatial fluctuations k?, independently of m. In particular, the
ratio between kJ(ρ) and k? at MRE is

kJ(ρ)
k?

∣∣∣∣
a=aeq

=
(16πGρeqm

2)1/4

m(a?/aeq) = gR

(
12
ρeq
ρtot

eq

)1/4

= gR

(
6 ΩA

ΩM

)1/4
, (3.9)

where ΩM is the matter energy density normalised to the critical density, and ρtot
eq is the total

matter energy density at MRE. In eq. (3.9) we defined gR ≡ (geq,ε/g?,ε)1/4(g?,s/geq,s)1/3,
where gs, gε denote the effective number of relativistic degrees of freedom for entropy and
energy, and as usual eq and ? denote quantities at MRE and when H = m. This factor
accounts for the change in the number of degrees of freedom between H? and MRE, which
affects the value of k?. The cancellation of m, G and ρeq in eq. (3.9) occurs because, up to
numerical factors, a?/aeq ' Teq/T? '

(
Gρtot

eq /m
2
)1/4

(making the excellent approximation
that only radiation contributes to the energy density at T?).16

For dark photon masses of interest, m & 10−5 eV, T? & 200GeV, so we set g?,s and g?,ε
to their Standard Model high temperature values, which gives gR ' 1.27.17 Therefore, if the
vector comprises the full dark matter abundance,

kJ(ρ)
k?

∣∣∣∣
a=aeq

' 1.9 . (3.10)

Eq. (3.10) means that the quantum pressure term (i.e. the wave-like properties of the boson)
cannot be neglected and will affect the evolution and collapse of the O(1) overdensities in
figure 3, regardless of the value of m, and even of G. In figure 2 we show the value keq

J of
kJ(ρ) at MRE. In fact, the numerical value is close to the peak of Pδ, which is at about 2k?.

3.3 Dynamics around matter radiation equality
Eq. (3.10) leads us to conclude that at a = aeq :
• For modes with k . keq

J ' k? the dynamics is as in the absence of quantum pressure.
In particular, over cosmological scales — much larger in length than λ? — the quantum
pressure is irrelevant and the field behaves as conventional DM. This applies to the
adiabatic modes and those in the k3 IR tail of Pδ, see figure 2. Since the fluctuations
in the k3 tail are small at MRE, at least initially the field at these distances is in the
perturbative regime and its evolution can be calculated analytically. Deep in radiation
domination such isocurvature fluctuations (i.e. the k3 modes) are basically frozen, and
once in matter domination they grow linearly [54]. To a good approximation δ ∝ 1 + 3

2
a
aeq

and Pδ ∝ (1 + 3
2
a
aeq

)2 (we give further details in appendix B).

• The dynamics of modes with k & keq
J is dominated by the quantum pressure. As men-

tioned, some of these modes are already nonlinear, but are prevented from collapsing into
bound objects, and instead just oscillate.

16More explicitly, a?/aeq = g−1
R (4πGρtot

eq /3m2)1/4. We also note for future use that a?/aeq can be rewritten
as a?/aeq = g−1

R (Heq/(
√

2m))1/2, using H2
eq = 8πGρtot

eq /3.
17This is a reasonable assumption provided there are not � 102 new degrees of freedom close to the

TeV scale.
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• Modes k ' keq
J are on the boundary at which quantum pressure is relevant at MRE. Owing

to the coincidence between k ' keq
J and k?, these are at the peak of Pδ and there are order

one fluctuations on these scales. Such modes oscillate because of quantum pressure before
MRE, and — as we will see next — collapse around MRE.

The fact that the modes with k . k? are linear allows us to (at least initially) treat the
evolution of the modes with k & k? independently. As time increases the comoving quantum
Jeans momentum increases as kJ(a) = keq

J (a/aeq)1/4, see eq. (3.8), i.e. the dashed line in
figure 2 moves to the right (here and in the following, whenever kJ takes a scale factor a
as an argument we mean kJ(ρ(a))). As a result, the modes at larger comoving momentum,
previously prevented from collapsing, will be able to clump and are expected to form compact
bound objects. In other words, collapse of the overdensities with k & k? is prevented until the
comoving quantum Jeans length is smaller than the comoving size of the overdensity, when
they start being dominated by the gravitational potential instead of the quantum pressure.
In particular, given the coincidence in eq. (3.10), the modes at k ' k? (where Pδ is peaked)
collapse into bound objects at around a ' aeq, when the two independent factors preventing
their collapse (quantum pressure and radiation domination) both pass.18

Once formed the objects rapidly decouple from the Hubble flow and will be described
by a stationary solution of eqs. (3.2) and (3.3) in the absence of expansion.19 Since the
collapse happens at a scale where the quantum pressure is still relevant in the dynamics, we
expect that for such solutions the last term in eq. (3.5) is of the same order as the others, in
particular of ∇Φ. In fact, as we will see shortly, these bound objects are solitons. For these,
the gravitational potential term is fully balanced by the quantum pressure term (ΦQ = −Φ),
instead of being balanced by the velocity terms as in a conventional halo. Moreover, we
expect that the mass of the objects is parametrically set by the dark matter mass inside a
region of the size of the collapsing perturbation, which is given by the quantum Jeans scale
at the time of collapse, so a soliton formed at time a has mass

M(a) = cMMJ(a), with MJ(a) ≡ 4π
3 ρa3λ3

J(a) ∝ a−3/4 , (3.11)

and cM a dimensionless time-independent O(1) coefficient. As time increases, MJ(a) de-
creases, and solitons with smaller and smaller masses are produced, from the collapse of the
smaller scale fluctuations. When integrated over a > aeq, this leads to a relic abundance of
solitons with a nontrivial mass distribution.

As we will discuss in detail in section 4, as time progresses also the modes with k . k?
become nonperturbative and collapse to form halos, which unlike solitons are supported by
the velocity term in eq. (3.5). We dub these compact halos. These are expected to include
some of the solitons previously produced. Inside the compact halos the modes with k & k?
can no longer be treated separately, as they are no longer decoupled. However, outside the
compact halos the field at k � k? is still perturbative and solitons are still expected to form
following eq. (3.11). Once the majority of the DM is bound in compact halos at around
a/aeq ' 30, z ' 100 (see figure 18 in section 4), the production of solitons is expected to
decrease, eventually approaching zero.

Note that, crucially, it is thanks to the coincidence in eq. (3.10) that (dense) solitons
form. If Pδ were peaked at a momentum k? much smaller than keq

J , the overdensities would
18Similar dynamics can occur for axion-like-particles in the large misalignment regime [27].
19Therefore in comoving coordinates the objects’ size decreases.
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have collapsed into halos, as quantum pressure would have been negligible. If instead keq
J �

k?, the collapse would have been prevented until late times (if at all) and resulted in much
less dense solitons (since their density is set by the DM density at the time of formation, as
discussed below).

3.4 Vector solitons (quantum dark photon stars)

A vector soliton is the self-gravitating stationary solution of eqs. (3.2) and (3.3) in (asymp-
totically) flat spacetime a = 1 that minimises the total energy E at fixed, finite, value of the
vector-boson particle number

N ≡ 1
m

∫
d3x

∑
i

|ψi|2 . (3.12)

This particle number is conserved as the fundamental action for the massive vector bo-
son, eq. (2.1), contains no number-changing self-interactions. (The implied interactions with
gravitons following from the action in eq. (2.1), which could lead to number-changing pro-
cesses such as AiAj → h, 2h, . . . and thus decay, are ineffective [55], since the nonrelativistic
approximation is excellent for all the solutions we will consider.20)

In any case, the validity of a semi-classical analysis in terms of fields requires N � 1.
Since we will always be in a regime where the gravitational binding energy is small compared
to the total bare rest-mass M ≡ mN it is convenient for later purposes to use M as an
effective conserved mass parameter of the soliton. In the limit in which we work, and in
terms of M , the total soliton energy is

E = M +
∫
d3x

∑
i

( 1
2m2 |∇ψi|

2 + 1
2Φ|ψi|2

)
. (3.13)

Although not mathematically proven, it has been conjectured that ground state vector
solitons have the form ψi ∝ ui where ui is a generic complex vector with unit norm (u∗iui = 1),
and have spherically symmetric energy density [53, 57].21 In this case, the solution space of
ground state solitons as a function of their mass can be constructed by a rescaling of the
basic ansatz

ψi = m√
4πG

e−iγmtχ1(mr)ui , Φ = Φ1(mr) , (3.14)

20Note that a free theory possesses an infinite number of conserved quantities as the particle and antipar-
ticle numbers for every single wavenumber and spin direction are individually conserved. In the presence of
nonrelativistic gravitational interactions only a finite number of these quantities, including N , remain con-
served due to non-linear mode mixing. This conservation law is made explicit in the non-relativistic reduction,
eqs. (3.1), (3.2) and (3.3), as the fields ψi are complex (despite the fact that Ai are real) and the effective
action for ψi associated to these SP equations has a global U(1) invariance leading to a conserved particle
number. Thus vector solitons are an example of a non-topological Q-ball soliton [56] stabilised against decay
due to their being the lowest energy state at fixed N , in particular lower than the energy E = Nm of a
collection of N far-separated vector bosons. In the presence of additional interactions with, e.g., Standard
Model fields, the effective conservation of particle number over the cosmological timescales of interest must
be reconsidered. We emphasise that the existence of a (sufficiently stable) dark photon, or equivalently Proca
star does not require Aµ to be promoted to a complex field.

21Ref. [58] considers a full relativistic treatment of the closely related case of a complex massive vector field
Aµ coupled to gravity, showing that there exist gravitationally bound ‘Proca-star’ solutions. However the
lowest energy solution identified in [58] is in fact an excited state (see also the discussion in [53]). Moreover,
as we have emphasised, a complex Aµ with a manifest U(1) symmetry is not necessary for the existence of an
effectively conserved particle number and an associated stable vector soliton.
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where r ≡ |~x| is the distance from the soliton’s centre and γ a fixed real constant. Here χ1(x)
and Φ1(x) are monotonic functions that satisfy χ1(x) → (1, 0) and Φ1(x) → (const, 0) for
x→ (0,∞).

Numerical solution of the equations arising from the use of this ansatz shows that for
the ground state soliton, γ ' −0.65, while an excellent analytic approximation for χ1(x)
is χ1(x) ' (1 + a2x2)−b with (a, b) ' (0.228, 4.071). Similarly, Φ1(x) is well approximated
by Φ1(x) ' c(1 + a2x2)−b, with (a, b, c) ' (0.465, 0.676,−1.31). Given the form of χ1, the
soliton’s energy is localised at its centre. All other ground state soliton solutions of eq. (3.2)
and (3.3) have the form in eq. (3.14) with the rescalings χ1(x) → α2χ1(αx), Φ1(x) →
α2Φ1(αx) and γ → α2γ, for any α > 0.

Given eqs. (3.13) and (3.14) and Ai ∝ ψie
−imt, the quantity −γα2 can be interpreted

as the binding energy per unit mass. Our non-relativistic, weak-gravitational field, approx-
imation thus requires α � 1 for consistency.22 The corresponding rescaled soliton solution
has mass and half-mass radius

M ' 2α
Gm

, R ' 1.9
αm

, (3.15)

respectively. All the soliton solutions that we consider in this work have α � 1 and are
stable.

It will be useful to us that the combination MR is independent of the soliton mass and
is given by

MR ' 3.9
Gm2 . (3.16)

The corresponding central density of the solitons is

ρs = α4m2

4πG ' 1
Gm2R4 '

G3m6M4

64π . (3.17)

The physical Jeans length associated to this density is λ̃J(ρs) ' 2.3R, and is therefore of
order of the size of the object. (Here and in the following we use a tilde to indicate the
physical, rather than comoving, Jeans scale.) As discussed, this means that the quantum
pressure term is relevant for this solution. In fact, since ~v = 0 from eq. (3.14), solitons are
configurations fully supported by quantum pressure, in the sense that ΦQ = −Φ (this can be
used as an alternative equivalent definition of solitons). In figure 5 (left) we plot the soliton
density profile in terms of λ̃J(ρs).

Solitons can be thought of as bound configurations of bosons with gravitational energy
balanced by their intrinsic kinetic energy. This comes from their ‘irreducible’ velocity, of order
1/(mR), that stems from the uncertainty principle associated to the Schrödinger eq. (3.2)
and the fact that the particles are localized in a finite region of space. Indeed, the de Broglie
wavelength of the particles is approximately equal to the size of the soliton. Note that
given eq. (3.16), this intrinsic velocity is the order of the virial velocity (GM/R)1/2 that the
particles would have in a gravitationally bound configuration, consistent with the particle
interpretation.

Given our expectation that the masses of cosmologically produced solitons are deter-
mined by the quantum Jeans length at the time of creation, eq. (3.11), the density of the

22As α → O(1) the ground state soliton enters the strong gravitational field regime, potentially becoming
unstable to gravitational collapse to a black hole or disruption.
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solitons is parametrically set by the average DM energy density when they are created, in-
dependently of m. Indeed, plugging the expected value of the solitons masses in eq. (3.11)
into eq. (3.17), the density of the solitons produced at time a is ρs = 4.5 · 104c4

Mρ(a).
It is noteworthy that ground state vector solitons with a fixed mass form an infinite set

parameterized by ui, i.e. a generic direction in coordinate space, which indicates the direction
of the vector field. This moduli space of ground state solutions is due to the U(3) symmetry
of eqs. (3.2) and (3.3). For a fixed direction, the soliton profile resembles the well known
scalar soliton, see e.g. [59].

We also observe that a soliton is only an exact solution in the idealised case where the
total mass

∫
d3x

∑
i |ψi|2 is finite. When the mass is infinite, for instance in the presence of a

constant density background ρ, solitons of central density ρs � ρ are still good approxima-
tions of stationary solutions near their cores. However, away from their centres the solitons’
profiles will be deformed, and, since they gravitationally attract the background matter, they
will be surrounded by a halo.

Importantly, as argued in detail in ref. [57], depending on the choice of ui, and in the
absence of other interactions, the ground state solitons can either carry zero total angular
momentum J , or possess macroscopically large J without energy cost or alteration of the
radial profile χ1(r), at least at leading order in an expansion in G. Since all known physically-
realised astrophysical objects carry angular momentum, it is interesting to discuss in more
detail the physics of these J 6= 0 vector solitons.

The total angular momentum ~J is composed of two parts, an orbital angular momentum
contribution, ~L, and an intrinsic spin density which integrates to ~S. In terms of ψi, and in
the non-relativistic weak-gravity limit in which we are working, they are given by

Lp = i

2mεpqr

∫
d3x (ψ∗m∂qψmxr − c.c.) (3.18)

Sp = i

m
εpqr

∫
d3x ψqψ

∗
r . (3.19)

On the ground state soliton solutions, eq. (3.14), the first of these expressions gives ~L = 0.
On the other hand, the intrinsic angular momentum of these solitons is ~S = i(~u × ~u∗)N~,
where once again we have temporarily restored the factors of ~ for clarity. Since |~u×~u∗| ≤ 1,
S can acquire any value in [0,N~] and can even vanish depending on ui.

This can be made explicit by employing an orthonormal basis, ε(λ)
n̂ , for the λ = ±1, 0

spin quantization states along a fixed axis n̂. Choosing, without loss of generality, n̂ = ẑ
these polarisation states are

ε
(±1)
ẑ = 1√

2

 1
±i
0

 , ε
(0)
ẑ =

0
0
1

 . (3.20)

Then one may expand ψi and thus Ai in this basis; specifically for the ~L = 0 solutions

ψi = m√
4πG

e−iγmt
∑
λ

χ(λ)(~x)(ε(λ)
ẑ )i , (3.21)

where in principle the functions χ(λ)(~x) could differ. However in the non-relativistic weak-
gravity limit of interest to us, χ(λ)(~x) = a(λ)χ1(mr) with a(λ) complex coefficients satisfying
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∑
λ |a(λ)|2 = 1, and with χ1(mr) satisfying exactly the same equation as before.23 For

instance, for |a(±1)| = 1 the resulting total spin angular momentum parallel to the ẑ axis is
maximum and reads Jz = ±N~.

Linearly or partially polarised ground state solitons are possible if non-trivial complex
linear combinations of the angular momentum eigenstates result from the non-linear dynam-
ics of structure and vector soliton formation (in the absence of additional interactions the
decoherence time can be parametrically long). In fact, we will see in the next section that,
in the minimal theory we study, the solitons are generically formed with a nontrivial polar-
isation. In particular, they have intrinsic angular momentum uniformly distributed in the
range S ∈ [0,N~], and, as expected, negligible orbital angular momentum ~L. This is not
surprising given that, as mentioned, there is no energy difference between solutions with dif-
ferent intrinsic angular momentum. We note that, if present, interactions of the dark photons
with the Standard Model, themselves or other new light states could lead to solitons with a
particular angular momentum being energetically favoured.

3.5 Comparison with numerical simulations

To confirm our analytic expectations, measure the unfixed numerical coefficient cM in
eq. (3.11), and determine the soliton mass distribution, we study the dynamics of the system
numerically. It is straightforward to show that the equations of motion (3.2) and (3.3), the
initial condition in eq. (2.8) only depend on the number of relativistic degrees of freedom at
T? and ΩA/ΩDM (see appendix C.1). The evolution is therefore independent of the values
of m and G, which is why the ratio between k? and keq

J in eq. (3.10) does not depend on m
explicitly. We continue to fix the number of relativistic degrees of freedom at T? to the SM
high temperature value and we assume that the dark photon makes up all the DM.

We solve eqs. (3.2) and (3.3) numerically on a discrete lattice in a periodic box of
constant comoving size (3.75λ?)3, starting deep in radiation domination at a/aeq � 0.01
(this choice is not important as long as a/aeq � 1), from a realisation of the initial conditions
with the Gaussian power spectrum in eq. (2.8). The final simulation time is limited by loss
of resolution of the soliton cores and by the growth of density perturbations on the scale of
the box, which once non-perturbative lead to finite volume systematic uncertainties. With
our available numerical resources we can run to a/aeq ' 7. Our main results are obtained
averaging over approximately 100 individual simulations. Further details of the evolution
and tests of the systematic uncertainties are given in appendix C.

To verify that the broad features of the dynamics of section 3.1 do indeed occur, in
figure 4 (left) we show the time evolution of the maximum density ρmax in a single, typical,
simulation run. As expected, prior to MRE ρmax/ρ is, on average, constant. Due to quantum
pressure, density fluctuations on small scales, k & kJ(a), oscillate even during radiation
domination, which leads to small oscillations in ρmax/ρ during this time. This would not
happen in the limit kJ/k? →∞, in which case ρ(~x) would be almost completely frozen for a
nonrelativistic field.24

In the absence of quantum pressure, the largest overdensities in the initial conditions
δ ' 3 would collapse at a/aeq ' 1/δ ' 1/3. As expected, collapse is actually delayed to

23At higher order in the weak gravity G-expansion the functions χ(λ)(~x) will depend non-trivially on λ due
to the metric dependence on ~J which is (asymptotically) given by gtφ ' 2GJ sin2 θ/r as r →∞ for ~J oriented
along the ẑ axis.

24Such oscillations can be seen for perturbative density fluctuations, which we analyse in appendix B, and
we have confirmed using numerical simulations that this remains the case for large fluctuations.
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Figure 4. Left: the evolution of the maximum value ρmax of the energy density field of the vector
through MRE, in a simulation with volume (3.75λ?)3. Time is parameterised by the scale factor
a relative to that at MRE, aeq. The mean vector energy density ρ is also plotted. At early times
ρmax follows ρ, with small fluctuations due to the oscillation of modes with k & kJ , driven by
quantum pressure. The collapse of overdensities with δ & 1, which in the absence of quantum pressure
would occur at a/aeq ' 1/δ, is hindered until after MRE. Once kJ/k? ∝ a1/4 has grown sufficiently,
overdensities collapse. After the collapse, the maximum density is at a point inside a soliton. The
soliton is produced with excited quasinormal modes, so the maximum density subsequently oscillates.
Right: a slice of the energy density at a/aeq = 7, in the same simulation as is plotted in the left panel.
The slice passes through the point that has the largest density at this time, which is at the centre
of a soliton. The soliton (red region in inset) is surrounded by a spherical ‘fuzzy’ halo (yellow/green
region) and there are cosmic filaments connecting it to other solitons. Spherical waves can be seen
around the soliton, which are due to the emission of energy from quasinormal modes. A video showing
the evolution can be found at [60].

a later time, a & aeq, when kJ(a) has exceeded k?. At a > aeq, the maximum density
increases fast, until it reaches an approximately constant value, while the mean dark matter
density continues to decrease. This indicates that a bound object, in our case a soliton, has
formed and decoupled from the Hubble flow. Additionally, the maximum density has clear
oscillations, which are due to the soliton forming with excited quasi-normal modes. We study
the growth of density perturbations and the evolution of the density power spectrum in more
detail in appendix D.

In figure 4 (right) we plot the density field ρ through the slice of the same simulation
that contains the point with the largest density, at a/aeq = 7. There is a central soliton (red
region). The soliton is surrounded by a spherical fuzzy halo (yellow/green region) extending
far from its core, the maximum density of which is about two orders of magnitude smaller
than the soliton core density. Finally, the early stages of a cosmic web connecting different
solitons have formed (see also figure 1 left, where we show a 3D version of the same energy
density). Spherical waves can be seen beyond the halo. These are due to energy released by
the decay of the soliton’s quasi-normal modes.

To understand the nature of the collapsed objects, in figure 5 (left) we plot the spher-
ically averaged density profile around the centre of the objects at a/aeq = 5, averaged over
all the objects in our full set of simulations. To enable the profiles of objects with different
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Figure 5. Left: the spherically averaged density profile of collapsed objects as a function of the
distance from their centre (blue line). The density is plotted relative to that at the object’s centre
ρs, and the distance is normalised to the (physical) quantum Jeans length λ̃J(ρs) = 2π/kJ(ρs). We
average over all objects, with barely visible statistical uncertainties. The profile in the inner region
closely matches that of a soliton (dashed black line, see eq. (3.14)). Right: the time evolution of
the masses M of the solitons, normalised to the parametric expectation MJ(ai) = (4π/3)a3

i ρλ
3
J(ai) ∝

a
−3/4
i , where ai is the time when the soliton forms and λJ(ai) = 2π/kJ(ρ(ai)). The solitons are

binned based on ai, with statistical error bars. Once produced the soliton masses are approximately
constant. Moreover, on average, M(ai) = cMMJ(ai) with cM ' 0.45 independent of ai.

mass to be combined, for each object the density profile is normalised to its central density
ρs and the distance from its centre to the quantum Jeans length λ̃J(ρs) corresponding to
its central density ρs. As it is clear from section 3.1, in terms of these variables the soliton
density profile is χ2

1(x/λ̃J(ρs)) and is independent of the soliton mass.
Evidently the collapsed objects have a profile that is remarkably close to the soliton,

out to a distance ' λ̃J(ρs)/2 ' 1.5R. This confirms our expectation that the objects formed
around MRE are supported by quantum pressure. Spatial angular momentum initially carried
by the dark matter that later becomes a soliton could be lost during formation or transferred
to the fuzzy halo that surrounds the solitons. 80% of the total mass in the pure soliton
solution is within λ̃J(ρs)/2, so to a good approximation we can identify the mass in the
soliton-like part of the collapsed objects as being the same as the total mass of the vacuum
soliton. That gravitational interactions result in the dark photon no longer being purely
longitudinal and indeed the vector field in the soliton is not longitudinal.

As a further check of the nature of the solitons, we have evaluated the variance of
ψi(~x)/|~ψ|2 over the soliton cores (defined as the region in which the spherically averaged
density exceeds ρs/2). This would represent the spatial variation of the (would-be) constant
unit vector ui in eq. (3.14). As expected, the variance is tiny (. 0.02) for almost all of the
objects that form, confirming that the solutions are indeed close to the pure soliton solution.
We also calculated the intrinsic angular momentum of the solitons, defined in eq. (3.18), in
units of N . We find that all the components of ~S/N in the soliton core have a flat probability
distribution between −1 and 1.

We note that the initial perturbative linear growth of the k . k? modes matches the
analytic expectation (we analyse this in appendix D). However, due to the limited simulation
time available only few such modes have become nonperturbative by the final time. The
compact halos resulting from their collapse are still almost non-existent and contain only a
very negligible fraction of DM (see also figure 9 in the next section), so we do not attempt
to study them in these small scale simulations.
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Finally, as mentioned, initially the solitons are produced with quasinormal modes. Al-
though the quasinormal modes are expected to have disappeared by today, they are long-lived
with effective Q-factor > 103 [61] and could have interesting, possibly observable, conse-
quences, which would be worth exploring in the future. In particular, a substantial fraction
of the DM is in spherical waves emitted due to the quasinormal modes (since quasinormal
modes initially store an order one fraction of the soliton energy density). Their wavelength
is of the physical size of the solitons when they are first emitted.

3.6 The soliton mass distribution

To check that the mass of the solitons produced at a given time is set, on average, by the
quantum Jeans scale at that time, M(a) = cMMJ(a) ∝ a−3/4, and to fix the unknown
coefficient cM , in figure 5 (right) we plot the time evolution of the average value of the
masses M of the solitons, grouping the solitons based on the scale factor ai when they form,
and normalising their masses to MJ(ai). We calculate the soliton masses starting from their
central densities ρs using the relation in eq. (3.17).25 We see that once formed the soliton
masses are, on average, approximately constant. Moreover the anticipated proportionality
M(a) = cMMJ(a) is reproduced remarkably well, with a universal constant coefficient cM '
0.45. This works equally well for the solitons produced e.g. at a/aeq = 2÷3 and a/aeq = 6÷7.
On other hand, despite cM being constant on average, at any time solitons with a range of
masses are produced, approximately within 0.3 . cM . 0.7. For reference, in physical units
the quantum Jeans mass and the mass of the solitons are

M eq
J ≡MJ(aeq) = 5.2 · 10−23M�

( eV
m

)3/2
, (3.22)

and

M(a) = 2.3 · 10−23M�

(
cM
0.45

)(
aeq
a

)3/4 ( eV
m

)3/2
. (3.23)

As we will see in more detail shortly, the solitons produced through the evolution have masses
approximately in the rangeM ' (0.05÷0.5)MJ(aeq) = (2.6·10−24÷2.6·10−23)M�( eV/m)3/2.
Ultimately, the solitons have masses inversely proportional to m3/2, because the total mass
initially contained in a region of volume k−3

? has this dependence.
As mentioned below eq. (3.12), decay to gravitons is exponentially suppressed. There-

fore, unless destroyed by e.g. tidal disruption (studied in section 5.1), they constitute an
irreducible component of the DM abundance. One of the most interesting quantities is the
soliton mass distribution,

dfs(a,M)
d logM = M

ρ

dn(a,M)
d logM , (3.24)

which counts the fraction of dark matter in solitons per unit log mass (in plots we use the
base 10 logarithm so that fs can easily be estimated). In eq. (3.24), fs(a,M) is the fraction
of dark matter in solitons with mass less than M , and can be related to the number density
of solitons n(a,M) with mass less than M at time a.26

25In appendix D we show that measuring the soliton masses from the density profile leads to values that
are consistent, to the precision we require.

26Consequently, the fraction of dark matter in solitons with mass such that a ≤ log10 M ≤ b is∫ b
a
df/d log10 M d log10 M .
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Figure 6. The time evolution of soliton mass distribution dfs/d log10 M as a function of the soliton
mass M relative to MJ(aeq) = 5.2 · 10−23M�(m/ eV)−3/2, with statistical error bars. This counts
the percentage of DM in solitons per unit mass. The low mass cutoff in the mass distribution tracks
the average mass of solitons being produced at a given time, M(a) = cMMJ(a) ∝ a−3/4, shown by
coloured ticks above the lower axis. By the end of the simulations at a/aeq = 7 the distribution
has reached an approximately constant form for solitons of mass M & 0.15MJ(aeq). The analytic
expectation described in the main text is also plotted, extrapolating to z = 100, when most of the
dark matter becomes bound in compact halos, see section 4. The central densities of the solitons ρs
are indicated on the upper axis. These densities are orders of magnitude larger than the local dark
matter density in the vicinity of the Earth, taken to be ρlocal = 0.5 GeV/ cm3.

The soliton mass distribution in eq. (3.24) can be evaluated in numerical simulations,
at different times. The result is shown in figure 6. As expected, the distribution is time-
dependent, and has a break at low masses that tracksM = M(a) ≡ cMMJ(a) (indicated with
ticks above the lower axis), because only a few solitons with M .M(a) are produced before
a. The shape at masses M � M(a) ≡ cMMJ(a) has an approximately time-independent
form, since no new solitons of these masses are being produced. On the upper axis of the
same figure we show the density of the solitons ρs at their core, which is related to their mass
via eq. (3.17). ρs is independent of m and parametrically coincides with the average DM
density at the time of formation. In particular, it corresponds to the density of the Universe
at MRE for the most massive solitons, and is many orders of magnitude larger than the local
DM energy density ρlocal today.

Unfortunately the limited time range of simulations means we cannot capture the soli-
tons that are produced at a/aeq & 7 (evidently, the soliton mass distribution is still evolving
at small M in figure 6). Given that no additional heavy solitons will be subsequently pro-
duced, figure 6 gives a lower bound on fs, and additional production will only strengthen e.g.
direct detection signals. We will also see in section 5.1 that the densest solitons, for which we
do have a reliable prediction, are most likely to survive to the present day in the Milky Way.

Interestingly, despite the complicated dynamics, the shape of the soliton mass distribu-
tion can be understood via a simple analytic argument based on the initial power spectrum
Pδ of figure 2. This gives theoretical control of the soliton mass distribution, and also allows
us to estimate the extrapolation of the numerical results in figure 6 to smaller soliton masses.
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Estimating the mass distribution requires two inputs: 1) the mass and 2) the number density
of the solitons produced, as a function of time a. To fix 1) we crudely approximate that the
solitons produced at every time have a unique mass M = M(a) given by eq. (3.11), with
cM ' 0.45. For 2), we assume that as soon as the comoving quantum Jeans scale drops below
the size of an order one fluctuation, this will collapse into a soliton. Therefore, the number
of solitons with masses M ÷M + dM that are produced is expected to be proportional to
the ‘frequency’ with which there are corresponding fluctuations in the initial conditions that
are larger than some critical value δc of order one. To estimate this frequency, we make the
crude assumption that the dark photon density field is Gaussian, with power spectrum of
figure 2 (right), although in reality this is not the case. In appendix E we derive the resulting
soliton mass function.

Despite involving rough approximations, in figure 6 we see that our analytic argument
reproduces the data at large masses, where this has already converged to its late-time value,
remarkably well.27 The analytic prediction does not account for the decrease in the soliton
production rate due to DM becoming bound in compact halos at larger scales, which becomes
important around a/aeq ' 30, corresponding to z ' 100. We therefore indicate on the plot
the solitons that are produced before this time, for which the prediction applies.

We note that the argument we used is very similar to that usually employed to estimate
the abundance of primordial black holes from small scale curvature perturbations that could
be produced during inflation (see, e.g. [62]), with the quantum Jeans scale functioning as an
effective ‘horizon’, in the sense that both prevent the collapse of the order one fluctuations,
until they cross the size of that perturbation.

Although we have focused on solitons produced from initially large density fluctuations,
we note that additional solitons might form later in compact halos. This could happen
directly when the compact halo forms, although in section 4 we will see that only a small
fraction of the mass in the halos will end up in a soliton this way.28 Alternatively it could occur
later, on longer timescales, by gravitational relaxation, see [63–65]. Additionally, the solitons
already present might increase their mass by accreting the background DM via gravitational
relaxation, or solitons might merge together if they become bound into compact halos. This
lead to an uncertainty on their mass. We do not try to study these potentially important
issues in our present paper.

3.7 Fuzzy halos around solitons

Although the bound objects seen in simulations resemble the pure soliton solution of eq. (3.14)
at small distances, as anticipated in section 3.1 their profile deviates at distances larger than
the soliton half-mass radius. Indeed, soliton cores are surrounded by a halo. We dub this
a ‘fuzzy’ halo, because the quantum Jeans length associated with its typical density is only
marginally smaller than the size of the halo and the wave-like properties of the vector are
still relevant. Indeed, the fuzzy halo is a (time-dependent) solution of eq. (3.5) where the
gravitational potential is locally balanced by a combination of both the quantum pressure
and velocity term, in particular ~vi 6= 0. Such a halo can be seen surrounding the soliton in
figure 4. Fluctuations on distances of order the de Broglie wavelength can be seen.

27In this we have set the unfixed parameter in our analysis δc = 0.22 to reproduce the soliton production
rate measured in simulations.

28During collapse, the density in the compact halo increases, usually by a factor ' 200. If the fluctuation
corresponds to spatial scales only slightly larger than k−1

? this could be enough for quantum pressure to
become relevant and most of the mass might end up in a soliton with a relatively large mass might.
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Figure 7. The (spherically averaged) density profile around solitons relative to the density at their
core ρs, as a function of the distance from the centre in units of the quantum Jeans scale at the
core λ̃J(ρs). Results are shown averaging over all heavy solitons with M > 0.3MJ(aeq), which form
relatively early. The density profile matches that of the pure soliton solution for r/λ̃J(ρs) . 1/2, and
the ‘fuzzy’ halo outside is well fit by an NFW profile, see eq. (3.25). The profiles are cut off at a
radius where the dark matter density drops below 20 times the mean dark matter density.

In figure 7 we plot the density profile averaged over relatively heavy solitons, with mass
M & 0.3MJ(aeq). As in figure 5, we combine different objects’ profiles by plotting their
density relative their core density ρs and measuring the radius in units of λ̃J(ρs). The profile
at a given time is cut off at the radius where the density drops below 20 times the mean DM
density.

The fuzzy halo is evident as a deviation from the soliton profile for r ' λ̃J(ρs)/2. The
scaling property of the soliton solution appears to also apply to their halos, and the profiles
from different objects take a universal form (this suggests the existence of a soliton-fuzzy
halo relation). At later times the halo extends further from the soliton core, with the region
closer to the soliton remaining with a fixed density. The inner part of the halo might form
when the overdensity collapses. However, at a/aeq ' 7 the fuzzy halo extends almost down
to the mean DM density at a/aeq ' 3, so the external parts of the halo are most likely related
to the accretion, as the background DM is attracted to the soliton.

The fuzzy halo turn out to be well described by an NFW profile

ρ(r)
ρs

= ρ0
r/λ̃J (ρs)

r0

(
1 + r/λ̃J (ρs)

r0

)2 , (3.25)

where ρ0 and r0 are dimensionless parameters that are universal for all the halos. Fitting
the density profile at a/aeq = 7 in the interval 1 ≤ r/λ̃J(ρs) ≤ 7 (where the lower limit is
due to the profile transitioning to soliton form) we obtain that ρ0 ' 0.042 and r0 ' 1.56
accurately reproduce the data.29 The central region of the fuzzy halos, at r/λ̃J(ρs) . 3, can
also be adequately fit by a thermal profile ρ ∝ r−2, but this does not give a good fit in the
outer regions (and similarly, no single power law provides a good fit over as large a range

29In appendix D we show that lighter solitons also have a surrounding fuzzy halo, still well fitted by an
NFW profile with the same ρ0 and r0. Since they form later, for such solitons the fuzzy halo had less time to
grow outwards and at the final simulation time it extends less far from the core than in figure 7, but is still
growing.
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as the NFW form). We do not know how far out the fuzzy halos will grow at times beyond
the reach of simulations. In section 5.1 we will see that the outer parts of the fuzzy halos
are destroyed in the late Universe and the parts that are most likely to survive are mostly
already formed at a/aeq ' 7, the final simulated time.

Eq. (3.25), together with the soliton mass distribution and an input about how far
the fuzzy halos extend, allows the distribution of fuzzy halos to be calculated. The fuzzy
halos surrounding solitons contain much more DM mass than the solitons themselves. As an
indication, the part of a fuzzy halo within 8λ̃J(ρs) (which is a typical distance out to which
a fuzzy halo is likely to survive disruption in the late Universe) has mass ' 6M where M
is the mass of the central soliton. The corresponding mass and size in physical units can be
read off from eqs. (3.23) and (5.2).

Finally, we note that figure 4 shows that there are overdense filaments connecting soli-
tons analogous to the standard cosmic web, which forms much later at much larger scales.
However, these are much less dense than the fuzzy halos and are probably destroyed in the
subsequent evolution.

4 Compact halos and primordial structure formation

In this section we focus on scales larger than λ? = 2π/k? and reconstruct the evolution of
the modes in the k3 part of the spectrum in figure 2 (right). As we will see, as they become
nonperturbative, they induce the formation of a chain of heavier and heavier compact halos:
a ‘primordial’ structure formation. This happens before (and is normally not present in)
canonical structure formation, because of the additional small-scale inhomogeneities.

These dynamics are similar to the formation of compact halos in the case of post-
inflationary axions, which also has a density power spectrum with a k3 dependence in the
IR.30 The process of compact halo formation in this case has been studied extensively, both
analytically [19–21, 25, 28, 69–71] and numerically [19, 72, 73]. Additionally [15, 28] studied
compact halos in vector dark matter produced by inflationary fluctuations using the Press-
Schechter approach, similar to our analytic analysis.31

4.1 Dynamics of the IR modes

As shown in section 3.1, after MRE, modes with k < k? (both the k3 and adiabatic modes)
are not affected by quantum pressure and grow linearly. Once a k3 mode becomes of order
one, the linear approximation to eqs. (3.2) and (3.3) is no longer applicable. Qualitatively,
we expect that at this point the DM density contained in that perturbation collapses into
a gravitationally bound object — a ‘compact’ halo — incorporating already bound objects
inside the region, including solitons. Since perturbations on larger and larger scales become
nonlinear at later and later times (given that Pδ(k) ∝ k3), heavier and heavier compact
halos will progressively form. When the adiabatic modes become nonperturbative, at around
z ' 15, they trigger canonical structure formation. We expect that after this time few new
compact halos form, and most of those already present eventually become small subhalos
of much larger galactic halos, as in figure 1.32 Standard structure formation occurs as in

30With a peak of roughly Pδ ' 1 at a scale approximately set by k? [66–68], although there are large
uncertainties related to the decay of the string-domain wall system.

31In some theories fluctuations in the inflaton can lead to similar dynamics [74, 75].
32Adiabatic modes on small spatial scales collapse slightly before those on larger scales because adiabatic

fluctuations grow logarithmically during radiation domination once they have re-entered the horizon.
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cold dark matter cosmology, with the only difference that some of the DM is bound in
compact halos.

The small-scale substructure of the compact halos (e.g. any solitons they contain) is
clearly affected by quantum pressure and the same may be true very close to the centre
of the halos. However, given that they are generated from scales larger than the quantum
Jeans scale, if we focus on their properties at scales sufficiently larger than λ? (effectively
smoothing out small scales), the effect of quantum pressure is expected to be mostly irrele-
vant. Moreover, at large enough scales the (effective) initial velocity of the field is negligible
(because the IR modes do not oscillate, being unaffected by quantum pressure, and the
field is highly nonrelativistic). This means that at these scales the equations of motion in
eqs. (3.4), (3.5), (3.6) reduce to those of a single component perfect fluid (i.e. with ΦQ = 0)
subject only to gravitational interactions, with density ρ = ρ1 + ρ2 + ρ3, and ~v ' ~vi (' 0 at
a < aeq), i.e.

∂tρ+ 3Hρ+ a−1∇ · (ρ~v) = 0 (4.1)
∂t~v +H~v + a−1(~v · ∇)~v =− a−1∇Φ (4.2)

∇2Φ = 4πGa2(ρ− ρ) . (4.3)

Despite still being nonlinear, the dynamics of the system at these large scales is simpler and
can be analysed by combining standard analytic and numerical approaches. On the analytical
side, the so-called Press-Schechter (PS) method handles the evolution of eqs. (4.1), (4.2), (4.3)
by determining the number of halos present at every time, based on the power spectrum in
the initial conditions. Although this is a model rather than a first principles calculation, it
has been shown to capture the main qualitative features, and provide a reasonable quantita-
tive prediction of halo mass functions in many settings [76]. The same equations can be also
investigated via N-body simulations. By evolving a system of discrete particles interacting
only gravitationally, these reproduce the dynamics of a perfect fluid. Owing to the discreti-
sation into particles, N-body simulations do not lose resolution of collapsed objects in the
way that direct SP simulations do, and are therefore better suited to studying the successive
chain of structure formation.

4.2 Formation of compact halos

In the following we treat the k3 modes separately from the adiabatic modes, which will
be accurate until the adiabatic fluctuations start becoming non-linear, and determine the
abundance of compact halos. A halo is a set of gravitationally bound matter. In the remainder
of this section we will not consider the substructure of compact halos in terms of subhalos or
solitons. As we will discuss in section 5.1 we expect that many of the solitons survive intact
inside compact halos, although they could also be destroyed, merge with each other or increase
in mass by accretion. Compact halos will subsequently be bound inside adiabatic halos.

We can predict the distribution of compact halo masses using the Press-Schechter ap-
proach. At distances larger than λ?, while the linear approximation is valid the overdensity
field grows as δ(t, ~x) = δ(t � teq, ~x)D[a] with D[a] = 1 + 3

2
a
aeq

. We expect that at every
time regions of space where the overdensity has exceeded an order one critical value δc have
collapsed into a halo. To assign a mass to these regions, we consider the field smoothed over
a distance R, and the mass contained in each of them isM = (4π/3)R3ρ. Since these regions
are expected to collapse into halos of mass up to M , the Press-Schechter anzats [77] is that
the fraction of DM in halos with mass > M equals the probability that the field δs smoothed
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over R = (3M/4πρ)1/3 is larger than δc. This probability is fully determined by the power
spectrum Pδ since δ is initially Gaussian at scales larger than λ?, and so only by the variance
σ2
s ≡ 〈δ2

s(t, ~x)〉, with Pδ at t� teq as in eq. (2.11).
In appendix G, we show that the resulting fraction of DM bound in compact halos fh

then satisfies

dfh(a,M)
d logM =

√
2
π
νe−ν

2/2
∣∣∣∣ d log ν
d logM

∣∣∣∣ '
√

8M
M?

πδc
33/4D[a]

exp
[
− π3δ2

c

3
√

3D2[a]
8M
M?

]
, (4.4)

where ν(M) ≡ δc/σs(M) and we introduced an extra factor of 2 to address the well known
cloud-in-cloud problem, as originally done in [77]. In the last equality we defined M? ≡
(4π/3)ρa3(2π/k?)3 ' 6.9M eq

J (see eqs. (3.10) and (3.11)) and approximated the spectrum
with a single power law k3, considering only modes with k < k? since modes with k & k? are
affected by quantum pressure, and form solitons.

As evident from eq. (4.4), the halo mass distribution is peaked at

M ' 9.5M?

[1.7
δc

]2 [ 100
z + 1

]2
' 65M eq

J

[1.7
δc

]2 [ 100
z + 1

]2
, (4.5)

with an exponential cutoff at higher masses and a power law suppression (∝M1/2) at lower
masses. Therefore, as anticipated, as time increases the most frequent halos are increasingly
heavy. Also as expected, the compact halos are much heavier than the solitons, see eq. (3.23),
and in fact will contain some of the solitons. Eqs. (4.4) and (4.5) are reliable only at large
enough masses, which come from the largest modes that are least affected by quantum
pressure.

To check the validity of this analysis, in figure 8 we compare the halo mass distribution
in eq. (4.4) using δc = 1.7 (as predicted by the so-called spherical collapse model [78]) with
results of N-body simulations, at different times, i.e. redshifts. The simulation starts at
a/aeq = 0.01 � 1 with initial conditions given by the full (non-Gaussian) density field in
eq. (2.10) — converted to a particle configuration — and vanishing initial velocity ~v ' 0.
These can be run until the most IR modes in the finite box start to become non-linear,
around z = 30, when finite volume systematic errors become significant.33 From the plot,
it is evident that the PS method reproduces the peak and the high mass cutoff of the halo
mass distribution at all times. Although the height of the peak is slightly different between
the two, differing by a factor . 2, the overall agreement is impressive.

We can also use N-body simulations to estimate how large a mass a compact halo must
have in order for it to be unaffected by the dynamics of the most UV modes, near the k? peak,
which are influenced by quantum pressure. To do so, in figure 22 (left) of appendix E we
compare the halo mass distribution from N-body simulation with initial conditions given by
a Gaussian field with the power spectrum of figure 2, but with a UV cutoff at k > 0.5k? (for
this momentum range, Pδ . 0.05, so the initial fluctuations on such scales are indeed very
close to Gaussian, and for them the quantum pressure is irrelevant). The two distributions
coincide for M & 50M eq

J . This is only a rough test because, even with initial conditions
with a UV cut, once they become non-perturbative the IR modes will source higher k modes,
which will still, incorrectly, evolve as in the absence of quantum pressure. Nevertheless, the
difference between the two data points in figure 22 (left) gives a feeling of the impact of high
k modes and suggests that eq. (4.4) can indeed be trusted for large enough M .

33Our N-body simulations have comoving box size of 80λ?.
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Figure 8. The time evolution of the mass distribution of compact halos, which arise from the
collapse of modes in the k3 part of the power spectrum Pδ in figure 2. Data points are the results of
N-body simulations, starting from a realisation of the full dark photon energy density field at a� aeq.
Given that simulations are carried out in the absence of quantum pressure, only the dynamics of the
most massive objects with M & 50M eq

J are expected to be correctly captured. The Press-Schechter
analytic prediction in eq. (4.4) is also plotted (PS), and reproduces the dynamics remarkably well.
We also show the halo mass distribution at z = 10, 15 (around when compact halos stop evolving and
get incorporated to adiabatic halos) reconstructed with a Sheth-Tormen inspired model (ST), which
reproduces the data accurately at earlier redshifts (not plotted). The masses are given in units of
M eq
J = 5.2 · 10−23M� ( eV/m)3/2.

The evolution of compact halos according to eq. (4.4) continues up until z ' 10 ÷ 15,
when the adiabatic modes also become nonperturbative.34 Unfortunately our computational
resources do not allow us to simulate the evolution of the adiabatic part and the k3 modes at
the same time, therefore we cannot directly investigate how compact halos are incorporated
into the much larger adiabatic halos. We estimate the distribution of compact halos today
(if not disrupted) by evaluating dfh/d logM at z ' 10÷ 15, when most of the DM is bound
in adiabatic halos. To improve accuracy, instead of using the PS analysis we fit the N-body
simulation data with a Sheth-Tormen (ST) inspired form [80], which provides a better fit
than eq. (4.4) (see appendix G for details) to the data points in figure 8. We indicate the
mass distribution reconstructed at z = 10, 15 from the ST fit with gray lines in figure 8. The
peak occurs at around

Mh = (3÷ 5) · 103M eq
J ' (1.5÷ 3) · 10−19M�( eV/m)3/2 . (4.6)

Finally, in figure 9 we plot the fraction fi(a) ≡
∫
dM dfi(a,M)

dM of dark matter collapsed
in soliton i = s (from the analytic estimate in eq. (E.2)), in compact halos i = h and in
adiabatic halos i = a, as a function of time. The fraction of DM bound in compact halos is
obtained from the ST analysis in appendix F (with data points from simulations also plotted)

34After they reenter the horizon, the adiabatic perturbations grow logarithmically in radiation domination
because of the gravitational potential generated by the photon perturbation, see e.g. [79] (there is no significant
growth for the isocurvature ones [54]). The logarithmic increase is the largest for the highest adiabatic modes
(because they have been subhorizon the longest), and this changes the slope of the adiabatic spectrum in
figure 2, making it larger than 0. Standard structure formation therefore proceeds similarly to the ‘primordial’
one induced when the k3 modes become non-perturbative, but with a power spectrum that is much flatter
and is initially much smaller.
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Figure 9. The fraction of dark matter collapsed in solitons (blue), compact halos (green) and
adiabatic halos (purple) as a function of redshift. The fraction of mass in solitons is calculated from
the analytic analysis of section 3.6 as in figure 6. The fraction of DM bound in compact halos is
evaluated from N-body simulations (data points) and from the analytic Sheth-Tormen analysis (line),
with parameters fit to the data. The fraction collapsed in adiabatic perturbations is calculated using
the Press-Schechter method from an extrapolation of observed power spectrum. This plot ignores
the fact that the dynamics of objects on larger distance scales might halt the formation of structure
on smaller scales: soliton formation is prevented after z ' 100 when most of the DM is bound into
compact halos (indicated by the predicted soliton fraction being plotted dashed for z < 100); similarly,
compact halos are expected to stop forming at z ' 15.

excluding objects of mass M < 50M eq
J which will be strongly affected by quantum pressure

and not correctly described by our analysis. The fraction in adiabatic halos is estimated from
a PS analysis, extrapolating the observed power spectrum to smaller scales.35

4.3 Compact halo profiles

We can also study the density profiles of the compact halos. To do so we use an argument
normally employed to reconstruct the density of adiabatic halos produced during canonical
structure formation (e.g. [81]), which has been used in the context of axion miniclusters
by [25, 70, 71]. This is based on three simple assumptions.

(1) We assume that all the compact halos that form at a given time have a particular mass,
determined parametrically by peak value PS distribution in eq. (4.4), i.e. halos with
mass M are created at ac(M) = (8π3/2/37/4)(δc/νc)

√
M?/Maeq with νc an order one

parameter. Halos are assumed to remain subsequently undisturbed. Clearly this is a
rough approximation, since at a given time halos with some range of masses will form,
and also because a halo of a certain mass could form from mergers of lighter halos.

(2) Since halos grow slowly from the low-density fluctuations (as opposed to from the
collapse of already large scale fluctuations), it is reasonable to expect that they all
have a fixed overdensity with respect to the background density at their moment of
formation. We will therefore assume that the mean density of the halos, which we

35In particular, we put a UV cut the power spectrum at the point where the isocurvature spectrum dom-
inates, which depends on m. In figure 9 the width of the adiabatic collapse fraction line corresponds to the,
barely noticeable, effect of varying m from 10−5 eV to 1 eV.
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call ρM , is ∆ times larger than the average DM density at the time of formation, i.e.
ρM = ∆ ρ(ac(M)), with ∆ > 1 a universal time-independent number for all the halos.
As we will see from N-body simulations, the halo profiles are well described by the
NFW form [82, 83]

ρ(r) = ρ0

r/r0 (1 + r/r0)2 , (4.7)

with scale radius r0 and density ρ0. As is well known, the total mass in such a halo
4π
∫∞

0 dkk2ρ(r) is logarithmically divergent. The halo extends up to an edge defined
by the virial radius R∆, related to the scale radius r0 via the so-called ‘concentration’
parameter c∆ > 1 as R∆ = c∆r0 (c∆ parameterises how large the halo is with respect
to r0). The average density is therefore ρM = 4π

∫ R∆
0 dkk2ρ(r)/(4πR3

∆/3). Note that
the halo is completely specified by the three parameters {ρ0, r0, c∆}.

(3) Given that the formation of halos is self-similar during the evolution, we assume that
all the halos are formed with a universal concentration parameter, irrespectively of the
time when they are created.
The assumptions above allow the parameters ρ0 and r0 of the NFW profiles to be
calculated in terms of νc, ∆ and c∆. We report the full analytic formulas in appendix G.
The results for νc ' 0.67, c∆ ' 40 and ∆ ' 400, which we will see reproduce the
numerical results, are36

ρ0 ' 0.7
[

103M eq
J

M

]3/2

ρeq ' 0.3 eV4
[

103M eq
J

M

]3/2

, (4.8)

r0 ' 5.4
[

M

103M eq
J

]5/6

λeq
J ' 7 · 105 km

[
M

103M eq
J

]5/6 [1 eV
m

]1/2
, (4.9)

The lighter halos are denser, since they are created at earlier times when the background
density is larger. Note that ρ0 represents the density of the halo at r ' r0. Since the
halo extends a factor c∆ > 1 beyond r0 the average density is smaller than suggested
by eq. (4.8) and, for c∆ � 1, is approximately37

〈ρ〉 ' 3ρ0
c3

∆
(log c∆ − 1) . (4.10)

The energy density profile of the compact halos can be calculated in the same N-body
simulations discussed in section 4.2. In figure 10 we show the (spherically averaged) pro-
file of halos of different masses at z = 70, together with the predicted analytic form in
eqs. (4.7), (4.8) and (4.9). Albeit not from first principles, we see that the analytic analysis
is in remarkable agreement with the data, which indeed follow an NFW profile. Although
in figure 10 we only show the profiles of the halos present at a fixed redshift, we checked
that the analytic expectation in eqs. (4.8) and (4.9) matches simulation results at other ac-
cessible values of the redshift, for approximately the same values of νc, c∆, ∆. Given the
rough nature of our analytic analysis (e.g neglecting that some compact halos will merge, be
bound inside bigger halos, accrete mass) we do not attempt a global fit, and the values given

36For canonical structure formation, the parameters are νc ' O(1), c∆ ' 4, ∆ ' 200 [84].
37Note that the average density of compact halos with mass M > 5000MJ is smaller than the local dark

matter density.
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Figure 10. The (spherically averaged) density profile of compact halos of different masses at z = 70,
where all halos within 1% of the labeled mass are averaged. Also plotted is the analytic expectation of
the halo profiles given in eqs. (4.8) and (4.9). The profiles are plotted in terms of the scale parameter
r0 of the NFW profile (which depends on the halo mass), left, and the physical distance from the
center, right. Note that lighter halos, which are produced earlier, have larger density parameter ρ0
as can be seen in the left panel, despite having smaller density at a fixed physical distance from their
centres. In the right panel, we also plot the density ρJ(r), defined by λJ(ρJ) = r. Quantum effects
are relevant for densities ρ . ρJ , since λJ ∝ ρ−1/4.

above are sufficiently accurate for our purposes (indeed, note that c∆ and ∆ in the intervals
c∆ ' 30÷ 50 and ∆ ' 300÷ 500 all approximately reproduce the simulation results).

We also note that, similarly to the halo mass distribution, the halo profile should be
trusted only for compact halos with mass M & 50M eq

J , which come from modes k � k? so
are unaffected by quantum pressure (at least during their linear growth). Additionally, the
density profiles of compact halos in N-body simulations are only reliable in regions where the
quantum pressure is negligible.38 In figure 10 (right) we plot the curve ρJ(r) ∝ r−4 defined
by λJ(ρJ) = r. Since λJ ∝ ρ−1/4, ρJ(r) is the minimum average density a region of size r can
have before quantum pressure becomes relevant.39 Therefore, regions of the halos for which
ρ(r) > ρJ(r) are expected to be mostly unaffected by quantum pressure. We see that the
majority of the compact halo mass is self-consistently in a region where quantum pressure is
negligible, especially for relatively heavy halos, although this fails at the centre of the halos.
For instance, for M/M eq

J ' 200 less than 5% of the mass of the NFW profile is inside rc.

5 Late time evolution

Possible observational and experimental signals of the solitons, their fuzzy halos, and the
compact halos (which we collectively refer to as dark matter clumps) rely on them surviving
undisrupted to the present day. The resulting discovery potential will depend on how often
collisions between a clump and e.g. an observer on Earth occurs.

5.1 Survival of the clumps
There are various processes that could destroy a clump, the most important of which occur
when it is bound inside a larger structure, e.g. a larger clump or the Milky Way itself. As

38In figure 10 we plot the data only down to radius rsoft below which the N-body results do not reproduce
the equations of motion of even cold dark matter, for numerical implementation reasons. Further details are
given in appendix F.

39If in a region of size r the density is ρ < ρJ(r), due to quantum pressure the configuration will relax (into
a soliton) with radius larger than r (and density even smaller than ρ).
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previously discussed, the cosmological history of the clumps is extremely complicated. The
majority of solitons (and also the relatively low mass compact halos) will be bound in a series
of compact halos of increasing mass and decreasing average density. Subsequently the dark
matter clumps will fall into adiabatic halos. For direct detection we are interested in clumps
that are eventually bound in the Milky Way, with orbits that cross the neighbourhood of
the Earth. Such orbits could have a range of forms (mostly in the disk, on a rosette orbit,
etc. [85]), which will affect the survival probability.

Given this complexity we do not attempt to directly track the survival probability of a
clump from when it formed to the present day in full detail. Instead we estimate whether
typical clumps survive by calculating the rate of the processes that are most likely to lead
to their destruction. Most of our analysis will be done treating the clumps as being made
up of classical particles, although this will not be accurate for the solitons. Despite these
approximations, our analysis will be sufficient to indicate whether or not solitons and compact
halos are likely to survive in various environments. On the other hand, further dedicated
study would certainly be worthwhile, especially of the possible destruction during hierarchical
structure formation, which (although challenging to study) might be important.

Among the mechanisms that can lead to destruction are tidal forces from a central
potential, dynamical friction and tidal shocking by a central potential. For an object in the
Milky Way there is also destruction by encounters with stars and by tidal forces from crossing
the galactic disk. Destruction by tidal shocks is also possible when a soliton or compact
halos falls into a larger compact halo (or a relatively small halo from a small scale adiabatic
fluctuation) during hierarchical structure formation. We analyse each of the destruction
processes in detail appendix H. Here we summarise the main conclusions: first, the only
property of a clump that the rate of destruction depends on is its mean density ρ(r) =∫ r

0 ρ(r)4πr2dr/
(
4/3πr3) (for all the important processes). Consequently the disruption is

independent of the dark photon mass. Regions of clumps within which the mean dark matter
density ρ(r) is larger than about 0.05 eV4 are likely to survive to the present day if they end
up on a typical orbit that passes through the Earth.

The solitons have central densities ρs ' (0.1÷ 100) eV4 (see figure 6). From figure 7,
the density profile switches from soliton-like to the fuzzy halo NFW form at radius of
redge ' 2λ̃J(ρs)/3. At this radius ρ(redge) ' 0.2ρs (with local density ρ(redge) ' 0.05ρs).
Consequently, the majority of the solitons, and especially the relatively heavy ones, which
form at the times accessible in the simulations in section 3, are likely to survive.

Given the profiles of the fuzzy halos around solitons, ρ ' 0.05 eV4 corresponds to regions
of these with local densities ρ(r) ' 10−3 eV4. Therefore, the outer part of the fuzzy halos
around solitons is likely to be destroyed. This is to be expected given that the halos extend out
to densities barely greater than the dark matter density in the neighbourhood of the Earth.
However, the central part of the fuzzy halos are likely to survive. The density in the part
of the fuzzy halos that survives corresponds to an enhancement over the local dark matter
density (which for definiteness we fix to 0.5 GeV/ cm3) of ∼ 103. The compact halos are far
less dense than the solitons and much more likely to be destroyed. Compact halos with masses
in the range

(
102 ÷ 104)M eq

J (see figure 8) have typical mean densities ρ ' (10−6÷10−3) eV4

and the local densities at their edges are
(
10−7 ÷ 10−4) eV4 (see figure 23 right), which at

the lower end is even smaller than the local dark matter density. Consequently, the majority
of such halos, which contain ' 70% of the dark matter at z ' 10, are likely to be destroyed.
The relatively dense core of the compact halo might survive, but these will contain a smaller
fraction of the dark matter. Additionally, less massive (more dense) compact halos that are
subsequently bound in the most massive compact halos might survive.
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5.2 Collision rate

We now analyse the rate at which a point-like observer collides with a compact object. Given
the uncertainty about whether the compact halos survive to the present day, we focus on
collisions with the solitons and the parts of their surrounding fuzzy halos with local density
ρ & 0.01 eV4 (corresponding to a mean density ρ & 0.05 eV4), which are likely to persist
to today. With an eye to future analysis of direct detection signals, we present our results
assuming a local dark matter density ρlocal = 0.5 GeV/ cm3 (this is subject to significant
uncertainties, see e.g. [86]), corresponding to the Earth’s local environment, but they can
easily be rescaled to other densities.

For convenience, we note that a soliton of massM has central density, given by eq. (3.17),
that corresponds to

ρs ' 1.51 · 104 eV4
(
M

M eq
J

)4

, (5.1)

and a size set by λ̃J(ρs), which, from eq. (3.8), is

λ̃J(ρs) = 4.6 · 103 km
( eV
m

)1/2
(
M eq
J

M

)
, (5.2)

where M eq
J is given in terms of solar masses, as a function of m, in eq. (3.22).

We can easily obtain an analytic estimate of the collision rate. Approximating that the
solitons all have a single mass M , their local number density is

n = fsρ(t0)/M ' 1020pc−3
(
fs

0.05

)(
ρlocal

0.5 GeV/cm3

)(0.1M eq
J

M

)(
m

eV

)3/2
, (5.3)

where, as in section 3, fs is the fraction of DM in solitons.40 The number of collisions per
unit time between a point in space (e.g. a dark matter detector) and solitons is therefore

Γ ' nπR2vrel

' 0.1
yr

(
m

eV

)1/2
(

0.1M eq
J

M

)3 (
vrel

10−3

)(
fs

0.05

)(
ρlocal

0.5 GeV/cm3

)
,

(5.4)

where R is the maximum radius that the soliton profile extends to, which in the second line
we have set to λ̃J(ρs) given the results of section 3.7.

Apart from the explicit dependence, all the factors in the second line of eq. (5.4) are
independent of the dark photon mass m. Consequently the interaction rate is larger when
the dark photon mass is larger. This has a straightforward interpretation: the fraction of DM
in solitons, fs, and the densities of the solitons are independent of m; therefore the fraction
of time that a point spends inside a soliton is independent of m. However, the physical size
of the solitons (with fixed M/M eq

J ) is inversely proportional to m1/2 (see eq. (5.2)), so each
encounter with a soliton lasts less time when m is larger. In particular, a collision with
impact parameter b with a soliton lasts for roughly

tcollision ' 102 s
(

0.1M eq
J

M

)( eV
m

)1/2
. (5.5)

40See [87] for a similar calculation.
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Consequently the collision lasts roughly a minute for m ' eV. From figure 6 we see that
during the collision the dark matter density is typically enhanced by a factor ∼ 104 ÷ 107

compared to the local density. Given that the halos around solitons might survive out to
approximately ' 10λ̃J(ρs), the interaction rate with these is expected to be substantially
larger and the interaction time significantly longer (although the typical enhancement over
the local density will be smaller).

We can make more accurate predictions using the simulation and analytical results
for the soliton mass function from section 3.6. We continue to consider the rate at which
a single point collides with a clump. Given the size of the solitons eq. (5.2) this will be
appropriate for direct detection signals, and also e.g. neutron stars provided m . 105 eV. It
is straightforward to repeat our calculations to determine the rate of collision between an
object with size comparable to λ̃J(ρs) and clumps.

In figure 11 we plot the rate Γ at which collisions that result in a dark matter density
enhancement of at least ρ/ρlocal occur. In other words, a point is expected to experience a
collision that results in a density enhancement (at its peak) of at least ρ/ρlocal roughly once
per Γ−1 time. In this plot we assume ρlocal = 0.5 GeV/ cm3, and a mean relative velocity
of 10−3 between the solitons/fuzzy halos and the clump. The scaling with Γ ∝ m1/2 in the
estimate of eq. (5.4) is exact also for the full analysis, so we factor this out on the vertical axis.

Figure 11 shows Γ considering only collisions with the solitons (given figure 7, we define
this as the region r < 0.6λ̃J(ρs)) and allowing collisions with the halos surrounding the
solitons. Additionally we plot results obtained from the soliton mass function at the final
simulation time and from the analytic extrapolation, see figure 6. The rate of collision with
the halos surrounding the solitons are obtained by assuming these take the form of the NFW
halo plotted in figure 7.41 We also indicate the values of ρ/ρlocal such that some of the halos
that would contribute to the rate are likely to have been destroyed. For a dark photon mass
of m ' eV collisions with solitons leading to enhancements in the dark matter density of
a factor of 103 ÷ 104 occur on reasonable experimental timescales, and collisions with the
surrounding halos are even more frequent.

As well as the maximum dark photon density experienced, the time that an enhancement
lasts for and the density profile experienced is also potentially important for detection and
observation. This can easily be extracted from the density profile of the solitons/fuzzy halos
(and likewise the compact halos if they are assumed to survive). In figure 12 we plot an
example of the density seen as a function of time during a collision with a soliton/fuzzy halo
of central density 10 eV4 (corresponding to soliton mass of 0.16M eq

J , in the main part of the
soliton mass function of figure 6), for different impact parameters that both lead to collisions
with the soliton-like part of the object and that are just with the fuzzy halo. We also indicate
the part of the signal corresponding to regions of the fuzzy halo that are likely to have been
disrupted prior to the collision. Such disruption could lead to more diffuse streams of dark
matter around the object [88], resulting in interesting features in the density as a function of
time when an observer passes through the edge of a dark photon clump, although we do not
investigate this further in our current work.

An additional potentially important feature is that the dark photon field is coherent
over the entire soliton core (since the field’s de Broglie wavelength inside the core coincides
with the size of the soliton). This is far larger than for unbound dark matter, for which it

41As discussed in section 3.7, for relatively heavy solitons at the end of the SP simulations the NFW halos
already extends to roughly the ρ that are likely to survive tidal disruption. Meanwhile for lighter solitons the
halo has not yet extended this far, but it is likely that it will continue growing.
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Figure 11. The expected rate Γ at which a point-like observer collides with a dark photon clump in
such a way that the (maximum) resulting dark matter density enhancement seen is ≥ ρ/ρ. Results
are shown considering collisions with the central regions of solitons, r/λ̃J(ρs) < 0.6, (blue) and due
to colliding with either a soliton or its surrounding halo (purple). As discussed in the main text,
Γ is proportional to m1/2. Results are plotted using the soliton mass function at z = 500 obtained
directly from simulation data (solid) and from the analytic extrapolation of the soliton mass function
to z = 100 when the collapse of the k3 fluctuations is expected to prevent further formation of solitons
(dashed). The fuzzy halos around the solitons are assumed to have the NFW form seen in simulations.
The local dark matter density is fixed to 0.5 GeV/cm3 and the corresponding physical densities that
the observer passes through are shown on the upper axis. Regions of the halos surrounding solitons
with densities . 10−2 eV are likely to be disrupted in the local environment. The values of ρ/ρlocal
where this will affect Γ are plotted in grey. The majority of the solitons contributing to the rate are
expected to survive to the present day.

is 2 · 10−4 m ( eV/m)
(
10−3/v

)
. Even in the fuzzy halo the typical velocity (from the NFW

profile) is tiny, and the de Broglie wavelength is typically less than a factor of 10 smaller than
in the soliton core, typically in the range 102 km( eV/m)1/2 (see eq. (5.2)), still many orders
of magnitude larger than it would otherwise be. Finally, we note that we have assumed that
the soliton retains its form throughout the collision. In reality, the tidal forces experienced
by a clump during a collision with the Earth are likely to lead to its eventual destruction.
However, the clump’s profile remains mostly unchanged until long after passing the Earth
and this effect will not alter the density profile seen by a detector [27].42

6 Discussion and future directions

There are a plethora of potential observational and experimental implications of the solitons
and their fuzzy halos, which we will study in detail in a companion paper. For m & eV,
a typical observer in the local environment collides with solitons regularly, and during each
collision the dark matter density is boosted by a factor of up to 106 and is far more coherent

42Moreover, note that for m sufficiently large, the encounter of solitons could modify the expectation of
gravitational focusing of ultralight DM, studied in [89] if the field is made of waves.
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Figure 12. The dark matter density as a function of time encountered by a point-like observer
colliding with a soliton, and its fuzzy halo. The soliton’s central density is fixed to ρs = 10 eV4. We
show results for impact parameter b varying from 0 (passing through the centre of the soliton) to
those that only pass through the fuzzy halo, measured in units of λ̃J(ρs), the quantum Jeans distance
at the soliton core (the soliton-like part of the clump extends to roughly λ̃J(ρs)). We also indicate
the parts of the fuzzy halo that are likely to have been disrupted prior to the collision, in the Earth’s
local environment.

than it is outside solitons. For smaller m, collisions are rarer, but the clumps contain more
mass and are larger in size. Although less relevant for direct detection, there is a range
of possible striking astrophysical and indirect signals in this case. If the vector has self-
interactions, the solitons might be unstable and could explode, leading to further potential
signals, similar to the analysis for axion stars in [90]. Moreover, compact halos have a
macroscopic mass (of the order of the mass of a planet for m . 10−5 eV), and — being
abundant in our Galaxy — can in principle be observed and constrained via gravitational
measurements.

Notice that the classical description of the field is valid when the number of particles N
within a de Broglie wavelength λdB ≡ 2π/(mv) (of the order of the inverse typical momentum)
is much greater than 1: i.e. N = ρλ3

dB/m � 1. As is well known, for this to be valid today
requires m . 10 eV if the field is made out of waves. However, inside the solitons the
occupation number is much larger, and therefore — as we now show — the validity of our
results extends to much larger m.

The crucial condition for the solitons to form is that the vector bosons are classical
at around MRE when the overdensities start collapsing, as described in section 3. Since
the soliton energy density and occupation number remain constant, solitons never exit the
classical regime afterwards. Classicality at MRE requires

N '
(

2π
k?/aeq

)3
ρeq
m
' 90 ρ

1/4
eq

G3/4m5/2 ' 30
(

1017 eV
m

)5/2

� 1 . (6.1)

This condition is parametrically the same as requiring that the occupation number
in the core of the soliton is large (ρsR3/m ' M/m � 1), since the density and size of
the solitons match the typical density of the field and the size of the fluctuations at MRE.
Eq. (6.1) implies that our results will apply for all the masses in the range m . 108 GeV.
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The upper limit happens to coincide with the largest m that does not exceed the Hubble
parameter during inflation, requiring that the dark photon makes up the full relic abundance,
see eq. (1.1).

For m & 10 eV in most of the Universe one needs to consider the heavy vector bosons as
quantum objects (similarly to WIMPS), however the solitons are perfectly captured by the
classical description.43 In this regime, the soliton radius is tiny, but the number density of
solitons and their encounter rate with the Earth (and other astrophysical objects) is huge.
There are potentially dramatic signatures, e.g. at direct detection experiments that aim to
detect the collision of single particles.

6.1 Possible improvements and extensions

There are a number of ways that our analysis could be refined or extended. One direction is to
better test, and if necessary improve, our analytic prediction of the soliton mass function from
the density power spectrum.44 This would be particularly valuable when studying similar
dynamics in a theory where the initial power spectrum changes as the theory’s parameters
vary, or in the context of a theory where the initial power spectrum is uncertain. It would
also be interesting to study the fuzzy halos that surround the solitons in detail. For example,
simulations of ultra-light axions seem to show a relationship between the masses of solitons
that form at the centre of galaxies in such models and their halos [92], and it would be nice to
understand if our fuzzy halos follow a similar relationship. Additionally, it would be useful to
study the transition between collapse to objects supported by quantum pressure and collapse
to objects well approximated as being composed of cold DM more systematically. Although
we have analysed the compact halos assuming that quantum pressure is negligible, which is
self-consistent over most of their profile especially for the most massive objects, solitons are
likely to still form at their cores, and these could be relevant for observation or detection
signals. It would also be interesting to study the effect of the vector having self-interactions,
or interactions with the SM or new fields. For example, this could lead to the solitons
decaying on cosmological timescales, potentially leading to observational signals [93–96], and
it could also affect the rate at which solitons form or gain mass by dynamical relaxation [97].

A key direction for future work is to determine the probability that the solitons, fuzzy
halos and compact halos survive to the present-day more accurately. In our analysis we
had to make multiple approximations and focus only on particular processes. It would
certainly be valuable to better understand the probability of destruction or possible accretion
during hierarchical structure formation and also to determine whether wave-like effects alter
the probability of the solitons or fuzzy halos surviving. One could also carry out a more
detailed study of the probability of destruction by collisions with stars, e.g. along the lines
of [70, 98, 99]. The solitons, as mentioned in section 3.5, could also merge in the late Universe
or when they are bounded into halos, which could change their mass distribution [100].

On the numerical side, there are several directions in which our approach could be
developed, which could help address some of the issues above. Our simulations of the SP
system could only reach a/aeq = 7 and it was impossible for us to use them when analysing
the compact halos in section 4. An adaptive mesh approach, e.g. as employed in [101, 102]

43We expect the solitons to be stable, even if surrounded by a non-classical background (indeed they might
accrete via gravitational relaxation), although a detailed analysis would be useful.

44Given the local (quadratic) non-Gaussianities in the initial energy density field and the similarity with
primordial black holes discussed in section 3.6, it could be useful to follow approaches already developed in
this case [91].
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could enable a much greater range in a/aeq. One could also employ a hybrid SP - N-body
approach, evolving the SP equations only in regions where quantum pressure is relevant, or
modify the equations of motion in N-body simulations to attempt to reproduce the effects of
quantum pressure. With such work, one might be able to see whether the solitons survive if
they are bound in a compact halo.

It would be valuable to understand whether vector solitons could form with other pro-
duction mechanisms, e.g. by gravitational condensation analogous to the way that QCD
axion stars are thought to form in the post-inflationary scenario [63, 64]. We have focused
on a very minimal theory, but it would also be interesting to study the impact of additional
interactions. As mentioned at the end of section 2, these could lead to changes at all stages,
from the production of inflationary fluctuations through to the dynamics around H?, MRE
and the present day (see also [52]). Additionally, there could be new types of compact object
that form when the vector has interactions [103]. Last, it would certainly be worthwhile to
analyse what changes if the dynamics responsible for the vector boson’s mass lie below the
scale of inflation.
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A Details of the initial conditions from inflation

In this appendix we discuss some more details on the production of the vector field during
inflation, which was first analysed in [10] (see also [45]). In particular, we give the derivation
of eq. (2.7) and report the useful analytic approximation eq. (2.11).

To derive eq. (2.7), we estimate the solution AL(t, k) of eq. (2.6) in the limits k � k?
and k � k?. While relativistic and superhorizon, for all modes eq. (2.6) is approximated
by (∂2

t + H∂t)AL = 0, with obvious solution AL ' AL,0 (i.e. the modes are frozen) and
ρ ' m2A2

L/a
2 ∝ a−2. However:

(1) Even after they become nonrelativistic, the modes with k < k? while superhorizon still
follow (∂2

t +H∂t)AL = 0. Therefore AL ' AL,0, and their energy density decreases as ρ '
m2A2

L/a
2 ∝ a−2. This behaviour of ρ is crucially different than for a scalar field, for which
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ρ is frozen for nonrelativistic superhorizon modes.45 The solution AL ' AL,0 is valid until
H = m (i.e. a = a?), after which eq. (2.6) is approximated by (∂2

t + H∂t + m2)AL = 0,
with solution AL ∝ a−1/2 and ρ ∝ a−3, which is the usual matter behaviour.

(2) On the other hand, the modes with k > k? follow (∂2
t + 3H∂t + k2/a2)AL = 0 when they

enter the horizon at k/a = H (while still relativistic), and have solution AL ∝ a−1 so ρ ∝
a−4. When they become nonrelativistic at k/a = m, they follow (∂2

t +H∂t +m2)AL = 0,
as before with solution AL ∝ a−1/2 and ρ ∝ a−3.

Summarising, after they become nonrelativistic and subhorizon, all modes behave like mat-
ter. Approximating the transition between the different regimes as immediate, we have
for low frequency modes AL/AL,0 ' (a?/a)1/2, while for high frequency modes AL/AL,0 '
(ae/anr)(anr/a)1/2 = (k?/k)3/2(a?/a)1/2, where k/ae ≡ H(ae) and k/anr ≡ m and we assumed
radiation domination, for which H ∝ a−2. This allows us to conclude that in radiation dom-
ination AL has a Gaussian power spectrum given by (using eq. (2.7))

PAL(t, k) =
(
k?HI

2πm

)2 (a?
a

)
F 2
AL

[k/k?] '
(
k?HI

2πm

)2 (a?
a

) (k/k?)2

1 + (k/k?)3 , (A.1)

where the exact form of FAL [x] (see figure 2 left) can be by extracted by solving numerically
eq. (2.6), but from the discussion above FAL [x] → {x, x−1/2} in the asymptotic limits x →
{0,∞}. A very good analytic approximation is FAL [x] ' x/

√
1 + x3, reported in the right

hand side of eq. (2.8).
It is straightforward to get an expression for the density power spectrum [10],

Pδ(t,k) = k2

8〈A2
L〉2

∫ ∞
0
dq

∫ q+k

|q−k|
dp

(k2−q2−p2)2

q4p4 PAL(t,p)PAL(t,q)'
√

3(k/k?)3

π
(
(k/k?)3/2+1

)8/3 , (A.2)

where the second equality is an approximate analytic expression, reported in eq. (2.11). In
deriving eq. (A.2) we used the fact that, at any fixed time, AL and ∂tAL can be effectively
treated as independent Gaussian fields with the same power spectrum, P∂tAL = m2PAL .46

This is because, although AL and ∂tAL are related by the Bunch-Davies vacuum-solution,
they consist of the superposition of many modes with random phase.

B Evolution of overdensities

The evolution of small density fluctuations during radiation and matter domination can be
analysed perturbatively, with and without quantum pressure. Although this is not applicable
to the large density perturbations at the scales k ' k? (see figure 3), the perturbative analysis
still gives a useful hint towards the type of effects quantum pressure might have.

In the absence of quantum pressure, the evolution of a density perturbation δ(k) (in
momentum space) as a function of time t, with scale factor a(t), is well known [104]

δ̈ + 2
a
ȧδ̇ − 4πGfρnrδ = 0 , (B.1)

45As mentioned in the main text, the difference is due to the form of the mass terms of such particles, which
controls the energy density of nonrelativistic superhorizon modes: for a scalar, 1

2m
2ϕ2 does not change during

the universe expansion, while 1
2m

2gijAiAj ∝ a−2 for a vector.
46In this way, the power spectrum Pδ is well approximated by half the power spectrum if ρ consisted of the

mass term in eq. (2.5). Note that indeed Pδ in [10] is a factor of 2 larger, because that reference neglected
the first term in eq. (2.5).
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where here f = ΩA/ΩM with ΩM the total matter content (this differs from e.g. fs used in the
main text, which was normalised to ΩDM). Eq. (B.1) is obtained by combining eqs. (3.4), (3.5)
and (3.6) (with ΦQ = 0) in the limit of small overdensity and velocity. Defining y = a/aeq,
eq. (B.1) simplifies to

∂2δ

∂y2 + 2 + 3y
2y(1 + y)

∂δ

∂y
− 3f

2y(1 + y)δ = 0 . (B.2)

If f = 1 this leads to the usual growing solution δ = δ0(1 + 3
2
a
aeq

), where δ0 is the overdensity
at an early time, deep inside radiation domination: overdensity are frozen during radiation
domination, and grow linearly in matter domination. For f = 0.84 the (growing) solution
is slightly modified, but the perturbation is still almost completely frozen before MRE and
then grows. At large a/aeq we have δ ∝ (a/aeq)−1/4+

√
1+24f/4.

Quantum pressure leads to an additional term, and the perturbation evolves according to

∂2δ

∂y2 + 2 + 3y
2y(1 + y)

∂δ

∂y
− 3f

2y(1 + y)

(
−1 +

(
k

kJ

)4)
δ = 0 , (B.3)

where kJ is the quantum Jeans momentum, and k/kJ ∝ y−1/4. For k & kJ the solutions
oscillate, both in radiation domination (y � 1, when they would otherwise be frozen) and in
matter domination (y � 1, when they would otherwise grow). For k � kJ the evolution is
as in the absence of quantum pressure, as expected. A detailed analysis, including a study
of the applicability of the perturbative expansion and the effects of the next terms in the
expansion can be found in [105].

C Solving the Schrödinger-Poisson equations

C.1 At matter radiation equality
Here we summarise how the Schrödinger-Poisson (SP) system of equations eq. (3.2) can be
written in a form suitable for the numerical evolution and how we implement a realisation of
the initial conditions from inflation.

Around MRE the scale factor a(t) satisfies ȧ = aH(a) with

H2 = 8πG
3 ρtot = 8πG

3
ρeq
2

[(
aeq
a

)3
+
(
aeq
a

)4
]
≡
H2

eq
2

[(
aeq
a

)3
+
(
aeq
a

)4
]
, (C.1)

where H2
eq ≡ 8πGρeq/3, so that (neglecting changes in the number of degrees of freedom,

which is appropriate for the Standard Model)

da

dt
= a

Heq√
2

√(
aeq
a

)3
+
(
aeq
a

)4
. (C.2)

Note that the previous equation can be integrated exactly in conformal time. Similarly
to [102, 106, 107], we rewrite the Schrödinger-Poisson system as(

i∂t̃ + ∇
′2

2 − Φ′
)
ψ′i = 0 (C.3)

∇′2Φ′ = a
∑
i

(
|ψ′i|2 − 〈|ψ′i|2〉

)
, (C.4)
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where t′ = t/T , x′ = x/
√
T/m (we call L =

√
T/m), Φ′ = a2Φ/(mT )−1 and ψ′i =

ψi/(
√

4πGT )−1, where T is any inverse mass scale. We also defined t̃ =
∫
dt′/a2 (so that

dt̃/dt′ = 1/a2).
Given the form of the initial conditions, it is natural to choose the typical length to be

L = 2π(ma?/aeq)−1. As in section 3.2, in the limit a?/aeq � 1, a?/aeq = (Heq/(
√

2m))1/2g−1
R .

Therefore we have L = 2π(
√

2H−1
eq g

2
R/m)1/2.

Our choice of L fixes the typical time to be T =
√

2βH−1
eq where β ≡ (2π)2g2

R. With
this choice, eq. (C.2) simply becomes

da

dt̃
= βa3

√(
aeq
a

)3
+
(
aeq
a

)4
, (C.5)

and the dependence on Heq (as well as any numerical input except for β) have dropped out
from eqs. (C.3), (C.4) and (C.5). From now on we will set aeq = 1.

Next we discuss how we generate the initial conditions (at a � aeq). The field config-
uration ψi is obtained from Ai using the definition Ai = 1√

2m2a3 (ψie−imt + c.c.), which im-
plies Re[ψi] = (a3/2)1/2(m cos(mt)Ai − sin(mt)Ȧi) and Im[ψi] = −(a3/2)1/2(m sin(mt)Ai +
cos(mt)Ȧi). In the initial conditions the field Ai and Ȧi have only longitudinal component
(AL and ȦL). This is generated, using standard algorithms for a random field, according to
the power spectra, PAL and P∂tAL , defined by eq. (2.4) (as mentioned, treating the two fields
as independent is equivalent to generating modes with random phases). We use the expression
of PAL in eq. (2.8). The same expression holds also for P∂tAL , modulo a factor of m2.

The above procedure fixes the initial conditions except for the overall amplitude of ψi,
that depends on the amount of vector dark matter present (ultimately linked to HI). We
normalise it such that ∑i〈|ψi|2〉 = fρeq/2, where as before f = ΩA/ΩM,47 which we set to
f = 0.84, so that the vector is all of the observed dark matter.48 Consequently the amplitude
of ψ′ is set such that

〈|ψ′|2〉 = 〈|ψ|2〉
(
√

4πGT )−2
=

fρeq/2
(
√

4πG
√

2βH−1
eq )−2

= 3ΩA/ΩM
2 β2. (C.6)

Integrating eq. (C.4) with the initial configuration of ψ′ just described gives the corresponding
initial configuration of Φ′.

Consequently, the SP system at around MRE boils down to eqs. (C.3) and (C.4) with
a given by integrating eq. (C.5) with initial amplitude in eq. (C.6).49 Note that the only
free parameters on which these equations depend are gR and ΩA/ΩM. Additionally, from
eqs. (C.3) and (C.4) and (C.5) with aeq = 1 it follows that Φ′ is of order one (which is the
size of ∇′ and ∂t̃ when applied to Φ) when a ' 1/δ from eq. (C.4), and at this time the
gravitational potential becomes relevant in the dynamics and ψ′ starts evolving nonlinearly
(though, as we saw, perturbations do not collapse due to quantum pressure).

C.2 Numerical solution
We solve eqs. (C.3) and (C.4) (together with eq. (C.5)) on a finite lattice of constant comoving
lattice spacing and in a periodic box of constant comoving length. We use a 6th order pseudo-

47This is because 1
2 Ȧ

2
i + 1

2m
2A2

i = |ψi|2 at the time when a = qeq = 1.
48Note that given the power a−3/2 in the definition of ψ from A,

∑
i
〈|ψi|2〉 is constant in time; moreover,

since a = 1 at MRE,
∑

i
〈|ψi|2〉 is the dark matter energy density at MRE.

49Relativistic corrections to the SP equations have been studied [108], but these are negligible for our
purposes.
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spectral algorithm, developed in [109] and applied to study the cosmology of axion stars in [63]
and fuzzy dark matter in [110] (see also e.g. [111] for other similar implementations). Given
the fields ψi at time t, the fields at time t+ ∆t are obtained by evaluating

ψi(t+ ∆t) =
( 8∏
α=1

e−idα∆t̃Φ(x)e−icα∆t̃k2/2
)
ψi(t) , (C.7)

where the product is ordered from right to left so the α = 1 part is applied to ψi(t) first,
and the evolution with the k2 operator is understood to happen in momentum space. Here
k denotes the momentum in units of 2π/L. The potential Φ is re-calculated after every step
with the momentum operator, by solving the Poisson equation, eq. (C.4), numerically (by
transforming to momentum space and back).

As discussed in [63], this pseudo-spectral algorithm has several beneficial features and
advantages over other approaches. It automatically conserves particle number and it has
a high degree of stability (i.e. there are no spurious growing modes). Compared to lower
order pseudo-spectral algorithms, such as used in [107], much larger ∆t are allowed without
introducing significant systematic uncertainties, so simulations are faster (detailed analysis
comparing algorithms of different orders can be found in [110]).

C.3 Systematic uncertainties

For our main data collection runs we use a lattice of N3 = 10803 points, with a comoving
box length of ` = 3.75λ?. Evolution is started at a/aeq = 0.01, and stopped at af/aeq = 7.
We vary the timestep throughout a simulation as ∆t̃ = 0.00025aeq/a.50 We now show that
these choices lead to negligible systematic uncertainties, which arise from various sources:

1. Finite lattice spacing. Once formed the solitons have constant physical size, whereas
the lattice spacing increases ∝ a. The size of the resulting systematic uncertainties is
controlled by the hierarchy of the physical distance between lattice points at af and
the size of the soliton cores. For negligible systematic uncertainties we expect that
af `/N � λ̃J(ρs) is required, where ρs is the central density of a soliton. Since λJ is
a decreasing function of ρs, we require that this inequality is satisfied for the densest,
i.e. largest mass, solitons that can form. λ̃J(ρs) is parametrically set by λ?.
To confirm that our choice of parameters leads to negligible systematics from this
source, we compare results from a single simulation with our main value of ∆x =
`/N = ∆x0 with results starting from identical initial conditions, but with ∆x a factor
of 2/3 and 1/2 smaller. To have sufficient computing power to do the finer resolution
tests we carry out this test in boxes with smaller `. The initial conditions that we
choose happen to have a largest soliton mass ∼ 0.17MJ(aeq). Since kJ(ρs) ∝ 1/M we
run our lattice spacing tests to af = 14, which gives the same value of af `/

(
Nλ̃J(ρs)

)
as in a large simulation with a soliton of mass 0.34MJ(aeq) at af = 7, which covers the
vast majority of the solitons that form in our main simulations. Results are shown in
figure 13. One can see that the soliton core is just about resolved with our main value

50This is because the influence of the gravitational potential is the only thing that prevents the evolution in
eq. (C.7) being exact for finite ∆t̃ and which therefore leads to a condition on ∆t̃ to not be too large. For a
static field configuration, the influence of the potential increases proportionally to a, see eq. (C.3). Therefore
our rescaling of ∆t̃ is a reasonable choice to avoid a large amount of CPU time being spent evolving with
small ∆t at values of a such that this is not necessary.

– 41 –



J
C
A
P
0
8
(
2
0
2
2
)
0
1
8

of ∆x0. The central density of the soliton, and therefore the inferred soliton mass, is
still accurately reproduced to about 5% level, which is sufficient for our purposes.

2. Finite time step. As mentioned, owing to the gravitational potential, the evolution
in eq. (C.7) is exact only in the limit ∆t̃ → 0. To test the importance of systematic
uncertainties with our choice of ∆t̃ we compare results when identical initial conditions
are evolved with our main choice ∆t̃0 and with ∆t̃ reduced by a factors of 2 and 3
smaller. Results are shown in figure 14, where it can be seen that our choice of ∆t̃0 is
sufficient for percent level accuracy.

3. The initial time of simulations. Even though density perturbations are not expected
to evolve much during radiation domination, there is still a numerical question of small
ai/aeq must be so that significant systematic uncertainties are not introduced. An
estimate of a suitable ai can be obtained from the f = 1, kJ → ∞ perturbative
prediction δ(a) = δ(0)(1 + 3

2a/aeq), which suggests that starting that ai/aeq = 0.01
is enough for percent level accuracy. To test this, we plot the maximum density in
simulations as a function of time for different ai in figure 15 (left). Because of the
non-linear dynamics of the system after MRE small changes in the initial conditions
can lead to large changes at late times, so for each ai plot results averaged over a set
of 5 different initial conditions (identical between different ai). We see that the mean
with ai/aeq = 0.01 agree with those with ai/aeq = 0.005 to within ' 30%, and there
is no indication that the deviation is systematic rather than statistical (actually, even
ai/aeq = 0.05 would probably be sufficient).

4. Finally, the finite box size can lead to systematic uncertainties. These are expected
to be negligible as long as the most IR modes in a simulation have power spectrum
Pδ(k)� 1, indicating that they are still perturbative, and dynamics on the scale of the
box size are not affecting the evolution on smaller scales. With our choices of box size
and af in our main runs, the most IR modes have Pδ(k) ' 0.5 (see figure 16, right) at
the final time, suggesting that this is not a source of major systematics.

D Further results from Schrödinger-Poisson simulations

In this appendix we collect some additional discussion and results from our numerical simu-
lations of the SP equations, supporting the analysis of section 3.

First we consider the growth of density perturbations in more detail. In figure 16 (left)
we plot the evolution of the power spectrum Pδ at different momenta (averaged over multiple
simulations) and compare this to the prediction from appendix B in the limit that quantum
pressure is unimportant, kJ →∞. It can be seen that modes with k = 0.1keq

J evolve basically
as they would in the absence of quantum pressure, and the growth of modes with k = 0.25keq

J

at MRE is slightly hindered by quantum pressure. In contrast, as expected, quantum pressure
prevents modes close to the peak of the initial power spectrum (see figure 2 right) from
growing until around MRE. The same dynamics can be seen in figure 16 (right), where we
plot the density power spectrum at different times (note the solitons are not screened when
calculating this). At a given time, the growth of modes with k greater than the quantum
Jeans momentum are suppressed. Since the quantum Jeans momentum is larger at larger
density, an overdensity on a scale k−1 can grow provided k−1 < k−1

J (ρ) where ρ is the local
dark matter density, which might be greater than the mean density. Indeed, at late times
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Figure 13. Left: comparison between the spherically averaged density profile around the densest
object in a simulation at a/aeq = 14 with the space-step we use for our main runs ∆x0 and with
finer resolutions 0.66∆x0 and 0.5∆x0 (starting from identical initial conditions). Although resolution
of the soliton core is starting to be lost in the ∆x0 run, the central density and soliton mass are
still accurate to few percent level. Right: the maximum density in a simulation obtained evolved
with the space-step used for our main runs ∆x0, and with finer resolution 0.66∆x0, compared to that
obtained with a 0.5∆x0 (starting from identical initial conditions). At a/aeq our choice of space-step
introduces less than a ∼ 10% systematic uncertainty.
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Figure 14. Left: comparison between the spherically averaged density profile around the densest
object in a simulation at a/aeq = 10 with the time-step we use for our main runs ∆t̃0 and with a time-
step of 0.33∆t̃0 (starting from identical initial conditions). The almost perfect agreement indicates
that the systematic uncertainties from this source are negligible. Right: the maximum density in
a simulation obtained evolved with the time-step used for our main runs ∆t̃0, and with a smaller
time-step 0.66∆t̃0, compared to that obtained evolving with a time-step of 0.33∆t̃0 (starting from
identical initial conditions). At a/aeq = 7 our choice of time-step introduces only much less than
∼ 1% systematic uncertainty compared to the smaller time-step.

there is a clear UV cutoff at Pδ ' kJ(ρmax), corresponding to the inverse size of the most
massive solitons produced.

Next we clarify the choice made in section 3.5 to determine the soliton masses in sim-
ulations from their central densities. In figure 17 (left) we plot the average soliton mass as
a function of time, grouping the solitons by the time when they formed ai, as in figure 5
(right), but showing results for the masses calculated from the central densities M(ρs) and
from integrating the density profile. In particular, we evaluate the mass inside the radius
rs where the spherically averaged density ρ(r) drops a factor of 10 from the central value,
i.e. Mr =

∫ rs
0 ρ(r)4πr2dr, since over this region that profile is (on average) soliton-like, see

figure 7. The mass calculated from integrating the density profile is close to that inferred
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Figure 15. The mean maximum density in simulations starting from different initial times. Due to
the oscillation of modes k > kJ even during radiation domination and the non-linear dynamics during
gravitational collapse, simulations with initial conditions starting at different ai can differ significantly.
However, averaged over multiple runs, there is no systematic effect from starting at ai/aeq = 0.01 (as
we do in our main runs) rather than earlier.
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Figure 16. Left: the average growth of different momentum modes as a function of time. The
predicted growth in the absence of quantum pressure, kJ →∞, is also plotted. The growth of modes
k/kJ(ρeq) = 0.1 is only slightly affected, while the higher momentum modes have more suppressed
growth. Modes k/kJ(ρeq) & 1 are prevented from growing almost entirely until the quantum Jeans
momentum in some region kJ(ρ) is comparable to k. Right: the density power spectrum in simu-
lations at different times averaged over multiple realisations of the initial conditions, with statistical
uncertainties. The quantum Jeans momenta corresponding to the mean dark matter density kJ(ρ)
and to the (averaged) maximum density in the simulations kJ(ρmax) are indicated. The IR modes
grow unaffected by quantum pressure, following the standard expectation. Quantum pressure delays
the growth of modes on smaller length scales. Once solitons form the power spectrum is peaked at
scales kJ(ρmax), set by the density at their cores. The peak tracks the typical size of the solitons.

from the central density, as expected since we know that on average the profile is close to the
soliton one. However, at least at early times there are a small differences and the mass mea-
sured by integrating the density profile initially increases slightly approaching that predicted
from the central density. We interpret this as the soliton density profile taking some time
to settle down to its eventual form. Meanwhile, apart from oscillations due to quasinormal
modes, the solitons’ central densities reach their late time values fast (see also figure 4 left),
so are a good way to infer the solitons’ eventual masses.

We also note that the time of soliton formation is ambiguous. For the purposes of
figure 5 (right) and figure 17 (left), we fix ai by the first time when the object has a central
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Figure 17. Left: the masses of solitons as a function of time, with the solitons grouped based on when
they are produced, with statistical error bars. The masses are normalised as in figure 5. The soliton
masses are measured in two ways: first from the central densities (Mρ), and second by integrating over
their density profiles (Mr). The mass measured from the central densities are approximately constant,
while though measured from the density profile increase slightly and approach those inferred from the
central density. Right: the spherically averaged density profile around solitons, as in figure 7, but
selecting only solitons with medium masses (0.15 ÷ 0.18)MJ(aeq). The NFW profile plotted is that
obtained by fitting the profile around heavy solitons, as described in section 3.7. The fuzzy halos
around the relatively light solitons are approaching the same profile.

density ≥ 200ρ and the averaged density profile does not drop by more than 25% within one
lattice spacing from the centre. Given that the gravitational collapse happens fairly fast (see
figure 4 left), the value of cM we extracted is not particularly sensitive to this choice.

In section 3.7 we studied the fuzzy halo around solitons by considering the halos around
relatively heavy solitons in figure 7.51 In figure 17 (right) we show the analogous plot
for medium mass solitons, which form approximately between 5 . a/aeq . 7 (see fig-
ure 6). We further restrict to objects that have a halo extending to at least r/λ̃J(ρs) =
(0.95, 1.25, 1.6, 2.4) respectively at the four times. We also plot the NFW profile obtained
fitting to the fuzzy halo around the relatively heavy solitons. Not surprisingly, at a fixed
a/aeq the fuzzy halos extend less far from the medium mass solitons than from the heavy
solitons. However, the halos are growing outwards from the medium mass solitons fast, and
are approaching the NFW form of the fuzzy halos around the heavy solitons, with the same
halo parameters. This is a nice feature, which makes it reasonable for us to assume that the
halos around all solitons will eventually take this form, at least out to some cut-off. We do
not know what this cut-off is, however fortunately this is not a major source of uncertainty.
The typical central densities of the medium mass solitons is about 10 eV4, so from figure 17
(right) the fuzzy halo is likely to be destroyed outside the radius (10 ÷ 15)λ̃J(ρs). This is
approximately the distance that the fuzzy halos around the massive solitons already reach
in simulations, so it is reasonable to estimate that fuzzy halos around all solitons will reach
this size (which is what we assume when studying the rate of collision with an observer in
section 5.2).

51We note that there are several choices required to make such a plot. We define a collapsed object as
having maximum density ρ ≥ 200ρ. Having identified such an object, we label the entire region out to the
radius where the spherically averaged density profile drops to ρ = 20ρ as being part of the same object (and
so not considered further in finding other compact objects). We also discard objects for which the spherically
averaged density profile drops by more than 25% one lattice space away from the core. This removes a few
isolated points, which would otherwise be identified as collapsed objects and are generally on the outskirts of
a genuine collapsed object, just outside their cutoff. These choices do not make a substantial difference to our
results.
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Figure 18. The fraction of dark matter in the solitons and their surrounding halos as function
of time. We also plot the fraction of the dark photon energy that is in non-longitudinal modes,
defined by 1− f =

〈
(k̂.A(k))2

〉
/
〈
A(k)2〉 where 〈. . .〉 denotes the spatial average. The field’s energy

is initially in purely longitudinal modes, but gravitational interactions that become relevant around
matter radiation equality transfer energy into transverse modes (e.g. the soliton solution is not pure
longitudinal).

In figure 18 we plot the fraction of dark matter in solitons and the halos around them
(with the edges of the halos defined as the point where the spherically averaged density
drops to 20ρ, as before). We also plot the fraction of the dark photon energy that is in non-
longitudinal modes, which, due to gravitational interactions, increases from 0 at the start of
the simulation and becomes a substantial fraction around MRE.

E Analytic prediction of the soliton mass distribution

As discussed in section 3.6, our analytic estimate of the soliton mass distribution is based on
two simple assumptions:

1) The solitons produced at any time have a mass M = M(a) given by eq. (3.11), with
cM ' 0.45.

2) As soon as the comoving Jeans scale drops below the size of a fluctuation, this — if already
of order one — should collapse into a soliton. Therefore, the number of solitons produced
is expected to be proportional to the ‘frequency’ that the amplitude of such fluctuations
in the initial conditions is larger than a critical value of order one, that we call δc.

More precisely phrased: between a1 ' aeq and a, the fraction of dark matter collapsed
into solitons is equal to the probability Πδ>δc(a1, a) that the field δs smoothed between
kJ(a1) and kJ(a) is larger than δc. The smoothed field is δs(x) ≡ (2π)−3 ∫ d3k exp(i~k ·
~x)δ(k)W (k; kJ(a1), kJ(a)), where W (k; k1, k2) is a window function that vanishes out-
side k1 < k < k2, which therefore selects the component of the field within these mo-
menta. Using 1), the number density of solitons produced per unit time is therefore
simply dΠδ>δc (a1,a)

da ρ(a)/M(a). Note that, contrary to the usual Press-Schechter argument
(reviewed in appendix G), the field does not increase with D[a] ∝ 1 + (3/2)a/aeq, since
— as mentioned — at those scales the overdensities oscillate without growing.
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By integrating over a1 < a < a2, a crude estimate for the soliton mass distribution at a = a2
in eq. (3.24) is

dfs(a2,M)
d logM = M2

ρ(a2)

∫ a2

a1
da
dΠδ>δc(a1,a)

da

ρ(a)
M(a)

(
a

a2

)3
δ[M−M(a)] = dΠδ>δc(a1,aM )

d logM , (E.1)

where the last equality is valid for M < M(a2) (for M > M(a2) the mass distribution
vanishes). Here aM is the inverse of the function M(a) in eq. (3.11), and corresponds to the
scale factor when solitons with mass M are produced. Note that, aside from the freedom in
the choice of the window function W , the only free parameter in eq. (E.1) is δc.

Unfortunately it is not possible to compute the probability Πδ>δc(a1, a) rigorously start-
ing from the power spectrum Pδ alone, since, as mentioned, δ(x) it is not Gaussian at
k & k?. We leave this for a future work. Here we limit ourselves to the Gaussian approxi-
mation. For a Gaussian distributed field, this probability is fully determined by the field’s
variance σ2

δ (a1, a) ≡ 〈δ2
s(x)〉 =

∫
dk/kPδ(k)W 2(k; kJ(a1), kJ(a)) (see eq. (2.4)) and is simply

Πδ>δc(a1, a) = 1
2erfc[δc/

√
2σδ(a1, a)]. Therefore, fixing a1 = aeq (since the first overdensities

collapse at MRE given the remarkable coincindence in eq. (3.10))

dfs
d logM ' δc√

2πσ(M)
e
− δ2c

2σ2(M)

∣∣∣∣d log σ(M)
d logM

∣∣∣∣ , (E.2)

where σ(M) ≡ σδ(aeq, aM ) is the variance of the field smoothed between keq
J and kJ(aM ) =

keq
J (cMM eq

J /M)1/3. One can think of this variance evaluated at smaller and smaller masses
as corresponding to smoothing the field at larger and larger comoving momenta, starting
from keq

J .
Clearly σ(M) = 0 for M = cMM

eq
J and, from the approximate form of Pδ in eq. (2.8),

it is easy to see that σ(M) increases at M < cMM
eq
J until reaching the asymptotic value

σ(M) ' 0.35 at M/(cMM eq
J ) = 0. Therefore from eq. (E.2) the soliton mass distribution is

exponentially suppressed at M → cMMJ , it increases at smaller M and for M/(cMMJ)� 1
it tends to zero as dfs/d logM ∝ d log σ/d logM ∝ (M/(cMMJ))2/3 (i.e. at small M/MJ

lighter and lighter solitons are less and less produced — this is related to the suppression
of Pδ at large momenta as 1/k).52 Interpolating between these two behaviours, there is a
peak whose position and amplitude depend on the value of δc. These features can be seen
in figure 6, where we show the estimate in eq. (E.2) for δc = 0.22 and cM = 0.45 with
σ(M) calculated using the smooth window function W (k, k1, k2) = Ws(k1/k)Ws(k/k2), with
Ws(x) ≡ 1

2(1− tanh(2(x−1))). In figure 19 we show the prediction for the comoving number
density of soltions produced per unit time, dΠδ>δc (a1,a)

da ρ(a)/M(a), for the sameW and δc and
we compare it with the simulation data.

As we observed, our analytic argument reproduces the data in figure 6 remarkably well.
Moreover, as mentioned, it predicts that at late times the soliton production is suppressed,
with a peak in dfs/ logM at M/M eq

J ' 0.1 (not captured by the numerical simulation,
because of the limited time range). In any case, given that the field is not Gaussian and the
exponential sensitivity to δc in eq. (E.2) (present in the Gaussian approximation), we refrain
from a precise fit of the parameter δc, or of the window function, and regard the agreement
as mostly qualitative.

52These behaviours can be seen analytically by calculating σ(M) with a crude step window function
W (k; k1, k2) = 1 if k1 < k < k2, and W (k; k1, k2) = 0 otherwise.
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Figure 19. Soliton production rate, defined as the rate of change of the total number of solitons n
per comoving λ3

? volume with respect to the scale factor a. Results are shown from simulations and
from the analytic prediction.
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Figure 20. The soliton mass function when starting from artificially rescaled initial conditions
k? → k?/2, to test our analytic analysis. We find that our analytic approach works well also with
these initial conditions (with a slightly different value of δc).

To check the reliability of our analytic method, we have carried out simulations with the
same initial conditions as the power spectrum in eq. (2.8) but with k? → x0k? with x0 = 1/2.
As expected, this change to the initial power spectrum leads to a different (smaller) soliton
mass function, plotted in figure 20, and production rate, plotted in figure 21 (left). It also
leads to a slightly smaller value of cM ' 0.4, which determines the masses of solitons produced
at a given time. We find that our analytic approach, with the same window function, also
matches the data well in this case, albeit with a slightly different value of δc ' 0.3. This
gives us confidence that our analysis is capturing the main aspects of the underlying physics,
although a further refinement would be useful in the future.

F Details of N-body simulations

We carry out our N-body simulations using the code Gadget 4 [112], modified to include
the effect of radiation on the Universe’s expansion. For simplicity, we follow the standard
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Figure 21. Left: the soliton production rate with artificially rescaled initial conditions compared to
the analytic prediction, analogous to figure 19 for the physical initial conditions. Right: the average
mass of solitons produced in different time intervals compared to the predicted parametric dependence
MJ(ai) with the rescaled initial conditions. The results are similar to those obtained starting from
the physical initial conditions, as plotted in figure 5.

convention of including only radiation, dark matter and vacuum energy in simulations (i.e.
neglecting baryons). We fix the cosmological parameters Ω0 = 0.311, ΩΛ = 0.689 and
Ωrad = 0.0000924 (corresponding to zeq = 3370) and the present day Hubble parameter
H = 67.7 kms−1Mpc−1. Note however that most of our results can be rephrased in terms of
a/aeq in which case these numerical choices do not matter. The absence of baryons (which,
as discussed, do not collapse into clumps around MRE but might be relevant later) will
affect the growth of density perturbations slightly, but to the level of accuracy that we are
aiming for this is not a major uncertainty. As discussed in section 4, we start our simulations
prior to MRE, at a/aeq = 0.01 (as with our Schrödinger-Poisson simulations the particlar
numerical value has no effect provided a/aeq � 1). The simulations are pure N-body with
just gravitational interactions, so cannot capture the effects of quantum pressure. We set
Gadget’s time-stepping parameter to 0.02, which has been found to be sufficiently accurate in
similar simulations [73]. Halos are identified using Gadget’s friend-of-friend algorithm, with
dimensionless link length 0.2, so particles are linked if their spacing is less than 0.2 of the
mean particle spacing, and fix the minimum group length for a set of particles to be classed
as a halo to 32.

We use a box size of 80λ?, and obtain our results averaging over three simulation runs.
The comoving gravitational softening length is chosen to be 0.003λ?. This is smaller than
λJ in the cores of the densest objects that form, at which scales N-body simulation results
will not reproduce the true physics anyway, see section 4.3. E.g. at z = 70, corresponding
to the density profiles plotted in figure 10, the gravitational softening length is about 2 ·
104km(m/ eV)1/2 and λJ(5 eV4) ' 3 · 104 km. Simulations are run from a/aeq = 0.01 until
z = 24 (i.e. a/aeq ' 140). At this time the most IR modes have Pδ(k) ' 0.05, and still closely
match the values predicted by a linear analysis, indicating that finite volume systematics
are not yet becoming important (we could run to slightly later times, but the statistical
uncertainty is already starting to limit our results anyway).53

In figure 22 we plot the mass function of compact halos from N-body simulations com-
paring results from initial conditions with a UV cut and from realistic initial conditions. The

53We are able to reach relatively small z compared to other similar analysis in the literature, e.g. [72],
because we do not attempt to resolve the structures that collapse around MRE in our simulations and can
therefore use a comparatively large box size.
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Figure 22. Left: comparison between the halo mass function obtained in N-body simulations
starting from a realisation of the full dark photon initial conditions (solid) and from initial conditions
including only perturbations on scales k/k? < 0.5, which are unaffected by quantum pressure (dashed).
The difference between the results from these two sets of initial conditions gives an estimate of the
importance of dynamics at small scales for the system’s evolution, and so an estimate of the scales on
which the results of N-body simulations without quantum pressure can be trusted. The number of
objects with small mass M/M eq

J . 50 differ widely, but properties of heavier objects broadly agree.
Right: the mass function of compact halos at different redshifts from simulations and from the Sheth-
Tormen inspired fit to the data (ST), which reproduces the results well.

initial conditions with a UV cut are a realisation of Gaussian density field with the power
spectrum of figure 2 (right) for k < 0.5k? and 0 otherwise, converted to particles (for the m
of interest only the isocurvature part of the initial spectrum is relevant given our box sizes).
This choice is made to exclude the density fluctuations on scales that will collapse to solitons
around MRE (and which will be affected by quantum pressure), see figure 16 (right). The
full initial conditions are generated from a realisation of the density field, generated from
the power spectrum of A in figure 2 (left). Of course in this case the dynamics of the small
scale density perturbations are not correctly reproduced. As discussed in the main text, the
agreement of the mass functions for M & 50M eq

J is an indication that the mass function in
this interval is unaffected by the dynamics of modes at small scales.

G Analytic analysis of the compact halos

In the Press-Schechter analysis of section 4.2 we smooth the field over a distance R using a
window functionW (k,R) that vanishes at k & 2π/R, i.e. δs(t, ~x) = (2π)−3 ∫ d3kδ(t,~k) exp(i~k·
~x)W (k,R). We choose the top-hat window function W (k,R) = Wt(kR) with Wt(x) ≡
(3/x3)(sin x − x cosx). As mentioned in the main text, since δ is Gaussian at scales larger
than λ?, the probability that the field smoothed over R = (3M/4πρ)1/3 is larger than δc
is determined only by the variance Πδ>δc = 1

2erfc[δc/
√

2σs(M)] where σ2
s ≡ 〈δ2

s(t, ~x)〉 =
D2[a]

∫
dk/kPδ(t� teq, k)W 2(k,R), with Pδ at t� teq as in eq. (2.11).

To obtain eq. (4.4) we estimate σ2
s(M) ' 33/2D2[a]M?/(16π3M) using a crude approx-

imation Pδ(k) ' (
√

3/π)(k/k?)3 at k < k? and otherwise zero (since modes with k & k? are
affected by quantum pressure, and form solitons).54

As mentioned in the main text, although the PS result captures the most important
features of the dynamics, it is not precisely accurate. Instead, to reconstruct the halo mass
function at z ' 15, we fit the data with an empirical Sheth-Tormen (ST) inspired form,

54This is effectively equivalent to considering a field smoothed between k? to 2π/R, motivated because the
collapse of the other momenta forms solitons.
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which reproduces the data at early times more accurately than the PS prediction in eq. (4.4)
(a similar fit was carried out in the context of axion miniclusters in [73]). The ST form for
the halo mass function is

dfh
d logM = A(p)(1 + (qν2)−p)

(
qν2

)1/2
e−qν

2/2
∣∣∣∣ d log ν
d logM

∣∣∣∣ , (G.1)

where ν(M) = δc/σs(M) as before, q and p are parameters to be fit, and A−1(p) = 1 +
1√
π

2−pΓ
(

1
2 − p

)
is required by the normalisation condition

∫
dMdfh/dM = 1. We obtain

q = 0.696 and p = 0.305 (with δc = 1.7 fixed), which fit the N-body results at early times
well (see figure 22 right). These parameter values are close to those that come out of the
original analytic analysis [80].

Finally, we give complete formula for the NFW parameters of the compact halo profiles,
described in section 4.3:

ρ0 = 4.4 · 10−3 c3
∆ν

3
c∆

(c∆ + 1)−1 + log(c∆ + 1)− 1

[
M eq
J

M

]3/2

ρeq , (G.2)

r0 = 4.2
c∆νc∆1/3

[
M

M eq
J

]5/6

λeq
J , (G.3)

which, once the values of c∆, ∆ and νc mentioned in section 4.3 are put in, lead to eqs. (4.8)
and (4.9).

H Survival of the Dark Matter substructure

H.1 Disruption mechanisms

In this appendix we study the survival of the solitons, the fuzzy halos that surround them,
and the compact halos from the k3 part of the initial power spectrum. Given the possible
importance for direct detection, we concentrate on the survival of objects that today are on
orbits that pass through the neighbourhood of Earth.

There has been extensive analysis of destruction of dark matter substructure in the
literature, and we can adapt known results (the derivations of which can be found in the
references). As mentioned in section 5.1, we mostly make the approximation that dark matter
clumps can be approximated as being composed of classical particles. This is reasonable for
the fuzzy halos around the solitons and especially for the compact halos. There could be
significant changes to our results for solitons, since the de Broglie wavelength is comparable
to the size of these (we will briefly comment on the possible corrections). Additionally, as
discussed in the main text, we focus on particular processes that could destroy the clumps
rather than attempting to follow a clump’s full history. Nevertheless, our analysis will be
sufficient to show that it is plausible that the majority of solitons, and a substantial fraction
of the fuzzy halos around them, survive to the present day.

We first describe the various mechanisms that could destroy an object, and then apply
these to the different types of objects.

Tidal forces from a central potential. If a dark matter clump is bound inside a larger
gravitationally bound object, which we call the host, the clump experiences tidal forces that
could destroy it. We define the tidal radius as the distance from the centre of the clump
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beyond which the tidal force is greater than the gravitational attraction to the centre of the
clump. The part of the clump outside the tidal radius is expected to be destroyed. For
simplicity we assume the clump has an approximately circular orbit inside the host, in which
case the tidal radius rt satisfies [15, 113]

rt = rorbit

(
Mclump(rt)
Mhost(rorbit)

)1/3(
3− d logMhost(r)

d log r

∣∣∣∣
r=rorbit

)−1/3

, (H.1)

where Mclump(r) is the mass of the clump inside a radius r, Mhost(r) is the mass of the host
(e.g. a compact halo, a halo from an adiabatic fluctuation, or the Milky Way itself) inside the
radius r, and rorbit is the radius from the centre of the host at which the clump is orbiting.

To the accuracy that we require, the factor in the second bracket of eq. (H.1) can be set
to 1. Then the tidal radius is the radius at which ρ(rt) = ρhost(rorbit) where ρhost(rorbit) is the
mean dark matter density of the host inside the clump’s orbit, ρhost(rorbit) = M(rorbit)/

(
4
3πr

3
orbit

)
,

and ρ(r) = Mclump(r)/
(

4
3πr

3
)
is the mean density of the clump within the radius r.

For an orbit in the Milky Way, roughly the same distance from the centre of the galaxy
as the Sun is, we have ρhost(8kpc) ' 1011M�/(4

3π(8 kpc)3) ' 10−5 eV4 (somewhat larger
than the local dark matter density ρlocal ' 0.5 GeV/ cm3 ' 4 · 10−6 eV4).

Dynamical friction. If a clump is bound in a larger object, dynamical friction leads to
the clump’s orbit decaying and falling into the centre of the host object, where the clump
will be destroyed by tidal forces. The orbit decays on a timescale [25, 114]

tdecay = torbit
Mhost
Mclump

(
log

(
Mhost
Mclump

))−1

' 1√
Gρhost

Mhost
Mclump

(
log

(
Mhost
Mclump

))−1

. (H.2)

where torbit is the time the clump takes to orbit the larger halo. Putting typical values of
Mclump into eq. (H.2), dynamical friction is irrelevant for any of the objects of interest inside
the Milky Way. However, it could be important for e.g solitons inside compact halos, or
compact halos inside the lowest mass halos from the adiabatic perturbations, for which the
ratio Mhost/Mclump is not too large.

Collisions with stars. If it is in a galaxy, a DM clump can be disrupted by the energy
transferred from a passing star. Typically such an encounter happens fast compared to the
dynamical timescale of the clump. In this case, known as the impulse approximation, the
energy transferred can be straightforwardly calculated. More precisely, the impulse approxi-
mation is valid if rclump/b� vrel/σ, where rclump is the radius of the object, b is the impact
parameter of the collision, vrel is the relative velocity of the collision, and σ is the velocity
dispersion of the clump (i.e. the variance of the magnitude of the DM velocity in the clump
is σ2) [115].

The fuzzy halos around solitons and the compact halos are extended objects with den-
sities that vary by five orders of magnitude between their centres and their outer edges. It is
therefore plausible that the outer edges might be disrupted by a collision with a star while
the centre remains. To account for this possibility we make the approximation that energy
transferred to the mass in a shell at some distance from the centre of the clump can lead to
this shell being lost from the object, independently of what happens to the mass closer to the
centre. Compared to the alternative estimate of requiring that the entire object is destroyed
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by an encounter, this means that the outer edges of objects are more easily destroyed. We
discuss the disruption of solitons in section H.2.

We consider only the possibility that a shell is removed by a single close encounter
rather than a series of encounters. In the second case the energy transferred to a shell might
be redistributed throughout the object. Ignoring this effect, and assuming the object and
perturbing stars have a Maxwellian distribution, the timescale for destruction by sequential
heating and by a single catastrophic encounter happen to coincide [70]. Therefore our neglect
of destruction by sequential heating will not have a major effect on our results, although
further analysis would be worthwhile (see e.g. [115] for related studies in the context of
WIMP dark matter).

We define bcrit to be the critical impact parameter, so that the object is destroyed
if the impact parameter b < bcrit and is otherwise unaffected. Given that the probability
of an encounter with impact parameter b grows linearly with b the majority of destructive
encounters have b not too much smaller than bcrit (the average destructive encounter has
b = 2bcrit/3). For all objects of interest bcrit � rclump, and also the conditions for the impulse
approximation to hold are satisfied. The energy transferred to a shell of dark matter, of mass
dm, at radius r < rclump from the centre of the clump by an encounter with a star of mass
Ms is55

∆E = 4
3
G2M2

s r
2

v2
relb

4 dm . (H.3)

We approximate that the shell will be removed from the object if the transferred energy
is greater than the gravitational binding energy of the shell, GM(r)dm/r, where M(r) =
4π
∫ r

0 r
′2dr′ρ(r′). Consequently, the critical impact parameter is given by

b2crit = Ms

vrel

(
G

πρ(r)

)1/2
, (H.4)

where, as before, ρ(r) is the mean density of the clump within the radius r.
We are particularly interested in objects that pass the neighbourhood of Earth on their

orbits. Most such objects are on trajectories that do not entirely reside inside the galactic
disk. The cross section for a destructive encounter, πb2crit, is proportional to the mass of the
disrupting star. Therefore, the probability that a shell at radius r is removed from the clump
after the clump crosses the disk n times is

pdest = πn
S

vrel

(
G

πρ(r)

)1/2
, (H.5)

where S is the mass density encountered per unit transverse area of the disk, provided
pdest � 1 (this analysis mirrors that applied to axion miniclusters in [88]). Consequently,

pdest = 0.4
(
n

100

)(0.05 eV4

ρ (r)

)1/2 (
S

140M�pc−2

)(10−3

vrel

)
, (H.6)

with the reference value S = 140M�pc−2 a factor of 4 larger than the column density
transverse to the Milky Way disk to account for the fact that on average trajectories are not

55In the limit b � R a similar expression can be obtained, and for b ' R an approximate expression
that interpolates between the two limiting behaviours can be used, see e.g. [116]. Note that the expression
for the energy change of a particular particle gets further contributions, but these average to zero and are
approximately the same magnitude as the term that remains anyway.
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perpendicular to the disk [88]. n ' 100 corresponds to roughly the number of disk crossings
since the formation of Milky Way for a clump on a typical orbit [88], however this can vary
significantly for different forms of orbit.

Tidal shocking by the disk. A dark matter clump in a disk galaxy, could also be de-
stroyed by the overall gravitational field of the disk, rather than by encounters with individual
stars. As a clump moves through the disk, the energy of DM particles that are away from the
centre of the clump in the direction perpendicular to the disk increases compared to those at
the centre. We consider the dark matter of total mass dm in a small region that is a distance
∆z away from the centre of the clump in the perpendicular direction. The relative energy
increase of this DM is [117] (see also e.g. [118, 119])

∆E = 2(2πGσs(r))2 (∆z)2

v2
z

dm(1 + a2)−3/2 , (H.7)

where σs(r) is the surface mass density of the disk, and vz is the velocity of the clump
perpendicular to the disk. At 8kpc from the Milky Way centre, σs ' 108M�/kpc2. The
final factor in eq. (H.7) is a suppression due to adiabaticity of the process [120]. Intuitively,
the destruction is less efficient if the tidal force changes slowly compared to the time a DM
particle takes to orbit the clump. In particular, a = tcrossing/tinternal where tinternal is the time
the particle takes to orbit the clump, and tcrossing ∼ 5 · 1013s is the time the clump takes to
cross the disk [118]. In the Milky Way, a ' 6

(
ρ/ eV4

)1/2
, which is relevant for the solitons,

but only marginally important for the halos surrounding them.
Similarly to before, we compare the energy increase in eq. (H.7) to the binding energy

of the dark matter particles in the clump. A single crossing disrupts regions of the clump
for which

ρ(r) . 10−6 eV4
(

σs

108M�/kpc2

)2(10−3

vz

)2

. (H.8)

Even if the energy transferred adds up every disk crossing, the disruption through this process
is negligible compared to that caused by collisions with stars.

Tidal shocking. During hierarchical structure formation, as a DM clump becomes bound
in a larger object it experiences tidal forces on timescales shorter than the dynamical time
of the clump. These are known as tidal shocks [121, 122], and are distinct from the steady
state tidal forces analysed previously. During a typical tidal shock, a shell of dark matter of
mass dm at radius r from the centre of a clump is expected to get a relative energy increase
compared to the rest of the clump of

∆E ' 4π
3 γ1Gρhostr

2dm , (H.9)

where γ1 is expected to be of order 1 [123] and, as before, ρhost is the mean density of the
host within the orbit of the clump.

We make the crude approximation that the energy transferred to the DM shell is not
redistributed to DM in other parts of the clump. Then the rate of energy increase of the shell
is Ė = γ2∆E/tdynam, where tdynam ' (Gρhost)−1/2 is the dynamical timescale of the larger
object (parameterically the same as the time the clump takes to orbit the host torbit once it is
bound, defined previously), and γ2 parameterises the number of tidal shocks per dynamical
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time, which is expected to be roughly order 1. Hence the shell is likely to be disrupted on a
timescale

tshock '
ρ(r)

√
Gγ1γ2ρ

3/2
host

' 109yr
(

ρ

0.01 eV4

)( 1
γ1γ2

)(10−4 eV4

ρhost

)3/2

.

(H.10)

However, we stress that this estimate is very rough and a detailed analysis would be valuable
in the future. We have little control of the parameters γ1 γ2, and we do not know how
long tidal shocking continues until the clump reaches a steady state orbit. Also it is not
even certain if it is accurate to compare the energy increase per tidal shock, eq. (H.9), to
the binding energy. For instance [124] finds that disruption is not inevitable even if the
energy increase is much larger than the binding energy. Moreover, as discussed, in a realistic
history of structure formation, a DM clump is likely to be bound in a series of objects of
increasingly large mass. Consequently, the clump might not need to survive too long inside
a slightly higher mass clump until that itself is quickly destroyed when it is bound inside a
larger object.

H.2 Solitons

It is not clear if our approach of allowing the disruption of shells is an accurate approximation
for solitons, because the de Broglie wavelength is comparable to the size of a soliton. Also,
if the outer layer of a soliton were to be lost the profile of the remainder might change,
affecting the subsequent destruction probability. In particular, the analysis of [111] suggests
that the remainder of the soliton might spread out, making later destruction more likely. For
definiteness we make the approximation that the soliton will be disrupted if sufficient energy
is transferred to remove a shell at radius r ' 0.7λ̃J(ρs) (where the density profile switched
from soliton like to NFW-like). If we instead required that the entirety of the soliton inside
0.7λ̃J(ρs) was destroyed, the destruction probability would decrease.

We have seen above that the probability that a shell at distance r from the centre of a
clump is destroyed depends on the mean DM density inside the shell, ρ(r), rather than the
density at the distance r, which is ρ(r). At 2λ̃J(ρs)/3, we have ρ ' 0.2ρs. Solitons with ρ &
0.05 eV4 are likely to survive destruction by the Milky Way central potential, collisions with
stars, and dynamical friction in the Milky Way. Therefore, we conclude that these processes
are likely to leave the majority of solitons produced around MRE undisrupted, since they have
central densities ρs ' (0.1÷ 100) eV4 (see figure 6, corresponding to ρ ' (0.03÷ 30) eV4).

The possible disruption of solitons during hierarchical structure formation is less certain.
Most solitons become bound in compact halos before being subsumed in an adiabatic halo.
The probability that the soliton inside a compact halo is destroyed depends on the mean
density of the compact halo inside the soliton’s orbit ρhost(rorbit). The compact halos have
mean densities in the range ρ(r)host ∼ (10−6÷1) eV4, see figure 23 (right) and masses between
Mhalo ' (102 ÷ 104)MJ(aeq).

Because that fraction of dark matter bound in compact halos rapidly increases at late
times, the majority of the solitons will be bound in the most massive and least dense com-
pact halos. Given the low density of the these compact halos, tidal stripping will typically
not destroy any solitons they contain. Additionally, the timescale for dynamical friction in
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eq. (H.2) corresponds to

tdyn ' 3 · 1011yr
(

10−4 eV
ρ(r)host

)1/2
Mhost/Ms

105
log

(
105)

log (Mhost/Ms)
, (H.11)

where Ms is the mass of the soliton and Mhost is the mass of the compact halo that it is
inside. Consequently dynamical friction will also not destroy a typical soliton in a fairly
massive compact halo.

Meanwhile, the timescale for destruction by tidal shocking, eq. (H.10) might be relevant
for the lower mass solitons if they are contained in a relatively low mass (i.e. high density)
compact halo. However, many of the compact halos will be destroyed as adiabatic structures
form, in which case a soliton need only survive inside the compact halo until that happens.
Similarly, a typical soliton is unlikely to be destroyed if it is bound into a relatively low mass
adiabatic halo prior to ending up in the Milky Way. A detailed analysis will be needed to
draw definite conclusions, and this would be worthwhile in the future.

So far we have neglected the wave-like nature of the dark photon inside a soliton.
Although we do not attempt a full analysis of the effect of this on the solitons’ survival, we
note that this does allow the soliton to lose mass by tidal stripping even from the region
inside rt defined in eq. (H.1). This has been analysed in [59], and considered in more detail
in [111], which accounts for the fact that the soliton becomes less dense after mass is removed,
accelerating the subsequent destruction. Using numerical simulations the latter reference
finds that a soliton of mass M orbiting a distance rorbit will be unaffected by tidal stripping
by a central potential from a halo with mean density ρhost(r) if the central density of the
soliton ρs satisfies

ρs/ρhost(rorbit) & 100. (H.12)

For a soliton in the Milky Way ρ(rorbit) ' 5·10−5 eV4, so given that the typical soliton central
densities are 0.1 ÷ 100 eV they are unaffected by this effect. Likewise this will not affect a
typical soliton that is bound in a compact halo.

Overall, although there are many uncertainties in our analysis, we conclude that it is
plausible that the majority of the solitons survive to the present day.

H.3 Fuzzy halos

Next we consider the fuzzy halos around the solitons. If such objects lie on trajectories that
cross the neighbourhood of Earth, we can see from the analysis in section H.1 that destruction
by stars is the most important of the effects of the Milky Way. From eq. (H.6), we expect
that a halo is likely to survive out to a radius r such that ρ(r) ' 0.05 eV4. In figure 23 (left)
we plot ρ(r) as a function of the local density ρ(r) for the solitons and their surrounding fuzzy
halos (both normalised relative to the soliton’s central density ρs, so that the plot applies
all solitons and fuzzy halos, regardless of their mass). Values of ρ(r) ' 0.05 eV4 in the range
of interest corresponds to local densities of ρ(r) ' 10−2 eV4. Outside these r the fuzzy halos
are likely to be destroyed.

The halos could also be disrupted if it becomes bound in a compact halo prior to
adiabatic structure formation (or in a low mass adiabatic halo prior to being bound in the
Milky Way). Considering only the region with ρ(r) & 0.05 eV4, which has a chance of
surviving interactions with stars, this part of the fuzzy halo is unlikely to be outside the tidal
radius given by eq. (H.1) when it is bound in a compact halo.
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Figure 23. Left: the mean density inside a radius r, ρ(r), for a soliton and its surrounding fuzzy
halo as a function of the local density at r, ρ(r) (normalised to the density at the soliton core ρs).
These results are obtained by matching the soliton profile and NFW fit shown in figure 7. On the
upper axis we indicate the corresponding enhancement over the local dark matter density, fixed to
0.5 GeV/ cm3, which depends on ρs. Regions of the fuzzy halo with ρ(r) & 0.05 eV4 are likely to
survive undisrupted to the present day in the Milky Way. Right: the mean density inside a radius
r, ρ(r), as a function of the local density ρ(r) for compact halos of different masses. These results
are obtained from the NFW fit described in section 3.7. The solid lines extend to densities where
quantum pressure becomes relevant. The upper axis shows the corresponding enhancement over the
local dark matter density. As with the fuzzy halos, regions with ρ(r) & 0.05 eV4 are likely to survive
to the present day.

Meanwhile, the typical mass contained in a fuzzy halo inside ρ(r) ' 0.05 eV4 is roughly a
factor of 10÷100 greater than the soliton mass, so typically a factor of 104÷103 smaller than
the relatively high mass compact halos. Therefore, from eq. (H.11) dynamical friction might
potentially be relevant. Likewise, tidal shocking, see eq. (H.10), could be important. However,
as previously discussed the compact halos are themselves likely to be quickly destroyed.
Finally we note that, as with the solitons, wave-like effects could be relevant for the fuzzy
halos, and a detailed analysis of such effects would be worthwhile in the future.

H.4 Compact halos

The values of ρ(r) as a function of ρ(r) for typical compact halos are plotted in figure 23
(right). Like the halos around solitons, for a compact halo in the Milky Way the regions
outside the radius r such that ρ(r) = 0.05 eV4 are likely to be destroyed by collisions with
stars. As a result, the majority of a compact halo with mass & 103MJ(aeq) is likely to be
disrupted, possibly leaving a dense core behind. This means that the compact halos that
contain the majority of the dark matter mass when adiabatic structure formation starts are
likely to be mostly destroyed. Compact halos with masses ∼ 102MJ(aeq) could survive to the
present day, and these contain ∼ 10% of the dark matter when adiabatic structure formation
starts (see figure 8). A small mass compact halo might also survive as substructure once
bound inside a larger mass compact halo and survive to the present day.
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