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Abstract

Driven quantum systems are systems in which a set of parameters obeys a time-dependent
protocol, both periodic and non-periodic. The study of these systems bridges theoretical
advances with experimental realizations in a variety of platforms—these range from quan-
tum dot arrays to molecular junctions to trapped ions. The theoretical study is challenging
due to the inherent non-equilibrium nature of the problem.

These systems offer an interesting playground for quantum thermodynamics. They can
be studied as quantum machines, such as refrigerators, heat pumps or engines. This poses
the challenge of redefining the laws of thermodynamics in the quantum realm. This effort
implies taking into account the presence of coherence, entanglement and strong correlations
with the environment.

In this conceptual framework, we attempt to shed new light on specific setups with
applications in quantum metrology. In the first part of the Thesis, we present novel results
on the thermodynamics and transport properties of quantum dots. After thoroughly intro-
ducing the main methods, namely non-equilibrium Green’s functions and scattering matrix
techniques, we apply these tools to adiabatic charge pumping. In this context, quantum
dots, subjected to external periodic driving, act as nano-mechanical engines, transferring
charge from a source to a drain. We investigate the conditions under which the pumped
charge becomes quantized and how thermodynamic quantities behave in this regime.

Next, we will focus on the charge shuttle mechanism in movable quantum dots as an
example of a quantum clock. This physical model describes transport through a molecular
state bound to two leads by van der Waals forces, with an electric field pushing the molecule
from the source to the drain. The periodic oscillations arising from the system’s dissipative
limit cycle solution provide the basis for time measurement. We examine quantum noise
primarily associated with the tunnelling process.

In the second part, we propose a quantum clock that utilizes the free energy resources
generated by coupling to a quantum battery, consisting of an integrable spin chain driven
out of equilibrium by a quench in a chosen parameter. The operating conditions of the
clock in the manifold of parameters are examined, leading to the requirement of the crossing
of the critical point in the battery. The lifetime of the battery’s resources is found to be
extensive in its size, even when choosing a global coupling observable in the battery.
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Chapter 1

Introduction: Thermodynamics of
driven quantum systems
- Where we give a general introduction to driven quantum systems, with
introductory examples.

“That was when I saw the Pendulum.
The sphere, hanging from a long wire set into the ceiling of the
choir, swayed back and forth with isochronal majesty.
I knew- but everyone could have sensed it in the magic of that serene
breathing- that the period was governed by the square root of the wire
and by π, that number which, however irrational to sublunar minds,
through a higher rationality binds the circumference and diameter of
all possible circles. The time it took the sphere to swing from end to
end was determined by an arcane conspiracy between the most
timeless of measures: the singularity of the point of suspension, the
duality of the plane’s dimensions, the triadic beginning of π, the
quadratic nature of the root, and the unnumbered perfection of the
circle itself.
I also knew that a magnetic device centred in the floor beneath issued
a command to a cylinder hidden in the heart of the sphere, thus
assuring continual motion. This device, far from interfering with the
laws of the Pendulum, in fact permitted its manifestation, for in a
vacuum any object hanging from a weightless and unstretchable wire
free of air resistance and friction will oscillate for eternity. ”

— Umberto Eco, Foucault’s Pendulum

Thermodynamics is an old theory dating back to the Industrial Revolution. Its aim
was to understand the functioning of thermal machines. This effort culminated in the
conceivement of the three laws. Then, mainly thanks to the combined effort of Boltzmann
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2 CHAPTER 1. INTRODUCTION

and Ehrenfest, statistical mechanics was born, providing a microscopic description that
gives substance to the laws of thermodynamics.

The discovery of quantum theory has been, in some way, connected to thermodynamics
and statistical mechanics. In fact, the fundamental problem of black-body radiation has
been studied in the seminal study of Planck, leading to the serendipitous birth of quantum
mechanics. However, quantum mechanics predicts reversible dynamics at the fundamental
level, while the second law of thermodynamics entails an emergent irreversibility. This is
an interesting and still open question posed by the interplay of the two.

The study of mesoscale phenomena, such as protein folding, polymers, and molecu-
lar motors justified the redefinition of the foundations of thermodynamics in the field of
stochastic thermodynamics [82], still much active. In this kind of system, the entity of the
fluctuations is relevant and should be incorporated in the analysis. The key results of this
field are fluctuation theorems [84] and Jarzynski’s equality [50].

In recent years, in association with the growing field of quantum information, tremen-
dous progress has been achieved in gaining an unprecedented degree of control over nanoscale
systems. Many of these devices are driven quantum systems. A driven system is a physical
system in which a subsystem of the associated parameters follows a time-dependent proto-
col (both periodic and non-periodic). These systems require a non-equilibrium description,
going beyond the standard equilibrium theory. The description is relevant for a number of
different experimental platforms, which have seen impressive progress in recent years. In
particular, we’re talking about cold-atomic gases [85], Rydberg atoms [11], trapped ions
[53], systems with a light-matter interaction [56], and quantum dots [3] just to cite a few
of them.

These experimental advances motivate a fundamental redefinition of thermodynamics
[55, 40, 41], which must be reconciled with a quantum description of the associated dy-
namics. This has led to quantum thermodynamics, whose basic tenets we will discuss in
Section 1.1.

The purpose of the present Thesis is to shed light on driven quantum systems from
the point of view of quantum thermodynamics. In particular, we will specialize in key
applications from quantum metrology, which will be presented in Sections 1.2 and 1.3, in
particular quantum clocks and adiabatic charge pumping.

1.1 The laws of thermodynamics in the quantum realm

Let us start with the general description of a system S interacting with an environment
E. Since we are dealing with driven systems, say we have a set of N parameters of the
Hamiltonian obeying a time-dependent protocol λ⃗(t) = {λi(t)}Ni=1.

The definition of the key thermodynamics quantities has to be constructed from these
elements. In doing so, we follow the guide of Ref. [37]. Note that there is still a lively
debate in this context in the scientific community.
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In the usual interaction representation, the total work done on a protocol defined on
time [0, τ ] is

∆W (τ) = Tr[ρ(τ)H(τ)]− Tr[ρ(0)H(0)]. (1.1)

In the context of open, driven systems the definitions of heat and work are highly de-
pendent on the information-theoretic choice of system and environment, depending on the
parameters one has in control. In particular, beyond the weak coupling approximation, the
role of the coupling term will be discussed at length in the following Sections. By defining
internal energy as the (time-dependent) expectation value of the system Hamiltonian

E(t) = Tr[ρS(t)HS(t)]. (1.2)

over the system density matrix ρS(t), one can arrive at a differential expression of work
and heat. One defines the work as

Ẇ (t) =
∑
i

Tr

[
ρS(t)

∂HS(t)

∂λi

]
λ̇i (1.3)

One introduces U̇(t) satisfying

Ė(t) =
d

dt
Tr[ρS(t)HS(t)] = U̇(t) + Ẇ (t). (1.4)

Beware that these expressions can be ill-defined, whenever the chosen protocol has a dis-
continuity in a certain point. The term U̇(t) corresponds to

U̇(t) = Q̇(t) + U̇chem(t), (1.5)

where the first term is the heat flow and the second represents the chemical work due to the
particle flow. For example, if the environment is constituted by a collection of reservoirs
with associated chemical potentials µα, then this term is

U̇chem(t) =
∑
α

µαṄα(t), (1.6)

where Ṅα(t) represents the individual flux associated with reservoir α.
The first law of thermodynamics bears a statement about the conservation of energy.

We can write it in the form [37]

Ė(t) = Ẇ (t) + Q̇(t) + U̇chem(t), (1.7)

The second law, in contrast, identifies an inherent irreversibility of thermodynamic pro-
cesses associated with the presence of an arrow of time. The two classical formulations are
due to Clausius (1854): ”Heat can never pass from a colder to a warmer body without some
other change, connected therewith, occurring at the same time.” and by Lord Kelvin (1851)
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”It is impossible for a self-acting machine, unaided by any external agency, to convey heat
from one body to another at a higher temperature. It is impossible, by means of inanimate
material agency, to derive mechanical effect from any portion of matter by cooling it below
the temperature of the coldest of the surrounding objects.”. It can be shown that the two
statements are indeed equivalent. This principle identifies a key quantity, dubbed entropy
production, being non-negative and zero only when we are in the presence of a reversible
process

Σ̇ ≥ 0. (1.8)

But, how is this quantity defined? The entropy flow to reservoir α is defined as

Φα =
Q̇α

Tα
(1.9)

where Tα is the associated temperature and Q̇α is the heat flow to the individual reservoir.
According to Clausius’s principle, the corresponding change in the system’s entropy is
bounded by this quantity

Ṡ ≥
∑
α

Q̇α

Tα
. (1.10)

and we define entropy production as

Σ̇ = Ṡ −
∑
α

Q̇α

Tα
(1.11)

and we see this quantity respects the non-negativity desideratum. In the quantum formu-
lation, the entropy of the system is represented by the von Neumann entropy of the density
matrix

S(ρ) = Tr[ρ ln ρ]. (1.12)

In the case of the temperature being unique and fixed to the value T , one can give another
formulation of entropy production by substituting the first law, as

Σ̇ = β(Ẇ −∆F ) (1.13)

where the latter term is the change in free energy in the system. This relation identifies
entropy production with the irreversible part of the work.

The third law of thermodynamics is the unattainability principle derived by Nernst ”It is
impossible for any process, no matter how idealized, to reduce the entropy of a system to its
absolute-zero value in a finite number of operations.”, related to the entropy of the physical
ground state being constant. A quantum version of the third law of thermodynamics, from
the original formulation of Nernst, has been recently proposed, stating that reaching the
ground state requires infinite resources in terms of either time, energy or complexity [89].
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Now, let’s shift to a more resource-theoretic framework by defining the concepts of
ergotropy and passive states [5]. Ergotropy quantifies the amount of energy extractable
via unitary operations U on a given state ρ. It is defined as

E [ρ] = Tr[HSρ]− min
U∈SU(d)

{Tr[HSUρU
†]}. (1.14)

The minimization happens in the set of unitary operations drawn from the special unitary
group SU(d) [19]. When no work can be extracted from a given state, this state is called
”passive”. A state is passive if and only if it is diagonal in the basis of the Hamiltonian
HS and its density matrix eigenvalues are non-increasing with the energy

σ =

d∑
k=1

sk|k⟩⟨k|, sk+1 ≤ sk, (1.15)

where |k⟩ corresponds to the energy eigenstates sorted in ascending order. Upon reminding
the definition of thermal state in quantum mechanics

ρth =
e−βH

Z
,Z = Tr[e−βH ], (1.16)

it is evident that all thermal states are passive. As a consequence, we define as ”non-
passive” any state from which a finite amount of work is extractable. Interestingly, for any
non-passive state, there exists a unique passive state σ, under the condition of HS having a
non-degenerate spectrum, obtained via a unitary operation having the function of ordering
the eigenvalues in non-increasing order

σ = UρρU
†
ρ =

d∑
k=1

r′k|k⟩⟨k|. (1.17)

1.2 Introduction to Adiabatic Charge Pumping

An interesting phenomenon in the context of driven systems is adiabatic charge pumping.
The idea, first introduced by Thouless in 1983, that applying a quasi-static operation on a
system could lead to the transport of electrons [21, 23] in the context of isolated quantum
systems. Adiabatic quantum pumping has been studied in the different context of open
quantum systems, in interaction with multiple reservoirs. These systems exhibit coherent
transport. What is most important is that tuning the system’s parameters makes it possible
to achieve a finite transport without any bias between the reservoirs. This is achievable
experimentally by the current state-of-the-art setups [88]. Most notably, in the context of
adiabatic non-interacting quantum pumps, in his seminal paper of 1998 [70], Brouwer was
able to describe the charge pumped in a cycle pumping through an open, yet non-interacting
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system, as a geometrical quantity written in terms of the instantaneous scattering matrix
of the system (without reference to a specific time dependence). Generalizations of this
phenomenon to interacting systems have been attempted [87, 33, 81]. What makes it
interesting for specific applications, such as in metrology, is the possibility of achieving a
transport of a quantized charge (with zero associated charge noise [24]).

1.3 Introduction to clocks

What is a clock? According to the standard dictionary definition ”A clock is a device
to measure time”. But what is time? From the physical point of view, time is defined
by its measurement. We can see that there is an evident circularity in these definitions.
As pointed out by [36] in his classic review, the apparent regularity in the motion of our
elegant pendulum clock, or the wall clock in our home hides a more profound scientific
truth: all of these devices require an external source of low-entropy energy to power them.
This hints at the essential irreversibility in the nature of clocks, being dissipative systems.

Moreover, there is a certain degree of stochasticity hidden in their motion. Even the
pendulum has its thermal noise present due to the fluctuation-dissipation theorem. How-
ever being negligible, this effect is nevertheless present. As a consequence of this fact, the
question of characterizing the sources of noise in these devices is indeed relevant. The
question of how these two are related has been posed in the scientific literature, relating to
the concept of the entropic cost of the measurement of time. The direct relation between
the performance, in particular the accuracy, and the entropy production implies that to
improve the clock’s performance it is necessary to spend more and more resources. As we
will see, the two quantities are constrained by the thermodynamic uncertainty relations.

In terms of performance, the best technology available nowadays is offered by atomic
clocks, reaching an uncertainty below the level of 10−18 [2]. However, numerous nanoscale
platforms have been tested for timekeeping and it would be pointless to offer an endless
list in this context. Some notable examples can be found in the recent review by Milburn
[36].
In the following, we will describe the most relevant estimators of a clock’s performance and
present a basic, however interesting, example, namely the classical pendulum clock.

1.4 A summary of the estimators of the clock’s performance

In general, to quantify how good a clock is, one has to compare the entity of its fluctuations
vis-à-vis the average period. Equivalently, one can take the time of arrival to n ticks Tn
and the number of ticks at time t nt. Choosing the latter, one can concoct the following
estimator of performance [86]

R1 =
ν

N
=

⟨nt⟩
⟨n2t ⟩ − ⟨nt⟩2

. (1.18)
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In the case of an elementary reset clock, where µ, σ2 are the mean and the variance of
the distribution of the waiting time between the ticks, this measure is analogous to this
estimator

R2 =
σ2

µ2
. (1.19)

And, in particular, the precision is

ν =
1

µ
(1.20)

and the accuracy reads

N =
σ2

µ3
(1.21)

As we will see, another key measure of the clock’s performance is Allan’s variance
(Section 3.6.2), associated with the stability of the clock’s frequency.

1.5 Thermodynamic Uncertainty Relations and Clocks

The Thermodynamic Uncertainty Relations describes a trade-off between the overall cost
for driving a system and the precision observed in any output current [37]. Let’s consider
a Markovian state producing a steady-state generic current Y (t) [49] and the consequent
entropy production rate Σ̇, then the associated TUR states

V ar[Y (t)]

⟨Y (t)⟩2
≥ 2

Σ̇t
(1.22)

where V ar[Y (t)] = ⟨Y 2(t)⟩−⟨Y (t)⟩2. Extensions of the original TUR invoke functionals of
the entropy production rate in the r.h.s. F (Σ̇). In terms of the clock’s performance, this
relation implies a bound on the resolution

N ≤ ∆S

2ttick
. (1.23)

The validity of the TURs has been shown in the context of discrete systems. However,
numerous violations have been observed in continuous systems, both classical and quantum
[74] and as a result of the presence of coherence in the systems [62, 52].

1.6 Example: The classical pendulum

Let’s examine the simplest and most common example of a clock, the pendulum clock
many people have at home. A pendulum, for small oscillations in the absence of dissipation,
oscillates at a constant frequency determined by the constant gravitational acceleration and

by its length ω =
√

g
L . However, when dissipation is present, in the form of air resistance
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Figure 1.1: The Graham escapement mechanism: a falling mass (not shown) provides
constant torque to the wheel. The momentum of the pendulum shifts the anchor, unlocking
it repeatedly from the left and right-hand positions. Each time the anchor is locked to the
wheel, it imparts a small torque to the pendulum.

or friction between the rod and the support, one would observe damped oscillations and
eventually the motion stops. This can be prevented by connecting it to an escapement so
that the pendulum becomes driven [36]. The purpose of this escapement is to counteract
the effects of dissipation and provide energy for the stability of the periodic oscillations.
This constitutes an instance of a dissipative limit cycle, a sustained periodic solution in
driven non-linear systems. As we will see, the fluctuation-dissipation theorem constrains
the noise of this system, which is stochastic in nature, despite its appearance.

In the following, we will examine the Graham escapement mechanism, as in [36], im-
parting a small kick every time the pendulum frees the anchor from its position, as in Fig.
(1.1). One can model this system using a stochastic differential equation in the phase space

{
θ̇ = p

mωL

ṗ = −mgθ − γp+K(θ, p) + ξ(t),
(1.24)

where θ is the angular coordinate, p the momentum, m is the mass and γ is the friction
coefficient. Furthermore, K(θ, p) describes the effect of the impulsive driving. The white
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noise coefficient ξ(t) satisfies the relation

ξ(t)ξ(t′) = Dδ(t− t′). (1.25)

In turn, the diffusion coefficient is constrained by the fluctuation-dissipation theorem to be

D = 2mγkBT. (1.26)

Moving to dimensionless variables x = θ and y = p
mωL the differential equation reads{

ẋ = y

ẏ = −x− Γy +K(x, y) + η(t),
(1.27)

where one defines the new constant Γ = γ
mω2L

and noise coefficient η(t) = ξ(t)
mω2L

. The kick
function is

K(x, y) = −µΘ(sinψ0x− cosψ0y), (1.28)

µ and ψ0 being two arbitrary constants fixed by the design of the escapement.
To extract the presence of the limit cycle, it is convenient to change variables to polar

coordinates, defining new variables as{
x = r cosψ

y = r sinψ.
(1.29)

In terms of these variables, the phase-averaged differential equation for the r variable reads

ṙ = −Γr

2
+

2µ

π
cosψ0, (1.30)

from which one can find the value of the limit cycle radius, correspondent to the fixed point
of this differential equation

r∗ =
4µ

πΓ
cosψ0. (1.31)

The equation for the phase variable reads

ψ̇ = −1 + 2µ

rπ
sinψ0. (1.32)

The energy of the oscillator can be associated to

E =
1

2
(x2 + y2), (1.33)

and the time-averaged differential equation obeyed by this quantity is

Ė = −ΓE +
2
√
2Eµ

π
cosψ0. (1.34)
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In this equation, the first term represents the energy lost due to friction, while the second
is the energy gain due to the action of the escapement, so the limit cycle forms when the
two terms are balanced. In the steady state, the average energy is

Ē =
8µ2

Γ2π2
cos2 ψ0, (1.35)

when noise is neglected. When including the noise, the system of differential equations for
r and ψ reads 

dr =

[
− Γr

2 + 2µ
π cosψ0 +

D′

4r

]
dt+

√
D′

2 dW1(t)

ψ̇ =

[
− 1 + 2µ

rπ sinψ0

]
dt+

√
D′/2
r dW2(t),

(1.36)

where we have two independent Wiener increments dW1(t) and dW2(t) and the rescaled
diffusion coefficient reads

D′ =
Dω

m2g2
. (1.37)

As a consequence of the noise, the radial fixed point is displaced to greater values

r∗ =
4µ

πΓ
cosψ0 +

√
4µ2

π2Γ2
cos2 ψ0 +D′/4. (1.38)

Indeed, as it is clear from the differential equation of the variable ψ, the phase diffusion
noise is inversely proportional to the size of the limit cycle. This quantity is related to the
dispersion of the period.

In the deterministic case, the average heat dissipated [36] is

Q̄ =

(
2µr∗ cosψ0

πΓ

)
T. (1.39)

This quantity is directly proportional to the radial fixed point. The key take-home message
is that thermodynamics limits the clock’s performance even in this very simple case. In
particular, the dispersion of the period is inversely related to the dissipated heat.

1.7 Thesis outline

The structure of the Thesis is organized in the following way.

In Chapter 2, we will present a general thermodynamic analysis of the resonant level
model, accounting for the periodic driving of its parameters, and its transport properties.
We will employ diagrammatic methods, based on the Keldysh non-equilibrium Green’s
functions and scattering matrix techniques for this purpose. They are properly introduced
in the Appendix. We use these results to study the phenomenon of adiabatic pumping,
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previously introduced, in the context of quantum dots interacting with multiple leads.
We will study the set of periodic processes yielding a quantized transport, describing the
behaviour of the most relevant thermodynamic quantities.

Chapter 3 will be devoted to a categorization of the properties of the charge shuttle as
a device for time metrology. In there, we will explore the phase portrait of this dynamical
system, in particular assessing the presence of dissipative limit cycles beyond the weak cou-
pling approximation. We will include the noise in my picture, thereby enabling a thorough
assessment of the trade-off relation between the performance in terms of timekeeping and
entropy production. A further indicator of the clock’s performance will be analyzed, viz.
the Allan variance.

In Chapter 4 we introduce a new proposal of a quantum clock relying on the free energy
resources of the stationary state of an integrable spin chain, acting as a quantum battery.
The spin chain is driven away from equilibrium by means of a global quench. Here again,
the performance/dissipation trade-off will be analyzed. More importantly, the conditions
guaranteeing the clock’s functioning will be thoroughly examined, with relevant examples
for their experimental simulation. For these examples, the lifespan of the battery will be
computed in relation to its size.

Finally, in Chapter 5 we will conclude by summarizing this Thesis’s main results and
give an outlook of the questions open for future research.





Part I

Part I: Transport and
Thermodynamics in Quantum dots

13





Chapter 2

Quantum Thermodynamics of
Adiabatic Quantum Pumping
- Where we give a thermodynamic description of adiabatic quantum
pumping in quantum dots.

“If your theory goes against the second law of thermodynamics, I
give you no hope; there is nothing for it but to collapse in deepest
humiliation”

— Arthur Eddington

2.1 Introduction

As we have seen in Chapter 1, adiabatic quantum pumps are notable examples of quantum
machines. In some special settings, they can achieve finite transport between different
reservoirs. Looking at it as an engine, the operation of a quantum pump should be charac-
terized by standard thermodynamic quantities: the work done, the entropy produced and
the heat exchanged. A fresh thermodynamic view of quantum pumping opens up the possi-
bility of addressing qualitatively different questions. For example, is there a minimal work
done associated with charge quantization? Or can one find a connection between entropy
production and current noise? These issues relating transport to the thermodynamic prop-
erties of a pumping cycle can be addressed only by developing a description of transport
and thermodynamics within the same formalism (cf. with [35] for classical pumps). Here,
we focus on this task by addressing adiabatic pumping through the simplest, yet nontriv-
ial system that displays all significant ingredients one is looking for (charge quantization,
noise): a resonant level coupled to two leads.

15
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2.2 The model

In this Chapter, we consider adiabatic pumping through a time-dependent resonant level
model consisting of a single energy level coupled to two metallic leads. The leads act as
fermionic reservoirs and are kept fixed at temperature T and chemical potentials µL and
µR. This model describes transport through nanostructures, such as molecular junctions
or quantum point contacts (QPCs). When its parameters, namely the level of the dot and
its hybridization strength with the reservoirs are tuned by an external agent, such as a
gate voltage, then it can act as a molecular-level nano-engine [14].

The Hamiltonian of the system consists of three different terms

H = HD +HV +HB, (2.1)

where HD is the Hamiltonian associated with the dot

HD = ϵd(t)d
†d, (2.2)

HB is associated with the leads

HB =
∑
kα

ϵkαc
†
kαckα, (2.3)

and HV to the leads-dot coupling

HV =
∑
α

Hα
V =

∑
α

Vα(t)
∑
k

(d†ckα + h.c.). (2.4)

Here d is the annihilation operator of the dot level, whilst ckα is associated with an electron
with momentum k in the α = L,R lead (in this case there is only one channel associated
to each lead), and Vα is the coupling between the dot and lead α. In the context of our
analysis, we will assume the leads to have a constant density of states and an infinite
bandwidth (wideband limit), implying that the decay rate

Γα = 2π|Vα|2
∑
k

δ(ϵ− ϵkα) (2.5)

does not depend on energy. In this case, as we will explain, the expression for the spectral
function of the dot (in Fig.(2.1)) is

A(ϵ) =
Γ

(ϵ− ϵd)2 + (Γ2 )
2
, (2.6)

where Γ = ΓL + ΓR is the total decay rate.
Quantum pumping requires at least two of the system parameters to be varied period-

ically in time along a certain cycle [70]. We will therefore take both the energy dot level
ϵd(t) and the level-dot couplings Vα(t) to be time-dependent and driven by an external
agent.
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Figure 2.1: This is the density of states of a single-level quantum dot. Note that it is a
Lorentzian centred on its energy level ϵd and its width is proportional to the total decay
rate from the dot to the leads.

2.3 The gradient expansion of the Green’s functions

All the physical quantities we will be computing are expressed in terms of Green’s functions,
which, in turn, can be expressed through a perturbative expansion. Below, we will consider
the adiabatic limit, where the driving period satisfies T0 ≫ 1

Γ . We use as small parameters

ϵ̇d/Γ
2 and Γ̇α/Γ

2 The first ingredient one needs to have ready to get a universal description
of pumping is an adiabatic expansion of the Green’s functions. They are connected to the
observables one finds in the thermodynamic and transport quantities we will evaluate in
the subsequent Sections.
Let us start with the diagrammatic expansion of the dot Green’s function (relative to the
physical model introduced in the previous Section) on the Keldysh contour (see Section
A.1), following the approach of Ref. [13]. It can be represented graphically as depicted in
Fig. (2.2). Its equivalent expression in integral form is

GC(t, t′) = GC
0 (t, t

′) +

∫
CK

dτ1dτ2G
C
0 (t, τ1)Σ

C(τ1, τ2)G
C(τ2, t

′), (2.7)

where GC are the contour-ordered green functions (see Appendix A.1) and the self-energy
term reads

ΣC(τ1, τ2) =
∑
kα

|Vα|2gckα(τ1, τ2). (2.8)
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= + x
Vα

kα
x

V ∗α
+ . . . = + x

Vα
kα

x

V ∗α

Figure 2.2: This is a visual representation of the diagrammatic expansion of the Green’s
function on the Keldysh contour. Here the single line represents the bare Green’s function
of the dot G0

C , the double line represents the full Green function GC , while the dashed line
the bath’s Green function gCkα

Using analytic continuation techniques (see Appendix A.2) one may use Eq. 2.7 to obtain
Green’s functions defined in real times.

One may now use the separation of time scales to write a gradient expansion of the
equation of motion for the Green’s function. Switching to the Wigner transform, defined
as

G(ϵ, t) =

∫
dτG(t1, t2)e

iϵτ , (2.9)

where t = t1+t2
2 and τ = t1 − t2, one has to recall that for a convolution, the Wigner

transform (Section A.3) is∫
dt′C(t1, t

′)D(t′, t2) =

∫
dϵ

2π
e−iϵτC(ϵ, t) ∗D(ϵ, t), (2.10)

where C(ϵ, t) ∗D(ϵ, t) = C(ϵ, t)[ i2(
←−
∂ϵ
−→
∂t −

←−
∂t
−→
∂ϵ)]D(ϵ, t).

Applying this expansion to the example of the retarded Green’s function of the dot,
whose definition is

GR(t, t′) = −iθ(t1 − t′1)(⟨{d(t)d†(t′)}⟩), (2.11)

where the graph parenthesis represents an anti-commutator, one starts from the associated
equation of motion

δ(t− t′) =
∫
dt1G

R(t, t1)[i∂t1δ(t1 − t′)− ϵd(t1)δ(t1 − t′)− ΣR(t1 − t′)], (2.12)

with the retarded self-energy ΣR(t, t′) =
∑

kα |Vα(t)|2gRkα(t, t′) and obtains up to the first
order

1 = GR(ϵ, t)

[
ϵ− ϵd(t) +

i

2
Γ(t)

]
+
i

2

[
∂ϵG

R(ϵ, t)(−ϵ̇d(t) +
i

2
Γ̇(t))− ∂tGR(ϵ, t)

]
. (2.13)

Therefore, up to the first order in the velocities, for the retarded and advanced Green
functions one has

GR(ϵ, t) = (ϵ− ϵd(t) + i
Γ(t)

2
)−1 (2.14)

and

GA(ϵ, t) = (ϵ− ϵd(t)− i
Γ(t)

2
)−1. (2.15)
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To derive the lesser component of the Green function

G<(t, t′) = i⟨d†(t′)d†(t)⟩), (2.16)

one starts from Eq. A.3 which gives

G<(t, t′) = G0<(t, t′) +

∫
dt1dt2G

0R(t, t1)Σ
R(t1, t2)G

<(t2, t
′) (2.17)

+

∫
dt1dt2G

0R(t, t1)Σ
<(t1, t2)G

A(t2, t
′) +

∫
dt1dt2G

0<(t, t1)Σ
A(t1, t2)G

A(t2, t
′).

Then, one applies (i∂t − ϵd) at both sides of the equation, satisfying

(i∂t − ϵd)G0R(t, t′) = δ(t− t′) (2.18)

and
(i∂t − ϵd)G0<(t, t′) = 0. (2.19)

What one gets is∫
dt1[δ(t− t1)(i∂t − ϵd(t))− ΣR(t, t1)]G

<(t1, t
′) =

∫
dt2Σ

<(t, t2)G
A(t2, t

′). (2.20)

Inserting the relation

[GR]−1(t, t′) = (i∂t − ϵd(t))δ(t− t′)− ΣR(t, t′), (2.21)

one has the equality

G< =

∫
dt1dt2G

R(t, t1)Σ
<(t1, t2)G

A(t2, t
′). (2.22)

One recognizes in the latter an example of double convolution, whose associated gradient
expansion of the Wigner transform is

G< = GR ∗ Σ< ∗GA. (2.23)

The zero order reads
G<(0) = GRΣ<GA = iAf, (2.24)

where we have introduced the superscript (i), denoting the order of the expansion. We
remind that A(ϵ) is the density of states (Eq. (2.6)) and f is the Fermi distribution
f(ϵ) = 1/(1 + Exp[β(ϵ− µ)]) Regarding the first order, the part dependent on ϵ̇d yields a
contribution −i ϵ̇d2 ∂ϵfA

2. Now, extending the results of Ref. [13], we calculate the different

contributions to the part which is dependent on Γ̇

1)
i

2

(
∂ϵG

R∂tΣ
<GA −GR∂tΣ

<∂ϵG
A

)
=
i

2
(iΓ̇f)(∂ϵG

RGA −GR∂ϵG
A)

= − i
2
Γ̇f

A2

Γ

(2.25)
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2)
i

2

(
− ∂tGR∂ϵΣ

<GA +GR∂ϵΣ
<∂tG

A

)
=
i

2
Γ̇(iΓ∂ϵf)

i

2
([GR]2GA +GR[GA]2) = − i

2
Γ̇∂ϵf

A2

Γ
(ϵ− ϵd(t))

(2.26)

3)
i

2

(
∂ϵG

RΣ<∂tG
A − ∂tGRΣ<∂ϵG

A

)
=
i

2
Γ̇(iΓf)

i

2

(
∂ϵG

R[GA]2 + [GR]2∂ϵG
A

)
=
i

2
Γ̇f

A2

Γ

(2.27)

where we have used the following relations: ∂ϵG
RGA−GR∂ϵG

A = iA
2

Γ , ∂tG
R/A = −ϵ̇d∂ϵGR/A+

Γ̇(∓ i
2)[G

R/A]2, Re(GR) = ϵ−ϵd
Γ A and [GR]2[GA]2 = (AΓ )

2.
Overall, we obtain

G<(ϵ, t) = iAf − i ϵ̇d
2
∂ϵfA

2 − i Γ̇
2
∂ϵf

A2

Γ
(ϵ− ϵd) (2.28)

Bearing in mind the form of Eq. 2.24, we can identify a non-equilibrium distribution
function

ϕ = f − ϵ̇d
2
∂ϵfA−

Γ̇

2
∂ϵf

A

Γ
(ϵ− ϵd). (2.29)

2.4 The pumped charge and its noise

The purpose of the present Section is to connect transport quantities to thermodynamic
ones. The study of transport through quantum pumps has been the subject of many
studies [70, 66, 67, 64, 65, 68, 7, 57]. In particular, the two quantities of interest in
transport are the charge pumped in a cycle and its noise. Defining the stroboscopic times
in terms of the period T0 as Tn = nT0 one may define the operator describing the charge
pumped in the n-th period as

Q(n)
α =

∫ Tn

Tn−1

dt Iα(t) (2.30)

where Iα = −dNα/dt, with Nα =
∑

k c
†
k,αck,α, is the current flowing out of lead α. Clearly,

the average change pumped in M cycles is Qα(M) =MQα where Qα = ⟨Q(n)
α ⟩ is the charge

pumped in cycle, independent on n in the stationary state.

Coming now to the noise it is evident that current-current correlations produce both
fluctuations in the charge pumped in a single cycle as well as correlations of charge pumped

in different cycles. The first is described by δQ
(n)
αα = ⟨(Q(n)

α )2⟩ − ⟨(Q(n)
α )⟩2. In this Section,
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kα
=

kα
x

V ∗α

Figure 2.3: This is a visual representation of the diagrammatic expansion of the mixed
Green’s function on the Keldysh contour. Here we introduced the wobbly line, representing
G<

d,kα and the other definitions are equal to Fig. (2.2)

however, we will focus on a similar quantity that has the advantage of being similar to the
zero frequency component of the noise power spectrum, defined as

δQαα = lim
M→+∞

(δQα(M))2

M
(2.31)

where (δQαα(M))2 =
∑M

n,m=1(⟨Q
(n)
α Q

(m)
α ⟩ − ⟨Q(n)

α ⟩⟨Q(m)
α ⟩. Using the definition of the

operators one may rewrite the latter as

δQαα = lim
M→+∞

T0
TM

∫ TM

0
dt

∫ TM

0
dt′[⟨Iα(t)Iα(t′)⟩ − ⟨Iα(t)⟩⟨Iα(t′)⟩]. (2.32)

2.4.1 An alternative derivation of the current’s expression

In this section, we recall the known results of the charge pump concerning the resonant
level model. Starting from the expression of the Hamiltonian of the dot (Eq. 2.1), the
current reads

⟨Iα⟩ = −⟨Ṅα⟩ = −i⟨[H,Nα]⟩ = i
∑
k

(Vα⟨c†kαd⟩ − h.c) (2.33)

and using the lesser Green’s function G<
d,kα(t

′, t) = i⟨c†kα(t)d(t
′)⟩ one can write

⟨Iα⟩ = 2Re

{∑
k

VαG
<
d,kα(t, t)

}
. (2.34)

From the diagrammatic expansion of the lesser Green’s function (see Fig. (2.3)) entering
the definition of the current, it is straightforward to see that, whenever the leads are
non-interacting, the latter has the expression [46]

G<
d,kα(t, t

′) =

∫
dt1

[
g<kα(t, t1)[Vα]

∗GA(t1, t
′) + grkα(t, t1)[Vα]

∗G<(t1, t
′)

]
. (2.35)

Performing now the summation over k using g<k,α(ϵ) = 2πiδ(ϵ − ϵk)f(ϵ) and grk,α(ϵ) =

1/(ϵ− ϵk + i0+), where f(ϵ) = 1/(exp[β(ϵ− µ)] + 1) is the Fermi function, one has∑
k

G<
d,kα(t, t

′) =

∫
dt1

[
2πν0if(t− t1)[Vα]∗GA(t1, t

′)− πν0i[Vα]∗G<(t1, t
′)

]
, (2.36)
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where ν0 =
∑

k δ(ϵ − ϵkα) is the constant density of states and f(t) is the (properly reg-
ularized) Fourier transform of the Fermi distribution. Therefore the expectation value of
the current operator can be written as

⟨Iα⟩ = 2Re

[
i

∫
dt1f(t− t1)T a

αα(t1, t
′)− i

2
T<
αα(t, t)

]
, (2.37)

in terms of the generalized, time-dependent transmission matrices

TR,A,≷
αβ (t, t′) = 2πν0

∑
k

[Vα(t)]
∗GR,A,≷(t, t′)Vβ(t

′). (2.38)

A further simplification of Eq. 2.37 is obtained by expressing of T<
αα in terms of retarded

and advanced quantities using

G<(t, t′) =

∫
dt1dt2G

R(t, t1)Σ
<(t1, t2)G

A(t2, t), (2.39)

with

Σ<(t, t′) = 2πν0i
∑
α

Vα(t)f(t− t′)[Vα(t′)]∗. (2.40)

Then one has

T<
αα(t, t) =

∑
β

∫
dt1dt2T

R
αβ(t, t1)f(t1 − t2)TA

βα(t2, t). (2.41)

Substituting this expression into the current one obtains

⟨Iα⟩ = i

∫
dt1[f(t− t1)TR

αα(t1, t)− TA
αα(t, t1)f(t1 − t)]

+
∑
β

∫
dt1dt2T

R
αβ(t, t1)f(t1 − t2)TA

βα(t2, t).
(2.42)

Finally introducing the time-dependent scattering matrices defined as Sαβ = δαβδ(t− t′)+
iTR

αβ(t, t
′) one arrives at

⟨Iα(t)⟩ =
∫
dt1dt2

∑
β

[
Sαβ(t, t1)fβ(t1−t2)S†βα(t2, t)−δ(t−t1)fα(t1−t2)δ(t2−t)

]
, (2.43)

2.4.2 Brouwer’s formula

Let us derive Brouwer’s formula from its gradient expansion, applying the techniques of
Section A.3. This formula describes the current through a quantum pump at first order in
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the gradients. Let us assume the leads to be at equal temperature and chemical potential
Starting from expression 2.43, the gradient expansion up to the first order reads

⟨Iα⟩ =

∫
dω

2π
f(ω)

[∑
β

{
SαβS

†
βα +

1

2i
(∂TSαβ∂ωS

†
βα − ∂ωSαβ∂TS

†
βα)

}
− 1

]

−
∑
β

∫
dω

4πi
(−f ′(ω))

[
∂TSαβS

†
βα − Sαβ∂TS

†
βα

]
. (2.44)

The first term of this sum vanishes due to the gradient expansion of the condition of
unitarity of the S-matrix (see Appendix). Therefore we are left only with the last term.
Considering the charge pumped in a period T0

Qα =

∫ T0

0
dt⟨Iα⟩, (2.45)

and substituting the expression of the current yields

Qα = −
∑
β

∫
dω

4πi
(−f ′(ω))

∫ T0

0
dT

{
∂TSαβS

†
βα − Sαβ∂TS

†
βα

}
. (2.46)

I must point out that there is no zero-order term. The reason is the absence of any bias or
temperature difference between the leads.

In the case we have two parameters (x1, x2) that define the pumping cycle, i.e. Sαβ(t) =
Sαβ(x1(t), x2(t)), the dependence on time of the S matrices in the previous expression is
to be understood as parametric in the two parameters. One may therefore use Green’s
theorem to transform the time integral above, which is just an integral over the pumping
cycle (x1(t), x2(t)), into an integral over the area enclosed by the pumping cycle itself. The
result is

Qα =
∑
β

∫
dϵ

4π
f ′(ϵ)

[ ∫∫
A

dx1dx2
i

(∂x2Sαβ∂x1S
†
βα − ∂x1Sαβ∂x2S

†
βα)

]
. (2.47)

The scattering matrix entering this expression is the instantaneous scattering matrix
depending on the varied parameters in time x1, x2. For the resonant level model, where
the time-dependent parameters are the level position and the hybridization strength to the
leads, one has, therefore, the following expression (α, β = L,R)

S =

(
1− iΓLGR −i

√
ΓLΓRG

R

−i
√
ΓLΓRG

R 1− iΓRG
R

)
(2.48)

with

GR =
1

ϵ− ϵd + iΓ2
. (2.49)
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2.4.3 The quantum noise

A similar expansion can be derived to obtain the current noise. This expression is analogous
to those derived in Ref. [58], i.e. the noise can be separated into two different terms

δQαα =
T0
Tm

∫ Tm

0
dtdt′

∫
dt1dt2f(t1 − t′)f̃(t′ − t2)[δ(t− t1)δ(t− t2)− S†αα(t1, t)Sαα(t, t2)]

+
T0
Tm

∫ Tm

0
dtdt′

∫
dt1dt2f(t

′ − t2)f̃(t1 − t′)[δ(t− t1)δ(t− t2)− S†αα(t1, t)Sαα(t, t2)]

+
T0
Tm

∫ Tm

0
dtdt′

∫
dt1dt2dt

′
1dt
′
2f(t1 − t′2)f̃(t′1 − t2) ·∑

γδ

[S†αγ(t1, t)Sαδ(t, t2)S
†
δα(t

′
1, t
′)Sγα(t

′, t′2)− δ(t− t1)δ(t′ − t′1)δ(t− t2)δ(t′ − t′2)]

(2.50)

where f̃(t, t′) = δ(t− t′)− f(t, t′).
To perform the adiabatic expansion of both terms, let us notice that they have the

same structure as a product of convolutions. Then, denoting each convolution with A(t, t′)
and B(t′, t),

T0
Tm

∫ Tm

0
dtdt′A(t, t′)B(t′, t) =

∫ Tm

0
dT

∫ Tm

−Tm

dτ

∫
dϵ

2π

∫
dϵ′

2π
ei(ϵ−ϵ

′)τA(ϵ, T )B(ϵ′, T )

(2.51)
Taking m→ +∞ yields ∫ T0

0
dT

dϵ

2π
A(ϵ, T )B(ϵ, T ) (2.52)

and performing an expansion in the gradients as done before for the current one obtains
at zero order

δQ(0)
αα = −2

∫
dϵ

2π
(− 1

β

∂f

∂ϵ
)

∫ T0

0
dT

(
1− Sαα(ϵ, T )S†αα(ϵ, T )

)
. (2.53)

where β is the inverse temperature. This is the average over a period of the instantaneous
equilibrium Johnson-Nyquist noise [10].

At first order in the gradients the only non-zero contribution is

δQ(1),th
αα =

∫ T0

0
dT

∫
dϵ

4πi
(− 1

β

∂2f

∂ϵ2
)
∑
β ̸=α

[
∂TSαβS

†
αβ − Sαβ∂TS

†
αβ

]

−
∫ T0

0
dT

∫
dϵ

4πi
(− 1

β

∂f

∂ϵ
)
∑
β

[
∂ϵSαβ∂TS

†
αβ − ∂TSαβ∂ϵS

†
αβ

]
.

(2.54)
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this term, which depends on the operation of the pump, is a first-order contribution to
thermal noise proportional to the temperature and vanishing at zero temperature [66,
91]. The gradient expansion performed above turns out to miss an important shot noise
term and is valid only when ℏΩ ≪ kBT , where Ω = 2π

T0
. The finite shot-noise contri-

bution which survives even at zero order was first computed in Ref.[66]. It arises from
the emission/absorption of quanta of energy from the scatterer. The expression of this
zero-temperature shot noise is

δQ(1),sh
αα =

∞∑
q=1

q

4π
C(sym)
αα,q (0) (2.55)

where

C(sym)
αα,q (E) =

Cαα,q(E) + Cαα,−q(−E)

2
(2.56)

Cαα,q(E) =
∑
γδ

[S∗αγ(E)Sαδ(E)]q[S
∗
αδ(E)Sαγ(E)]−q, (2.57)

which arises from the quartic term of Eq. 2.50. The superscript []q identifies the Fourier
coefficients, defined as

[A]q(E) =

∫ T0

0

dt

T0
eiqΩtA(E, t). (2.58)

The derivation of the present shot noise term is described in Appendix C. Moreover, the
relevance of the various terms of the noise is discussed in more detail in the Appendix C.1.
In Section 2.6 we will analyze the noise obtained together with thermodynamic quantities
to gain further insight into the relationship between transport and thermodynamics.

2.5 The quantum pump as an engine

Now that the transport problem is described in its full generality, let us look at a quantum
pump as a thermodynamic engine. By varying the parameters xi(t) over a cycle it is clear
that a certain work on the system is being performed, as well as dissipated heat and entropy
generated. We note that at least two parameters are varied, as the current in Brouwer’s
formula is a geometric quantity, i.e. defined by an integral over the area spanned by the
cycle.

The goal of this Section will be to give concrete expressions to these quantities for the
specific problem of quantum pumping of a resonant level model. Of course, as in the case
of transport properties, we will have to proceed in steps, first considering the quasi-static
limit, and then proceeding to higher-order contributions in the gradient expansion.
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2.5.1 Quasistatic limit

Let us start developing this formalism in the limit of reversible and quasi-static transfor-
mations where one can work in the equilibrium gran-canonical framework at fixed temper-
ature β−1 and chemical potential µ. Evaluating the grand potential of the total system,
Ω = −1/β ln Ξ, where Ξ = Tr[e−β(H−µN)], in terms of the density of states ρ(ϵ) of the total
system one obtains

Ωtot = −
1

β

∫
dϵ

2π
ρ(ϵ) ln[1 + e−β(ϵ−µ)]. (2.59)

We are now interested in extracting the time-dependent part of this expression when
parameters are varied quasi-statically: for a resonant level model in which the time-
dependent parameters are ϵd(t),ΓL/R(t) this amounts to the replacement in Eq.(2.59) of
the total density of states ρ(ϵ) with the instantaneous local spectral function of the dot
At(ω) = A(ω, [ϵd(t),ΓL/R(t)]) = −2Im[Gr(ω, [ϵd(t),ΓL/R(t)])] obtaining an instantaneous
grand potential

Ωt = −
1

β

∫
dϵ

2π
At(ϵ) ln[1 + e−β(ϵ−µ)]. (2.60)

In fact, the density of states is given as the trace of the spectral function of the system
over all the single-particle states n Ann

At(ϵ) =
∑
n

Ann(ϵ) (2.61)

and we remind that Ann = −2ImGR
nn in terms of the retarded Green function. In the

basis of uncoupled dot and leads electron states one can decompose the density of states
in terms of the dot and leads contributions

At(ϵ) = A(ϵ) +
∑
kα

Akk,α(ϵ), (2.62)

where A(ϵ) is the density of states of the dot (Eq. 2.6). To calculate Akk,α one can write
the Dyson equation for the retarded Green function of the leads (Fig. (2.4))

GR
kk,α(ϵ) = gRkα(ϵ) + gRkα(ϵ)V

2
α (t)G

R(ϵ)gRkα(ϵ), (2.63)

so that

Akk,α = −2ImGR
kk,α(ϵ) = −2ImgRkα(ϵ) + V 2

α (t)(A(ϵ)Re[g
R
kα(ϵ)

2]− 2ReGR(ϵ)Im[gRkα(ϵ)
2].

(2.64)
Knowing that the free Green function of the leads has the expression

gRkα(ϵ) =
1

ϵ− ϵkα + iη+
(2.65)
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kα =
kα

+
kα

x
Vα

x

V ∗α kα

Figure 2.4: Here we introduce the diagrammatic expansion of the bath’s Green function,
renormalized by the interaction with the dot. The double dashed line represents the dressed
Green function GC

kk,α

the relation
d

dϵ
gRkα(ϵ) = −gRkα(ϵ)2 (2.66)

holds and defining Σα(ϵ) =
∑

k |Vα|2gRkα(ϵ) one can rewrite the above density of states as

At(ϵ) = A(ϵ)

(
1− d

dϵ
Re(Σα(ϵ))

)
+ 2Re(GR(ϵ))

d

dϵ
Im(Σα(ϵ)) + να(ϵ), (2.67)

where να(ϵ) = −2
∑

k Im(gRkα(ϵ)) . Since we work in the wide-band limit, the self-energy
has no energy dependence and has the expression

Σα = − i
2
Γα. (2.68)

As a consequence, the terms that depend on the derivatives of the self-energy vanish.
Furthermore, the free density of states of the leads depends neither on ϵd nor on Γα so that
we can cast it aside. What one is left with is simply the density of states of the dot alone
A.

From this expression, one can derive the quasi-static thermodynamic functions N
(0)
t ,

S
(0)
t and E

(0)
t , respectively particle number, entropy, energy [13] obtaining

N
(0)
t =

∫
dϵ

2π
At(ϵ)f(ϵ), (2.69)

S
(0)
t = kB

∫
dϵ

2π
At(ϵ)

[
− f ln f − (1− f) ln(1− f)

]
, (2.70)

E
(0)
t =

∫
dϵ

2π
ϵ At(ϵ)f(ϵ) (2.71)

The derivatives of these quantities with respect to time are connected to the reversible
energy change Ė(1), the reversible power Ẇ (1), the heat exchange rate Q̇(1) and the current
Ṅ (1). In particular, from Eq. (2.62) and Eq. (2.14), in the wide-band limit one can verify
the following relation ∂ΓA = −∂ϵRe(GR), then the expression for the reversible power
Ẇ (1) = ϵ̇d∂ϵdΩ+

∑
α Γ̇α∂ΓiΩ can be written as

Ẇ (1) = ϵ̇d

∫
dϵ

2π
Af + Γ̇

∫
dϵ

2π
Re(GR)f. (2.72)



28 CHAPTER 2. QUANTUM THERMODYNAMICS OF ADIABATIC PUMPING

Similar calculations lead to the expression of the quasi-static heat exchange rate as

Q̇(1) = T
dS(0)

dt
= ϵ̇d

∫
dϵ

2π
(ϵ− µ)A∂ϵf + Γ̇

∫
dϵ

2π
(ϵ− µ)Re(GR)∂ϵf. (2.73)

The current out of the dot is

Ṅ (1) =
dN (0)

dt
= ϵ̇d

∫
dϵ

2π
A∂ϵf + Γ̇

∫
dϵ

2π
Re(GR)∂ϵf. (2.74)

Finally, the energy exchange rate

Ė(1) =
dE(0)

dt
= −ϵ̇d

∫
dϵ

2π
ϵ∂ϵAf − Γ̇

∫
dϵ

2π
ϵf∂ϵRe(G

R). (2.75)

Notice that these quantities satisfy the first law of thermodynamics in the form

Ė(1) = Ẇ (1) + Q̇(1) + µṄ (1). (2.76)

These expressions highlight a similarity of the structure of the terms proportional to ϵ̇d
and to Γ̇.

2.5.2 Gradient expansion of thermodynamic quantities

Let us now come to the main results of this Chapter: a self-contained thermodynamic
description of the operation of a quantum pump. Quantum pumping is not a quasi-static
phenomenon: the quasi-static contribution to the pumped current is simply zero. It is
intuitively appealing that the same will be true for certain thermodynamic quantities that
are expected to be intimately connected to the flow of a current, such as the heat dissipated
and the entropy produced. Therefore in order to address them we will have to extend
the present analysis to account for corrections to the quasi-static limit using a gradient
expansion. Our goal will be for each generic quantity to express it as expansion in gradients
as O =

∑
iO(i), where O(i) contains the i-th time derivative. In order to do so we will

first write O in terms of non-equilibrium Green’s functions (Section 2.3) and then perform
their adiabatic expansion deriving the next-order corrections to the expressions obtained
in the previous section. The expansion we are going to derive is an expansion in gradients
precisely as the one obtained for the pumped charge and the noise, i.e. using as small
parameters ϵ̇d/Γ

2 and Γ̇α/Γ
2.

Let us start with the simplest quantity: the particle number in the resonant level. The
average number of particles is readily connected to a Green’s function using its definition,
N = ⟨d†d⟩ = −iG<(t, t). Therefore one can identify N (i) with the i-th order expansion in
the gradients of the lesser Green function (see Section 2.3) which can be calculated starting
from the Keldysh equation

G< =

∫
dt1dt2G

R(t, t1)Σ
<(t1, t2)G

A(t2, t
′). (2.77)
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Performing a gradient expansion of this one readily obtains the zeroth order terms reported
above and

N (1) = − ϵ̇d
2

∫
dϵ

2π
∂ϵfA

2 − Γ̇

2

∫
dϵ

2π
∂ϵf

A2

Γ
(ϵ− ϵd). (2.78)

This result can be used to compute the second-order correction to the current out of the
dot

Ṅ (2) = − ϵ̇d
2

2

∫
dϵ

2π
∂2ϵ fA

2 − Γ̇2

2

∫
dϵ

2π
∂ϵf(ϵ− ϵd)∂Γ

(
A2

Γ

)
− ϵ̇dΓ̇

2

∫
dϵ

2π

[
∂ΓA

2 − A2

Γ
+
∂ϵA

2

Γ
(ϵ− ϵd)

]
∂ϵf −

ϵ̈d
2

∫
dϵ

2π
∂ϵfA

2 − Γ̈

2

∫
dϵ

2π
∂ϵf

A2

Γ
(ϵ− ϵd).

(2.79)

The argument becomes more involved if one wants to calculate the gradient expansion
of the entropy. For this sake one needs to substitute in the expression for the entropy
introduced the Fermi distribution f with the non-equilibrium distribution ϕ [26] obtained
from the Wigner transform of the lesser Green’s function G<(ϵ, T ) = iAϕ

S = kB

∫
dϵ

2π
A

[
− ϕ lnϕ− (1− ϕ) ln(1− ϕ)

]
. (2.80)

A gradient expansion of the lesser Green’s function (and a similar one for the retarded one)
results in a gradient expansion for the non-equilibrium distribution, hence for the entropy.
The results for ϕ are given in Section 2.3. The resulting expansion to the first order of the
non-equilibrium distribution gives S(1)

S(1) = −kB ϵ̇d
2

∫
dϵ

2π

(
ϵ− µ
kBT

)
∂ϵfA

2 − kBΓ̇

2

∫
dϵ

2π

(
ϵ− µ
kBT

)
∂ϵf

A2

Γ
(ϵ− ϵd) (2.81)

and therefore the entropy production rate to the second order is

Ṡ(2) =
ϵ̇d

2

2T

∫
dϵ

2π
(ϵ− µ)∂ϵf∂ϵA2 − Γ̇2

2T

∫
dϵ

2π
(ϵ− µ)∂ϵf(ϵ− ϵd)∂Γ

(
A2

Γ

)
+

− ϵ̇dΓ̇

2T

∫
dϵ

2π
(ϵ− µ)∂ϵf

[
∂ΓA

2 − ∂ϵA
2

Γ
(ϵ− ϵd) +

A2

Γ

]
− ϵ̈d

2T

∫
dϵ

2π
(ϵ− µ)∂ϵfA2

− Γ̈

2T

∫
dϵ

2π
(ϵ− µ)∂ϵf

A2

Γ
(ϵ− ϵd).

(2.82)

Coming to the internal energy, it can be verified that at zero order E(0) = ⟨HD⟩(0) +
1
2⟨HV ⟩(0), following the choice of Ref. [26]. One may then identify an ”effective system” of
Hamiltonian Heff = HD + 1

2HV and an ”effective bath” HB + 1
2HV [13]. This is because
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one can verify that this choice gives the correct result, coinciding with ⟨HD⟩(0)+ ⟨HV ⟩(0)+
⟨HD⟩(0). Therefore, at every order in a gradient expansion, one has

E(i) = ⟨HD⟩(i) +
1

2
⟨HV ⟩(i). (2.83)

Let us derive the expression of ⟨HV ⟩ up to the first order from the expansion of the mixed
Green function. To calculate ⟨HV ⟩ we write

⟨HV ⟩ =
∑
α

Vα(t)
∑
k

[
⟨d†ckα⟩+ ⟨c†kαd⟩

]
=

∑
α

⟨Hα
V ⟩, (2.84)

where we define Hα
V = Vα(t)

∑
k

[
d†ckα + c†kαd

]
. It reads

⟨Hα
V ⟩ = 2Vα(t)

∑
k

Im

[
G<

d,kα(t, t)

]
, (2.85)

with G<
d,kα = i⟨c†kα(t

′)d(t)⟩, for which the property G<
d,kα(t, t) = −

(
G<

kα,d(t, t)
)∗

holds. The
equation of motion for the mixed Green function leads to

⟨Hα
V ⟩ =2Vα(t)

∑
k

Im

(∫
dt′[GR(t, t′)g<kα(t

′, t) +G<(t, t′)gAkα(t
′, t)]

)
= 2Im

(∫
dt′[GR(t, t′)Σ<

α (t
′, t) +G<(t, t′)ΣA

α (t
′, t)]

) (2.86)

Moving to the Wigner transform

⟨Hα
V ⟩ = 2Im

(∫
dϵ

2π
[GR(ϵ, t) ∗ Σ<

α (ϵ, t) +G<(ϵ, t) ∗ ΣA
α (ϵ, t)]

)
. (2.87)

The second term G<(ϵ, t) ∗ ΣA
α (ϵ, t) = G<(ϵ, t) ∗ ( i2Γα) dose not contribute. In fact, the

zero-order term is real and to the next order one can apply this type of argument∫
dϵ

2π
Im

(
i

2
∂ϵG

<(ϵ, t)
i

2
Γ̇α

)
=

Γ̇α

4

∫
dϵ

2π

∂ϵG
<(ϵ, t)

i
=

Γ̇α

8π

[
G<(ϵ, t)

i

]+∞
−∞

= 0. (2.88)

Up to the first order in the velocity, the gradient expansion yields

⟨Hα
V ⟩ = 2Im

(∫
dϵ

2π

[
GR(ϵ, t)if(ϵ)Γα−

i

2
∂tG

R(ϵ, t)i∂ϵfΓα+
i

2
∂ϵG

R(ϵ, t)if(ϵ)Γ̇α

])
. (2.89)

The gradient expansion of the whole interaction term therefore reads

⟨HV ⟩ = 2Im

(∫
dϵ

2π

[
GR(ϵ, t)if(ϵ)Γ− i

2
∂tG

R(ϵ, t)i∂ϵfΓ +
i

2
∂ϵG

R(ϵ, t)if(ϵ)Γ̇

])
. (2.90)
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.
As for the internal energy, we will compute the zeroth order in the gradients (quasi-

static approximation) in Eq.(2.5.1) and the rate of change to first order in Eq.(2.75). Let
us now evaluate the first-order correction of the energy

E(1) = − ϵ̇d
2

∫
dϵ

2π
ϵ∂ϵfA

2 − Γ̇

2

∫
dϵ

2π
ϵ∂ϵf

A2

Γ
(ϵ− ϵd), (2.91)

whose time derivative reads

Ė(2) =
ϵ̇d

2

2

∫
dϵ

2π
ϵ∂ϵf∂ϵA

2 − Γ̇2

2

∫
dϵ

2π
ϵ∂ϵf(ϵ− ϵd)∂Γ

(
A2

Γ

)
+

+
ϵ̇dΓ̇

2

∫
dϵ

2π

[
ϵ∂ϵf∂ΓA

2 + ϵ
∂ϵA

2

Γ
∂ϵf(ϵ− ϵd)

]
− ϵ̈d

2

∫
dϵ

2π
ϵ∂ϵfA

2

− Γ̈

2

∫
dϵ

2π
ϵ∂ϵf

A2

Γ
(ϵ− ϵd).

(2.92)

The expression for the energy agrees with the energy-resolved one [26]

E(i) =

∫
dϵ

2π
ϵA(ϵ, T )ϕ(i)(ϵ, T ). (2.93)

The power can be computed according to the definition. One can distinguish two
different contributions, relative to HD and HV . The first one is

Ẇ
(i)
D = ⟨∂HD

∂ϵd
⟩(i−1)ϵ̇d = ϵ̇dN

(i−1). (2.94)

Likewise for the components of the coupling

Ẇ
(i)
V =

∑
α

⟨∂HV

∂Vα
⟩(i−1)V̇α =

∑
α

V̇α(t)
∑
k

(⟨d†ckα⟩(i) + h.c.) =
∑
α

V̇α(t)

Vα(t)
⟨Hα

V ⟩(i). (2.95)

Changing variable to Γα

Ẇ
(i)
V =

∑
α

Γ̇α

2Γα
⟨Hα

V ⟩(i−1), (2.96)

so that
Ẇ (i) = Ẇ

(i)
V + Ẇ

(i)
D . (2.97)

The first order in the gradients of the power was computed in Eq. 2.72. We now use the
expansion above to compute the second order correction as

Ẇ (2) =− ϵ̇d
2

2

∫
dϵ

2π
∂ϵfA

2 − Γ̇2

4

∫
dϵ

2π
∂ϵf∂ΓA+

ϵ̇dΓ̇

2

∫
dϵ

2π
∂ϵf∂ϵA

+
∑
α

Γ̇2
α

2Γα

∫
dϵ

2π
f
∂ϵA

2
.

(2.98)
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Note the presence of Γα at the denominator: this term causes a singularity at Γα = 0,
which appears only when multiple heat baths are present.

The heat exchange rate Q cannot be calculated directly [27] since there are no physical
process accounting for dissipation and the Landauer-like picture of transport assumes that
dissipation processes take place far away from the system and do not affect its dynamics
[51]. The only way it can be derived is from the first law of thermodynamics. The latter
reads

Ė(i) = Ẇ (i) + Q̇(i) + µṄ (i). (2.99)

Then, the heat exchange has to be calculated inverting this relation

Q̇(i) = Ė(i) − Ẇ (i) − µṄ (i). (2.100)

Finally, the heat exchange flow reads

Q̇(2) = −
ϵ̇2d
2

∫
dϵ

2π
(ϵ− µ)∂2ϵ fA2 − Γ̇2

2

∫
dϵ

2π
∂ϵf(ϵ− ϵd)(ϵd − µ)∂Γ

(
A2

Γ

)
− Γ̇2

4

∫
dϵ

2π
∂2ϵ f(ϵ− ϵd)∂ΓA−

∑
α

Γ̇2
α

2Γα

∫
dϵ

2π
f
∂ϵA

2

− ϵ̈d
2

∫
dϵ

2π
(ϵ− µ)∂ϵfA2 − Γ̈

2

∫
dϵ

2π
(ϵ− µ)∂ϵf

A2

Γ
(ϵ− ϵd)

− ϵ̇dΓ̇

2

∫
dϵ

2π
∂ϵf(ϵd − µ)

[
∂ΓA

2 − A2

Γ
+
∂ϵA2

Γ
(ϵ− ϵd)

]
+
ϵ̇dΓ̇

2

∫
dϵ

2π
∂ϵf(ϵ− ϵd)∂ΓA2 − ϵ̇dΓ̇

4

∫
dϵ

2π
∂2ϵ f(ϵ− ϵd)∂ϵA.

(2.101)

The results obtained for N and Ẇ are consistent with the ones found in [78].
A final comment on the adiabatic expansion we have just performed is that the entropy
production rate is not simply related only to heat production; there is a further contribution
that can be identified with dissipated power. In particular this relation holds

Ṡ(2) =
Q̇(2)

T
+
Ẇ (2)

T
. (2.102)

This is because in general, one has this expression

dS

dt
= Σ̇ +

Q̇
T
, (2.103)

where Σ̇ can be related to the entropy production of the universe and S is the system’s
entropy. In turn, the change of the entropy of the universe is caused by the mismatch
between the corresponding reversible work rate and the work rate in an irreversible process,
called unusable energy, i.e.

T Σ̇ = Ėun = Ẇrev − Ẇ , (2.104)

which up to second order corresponds to Ẇ (2) [37].
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2.6 Quantum thermodynamics of various pumping cycles

It is now time to put all the pieces of the puzzle together and show how the formulas devel-
oped above can be used to gain insight into the physics of quantum pumping by combining
information on thermodynamic quantities as well as transport properties (pumped charge
and its noise). We will do so for various examples of cycles constructed for a resonant-level
model.

2.6.1 The peristaltic cycle

The simplest cycle one can think of is the ’peristaltic’ cycle which consists of four strokes as
shown in Fig. (2.5): the level initially empty at +ϵ0 coupled only to ΓL. It is then lowered
to −ϵ0 and filled with an electron from the left. Afterwards, the coupling is switched to the
right and the level is raised again to +ϵ0 and emptied on the right. Finally, the coupling is
reinstated to its initial value. In this cycle, the two time-dependent quantities are ϵd and
δΓ = ΓL − ΓR. The total decay rate Γ = ΓL + ΓR is not changed.

One can calculate the current, using Brouwer’s formula (Section 2.4.3). In the limit of
low temperature T , the pumped charge is

Q
(0)
L =

2

π

{
arctan(x) +

x

1 + x2

}
+O(T 2), (2.105)

where x = ϵ0
Γ/2 . In the limit x >> 1, the pumped charge is quantized, Q

(0)
L → 1 (Fig.

(2.7)).
The expectation is that the corresponding noise will tend to zero in the quantization

limit. We are interested in the zero-temperature limit, which enjoys contributions only
from the ’shot’ noise (Sec. 2.4.3). The zeroth order contribution to the current noise is
just thermal and vanishes in this limit

δQ
(0)
LL = 0. (2.106)

We evaluate the first-order term in the gradients, containing the relevant shot noise con-
tribution. The result of this calculation gives a current noise which tends to zero in the
quantization limit

lim
x→∞

δQLL(x) = 0, (2.107)

(see e.g. Fig. (2.6)).
Let us now proceed with the comparison with thermodynamic quantities by integrating

the previously calculated ones over a cycle. Integrating over a cycle quantities expanded
up to the first order will give a quantity independent of the cycle parametrization, hence
geometric. In the present case, however, the integrals are all vanishing, as one can see from
the one of the power expanded to first order

Ẇ (1) =
∂Ω

∂ϵd
ϵ̇d +

∂Ω

∂Γ
Γ̇, (2.108)
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Figure 2.5: The peristaltic cycle: the level initially empty at +ϵ0 coupled only to ΓL. It is
then lowered to −ϵ0 and filled with an electron from the left. Afterwards, the coupling is
switched to the right and the level is raised again to +ϵ0 and emptied on the right. Finally,
the coupling is reinstated to its initial value.

Figure 2.6: The first order of the noise integrated over the peristaltic cycle in the zero-
temperature limit (in logarithmic scale). In this case, we have set vϵd = |ϵ̇d| and vδΓ = | ˙δΓ|
to 1. Since the sum of Eq. 2.55 cannot be carried out to infinity numerically, we chose
a value of qmax as an upper limit to that sum. The latter value was chosen to guarantee
convergence and was set to qmax = 10000.
One can see that, regardless of the values of vϵd and vδΓ, the second order of the noise

vanishes in the quantization limit.
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which using Green’s theorem can be expressed as

W
(0)
cycle =

∫ T0

0
dtẆ (1) =

∫∫
A
dϵddΓ

[
− ∂2Ω

∂ϵd∂Γ
+

∂2Ω

∂Γ∂ϵd

]
= 0. (2.109)

Similar reasoning can be applied for integrals of all other rates at first order. One can
point out that this is a trivial consequence of the absence of any chemical potential or
temperature difference.

In contrast, second-order rates integrated over a cycle will not be geometric quantities
and will depend on the specific parameterization. In the following, we will consider a linear
parameterization so that the rates ϵ̇d and ˙δΓ (reminding that δΓ = ΓL−ΓR) are constants
along the four strokes. The work would display some divergent integrals, signalling the
failure of the gradient expansion for this particular cycle (see Appendix B). The problem
concerns indeed the fact that the gradient expansion can be justified only if both ΓL,ΓR ̸= 0
at all times, which is of course inconsistent with the condition δΓ = ±Γ. One way out is to
regularize the cycle, making δΓ vary from [−Γ + δ,Γ − δ]. While the pumped charge and
the other terms in the current noise turn out to have a smooth limit as δ → 0, the work
should be computed only for δ small but finite. The work per cycle is

W
(1)
cycle = −vϵd

∫ ϵ0

−ϵ0
dϵd

∫
dϵ

2π
∂ϵfA

2 +
vδΓ
2

∫ Γ−δ

−Γ+δ
dδΓ

Γ

Γ2 − δΓ2

∫
dϵ

2π
f
∂ϵA

2
. (2.110)

Performing the integration over ϵd one obtains in the limit T → 0

W
(1)
cycle = vϵd∆W

(1)
ϵd

+ vδΓ∆W
(1)
δΓ , (2.111)

where vϵd = |ϵ̇d|, vδΓ = | ˙δΓ|, and the coefficients are

∆W (1)
ϵd

=
2

πΓ

{
arctanx+

x

1 + x2

}
, (2.112)

and

∆W
(1)
δΓ =

1

Γ

[
1− ξ

]
1

π

1

x2 + 1
, (2.113)

in terms of the dimensionless variables x = ϵ0
Γ/2 and ξ = δ

Γ . Comparing this result with the
one obtained for the charge pumped over a cycle, we obtain the following direct relationship

∆W
(1)
ϵd =

vϵd
Γ Q

(0)
L . The contribution proportional to vδΓ is shown in Fig. (2.8) and it is

vanishing in the limit x→∞. Therefore in the limit of charge quantization

W
(1)
cycle =

vϵd
Γ
, (2.114)

the work is finite in the presence of charge quantization and proportional to the pumped
charge, in the case of constant velocity.
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Let us now compute in the same way the entropy produced over a cycle

S
(1)
cycle =

vϵd
T

∫ ϵ0

−ϵ0
dϵd

∫
dϵ

2π
(ϵ− µ)∂ϵf∂ϵA2. (2.115)

Performing the integrations the result up to the first order in the temperature is

S
(1)
cycle = vϵd∆S

(1)
ϵd
, (2.116)

where

∆S(1)
ϵd

=
πTk2B

3

128

Γ3

x

(1 + x2)3
+O(T 3). (2.117)

Comparing this expression with the expression of the work, one can observe that while in
the limit x→∞ the work saturates to the value

vϵd
Γ , the entropy production tends to zero

(Fig. (2.9)).
For completeness, we report here also the result for the remaining quantities

Q(1)
cycle = −vϵd

∫ ϵ0

−ϵ0
dϵd

∫
dϵ

2π
(ϵ− µ)∂2ϵ fA2 − vδΓ

2

∫ Γ−δ

−Γ+δ
dδΓ

Γ

Γ2 − δΓ2

∫
dϵ

2π
f
∂ϵA

2
(2.118)

E
(1)
cycle = vϵd

∫ ϵ0

−ϵ0
dϵd

∫
dϵ

2π
ϵ∂ϵf∂ϵA

2 (2.119)

N
(1)
cycle = −vϵd

∫ ϵ0

−ϵ0
dϵd

∫
dϵ

2π
∂2ϵ fA

2. (2.120)

Performing the integrations one obtains that in the limit x → ∞ and T → 0 N
(1)
cycle = 0,

S
(1)
cycle = 0 and Q(1)

cycle = −W
(1)
cycle. These conditions define a Non-Equilibrium Steady State

(NESS) (see for example [43]). In this condition all the mechanical work is converted into
dissipated heat in the leads.

2.6.2 Other examples of cycles

In our analysis of the peristaltic cycle we found that in the limit of quantization, the work
per cycle saturates to a value determined by the rate of change of the energy level vϵd . In
contrast, the entropy produced per cycle goes to zero (as the noise). The purpose of this
section will be to explore other examples of a cycle and study the possibility that these
qualitative results could apply to more general situations.

Let’s consider a modification of the peristaltic cycle in which the couplings are modified
one by one and not together: the level is lowered from ϵd = ϵ0 to −ϵ0, while connected
mainly to the right lead with ΓR = Γ0 and ΓL = δ (ξ = δ/Γ0 ≪ 1). The role of the two
couplings is then inverted by first raising ΓL to Γ0 and then decreasing ΓR to δ. It is now
the turn of the level to be raised from −ϵ0 to ϵ0. Then the ΓR and ΓL are exchanged again
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Figure 2.7: The current integrated over a cycle for the left lead w.r.t. the adimensional
parameter x. In the limit x→∞ the quantity displays a quantization to 1.

Figure 2.8: ∆W
(1)
ϵd Γ and ∆W

(1)
δΓ Γ. The contribution proportional to vϵd tends to 1 for

x→∞, following the direct relation with the pumped charge. In contrast, the contribution
proportional to vδΓ tends to zero in the same limit.

Figure 2.9: The leading order in temperature of the entropy vs. the adimensional parameter
x. From this figure, the quantity tends to zero in the quantization limit.
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Figure 2.10: The charge pumped from left to right. It is negative because the current flows
from left to right. The current displays charge quantization in the large x limit.

Figure 2.11: The first order of the noise of the current δQLL (in logarithmic scale). The
current noise tends to 0 as x→∞ as expected, following the quantization requirement.

with the inverse of the above process. The results for the pumped charge are portrayed
in Fig. (2.10). It displays indeed charge quantization in the large x = ϵ0/Γ limit. The
current noise can be safely computed for this cycle and the results for the two coefficients
which govern the dependence on vϵd and vΓ are in Fig. (2.11). As one can see both the
coefficients tend to ξ = δ

Γ as x→∞. Therefore limξ→0 limx→∞ δQαα(x, ξ) = 0.
Let us now turn to the work per cycle which has the following expression

W
(1)
cycle = vϵd∆W

(1)
ϵd

+ vΓ∆W
(1)
Γ , (2.121)

where

∆W (1)
ϵd

=
2

Γ0π

{
arctan(x) +

x

1 + x2

}
(2.122)
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Figure 2.12: The two components of the dissipated power proportional to vϵd and vΓ for
ξ = 0.001. The work displays a quantization to

vϵd
Γ0

in the limit x → ∞, as the first
component is saturated to 1, while the second vanishes in this limit.

and

∆W
(1)
Γ =

1

πΓ0

1

(x2 + 1)

{
− 2x

[
x

ξ − 2

]
− 2x

[
x

ξ + 2

]
+ 2 log

[
1− ξ
ξ

]
+ log

[
ξ2 + x2 + 2ξx+ 1

ξ2 + x2 − 2ξx+ 4

]}
+

2

πΓ0

(
2− ξ

x2 + (2− ξ)2
− 1 + ξ

x2 + (1 + ξ)2

) (2.123)

displays a quantization of
W

(1)
cycleΓ0

vϵd
→ 1 in the large x limit (see Fig. (2.12)). This appears

to be in agreement with what is stated for the peristaltic cycle. Finally, let us focus on the
entropy whose first non-zero order reads

S
(1)
cycle = vΓ∆S

(1)
Γ + vϵd∆S

(1)
ϵd

+O(T 3). (2.124)

where

∆S
(1)
Γ =

π

12

1

Γ3
(k2BT )

[
2

(4x2 + 1)2
− 16

(x2 + 1)2

]
(2.125)

and

∆S(1)
ϵd

=
π

3
(k2BT )

1

Γ3

32x

(1 + x2)3
(2.126)

The two coefficients are in Fig. (2.13). In this case, the entropy also tends to zero in
the charge quantization limit. All the other quantities do not add any relevant physical

information: as before since S
(1)
cycle = 0, Q(1)

cycle = −W
(1)
cycle all the external work is converted

into dissipated heat. My previous example shows that the main results pertaining to
the peristaltic cycle, i.e. work quantization in the limit of quantized charge, no entropy
production and zero noise, also pertain to similar cycles.
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Figure 2.13: The second order in temperature of the entropy for vΓ = vϵd = 1. The two
coefficients are summed, as they have the same asymptotic behaviour. One can see they
both vanish in the quantization limit.

Let us now focus on another cycle whose peculiarity is to have a maximal pumped
charge equal to half an electron charge: the triangular cycle introduced in [45], where ΓL

and ΓR are time-dependent. In this cycle, at the beginning, the dot is weakly coupled with
strength δ to both leads. Then, it is loaded by coupling to the left lead up to Γ0 ≫ δ. The
next step is to shift the coupling from the left to the right reservoir. Finally, the dot is
discharged while returning to the initial state. The energy level of the dot is maintained
constant ϵd = ϵ0 and only the couplings are varied ( see Fig. (2.14)). In this example, one
has half an electron per period. This means that the current noise has to be finite. The
fact that the charge transport is on average equal to 1/2 per cycle, means that half of the
times one charge is transported and the other half none. The charge pumped per cycle is
plotted in Fig. (2.15) and is given by the expression

Q
(1)
R =

2

π

∫
I(C)

dXLdXR
X

[1 +X2]2
=

1

π

[
arctan[X0]−

X0

1 +X2
0

]
, (2.127)

where I(C) is the triangular contour in Fig. (2.14). In terms of X = Γ
2ϵ0

and X0 = Γ0
2ϵ0

.
Then, one can define the limiting condition

lim
X0→∞

Q
(1)
R = 1/2. (2.128)

Due to the non-integer charge, the adiabatic current noise in Fig. (2.16) is finite in the
quantization limit. In this case, the most relevant contribution is from the hypotenuse of
the process, where both the couplings are varied and the energy level is half occupied on
average. The value reached by the charge noise is

lim
X0→∞

δQ
(1)
RR =

1

2
(1− 1

2
) =

1

4
. (2.129)
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Figure 2.14: The diagram of the cycle with fractional charge quantization.

Figure 2.15: The charge pumped with respect to the adimensional parameterX0, displaying
the fractional quantization to the value 1

2 .
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Figure 2.16: The noise with respect to X0. In this case, one can observe a finite noise in
the quantization limit. The limiting value is 1

4 .

The work done per cycle (Fig. (2.17)) is

W
(1)
cycle = vΓ∆W

(1)
Γ + vδΓ∆W

(1)
δΓ

(2.130)

where

∆W
(1)
Γ =

1

ϵ0π

[
X0

1 +X2
0

+ arctan[X0]−
δ

1 + δ2
− arctan[δ]

]
(2.131)

and

∆W
(1)
δΓ =

1

Γ

[
1− δ

]
1

π

2X0

X2
0 + 1

, (2.132)

with δ = η
Γ0
. One has that, in the quantization limit

W
(1)
cycleϵ0

vΓ
→ 1

2
. (2.133)

The entropy integrated over a cycle (Fig. (2.18)) reads

S
(1)
cycle = vΓ∆S

(1)
Γ (2.134)

∆S
(1)
Γ =

1

ϵ30

π

12
k2BT

2X0

(1 +X2
0 )

2
. (2.135)

Likewise, the entropy in the quantization limit tends to zero.
The results for the two processes we have considered up to now indicate that, when the

design of the cycle allows us to define a limiting condition which entails a quantized charge
pumped, there are some conclusions we can draw regarding the other quantities relevant
to our purposes. In particular, the out-of-equilibrium work performed on the system obeys
a similar quantization relation. The entropy integrated over the cycle vanishes in the
considered limit. Likewise, the charge noise disappears, as the charge pumped is quantized.
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Figure 2.17: The two components of the work with respect to X0. The figure shows how

in the limit X0 →∞ the work tends to the value W
(1)
cycle →

1
2
vΓ
ϵ0

Figure 2.18: The entropy with respect to X0, vanishing in the quantization limit.





Chapter 3

Electronic Shuttling in Quantum
Dots as a nano-electromechanical
Clock
- Where we aim at characterizing electronic shuttling as a quantum
clock, by evaluating the entropic cost of measuring time.

“Thermodynamics is a funny subject. The first time you go through
it, you don’t understand it at all. The second time you go through it,
you think you understand it, except for one or two small points. The
third time you go through it, you know you don’t understand it, but
by that time you are so used to it, it doesn’t bother you any more.”

— Arnold Sommerfeld

3.1 Introduction

It has been shown that a metallic island between two leads develops a periodic motion
regime if a large bias voltage is placed between the latter. Park et al. studied this phe-
nomenon experimentally by employing a C60 molecule between two golden electrodes [71].
This is known in the literature as shuttle instability [29, 30, 31, 32] and is manifest even
when the size of the island is decreased further and the mechanical motion of the island
becomes quantized [29].

This system exhibits a transition between a phase in which the oscillations are damped
and the stationary phase is the equilibrium point of the system and a phase in which the
oscillations grow until they reach a limit cycle with a fixed amplitude. The mechanism
responsible for the sustained oscillations is the non-linearity of the couplings between the

45
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dot and the leads. In addition to that, a Van der Waals force between the molecule and
the two leads acts as a restoring force. The driving source is the difference of potential
between the leads.

This model is a simple realization of a nano-mechanical electronic clock, as shown in
a recent review [36], where its properties have been studied using the master equation
technique. Timekeeping is a practice that dates back to ancient civilizations. Quantum
clocks have recently received increasing attention, following the seminal article in Ref. [25].
Recent technological developments have rendered this topic relevant and recent studies
have shown that quantum clocks can achieve an improved accuracy with respect to purely
classical ones [94]. The most important question one could ask is how the precision and
the accuracy of the clocks can be quantified and related to other physical quantities, such
as the entropy production and the dissipated heat, and identify the fundamental limits
on them. Previous studies have highlighted a fundamental trade-off relation between the
entropy production and the accuracy of the clocks [25, 36, 41].

The phenomenon of shuttling instability has been studied previously in the limit of
large limit cycles and weak coupling in a series of articles [29, 30, 31, 32, 69]. In this
Chapter, we seek to go beyond these limits and explore the presence of the phenomena
in intermediate and strong coupling. While the transport properties have been studied
extensively, a thermodynamical description in the quantum regime has yet to be built. We
aim to compute both the transport and the thermodynamic quantities in the adiabatic
expansion and to compare the behaviour of the precision and accuracy of timekeeping
with the entropy production and other information-theoretic quantities. This question is
particularly interesting because this is a quantum clock exhibiting coherent transport and
works in a strong coupling regime, resulting in non-trivial correlations with the leads. In
this context, it is not guaranteed the TURs would hold.

The structure of the Chapter is the following: we start by studying the equations of
motion for the centre of mass in the adiabatic limit, to identify the existence of sustained
periodic solutions, dubbed limit cycles, and characterize the dynamics of the system. Then,
we will perform a thermodynamic analysis of the stationary phase. We identify how the
relevant quantities behave concerning the amplitude of said limit cycle and the bias voltage.
Finally, we employ a semi-classical stochastic picture, in order to simulate the effect of the
zero-temperature noise on the trajectories of the clock. This allows us to estimate the
accuracy, and the precision and to compute the stochastic entropy production. Finally, the
current noise and its spectrum are calculated and compared with the other quantities.

3.2 The model

This system (Fig. (3.1)) can be modelled by an Hamiltonian of a movable quantum dot
between two leads [29]. The Hamiltonian is divided into an electronic part, which describes
the single-level quantum dot, which is assumed to be non-interacting, the coupling with
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Figure 3.1: The model: a movable quantum dot, placed between two leads. Both the
energy level of the dot and the coupling are dependent on the position.

the leads, and a parabolic potential, which models the effective elastic force between the
leads and the dot. It reads

H = Hel +Hosc, (3.1)

where
Hel = HD +HV +Hleads (3.2)

and
HD = ϵd(X)c†c, (3.3)

HV =
∑
α

Hα
V =

∑
kα

Tα(X)(a†kαc+ c†akα), (3.4)

Hleads =
∑
kα

ϵkαa
†
kαakα, (3.5)

and

Hosc =
1

2
mω2X2 +

P 2

2m
, (3.6)

where c and akα are the creation-annihilation operators of the dot and the leads’ energy
levels. X and P are the position and momentum associated with the movable quantum
dot. The energy level of the dot obeys a linear displacement relation

ϵd(X) = ϵ0 − dX, (3.7)

where d is proportional to the applied electric field d = eV χ, where χ is the permittivity
of the system, and the coupling obeys a non-linear dependence on the position

TL,R(X) = T0 exp{∓X/λ}, (3.8)

where λ is a characteristic tunnelling decay length.
As it is customary, we will work in dimensionless units for the momentum x = X/r0

and p = P/ϵo with r0 =
√

ℏ
mω and ϵo =

√
mℏω, respectively the length and energy scale

of the harmonic oscillator, under which the oscillatory part of the Hamiltonian reads

Hosc =
1

2
(x2 + p2). (3.9)

The other parameters of the problem are re-scaled accordingly using this length and energy
scales. We denote the rescaled parameters with the prime index.
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3.3 The phase transition

3.3.1 The dynamics of the centre of mass

Let us now study the motion of the centre of mass, in order to characterize the phase
transition in the dynamics of the charge shuttle. At the operatorial level, we write this
system of differential equations for the variables x and p{

ẋ = i[H,x] = p

ṗ = i[H, p] = −x− ∂Hel
∂x .

(3.10)

By deriving the first equation and substituting the second one obtains Newton’s equation
of motion for the position x(t) in the form

ẍ+ x = F (x), (3.11)

where

F (x) = −∂Hel

∂x
. (3.12)

This force term depends on all the operators of the dot and the leads. Therefore, what
one can do is to take the expectation value with respect to their associated states. We will
perform an adiabatic expansion of the r.h.s up to the first order, which produces a non-
linear force term F (0)(x) and a friction-like term F (1)(x)ẋ. Let us start with the expression
of the force, which is

F = −∂Hel

∂x
= −∂Hel

∂ϵ′d

∂ϵ′d
∂x
−
∑
α

∂Hel

∂T ′α

∂T ′α
∂x

. (3.13)

Changing variable implies the following relations for the derivatives ϵ̇′d = −d′ẋ and Ṫ ′α =
λ′−1(−1)αT ′αẋ with α = 0(1) for right (left). In terms of the operators entering Eq. 3.11-
3.13, the expression of the expectation value of the force reads

⟨F ⟩ = d′⟨c†c⟩ −
∑
kα

λ′−1(−1)α(T ′α(t)⟨a
†
kαc⟩+ h.c.). (3.14)

Using the definitions of the Green’s function G<(t, t′) = i⟨c†(t′)c(t)⟩, we can rewrite it as

⟨F ⟩ = −id′G<(t, t)− λ′−1
∑
α

(−1)α⟨Hα
V ⟩(t), (3.15)

with α = 0, 1 associated respectively with L,R. Substituting the gradient expansion of
G<(t, t) and ⟨Hα

V ⟩(t) (see Appendix D) one obtains the expression of the force at different
orders.
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As in the previous Chapter, we will use the notation O(i), for the i-th order of the
adiabatic expansion associated with the quantity O. The zero-order term of the force
reads

F (0) = d′
∫

dϵ

2π
Af̄ − 2

∑
α

λ′−1(−1)α
∫

dϵ

2π
Re(GR)fαΓ

′
α, (3.16)

upon defining f̄ = ΓLfL+ΓRfR
Γ as the weighted average of the Fermi distributions of the

heat baths, whilst the first order reads

F (1) =
d′2

2

∫
dϵ

2π
∂ϵf̄A

2 + d′
∑
α

λ−1(−1)αΓ′α
∫

dϵ

2π

[
(f̄ − fα)

A2

Γ′

− ∂ϵf̄
A2

Γ′
(ϵ− ϵ′d) +

∂ϵA

2
∂ϵfα

]
+ λ′−2

∑
αβ

(−1)α+βΓ′αΓ
′
β

∫
dϵ

2π
∂Γ′A∂ϵfα

+ λ′−2
∑
α

Γ′α

∫
dϵ

2π
A∂ϵfα.

(3.17)

Notice that the retarded Green function is GR = (ϵ− ϵd + iΓ′/2)−1 (Appendix D) and the
spectral function of the dot is A = Γ′

(ϵ−ϵ′d)2+(Γ′/2)2 .

3.3.2 The phase portrait

The next step is to evaluate all these integrals in the zero temperature limit, imposing a
finite frequency cutoff to ensure the convergence of the integrals. This gives a well-defined
equation of motion, which, however, is too complicated to solve analytically. A classic IV-
order Runge-Kutta algorithm will be used to evaluate numerically the dynamics in phase
space.
The phase portrait of the system is pretty interesting: below a certain critical value eVC ,
the trajectories converge to a fixed point (Fig. (3.2)), which is the equilibrium point
satisfying the condition x = F (0)(x). Above the critical voltage, the dynamics changes
radically (Fig. (3.3)). There is a periodic stationary solution, i.e. a limit cycle, with an
amplitude depending on the voltage bias. This cycle acts as an attractive manifold for the
dynamics. The ideal shape of this limit cycle is circular in the phase space and it obeys
the equation x(t) = AC cosωt.

One interesting question is how the phase transition is affected by the interplay of all
the numerous parameters of the system. Let us start with the two parameters controlling
the dependence of the energy level ϵd and of the tunnelling strength T ′α on x, namely λ
and χ. In (Fig. (3.4) and (3.5)) one sees how the amplitude of the limit cycle varies with
respect to the parameter λ′. The optimal strategy is to choose a combination of λ′ and χ′

that displays maximally the transition. The question of the presence of the transition,
even in the regime of strong coupling, is of great importance. The dependence of AC on
the bias voltage eV for different values of the ratio Γ0/ϵ0 is investigated in Fig. (3.6) and
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Figure 3.2: The dynamics for eV < eVC converge to the equilibrium point. For this choice
of parameters, the value of eVC is 0.33ϵo. The chosen parameters are λ = 5ro, χ = 0.1/ro,
eV = 0.25ϵo, Γ0 = ϵ0 = 0.1ϵo, Λ = 100ϵo. The initial conditions are (x, p) = (x0 + ϵ, 0),
where x0 is the equilibrium point and ϵ is set to 0.001ro

Figure 3.3: The dynamics of x(t) for eV > eVC , converging to the limit cycle. The
parameters are the same as Fig. (3.2), but we set eV = 0.4ϵo. The initial conditions are
(x, p) = (x0 + ϵ, 0), where x0 is the equilibrium point satisfying x = F0(x) and ϵ assumes
the value 0.001ro
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Figure 3.4: The critical amplitude vs. the parameter λ′.We vary λ′ and fix χ = 0.1/ro,
as well as Λ = 1000ϵo, eV = 5ϵo and ϵ0 = Γ0 = 1ϵo. Note that for values inferior to
λ = 4 there is no limit cycle. This graph allows us to select the values of λ′ with maximal
visibility of the transition.

Figure 3.5: The critical amplitude vs. the parameter λ′. We vary λ′ and fix χ = 0.2/r0, as
well as Λ = 1000ϵo, eV = 5ϵo and ϵ0 = Γ0 = 1ϵo.
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Figure 3.6: A heatmap of the critical amplitude AC in the region of parameters spanning
from eV = 2ϵo to eV = 7ϵo and Γ0/ϵ0 from ϵo to 2ϵo. The rest of the parameters coincide
with those of Fig. (3.6). From this image, we can visualize the phase transition, noting
that in the limit cycle phase, the critical amplitude is finite.

(3.7), pointing out to the absence of a limit cycle phase in the strong coupling limit. One
realizes that the relation between the slope of the curves is not simply linear and the latter
one tends to zero for Γ0/ϵ0 →∞, as there is no shuttling instability in the strong coupling
regime. The critical value of voltage bias seems to follow a linear relation in the considered
interval.

3.4 Thermodynamics and transport in the stationary state

The goal of this Section is to characterize electronic shuttling from the thermodynamic
point of view. We will start by deriving an expression for all the relevant quantities in the
gradient expansion, exactly as done in Chapter 3. We are interested in their behaviour in
the stationary state, namely the limit cycle for V > VC .

Let us start by observing that at first order all the thermodynamical quantities can be
written in the form

A(1) = F [x(t)]ẋ(t), (3.18)

where F [x(t)] is a generic function of x(t). Therefore when one averages over a period over
the limit cycle its result is∫ T0

0
dtA(1) =

∫ T0

0
dtF [x(t)]ẋ(t) =

∮
C
dxF (x) = 0. (3.19)
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Figure 3.7: The critical amplitude AC vs. eV for different values of the ratio ϵ0/Γ0. We
fix λ′ = 5, χ′ = 0.1, as well as Λ′ = 1000, Γ′0 = 1. The values are ϵ0/Γ0 = 2, 1, 0.67, 0.5
from left to right. Let us note that for values of the ratio inferior to those depicted in the
figure, there is no phase transition, signalling the absence of a shuttle instability in the
strong-coupling regime

As a consequence, the only relevant contributions are at zero order. This is a completely
different situation with respect to the adiabatic pumping of Chapter 2 because in this case,
only a single parameter is time-dependent.

In order to identify the relevant quantities to be computed, one notes that in the context
of open systems coupled to thermal baths at different chemical potentials (Ref. [37]), the
first law of thermodynamics should be respected in the form

Ė = Ẇ + Q̇+
∑
α

µαṄα, (3.20)

and one has µL = eV ′/2, µR = −eV ′/2. Ė is the energy variation rate of the system, Q̇
and Ẇ respectively the heat and the work rate. The rates Ṅα correspond to the variation
in the number of particles in reservoir α, which can be interpreted as

Ṅα = −Iα, (3.21)

where Iα is the current flowing from reservoir α = L,R, so that∑
α

µαṄα = eV ′/2(−IL)− eV ′/2(−IR) = −eV ′ · IL. (3.22)

since the two currents are equal and opposite (Section 3.4.1). The other constraint ones
has to satisfy (Ref. [37]) defines the entropy production rate Σ̇, in terms of Q̇ and the
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entropy Ṡ,

T Ṡ = Q̇+ Σ̇. (3.23)

Moreover, at every order the thermodynamic state functions (see [18]) amount to zero
when integrated over a cyclic process, namely Ė, Ṡ and Ṅ . The full calculation for Ė(0) is
in Appendix F. From the definition, the expression of the work in i-th order reads

Ẇ (i) = F (i−1)ẋ(t). (3.24)

for i ≥ 1 and has no zero order contribution. The only finite quantities at zero order are
Q̇, Σ̇ and Iα. Integrating Equation 3.20 over a period T0 one can infer that∫ T0

0
dtQ̇(0) =

∫ T0

0
dt

∑
α

µαṄ
(0)
α = −eV

∫ T0

0
dtI

(0)
L . (3.25)

From relation 3.23 it follows that∫ T0

0
dtΣ̇(0) = −

∫ T0

0
dtQ̇(0) = eV ′

∫ T0

0
dtI

(0)
L ≥ 0, (3.26)

result consistent with Ref. [61]. This quantity is always positive, as it should respect the
second law of thermodynamics. This is because the current flows from the left lead to the
right lead, as a consequence of the sign of the bias.

As pointed out by [29], the evolution of the amplitude of the oscillations should be

proportional to the work done over the cycle
∫ T0

0 dtẆ [x(t)], assuming a solution of the
dynamics of the form x(t) = A cosωt. Then the value of critical amplitude for the limit cycle

AC can be inferred from the work curves
∫ T0

0 dtẆ (A) from the condition
∫ T0

0 dtẆ (AC) =
0. Consequently, we plot the work done over a cycle with respect to the amplitude of
oscillations at fixed voltage bias. In the under-critical phase, the work driving the dot
position is always positive, i.e. the system is stuck in the A = 0 stationary state (Fig.
(3.8)). For V > VC , the work is negative for the values below AC and changes sign for
larger A (Fig. (3.9)). This is because the system acquires energy from external resources
until it reaches the stationary state. From Fig. (3.10) it is clear that, after an initial
transient, the work integrated over a limit cycle stabilizes around 0.

3.4.1 The equilibrium charge transport in the stationary regime

As we explained in the previous Section, the calculation of the entropy production, which
is crucial, requires the knowledge of the equilibrium current flowing from each reservoir to
the dot. As in Chapter 3, we define the charge transport in terms of the driving period

Q(0)
α =

1

T0

∫ T0

0
dt⟨Iα(t)⟩, (3.27)
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Figure 3.8: The curve of the work W (2) over a cycle vs. A in the under-critical phase. One
can see that the work per cycle is always positive for all the values of A.

Figure 3.9: The curve of the work W (2) over a cycle vs. A in the upper-critical phase. The
zero of this graph provides an imprecise estimation of the value of the limit cycle from the
condition Ẇ (AC) = 0. Below this value, the work per cycle is negative as the amplitude
grows, while the sign is reversed for A > AC .
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Figure 3.10: The curve of the work W (2) integrated over a cycle [t, t+T0] vs t for eV = 0.5
and the choice of parameters of Fig. (3.3) and the initial conditions (x, p) = (x0 + ϵ, 0),
ϵ = 0.001 . It shows that, after an initial transient in which the system absorbs energy
from the external driving, the quantity stabilizes around its stationary value close to zero.

where

⟨IL⟩ = −⟨ṄL⟩ = ⟨
d

dt

∑
k

a†LkaLk⟩ (3.28)

In particular, one would like to compute the left current

⟨IL⟩ = −i⟨[H,NL]⟩. (3.29)

This commutator reads in terms of the mixed Green function [46]

i
∑
k∈L

TL[⟨aLkc− h.c.⟩] = 2Re

[∑
k∈L

TLG
<
d,Lk(t, t)

]
. (3.30)

At zero order the expansion of the charge is (see Appendix D)

Q
(0)
L =

1

T0

∫ T0

0
dtI

(0)
L =

∫ T0

0

dT

T0

∫
dϵ

2π
2
∑
k∈L

Re

[
GR(ϵ, T )Σ<(ϵ, T ) +G<(ϵ, T )ΣA(ϵ, T )

]

=

∫ T0

0

dT

T0

∫
dϵ

2π
2Re

[
A

2
fLΓ

′
L −

A

2
f̄Γ′L

]
=

Γ′LΓ
′
R

Γ

∫ T0

0

dT

T0

∫
dϵ

2π
(fL − fR)A

(3.31)

where we used the definition of f̄ . By calculating the right current in the same way, one

can readily verify that the relation Q
(0)
L = −Q(0)

R holds. From the expression, we note that
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this current is maximal when the dot is equidistant between the two leads and tends to for
large x, as it is weakly coupled to one of the two leads.

3.5 The characterisation of the noise

So far, we have considered only the deterministic equations of motion of the centre of mass
of the shuttle. Now, we would like to incorporate the effect of the noise on the dynamics
of the shuttle instability. This is essential for evaluating the performance of this clock.
In order to do so, we will employ a stochastic semi-classical approach. First of all, let us
rewrite the force term as

F (t) = ⟨F (t)⟩+ δF (t), (3.32)

One can interpret δF (t) as a noise term. Clearly, per definition, it has the property that
⟨δF (t)⟩ = 0. The key mathematical object we are interested in computing is the correlation
function of the noise ⟨δF (t)δF (t′)⟩. The latter reads

⟨δF (t)δF (t′)⟩ = ⟨F (t)F (t′)⟩ − ⟨F (t)⟩⟨F (t′)⟩. (3.33)

This has to be done by employing the Wick theorem on the Keldysh contour and subse-
quently performing a gradient expansion. The details of the calculation can be found in
the Appendix H.
The results show that the correlation function can be appropriately approximated as a
delta function, viz.

⟨δF (t)δF (t′)⟩ = D[x(t), p(t)]δ(t− t′), (3.34)

with the noise correlation function D[x(t), p(t)]. The full system of stochastic differential
equations now reads {

ẋ = p

ṗ = −x+ F0(x) + F1(x)p+
√
D(x, p)ξ(t),

(3.35)

with

⟨ξ(t)ξ(t′)⟩ = δ(t− t′) (3.36)

being a realization of white noise with unit variance. In turn, the correlation function is
expanded in the quasi-adiabatic limit (Appendix H) as

D(x, p) = D(0)(x) +D(1)(x)p. (3.37)

This equation can be simulated using a standard Stochastic IV-order Runge-Kutta algo-
rithm [47].

Let us discuss the results one obtains in all the different phases. For V < VC (cfr. [69])
the probability density is peaked around the equilibrium point. In contrast, for V > VC
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the orbits are distributed as an annulus around the limit cycle. However, in this case, the
transition is more blurred, as there is an intermediate phase around the critical point, in
which the presence of a limit cycle does not prevent a non-negligible probability of the
trajectory being around the equilibrium point.

3.5.1 An useful change of variables

Given the structure of the stationary solution, the problem can be efficiently represented
with polar coordinates. This change of variables is informative and can shed new light on
the dynamics of shuttling instability.
The change of variables is defined as{

r =
√
x2 + p2

θ = arctan[p/x] + θ0,
(3.38)

θ0 being an arbitrary initial phase. With this choice of variables ([39]), the stochastic
differential equations read{

ṙ = 2 sin θF (r, θ) + cos2 θ
r D(r, θ) + 2 sin θ

√
D(r, θ)ξ1(t)

θ̇ = −1 + cos θ
r F (r, θ)− sin θ cos θ

r2
D(r, θ) + cos θ

r

√
D(r, θ)ξ2(t),

(3.39)

where both ξ1(t) and ξ2(t) are two different realizations of white noise with unitary variance.
The functions D(r, θ) and F (r, θ) read

F (r, θ) = F (0) + F (1)r sin(θ), D(r, θ) = D(0) +D(1)r sin(θ) (3.40)

This new change of variable allows one to identify clearly the radial fixed point. Firstly, if
one averages over the noise and considers only the differential equation for r

dr

dt
= 2 sin θF (r, θ), (3.41)

the fixed point condition identifies the critical radius AC (see Fig. (3.11)). This solution
exists only in the limit cycle phase and allows us to give an estimation of AC . If one
includes now the effect of the disorder and averages over the noise, the condition reads

dr

dt
= 0 = 2 sin θF (r, θ) +

cos2 θ

r
D(r, θ). (3.42)

Evidently, the fixed point tends to shift towards greater values of r (Fig. (3.12)) as the
effect of the noise is included.
The RHS of the differential equation (Eq. 3.35) for θ allows one to estimate the average
phase modification over a period

θ̇ = −1 + cos θ

r
F (r, θ)− sin θ cos θ

r2
D(r, θ). (3.43)
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Figure 3.11: This is the r.h.s. of equation (3.41) when averaged over the angular, plotted
with respect to the r parameter for eV = 0.5, and the same parameters of Fig. (3.2). The
zero of this graph identifies the radial fixed point.

Figure 3.12: This is the RHS of equation (3.42) when averaged over the angular, plotted
with respect to the r parameter for eV = 0.5, and the same parameter choice of Fig. (3.2).
The zero of this graph identifies the radial fixed point when one takes into account the
effect of the noise. One can note it is shifted to greater values with respect to Fig. (3.11)
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Figure 3.13: The solution for the dynamics of θ(t) for small radius: exponential convergence
to an angular fixed point. The value of the radius is r=0.1, with eV = 0.5 and the same
choice of parameters of Fig. (3.2)

An important question is whether, if one fixes the radial coordinate to a given value r∗,
one has a uniform motion in the θ variable or not. The obtained results signal two different
behaviours: for small values of the radius the dynamics tend to converge exponentially to
a fixed point (Fig. (3.13)), while at higher values of the radius, the dynamics is nearly
uniform (Fig. (3.14)).
The existence of an angular fixed point of the differential equation is the element which

allows to discriminate between these two different behaviours. Then, there is a value of the
radius rC above which there is no solution and we demand the latter to be small enough
for the probability of the trajectory to be below this radius to be negligible.

3.6 The clock’s performance

3.6.1 Precision and accuracy vs. entropy production

Having characterized the noise in the dynamics of the shuttle, now we are in the right
place to characterize the performance of the clock and compare it with the relevant ther-
modynamical quantities. In particular, we will compute the resolution and the accuracy.
Then, we will compare it with the entropy production, investigating the relation between
the two, to evaluate the thermodynamic cost of time measurement. The choice of param-
eters we employ is informed by the analysis of the previous sections (3.3.2 and 3.5.1). In
particular, one wants the shape of the limit cycle to be close enough to the ideal circular
shape. Another important requirement is the visibility of the phase transition for finite



3.6. THE CLOCK’S PERFORMANCE 61

Figure 3.14: The solution for the dynamics of θ(t) for large radius: almost uniform motion
in the angular variable. The value of the radius is r=0.3, with eV = 0.5 and the same
choice of parameters of Fig. (3.2)

values of the voltage bias. Finally, the motion of the clock should be uniform, as already
pointed out. With this choice of parameters, we will compute the only thermodynamic
quantity relevant, i.e. the non-equilibrium entropy production, using the results of Section
3.4. Here we plot the average over a period of the entropy production up to the first order
obtained in two different ways: from the deterministic trajectories and as the average over
the stochastic realization of the noise (Fig. (3.15)).

The results highlight the differences between the two realizations: while in the deter-
ministic entropy production, the two phases are clearly distinguishable, in the stochastic
one the transition point is more nuanced, highlighting a superposition between the two
phases (as it is evident also from the stochastic thermodynamics perspective [93]).

The other quantities we are interested in computing are precision and accuracy. Once
one has the simulated trajectories, the periods of oscillation can be computed by counting
how many times the trajectory of x(t) changes sign. Having obtained the average period,
which for now we call µT , and its variance σ2T , we can characterize the precision of the clock,
which can be calculated as 1/µT , and the accuracy as µ2/σ2T [25] (see Introduction). The
resolution is the rate of generation of the ticks, while the accuracy is the expected number
of ticks before the clock’s reading is off by one tick. We plot the results for different values
of the voltage bias in Fig. (3.15) and (3.16) as well as the relative error (Fig. (3.17)) One
can draw conclusions about these quantities by quickly comparing the graph of the relative
entropy with the ones related to precision and accuracy. There appears to be a direct
proportionality between the accuracy and the entropy production, even if the relation is
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Figure 3.15: The entropy production over deterministic trajectories (solid orange) vs. the
stochastic entropy production computed over N = 100 trajectories (dashed blue). It is
clear that in the deterministic calculation, two curves correspond to the two phases. The
entropy grows steadily and peaks around the transition point, after changing its trend.
The stochastic entropy production follows the same trend, but the transition is smoothed
and its curve lies below because the trajectories tend to drift towards larger values of the
radius. From Eq. (3.31) it is clear that the entropy production, being proportional to the
charge transport, in the adiabatic limit is maximal when the dot is around x = 0.
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Figure 3.16: The precision of the clock. This quantity decreases for small values of AC , but
after it inverts its tendency. Note that little can be said about the relation between this
quantity and the entropy production. N=50000 was the number of trajectories simulated.
The set of parameters is the same as Fig. (3.3)

Figure 3.17: The relative error of the clock: its behaviour is the opposite of the observed
one in the precision. There is an increase of this quantity along the interval considered.
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Figure 3.18: The accuracy of the clock. Its behaviour marks a sudden decrease after
the transition point, which becomes smoother for larger radii. The accuracy seems to be
inversely correlated with the entropy production, even if not linearly.

not linear along all the considered intervals. This aligns completely with our expectations
and the results in the literature.

The distribution of the period is different according to the value of the difference of
potential. We consider three different values and sample this quantity with N=5000 ensuing
periods. In the under-critical phase, for eV = 0.2 we obtain a data distribution (Fig.
(3.19)), which one can compare with the inverse Gaussian distribution, having the following
form

IG(T, µ, σ) :=

√
µ2

2πσ2T 3
exp

{
− µ(T − µ)2

2σ2T

}
(3.44)

which is the distribution of the return time of a Brownian process [77]. The same consid-
erations apply in the upper-critical phase for values of the voltage close to the transition
(Fig. (3.20)). In contrast, at higher voltages, the data binning is not compatible with the
Wald distribution, and it becomes more asymmetrical and sharply peaked (Fig. (3.21)).

3.6.2 The Allan variance

Another key quantity to evaluate the performance of a clock is the Allan variance (see Ref.
[41],[6]), used to quantify the correlation between the different ticks. The former expresses
the deviation of a measured clock signal θ, from a second reference clock, which is assumed
to be ideal.
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Figure 3.19: This is the distribution of the periods for eV = 0.20, when interpolated with
the inverse-gaussian or Wald distribution. The interpolation agrees perfectly with the data
distribution.

Figure 3.20: This is the distribution of the periods for eV = 0.40, in the upper-critical
phase, when interpolated with the inverse-gaussian or Wald distribution. The interpolation
agrees perfectly with the data distribution and the fit parameters are µ = 6.447 ± 0.007
and σ = 0.191± 0.006. These values are compatible with the ones obtained previously in
order to calculate the accuracy and the precision.
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Figure 3.21: This is the distribution of the periods for eV = 0.70, in the upper-critical
phase, when interpolated with the inverse-gaussian or Wald distribution. The interpolation
does not agree with the data distribution. In contrast, it is more sharply peaked and
asymmetrical.

The measured deviation from an ideal clock is

X(t) = θ(t)− t. (3.45)

If one defines

Y (t) =
dX(t)

dt
(3.46)

as the instantaneous difference and integrates it over the period T , obtains the average
fractional frequency difference

Ȳ (t, T ) =
1

T

∫ t+T

t
dt′Y (t+ t′). (3.47)

Its variance represents the Allan variance

σ2Y (T ) =
1

2
{[Y (t+ T, T )− Y (t, T )]2}. (3.48)

The Allan variance of the clock is computed by partitioning the signal in intervals of length
T . Then one counts the number of ticks in every region. Let Xn(T ) be the latter quantity
calculated in the n-th region, then the Allan variance can be estimated as

σ2Y (T ) =
1

2T 2
{(Xn−1 +Xn+1 − 2Xn)

2} (3.49)
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Figure 3.22: The Allan variance for different voltages above and beyond the transition
point. The scaling T−1 is respected until the time intervals of the order 102. After this
value, one observes a slower decrease in the variance in the upper-critical phase.

.
The result in Fig. (3.22) highlights for small T an adherence to the renewal process

scaling, i.e. σ2Y ∼ T−1 for small scales, with the presence of peaks at multiples of the
period of oscillation. The two phases present the same behaviour. However, at medium
time scales, there is a significant differentiation between the two phases: in the lower-critical
phase, the variance tends to continue to follow the scaling, while in the upper-critical one,
there is a slower decrease.

In general, the decrease of the Allan variance over T signals the increased precision
of the clock when the integration is performed over larger times. The negative peaks,
which appear at multiples of the period, are a consequence of the information yielded by
this quantity over the signal of the clock. Moreover, the differentiation of the two phases
signals that any possible advantage in medium/longer timescales in timekeeping due to the
self-sustained oscillations is eventually lost.
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Chapter 4

Quantum Clocks and Quantum
Batteries
- Where we introduce a new proposal of a quantum clock using the
free-energy resources offered by the non-equilibrium stationary state of
an integrable spin chain.

“The career of a young theoretical physicist consists of treating the
harmonic oscillator in ever-increasing levels of abstraction.”

— Sidney Coleman

4.1 Introduction

Unlike the physical model presented in the previous chapter, there are quantum timekeeping
devices relying on clockwork dynamics defined on a finite-dimensional Hilbert space. The
key example is the thermal clock of Erker et. al. [25]. As we will see, said clock relies on
the concept of the virtual qubit, introduced first in [15]. This smallest thermal machine is
composed of two qubits each interacting with a thermal bath at different temperatures. One
then can engineer a thermal state with a negative temperature from the combined Hilbert
space of the qubits. The latter enables the production of an inversion of population that
can produce work in a nanoscale process. In turn, Erker et.al. used this thermal machine
to construct a thermal clock, by adding a ladder of arbitrary (but finite) energy levels with
a fixed spacing between them, resonantly coupled to the qubit. Once the top of the ladder
is reached, a photon is emitted, which constitutes a clock’s signal.

In this Chapter, we examine the new proposal of a quantum clock, inspired by this one,
coupled to the non-thermal stationary state of an integrable quantum spin chain, driven
away from equilibrium by a quench in one of its parameters. This stationary state, drawn
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from a generalized Gibbs ensemble (GGE) [17, 34, 92], has in general a finite ergotropy, and
therefore is a non-passive state. Consequently, this spin chain is a particular realization
of a quantum battery, providing the external resources for the clock’s operation. While a
quantum battery is typically characterized by investigating charging power and quantifying
extractable work [19, 76, 9, 20] here we study in detail the conditions upon which this work
can be used to operate a specific quantum clock.

We will examine particular examples of spin chains, which are relevant for experimental
simulations. In the latter ones, the key results indicate the necessity to cross the transition
point in the quench protocol, bearing a striking connection with the optimal charging
protocol of Ref. [42]. These examples are feasible for experimental simulation using trapped
ions [28, 79, 75] with an astonishing level of control.

4.2 What is a quantum clock? Dictionary of general defini-
tions

What is a quantum clock? To answer this question we follow closely the treatment of
Ref. [86]. We take a quantum clock to be any system described by the laws of quantum
mechanics that provides an estimation of time, intended as the parameter appearing in the
non-relativistic Schrodinger equation. This definition encompasses a wide range of physical
systems [36, 22, 90, 63, 59]. However, one can identify key characteristics a quantum clock
must obey. We will attempt to give some formal definitions and classifications of relevant
types of clocks operating with dynamics described from the quantum mechanical point of
view. This will identify the key desiderata obeyed by the clock we are going to analyze
and how they affect the formal description of its dynamics.

A clock is any object with time-dependent dynamics which can be observed to give an
estimation of time. A key requirement for a clock is independence. An independent/ticking
clock is one for which the measurement of time information does not disturb the clock or
affect the result of future measurements. On a formal level, in the quantum limit, one
can define the state of the clock at time t from the density matrix, by tracing out the
environment

ρ̂(t) = TrE [e
−iĤSEtρ̂

(0)
SEe

iĤSEt], (4.1)

where ρ̂
(0)
SE is the density matrix describing the state of the system+environment at the

initial time. Please note that in the course of this Section, we are using hats on operators
to distinguish them from mere numbers.

The measurement operators are defined as Kraus operators Âk, such that
∑

k Â
†
kÂk = 1.

A direct consequence of the independence principle is that this density matrix satisfies

ρ̂(t) =
∑
k

Âkρ̂(t)Â
†
k ∀t, (4.2)
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Figure 4.1: The register of a classical clock.

as a direct consequence of the non-disturbance of the measurement from the independence
principle. This implies that, if the clock is measured at t2, then the outcome is independent
of what is measured at an earlier time t1. The principle of independence has a consequence
on the structure of the Hilbert space of the clock, leading to the Koashi-Imoto decomposi-
tion. If we have the degrees of freedom of the ”clockwork” {HCn}n and those of the display
{HFn}n, and n is the register index. Then, the total Hilbert is subdivided into the relative
Hilbert spaces

H =
⊕
n

HCn ⊗HFn , (4.3)

and the relative density matrix of the clock at time t is block-diagonal in the register index
n

ρ̂(t) =
⊕
n

p(n|t)ρ̂(n|t)⊗ ω̂n, (4.4)

where p(n|t) is a probability distribution and ρ̂(n|t) is a properly normalized density matrix
and ω̂n is time independent. The measurement operators act only on the display part

Âk =
⊕
n

1̂n ⊗ Âk,n (4.5)

and

ω̂n =
∑
k

Âk,nω̂nÂ
†
k,n ∀n. (4.6)
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The corresponding probability to measure an outcome k is

P (k) =
∑
n

p(n|t)Tr[Â†k,nÂk,nω̂n] =
∑
n

p(n|t)ak,n, (4.7)

which is a coarse-grained measurement of the probabilities p(n|t). The ak,n is another prob-
ability distribution independent of time. This independence requirement justifies neglecting
the display part. We can take a minimal clock to be composed only of the ”clockwork”
part (and the register index)

H =
⊕
n

HCn (4.8)

ρ̂(t) =
⊕
n

p(n|t)ρ̂(n|t) (4.9)

Âk =
⊕
n

δn,k1̂n. (4.10)

The definition of the essential clock [86] leads to an even simpler structure in terms of the
Hilbert space of the clockwork. The elementary ticking clock has the following structure,
which separates the register from the clockwork

H = HT ⊗HC (4.11)

ρ̂(t) =
∑
n

p(n|t)ρ̂(n|t)⊗ |n⟩⟨n|T (4.12)

Âk = 1̂C ⊗ |n⟩⟨n|T . (4.13)

An important characteristic of an essential clock is self-timing. A clock is self-timed if
its dynamics is Markovian and does not require keeping the memory of the environment
for the past in its evolution. This implies a description by a Lindbladian master equation.
In other words, the state at time t depends on the state at time 0 by a dynamical map

ρ̂t = Λt[ρ̂0], (4.14)

where Λt is a family of completely positive, trace-preserving maps, satisfying the property

Λt = Λs · Λt−s (4.15)

for all t,s such that 0 ≤ s ≤ t. This implies a Lindbladian dynamics of the form

d

dt
ρ̂(t) = L[ρ̂(t)] (4.16)

and
ρ̂(t) = eΛttρ̂(0). (4.17)
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The Lindbladian superoperator has the form

L[ρ̂] = −i[Ĥ, ρ̂] +
∑
k

γkL̂kρ̂L̂
†
k −

1

2

∑
k

γk{L̂†kL̂k, ρ̂}. (4.18)

Furthermore, the Hamiltonian is diagonal in the register states n

Ĥ =
⊕
n

Ĥn (4.19)

and the jump operators on the register connect only one state n’ for a single state n so
that there exists only one pair {n, n′}such that

Π̂nL̂jΠ̂n′ = L̂j (4.20)

for
Π̂n =

⊕
n

δk,n1̂n, (4.21)

the projector on the n-th subspace of the clockwork. The requirement of clockwork inde-
pendence states that the clockwork of a ticking clock are independent of the state of the
register. This, in turn, implies

HCn = HC (4.22)

and
H = HC ⊗HT . (4.23)

The dynamics of the clockwork C is independent of the register state

TrT [L[ρ̂C ⊗ |n⟩⟨n|T ]] = TrT [L[ρ̂C ⊗ |n′⟩⟨n′|T ]] ∀n, n′. (4.24)

A specific type of clock is the graph clock. This quantum clock is an elementary clock
with a graph structure in the clockwork (see Fig. (4.2)). This graph has its transition
rates between all the states and the jump operators who are associated with a shift in
the register. If the dynamics of such a clock satisfies translational invariance, then the
Lindblad operator has the form

L[ρ̂t] =
∑
∆

(L∆ ⊗X∆)[ρ̂t], (4.25)

where
X∆[|n⟩⟨n|] = |n+∆⟩⟨n+∆| ∀n. (4.26)

As we already pointed out, irreversibility is a property connected to the entropic cost of
measuring time. Translated, it means that the state of the register cannot return to the
same state two times, for at least a subset of indices of the register. If the clock has the
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Figure 4.2: This is a scheme of the structure of the clockwork in a graph clock. We have
included the transition rates between the states λi and the jump operator shifting the
register index n.

property that returns to the initial configuration after each tick, it is dubbed a reset clock.
In that case, the ticks are i.i.d. (independent and identically distributed). A single tick
waiting-time distribution is sufficient to describe everything about the clock.

Let us conclude the present section by noting that these definitions identify a particular
type of quantum clock and are not obeyed by all the examples of clocks found in the
literature. Indeed, as we will see, some clocks can work in the regime of strong coupling with
the environment. Moreover, this treatment concerns only registers with finite-dimensional
Hilbert space, while certain clocks rely on dynamical systems with dissipative limit cycles.
Finally, measurements and coherence can be used as timekeeping resources.

4.3 The thermal clock

Now, let us examine in greater detail the thermal quantum clock by Ref. [25]. This is an
essential graph clock and a reset clock, satisfying the requirements exposed in the previous
Section 4.2. This clock was introduced as a minimal model of a quantum clock powered
by thermal resources, to analyze the fundamental thermodynamic limit of quantum time-
keeping.

This quantum clock uses the minimal model of a thermal machine put forward by
Brunner et.al. [16]. This thermal machine consists of two qubits each one in contact with
a thermal reservoir with fixed temperatures respectively Tc and Th, satisfying Th > Tc.
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Each qubit has its associated energy Eh > Ec. The combined Hilbert space of the two
qubits is {|0⟩c|0⟩h, |1⟩c|0⟩h, |0⟩c|1⟩h, |1⟩c|1⟩h}, with associated energies 0, Ec, Eh, Ec + Eh.
Each qubit is therefore in the thermal state, viz.

τi =
1

1 + e−Ei/Ti
(|0⟩⟨0|i + e−Ei/Ti |1⟩⟨1|i). (4.27)

i = c, h. As the article shows, by selecting the subset of the combined Hilbert space {|0⟩v =
|1⟩c|0⟩h, |1⟩v = |0⟩c|1⟩h}, one has a virtual qubit, whose energy spacing is Ev = Eh − Ec

and whose virtual temperature is defined by the relation

Tv =
Eh − Ec

Eh
Th
− Ec

Tc

. (4.28)

This virtual qubit can act as a refrigerator when Tv < Tc, Th, and as a heat pump when
Tv > Tc, Th. Interestingly enough, when Tv becomes negative1, implying Eh

Th
< Ec

Tc
, this

qubit acts as a thermal machine. This is because a population inversion is created in it.
This fact means that this qubit can perform work, for example when connected to a ladder
of energy level, by lifting its state. The important concept here is population inversion: in
quantum mechanics, each process is constrained to have its inverse due to the requirement
of the hermiticity of the Hamiltonian. The only way to suppress the inverse process is to
make sure the population of the excited state is greater than the one of the ground state
in the virtual qubit.

Taking advantage of this concept, Erker et. al. [25] designed a model consisting, for
the clockwork part, of a virtual qubit coupled to a ladder of d equally-spaced energy levels.
The jump process takes place from the highest energy level to the lowest, with an emission
of a photon, constituting the signal of the clock. Therefore, the structure of the ladder is
a ring-shaped graph. The Hamiltonian of the model reads

H = H0 +Hint, (4.29)

where

H0 =
∑
j=h,c

Ej |1⟩⟨1|j +
d−1∑
k=0

kEw|k⟩w⟨k|w (4.30)

and

Hint = g
d−1∑
k=0

(|1⟩c|0⟩h|k + 1⟩w⟨1|c⟨0|h⟨k + 1|w + h.c.) (4.31)

The resonance condition implies that Ew = Eh−Ec. A pictorial representation of the setup
of this model can be found in Fig. (4.3). As a result of the weak coupling assumption and
the absence of initial coherence, the authors justify a semiclassical biased random walk

1Please note this is not a thermodynamic temperature, so its definition does not create any problem.
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Figure 4.3: A depiction of the thermal clock from [25], involving a virtual qubit weakly
coupled to a ladder of d energy levels. The signal of the clock is produced by the sponta-
neous emission of a photon, taking place once it reaches the top of the ladder. In a) the
whole structure of the clock is depicted, distinguishing between the pointer (the clockwork)
and the external register. b) represents the structure of the clockwork, with reference to
the virtual qubit and the ladder. c) represents the virtual qubit, with special reference to
the structure of its Hilbert space.

approximation, resulting in incoherent dynamics of the clockwork. The calculated upward
and downward transition rates satisfy the key relation

p↑
p↓

= e−βvEv . (4.32)

This semiclassical analysis allows one to compute the average time it takes to reach
the top of the ladder and its dispersion. In this approximation, the state of the ladder
can be described using a time-dependent probability distribution q(n, t) [25], where n ∈ Z.
This probability distribution satisfies q(n, t) > 0 and

∑
n q(n, t) = 1, the normalization

condition. The evolution is governed by the master equation

dq(n, t)

dt
= p↑q(n− 1, t) + p↓q(n+ 1, t)− (p↑ + p↓)q(n, t) (4.33)

Now, we denote the mean as µ and the variance as σ2

µ(t) =
∑
n

nq(n, t) (4.34)

σ2(t) =
∑
n

(n− µ(t))2q(n, t). (4.35)
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The average position of the ladder obeys the following equation

dµ(t)

dt
=

∑
n

n
dq(n, t)

dt
= p↑ − p↓. (4.36)

From its definition, the equation for the variance reads

dσ2(t)

dt
=

∑
n

(((n− µ(t))2dq(n, t)
dt

− 2(n− µ(t))dµ(t)
dt

q(n, t). (4.37)

Using Eq. 4.36 and the definition of variance, one can infer that

dσ2(t)

dt
= p↑ + p↓. (4.38)

The average time it takes to reach the top of the ladder is given by the ratio between the
ladder dimensionality and the average velocity

ttick =
d

dµ(t)
dt

=
d

p↑ − p↓
. (4.39)

The replacement of d − 1 by d is due to the assumption of large dimensionality of the
ladder. The precision, then is defined as the inverse of the average period

νtick =
1

ttick
=
p↑ − p↓
d

. (4.40)

If one integrates the increase rate of the variance over a period, one obtains

∆σ2(t) = ttick
dσ2(t)

dt
= d

(
p↑ + p↓
p↑ − p↓

)
. (4.41)

The uncertainty in the time interval between two different ticks

∆ttick =
σ(t− ttick)

dµ(t)
dt

=

√
d

p↑ − p↓

√
p↑ + p↓
p↑ − p↓

. (4.42)

The definition of accuracy reads

N =

(
ttick
∆ttick

)
. (4.43)

Substituting the expressions (Eq. 4.39,4.42) yields

N = d

(
p↑ − p↓
p↑ + p↓

)
. (4.44)
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The entropy production, according to the standard thermodynamic definition, reads

∆Stick = d(βcEc − βhEh). (4.45)

As a consequence, one can write the random walk bias as

p↑
p↓

= e
∆Stick

d . (4.46)

Inserting this expression in the accuracy (Eq. 4.6) one obtains

N = d tanh

[
∆Stick
2d

]
. (4.47)

When one takes the limit d→∞, the expression reduces to a linear relation

N → ∆Stick
2

, (4.48)

saturating the bounds of the thermodynamic uncertainty relations (Section 1.5). In the
limit ∆Stick →∞, N → d yields the maximum accuracy for an incoherent clock.

4.4 The clock and the battery

Inspired by the thermal clock described above, we are going to introduce a new proposal
for a quantum clock powered by the stationary state of an integrable quantum spin chain.
This stationary state, drawn from a generalized Gibbs ensemble (GGE) [17, 34, 92], in
general, has a finite ergotropy [4, 5] and is consequently a particular case of a quantum
battery [4, 19, 79, 73]. These integrable models are apt for experimental simulation using
trapped ions [28, 79, 75] with an astonishing level of control.

In this case, only a single qubit is necessary, acting as a frequency filter, which is coupled
resonantly to the ladder of d equally spaced energy levels, whose dynamics mimics the one
described in the previous Section.

The associated Hamiltonian of the model comprises five terms

H = HB +HQ +HL +HQL +HQB. (4.49)

Here HQ is relative to the qubit

HQ =
ϵ0
2
σzQ (4.50)

HL is the ladder Hamiltonian

HL =
d−1∑
k=0

kϵwc
†
kck, (4.51)
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Figure 4.4: The setup of the clock consists of a qubit coupled to a ladder of energy levels
of equal spacing ϵw. The ladder is resonant with the level spacing of the qubit ϵ0 so that
ϵ0 = ϵw. The motion of the ladder is biased and each time the top is reached, a photon
is released with rate Γ, thus constituting the signal of the clock. The qubit interacts with
the battery, which is used as a free energy source to bias the ladder’s dynamics.

where the creation-annihilation operators c†k/ck are fermions. The resonance condition is
ϵw = ϵ0, which means that the levels |1⟩Q|k⟩L has the same energy as |0⟩Q|k + 1⟩L. The
interaction Hamiltonian between the qubit and the ladder reads

HQL = g

d−1∑
k=0

(σ−Qc
†
k+1ck + h.c.), (4.52)

where g represents the strength of the coupling. The qubit is coupled to the battery through
a specific observable of the latter, whose choice is crucial for the clock’s operation. In terms
of a generic observable A, the qubit-battery interaction term has the expression

HQB = σxQA. (4.53)

We will explore different examples of integrable quantum spin chains and their coupling to
the qubit.

In general terms, the initial state of the spin chain is a fully charged battery, corre-
sponding to the highest excited level of the many-body system. The battery is activated
at time t = 0 by quenching one of its parameters from λi to λf . Subsequently, it reaches
the stationary regime and we couple to it after this relaxation has taken place. The role of
the quench here is to perform work on the battery, analogously to the charging protocol.

A schematic depiction of the clock-battery setup is in Fig. (4.4).
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4.5 The dynamics of the clock

In this Section, we will derive the ladder dynamics in the weak coupling regime, namely
g ≪ ϵ0.
The following superoperator represents the effect of the battery on the qubit

Lγ = γ↓D[σ−] + γ↑D[σ+], (4.54)

in terms of the qubit raising and lowering operators σ±, the transition rates of the qubit
states due to the effect of the battery γ↑,↓, and the dissipator

D[A]ρ = AρA† − 1

2
{A†A, ρ}. (4.55)

One describes the dynamics of the clock in the ”no-click” subspace. The associated density
matrix is ρ0(t) conditioned on no spontaneous emission having occurred up to time t. We
assume the pointer to be in the product state

ρ0(0) = ρQ(0)⊗ |0⟩⟨0|w (4.56)

with a generic (unimportant) initial condition for the qubit. The evolution of the condi-
tional density operator is described by the equation of motion

dρ0
dt

= i(ρ0H
†
eff −Heffρ0) + Lγρ0, (4.57)

where the effective Hamiltonian is

Heff = H0 +Hint +Hse, (4.58)

and H0 = HQ + HL and Hint = HQL and the spontaneous emission term, which is non-
Hermitian

Heff = − iΓ
2
c†d−1cd−1. (4.59)

4.5.1 The biased random walk model

In the limit γ ≫ g,Γ, we use the Nakajima-Zwanzig projection technique to derive an
evolution equation for the conditional reduced density operator of the ladder

ρw(t) = TrQ[ρ0(t)]. (4.60)

Let us introduce the projector into the separated state, defined as

Pρ0(t) = ρw(t)⊗ ρQ. (4.61)
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We rewrite the evolution equation of the conditional density matrix as

dρ0
dt

= Lρ0, (4.62)

where
L = L0 +Hse +Hint (4.63)

where the Hamiltonian superoperator reads

Hseρ = i(ρH†se −Hseρ). (4.64)

Let’s transform the density operator to a dissipative interaction picture defined by ˜ρ(t) =
e−L0tρ0(t). The corresponding evolution of the superoperators is given by

H̃int(t) = e−L0tHinte
L0t, (4.65)

while the operator H̃se stays the same, because it commutes with the operator L0. Starting
from the perturbative argument in the coupling strength of the interaction g and Γ, one
can write

dP ρ̃0
dt

= H̃seP ρ̃0(t) +
∫ t

0
dt′PH̃int(t)H̃int(t

′)P ρ̃0(t′), (4.66)

valid up to the second order. One then applies the Born-Markov approximation, on the
assumption that γ↑,↓ ≫ g,Γ. The next steps are expanding the commutator in the basis of
the jump operators, whose eigenvalues are the energy differences between the levels of the
system, tracing over the qubit states and transforming back to the Schrodinger picture.
On the further assumption of no initial coherence, the resulting master equation for the
population of the levels pw is

dpw
dt

= p↓D[Bw]pw + p↑D[B†w]pw −
Γ

2
(|d− 1⟩w⟨d− 1|wpw + pw|d− 1⟩w⟨d− 1|w), (4.67)

in terms of the ladder jump operators Bw = c†kck+1. In our case the resulting expression
for p↑ and p↓ is

p↑ = 2g2
∫ ∞
0

dteiϵwt⟨σ−(t)σ+(0)⟩ (4.68)

and

p↓ = 2g2
∫ ∞
0

dte−iϵwt⟨σ+(t)σ−(0)⟩. (4.69)

The ladder operators evolve according to the adjoint Liouvillian operator σ−(t) = eL
†
0tσ−(0),

resulting in σ−(t) = exp(−iϵ0−γ+t)σ−, where we define γ+ = γ↑+γ↓. Upon inserting this
expression into the definition of p↑,↓ we have

p↑ =
2g2

γ+
⟨σ−σ+⟩s (4.70)
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and

p↓ =
2g2

γ+
⟨σ+σ−⟩s, (4.71)

where these averages are calculated in the stationary state of the qubit.

Using the representation of the qubit density matrix as ρ(t) = 1
2

(
1 + ⟨σ⃗(t) · σ⃗⟩

)
and

inserting it into the Lindblad equation for the dynamics of the system qubit+battery only

dρQ
dt

= i[HQ, ρQ] + LγρQ (4.72)

one ends with the following evolution equations for the averages of the spin operators

d⟨σ+⟩
dt

= −γ+⟨σ+⟩ (4.73)

d⟨σ−⟩
dt

= −γ+⟨σ−⟩, (4.74)

and for σz
d⟨σz⟩
dt

= −γ+⟨σz⟩+ γ−, (4.75)

where γ− = γ↑ − γ↓. As a consequence, the stationary state has no coherences and

⟨σz⟩s =
γ−
γ+

(4.76)

and the diagonal matrix elements are

⟨σ+σ−⟩s =
1

2

(
1 +

γ−
γ+

)
(4.77)

and

⟨σ−σ+⟩s =
1

2

(
1− γ−

γ+

)
. (4.78)

Inserting these expression in the definitions of p↑,↓ yields

p↑ =
g2

γ+

[
1 +

γ−
γ+

]
(4.79)

and

p↓ =
g2

γ+

[
1− γ−

γ+

]
. (4.80)
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Figure 4.5: The precision of the clock for different values of γ↑ and γ↓ = 1, g = 0.1. As one
can see, the precision is inversely proportional to the dimensionality of the ladder. The
accuracy saturates to a constant value, which is the parameter d, constituting the optimal
value for a clock with incoherent dynamics.

4.6 The performance of the clock and the entropy produc-
tion

One can calculate the key quantities related to the clock’s performance by repeating the
same analysis of Section 4.3, stemming from the semiclassical approximation. Upon defin-
ing γ± = γ↑ ± γ↓ one can express these quantities in terms of the qubit transition rates,
as

νtick =
p↑ − p↓
d

=
2

d

g2γ−
γ2+

(4.81)

and

N = d

(
p↑ − p↓
p↑ + p↓

)
= d

γ−
γ+
, (4.82)

(In Figg. 4.5 and 4.6). We can further comment on these expressions by noting that both
the accuracy and the precision are proportional to γ−, which represents the degree to which
the random walk is biased and the clock operates at increasing velocity. The dependence
on the ladder dimensionality d is such that the accuracy scales as d, while the resolution as
d−1. The accuracy saturates to d, the optimal value for a clock with incoherent dynamics.

Now, let us compare the performance of the clock with the entropy production per
tick. We can estimate the latter by noting that both the qubit and the battery are in the
stationary state, the only way to determine the loss of information due to the clock is by
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Figure 4.6: The precision of the clock for different values of γ↑, with γ↓ = 1.This image
shows that the precision is directly proportional to the dimensionality of the ladder.

observing that the random walk starts on a definite position and then this information
is lost. We can use the known results for the entropy production in a biased random
walk [54]. By calculating the time-dependent change of the Boltzmann-Gibbs entropy

Ṡ(t) = −kB
∑

n
q(n,t)
dt log q(n, t)

Ṡ(t) = kB(p↑ − p↓) ln
p↑
p↓

+ kB
∑

n,m=n−1
[p↑q(m, t)− p↓q(n, t)] (4.83)

One can substitute the master equation (Eq. 4.33)

Ṡ(t) = −kB
d∑

n=1

d∑
m=1

[p↑q(n− 1, t) + p↓q(n+ 1, t)− (p↑ + p↓)q(n, t)] ln

(
q(n, t)

q(m, t)

)
, (4.84)

where the further term at the denominator of the logarithm vanishes due to the condition∑d
n=1

dq(n,t)
dt = 0. Equivalently

Ṡ(t) = kB

d∑
m=1

d−1∑
n=m−1

[p↑q(n, t)− p↓q(m, t)] ln
(
q(n, t)

q(m, t)

)
. (4.85)

This expression can be rewritten as

Ṡ(t) = kB

d∑
m=1

d−1∑
n=m−1

[p↑q(n, t)− p↓q(m, t)] ln
(
p↑q(n, t)

p↓q(m, t)

)
(4.86)

−kB
d∑

m=1

d−1∑
n=m−1

[p↑q(n, t)− p↓q(m, t)] ln
p↑
p↓
. (4.87)
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These two contributions can be recast in the form

Ṡ(t) = Ṡe(t) + σ̇(t). (4.88)

The first term can be recast as

Ṡe(t) = −kB
d∑

m=1

d−1∑
n=m−1

[p↑q(n, t)− p↓q(m, t)] ln
p↑
p↓

= −kB[p↑ − p↓] ln
p↑
p↓
, (4.89)

using the normalization condition. In contrast, the second term is transformed into

σ̇(t) = kB(p↑ − p↓) ln
(
p↑
p↓

)
(4.90)

+kB

d∑
m=1

d−1∑
n=m−1

[p↑q(n, t)− p↓q(m, t)] ln
(
q(n, t)

q(m, t)

)
. (4.91)

The physical interpretation of these two is the following: Se(t) is the entropy flow into the
environment, while the second is the entropy production rate. The second term satisfies
σ̇(t) > 0 and upon the condition of local detailed balance, identifying a non-equilibrium
steady state, they satisfy σ̇ = −Ṡe. This is the case we are interested in here.
To obtain the entropy production in a tick of the ladder motion one integrates Eq. 4.83
over time

∆Stick = kBttick(p↑ − p↓) ln
p↑
p↓

= d ln
p↑
p↓
. (4.92)

In the case of the thermal clock, this expression yields the correct expression

∆Stick = d[−βcEc − βhEh]. (4.93)

In this case, the entropy production reads

∆Stick = kBd

[
ln

(
1 +

γ−
γ+

)
− ln

(
1− γ−

γ+

)]
(4.94)

In the limit of small γ− ≃ 0, which implies γ↑ ≃ γ↓ we can approximate this expression as

∆Stick ≃ 2dkB
γ−
γ+
. (4.95)

Comparing this expression with the accuracy (Eq.4.6) we retrieve the key relation of Erker
et. al. [25]

N =
∆Stick

2
(4.96)
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Figure 4.7: The entropy production divided by 2 and the accuracy vs. γ↑. We can see
clearly that for γ↑ ≃ γ↓ these two quantities coincide, while for γ↑ >> γ↓ the entropy
production diverges, while the accuracy saturates to d.

in the regime of weak bias2, saturating the TUR bound. The generic relation between
these two quantities reads

N = d tanh

[
∆Stick
2d

]
(4.97)

unchanged from the thermal clock’s results. That is to say, being an incoherent quantum
clock, the relation of Ref. [8] in the context of Brownian clocks holds.

4.7 General Arguments

Let us now examine the conditions in the manifold of parameters of the battery necessary
to power the clock, relative to the choice of the coupling observable, now denoted as A on
general ground.
The first step is to express the qubit transition rates in the spectral representation (known
as Lehmann representation). One can write these rates in the following form [12]

γ↑,↓ =
1

4

∫ ∞
−∞

dτe∓iϵ0τTr[ρstA(τ/2)A(−τ/2)], (4.98)

where the stationary state of the battery is given by the diagonal ensemble ρst =
∑

k,i p
i
k|ki⟩⟨ki|,

with pik = | ⟨ki|ψ0⟩ |2 and |ψ0⟩ being the initial state. Here, k runs over the energy levels

2In Ref. [25] this regime coincides with βcEc − βhEh → 0
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and i is a degeneracy index. Substituting the expression of this stationary state in the
correlation function, one obtains

Tr[ρstA(t)A(0)] =
∑
l

pl ⟨l|A(t)A(0)|l⟩ . (4.99)

By expressing the time dependence of the operator one obtains∑
l

pl

〈
l
∣∣∣e−iHf

BtAeiH
f
BtA

∣∣∣l〉 . (4.100)

Afterwards, we insert a completeness relation and explicit time dependence with the energy
eigenstates of the final Hamiltonian

∑
l,m

ple
−it(El−Em)

∣∣∣∣ ⟨l|A|m⟩ ∣∣∣∣2. (4.101)

From this result, one employs the Lehmann representation (also known as spectral repre-
sentation)

⟨A(t)A(0)⟩st =
∫
dω

2π
J(ω), (4.102)

where

J(ω) =
∑
l,m

pl

∣∣∣∣ ⟨l|A|m⟩ ∣∣∣∣2δ(ω − El + Em). (4.103)

Then, the transition rates can be expressed as

γ↑ =
∑
l,m

pl

∣∣∣∣ ⟨l|A|m⟩ ∣∣∣∣2δ(−ϵ0 + El − Em) (4.104)

and

γ↓ =
∑
l,m

pl

∣∣∣∣ ⟨l|A|m⟩ ∣∣∣∣2δ(ϵ0 + El − Em). (4.105)

Now, let’s observe that the delta function admits a solution, respectively when El−Em > 0
and El − Em < 0. So, one can restrict the sum in the previous expressions

γ↑ =
∑

l,ms.t.El>Em

pl

∣∣∣∣ ⟨l|A|m⟩ ∣∣∣∣2δ(−ϵ0 + El − Em) (4.106)

γ↓ =
∑

l,ms.t.El<Em

pl

∣∣∣∣ ⟨l|A|m⟩ ∣∣∣∣2δ(ϵ0 + El − Em). (4.107)
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Given these expressions, one can write the bias condition γ↑ > γ↓ (exchanging the indexes)
as ∑

l,ms.t.El>Em

(pl − pm)

∣∣∣∣ ⟨l|A|m⟩ ∣∣∣∣2δ(ϵ0 − El + Em) > 0. (4.108)

So, from this expression, we are in the position to prove three statements:

1. If pl > pm at ϵ0 = El −Em ∀|l⟩, |m⟩ s.t. El > Em and

∣∣∣∣ ⟨l|A|m⟩ ∣∣∣∣2 ̸= 0, then γ↑ > γ↓.

Such a state is termed ”active at resonance”.

2. If pl ≤ pm at ϵ0 = El − Em ∀|l⟩, |m⟩ s.t.El > Em and

∣∣∣∣ ⟨l|A|m⟩ ∣∣∣∣2 ̸= 0, then γ↑ ≤ γ↓.

This state can be baptized as ”passive at resonance” in the subspace of non-vanishing
matrix elements.

3. If γ↑ > γ↓, then the imaginary part of the response function at frequency ϵ0 χ̄
′′(ϵ0) < 0

(see Appendix I) and the converse is also true.

The proofs of the statements are

1. and 2. follow directly from writing the operating condition as:∑
l,m,s.t.,El>Em

(pl − pm)
∣∣ ⟨l|A|m⟩ ∣∣2δ(ϵ0 − El + Em) > 0 (4.109)

3. can be proven by representing the imaginary part of the response function as

χ̄′′(ω) =
∑
l,m

pl

∣∣∣∣ ⟨l|A|m⟩ ∣∣∣∣2(δ(ω + El − Em)− δ(ω − El + Em)

)
. (4.110)

Clearly, this expression can be rewritten as

χ̄′′(ω) =
∑
kk′

(pk − pk′)
∣∣∣∣ 〈k∣∣A∣∣k′〉 ∣∣∣∣2δ(ω + Ek − Ek′), (4.111)

(Section I). Observe that this expression is similar to the transition rates mentioned
above. As a matter of fact, one can write the relation γ↓−γ↑ = χ̄′′(ϵ0). This equation
proves directly the statement.

The significance of these results is clear from the fact that, in the absence of degeneracies
in the levels satisfying the resonance conditions, statements (1) and (2) indicate that the
operating conditions depend solely on the quench parameters, not on the matrix elements
of the coupling observable. In the case where degeneracies are present, this no longer holds,
but these can be understood as limiting cases. Statement (3) serves as a necessary and
sufficient condition, providing a criterion for energy extraction from the battery at the
desired frequency.
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4.8 Examples of quantum batteries

Let’s now study the practical application of these statements by choosing specific examples
for the battery. We will analyze, in particular, the Ising and the XX spin chains, in light
of their experimental relevance. For these integrable spin chains, the steady-state response
function has already been the object of previous studies.

4.8.1 The Quantum Ising chain coupled through the transverse field

The first one is the quantum Ising chain in a transverse field. Its Hamiltonian is given by

HB = −
L∑

j=1

(Jxσxj σ
x
j+1 + Jyσyj σ

y
j+1)− h

L∑
j=1

σz. (4.112)

Setting J = 1, the nearest-neighbor coupling can be parameterized as Jx = 1+κ
2 and

Jy = 1−κ
2 .

Let’s choose the coupling between the battery and the qubit as

HQB = gσσ
x
Q

L∑
j=1

σzj . (4.113)

This model is exactly solvable through mapping to a free fermionic Hamiltonian (”fermion-
ization”) [60, 72]. Hereafter, we will illustrate this procedure.

First of all, one defines a mapping to hard-core bosons in terms of the spin operators
as 

σzj = 1− 2b†jbj

σ+j = b†j
σ−j = bj

. (4.114)

These hard-core bosons satisfy the commutation relations at different sites, as ordinary
bosonic operators do, but they anti-commute at the same site {bj , b†j} = 1. They verify

the hard-core constraint of ”no more than one boson in each site” (b†j)
2|0⟩ = 0. The

Hamiltonian, Eq. 4.112 now reads

HB = −1

2

L∑
j=1

[b†jb
†
j+1 + bjbj+1 + κ(b†jbj+1 + bjb

†
j+1)]− h

L∑
j=1

(1− 2nj), (4.115)

where nj = b†jbj . In this form, it is still not solvable and one needs to implement the
Jordan-Wigner transformations. The latter ones relate these hard-core bosonic operators
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to fermionic operators on the lattice in one-dimensional systems bj = Kjcj , where Kj =

e
iπ

∑j−1

j′=1
nj′ . Spin are mapped into fermions according to

σzj = 1− 2c†jcj

σxj = Kj(c
†
j + cj)

σyj = iKj(c
†
j − cj).

(4.116)

Assuming periodic boundary conditions and an even number of sites, one writes Eq. 4.112
as

HB = −
L−1∑
j=1

(c†jcj+1 + c†jc
†
j+1 + h.c.) + h

L∑
j=1

(2c†jcj − 1). (4.117)

Note that in most of the relevant terms in the Hamiltonian, the string operator Kj cancels
out. The diagonalization procedure happens by mapping those fermionic operators in the
momentum space. Introducing ck, c

†
k such that {ck, c†k} = 1, their definition and the inverse

transformation read {
ck =

∑L
j=1

e−iϕ
√
L

∑L
j=1 e

−ikjcj

cj =
∑L

j=1
eiϕ√
L

∑
k e

ikjck,
(4.118)

with an overall phase ϕ, not changing the overall commutation relations. The function of
this variable is to highlight the freedom we have in choosing the second axis of the spin in
the xy plane. With our choice of boundary conditions, the set of momenta is defined as

Λ =

{
k = +

2nπ

L
with n = −L

2
+ 1, . . . ,

L

2

}
(4.119)

Upon choosing ϕ = 0, the Hamiltonian now reads

HB =
∑
k∈Λ

Hk, (4.120)

where

Hk = 2(h− cos k)(c†kck − c−kc
†
−k)− 2iκ sin k(c†kc

†
−k − c−kck). (4.121)

Notice this Hamiltonian commutes for different momenta [Hk, Hk′ ] ∀k ̸= k′. To deal with
these combinations of creation/annihilation operators at momentum k and −k, one can
define a two-dimensional spinor, known as the two-component Nambu fermionic operator
[60]

Ψ⃗k =

(
ck
c†−k

)
, (4.122)

Ψ⃗†k =
(
c†k c−k

)
, (4.123)
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obeying the anti-commutation relations

{Ψ†k,α,Ψk′,β} = δkk′δαβ, (4.124)

where the index α = 1, 2 runs through the components of the spinor. Eq. 4.112 now reads

HB =
∑
k

Hk, (4.125)

where
Hk =

∑
α,α′

Ψ†k,α(Hk)αα′Ψk,α′ . (4.126)

The matrix Hk can be represented as

Hk =

(
2(h− cos k) −2iκ sin k
2iκ sin k −2(h− cos k)

)
. (4.127)

Equivalently, in terms of pseudo-Pauli matrices τj

Hk = 2(−κJ sin(2ϕ) sin(k)τx + κJ cos(2ϕ) sin(k)τy + (h− J cos(k))τz). (4.128)

This Hamiltonian is diagonalized by a Bogoliubov rotation, and one finds its spectrum of
eigenvalues ϵk± = ±|ϵk|, divided into the positive and negative spectrum (see Fig. (4.8)),
with

|ϵk| = 2

√
(h− cos(k))2 + κ2 sin2(k) ≥ 0. (4.129)

The unitary matrix of eigenvectors can be expressed as a rotation of angle Θk

Uk = e−iΘkσ
y
. (4.130)

One defines a new spinor of Bogoliubov fermions

Γk =

(
γk
γ†−k

)
. (4.131)

It is related to the spinor Ψk from the relation

Γk = U †kΨk. (4.132)

In the new basis, the Hamiltonian is, of course, diagonal

UkHkU
†
k =

(
ϵk 0
0 −ϵk

)
(4.133)

and terms of the transformed eigenstates, now it reads

Hk =
∑
k

ϵkΓ
†
kσ

zΓk =
∑
k

ϵk(γ
†
kγk − γ

†
−kγ−k − 1). (4.134)
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(a) (b)

(c)

Figure 4.8: The spectrum of the Quantum Ising model at a) h=0.5 (in the ferromagnetic
phase), b) h=1 in the critical point, c) h=2 (in the paramagnetic phase). One can see
the gap between the two eigenvalue sectors closes at h = 1, in the correspondence of the
critical point. Visually, there is no difference between the two gapped phases.

The angle of the Bogoliubov transformation is determined by enforcing condition 4.133

tan(2Θk) =
κ sin(k)

h− cos(k)
. (4.135)

Now, let us arrive at the main object of interest for this analysis: the calculation of the
qubit transition rates. From the general definition (Eq. 4.179), one substitutes A, with the
observable of our choice, namely the total magnetization along the z-axis

γ↑,↓ =
gσ
2

L∑
j=1

L∑
j′=1

∫ ∞
−∞

dse∓iϵ0sTr[ρstσ
j
z(s/2)σ

j′
z (−s/2)]. (4.136)

In turn, we need to calculate the correlation function over time of this quantity. First of
all, one must use the result for the stationary density matrix and insert a resolution of the
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identity∑L
j=1

∑L
j′=1 Tr[ρstσ

j
z(τ/2)σ

j′
z (−τ/2)] =

∑L
j=1

∑L
j′=1

∑
kα

∑
k′β p

α
k ⟨kα(hf )|σzj (τ/2)|k′β(hf )⟩

⟨k′β(hf )|σzj′(−τ/2)|kα(hf )⟩, (4.137)

where the state |kα⟩ = Γ⃗†k,α|0⟩. Here the total magnetization must be expressed in the

basis of Γ⃗k,(hf ). After a brief calculation, we find the following expression

L∑
j=1

σzj = 2
∑
k

Ψ⃗†kτzΨ⃗, (4.138)

where τz is the z pseudo-Pauli matrix, by fermionizing the total magnetization and con-
verting it to momentum space. Then, we perform the Bogoliubov rotation

Ukσ
zU †k = 2[cos(2Θk,f )σz + sin(2Θk,f )σx], (4.139)

where the Bogoliubov angle respects the definition 4.135 in terms of the final hf .
Another ingredient of this expression is the overlap between the initial and final states, viz.
pαk = | ⟨kα(hf )|ψ0⟩ |2. We take the ground state of the initial Hamiltonian as the initial
state. That is to say, the latter is

|ψ0⟩ =
(
0
1

)
k,(hi)

, (4.140)

such that ⟨γ†k,(hi)
γk,(hi)⟩ = 0 and ⟨γ†−k,(hi)

γ−k,(hi)⟩ = 1 ∀k. However, the initial state is
expressed in the basis of the Bogoliubov spinor of the initial parameters of the quench. In
contrast, the state |ki⟩ is expressed in the basis of the final parameters. One must establish
the relation between the two bases to solve this conundrum.
We recall the relations

Γ⃗k,(hf ) = U †k,(hf )
Ψ⃗k (4.141)

Γ⃗k,(hi) = U †k,(hi)
Ψ⃗k (4.142)

Then, in turn

Γ⃗k,(hf ) = U †k,(hf )
Uk,(hi)Ψ⃗k. (4.143)

Conveniently, one can define a new non-equilibrium Bogoliubov transform via the subse-
quent relation

Γ⃗k,(hf ) = U †k,∆Γ⃗k,(hi), (4.144)

where

U †k,∆ = U †k,(hf )
Uk,(hi) = ei∆Θkσ

y
, (4.145)
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∆Θk = Θk,(hf ) − Θk,(hi) is the difference between the Bogoliubov angles. In terms of the
latter, one can write the overlaps as

p+k = sin2(∆Θk) (4.146)

and

p−k = cos2(∆Θk) (4.147)

Finally, one can express the time dependence of the operator σz(s) = e−iH
f
Bsσze

iHf
Bs,

substitute relations 4.146,4.147 and 4.139 into the correlator (Eq. 4.137), which now reads

4

L

∑
k

[
cos2(2Θk) + sin2(2Θk)(sin

2(∆Θk)e
−2i|ϵk|τ + cos2(∆Θk)e

+2i|ϵk|τ )

]
. (4.148)

If one takes the continuum limit, the resulting expression is

2

π

∫ π
2

−π
2

dk

[
cos2(2Θk) + sin2(2Θk)(sin

2(∆Θk)e
−2i|ϵk|τ + cos2(∆Θk)e

+2i|ϵk|τ )

]
. (4.149)

Let’s now take into account each of these terms. Plugging the latter expression into the
definition of the transition rates, it is clear that the first term gives a vanishing contribution,
as would generate a term proportional to δ(ϵ0) and ϵ0 is positive. The second term gives
the contribution

gσ
π

∫ ∞
−∞

dτ

∫ π
2

−π
2

dk sin2(2Θk(hf )) sin
2(∆Θk)e

−2i|ϵk|τ∓iϵ0τ (4.150)

=
gσ
π

∫ π/2

−π/2
dkδ(2|ϵk| ± ϵ0) sin2(2Θk(hf )) sin

2(∆Θk), (4.151)

while the third

gσ
π

∫ ∞
−∞

dτ

∫ π
2

−π
2

dk sin2(2Θk(hf )) cos
2(∆Θk)e

2i|ϵk|τ∓iϵ0τ (4.152)

=
gσ
π

∫ π/2

−π/2
dkδ(−2|ϵk| ∓ ϵ0) sin2(2Θk(hf )) cos

2(∆Θk). (4.153)

The existence of a solution in the argument of the delta function implies that Eq.
(4.150) contributes only to γ↑, while Eq. (4.152) to γ↓. This leads us to this expression for
the transition rates

γ↑ =
g2σ
2π

∫ π/2

−π/2
dkδ(2|ϵk| − ϵ0) sin2(2Θk(hf )) sin

2(∆Θk) (4.154)
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and

γ↓ =
g2σ
2π

∫ π/2

−π/2
dkδ(2|ϵk| − ϵ0) sin2(2Θk(hf )) cos

2(∆Θk), (4.155)

The zero of the delta function’s argument satisfies ϵk = ϵ0
2 , which implies

(hf − cos k)2 + κ2 sin2(k) = ϵ20/16. (4.156)

This equation admits two solutions k± = arccosu±, i.e.

u± =
hf ±

√
κ2h2f − (1− κ2)(κ2 − ϵ20/16)

1− κ2
(4.157)

The solutions in Eq. 4.157 require the argument of the square root to be positive. The
latter condition can be rewritten as

ϵ20 ≥ κ2 −
κ2

1− κ2
h2f (4.158)

If one assumes to be in the paramagnetic phase hf > 1 and only the k− solution exists, the
condition is always verified. The other conditions that must be verified are 0 ≤ u± ≤ 1.
The two conditions translate into

ϵ20/16 ≥ (hf − 1)2 (4.159)

and
ϵ20/16 ≤ h2f + κ2. (4.160)

From the physical point of view, these two conditions imply that the energy level must be
between the energy gap between the two sectors and the max excursion between the lowest
and the highest energy levels, corresponding respectively to 2ϵk=0 and 2ϵk=±π

2
.

Most importantly, let’s analyze the bias condition for the clock γ↑ > γ↓. By comparing
the two expressions Eq. 4.184 and 4.185, one can see they translate into

cos(2∆Θk)|k=k− < 0 (4.161)

in terms of the difference between the Bogoliubov angles. This difference can be rewritten
using standard trigonometric relations

cos(2∆Θk) = cos(2Θk(hf )) cos(2Θk(hi)) + sin(2Θk(hf )) sin(2Θk(hi)). (4.162)

From the conditions defining the Bogoliubov rotation, one infers the relations cos(2Θk) =
h−cos k

ϵk
and sin(2Θk) =

κ cos k
ϵk

. The resulting expression of Eq. 4.161 is

(hf − cos k)(hi − cos k) + κ2 cos2 k

ϵk,(hf )ϵk, (hi)
. (4.163)
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Figure 4.9: The l.h.s. of Eq. 4.109 is plotted for different values of hi in the paramagnetic
phase. The quantity is negative only for hf in the ferromagnetic phase. The existence of
the solution is examined in Fig. (4.10)

One can see that the only relevant solution for quenches from the ferromagnetic to the
paramagnetic phase is u−. By substituting it into the latter equation we arrive at

8
(hf − u−)(hi − u−) + κ2(1− u2−)

ϵ0

√
ϵ20/4− 4(hf − u−)2 + 4(hi − u−)2

< 0 (4.164)

Since 0 < u− < 1 Eq. 4.164 implies that if hi < 1, then hf > 1, indicating that the
quench protocol must cross the phase transition point (this is confirmed by Fig. (4.9)), in
a striking similarity with the charging protocol of [42]

4.8.2 The XX spin chain

Now, let’s consider a further example of an integrable model. We choose a system of tight-
binding hard-core bosons hopping on a ring lattice with L sites with a staggered on-site
potential. Its Hamiltonian is given by

HB(ϕ) = t

L∑
j=1

(eiϕb†jbj+1 + h.c.) + V

L∑
j=1

(−1)jnj , (4.165)

in terms of hard-core bosonic operators b†j/bj and upon defining the number operator

nj = b†jbj . The field ϕ represents an external magnetic field, which we can set to zero for
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simplicity, from now on.
The Hamiltonian of the qubit-battery interaction is chosen as

HQB = gJ(σ
x
QJϕ=0), (4.166)

where gJ is the coupling strength and the current in the ring Jϕ=0 is defined as

Jϕ=0 = −∂ϕH|ϕ=0 (4.167)

and has the following expression

Jϕ=0 = −it
L∑

j=1

(b†jbj+1 − h.c.). (4.168)

This Hamiltonian (Eq. 4.165) is integrable. Using the mapping of Eq. 4.114 it results
in

HB = t
L∑

j=1

(σxj σ
x
j+1 + σyj σ

y
j+1)−

V

2

L∑
j=1

(−1)jσzj , (4.169)

which in the literature is known as the XX model with the addition of an external staggered
magnetic field. We can employ the same Jordan-Wigner transformation of the past Section
(Eq. 4.116), resulting in

HB = t
L∑

j=1

(c†jcj+1 + h.c.) + V
L∑

j=1

c†jcj . (4.170)

In the momentum space (Eq. 4.118) we have

HB =
∑
k∈Λ

(2t cos kc†kck + V c†kck) (4.171)

Represented in the compact form

HB =
∑
k∈Λ

Ψ⃗†kHKΨ⃗k, (4.172)

where

Ψ⃗k =

(
ck
c−k

)
(4.173)

and

Hk = 2t cos kτ z + V τx, (4.174)
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in terms of the spin 1/2 pseudo-Pauli matrices τα (α = x, y, z). The diagonalization
through Bogoliubov transformations is defined with the angle

tan[2Θk] =
V

2t cos k
(4.175)

and results in the expression

HB =
∑
k

ϵkΓ⃗
†
kτ

zΓ⃗k, (4.176)

with the spinor

Γ⃗k =

(
γk
γ−k

)
(4.177)

and

ϵk =
√
4t2 cos2 k + V 2 (4.178)

is the associated energy spectrum (Fig. (4.11)) The phase diagram of this model is the

(a) (b)

Figure 4.10: The spectrum of the XX model with a staggered on-site potential. We set
t = 1 for simplicity. In a) we have the gapless spectrum at V = 0, while in b) we have the
spectrum in the gapped insulating phase at V = 1.

following: in the critical point V = 0 we have a gapless superfluid phase, while for V ̸= 0
the spectrum is gapped and the model has an associated insulating behaviour.

Now, let us calculate the rate of the dissipative process associated with the qubit’s
dynamics, namely γ↑,↓. We write these rates in the following form [12]

γ↑,↓ =
1

4

∫ ∞
−∞

dse∓iϵ0sTr[ρstJϕ=0(s/2)Jϕ=0(−s/2)], (4.179)
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As before, we need to work out the expression of the current in the ring at ϕ = 0 in terms
of Bogoliubov fermions. We write Eq. 4.168 as

Jϕ=0 = −it
L∑

j=1

(
c†jcj+1 − c†j+1.cj

)
(4.180)

In momentum space, it admits the following representation

Jϕ=0 = −2t
∑
k

sin(k)c†kck, (4.181)

or, more compactly,
Jϕ=0 = Ψ⃗†kJkΨ⃗k, (4.182)

where
Jk = −2t

∑
k

sin kτ z. (4.183)

As in the previous Section (Sec. 4.8.1), the result is proportional to τ z. Therefore, the
subsequent passages are exactly the same as in the Ising chain, apart from the prefactor.

Let us jump then to the final results

γ↑ =
g2J
2π

∫ π/2

−π/2
dkδ(2|ϵk| − ϵ0) sin2(2Θk(Vf )) sin

2(∆Θk) (4.184)

and

γ↓ =
g2J
2π

∫ π/2

−π/2
dkδ(2|ϵk|+ ϵ0) sin

2(2Θk(Vf )) cos
2(∆Θk). (4.185)

The zero solution of the argument of the delta function is the following

k∗ = arccos

√
ϵ20/4− V 2

f

4t2
. (4.186)

To guarantee the existence of a solution to the previous relation, one must require that

0 <
ϵ20/4− V 2

f

4t2
< 1 (4.187)

This relation can be interpreted physically as requiring that ϵ0 lies in the range between
the gap between the two sectors of the eigenvalues and the distance between the lowest
and the highest eigenstates in energy.
From the expression of the rates we have an additional condition, namely

ϵ20/4− V 2
f + V 2

i > 0, (4.188)
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which is always verified given the validity of Eq. 4.187.
Again, the operating condition of the clock reads

cos(2∆Θk)|k∗ < 0. (4.189)

Substituting the relations sin(2Θk) =
V
ϵk

and cos(2Θk) =
2t cos k

ϵk
, one obtains

(2t cos k)2 + ViVf
ϵk(Vf )ϵk(Vi)

. (4.190)

When using the resonance condition (Eq. 4.186), we can see the relation 4.189 implies

ϵ20/4− V 2
f + ViVf < 0. (4.191)

The latter leaves as a consequence that ViVf < 0. Then, the take-home message of this
analysis is that the required quench must cross the critical point V = 0, which characterizes
the transition from the superfluid to the insulating phase and the opening of the gap
between the two energy sectors.

4.9 The battery’s lifespan

In this Section, we try to answer the following question: how much time does the quantum
battery last? The answer to this question is relatively simple, here we try to give a rough
estimate. The main piece of information we are interested is how this quantity scales with
the battery’s size. Let us start by observing that the total number of ticks over the battery
lifespan is given by the energy available in the battery divided by the energy of the photon
emitted Eph = (d− 1)ϵ0

Np =
Eav

Eph
. (4.192)

Therefore the total time is

T ∗ =
Eavτ

Eph
(4.193)

The energy available in the battery can be estimated from the amount of energy available
at the right frequency of the

Eav =
∑
k

2ϵkδ(2ϵk − ϵ0) cos2(∆Θk) (4.194)

In the continuum limit, this quantity reads

Eav =
L

2π

∫
dk2ϵkδ(2ϵk − ϵ0) cos2(∆Θk) (4.195)
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Upon defining the density of states as ρ(ϵ) =
∫
dkδ(k − ϵ) and appropriately regularizing

this expression, we have

Eav =
L

2π
ϵ0ρ(ϵ0/2) cos

2(∆Θk)|k=k∗, (4.196)

leading to the result

T ∗ = − γ+
χ̄′′(ϵ0)

L

2π
ρ(ϵ0/2) cos

2(∆Θk)

∣∣∣∣
k=k∗

, (4.197)

where ρ(ϵ) =
∣∣∣∂ϵk∂k

∣∣∣−1 is the constant density of states of the spin chain. The main take-

home message of this expression is the extensivity of the total lifespan, even if one considers
coupling through a global observable, like in the cases presented in the examples. If the
coupling occurs through a local observable, more transitions could be accessible and we
expect the result to be super-extensive. Note that the average energy dissipation rate is
related to the imaginary part of the response function −χ̄′′(ϵ0) [80] and the total lifespan is
inversely proportional to this quantity. Finally, we should stress that this is only a rough
estimate, as the condition of the rate of energy extraction being constant is not guaranteed
in the initial and final transient of the battery’s operation.





Chapter 5

Conclusions and Outlook

“Explicit expliceat. Bibere scriptor eat”-”It is finished. Let it be
finished, and let the writer go out for a drink”

— An anonymous monk

In the first part of this Thesis, we introduced and examined two different, but related,
transport problems in the context of quantum dots interacting with multiple baths. In both
cases, the key challenge was to develop a complete and consistent thermodynamic picture,
starting from the resonant level model and using diagrammatic techniques. This analysis
transcends the standard weak coupling approximation, accounting for the hybridization
between the dot and the leads. The dot is an externally driven system, in which both its
level and the coupling with the leads are time-dependent and controlled via external gate
voltage. In this context, it is not viable to find exact analytical solutions, and one must
resort to approximate solutions. In particular, we used the tool of adiabatic expansion
to evaluate finite-time correction to the adiabatic limit. This setup allowed us to build
connections with the transport properties. We studied all this in the context of single-level
non-interacting quantum dots. However, the methods developed here could in principle
be generalized to other time-dependent transport problems, such as transport through
multilevel dots or even interacting systems [33, 83].

First of all, we introduced charge pumping in non-interacting quantum dots. By com-
pleting periodic processes in the manifold of time-dependent parameters, one is able to
achieve a finite charge transport, even in the absence of any bias between the leads. We
examined the subsystem of processes in which a set of limiting conditions is defined, allow-
ing for a quantized transport to be achieved. Focusing on specific cycles and comparing
transport to thermodynamic quantities we have shown that whenever a quantized charge
is attained one expects, together with zero charge noise, zero entropy and a saturated work
per cycle proportional to the speed with which the quantity associated with the quantiza-
tion limit is varied. The results obtained are relative to this specific model but nonetheless
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offer insight into the phenomenon of adiabatic pumping and its thermodynamical implica-
tions, which can be relevant in other contexts (for example Thouless pumps).

In Chapter 3, we presented the quantum shuttle, a similar problem, in which a spa-
tial degree of freedom is present and the time-dependent quantities depend parametrically
through the dot’s position. The problem has been addressed from a wide variety of per-
spectives. First, a complete characterization of the dynamical properties of this model
has been attained. Taking into account the quantum noise, which affects the dynamics of
the system in a semi-classical picture, this has allowed us to calculate the precision and
accuracy and to draw its relations with the entropy production, which is the most relevant
quantity for our purposes, and other information-theoretical quantities. The results of this
comparison highlight a direct proportionality, but not a linear relation, between accuracy
and entropy production, as indicated in the previous literature. The findings of Section 3.6
differ from the previous literature on this subject, as in the present we study a different
regime of validity. The relevance of the adiabatic approximation is discussed in Appendix
G, where it is found to be more appropriate for smaller values of the radius. In contrast,
the semiclassical treatment of Ref. [36] requires large limit cycles and weak coupling.
The methods and the results developed here are significant as they illustrate a rich and
non-trivial behaviour in the thermodynamic significance of the clock’s performance, while
the presence of a trade-off relation between accuracy and entropy production is confirmed.

In Part II, we introduced a novel setup of a quantum clock connected to a quantum
battery. The battery, an integrable many-body system, is driven out of equilibrium by a
quench in one of its parameters. After the relaxation process, it reaches a non-thermal
stationary state, from which it is possible to extract energy under determinate conditions.
We used this fact to couple this system to a quantum clock relying on a discrete Hilbert
space, inspired by previous examples in the literature. The accuracy/entropy production
relation in this framework is investigated and coincides with known results about Brownian
clocks. Our main concern has been to examine all the conditions in the parameter manifold
guaranteeing the clock’s operation. This allowed us to establish a direct relation between
the negative of the imaginary part of the response function of the associated coupling
observable and bias condition in the ladder’s dynamics. By examining relevant examples,
we found these conditions constrain the quench to take place crossing the critical point of
the integrable system. However, it remains unclear whether this is a universal condition
in terms of the model and the choice of a particular class of observables, such as the order
parameter. Moreover, the impact of the choice of local observables on this analysis and in
particular on the battery’s lifespan has to be examined.
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Appendix A

Methods for non-equilibrium
quantum dynamics

In this Chapter, we will briefly introduce the main techniques we apply in the follow-
ing sections to calculate thermodynamic and transport quantities through nanostructures,
namely the Keldysh-Schwinger non-equilibrium Green’s function technique and the scat-
tering matrix theory.

A.1 Contour-ordered Green functions

The non-equilibrium Green function (NEGF) technique has been introduced to calculate
observables in systems driven out of equilibrium by an external perturbation [46, 38].
The general setup we will be working on is that of a Hamiltonian containing an out-of-
equilibrium term, which is in general time-dependent

H = h+Hneq(t). (A.1)

The part of the Hamiltonian not dependent on time h can have a quadratic part H0 and
an interacting part Hint

h = H0 +H int. (A.2)

One further assumption we will make consists in requiring the system to be in equilibrium
for times prior to the initial time t0. That is to say, the perturbation Hneq(t) is switched
on at time t0 and, before time t0, the system is described by the initial density matrix

ρ(h) =
exp(−βh)

Tr[exp(−βh)]
(A.3)

In the following, for simplicity, we assume Hint = 0. Using this expression, our task
will be to calculate time-dependent expectation values in the Heisenberg representation,
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such as
⟨OH(t)⟩ = Tr[OH(t)ρ(h)], (A.4)

where the subscript H means that the observable evolves in time according to the Heisen-
berg picture with the full Hamiltonian. In order to transform this expression into one more
suitable for diagrammatic expansion, we express all this in terms of averages with respect
to the free Hamiltonian H0. Since

T exp

[
− i

∫ t

t0

dt′H(t′)

]
= exp[−ih(t− t0)]T exp

[
− i

∫ t

t0

dt′Hneq(t′)

]
, (A.5)

the time dependence can be transformed from the full Hamiltonian H to the equilibrium
part h in the following way

OH(t) = U †h(t, t0)Oh(t0)Uh(t0, t), (A.6)

where

Uh(t, t0) = T

{
exp

[
− i

∫ t

t0

dt′Hneq
h (t′)

]}
, (A.7)

where we have introduced the interaction representation of the Hamiltonian

Hneq
h (t) = exp[ih(t− t0)]Hneq exp[−ih(t− t0)] (A.8)

and T is the time-ordering operator arranging the latest times to the left.
Expanding the time-ordered exponential, one obtains terms of this fashion

T̄

{
Hneq(t1) . . . H

neq(tn)

}
Oh(t0)T

{
Hneq(t′1) . . . H

neq(t′n)

}
, (A.9)

where all {ti} and {t′i} are between t0 and t. This disposition hints at a more convenient
way to rewrite the expectation value (Eq. A.6), by introducing the appropriate contour γ
(in Fig. ??), with its definition

C = C− ⊕ C+ = (t0, t)⊕ (t, t0), (A.10)

viz

OH(t) = Tγ

[
exp

(
− i

∫
C
dτHneq

h (τ)

)
O(t)

]
. (A.11)

The time ordering along the contour γ, Tγ , has this meaning: the operators with time
labels that occur later on the contour have to stand left to operators with earlier time
labels. This expression, if H int = 0, can be used as a basis for perturbation theory. The
key object to perform a perturbative expansion is the contour-ordered Green function,
defined as

GC(t1, t
′
1) = −i⟨TC(ψH(t1)ψ

†
H(t′1))⟩, (A.12)



A.1. CONTOUR-ORDERED GREEN FUNCTIONS 121

Re(t)

Im(t)
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t0 t

Figure A.1: The ”closed time path” contour C

where ψH are fermionic operators, so that

GC(t1, t
′
1) =


GT (t1, t

′
1) for t1, t

′
1 ∈ C+

GT̄ (t1, t
′
1) for t1, t

′
1 ∈ C−

G>(t1, t
′
1) for t1 ∈ C− and t′1 ∈ C+

G<(t1, t
′
1) for t1 ∈ C+ and t′1 ∈ C−

(A.13)

where we defined the time-ordered Green’s function

GT (t1, t
′
1) = −i⟨T (ψH(t1)ψH(t′1))⟩ = (A.14)

= −iθ(t1 − t′1)ψH(t1)ψ
†
H(t′1),

the anti-time-ordered Green’s function

GT̄ (t1, t
′
1) = −i⟨T̄ (ψH(t1)ψH(t′1))⟩ = (A.15)

= −i(θ(t1 − t′1)ψH(t1)ψ
†
H(t′1)),

the ”lesser” Green’s function

G<(t1, t
′
1) = +i⟨ψH(t′1)ψ

†
H(t1)⟩ (A.16)

and the ”greater” Green’s function

G>(t1, t
′
1) = −i⟨ψ

†
H(t1)ψH(t′1)⟩. (A.17)

Note that only three of the Green’s functions are linearly-independent, as the following
relation holds

GT (t1, t
′
1) +GT̄ (t1, t

′
1) = G<(t1, t

′
1) +G>(t1, t

′
1). (A.18)
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For studying non-equilibrium dynamics, the most suitable Green’s functions, as we will see,
are the lesser-greater functions and the advanced and retarded Green’s functions. Their
definition is

Gr(t1, t
′
1) = θ(t1 − t′1)(G>(t1, t

′
1)−G<(t1, t

′
1)) (A.19)

and

Ga(t1, t
′
1) = θ(t′1 − t1)(G>(t1, t

′
1)−G<(t1, t

′
1)) (A.20)

They obey the relation

G> −G< = Gr −Ga (A.21)

To obtain a suitable form for performing a perturbative expansion of the said Green func-
tions, one must transform to the interaction picture with respect to the free Hamiltonian
H0.

G(t1, t
′
1) = −i⟨SC

Hψh(t1)ψ
†
h(t
′
1)⟩ (A.22)

where

SC
H = exp

[
− i

∫
C
dτHneq

h (τ)

]
(A.23)

G(t1, t
′
1) = −i

T r[ρ0TC(S
neq
C ψH0(t1)ψ

†
H0

(t′1))]

Tr[ρ0TC(S
neq
C )]

(A.24)

where

ρ0 =
exp(−βH0)

Tr[exp(−βH0)]
(A.25)

and

Sneq
C = exp

(
− i

∫
C
dτHneq

H0
(τ)

)
(A.26)

A.2 Analytic continuation techniques

Now, from the aforementioned diagrammatic expansion of Green’s functions, one usually
obtains expressions in the form of Dyson’s equations or similar, similar to the equilibrium
ones, to which the educated reader is more familiar. These expressions usually involve
convolutions, viz. terms with the structure

C(t, t′) =

∫
C
dτA(t, τ)B(τ, t′). (A.27)

In this expression, A, B and C represent objects on the contour, such as Green’s func-
tions or self-energies. If one is in the situation of t being on C+ and t’ on C−, then we
are in the presence of a ”lesser” function. Once given expressions of this type, it appears
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C1

t

t′C2

Figure A.2: The doubling of the contour integral

complicated to extract C (t, t′) and Ca,r(t, t′) Let us deform the contour, into an upper and
a lower contour C1 and C2, as shown in Fig. ??. Then, one can represent C as

C<(t, t′) =

∫
C1

dt1A
<(t, t1)B(t1, t

′) +

∫
C2

dt1A(t, t1)B
<(t1, t

′) (A.28)

The sign < means that in the contour t stand before t1, because firstly we integrate over
C1 and after over C2. Subsequently, we can write the second term as∫

C2

dτA(t, tτ)B<(τ, t′) =

∫ t

−∞
dt1A

<(t, t1)B
<(t1, t

′) +

∫ −∞
t

dt1A
>(t, t1)B

<(t1, t
′)(A.29)

=

∫ ∞
−∞

dt1A
r(t, t1)B

<(t1, t
′)

Again, the same reasoning can be applied to the first one, yielding

C<(t, t′) =

∫ ∞
−∞

dt1[A
r(t, t1)B

<(t1, t
′) +A<(t, t1)B

a(t1, t
′)] (A.30)

That is the first of Langreth’s rules.
Now, we will simply list the rest of the rules, which can be proven in similar ways

Cr(t, t′) =

∫ ∞
−∞

dt1A
r(t, t1)B

r(t1, t
′) (A.31)

C>(t, t′) =

∫ ∞
−∞

[Ar(t, t1)B
>(t1, t

′) +A>(t, t1)B
a(t1, t

′)]

Ca(t, t′) =

∫ ∞
−∞

dt1A
a(t, t1)B

a(t1, t
′)

A.3 The gradient expansion

Through diagrammatics, one often is able to obtain a perturbative analysis of the studied
problem. However, the equations obtained can be untractable and it is not always possi-
ble to obtain an exact solution for the Green’s function. For this reason, approximation
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schemes are much needed. One of these approximation schemes applicable when a sepa-
ration of scales is present is the gradient expansion. The first step to implement it is to
introduce the Wigner time coordinates

T =
t+ t′

2
, (A.32)

τ = t− t′

This transformation [48] separates the ”slow” degrees of freedom of the ”time-centre of
mass” from the ”fast” coordinate of the difference of times varying on a microscopic scale.
Thus, one seeks to treat exactly the second and approximately the first. Then one passes
to the Fourier transform with respect to ϵ, the relative coordinate of τ .
Let us return to our convolution structure

C(t, t′) =

∫
dsA(t, s)B(s, t′) (A.33)

In the Fourier transform

C(ϵ, T ) =

∫
dτe−iϵτC(T + τ/2, T − τ/2) (A.34)

Performing a Taylor expansion in T , for the Fourier transform one obtains this result

C(ϵ, T ) = A(ϵ, T )Gϵ,TB(ϵ, T ), (A.35)

where

Gϵ,T = e
1
2i
(
←−
∂T
−→
∂ϵ−
←−
∂ϵ
−→
∂T ) =

∑
n

1

(2i)n
1

n!
(
←−
∂T
−→
∂ϵ −

←−
∂ϵ
−→
∂T )

n. (A.36)

Expanding the Wigner transform up to first order in the gradients one obtains

C(ϵ, T ) = A(ϵ, T )B(ϵ, T ) +
1

2i
(∂TA(ϵ, T )∂ϵB(ϵ, T )− ∂ϵA(ϵ, T )∂TB(ϵ, T )). (A.37)

A.4 Introduction to Scattering Matrices

In this Section, we present the time-dependent scattering matrices, useful for describing
transport through a scattering medium. In this context, we are particularly interested in
the problem of a scatterer subject to a periodic perturbation, when the time dependence
enters through a collection of parameters in the Hamiltonian.
The configuration we seek to describe physically is one of two (or more) leads (fermionic
baths in equilibrium), denoted by index i, connected by a scatterer, through many channels,
denoted by the Greek indexes α, β (see Fig. A.3).
The scattering matrix relates the creation/annihilation operators of the ingoing operators
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Figure A.3: This represents the basic setup concerning the scattering through a quantum
pump

in the channels of the leads [58], denoted by an index α, aα(t)/a
†
α(t) to the outgoing

operators bα(t)/b
†
α(t), in the following manner

bα(t) =
∑
β

∫ ∞
−∞

dt′Sαβ(t, t
′)aβ(t

′) (A.38)

b†α(t) =
∑
β

∫ ∞
−∞

dt′a†β(t
′)(Sβα(t

′, t))† (A.39)

Where α and β are the indexes related respectively to the ingoing and outgoing channels.
The scattering matrix has the further property

(S(t′, t)βα)
† = S∗αβ(t, t

′). (A.40)

The causality requirement implies that S(t, t′) = 0 for t < t′. The unitarity condition reads∑
β

∫
dt1Sαβ(t, t1)S

†
αβ(t1, t

′) = δ(t− t′). (A.41)

Let us now evaluate, as an example, the current through the scatterer from lead i = L,R, as
an illustration of the operation of this method. In terms of the ingoing/outgoing operators
reads

Ii(t) =
∑
α∈i

[a†α(t)aα(t)− b†α(t)bα(t)] (A.42)

in units of the fundamental charge e.
Now, let us average with respect to the states of the leads. Substituting relation Eq. A.38,
one obtains the expression of the current, i.e.

⟨Iα(t)⟩ =
∫
dt1dt2

∑
β

[
Sαβ(t, t1)fβ(t1−t2)S†βα(t2, t)−δ(t−t1)fα(t1−t2)δ(t2−t)

]
, (A.43)

where we used the relations

⟨a†α(t)aβ(t′)⟩ = fα(t− t′)δαβ (A.44)

⟨aα(t)a†β(t
′)⟩ = f̃α(t

′ − t)δαβ,

and f(t− t′) is the Fourier transform of the Fermi distribution function associated to each
bath f(ϵ) = 1/(1 + exp(β(ϵ− µ)), while f̃(t) = δ(t)− f(t).





Appendix B

The adiabaticity conditions of the
quantum pump

In this section, we will analyze the conditions on the instantaneous velocity and acceleration
according to which the physical process one is considering can be adiabatic. Following the
method put forward by [44], we will extend the adiabatic expansion of the charge pumped
up to the third order and require that the first order in the expansion of the charge current
is much bigger than the higher order corrections. The first-order instantaneous current can
be rewritten in the form

Q(1)
α =

1

T0

∫ T0

0
dt

∑
i

Aα,i(t)
dxi
dt
. (B.1)

This is the adiabatic term, which can be interpreted in a geometrical manner (Brouwer’s
formula). The second order has two contributions

Q(2)
α =

1

T0

∫ T0

0
dt

(∑
i

B
(1)
α,i(t)

d2xi
dt2

+
∑
i,j

B
(2)
α,i,j(t)

dxi
dt

dxj
dt

)
. (B.2)

Using integration by part, the second order correction becomes

Bα,i,j = B
(2)
α,i,j −

∂B
(1)
α,i(t)

∂xj
. (B.3)

Exactly in the same way, from the third order one can distinguish 2 different terms:

⟨I(3)α (t)⟩ = ⟨I(3v)α (t)⟩+ ⟨I(3a)α (t)⟩, (B.4)

⟨I(3v)α (t)⟩ =
∑
i,j,k

Cα,i,j,k(t)
dxi
dt

dxj
dt

dxk
dt

, (B.5)
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⟨I(3a)α (t)⟩ =
∑
i,j

Dα,i,j(t)
d2xi
dt2

dxj
dt
. (B.6)

In order for the process to be adiabatic, one must require the first order in the expansion
of the charge current to be much bigger than the higher order corrections:

|⟨I(1)α (t)⟩| ≫ |⟨I(2)α (t)⟩|, |⟨I(3v)α (t)⟩|, |⟨I(3a)α (t)⟩|. (B.7)

let us translate this condition in terms of the coefficients. In this way, one can rewrite the

adiabaticity condition for the second-order correction defining a velocity limit v
(2)
lim,α(t) for

which it must be true that

|v(t)| ≪ v
(2)
lim,α(t). (B.8)

The velocity limit can be defined as

v
(2)
lim,α(t) =

|Aα(t)|
|Bα(t)|

, (B.9)

Aα(t) =
∑
i

Aα,i(t)ṽi(t), (B.10)

Bα(t) =
∑
i,j

Bα,i,j(t)ṽi(t)ṽj(t), (B.11)

where ṽi =
vi
|vi| . For the third order correction in similar way

v
(3)
lim,α(t) =

√
|Aα(t)|
|Cα(t)|

, (B.12)

Cα(t) =
∑
i,j,k

Cα,i,j,k(t)ṽi(t)ṽj(t)ṽk(t). (B.13)

So, in the end one must require that

v(t)≪ min[v
(2)
lim, v

(3)
lim, ...]. (B.14)

Now, let us examine these conditions on our peristaltic cycle, for which x1 = ϵd and
x2 = δΓ.
one can extract an energy scale 1

Γ2 and express in terms of the adimensional variables
x = ϵd/Γ and y0 = δΓ/Γ

|Aα,1| =
2

πΓ

1± y0
2

∣∣∣∣ 1

x2 + 1
+

2x2

(1 + x2)2
− 2

(1 + x2)2

∣∣∣∣. (B.15)
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Figure B.1: The adimensional function f2(x, y0) with respect to the variable x, for y0 = 1

In the same way, one can compute Aα,2. The result is

|Aα,2| =
1

4πΓ

∣∣∣∣ x0
1 + x20

∣∣∣∣, (B.16)

in terms of x0 = ϵ0/Γ. The results of the second-order coefficients are

Bα,11(t) =
2

πΓ3

1± y0
2

∂ϵA
2. (B.17)

The resulting condition for the derivative of ϵd is

ϵ̇d
Γ2
≪ f2(x, y0), (B.18)

where f2 is an adimensional function which is in fig.B.1 .
Now, let us analyze the third-order corrections for the velocity. One can obtain the

expression of the coefficient

Cα,111 =
1

2πΓ5

1± y0
2

{(
1

(x− i)6
+

1

(x+ i)6

)
+ i

2

1 + x2

(
− 1

(x− i)5
+

1

(x+ i)5

)
−i 2

(1 + x2)2

(
− 1

(x− i)3
+

1

(x+ i)3

)
− 8

(1 + x2)4

}
.

(B.19)

The coefficient Cα,222 is also equal to 0.

Therefore, one can express the condition v(t)≪ v
(3)
lim as

ϵ̇d
Γ2
≪ f3(x, y0), (B.20)

where f3(x, y0) is in B.2. Finally, let us consider the limits on acceleration. From the
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Figure B.2: The adimensional function f3(x, y0) with respect to the variable x, for y0 = 1

Figure B.3: The adimensional function g(x, y0) with respect to the variable x, for y0 = 1

adiabatic expansion, one can infer that the coefficient Dα11 is

Dα11 =
1

3π

1± y0
2

{(
1

(x− i)5
+

1

(x+ i)5

)
− i 2

1 + x2

(
1

(x+ i)4
− 1

(x− i)4

)
−i 34

(1 + x2)2

(
1

(x+ i)2
− 1

(x− i)2

)}
.

(B.21)

The resulting condition on the acceleration is

ϵ̈d
Γ3
≪ g(x, y0) (B.22)

g(x, y0) is in (fig.B.3). These results appear to justify the claim that the adiabatic expan-
sion is well-defined along the entire cycle, provided that the appropriate bounds on the
derivatives of the time-dependent quantities are respected. However, repeating the same
reasoning with the current noise and the thermodynamic rates would signal that there
are divergences when one of the couplings with the two baths is switched off: ΓL = 0 or
ΓR = 0.



Appendix C

Derivation of the shot noise term
in the first order of the adiabatic
expansion

To derive the ”shot” noise term in the first order of the adiabatic expansion of the current
fluctuations, which is not present in the gradient expansion of the latter quantity, we will
link up with the approach employed in [66], namely the adiabatic expansion of the Floquet
scattering matrix. Furthermore, we show that this approach yields the same results for
the adiabatic expansion of all the other thermodynamics and transport quantities we have
considered in Chapter 2.
The definition of the two-times scattering matrix relates the outgoing states to the ongoing
ones

bα(t) =
∑
β

∫ ∞
−∞

dt1Sαβ(t, t1)aβ(t1). (C.1)

If one performs the Fourier transform of this expression, what he obtains is

bα(ϵ) =
∑
β

∫ ∞
−∞

dω

2π
Sαβ(ϵ, ϵ+ ω)aβ(ϵ+ ω), (C.2)

adopting the ingoing energy ϵ as a reference. But we have to note that the scattering matrix
elements are periodic in their arguments S(t, t′) = S(t, t′ + T0). So, it’s more appropriate
to use a Fourier series expansion

bα(ϵ) =
∑
β

∞∑
n=−∞

SF
αβ(ϵ, ϵn)aβ(ϵn), (C.3)

where ϵn = ϵ + nΩ, and Ω = 2π
T0
. The matrix SF (ϵ, ϵn) is dubbed ”Floquet scattering

matrix” and described in a series of articles, most prominently [67].
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The definition of the current noise is

δIαα(t, t
′) = ⟨∆Iα(t)∆Iα(t′)⟩ (C.4)

and ∆Iα(t) = Iα(t)− ⟨Iα(t)⟩. It can be rewritten as

δIαα(t, t
′) = ⟨Iα(t)Iα(t′)⟩ − ⟨Iα(t)⟩⟨Iα(t′)⟩. (C.5)

The current operator, in turn, reads

Iα(t) = b†α(t)bα(t)− a†α(t)aα(t). (C.6)

In the Fourier transform, the noise of the current turns into

δIαα(t, t
′) =

∫
dEdE′dE′′dE′′′

(2π)4
ei(E−E

′)tei(E
′′−E′′′)t′

[
⟨(b†α(E)bα(E

′)− a†α(E)aα(E
′))

(b†α(E
′′)bα(E

′′′)− a†α(E′′)aα(E′′′))⟩ − (⟨b†α(E)bα(E
′)⟩ − ⟨a†α(E)aα(E

′)⟩)

(⟨b†α(E′′)bα(E′′′)⟩ − ⟨a†α(E′′)aα(E′′′)⟩)
]
.

(C.7)

We consider the charge-pumped fluctuations, which are defined as

δQαα =

∫ T0

0
dT

∫ ∞
−∞

dτδ(T +
τ

2
, T − τ

2
). (C.8)

In the latter, we employ the Wick theorem and cancel the disconnected averages, then
insert Eq. C.3. The expression is further simplified by employing the representation of the
delta function δ(α) =

∫∞
−∞ dte

iαt. We obtain all the expressions of [66]

δQαα = δQth
αα + δQsh

αα (C.9)

δQth
αα = 2T0

∫
dϵ

2π
f(ϵ)f̃(ϵ)

∑
n

(1− |SF
αα(ϵn, ϵ)|2) (C.10)

and

δQsh
αα = T0

∫
dϵ

(2π)2

∑
γδ

∑
n

∑
m

∑
p

(f(ϵn)− f(ϵm))2

2
(SF∗

αγ (ϵ, ϵn)S
F
αδ(ϵ, ϵm)

SF∗
αδ (ϵp, ϵm)SF

αγ(ϵp, ϵn))

(C.11)

The Floquet scattering matrix has the following adiabatic expansion

SF (En, E) = Sn(E) +
nΩ

2

∂

∂ϵ
Sn(E) + ΩAn +O(Ω2), (C.12)
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with Sn(E) the n-th Fourier coefficient of the scattering matrix defined as

Sn(E) =

∫ T0

0

dt

T0
einΩtS(E) (C.13)

and An is the first order correction of the quantity. By substituting the expansion, one
obtains the zero and first-order thermal noise

δQ0,th
αα = 2kBT

∫ ∞
−∞

dϵ

2π

(
− df

dϵ

)[
T0 −

∫ T0

0
dT |Sαα(E)|2

]
(C.14)

and

δQ1,th
αα = kBT

∫ ∞
−∞

dϵ

4πi

∫ T0

0
dT

(
− df

dϵ

)∑
β ̸=α

dIαα
dE

(C.15)

where dIαα
dE is the spectrally resolved current, with its definition

dIαα
dE

=

(
∂S∗αα
∂t

Sαα −
∂Sαα
∂t

S∗αα

)
. (C.16)

These two expressions can correspond with the ones obtained from the gradient expansion.
The shot noise term has different expressions according to the regime in which one considers
it. In the zero temperature limit kBT ≪ Ω and kBT ≪ Γ−1. In the zero temperature limit,
the difference (f(En) − f(Em))2 ≃ θ(Em − µ) − θ(En − µ). Taking the other scattering
matrix elements at the zero order

δQ1,sh
αα =

∞∑
q=1

qΩ

8π2
C(sym)
αα (µ). (C.17)

In the high-temperature limit, instead, one can formally write the difference as (f(En) −

f(Em))2 ≃
(
− df

dϵ

)
|n−m|Ω. Then this ”high-temperature shot noise” reads

δQ2,sh
αα =

∫ ∞
−∞

dϵ

8π2

(
df

dϵ

)2 ∞∑
q=1

(qΩ)2C(sym)
αα (E) (C.18)

Note that this belongs to the second order in the adiabatic expansion. This expression can
be understood by rewriting it in terms of the derivatives and compared with the gradient
expansion. In fact, one has that ∑

q

qΩ[A]q =
1

i
∂tA(ϵ). (C.19)
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Then

δQ(2,sh)
αα = −

∫ T0

0
dT

∫
dϵ

16π
(∂ϵf(ϵ))

2

{
2
∑
β

[
∂2TSαβS

†
αβ + Sαβ∂

2
TS
†
αβ − 2∂TSαβ∂TS

†
αβ

]

− 2
∑
γδ

(∂TSαδS
†
αδ − Sαδ∂TS

†
αδ)(∂TSαγS

†
αγ − Sαγ∂TS†αγ)

}
.

(C.20)

The relevance of all these terms is discussed in the next section of the Appendix.
Using this formalism of the Floquet scattering matrix, we now show how to derive the
expansion of all the quantities we have analyzed in Chapter 3. In terms of the operators,
the current reads [67]

Iα(t) =

∫
dEdE′

(2π)2
ei(E−E

′)t(b†α(E)bα(E
′)− a†α(E)aα(E

′)). (C.21)

The charge pumped is the integral over t of this quantity. After substituting the definition
of the Floquet scattering matrix, one has the following expression

Qα = T0

∫
dE

2π

∑
β

∑
n

(|SF
αβ(E,En)|2f(En)− f(E)). (C.22)

When shifting the energy variables E → E − nΩ

Q(1)
α = T0

∫
dE

2π

∑
β

∑
n

|SF
αβ(En, E)|2(f(E)− f(En)). (C.23)

The difference of Fermi functions f(E)−f(En)→ nΩ

(
− df

dϵ

)
, formally assuming kBT ≫ Ω.

However, one can demonstrate that this gives the correct result in the zero temperature
limit as well. Inserting eq. C.12, one obtains the following expression

Q(1)
α = T0

∫
dE

2π

∑
β

∑
n

(
− df

dϵ

)
nΩ|Sn

αβ(E)|2 (C.24)

Using relation C.19, we obtain our previous expression of the pumped charge

Q(1)
α =

∫ T0

0
dt

∫
dE

2π

∑
β

(
∂S∗αβ
∂t

Sαβ − S∗αβ
∂Sαβ
∂t

)
. (C.25)

The variation of the number of particles is obtained from the currents as Ṅ (i) =
∑

α I
(i)
α

Ṅ (1) =
∑
α

[
ϵ̇d

∫
dϵ

4πi

2iΓαA

Γ
+ Γ̇α

∫
dϵ

4πi
2iReGR

]
= ϵ̇d

∫
dϵ

2π
A+ Γ̇

∫
dϵ

2π
ReGR. (C.26)
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Likewise for the heat current

IH,α =

∫ ∞
−∞

dE

2π

∑
n

(En − µ)
∑
β

|SF
αβ(En, E)|2(f(E)− f(En)) (C.27)

Employing the same reasoning as before, we write the first-order heat exchange as

I
(1)
H,α =

∫ ∞
−∞

dE

4πi
(E − µ)

(
∂S∗αβ
∂t

Sαβ − S∗αβ
∂Sαβ
∂t

)
(C.28)

and
Q(1) =

∑
α

I
(1)
H,α. (C.29)

The energy current reads

IE,α =

∫ ∞
−∞

dE

2π
E
∑
β

∑
n

|SF
αβ(En, E)|2(f(E)− f(En)) (C.30)

and at first order

Ė(1) = ϵ̇d

∫ ∞
−∞

dE

2π
E(−∂ϵf)A+ Γ̇

∫ ∞
−∞

dE

2π
E(−∂ϵf)ReGR (C.31)

Finally, let us introduce the entropy current with lead α, which has the following expression
[1]

IΣ = kB

∫
dEdE′

(2π)2
ei(E−E

′)t

[
log f(b†α(E)bα(E

′) + a†α(E)aα(E
′)) + log(1− f)(bα(E)b†α(E

′)

+ aα(E)a†α(E
′))

]
(C.32)

In terms of the Floquet scattering matrix, the latter reads

IΣ =

∫
dE

2π

(E − µ)
T

∑
n

(En − µ)
∑
β

|SF
αβ(En, E)|2(f(E)− f(En)) (C.33)

Repeating the analysis of the current, one ends up with this expression

Ṡ(1) = ϵ̇d

∫ ∞
−∞

dE

2π

(E − µ)
T

(−∂ϵf)A+ Γ̇

∫ ∞
−∞

dE

2π

(E − µ)
T

(−∂ϵf)ReGR. (C.34)

The work rate Ẇ can be obtained by using the first law of thermodynamics. This analysis
can be extended to further orders, and it is concluded that all our results coincide with the
gradient expansion method.
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C.1 Comparison between the leading order terms of noise
in quantum pumps

As pointed out in [66], there are three different regimes in which the different leading
order terms of the noise are relevant. One has three relevant terms for our analysis. The
first is the first-order thermal noise arising from the thermal excitation of the scatterer,
corresponding to Eq. 2.54. It contains an energy scale proportional to kBT

ΩT0
Γ . The

second term is the shot noise term (Eq. 2.55), which contains an energy scale of ΩT0. The
third term is the second-order adiabatic shot noise in the high-temperature limit of Eq.
C.18 This term is, strictly speaking, singular in the zero-temperature limit and it contains
an energy scale of Ω2T0

kBT .
By examining the ratio of these terms, we will determine the regimes in which each of
these terms is relevant. One can conclude that in the low-temperature regime KBT ≪ Ω,
the first-order ”shot” noise is prevalent. There is an intermediate temperature regime
Ω ≪ kBT ≪

√
ΩΓ in which the high-temperature ”shot” noise is prevalent, while in the

high-temperature limit
√
ΩΓ≪ kBT .



Appendix D

The expansions of the Green
functions in presence of a finite
bias

In this Section, we will extend the treatment of Section 2.3 to the case of a driven quantum
dot, when a bias is present between the source and the drain. As in the previous Chapter,
both the energy level and the couplings are time-dependent.

As one can verify, for the retarded and advanced Green functions one has the usual
form GR(ϵ, t) = (ϵ− ϵd(t) + iΓ(t)2 )−1 and GA(ϵ, t) = (ϵ− ϵd(t)− iΓ(t)2 )−1 up to first order in
the expansion.

Let us recall that the lesser component of the Green function G<(t, t′) = i⟨c†(t′)c(t)⟩ is
given by the double convolution

G< =

∫
dt1dt2G

R(t, t1)Σ
<(t1, t2)G

A(t2, t
′). (D.1)

The zero order of the series reads

G<(0)(ϵ, t) = GRΣ<GA = iAf̄ . (D.2)

where we have defined the non-equilibrium stationary distribution f̄ =
∑

i=L,R
Γifi
Γ The

general expression of the expansion of the lesser Green function is

G<(ϵ, T ) = GR(ϵ, T ) ∗ Σ<(ϵ, T ) ∗GA(ϵ, T ) (D.3)

At first order, it reads

G<(1)(ϵ, T ) =
i

2

[
∂ϵG

R∂tΣ
< − ∂tGR∂ϵΣ

<

]
GA +

i

2

[
∂ϵ(G

RΣ<)∂tG
A − ∂t(GRΣ<)∂ϵG

A

]
(D.4)
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The part dependent on ϵ̇d yields a contribution −i ϵ̇d2 ∂ϵf̄A
2. Now, let us work out the

different contributions to the part which is dependent on Γ̇α

1)
i

2

(
∂ϵG

R∂tΣ
<GA −GR∂tΣ

<∂ϵG
A

)
=

∑
α

i

2
(iΓ̇αfα)(∂ϵG

RGA −GR∂ϵG
A)

= − i
2

∑
α

Γ̇αfα
A2

Γ

(D.5)

2)
i

2

(
− ∂tGR∂ϵΣ

<GA +GR∂ϵΣ
<∂tG

A

)
=

∑
α

i

2
Γ̇(iΓα∂ϵfα)

i

2
([GR]2GA +GR[GA]2) = − i

2
Γ̇∂ϵf̄

A2

Γ
(ϵ− ϵd(t))

(D.6)

3)
i

2

(
∂ϵG

RΣ<∂tG
A − ∂tGRΣ<∂ϵG

A

)
=
i

2
Γ̇(iΓf̄)

i

2

(
∂ϵG

R[GA]2 + [GR]2∂ϵG
A

)
=
i

2
Γ̇f̄

A2

Γ

(D.7)

where we used the following relations: ∂ϵG
RGA−GR∂ϵG

A = iA
2

Γ , ∂tG
R/A = −ϵ̇d∂ϵGR/A+

Γ̇(∓ i
2)[G

R/A]2, Re(GR) = ϵ−ϵd
Γ A and [GR]2[GA]2 = (AΓ )

2.
Overall, one obtains

G<(ϵ, t) = iAf̄ − i ϵ̇d
2
∂ϵf̄A

2 + i
∑
j

Γ̇j

2
(f̄ − fj)

A2

Γ
− i Γ̇

2
∂ϵf̄

A2

Γ
(ϵ− ϵd). (D.8)

As a consequence, one can identify a non-equilibrium distribution function

ϕ = f̄ − ϵ̇d
2
∂ϵf̄A−

Γ̇

2
∂ϵf̄

A

Γ
(ϵ− ϵ̂d) +

∑
j

Γ̇j

2
(f̄ − fj)

A

Γ
. (D.9)

I report here the second order of the expansion, since it will be useful

G<(2) = −1

8

[
∂2ϵG

R∂2tΣ
< − 2∂2ϵtG

R∂2ϵtΣ
< + ∂2tG

R∂2ϵΣ
<

]
GA − 1

8

[
∂2ϵ (G

RΣ<)∂2tG
A

− 2∂2ϵt(G
RΣ<)∂2ϵtG

A + ∂2t (G
RΣ<)∂2ϵG

A

]
− 1

4

[
∂ϵ(∂ϵG

R∂tΣ
< − ∂ϵΣ<∂tG

R)∂tG
A

− ∂t(∂ϵGR∂tΣ
< − ∂ϵΣ<∂tG

R)∂ϵG
A

]
.

(D.10)

Let us then distinguish all the different contributions

(1) = −1

8
∂2tΣ

<(∂2ϵG
RGA +GR∂2ϵG

A − 2∂ϵG
R∂ϵG

A) =

− i

4

∑
α

Γ̈αfα
A

Γ
[(GR)2 + (GA)2 −GRGA];

(D.11)
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(2) = −1

8
∂2ϵΣ

<(∂2tG
RGA +GR∂2tG

A − 2∂tG
R∂tG

A) =

− i

8
Γ∂2ϵ f̄

[
ϵ̇2d

(
∂2ϵG

RGA +GR∂2ϵG
A − 2∂ϵG

R∂ϵG
A

)
+ Γ̇2

(
∂2ΓG

RGA +GR∂2ΓG
A

− 2∂ΓG
R∂ΓG

A

)
+ ϵ̇dΓ̇

(
− 2∂2ϵΓG

RGA − 2GR∂2ϵΓG
A + 2∂ϵG

R∂ΓG
A + 2∂ΓG

R∂ϵG
A

)
− ϵ̈d

(
∂ϵG

RGA +GR∂ϵG
A

)
+ Γ̈

(
∂ΓG

RGA +GR∂ΓG
A

)]
= − i

8
Γ∂2ϵ f̄

[
ϵ̇2d
A

Γ

[
(GR)2 + (GA)2 − 2GRGA

]
− Γ̇2

4

A

Γ

(
(GR)2 + (GA)2

+ 2GRGA

)
+ iϵ̇dΓ̇

A

Γ

(
(GR)2 − (GA)2

)
+ 2ϵ̈d

A

Γ
ReGR − iA

2

Γ2
Γ̈

]
;

(D.12)

(3) =
1

4
∂ϵ∂tΣ

<(∂2ϵtG
RGA +GR∂2ϵtG

A − ∂ϵGR∂tG
A − ∂tGR∂ϵG

A) =

i

4

∑
α

Γ̇α∂ϵfα

[
− ϵ̇d

(
∂2ϵG

RGA +GR∂2ϵG
A − 2∂ϵG

R∂ϵG
A

)
+ Γ̇

(
∂Γ∂ϵG

RGA

+GR∂Γ∂ϵG
A − ∂ΓGR∂ϵG

A − ∂ϵGR∂ΓG
A

)]
=
i

4

∑
α

Γ̇α∂ϵfα

[
− ϵ̇d

A

Γ

(
(GR)2 + (GA)2 − 2GRGA

)
− 1

4
Γ̇
A

Γ

(
(GR)2

− (GA)2
)]

;

(D.13)

(4) = −1

4
∂ϵΣ

<(∂ϵG
R∂2tG

A − ∂tGR∂2ϵtG
A − ∂2ϵtGR∂tG

A + ∂2tG
R∂ϵG

A) =

− i

4
Γ∂ϵf̄

[
Γ̇2

(
− ∂2ΓGR∂ϵG

A − ∂ϵGR∂2ΓG
A + ∂Γ∂ϵG

R∂ΓG
A + ∂ΓG

R∂Γ∂ϵG
A

)
+ ϵ̇dΓ̇

(
∂ϵG

R∂ϵ∂ΓG
A + ∂ϵ∂ΓG

R∂ϵG
A − ∂ΓGR∂2ϵG

A − ∂2ϵGR∂ΓG
A

)
− ϵ̈d

(
∂ϵG

R∂ϵG
A + ∂ϵG

R∂ϵG
A

)
+ Γ̈

(
∂ΓG

R∂ϵG
A + ∂ϵG

R∂ΓG
A

)]
=
i

4
Γ∂ϵf̄

[
− Γ̇2

A2

Γ2
ReGR − ϵ̇dΓ̇2

A2

Γ2
ReGR − ϵ̈d

2A2

Γ2

]
(D.14)
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(5) =
1

4
∂tΣ

<(∂ϵG
R∂2tϵG

A − ∂tGR∂2ϵG
A − ∂2ϵtGR∂ϵG

A + ∂2ϵG
R∂tG

A) =

i

4
Γ̇αfα

[
Γ̇

(
∂ϵG

R∂2ϵΓG
A − ∂ΓGR∂2ϵG

A − ∂Γ∂ϵGR∂ϵG
A + ∂2ϵG

R∂ΓG
A

)]
=
i

4

∑
α

Γ̇αfα

[
− iΓ̇2A

2

Γ2
ReGR

] (D.15)

(6) = −1

8
Σ<(∂2ϵG

R∂2tG
A + ∂2tG

R∂2ϵG
A − 2∂2ϵtG

R∂2ϵtG
A + ∂2ϵG

R∂tG
A) =

− i

8
Γf̄

[
Γ̇2

(
∂2ϵG

R∂2ΓG
A + ∂2ΓG

R∂2ϵG
A − 2∂Γ∂ϵG

R∂ϵ∂ΓG
A

)
− ϵ̈d

(
∂ϵG

R∂2ϵG
A

+ ∂2ϵG
R∂ϵG

A

)
+ Γ̈

(
∂2ϵG

R∂ΓG
A + ∂ΓG

R∂2ϵG
A

)]
= − i

8
Γf̄

[
− Γ̇2A

2

Γ2
+ ϵ̈d

A2

Γ2
2ReGR

]
.

(D.16)

All these six terms have to be combined

G<(2) = − i
4

∑
α

Γ̈αfα
A

Γ
[(GR)2 + (GA)2 −GRGA]− 1

8

A2

Γ
∂2ϵ f̄ − ϵ̇d

[
i

4
Γf̄

A2

Γ2
ReGR

+
i

4
Γ∂ϵf̄

2A2

Γ2
+
i

4
Γ∂2ϵ f̄

A

Γ
ReGR

]
+ ϵ̇2d

[
− i

8
Γ∂2ϵ f̄

A

Γ

(
(GR)2 + (GA)2 − 2GRGA

)]
+ ϵ̇dΓ̇

[
− i

4
∂2ϵ f̄A

2ReGR − i

2
∂ϵf̄

A2

Γ
ReGR

]
+
i

4

∑
α

Γ̇αϵ̇d∂ϵfα

[
− A

Γ

(
(GR)2 + (GA)2

− 2GRGA

)]
+ Γ̇2

[
+

i

32
∂2ϵ f̄A

(
(GR)2 + (GA)2 + 2GRGA

)
− i

4
∂ϵf̄

A2

Γ
ReGR

− i

8
f̄
A2

Γ

]
+
i

8

∑
α

Γ̇α∂ϵfα
A2

Γ
ReGR +

i

4

∑
α

Γ̇αfα

[
− iΓ̇2A

2

Γ2
ReGR

]
.

(D.17)

Similarly, the expansion for the greater Green’s function up to first order is the following:

G>(ϵ, t) = −iA(1− f̄)− i ϵ̇d
2
∂ϵf̄A

2 + i
∑
j

Γ̇j

2
(f̄ − fj)

A2

Γ
− i Γ̇

2
∂ϵf̄

A2

Γ
(ϵ− ϵd), (D.18)

satisfying the relation G>(ϵ, T ) = −iA(1 − ϕ). The expression of G>(2) is the same as
G<(2).

G<
d,ki = i⟨a†ki(t

′)c(t)⟩, for which the property G<
d,ki(t, t) = −

(
G<

ki,d(t, t)
)∗

holds. Now, the
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equation of motion for the mixed Green function at equal times reads

Vi(t)G
<
d,ki(t, t) = Vi(t)

∑
k

(∫
dt′[GR(t, t′)g<ki(t

′, t) +G<(t, t′)gAki(t
′, t)]

)
=

(∫
dt′[GR(t, t′)Σ<

i (t
′, t) +G<(t, t′)ΣA

i (t
′, t)]

)
.

(D.19)

Moving to the Wigner transform∑
k

Vi(t)G
<
d,ki(t, t) =

(∫
dϵ

2π
[GR(ϵ, t) ∗ Σ<

i (ϵ, t) +G<(ϵ, t) ∗ ΣA
i (ϵ, t)]

)
. (D.20)

Up to first order∑
k

Vα(t)G
<
d,ki(t, t) =

∫
dϵ

2π

[
GR(ϵ, t)ifj(ϵ)Γj −

i

2
∂tG

R(ϵ, t)i∂ϵfiΓi +
i

2
∂ϵG

R(ϵ, t)ifi(ϵ)Γ̇i

]

+

∫
dϵ

2π

[
− A

2
f̄Γi −

i

2
∂ϵ(Af̄)

Γ̇i

2

]
+

∫
dϵ

2π

[
G<(1)(ϵ, T )

i

2
Γ

]
.

(D.21)

The expression for the Green function of the bath, renormalized by the interaction with
the dot stems from the Dyson equation represented on the Keldysh contour. In terms of
the lesser/greater Green functions one has

G
<(0)
kα
α′k′

= G0,<
kα δ kα

α′k′
+G0,<

kα ΣA
α
α′
G0,A

k′α′ +G0,R
kα Σ<

α
α′
G0,A

k′α′ +G0,R
kα ΣR

α
α′
G0,<

k′α′ . (D.22)

And similarly for the greater component. One has

Σ
</>/R/A
α
α′

= TαTα′G</>/R/A. (D.23)

Substituting the expression of the Green functions

=
∑
kk′

TαTα′

[
2πifα(ϵ)δ(ϵ− ϵkα)δ kα

α′k′
+ 2πifα(ϵ)δ(ϵ− ϵkα)

TαTα′

ϵ− ϵd − iΓ2

1

ϵ− ϵk′α′ − iη+

+
1

ϵ− ϵkα + iη+
TαTα′

ϵ− ϵ̂d + iΓ2
2πiδ(ϵ− ϵk′α′)fα′(ϵ) +

1

ϵ− ϵkα + iη+
TαTα′iAf̄

1

ϵ− ϵkα − iη+

]
.

(D.24)

By plugging in the expression for the decay rates and 1
ϵ−ϵkα±η+ = ∓iπδ(ϵ− ϵkα), we obtain∑

kk′

TαTα′G
<(0)
kα
α′k′

=

[
iΓαfα(ϵ)δαα′ − ΓαfαG

AΓα′

2
+

Γα

2
GRΓα′fα′ + iAf̄

ΓαΓα′

4

]
. (D.25)
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Similarly for the greater Green function∑
kk′

TαTα′G
>(0)
kα
α′k′

=

[
− iΓα(1− fα(ϵ))δαα′ + Γα(1− fα)GAΓα′

2
− Γα

2
GRΓα′(1− fα′)

− iA(1− f̄)ΓαΓα′

4

]
.

(D.26)

The general expression of this quantity in the gradient expansion is∑
kk′

TαTα′G<
kα
α′k′

= iΓαfα(ϵ)δαα′ +
∑
kk′

[G0,<
kα ∗ TαΣ

A
α
α′
Tα′ ∗G0,A

k′α′

+G0,R
kα ∗ TαΣ

<
α
α′
Tα′ ∗G0,A

k′α′ +G0,R
kα ∗ TαΣ

R
α
α′
Tα′ ∗G0,<

k′α′ ].
(D.27)

At first order, one has four contributions

(1) =
i

2

[
∂ϵ(iΓαfα)∂tGA − ∂t(iΓαfα)∂ϵGA

]
i

2
Γα′ +

i

2

[
∂ϵ(iΓαfαG

A)∂t(
i

2
Γα′)

− ∂t(iΓαfαG
A)∂ϵ(

i

2
Γα′)] = − i

4
Γ̇αfαΓα′∂ϵG

A +
i

4
Γα∂ϵfα∂tG

AΓα′ ,

(D.28)

(2) =
i

2

[
∂ϵ(−

i

2
Γα)∂tGR − ∂t(−

i

2
Γα)∂ϵGR

]
iΓα′fα′ +

i

2

[
∂ϵ(−

i

2
ΓαG

R)∂t(iΓα′fα′)

− ∂t(−
i

2
Γα′GR)∂ϵ(iΓα′fα′)] =

i

4
Γ̇α′fα′Γα∂ϵG

R − i

4
Γα′∂ϵfα′∂tG

RΓα,

(D.29)

(3) =
i

2

[
∂t(−

i

2
Γα)∂ϵ(iAf̄)− ∂ϵ(−

i

2
Γα)∂t(iAf̄)

]
(
i

2
Γα′) +

i

2

[
∂t(−

i

2
ΓαiAf̄)∂ϵ(

i

2
Γα′)

− ∂ϵ(−
i

2
Γα′iAf̄)∂t(

i

2
Γα′)] = 0,

(D.30)

(4) =
∑
kk′

TαTα′GR,0Σ
<(1)
αα′ G

A,0 =
TαTα′

ϵ− ϵkα + iη+
G<(1) 1

ϵ− ϵk′α′ − iη+
=

ΓαΓ
′
α

4

G<(1)(ϵ, T ).

(D.31)

In total:∑
kk′

TαTα′G
<(1)
kα
α′k′

= − i
4
Γ̇αfαΓα′∂ϵA+

i

4
Γα∂ϵfα∂tAΓα′ +

ΓαΓα′

4
G<(1)(ϵ, T ). (D.32)

Similarly for G
>(1)
kα
α′k′∑

kk′

TαTα′G
>(1)
kα
α′k′

=
i

4
Γ̇α(1− fα)Γα′∂ϵA+

i

4
Γα∂ϵfα∂tAΓα′ +

ΓαΓα′

4
G>(1)(ϵ, T ). (D.33)



Appendix E

The expectation value of the
coupling term of the Hamiltonian

The expression of ⟨HV ⟩ reads

⟨HV ⟩ =
∑
α

Vα(t)
∑
k

[
⟨c†akα⟩+ ⟨a†kαc⟩

]
=

∑
α

⟨Hα
V ⟩. (E.1)

Where we define Hα
V = Vα(t)

∑
k

[
c†akα + a†kαc

]
.

Now, let us derive the expression of ⟨HV ⟩ up to the first order from the expansion of the
mixed Green function. Up to the first order in the velocity, the gradient expansion yields:

⟨HV ⟩ = 2
∑
α

Im

(∫
dϵ

2π

[
GR(ϵ, t)ifα(ϵ)Γα −

i

2
∂tG

R(ϵ, t)i∂ϵfαΓα +
i

2
∂ϵG

R(ϵ, t)ifα(ϵ)Γ̇α

])
(E.2)

One can rewrite this expression as

⟨HV ⟩ = 2
∑
α

∫
dϵ

2π

[
ReGR(ϵ)Γαfα −

i

2
∂tG

R(ϵ, t)i∂ϵfΓα +
i

2
∂ϵG

R(ϵ, t)if(ϵ)Γ̇i

]
(E.3)

The components which come from the second term of D.20 are vanishing as they are real
or they get integrated out at the boundaries.
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Appendix F

The energy rate at zero order in
the charge shuttle

The zero order of the internal energy has this expression

Ė(0) = ϵd⟨
d

dt
c†c⟩(0) + 1

2

∑
kα

(
Tα⟨

d

dt
c†akα⟩(0) + h.c.

)
. (F.1)

The first derivative reads

⟨ d
dt
c†c⟩(0) = i⟨[H, c†c]⟩(0) = i

∑
kα

(Tα⟨a†kαc⟩
(0) − Tα⟨c†akα⟩(0)) =

= I
(0)
L + I

(0)
R = 0

(F.2)

for charge conservation (the latter equality is demonstrated in Sec. 3.4.1).

⟨ d
dt
c†akα⟩ = i⟨[H, c†akα]⟩ = i

∑
kα

(ϵd − ϵkα)⟨c†akα⟩+ i
∑
kα

Tα(⟨a†kαakα − c
†c⟩) (F.3)

and likewise

⟨ d
dt
a†kαc⟩ = −i

∑
kα

(ϵd − ϵkα)⟨a†kαc⟩ − i
∑
kα

Tα(⟨a†kαakα − c
†c⟩) (F.4)

Therefore one has (see Appendix D)

i

2

∑
kα

(ϵkα − ϵd)(Tα⟨c†akα⟩ − Tα⟨a†kαc⟩) =
∑
kα

(ϵkα − ϵd)Re[Tα(t)G<
d,kα(t)]. (F.5)

In terms of the mixed Green function G<
d,ki(t

′, t) = i⟨a†ki(t)c(t
′)⟩. Substituting the expres-

sion of this Green function (see Appendix D) yields

=
∑
kα

(ϵkα − ϵd)Re
[ ∫

dt′GR(t, t′)Σ<
α (t
′, t) +G<(t, t′)ΣA(t′, t)

]
. (F.6)
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At zero order this expression reads

=
∑
α

Re

[ ∫
dϵ

2π
(ϵ− ϵd)

(
GRiΓαfα + iAf̄

i

2
Γα

)]
= 0, (F.7)

where we substituted the definition of f̄ =
∑

α
Γαfα
Γ .



Appendix G

The adiabaticity conditions in the
electronic shuttle

In this Chapter, we will check the validity of the adiabatic expansion we have employed
in the main article. To do so, we compare the current calculated at different orders. In
particular, the condition for the adiabatic approximation to be valid, the leading-order
contribution of the current should be larger than the subsequent orders of the expansion.
This condition reads

Q(0)
α ≫ Q(1)

α , Q(2)
α . (G.1)

Since the first order of the expansion of the current over a period of the stationary solution
is trivially null, we concentrate on the second order.
Following the calculations of Sec. 3.4.1, we extend the treatment of the current to subse-
quent orders.
At first order, we obtain

Q
(1)
L =

1

T0

∫ T0

0
dT ⟨IL⟩(1) =

1

T0

∫ T0

0
dT

∫
dϵ

4πi
2Re

[
∂TG

R(ϵ, T )∂ϵfLΓL − ∂ϵGR(ϵ, T )fLΓ̇L

− ∂ϵG<(ϵ, T )
i

2
Γ̇L

]
+

1

T0

∫ T0

0
dt

∫
dϵ

2π
2Re

[
G<(1)(ϵ, T )

i

2
Γ

]
.

(G.2)
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As pointed out, this expression vanishes as all the first-order quantities. Now, let us turn
our attention towards the second order of the current. Its expression reads

Q
(2)
L =

1

T0

∫ T0

0
dT ⟨IL⟩(2) =

1

T0

∫ T0

0
dT

∫
dϵ

−16π
2Re

[
∂2TG

Ri∂2ϵ fLΓL + ∂2ϵG
RifLΓ̈L

− 2∂ϵ∂TG
Ri∂ϵfLΓ̇L

]
+

1

T0

∫ T0

0
dT

∫
dϵ

4πi
2Re

[
∂ϵG

<(1)(ϵ, T )
i

2
Γ̇L

]
+

1

T0

∫ T0

0
dT

∫
dϵ

2π
2Re

[
G<(2)(ϵ, T )

i

2
ΓL

]
+

1

T0

∫ T0

0
dT

∫
dϵ

−16π
2Re

[
∂2ϵ (iAf̄)

i

2
Γ̈L

]
.

(G.3)

The last term vanishes if the integration over the ϵ variable is performed.
Once one calculates all these integrals, one is able to calculate the second order of the
current over a cycle. The final expression in the zero temperature limit is reported below

Q
(2)
L = λ−2

1

T0

∫ T0

0
dTΓLΓR

(
W0(x, ϵ0, χ, λ, eV,Γ0) +W1(x, ϵ0, χ, λ, eV,Γ0)

)
, (G.4)

where the two functions are defined as

W0(x, ϵ0, χ, λ, eV,Γ0) =
1

4π

(
− Γ2

L

A(eV/2)2

Γ2
(GR(eV/2) +GA(eV/2))

+ 2iΓL
A(eV/2)

Γ
[(GR(eV/2))2 − (GA(eV/2))2]

)
,

(G.5)

W1(x, ϵ0, χ, λ, eV,Γ0) =
1

4π

[
− 1/2

A(−eV/2)
Γ

(GR(−eV/2)−GA(−eV/2))− ΓLΓR

A2(−eV/2)
Γ2

(GR(−eV/2) +GA(−eV/2)) + iA(−eV/2)[(GR(−eV/2))2 − (GA(−eV/2))2]
]
.

(G.6)

We plot the ratio between the second order of the current and the leading order contribution
in Figg. G.1 and G.2. This analysis points out that the adiabatic expansion is valid close
to the transition for small values of the limit cycle. Then, the corrections to the leading
term become prevalent.
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Figure G.1: This is the ratio between the current Q(2) and the leading order Q(0) plotted
for different values of eV and the same choice of parameters of Fig. 3.2. The results
indicate that the adiabatic approximation ceases to be appropriate for large values of eV .

Figure G.2: This is the ratio between the current Q
(2)
L and the leading order Q

(0)
L plotted

for different values of eV and the same choice of parameters of Fig. 3.2. The results
indicate that the adiabatic approximation ceases to be valid for large values of AC .





Appendix H

The calculation of the correlation
function of the force fluctuations

The correlation function of the force reads

⟨δF (t)δF (t′)⟩ = ⟨F (t)F (t′)⟩ − ⟨F (t)⟩⟨F (t′)⟩. (H.1)

The expression of the force is in eq. 3.14. Plugging it into the correlation, one obtains

⟨δF (t)δF (t′)⟩ = ⟨
(
dc†c−

∑
kα

λ−1(−1)α(Tαa†kαc+ h.c.)

)
(t)

(
dc†c−

∑
α′k′

λ−1(−1)α(Tα′a†α′k′c

+ h.c.)

)
(t′)⟩ − ⟨

(
dc†c−

∑
kα

λ−1(−1)α(Tαa†kαc+ h.c.)

)
⟩(t)⟨

(
dc†c−

∑
α′k′

λ−1(−1)α

(Tαa
†
kαc+ h.c.)

)
⟩(t′)

(H.2)

Now, we have to calculate each of these terms separately, up to the first order of the
expansion. From the expression of the correlation written above, one can distinguish three
different contributions. Each one of them is calculated separately in the adiabatic limit.
The first one reads

(1) = d2
(
⟨c†c(t)c†c(t′)⟩ − ⟨c†c⟩(t)⟨c†c⟩(t′)

)
(H.3)

In order to evaluate the first expectation value, since we are dealing with a quadratic model,
one can use the Wick theorem for the full Green function on the Keldysh contour:

⟨Tc[c†c(t)c†c(t′)]⟩ = ⟨Tc[cc†]⟩(t)⟨Tc[cc†]⟩(t′)− ⟨Tc[c(t)c†(t′)]⟩⟨Tc[c(t′)c†(t)]⟩ (H.4)

In terms of the contour-ordered Green functions [46] eq.(H.4) reads

= iGc(t, t+)iG
c(t′, t′+)− iGc(t, t′)iGc(t′, t) (H.5)
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Using Langreth rules (Chapter 2) one rewrites the expression as

= iG<(t, t)iG<(t′, t′)− iG<(t, t′)iG>(t′, t) (H.6)

The first term of Eq.(H.4) cancels the second term in eq.(H.3). As a consequence of that

(1) = d2G<(t, t′)G>(t′, t). (H.7)

At zero order it reads

(1) = d2
(∫

dϵ

2π
eiϵτG<(0)(ϵ, T )

)(∫
dϵ

2π

′
e−iϵ

′τG>(0)(ϵ, T )

)
, (H.8)

which amounts to

(1) = d2
(∫

dϵ

2π
eiϵτAf̄

)(∫
dϵ

2π

′
e−iϵ

′τA(1− f̄)
)
. (H.9)

In the first order, this correlator reads

− d2
(∫

dϵ

2π
eiϵτG<(1)(ϵ, T )

)(∫
dϵ

2π

′
e−iϵ

′τG>(0)(ϵ′, T ))

)
− d2

(∫
dϵ

2π
eiϵτG<(0)(ϵ, T ))(∫

dϵ

2π

′
e−iϵ

′τG>(1)(ϵ′, T ))

)
.

(H.10)

One can evaluate this expression

− d2
(∫

dϵ

2π
eiϵτ [− ϵ̇d

2
∂ϵf̄A

2 +
∑
j

Γ̇j

2
(f̄ − fj)

A2

Γ
− Γ̇

2
∂ϵf̄

A2

Γ
(ϵ− ϵd)]

)(∫
dϵ′

2π
e−iϵ

′τA(1− f̄)
)

− d2
(∫

dϵ

2π
eiϵτAf̄

)(∫
dϵ′

2π
e−iϵ

′τ [
ϵ̇d
2
∂ϵf̄A

2 −
∑
j

Γ̇j

2
(f̄ − fj)

A2

Γ
+

Γ̇

2
∂ϵf̄

A2

Γ
(ϵ− ϵd)]

)
.

(H.11)

All these Fourier transforms have been computed numerically in the zero-temperature limit.

Similarly, for the second term of eq.(H.1) one can write

(2) = −d/λ
∑
kα

(−1)α(Tα(t)Tα(t′)⟨[a†kαc+ c†akα](t)[c
†c](t′) + [c†c](t)[a†kαc+ c†akα](t

′)

⟩ − Tα(t)⟨[a†kαc+ c†akα](t)⟩⟨c†c(t′)⟩+ ⟨c†c(t)⟩⟨[a†kαc+ c†akα](t
′)⟩Tα(t′)).

(H.12)
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In terms of the Green’s functions

= −dλ−1
∑
kα

(−1)αTα(t)
(
G<

kα,d(t, t
′)G>(t′, t) +G<(t, t′)G>

kα,d(t
′, t)

)
− dλ−1

∑
kα

(−1)αTα(t′)
(
G<(t, t′)G>

d,kα(t
′, t) +G<

d,kα(t, t
′)G>(t′, t)

) (H.13)

Let us rewrite this quantity as

= −dλ−1
∑
kα

(−1)αG<(t, t′)

(
Tα(t)G

>
kα,d(t

′, t) + Tα(t
′)G>

d,kα(t
′, t)

)
− dλ−1

∑
kα

(−1)αG>(t′, t)

(
Tα(t)G

<
kα,d(t, t

′) + Tα(t
′)G<

d,kα(t, t
′)

)
.

(H.14)

The gradient expansion can be performed in the same way as before

−dλ−1
∑
kα

(−1)α
(∫

dϵ

2π
eiϵτG<(0)

)(∫
dϵ′

2π
e−iϵ

′τ [TαG
<,(0)
d,kα + h.c.]

)
(H.15)

at zero order. The first order reads

dλ−1
∑
kα

(−1)α
(∫

dϵ

2π
eiϵτG<(1)

)(∫
dϵ′

2π
e−iϵ

′τ [TαG
<,(0)
d,kα + h.c.]

)
+ dλ−1

∑
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(−1)α(∫
dϵ

2π
eiϵτG<(0)

)(∫
dϵ′

2π
e−iϵ
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<,(1)
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)
(H.16)

Now, the third term of the correlation (H.1) reads

(3) = λ−2
∑
kα
α′k′

(−1)αα′
Tα(t)Tα′(t′)

[
⟨[a†kαc+ c†akα](t)[a

†
kαc+ c†akα](t

′)⟩

− ⟨[a†kαc+ c†akα](t)[a
†
kαc+ c†akα](t

′)⟩
]
.

(H.17)

Then rewriting the 4-order correlation in terms of Green’s functions

(3) = λ−2
∑
kα
α′k′

(−1)αα′
Tα(t)Tα′(t′)

{
G<

kα,d(t, t
′)G>

α′k′,d(t
′, t)

+G<
d,kα(t, t

′)G>
d,k′α′(t

′, t) +G<(t, t′)G>
α′k′
kα

(t′, t)

+G<
kα
α′k′

(t, t′)G>(t′, t)

}
.

(H.18)
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There are two components

(3.1) = λ−2
∑
αα′
kk′
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(H.19)

and

(3.2) = λ−2
∑
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′τG>(0) +

∫
dϵ

2π
eiϵτ [TαTα′G

<(0)
kα
α′k′

]

∫
dϵ′

2π
e−iϵ

′τG>(1)

}
(H.20)

Adding all these different contributions allows one to arrive at the final form of the force
fluctuations

⟨δF (t)δF (t′)⟩ = (1) + (2) + (3). (H.21)

Now, let us plot the leading order of the correlation with respect to the time τ = t − t′
(Fig. H.1). One can see that it is well approximated by a delta function. This justifies
assuming a noise which satisfies

⟨ξ(t)⟩ = 0 (H.22)

and
⟨ξ(t)ξ(t′)⟩ = D(x, p)δ(t− t′) (H.23)

The diffusion coefficient has the subsequent expansion

D(x, p) ≃ D(0)(x) +D(1)(x)p+O[(Ω/Γi,av)
2] (H.24)

The coefficients Di(x) are calculated on the basis of the expansion of the force fluctuations
up to the first order.



155

Figure H.1: This is the zero order of the expansion of the correlation function in the time
domain, plotted versus τ = t−t′. The parameters chosen are x=3, eV=0.5 and the selection
of figure 3.2. This image shows that the equal times component at τ = 0 is indeed prevalent
and the white noise approximation is relevant.





Appendix I

The imaginary part of the
response function

In this Chapter, we will define on general terms the steady-state imaginary part of the
response function. Suppose one starts from a Hamiltonian depending on the initial param-
eter of the quench λi, H(λi) and the system is prepared in the initial state |ψ0⟩. Then,
the parameter is quenched to λf and subject to an external time-dependent perturbation
V (t) = h(t)B. For any generic observable A, the expectation value in the linear response
regime reads

⟨A⟩(t) = ⟨A⟩(0) +
∫ t

0
dt′χAB(t, t

′)h(t′) (I.1)

where

χAB(t, t
′) = −iθ(t− t′)⟨ψ0|[A(t), B(t′)]|ψ0⟩. (I.2)

Let us rewrite the latter in terms of the time variables T = t+t′

2 and τ = t− t′ and average
over the centre-of-mass time variable

χ̄A,B(τ) = −iθ(τ) lim
T→∞

1

T

∫ T

0
dt′Tr

{
ρ(0)

[
A(T + τ/2), B(T − τ/2)

]}
(I.3)

where the initial density matrix is ρ(0) = |ψ0⟩⟨ψ0|. The expression inside the parenthesis
can be rewritten as e−iHfT [A(τ/2), B(−τ/2)]eiHfT . After averaging, the trace over ρ(0)
can be performed under the diagonal ensemble, representing the stationary state ρst =∑

ki p
i
k|ψn,i⟩⟨ψn,i|, where pik is the overlap with the initial state and i a degeneracy index.

At the end, one obtains

χ̄A,B(τ) = −iθ(τ)
∑
n

pn⟨ψn|[A(τ/2), B(−τ/2)]|ψn⟩. (I.4)
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158 APPENDIX I. THE IMAGINARY PART OF THE RESPONSE FUNCTION

In this case, χ̄(ω) represents the Fourier transform of χ̄A,B(τ) and χ̄
′′(ω) = −Imχ̄(ω).
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