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Abstract. We study the dynamics of charge and energy currents in a Coulomb-coupled double quantum
dot system, when only one of the two dots is adiabatically driven by a time-periodic gate that modulates
its energy level. Although the Coulomb coupling does not allow for electron transfer between the dots,
it enables an exchange of energy between them which induces a time variation of charge in the undriven
dot. We describe the effect of electron interactions at low temperature using a time-dependent slave-spin
1 formulation within mean field that efficiently captures the main effects of the strong correlations as well
as the dynamical nature of the driving. We find that the currents induced in the undriven dot due to the
mutual friction between inter-dot electrons are of the same order as those generated in the adiabatically
driven dot. Interestingly, up to 43% of the energy injected by the ac sources can be transferred from
the driven dot to the undriven one. We complete our analysis by studying the impact of the Coulomb
interaction on the resistance of the quantum dot that is driven by the gate.

1 Introduction

The study of transport through conductors coupled by
the Coulomb interaction is a promising research field
since the late 1970s, when Pogrebinskii [1] proposed
an alternative way of measuring the inner properties
of solids which involved two electrically isolated 2D
conductors (or layers) placed close together. The mea-
surement protocol was based on the mutual friction
(i.e., Coulomb-mediated scattering processes) felt by
charge carriers belonging to different conductors due to
long-range interactions. In these scattering processes,
momentum and energy can be transferred between the
layers in spite of being electrically isolated from each
other.

A spectacular effect of this mutual friction is the
Coulomb drag [1–3], in which a charge current is
induced in an unbiased conductor (known as “passive”
conductor) simply applying a bias to the other (the
“active” conductor). This effect has been extensively
studied in a wide variety of systems, from layered con-
ductors [4–6] to smaller dimensional systems as cou-
pled quantum wires [7–9] or even double quantum dots
structures [10–12]. In particular, experimental investi-
gations in systems composed of Coulomb-coupled quan-
tum dots are reported in Refs. [13–18].

Even more interestingly, not only charge currents but
also heat and energy flows can be induced in the unbi-
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ased conductor thanks to the energy transfer between
the Coulomb-coupled objects. In recent years, this phe-
nomenon has rekindled the interest of theoretical and
experimental communities in Coulomb-coupled devices,
especially in their thermodynamics, due to the possi-
bility of using such energy transfer to develop novel
nanotechnologies. Some examples are the implementa-
tion of a single-electron heat diode [19], a self-contained
quantum refrigerator [20], and the realization in a lab-
oratory of a Szilard engine [21], an energy harvester
[17,18], as well as an autonomous Maxwell’s demon
[22] that convert thermal energy into work by the use
of information. Among the most recent works address-
ing the study of heat transport and entropy production
in Coulomb-coupled systems, we find Refs. [23–26] for
double quantum dot circuits, and Ref. [27] in the case of
coupled Coulomb-blockaded metallic islands and quan-
tum wires.

In this work, we focus on several phenomena that
boil down to a main question, namely what would hap-
pen if instead of a bias voltage or a thermal gradient,
the active conductor is driven by time-dependent gates?
The natural questions regard the effects of the friction
given by the Coulomb coupling on the scope of quan-
tum pumping at low temperatures, the energy dissipa-
tion and the efficiency of the energy transfer between
the Coulomb-coupled dots.

Here, we make a first step toward the answer to these
questions, which have not been discussed to the best of
our knowledge. We believe that our results can shed
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Fig. 1 Scheme of the theoretical model considered in this
work. It consists of two single-level quantum dots, which are
coupled in series with two non-interacting electron reservoirs
with tunneling amplitudes wa/p. The dots are coupled to
each other through a Coulomb interaction of magnitude U ,
so that the charge transfer between them is forbidden.The
dot that is called “active dot” is driven out of equilibrium by
a time-periodic gate εa(t), while the other quantum point
(the “passive dot”) remains undriven with a constant energy
level εp. All the reservoirs are at the same temperature T
and have the same chemical potential μ

light into the art of manipulating charge and energy
fluxes, which is a crucial task for the development of
new technologies. To achieve our goal we focused on
the study of time-dependent charge and energy trans-
port in a basic setup, which could be experimentally
realized and is shown in Fig. 1. It is composed of two
Coulomb-coupled quantum dots, namely the active dot
and the passive dot, which are coupled in series with two
electron reservoirs at the same temperature and chem-
ical potential. Only the active quantum dot is driven
by the application of an adiabatic time-periodic local
gate that moves its level around the Fermi energy of
the reservoir.

From the theoretical perspective, Coulomb-coupled
quantum dot systems that are driven by bias voltages or
a thermal gradients were previously studied mostly by
the recourse of the master equation approach, valid in
the regime where the hybridization with the reservoirs
Γ is negligible compared to the temperature and the
Coulomb interaction U [10–12,19,20,23,27]. Results
were also presented by using the non-equilibrium non-
crossing approximation (NCA) for rather high temper-
atures [28], since this approach fails at very low tem-
peratures below the characteristic Kondo temperature.
On the other hand, the use of master equations in sim-
ilar systems and under the presence of adiabatic time-
dependent drivings was addressed in Refs. [29,30]. At
low temperatures and for a small interaction U , U � Γ,
Ref. [25] showed that the renormalized perturbation
theory (RPT) in U/Γ offers the most reliable descrip-
tion. However, in this work we focus on a different inter-
esting regime, in which the temperature is very low and
the interaction U is larger than the hybridization. To
describe the adiabatically driven interacting system in
this latter regime, we use the mean-field slave-spin 1
approach in Ref. [31] that efficiently captures the main
effects of Coulomb coupling as well as the dynamical
nature of the driving. As we discuss below, the slave-
spin method realizes a mean field which is suited to
treat strong electron–electron interactions.

The paper is organized as follows. In Sect. 2, we intro-
duce the model and the time-dependent slave-spin 1
approach within the adiabatic regime. Then in Sect. 3,
we compute the charge and energy fluxes in the sys-
tem. Section 4 presents the results for an illustrative
example. Finally, Sect. 5 is devoted to the summary
and conclusions.

2 Model and formalism

We consider the setup in Fig. 1, where we assume the
quantum dots to be single level with spinless electrons.
This is actually a simplification, which has also been
assumed before in the literature, see for instance Refs.
[12,19,25,26], which certainly could be experimentally
realized by the application of a magnetic field able to
completely polarize the dots.

The prototypical device can be thought of as com-
posed of two subsystems, namely “active” and “pas-
sive”, each containing a quantum dot and the cor-
responding reservoir. Accordingly, the active subsys-
tem holds the active dot which is driven by the
time-periodic local gate εa(t). The passive subsystem
remains undriven, with the quantum dot at a constant
energy level εp. These two subsystems interact only
through a Coulomb repulsion between inter-dot elec-
trons, of magnitude U .

Thus, we describe the full system by the Hamiltonian
HFull(t) = Ha(t) + Hp + Unanp, where

Hα = Hdot
α + HRes

α for α = a, p (1)

represents the uncoupled active and passive subsys-
tems, with

Hdot
α = εαnα +

∑

kα

wα(c†
kα

dα + d†
αckα

), (2)

for the quantum dots along with the tunneling cou-
plings with the reservoirs, and

HRes
α =

∑

kα

εkα
c†
kα

ckα
, (3)

for the non-interacting reservoirs, which are assumed
to be at equilibrium. The third term in HFull describes
the Coulomb interaction, where the occupation opera-
tor reads na/p = d†

a/pda/p. On the other hand, the oper-
ator cka

(ckp
) and its conjugate belong to the reservoir

lying in the active (passive) subsystem, and εka
(εkb

) is
its energy band. The corresponding dot-reservoirs tun-
neling amplitudes are wa/b.

The Coulomb coupling between the two quantum
dots does not allow for an exchange of electrons between
them. Therefore, energy transfer between active and
passive subsystems will not be accompanied by any
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charge transfer between the two subsystems. Neverthe-
less, both quantum dots can certainly exchange parti-
cles with the reservoir they are attached to. In fact,
as we are going to show later on in this section, energy
transfer processes are accompanied (or mediated) by an
induced time variation of charge in the passive dot. This
charge current between the passive dot and the reser-
voir on the right is of zero net value when averaged over
one oscillation period of the driving. Figure 2 shows in a
more intuitive way how energy exchange processes take
place. As an illustration, but without loss of generality,
we consider an example in which all the reservoirs are
at the same temperature T = 0. The energy level of
the active dot evolves as εa(t) = ε0 cos(ωt) + μ with
ε0 > μ, while εp is constant and εp � μ. In this way,
the initial configuration (see sketch 1) corresponds to
the active level being above the Fermi sea while the
passive dot lies below. Thus, the initial occupancy is
(na, np) = (0, 1). During the first half period, in the
second sketch, the active level fills up as it goes below
μ. Then, the Coulomb repulsion between electrons from
different dots start to be felt, and this opposes the fill-
ing of the active dot. Therefore, for the active dot to be
filled up, it has to pay an energy cost which is extracted
from the external time-dependent driving sources. Part
of the energy that the active dot receives from the
sources is then delivered to the passive dot, so that the
electron there can tunnel above the Fermi level of the
right reservoir (see 3), leaving in this way the dot empty.
By last, during the second half period of the driving,
the emptying process of the active dot takes place and
therefore the passive dot can be occupied again. Thus,
as shown in step 4, an electron of energy εp from the
right reservoir tunnels into the passive dot, generating
a hole deep inside the Fermi sea. So then, an electron
with an energy higher than μ decays to the hole, relax-
ing an amount of energy that will be then dissipated
as heat in the reservoir but that could be eventually
reused (or transformed) in a modified setup.

Thus, we see that the driving of the active dot induces
a time-dependent charge current between the passive
dot and the reservoir on the right, which is neutral on
average over a completed driving period. The passive
dot has to receive some energy from the active subsys-
tem to allow for these charge variations. This feature is
properly captured by the time-dependent slave-spin 1
approach we previously introduced in Ref. [31], which
is presented in the following section.

2.1 Slave-spin 1 approach and the adiabatic regime

We choose the slave-spin 1 (S-S1) mean-field approach
for finite U introduced in Ref. [31] as a minimal theo-
retical framework which captures the main effect of the
electronic correlations in two-level systems, while also
allowing for an analytical treatment that can be com-
bined with a linear-response treatment for slow driv-
ing frequencies. Within the S–S1 approach, the original
interacting Hamiltonian HFull(t) is represented in an
enlarged Hilbert space that contains an auxiliary S = 1

Fig. 2 Scheme for energy transfer mechanisms. The active
dot evolves as εa(t) = ε0 cos(ωt) + μ with ε0 > μ, while the
levels of the passive dot remain constant and deep below μ.
(1) Initially, the active level is empty, but the passive dot
is filled. (2) During the first half of the oscillation period,
the passive level goes below μ, and to be filled, it has to
pay the energy cost of the Coulomb repulsion. (3) Energy is
transmitted from active to passive dots, so that the electron
lying in the passive dot can tunnel above μ. (4) During the
second half of the period, the active dot gets empty again
so that the passive dot can return to be filled, dissipating
heat during the process

spin together with two pseudofermions. The slave spin
is in correspondence with the total fermionic number of
the four possible electronic configurations for the double
dot system (na, np) = {(0, 0); (1, 0); (0, 1); (1, 1)}. Indi-
vidual electrons are represented within this framework
in terms of a pseudofermionic operator d∗

a/p together
with the S = 1 spin. So that, operators belonging to the
quantum dots are equally represented under the trans-
formations: da/p → d∗

a/pS
−/(�

√
2) and na/p → n∗

a/p,
while the Coulomb interaction nanp → Sz(Sz+�)/(2�

2)
can be rewritten in terms of the spin solely. The four
physical electronic configurations are ensured by enforc-
ing the following constraint on the total number of elec-
trons

n∗
a + n∗

p =
Sz

�
+ 1. (4)

Plugging the above transformations for the operators
into Eq. (3), the S-S1 Hamiltonian of the full system
can be written as

H∗
Full(t) =

∑

α=a,p

Hdot∗
α (t) + HRes

α

+
(

U

2�
Sz − λ(t)

) (
Sz

�
+ 1

)
, (5)

with

Hdot∗
α (t) =

∑

kα

wα

�
√

2

(
S−c†

kα
d∗

α + H.c.
)

+ε∗
α(t)n∗

α, (6)
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where λ(t) is the Lagrange multiplier imposing the con-
straint on the occupancy in Eq. (4) at every time, and
ε∗
α(t) = εα(t) + λ(t) are the re-normalized energy lev-

els of the dots. In Eq. (5), the Hamiltonians of the
reservoirs HRes

α remain the same since they are non-
interacting, so that the S-S1 representation does not
apply to them.

Now, as customary in other slave-particles methods,
we are going to treat the problem within the mean-
field approximation (MF) that consists of decoupling
fermionic and spin degrees of freedom and treating the
constraint on average. The latter assumptions are jus-
tified for U � {Γa/b, ε̇a}, where Γa/b are the hybridiza-
tions with the active and passive reservoirs. Thereby,
fluctuations of the spin with respect to the mean values
can be neglected even under the action of the time-
dependent driving, as long as the adiabatic condition
ε̇a � Γa/b is satisfied. Then, we should replace the com-
ponents of the salve-spin Sz, S+/− = Sx±iSy with their
expectation values 〈S〉 and neglect their fluctuations.
Consequently, the interacting Hamiltonian HFull(t) is
mapped into a non-interacting one

H̃Full(t) = H̃a(t) + H̃p(t) + β(t), (7)

where H̃α(t) is the effective MF Hamiltonian for the
subsystem α = {a, p}, with H̃α(t) = H̃dot

α (t) + HRes
α ,

H̃dot
α (t) = ε∗

α(t)n∗
α +

∑

kα

w∗
α(t)c†

kα
d∗

α + H.c., (8)

and

β =
U

2�2

(〈S2
z 〉 + �〈Sz〉

) − λ

�
(〈Sz〉 + �) , (9)

with the re-normalized tunneling factors being w∗
α(t) =

wα〈S−〉(t)/(�
√

2). Then, we can see that within the
mean-field S-S1 framework “active” and “passive” sub-
systems are described as effectively uncoupled from
each other, even though they actually interact via the
Coulomb repulsion. In fact, all the information about
the interaction between the subsystems is contained
in the effective Hamiltonian parameters ε∗

a/p(t) and
w∗

a/p(t), which are all time-periodic functions due to the
periodicity of the driving. Although in the real setup the
driving is merely applied to the active dot, now under
the mean-field S-S1 both the dots turn out to be driven
in time. This is because the Coulomb interaction is por-
trayed as extra time-dependent driving sources, acting
locally on the levels of the dot as well as on the contact
with the leads. The latter feature of this model is advan-
tageous for describing the energy transfer mechanisms
sketched in Fig. 2, since the induction of transport in
the passive subsystem due to the interaction is sim-
ply explained in terms of extra time-dependent driving
sources acting on that part of the device.

For finding the effective Hamiltonian parameters
ε∗
a/p(t), w∗

a/p(t), and the function β(t), the coupled

problem between fermionic and spin dynamics must
be solved. In this work, we consider the driving to be
within the adiabatic regime (ad), namely, a slow evolu-
tion in time of the parameter ε̇a → 0. For this regime,
as explained in detail in Ref. [31], the spin dynamics
is simplified since all the spin components turn out to
depend on 〈Sz〉 solely, as the only independent compo-
nent. In particular, for the Hamiltonian parameters we
have

|〈S−〉ad|2 = �
2 − 〈Sz〉ad2,

〈S2
z 〉ad = (〈Sz〉ad2 + �

2)/2. (10)

In this way, the vertical component 〈Sz〉ad(t) together
with λad(t) constitutes the full set of variables describ-
ing the the Coulomb interaction, and their dynamics is
obtained by solving the following set of slave-spin equa-
tions [31] composed of: the equation of motion for Sz,
that is

0 =
(

λad − U

2
〈n∗〉

) (
1 − 〈Sz〉ad2

�2

)

+
〈Sz〉ad

�

∑

α=a,p

2Re
{

w∗
α〈c†

kα
d∗

α〉
}

, (11)

with n∗ = n∗
a + n∗

p, and the constraint on average

〈Sz〉ad

�
+ 1 = 〈n∗〉 =

∑

α=a,p

〈d∗
α

†d∗
α〉. (12)

In the above equations, the expectation values for the
pseudo-fermions 〈n∗〉 and 〈c†

kα
d∗

α〉 should be consis-
tently evaluated within the adiabatic regime, namely,
in linear response in the small variation of the effective
parameters ε̇∗

α and ẇ∗
α, which involve the time deriva-

tives of the variables λ̇ad and ˙〈Sz〉
ad

(for further details
see Ref. [31]). Then it is important to notice that even
though Eqs. (11) and (12) appear to be stationary,
they actually constitute a system of ordinary differen-
tial equations due to the presence of time derivatives of
the variables inside the electronic expectation values.
Although the above set of equations could be difficult
to solve, the quasi-static evolution of the system makes
it possible to approximate the solutions as little vari-
ations around the static (or frozen) solutions at every
time t:

〈Sz〉ad(t) ∼ St
z + δSz

λad(t) ∼ λt + δλ, (13)

where the index t means that they are static values, in
the sense that the dependence on time is purely para-
metric, as in a series of snapshots of the system in equi-
librium with frozen parameters. The first-order correc-
tions taking into account the effect of the slow driving
are δSz and δλ, which depend on the frozen solutions
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and are ∝ ε̇a. The expansion in Eq. (13) has the advan-
tage of offering a practical description of the dynamics
in terms of the frozen static values St

z and λt solely,
for which Eqs. (11) and (12) are reduced to a station-
ary system of non-linear equations as presented in Ref.
[31]. When evaluated in the system model of this work,
the latter set of stationary equations reads

0 =
[
λt − U

2

(
1 +

St
z

�

)](
1 − St

z
2

�2

)

+
St

z

�

∑

α=a,p

∫
dε

π
ρt

α(ε)(ε − εt
α)f(ε), (14)

and
St

z

�
+ 1 =

∑

α=a,p

∫
dε

2π
ρt

α(ε)f(ε). (15)

Here, εt
α = εα(t) + λt, and ρt

α(ε) = Γt
α/[(ε − εt

α(t))2 +
(Γt

α/2)2], with Γt
α = Γα(�2 − St

z
2)/2�

2 being the effec-
tive hybridization, is the density of states of the quan-
tum dot in subsystem α. We are considering the wide-
band limit, where the bare hybridization reads Γα =
w2

αθ, with θ being the energy-independent density of
states of the α-lead. On the other hand, f(ε) is the
Fermi–Dirac distribution which in this work is the same
for both reservoirs. Linear response terms in Eqs. (11)
and (12) are taken into account when computing the
corrections δSz and δλ, which as mentioned above,
depend on the above frozen solutions and also on the
spectral properties of the system. These latter can be
found by solving a simple system of linear equations,
but since they are not crucial for this work, we refer
the reader to Ref. [31] for details on how to compute
them.

3 Charge and energy fluxes

3.1 Pumping charge

In this work, we focus on the effect of the Coulomb cou-
pling on charge and energy transfer, with a particular
interest in the passive subsystem, where the transport
is exclusively induced by the action of U .

Regarding the transport of charge, electronic pump-
ing currents flow in the contacts with the reservoirs in
response to the time-periodic driving, while there can-
not be any exchange of particles between the two dots.
Then, the charge current entering reservoir α, Iα(t),
should obey the following charge conservation law

Iα = −e
d〈n∗

α〉
dt

, (16)

which establishes a relation between the currents enter-
ing the reservoirs and the charge variations in the
dots. The lowest-order contribution of the above cur-
rent, I

(1)
α ≡ Ipump

α , is of first order in the variation

of the Hamiltonian parameters, ε̇∗
α(t) and ẇ∗

α(t) that
are ∝ �ω. In Ref. [32], we have already provided an
expression for the first-order (or linear response) cur-
rent in the case of a single non-interacting quantum
dot being driven by time-dependent couplings to the
leads and also a time-dependent energy level. These cal-
culations are applicable to the present problem within
the mean-field approximation, for which active and pas-
sive dots appear to be non-interacting and uncoupled
to each other. Then the current must be evaluated with
the effective parameters given by the S-S1 mean-field
approach, which contain all the information about the
finite U coupling. Consequently, the pumping current
reads

Ipump
α

e
=

∑

kα

i

�

〈[
H̃Full, c

†
kα

ckα

] 〉

=
∫

dε

2π

df

dε
ρt

αΓt
α∂t

(
ε − εt

α

Γt
α

)
. (17)

3.2 Power and energy transfer

The Coulomb interaction does not allow for an exchange
of electrons between the two quantum dots. Yet, it
allows for a net energy transfer, as showned before in
Fig. 2. To study the latter energy transfer mechanisms
between active and passive subsystems, we should first
analyze the variation of the energy in the full system
and then the way it is distributed in the two subsys-
tems. In contrast to the pumped charge that is con-
served for the full system, the corresponding rate of
change in the total energy is equal to the power devel-
oped by the external ac sources

P ac(t) = 〈∂tHFull〉 = ε̇a(t)〈na〉 = ε̇a(t)〈n∗
a〉. (18)

At this point, although 〈n∗
a〉(t) could be simply com-

puted as the time integral of the current in Eq. (17) for
α = a, it turns out to be more convenient to work with
the effective Hamiltonian, as P ac = 〈∂tH̃Full〉, because
this allows us to easily identify how the energy is dis-
tributed between the two subsystems during the driv-
ing. However, at first glance, the fact that the mean-
field S-S1 introduces extra time-periodic parameters
for describing the interaction implies that some care
should be taken before replacing the original Hamilto-
nian HFull by the approximated H̃Full in the definition
of the power as it is usually done for computing the
charge current.1 However, in our case, the substitution
is justified since (as we will show in the following)

〈∂tHFull〉ad = 〈∂tH̃Full〉ad (19)

at least within the adiabatic regime.

1 We stress here that transforming the Hamiltonian under
the S-S1 framework HFull → H∗

Full is an exact representa-
tion, while approximations are imposed only when treating
the problem within mean field with the Hamiltonian H̃Full.
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To prove the latter equality, we start by comparing
Eq. (18) with the time derivative of the MF Hamilto-
nian in Eqs. (7) and (8)

ε̇a(t)〈n∗
a〉 =

∑

α=a,p

ε̇∗
α(t)〈n∗

α〉 + 2Re
{

ẇ∗
α(t)〈c†

kα
d∗

α〉
}

+β̇(t), (20)

and since ε̇∗
a(t) = ε̇a(t)+ λ̇(t), ε̇∗

p(t) = λ̇(t) and ẇ∗
α(t) =

wαdt〈S−〉/�
√

2, the previous equation is then reduced
to

β̇(t) = −λ̇(t)〈n∗〉−
∑

α=a,p

√
2wα

�
Re

{
˙〈S−〉〈c†

kα
d∗

α〉
}

. (21)

Now, taking Eq. (9) and using the relations between
the components of the spin in (10), we can express β in
the adiabatic regime as

β̇ad =
(

U

2
〈n∗〉 − λad

)
˙〈Sz〉

ad − λ̇ad〈n∗〉, (22)

and, on the other hand, we also know from the time
derivative of Eq. (10) that

˙〈S−〉ad
= −�〈Sz〉ad

〈S−〉ad
˙〈Sz〉

ad
. (23)

Now, plugging Eqs. (22) and (23) into (21), we obtain

U

2
〈n∗〉ad =

�〈Sz〉ad

|〈S−〉ad|2
∑

α=a,p

2Re
{
w∗

α〈c†
kα

d∗
α〉

}

+λad, (24)

which is the same as the slave-spin equation (11), which
shows that Eq. (19) is satisfied.

3.2.1 Energy distribution

Now that we have already shown the validity of Eq.
(19), so that the MF preserves the definition of the
power P ac = 〈∂tH̃Full〉ad, we can start analyzing the
energy distribution in the system. From Eq. (7), we
know that

P ac =
d
dt

〈H̃a〉 +
d
dt

〈H̃p〉 + β̇, (25)

where the first two terms tell us that a portion of the
energy delivered by the external ac sources is tem-
porally stored in the active and passive subsystems,
while there is also a third contribution from the tempo-
ral variation of function β. This latter function that
is exclusively introduced by the MF is constant for
stationary systems and so it is generally discarded.
Nonetheless, it may not be dismissed when studying

time-resolved energy transfer because its dynamical
nature impacts on the power. Due to the periodicity
of the MF parameters λ and 〈Sz〉 in Eq. (9), β turns
out to be also a time-periodic function and, as such, its
time derivative vanishes when averaged over one driv-
ing period τ = 2π/ω, β̇τ =

∫ τ

0
β̇dt = β(τ) − β(0) = 0.

Thus, we identify β̇ as a conservative term in the power
insomuch as it does not give a net contribution to the
rate of change of the energy.

On the other hand, the energy rates d〈H̃α〉/dt with
α = {a, p} are exactly the power Pα developed by the
effective potentials in the subsystem α,

Pα =
d
dt

〈H̃α〉 = 2Re
{

ẇ∗
α(t)〈c†

kα
d∗

α〉
}

+ε̇∗
α(t)〈n∗

α〉. (26)

That will have a conservative contribution, P cons
α , and

one dissipative P diss
α , so that Pα = P cons

α + P diss
α . As

explained in Ref. [33] for a single dot device, the con-
servative component P cons

α corresponds to an amount
of energy that is temporally stored in the quantum dot
with a zero net value P cons

α = 0, and it is not related to
the energy transferred to the reservoirs, which is purely
dissipative and therefore contained in P diss

α . Particu-
larly in this work, we will focus on the dissipate com-
ponents of the power in Eq. (25) that are those giving
a net transfer of energy from the active to the passive
subsystem. For evaluating the corresponding dissipative
component of the power in Eq. (26), we again follow the
procedure of Ref. [32], to which we refer the reader for
further details. Thus,

P diss
α = �

∫
dε

4π

df

dε

(
ρt

αΓt
α∂t

(
ε − εt

α

Γt
α

))2

. (27)

The dissipation of energy in each subsystem will be in
the form of heat deep inside the reservoirs α, so that
P diss

α = Q̇α. However, due to the arrangement of the
quantum dots in the device, the passive subsystem can
get energy only from the active subsystem. In the way,
all the heat that is dissipated in the passive reservoir
must correspond to energy coming from the active sub-
system. Consequently, we may identify the heat Q̇p in
the passive reservoir as the flux of energy exchanged
between the subsystems Ėa→p ≡ Q̇p that goes from
the active to the passive subsystem.

In this way, the equation for the net energy distribu-
tion in the full system reads

P ac = P ac
diss = P diss

a + P diss
p = Q̇a + Ėa→p, (28)

and shows that the energy flux P ac injected in the
active subsystem is partly dissipated as heat Q̇a in
reservoir a, while the rest Ėa→p is transferred to the
passive subsystem. In our setup, this latter energy that
is exchanged between the subsystems is then dissipated
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as heat, but could be eventually transformed into useful
work in a proper device.

4 Results

As an illustrative example for the energy transfer
mechanisms in Fig. 2, we consider the case εa(t) =
ε0 cos(ωt) + μ within the adiabatic regime, so that
�ω � Γα, while εp is a constant function. In particu-
lar, we focus on the situation in which the system is at
temperature T = 0 and with balanced hybridizations
with the reservoirs Γa = Γp = Γ/2. In what follows,
we study the dynamics of charge and energy fluxes for
different intensities of the Coulomb interaction U and
various values of the energy level of the passive dot εp.

As was shown in the previous section that the pump-
ing charge currents Ipump

α in Eq. (17), as well as the
dissipative components of the power P diss

α in Eq. (27)
are evaluated only at the frozen parameters λt and St

z.
The latter can be found by solving the non-linear sys-
tem of stationary equations in Eqs. (14) and (15) at
every instant of time t. We emphasize that the frozen
picture used here considers the system to be at equilib-
rium at every time t as in a sequence of snapshots, in
the way that the time variable is treated as a parameter.

In Fig. 3 we show the average values over a single
driving period of the frozen effective level of the passive
dot εt

p = εp+λt, together with the re-normalizing factor

of the hybridizations Γt/Γ = Γt
α/Γα = (�2 − St

z
2)/2�

2,
which is the same for each of the reservoirs α = {a, p}
as for the total Γt = Γt

a +Γt
b. Here, we vary εp within a

range of energies in which the passive quantum dot is
always occupied. From εp � μ where the average occu-
pation 〈n∗

p〉 → 1 is to the limit εp → Γ, the passive dot
is almost empty 〈n∗

p〉 ∼ 0.05 but still occupied. Beyond
this range of energies, for εp > Γ, the undriven dot is
empty and thus the Coulomb interaction vanishes, and
so does the effect we want to study.

As it is already known, the interaction U has
the effect of moving up the resonance from its non-
interacting value μ (we set μ = 0), and this upward
shift is represented in our model by the Lagrange mul-
tiplier λt that is always a positive number [31]. This
effect can be seen in the top panel of Fig. 3 from the
fact that the effective level of the passive dot εt

p presents
a change of sign (i.e., it crosses the Fermi level μ = 0)
at a critical energy εc

p(U), such that εt
p(ε

c
p) = 0, which

is smaller than the chemical potential εc
p(U) < μ. The

critical energy depends on the strength of the Coulomb
interaction U , so that the crossing occurs earlier for
larger values of U than for lower values of the interac-
tion. As expected, we notice that the shift in the energy
levels λt increases as the strength of the Coulomb inter-
action rises up, so the curves for higher values of U
are above those corresponding to a lower U . Moreover,
a slope change in the curves of εt

p can be perceived
around the critical values εc

p(U). When the effective

Fig. 3 Averaged values over a driving period τ of the effec-
tive energy level of the passive dot εtp (top panel) and the

total effective hybridization Γt (bottom panel) as functions
of the energy level of the passive dot εp, for different values
of the interaction U . The parameters are: ε0 = 3Γ, μ = 0,
�ω = 10−3Γ, and T = 0. All the energies, including the
values of U inside the legend, are expressed in units of Γ

level of the passive dot is deep below the Fermi energy
εp � εc

p, the slope γ = 1 + dλt/dεp ∼ 1, which means
that the Lagrange multiplier is approximately a con-
stant function of εp. On the contrary, 0 < γ < 1 and
then dλt/dεp < 0 as the effective level moves further
above the resonance εp � εc

p, which tells us that the
average energy shift λt decreases as the occupation of
the passive dot gets diminished.

Now, we turn to the behavior of the mean value of the
total frozen hybridization Γt, which provides informa-
tion about the electronic configuration of the double-
dot system. As explained in the previous sections, the
component of the spin Sz is in correspondence with the
total occupation number n∗

a+n∗
p through the constraint

in Eq. (4). In this way, we know that the two-level sys-
tem is empty when St

z = −�, it is double occupied for
St

z = �, and it is filled with a single electron when
St

z = 0. Therefore, the effective hybridization is Γt = 0
when the system is either double occupied or empty,
while it attains its maximum value Γt = Γ/2 at the
single occupied state. Results are shown in the bot-
tom panel of Fig. 3. We can see that when the level of
the passive dot is deep below the Fermi sea εp � μ,
the double-dot system approaches the single occupied
state Γt → Γ/2 as the intensity of U increases. This is
simply because in this limit 〈n∗

p〉 → 1 and the repul-
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sive Coulomb interaction prevents the system from the
double occupancy, so that for high values of U the
active dot shall be almost empty on average 〈n∗

a〉 ∼ 0.
Whereas when the intensity of U decreases, both the
dots could be simultaneously occupied for some time
interval in the oscillation period and this leads Γt to
take smaller values.

On the other hand, we observe a significant change
in the behavior of Γt as the effective passive level over-
comes the Fermi energy, for εp > εc

p(U). Now, smaller
values of U lead to higher values of hybridization. More-
over, Γt starts to decrease until it reaches half its maxi-
mum value Γt ∼ 0.25Γ for U = 5Γ when εp → Γ, which
means that the system is single occupied for half the
oscillation period while it is empty for the rest of the
time. The latter features can be understood as follows.
As the effective level of the passive dot moves further
above μ, its average occupancy decreases, and so does
the average λt. In the limit εp → Γ and for large values
of U , the passive dot is almost empty, while the level of
the active dot can oscillate between being occupied and
empty 〈n∗

a〉 ∼ 0.45. As the strength of the interaction
U is reduced, the upward shift in the energies λt gets
smaller; thus, the effective levels are closer to μ and
then they are more occupied on average. This increases
the total occupation of the double system and therefore
Γt rises up, which explains the fact that the curves for
higher values of U are below those corresponding to a
less intense interaction.

Fig. 4 Linear response coefficients of the charge currents
Ipump
a /�ω and Ipump

a /�ω, which are ω independent, as a
function of time. Top panel: Non-interacting limit, U = 0.
Bottom panel: results for U = 4Γ and εp = −2.5Γ. Other
parameters are the same as in Fig. 3

4.1 Charge current

We now turn to analyze the linear response charge cur-
rent in Eq. (17) that is pumped into the reservoirs. As
an example, Fig. 4 shows Ipump

a and Ipump
p as func-

tions of time for U = 4Γ and εp < μ, as well as when
U = 0 for which the quantum dots are disconnected
from each other. We show that, as explained before,
currents in the passive dot are merely induced by the
finite interaction U , thus Ipump

p |U=0 = 0. Naturally,
the peaks in the charge currents Ipump

α occur within
a time interval in which |εt

α − μ| � Γt
α, but interest-

ingly we note that charge fluctuations in the two sub-
systems are completely synchronized (i.e., opposite in
sign). So that, during the first half period, an electron
leaves the passive dot and enters the right reservoir
(positive peak) at the same time when an electron from
the reservoir on the left is entering the active dot (neg-
ative peak). Then the process is reversed during the
second half period. Moreover, we find that the induced
currents in the undriven passive dot are just smaller
but of the same order (first order in the variation of
the driving ε̇a) as those generated in the active dot.
This is different from that observed in Coulomb drag
devices, for which drag currents are in general second
order in the applied perturbation, i.e., bias voltage or
thermal gradient [12,13,19,25,27]. Something surpris-
ing is that currents are induced in the passive dot even
at zero temperature, which evidence that unlike drag
currents that are ∼ T 2, the induction of transport in
the passive part cannot be interpreted as a rectification
of thermal fluctuations [34]. On the other hand, we also
observe a reduction in amplitude of Ipump

a at finite U
with respect to the non-interacting case, which is due
to the mutual friction between inter-dot electrons (i.e.,
Coulomb-mediated scattering processes) that opposes
the filling of the active dot when the passive dot is occu-
pied.

In what follows, we analyze the behavior of the max-
imum values of the pumped charge currents Imax

α ≡
max{|Ipump

α (t)|}. We can see from Figs. 5 and 6 that, as
mentioned above, Imax

p < Imax
a for any energy εp. Both

the maximum values Imax
a and Imax

p exhibit a broad
peak that is centered around the critical energy εc

p(U),
whose width extends over an energy range where the
passive dot is able to exchange electrons with the right
reservoir, since |εt

p − μ| � Γt
p for some time intervals

in the oscillation period. On the contrary, when the
undriven dot is deep below the Fermi energy εp � μ,
and in the limit εp → Γ, the current in the passive dot
is suppressed since |εt

p −μ| > Γt
p for all time, while Imax

a
is still finite but much smaller than the maximum value
at U = 0 (dashed line in Fig. 5). As explained before,
the reduction of the current Imax

a in the active reservoir
is due to the mutual friction between inter-dot elec-
trons. Thus, to increase the current entering the active
reservoir, the passive dot should be able to empty. This
latter explains the fact that both currents exhibit the
broad peak within the same range of energies.
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Fig. 5 Maximum value of the linear response coefficient of
the charge current entering the active reservoir Imax

a /�ω, as
a function of εp and for different values of the Coulomb inter-
action U . The black dashed line corresponds to the maxi-
mum value at U = 0 when the quantum dots are decoupled
from each other. Other parameters are the same as in Fig. 3

Fig. 6 Maximum value of the linear response coefficient of
the charge current entering the passive reservoir Imax

p /�ω,
as a function of εp and for different values of the Coulomb
interaction U . Other parameters are the same as in Fig. 3

Going more in detail, we identify three different
regimes (or regions) in the behavior of the maximum
currents:

4.1.1 Region I: for εp ≤ −ε0

This is the light gray region in Figs. 5 and 6, which
is characterized by having off-peak currents. Then,
Imax
p → 0 is practically suppressed and Imax

a is quite
reduced with respect to its non-interacting value. Here,
lower values of U favor the generation of a charge cur-
rent entering the active reservoir and make Imax

p vanish;
that is reasonable since charge variations in the pas-

sive dot are merely induced by the Coulomb coupling.
The upper limit of the region was defined as the energy
where there is a change in the behavior of Imax

a in a
way that curves for a more intense interaction start to
be above those corresponding to lower values of U , pre-
cisely at the intersection Imax

a (U = 2Γ) = Imax
a (U =

5Γ).
Within this range of energies, the level of the passive

dot is deep below the Fermi energy and therefore the
dot is filled 〈n∗

p〉 → 1. Then, to allow the electron in the
passive dot to tunnel into the reservoir on the right, it
has to receive some energy from the active dot, that
is, just a portion of the power developed by the time-
dependent source εa(t) (see Eq. (28)). However, |εp| >
ε0 renders the external source εa(t) unable to develop
enough power to empty the passive dot, and that is
why the current Imax

p vanishes and Imax
a flattens. As

εp → −ε0 and the Coulomb coupling gets more intense
by rising up U , an exchange of energy between the two
dots becomes possible and Imax

p starts to increase and
so does Imax

a .
In this region, the ordering of the curves as U is

varied can be explained in terms of the mean energy
shift λt, that was previously analyzed. As the value
of U rises up, the Lagrange multiplier λt increases.
Therefore, the effective energy of the passive dot gets
closer to μ (see Fig. 3), which makes Imax

p increase. On
the contrary, the effective active level is shifted farther
away from μ as U gets larger (from Fig. 3, notice that
εt
a = εt

p − εp = λt > 0), so that the level is out of reso-
nance which consequently reduces the current entering
the active reservoir.

4.1.2 Region II: for −ε0 < εp ≤ εc
p

This is the intermediate region in the Figs. 5 and 6. Its
upper limit is approximate and it was defined as the
average critical energy 〈εc

p〉 over all the values of U we
take, which coincides with the intersection Imax

p (U =
2Γ) = Imax

p (U = 5Γ).
Within this region, the effective passive dot lies on

average below the Fermi level of the reservoirs εt
p ≤ 0,

but it is in resonance for some time 43 intervals during
the oscillation period |εt

p−μ| � Γt
p so that electrons can

be exchanged between the passive dot and its reservoir.
The time-dependent Lagrange multiplier λt makes the
passive energy level oscillate around a mean value that
gets closer to μ as the interaction U increases. This
settlement enhances the current entering the passive
reservoir, and therefore in Fig. 6 we can see a growth of
Imax
p as U rises up. Regarding the current in the active

reservoir, Fig. 5 shows that also Imax
a increases with

U . Here, the Lagrange multiplier moves up the active
level as well, but in this case its mean value moves away
from the Fermi level as the repulsion U increases. In this
sense, we would expect weaker interactions to enhance
the current Imax

a since the mean effective active level
εt
a = λt would be closer to the resonance μ. Neverthe-

less, there is another important factor that prevails and
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determines the behavior of the Imax
a within this region,

and it is the following. For an electron to be pumped
into the active dot, the passive dot should empty, since
the Coulomb repulsion prevents (less or more, depend-
ing on the value of U) from the double occupancy of the
double-dot system. For achieving that, the connection
between the two dots should be reinforced by increas-
ing the Coulomb coupling U so that they can exchange
more energy which induce the pumping of charge in the
passive dot.

4.1.3 Region III: for εp > εc
p

The last region is distinguished by the fact that both
the effective levels oscillate in time around a mean value
that is above the Fermi level μ = 0, so εt

a ≥ 0 and εt
p ≥ 0

(see Fig. 3). Therefore, for the level of the active dot
as well as for the passive one, larger values of U imply
being further above the Fermi level of the reservoirs
so that when the levels move away from the resonance
both currents Imax

a and Imax
p decrease. Hence, in Figs. 5

and 6, curves for lower values of U are above those cor-
responding to larger interactions. As the mean effective
passive level goes further above the chemical energy, the
current Imax

p decreases and so does Imax
a , since charge

transport in the active subsystem strongly depends on
the possibility of pumping electrons in the passive sub-
system. In the limit εp → Γ, the effective passive level
is off-resonance at all times, since |εt

p − μ| > Γt
p and

consequently the current Imax
p → 0 almost vanishes. As

mentione before, the mean occupancy of the passive dot
in this limit is not completely zero so that there is still a
mutual friction between inter-dot electrons that reduces
the maximum current entering the active reservoir with
respect to the U = 0 case. Naturally, the Coulomb cou-
pling between the dots has a less impact on the active
current as the passive level overcomes μ and it empties.
That is why the active current Imax

a seems to stabilize
in this limit at higher values than when εp � μ.

On the other hand, we can see that when U < ε0,
the peak in the active current Imax

a exceeds the non-
interacting value. This aspect has to do with the power
supply from the external driving source, and it will be
discussed in the following section.

4.2 Energy fluxes

In this section, we study the energy that is dissipated
deep inside the reservoirs of the subsystems, Q̇a and
Ėa→p, whose expressions were presented in Eq. (27).
When evaluating Eqs. (17) and (27) at zero tempera-
ture, an instantaneous Joule Law relation emerges

P diss
α (t) = Rq(Ipump

α (t))2 at T = 0, (29)

with an universal resistance Rq = h/2e2 that is the
charge relaxation resistance found in Refs. [33,35] and
also observed in Ref. [36]. In particular, for the pas-
sive subsystem α = p, the above equation reads
Ėa→p = Rq(Ipump

p )2 and shows how the transfer of

energy between the subsystems (from the active sub-
system to passive one) is accompanied by the induction
of charge pumping in the undriven dot.

Similarly, when α = a, Eq. (29) relates the heat Q̇a

that is dissipated in the active reservoir to pumping in
the driven dot. However, unlike in the passive dot, in
the active subsystem not all the energy that the active
dot receives from the external ac source is then dissi-
pated as heat in the active reservoir. Here, as shown
in Eq. (28), dissipation corresponds just to a portion
of the power delivered by the external source P ac

diss,
while the rest Ėa→p is transferred to the passive sub-
system to “palliate” the Coulomb friction. This does
not happen when the two quantum dots are uncoupled,
i.e., for U = 0, since in that case the dissipated heat
Q̇a|U=0 = Rq(Ipump

a )2|U=0 = P ac
diss|U=0 is equal to the

ac power because there is no flow of energy to the pas-
sive dot. Thus, to generate a certain charge current in
the active subsystem at finite U , the source has to inject
a higher amount of energy to get over the friction. This
fact should be reflected in the relation between P ac

diss and
Ipump
a , through an effective resistance for the active dot

which should be larger than the non-interacting value
Rq. For analyzing this, we insert Eq. (29) in the total
power, so

P ac
diss = P diss

a (t) + P diss
p (t) = R(t)[Ipump

a (t)]2, (30)

where we define

R(t) ≡ Rq

(
1 +

[
Ipump
p (t)

Ipump
a (t)

]2
)

(31)

as the effective resistance, which is a manifestly positive
quantity at all times. Therefore, we can see Eq. (30) as
a Joule law with an instantaneous effective resistance
R(t) for the total energy dissipation due to pumping in
the active dot. Here, we can notice from Eqs. (29) and
(30) that the overcome of the non-interacting maximum
current in Fig. 5 for ε0 > U is just because the source is
injecting more energy with respect to the U = 0 case.
As an example, we show in Fig. 7 the behavior of the
effective resistance R for different values of the interac-
tion U when the passive level is filled εp = −2.5Γ. We
can see that the effective resistance fulfills the relation
R(t) ≥ Rq at all times, and that it is not universal since
it depends on the interaction U and the spectral prop-
erties of the dots. As expected, the effective resistance
in the active dot due to the presence of an electron in
the passive dot gets larger as U increases.

Finally, we study the efficiency of the energy trans-
fer between the two dots over a cycle of the external
driving source. This quantity measures the amount of
heat leaking from the active to the passive system. The
knowledge of its behavior can be crucial to guide the
design of experimental setups. A first natural use is to
monitor this quantity to prevent an excessive heating
of the passive part or, on the other hand, to use the
leaking heat as an energy input (work), for example
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Fig. 7 Effective resistance R(t) in units of Rq = h/2e2 as
a function of time. Parameters are: εp = −2.5Γ, μ = 0,
T = 0, ε0 = 3Γ. Inset: mean value of the resistance R over
one driving period τ as a function of the interaction U . All
the energies are in units of Γ

Fig. 8 Efficiency of the energy transfer from the active

quantum dot to the passive one ηa→p = 100 × Ėa→p/P ac,
as a function of εp. Parameters are the same as in Fig. 3

in positions where an external source cannot be easily
connected.

For that, we define the efficiency as

ηa→p =
Ėa→p

P ac
× 100, (32)

that is the percentage of the averaged injected power
P ac that is transmitted to the passive quantum dot.
Fig. 8 shows the results as function of the level of the
passive dot εp, again for μ = 0 and T = 0. Naturally,
the broad peak in ηa→p occurs within the same range
of energies as the peak of the charge pumping in the
passive reservoir. We can see that the efficiency also fol-
lows the behavior of Ipump

p as U is varied. In the sense

that larger interactions improve the energy transmis-
sion when the effective passive level is filled on average
εp < εc

p, while they make it worse when the level is
above the Fermi sea εp > εc

p.
Surprisingly, we find that a maximum of around

∼ 43% (maximum of ηa→p when U = 5Γ) of the energy
delivered by the ac source is transmitted to the pas-
sive dot, which is quite high. As mentioned before, this
amount of transmitted energy is then delivered to the
passive reservoir and dissipated there as heat. However,
this energy could be eventually transformed into useful
work in a proper designed setup.

5 Conclusions

In this work, we have studied the transport of charge
and energy in two Coulomb-coupled quantum dots. We
considered the setup in Fig. 1 in which only one of
the two dots (the active dot) is adiabatically driven
by a time-periodic gate, while the other quantum dot
remains undriven (passive dot). We have shown that
although the Coulomb coupling does not allow for elec-
tron transfer between the two quantum dots, it enables
a transfer of energy between them (sketched in Fig. 2)
that eventually induces a pumping of charge also in the
undriven dot, even at zero temperature. To treat the
effects of the Coulomb interaction at low temperatures,
we used the time-dependent slave-spin 1 formulation
within the mean field presented in Ref. [31], which turns
out to be advantageous for describing the induction of
transport in the passive subsystem due to the Coulomb
repulsion, since it is simply explained in terms of effec-
tive time-dependent driving fields acting on the passive
quantum dot.

We have found that the pumping currents that are
induced in the passive dot due to the mutual friction
are of the same order, even if always smaller, than those
generated in the driven dot. Moreover, we identify three
different regimes in the behavior of the charge fluxes as
a function of the energy level of the passive dot.

As far as energy transport is concerned, we have
found that the dissipation in both the reservoirs due
to pumping at zero temperature is given by a Joule
law controlled by the universal charge relaxation resis-
tance Rq. In addition, we also derived a Joule law for
the total energy dissipation due to pumping in the
active dot, which is now controlled by an instanta-
neous non-universal resistance R(t). We have derived
that R(t) ≥ Rq at all times and increases with the
interaction U . Finally, we analyzed the efficiency of the
energy transfer from the active dot to the passive one,
and our results showed that for suitable parameters we
can reach a regime where up to ∼ 43% of the energy
delivered by the ac source to the active dot is transmit-
ted to the passive dot.

Our results represent a significant advance toward a
full understanding of drag effects of charge and energy
in Coulomb coupled quantum dots systems which is
expected to have potential implications for nanoelec-
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tronics. The development of low-dimensional electronic
devices least to setups where the components are
located very close to each other. This leads inevitably
to an increased Coulomb interaction, which can have
undesired consequences. For example currents can be
induced in undesired regions of the device which do not
contribute to its functionality, and heat can be accu-
mulated or dissipated in inappropriate locations thus
ruining or even disrupting the material.

Our results provide a novel piece of information
about the conditions favoring such undesired phenom-
ena which can help to avoid or reduce their impact.
While the current calculations refer to a very simplified
setup, they open the path to calculations for more real-
istic descriptions of the devices owing to the simplicity
and the reliability of our theoretical approach.
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