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1 Introduction

In recent years, the quantum community’s interest in long-range physics has steadily in-
creased due to the emergence of promising platforms for quantum technological applica-
tions: long-range interacting quantum systems. These systems are characterized by cou-
pling energies between pairs of microscopic constituents Vi,j that decay as a power law of
their distance r = |i − j|, with α > 0 [1, 2]. This increased interest is largely due to the
systems’ stability against external perturbations, which allows for the mitigation of the
detrimental effects of dynamically generated excitations [2, 3]. An example of the rigidity
of long-range interacting platforms against external drivings and of its utility for quantum
technological applications is the possibility for such systems to host clean discrete Floquet
time crystal phases [4–7]. Another example is the recently introduced advantage in the
finite time performance of quantum heat-engines with a working substance hosting long-
range couplings [8]. Moreover, this technological and theoretical interest is also supported
from the experimental side by the possibility to implement long-range interacting systems
in typical quantum simulation platforms, such as atomic molecular and optical (AMO)
systems [9–13]. Interestingly, trapped ions setups allow tuning the power law exponent α,
dictating the decay of the interaction energy with distance, from α ' 0 to α ' 3 [9].

The most important feature a system should have to be a good candidate for quantum
technologies is the capability of hosting highly entangled states in its spectrum. Indeed,
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this crucial property is the essential ingredient to perform tasks that are classically im-
possible or very inefficient [14]. More precisely, entanglement is the property that makes
quantum computation overtake classical one providing the computational speed-up in quan-
tum algorithms as compared to algorithms based on the processes of classical physics [15].
Moreover, it is crucial for many quantum technological applications such as quantum tele-
portation [16], quantum cryptography [17] or quantum metrology [18].

A set of key quantities entering the characterization of entanglement is provided by
the entanglement Rényi entropies. For their definition, one takes a partition of a given
system into two subsystems A and B (the complement of A), determines the reduced
density matrix of a subsystem (say, of A) ρA by tracing out the degrees of freedom of
B, and then computes its Rényi entropies: Sν = ln Tr[ρνA]/(1 − ν) [19]. One of the most
fundamental properties of entanglement Rényi entropies is their behavior with the size of
the subsystem considered. The celebrated area law [20, 21] refers to the fact that typically
entanglement grows as the boundary of the subsystem considered, i.e., for a system in d

dimensions and a subsystem of size L having volume ∼ Ld and area ∼ Ld−1, then the
entanglement entropy of the subsystem scales as ∼ Ld−1. In particular, the area law has
been proven to be satisfied in the ground state of one-dimensional systems with mass gap
and short-range couplings when the size of the subsystem is much larger than the correlation
length [22]. At a quantum critical point, where the correlation length diverges, the area
law is known to be violated by a logarithmic term proportional to the central charge of the
conformal field theory (CFT) that describes the low-energy spectrum of the model [23–28].
These facts motivated initially the study of this quantity due to its similarity to the black
hole entropy [20, 29], and have eventually revealed the important role that entanglement
plays in high-energy physics [30–33] as well as in the investigation of condensed matter
systems [34–36].

The previous discussion changes and becomes more involved for systems with long-
range couplings [2, 37, 38]. Indeed the prominent collective character of such non-local
systems promotes entanglement spreading and leads to novel forms of equilibrium and
dynamical scaling, which cannot be observed in traditional systems with local interac-
tions [39–44]. In particular, the anomalous scaling of entanglement in the presence of
long-range couplings has recently attracted great interest in the context of the so-called
measurement-induced transitions [45–51]. In this case, the dynamical generation of entan-
glement is weakend by the presence of local measures applied randomly during the system
evolution. More precisely, if the measurement rate is high enough, the steady state entan-
glement saturates to an area law value independent of the considered subsystem size, if only
nearest neighbor interactions are present [3]. On the other hand, in the presence of long-
range couplings, subvolume law scalings [3, 52–55], also referred to as fractal entanglement
phases [56, 57], appear.

These interesting dynamical phenomena have no clear equilibrium counterpart showing
that their origin is directly related to the presence of long-range interactions. The entangle-
ment properties of the ground state of a fermionic chain with long-range pairing couplings
and nearest neighbors hopping amplitudes were fully characterized in refs. [58–62] which
reported standard logarithmic violations of the area law in the weak long-range regime.

– 2 –



J
H
E
P
0
5
(
2
0
2
3
)
0
6
6

Moreover, an anomalous logarithmic growth was found even if the mass gap is not zero,
associated to the divergence of unnormalized couplings, in the strong long-range regime
characterized by a power law decay exponent smaller than the system dimension. On the
other hand, the authors of refs. [63, 64] considered a model of fermions with strong long-
range hopping amplitudes and no pairing discovering a volume law entanglement scaling.
Moreover, the entanglement properties of the Sachdev-Ye-Kitaev (SYK) model [65, 66],
i.e. a fully connected fermionic model with random interactions, have been extensively
studied [67]. Also in this case, the eigenstates of the SYK Hamiltonian display a volume
law entanglement scaling whose coefficient has been computed numerically using exact
diagonalization techniques [68, 69] and analytically assuming the eigenstate thermaliza-
tion hypothesis [70] or using a path-integral approach which becomes exact in the large-N
limit [71, 72]. Finally, also in long-range bosonic systems [73, 74] and in fully connected
spin systems [75–79] only logarithmic violations of the area law were reported.

Despite the extensive amount of literature on the topic summarized above, none of the
considered long-range models display a fractal entanglement scaling at equilibrium unless
additional ingredients are added such as modifications of the couplings which violate time
translational symmetry or the presence of a fractal Fermi surface [63]. Here, we are going
to show that the subvolume law observed in measurement induced transitions [3, 52–57] is
directly caused by long-range interactions and also appears at equilibrium, provided certain
conditions are met.

To prove our claim, we study the ground state entanglement scaling in a prototypical
model of fermions with power-law decaying hopping and pairing amplitudes, also known
as the long-range Kitaev chain [2, 80]. This model is sufficiently simple to allow us to
perform analytic calculations but at the same time it turns out to host an extremely rich
phenomenology. Using the well-known Fisher-Hartwig expansion [81, 82], we were able to
analytically determine the leading order dependence of the ground state entanglement on
the subsystem size L in the scaling limit of an infinite chain of N → ∞ sites and infinite
subsystem L → ∞ with fixed l = L/N , for different values of the available parameters.
In particular, we can distinguish two main regimes: the weak long-range regime in which
the coupling’s power law decaying exponents are larger than the system dimension and
the strong long-range regime in which they are smaller. In the former case, the system
shows standard logarithmic deviations from the entanglement area law in correspondence
with the quantum critical points, however, in the most interesting case of equal long-
range hopping and pairing the coefficients in front of these logarithmic divergences show a
nontrivial dependence on the power law decay exponent α which is not compatible with the
standard scaling predicted by critical conformal field theory [23, 24]. On the other hand, in
the strong long-range case, the system becomes genuinely non-additive, therefore showing
a logarithmic deviation from the area law even away from criticality. Most significantly,
when the system chemical potential is zero, no local terms are present in the Hamiltonian
(as we will see this simple fact strongly affects the nature of the ground state which becomes
highly degenerate) thus resulting into a subvolume law entanglement scaling, S ∼ L1−2α.

Summarizing, our work correctly reproduces previously known results in different lim-
its, thus bringing several disparate results present in the literature into a coherent picture.
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Moreover, we are able to detect a fractal entanglement scaling phase which is entirely
due to the non-additive nature of the model and does not need the dynamical setting of
measurement induced transitions to be observed.

The paper is organized as follows. In section 2 we introduce the long-range Kitaev
model and we describe its phase diagram. In section 3 we briefly review the techniques
which allow us to study the entanglement scaling of generic quadratic fermionic models
(the expert reader may safely skip this part). Finally, section 4 and 5 are devoted to the
detailed characterization of the ground state entanglement scaling of the model in the weak
and strong long-range regimes, respectively.

2 Kitaev chain with long-range couplings

We consider a generic model of spinless fermions hopping across the N sites of a one-
dimensional chain in the presence of pairing interactions, and with a chemical potential h.
Assuming periodic boundary conditions, the system Hamiltonian reads

H =−
N∑
j=1

N/2−1∑
r=1

[
tr ĉ
†
j+r ĉj + ∆r ĉ

†
j+r ĉ

†
j + h.c.

]

− h
N∑
j=1

[
1− 2ĉ†j ĉj

]
, (2.1)

where ĉ†j and ĉj are creation and annihilation operators for fermions at site j, while tr and
∆r are the hopping and pairing amplitudes, respectively. We choose their dependence on
the intersite distance r according to the power laws

tr = 1
Nα1

J

rα1
, ∆r = 1

Nα2

∆
rα2

, (2.2)

with the hopping exponent α1 > 0, the pairing exponent α2 > 0, and Nα =
∑N/2
r=1 r

−α the
Kac scaling factor [83], which guarantees extensivity of the energy in the case αi < 1, with
i = 1, 2. This model, often referred to as long-range Kitaev chain [80], is emerging as a
minimal model for the study of the effects of long-range couplings on a quantum system [2].
Indeed, its integrable nature makes it amenable to both analytical and numerical treatment.
Moreover, as observed in refs. [84–86], when the pairing and hopping power law decay
exponents are equal α1 = α2 = α the model can be related to the quantum Ising model.
In particular, in the short-range case with α→∞, the relation becomes exact through the
Jordan-Wigner mapping [87].

The quadratic nature of the Hamiltonian (2.1) allows its exact diagonalization in
Fourier space via the Bogolyubov transformation

ĉk = cos θk2 γ̂k + sin θk2 γ̂
†
−k, (2.3)
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where we have introduced the momentum space fermionic operators

ĉk = e−i
π
4

√
N

N∑
j=1

eikj ĉj , (2.4)

where k = 2πn/N , and n is an integer such that b−N/2c + 1 ≤ n ≤ bN/2c. While
the Bogoliubov angles are defined by the conditions tan θk = ∆̃k/(h − t̃k), where Fourier
transforms of the hopping and pairing amplitudes are defined as

t̃k = J

Nα1

N/2−1∑
r=1

cos(kr)
rα1

, ∆̃k = ∆
Nα2

N/2−1∑
r=1

cos(kr)
rα2

. (2.5)

Hereafter, we set J = ∆ = 1 as the energy scale and work in units of ~ = 1. In terms of
the Bogoliubov fermions, the Hamiltonian then takes the diagonal form

H =
∑
k

ωk(h)
(
γ̂†kγ̂k − 1/2

)
, (2.6)

with the quasiparticle spectrum

ωk(h) = 2
√

(h− t̃k)2 + ∆̃2
k. (2.7)

Since ωk(h) ≥ 0, the ground state corresponds to the Fock space vacuum for the Bogoliubov
modes, defined by the condition γ̂k|gs〉 = 0, ∀k.

When studying the critical properties associated with the spectrum (2.7), we must
distinguish two main regimes: the weak long-range regime when α1, α2 > 1, i.e., the power
law decay exponents are larger than the system dimensionality, and the strong long-range
regime when α1, α2 < 1. In the weak long-range case, the Kac scaling is a constant in the
thermodynamic limit: Nα>1 → ζ(α), where ζ(α) is the Riemann zeta function. Moreover,
when the system size goes to infinity, we can safely perform a continuum limit in the k
variable. In particular, eq. (2.5) may be written as

t̃k = Re
[
Liα1(eik)

]
/ζ(α1), ∆̃k = Im

[
Liα2(eik)

]
/ζ(α2), (2.8)

where Liα(z) denotes the polylogarithm function. This leads to a continuum spectrum
ωk characterized, at the critical points, by a dispersion relation that depends on α1 and
α2. In particular, for α1, α2 > 1, the system possesses two different phases separated by
two quantum critical points hc = 1,−1 + 21−α1 , in correspondence of which the dispersion
relation becomes gapless near to the critical mode kc = 0, π, respectively [2, 88]. The
critical modes of the spectrum are shown in figure 1a where ω0(π)(blue(red) lines in the
plot) is plotted as a function of h for different values of α1 = α2. The nature of the
transition is topological and the two topological phases can be distinguished by the value
of the bulk topological invariant [89]

w =
∮
dθk
2π =

1 if h ∈ [−1 + 21−α1 , 1]
0 otherwise ,

(2.9)
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Figure 1. a) Critical modes k = 0, π of the quasiparticle spectrum as a function of the chemical
potential h for different values of α1 = α2, two critical points emerge at h = t̃0, t̃π, where in the
thermodynamic limit t̃0 = 1 and t̃π = 1 if α1 > 1, t̃π = −1 + 21−α1 if 1 < α1 < 2, and t̃π = 0 if
0 < α1 < 1. b) Phase diagram of the long-range Kitaev chain in the plane (α1, h), for the pairing
decay exponent α2 = α1, α1 is the hopping decay exponent and h is the chemical potential. The
topological order parameter is q = −1 in the topological phase (blue shaded region) and q = +1
in the trivial phase (red shaded region). The phase space boundaries correspond to the solid lines
h = t̃0 and h = t̃π.

where the Bogoliubov angles are defined as θk = arctan(∆̃k/(h − t̃k)). Moreover, in the
nontrivial phase with w = 1, the ground state is doubly degenerate, and can support
Majorana edge modes [90].

In the strong long-range regime 0 < α1, α2 < 1 the scenario is more complicated.
Indeed, in this case, the Kac normalization factor Nα diverges at large N as Nα ≈ N1−α,
and the thermodynamic limit of eq. (2.5) has to be carefully considered. In particular, as
pointed out in ref. [91], while the Fourier modes variable k = 2πn/N becomes continuous
as N →∞, the hopping and pairing amplitudes t̃k, ∆̃k, remain discrete and labeled by the
integer n, reading

lim
N→∞

t̃k = cα1

∫ 1/2

0
ds

cos(2πns)
sα1

= t̃n, (2.10)

lim
N→∞

∆̃k = cα2

∫ 1/2

0
ds

sin(2πns)
sα2

= ∆̃n, (2.11)

with cα = (1− α)21−α. Therefore, the presence of long-range couplings leads to a discrete
spectrum ωk → ωn = 2

√
(h− t̃n)2 + ∆̃2

n also at N → ∞. The persistence of the discrete
spectrum in the thermodynamic limit does not allow us to define a continuous theory and
hinders the conventional definition of quantum critical points in the Kitaev chain. In par-
ticular, the winding number in eq. (2.9) is ill-defined as a consequence of the discontinuity
in the Bogolyubov angle distribution [89]. Yet, the transition can still be characterized by
the quantity

q = sign[(h− t̃0)(h− t̃π)] =

1 if h ∈ [t̃π, t̃0]
−1 otherwise .

(2.12)
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This quantity has proven to be a good topological invariant in cases in which the winding
number turns out to be ill-defined [89, 92]. Then, also in the strong long-range regime, the
behavior of the order parameter q is still consistent with a change of phase at the critical
points h = t̃0, t̃π [91]. However, as shown in [93], the bulk boundary correspondence turns
out to be weakened by the presence of strong long-range couplings. Consequently, the
change of q at the critical points is not guaranteed to be in one-to-one correspondence
with the appearance of boundary topological edge states. Nevertheless, we expect bulk
properties to remain consistent with a change of phase. Figure 1b shows the model phase
diagram as characterized by the value of q = ±1 as a function of the chemical potential
h and of the hopping power law decay exponent α1. Two quantum critical lines appear
when varying the α1 parameter. In particular, we notice that the location of the critical
point corresponding to ω0 = 0 is fixed to h = t̃0 = 1 for any value of α1 (blue bold line in
figure 1b). On the contrary, the critical point corresponding to ωπ = 0 (red bold line in
figure 1b) is α1 dependent with two different behaviors in the weak and strong long-range
regimes, in particular in the thermodynamic limit we find

lim
N→∞

t̃π =


−1 if α1 > 2
−1 + 21−α1 if 1 < α1 < 2
0 if 0 < α1 < 1 .

(2.13)

Finally, the completely mean-field case with α1 = α2 = 0 needs to be treated separately.
Indeed, in this case, the spectrum becomes strongly degenerate and this may alter the
nature of the ground state. In particular, for completely flat couplings the sums in eq. (2.5)
can be exactly computed and, in the thermodynamic, they read

t̃n(α1 = 0) = δn,0, ∆̃n(α2 = 0) = 1 + (−1)n+1

πn
. (2.14)

Accordingly, the single-particle spectrum becomes

ω0
n =


2|h| if |n| even
2
√
h2 + 4/(πn)2 if |n| odd

2|h− 1| if n = 0 ,
(2.15)

where we have introduced the shortcut notation ω0
n = ωn(α1 = 0, α2 = 0). It follows that

an extensive number of single-particle energy levels corresponding to all the even modes
become degenerate. In particular, when the chemical potential is zero h = 0 all the even
modes become zero modes since at this point we have ω0

2n(h = 0) = 0, ω0
2n+1(h = 0) =

2/|πn| and ω0
0(h = 0) = 1. This fact deeply affects the nature of the many-body ground

state which is no more given by the Bogoliubov vacuum, on the contrary, it allows for
a finite population of Bogoliubov fermions in an extensive number of zero modes. More
precisely, the ground state for α1,2 = 0 and h = 0 is given by a generic superposition of
the form

|gs〉α=0,h=0 =
N0∑
n0=0

Cn0 |n0〉, (2.16)
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1

L

N

A

B

Figure 2. Schematic representation of a bipartition of a long-range Kitaev chain with periodic
boundary conditions in two subsystems A and B of length L and N − L respectively.

where n0 is the number of fermions occupying the N0 available zero modes. This ground
state is highly degenerate indeed each |n0〉 state can be realized in

(N0
n0

)
ways, leading to

the exponential degeneracy

Deg[|gs〉α=0,h=0] =
N0∑
n0=0

(
N0
n0

)
= 2N0 . (2.17)

As a concluding remark for this section, we stress the importance of the Kac scaling
in the stabilization of the topological order in the strong long-range regime. Indeed, had
we considered not properly rescaled couplings, the presence of long-range hopping α1 < 1
would have moved the critical point to hc = O(N1−α1)→∞, thus destroying the transition.

3 Entanglement scaling in free fermionic systems

We consider a bipartition of the fermionic chain described by the Hamiltonian in eq. (2.1),
in two subsystems A and B, where A is a continuous interval of chain sites of length L and
B is its complementary set, see figure 2. Given the Hilbert spaces HA and HB associated
to A and B, respectively, then the total Hilbert space of the system can be written as the
tensor product H = HA ⊗HB. If the total system is in a pure state |ψ〉, then the reduced
density matrix, describing the state of subsystem A(B) is obtained by taking the partial
trace with respect to HA(B): ρA(B) = TrA(B)|ψ〉〈ψ|. The amount of entanglement between
the two subsystems can be characterized by the so-called Rényi entropies of A, defined as

Sν,L(A) = 1
1− ν ln Tr[ρνA], (3.1)

where ν ≥ 1. These are known to provide an accurate measure for the entanglement of a
bipartite system in a pure state [19]. In particular, the limit ν → 1 of the above expression
corresponds to the celebrated Von Neumann or entanglement entropy

SL(A) = S1,L(A) = −Tr[ρA ln ρA]. (3.2)

– 8 –
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The main goal of this paper is to study the Rényi entanglement entropy for the ground
state of a Hamiltonian of the kind analyzed in the previous section. In particular, we are
interested in determining the dependence of Sν,L(A) on the subsystem size L in the scaling
limit N →∞, L→∞ with fixed l = L/N and how this is affected by the presence of long-
range hopping and pairing couplings in the Hamiltonian. This task may be achieved by
taking advantage of the fact, that since the Hamiltonian in eq. (2.1) is quadratic, then all
its eigenstates satisfy the Wick decomposition theorem [26, 94]. Accordingly, the reduced
density matrix can be obtained from the two-point correlation functions. To achieve this,
we introduce the 2N × 2N correlation matrix V, which is a block matrix with each 2 × 2
block defined as follows:

Vij =
(
δij − 2〈c†jci〉 2〈cicj〉

2〈c†ic
†
j〉 2〈c†icj〉 − δij

)
, (3.3)

where i and j range from 1 to N . Then, it can be shown [26, 94] that this is related to the
Rényi entropies through the formula

Sν,L(A) = 1
2(ν − 1)Tr ln

[(I + V
2

)ν
+
(I− V

2

)ν]
. (3.4)

It is important to notice that, from the computational point of view, this formula consti-
tutes a dramatic simplification since the problem complexity is reduced from the diagonal-
ization of a reduced density matrix of size 2L× 2L to the diagonalization of the correlation
matrix (3.3) of size 2L × 2L, thus allowing to reach larger sizes L. From the analytic
side, it is useful to write eq. (3.4) as an integral on the complex plane along a contour C
surrounding the eigenvalues vj ∈ [−1, 1] of V. Using Cauchy’s residue theorem in order to
perform the integral, one gets [95, 96]

Sν,L(A) = lim
ε→0+

∮
C
sν(1 + ε, z)d lnDL(z)

dz
dz, (3.5)

where we have introduced the function

sν(x, y) = 1
1− ν ln

[(
x+ y

2

)ν
+
(
x− y

2

)ν]
, (3.6)

and the determinant

DL(z) = det(zI− V). (3.7)

Due to the translational invariance of the Hamiltonian (2.1) and given the choice of sub-
system A, which is composed of contiguous sites, we can write the Fourier trasform of the
correlation matrix Vlj as

Vlj = 1
N

∑
k

Gke
ik(l−j), (3.8)

where we have introduced the two dimensional symbol Gk which, as detailed in appendix A,
can be written as

Gk = (1− (fk + f−k))
[

2(h− t̃k)
ωk

σz −
2∆̃k

ωk
σy

]
− (fk − f−k)I, (3.9)
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where σa, with a = x, y, z, are the Pauli sigma matrices, I is the 2 × 2 identity, and
fk = 〈γ̂†kγ̂k〉 are the occupation numbers of the Bogoliubov fermionic modes, which for a
generic state satisfy the condition 0 ≤ fk ≤ 1.

Using the techniques introduced in refs. [26, 94] the asymptotic behavior for L→∞ of
the Toeplitz determinant DL(z), entering the expression for the Rényi entropies (3.4), can
be determined applying the Szegő-Widom theorem [97, 98] and an extension of the Fisher-
Hartwig conjecture [81, 82] to non-scalar symbols [60, 61]. The leading order contributions
to the logarithm of DL(z) in the L→∞ limit then read

lnDL(z) = L

2π

∫ π

−π
dk ln det(zI−Gk)

+ lnL
∑
p

bp(z) +O(1), (3.10)

where the coefficients bp(z) of the logarithmic contribution are associated to the disconti-
nuities of Gk. More precisely, if there is a discontinuity at some k = p, this means that

G+
p = lim

k→p+
Gk 6= lim

k→p−
Gk = G−p , (3.11)

then the coefficient corresponding to such discontinuity can be computed as [61]

bp(z) = 1
4π2 Tr[ln(zI−G−p )(zI−G+

p )−1]2. (3.12)

Inserting eq. (3.10) into the integral for the Rényi entropy (3.5) one obtains

Sν,L = 1
1− ν

∑
k

ln [(1− fk)ν + fνk ] +Bν lnL+O(1), (3.13)

where the coefficient of the logarithmic contribution can be computed as

Bν =
∑
p

lim
ε→0+

∮
C
sν(1 + ε, z)dbp(z)

dz
dz. (3.14)

As shown in section 2, whenever α1,2 > 0 or α1 = α2 = 0 and h 6= 0, the many-body ground
state of the system is the Bogoliubov vacuum with fk = 0 ∀k, therefore we are left with
a leading order contribution given by a constant term O(1) corresponding to the standard
area law in the one-dimensional case, or a logarithmic contribution which is associated to
the discontinuity of the correlation matrix symbol Gk. On the other hand in the specific
case α1 = α2 = 0 and h = 0 the many-body ground state becomes highly degenerate
allowing for a finite fermionic population fk 6= 0 for an extensive number of Bogoliubov
modes, i.e., all the even modes. As a consequence, the first term in eq. (3.13) becomes the
leading contribution to the large L entanglement scaling corresponding to a volume law
behavior Sν,L(α1,2 = 0, h = 0) ≈ L.

Summarizing, the machinery introduced in this section allows us to compute the leading
order contribution to the scaling of Rényi entropies with the subsystem size by simply
analyzing the symbol continuity properties in the different regimes.
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4 Weak long-range regime

Let us start with the weak long-range regime corresponding to 1 < α1, α2 < 2. In this case,
as we have seen in section 2, the quasiparticle spectrum is continuous in the thermodynamic
limit, and the ground state is always given by the Bogoliubov vacuum with zero fermionic
populations fk = 0, ∀k. Accordingly, the first term of the Fisher-Hartwig expansion (3.13)
vanishes and then the leading order contribution to the entanglement scaling comes from
the logarithmic term associated with the matrix symbol discontinuity.

Within the weak long-range regime, we can distinguish three different cases: α1 > α2,
α1 < α2 and α1 = α2 = α. Therefore, in order to proceed we must identify the location of
the jumps of Gk and compute the lateral limits in these three different situations. Possible
sources of discontinuities for Gk are the discontinuities or the zeros of the spectrum ωk(h),
which appear at the two quantum critical points h = 1,−1 + 21−α1 , where the spectrum
becomes gapless at the soft modes k = 0, π, respectively. More precisely, Gk has no
discontinuities when h 6= 1,−1 + 21−α1 , since in this case the lateral limits at the critical
modes read

G±0 = lim
k→0±

Gk = sgn(h− 1)σz, (4.1)

G±π = lim
k→π±

Gk = sgn(h+ 1− 21−α1)σz. (4.2)

This leads to a constant scaling of the entanglement entropy Sν,L = O(1) with the sub-
system size when the system is not at quantum criticality and therefore the spectrum is
gapped. This is nothing but a manifestation of the standard area law for one-dimensional
gapped systems [20, 21]. On the other hand, quantum criticality leads to logarithmic devi-
ations from the area law. Let us start from the homogeneous critical point (h = 1), when
the spectrum has an α1,2 dependent dispersion relation (see appendix C), which leads to
the different lateral limits

G±0 =


σz if α1 < α2

− sin(απ/2)σz ± cos(απ/2)σy if α1 = α2

±σy if α1 > α2 .

(4.3)

Accordingly, no discontinuity is present when the power law decay of the hopping amplitude
is slower than that of the pairing, leading again to a constant entanglement entropy. In
the α1 > α2 case instead, we have a discontinuity in the symbol, with commuting lateral
limits. Inserting the expression for G±0 in eq. (3.12) we obtain

b0(z) = 1
2π2

(
ln
(
z + 1
z − 1

))2
. (4.4)

Then, inserting this result into the expression for the entanglement entropy, and performing
the integration in eq. (3.5) we obtain the logarithmic scaling

Sν,L = ν + 1
12ν lnL+O(1). (4.5)
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This logarithmic scaling is analogous to the one obtained for a conformal field theory with
central charge c = 1/2 [24]. This result is in agreement with previous findings [59, 60]
concerning the entanglement scaling in a Kitaev chain with long-range paring and nearest
neighbors hopping α1 → ∞, here we show that the same scaling holds also for finite α1
as long as α1 > α2. Figure 3b shows the numerical check of the scaling behavior of the
entanglement entropy SL = S1,L for α1 > α2 and h = 1. We obtain an excellent agreement
once the subleading corrections are taken into account. In particular, we need to subtract
from the numerical data the finite size corrections of the form

SL −
1
6 lnL = c1 + c2L

−c3 , (4.6)

where the ci = ci(α1, α2, h), i = 1, 2, 3, coefficients can be estimated from a fit with the
numerical data.

The most interesting case corresponds to the condition α1 = α2 = α which, as previ-
ously stated, is closely related to the long-range interacting quantum Ising chain. Moreover,
we notice that in this regime the matrix symbol Gk, hosts non-commuting lateral limits
as k → 0± (see eq. (4.3)). This leads to the non-trivial dependence of the logarithmic
contribution coefficient on α

b0(z) = 2
π2

ln

√
z2 − sin2(απ/2) + cos(απ/2)

√
z2 − 1

2

. (4.7)

Inserting b0(z) in eq. (3.5) and performing the integration (see appendix B), we obtain the
logarithmic scaling behavior of the Rényi entropy

Sν,L = Bν,α lnL+O(1), (4.8)

where

Bν,α = 1
π2(ν − 1)

ν∑
k=1

arctan2

 cos(απ/2)√
sin2(απ/2) + |zk,ν |2

 , (4.9)

with zk,ν = i tan(π(2k − 1)/2ν). In particular, for ν = 2, 3, the sum in the previous
expression reduces to

B2,α = 2
π2 arctan2

 cos(απ/2)√
sin2(απ/2) + 1

 , (4.10)

B3,α = 1
π2 arctan2

 cos(απ/2)√
sin2(απ/2) + 1/3

 . (4.11)

This analytical scaling of S2,ν at h = 1 and for α1 = α2 = α is compared with the numerical
result in figure 3c. Also in this case, a good agreement is found once the subleading
corrections (4.6) are taken into account.

We note that the expression for the scaling coefficients in eq. (4.9) is valid only for
integers ν > 1. Indeed, in this case dsν/dz is a meromorphic function with poles located

– 12 –



J
H
E
P
0
5
(
2
0
2
3
)
0
6
6

500 1000 1500 2000 2500
L

0.48

0.49

0.50

0.51

0.52
S
L

(a) α1 < α2

c1 + c2L
−c3

S2,L

0 1000 2000
L

0.8

1.0

1.2

S
L

(b) α1 > α2

1
6 logL

SL

SL − c1 − c2L
−c3

0 1000 2000
L

0.25

0.30

0.35

0.40

0.45

S
2,
L

(c) α1 = α2 = α

B2,α logL

S2,L

S2,L − c1 − c2L
−c3

Figure 3. Numerical check of the entanglement scaling as a function of the subsystem size L at
the quantum critical point with chemical potential h = 1 for different values of couplings power law
decay exponents 1 < α1, α2 and total system size N = 2L. a) Entanglement entropy (ν = 1), with
α1 = 1.5 and α2 = 1.8, blue squares represent the numerical data while the black solid line is a fit
of a constant and a subleading contribution c1 + c2L

−c3 . b) Entanglement entropy (ν = 1), with
α1 = 1.8 and α2 = 1.5, blue squares represents the numerical data, the black solid line correspond
to the curve (1/6)) lnL, red dots have been obtained from the numerics by subtracting the fit of
the subleading corrections of the form c1 + c2L

−c3 . c) Rényi-2 entropy (ν = 2) with α1 = α2 = 1.5,
blues squares represents the numerics, the black solid line represents the curve B2,α lnL, red dots
are obtained subtracting the subleading corrections to the numerical data as in panel b).

on the imaginary axis. This allows us to evaluate the integral in (3.5) by summing over
the residues at these poles (see appendix B for details on the calculation). On the other
hand, for ν = 1, we have that

dsν=1(1 + ε, z)
dz

= ln
(1 + ε− z

1 + ε+ z

)
, (4.12)

which has two branch cuts from ±(1+ε) to infinity (see appendix B). Therefore, to evaluate
the integral in eq. (3.5) for ν = 1, we perform the integration along these cuts and take into
account the change in the phase of the logarithm when we go around the branch points.
This reduces the integral to two real integrals, which we evaluate numerically. In the case
where α1 = α2 = α and h = 1, the integrand still depends on α even for ν = 1, so we can
still expect the coefficient for the logarithmic divergence of the von Neumann entropy S1,L
to have a nontrivial α dependence.

It is important to observe that at variance with the α1 6= α2 cases, the scaling coefficient
Bν,α cannot be written in the form

Bν,α 6= Bν,CFT = ν + 1
6ν c, (4.13)

where c is the central charge of some conformal field theory describing the model at the
quantum critical point. This observation supports our previous claim that the case α1 = α2
is special and, somehow, closer to the one of a strongly interacting system such as the long-
range Ising model. Indeed, while the case α1 6= α2 continues to obey the r.h.s. of eq. (4.13)
and, so, is more likely to be described by a CFT, the case 1 < α1 = α2 < 2 goes beyond this
description as the scaling of the ground state entanglement at the critical point cannot be
related to the universal properties of a conformal field theory. A similar result is expected
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1 < α1 < α2 < 2 1 < α2 < α1 < 2 1 < α2 = α1 < 2

h = 1 Sν,L = O(1) Sν,L ≈ ν+1
12ν lnL Sν,L ≈ Bν,α lnL

h = −1 + 21−α1 Sν,L ≈ ν+1
12ν lnL Sν,L ≈ ν+1

12ν lnL Sν,L ≈ ν+1
12ν lnL

Table 1. Summary of entanglement scaling results at different quantum critical points and for
various values of α1 and α2 in the weak long-range regime. The symbol ≈ denotes equality up to
subleading O(1) corrections.

for the Ising model in a transverse field, where the inclusion of long-range interactions
is expected to increase the effective dimension of the model and, so, disrupt any CFT
description.

Figure 4a shows the coefficients Bν,α for ν = 2, 3 as a function of α ∈ [1, 2], we notice
that the value of the logarithmic scaling coefficients starts from zero at α = 1 and then
grows with α reaching the short-range value for α = 2. Moreover, figure 4b shows the α
dependence of the effective central charge defined as ceff(α) = 6νBν,α/(ν+ 1) as a function
of α. We notice that, apart from the extrema ceff(1) = 0 and ceff(2) = 1/2, the effective
charge also depends on the Rényi entropy order ν, thus confirming the fact that it cannot
be considered as the proper central charge of a conformal field theory. These results are in
agreement with the findings of ref. [100], where the breakdown of conformal symmetry in
a long-range fermionic chain was established.

Finally, we consider the non-homogeneous critical point h = −1 + 21−α1 . In this case,
the power of the dispersion relation near the soft mode k = π is not affected by the presence
of long-range couplings (see appendix C). Accordingly, also the symbol discontinuity is
independent of the value of α1,2, in particular, we find

G±π = lim
k→π±

Gk = ±σy, ∀α1, α2 > 1. (4.14)

This leads to a logarithmic contribution coefficient

bπ(z) = 1
2π2

(
ln
(
z + 1
z − 1

))2
. (4.15)

The corresponding scaling of the entanglement entropy is then the one obtained in eq. (4.5),
which is equivalent to the entanglement scaling in the nearest neighbor Kitaev chain, at
a quantum critical point characterized by a conformal field theory with central charge
c = 1/2. Figure 5 shows the entanglement scaling behavior at the non-homogeneous critical
point h = −1+21−α1 with α1 < α2 (figure 5a), α1 > α2 (figure 5b) and α1 = α2 (figure 5c).
Also in this case a nice agreement with the theoretical prediction in the thermodynamic
limit is found once finite size corrections are taken into account.

The results for the entanglement scaling with the subsystem size in at different critical
points and for different values of the α1, α2 parameters within the weak long-range regime
considered in this section (1 < α1, α2 < 2) are summarized in table 1.
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Figure 4. a) Coefficient Bν,α of the logarithmic scaling of the ν-Rényi entropy as a function of
the power law decay exponent α = α1 = α2, for ν = 2 (green solid line) and ν = 3 (purple solid
line). The dashed lines correspond to the short-range values of the coefficients which are matched
by the long-range ones for α = 2. b) effective central charge, obtained as ceff = 6νBν,α/(ν+ 1), as a
function of α for ν = 2, 3. The black dashed line represents the central charge for nearest neighbor
couplings c = 1/2.
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Figure 5. Numerical check of the entanglement scaling as a function of the subsystem size L at
the quantum critical point with chemical potential h = −1 + 21−α1 for different values of couplings
power law decay exponents: a) α1 = 1.5, α2 = 1.8, b) α1 = 1.8, α2 = 1.5, c) α1 = α2 = 1.5 and total
system size N = 2L. As in figure 3, blue squares represents the numerical data, the black solid line
represents our analytical prediction for the scaling in the L � 1 limit, red dots are obtained from
the numerics by subtracting the subleading corrections.

5 Strong long-range regime

The situation in the strong long-range regime is more involved. In particular previous
studies on fermionic systems with strong long-range pairing interactions [59–61] reported
logarithmic violations of the entanglement area law even away from criticality. However,
in those cases, the noncritical logarithmic scaling of the ground state entanglement was
associated with divergences in the long-range couplings due to the fact that no Kac scaling
was introduced in the model Hamiltonian. Therefore, one may think such anomalous
scalings to be trivially related to the loss of the system extensivity. On the other hand,
as shown in section 2, the introduction of a Kac scaling in the Hamiltonian allows us to
define a model with strong long-range interaction still preserving the energy extensivity.
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In particular, when a Kac scaling is introduced, the coupling divergences for α1, α2 < 1
are canceled, and accordingly also the symbol discontinuity associated with them disap-
pears. However, an infinite number of new nontrivial discontinuities arise due to the fact
that the spectrum becomes discrete also in the thermodynamic limit. More precisely, as
a consequence of the spectrum discontinuity, the symbol becomes discontinuous for any
k = 2πn/N . Indeed, in the thermodynamic limit, Gk reads

lim
N→∞

Gk = Gn = 2(h− t̃n)
ωn

σz −
2∆̃n

ωn
σy. (5.1)

Then it can be labeled by a discrete integer number n, while the k variable becomes
continuous. More precisely, any real physical implementation of the model has necessarily
a finite size. Therefore, the actual physical meaning of the continuum limit as N → ∞
is that the difference between two consecutive values of k is of order O(N−1). However,
in the strong long-range case, a difference of order O(N−1) in the k variable results in a
finite jump of the spectrum ωn which remains discrete even in the thermodynamic limits,
thus resulting in a discontinuity of the matrix symbol Gk for any k independently of the
value of the chemical potential h. In particular, since for any α1,2 > 0 or α1 = α2 = 0 and
h 6= 0 the many-body ground state is still the Bogoliubov vacuum, then the two lateral
limits corresponding to a given k± = 2πn/N, 2π(n+ 1)/N can be written as

G±k =

Gn+1 = cosφn+1σz + sinφn+1σy

Gn = cosφnσz + sinφnσy ,
(5.2)

where we have introduced the angles φn defined by the conditions cosφn = 2(h − t̃n)/ωn
and sinφn = −2∆̃n/ωn. Then, following the analytic procedure introduced in section 3,
for any value of h, we obtain a logarithmic scaling of the ground state Rényi entropies of
the form

Sν,L = Bν(h) lnL+O(1), (5.3)

where the Bν(h) coefficient is a function of ν, α1, α2 and h. Then Bν,α1,α2(h) is given by
the sum of N contributions corresponding to the N discontinuities of the symbol, reading

Bν(h) =
N/2∑

n=−N/2+1
B(n)
ν (h), (5.4)

where, as shown in appendix B, each contribution reads

B(n)
ν (h) = 1

π2(ν − 1)

ν∑
l=1

arctan2
[

sin((φn+1 − φn)/2)√
cos2((φn+1 − φn)/2) + |zl|2

]
. (5.5)

where |zl|2 = tan2(π(2l − 1)/2ν), with l = 1, . . . , ν and l 6= (1 + ν)/2. In particular, for
ν = 2 the above sum can be written explicitly as

B
(n)
2 (h) = 2

π2

arctan

√√√√ ωn+1ωn − (h− t̃n+1)(h− t̃n)− ∆̃n+1∆̃n

3ωn+1ωn + (h− t̃n+1)(h− t̃n) + ∆̃n+1∆̃n

2

. (5.6)
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Figure 6. a) Rényi-2 scaling coefficient B2,α as a function of the chemical potential h for different
values of the power law decay coefficient 0 < α = α1 = α2 < 1. The red and blue vertical
lines correspond to the h = 1 and h = 0 critical points, respectively. b) Numerical check for the
entanglement subvolume law scaling at h = 0 for different values of 0 < α < 1, plotted as a function
of the logarithm of the subsystem size lnL. The total system size is taken to be N = 2L. Scattered
points represent the numerical data for the half-chain Rényi-2 entropy, while the solid lines represent
our prediction B2,α lnL.

As we have already seen in the previous sections, the most interesting situation is the
one with equally long-range hopping and pairing amplitudes, i.e., with α1 = α2 = α, while
we expect only minor differences to appear when α1 6= α2, as long as they are both smaller
than the system dimension (here d = 1). Therefore, for the sake of simplicity, we will limit
our treatment to the α1 = α2 = α case in the following analysis of the strong long-range
regime.

Figure 6a shows B2(h) as a function of the chemical potential h for different values
of α1 = α2 = α. First of all, we notice that for any values of the chemical potential
h 6= 0 and of α > 0 the scaling coefficient is of order B2(h 6= 0) = O(1), then leading
to a logarithmic violation of the area law even away from the quantum critical points.
Moreover, two singularities appear at the quantum critical points h = t̃k, t̃π = 1, 0. In
particular, we have a discontinuity for h = 1 and a divergence with the subsystem size for
h = 0, leading to a subvolume law entanglement scaling.

These facts can be understood as follows. The spectrum is labeled by the discrete
index n leading to a finite gap between the ground state and the first excited levels which
are associated with discontinuities of the symbol. However, for n � 1 all the modes
accumulate around ω∞ = 2|h|. This means that an extensive number of single-particle
states is almost degenerate. Consequently, as long as h 6= 0, we may expect only the first
few modes around n = 0 to provide a significant contribution to the symbol discontinuity
leading to a coefficient Bν(h 6= 0) = O(1). Accordingly, we may expect many features
of the entanglement scaling coefficients for values of the chemical potential sufficiently far
from the h = 0 point, to be qualitatively reproduced by considering a single discontinuity
approximation in which only the first discontinuity between the n = 0 and the first two
degenerate levels n = ±1 is considered, i.e., Bν(h 6= 0) ≈ B

(0)
ν + B

(−1)
ν . Then, as detailed
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in appendix D within this approximation the discontinuity coefficient reads

Bν(h 6= 0) ≈ 2
π2(ν − 1)

ν∑
l=1

arctan2
[ cos(φ1/2)
|zl|2 + sin2(φ1/2)

]
if h < 1, (5.7)

Bν(h 6= 0) ≈ 2
π2(ν − 1)

ν∑
l=1

arctan2
[ sin(φ1/2)
|zl|2 + cos2(φ1/2)

]
if h > 1. (5.8)

This approximation then allows us to capture the origin of the scaling coefficient discontinu-
ity at h = 1. This originates from the fact that the zero mode gives different contributions
at the two sides of the transition, indeed (see appendix D)

φ0 = arccos[sign(h− 1)] =

π if h < 1
0 if h > 1 .

(5.9)

The single discontinuity approximation turns out to correctly reproduce the qualitative
features as long as the chemical potential h is sufficiently far from h = 0 and for sufficiently
large power law decay exponent α > 1/2. On the other hand, this simple approximation
is no more accurate as the chemical potential approaches the h = 0 point. Indeed, in the
zero chemical potential case ω∞ = 0, and more precisely ωn, t̃n and ∆̃n approach their
asymptotic values differently if we consider the even or the odd modes (see appendix D for
more details). As a consequence, for sufficiently small α, the number of relevant symbol
discontinuities grows as a power law of the subsystem size L, leading to a fractal subvolume-
law entanglement scaling. In particular, using the asymptotic expansion of ωn, t̃n and ∆̃n

in the n → ∞ limit we can extract the leading order dependence of Bν(h = 0) from L,
which, as shown in appendix D, reads

Bν(h = 0) =

O(L1−2α) if α < 1/2
O(1) if α > 1/2 .

(5.10)

Accordingly, the leading order contribution to the entanglement Rényi entropy of the sys-
tem ground state at zero chemical potential takes the nontrivial form

Sν,L(h = 0) =

O(L1−2α lnL) if α < 1/2
O(lnL) if α > 1/2 .

(5.11)

This analytic result matches the numerics in the large L limit. This is shown in figure 6b,
where the numerical and analytical results for S2,L are plotted as a function of lnL and for
different values of α. It is important to notice that approaching the thermodynamic limit
in the h = 0 case the spectrum becomes increasingly more degenerate approaching the
α = 0 case. Then, for each finite N , a large number of states nearly degenerate with the
ground state exists, making the estimate of the subleading corrections scaling technically
challenging.

Finally, as already stated in sections 2 and 3, the mean-field case with α1 = α2 = 0
and h = 0 must be treated separately. Indeed, in this case the ground state degeneracy
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α = 0 0 < α < 1/2 1/2 < α < 1

h 6= 0 Sν,L = O(lnL) Sν,L = O(lnL) Sν,L = O(lnL)

h = 0 Sν,L = O(L) Sν,L = O(L1−2α lnL) Sν,L = O(lnL)

Table 2. Summary of entanglement scaling results at different quantum critical points and for
various values of α = α1 = α2 in the strong long-range regime.

allows for a finite fermionic population of the even Bogoliubov modes, fn 6= 0 ∀n(even),
this leads to the entanglement scaling

Sν,L(α = 0, h = 0) = 1
1− ν

∑
n(even)

ln [(1− fn)ν + fνn ] +O(lnL). (5.12)

In particular the maximal Rényi entropy is reached when fn = 1/2 ∀n(even)

Smax
ν,L (α = 0, h = 0) = N0 ln 2 +O(1) = L

2 ln 2 +O(1), (5.13)

where N0 is the number of zero modes, which in this case corresponds to the number of even
modesN0 ' L/2 and the subleading corrections are at most of order O(1). Indeed, as shown
in appendix B, the discontinuity coefficients Bν which would lead to logarithmic corrections
turn out to be exactly zero when all the even fermionic populations are fn(even) = 1/2.
Moreover, we notice that the maximal Rényi entropy that we have obtained employing
the Fisher-Hartwig expansion corresponds to the largest possible entropy allowed by the
ground state degeneracy

Smax
ν,L (α = 0, h = 0) = ln Deg[|gsα=0,h=0〉] = N0 ln 2. (5.14)

This tells us that the Fisher-Hartwig result, obtained as a large subsystem size expansion,
actually becomes exact in this maximally entangled case.

The results for the entanglement scaling with the subsystem size for different values of
the h and α = α1 = α2 parameters within the strong long-range regime considered in this
section (0 < α < 1) are summarized in table 2.

6 Conclusion and outlooks

In this paper, we have further extended the understanding of the peculiar properties of
entanglement in quantum systems featuring long-range interactions. At this scope, we
have investigated, as a paradigmatic example, the ground state entanglement scaling of a
spinless fermionic chain with long-range hopping and pairing amplitudes. The simplicity of
the model and its truly non-additive nature allowed us to unveil an extremely rich and non-
trivial phenomenology, which we have fully characterized both numerically and analytically
in the different regions of the relevant parameters, i.e., the power law decay exponents of
the hopping and pairing couplings α1, α2 and the chemical potential h. In particular, two
main regimes may be distinguished: the weak long-range regime with 1 < α1, α2 < 2 and
the strong long-range regime with 0 < α1, α2 < 1.
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In the weak long-range case, the system quasiparticle spectrum becomes continuous in
the thermodynamic limit and the main effect of the non-local couplings is to change the
dispersion relation near the gapless critical modes. Accordingly, the standard area law,
typical of gapped local Hamiltonians, is satisfied in this regime apart from the logarithmic
violations which appear in correspondence of the two quantum critical points located at
h = 1,−1+21−α1 . Such logarithmic scaling of the ground state Rényi entropies is related to
discontinuities in the symbol of the correlation matrix which is a block Toeplitz matrix. The
fact that the contribution to the entanglement scaling of each discontinuity only depends
on the value of the symbol [60, 61] at each side of the jump, allowed us to exactly compute
its coefficients. Most significantly, when the hopping and pairing couplings are equally
long-range, i.e., α1 = α2 = α, the coefficient in front of the critical logarithmic divergence
at h = 1 turns out to have a non-trivial dependence on α (4.9).

Interestingly, the coefficient Bν,α is of non-universal nature, since it originates from the
precise form of the spectrum in the proximity of the critical modes, and not only from the
dispersion relation power law exponent. As a consequence, the critical entanglement scaling
is not compatible with the result obtained from any conformal field theory and our result
may be seen as a benchmark of the fact that the presence of long-range couplings explicitly
breaks the critical conformal symmetry [100]. These findings demonstrate the peculiarity
of the α1 = α2 case, whose physics is expected to be, and indeed is, closer to the one of a
strongly interacting system such as the quantum Ising model, where long-range couplings
are expected to increase the effective dimension and, so, disrupt integrability [101].

Moreover, for α1 6= α2, the critical entanglement scaling becomes α independent. In
particular, when α1 > α2, i.e., the pairing coupling has a slower decay with respect to
the hopping, the entanglement scaling is compatible with that of conformal field theory
with central charge c = 1/2. This is in agreement with the results of refs. [60, 61], where
a Kitaev chain with long-range pairing and nearest neighbors hopping is considered, the
validity of such results is then here extended to any long-range hopping with power law
decay exponent α1 > α2. The strong anisotropy between the case of dominating hopping
α1 < α2 and the case of dominating paring α1 > α2 is typical of the long-range Kitaev
chain [102].

In the strong long-range regime, the situation is more involved, indeed the quasiparticle
spectrum can no more be considered continuous in the thermodynamic limit. Consequently,
the matrix symbol of the block Toeplitz correlation matrix formally becomes discontinuous
at every point of the spectrum. However, as shown in section 5, in most situations only
a few of such discontinuities truly contribute to the entanglement scaling, leading to a
logarithmic dependence on the subsystem size even outside criticality. Also in this case
the coefficients of such logarithmic divergence can be computed analytically for different
values of the parameters α1,2 and h.

The most interesting situation turns out to be the zero chemical potential point h = 0
in the strong long-range regime. Indeed, in this case, the coefficient in front of the critical
logarithmic entanglement scaling diverges as a power law of the subsystem size, leading to
a fractal subvolume-law entanglement scaling. More precisely, we were able to analytically
extract the leading entanglement dependence from the subsystem size, which turns out to
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be of the form Sν,L ≈ L1−2α lnL, with 0 < α = α1 = α2 < 1/2, where Sν,L is any ν-Renyi
entropy with ν > 1. Similar sub-volume laws have already been observed in different (more
complex) scenarios and, in particular, in the entanglement scaling of measurement induced
phase transitions [53], where they arise due to the suppression of entanglement caused by
repeated measurements in a long-range systems. Here, this phase emerges naturally in
the equilibrium scaling, but it needs stronger interactions to appear with respect to the
dynamical case.

Finally, in the completely mean-field case, the system presents an extensive number
of degenerate modes with zero energy. These zero modes can be populated also in the
many-body ground state whose degeneracy then grows exponentially with the number of
zero modes. Consequently, the ground state entanglement shows a volume law behavior
proportional to the size of the considered subsystem Sν,L(α = 0) ≈ L.

Our studies evidence that long-range couplings can greatly improve the scaling of
entanglement at equilibrium and, therefore, that long-range interacting quantum systems
represent the ideal candidate for reliable and robust quantum computation. Nevertheless,
such fostered entanglement properties may not persist out-of-equilibrium, since long-range
interactions have been shown to suppress the dynamical spread of entanglement in certain
systems [40]. For the future, we intend to investigate these issues by performing quantum
simulations of the model on actual quantum computers. This demands a careful engineering
of the artificial non-local couplings on local quantum devices, a task which we are currently
tackling on IBM Quantum devices [103].

The rich phenomenology hosted by the minimal long-range model we considered, al-
ready at equilibrium, suggests that many of the intriguing dynamical phenomena which are
recently emerging in the quantum community, such as the non-trivial fractal entanglement
scalings in the contest of measurement-induced entanglement transitions [3], can be simply
ascribed to the presence of sufficiently long-range couplings among the microscopic com-
ponents of the model, without any need of further complexity in the physical system under
consideration. Further work is needed in order to investigate the dynamical properties of
entanglement in the Kitaev chain with long-range pairing and hopping couplings subjected
to a unitary or a non-unitary (measurement-like) evolution. These interesting problems
are beyond the scope of this work and we leave them as an outlook for future projects.
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A Derivation of the matrix symbol

In this appendix we provide the details for the derivation of the matrix symbol in eq. (3.9)
of the main text. We start from the definition of the correlation matrix of a stationary
state |ψ〉, then passing to the Fourier basis we obtain

Gk = 2〈ψ|
(
ĉk
ĉ†−k

)(
ĉ†k ĉ−k

)
|ψ〉 − I. (A.1)

Introducing the Bogoliubov transformation(
γ̂k
γ̂†−k

)
= Uk

(
ĉk
ĉ†−k

)
, Uk =

(
cos θk/2 i sin θk/2
−i sin θk/2 − cos θk/2

)
, (A.2)

we can write the symbol in terms of the Bogoliubov modes as

Gk = 2U †k〈ψ|
(
γ̂k
γ̂†−k

)(
γ̂†k γ̂−k

)
|ψ〉Uk − I. (A.3)

We now compute the expectation value in a stationary state associated to the fermionic
populations of the Bogoliubov modes fk = 〈γ̂†kγ̂k〉, so that

2〈ψ|
(
γ̂k
γ̂†−k

)(
γ̂†k γ̂−k

)
|ψ〉 − I =

(
1− 2fk 0

0 2fk − 1

)
. (A.4)

Finally, inserting this expectation value in eq. (A.3) and using the definition of the Bogoli-
ubov angles tan θk = ∆̃k/(h− t̃k) we obtain

Gk = 2(1− (fk + fk))
[
h− t̃k
ωk

σz −
∆̃k

ωk
σy

]
− (fk − f−k)I, (A.5)

which is the expression for the matrix symbol used in the main text.

B Coefficients of the Fisher-Hartwig expansion

The general form of the matrix symbol in eq. (A.3) can be used to compute the different
terms in the Fisher-Hartwig expansion of the Rényi entropies for large subsystem size in
every situation considered in the main text. For this purpose, it is useful to rewrite Gk as

Gk = ak [cosφkσz + sinφkσy] + bkI, (B.1)

where we have introduced the coefficients ak = 1 − (fk + f−k) and bk = f−k − fk and the
angle φk such that cosφk = 2(h− t̃k)/ωk and sinφk = −2∆̃k/ωk.

Let us start from the first term of the expansion in eq. (3.13) this is obtained by first
computing the determinant

det [zI−Gk] = (z − bk)2 − a2
k, (B.2)
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Then, the contribution to first term in the entanglement scaling coming from each k-mode
is obtained from the integral

Sk = lim
ε→0+

∮
C

dz

2πisν(1 + ε, z) (z − bk)
(z − bk)2 − a2

k

(B.3)

= 1
2 [sν(1, bk + ak) + sν(1, bk − ak)]

= 1
2(1− ν)

[
ln(fνk + (1− fk)ν) + ln(fν−k + (1− f−k)ν)

]
,

where Cauchy’s residue theorem and the expression (3.6) for sν(x, y) have been used.
Finally, summing over all the modes and using the k → −k symmetry we obtain

∑
k

Sk = 1
1− ν

∑
k

ln(fνk + (1− fk)ν). (B.4)

The logarithmic contribution to the entanglement scaling can be computed by con-
sidering the discontinuity coefficients. Here, we present their calculation in the general
situation in which Gk is discontinuous at a generic mode k = 2πn/N . We start from the
definition (3.12) of the bk coefficients corresponding to each discontinuity. First of all, we
consider the matrix

Mk = (zI−G−k )(zI−G+
k )−1, (B.5)

where G±k = limp→k± Gp. The eigenvalues µ±k (z) of this matrix can be written in the form

µ±k (z) =


√

(bk − z)2 − a2
k cos2(δφk/2)± ak sin(δφk/2)√
(bk − z)2 − a2

k

2

, (B.6)

with δφk = φ+
k − φ

−
k . Notice also that we have µ+

k (z) = 1/µ−k (z), therefore

bk(z) = 1
2π2

(
lnµ+

k (z)
)2

(B.7)

= 2
π2

ln


√

(bk − z)2 − a2
k cos2(δφk/2) + ak sin(δφk/2)√
(bk − z)2 − a2

k

2

,

From this expression we compute the coefficient B(k)
ν of the contribution of this disconti-

nuity to the logarithmic term of the Rényi entropy. For this purpose we plug bk(z) into
the contour integral for Sν,L then, performing an integration by parts, we obtain

B(k)
ν = lim

ε→0+

∮
C

dz

2πisν(1 + ε, z)dbk(z)
dz

(B.8)

= − lim
ε→0+

∮
C

dz

2π3i

dsν(1 + ε, z)
dz

ln


√

(bk − z)2 − a2
k cos2(δφk/2) + ak sin(δφk/2)√
(bk − z)2 − a2

k

2

.
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bn + an cos δϕn bn + anbn − an cos δϕnbn − an

1 + ϵ−1 − ϵ

Figure 7. Contour of integration and cuts of the integrand in eq. (B.8). The cuts from ±(1 + ε) to
the infinity correspond to dsν(1 + ε, z)/dz while the cuts inside the contour, [bn−an, bn−an cos δφ]
and [bn + an cos δφ, bn + an, ], are due to the other factor of the integrand.

The integral over the contour C depicted in figure 7 can be divided into two integrals along
curves enclosing respectively the cuts [bk−ak, bk−ak cos δφk] and [bk +ak, bk +ak cos δφk],
which in turn can be reduced to two real integrals by performing the integration along the
cuts taking into account the change in the phase of the logarithm when we go around the
branch points bk ± ak and bk ± ak cos δφk. On the other hand, we notice that for integer
ν > 1, dsν/dz is a meromorphic function with poles located at the points of the imaginary
axis [60, 61]

zl = i tan π(2l − 1)
2ν , l = 1, . . . , ν, l 6= 1 + ν

2 , (B.9)

and that the another factor of the integrand is analytic in the whole region outside the
contour C. We can send this contour to infinity and reduce the calculation of Bν to the
computation of the corresponding residues. In this way, we obtain the explicit expression

B(k)
ν = 1

ν − 1

ν∑
l=1

ln


√

(bk − zl)2 − a2
k cos2(δφk/2) + ak sin(δφk/2)√
(bk − zl)2 − a2

k

2

. (B.10)

This general formula can be specified in the different cases considered in the main text. In
particular in weak long-range case, 1 < α1, α2 < 2, the ground state corresponds to the
Bogoliubov vacuum, therefore fk = 0, ak = 1 and bk = 0, ∀k. Accordingly, the first term
of the expansion vanishes. Moreover the matrix symbol is continuous for generic values of
the chemical potential leading to an O(1) entanglement. The only discontinuities arise at
the two quantum critical points h = hc = 1,−1 + 21−α1 in correspondence of the critical

– 24 –



J
H
E
P
0
5
(
2
0
2
3
)
0
6
6

modes k = kc = 0, π. This leads to a logarithmic scaling with coefficient

B(kc)
ν = 1

ν − 1

ν∑
l=1

ln


√
|zl|2 + cos2(δφkc/2)− i sin(δφkc/2)√

|zl|2 − 1

2

= 1
ν − 1

ν∑
l=1

arctan

 sin(δφkc/2)√
|zl|2 + cos2(δφkc/2)

2

, (B.11)

where in the last step we have used the identity arctan(x) = i[ln(i + x) − ln(i − x)]/2 in
order to make the expression of the coefficient explicitly real. The value of δφkc depends
on the critical point considered and the relative order of the power law decaying exponents
α1 and α2. In particular for h = 1 and k = 0 we find

δφ0 =


0 if α1 < α2

π(1− α) if α1 = α2 = α

π if α1 > α2.

(B.12)

Leading to the coefficients

B0
ν(h = 1) =


0 if α1 < α2

1
ν−1

∑ν
l=1

[
arctan

(
cos(απ/2)√
|zl|2+sin2(απ/2)

)]2
if α1 = α2 = α

ν+1
12ν if α1 > α2.

(B.13)

On the other hand, for h = −1 + 21−α1 and k = π, δφπ = π independently from the values
of α1 and α2. This leads to the scaling coefficient

B0
ν(h = −1 + 21−α1) = ν + 1

12ν ∀α1, α2 > 1. (B.14)

In the strong-long range regime 0 < α1, α2 < 1, the quasiparticle spectrum is discrete
also in the thermodynamic limit, this formally leads to an infinite number of discontinuities
for any mode k = 2πn/N , which are labeled by the integer n = −N/2, . . . N/2. In particular
whenever α1,2 > 0 or α1 = α2 = 0 and h 6= 0, the many-body ground state is still the
Bogoliubov vacuum characterized by fk = 0, ∀k. Accordingly, the matrix symbol in the
thermodynamic limit takes the form in eq. (5.1). The coefficients of the logarithmic scaling
is then given by the sum of the contributions coming from all the discontinuity, i.e.,

Bν =
N/2∑

n=−N/2
B(n)
ν , (B.15)

where

B(n)
ν = 1

ν − 1

ν∑
l=1

[
ln
(√
|zl|2 + cos2(δφn/2)− i sin(δφn/2)√

|zl|2 − 1

)]2

= 1
ν − 1

ν∑
l=1

[
arctan

(
sin(δφn/2)√

|zl|2 + cos2(δφn/2)

)]2

, (B.16)

with δφn = φn+1 − φn.
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Finally, in the mean-field case α1 = α2 = 0 with zero chemical potential h = 0 the
quasiparticle spectrum develops an extensive number of degenerate zero modes ωn = 0
corresponding to all the even modes with n = 2m. As a consequence, the ground state
is characterized by a finite even mode fermionic population f2m 6= 0. The leading order
term in the entanglement scaling in this case is then given by the first term of the Fisher-
Hartwig expansion corresponding to a volume law. In particular the maximum amount of
entanglement allowed by the ground state degeneracy is obtained for f2m = 1/2 for every
even mode. In this case, the logarithmic corrections become zero since an = bn = 0, and
therefore B(n)

ν (fn = 1/2) = 0.

C Dispersion relation around the critical modes

In this appendix we provide the explicit expression for the Taylor expansion of the quasi-
particle spectrum (2.7), in the weak long-range regime 1 < α1,2 < 2, at lowest order in
|k − kc|, where kc = 0 at the critical point h = 1, while kc = π at h = −1 + 21−α1 . In
particular, in the proximity of k = 0 we find [102]

t̃k = 1 + sin(α1)Γ(1− α)
ζ(α) |k|α1−1 +O(k2), (C.1)

∆̃k = sin(α1)Γ(1− α)
ζ(α) sgn(k)|k|α2−1 +O(k). (C.2)

Accordingly, the single particle spectrum takes the form [8]

ωk =

|h− 1|+O(kα − 1) if h 6= 1
C(α)|k|α−1 +O(k2α−2) if h = 1

, (C.3)

where α = min{α1, α2}, and we have introduced the constant prefactor

C(α) =


| sin(α1π/2)Γ(1− α1)/ζ(α1)| if α1 < α2

|Γ(1− α)/ζ(α)| if α1 = α2

| cos(α1π/2)Γ(1− α1)/ζ(α1)| if α1 > α2

. (C.4)

On the other hand, near to the k = π mode we find [102]

t̃k =− 1 + 21−α1 − (23−α1 − 1)ζ(α1 − 2)
2ζ(α1) (π − k)2

+O((π − k)3), (C.5)

∆̃k = (1− 22−α2)ζ(α2 − 1)
ζ(α2) (π − k) +O((π − k)3). (C.6)

Leading to the α1,2 independent dispersion relation

ωk =

|h+ 1− 21−α1 |+O((k − π)2) if h 6= −1 + 21−α1

K(α2)|π − k|+O((k − π)3) if h = −1 + 21−α1
, (C.7)

where K(α2) = (1− 22−α2)ζ(α2 − 1)/ζ(α2), ∀α1, α2 > 1.
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D Discontinuities in the strong long-range regime

In this appendix we provide a detailed analysis of the discontinuities of the matrix symbol
Gk in the strong long-range regime 0 < α1, α2 < 1 for different values of the chemical
potential. As discussed in the section 5 of the main text, in this regime the matrix symbol
formally develops and infinite number of discontinuities which originate from the discrete
nature of the quasiparticle spetrum. However, it is important to notice that, even if the
spectrum is labeled by the discrete index n leading to a finite gap between the ground
state and the first excited levels, still for n � 1 all the modes accumulate around ω∞ =
|h|. This means that an extensive number of single-particle states is almost degenerate.
Consequently, as long as h 6= 0, we may expect only the first few modes around n = 0
to provide a significant contribution to the symbol discontinuity, leading to a coefficient
Bν(h 6= 0) = O(1). Then, in order to understand the qualitative behavior of Bν(h 6= 0), it
is useful to consider the approximation in which only the first discontinuities between the
n = 0 and the first two degenerate levels n = ±1 are considered

Bν(h 6= 0) ≈ B(0)
ν +B(−1)

ν . (D.1)

In order to compute this two contributions we have to compute the angles φ0 and φ±1
defined by the conditions

cosφn = 2(h− t̃n)
ωn

, sinφn = −2∆̃n

ωn
. (D.2)

For n = 0 we find that, independently of the value of α, the angle reads

cosφ0 =

−1 if h < 1
0 if h > 1

, φ0 =

π if h < 1
0 if h > 1.

(D.3)

This discontinuity at the quantum critical point h = 1 is due to the fact that at this point
the spectrum becomes gapless for n = 0, and it is at the origin of the discontinuity in the
scaling coefficient which can be seen in figure 6a of the main text. The angles for n = ±1
cannot be computed exactly in close form for generic power law decaying exponent, however
as a consequence of the fact that t̃n = t̃−n, ωn = ω−n while ∆̃n = −∆̃−n, we have that

cosφn = cosφ−n sinφn = − sinφ−n, (D.4)

and then φn = −φ−n. Combining these properties with eq. (5.5) we obtain

B(0)
ν = B(−1)

ν = 1
π2(ν − 1)

ν∑
l=1

arctan2
[ cos(φ1/2)

1 + sin2(φ1/2)

]
if h < 1, (D.5)

B(0)
ν = B(−1)

ν = 1
π2(ν − 1)

ν∑
l=1

arctan2
[ sin(φ1/2)

1 + cos2(φ1/2)

]
if h > 1. (D.6)

Figure 8 shows the comparison between exact values of the logarithmic scaling coefficients
of the Rényi-2 entropy B2, computed considering the contribution of a formally extensive
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Figure 8. Comparison between the exact values of the logarithmic scaling coefficients of the Rényi-
2 entropy, and the single discontinuity approximation (dashed lines) results. The coefficients are
plotted as function of the chemical potential h for different values of the decay exponent α.

number of discontinuities (see eq. (5.5)), and the results obtained in the single discontinuity
approximation. We notice that the single discontinuity approximation correctly reproduces
the qualitative behavior of the scaling coefficients for sufficiently high α > 0.5 and for
values of the chemical potential h which are sufficiently far from h = 0. In particular, the
discontinuity of the coefficients at the quantum critical point h = 1 is captured by the
approximated result.

On the other hand, when the chemical potential approaches the h → 0 limit and for
sufficiently small decay exponents α < 1/2, the single discontinuity approximation turns
out to be no more accurate. Indeed, in this case the number of relevant discontinuities
grows with the subsystem size, leading to a subvolume law entanglement scaling. This fact
can be understood by considering the h = 0 point. In this case, the spectrum accumulation
point becomes ω∞ = 0. More precisely, it is important to notice that, while at the leading
order as n → ∞ the spectrum goes to zero as ωn = O(nα−1), independently of the parity
of the mode, on the contrary next to leading order corrections differ if n is even or odd.
In particular, if we perform a next to leading order expansion of the terms entering the
coefficient B(m)

2 (see eq. (5.6)), corresponding to the discontinuity between the modes
m = 2n and m+ 1 = 2n+ 1, we find

t̃2n+1t̃2n = s2
α

n2−2α +O(n2α−3), (D.7)

∆̃2n+1∆̃2n = c2
α

n2−2α −
a2
α

n2 +O(n2α−3), (D.8)

ω2n+1ω2n = s2
α + c2

α

n2−2α + bα
n2 +O(n2α−3), (D.9)

where we have introduced the expansion coefficients

sα = sin(απ/2)Γ(2− α)(2π)α−1,

cα = cos(απ/2)Γ(2− α)(2π)α−1,

aα = (1− α)/(2π),
bα = a2

α(1/2− cos2(απ/2)) = a2
α cos(απ)/2. (D.10)

Now, inserting the large n expansions of eqs. (D.7), (D.8) and (D.9) into eq. (5.6), we see
that the denominator is always of order O(n2α−2), while in the numerator the leading order
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cancels out and we are left with a contribution of order O(n−2) if α < 1/2 or O(n2α−3) if
α > 1/2. Finally, putting everything together and summing over all the modes we obtain

Bν(h = 0) =
∑
n

B(n)
ν =


∑
nO(n−2α) = O(L1−2α) α < 1/2∑
nO(n−1) = O(1) α > 1/2 .

(D.11)

This result leads to the scaling of the Rényi entropy in eq. (5.11) of the main text.
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