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We introduce an approach which allows detecting causal relationships between
variables for which the time evolution is available. Causality is assessed by a variational
scheme based on the Information Imbalance of distance ranks, a statistical test
capable of inferring the relative information content of different distance measures.
We test whether the predictability of a putative driven system Y can be improved
by incorporating information from a potential driver system X, without explicitly
modeling the underlying dynamics and without the need to compute probability
densities of the dynamic variables. This framework makes causality detection possible
even between high-dimensional systems where only few of the variables are known or
measured. Benchmark tests on coupled chaotic dynamical systems demonstrate that
our approach outperforms other model-free causality detection methods, successfully
handling both unidirectional and bidirectional couplings. We also show that the
method can be used to robustly detect causality in human electroencephalography
data.

time series analysis | causality | dynamical systems

Discovering causal relationships among observable quantities has been inspiring and
guiding scientific research from its dawn, as causality is at the very heart of physical
phenomena and natural laws. The definition of causality is far from univocal, with diverse
frameworks rooted in distinct perspectives. Granger’s paradigm is based on “predictive
causality” (1), while Pearl’s structural causal model (2) builds on counterfactuals.
Determining causality from data collected without directly intervening on the system
under study—namely, without performing interventional experiments where the causal
variable is manipulated—is a challenging problem which received increasing attention
over the last decades (3–5). The use of purely observational data is the only option when
experiments are unfeasible or unethical, such as in the case of medical studies that would
create a real risk for patient’s health, or Earth science research that could alter delicate
ecological balances, just to give a few examples. This motivated the development of
statistical tests aimed specifically at inferring causal relationships in “real world” time-
ordered data. These approaches are routinely employed in diverse fields, from economics
(1, 6) to ecology (7), Earth system sciences (8) and neuroscience (9–11). The common
idea to all these methods is to compute statistical measures which are asymmetric under
the exchange of the dynamic variables, in order to reflect the asymmetry of a putative
causal coupling. In this field, some important conceptual and practical problems remain
open and are still object of intense investigation. In particular, the fact that real-world time
series often emerge from complex underlying dynamics naturally brings to the necessity
of methodologies dealing with high-dimensional data (12, 13). Moreover, false-positive
detections represent a common yet crucial limitation even in low-dimensional scenarios
(14, 15).

From a historical perspective, the first quantitative criterion to measure causality dates
back to the work of Wiener (16), who postulated that the prediction of a signal Y can
be improved by using the past information of a signal X if X is causal to Y . Inspired
by Wiener, Granger proposed to identify causal links in time series analysis with a
vector autoregressive model assuming a linear dynamics (1). Since then, several nonlinear
generalizations of Granger’s idea have been proposed (17–22). In particular, the Extended
Granger Causality test (17) confines the linear approximation of the dynamics to local
regions in the state space. Causality can also be inferred by estimating a conditional mutual
information named Transfer Entropy (23–25), which is equivalent to Granger causality
for Gaussian variables (26). However, computing multivariate probability distributions to
evaluate mutual information is challenging in high-dimensional systems, and in practice
one is typically forced to work with conditional probabilities of a few variables at a
time (27). For this reason, alternative methods that do not require computing the
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probability distributions of the dynamic variables are more
appealing for real-world applications. Among these, cross-
mapping methods rely on Takens’ theorem (28), which allows
reconstructing a dynamical system’s attractor—or rather a version
capturing its main features, called shadow manifold—using
one-dimensional time series. In particular, Convergent Cross-
Mapping (7) evaluates the coupling strength X → Y by
attempting a local reconstruction of the shadow manifold of X
from the shadow manifold of Y and computing a correlation
coefficient between the reconstructed and the ground-truth
points. Another cross-mapping method, known as measure L
(29), employs a similar approach, but carries out the local
reconstruction of the target manifold using ranks rather than
distances.

In this work, we introduce a causality detection method
broadly based on Granger causality principles, namely that the
cause occurs before the effect and the cause contains unique
information about the effect. We implement these principles
using the Information Imbalance (30), a statistical measure
designed to compare distance spaces and decide which space
is more informative, without modeling the underlying dynamics.
By measuring distances between independent realizations of the
same dynamical process, the method evaluates whether including
the putative driver variables in the distance space built at time
t = 0 allows to better guess which pairs of trajectories will be the
closest in the space of the driven variables at a future time t = �.
The information of the driver system is added to the space of
the putative driven system using a variational approach, which
allows probing the presence or absence of a coupling within
a theoretically rigorous framework. The distances in different
spaces are compared by analyzing the statistics of distance ranks
and examining how it is affected by the inclusion of potential
causal variables in the distance definition. Ranks can be easily
obtained by ordering distances from the smallest to the largest,
and the effort to compute them is not affected by the underlying
dimensionality.

To assess the validity of the method we carried out tests on
a variety of coupled dynamical systems with both unidirectional
and bidirectional couplings, as well as on real-world time series
from electroencephalography (EEG) experiments. These tests
led us to observe that our method allows recognizing with
high statistical confidence when a causal coupling is absent.
Remarkably, we find that the other approaches we tested fail
systematically in this task, bringing to high probabilities of
observing false positives, namely of confusing the absence of
causality with a condition of weak causal coupling. Our approach,
besides strongly mitigating this problem, provides reliable results
also when the dynamics system is high-dimensional, such as the
electrophysiological signal of a human brain, or a Lorenz 96
system (31).

The Information Imbalance Gain

The Information Imbalance is a statistical measure introduced
to compare the information content of two distances dA and
dB defined on a set of points {xi} (i = 1, ..., N ), which allows
assessing whether the distances are equivalent, independent or if
one is more informative than the other (30).

This measure is built on the idea that close points according to
dA remain close in distance space dB when dA is informative with
respect to dB or, equivalently, when the information carried by
dB is also contained in dA. We denote by r Aij (resp. rBij ) the rank of
point j with respect to point i according to distance dA (resp. dB),

with the convention rAii = rBjj = 0. For example, rAij = 1 if j is
the nearest neighbor of i in space A. The Information Imbalance
from A to B is defined as the average rank according to distance
dB restricted to points which are “close” according to dA:

Δ (dA→ dB) =
2
N
〈rB | r A ≤ k〉 =

2
N 2 k

∑
i,j

s.t. r Aij ≤k

rBij . [1]

The parameter k specifies the number of neighbors taken into
account and generalizes the definition in ref. 30, which assumes
k = 1. This definition can also be interpreted as an asymptotic
upper bound of a restricted mutual information, that we define
in the SI Appendix, section 1. The prefactor 2/N statistically
confines this quantity between 0 and 1, which are the limits
of dA being respectively maximally and minimally informative
with respect to dB. As discussed in the SI Appendix, section
2A, in this form the Information Imbalance is equivalent to the
measure L introduced by Chicharro and Andrzejak in ref. 29 for
studying coupled dynamical systems. However, the way we apply
this statistic to the problem of causal detection is substantially
different, as discussed below.

We here propose a variational approach, based on the Infor-
mation Imbalance, to infer the presence of causal relationships
among two sets of time-dependent variables, using no prior
knowledge about the underlying dynamics. To set the framework,
let X (t) and Y (t) be vectors characterizing the states of two
dynamical systems at time t, with components x�(t) and y�(t)
(� = 1, ..., D; � = 1, ..., D′). We suppose that all the compo-
nents of X (and, separately, of Y ) are dynamically intertwined,
namely that there are no proper subsets of coordinates of X
(resp, of Y ) that are autonomous. This condition implies that the
components of X and Y cannot be regrouped in three distinct
systems X ′, Y ′, and Z ′ such that Z ′ is unidirectionally coupled
both to X ′ and Y ′, namely a so-called common driver (32). The
generalization of our approach in the presence of a third observed
systemZ , which may be a common driver ofX andY , is presented
and discussed in the SI Appendix, section 3 and Fig. S1. We do not
address in this work the problem of unobserved common drivers,
in the presence of which the methodology that we propose carries
the risk of incorrectly identifying causal relationships.

Our approach is mainly benchmarked on dynamics which
are smooth and deterministic, but it can be applied with no
modification to stochastic processes (SI Appendix, section 4 and
Fig. S2). Since the Information Imbalance is computed over a set
of points, we suppose to have access to multiple experimentsX i(t)
and Y i(t) (i = 1, ..., N ), representing independent realizations
of identical copies of the systems. If the available data consist
in a single stationary time series, an ensemble of multiple
realizations can be constructed by dividing the trajectory in N
nonoverlapping subtrajectories, which can be made efficaciously
independent by increasing the time interval between the end of
one trajectory and the beginning of the next. In the following,
the distance spaces appearing in the Information Imbalance
will be labeled by the coordinates employed to construct them.
For example, we will use the notation dX (0),Y (�) to identify
the following Euclidean distance between trajectories i and j:(
‖X i(0)− X j(0)‖2 + ‖Y i(�)− Y j(�)‖2

) 1
2 .

Our causality detection method relies on the intuition that if a
dynamic variable X causes another variable Y and one attempts
to make a prediction on the future of Y , a distance measure built
using the present states of both X and Y will have more predictive
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power than a distance built using only Y . This idea is depicted
in Fig. 1. Formally, we postulate that if X does not cause Y , then
for any � > 0

Δ (�) .= Δ
(
d�X (0),Y (0)→ dY (�)

)
> Δ

(
dY (0)→ dY (�)

)
.

[2]
Indeed, if Y is autonomous, adding information on the initial
value of X can only degrade the information on the future of Y .
If, instead, X causes Y , adding information on X will improve
the predictability of the future of Y , and Δ (�) will be minimized
by some � > 0. The parameter �, as we show in the SI Appendix,
section 5 and Fig. S3, plays the role of a scaling parameter for
the units of X accounting for the magnitude of the coupling
strength. � is a positive parameter representing the time lag of
the information transfer from the driving to the driven system.
Since this parameter only appears in the argument of the putative
driven system Y , the approach is still valid when Y is a dynamical
system and X is a static variable (for example a control variable
chosen by an experimentalist), with the caveat that in this scenario
causality can only be tested in direction X → Y . Using Eq. 2 we
can assess the presence of causality by a variational scheme. For
this purpose we define the Imbalance Gain in direction X → Y
as

�Δ(X → Y ) .=
Δ(� = 0)−min� Δ(�)

Δ(� = 0)
. [3]

Notice that �Δ(X → Y ) is by construction non-negative. A
value of �Δ(X → Y ) = 0 indicates that adding the information
on the value ofX does not help predicting the future of Y , namely
Y is autonomous. If instead �Δ(X → Y ) > 0, we infer that X
causes Y . In this second scenario, we will show that the value
of the Imbalance Gain can be used to compare the strengths of
different couplings.

Our approach can be viewed as a nonlinear and model-free
generalization of Granger causality, as it examines the impact

of introducing the supposed causal variable in the past on the
predictability of the supposed caused variable in the future.

Ideally, the distance spaces appearing in Eq. 2 should be
constructed using all the components of X and Y . However,
in real experiments, it is common that not all the variables of
each system are recorded. In this case, Takens’ theorem (28)
ensures that it is possible to recover the information of the
missing coordinates by means of the time-delay embeddings of
the known variables. For example, if only coordinate x1(t) is
recorded for system X , one can construct the vectors x̃1(t) =
(x1(t), x1(t − �e), x1(t − 2�e), ..., x1(t − (E − 1)�e)) and the
projection of the trajectory in this space is guaranteed to be
topologically equivalent to the original orbit for almost any
choice of the embedding time �e, provided that the embedding
dimension E is at least twice larger than the fractal dimension of
the original attractor. We highlight that the smallest embedding
dimension accomplishing this task is typically smaller in practice:
For example, it is well known that the Lorenz attractor can
be embedded in a shadow manifold with E = 3, while the
Takens’ theorem would require E ≥ 5 (33). Even if this
mapping is strictly valid only under the assumption of noise-free
measurements, it has been empirically demonstrated to be useful
also in the analysis of real-world data, which are unavoidably
affected by different sources of noise (7, 34). Consistently with
our assumptions, the unobserved dynamic variables of each
system cannot be unobserved common drivers, as we postulated
that neither X nor Y include autonomous subsets of variables.
The robustness of our approach with respect to the choice of E ,
�e, and the other relevant hyperparameters (k in Eq. 1 and � in
Eq. 2) is discussed in the Materials and Methods.

Results

We first apply our method to model dynamical systems in which a
ground-truth causal relationship is defined, and then we validate

BA

Fig. 1. Illustration of the method applied to the X → Y direction. Different lines represent independent realizations of a two-dimensional dynamical process.
Both in (A) and in (B) the reference trajectory is depicted in red. At time 0 the blue trajectory is the closest in space dX(0),Y(0), while the yellow realization is the
closest in the marginal space dY(0). When we look at distances in the marginal space dY(�), (A) if X causes Y the closest curve is the blue one, which was the
closest in the full dynamical space, while (B) if X does not cause Y the yellow trajectory remains the closest, as the space dY(0) already contains the maximal
information to predict the state of Y at time �. Our method tries to predict the k closest trajectories to each realization in the distance space of the putative
driven system, assessing the prediction quality as the average of their true distance ranks. The Imbalance Gain in Eq. 3 allows comparing the predictions made
in the presence or in absence of the putative causal variables.
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it on real-world time series using an EEG dataset collected in our
laboratories.

Causality Detection in Model Systems. The dynamical systems
employed in the following analysis are based on a first-order
dynamics that can be generally written as

Ẋ = f (X ) , [4a]

Ẏ = g (Y ) + "G (X, Y ) , [4b]

in the case of unidirectional coupling (X → Y ), and

Ẋ = f (X ) + "Y→X F (X, Y ) , [5a]

Ẏ = g (Y ) + "Y→X G (X, Y ) , [5b]

in the case of bidirectional coupling (X ↔ Y ). From a conceptual
point of view, we highlight that the word “causality” is not
used improperly in this context, as these systems satisfy the
counterfactual definition that is embraced by modern causal
inference in the form of intervention, both in Rubin’s potential
outcome framework (35) and in Pearl’s graphical approach (2).
For example, introducing an external forcing in Eq. 4a would
have a clear effect on the dynamics of Y , while disturbing the
motion of Y by directly intervening on Eq. 4b would let the
motion of X unperturbed. However, as outlined in the previous
Section, our operative approach is based on a predictability
principle and does not require the use of external interventions.

In the unidirectional setting, we tested two Rössler systems
(36) both with identical and with different frequencies, and two
40-dimensional Lorenz 96 systems (31) with different forcing
constants. We tested the bidirectional scenario using two identical
Rössler systems and two identical Lorenz systems (37). All the
systems display a chaotic dynamics. We refer to the Materials
and Methods for the explicit equations of each pair of systems.
All the tests were performed by extracting from the trajectories
N = 5,000 realizations, except for the Convergent Cross-
Mapping method that requires monitoring the convergence of
the results as a function of the number of samples.

In order to benchmark our procedure, we first studied the
qualitative behavior of the Information Imbalance Δ(�) in the
optimal scenario where all the coordinates of each system are

known, so that the use of time-delay embeddings is unnecessary.
We employed Rössler systems and considered three different
coupling configurations, where the link is unidirectional between
identical systems (Fig. 2A), unidirectional between different
systems (Fig. 2B) and bidirectional between identical systems
(Fig. 2C ). In these illustrative examples, the number of neighbors
k was set to 1 and the time lag � was fixed to 5. In the case of
unidirectional coupling (Fig. 2 A and B), Δ(�) monotonically
increases in the direction where the causal link is absent (Y → X ),
while it clearly shows the presence of a minimum in the correct
coupling direction (X → Y ). Consistently with this scenario, if
the coupling is bidirectional the Information Imbalance shows
clear minima as a function of � in both directions (Fig. 2C ). As a
consequence, the Imbalance Gain is positive in both directions.

To demonstrate the robustness of the procedure more quan-
titatively, in Fig. 3, we report a comparison of our method with
four alternative approaches to assess causality between time-
dependent variables, namely the Extended Granger Causality
(17), Convergent Cross-Mapping (7), the Measure L (29) and
Transfer Entropy (23–25), which are described in the (SI
Appendix, section 2). The latter three approaches are model-
free, like ours, while the former assumes a local autoregressive
model. Each method produces an estimate for each coupling
direction. As the other methods employ time-delay embeddings,
to ensure a fair comparison we also applied our approach using
the delayed representations of single coordinates (x1 and y1).
The set of tests was carried out using four different pairs of
dynamical systems: two low-dimensional and unidirectionally
coupled (identical and different Rössler systems, Fig. 3 A–F
and G–L), one low-dimensional and bidirectionally coupled
(Lorenz systems, Fig. 3 M–R) and one high-dimensional and
unidirectionally coupled (Lorenz 96 systems, Fig. 3 S–X ). To
evaluate the statistical significance of the results in a consistent
way among the different measures, each point in the panels of
Fig. 3 was computed as the average of 20 independent estimates,
and associated to its SE. The statistical significance of a single
Imbalance Gain estimate is assessed with a permutation test over
the indices of the putative driver realizations, which generates a
null distribution under the hypothesis of absence of causality (SI
Appendix, section 6 and Table S1).

In the unidirectionally coupled Rössler systems (Fig. 3, first
column) and Lorenz systems (Fig. 3, second column) our method

A B C

Fig. 2. Profiles of the Information Imbalance Δ(�) as a function of �, to assess the presence of the causal links Y → X and X → Y . The three panels refer to
different pairs of Rössler systems: (A) identical and unidirectionally coupled with coupling strength " = 0.1293, (B) different and unidirectionally coupled with
" = 0.1293, (C) identical and bidirectionally coupled with "X→Y = 0.0603 and "Y→X = 0.1.
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A G M S

B H N T

C I O U

D J P V

E K Q W

F L R X

Fig. 3. Comparison of different causality detection methods. The results are shown as a function of the coupling parameter " ("X→Y in the bidirectional case).
(A–F ) Identical and unidirectionally coupled Rössler systems. (G–L) Different and unidirectionally coupled Rössler systems. (M–R) Bidirectionally coupled Lorenz
systems. The coupling "Y→X was fixed to 0.1. (S–X ) Unidirectionally coupled Lorenz 96 systems, with 40 variables each (FX = 5, FY = 6). In our method, we fixed
the embedding time �e to 1 and we employed as embedding dimensions (B, H, and N) E = 3, and (T ) E = 30. The time lag was fixed to � = 20 for the Rössler
systems, � = 5 for the Lorenz systems and � = 30 for the Lorenz 96 systems.

successfully finds a unidirectional link X → Y , displaying absent
or negligible signal in the Y → X direction. The sharp collapse
observed in Fig. 3 A–F at � ∼ 0.2 occur in correspondence of
the complete synchronization of the two systems (38, 39), where
the trajectories of X and Y become identical. The other methods
correctly detect that causality is stronger in the X → Y direction
than in the reverse one; however, they do not allow deducing
from the data that the coupling Y → X is absent.

In the bidirectional case (Fig. 3, third column) all the methods
correctly detect the presence of both the causal links, but the

cross-mapping methods do not predict the correct ranking of the
two coupling strengths for "X→Y ≳ 0.1. Consistently, in the
other methods (Imbalance Gain, Extended Granger Causality
and Transfer Entropy) the curves quantifying the strengths of
the two causal links intersect at "X→Y ' 0.1, which is the value
at which the opposite coupling parameter "Y→X was fixed. In
the high-dimensional scenario (Fig. 3, fourth column), all the
approaches detect the correct order of the causal coupling but,
once again, the three metrics used for comparison do not allow
concluding that causality is actually absent in one direction.

PNAS 2024 Vol. 121 No. 19 e2317256121 https://doi.org/10.1073/pnas.2317256121 5 of 10
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Table 1. False-positive rates (FPR), approximated to the first decimal digit, for detections of couplings Y → X in
systems coupled in direction X → Y

Identical Rössler systems Different Rössler systems Lorenz 96 systems

Our method (all coordinates) 0% (0/21) 0% (0/16) 9.7% (3/31)
Our method (embeddings) 0% (0/21) 0% (0/16) 12.9% (4/31)
Extended Granger Causality (17) 100% (21/21) 100% (16/16) 100% (31/31)
Convergent Cross-Mapping (7) 100% (21/21) 93.8% (15/16) 96.8% (30/31)
Measure L (29) 100% (21/21) 93.8% (15/16) 96.8% (30/31)
Transfer Entropy (23–25) 100% (21/21) 100% (16/16) 100% (31/31)

To exclude the results in the synchronization regime, only couplings configurations with " < 0.18 were considered for the identical Rössler systems, and with " < 0.13 for the different
Rössler systems.

Table 1 reports the number of false-positive detections in
the scenarios where the directional coupling Y → X is absent,
rejecting the null hypothesis of a causal measure being different
from zero according to a one-tailed t statistics threshold of
t19 = 3.579 (P < 0.001). We report in the SI Appendix, section
7 and Fig. S4A an extended description of the statistical test
and the false-positive rates for other choices of the significance
threshold. The other approaches display a false-positive rate close
to 100%. With our measure, the false positives are absent in the
Rössler systems, while they are around 10 to 13% in the 40-
dimensional Lorenz 96 systems. The abrupt reduction in false-
positive detection is a major advantage of our approach.

CausalityDetectiononEEGTimeSeries. We employed EEG data
to validate our approach in a real-world scenario. We performed
a psychophysical experiment to assess whether the Imbalance
Gain could establish the presence of a causal relationship
between the experimental manipulation and EEG activity across
participants, and to understand whether it could be used to
study the information flow between different EEG channels.
In the experiment 19 healthy volunteers were asked to judge the
duration of two stimuli, a visual and an auditory one, presented
sequentially. Participants’ task was to report, by pressing a key,
which of the two stimuli was displayed for longer time. The
first stimulus in the pair, the comparison stimulus, was a visual
grating varying randomly in display time in each experimental
trial. Seven different durations of the visual stimulus were tested,
evenly spaced between 0.3 and 0.9 s. The second stimulus,
called standard, was a burst of white noise presented through
headphones for 0.6 s in each trial. The details of the experiment
and additional validation tests are reported in the SI Appendix,
section 8 and Fig. S5.

First we investigated the causal link between the duration
of the comparison stimulus, which is a categorical variable
assuming a value between 0.3 and 0.9 s, and the EEG traces
relative to its onset and its offset. Notably, in this application
the putative causal variable X (0) appearing in Eq. 2 is one-
dimensional and time-independent. We excluded from our
analysis the information on the second stimulus, as it was shown
for a fixed duration among different trials. The Imbalance Gain
was computed independently for each participant using the
different trials as independent realizations and employing time-
delay embeddings of 44 ms (E = 12, �e = 4 ms). The results
are shown for two example channels: one parieto-occipital (POz,
Fig. 4A) and one frontal (Fz, Fig. 4B).

We carried out two sets of measurements for different choices
of the initial time t = 0 appearing in Eq. 2, which corresponds
here to the first point of the predictive delay embedding. In the
first tests, we set t = 0 to the stimulus onset and we studied the

behavior of the Imbalance GainΔ(�) as a function of the time lag
�, limiting � to a window before the offset of the shortest stimulus.
In this setting, trials corresponding to different durations of

A B

C D

E F

Fig. 4. (A and B): Imbalance Gains to assess the presence of the link from
the duration of the stimulus to the EEG signals in two example channels (A)
POz and (B) Fz, as a function of the time lag �. The initial time t = 0 was set
to the onset of the stimulus for the orange curves, and to its offset for the
green ones. The shaded area represents the SE associated to the average
Imbalance Gain, computed over 19 participants. The inset panels display the
average profiles of the Extended Granger Causality index for the same tests
and time intervals. (C and D): Topoplots displaying the distributions of the
Imbalance Gains from all the 51 channels, at two different time lags from
the stimulus offset. The dynamic topoplots for all the time lags are shown in
Movie S1. (E and F ): Imbalance Gains for testing the couplings POz→ Fz and
Fz→ POz, respectively.
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the stimulus cannot be yet differentiated because the different
comparison stimuli are all indistinguishable in the time window
considered; as a consequence, no coupling duration → EEG
activity should be observed. Consistently with this observation,
we detected only a negligible Imbalance Gain within the first 256
ms from stimulus onset (orange traces in Fig. 4 A and B). Indeed,
using a (one-tailed) t statistics threshold of t18 = 3.610 to reject
the null hypothesis of the Imbalance Gain being equal to zero
(P < 0.001), we found a total false-positive rate of∼0.5% across
the channels. We report the false-positive rate as a function of the
significance threshold in SI Appendix, Fig. S4B). In the second
set of tests, we set the initial time t = 0 to the stimulus offset
and we studied the Imbalance Gain within a window of 456 ms.
From a perceptual stand point, this temporal window represents
the period in which a signature of the subjective experience of
stimulus duration should arise (40), as only after the offset of
the stimulus its duration information becomes available to the
participants. Therefore, a possible causal influence between the
duration of the stimulus and the EEG activity may emerge in this
second scenario. Using the same statistical procedure described
above, we detected significant couplings with a different time
modulation depending on the channel, whereby the Imbalance
Gain started to rise at early latencies in occipital and parietal
channels (Fig. 4A andC ) and peaked in a time span ranging from
300 to 400 ms after the stimulus offset also in frontal channels
(Fig. 4 B and D). This result is in agreement with recent EEG
studies in the field of time perception which show that within
similar latencies, and particularly in fronto-central electrodes,
EEG activity contains information about participants’ perceived
stimulus duration (41, 42).

As a comparison, we applied the Extended Granger Causality
approach to the same causal detection task. We tested different
combinations of E and k in order to maximize the difference of
the signals in the offset and onset periods, and to minimize at
the same time the rate of false positives in the second scenario
(see SI Appendix, section 2B for details). In the optimal case
(Insets of Fig. 4 A and B) we could observe only a faint signal
after stimulus offset, and a total false-positive rate of∼43% after
stimulus onset, around 2 orders of magnitude more than with our
approach.

Our method is able to retrieve a signature of participants’
perceptual decision-making processes and its link to task per-
formance. To illustrate this we studied the causal relationships
between two extremes of a hypothetical brain network func-
tionally related to duration processing. Specifically, we evaluated
the causal link between a parieto-occipital electrode, POz, and a
fronto-central one, Fz. The activity of the former is supposedly
linked with an early stage of duration processing (43) where
stimulus sensory and duration information is encoded and
conveyed to downstream brain regions (duration encoding),
while the latter is associated to a higher-level processing stage
where duration information is read out and used to perform
the task at hand (duration decoding) (44, 45). We computed
the Imbalance Gain POz→ Fz within 256 ms from stimulus’
comparison onset and offset (yellow and green traces in Fig.
4E), using time-delay embeddings of 44 ms for both the signals.
We found that the Imbalance Gain relative to the different
periods (i.e., onset or offset) changed differently as function
of � (period-tau interaction: F26,468 = 1.529, P = 0.04). In
both periods the Imbalance Gain peaked around 90 ms, time
lag which may reflect the propagation delay in the information
flow between the two channels. However, in the onset period,
the signal slowly decayed until it reached a plateau, whereas after

stimulus offset we observed a second peak in Imbalance Gain
around � = 160 ms. Interestingly, previous works have shown
that, in the same electrode (Fz) and within similar latencies
(∼150 ms), it is possible to detect decision-related EEG activity
which originates from feed-forward communication from the
visual cortices (46, 47). No such effect of the interaction between
� and period on the Imbalance Gain was found in the case Fz→
POz (F26,468 = 0.448, see Fig. 4F ). To better characterize the
relationship between our results and participants’ performance
we computed the Kendall’s correlation coefficient between the
Imbalance Gain and participants’ accuracy in the task. The results
of this analysis show that a positive association is present only
at the offset period in correspondence to the Imbalance Gain
peaks (in particular around 160 ms, see SI Appendix, Fig. S5).
Although more experiments are needed to better characterize this
result, this shows that the Imbalance Gain is a promising measure
to investigate the link between brain functional connectivity and
behavior.

Discussion

We proposed an approach to detect causality in time-ordered
data based on the Information Imbalance, a statistical measure
constructed on distance ranks. The underlying idea is to quantify
how the description of a subset of variables in the future is affected
by the addition of the putative causal variables in the past; in
this sense, our method can be seen as a nonlinear and model-free
generalization of Granger causality, suitable for high-dimensional
data.

Our approach is also related to the measure L (29),
which, using our notation, is based on the comparison of
Δ
(
dX (0)→ dY (0)

)
withΔ

(
dY (0)→ dX (0)

)
(SI Appendix, sec-

tion 2A). This simpler approach faces the limitations illustrated
in Fig. 3: the evaluation of a single inequality only allows to
identify the dominant causal link, without recognizing situations
where the coupling in one direction is absent.

In case of missing dynamic variables, our measure can be
applied with time-delay embeddings. In principle, Takens’
theorem states that the time-delay embeddings of a single
coordinate of Y , e.g., ỹ1, should allow to reconstruct the full
system (X, Y ) even when only the coupling X → Y is present.
If this was the case, even when X causes Y there would be no
� > 0 satisfying Eq. 2 if the distance spaces were constructed
with time-delay embeddings, because any information carried by
X would be redundant. However, the above statement is correct
only if noise is absent, and if it is possible to record the coordinates
with arbitrary precision (33). In practical applications, where the
observation time is finite and measurement/integration noise is
present, the best reconstruction carries only a partial information
of X , so that x̃1 actually contains unique information about
the future of ỹ1. This scenario is supported by the numerical
experiments presented in this work.

By testing our method on several coupled dynamical systems
with different coupling configurations, we found that our
measure is significantly more robust than the compared methods
against the drawback of false positives. In low-dimensional
systems the difference in performance with other approaches is
striking (Table 1). In the high-dimensional scenario, some false-
positive detections are present, but comparing the signals in the
two directions allows to clearly discern the irrelevance of one of
the two couplings (Fig. 3 P and Q). The advantage over the
other approaches is still evident when the dynamics of driver and
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driven systems involve different time scales (SI Appendix, section
9 and Fig. S7).

We further applied our measure to real-world time series from
EEG experiments, studying the time modulation of causal links
from an experimental and static variable—the duration of the
comparison stimulus—to the channel-dependent EEG activity,
and between EEG activities of different channels. In the tests
uncovering causal signals, the time modulations of the Imbalance
Gain are consistent with the latencies at which the information
of stimulus duration is expected to be transferred from the
visual cortex to the fronto-central channels and elaborated by
these channels (41, 42). Our findings suggest that applying
our approach to ad hoc experiments may provide insights into
functional and effective brain connectivity.

We introduced our method within a framework involving two
systems X and Y , without considering the potential influence
of a third observed system, Z . In the SI Appendix, section 3,
we show that our approach can be generalized to include such a
third system, and how the causal analysis is affected when Z is
a common driver (X ← Z → Y ) or an intermediate system
(e.g., X → Z → Y ) (48).

In conclusion, we believe that the benchmark presented in
this work demonstrates that this approach overcomes relevant
limitations of other model-free causality detection methods. Its
stronger statistical power shows up in particular when applied to
high-dimensional systems in which causality is absent, a scenario
which is of utmost importance for understanding how to control
a system. This, we believe, will trigger the interest of scientists
working on causality detection with real-world time-dependent
data.

Materials and Methods

Details on the Dynamical Systems. All the analysis on the dynamical systems
reported in Results were carried out discarding the first 100,000 samples of the
generated time series. All the dynamical systems were integrated using the 8-th
order explicit Runge–Kutta method DOP853 in the Python library SciPy, except
for the coupled Lorenz 96 systems for which the SciPy implementation of the
LSODA integrator was employed (49).
Rössler Systems. In the unidirectional case X → Y , the equations of the
coupled Rössler systems are

ẋ1(t) = −!1 x2(t)− x3(t), [6a]
ẋ2(t) = !1 x1(t) + 0.15 x2(t), [6b]
ẋ3(t) = 0.2 + x3(t) [x1(t)− 10] , [6c]
ẏ1(t) = −!2 y2(t)− y3(t) + " (x1(t)− y1(t)) , [6d]
ẏ2(t) = !2 y1(t) + 0.15 y2(t), [6e]
ẏ3(t) = 0.2 + y3(t) [y1(t)− 10] , [6f]

with !1 = !2 = 1.015 for the case of identical systems, and !1 = 1.015,
!2 = 0.985 for the case of different systems, as studied in refs. 25 and 50.
The term "Y→X (y1(t)− x1(t)) was added to Eq. 6a in the bidirectional tests.
Both the initial state of system X and the initial state of Y were set by multiplying
the components of the vector (10, 10, 10) by three random numbers between
0.5 and 1.5. For all the tested values of the coupling constants, the equations
were integrated with a fixed time step of 0.0785 and the time series was
downsampledwithafrequencyof1/4,resultinginasamplingstepof0.314.After
discarding the first 100,000 samples, 105,000 were saved and employed in the
analysis.
Lorenz systems. The bidirectionally coupled Lorenz systems are defined by the
following equations:

ẋ1(t) = 10 (x2(t)− x1(t)), [7a]

ẋ2(t) = x1(t)(28− x3(t))− x2(t) + "Y→X y
2
1(t), [7b]

ẋ3(t) = x1(t) x2(t)− 8/3 x3(t), [7c]
ẏ1(t) = 10 (y2(t)− y1(t)), [7d]

ẏ2(t) = y1(t)(28− y3(t))− y2(t) + "X→Y x
2
1(t), [7e]

ẏ3(t) = y1(t) y2(t)− 8/3 y3(t). [7f]

The equations were integrated using the time step dt = 0.01, initializing
the system with the same protocol used for the Rössler systems. The resulting
time series were saved with a downsampling frequency of 1/5, resulting in a
sampling step of 0.05 and 205,000 samples.
Lorenz 96 systems. Using the conventions x−1 = xN−1, x0 = xN and
xN+1 = x1, the equations of the 40-dimensional unidirectionally coupled
Lorenz 96 systems employed in the tests are

ẋi = (xi+1 − xi−2) xi−1 − xi + FX , [8a]
ẏi = (yi+1 − yi−2) yi−1 − yi + FY + " xi , [8b]

with i = 1, ..., 40. The initial state was set to xi(0) = FX (yi(0) = FY ) for i > 1
and to x1(0) = FX +R (y1(0) = FY +R′) for the first component, whereR
(R′) is a random number between 0 and 1. The equations were integrated with
the time step dt = 0.03 and the trajectories were downsampled with frequency
1/2. The tests reported in Fig. 3 were carried out using trajectories with 252,500
points, while the analysis reported in Fig. 5 were carried out over realizations
with 752,000 samples.

Average Imbalance Gain. In Figs. 3–5, where we show an average Imbalance
Gain, we inferred one optimal scaling parameter � for all the independent
estimates. The optimal parameter was obtained by maximizing the�-dependent
Imbalance Gain 〈(Δ(� = 0)− Δ(�)) /Δ(� = 0)〉, where the brackets
identify the average across different estimates.

Robustness with Respect to the Hyperparameters. We investigated how
the Imbalance Gain is affected by the embedding parameters E and �e on a pair
of Lorenz 96 systems with FX = 6 and FY = 4, coupled in direction X → Y .
In Fig. 5, we show the Imbalance Gain in a case in which it should be equal to
zero (absence of causality) for different choices of E (along the x-axis) and �e

Fig. 5. Imbalance Gain as a function of the embedding length E, computed
in direction Y → X for two Lorenz 96 systems with opposite coupling X → Y
(FX = 6, FY = 4, " = 1), using � = 30. The areas of the circles are proportional
to the embedding times �e employed in the reconstruction. Each point is the
average over 20 independent estimates.
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(proportional to the area of the circles), restricting to a maximum window length
(E − 1) �e = 200. Due to the absence of a causal link all the points should
ideally lie on the dashed line (zero Imbalance Gain). Our measure provides
false-positive detections for E ≲ 10, which are particularly evident when the
embedding time�e is too large (�e > 7, green circles). On the other hand, when
E is sufficiently large and �e is sufficiently small, the Imbalance Gain appears
robust against the detection of false positives for several different choices of
the embedding parameters (�e ≤ 7, violet circles). In practical applications,
we suggest to fix �e to a small value (of the same order of the sampling
time) and compute �Δ in a scenario without causality for increasing values of
the embedding dimension E, considering the result reliable if �Δ converges
to zero. All the analyses shown in this work were performed following this
criterion.

Another hyperparameter of our approach is k, the number of neighbors used
to compute the Imbalance Gain (Eq. 1). A large value of k reduces the statistical
uncertainty but can bias the estimate toward the absent coupling scenario, as
the Imbalance Gain is deterministically equal to 0 in the limit case k = N− 1.
As a rule of thumb, we suggest a value of k of at most 5 % of the available data.
Choosing k in a wide range of values consistent with this choice (k ∼ 10 to 250
for the Lorenz 96 systems with N = 5,000) does not affect the final outcome
of the causal analysis in the examples we considered (SI Appendix, Fig. S8). All
the results in this work were obtained using k = 1 for the three-dimensional
dynamical systems, and setting k = 20 for the Lorenz 96 systems and the EEG
analysis.

The last hyperparameter is the value of � , the delay between the time of
observation and the time of the prediction. When the only purpose of the test is
assessing the presence or absence of the causal link, the Imbalance Gain provides
stable results against different choices of � (SI Appendix, Fig. S9). On the other
hand, as shown in the analysis of EEG data, a systematic scan of different values
of � can provide additional insights into the information transfer between driver
and driven variables. We underline that the value of � for which the Imbalance
Gain displays a maximum can only be interpreted as the time lag at which a
perturbation in the driven system X becomes observable in the driven system Y ,
and hence the state of the former becomes (maximally) predictive with respect
to the state of the latter. This property depends in general both on the actual
coupling delay in the interaction X → Y and on the Lyapunov exponents of the
driven system Y . Therefore, the maximum of the Imbalance Gain as a function
of � cannot be taken as a measure of the coupling delay.

As any statistical test, the outcome of our approach depends on the number of
samplesN,whichisapropertyof thedatasetratherthanaproperhyperparameter.
We show in the SI Appendix, Fig. S10 that the scaling of the Imbalance Gain
measure as a function of N is comparable to the behaviors of both Measure L
and Transfer Entropy, with the advantage of a stable and negligible signal in the
direction without coupling in the small N regime.

EEG Experiment. The experiment was conducted on nineteen healthy volun-
teers (mean age: 24.10, SD: 3.43, 8 females), naïve to the purpose of the
experiment, none of them reporting any neurological disease. Participants
gave their written informed consent before taking part in the study and were
compensated for their participation with 12 Euro/h. The study was carried out
in accordance with the Declaration of Helsinki and was approved by the ethics
committee of the Scuola Internazionale Superiore di Studi Avanzati (SISSA)
protocol number 23970. Further details on the experiment are reported in the
SI Appendix, section 8.

Statistical assessment on Imbalance Gain data was performed using SciPy
(49) and statsmodels (51) packages in Python. In particular, we performed a
repeated measures ANOVA to understand the effect of the time lag � and the
period (i.e., onset and offset) on the Imbalance Gain in the case POz→ Fz and
Fz→ POz. This analysis was performed using the AnovaRM function with � and
period as within-subjects factors, considering only values of � larger than 44 ms
in order to avoid any overlap between the time-delay embeddings at time 0 and
time � .

Data, Materials, and Software Availability. The EEG data analyzed in this
study are available at https://osf.io/6jpvg/. Supporting codes are available at
the GitHub repository https://github.com/vdeltatto/imbalance-gain-causality.
git. The repository also contains the codes to generate the trajectories of the
dynamical systems analyzed in this work. The Information Imbalance measure
is also implemented in the Python package DADApy (52).
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