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Abstract

With the increase in the potential of high–performance computing in the last years, there is an im-
mense necessity for numerical methods and approximation techniques that can perform real–time
simulations of Partial Differential Equations (PDEs). The applications range from naval to aeronau-
tical, to biomedical engineering ones, to name a few. There exist many techniques that might help
in achieving such a goal, among which reduced–order models (ROMs) and domain–decomposition
(DD) algorithms, namely those employed in this manuscript.

The DD methodology is a very efficient tool in the framework of PDEs. Any DD algorithm is
constructed by an effective splitting of the domain of interest into different subdomains (overlapping
or not), and the original problem is then restricted to each of these subdomains with some coupling
conditions on the intersections of the subdomains. The coupling conditions may be very different,
they depend on the physical meaning of the problem at hand, and they must render a certain degree
of continuity among these subdomains. These methods are extremely important for multiphysics
problems when efficient subcomponent numerical codes are already available, or when we do not
have direct access to the numerical algorithms for some parts of the systems.

Model–order reduction methods are another set of methods mentioned before, which are ex-
tremely useful when dealing with real–time simulations or multi-query tasks. These methods are
successfully employed in the settings of non–stationary and/or parameter–dependent PDEs. ROMs
are extremely effective thanks to the splitting of the computational effort into two stages: the offline
stage, which contains the most expensive part of the computations, and the online stage, which
allows performing fast computational queries using structures that are pre–computed in the offline
stage.

This thesis aims to introduce a framework where both aforementioned techniques, namely
DD algorithms and ROMs are combined in order to achieve better performance of numerical
simulations. We choose to model the DD using an optimisation approach to ensure the coupling of
the interface conditions among subdomains. Starting from the domain decomposition approach, we
derive an optimal control problem, for which we present the convergence analysis. The snapshots
for the high–fidelity model are obtained with the Finite Element discretisation, and the model order
reduction is then proposed both in terms of time and/or physical parameters, with a standard Proper
Orthogonal Decomposition (POD)–Galerkin projection or with non–intrusive methods, such as



POD–neural network (NN). The methodology has been tested on a couple of Computational Fluid
Dynamics (CFD) benchmark problems.

The final aim of the thesis is to produce a fully–segregated method for multiphysics problems
using the aforementioned techniques. We have managed successfully to build a model for a non–
stationary Fluid–Structure Interaction (FSI) problem. The resulting numerical method shows an
extremely important feature — it is stable under the assumption of the “added mass” effect, which
causes instabilities of many partitioned approaches to FSI problems. It has been evidenced by the
numerical experiments of the model presented for a two—dimensional haemodynamics benchmark
FSI problem.
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Introduction

Partial differential equations (PDEs) lie at the foundation of many mathematical models for real–
life applications. The applications of such models vary from naval [176, 174, 47] and aeronautical
[110, 154] to cardiovascular engineering [173, 147, 121], to name a few. In practice, for most of
the problems, there is no way to find an analytical closed solution, which forces one to resort to
surrogate models for different phenomena, namely numerical methods such as Finite Element (FE),
Finite Volume (FV), Discontinuous Galerkin (DG) or other methods.

The FE method is among the most used discretisation techniques for engineering design and
analysis. It is based on an efficient tessellation of the domain of interest and the introduction of a
finite number of basis functions with local supports. The span of these basis functions is supposed
to provide a good approximation of the continuous space where the original problem is defined.
The assumption that the basis functions have local supports leads to sparse algebraic systems that
can be efficiently tackled by well–developed fields of linear and non–linear algebra.

Even though modern computer architectures make it possible to solve a wide range of problems,
there still exists a class of problems of large size that needs substantial attention. In particular,
cutting–edge research has put its effort in improving existing numerical algorithms as well as in
developing new ones, that are able to tackle those problems or provide computationally cheap
real–time computations. Two of the most known techniques devised to address these problems are
Domain Decomposition (DD) algorithms and Reduced Order Models (ROMs).

The DD methodology is a very efficient tool in the framework of PDEs. Any DD algorithm
[151, 179, 40, 50, 165], is based on an effective splitting of the domain of interest into different
subdomains (overlapping [27, 30, 62, 151, 179] or not [162, 166, 151, 179]). The original problem
is then restricted to each of these subdomains, with the addition of some coupling conditions on the
intersections of the subdomains. The coupling conditions may be very different: they depend on
the physical meaning of the problem at hand, and they must render a certain degree of continuity
among these subdomains. Then, the interface coupling conditions may be fulfilled by iterative
procedures among subdomains, which can be solved independently, exploiting the efficiency of
multiprocessor computer architectures. These methods are extremely important for multiphysics
problems when efficient subcomponent numerical codes are already available, or when we do not
have direct access to the numerical algorithms for some parts of the systems; see, for instance,
[54, 69, 84, 98, 99, 103].

On the other hand, model–order reduction (MOR) methods [44, 23, 24, 78, 81, 132, 158, 25]
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2 Introduction

are extremely useful when dealing with real–time simulations or multi–query tasks. These methods
are successfully employed in the settings of non–stationary and/or parameter–dependent PDEs.
ROMs are incredibly effective thanks to the splitting of the computational effort into two stages:
the offline stage, which contains the most expensive part of the computations, and the online stage,
which allows performing fast computational queries using structures that are pre–computed in the
offline phase. ROMs have been successfully applied over the years in different fields such as fluid
dynamics [8, 45, 49, 105, 123, 157, 90, 33, 167, 168, 170, 175, 66, 178, 155], structural mechanics
[78, 177, 181, 91, 28] and fluid–structure interaction problems [13, 18, 19, 127, 126]. Lately,
there have also been great advances in reduced–order modelling for optimal–control problems,
[36, 139, 172, 169, 171].

With these ideas in mind, the goal of the thesis is to give an extensive overview of the application
of the domain–decomposition reduced–order models in the context of the parameter–dependent
Fluid Dynamics and Fluid–Structure Interaction (FSI) problems. We bring our attention to domain–
decomposition methods using an optimisation approach to ensure the coupling of the interface
conditions between different subdomains and using a complete separation of the solvers on the
subdomains. In particular, in order to exploit both aforementioned techniques, in this thesis the
optimisation–based domain–decomposition algorithm is combined with projection–based reduced–
order models.

As mentioned above, one of the problems addressed in this thesis is FSI. Even though there has
been extensive research in computational methods for solving FSI problems in the last decades, a
comprehensive presentation from a mathematical point of view is still missing nowadays: one of
the reasons for this is the fact that the two subproblems, namely the Navier–Stokes equation and the
elastic solid equation, are two big mathematical challenges on their own, see for example [153, 70].
FSI problems describe the dynamic interplay between a fluid and a solid. This interplay takes place
because of the coupling of the two different physics at the FSI interface, namely the part of the
physical domain that is common to the fluid subdomain and the solid subdomain. The FSI interface
profile is unknown a priori and depends on the dynamics of the fluid and the structure problem.

Classically, there are two different approaches to solving an FSI problem: a partitioned (or
segregated) procedure [127, 38, 19, 15, 39, 57, 58, 153, 14], and a monolithic procedure [18,
184, 153]. The idea behind partitioned algorithms is to try to combine available well–developed
computational tools for fluid dynamics and structural dynamics and couple them with some iterative
procedure. On the other hand, in monolithic algorithms, the fluid and the solid problem are solved
simultaneously.

Even though the partitioned approach is more attractive because of its computational efficiency,
it might lead to unstable algorithms, under some physical and geometrical conditions, while the
monolithic approach does not suffer from this issue. This happens, for example, if the physical
domain has a slender shape, or, as in our numerical test, if the fluid density is close to the solid
density, and this is usually the case in haemodynamics applications [144], where the density of the
blood is quite close to the density of the walls of the vessel. This phenomenon is the so–called
“added mass” effect; see, for instance, [38] for a detailed derivation of the “added mass” effect and
related consequences. The approach undertaken in this thesis leads to a fully–segregated algorithm
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which, as will be evidenced by numerical experiments, is nevertheless stable under the “added
mass” effect.

Thesis overview

This thesis is structured as follows. The first two chapters are devoted to an overview of two key
techniques used throughout the thesis, namely domain decomposition algorithms and reduced order
models, whereas, the rest of the thesis describes three main applications: fluid dynamics problem
in both stationary and non–stationary regimes, and an FSI problem.

In Section 1.1, we give the basic motivations for DD methods. Section 1.2 describes the general
mathematical setting of any DD method, and Section 1.3 lists a few classical DD algorithms. In
Section 2.1, we provide a quick motivation and historical background for ROMs. Section 2.2 sets
up a general mathematical framework for ROMs. Sections 2.3 and 2.4 describe the methods for
reduced bases generation and efficient offline–online decomposition, respectively.

In Section 3.1, we introduce the monolithic and the optimisation–based domain–decomposition
formulations of the stationary incompressible Navier–Stokes equations in both strong and weak
forms. In Section 3.2, we derive the optimality condition for the resulting optimal control problem
together with the expression for the gradient of the objective functional and we introduce a gradient–
based optimisation algorithm to tackle the optimisation problem. In section 3.3, we describe the
Finite Element discretisation of the problem of interest and provide a finite–dimensional high–
fidelity optimisation problem. Section 3.4 deals with the reduced–order model that is based on
a reduced basis generation by Proper Orthogonal Decomposition methodology and the Galerkin
projection of the high–fidelity problem onto the lower–dimensional reduced spaces. In Section 3.5,
we show some numerical results for two toy problems: the backward–facing step and the lid–driven
cavity flows. Conclusions and perspectives follow in Section 3.6.

In Section 4.1, we introduce the monolithic formulation of the non–stationary fluid dynamics
problem and its time–discretisation scheme with the further derivation of the optimisation–based
domain–decomposition formulation at each time step in both strong and weak forms. In Section 4.2,
we derive a priori estimates for the solutions to Navier–Stokes equations which are then used to
prove the existence and uniqueness of the minimiser to the optimal–control problem derived in the
previous section. Furthermore, in Section 4.3 we derive the optimality condition for the resulting
optimal control problem and the expression for the gradient of the objective functional with the
following listing of the gradient–based optimisation algorithm. Section 4.4 contains the Finite
Element discretisation of the problem of interest and the corresponding finite–dimensional high–
fidelity optimisation problem. Section 4.5 deals with two ROM techniques: an intrusive Galerkin
projection and a neural network (NN) algorithm, both based on a Proper Orthogonal Decomposition
(POD) methodology. In Section 4.6, we show some numerical results for two toy problems: the
backward–facing step and the lid–driven cavity flows. Conclusions and perspectives follow in
Section 4.7.

In Section 5.1, we describe the general dynamics of an FSI problem, we introduce the notion of
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Arbitrary Lagrangian–Eulerian map and we provide a monolithic formulation for the FSI problem
in the reference configuration. In Section 5.2, starting with the introduction of the variational
formulation in space, we provide a time discretisation scheme for the problem of interest and we
derive a DD optimal control problem. In Section 5.3, we undertake two approaches to tackle the
optimisation–problem obtained in the previous section. The first approach is obtained by deriving
the optimality condition for the optimal control problem and the expression for the gradient of the
objective functional with the following description of the gradient–based optimisation algorithm. In
the second approach, we recast the objective functional in the framework of non–linear least squares
optimisation and describe an efficient Gauss–Newton algorithm to tackle the problem. Section 5.4
contains the Finite Element discretisation of the problem of interest and the corresponding finite–
dimensional high–fidelity optimisation problem for both settings described in the previous section.
Section 5.5 deals with the reduced–order model based on a reduced basis generation by Proper Or-
thogonal Decomposition methodology and on the Galerkin projection of the high–fidelity problem
onto the lower–dimensional reduced spaces. In Section 5.6, we conduct some numerical results
on the two–dimensional haemodynamics benchmark FSI problem. Conclusions and perspectives
follow in Section 5.7.

Chapter 6 summarises the achieved goals and lists the future perspectives of the work carried
out throughout this thesis.



Chapter 1

An Overview of Domain Decomposition
Methods

In this section, we will give motivation for Domain Decomposition (DD) methods, provide a general
mathematical setting and list a few classical techniques to address the problem.

1.1 Motivation

Very often numerical solvers of differential problems of interest lead to large–scale algebraic systems
that are very hard (or even sometimes impossible) to tackle due to limited computational resources.
Therefore, there is a need to improve existing numerical algorithms and develop new, more efficient
ones.

The first ideas for DD methods date back to the eighties and they are one of the most important
tools for devising parallel algorithms for large–scale problems arising in different areas such as
physics, biomedicine and engineering.

Any domain decomposition method [151, 179, 40, 50, 165] is based on the assumption that the
domain of interest is partitioned into subdomains, overlapping [27, 30, 62, 151, 179] or not [162, 166,
151, 179]; the original problem is then reformulated in each subdomain, and each subproblem is then
coupled through the values of the unknown solutions at the subdomain interfaces. Then, the interface
coupling conditions may be removed by introducing iterative procedures among subdomains, which
can be solved independently, and, thus, benefit from the efficiency of multiprocessor computer
architectures.

DD algorithms have been successfully applied with different numerical schemes, such as Finite
Element method (FEM) [7, 124, 151, 179], Finite Volume (FV) method [26, 131], spectral methods
[146, 187, 179], Discontinuous Galerkin (DG) methods [12, 56, 65] and others.

These methods are extremely important for multiphysics problems when efficient subcomponent
numerical codes are already available, or when we do not have direct access to the numerical
algorithms for some parts of the systems; see, for instance, [54, 69, 84, 98, 99, 103].
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6 CHAPTER 1. AN OVERVIEW OF DOMAIN DECOMPOSITION METHODS

1.2 General setting

Let us first introduce the general notation and ideas of DD. We assume Ω ⊂ R𝑑 to be an 𝑑–
dimensional domain with a Lipschitz boundary Γ, L is a second–order differential operator and 𝑓

a given data on Ω. We consider the following problem: find 𝑢 : Ω → R such that

L𝑢 = 𝑓 in Ω, (1.1a)
𝑢 = 0 on Γ. (1.1b)

Ω1

Ω2

Γ0

𝑛

𝑛

Ω1

Ω2

Γ0

Figure 1.1: Non–overlapping partition of the domain Ω into two subdomains

To keep the exposition simple, we will consider in the rest of the work the two–domain non–
overlapping methods: for more details and generalisations we refer to [54, 69, 74, 75, 77, 84, 98,
99, 103, 150, 151, 179]. To begin with, we assume that the domain Ω is partitioned into two non–
overlapping subdomainsΩ1 andΩ2, and we denote by Γ0 the interface between them: Γ0 := Ω1∩Ω2
(see Figure 1.1); we assume that Γ0 is a Lipschitz (𝑑 − 1)–dimensional manifold. We denote by
Γ𝑖 = Γ ∩Ω𝑖 for 𝑖 = 1, 2.

We denote by 𝑢𝑖 the restriction to subdomain Ω𝑖 , 𝑖 = 1, 2, of the solution 𝑢 to (1.1) and by n𝑖 the
normal outward unit vector on 𝜕Ω𝑖 ∩ Γ0. For the sake of the notation, we also set n := n1. Then,
the domain decomposition problem reads: for 𝑖 = 1, 2, solve

L𝑢𝑖 = 𝑓 in Ω𝑖 , (1.2a)
𝑢𝑖 = 0 on Γ𝑖 . (1.2b)

To guarantee the equivalence with (1.1), we need to enforce interface conditions between 𝑢1 and 𝑢2
across Γ0. Such condition can be expressed by two relationships:

Φ(𝑢1) = Φ(𝑢2) on Γ0, (1.3a)
Ψ(𝑢1) = Ψ(𝑢2) on Γ0, (1.3b)

where the functions Φ and Ψ depend upon the nature of the problem at hand. In general, these
interface conditions are being chosen in such a way that the following two requirements are satisfied:
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• The monolithic solution 𝑢 : Ω → R belongs to some space of functions defined on the
domain Ω. This, in turn, implies that the restriction 𝑢𝑖 has a certain degree of regularity on
the corresponding domain Ω𝑖 for 𝑖 = 1, 2 and, moreover, they satisfy a suitable matching
condition on the interface Γ0.

• The restriction 𝑢𝑖 , for 𝑖 = 1, 2, is a distributional solution of problem (1.2). Another interface
condition arises from the fact that the monolithic solution 𝑢 is a distributional solution of
problem (1.1), also through the interface Γ0 and not only inside the domains Ω1 and Ω2.

Typically, for second–order elliptic operators, the condition (1.3a) expresses the continuity between
𝑢1 and 𝑢2 on Γ0, whereas (1.3b) indicates the equality of normal fluxes or normal stresses through
the interface Γ0. We will provide two examples:

• Laplace operator:

L𝑢 = −Δ𝑢, Φ(𝑢) = 𝑢, Ψ(𝑢) = 𝜕𝑢

𝜕n ,

• Stokes operator:

L
(
𝑢

𝑝

)
=

(
−𝜈Δ𝑢 + ∇𝑝

−div𝑢

)
, Φ

(
𝑢

𝑝

)
= 𝑢, Ψ

(
𝑢

𝑝

)
= 𝜈

𝜕𝑢

𝜕n − 𝑝n.

In Chapter 5, we will also introduce a more complex multiphysics problem, where the dynamics
on the subdomains Ω1 and Ω2 differ from one another, and we will describe other types of coupling
conditions coming from the physical meaning of a problem.

1.3 Iterative substructuring algorithms

In this section, we will give a brief introduction of the methods to tackle the multi–domain problem
described in the previous section. These methods are well–known in the literature under the
name of iterative substructuring algorithms; see, for instance, [27, 30, 62, 151, 179]. Here, we
will consider the classical Dirichlet–Neumann, Neumann–Neumann and Robin methods, originally
introduced for the Laplace operator (where their names stem from) and later generalised for a family
of boundary value problems.

Starting from an initial guess 𝑢0
1 and 𝑢0

2, each method generates two sequences {𝑢𝑘1 } and {𝑢𝑘2 },
which can be found independently, and which will eventually converge to 𝑢1 and 𝑢2, respectively.
We will keep the general notation introduced in the previous section and provide references on the
specific applications and their convergence analysis in each case.

1. The Dirichlet–Neumann method [40, 50, 165, 151, 179]



8 CHAPTER 1. AN OVERVIEW OF DOMAIN DECOMPOSITION METHODS

Given 𝜆0, solve for each 𝑘 ≥ 0: 
L𝑢𝑘+1

1 = 𝑓 in Ω1,

𝑢𝑘+1
1 = 0 on Γ1,

Φ(𝑢𝑘+1
1 ) = 𝜆𝑘 on Γ0,

then 
L𝑢𝑘+1

2 = 𝑓 in Ω2,

𝑢𝑘+1
2 = 0 on Γ2,

Ψ(𝑢𝑘+1
2 ) = Ψ(𝑢𝑘+1

1 ) on Γ0,

with
𝜆𝑘+1 := 𝜃 𝑢𝑘+1

2
��
Γ0
+ (1 − 𝜃)𝜆𝑘 ,

where 𝜃 is a positive acceleration parameter.

2. The Neumann–Neumann method [6, 29, 151, 179]

Given 𝜆0, solve for each 𝑘 ≥ 0: 
L𝑢𝑘+1

𝑖
= 𝑓 in Ω𝑖 ,

𝑢𝑘+1
𝑖

= 0 on Γ𝑖 ,

Φ(𝑢𝑘+1
𝑖

) = 𝜆𝑘 on Γ0,

for 𝑖 = 1, 2, and then solve an auxiliary problem in 𝜓𝑖
L𝜓𝑘+1

𝑖
= 0 in Ω𝑖 ,

𝜓𝑘+1
𝑖

= 0 on Γ𝑖 ,

Ψ(𝜓𝑘+1
𝑖

) = Ψ(𝑢𝑘+1
1 ) − Ψ(𝑢𝑘+1

2 ) on Γ0,

for 𝑖 = 1, 2, with
𝜆𝑘+1 := 𝜆𝑘 − 𝜃

(
𝜎1 𝜓

𝑘+1
1

��
Γ0
− 𝜎2 𝜓

𝑘+1
2

��
Γ0

)
,

where 𝜃 is a positive acceleration parameter, 𝜎1 and 𝜎2 are two positive averaging coefficients.

3. The Robin method [5, 113, 151, 179]

Given 𝑢0
2 solve for each 𝑘 ≥ 0:

L𝑢𝑘+1
1 = 𝑓 in Ω1,

𝑢𝑘+1
1 = 0 on Γ1,

Ψ(𝑢𝑘+1
1 ) + 𝛾1Φ(𝑢𝑘+1

1 ) = Ψ(𝑢𝑘2 ) + 𝛾1Φ(𝑢𝑘2 ) on Γ0,
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then 
L𝑢𝑘+1

2 = 𝑓 in Ω2,

𝑢𝑘+1
2 = 0 on Γ2,

Ψ(𝑢𝑘+1
2 ) − 𝛾2Φ(𝑢𝑘+1

2 ) = Ψ(𝑢𝑘+1
1 ) − 𝛾2Φ(𝑢𝑘+1

1 ) on Γ0,

where 𝛾1 and 𝛾2 are non–negative acceleration parameters satisfying 𝛾1 + 𝛾2 > 0. For the sake of
parallelisation, in the latter problem, we could also consider 𝑢𝑘1 instead of 𝑢𝑘+1

1 , initialising, in that
case, also 𝑢0

1.

Our approach to domain decomposition takes advantage of optimal control techniques, as it is done,
for instance, in [74, 75, 77, 98, 99]. In this case, we consider the following optimisation problem:
minimise over 𝑔 ∈ 𝐺, where G is some suitable Banach space of functions defined on Γ0 equipped
with a norm | | · | |𝐺 , the functional

J (𝑢1, 𝑢2; 𝑔) :=
1
2
| |Φ(𝑢1) −Φ(𝑢2) | |2𝐺

subject to 
L𝑢𝑖 = 𝑓 in Ω𝑖 ,

𝑢𝑖 = 0 on Γ𝑖 ,

Ψ(𝑢𝑖) = 𝑔 on Γ0,

for 𝑖 = 1, 2.
This approach allows us to rely on the fully–fledged field of optimal control [37, 180, 111, 119,

136, 109], for the development of various methods, using iterative minimisation algorithms and
proof of their convergence.





Chapter 2

An Overview of Reduced Order Models

In this chapter, we will provide some motivation and historical background on the Reduced order
models (ROMs) followed by the general mathematical setting. Then, we will discuss the classical
techniques for the reduced basis generation and the efficient offline–online splitting in this context.

2.1 Motivation and historical background

In the last decades, there has been a growing interest in approximation techniques for partial
differential equations (PDEs) that exploit high–performance computing within different fields of
applications: naval engineering [176, 174, 47], aeronautical engineering [110, 154], biomedical
engineering [173, 147, 121], etc. Very often these problems have prohibitively high computational
costs, and there is always the need for much more effective algorithms in order to alleviate the
complexities of such numerical models. These models are often expressed as parametrised PDEs
and input parameters are used to characterize a particular problem and possible variations in its ge-
ometric configuration, physical properties, boundary conditions or source terms. The parametrised
model implicitly connects these input parameters to outputs of interest, e.g., a maximum system
temperature, an added mass coefficient, a crack stress intensity factor, an effective constitutive
property, a waveguide transmission loss, a channel flow rate or a pressure drop.

Reduced basis methods come into play when there is a need to tackle problems in which the
solution is sought for a large number of different parameter values or for real–time evaluation
of the solution for onsite parameter collection. Examples of typical applications of relevance
are optimisation [36, 94, 169, 172, 171, 186], design [11, 63, 47], uncertainty quantification
[85, 120, 117] and real–time query [10, 61, 185]. In this case, the aim is to obtain models which
can be treated more efficiently, from the computational point of view, while keeping the accuracy
of the underlying numerical methods. We will call a high–fidelity method the more expensive
numerical discretisation that gives us a very accurate numerical solution to the problem of interest.
On the contrary, we will denote by a low–fidelity model a reduced–order model that is much more
computationally efficient but possibly less accurate.

11
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The core idea of the reduced basis approach is the identification of a suitable problem–dependent
basis to effectively represent parametrised solutions to PDEs. The methodology dates back to the
1970s and it was initially presented in [9, 59, 128, 129, 130, 164]. In those early works, the
approximation spaces were local and typically low–dimensional in the number of parameters.
Furthermore, the absence of a posteriori error estimators left open questions about the accuracy of
the reduced model. Consequently, substantial efforts have been recently devoted to the formulation
of a posteriori error estimators and rigorous error bounds for outputs of interest, as well as to the
design of more effective sampling techniques, see, for instance, [118, 125, 142, 156, 182].

Recent work has focused on achieving a full decoupling of the expensive discretisation scheme
and the reduced order model through an offline–online procedure. In this approach, the complexity
of the offline stage depends on the complexity of the underlying high–fidelity approximation of the
parametrised PDE, while the complexity of the online stage depends solely on the complexity of the
reduced model. When combined with the a posteriori error estimation, the online stage guarantees
the accuracy of the high–fidelity numerical approximation at the low cost of a reduced–order model.

The full separation is achievable in the case of a so–called “affine parameter dependence": this
offline–online decomposition is quite natural and has been described, for instance, in [92, 135,
159]. However, the combination of affine parameter dependence and the rigorous a posteriori
error estimates is more involved and more recent [88, 142]. In the case of non–affine parameter
dependence, the development of offline–online strategies is much less obvious but still can be
achieved with the use of the empirical interpolation method [20, 72]. This last development,
essential for the overall efficiency of the offline–online decomposition, has brought significant
progress into the development of reduced basis methods and their use in real–time and many-query
contexts for complex applications, including nonlinear problems. Reduced basis methods can be
effectively applied also to nonlinear problems [71, 35, 95], although this typically introduces both
numerical and theoretical complications, and many questions remain open. For classical problems
with a quadratic nonlinearity, there has been substantial progress, e.g., Navier–Stokes/Boussinesq
and Burgers’ equations in fluid mechanics [135, 125, 156, 182, 148, 49, 160] and nonlinear elasticity
in solid mechanics [91, 28].

In the last decade, great attention has been brought to the application of ROMs in the field
of multiphysics problems, especially when dealing with domain decomposition techniques. A
domain decomposition approach [151, 150], combined with a reduced basis method, has been
successfully applied in [160, 116, 115] and further extensions are discussed in [93, 87, 89]. A
coupled multiphysics setting has been proposed for simple fluid–structure interaction problems in
[18, 19, 104, 106, 107, 126, 127], and for Stokes–Darcy problem in [122].

In the last decade, novel non–linear ROM approaches have been proposed, mainly following
the trend topic of machine learning and artificial intelligence. The new techniques have been used
to take care of different aspects of the ROMs. Autoencoders, in particular convolutional ones,
[108, 60] and graph neural networks (NN) [137, 155] have been used as a surrogate nonlinear
model to reduce the solution manifold, hence, substituting the classical POD and reduced basis
algorithms in the offline phase. They are typically able to reduce the dimension of the reduced
space in problems where there is slow decay of the Kolmogorov 𝑛–width and where classical linear



2.2. MATHEMATICAL SETTING 13

ROMs fail. Another task often delegated to neural networks is the offline phase, where simple NN
[82] or radial basis function interpolation [175, 48] can speed–up the prediction phase. They are
extremely useful when the problem at hand is complicated, nonlinear or its code is not accessible.
Finally, we need to mention further approximation techniques that aim at minimising a functional
that depends on the residual of the underlying PDEs as physics–informed neural networks (PINNs)
and therein references [152, 114].

After the construction of the reduced spaces by classical techniques discussed above, the
RBM–NN tries to learn the map that, given a parameter, returns the reduced coefficients of the
reduced solution. In many contexts, the use of ANN brings a lot of advantages in terms of
computational time in the online stage, since it only needs to solve an optimisation problem with
already existing, extremely effective methods. On the other hand, using ANNs can have drawbacks
when dealing with complex problems and problems with discontinuities.

2.2 Mathematical setting

The aim of this chapter is to give an overview of the general setting of reduced–order models.
To keep the exposition simple we will limit ourselves to linear coercive scalar problems and then
give some insights for tackling more complex problems. For more details, we suggest consulting
[81, 149, 161]. The extension to vector differential problems is quite straightforward.

Let us consider a physical domain Ω ⊂ R𝑑 , 𝑑 = 1, 2, 3, with Lipschitz boundary Γ and let
us denote by Γ𝐷 and Γ𝑁 the portions of the boundary where we impose Dirichlet and Neumann
boundary conditions, respectively.

We assume the problem to be parameter–dependent: let 𝜇 ∈ P be a parameter, with P ∈ R𝑝,
𝑝 ≥ 1 the parameter space. We want to solve the following problem: for every 𝜇 ∈ P, find
𝑢(𝜇) : Ω → R such that: 

L(𝜇)𝑢(𝜇) = 𝑓 (𝜇) in Ω,

𝑢(𝜇) = 0 on Γ𝐷 ,

Ψ(𝑢(𝜇); 𝜇) = 𝑔(𝜇) on Γ𝑁 ,

where L(·) is a linear second–order differential operator with a corresponding Neumann operator
Ψ(·; ·), and 𝑓 (·) and 𝑔(·) are some prescribed data. For the sake of simplicity, we consider here
homogeneous Dirichlet condition; in Chapters 3 and 4 we also consider non–homogeneous Dirichlet
problems and we describe how to tackle them.

Let (𝑉, | |·| |𝑉 ) be a function space endowed with the 𝐻1(Ω)–norm, where 𝑉 := {𝑢 ∈ 𝑉 : 𝑢 = 0
on Γ𝐷}. The variational counterpart of the problem then reads as follows: for every 𝜇 ∈ P, find
𝑢(𝜇) ∈ 𝑉 such that:

𝑎(𝑢(𝜇), 𝑣; 𝜇) = 𝑙 (𝑣; 𝜇) ∀𝑣 ∈ 𝑉, (2.1)

where 𝑎(·, ·; ·) is a bilinear coercive continuous form with respect to the first two parameters and
the 𝐻1(Ω)–norm, while 𝑙 (·; ·) is a linear and continuous form with respect to the first parameter
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and the 𝐻1(Ω)–norm, that takes into account the data of the problem. Under these constraints, it is
well–known that problem (2.1) is well–posed for each 𝜇 ∈ P due to the Lax–Milgram lemma.

The next step towards the construction of the reduced space for efficient solving problem (2.1)
for any input parameter 𝜇 ∈ P is to provide a suitable spatial discretisation of the variational space
𝑉 . Throughout this thesis, we will focus on Finite Element (FE) discretisation, but the methodology
works just as well for other discretisation techniques, such as Finite Volumes or Discontinuous
Galerkin methods.

In the framework of FE discretisation, under the assumption that the domain Ω is polygonal,
we first provide a well–defined triangulation of Ω, and then we build a finite–dimensional linear
subspace 𝑉ℎ ⊂ 𝑉 spanned by piecewise continuous polynomials of degree less or equal to 𝑘 ∈ N,
with local supports. We denote by 𝑁ℎ the dimension of the space 𝑉ℎ, and by 𝜑𝑖 , 𝑖 = 1, ..., 𝑁ℎ its
basis. Then, the discretised version of (2.1) reads: for every 𝜇 ∈ P, find 𝑢ℎ (𝜇) ∈ 𝑉ℎ such that:

𝑎(𝑢ℎ (𝜇), 𝑣ℎ; 𝜇) = 𝑙 (𝑣ℎ; 𝜇) ∀𝑣ℎ ∈ 𝑉ℎ . (2.2)

This problem will be denoted as a truth or high–fidelity problem. This is because of the assumption
that the solution needs to be computed for one parameter value only and this task can be achieved
with as high accuracy as desired. A unique solver is potentially very expensive due to the fact
that for high accuracy we might need to use a high number of basis functions 𝑁ℎ. This implies
that linear and nonlinear solvers could be extremely expensive in terms of computational time and
resources, as they might scale as O

(
𝑁2
ℎ

)
or O

(
𝑁3
ℎ

)
, depending on the solver.

Problem (2.2) can be rewritten in the algebraic form: find a vector 𝑢ℎ (𝜇) = [𝑢1
ℎ
(𝜇), .., 𝑢𝑁ℎ

ℎ
(𝜇)] ∈

R𝑁ℎ solving the following linear system:

𝐴ℎ (𝜇)𝑢ℎ (𝜇) = 𝐹ℎ (𝜇), (2.3)

where 𝐴ℎ (𝜇) is a matrix of dimension 𝑁ℎ × 𝑁ℎ with [𝐴ℎ (𝜇)]𝑖, 𝑗 = 𝑎(𝜑 𝑗 , 𝜑𝑖; 𝜇) and 𝐹ℎ (𝜇) is a
vector of dimension 𝑁ℎ with [𝐹ℎ (𝜇)]𝑖 = 𝑙 (𝜑𝑖; 𝜇). Here 𝑢ℎ (𝜇) is a vector containing the coefficients
of the expansion of the solution 𝑢ℎ (𝜇) with respect to the basis

{
𝜑1, ...., 𝜑𝑁ℎ

}
, i.e.,

𝑢ℎ (𝜇) =
𝑁ℎ∑︁
𝑖=1

𝑢𝑖ℎ (𝜇)𝜑𝑖 .

We introduce now the notion of discrete solution manifold, defined as the manifold of the
high–fidelity solution varying with the parameter 𝜇, i.e.,

Mℎ := {𝑢ℎ (𝜇) : 𝜇 ∈ P and 𝑢ℎ (𝜇) is a solution to (2.2)} . (2.4)

A fundamental assumption in the development of any (linear) reduced model is that the solution
manifold is of low dimension, i.e., that the span of a low number of appropriately chosen basis
functions (which we will call reduced basis functions) represents Mℎ with a small error. In the
following section, we will describe the techniques for building such basis functions. Let us assume
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for the moment that we have already computed a set of 𝑁 reduced basis functions {Φ1, ....,Φ𝑁 },
and we generate a reduced basis space 𝑉𝑁 by spanning over those functions, that is

𝑉𝑁 = span {Φ1, ....,Φ𝑁 } ⊂ 𝑉ℎ, dim𝑉𝑁 = 𝑁. (2.5)

The above assumption on the low dimensionality of the reduced spaces implies that 𝑁 ≪ 𝑁ℎ.
Now, given the reduced space 𝑉𝑁 , we define a reduced problem as the Galerkin projection of the
problem (2.1) onto the reduced space 𝑉𝑁 : for every 𝜇 ∈ P, find 𝑢𝑁 (𝜇) ∈ 𝑉𝑁 such that

𝑎(𝑢𝑁 (𝜇), 𝑣𝑁 ; 𝜇) = 𝑙 (𝑣𝑁 ; 𝜇) ∀𝑣𝑁 ∈ 𝑉𝑁 . (2.6)

At the algebraic level, we have the following linear problem: find a vector𝑢𝑁 (𝜇) = [𝑢1
𝑁
(𝜇), .., 𝑢𝑁

𝑁
(𝜇)],

𝑢𝑁 (𝜇) ∈ R𝑁 solving the following linear system:

𝐴𝑁 (𝜇)𝑢𝑁 (𝜇) = 𝐹𝑁 (𝜇), (2.7)

where 𝐴𝑁 (𝜇) is a matrix of dimension 𝑁 × 𝑁 with [𝐴𝑁 (𝜇)]𝑖, 𝑗 = 𝑎(Φ 𝑗 ,Φ𝑖; 𝜇) and 𝐹𝑁 (𝜇) is a
vector of dimension 𝑁 with [𝐹𝑁 (𝜇)]𝑖 = 𝑙 (Φ𝑖; 𝜇). Here 𝑢𝑁 (𝜇) is a vector containing the coefficients
of the expansion of the solution 𝑢𝑁 (𝜇) with respect to the basis {Φ1, ....,Φ𝑁 }, i.e.

𝑢𝑁 (𝜇) =
𝑁∑︁
𝑖=1

𝑢𝑖𝑁 (𝜇)Φ𝑖 .

There is a direct connection between the matrices 𝐴ℎ (·) and 𝐴𝑁 (·) and between the vectors
𝐹ℎ (𝜇) and 𝐹𝑁 (𝜇). We define a reduced basis matrix Z of dimension 𝑁ℎ × 𝑁 as follows: each 𝑗–th
column of Z contains the expansion coefficients of the reduced basis function Φ 𝑗 with respect to
the basis {𝜑𝑖}𝑁ℎ

𝑖=1of the high–fidelity space 𝑉ℎ:

Φ 𝑗 =

𝑁ℎ∑︁
𝑖=1

𝛼𝑖, 𝑗𝜑𝑖 , 𝑗 = 1, ..., 𝑁.

With these notations, 𝑍 is then defined as

[𝑍]𝑖, 𝑗 := 𝛼𝑖, 𝑗 , 𝑖 = 1, ..., 𝑁ℎ, 𝑗 = 1, ..., 𝑁.

Then, we have the following relations:

𝐴𝑁 (·) = 𝑍𝑇𝐴ℎ (·)𝑍, 𝐹𝑁 (·) = 𝑍𝑇𝐹ℎ (·). (2.8)

2.3 Reduced basis generation
In this section, we will give a quick overview of the two most classical ways of generating the reduced
basis functions, namely the greedy basis generation [81, 158, 142] and the Proper Orthogonal
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Decomposition (POD) [81, 100, 101, 96, 41, 140, 158]. In both cases, we begin by introducing a
finite training set P𝑚 ⊂ P of cardinality M and we define an approximation of the discrete solution
manifold:

Mℎ,𝑀 = {𝑢ℎ (𝜇) : 𝜇 ∈ P𝑀 and 𝑢ℎ (𝜇) is a solution to (2.2)} ⊂ Mℎ . (2.9)

We assume P𝑀 is fine enough, so that Mℎ,𝑀 is a good representation of Mℎ.

Greedy Basis Generation

The greedy generation of the reduced basis space is an iterative procedure, where at each iteration
one new basis function is added in order to improve the overall accuracy of the reduced space. It
requires only one truth solve of (2.2) at each iteration and a total of N truth solves to generate an 𝑁–
dimensional reduced basis space. An essential component of the greedy algorithm is the availability
of a cheap a posteriori error estimator Δ(·) that predicts the error between the high–fidelity and the
reduced–order solution, that is:

| |𝑢ℎ (𝜇) − 𝑢𝑁 (𝜇) | |𝜇 ≤ Δ(𝜇), ∀𝜇 ∈ P,

where | | · | |𝜇 =
√︁
𝑎(·, ·; 𝜇) under the assumption of coercivity of the bilinear form 𝑎.

If at the 𝑛–th iteration an 𝑛–dimensional reduced basis space𝑉𝑛 is given, the next basis function
is the truth solution 𝑢ℎ (𝜇𝑛+1), where

𝜇𝑛+1 = argmax𝜇∈P𝑀
Δ(𝜇),

and the reduced basis space is defined as 𝑉𝑛+1 = span {𝑢ℎ (𝜇1), ..., 𝑢ℎ (𝜇𝑛), 𝑢ℎ (𝜇𝑛+1)}. This is
repeated until Δ(𝜇𝑛+1) < 𝜀, with 𝜀 to be a chosen tolerance. We also note that this procedure
produces hierarchical bases, that is 𝑉1 ⊂ ... ⊂ 𝑉𝑛 ⊂ 𝑉𝑛+1. Algorithm 2.1 lists a pseudo–code of the
greedy procedure.

The greedy algorithm is quite cheap in terms of computational time and resources since it
requires only one solution of the high–fidelity problem (2.2) per iteration. On the other hand,
the error estimator Δ(·) is an indispensable element of the procedure, but it is available for a very
limited class of differential problems and not, for example, for the problems discussed in this thesis.
Hence, we will need another method for reduced basis generation, that is, the Proper Orthogonal
Decomposition.

Proper Orthogonal Decomposition

In contrast to the greedy procedure, the Proper Orthogonal Decomposition (POD) relies on an
explore–and–compress strategy, in which the truth solution is computed for each parameter in
the training set P𝑀 . The POD then compresses the constructed set retaining only the essential
information. The 𝑁–dimensional POD–space is the space that minimizes the following quantity:√︄

1
𝑀

∑︁
𝜇∈P𝑀

inf
𝑣𝑁 ∈𝑉𝑁

| |𝑢ℎ (𝜇) − 𝑣𝑁 | |2𝑉 .
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Algorithm 2.1 The greedy algorithm
Input: 𝜀 > 0 and 𝜇𝑛
𝑛 := 1
while Δ (𝜇𝑛) > 𝜀 do

Compute 𝑢ℎ (𝜇𝑛) solution to (2.2) for 𝜇1
Set 𝑉𝑛 := span {𝑢ℎ (𝜇1), ..., 𝑢ℎ (𝜇𝑛)}
for each 𝜇 ∈ P𝑀 do

Compute the reduced basis approximation 𝑢𝑛 (𝜇) ∈ 𝑉𝑛 solution to (2.6) with 𝑉𝑁 = 𝑉𝑛
Evaluate the error estimator Δ(𝜇)

end for
𝑛 := 𝑛 + 1

end while
Set 𝑁 := 𝑛, 𝑉𝑁 := 𝑉𝑛.
return 𝑉𝑁

over all 𝑁–dimensional subspaces 𝑉𝑁 of the span of the manifold Mℎ,𝑀 . This problem can be
solved exactly [53]. For this, we need to construct a correlation matrix 𝐶 of dimension 𝑀 × 𝑀
defined as

[𝐶]𝑖 𝑗 =
1
𝑀

(
𝑢ℎ (𝜇𝑖), 𝑢ℎ (𝜇 𝑗)

)
𝑉

for 𝑖, 𝑗 = 1, ..., 𝑀,

where (·, ·)𝑉 is 𝐻1(Ω) inner product. Then, we solve an eigenvalue–eigenvector problem

𝐶𝑣𝑘 = 𝜆𝑘𝑣𝑘 , 1 ≤ 𝑘 ≤ 𝑁,

where 𝜆1 ≥ ... ≥ 𝜆𝑁 ≥ 0. Finally, the reduced basis function Φ𝑘 , 𝑘 = 1, ..., 𝑁 is defined as:

Φ𝑘 =
1
𝑀

𝑀∑︁
𝑗=1

(𝑣𝑘) 𝑗𝑢ℎ (𝜇 𝑗),

where (𝑣𝑘) 𝑗 denotes the 𝑗–th component of the eigenvector 𝑣𝑘 .
As it can be seen, POD is a much more expensive procedure, since it requires the computation

of the solution for each parameter in the set P𝑀 , which might be of large cardinality. On the other
hand, unlike the greedy procedure, the POD does not require any special error estimator, which is
usually not available for complex non–coercive and non–linear problems. For this reason, taking
into account the complexity of the problems which are dealt with within this thesis, we will rely on
the POD generation method.

2.4 Offline–online decomposition
Reduced–order models are incredibly effective thanks to the splitting of the computational effort
into two stages: the offline stage, which contains the most expensive part of the computations,



18 CHAPTER 2. AN OVERVIEW OF REDUCED ORDER MODELS

and the online stage, which allows performing fast computational queries using structures, such
as reduced basis generation discussed in the previous section, that are pre–computed in the offline
phase.
In the ideal setting, the computational costs involved in the online stage should be independent of
the complexity of the truth problem, measured by 𝑁ℎ, and should depend solely on the dimension
𝑁 ≪ 𝑁ℎ of the reduced basis space. This is not always the case, as we can see from equation (2.8),
when, for instance, the bilinear form 𝑎(·, ·; 𝜇) and the linear form 𝑙 (·; 𝜇) depend on the parameter
𝜇. However, this restriction can be overcome if we assume that the forms 𝑎(·, ·; 𝜇), 𝑙 (·; 𝜇) satisfy
the so–called affine decomposition property:

𝑎(𝑢, 𝑣; 𝜇) =

𝑄𝑎∑︁
𝑞=1

𝜃
𝑞
𝑎 (𝜇)𝑎𝑞 (𝑢, 𝑣),

𝑙 (𝑣; 𝜇) =

𝑄𝑙∑︁
𝑞=1

𝜃
𝑞

𝑙
(𝜇)𝑙𝑞 (𝑣),

where each form 𝑎𝑞 : 𝑉 × 𝑉 → R, 𝑞 = 1, ..., 𝑄𝑎, and 𝑙𝑞 : 𝑉 → R, 𝑞 = 1, ..., 𝑄𝑙, is parameter–
independent, and the coefficients 𝜃𝑞𝑎 : P → R, 𝑞 = 1, ..., 𝑄𝑎 and 𝜃𝑞

𝑙
: P → R, 𝑞 = 1, ..., 𝑄𝑙

depend solely on the parameter values. In this case, the matrix 𝐴ℎ (𝜇) and the vector 𝐹ℎ (𝜇) can be
decomposed as follows:

𝐴ℎ (𝜇) =
𝑄𝑎∑︁
𝑞=1

𝜃
𝑞
𝑎 (𝜇)𝐴𝑞ℎ , 𝐹 (𝜇) =

𝑄𝑙∑︁
𝑞=1

𝜃
𝑞

𝑙
(𝜇)𝐹𝑞

ℎ
,

where

[𝐴𝑞
ℎ
]𝑖 𝑗 = 𝑎𝑞 (𝜑 𝑗 , 𝜑𝑖), 𝑖, 𝑗 = 1, ..., 𝑁ℎ, 𝑞 = 1, ..., 𝑄𝑎,

[𝐹𝑞
ℎ
]
𝑖

= 𝑙𝑞 (𝜑𝑖), 𝑖 = 1, ..., 𝑁ℎ, 𝑞 = 1, ..., 𝑄𝑙 .

and their reduced counterparts can be computed by

𝐴
𝑞

𝑁
= 𝑍𝑇𝐴

𝑞

ℎ
𝑍, 𝑞 = 1, ..., 𝑄𝑎, 𝐹

𝑞

𝑁
= 𝑍𝑇𝐹

𝑞

ℎ
, 𝑞 = 1, ..., 𝑄𝑙 .

All these quantities can be pre–computed in the offline stage and stored for future use in the online
stage. Therefore, during the online stage, we will need to compute only parameter–dependent
coefficients 𝜃𝑞𝑎 (·), 𝑞 = 1, ..., 𝑄𝑎 and 𝜃𝑞

𝑙
(·), 𝑞 = 1, ..., 𝑄𝑙, instead of parameter–dependent matrices

and vectors.
The affine decomposition assumption is satisfied only for a certain class of problems, but, in

general, many problems fail to satisfy this property; for example, we do not have an explicit affine
decomposition when the problem is non–linear. For this reason, a lot of research has been conducted
on how to approximate functions and operators, in order to obtain the desired decomposition. Some
well known methods are, for example, the Empirical Interpolation Method (EIM) [81, 42, 158, 52]
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the Discrete Empirical Interpolation Method (DEIM) [81, 43, 158] and the Empirical Quadrature
Method (EQM) [134]. We will not make use of these techniques in this thesis, but it is very
important to highlight that their introduction in the developed algorithms would improve the overall
effectiveness of the method.

We should also mention the application of Artificial Neural Networks (ANN) to Reduced–Order
Modelling. In particular, we focus on surrogate procedures to the Galerkin projection in the online
phase. After the construction of the reduced spaces as described in Section 2.3, the RBM–neural
network (RBM–NN) tries to learn the map that, given a parameter, returns the reduced coefficients
of the reduced solution [82]. This procedure starts from a training set composed of parameters 𝜇 𝑗
(including times) and reduced coefficients of the solutions 𝑢𝑖

𝑁
(𝜇 𝑗). Then, different techniques like

radial basis function interpolation [48, 175] or ANN [82] can be trained to learn the map from the
parameters to the reduced coefficients. Finally, in the online stage, the map is quickly evaluated and
a very fast reconstruction of the solutions can be performed.

In many contexts, the use of ANN brings a lot of advantages in terms of computational time in
the online stage, since it only needs to solve in the offline phase an optimisation task with extremely
effective methods, e.g. stochastic gradient descent method. On the other hand, using ANNs can
have drawbacks when dealing with complex problems and problems with discontinuities in the
parameter to reduced coefficient map. We will discuss this in more detail in Section 4.5.3.





Chapter 3

Stationary Incompressible
Navier–Stokes Equations

In this chapter, we introduce an optimisation–based domain-decomposition formulation of the
incompressible Navier–Stokes equations and provide a gradient–based optimisation algorithm for
the resulting optimal control problem. Then, we build a reduced–order model based on the Proper
Orthogonal Decomposition methodology for the parameter–dependent Navier–Stokes equations. At
the end of the chapter, we show some numerical results for two toy problems: the backward–facing
step and the lid–driven cavity flows. The results of this section have been published in the paper
[143].

3.1 Problem formulation
In this section, starting from a monolithic formulation of the incompressible Navier–Stokes equa-
tions, we introduce a two–domain optimisation–based domain–decomposition formulation in both
strong and weak form.

3.1.1 Monolithic formulation

Let Ω be a physical domain of interest: we assume Ω to be an open subset of R2 and Γ to be
the boundary of Ω. Let 𝑓 : Ω → R2 be the forcing term, 𝜈 the kinematic viscosity, 𝑢𝐷 a given
Dirichlet datum. The problem reads as follows: find the velocity field 𝑢 : Ω → R2 and the pressure
𝑝 : Ω → R s.t.

−𝜈Δ𝑢 + (𝑢 · ∇) 𝑢 + ∇𝑝 = 𝑓 in Ω, (3.1a)
−div𝑢 = 0 in Ω, (3.1b)
𝑢 = 𝑢𝐷 on Γ𝐷 , (3.1c)

𝜈
𝜕𝑢

𝜕n − 𝑝n = 0 on Γ𝑁 , (3.1d)

21
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ΩΓ𝐷 Γ𝑁

Figure 3.1: Physical domain

where Γ𝐷 and Γ𝑁 are disjoint subsets of Γ (as it is shown in Figure 3.1) and n is an outward unit
normal vector to Γ𝑁 .

3.1.2 Domain Decomposition (DD) formulation

Let Ω𝑖 , 𝑖 = 1, 2, be open subsets of Ω, such that Ω = Ω1 ∪Ω2, Ω1 ∩ Ω2 = ∅. Denote Γ𝑖 :=
𝜕Ω𝑖 ∩ Γ, 𝑖 = 1, 2, and Γ0 := Ω1 ∩ Ω2. In the same way, we define the corresponding boundary
subsets Γ𝑖,𝐷 and Γ𝑖,𝑁 , 𝑖 = 1, 2; see Figure 3.2.
The DD formulation reads as follows: for 𝑖 = 1, 2, given 𝑓𝑖 : Ω𝑖 → R2 and 𝑢𝑖,𝐷 : Γ𝑖,𝐷 → R2, find
𝑢𝑖 : Ω𝑖 → R2, 𝑝𝑖 : Ω𝑖 → R s.t.

−𝜈Δ𝑢𝑖 + (𝑢𝑖 · ∇) 𝑢𝑖 + ∇𝑝𝑖 = 𝑓𝑖 in Ω𝑖 , (3.2a)
−div𝑢𝑖 = 0 in Ω𝑖 , (3.2b)
𝑢𝑖 = 𝑢𝑖,𝐷 on Γ𝑖,𝐷 , (3.2c)

𝜈
𝜕𝑢𝑖

𝜕n𝑖
− 𝑝𝑖n𝑖 = 0 on Γ𝑖,𝑁 , (3.2d)

𝜈
𝜕𝑢𝑖

𝜕n𝑖
− 𝑝𝑖n𝑖 = (−1)𝑖+1𝑔 on Γ0, (3.2e)

for some 𝑔 : Γ0 → R2 such that the functions defined in the following way

𝑢 :=

{
𝑢1, in Ω1 ∪ Γ0,

𝑢2, in Ω2 ∪ Γ0,
𝑝 :=

{
𝑝1, in Ω1 ∪ Γ0,

𝑝2, in Ω2 ∪ Γ0,

satisfy the monolithic equations (3.1).
Even though in the numerical simulations we will focus on the cases where 𝑓𝑖 = 𝑓 |Ω𝑖

, 𝑢𝑖,𝐷 =

𝑢𝐷 |Γ𝑖,𝐷 for 𝑖 = 1, 2, the whole theoretical exposition in this thesis works just as well for more
general functions 𝑓1, 𝑓2, 𝑢1,𝐷 and 𝑢2,𝐷 .

For any 𝑔 the solution to the problem (3.2) is not the same as the solution to the problem (3.1),
that is 𝑢1 ≠ 𝑢 |Ω1 , 𝑝1 ≠ 𝑝 |Ω1 , 𝑢2 ≠ 𝑢 |Ω2 and 𝑝2 ≠ 𝑝 |Ω2 . On the other hand, there exists a choice for
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Γ0Ω1 Ω2Γ𝐷,1 Γ𝑁,2

Γ𝑁,1

Γ𝐷,2

Figure 3.2: Domain Decomposition of the fluid domain

𝑔, 𝑔 =

(
𝜈
𝜕𝑢1
𝜕n1

− 𝑝1n1

)
|Γ0 = −

(
𝜈
𝜕𝑢2
𝜕n2

− 𝑝2n2

)
|Γ0 , such that the solutions to (3.2) coincide with the

solution to (3.1) on the corresponding subdomains. Therefore, we must find a 𝑔, such that 𝑢1 is as
close as possible to 𝑢2 at the interface Γ0. One way to accomplish this is to minimise the functional

J (𝑢1, 𝑢2) :=
1
2

∫
Γ0

|𝑢1 − 𝑢2 |2 𝑑Γ. (3.3)

Instead of (3.3) we can also consider the penalised or regularised functional

J𝛾 (𝑢1, 𝑢2; 𝑔) :=
1
2

∫
Γ0

|𝑢1 − 𝑢2 |2 𝑑Γ + 𝛾
2

∫
Γ0

|𝑔 |2 𝑑Γ, (3.4)

where 𝛾 is a constant that can be chosen to change the relative importance of the terms in (3.4). Thus
we face an optimisation problem under PDE constraints: minimise the functional (3.3) (or (3.4))
over a suitable function 𝑔, subject to (3.2).

3.1.3 Variational Formulation of the PDE constraints

For 𝑖 = 1, 2, define the following spaces and the norms with which each of them is endowed:

• 𝑉𝑖 :=
{
𝑢 ∈ 𝐻1(Ω𝑖;R2)

}
, | | · | |𝑉𝑖 = | | · | |𝐻1 (Ω𝑖 ) ,

• 𝑉𝑖,0 :=
{
𝑢 ∈ 𝐻1(Ω𝑖;R2) : 𝑢 |Γ𝑖,𝐷 = 0

}
, | | · | |𝑉𝑖,0 = | | · | |𝐻1

0 (Ω𝑖 ) ,

• 𝑄𝑖 :=
{
𝑝 ∈ 𝐿2(Ω𝑖;R)

}
, | | · | |𝑄𝑖

= | | · | |𝐿2 (Ω𝑖 ) .

Then, we define the following bilinear and trilinear forms: for i=1,2

• 𝑎𝑖 : 𝑉𝑖 ×𝑉𝑖,0 → R, 𝑎𝑖 (𝑢𝑖 , 𝑣𝑖) = 𝜈(∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
,

• 𝑏𝑖 : 𝑉𝑖 ×𝑄𝑖 → R, 𝑏𝑖 (𝑣𝑖 , 𝑞𝑖) = −(div𝑣𝑖 , 𝑞𝑖)Ω𝑖
,
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• 𝑐𝑖 : 𝑉𝑖 ×𝑉𝑖 ×𝑉𝑖,0 → R, 𝑐𝑖 (𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖) = ((𝑢𝑖 · ∇)𝑤𝑖 , 𝑣𝑖)Ω𝑖
,

where (·, ·)𝜔 indicates the 𝐿2(𝜔) inner product.
Consequently, the variational counterpart of (3.2) reads as follows: for 𝑖 = 1, 2, find 𝑢𝑖 ∈ 𝑉𝑖 and

𝑝𝑖 ∈ 𝑄𝑖 s.t.

𝑎𝑖 (𝑢𝑖 , 𝑣𝑖) + 𝑐𝑖 (𝑢𝑖 , 𝑢𝑖 , 𝑣𝑖) + 𝑏𝑖 (𝑣𝑖 , 𝑝𝑖) = ( 𝑓𝑖 , 𝑣𝑖)Ω𝑖
+

(
(−1)𝑖+1𝑔, 𝑣𝑖

)
Γ0

∀𝑣𝑖 ∈ 𝑉𝑖,0, (3.5a)

𝑏𝑖 (𝑢𝑖 , 𝑞𝑖) = 0 ∀𝑞𝑖 ∈ 𝑄𝑖 , (3.5b)
𝑢𝑖 = 𝑢𝑖,𝐷 on Γ𝑖,𝐷 . (3.5c)

Remark. In general, the fluxes through an interface Γ0 for the weak formulation of Navier–Stokes
equation live in the space 𝐻− 1

2 (Γ0) so that, in theory, the definition (3.4) of functional J𝛾 is not
justified, since it includes the 𝐿2(Γ0)–norm of the function 𝑔. Nevertheless, as it will be evident
in Section 3.2.3, the family of optimisation algorithms that are used to tackle the optimal–control
problem in hand, in fact, define the respective approximation of 𝑔 that belongs to the space 𝐻 1

2 (Γ0).

3.2 Optimality system and minimisation algorithms

In this section, we derive the optimality conditions of the optimal control problem obtained at the
end of the previous section together with the expression of the gradient of the objective functional
obtained by sensitivity analysis. Then, we list a minimisation gradient–based algorithm for the
problem at hand.

3.2.1 Optimality system

One of the ways to address the constrained optimisation problem is to reformulate the initial problem
in terms of a Lagrangian functional by introducing the so–called adjoint variables. In this way, the
optimal solution to the original problem is sought among the stationary points of the Lagrangian,
see, for instance, [76, 83].

We define the Lagrangian functional as follows:

L(𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝜉1, 𝜉2, 𝜆1, 𝜆2; 𝑔) := J𝛾 (𝑢1, 𝑢2; 𝑔) −
2∑︁
𝑖=1

[𝑎𝑖 (𝑢𝑖 , 𝜉𝑖) (3.6)

+𝑐𝑖 (𝑢𝑖 , 𝑢𝑖 , 𝜉𝑖) +𝑏𝑖 (𝜉𝑖 , 𝑝𝑖) + 𝑏𝑖 (𝑢𝑖 , 𝜆𝑖)] +
2∑︁
𝑖=1

( 𝑓𝑖 , 𝜉𝑖)Ω𝑖
+

2∑︁
𝑖=1

((−1)𝑖+1𝑔, 𝜉𝑖)Γ0 .

Notice that, technically, we should have also included Lagrange multipliers corresponding to the
non–homogeneous Dirichlet boundary conditions (3.5c) in the definition of the functional L;
however, since the functional J𝛾 does not explicitly depend on 𝑢1,𝐷 and 𝑢2,𝐷 , the corresponding
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Dirichlet boundary conditions for the adjoint equation that we are going to derive below will be
homogeneous on Γ1,𝐷 and Γ2,𝐷 .

We now apply the necessary conditions for finding stationary points of L. Setting to zero the
first variations w.r.t. 𝜉𝑖 and 𝜆𝑖 , for 𝑖 = 1, 2, yields the state equations (3.5a)– (3.5b). Setting to zero
the first variations w.r.t. 𝑢1, 𝑝1, 𝑢2 and 𝑝2 yields the adjoint equations:

𝑎𝑖 (𝜂𝑖 , 𝜉𝑖) + 𝑐𝑖 (𝜂𝑖 , 𝑢𝑖 , 𝜉𝑖) + 𝑐𝑖 (𝑢𝑖 , 𝜂𝑖 , 𝜉𝑖) + 𝑏𝑖 (𝜂𝑖 , 𝜆𝑖)
= ((−1)𝑖+1𝜂𝑖 , 𝑢1 − 𝑢2)Γ0

∀𝜂𝑖 ∈ 𝑉𝑖,0, (3.7a)

𝑏𝑖 (𝜉𝑖 , 𝜇𝑖) = 0 ∀𝜇𝑖 ∈ 𝑄𝑖 . (3.7b)

Finally, setting to zero the first variations w.r.t. 𝑔 yields the optimality condition:

𝛾(ℎ, 𝑔)Γ0 + (ℎ, 𝜉1 − 𝜉2)Γ0 = 0 ∀ℎ ∈ 𝐿2(Γ0). (3.8)

3.2.2 Sensitivity derivatives

In order to obtain the expression for the gradient of the optimisation problem at hand, we will resort
to the sensitivity approach, see, for instance, [76, 83]. The approach consists of finding equations
for direction derivatives of the state variable with respect to the control, called sensitivities.

The first derivative 𝑑J𝛾

𝑑𝑔
of J𝛾 is defined through its action on variation �̃� as follows:〈
𝑑J𝛾
𝑑𝑔

, �̃�

〉
= (𝑢1 − 𝑢2, �̃�1 − �̃�2)Γ0 + 𝛾(𝑔, �̃�)Γ0 , (3.9)

where �̃�1 ∈ 𝑉1,0, �̃�2 ∈ 𝑉2,0 are the solutions to:

𝑎𝑖 (�̃�𝑖 , 𝑣𝑖) + 𝑐𝑖 (�̃�𝑖 , 𝑢𝑖 , 𝑣𝑖) + 𝑐𝑖 (𝑢𝑖 , �̃�𝑖 , 𝑣𝑖) + 𝑏𝑖 (𝑣𝑖 , 𝑝𝑖) = ((−1)𝑖+1�̃�, 𝑣𝑖)Γ0 ∀𝑣𝑖 ∈ 𝑉𝑖,0, (3.10a)
𝑏𝑖 (�̃�𝑖 , 𝑞𝑖) = 0 ∀𝑞𝑖 ∈ 𝑄𝑖 . (3.10b)

We can make use of the adjoint equations (3.7) in order to find the representation of the gradient of
the functional J𝛾 . Let 𝜉1 and 𝜉2 be the solutions to (3.7), �̃�1 and �̃�2 be the solutions to (3.10). By
setting 𝜂𝑖 = �̃�𝑖 in (3.7a), 𝜇𝑖 = 𝑝𝑖 in (3.7b), 𝑣𝑖 = 𝜉𝑖 in (3.10a) and 𝑞𝑖 = 𝜆𝑖 in (3.10b) we obtain:

(𝑢1 − 𝑢2, �̃�1 − �̃�2)Γ0 = (�̃�, 𝜉1 − 𝜉2)Γ0 ,

so that it yields the explicit formula for the gradient of J𝛾:

𝑑J𝛾
𝑑𝑔

(𝑢1, 𝑢2; 𝑔) = 𝛾𝑔 + (𝜉1 − 𝜉2) |Γ0 , (3.11)

where 𝜉1 and 𝜉2 are determined from 𝑔 through (3.7). Notice that the gradient expression (3.11) is
consistent with the optimality condition (3.8) derived in the previous section.
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3.2.3 Gradient–based algorithm for PDE–constraint optimisation problem

In view of being able to provide a closed–form formula for the gradient for the objective functional
J𝛾 , the natural way to proceed is to resort to a gradient–based iterative optimisation algorithm.

In order to keep the exposition simple, we consider the following simple gradient method with
a constant step size 𝛼 > 0: given a starting guess 𝑔 (0) , let

𝑔 (𝑛+1) := 𝑔 (𝑛) − 𝛼
𝑑J𝛾
𝑑𝑔

(
𝑢
(𝑛)
1 , 𝑢

(𝑛)
2 ; 𝑔 (𝑛)

)
. (3.12)

Combining this with (3.11) we obtain:

𝑔 (𝑛+1) = 𝑔 (𝑛) − 𝛼
(
𝛾𝑔 (𝑛) + (𝜉 (𝑛)1 − 𝜉 (𝑛)2 ) |Γ0

)
, (3.13)

or
𝑔 (𝑛+1) = (1 − 𝛼𝛾) 𝑔 (𝑛) − 𝛼(𝜉 (𝑛)1 − 𝜉 (𝑛)2 ) |Γ0 , (3.14)

where 𝜉 (𝑛)1 and 𝜉 (𝑛)2 are determined from (3.7) with 𝑔 replaced by 𝑔 (𝑛) .
In summary, we have Algorithm 3.1.

Algorithm 3.1 Gradient method with a fixed step

Input: 𝑔 (0) , 𝛼 > 0
𝑛 := 0
while Convergence criteria are not met do

Solve (3.5) for 𝑢 (𝑛)1 ∈ 𝑉1, 𝑢 (𝑛)2 ∈ 𝑉2 with 𝑔 = 𝑔 (𝑛)

Solve (3.7) for 𝜉 (𝑛)1 ∈ 𝑉1,0, 𝜉 (𝑛)2 ∈ 𝑉2,0 with 𝑢1 = 𝑢
(𝑛)
1 , 𝑢2 = 𝑢

(𝑛)
2

Set 𝑔 (𝑛+1) := (1 − 𝛼𝛾) 𝑔 (𝑛) − 𝛼

(
𝜉
(𝑛)
1 − 𝜉 (𝑛)2

)���
Γ0

𝑛 := 𝑛 + 1
end while
Set 𝑢1 := 𝑢 (𝑛)1 , 𝑝1 := 𝑝 (𝑛)1 , 𝑢2 := 𝑢 (𝑛)2 , 𝑝2 := 𝑝 (𝑛)2 and 𝑔 := 𝑔 (𝑛)
return 𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑔

In practice, the typical methods used to solve problems like the one considered in this thesis are
Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Newton Conjugate Gradient (CG) algorithms,
which tend to show much faster convergence and higher efficiency with respect to the steepest–
descent algorithm.

3.3 Finite Element discretisation
In this section, we present the Finite Element spatial discretisation for the optimal control problem
previously introduced. In order to be able to apply FE discretisation, the domains Ω𝑖 , 𝑖 = 1, 2,
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and the interface Γ0 are assumed to be polygonal. We consider two well–defined triangulations T1
and T2 over the domains Ω1 and Ω2 respectively, and an extra lower–dimensional triangulation T0
of the interface Γ0; additionally, we assume that T1, T2 and T0 share the same degrees on freedom
relative to the interface Γ0. We can then define usual Lagrangian FE spaces𝑉𝑖,ℎ ⊂ 𝑉𝑖 , 𝑉𝑖,0,ℎ ⊂ 𝑉𝑖,0,
𝑄𝑖,ℎ ⊂ 𝑄𝑖 , 𝑖 = 1, 2 and 𝑋ℎ ⊂ 𝐿2(Γ0) endowed with 𝐿2(Γ0)–norm; the spaces 𝑉𝑖,ℎ, 𝑉𝑖,0,ℎ and 𝑄𝑖,ℎ
for 𝑖 = 1, 2 are endowed with the same norms as their continuous counterparts. Since the problems
at hand have a saddle–point structure, in order to guarantee the well–posedness of the discretised
problem, we require the FE spaces to satisfy the following inf–sup conditions: there exist positive
constants 𝑐1, 𝑐2, 𝑐3 and 𝑐4 s.t.

inf
𝑞𝑖,ℎ∈𝑄𝑖,ℎ\{0}

sup
𝑣𝑖,ℎ∈𝑉𝑖,ℎ\{0}

𝑏𝑖 (𝑣𝑖,ℎ, 𝑞𝑖,ℎ)
| |𝑣𝑖,ℎ | |𝑉𝑖,ℎ | |𝑞𝑖,ℎ | |𝑄𝑖,ℎ

≥ 𝑐𝑖 , 𝑖 = 1, 2, (3.15)

inf
𝑞𝑖,ℎ∈𝑄𝑖,ℎ\{0}

sup
𝑣𝑖,ℎ∈𝑉𝑖,0,ℎ\{0}

𝑏𝑖 (𝑣𝑖,ℎ, 𝑞𝑖,ℎ)
| |𝑣𝑖,ℎ | |𝑉𝑖,0,ℎ | |𝑞𝑖,ℎ | |𝑄𝑖,ℎ

≥ 𝑐𝑖+2, 𝑖 = 1, 2. (3.16)

A very common choice in this framework is to use the so–called Taylor–Hood finite element spaces,
namely the Lagrange polynomial approximation of the second–order for velocity and of the first–
order for pressure. We point out that the order of the polynomial space 𝑋ℎ will not lead to big
computational efforts as it is defined on the 1–dimensional curve Γ0.

Using the Galerkin projection, we can derive the following discretised optimisation problem:
minimise over 𝑔ℎ ∈ 𝑋ℎ the functional

J𝛾,ℎ (𝑢1,ℎ, 𝑢2,ℎ; 𝑔ℎ) :=
1
2

∫
Γ0

��𝑢1,ℎ − 𝑢2,ℎ
��2 𝑑Γ + 𝛾

2

∫
Γ0

|𝑔ℎ |2 𝑑Γ (3.17)

under the constraints that 𝑢𝑖,ℎ ∈ 𝑉𝑖,ℎ, 𝑝𝑖,ℎ ∈ 𝑄𝑖,ℎ satisfy the following variational equations for
𝑖 = 1, 2

𝑎𝑖 (𝑢𝑖,ℎ, 𝑣𝑖,ℎ) + 𝑐𝑖 (𝑢𝑖,ℎ, 𝑢𝑖,ℎ, 𝑣𝑖,ℎ) + 𝑏𝑖 (𝑣𝑖,ℎ, 𝑝𝑖,ℎ)
= ( 𝑓𝑖 , 𝑣𝑖,ℎ)Ω𝑖

+ ((−1)𝑖+1𝑔ℎ, 𝑣𝑖,ℎ)Γ0

∀𝑣𝑖,ℎ ∈ 𝑉𝑖,0,ℎ, (3.18a)

𝑏𝑖 (𝑢𝑖,ℎ, 𝑞𝑖,ℎ) = 0 ∀𝑞𝑖,ℎ ∈ 𝑄𝑖,ℎ, (3.18b)
𝑢𝑖,ℎ = 𝑢𝑖,𝐷,ℎ on Γ𝑖,𝐷 , (3.18c)

where 𝑢𝑖,𝐷,ℎ is the Galerkin projection of 𝑢𝑖,𝐷 onto the trace–space 𝑉𝑖,ℎ |Γ𝑖,𝐷 .
Notice that the structure of the equations (3.18) and of the functional (3.17) is the same as the

one of the continuous case so that it enables us to provide the following expression of the gradient
of the discretised functional (3.17):

𝑑J𝛾,ℎ
𝑑𝑔ℎ

(𝑢1,ℎ, 𝑢2,ℎ; 𝑔ℎ) = 𝛾𝑔ℎ + (𝜉1,ℎ − 𝜉2,ℎ) |Γ0 , (3.19)
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where 𝜉1,ℎ and 𝜉2,ℎ are the solutions to the discretised adjoint problem: for 𝑖 = 1, 2 find 𝜉𝑖,ℎ ∈ 𝑉𝑖,0,ℎ
and 𝜆𝑖,ℎ ∈ 𝑄𝑖,ℎ that satisfy

𝑎𝑖 (𝜂𝑖,ℎ, 𝜉𝑖,ℎ) + 𝑐𝑖
(
𝜂𝑖,ℎ, 𝑢𝑖,ℎ, 𝜉𝑖,ℎ

)
+ 𝑐𝑖

(
𝑢𝑖,ℎ, 𝜂𝑖,ℎ, 𝜉𝑖,ℎ

)
+ 𝑏𝑖 (𝜂𝑖,ℎ, 𝜆𝑖,ℎ) = ((−1)𝑖+1𝜂𝑖,ℎ, 𝑢1,ℎ − 𝑢2,ℎ)Γ0

∀𝜂𝑖,ℎ ∈ 𝑉𝑖,0,ℎ, (3.20a)

𝑏𝑖 (𝜉𝑖,ℎ, 𝜇𝑖,ℎ) = 0 ∀𝜇𝑖,ℎ ∈ 𝑄𝑖,ℎ . (3.20b)

We would also like to stress that at the algebraic level, the discretised minimisation problem
can be recast in the setting of the finite–dimensional space R𝑝, where 𝑝 is the number of Finite
Element degrees of freedom which belong to the interface Γ0.

3.4 Reduced–Order Model
As was highlighted in Section 2, Reduced–Order methods are efficient tools for significant reduction
of the parameter–dependent PDEs. This section deals with the reduced–order model for the problem
obtained in the previous section, where the state equations, namely Navier–Stokes equations, are
assumed to be dependent on a set of physical parameters. First, we introduce two practical
ingredients we will be using in the course of the reduced–basis generation, namely a lifting function
and the pressure supremiser enrichment. Then, we describe the offline phase based on the Proper
Orthogonal Decomposition technique, which is followed by the online phase based on a Galerkin
projection onto the reduced spaces.

3.4.1 Lifting Function and Velocity Supremiser Enrichment

In the following, we are going to discuss a snapshot compression technique for the generation of
reduced basis functions. In order to do so we need to introduce two important ingredients in this
context, namely the lifting function technique and the supremiser enrichment of the velocity space.

The use of lifting functions is quite common in the reduced basis method (RBM) framework; see,
for example, [81, 17]. It is motivated by the fact that in the chosen model we are supposed to tackle
the non–homogeneous Dirichlet boundary condition on the parts of the boundaries Γ𝑖,𝐷 , 𝑖 = 1, 2.
From the implementation point of view, this does not present any problem when dealing with the
high–fidelity model since there are several well–known techniques for non–homogeneous essential
conditions, particularly at the algebraic level. However, these boundary conditions create some
problems when dealing with the reduced basis methods. Indeed, we seek to generate a linear vector
space which is obtained by the compression of the set of snapshots, and this clearly cannot be
achieved by using snapshots that satisfy different Dirichlet conditions – the resulting space would
not be linear. This problem is solved by introducing lifting functions 𝑙𝑖,ℎ ∈ 𝑉𝑖,ℎ, 𝑖 = 1, 2, during the
offline stage, such that 𝑙𝑖,ℎ = 𝑢𝑖,𝐷,ℎ on Γ𝑖,𝐷 . We define two new variables 𝑢𝑖,0,ℎ ∈ 𝑉𝑖,0,ℎ, 𝑖 = 1, 2, by
setting 𝑢𝑖,0,ℎ := 𝑢𝑖,ℎ − 𝑙𝑖,ℎ. Clearly, the variables 𝑢𝑖,0,ℎ, 𝑖 = 1, 2, satisfy the homogeneous condition
𝑢𝑖,0,ℎ = 0 on Γ𝑖,𝐷 and so they can be used to generate the reduced basis linear space. We remark
that the lifting function is needed only in the domain where the Dirichlet boundary is non-empty,
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i.e., where Γ𝑖,𝐷 ≠ ∅ for 𝑖 = 1, 2. It is important to point out that the choice of lifting functions is not
unique; in our work, we chose to use the solution of the Stokes problem in one of the domains Ω,
Ω1 or Ω2 (depending on the particular model we are investigating) with the velocity equal to 𝑢𝐷 on
the corresponding parts of the boundaries and the homogeneous Neumann conditions analogous to
the original problem setting.

The other ingredient we will use in the following exposition is the so-called velocity supremiser.
This is necessary to obtain a stable approximation of the saddle–point problem at the reduced level
discussed in the following subsections. We recall that each velocity snapshot, which is a solution to
the incompressible Navier-Stokes equation, is divergence–free. Hence, the term 𝑏𝑖 (·, ·) for 𝑖 = 1, 2
applied to any pair of functions in the span of the snapshots will be zero. This does not allow
us to fulfil the inf–sup condition of the type (3.16). For this reason, there is a need to enrich the
reduced velocity spaces with extra functions, which are called supremisers, that will make the pairs
of velocity–pressure reduced spaces inf–sup stable. The supremiser variables 𝑠𝑖,ℎ, 𝑖 = 1, 2, are
defined as the solution to the following problem: find 𝑠𝑖,ℎ ∈ 𝑉𝑖,0,ℎ such that(

∇𝑣𝑖,ℎ,∇𝑠𝑖,ℎ
)
= 𝑏𝑖,ℎ

(
𝑣𝑖,ℎ, 𝑝𝑖,ℎ

)
∀𝑣𝑖,ℎ ∈ 𝑉𝑖,0,ℎ, (3.21)

where 𝑝𝑖,ℎ, 𝑖 = 1, 2, are the finite–element pressure solutions of the Navier–Stokes problem and
the left–hand side is the scalar product which defines a norm on the space 𝑉𝑖,0,ℎ. For more details,
we refer to [17, 64].

3.4.2 Reduced Basis Generation

Once we obtain the homogenised snapshots 𝑢𝑖,0,ℎ and the pressure supremisers 𝑠𝑖,ℎ for 𝑖 = 1, 2, we
are ready to construct a set of reduced basis functions. A very common choice when dealing with
Navier–Stokes equations is to use the Proper Orthogonal Decomposition (POD) technique, which
is based on the Singular Value Decomposition of the snapshot matrices; see, for instance, [81]. In
order to implement this technique we will need two main ingredients: the matrices of the inner
products and the snapshot matrices. First, we define the basis functions for the FE element spaces
used in the weak formulation (3.17), (3.18) and (3.20) as follows:

U𝑖,0,ℎ =

{
𝜙
𝑢𝑖
1 , ..., 𝜙

𝑢𝑖

N𝑢𝑖
ℎ

}
− the FE basis of the space 𝑉𝑖,0,ℎ, 𝑖 = 1, 2,

P𝑖,ℎ =
{
𝜙
𝑝𝑖
1 , ..., 𝜙

𝑝𝑖

N𝑝𝑖
ℎ

}
− the FE basis of the space 𝑄𝑖,ℎ, 𝑖 = 1, 2,

Ξ𝑖,0,ℎ := U𝑖,0,ℎ, N 𝜉𝑖
ℎ

:= N𝑢𝑖
ℎ
, 𝑖 = 1, 2,

G𝑖,ℎ =
{
𝜙
𝑔

1 , ..., 𝜙
𝑔

N𝑔

ℎ

}
− the FE basis of the space 𝑋ℎ,

where N∗
ℎ
, ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑔} denotes the dimension of the corresponding FE space.

We proceed by building the snapshot matrices. In doing so, we sample a parameter space and
draw a discrete set of 𝑀 parameter values; there are various sampling techniques, among which we
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point out the uniform sampling. Then, the snapshots are taken as high–fidelity, i.e. Finite Element,
solutions at each parameter value in the sampling set.

We proceed by building the snapshot matrices S𝑢𝑖 ∈ RN𝑠
ℎ
×4𝑀 , S𝑠𝑖 ∈ RN𝑠

ℎ
×4𝑀 , S𝑝𝑖 ∈ RN𝑠

ℎ
×4𝑀 ,

S𝜉𝑖 ∈ RN𝑎
ℎ
×2𝑀 for 𝑖 = 1, 2 and S𝑔 ∈ RN𝑔

ℎ
×𝑀 defined as follows:

S𝑢1 = [𝑢1
1,0,ℎ, ..., 𝑢

𝑀
1,0,ℎ, 0, ..., 0, 0, ..., 0, 0, ..., 0],

S𝑠1 = [𝑠1
1,ℎ, ..., 𝑠

𝑀
1,ℎ, 0, ..., 0, 0, ..., 0, 0, ..., 0],

S𝑝1 = [0, ..., 0, 𝑝1
1,ℎ, ..., 𝑝

𝑀
1,ℎ, 0, ..., 0, 0, ..., 0],

S𝑢2 = [0, ..., 0, 0, ..., 0, 𝑢1
2,0,ℎ, ..., 𝑢

𝑀
2,0,ℎ, 0, ..., 0],

S𝑠2 = [0, ..., 0, 0, ..., 0, 𝑠1
2,ℎ, ..., 𝑠

𝑀
2,ℎ, 0, ..., 0],

S𝑝2 = [0, ..., 0, 0, ..., 0, 0, ..., 0, 𝑝1
2,ℎ, ..., 𝑝

𝑀
2,ℎ],

S𝜉1 = [𝜉1
1,ℎ, ..., 𝜉

𝑀
1,ℎ, 0, ..., 0], S𝜉2 = [0, ..., 0, 𝜉1

2,ℎ, ..., 𝜉
𝑀
2,ℎ],

S𝑔 = [𝑔1
ℎ, ..., 𝑔

𝑀
ℎ ],

where N 𝑠
ℎ
= N𝑢1

ℎ
+ N 𝑝1

ℎ
+ N𝑢2

ℎ
+ N 𝑝2

ℎ
, N 𝑎

ℎ
= N 𝜉1

ℎ
+ N 𝜉2

ℎ
and 𝑀 is the number of snapshots.

Notice that since all the snapshots of the variables 𝜉1,ℎ and 𝜉2,ℎ are divergence–free on the
domain of definition, the reduced spaces constructed for those variables will already contain this
information, so that it allows us not to store the snapshots of the variables 𝜆1,ℎ and 𝜆2,ℎ, which are
playing the role of the Lagrange multipliers relative to the divergence free–conditions, as they do
not contain any important information.

The next step is to define the inner–product matrices 𝑋𝑢𝑖 , 𝑋𝑝𝑖 , 𝑋𝜉𝑖 for 𝑖 = 1, 2 and 𝑋𝑔. These
matrices have the block diagonal structure as follows:

𝑋𝑢1 = diag
(
𝑥𝑢1 , 0𝑝1 , 0𝑢2 , 0𝑝2

)
,

𝑋𝑝1 = diag
(
0𝑢1 , 𝑥𝑝1 , 0𝑢2 , 0𝑝2

)
,

𝑋𝑢2 = diag
(
0𝑢1 , 0𝑝1 , 𝑥𝑢2 , 0𝑝2

)
,

𝑋𝑝2 = diag
(
0𝑢1 , 0𝑝1 , 0𝑢2 , 𝑥𝑝2

)
,

𝑋𝜉1 = diag
(
𝑥𝑢1 , 0𝜉2

)
,

𝑋𝜉2 = diag
(
0𝜉1 , 𝑥𝑢2

)
,

𝑋𝑔 = 𝑥𝑔 .

Above, we used the following notations: 0∗ ∈ RN∗
ℎ
×N∗

ℎ is a zero square matrix of dimension
𝑁∗
ℎ
× N∗

ℎ
, where ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝜉1, 𝜉2, 𝑔} and

(𝑥𝑢𝑖 ) 𝑗𝑘 =

(
∇𝜙𝑢𝑖

𝑘
,∇𝜙𝑢𝑖

𝑗

)
Ω𝑖

, for 𝑗 , 𝑘 = 1, ...,N𝑢𝑖
ℎ
, 𝑖 = 1, 2,

(𝑥𝑝𝑖 ) 𝑗𝑘 =

(
𝜙
𝑝𝑖
𝑘
, 𝜙

𝑝𝑖
𝑗

)
Ω𝑖

, for 𝑗 , 𝑘 = 1, ...,N 𝑝𝑖
ℎ
, 𝑖 = 1, 2,

(𝑥𝑔) 𝑗𝑘 =

(
𝜙
𝑔

𝑘
, 𝜙
𝑔

𝑗

)
Γ0
, for 𝑗 , 𝑘 = 1, ...,N𝑔

ℎ
.
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We are now ready to introduce the correlation matrices C𝑢𝑖 , C𝑠𝑖 , C𝑝𝑖 , C𝜉𝑖 for 𝑖 = 1, 2 and C𝑔,
all of dimension 𝑀 × 𝑀 , as

C∗ := S𝑇∗ 𝑋∗𝑆∗

for every ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝜉1, 𝜉2, 𝑔} and

C𝑠𝑖 := S𝑇𝑠𝑖𝑋𝑢𝑖𝑆𝑠𝑖 , 𝑖 = 1, 2.

Once we have built the correlation matrices, we are able to carry out a POD compression on
the sets of snapshots. This can be achieved by solving the following eigenvalue problems:

C∗Q∗ = Q∗Λ∗, (3.22)

where ∗ ∈ {𝑢1, 𝑠1, 𝑝1, 𝑢2, 𝑠2, 𝑝2, 𝜉1, 𝜉2, 𝑔}, Q∗ is the eigenvectors matrix and Λ∗ is the diagonal
eigenvalues matrix with eigenvalues ordered by decreasing order of their magnitude. The 𝑘–th
reduced basis function for the component ∗ is then obtained by applying the matrix S∗ to 𝑣∗

𝑘
– the

𝑘–th column vector of the matrix Q∗:

Φ∗
𝑘 :=

1√︁
𝜆∗
𝑘

S∗𝑣
∗
𝑘
,

where 𝜆∗
𝑘

is the 𝑘–th eigenvalue from (3.22). Therefore, we are able to form the set of reduced
bases as

A𝑠 :=
⋃

∗∈{𝑢1,𝑠1, 𝑝1,𝑢2,𝑠2, 𝑝2}

{
Ψ∗

1, ...,Ψ
∗
𝑁∗

}
,

A𝑎 :=
⋃

∗∈{ 𝜉1, 𝜉2}

{
Ψ∗

1, ...,Ψ
∗
𝑁∗

}
,

A𝑔 :=
{
Φ
𝑔

1 , ...,Φ
𝑔

𝑁𝑔

}
,

where the integer numbers 𝑁∗ indicate the number of the basis functions used for each component
and

Ψ
𝑢1
𝑘

=

©«
Φ
𝑢1
𝑘

0
0
0

ª®®®¬ , Ψ
𝑠1
𝑘
=

©«
Φ
𝑠1
𝑘

0
0
0

ª®®®¬ , Ψ
𝑝1
𝑘

=

©«
0

Φ
𝑝1
𝑘

0
0

ª®®®¬ , Ψ
𝑢2
𝑘

=

©«
0
0

Φ
𝑢2
𝑘

0

ª®®®¬ ,

Ψ
𝑠2
𝑘
=

©«
0
0
Φ
𝑠2
𝑘

0

ª®®®¬ , Ψ
𝑝2
𝑘

=

©«
0
0
0

Φ
𝑝2
𝑘

ª®®®¬ , Ψ
𝜉1
𝑘

=

(
Φ
𝜉1
𝑘

0

)
, Ψ

𝜉2
𝑘

=

(
0

Φ
𝜉2
𝑘

)
.

We note that the first and the third blocks include both the 𝑢1, 𝑠1 and the 𝑢2, 𝑠2 basis functions
– it is here that we use the pressure supremiser enrichment of the velocities spaces discussed at



32 CHAPTER 3. STATIONARY INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

the beginning of this section. We provide the following renumbering of the functions for further
simplicity:

Φ
𝑢𝑖
𝑁𝑢𝑖

+𝑘 := Φ
𝑠𝑖
𝑘
, Ψ

𝑢𝑖
𝑁𝑢𝑖

+𝑘 := Ψ
𝑠𝑖
𝑘
, for 𝑘 = 1, ..., 𝑁𝑠𝑖 , 𝑖 = 1, 2,

and we redefine 𝑁𝑢𝑖 := 𝑁𝑢𝑖 + 𝑁𝑠𝑖 , 𝑖 = 1, 2.
Finally, we introduce three separate reduced basis spaces – for the state, the adjoint and the

control variables, respectively:

𝑉 𝑠𝑁 = spanA𝑠, dim𝑉 𝑠𝑁 = 𝑁𝑢1 + 𝑁𝑝1 + 𝑁𝑢2 + 𝑁𝑝2 ,

𝑉𝑎𝑁 = spanA𝑎, dim𝑉 𝑠𝑁 = 𝑁𝜉1 + 𝑁𝜉2 ,

𝑉
𝑔

𝑁
= spanA𝑔, dim𝑉 𝑠𝑁 = 𝑁𝑔 .

3.4.3 Online Phase

Once we have introduced the reduced basis spaces, we can define the reduced function expansions

𝑈𝑁 = (𝑢1,0,𝑁 , 𝑝1,𝑁 , 𝑢2,0,𝑁 , 𝑝2,𝑁 ) ∈ 𝑉 𝑠𝑁 ,Ξ𝑁 = (𝜉1,𝑁 , 𝜉2,𝑁 ) ∈ 𝑉𝑎𝑁 , 𝑔𝑁 ∈ 𝑉𝑔
𝑁

as

𝑢𝑖,0,𝑁 :=
𝑁𝑢𝑖∑︁
𝑘=1

𝑢
𝑖,0,𝑘Φ

𝑢𝑖
𝑘
, 𝑖 = 1, 2, 𝜉𝑖,𝑁 :=

𝑁𝜉𝑖∑︁
𝑘=1

𝜉
𝑖,𝑘
Φ
𝜉𝑖
𝑘
, 𝑖 = 1, 2,

𝑝𝑖,𝑁 :=
𝑁𝑝𝑖∑︁
𝑘=1

𝑝
𝑖,𝑘
Φ
𝑝𝑖
𝑘
, 𝑖 = 1, 2, 𝑔𝑁 :=

𝑁𝑔∑︁
𝑘=1

𝑔
𝑘
Φ
𝑔

𝑘
.

In the previous equations, the underscore indicates the coefficients of the basis expansion of the
reduced solution. Then, the online reduced problem reads as follows: minimise over 𝑔𝑁 ∈ 𝑉𝑔

𝑁
the

functional
J𝛾,𝑁 (𝑢1,𝑁 , 𝑢2,𝑁 ; 𝑔𝑁 ) :=

1
2

∫
Γ0

��𝑢1,𝑁 − 𝑢2,𝑁
��2 𝑑Γ + 𝛾

2

∫
Γ0

|𝑔𝑁 |2 𝑑Γ, (3.23)

where 𝑢1,𝑁 = 𝑢1,0,𝑁 + 𝑙1,𝑁 , 𝑢2,𝑁 = 𝑢2,0,𝑁 + 𝑙2,𝑁 for (𝑢1,0,𝑁 , 𝑝1,𝑁 , 𝑢2,0,𝑁 , 𝑝2,𝑁 ) ∈ 𝑉 𝑠𝑁 satisfy the
following reduced equations ∀𝑣𝑁 = (𝑣1,𝑁 , 𝑞1,𝑁 , 𝑣2,𝑁 , 𝑞2,𝑁 ) ∈ 𝑉 𝑠𝑁

𝑎𝑖 (𝑢𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑐𝑖 (𝑢𝑖,0,𝑁 , 𝑢𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑐𝑖 (𝑢𝑖,0,𝑁 , 𝑙𝑖,𝑁 , 𝑣𝑖,𝑁 )
+ 𝑐𝑖 (𝑙𝑖,𝑁 , 𝑢𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑏𝑖 (𝑣𝑖,𝑁 , 𝑝𝑖,𝑁 )
= ( 𝑓𝑖 , 𝑣𝑖,𝑁 )Ω𝑖

+ ((−1)𝑖+1𝑔𝑁 , 𝑣𝑖,𝑁 )Γ0 (3.24a)
−𝑎𝑖 (𝑙𝑖,𝑁 , 𝑣𝑖,𝑁 ) − 𝑐𝑖 (𝑙𝑖,𝑁 , 𝑙𝑖,𝑁 , 𝑣𝑖,𝑁 ),

𝑏𝑖 (𝑢𝑖,0,𝑁 , 𝑞𝑖,𝑁 ) = −𝑏𝑖 (𝑙𝑖,𝑁 , 𝑞𝑖,𝑁 ), (3.24b)

where 𝑙𝑖,𝑁 is the Galerkin projection of the lifting function 𝑙𝑖,ℎ to the finite dimensional vector
space spanned by the 𝑖–th velocity basis functions and 𝑖 = 1, 2.
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Similarly to the offline phase, we notice that the structure of the equations (3.24) and the
functional (3.23) are the same as the ones of the continuous case, so this enables us to provide the
following expression of the gradient of the reduced functional (3.23), i.e.,

𝑑J𝛾,𝑁
𝑑𝑔𝑁

(𝑢1,𝑁 , 𝑢2,𝑁 ; 𝑔𝑁 ) = 𝛾𝑔𝑁 + (𝜉1,𝑁 − 𝜉2,𝑁 ) |Γ0 , (3.25)

where (𝜉1,𝑁 , 𝜉2,𝑁 ) ∈ 𝑉𝑎𝑁 are the solutions to the reduced adjoint problem: find (𝜉1,𝑁 , 𝜉2,𝑁 ) ∈ 𝑉𝑎𝑁
such that it satisfies, for each pair of test functions (𝜂1,𝑁 , 𝜂2,𝑁 ) ∈ 𝑉𝑎𝑁 and 𝑖 = 1, 2,

𝑎𝑖 (𝜂𝑖,𝑁 , 𝜉𝑖,𝑁 ) + 𝑐𝑖
(
𝜂𝑖,𝑁 , 𝑢𝑖,𝑁 , 𝜉𝑖,𝑁

)
+ 𝑐𝑖

(
𝑢𝑖,𝑁 , 𝜂𝑖,𝑁 , 𝜉𝑖,𝑁

)
= ((−1)𝑖+1𝜂𝑖,𝑁 , 𝑢1,𝑁 − 𝑢2,𝑁 )Γ0 .

(3.26)

Notice that the reduced adjoint equations no longer contain any terms corresponding to the bilinear
forms 𝑏𝑖 (·, ·), 𝑖 = 1, 2. Indeed, as was previously mentioned, all the functions belonging to the
reduced space 𝑉𝑎

𝑁
are already divergence–free by construction, so the aforementioned terms are

automatically satisfied.
We would also like to stress that from the numerical implementation point of view the reduced

minimisation problem can be recast in the setting of the finite–dimensional space R𝑝, where 𝑝 is
the number of reduced basis function used for the control variable 𝑔𝑁 in the online phase, that is
𝑝 = 𝑁𝑔.

3.5 Numerical Results

We now present some numerical results obtained by applying the two–domain decomposition
optimisation algorithm to the backward–facing step and the lid–driven cavity flow benchmarks.

All the numerical simulations for the offline phase were obtained using the software multiphenics
[2], whereas the online phase simulations were carried out using RBniCS [3].

3.5.1 Backward–facing step test case

We start with introducing the backward–facing step flow test case. Figure 3.3 represents the physical
domain of interest. The upper part of the channel has a length of 18 cm, the lower part 14 cm; the
height of the left chamber is 3 cm, and the height of the right one is 5 cm. The splitting into two
domains is performed by dissecting the domain by a vertical segment at the distance 26

3 cm from
the beginning of the channel as shown in Figure 3.4.
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Γ𝑖𝑛

Γ𝑤𝑎𝑙𝑙

Γ𝑜𝑢𝑡

Γ𝑤𝑎𝑙𝑙

Ω

Figure 3.3: Physical domain for the backward–facing step problem

Ω1 Ω2

Figure 3.4: Domain decomposition for the backward–facing step problem domain

We impose homogeneous Dirichlet boundary conditions on the top and the bottom walls of the
boundary Γ𝑤𝑎𝑙𝑙 for the fluid velocity, and homogeneous Neumann conditions on the outlet Γ𝑜𝑢𝑡 ,
meaning that we assume free outflow on this portion of the boundary. We impose a parabolic profile
𝑢𝑖𝑛 on the inlet boundary Γ𝑖𝑛, where

𝑢𝑖𝑛 (𝑥, 𝑦) =
(
𝑤(𝑦)

0

)
(3.27)

with 𝑤(𝑦) = �̄� × 4
9 (𝑦 − 2) (5 − 𝑦), 𝑦 ∈ [2, 5]; values of �̄� are reported in Table 3.1. Two

physical parameters are considered: the viscosity 𝜈 and the maximal magnitude �̄� of the inlet
velocity profile 𝑢𝑖𝑛. Both parameters concur to the definition of the only physically relevant
parameter, the Reynolds number 𝑅𝑒 = 𝐿 �̄�

𝜈
, where 𝐿 is the characteristic length. Hence, we

indicate for all tests also the corresponding 𝑅𝑒. Details of the offline stage and the finite–element
discretisation are summarised in Table 3.1. High–fidelity solutions are obtained by carrying out
the minimisation in the space of dimension equal to the number of degrees of freedom at the
interface, which is 130 in our test case. The best performance has been achieved by using the
limited–memory Broyden–Fletcher–Goldfarb–Shanno (L–BFGS–B) optimisation algorithm, and
two stopping criteria were applied: either the maximal number of iteration itmax is reached or the
gradient norm of the target functional is less than the given tolerance tolopt.

Snapshots are sampled from a training set of 𝑀 parameters uniformly distributed in the two–
dimensional parameter space, and the first 𝑁max POD modes have been retained. Figure 3.5a shows
the POD singular values for all the state, the adjoint and the control variables. As it can be seen,
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Physical parameters 2 : 𝜈, �̄�
Range 𝜈 [0.5, 2]
Range �̄� [0.5, 6.5]

Resulting 𝑅𝑒 number [0.75, 40]

FE velocity order 2
FE pressure order 1

Total number of FE dofs 27,890
Number of FE dofs at the interface 130

Optimisation algorithm L-BFGS-B
itmax 40
tolopt 10−5

𝑀 900
𝑁max 50

Table 3.1: Computational details of the offline stage

the POD singular values corresponding to the adjoint velocities 𝜉1 and 𝜉2 feature a slower decay
compared to the one for the other variables. In Figure 3.5b, we can see the behaviour of the energy
𝐸𝑛 retained by the first 𝑁 modes for different components of the solution. Here, the retained energy
for the component ∗ ∈ {𝑢1, 𝑠1, 𝑝1, 𝑢2, 𝑠2, 𝑝2, 𝜉1, 𝜉2, 𝑔} is defined as

𝐸∗
𝑛 :=

∑𝑛
𝑘=1 |𝜆∗𝑘 |∑𝑁∗
𝑘=1 |𝜆

∗
𝑘
|
.

The retained energy gives us an idea of the number of modes we would need to choose to
preserve all the necessary physical information in the reduced model. In particular, we can see that
a higher number of modes is needed to correctly represent the adjoint variables 𝜉1 and 𝜉2.

Figures 3.6– 3.9 represent the first four POD modes for each of the variables 𝑢1, 𝑢2, 𝑠1, 𝑠2,

𝑝1, 𝑝2, 𝜉1 and 𝜉2. We stress that the POD modes were obtained separately for each component and
the resulting figures are obtained by gluing the subdomain function just for the sake of visualisation.

Figure 3.6 shows the first modes for the fluid velocities 𝑢1 and 𝑢2: in particular, notice that the
modes corresponding to 𝑢1 (on the left section of the domain) are zero at the inlet boundary due to
the use of lifting function.

In Figure 3.7, we can see the first four modes for 𝑠1 and 𝑠2: here, the corresponding functions
are mostly localised inside the domains Ω1 and Ω2 thanks to the homogeneous conditions at the
boundaries and the non–zero forcing term coming from the pressure.
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(a) POD singular values as a function of number 𝑛 of
POD modes (log scaling in 𝑦–direction)

(b) Energy retained by the first 𝑁max POD modes (log
scaling in 𝑥–direction)

Figure 3.5: Results of the offline stage: POD singular eigenvalue decay (a) and retained energy (b)
of the first 𝑁max POD modes.

(a) The first mode (b) The second mode

(c) The third mode (d) The fourth mode

Figure 3.6: The first POD modes for the velocities 𝑢1 and 𝑢2 (subdomain functions are glued
together for visualisation purposes).
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(a) The first mode (b) The second mode

(c) The third mode (d) The fourth mode

Figure 3.7: The first POD modes for the pressure supremisers 𝑠1 and 𝑠2 (subdomain functions are
glued together for visualisation purposes).

(a) The first mode (b) The second mode

(c) The third mode (d) The fourth mode

Figure 3.8: The first POD modes for the pressures 𝑝1 and 𝑝2 (subdomain functions are glued
together for visualisation purposes).
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(a) The first mode (b) The second mode

(c) The third mode (d) The fourth mode

Figure 3.9: The first POD modes for the adjoint velocities 𝜉1 and 𝜉2 (subdomain functions are glued
together for visualisation purposes).

Iteration Functional Value Gradient norm
0 4.8 · 10−1 4.1 · 10−1

5 6.0 · 10−2 2.2 · 10−1

10 5.0 · 10−3 3.3 · 10−2

40 1.7 · 10−4 2.4 · 10−3

Table 3.2: Functional values and the gradient norm for the FOM optimisation solution at the
parameter values �̄� = 1, 𝜈 = 1 and 𝑅𝑒 = 3

Figure 3.8 represents the first modes for the pressures 𝑝1 and 𝑝2: we point out the signs of the
oscillation behaviour, which suggests that the supremiser enrichment might be needed to assure
stability of the reduced–order solution.

Finally, Figure 3.9 shows the first four modes for the adjoint variables 𝜉1 and 𝜉2: note that they
are concentrated only around the interface Γ0 because the only nonzero contribution in the adjoint
equations is coming from the source terms, which are defined solely on the interface Γ0.

Figures 3.10– 3.13 represent the high–fidelity solutions for two different values of the parameters
(�̄�, 𝜈) = (1, 1), resulting in 𝑅𝑒 = 3, and (�̄�, 𝜈) = (4.5, 0.7) with 𝑅𝑒 ≈ 19. The solutions were
obtained by carrying out 40 optimisation iterations via the L–BFGS–B algorithm. Figures 3.10
and 3.12 show the intermediate solutions at iteration 0, 5, 10 and 40 for the fluid velocities 𝑢1 and
𝑢2, whereas Figures 3.11 and 3.13 show the corresponding pressures 𝑝1 and 𝑝2. The final solution
is taken to be the 40th iteration optimisation solution in which we can observe a continuity between
subdomain solutions at the interface Γ0. Moreover, it can be noticed that the solution for parameters
(�̄�, 𝜈) = (1, 1) looks continuous already at iteration 10, which suggests that the convergence of the
optimisation algorithm might depend on the Reynolds number.
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(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 40

Figure 3.10: High–fidelity solution for the velocities 𝑢1 and 𝑢2. Values of the parameters �̄� = 1,
𝜈 = 1 and 𝑅𝑒 = 3.

(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 40

Figure 3.11: High–fidelity solution for the pressures 𝑝1 and 𝑝2. Values of the parameters �̄� = 1,
𝜈 = 1 and 𝑅𝑒 = 3.

Iteration Abs. error 𝑢ℎ Rel. error 𝑢ℎ Abs. error 𝑝ℎ Rel. error 𝑝ℎ
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.0302 2.9935 0.0088 1.0000 10.6515 7.0679 0.5056 1.0000
5 0.1020 0.6279 0.0297 0.2098 2.4520 1.5317 0.1164 0.2167
10 0.0384 0.1355 0.0112 0.0453 0.5807 0.3793 0.0276 0.0537
40 0.0184 0.0583 0.0053 0.0195 0.2670 0.1827 0.0127 0.0259

Table 3.3: Absolute and relative errors of the FOM optimisation solution with respect to the
monolithic solution at the parameter values �̄� = 1, 𝜈 = 1 and 𝑅𝑒 = 3
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(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 40

Figure 3.12: High–fidelity solution for the velocities 𝑢1 and 𝑢2. Values of the parameters �̄� = 4,
𝜈 = 0.75 and 𝑅𝑒 ≈ 19.

Iteration Functional Value Gradient norm
0 7.902 2.213
5 1.956 1.210
10 0.403 2.132
40 0.007 0.069

Table 3.4: Functional values and the gradient norm for the FOM optimisation solution at parameter
values �̄� = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19

We present additional details in Tables 3.2 – 3.5. In particular, in Tables 3.2 and 3.4, we list the
values for the functional J𝛾 and the 𝐿2(Γ0)–norm of the gradient 𝑑J𝛾

𝑑𝑔
at the different iteration of

the optimisation procedure, while Table 3.3 contains the absolute and relative errors with respect
to the monolithic (entire–domain) solutions 𝑢ℎ, 𝑝ℎ, i.e.,

• Abs. error 𝑢ℎ := | |𝑢𝑖,ℎ − 𝑢ℎ | |𝐿2 (Ω𝑖 ) on domain Ω𝑖 ,

• Rel. error 𝑢ℎ :=
| |𝑢𝑖,ℎ−𝑢ℎ | |𝐿2 (Ω𝑖 )

| |𝑢ℎ | |𝐿2 (Ω𝑖 )
on domain Ω𝑖 ,

• Abs. error 𝑝ℎ := | |𝑝𝑖,ℎ − 𝑝ℎ | |𝐿2 (Ω𝑖 ) on domain Ω𝑖 ,

• Rel. error 𝑝ℎ :=
| | 𝑝𝑖,ℎ−𝑝ℎ | |𝐿2 (Ω𝑖 )

| | 𝑝ℎ | |𝐿2 (Ω𝑖 )
on domain Ω𝑖 ,

for 𝑖 = 1, 2.
Figures 3.14– 3.17 represent the reduced–order solutions for two different values of the parame-

ters (�̄�, 𝜈) = (1, 1) and 𝑅𝑒 = 3 and (�̄�, 𝜈) = (4, 0.75) and 𝑅𝑒 ≈ 19. In each of the cases, we choose
the following number of the reduced basis functions: 𝑁𝑢1 = 𝑁𝑠1 = 𝑁𝑝1 = 𝑁𝑢2 = 𝑁𝑠2 = 𝑁𝑝2 = 𝑁𝑔 =
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(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 40

Figure 3.13: High–fidelity solution for the pressures 𝑝1 and 𝑝2. Values of the parameters �̄� = 4,
𝜈 = 0.75 and 𝑅𝑒 ≈ 19.

Iteration Abs. error 𝑢ℎ Rel. error 𝑢ℎ Abs. error 𝑝ℎ Rel. error 𝑝ℎ
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.2520 11.9830 0.0181 1.0000 31.6121 21.1630 0.5859 1.0000
5 0.6639 5.0075 0.0478 0.4179 20.7060 10.2359 0.3838 0.4837
10 0.2704 1.3722 0.0195 0.1145 6.7317 2.8262 0.1248 0.1335
40 0.0865 0.2566 0.0062 0.0214 1.4498 0.6443 0.0269 0.0304

Table 3.5: Absolute and relative errors of the FOM optimisation solution with respect to the
monolithic solution at the parameter values �̄� = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19
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(a) Iteration 0 (b) Iteration 5

(c) Iteration 10

Figure 3.14: Reduced order solution for the velocities 𝑢1 and 𝑢2. Values of the parameters �̄� = 1,
𝜈 = 1 and 𝑅𝑒 = 3. Number of POD modes: 10 – for each state variable, each supremiser and the
control, 30 – for both adjoint velocities.

10 and 𝑁𝜉1 = 𝑁𝜉2 = 30. As was previously anticipated, we use a higher number for the adjoint
variables 𝜉1 and 𝜉2 since they show much slower decay of the singular values (see Figure 3.5a). The
solutions were obtained by carrying out 10 optimisation iterations of the L–BFGS–B algorithm.
Figures 3.14 and 3.16 show the intermediate solutions at iteration 0, 5 and 10 for the fluid velocities
𝑢1 and 𝑢2, whereas Figures 3.15 and 3.17 show the corresponding pressures 𝑝1 and 𝑝2. The final
solution, at the 10th iteration, shows continuity between subdomain solutions at the interface Γ0.

We present additional details in Tables 3.6– 3.9. In particular, in Tables 3.6 and 3.8, we list the
values for the functional J𝛾 and the 𝐿2(Γ0)–norm of the gradient 𝑑J𝛾

𝑑𝑔
at the different iteration of

the optimisation procedure, while Table 3.7 and Table 3.9 contain the absolute and relative errors
with respect to the monolithic (entire–domain) solutions 𝑢ℎ, 𝑝ℎ, i.e.,

• Abs. error 𝑢𝑁 := | |𝑢𝑖,𝑁 − 𝑢ℎ | |𝐿2 (Ω𝑖 ) on domain Ω𝑖 ,

• Rel. error 𝑢𝑁 :=
| |𝑢𝑖,𝑁−𝑢ℎ | |𝐿2 (Ω𝑖 )

| |𝑢ℎ | |𝐿2 (Ω𝑖 )
on domain Ω𝑖 ,

• Abs. error 𝑝𝑁 := | |𝑝𝑖,𝑁 − 𝑝ℎ | |𝐿2 (Ω𝑖 ) on domain Ω𝑖 ,

• Rel. error 𝑝𝑁 :=
| | 𝑝𝑖,𝑁−𝑝ℎ | |𝐿2 (Ω𝑖 )

| | 𝑝ℎ | |𝐿2 (Ω𝑖 )
on domain Ω𝑖 ,

for 𝑖 = 1, 2.
Analysing the results, we are able to see that the reduced basis method gives us a solution as

accurate as the high–fidelity one. The reduced–order approximation of the optimisation problem
at hand allowed us to reduce the dimension of the high–fidelity optimisation functional by more
than 10 times and enabled us to use 4 times fewer iterations in the optimisation algorithm (each
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(a) Iteration 0 (b) Iteration 5

(c) Iteration 10

Figure 3.15: Reduced order solution for the pressures 𝑝1 and 𝑝2. Values of the parameters �̄� = 1,
𝜈 = 1 and 𝑅𝑒 = 3. Number of POD modes: 10 – for each state variable, each supremiser and the
control, 30 – for both adjoint velocities.

Iteration Functional Value Gradient norm
0 4.8 · 10−1 0.391
5 5.4 · 10−3 0.047
10 3.6 · 10−4 0.015

Table 3.6: Functional values and the gradient norm for the ROM optimisation solution at parameter
values �̄� = 1, 𝜈 = 1 and 𝑅𝑒 = 3

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.0284 2.9935 0.0083 1.0000 10.9522 7.0679 0.5198 1.0000
5 0.0746 0.1956 0.0217 0.0653 0.8548 0.5672 0.0406 0.0803
10 0.0135 0.0357 0.0039 0.0119 0.1714 0.1186 0.0081 0.0168

Table 3.7: Absolute and relative errors of the ROM optimisation solution with respect to the
monolithic solution at the parameter values �̄� = 1, 𝜈 = 1 and 𝑅𝑒 = 3

Iteration Functional Value Gradient norm
0 7.869 2.120
5 0.107 0.401
10 0.060 0.555

Table 3.8: Functional values and the gradient norm for the ROM optimisation solution at parameter
values �̄� = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19
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(a) Iteration 0 (b) Iteration 5

(c) Iteration 10

Figure 3.16: Reduced order solution for the velocities 𝑢1 and 𝑢2. Values of the parameters �̄� = 4,
𝜈 = 0.75 and 𝑅𝑒 ≈ 19. Number of POD modes: 10 – for each state variable, each supremiser and
the control, 30 – for both adjoint velocities.

(a) Iteration 0 (b) Iteration 5

(c) Iteration 10

Figure 3.17: Reduced order solution for the pressures 𝑝1 and 𝑝2. Values of the parameters �̄� = 4,
𝜈 = 0.75 and 𝑅𝑒 ≈ 19. Number of POD modes: 10 – for each state variable, each supremiser and
the control, 30 – for both adjoint velocities.

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.1782 11.9830 0.0128 1.0000 32.5149 21.1630 0.6026 1.0000
5 0.2826 0.8724 0.0204 0.0728 4.1633 1.9392 0.0772 0.0916
10 0.1910 0.3826 0.0138 0.0319 0.6725 0.7453 0.0125 0.0352

Table 3.9: Absolute and relative errors of the ROM optimisation solution with respect to the
monolithic solution at the parameter values �̄� = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19
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Parameter value Velocity relative error Pressure relative error
�̄� 𝜈 Ω1 Ω2 Ω1 Ω2
1 1 0.024 0.032 0.005 0.012
4 0.75 0.019 0.059 0.021 0.046

Table 3.10: Relative errors between FOM and ROM solutions (in terms of 𝐻1–norm for the velocity
fields and 𝐿2–norm for the pressure fields)

optimisation step requires at least one solve of the state and the adjoint equations). We also note
that the fact that we chose a bigger number of the reduced basis functions for the adjoint variables
𝜉1 and 𝜉2 is not supposed to affect the computational costs much since the adjoint problem is linear
and does not require multiple Newton iteration to be solved so that the biggest computational effort
still lies in the nonlinear Navier–Stokes equations and the optimisation process.

Additionally, in Table 3.10 we provide a comparison between full–order and reduced–order
models in terms of the relative errors between ROM solutions with respect to the corresponding
FOM solutions. Comparing the convergence results for different models – monolithic vs. DD–
FOM, monolithic vs. DD–ROM, and DD–FOM vs. DD–ROM – it can be seen that the DD–
ROM method gives a more accurate solution with respect to DD–FOM. We believe that this is
due to the optimisation process: the DD–ROM is much less sensitive to the initial guess in the
optimisation procedure and much fewer iterations are needed for the optimisation algorithm to
converge. Nevertheless, errors between DD–FOM and DD–ROM are comparable to the ones with
respect to the monolithic solution.

Remark (High Reynolds and uniqueness of the solution). As it is evident from Table 3.1, the
Reynolds number reported for this test case is quite small. This is due to the fact that the optimisation
solver diverges for higher Reynolds numbers. The authors suspect that this issue is mostly due to
the bifurcation effect (known as the “Coanda effect” or “wall hugging effect” of these types of
simulations). One of the reasons to support this argument is that the range of Reynolds numbers for
which the optimisation solver converges changes (though not very significantly) when the interface
is moved closer to the beginning or the end of the channel. This problem is very complicated in
itself and is addressed, for instance, in [163, 102, 34, 80, 138, 139, 141, 145, 133]. In particular, in
[139], it is shown that for a similar test already for 𝑅𝑒 ≈ 78 there is non–uniqueness of the solution.

3.5.2 Lid–driven cavity flow test case

In this section, we provide the numerical simulation for the lid–driven cavity flow test case.
Figure 3.18a represents the physical domain of interest – the unit square. The split into two domains
is performed by dissecting the domain by a median horizontal line as shown in Figure 3.18b.

We impose homogeneous Dirichlet boundary conditions on the part of the boundary Γ𝑤𝑎𝑙𝑙 for the
fluid velocity and the nonzero horizontal constant velocity on the lid boundary Γ𝑙𝑖𝑑: 𝑢𝑙𝑖𝑑 =

(
�̄�, 0

)
;

the values of �̄� are reported in Table 3.11.
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Γ𝑙𝑖𝑑

Γ𝑤𝑎𝑙𝑙

Γ𝑤𝑎𝑙𝑙

Γ𝑤𝑎𝑙𝑙Ω

(a) Physical domain

Ω1

Ω2

Ω2

(b) Domain splitting

Figure 3.18: Lid–driven cavity flow geometry.

Physical parameters 2 : 𝜈, �̄�
Range 𝜈 [0.05, 2]
Range �̄� [0.5, 10]

Resulting 𝑅𝑒 number [0.25, 200]

FE velocity order 2
FE pressure order 1

Total number of FE dofs 14,867
Number of FE dofs at the interface 138

Optimisation algorithm L-BFGS-B
itmax 100
tolopt 10−6

𝑀 300
𝑁max 100

Table 3.11: Computational details of the offline stage
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Figure 3.19: Results of the offline stage: POD singular eigenvalue decay (a) and retained energy
(b) of the first 𝑁max POD modes.

Two physical parameters are considered: viscosity 𝜈 and the magnitude �̄� of the lid velocity
profile 𝑢𝑖𝑛. Details of the offline stage and the finite–element discretisation are summarised in
Table 3.11. High–fidelity solutions are obtained by carrying out the minimisation in the space of
dimension equal to the number of degrees of freedom at the interface, which is 138 in our test
case. The best performance has been achieved by using the limited–memory Broyden–Fletcher–
Goldfarb–Shanno (L–BFGS–B) optimisation algorithm, and two stopping criteria are applied:
either the maximal number of iteration itmax is reached or the gradient norm of the target functional
is less than the given tolerance tolopt.

Snapshots are sampled from a training set of 𝑀 parameters uniformly distributed in the two–
dimensional parameter space, and the first 𝑁max POD modes have been retained. Figure 3.19a
shows POD singular values for all the state, the adjoint and the control variables. As it can be seen,
the POD singular values corresponding to the adjoint velocities 𝜉1 and 𝜉2 feature a slower decay
compared to the one for the other variables. In Figure 3.19b, we can see the behaviour of the energy
𝐸𝑛 retained by the first 𝑁 modes for different components of the solution. Note that, as it was in
the previous numerical case, a higher number of modes is needed to correctly represent the adjoint
variables 𝜉1 and 𝜉2.

Figures 3.20– 3.23 represent first three POD modes for the variables 𝑢1, 𝑢2, 𝑠1, 𝑠2, 𝑝1, 𝑝2 and
𝜉1, 𝜉2. We stress that the POD modes were obtained separately for each component and the resulting
figures are obtained by gluing the subdomain functions just for the sake of visualisation. Figure 3.20
shows the first modes for the fluid velocities 𝑢1 and 𝑢2. In particular, we notice that the modes
corresponding to 𝑢2 (on the upper section of the domain) are zero at the lid boundary due to the use
of the lifting function. Figure 3.23 shows the first three modes for the adjoint variables 𝜉1 and 𝜉2:
note that they are concentrated only around the interface Γ0 because the only nonzero contribution
in the adjoint equations is coming from the source terms defined solely on the interface Γ0.
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Figure 3.20: The first POD modes for the velocities 𝑢1 and 𝑢2 (subdomain functions are glued
together for visualisation purposes)

Figure 3.21: The first POD modes for the supremiser variables 𝑠1 and 𝑠2 (subdomain functions are
glued together for visualisation purposes)

Figure 3.22: The first POD modes for the pressures 𝑝1 and 𝑝2 (subdomain functions are glued
together for visualisation purposes)
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Figure 3.23: The first POD modes for the adjoint velocities 𝜉1 and 𝜉2 (subdomain functions are
glued together for visualisation purposes)

(a) Iteration 0 (b) Iteration 5 (c) Iteration 25

Figure 3.24: High–fidelity solution for the velocities 𝑢1 and 𝑢2. Values of the parameters �̄� = 5
and 𝜈 = 0.05 and with 𝑅𝑒 = 100.

(a) Iteration 0 (b) Iteration 5 (c) Iteration 25

Figure 3.25: High–fidelity FOM solution for the velocities 𝑢1 and 𝑢2. Values of the parameters
�̄� = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10.



50 CHAPTER 3. STATIONARY INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Iteration Functional Value Gradient norm
0 4.4 · 10−1 3.398
5 3.0 · 10−2 1.001
10 3.5 · 10−3 0.171
25 8.7 · 10−5 0.016

Table 3.12: Functional values and the gradient norm for the FOM optimisation solution at parameter
values �̄� = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.3411 0.1949 1.0000 0.1653 0.2689 0.3149 1.0000 0.2330
5 0.0623 0.0613 0.1826 0.0520 0.0531 0.0575 0.3633 0.0426
10 0.0114 0.0136 0.0334 0.0116 0.0184 0.0206 0.1256 0.0153
25 0.0051 0.0062 0.0151 0.0053 0.0143 0.0147 0.0980 0.0109

Table 3.13: Absolute and relative errors of the FOM optimisation solution with respect to the
monolithic solution at the parameter value �̄� = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100

Iteration Functional Value Gradient norm
0 2.5 · 10−2 4.1 · 10−1

5 7.4 · 10−5 1.4 · 10−2

10 3.3 · 10−6 9.1 · 10−4

25 7.0 · 10−7 3.9 · 10−4

Table 3.14: Functional values and the gradient norm for the FOM optimisation solution at the
parameter values �̄� = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.0668 0.0589 1.0000 0.2416 0.0349 0.0411 1.0000 0.0956
5 0.0032 0.0028 0.0483 0.0114 0.0036 0.0036 0.1100 0.0084
10 0.0006 0.0006 0.0095 0.0027 0.0024 0.0023 0.0733 0.0054
25 0.0005 0.0005 0.0069 0.0019 0.0021 0.0021 0.0663 0.0048

Table 3.15: Absolute and relative errors of the optimisation FOM solution with respect to the
monolithic solution at the parameter value �̄� = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10
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(a) Iteration 0 (b) Iteration 3 (c) Iteration 10

Figure 3.26: Reduced–order solution for the velocities 𝑢1 and 𝑢2. Values of the parameters �̄� = 5,
𝜈 = 0.05 and with 𝑅𝑒 = 100. Number of POD modes: 10 – for each state variable, each supremiser
and the control, 15 – for both adjoint velocities.

Figures 3.24 and 3.25 represent the high–fidelity solutions for two different values of the
parameters (�̄�, 𝜈) = (5, 0.05), with 𝑅𝑒 = 100, and (�̄�, 𝜈) = (1, 0.1), with 𝑅𝑒 = 10. The solutions
were obtained by carrying out 25 optimisation iterations via the L–BFGS–B algorithm. Figures 3.24
and 3.25 show the intermediate solutions at iteration 0, 5 and 25 for the fluid velocities 𝑢1 and 𝑢2.
The final solution is taken to be the 25–iteration optimisation solution as we can observe a continuity
between subdomain solutions at the interface Γ0. We present additional details in Tables 3.12 – 3.15.
In particular, in Tables 3.12 and 3.14, we list the values for the functional J𝛾 and the 𝐿2(Γ0)–norm
of the gradient 𝑑J𝛾

𝑑𝑔
at the different iteration of the optimisation procedure, while Table 3.13 and

Table 3.15 contain the absolute and relative errors with respect to the monolithic(entire–domain)
solutions 𝑢ℎ, 𝑝ℎ.

Figures 3.26 – 3.27 represent the reduced–order solutions for two different values of the pa-
rameters (�̄�, 𝜈) = (5, 0.05) and (�̄�, 𝜈) = (1, 0.1). For both cases, we choose the following number
of the reduced basis functions: 𝑁𝑢1 = 𝑁𝑠1 = 𝑁𝑝1 = 𝑁𝑢2 = 𝑁𝑠2 = 𝑁𝑝2 = 𝑁𝑔 = 10, whereas for the
adjoint velocities, we choose 𝑁𝜉1 = 𝑁𝜉2 = 15. As it was mentioned before we use a higher number
for the adjoint variables 𝜉1 and 𝜉2 since they show much slower decay of the singular values (see
Figure 3.19a). Figure 3.26 shows the intermediate solutions at iteration 0, 3 and 15 for the fluid
velocities 𝑢1 and 𝑢2 corresponding to the parameter value (�̄�, 𝜈) = (5, 0.05), and Figure 3.27 shows
the velocities 𝑢1 and 𝑢2 for the parameter value (�̄�, 𝜈) = (1, 0.1). The final solution is taken to be
the 10–iteration optimisation solution.

We present additional details in Tables 3.16 – 3.19. In particular, in Tables 3.16 and 3.18 we list
the values for the functional J𝛾 and the 𝐿2(Γ0)–norm of the gradient 𝑑J𝛾

𝑑𝑔
at the different iteration

of the optimisation procedure, while Table 3.17 and Table 3.19 contain the 𝐿2–relative errors with
respect to the monolithic (the entire–domain) solutions 𝑢ℎ, 𝑝ℎ.

Analysing the results, we are able to see that the reduced basis method gives us a solution as
accurate as the high–fidelity model. The reduced–order approximation of the optimisation problem
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(a) Iteration 0 (b) Iteration 3 (c) Iteration 10

Figure 3.27: Reduced–order solution for the velocities 𝑢1 and 𝑢2. Values of the parameters �̄� = 1,
𝜈 = 0.1 and with 𝑅𝑒 = 10. Number of POD modes: 10 – for each state variable, each supremiser
and the control, 15 – for both adjoint velocities.

Iteration Functional Value Gradient norm
0 4.8 · 10−1 3.153
3 2.4 · 10−2 1.634
10 7.2 · 10−5 0.023

Table 3.16: Functional values and the gradient norm for the ROM optimisation solution at parameter
values �̄� = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.3411 0.1796 1.0000 0.1523 0.2431 0.2519 1.0000 0.1864
3 0.0512 0.0552 0.1501 0.0468 0.0531 0.0646 0.3634 0.0478
10 0.0050 0.0056 0.0147 0.0047 0.0139 0.0139 0.0956 0.0103

Table 3.17: Absolute and relative errors of the ROM optimisation solution with respect to the
monolithic solution at the parameter values �̄� = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100

Iteration Functional Value Gradient norm
0 2.6 · 10−2 2.6 · 10−1

3 1.5 · 10−5 1.0 · 10−2

10 7.1 · 10−7 1.2 · 10−3

Table 3.18: Functional values and the gradient norm for the ROM optimisation solution at the
parameter values �̄� = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10
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Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁
Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.0668 0.0591 1.0000 0.2424 0.0349 0.0403 1.0000 0.0936
3 0.0010 0.0019 0.0155 0.0076 0.0024 0.0020 0.0752 0.0047
10 0.0004 0.0004 0.0066 0.0017 0.0020 0.0019 0.0621 0.0045

Table 3.19: Absolute and relative errors of the ROM optimisation solution with respect to the
monolithic solution at the parameter values �̄� = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10

Parameter value Velocity relative error Pressure relative error
�̄� 𝜈 Ω1 Ω2 Ω1 Ω2
1 0.1 0.020 0.003 0.014 0.0007
5 0.05 0.040 0.005 0.013 0.002

Table 3.20: Relative errors between FOM and ROM solutions (in terms of 𝐻1–norm for the velocity
fields and 𝐿2–norm for the pressure fields)

at hand allowed us to reduce the dimension of the high–fidelity optimisation functional by more
than 10–20 times and enabled us to use half optimisation algorithm iterations (each optimisation
step requires at least one solve of the state and the adjoint equations).

In order to provide more visually representable results (the scale of the solution on the subdo-
mains Ω1 and Ω2 has a few orders of the difference in the magnitude), we provide the graphs of the
velocities 𝑢1 and 𝑢2 separately in Figures 3.28 and 3.29. Additionally, in Table 3.20 we provide a
comparison between full–order and reduced–order models in terms of the relative errors between
ROM solutions with respect to the corresponding FOM solutions. The considerations drawn in the
previous section are valid also for this test case.

Remark. In both numerical cases presented above, it might seem that due to the fact that the
non–homogeneous Dirichlet boundary condition is present only on the boundary of one of the
subdomains only a few corrections are needed on this subdomain. On the other hand, this is true
only for the velocity field, as it can be seen in the tables listing the errors (for instance in Table 3.3).
Indeed, the errors for the pressure on those subdomains are higher than on the other one. Regarding
the cavity flow, our original idea was to split the domain vertically, but in that case, the convergence
even at the full–order level was much slower, hence, we opted for the horizontal split.

Remark (High Reynolds simulations). Also for this test case, the range of Reynolds number for
which the DD solver converges is stricter than the one where the monolithic solver provides a
solution. The reason is that the optimisation algorithms are very sensitive to the initial guess, and
the authors suspect that some further stabilisation techniques should be used.
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(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 25

Figure 3.28: Reduced–order solution for the velocity 𝑢1. Values of the parameters �̄� = 5, 𝜈 = 0.05
and with 𝑅𝑒 = 100.

(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 25

Figure 3.29: Reduced–order solution for the velocity 𝑢2. Values of the parameters �̄� = 5, 𝜈 = 0.05
and with 𝑅𝑒 = 100.
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3.6 Conclusions and perspectives
In this chapter, we proposed a reduced–order model for the optimisation–based domain decompo-
sition formulation of the parameter–dependent stationary incompressible Navier–Stokes equations.
The original problem cast into the optimisation–based domain–decomposition framework leads to
the optimal control problem aimed at minimising the coupling error at the interface; the problem,
then, has been tackled using an iterative gradient–based optimisation algorithm, which allowed us
to obtain a complete separation of the solvers on different subdomains. At the reduced–order level,
we have managed to build a model for which the generation of the reduced basis spaces is carried
out separately in each subdomain and for each component of the problem solution. Furthermore,
as the numerical results show, the reduction of the optimal–control problem can be observed not
only in the dimensions of the different components of the problem, i.e., of the functional, the state
and the adjoint equations but also in the number of the iterations of the optimisation algorithm.
The aforementioned techniques could be promising in the context of more complex time–dependent
problems and, more importantly, multiphysics problems, where either pre–existing solvers can be
used on each subcomponent or we do not have direct access to the codes. In particular, this method-
ology can be extended to problems with several sub–domains, to nonstationary fluid–dynamics
problems, see Chapter 4, and to multiphysics problems, for instance, Fluid–Structure interaction
problems in Chapter 5. Moreover, this approach can be applied also to more complicated problems,
where different types of numerical models are used in different subdomains.





Chapter 4

Non–stationary Fluid Dynamics
Problems

In this chapter, we introduce the monolithic formulation of non–stationary incompressible Navier–
Stokes equations and its time–discretisation scheme with the further derivation of the optimi-
sation–based domain–decomposition formulation at each time step. Then, we derive a priori
estimates for the solutions of Navier–Stokes equations that are then used to prove the existence
and uniqueness of the minimiser to the optimal–control problem at hand. Furthermore, we ob-
tain the optimality condition for the resulting optimal control problem and the expression for the
gradient of the objective functional with the following listing of the gradient–based optimisation
algorithm. Later in the chapter, we present two ROM techniques: an intrusive Galerkin projection
and a neural network (NN) algorithm, both based on a Proper Orthogonal Decomposition (POD)
methodology. At the end of the section, we show some numerical results for two toy problems: the
backward–facing step and the lid–driven cavity flows.

4.1 Problem formulation

In this section, starting with a monolithic formulation of the time–dependent incompressible Navier–
Stokes equations, we first introduce a time discretisation on the continuous level by employing the
implicit Euler time–stepping scheme. We then describe a two–domain optimisation–based domain–
decomposition formulation at each time step, and introduce its variational formulation in the end.
Here and in the next few sections, the analysis is valid for any value of the physical parameter, so
for the sake of simplicity, we postpone mentioning the parameter dependence of the problem until
Section 4.5.

57
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ΩΓ𝐷 Γ𝑁

(a) Physical domain

Γ0

Ω1

Ω2

Γ𝐷,1

Γ𝑁,2

Γ𝑁,1

Γ𝐷,2

(b) Domain Decomposition

Figure 4.1: Domain and boundaries.

4.1.1 Monolithic formulation

Let Ω be a physical domain of interest and we assume it to be an open subset of R2 and Γ to be the
boundary of Ω. We also consider a finite time interval [0, 𝑇] with 𝑇 > 0. Let 𝑓 : Ω × [0, 𝑇] → R2

be the forcing term, 𝜈 the kinematic viscosity, 𝑢𝐷 a given Dirichlet datum and 𝑢0 a given initial
condition. The problem reads as follows: find the velocity field 𝑢 : Ω × [0, 𝑇] → R2 and the
pressure 𝑝 : Ω × [0, 𝑇] → R s.t.

𝜕𝑢

𝜕𝑡
− 𝜈Δ𝑢 + (𝑢 · ∇) 𝑢 + ∇𝑝 = 𝑓 in Ω × (0, 𝑇], (4.1a)

−div𝑢 = 0 in Ω × (0, 𝑇], (4.1b)
𝑢 = 𝑢𝐷 on Γ𝐷 × [0, 𝑇], (4.1c)

𝜈
𝜕𝑢

𝜕n − 𝑝n = 0 on Γ𝑁 × [0, 𝑇], (4.1d)

𝑢(𝑡 = 0) = 𝑢0 in Ω, (4.1e)

where Γ𝐷 and Γ𝑁 are disjoint subsets of Γ (as it is shown in Figure 4.1a) and n is an outward unit
normal vector to Γ𝑁 .

4.1.2 Time discretisation

We will start with the time discretisation of problem (4.1). Let Δ𝑡 > 0, we assume the following
time interval partition: 0 = 𝑡0 < 𝑡1 < .... < 𝑡𝑀 = 𝑇 , where 𝑡𝑛 = 𝑛Δ𝑡 for 𝑛 = 0, ..., 𝑀 . We employ
the implicit Euler scheme for the incompressible Navier–Stokes equation, which reads as follows:



4.1. PROBLEM FORMULATION 59

for 𝑛 ≥ 1 find 𝑢𝑛 : Ω → R2, 𝑝𝑛 : Ω → R s.t.

𝑢𝑛 − 𝑢𝑛−1

Δ𝑡
− 𝜈Δ𝑢𝑛 + (𝑢𝑛 · ∇) 𝑢𝑛 + ∇𝑝𝑛 = 𝑓 𝑛 in Ω, (4.2a)

−div𝑢𝑛 = 0 in Ω, (4.2b)
𝑢𝑛 = 𝑢𝑛𝐷 on Γ𝐷 , (4.2c)

𝜈
𝜕𝑢𝑛

𝜕n − 𝑝𝑛n = 0 on Γ𝑁 , (4.2d)

and for 𝑛 = 0
𝑢0 = 𝑢0 in Ω. (4.2e)

Here, we adopted the following notations: 𝑓 𝑛 (·) = 𝑓 (·, 𝑡𝑛) and 𝑢𝑛
𝐷
(·) = 𝑢𝐷 (·, 𝑡𝑛).

4.1.3 Domain Decomposition (DD) formulation

Let Ω𝑖 , 𝑖 = 1, 2, be open subsets of Ω, such that Ω = Ω1 ∪Ω2, Ω1 ∩ Ω2 = ∅. Denote Γ𝑖 :=
𝜕Ω𝑖 ∩ Γ, 𝑖 = 1, 2, and Γ0 := Ω1 ∩ Ω2. In the same way, we define the corresponding boundary
subsets Γ𝑖,𝐷 and Γ𝑖,𝑁 , 𝑖 = 1, 2, see Figure 4.1b.
The DD formulation reads as follows: for 𝑛 ≥ 1 and 𝑖 = 1, 2, given 𝑓𝑖 : Ω𝑖 × [0, 𝑇] → R2 and
𝑢𝑖,𝐷 : Γ𝑖,𝐷 × [0, 𝑇] → R2, find 𝑢𝑛

𝑖
: Ω𝑖 → R2 and 𝑝𝑛

𝑖
: Ω𝑖 → R s.t.

𝑢𝑛
𝑖
− 𝑢𝑛−1

𝑖

Δ𝑡
− 𝜈Δ𝑢𝑛𝑖 +

(
𝑢𝑛𝑖 · ∇

)
𝑢𝑛𝑖 + ∇𝑝𝑛𝑖 = 𝑓 𝑛𝑖 in Ω𝑖 , (4.3a)

−div𝑢𝑛𝑖 = 0 in Ω𝑖 , (4.3b)
𝑢𝑛𝑖 = 𝑢

𝑛
𝑖,𝐷 on Γ𝑖,𝐷 , (4.3c)

𝜈
𝜕𝑢𝑛

𝑖

𝜕n − 𝑝𝑛𝑖 n = 0 on Γ𝑖,𝑁 , (4.3d)

𝜈
𝜕𝑢𝑛

𝑖

𝜕n𝑖
− 𝑝𝑛𝑖 n𝑖 = (−1)𝑖+1𝑔 on Γ0, (4.3e)

for some 𝑔 : Γ0 → R2, where by n𝑖 we denote an outward unit normal vector with respect to the
domain Ω𝑖 and

𝑢0
𝑖 = 𝑢0 in Ω𝑖 , (4.3f)

for 𝑛 = 0.
For a given 𝑔, the solution to problem (4.3) might not be the same as the solution to problem (4.2),

that is 𝑢𝑛1 ≠ 𝑢𝑛 |Ω1 , 𝑝𝑛1 ≠ 𝑝𝑛 |Ω1 , 𝑢𝑛2 ≠ 𝑢𝑛 |Ω2 and 𝑝𝑛2 ≠ 𝑝𝑛 |Ω2 . On the other hand, there exists a
choice for 𝑔, 𝑔 =

(
𝜈
𝜕𝑢𝑛1
𝜕n1

− 𝑝𝑛1 n1

)���
Γ0

= −
(
𝜈
𝜕𝑢𝑛2
𝜕n2

− 𝑝𝑛2 n2

)���
Γ0

, such that the solution to (4.3) coincides
with the solution to (4.2) on the corresponding subdomains. Therefore, we must find such a 𝑔, so
that 𝑢𝑛1 is as close as possible to 𝑢𝑛2 at the interface Γ0. One way to accomplish this is to minimise
the functional

J (𝑢𝑛1 , 𝑢
𝑛
2 ) :=

1
2

∫
Γ0

��𝑢𝑛1 − 𝑢𝑛2
��2 𝑑Γ. (4.4)
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Instead of (4.4), we can also consider the penalised or regularised functional

J𝛾 (𝑢𝑛1 , 𝑢
𝑛
2 ; 𝑔) :=

1
2

∫
Γ0

��𝑢𝑛1 − 𝑢𝑛2
��2 𝑑Γ + 𝛾

2

∫
Γ0

|𝑔 |2 𝑑Γ, (4.5)

where 𝛾 is a constant that can be chosen to change the relative importance of the terms in (4.5). Thus,
we face an optimisation problem under PDE constraints: minimise the functional (4.4) (or (4.5))
over a suitable function 𝑔, subject to (4.3).

4.1.4 Variational Formulation of the PDE constraints

For 𝑖 = 1, 2 define the following spaces:

• 𝑉𝑖 :=
{
𝑢 ∈ 𝐻1(Ω𝑖;R2)

}
,

• 𝑉𝑖,0 :=
{
𝑢 ∈ 𝐻1(Ω𝑖;R2) : 𝑢 |Γ𝑖,𝐷 = 0

}
,

• 𝑄𝑖 :=
{
𝑝 ∈ 𝐿2(Ω𝑖;R)

}
.

The spaces𝑉𝑖 are endowed with the𝐻1(Ω𝑖)–norm for 𝑖 = 1, 2, the spaces𝑉𝑖,0 with the𝐻1
0 (Ω𝑖)–norm

and the spaces 𝑄𝑖 with the 𝐿2(Ω𝑖)–norm for 𝑖 = 1, 2.
Then, we define the following bilinear and trilinear forms: for i=1,2

• 𝑚𝑖 : 𝑉𝑖 ×𝑉𝑖,0 → R, 𝑚𝑖 (𝑢𝑖 , 𝑣𝑖) := (𝑢𝑖 , 𝑣𝑖)Ω𝑖
,

• 𝑎𝑖 : 𝑉𝑖 ×𝑉𝑖,0 → R, 𝑎𝑖 (𝑢𝑖 , 𝑣𝑖) := 𝜈(∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
,

• 𝑏𝑖 : 𝑉𝑖 ×𝑄𝑖 → R, 𝑏𝑖 (𝑣𝑖 , 𝑞𝑖) := −(div𝑣𝑖 , 𝑞𝑖)Ω𝑖
,

• 𝑐𝑖 : 𝑉𝑖 ×𝑉𝑖 ×𝑉𝑖,0 → R, 𝑐𝑖 (𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖) := ((𝑢𝑖 · ∇)𝑤𝑖 , 𝑣𝑖)Ω𝑖
,

where (·, ·)𝜔 indicates the 𝐿2(𝜔) inner product.
Consequently, the variational counterpart of (4.3) reads as follows: for 𝑛 ≥ 1 and 𝑖 = 1, 2, find

𝑢𝑖 ∈ 𝑉𝑖 and 𝑝𝑖 ∈ 𝑄𝑖 s.t.

1
Δ𝑡
𝑚𝑖

(
𝑢𝑛𝑖 − 𝑢𝑛−1

𝑖 , 𝑣𝑖

)
+𝑎𝑖 (𝑢𝑛𝑖 , 𝑣𝑖) + 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) + 𝑏𝑖 (𝑣𝑖 , 𝑝𝑛𝑖 )

= ( 𝑓 𝑛𝑖 , 𝑣𝑖)Ω𝑖
+

(
(−1)𝑖+1𝑔, 𝑣𝑖

)
Γ0

∀𝑣𝑖 ∈ 𝑉𝑖,0,
(4.6a)

𝑏𝑖 (𝑢𝑛𝑖 , 𝑞𝑖) = 0 ∀𝑞𝑖 ∈ 𝑄𝑖 , (4.6b)
𝑢𝑛𝑖 = 𝑢

𝑛
𝑖,𝐷 on Γ𝑖,𝐷 . (4.6c)
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4.2 Analysis of the optimal control problem

In this section, we would like to give an overview of the existence of local minima of the optimal–
control problem described above. It will rely on the a priori estimates for the solutions to the
Navier–Stokes equations. Due to the presence of the Neumann boundary condition, the analysis of
the Navier–Stokes equations is not possible, so we will recast the problem in the framework where
it is possible to prove the well–posedness and we give some indication about the original problem.

4.2.1 A modified Navier–Stokes problem

First, without loss of generality, we assume that the Dirichlet data 𝑢𝑖,𝐷 is homogeneous. Otherwise,
we can use various techniques, e.g., lifting functions as will be discussed later on, to obtain a
problem with homogeneous Dirichlet boundary conditions on Γ𝑖,𝐷 . As mentioned in the preface to
this section, it is hard to prove the well–posedness of the solution to the Navier–Stokes equation in
the form (4.6). The main problem arises from the nonlinear term 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) =

(
(𝑢𝑛
𝑖
· ∇)𝑢𝑛

𝑖
, 𝑣𝑖

)
Ω𝑛
𝑖

.
Indeed, by integration by parts and the incompressibility conditions (4.6b), we can see

𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) =

∫
Ω𝑖

(𝑢𝑛𝑖 · ∇)𝑢𝑛𝑖 · 𝑣𝑖𝑑Ω =

∫
𝜕Ω𝑖

(𝑢𝑛𝑖 · 𝑣𝑖) (𝑢𝑛𝑖 · n)𝑑Γ

−
∫
Ω𝑖

(𝑢𝑛𝑖 · 𝑣𝑖) div 𝑢𝑛𝑖 𝑑Ω −
∫
Ω𝑖

(𝑢𝑛𝑖 · ∇)𝑣𝑖 · 𝑢𝑛𝑖 𝑑Ω

=

∫
𝜕Ω𝑖

(𝑢𝑛𝑖 · 𝑣𝑖) (𝑢𝑛𝑖 · n)𝑑Γ −
∫
Ω𝑖

(𝑢𝑛𝑖 · ∇)𝑣𝑖 · 𝑢𝑛𝑖 𝑑Ω

=

∫
Γ𝑖,𝑁∪Γ0

(𝑢𝑛𝑖 · 𝑣𝑖) (𝑢𝑛𝑖 · n)𝑑Γ − 𝑐𝑖 (𝑢𝑛𝑖 , 𝑣𝑖 , 𝑢𝑛𝑖 ),

which leads to the following expression

𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) =
1
2

∫
Γ𝑖,𝑁∪Γ0

|𝑢𝑛𝑖 |2(𝑢𝑛𝑖 · n)𝑑Γ. (4.7)

As we can see, the problem here is due to the fact that this boundary term has an unknown sign,
which complicates further analysis. On the other hand, it gives us an idea of how to redefine the
problem at hand in order to obtain well–posedness (see, e.g. [31]). We rewrite the Neumann–type
outlet conditions and the coupling stress conditions between subdomains in the following way:

𝜈
𝜕𝑢𝑛

𝑖

𝜕n − 𝑝𝑛𝑖 n − 1
2
(𝑢𝑛𝑖 · n)𝑢𝑛𝑖 = 0 on Γ𝑖,𝑁 , (4.8)

𝜈
𝜕𝑢𝑛

𝑖

𝜕n𝑖
− 𝑝𝑛𝑖 n𝑖 −

1
2
(𝑢𝑛𝑖 · n𝑖)𝑢𝑛𝑖 = (−1)𝑖+1𝑔 on Γ0. (4.9)
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This, in turn, leads to a new variational formulation of the state equations (4.3): for 𝑛 ≥ 1 and
𝑖 = 1, 2, find 𝑢𝑛

𝑖
∈ 𝑉𝑖,0 and 𝑝𝑛

𝑖
∈ 𝑄𝑖 s.t.

1
Δ𝑡
𝑚𝑖

(
𝑢𝑛𝑖 − 𝑢𝑛−1

𝑖 , 𝑣𝑖

)
+𝑎𝑖 (𝑢𝑛𝑖 , 𝑣𝑖) + 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) + 𝑏𝑖 (𝑣𝑖 , 𝑝𝑛𝑖 )

= ( 𝑓 𝑛𝑖 , 𝑣𝑖)Ω𝑖
+

(
(−1)𝑖+1𝑔, 𝑣𝑖

)
Γ0

∀𝑣𝑖 ∈ 𝑉𝑖,0,
(4.10a)

𝑏𝑖 (𝑢𝑛𝑖 , 𝑞𝑖) = 0 ∀𝑞𝑖 ∈ 𝑄𝑖 , (4.10b)

where the trilinear form 𝑐(·, ·, ·) is defined as

𝑐𝑖 (𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖) =
1
2
((𝑢𝑖 · ∇)𝑤𝑖 , 𝑣𝑖)Ω𝑖

− 1
2
((𝑢𝑖 · ∇)𝑣𝑖 , 𝑤𝑖)Ω𝑖

(4.11)

and it has the following remarkable property

𝑐𝑖 (𝑢𝑖 , 𝑣𝑖 , 𝑣𝑖) = 0 ∀𝑢𝑖 , 𝑣𝑖 ∈ 𝑉𝑖,0. (4.12)

4.2.2 A priori estimates

We now first introduce the various well–known properties of the different terms entering the weak
formulation (4.10), i.e.,

• the forms 𝑚𝑖 (·.·), 𝑎𝑖 (·, ·) and 𝑐𝑖 (·, ·, ·) are continuous: there exist positive constants 𝐶𝑚, 𝐶𝑎
and 𝐶𝑐 such that

|𝑚𝑖 (𝑢𝑖 , 𝑣𝑖) | ≤ 𝐶𝑚 | |𝑢𝑖 | |𝑉𝑖,0 | |𝑣𝑖 | |𝑉𝑖,0 ∀𝑢𝑖 , 𝑣𝑖 ∈ 𝑉𝑖,0, (4.13)
|𝑎𝑖 (𝑢𝑖 , 𝑣𝑖) | ≤ 𝐶𝑎 | |𝑢𝑖 | |𝑉𝑖,0 | |𝑣𝑖 | |𝑉𝑖,0 ∀𝑢𝑖 , 𝑣𝑖 ∈ 𝑉𝑖,0, (4.14)
|𝑐𝑖 (𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖) | ≤ 𝐶𝑐 | |𝑢𝑖 | |𝑉𝑖,0 | |𝑤𝑖 | |𝑉𝑖,0 | |𝑣𝑖 | |𝑉𝑖,0 ∀𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖 ∈ 𝑉𝑖,0, (4.15)

• the bilinear form 𝑎𝑖 (·, ·) is coercive: there exists a positive constant 𝛼 > 0 such that

𝑎𝑖 (𝑣𝑖 , 𝑣𝑖) ≥ 𝛼 | |𝑣𝑖 | |2𝑉𝑖,0 ∀𝑣𝑖 ∈ 𝑉𝑖,0, (4.16)

• the bilinear form 𝑏𝑖 (·, ·) satisfies inf–sup condition: there exists a positive constant 𝛽 > 0
such that

sup
𝑣𝑖∈𝑉𝑖,0\{0}

𝑏𝑖 (𝑣𝑖 , 𝑞𝑖)
| |𝑣𝑖 | |𝑉𝑖,0

≥ 𝛽 | |𝑞𝑖 | |𝑄𝑖
∀𝑞𝑖 ∈ 𝑄𝑖 , (4.17)

• the bilinear form 𝑚𝑖 (·, ·) is non–negative definite, i.e.,

𝑚𝑖 (𝑣𝑖 , 𝑣𝑖) = | |𝑣𝑖 | |2𝐿2 (Ω𝑖 ) ≥ 0 ∀𝑣𝑖 ∈ 𝑉𝑖,0. (4.18)



4.2. ANALYSIS OF THE OPTIMAL CONTROL PROBLEM 63

By using the properties (4.13), (4.16), (4.12), (4.18), the trace theorem and equations (4.10),
we are able to write the following estimate for the solution 𝑢𝑛

𝑖
and 𝑝𝑛

𝑖
to (4.10)

| |𝑢𝑛𝑖 | |2𝑉𝑖,0 ≤ 1
𝛼
𝑎𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) ≤

1
𝛼
𝑎𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) +

1
𝛼Δ𝑡

𝑚𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 )

=
1
𝛼

(
1
Δ𝑡
𝑚𝑖 (𝑢𝑛−1

𝑖 , 𝑢𝑛𝑖 ) − 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) − 𝑏𝑖 (𝑢𝑛𝑖 , 𝑝𝑛𝑖 )

+ ( 𝑓 𝑛𝑖 , 𝑢𝑛𝑖 )Ω𝑖
+ (−1)𝑖+1(𝑔, 𝑢𝑛𝑖 )Γ0

)
≤ 1

𝛼

(
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1
𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖 ) + ||𝑔 | |𝐿2 (Γ0 )

)
| |𝑢𝑛𝑖 | |𝑉𝑖,0 ,

which leads to the following estimate:

| |𝑢𝑛𝑖 | |𝑉𝑖,0 ≤ 1
𝛼

(
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1
𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖 ) + ||𝑔 | |𝐿2 (Γ0 )

)
. (4.19)

Similarly, by using (4.17), (4.13), (4.14), (4.15) and equations (4.10), we obtain

| |𝑝𝑛𝑖 | |𝑄𝑖
≤ 1

𝛽
sup

𝑣𝑖∈𝑉𝑖,0\{0}

𝑏𝑖 (𝑣𝑖 , 𝑝𝑛𝑖 )
| |𝑣𝑖 | |𝑉𝑖,0

≤ 1
𝛽

sup
𝑣𝑖∈𝑉𝑖,0\{0}

1
Δ𝑡
|𝑚𝑖 (𝑢𝑛𝑖 − 𝑢𝑛−1

𝑖
, 𝑣𝑖) |

| |𝑣𝑖 | |𝑉𝑖,0

+ 1
𝛽

sup
𝑣𝑖∈𝑉𝑖,0\{0}

|𝑎𝑖 (𝑢𝑛𝑖 , 𝑣𝑖) | + |𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) | + |( 𝑓 𝑛
𝑖
, 𝑣𝑖)Ω𝑖

|
| |𝑣𝑖 | |𝑉𝑖,0

+ 1
𝛽

sup
𝑣𝑖∈𝑉𝑖,0\{0}

| (𝑔, 𝑣𝑖)Γ0 |
| |𝑣𝑖 | |𝑉𝑖,0

≤ 1
𝛽

(
𝐶𝑚

Δ𝑡
+ 𝐶𝑎 + 𝐶𝑐 | |𝑢𝑛𝑖 | |𝑉𝑖,0

)
| |𝑢𝑛𝑖 | |𝑉𝑖,0

+ 1
𝛽

(
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1
𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖 ) + ||𝑔 | |𝐿2 (Γ0 )

)
,

which together with the estimate (4.19) leads to

| |𝑝𝑛𝑖 | |𝑄𝑖
≤ 1

𝛽

[(
1 + 1

𝛼

(
𝐶𝑚

Δ𝑡
+ 𝐶𝑎

)) (
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1
𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖 ) (4.20)

+ ||𝑔 | |𝐿2 (Γ0 )

)
+ 𝐶𝑐
𝛼2

(
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1
𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖 ) + ||𝑔 | |𝐿2 (Γ0 )

)2
]
.

4.2.3 Existence of optimal solutions

In this subsection, we prove the existence of optimal solutions for the regularised functional (4.5).
The proof follows the methodology presented by Gunzburger et al. [75]. Firstly, we define the
admissibility set as follows:

U𝑎𝑑 =
{
(𝑢𝑛1 , 𝑝

𝑛
1 , 𝑢

𝑛
2 , 𝑝

𝑛
2 , 𝑔) ∈ 𝑉1,0 ×𝑄1 ×𝑉2,0 ×𝑄2 × 𝐿2(Γ0) such that

equations (4.10) are satisfied and J𝛾 (𝑢𝑛1 , 𝑢
𝑛
2 ; 𝑔) < ∞

}
.
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The admissibility set is clearly non–empty, since, as it was pointed out above, the restrictions to
subdomains of the monolithic solution and its corresponding flux on the interface belong to the set.

Let
{(
𝑢
𝑛, ( 𝑗 )
1 , 𝑝

𝑛, ( 𝑗 )
1 , 𝑢

𝑛, ( 𝑗 )
2 , 𝑝

𝑛, ( 𝑗 )
2 , 𝑔 ( 𝑗 )

)}
be a minimizing sequence in U𝑎𝑑 , i.e.,

lim
𝑗→∞

J𝛾
(
𝑢
𝑛, ( 𝑗 )
1 , 𝑢

𝑛, ( 𝑗 )
2 , 𝑔 ( 𝑗 )

)
= inf

(𝑢𝑛1 , 𝑝
𝑛
1 ,𝑢

𝑛
2 , 𝑝

𝑛
2 ,𝑔) ∈U𝑎𝑑

J𝛾 (𝑢𝑛1 , 𝑢
𝑛
2 , 𝑔).

From the definition of the admissible set U𝑎𝑑 and the functional J𝛾 , it is evident that the set
{
𝑔 ( 𝑗 )

}
is uniformly bounded in 𝐿2(Γ0), which, in turn, due to the a priori estimates (4.19) and (4.20),
implies that the sets

{(
𝑢
𝑛, ( 𝑗 )
𝑖

)}
are uniformly bounded in 𝑉𝑖,0 and the sets

{(
𝑝
𝑛, ( 𝑗 )
𝑖

)}
are uniformly

bounded in 𝑄𝑖 for 𝑖 = 1, 2. Thus there exists a point
(
�̂�𝑛1 , 𝑝

𝑛
1 , �̂�

𝑛
2 , 𝑝

𝑛
2 , �̂�

)
∈ U𝑎𝑑 and a subsequence{(

𝑢
𝑛, ( 𝑗𝑘 )
1 , 𝑝

𝑛, ( 𝑗𝑘 )
1 , 𝑢

𝑛, ( 𝑗𝑘 )
2 , 𝑝

𝑛, ( 𝑗𝑘 )
2 , 𝑔 ( 𝑗𝑘 )

)}
of the minimising sequence such that for 𝑖 = 1, 2

𝑢
𝑛, ( 𝑗𝑘 )
𝑖

⇀ �̂�𝑛𝑖 in 𝑉𝑖,0, (4.21)

𝑝
𝑛, ( 𝑗𝑘 )
𝑖

⇀ 𝑝𝑛𝑖 in 𝑄𝑖 , (4.22)
𝑔 ( 𝑗𝑘 ) ⇀ �̂� in 𝐿2(Γ0), (4.23)

𝑢
𝑛, ( 𝑗𝑘 )
𝑖

→ �̂�𝑛𝑖 in 𝐿2(Ω𝑖), (4.24)

𝑢
𝑛, ( 𝑗𝑘 )
𝑖

|Γ0 → �̂�𝑛𝑖 |Γ0 in 𝐿2(Γ0). (4.25)

The last two results are obtained by the trace theorem and compact embedding results in Sobolev
spaces, see for example [55, 112].
Since the forms 𝑚𝑖 (·, ·), 𝑎𝑖 (·, ·) and 𝑏𝑖 (·, ·) are bilinear and continuous by (4.21), (4.22) and (4.23),
we obtain the following convergence results:

𝑚𝑖 (𝑢𝑛, ( 𝑗𝑘 )𝑖
, 𝑣𝑖) → 𝑚𝑖 (�̂�𝑛𝑖 , 𝑣𝑖) ∀𝑣𝑖 ∈ 𝑉𝑖,0,

𝑎𝑖 (𝑢𝑛, ( 𝑗𝑘 )𝑖
, 𝑣𝑖) → 𝑎𝑖 (�̂�𝑛𝑖 , 𝑣𝑖) ∀𝑣𝑖 ∈ 𝑉𝑖,0,

𝑏𝑖 (𝑢𝑛, ( 𝑗𝑘 )𝑖
, 𝑞𝑖) → 𝑏𝑖 (�̂�𝑛𝑖 , 𝑞𝑖) ∀𝑞𝑖 ∈ 𝑄𝑖 ,

𝑏𝑖 (𝑣𝑖 , 𝑝𝑛, ( 𝑗𝑘 )𝑖
) → 𝑏𝑖 (𝑣𝑖 , 𝑝𝑛𝑖 ) ∀𝑣𝑖 ∈ 𝑉𝑖,0,

(𝑔 ( 𝑗𝑘 ) , 𝑣𝑖)Γ0 → (�̂�, 𝑣𝑖)Γ0 ∀𝑣𝑖 ∈ 𝑉𝑖,0.

Concerning the trilinear form 𝑐𝑖 (·, ·, ·), we exploit integration by part twice, divergence–free con-
ditions for 𝑢𝑛, ( 𝑗𝑘 )

𝑖
and �̂�𝑛

𝑖
, and the strong convergence results (4.24)– (4.25). We obtain ∀𝑣𝑖 ∈ 𝑉𝑖,0

lim
𝑘→∞

1
2

∫
Ω𝑖

(𝑢𝑛, ( 𝑗𝑘 )
𝑖

· ∇)𝑣𝑖 · 𝑢𝑛, ( 𝑗𝑘 )𝑖
𝑑Ω =

1
2

∫
Ω𝑖

(�̂�𝑛𝑖 · ∇)𝑣 · �̂�𝑛𝑖 𝑑Ω,
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lim
𝑘→∞

1
2

∫
Ω𝑖

(𝑢𝑛, ( 𝑗𝑘 )
𝑖

· ∇)𝑢𝑛, ( 𝑗𝑘 )
𝑖

· 𝑣𝑖𝑑Ω = lim
𝑘→∞

1
2

∫
Γ0

(
𝑢
𝑛, ( 𝑗𝑘 )
𝑖

· 𝑣𝑖
) (
𝑢
𝑛, ( 𝑗𝑘 )
𝑖

· n𝑖
)
𝑑Γ

− lim
𝑘→∞

1
2

∫
Ω𝑖

(𝑢𝑛, ( 𝑗𝑘 )
𝑖

· ∇)𝑣𝑖 · 𝑢𝑛, ( 𝑗𝑘 )𝑖
𝑑Ω =

1
2

∫
Γ0

(
�̂�𝑛𝑖 · 𝑣𝑖

) (
�̂�𝑛𝑖 · n𝑖

)
𝑑Γ

−1
2

∫
Ω𝑖

(�̂�𝑛𝑖 · ∇)𝑣𝑖 · �̂�
𝑛,
𝑖
𝑑Ω =

1
2

∫
Ω𝑖

(�̂�𝑛𝑖 · ∇)�̂�𝑛𝑖 · 𝑣𝑖𝑑Ω,

which leads to

lim
𝑘→∞

𝑐𝑖 (𝑢𝑛, ( 𝑗𝑘 )𝑖
, 𝑢
𝑛, ( 𝑗𝑘 )
𝑖

, 𝑣𝑖) = 𝑐𝑖 (�̂�𝑛𝑖 , �̂�𝑛𝑖 , 𝑣𝑖) ∀𝑣𝑖 ∈ 𝑉𝑖,0.

These convergence results mean that the functions �̂�𝑛1 , 𝑝
𝑛
1 , �̂�

𝑛
2 , 𝑝

𝑛
2 , �̂� satisfy the state equations (4.10).

We also note that the functional J𝛾 is lower–semicontinuous, i.e

lim inf
𝑗→∞

J𝛾 (𝑢𝑛, ( 𝑗𝑘 )1 , 𝑢
𝑛, ( 𝑗𝑘 )
2 , 𝑔 ( 𝑗𝑘 ) ) ≥ J𝛾 (�̂�𝑛1 , �̂�

𝑛
2 , �̂�),

which implies that

inf
(𝑢𝑛1 , 𝑝

𝑛
1 ,𝑢

𝑛
2 , 𝑝

𝑛
2 ,𝑔) ∈U𝑎𝑑

J𝛾 (𝑢𝑛1 , 𝑢
𝑛
2 , 𝑔) = J𝛾 (�̂�𝑛1 , �̂�

𝑛
2 , �̂�).

Hence, we have proved the existence of optimal solutions.

4.2.4 Convergence with vanishing penalty parameter

In the previous section, we have proved the existence of optimal solutions of the regularised
functional J𝛾 for any 𝛾 > 0, where the parameter 𝛾 indicates the relative importance of the two
terms entering the definition of the functional. This poses an issue in our domain–decomposition
setting since the optimal solution does not satisfy the coupling condition 𝑢𝑛1 |Γ0 = 𝑢𝑛2 |Γ0 . In this
section, we prove the existence of an optimal solution to the unregularised functional J with
corresponds to the functional J𝛾 with 𝛾 = 0.

Let (𝑢𝑛,𝑚𝑜𝑛, 𝑝𝑛,𝑚𝑜𝑛) be a weak solution to the monolithic equations (4.2), and for each 𝛾 > 0
we denote by (𝑢𝑛,𝛾1 , 𝑝

𝑛,𝛾

1 , 𝑢
𝑛,𝛾

2 , 𝑝
𝑛,𝛾

2 , 𝑔𝛾) an optimum of J𝛾 under the constraints (4.10). We define
the following functions for 𝑖 = 1, 2:

𝑢
𝑛,𝑚𝑜𝑛
𝑖

:= 𝑢𝑛,𝑚𝑜𝑛 |Ω𝑖
,

𝑝
𝑛,𝑚𝑜𝑛
𝑖

:= 𝑝𝑛,𝑚𝑜𝑛 |Ω𝑖
,

𝑔𝑚𝑜𝑛 := 𝜈
𝜕𝑢

𝑛,𝑚𝑜𝑛

1
𝜕n1

− 𝑝𝑛,𝑚𝑜𝑛1 n1 −
1
2
(𝑢𝑛,𝑚𝑜𝑛1 · n1)𝑢𝑛,𝑚𝑜𝑛1 on Γ0.

Due to optimality of the point (𝑢𝑛,𝛾1 , 𝑝
𝑛,𝛾

1 , 𝑢
𝑛,𝛾

2 , 𝑝
𝑛,𝛾

2 , 𝑔𝛾), we obtain that ∀𝛾 > 0

J𝛾 (𝑢𝑛,𝛾1 , 𝑝
𝑛,𝛾

1 , 𝑢
𝑛,𝛾

2 , 𝑝
𝑛,𝛾

2 , 𝑔𝛾) ≤ J𝛾 (𝑢𝑛,𝑚𝑜𝑛1 , 𝑝
𝑛,𝑚𝑜𝑛

1 , 𝑢
𝑛,𝑚𝑜𝑛

2 , 𝑝
𝑛,𝑚𝑜𝑛

2 , 𝑔𝑚𝑜𝑛),
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which due to the definition of 𝑢𝑛,𝑚𝑜𝑛1 and 𝑢𝑛,𝑚𝑜𝑛2 gives us the following bound:

1
2

∫
Γ0

��𝑢𝑛,𝛾1 − 𝑢𝑛,𝛾2

��2 𝑑Γ + 𝛾
2

∫
Γ0

|𝑔𝛾 |2 𝑑Γ ≤ 𝛾

2

∫
Γ0

|𝑔𝑚𝑜𝑛 |2 𝑑Γ ∀𝛾 > 0.

The last inequality tells as that the sequence {𝑔𝛾 : 𝛾 > 0} is bounded in 𝐿2(Γ0). Following the
exact same lines of arguments as in the previous section, we are able to deduce that there is a
subsequence of the original sequence (we will keep the same notation for the sake of simplicity)
that converges to (𝑢𝑛,∗1 , 𝑝

𝑛,∗
1 , 𝑢

𝑛,∗
2 , 𝑝

𝑛,∗
2 , 𝑔∗) ∈ 𝑉1,0 ×𝑄1 ×𝑉2,0 ×𝑄2 × 𝐿2(Γ0) in the sense of (4.21)

– (4.25). In addition to this, the inequality above tells us that | |𝑢𝑛,𝛾1 − 𝑢𝑛,𝛾2 | |𝐿2 (Γ0 ) → 0 as 𝛾 → 0,
which, in turn, yields 𝑢1,∗

1 = 𝑢
1,∗
2 a.e. on Γ0. The non–negativity of J leads to the fact that

(𝑢𝑛,∗1 , 𝑝
𝑛,∗
1 , 𝑢

𝑛,∗
2 , 𝑝

𝑛,∗
2 , 𝑔∗) is a global minimum of J . Also, it is easy to see that the following

functions 𝑢𝑛,∗ ∈ 𝐻1
0,Γ𝐷 (Ω), 𝑝

𝑛,∗ ∈ 𝐿2(Ω), defined as

𝑢𝑛,∗ :=

{
𝑢
𝑛,∗
1 , in Ω1 ∪ Γ0,

𝑢
𝑛,∗
2 , in Ω2 ∪ Γ0,

𝑝𝑛,∗ :=

{
𝑝
𝑛,∗
1 , in Ω1 ∪ Γ0,

𝑝
𝑛,∗
2 , in Ω2 ∪ Γ0,

satisfy the monolithic equations (4.2) in the weak sense.

Remark (Uniqueness of optimal solutions). It is well–known that the solution to the non–stationary
incompressible Navier–Stokes equation in 2D is unique [153], and it can be proved that uniqueness
transfers to the implicit–Euler time–discretisation scheme with a good choice of a time–step pa-
rameter (see, for instance, [79]). This, together with the convexity of the objective functional, leads
to the uniqueness of the optimal solution discussed above.

Remark (Weak formulation with “non–symmetric” trilinear form). As we pointed out the condi-
tion (4.12) was essential in order to conduct the analysis of the optimal–control problem. Concerning
the problem posed in the weak from (4.6), the numerical experiments show the same convergence
results as in the case where the trilinear form (4.11) is adopted.

4.3 Optimality system and optimisation algorithms

In this section, we will provide the tools to tackle the optimal–control problem that arises in
Section 4.1.3. First, we will derive the optimality system by means of the Lagrangian functional.
Then, we will use the sensitivity derivatives technique to obtain the representation for the gradient
of the objective functional, which will allow us to define an optimisation–based minimisation
algorithm for the optimal–control problem at hand.

4.3.1 Optimality system

One of the ways to address the constrained optimisation problem is to reformulate the initial problem
in terms of a Lagrangian functional by introducing the so–called adjoint variables. In this way, the
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optimal solution to the original problem is sought among the stationary points of the Lagrangian,
see, for instance, [76, 83].

We define the Lagrangian functional as follows:

L(𝑢𝑛1 , 𝑝
𝑛
1 , 𝑢

𝑛
2 , 𝑝

𝑛
2 , 𝜉1, 𝜉2, 𝜆1, 𝜆2; 𝑔) := J𝛾 (𝑢𝑛1 , 𝑢

𝑛
2 ; 𝑔)

−
2∑︁
𝑖=1

[
𝑚𝑖 (𝑢𝑛𝑖 − 𝑢𝑛−1

𝑖
, 𝜉𝑖)

Δ𝑡
+ 𝑎𝑖 (𝑢𝑛𝑖 , 𝜉𝑖) + 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝜉𝑖) + 𝑏𝑖 (𝜉𝑖 , 𝑝𝑛𝑖 ) + 𝑏𝑖 (𝑢𝑛𝑖 , 𝜆𝑖)

]
+

2∑︁
𝑖=1

( 𝑓 𝑛𝑖 , 𝜉𝑖)Ω𝑖
+

2∑︁
𝑖=1

((−1)𝑖+1𝑔, 𝜉𝑖)Γ0 .

(4.26)

The Lagrangian functional above takes into account our objective functional (4.5) and the PDE
constraints (4.6) multiplied by additional so–called adjoint variables 𝜉1, 𝜉2, 𝜆1, 𝜆2 ∈ 𝑉1,0 × 𝑄1 ×
𝑉2,0 × 𝑄2. It is proved (see, e.g. [83]) that the optimal solution to the constrained optimisation
problem (4.5)– (4.6) coincides with stationary points of the higher–dimensional functional (4.26)
that, in turn, gives us an easy way to obtain the optimality conditions.

Notice that, technically, we should also have included Lagrange multipliers corresponding
to the non–homogeneous Dirichlet boundary conditions (4.6c) in the definition of the functional
L. However, since the functional J𝛾 (4.5) does not explicitly depend on 𝑢𝑛1,𝐷 and 𝑢𝑛2,𝐷 , the
corresponding adjoint Dirichlet boundary conditions will be homogeneous on these parts of the
boundaries.

We now apply the necessary conditions for finding stationary points of L. Setting to zero the
first variations w.r.t. 𝜉𝑖 ∈ 𝑉𝑖,0 and 𝜆𝑖 ∈ 𝑄𝑖 , for 𝑖 = 1, 2, yields the state equations (4.6a)– (4.6b).
Setting to zero the first variations w.r.t. 𝑢𝑛1 , 𝑝𝑛1 , 𝑢𝑛2 and 𝑝𝑛2 yields the adjoint equations:

1
Δ𝑡
𝑚𝑖 (𝜂𝑖 , 𝜉𝑖) + 𝑎𝑖 (𝜂𝑖 , 𝜉𝑖) + 𝑐𝑖

(
𝜂𝑖 , 𝑢

𝑛
𝑖 , 𝜉𝑖

)
+ 𝑐𝑖

(
𝑢𝑛𝑖 , 𝜂𝑖 , 𝜉𝑖

)
+ 𝑏𝑖 (𝜂𝑖 , 𝜆𝑖) = ((−1)𝑖+1𝜂𝑖 , 𝑢

𝑛
1 − 𝑢𝑛2 )Γ0

∀𝜂𝑖 ∈ 𝑉𝑖,0, (4.27a)

𝑏𝑖 (𝜉𝑖 , 𝜇𝑖) = 0 ∀𝜇𝑖 ∈ 𝑄𝑖 . (4.27b)

Finally, setting to zero the first variations w.r.t. 𝑔 ∈ 𝐿2(Γ0) yields the optimality condition:

𝛾(ℎ, 𝑔)Γ0 + (ℎ, 𝜉1 − 𝜉2)Γ0 = 0 ∀ℎ ∈ 𝐿2(Γ0). (4.28)

4.3.2 Sensitivity derivatives

In order to obtain the expression for the gradient of the optimisation problem at hand, we will resort
to the sensitivity approach; see, for instance, [76, 83]. The approach consists of finding equations
for directional derivatives of the state variables with respect to the control, called sensitivities.
The first derivative 𝑑J𝛾

𝑑𝑔
of J𝛾 is defined through its action on the variation �̃� as follows:〈

𝑑J𝛾
𝑑𝑔

, �̃�

〉
= (𝑢𝑛1 − 𝑢𝑛2 , �̃�1 − �̃�2)Γ0 + 𝛾(𝑔, �̃�)Γ0 , (4.29)
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where �̃�1 ∈ 𝑉1,0, �̃�2 ∈ 𝑉2,0 are the solutions to:

1
Δ𝑡
𝑚𝑖 (�̃�𝑖 , 𝑣𝑖) + 𝑎𝑖 (�̃�𝑖 , 𝑣𝑖) + 𝑐𝑖 (�̃�𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) + 𝑐𝑖 (𝑢𝑛𝑖 , �̃�𝑖 , 𝑣𝑖)

+ 𝑏𝑖 (𝑣𝑖 , 𝑝𝑖) = ((−1)𝑖+1�̃�, 𝑣𝑖)Γ0

∀𝑣𝑖 ∈ 𝑉𝑖,0, (4.30a)

𝑏𝑖 (�̃�𝑖 , 𝑞𝑖) = 0 ∀𝑞𝑖 ∈ 𝑄𝑖 . (4.30b)

We can make use of the adjoint equations (4.27) in order to find the representation of the gradient of
the functional J𝛾 . Let 𝜉1 and 𝜉2 be the solutions to (4.27) and �̃�1 and �̃�2 be the solutions to (4.30).
By setting 𝜂𝑖 = �̃�𝑖 in (4.27a), 𝜇𝑖 = 𝑝𝑖 in (4.27b), 𝑣𝑖 = 𝜉𝑖 in (4.30a) and 𝑞𝑖 = 𝜆𝑖 in (4.30b) we obtain:

(𝑢𝑛1 − 𝑢𝑛2 , �̃�1 − �̃�2)Γ0 = (�̃�, 𝜉1 − 𝜉2)Γ0 ,

so that it yields the explicit formula for the gradient of J𝛾:

𝑑J𝛾
𝑑𝑔

(𝑢𝑛1 , 𝑢
𝑛
2 ; 𝑔) = 𝛾𝑔 + (𝜉1 − 𝜉2) |Γ0 , (4.31)

where 𝜉1 and 𝜉2 are determined from 𝑔 through (4.27). Notice that the gradient expression (4.31)
is consistent with the optimality condition (4.28) derived in the previous section.

4.3.3 Gradient–based algorithm for the optimisation problem

In view of being able to provide a closed–form formula for the gradient for the objective functional
J𝛾 , the natural way to proceed is to resort to a gradient–based iterative optimisation algorithm.
In order to keep the exposition simple, we will describe the idea using a simple gradient method,
while, in practice, we will use more sophisticated gradient–based methods. For every time step 𝑡𝑛,
given an initial guess 𝑔 (0) , which we set from the previous time step, we update successive values
of 𝑔 ( 𝑗 ) with

𝑔 ( 𝑗+1) = 𝑔 ( 𝑗 ) − 𝛼
𝑑J𝛾
𝑑𝑔

(
𝑢
𝑛, ( 𝑗 )
1 , 𝑢

𝑛, ( 𝑗 )
2 ; 𝑔 ( 𝑗 )

)
. (4.32)

Combining this with (4.31) we obtain:

𝑔 ( 𝑗+1) = 𝑔 ( 𝑗 ) − 𝛼
(
𝛾𝑔 ( 𝑗 ) + (𝜉 ( 𝑗 )1 − 𝜉 ( 𝑗 )2 ) |Γ0

)
, (4.33)

where 𝜉 ( 𝑗 )1 and 𝜉 ( 𝑗 )2 are determined from (4.27) with 𝑔 replaced by 𝑔 ( 𝑗 ) .
To summarise, we have Algorithm 4.1 to find 𝑔𝑛 at every time step 𝑡𝑛. Some of the commonly used
convergence criteria of the algorithm are: the value of the functional or of the gradient norm is less
than a certain given tolerance and the maximum number of optimisation iterations. Most commonly,
a couple of them are used together. In practice, the methods we will use to solve such problems
are Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Newton Conjugate Gradient (CG) algorithms,
which show faster convergence and higher efficiency with respect to the steepest–descent algorithm.
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Algorithm 4.1 Gradient method with a fixed step

Input: 𝑔 (0) := 𝑔𝑛−1 and a step size 𝛼 > 0
𝑛 := 0
while Convergence criteria are not met do

Solve (4.6) for 𝑢𝑛, ( 𝑗 )1 ∈ 𝑉1, 𝑢𝑛, ( 𝑗 )2 ∈ 𝑉2 with 𝑔 = 𝑔 ( 𝑗 )

Solve (4.27) for 𝜉 ( 𝑗 )1 ∈ 𝑉1,0, 𝜉 ( 𝑗 )2 ∈ 𝑉2,0 with 𝑢𝑛1 = 𝑢
𝑛, ( 𝑗 )
1 , 𝑢𝑛2 = 𝑢

𝑛, ( 𝑗 )
2

Set 𝑔 ( 𝑗+1) := (1 − 𝛼𝛾) 𝑔 ( 𝑗 ) − 𝛼

(
𝜉
( 𝑗 )
1 − 𝜉 ( 𝑗 )2

)���
Γ0

𝑛 := 𝑛 + 1
end while
Set 𝑢𝑛1 := 𝑢𝑛( 𝑗 )1 , 𝑝𝑛1 := 𝑝𝑛, ( 𝑗 )1 , 𝑢𝑛2 := 𝑢𝑛, ( 𝑗 )2 , 𝑝𝑛2 := 𝑝𝑛, ( 𝑗 )2 and 𝑔𝑛 := 𝑔 ( 𝑗 )
return 𝑢𝑛1 , 𝑝

𝑛
1 , 𝑢

𝑛
2 , 𝑝

𝑛
2 , 𝑔

𝑛

4.4 Finite Element discretisation

In this section, we present the Finite Element spatial discretisation for the optimal control problem
previously introduced. We assume to have at hand two well–defined triangulations T1 and T2 over
the domainsΩ1 andΩ2 respectively, and an extra lower–dimensional triangulationT0 of the interface
Γ0. In theory, there is no requirement for the meshes T1 and T2 to be conforming on the interface Γ0,
but in the numerical examples listed later in the paper, this limitation was imposed by the software
used by the authors. We can then define usual Lagrangian FE spaces 𝑉𝑖,ℎ ⊂ 𝑉𝑖 , 𝑉𝑖,0,ℎ ⊂ 𝑉𝑖,0,
𝑄𝑖,ℎ ⊂ 𝑄𝑖 , for 𝑖 = 1, 2, and 𝑋ℎ ⊂ 𝐿2(Γ0) endowed with 𝐿2(Γ0)–norm. Since the problems at hand
have a saddle–point structure, in order to guarantee the well–posedness of the discretised problem,
we require the FE spaces to satisfy the following inf–sup conditions: there exist 𝑐1, 𝑐2, 𝑐3, 𝑐4 ∈ R+
s.t.

inf
𝑞𝑖,ℎ∈𝑄𝑖,ℎ\{0}

sup
𝑣𝑖,ℎ∈𝑉𝑖,ℎ\{0}

𝑏𝑖 (𝑣𝑖,ℎ, 𝑞𝑖,ℎ)
| |𝑣𝑖,ℎ | |𝑉𝑖,ℎ | |𝑞𝑖,ℎ | |𝑄𝑖,ℎ

≥ 𝑐𝑖 , 𝑖 = 1, 2, (4.34)

inf
𝑞𝑖,ℎ∈𝑄𝑖,ℎ\{0}

sup
𝑣𝑖,ℎ∈𝑉𝑖,0,ℎ\{0}

𝑏𝑖 (𝑣𝑖,ℎ, 𝑞𝑖,ℎ)
| |𝑣𝑖,ℎ | |𝑉𝑖,0,ℎ | |𝑞𝑖,ℎ | |𝑄𝑖,ℎ

≥ 𝑐𝑖+2, 𝑖 = 1, 2. (4.35)

A very common choice in this framework is to use the so–called Taylor–Hood finite element spaces,
namely the Lagrange polynomial approximation of the second–order for velocity and of the first–
order for pressure. We point out that the order of the polynomial space 𝑋ℎ will not lead to big
computational efforts as it is defined on the 1–dimensional curve Γ0.

Using the Galerkin projection, we can derive the following discretised optimisation problem.
Minimise over 𝑔ℎ ∈ 𝑋ℎ the functional

J𝛾,ℎ (𝑢𝑛1,ℎ, 𝑢
𝑛
2,ℎ; 𝑔ℎ) :=

1
2

∫
Γ0

���𝑢𝑛1,ℎ − 𝑢𝑛2,ℎ���2 𝑑Γ + 𝛾
2

∫
Γ0

|𝑔ℎ |2 𝑑Γ (4.36)
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under the constraints that 𝑢𝑛
𝑖,ℎ

∈ 𝑉𝑖,ℎ, 𝑝𝑛𝑖,ℎ ∈ 𝑄𝑖,ℎ satisfy the following variational equations for
𝑖 = 1, 2

𝑚𝑖 (𝑢𝑛𝑖,ℎ − 𝑢
𝑛−1
𝑖,ℎ

, 𝑣𝑖,ℎ)
Δ𝑡

+ 𝑎𝑖 (𝑢𝑛𝑖,ℎ, 𝑣𝑖,ℎ) + 𝑐𝑖 (𝑢
𝑛
𝑖,ℎ, 𝑢

𝑛
𝑖,ℎ, 𝑣𝑖)

+𝑏𝑖 (𝑣𝑖,ℎ, 𝑝𝑛𝑖,ℎ) = ( 𝑓 𝑛𝑖 , 𝑣𝑖,ℎ)Ω𝑖
+

(
(−1)𝑖+1𝑔ℎ, 𝑣𝑖,ℎ

)
Γ0

∀𝑣𝑖 ∈ 𝑉𝑖,0,ℎ, (4.37a)

𝑏𝑖 (𝑢𝑛𝑖,ℎ, 𝑞𝑖,ℎ) = 0 ∀𝑞𝑖,ℎ ∈ 𝑄𝑖,ℎ, (4.37b)
𝑢𝑛𝑖 = 𝑢

𝑛
𝑖,𝐷,ℎ on Γ𝑖,𝐷 , (4.37c)

where 𝑢𝑛
𝑖,𝐷,ℎ

is the Galerkin projection of 𝑢𝑖,𝐷 onto the trace–space 𝑉𝑖,ℎ |Γ𝑖,𝐷 . Notice that the
structure of the equations (4.37) and of the functional (4.36) is the same as the one of the contin-
uous case. This allows us to provide the following expression of the gradient of the discretised
functional (4.36):

𝑑J𝛾,ℎ
𝑑𝑔ℎ

(𝑢𝑛1,ℎ, 𝑢
𝑛
2,ℎ; 𝑔ℎ) = 𝛾𝑔ℎ + (𝜉1,ℎ − 𝜉2,ℎ) |Γ0 , (4.38)

where 𝜉1,ℎ and 𝜉2,ℎ are the solutions to the discretised adjoint problem: for 𝑖 = 1, 2 find 𝜉𝑖,ℎ ∈ 𝑉𝑖,0,ℎ
and 𝜆𝑖,ℎ ∈ 𝑄𝑖,ℎ that satisfy

1
Δ𝑡
𝑚𝑖 (𝜂𝑖,ℎ, 𝜉𝑖,ℎ) + 𝑎𝑖 (𝜂𝑖,ℎ, 𝜉𝑖,ℎ) + 𝑐𝑖

(
𝜂𝑖,ℎ, 𝑢

𝑛
𝑖,ℎ, 𝜉𝑖,ℎ

)
+ 𝑐𝑖

(
𝑢𝑛𝑖,ℎ, 𝜂𝑖,ℎ, 𝜉𝑖,ℎ

)
(4.39a)

+ 𝑏𝑖 (𝜂𝑖,ℎ, 𝜆𝑖,ℎ) = ((−1)𝑖+1𝜂𝑖,ℎ, 𝑢
𝑛
1,ℎ − 𝑢

𝑛
2,ℎ)Γ0 ∀𝜂𝑖,ℎ ∈ 𝑉𝑖,0,ℎ,

𝑏𝑖 (𝜉𝑖,ℎ, 𝜇𝑖,ℎ) = 0 ∀𝜇𝑖,ℎ ∈ 𝑄𝑖,ℎ . (4.39b)

In (4.38), the restriction ·|Γ0 is meant as an 𝐿2(Γ0)–projection onto space 𝑋ℎ. We would also
like to stress that at the algebraic level, the discretised minimisation problem acts only on the
finite–dimensional space R𝑝 of the variable 𝑔ℎ, where 𝑝 is the number of Finite Element degrees
of freedom that belong to the interface Γ0.

4.5 Reduced–Order Model

As highlighted in Section 2, reduced–order methods are efficient tools for significant reduction
of the computational time for parameter–dependent PDEs. This section deals with the ROM for
the problem obtained in the previous section, where the state equations, namely Navier–Stokes
equations, are assumed to be dependent on a set of physical parameters. We start with describing
the reduced basis generation based on the Proper Orthogonal Decomposition (POD) technique,
which is followed by two online phases based on a Galerkin projection onto the reduced spaces and
on a multilayer perceptron neural network.
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4.5.1 Reduced Basis Generation

Firstly, we will mention again the need for a supremiser and a lifting function as it is described
in Section 3.4.1 to render the further stability of the reduced–order problem. Once we obtain the
homogenised snapshots 𝑢𝑛

𝑖,0,ℎ defined as 𝑢𝑛
𝑖,0,ℎ := 𝑢𝑛

𝑖,ℎ
− 𝑙𝑛

𝑖,ℎ
(see Section 3.4.1) and the pressure

supremisers 𝑠𝑛
𝑖,ℎ

for 𝑖 = 1, 2, we are ready to construct a set of reduced basis functions. A very
common choice when dealing with Navier–Stokes equations is to use the POD technique; see,
for instance, [81]. In order to implement this technique, we will need two main ingredients: the
matrices of the inner products and the snapshot matrices, obtained by a full–order model (FOM)
discretization as the one presented in the previous sections. First, we define the basis functions for
the FE element spaces used in the weak formulation (4.36), (4.37) and (4.39): 𝑉𝑖,0,ℎ = span{𝜙𝑢𝑖

𝑗
}N

𝑢𝑖
ℎ

𝑗=1 ,

𝑄𝑖,ℎ = span{𝜙𝑝𝑖
𝑗
}N

𝑝𝑖
ℎ

𝑗=1 and 𝑋ℎ = span{𝜙𝑔
𝑗
}N

𝑔

ℎ

𝑗=1, where N∗
ℎ
, for ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑔}, denotes the

dimension of the corresponding FE space.
We proceed by building the snapshot matrices. First, we sample the parameter space and draw a

discrete set of 𝐾 parameter values. Then, the snapshots, i.e., the high–fidelity FE solutions at each
parameter value in the sampling set and at each time–step 𝑡1, ..., 𝑡𝑀 , are collected into snapshot
matrices S𝑢𝑖 ∈ RN𝑢𝑖

ℎ
×𝑀𝐾 , S𝑠𝑖 ∈ RN𝑢𝑖

ℎ
×𝑀𝐾 , S𝑝𝑖 ∈ RN𝑝𝑖

ℎ
×𝑀𝐾 , for 𝑖 = 1, 2, and S𝑔 ∈ RN𝑔

ℎ
×𝑀𝐾 for

the corresponding values.
The next step is to define the inner–product matrices 𝑋𝑢𝑖 , 𝑋𝑝𝑖 , for 𝑖 = 1, 2, and 𝑋𝑔:

(𝑋𝑠𝑖 ) 𝑗𝑘 = (𝑋𝑢𝑖 ) 𝑗𝑘 =
(
∇𝜙𝑢𝑖

𝑘
,∇𝜙𝑢𝑖

𝑗

)
Ω𝑖

, for 𝑗 , 𝑘 = 1, ...,N𝑢𝑖
ℎ
, 𝑖 = 1, 2,

(𝑋𝑝𝑖 ) 𝑗𝑘 =
(
𝜙
𝑝𝑖
𝑘
, 𝜙

𝑝𝑖
𝑗

)
Ω𝑖

, for 𝑗 , 𝑘 = 1, ...,N 𝑝𝑖
ℎ
, 𝑖 = 1, 2,

(𝑋𝑔) 𝑗𝑘 =
(
𝜙
𝑔

𝑘
, 𝜙
𝑔

𝑗

)
Γ0
, for 𝑗 , 𝑘 = 1, ...,N𝑔

ℎ
.

We are now ready to introduce the correlation matrices C𝑢𝑖 , C𝑠𝑖 , C𝑝𝑖 for 𝑖 = 1, 2 and C𝑔, all of
dimension 𝑀𝐾 × 𝑀𝐾 , as:

C∗ := S𝑇∗ 𝑋∗𝑆∗

for every ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑠1, 𝑠2, 𝑔}. Once we have built the correlation matrices, we are able
to carry out a POD compression on the sets of snapshots. This can be achieved by solving the
following eigenvalue problems:

C∗Q∗ = Q∗Λ∗ (4.40)

where ∗ ∈ {𝑢1, 𝑠1, 𝑝1, 𝑢2, 𝑠2, 𝑝2, 𝑔}, Q∗ is the eigenvectors matrix andΛ∗ is the diagonal eigenvalues
matrix with eigenvalues ordered by decreasing order of their magnitude. The 𝑘–th reduced basis
function for the component ∗ is then obtained by applying the matrix S∗ to 𝑣∗

𝑘
, the 𝑘–th column

vector of the matrix Q∗:
Φ∗
𝑘 :=

1√︁
𝜆∗
𝑘

S∗𝑣
∗
𝑘
,
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where 𝜆∗
𝑘

is the 𝑘–th eigenvalue from (4.40). Therefore, we are able to form the set of reduced
bases as

A∗ :=
{
Φ∗

1, ...,Φ
∗
𝑁∗

}
,

where the integer numbers 𝑁∗ indicate the number of the basis functions used for each component
for ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑠1, 𝑠2, 𝑔}. Now, it is time to include the supremiser enrichment of the
velocities spaces discussed at the beginning of this section. We provide the following renumbering
of the functions for further simplicity:

Φ
𝑢𝑖
𝑁𝑢𝑖

+𝑘 := Φ
𝑠𝑖
𝑘
, for 𝑘 = 1, ..., 𝑁𝑠𝑖 , 𝑖 = 1, 2,

and we redefine 𝑁𝑢𝑖 := 𝑁𝑢𝑖 + 𝑁𝑠𝑖 , and new basis functions sets

A𝑢𝑖 :=
{
Φ
𝑢𝑖
1 , ...,Φ

𝑢𝑖
𝑁𝑢𝑖

}
,

for 𝑖 = 1, 2 and these new sets are now including extra basis functions obtained from the corre-
sponding supremiser. Finally, we introduce three separate reduced basis spaces – for the state and
the control variables, respectively:

𝑉∗
𝑁 = span(A∗), dim(𝑉∗

𝑁 ) = 𝑁∗,

for ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑔}. Now, due to the supremiser enrichment the spaces 𝑉𝑢𝑖
𝑁

and 𝑉 𝑝𝑖
𝑁

are
inf–sup stable in the sense (4.35) for 𝑖 = 1, 2; the proof can be found in [17].

4.5.2 Online Phase

Once we have introduced the reduced basis spaces, we can define the reduced function expansions

(𝑢𝑛1,0,𝑁 , 𝑝
𝑛
1,𝑁 , 𝑢

𝑛
2,0,𝑁 , 𝑝

𝑛
2,𝑁 , 𝑔𝑁 ) ∈ 𝑉

𝑢1
𝑁

×𝑉 𝑝1
𝑁

×𝑉𝑢2
𝑁

×𝑉 𝑝2
𝑁

×𝑉𝑔
𝑁
,

as

𝑢𝑛𝑖,0,𝑁 :=
𝑁𝑢𝑖∑︁
𝑘=1

𝑢𝑛
𝑖,0,𝑘Φ

𝑢𝑖
𝑘
, 𝑝𝑖,𝑁 :=

𝑁𝑝𝑖∑︁
𝑘=1

𝑝𝑛
𝑖,𝑘
Φ
𝑝𝑖
𝑘
, 𝑖 = 1, 2, 𝑔𝑁 :=

𝑁𝑔∑︁
𝑘=1

𝑔
𝑘
Φ
𝑔

𝑘
.

In the previous equations, the underlined variables denote the coefficients of the basis expansion
of the reduced solution. Then, the online reduced problem reads as follows: minimise over 𝑔𝑁 ∈ 𝑉𝑔

𝑁

the functional

J𝛾,𝑁 (𝑢𝑛1,𝑁 , 𝑢
𝑛
2,𝑁 ; 𝑔𝑁 ) :=

1
2

∫
Γ0

���𝑢𝑛1,𝑁 − 𝑢𝑛2,𝑁
���2 𝑑Γ + 𝛾

2

∫
Γ0

|𝑔𝑁 |2 𝑑Γ, (4.41)
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where 𝑢𝑛1,𝑁 = 𝑢𝑛1,0,𝑁 + 𝑙𝑛1,𝑁 , 𝑢2,𝑁 = 𝑢𝑛2,0,𝑁 + 𝑙𝑛2,𝑁 and (𝑢1,0,𝑁 , 𝑝1,𝑁 , 𝑢2,0,𝑁 , 𝑝2,𝑁 ) satisfy the
following reduced equations:

1
Δ𝑡
𝑚𝑖 (𝑢𝑛𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑎𝑖 (𝑢𝑛𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑐𝑖 (𝑢

𝑛
𝑖,0,𝑁 , 𝑢

𝑛
𝑖,0,𝑁 , 𝑣𝑖,𝑁 )

+ 𝑐𝑖 (𝑢𝑛𝑖,0,𝑁 , 𝑙
𝑛
𝑖,𝑁 , 𝑣𝑖,𝑁 ) + 𝑐𝑖 (𝑙𝑛𝑖,𝑁 , 𝑢𝑛𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) (4.42a)

+ 𝑏𝑖 (𝑣𝑖,𝑁 , 𝑝𝑛𝑖,𝑁 ) = ( 𝑓 𝑛𝑖 , 𝑣𝑖,𝑁 )Ω𝑖
+ ((−1)𝑖+1𝑔𝑁 , 𝑣𝑖,𝑁 )Γ0

+ 1
Δ𝑡
𝑚𝑖 (𝑢𝑛−1

𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) −
1
Δ𝑡
𝑚𝑖 (𝑙𝑛𝑖,𝑁 , 𝑣𝑖,𝑁 )

− 𝑎𝑖 (𝑙𝑛𝑖,𝑁 , 𝑣𝑛𝑖,𝑁 ) − 𝑐𝑖 (𝑙𝑖,𝑁 , 𝑙𝑖,𝑁 , 𝑣𝑖,𝑁 ) ∀𝑣𝑖,𝑁 ∈ 𝑉𝑢𝑖
𝑁
,

𝑏𝑖 (𝑢𝑛𝑖,0,𝑁 , 𝑞𝑖,𝑁 ) = −𝑏𝑖 (𝑙𝑛𝑖,𝑁 , 𝑞𝑖,𝑁 ) ∀𝑞𝑖,𝑁 ∈ 𝑉 𝑝𝑖
𝑁
, (4.42b)

where 𝑙𝑛
𝑖,𝑁

is the Galerkin projection of the lifting function 𝑙𝑛
𝑖,ℎ

to the finite dimensional vector
space 𝑉𝑢𝑖

𝑁
and 𝑖 = 1, 2.

Similarly to the offline phase, we notice that the structure of the equations (4.42) and the
functional (4.41) are the same as the ones of the continuous case, so this enables us to provide the
following expression of the gradient of the reduced functional (4.41)

𝑑J𝛾,𝑁
𝑑𝑔𝑁

(𝑢𝑛1,𝑁 , 𝑢
𝑛
2,𝑁 ; 𝑔𝑁 ) = 𝛾𝑔𝑁 + (𝜉1,𝑁 − 𝜉2,𝑁 ) |Γ0 , (4.43)

where (𝜉1,𝑁 , 𝜉2,𝑁 ) are the solutions to the reduced adjoint problem: find (𝜉1,𝑁 , 𝜆1,𝑁 , 𝜉2,𝑁 , 𝜆2,𝑁 ) ∈
𝑉
𝑢1
𝑁

×𝑉 𝑝1
𝑁

×𝑉𝑢2
𝑁

×𝑉 𝑝2
𝑁

such that it satisfies, for 𝑖 = 1, 2,

1
Δ𝑡
𝑚𝑖 (𝜂𝑖,𝑁 , 𝜉𝑖,𝑁 ) + 𝑎𝑖 (𝜂𝑖,𝑁 , 𝜉𝑖,𝑁 ) + 𝑐𝑖

(
𝜂𝑖,𝑁 , 𝑢

𝑛
𝑖,𝑁 , 𝜉𝑖,𝑁

)
+ 𝑐𝑖

(
𝑢𝑛𝑖,𝑁 , 𝜂𝑖,𝑁 , 𝜉𝑖,𝑁

)
(4.44a)

+ 𝑏𝑖 (𝜂𝑖,𝑁 , 𝜆𝑖,ℎ) = ((−1)𝑖+1𝜂𝑖,𝑁 , 𝑢
𝑛
1,𝑁 − 𝑢𝑛2,𝑁 )Γ0 ∀𝜂𝑖,𝑁 ∈ 𝑉𝑢𝑖

𝑖,𝑁
,

𝑏𝑖 (𝜉𝑖,𝑁 , 𝜇𝑖,𝑁 ) = 0 ∀𝜇𝑖,𝑁 ∈ 𝑉 𝑝𝑖
𝑖,𝑁
. (4.44b)

Above, the restriction ·|Γ0 is meant as an 𝐿2(Γ0)–projection onto space 𝑉𝑔
𝑁

. We would also like to
stress that from the numerical implementation point of view the reduced minimisation problem can
be recast in the setting of the finite–dimensional space R𝑝, where 𝑝 is the number of reduced basis
functions used for the control variable 𝑔𝑁 in the online phase, that is 𝑝 = 𝑁𝑔.

4.5.3 POD–NN

In this section, we would like to give a quick overview of the POD–NN method [82]. After the
construction of the POD reduced spaces as described in Section 4.5.1, the POD–NN tries to learn
the map that, given the physical parameters and time, returns the reduced coefficients of the POD
projection. To learn this map, we form a training set by the projection of each snapshot for variables
𝑢1, 𝑝1, 𝑢2, 𝑝2 onto the corresponding reduced space – 𝑈∗,output, ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2}. The input set
is composed of the tuples𝑈input that contain 𝐾 sets of physical parameters (the same ones that have
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Figure 4.2: Physical domain and domain decomposition for the backward–facing step problem

been sampled for snapshot construction) and 𝑀 time–steps 𝑡𝑖 , 𝑖 = 1, .., 𝑀; this results in 𝐾𝑀 tuples
of dimension (𝐿 + 1), where 𝐿 is the number of considered physical parameters.
Having built the input and output training sets, we build an artificial neural network (ANN) for each
component ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2}which approximates𝑈input → 𝑈∗,output. Then, the POD–NN reduced
solutions are defined by recovering the predicted values by these ANN in the corresponding FEM
space. Notice that this approach does not require any optimisation algorithm, just the prediction by
ANN at the required parameter value and time step.

The ANN used in this algorithm is a simple dense multilayer perceptron that consists of a
repeated composition of affine operations and nonlinear activation functions [68]. The chosen
architecture contains 3 hidden layers with 40, 60 and 100 neurons, respectively. This means that
there are 4 affine mappings between the input, hidden and output layers, and at each layer, we use
the hyperbolic tangent as an activation function. The learning of the weights and biases of the NN
is optimised using the Adam algorithm [97], a variation of the stochastic gradient descent. In both
test cases of the numerical result section, we used 5000 as the maximum number of optimisation
iterations (epochs) and 10−5 as a target for the loss functional.

The hyperparameters are the result of a quick optimization process. We observed that a lower
number of layers/neurons were less accurate in representing the map of interest, while more layers
were too expensive to be trained in terms of necessary epochs.

4.6 Numerical Results
We now present some numerical results obtained by applying the two–domain decomposition
optimisation algorithm to the backward–facing step and the lid–driven cavity flow benchmarks.

All the numerical simulations for the offline phase were obtained using the software FEniCS
[1], whereas the online phase simulations were carried out using RBniCS [3] and EZyRB [4].

4.6.1 Backward–facing step test case

We start with introducing the backward–facing step flow test case. Figure 4.2 represents the physical
domain of interest, the dimensional lengths and the boundary conditions. The splitting into two
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Physical parameters FE parameters
Range 𝜈 [0.4, 2] Velocity–pressure space in a cell P2 × P1

Range �̄� [0.5, 4.5] Total dofs 27,890
Final time 𝑇 1 Dofs at interface 130

Time step Δ𝑡 0.01
Optimization Snapshots training set parameters

Algorithm L–BFGS–B Timestep number 𝑀 100
itmax 1000 Parameters training set size 𝐾 62
tolopt 10−9 Maximum retained modes 𝑁max 100

Table 4.1: Backward–facing step: computational details of the offline stage
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(a) The singular values as a function of the number
of POD modes (log scale in 𝑦–direction)

(b) Monolithic model fluid velocity and pressure so-
lutions at the final time step

Figure 4.3: Backward–facing step: POD singular eigenvalue decay of the first 50 POD modes (a)
and the monolithic solution for a parameter (�̄�, 𝜈) = (4.5, 0.4) at the final time step (b).

domains is performed by dissecting the domain by a vertical segment at the distance 9 cm from the
left end of the channel, as shown in Figure 4.2.

We consider zero initial velocity condition, homogeneous Dirichlet boundary conditions on
walls Γ𝑤𝑎𝑙𝑙 for the fluid velocity, and homogeneous Neumann conditions on the outlet Γ𝑜𝑢𝑡 ,
meaning that we assume free outflow on this portion of the boundary.

We impose a parabolic profile 𝑢𝑖𝑛 on the inlet boundary Γ𝑖𝑛, where 𝑢𝑖𝑛 (𝑥, 𝑦) = (𝑤(𝑦), 0)𝑇 with
𝑤(𝑦) = �̄� · 4

9 (𝑦 − 2) (5 − 𝑦), 𝑦 ∈ [2, 5]; the range of �̄� is reported in Table 4.1. Two physical
parameters are considered: the viscosity 𝜈 and the maximal magnitude �̄� of the inlet velocity
profile 𝑢𝑖𝑛. Details of the offline stage and the finite–element discretisation are summarised in
Table 4.1. High–fidelity solutions are obtained by carrying out the minimisation in the space of
dimension equal to the number of degrees of freedom at the interface, which is 130 for our test
case. The best performance has been achieved by using the limited–memory Broyden–Fletcher–
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Parameter POD modes
𝜈 0.4 velocity 𝑢1 30 pressure 𝑝1 5 supremiser 𝑠1 5
�̄� 4.5 velocity 𝑢2 12 pressure 𝑝2 5 supremiser 𝑠2 5

control 𝑔 5

Table 4.2: Backward–facing step: computational details of the online stage

Goldfarb—Shanno (L–BFGS–B) optimisation algorithm [32], where the following stopping criteria
were applied: either the maximal number of iteration itmax is reached or the gradient norm of the
target functional is less than the given tolerance tolopt or the relative reduction of the functional
value is less than the tolerance that is automatically chosen by the scipy library [183].

Snapshots are sampled from a training set of 𝐾 parameters randomly sampled from the two–
dimensional parameter space for each time–step 𝑡𝑖 , 𝑖 = 1, ..., 𝑀 and the first 𝑁max POD modes
have been retained for each component. Figure 4.3a shows the POD singular values for all the
state and the control variables; we can see an evident exponential decay of the singular values.
Figure 4.3b shows an example of a monolithic (whole–domain) solution with which we would
conduct a comparison and the numerical analysis of the DD–FOM and the ROM.

In Table 4.2, we list the values of the parameters for which we conduct a numerical test of
the ROM and the number of POD modes for each component of the problem. The number of
reduced bases is chosen so that the discarded energy for each of the components is less than 10−6.
Reduced–order solutions are obtained by carrying out the minimisation in the space of dimension
equal to the number of POD modes for the control 𝑔, which is 5 for our test case. Clearly, the
minimisation in this space of dimension 5 is much simpler than in the FOM one. The optimisation
algorithm used in this test case is the same as in the FOM case described above.

Figures 4.4– 4.5 represent the high–fidelity solutions for a value of the parameters (�̄�, 𝜈) =

(4.5, 0.4) at 4 different time instances. Visually, we can see a great degree of continuity on the
interface, which will be highlighted below. Figure 4.6 shows the spatial distribution of the error
with respect to the monolithic solution at the final time step for both the FOM and ROM solutions.
As expected, the error of the FOM solution is mostly concentrated at the interface, while ROM
contains some extra noise due to the POD reduction.

Figure 4.7 shows the number of iterations for both FOM and ROM optimisation processes. Each
iteration of the optimisation algorithm requires at least one computation of the state and the adjoint
solvers. Therefore, we can see that we have managed to obtain a significant reduction in terms of
computational efforts: the average number of iterations over all time steps in the case of the FOM
solver is 170, while it is 24 in the case of the ROM solver. Additionally, each solver at the reduced
level is of much smaller dimension (see Table 4.2), and with good use of hyper–reduction techniques
(see, for instance, [81]), it will allow to obtain very efficient solvers in terms of computational time.

We would like also to provide a comparison of the full–order and the reduced–order models
with non–intrusive POD–NN model. Due to the discontinuity with the initial condition, the first
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(a) 𝑡 = 0.01 (b) 𝑡 = 0.25

(c) 𝑡 = 0.5 (d) 𝑡 = 1

Figure 4.4: Backward–facing step: high–fidelity solution for the velocities 𝑢1 and 𝑢2 at 4 different
time instances.

(a) 𝑡 = 0.01 (b) 𝑡 = 0.25

(c) 𝑡 = 0.5 (d) 𝑡 = 1

Figure 4.5: Backward–facing step: high–fidelity solution for the pressures 𝑝1 and 𝑝2 at 4 different
time instances.
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(a) FOM velocity (error magnitude) (b) FOM pressure (error)

(c) ROM velocity (error magnitude) (d) ROM pressure (error)

Figure 4.6: Backward–facing step: absolute errors of DD–FOM and ROM solutions w.r.t. the
monolithic solution at the final time step.

0.0 0.2 0.4 0.6 0.8 1.0
t

20

80

140

200
260
320
380
440
500560

Ite
ra

tio
n 

no
.

FOM
ROM
FOM mean (170)
ROM mean (24)

Figure 4.7: Backward–facing step: number of optimisation iterations of FOM and ROM solvers
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(c) Velocity 𝑢2
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Figure 4.8: Backward–facing step: relative errors of FOM, ROM and POD–NN solutions w.r.t. the
monolithic solution.
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Figure 4.9: Lid–driven cavity flow geometry and domain decomposition.

time step was excluded from the training set in order to achieve better performance. In practice, this
first step can be computed with a Galerkin projection or a FOM step. Figure 4.8 shows the relative
errors with respect to the monolithic solution for the FOM, ROMs and POD–NN model. As we can
see, both FOM and ROM give us very good convergence results – the relative error does not exceed
1% in either case. Regarding the POD–NN, in terms of computational time, it is very effective,
but the approximation can be very poor, especially in the initial and final time steps. Just to give
an idea of the differences in the computational times, one time step of the FOM takes between
30 and 60 minutes, one time step of the ROM (without hyper–reduction) takes around 5 minutes,
while a POD–NN prediction needs around 0.003 seconds. One of the possible scenarios could be
a combination of the ROM and the POD–NN model based on the a posteriori error estimates, so
that the time steps in which a much more computationally effective ANN model fails to produce a
sufficient approximation, the ROM is applied. Similar ideas can be found inter alia in [16].

4.6.2 Lid–driven cavity flow test case

In this section, we provide the numerical simulation for the lid–driven cavity flow test case.
Figure 4.9a represents the physical domain of interest – the unit square. The split into two domains
is performed by dissecting the domain by a median horizontal line as shown in Figure 4.9b.

We consider zero initial velocity condition, homogeneous Dirichlet boundary conditions on
the boundary Γ𝑤𝑎𝑙𝑙 for the fluid velocity and the nonzero horizontal constant velocity on the lid
boundary Γ𝑙𝑖𝑑: 𝑢𝑙𝑖𝑑 =

(
�̄�, 0

)
; the values of �̄� are reported in Table 4.3. We consider one physical

parameter – the magnitude �̄� of the lid velocity profile 𝑢𝑙𝑖𝑑 . Details of the offline stage and the
FE discretisation are summarised in Table 4.3. High–fidelity solutions are obtained by carrying
out the minimisation in the space of dimension equal to the number of degrees of freedom at the
interface, which is 294 for our test case. Snapshots are derived from a training set of 𝐾 values
uniformly sampled from the 1–dimensional parameter space for each time–step 𝑡𝑖 , 𝑖 = 1, ..., 𝑀 , and
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Physical parameters FE parameters
𝜈 1 Velocity–pressure space in a cell P2 × P1

Range �̄� [0.5, 5] Total dofs 58,056
Final time 𝑇 0.4 Dofs at interface 294

Time step Δ𝑡 0.01
Optimization Snapshots training set parameters

Algorithm L–BFGS–B Timestep number 𝑀 40
itmax 300 Parameters training set size 𝐾 10
tolopt 10−7 Maximum retained modes 𝑁max 100

Table 4.3: Lid–driven cavity flow: computational details of the offline stage

Parameter POD modes
�̄� 3 velocity 𝑢1 15 pressure 𝑝1 10 supremiser 𝑠1 10

velocity 𝑢2 10 pressure 𝑝2 10 supremiser 𝑠2 10
control 𝑔 5

Table 4.4: Lid–driven cavity flow: Computational details of the online stage

the first 𝑁max POD modes have been retained for each component. In Figure 4.10a, we see that
the POD singular values decay even faster than in the previous test for all the state and the control
variables. As before, we show in Figure 4.10b the monolithic (whole–domain) solution related to
the parameter (�̄� = 3) on which we will test the DD–FOM and the ROM.

In Table 4.4, we report the number of POD modes we use to obtain the ROM. The number of
reduced bases is chosen so that the discarded energy for each of the components is less than 10−6.
As before, the ROM optimization is the same as used in the FOM, but on a smaller space with
dimension 5 instead of 294. As an optimisation algorithm in this case we use the L–FBGS–B, but
in this case, we use a smaller value for tolopt of 10−6.

Figures 4.11 represent the DD–FOM solutions for �̄� = 3 at 3 different time instances, where
we see a qualitative agreement with the monolithic solution in Figure 4.10b.

Again, in Figure 4.12 we observe that the number of optimization iterations for FOM is between
10 and 100 times larger than the ROM ones. Recalling that each iteration requires at least one
computation of the state and the adjoint solvers, we obtain a great computational advantage. For
the test with �̄� = 3, the average number of the iteration over all time steps in the case of the FOM
solver is 170, while it is 24 in the case of the ROM solver. Additionally, each solver at the reduced
level is of a much smaller dimension (see Table 4.4).

As in the previous test case, we would like to provide a comparison of the full–order and the
reduced–order models with non–intrusive POD–NN model. The architecture is still the one reported



82 CHAPTER 4. NON–STATIONARY FLUID DYNAMICS PROBLEMS

0 20 40 60 80 100
n

10 13

10 11

10 9

10 7

10 5

10 3

10 1

n/
m

ax
u1
sp1

p1
u2
sp2

p2
g

(a) The singular values as a function of the number
of POD modes (log scale in 𝑦–direction)

(b) Monolithic model fluid velocity at the final time
step

Figure 4.10: Lid–driven cavity flow: POD singular eigenvalue decay of POD modes (a) and the
monolithic solution for a parameter �̄� = 3 at the final time step (b).

in Section 4.5.3 Again, the initial condition leads to a discontinuity in time at the starting timestep,
hence, we exclude it from the training set in order to achieve better performance. Figure 4.13 shows
the relative errors with respect to the monolithic solution for the FOM, ROMs and POD–NN model.
As we can see, both FOM and ROM give us very good convergence results, i.e., the relative error
does not exceed 1% in either case; but, in this case, also POD–NN gives quite good results, indeed,
for each variable the relative error does not exceed 3%. Computational times for each method,
FOM, ROM and POD–NN, are comparable with those of the backward–facing step flow, that is,
one time step of the FOM takes between 15 and 45 minutes, one time step of the ROM (without
hyper–reduction) takes on average 5 minutes, while a POD–NN prediction needs around 0.003

(a) 𝑡 = 0.01 (b) 𝑡 = 0.05 (c) 𝑡 = 0.4

Figure 4.11: Lid–driven cavity flow: FOM velocity solution at 3 different time instances.
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Figure 4.12: The number of optimisation iterations of FOM and ROM solvers

seconds.

4.7 Conclusions and perspectives
In this chapter, we described and conducted the convergence analysis of an optimisation–based
domain decomposition algorithm for the nonstationary incompressible Navier–Stokes equations.

The original problem cast into the optimisation–based domain–decomposition framework leads
to the optimal control problem aimed at minimising the coupling error at the interface; the problem,
then, has been tackled using an iterative gradient–based optimisation algorithm, which allowed us
to obtain a complete separation of the solvers on different subdomains.

At the reduced–order level, we provided two techniques: a POD–Galerkin projection and a
data–driven POD–NN, both of them on separate domains. In the Galerkin projection, the time
required to solve the optimal–control problem was much shorter, not only because of the reduced
dimensions but also because of the smaller number of iterations. The POD–NN results are less
accurate, but the computational time is way shorter than the other methods.

The aforementioned techniques could be promising for various areas of computational physics.
First of all, these algorithms can be used when complex time–dependent problems arise and domain
decomposition becomes necessary due to a large number of degrees of freedom. Moreover, in the
context of multiphysics, for instance, for fluid–structure interaction (see Chapter 5), the coupling of
pre–existing solvers on each subcomponent can be exploited in this framework, with the additional
benefit of the reduction for parametric problems, which guarantees high adherence with respect to
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Figure 4.13: Lid–driven cavity flow: relative errors of FOM, ROM and POD–NN solutions w.r.t.
the monolithic solution.

the full order solutions. Finally, in case the codes are not directly accessible, the presented non–
intrusive approach can be used to highly speed up the simulations while still obtaining meaningful
results.



Chapter 5

Fluid–Structure Interaction Problem

In this chapter, we introduce an optimisation–based domain–decomposition formulation of the non–
stationary FSI problem with the incompressible Navier–Stokes equations and the linear elasticity
model. Firstly, we provide a monolithic formulation and its time–discretisation scheme with the
further derivation of the fully decoupled optimisation–based domain–decomposition formulation
at each time step. Then, we obtain the optimality condition for the resulting optimal control
problem and the expression for the gradient of the objective functional with the following listing
of the gradient–based optimisation algorithm and the Gauss–Newton algorithm for the nonlinear
least–squares minimisation problem. Furthermore, we develop a reduced–order model based on
the Proper Orthogonal Decomposition methodology for the parameter–dependent FSI problem. At
the end of the chapter, we show some numerical results on a two–dimensional haemodynamics
benchmark FSI problem.

5.1 Problem formulation
In this section, we describe a formulation of the time–dependent Fluid–Structure Interaction (FSI)
problem with incompressible Navier–Stokes equations for the fluid model and the linear elastic
structure model. We start by introducing a general description of the FSI model with its corre-
sponding coupling conditions between fluid and structure subcomponents. Then, we introduce
a monolithic formulation of the problem and a notion of Arbitrary Lagrangian–Eulerian (ALE)
formulation that will allow us to describe the fully coupled FSI problem in the reference frame of
coordinates. Here and in the next few sections, the analysis is valid for any value of the physical
parameter, so for the sake of simplicity, we postpone mentioning the parameter dependence of the
problem until Section 5.5.

5.1.1 FSI problem: general setting and coupling conditions

FSI problems describe the dynamical interplay between a fluid and a solid. This interplay takes
place because of the coupling of the two different physics at the FSI interface, namely the part of the

85
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Figure 5.1: Domains and boundaries: Ω 𝑓
𝑡 – moving fluid domain, Ω̂𝑠 – reference solid domain, Γ0

𝐼

and Γ𝑡
𝐼

(in red) – the fluid–structure interface in its reference and moving configuration, respectively

physical domain that is common to the fluid subdomain and the solid subdomain. The FSI interface
profile is unknown a priori and depends on the dynamics of the fluid and of the structure problem.
The coupling conditions are the result of three principles:

• Continuity of the velocities: this is a kinematic condition, that represents the hypothesis that
the fluid sticks to the moving FSI interface;

• Balance of stresses: this is a classical action–reaction principle, that imposes the balance
between the fluid and the solid stresses at the FSI interface;

• Continuity of the displacements: this geometrical condition imposes the continuity of the
solid displacement and the fluid displacement (which will be described later via ALE map)
at the FSI interface to guarantee that the fluid and the solid domains do not overlap.

5.1.2 Monolithic formulation

Let Ω
𝑓
𝑡 ⊂ R2 be a bounded moving domain at time 𝑡 ≥ 0 for the fluid, with the boundary

Γ
𝑓
𝑡 = Γ

𝑓

𝑁
∪ Γ

𝑓

𝐷
∪ Γ𝑡

𝐼
, and let Ω̂𝑠 ⊂ R2 be a physical structure domain in its reference configuration,

with the boundary Γ̂𝑠 = Γ̂𝑠
𝑁
∪Γ̂𝑠

𝐷
∪Γ0

𝐼
; see Figure 5.1 for the details. We have this separation between

the reference and current configurations of the domain of interest due to the fact that to describe
the behaviour of a solid it is common practice to use the so–called Lagrangian formalism: all the
quantities and the conservation laws are formulated on the reference configuration Ω̂𝑠 = Ω𝑠 (𝑡 = 0),
whereas when describing the behaviour of a fluid, the Eulerian formalism is used instead: all
the quantities and the conservation laws are formulated on the configuration Ω

𝑓
𝑡 at the current

time 𝑡. We consider a finite time interval [0, 𝑇] with 𝑇 > 0. Let 𝑏 𝑓 : Ω
𝑓
𝑡 × [0, 𝑇] → R2 and
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𝑏𝑠 : Ω̂𝑠 × [0, 𝑇] → R2 be the forcing terms for the fluid and structure subproblem, respectively; let
𝑢
𝑓

𝑁
and �̂�𝑠

𝑁
be a given Neumann data on Γ

𝑓

𝑁
and Γ̂𝑠

𝑁
, respectively. We further introduce 𝑢0

𝑓
, the

initial fluid velocity on Ω
𝑓

0 , 𝑑𝑠0 and 𝑑𝑠,𝜕𝑡0 are the initial condition for the structure displacement its
first time derivative on Ω̂𝑠.
The FSI problem then reads as follows: find the velocity field 𝑢 𝑓 : Ω 𝑓

𝑡 × [0, 𝑇] → R2, the pressure
𝑝 𝑓 : Ω 𝑓

𝑡 × [0, 𝑇] → R and the displacement 𝑑𝑠 : Ω̂𝑠 × [0, 𝑇] → R2 s.t.

𝜌 𝑓
[
𝜕𝑡𝑢 𝑓 +

(
𝑢 𝑓 · ∇

)
𝑢 𝑓

]
− div𝜎 𝑓 (𝑢 𝑓 , 𝑝 𝑓 ) = 𝑏 𝑓 in Ω

𝑓
𝑡 × (0, 𝑇], (5.1a)

−div𝑢 𝑓 = 0 in Ω
𝑓
𝑡 × (0, 𝑇], (5.1b)

𝜌𝑠𝜕
2
𝑡 𝑑𝑠 − d̂iv�̂�(𝑑𝑠) = �̂�𝑠 in Ω̂𝑠 × (0, 𝑇], (5.1c)

with the following boundary conditions:

𝑢 𝑓 = 0 on Γ
𝑓

𝐷
× [0, 𝑇], (5.2a)

𝜎 𝑓 (𝑢 𝑓 , 𝑝 𝑓 )n 𝑓 = 𝑢
𝑓

𝑁
on Γ

𝑓

𝑁
× [0, 𝑇], (5.2b)

𝑑𝑠 = 0 on Γ̂𝑠𝐷 × [0, 𝑇], (5.2c)
�̂�(𝑑𝑠)n̂𝑠 = 𝑑𝑠𝑁 on Γ̂𝑠𝑁 × [0, 𝑇], (5.2d)

and initial conditions

𝑢 𝑓 (𝑡 = 0) = 𝑢0 in Ω
𝑓

0 , (5.3a)
𝑑𝑠 (𝑡 = 0) = 𝑑𝑠0 in Ω̂𝑠, (5.3b)

𝜕𝑡𝑑𝑠 (𝑡 = 0) = 𝑑
𝑠,𝜕𝑡

0 in Ω̂𝑠, (5.3c)

as well as the following constitutive laws

• symmetric gradients:

𝜀(𝑣) = 1
2

(
∇𝑣 + ∇𝑇𝑣

)
, (5.4)

𝜀(𝑣) = 1
2

(
∇̂𝑣 + ∇̂𝑇𝑣

)
, (5.5)

• second Piola–Kirchoff tensor for compressible linear elastic material:

�̂�(𝑑𝑠) = 𝜆𝑠tr𝜀(𝑑𝑠)𝐼 + 2𝜇𝑠𝜀(𝑑𝑠), (5.6)

• Cauchy stress tensor for the incompressible Newtonian fluid:

𝜎 𝑓 (𝑢 𝑓 , 𝑝 𝑓 ) = −𝑝 𝑓 𝐼 + 2𝜌 𝑓 𝜈 𝑓 𝜀(𝑢 𝑓 ). (5.7)
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Remark (Non–homogeneous Dirichlet conditions). Notice that above, for the sake of simplicity,
we chose to consider only homogeneous Dirichlet conditions on the fixed parts of the boundaries.
This is due to the fact, that we do not want to complicate the exposition of Section 5.5 below.
Nevertheless, the problem can be very easily adapted to the case with the non–homogeneous data
in a very similar way as it is done in Chapters 3 and 4.

In the equations above, 𝜌 𝑓 and 𝜌𝑠 are fluid and structure densities, respectively, 𝜈 𝑓 – is the
fluid viscosity whereas 𝜆𝑠 and 𝜇𝑠 are the Lamé coefficients for the solid. Due to the difference in
the formalisms of description of the fluid and structure subsystems we have the following notation
above: the gradients ∇ and ∇̂ indicate over which domain the differentiation takes place, that is, ∇
refers to the moving domain Ω

𝑓
𝑡 and ∇̂ to the reference structure domain.

Due to the fact that fluid and structure equations are defined on different domains, in order
to formalise the coupling conditions listed in the previous section, there is a need for a mapping
between those subdomains. The most common technique used in such a framework is the Arbitrary
Lagrangian–Eulerian (ALE) formulation. The aim of the following section is to describe how the
ALE formalism works.

5.1.3 The Arbitrary Lagrangian–Eulerian formulation

The Arbitrary Lagrangian–Eulerian (ALE) [51, 153, 86, 22] method is one of the most widely used
methods for the simulation of fluid flows in moving domains. In the ALE formulation, a one–to–one
coordinate transformation is introduced for the fluid domain, and the fluid equations can be rewritten
with respect to a fixed reference configuration. Specifically, we define the time–dependent bĳective
mapping A𝑡 (see Figure 5.2) that maps the reference domain Ω̂ 𝑓 := Ω

𝑓

0 to the physical domain Ω
𝑓
𝑡

as follows: for 𝑡 ∈ [0, 𝑇]

A𝑡 : Ω̂ 𝑓 → Ω
𝑓
𝑡 ,

𝑥 ↦→ 𝑥 = 𝑥 + 𝑑 𝑓 (𝑥, 𝑡),

where 𝑑 𝑓 (·, 𝑡) : Ω̂ 𝑓 → Ω
𝑓
𝑡 is the so called mesh displacement.

The definition of 𝑑 𝑓 usually depends on the model with a moving domain to be tackled. For
FSI problems, the mesh displacement is defined as an extension of the solid displacement to the
whole fluid domain. In this work, we will use a harmonic extension: find 𝑑 𝑓 : Ω̂ 𝑓 → R2 such that

−Δ̂𝑑 𝑓 = 0 in Ω̂ 𝑓 , (5.8a)
𝑑 𝑓 = 𝑑𝑠 on Γ0

𝐼 , (5.8b)

where 𝑑𝑠 is the structure displacement.
It should be highlighted that 𝑑 𝑓 is merely a geometrical quantity that takes into account the

displacement of the mesh points and does not carry any physical meaning.
Great attention should be paid to the definition of fluid displacement, as different definitions of

𝑑 𝑓 may lead to different levels of continuity of the whole FSI problem. In the context of the linear
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Figure 5.2: ALE map

elastic compressible structure model, the harmonic extension (5.8) of the structure displacement
𝑑𝑠 usually does a very good job as we do not expect huge displacement of the interface; in case of
large structure displacement, see, for example, [21]. For more details, we refer to [153].

5.1.4 ALE formulation of the FSI problem

With the formalism introduced in the previous section, we are now able to perform a pullback of the
fluid equations with the moving domain onto the fluid reference configuration Ω 𝑓 , so that we are
able to obtain a formulation of the FSI problem on the coherent subdomains. In order to perform a
pullback of the Navier–Stokes equation, we define:

�̂� := ∇̂A𝑡 , 𝐽 := det�̂�,

the deformation gradient and its determinant, respectively. These quantities allow us to rewrite the
FSI dynamics problem in the reference configuration: for every 𝑡 ∈ [0, 𝑇], find �̂� 𝑓 (𝑡) : Ω̂ 𝑓 → R2,
𝑝 𝑓 (𝑡) : Ω̂ 𝑓 → R, 𝑑 𝑓 (𝑡) : Ω̂ 𝑓 → R2 and 𝑑𝑠 (𝑡) : Ω̂𝑠 → R2 satisfying the following equations

𝜌 𝑓 𝐽

[
𝜕𝑡 �̂� 𝑓 + ∇̂�̂� 𝑓 �̂�−1

(
�̂� 𝑓 − 𝜕𝑡𝑑 𝑓

)]
− d̂iv

(
𝐽�̂� 𝑓 (�̂� 𝑓 , 𝑝 𝑓 )�̂�−𝑇

)
= 𝑏 𝑓 in Ω̂ 𝑓 × (0, 𝑇], (5.9a)

−d̂iv
(
𝐽�̂�−1�̂� 𝑓

)
= 0 in Ω̂ 𝑓 × (0, 𝑇], (5.9b)

−Δ̂𝑑 𝑓 = 0 in Ω̂ 𝑓 × (0, 𝑇], (5.9c)
𝜌𝑠𝜕

2
𝑡 𝑑𝑠 − d̂iv�̂�(𝑑𝑠) = �̂�𝑠 in Ω̂𝑠 × (0, 𝑇], (5.9d)

with the following boundary

�̂� 𝑓 = 0 on Γ
𝑓

𝐷
× [0, 𝑇], (5.10a)

�̂� 𝑓 (�̂� 𝑓 , 𝑝 𝑓 )n̂ 𝑓 = 𝑢
𝑓

𝑁
on Γ

𝑓

𝑁
× [0, 𝑇], (5.10b)

𝑑 𝑓 = 0 on
(
Γ
𝑓

𝐷
∪ Γ

𝑓

𝑁

)
× [0, 𝑇], (5.10c)

𝑑𝑠 = 0 on Γ̂𝑠𝐷 × [0, 𝑇], (5.10d)
�̂�(𝑑𝑠)n̂𝑠 = 𝑑𝑠𝑁 on Γ̂𝑠𝑁 × [0, 𝑇], (5.10e)
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and initial conditions

�̂� 𝑓 (𝑡 = 0) = 𝑢0 in Ω̂ 𝑓 , (5.11a)
𝑑𝑠 (𝑡 = 0) = 𝑑𝑠0 in Ω̂𝑠, (5.11b)

𝜕𝑡𝑑𝑠 (𝑡 = 0) = 𝑑
𝑠,𝜕𝑡

0 in Ω̂𝑠 . (5.11c)

In equation (5.9a), the tensor �̂� 𝑓 is the reference representation of the Cauchy stress tensor (5.7):

�̂� 𝑓 (�̂� 𝑓 , 𝑝 𝑓 ) = �̂�𝑑𝑢𝑓 (𝑑 𝑓 , �̂� 𝑓 ) + �̂�𝑝𝑓 (𝑝 𝑓 ), (5.12)

where
�̂�𝑑𝑢𝑓 (𝑑 𝑓 , �̂� 𝑓 ) = 𝜈 𝑓

(
∇̂�̂� 𝑓 �̂�−1 + �̂�−𝑇 ∇̂𝑇 �̂� 𝑓

)
, �̂�

𝑝

𝑓
(𝑝 𝑓 ) = −𝑝 𝑓 𝐼 .

At this point, we are able to write down the coupling conditions described in Section 5.1.1. The
system (5.9) – (5.11) is completed by the following conditions at the interface Γ̂𝐼 :

�̂� 𝑓 = 𝜕𝑡𝑑𝑠 on Γ̂𝐼 × [0, 𝑇], (5.13a)
𝐽�̂� 𝑓 (�̂� 𝑓 , 𝑝 𝑓 )�̂�−𝑇 n̂ 𝑓 = −�̂�(𝑑𝑠)n̂𝑠 on Γ̂𝐼 × [0, 𝑇], (5.13b)

𝑑 𝑓 = 𝑑𝑠 on Γ̂𝐼 × [0, 𝑇] . (5.13c)

In the notations above, n̂ 𝑓 and n̂𝑠 denote the outward unit normal vectors on the boundaries of
the fluid and the structure reference domains, respectively. From now on, we will solely work in
the reference frame of coordinates, so that, in order to facilitate the description, we will drop the
ˆnotation.

5.2 Domain Decomposition formulation

The scope of this section is to describe the Domain Decomposition (DD) formulation of the FSI
problem obtained at the end of the previous section. We will start by considering two separate
problems, namely, the fluid dynamics problem with the prescribed moving boundary and the
structure problem with prescribed stresses on the boundary. These are followed by variational
formulation and time–discretisation of both problems at the continuous level. At the end of the
section, we present an optimisation–based domain–decomposition formulation at each time step.

5.2.1 Fluid and structure equations with given domain and stresses

Since we aim at completely decoupling the fluid and structure subsystems, we will describe two
separate problems: one is the fluid problem with a prescribed moving domain, where the displace-
ment of the moving interface Γ𝐼 is prescribed by 𝑑∗𝑠 and where the stresses on Γ𝐼 are given by 𝑔1,
whereas the other is the structure problem with the stresses given by 𝑔2.
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Fluid problem:

• fluid momentum equation

𝜌 𝑓 𝐽
[
𝜕𝑡𝑢 𝑓 + ∇𝑢 𝑓 𝐹−1 (

𝑢 𝑓 − 𝜕𝑡𝑑 𝑓
) ]

− div
(
𝐽𝜎 𝑓 (𝑢 𝑓 , 𝑝 𝑓 )𝐹−𝑇

)
= 𝑏 𝑓 in Ω 𝑓 × (0, 𝑇], (5.14)

• fluid incompressibility equation

−div
(
𝐽𝐹−1𝑢 𝑓

)
= 0 in Ω 𝑓 × (0, 𝑇], (5.15)

• extension equation
−Δ𝑑 𝑓 = 0 in Ω 𝑓 × (0, 𝑇], (5.16)

• boundary conditions on the moving interface

𝐽𝜎 𝑓 (𝑢 𝑓 , 𝑝 𝑓 )𝐹−𝑇n 𝑓 = 𝑔1 on Γ𝐼 × [0, 𝑇], (5.17a)
𝑑 𝑓 = 𝑑

∗
𝑠 on Γ𝐼 × [0, 𝑇], (5.17b)

• boundary conditions on the static boundary

𝑢 𝑓 = 0 on Γ
𝑓

𝐷
× [0, 𝑇], (5.18a)

𝜎 𝑓 (𝑢 𝑓 , 𝑝 𝑓 )n 𝑓 = 𝑢 𝑓𝑁 on Γ
𝑓

𝑁
× [0, 𝑇], (5.18b)

𝑑 𝑓 = 0 on
(
Γ
𝑓

𝐷
∪ Γ

𝑓

𝑁

)
× [0, 𝑇], (5.18c)

• initial condition
𝑢 𝑓 (𝑡 = 0) = 𝑢0 in Ω 𝑓 . (5.19)

Structure problem:

• extension equation
𝜌𝑠𝜕

2
𝑡 𝑑𝑠 − div𝑃(𝑑𝑠) = 𝑏𝑠 in Ω𝑠 × (0, 𝑇], (5.20)

• boundary conditions on the moving interface

𝑃(𝑑𝑠)n𝑠 = 𝑔2 on Γ𝐼 × [0, 𝑇], (5.21)

• boundary conditions on the static boundary

𝑑𝑠 = 0 on Γ𝑠𝐷 × [0, 𝑇], (5.22a)
𝑃(𝑑𝑠)n𝑠 = 𝑑𝑠𝑁 on Γ𝑠𝑁 × [0, 𝑇], (5.22b)

• initial conditions

𝑑𝑠 (𝑡 = 0) = 𝑑𝑠0 in Ω𝑠, (5.23a)
𝜕𝑡𝑑𝑠 (𝑡 = 0) = 𝑑

𝑠,𝜕𝑡

0 in Ω𝑠 . (5.23b)
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5.2.2 Variational (in space) formulation

In this section, we will provide variational formulations in space of the fluid and structure problems
described in the previous section. Firstly, we define the following spaces:

𝑉 𝑓 =

{
𝑣 𝑓 ∈

[
𝐻1(Ω 𝑓 )

]2 : 𝑣 𝑓 = 0 on Γ 𝑓 ,𝐷

}
,

𝑄 𝑓 = 𝐿2(Ω 𝑓 ),

𝐸 𝑓 =

{
𝑣 𝑓 ∈

[
𝐻1(Ω 𝑓 )

]2 : 𝑣 𝑓 = 0 on Γ 𝑓 ,𝐷

}
,

𝐸 𝑓 ,0 =

{
𝑣 𝑓 ∈

[
𝐻1(Ω 𝑓 )

]2 : 𝑣 𝑓 = 0 on Γ 𝑓 ,𝐷 ∪ Γ𝐼

}
,

𝐸𝑠 =

{
𝑒𝑠 ∈

[
𝐻1(Ω𝑠)

]2 : 𝑒𝑠 = 0 on Γ𝑠,𝐷

}
.

We equip the spaces 𝑉 𝑓 , 𝐸 𝑓 and 𝐸 𝑓 ,0 with 𝐻1
0 (Ω

𝑓 )–norm, the space 𝑄 𝑓 with 𝐿2(Ω 𝑓 )–norm and
the space 𝐸𝑠 with 𝐻1

0 (Ω
𝑠)–norm. We also introduce the following notation: by (·, ·)𝜔 we denote

𝐿2(𝜔)–inner product.
The variational counterparts of the equations (5.14)– (5.19) and (5.20)– (5.23) reads as follows:

for every 𝑡 ∈ [0, 𝑇] find 𝑢 𝑓 (𝑡) ∈ 𝑉 𝑓 , 𝑝 𝑓 (𝑡) ∈ 𝑄 𝑓 , 𝑑 𝑓 (𝑡) ∈ 𝐸 𝑓 and 𝑑𝑠 (𝑡) ∈ 𝐸𝑠 satisfying the
following equations:

• fluid momentum equation

𝑚 𝑓 (𝜕𝑡𝑢 𝑓 , 𝑣 𝑓 ; 𝑑 𝑓 ) + 𝑎 𝑓 (𝑢 𝑓 , 𝑣 𝑓 ; 𝑑 𝑓 ) + 𝑐𝐴𝐿𝐸𝑓 (𝜕𝑡𝑑 𝑓 , 𝑣 𝑓 , 𝑢 𝑓 ; 𝑑 𝑓 )
+ 𝑏𝐴𝑓 (𝑝 𝑓 , 𝑣 𝑓 ; 𝑑 𝑓 ) + 𝑐 𝑓 (𝑢 𝑓 , 𝑢 𝑓 , 𝑣 𝑓 ; 𝑑 𝑓 ) (5.24)

= 𝑓 𝑓 (𝑣 𝑓 ; 𝑑 𝑓 ) +
(
𝑢
𝑓

𝑁
, 𝑣 𝑓

)
Γ
𝑓

𝑁

+ (𝑔, 𝑣 𝑓 )Γ𝐼 ∀𝑣 𝑓 ∈ 𝑉 𝑓 ,

• incompressibility equation

𝑏𝐵𝑓 (𝑢 𝑓 , 𝑞 𝑓 ; 𝑑 𝑓 ) = 0 ∀𝑞 𝑓 ∈ 𝑄 𝑓 , (5.25)

• extension equation

𝑎𝑒𝑓 (𝑑 𝑓 , 𝑒 𝑓 ) = 0 ∀𝑒 𝑓 ∈ 𝐸 𝑓 ,0, (5.26a)
𝑑 𝑓 (𝑡) = 𝑑∗𝑠 (𝑡) on Γ𝐼 , (5.26b)

• structure equation

𝑚𝑠 (𝜕2
𝑡 𝑑𝑠, 𝑒𝑠) + 𝑎𝑠 (𝑑𝑠, 𝑒𝑠) = 𝑓𝑠 (𝑒𝑠) +

(
𝑑𝑠𝑁 , 𝑒𝑠

)
Γ𝑠
𝑁

+ (𝑔2, 𝑒𝑠)Γ𝐼 ∀𝑒𝑠 ∈ 𝐸𝑠, (5.27)

together with initial conditions (5.19) and (5.23). Above, by 𝑑∗𝑠 (𝑡) we denote some extrapolation of
𝑑𝑠 (𝑡) using previous time instances and the forms present in the equations are defined as follows:
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• fluid velocity mass form

𝑚 𝑓 (𝑤, 𝑣 𝑓 ; 𝑑 𝑓 ) =
∫
Ω 𝑓

𝐽𝜌 𝑓𝑤 · 𝑣 𝑓 𝑑Ω, (5.28)

• fluid stiffness form

𝑎 𝑓 (𝑢 𝑓 , 𝑣 𝑓 ; 𝑑 𝑓 ) =
∫
Ω 𝑓

𝐽𝜎𝑑𝑢𝑓 (𝑑 𝑓 , 𝑢 𝑓 )𝐹−𝑇 : ∇𝑣 𝑓 𝑑Ω, (5.29)

• fluid ALE form

𝑐𝐴𝐿𝐸𝑓 (𝑤, 𝑣 𝑓 , 𝑢 𝑓 ; 𝑑 𝑓 ) = −
∫
Ω 𝑓

𝐽𝜌 𝑓
[
∇𝑢 𝑓 𝐹−1] 𝑤 · 𝑣 𝑓 𝑑Ω, (5.30)

• fluid incompressibility forms

𝑏𝐴𝑓 (𝑝 𝑓 , 𝑣 𝑓 ; 𝑑 𝑓 ) =
∫
Ω 𝑓

𝐽𝜎
𝑝

𝑓
(𝑝 𝑓 )𝐹−𝑇 : ∇𝑣 𝑓 𝑑Ω, (5.31)

𝑏𝐵𝑓 (𝑢 𝑓 , 𝑞 𝑓 ; 𝑑 𝑓 ) = −
∫
Ω 𝑓

div
(
𝐽𝐹−1𝑢 𝑓

)
𝑞 𝑓 𝑑Ω, (5.32)

• fluid advection form

𝑐 𝑓 (𝑢 𝑓 , 𝑤 𝑓 , 𝑣 𝑓 ; 𝑑 𝑓 ) =
∫
Ω 𝑓

𝐽𝜌 𝑓
[
∇𝑤 𝑓 𝐹−1] 𝑢 𝑓 · 𝑣 𝑓 𝑑Ω, (5.33)

• fluid forcing form

𝑓 𝑓 (𝑣 𝑓 ; 𝑑 𝑓 ) =
∫
Ω 𝑓

𝐽𝑏 𝑓 · 𝑣 𝑓 𝑑Ω, (5.34)

• extension fluid stiffness form

𝑎𝑒𝑓 (𝑑 𝑓 , 𝑒 𝑓 ) =
∫
Ω 𝑓

∇𝑑 𝑓 : ∇𝑒 𝑓 𝑑Ω, (5.35)

• structure displacement mass form

𝑚𝑠 (𝑤, 𝑒𝑠) =
∫
Ω𝑠

𝜌𝑠𝑤 · 𝑒𝑠𝑑Ω, (5.36)

• structure stiffness form
𝑎𝑠 (𝑑𝑠, 𝑒𝑠) =

∫
Ω𝑠

𝑃(𝑑𝑠) : ∇𝑒𝑠𝑑Ω, (5.37)

• structure forcing form

𝑓𝑠 (𝑒𝑠) =
∫
Ω𝑠

𝑏𝑠 · 𝑒𝑠𝑑Ω. (5.38)
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5.2.3 Discretisation in time

We will proceed with the time discretisation of the variational equation obtained in the previous
section. The discretisation of the fluid equations will be carried on by the implicit Euler scheme,
while the time discretisation of the solid equation will use the central second–order difference
scheme. Let us introduce the following notation: we denote by ℓ𝑛 the function ℓ(𝑡𝑛) at time 𝑡𝑛. The
resulting time discretisation is then given as follows: for 𝑛 ≥ 1 find 𝑢𝑛

𝑓
∈ 𝑉 𝑓 , 𝑝𝑛𝑓 ∈ 𝑄 𝑓 , 𝑑

𝑛
𝑓
∈ 𝐸 𝑓

and 𝑒𝑛𝑠 ∈ 𝐸𝑠 satisfying the following equations:

• fluid momentum equation

1
Δ𝑡
𝑚 𝑓 (𝑢𝑛𝑓 , 𝑣 𝑓 ; 𝑑 𝑓 ) + 𝑎 𝑓 (𝑢𝑛𝑓 , 𝑣 𝑓 ; 𝑑

𝑛
𝑓 ) +

1
Δ𝑡
𝑐𝐴𝐿𝐸𝑓 (𝑑𝑛𝑓 , 𝑣 𝑓 , 𝑢

𝑛
𝑓 ; 𝑑

𝑛
𝑓 )

+ 𝑏𝐴𝑓 (𝑝
𝑛
𝑓 , 𝑣 𝑓 ; 𝑑

𝑛
𝑓 ) + 𝑐 𝑓 (𝑢

𝑛
𝑓 , 𝑢

𝑛
𝑓 , 𝑣 𝑓 ; 𝑑

𝑛
𝑓 )

=
1
Δ𝑡
𝑚 𝑓 (𝑢𝑛−1

𝑓 , 𝑣 𝑓 ; 𝑑 𝑓 ) + 𝑓 𝑓 (𝑣 𝑓 ; 𝑑𝑛𝑓 ) +
(
𝑢
𝑓

𝑁
, 𝑣 𝑓

)
Γ
𝑓

𝑁

(5.39)

+ 1
Δ𝑡
𝑐𝐴𝐿𝐸𝑓 (𝑑𝑛−1

𝑓 , 𝑣 𝑓 , 𝑢
𝑛
𝑓 ; 𝑑

𝑛
𝑓 ) + (𝑔𝑛1 , 𝑣 𝑓 )Γ𝐼 ∀𝑣 𝑓 ∈ 𝑉 𝑓 ,

• incompressibility equation

𝑏𝐵𝑓 (𝑢
𝑛
𝑓 , 𝑞 𝑓 ; 𝑑

𝑛
𝑓 ) = 0 ∀𝑞 𝑓 ∈ 𝑄 𝑓 , (5.40)

• extension equation

𝑎𝑒𝑓 (𝑑
𝑛
𝑓 , 𝑒 𝑓 ) = 0 ∀𝑒 𝑓 ∈ 𝐸 𝑓 ,0, (5.41a)
𝑑𝑛𝑓 = 𝑑∗,𝑛𝑠 on Γ𝐼 , (5.41b)

• structure equation

1
Δ𝑡2

𝑚𝑠 (𝑑𝑛𝑠 , 𝑒𝑠) + 𝑎𝑠 (𝑑𝑛𝑠 , 𝑒𝑠) =
2
Δ𝑡2

𝑚𝑠 (𝑑𝑛−1
𝑠 , 𝑒𝑠) + 𝑓𝑠 (𝑒𝑠) +

(
𝑑𝑠𝑁 , 𝑒𝑠

)
Γ𝑠
𝑁

(5.42)

− 1
Δ𝑡2

𝑚𝑠 (𝑑𝑛−2
𝑠 , 𝑒𝑠) + (𝑔𝑛2 , 𝑒𝑠)Γ𝐼 ∀𝑒𝑠 ∈ 𝐸𝑠,

and

𝑢0
𝑓 = 𝑢0, 𝑑−1

𝑠 = 𝑑0 − Δ𝑡𝑑0,𝜕𝑡
𝑠 , 𝑑0

𝑠 = 𝑑0. (5.43)

As before, 𝑑∗,𝑛𝑠 is an extrapolation of the quantity 𝑑𝑛𝑠 obtained using previous time–step values, for
example, 𝑑∗,𝑛𝑠 can be defined as

𝑑∗,𝑛𝑠 := 2𝑑𝑛−1
𝑠 − 𝑑𝑛−2

𝑠 . (5.44)
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5.2.4 Domain Decomposition formulation

Now, having in hand all the necessary ingredients, we are able to write down an optimisation–based
domain–decomposition algorithm for the FSI problem (5.9) – (5.13). It reads as follows: minimise
over 𝑔 ∈ 𝐿2(Γ𝐼 ) the functional

𝐽𝛾 (𝑢𝑛𝑓 , 𝑑
𝑛
𝑠 ; 𝑔) = 1

2

∫
Γ𝐼

����𝑢𝑛𝑓 − 3𝑑𝑛𝑠 − 4𝑑𝑛−1
𝑠 + 𝑑𝑛−2

𝑠

2Δ𝑡

����2 𝑑Γ + 𝛾
2

∫
Γ𝐼

|𝑔 |2 𝑑Γ (5.45)

subject to the following state equations for 𝑛 ≥ 1:

• fluid momentum equation

1
Δ𝑡
𝑚 𝑓 (𝑢𝑛𝑓 , 𝑣 𝑓 ; 𝑑

𝑛
𝑓 ) + 𝑎 𝑓 (𝑢𝑛𝑓 , 𝑣 𝑓 ; 𝑑

𝑛
𝑓 ) +

1
Δ𝑡
𝑐𝐴𝐿𝐸𝑓 (𝑑𝑛𝑓 , 𝑣 𝑓 , 𝑢

𝑛
𝑓 ; 𝑑

𝑛
𝑓 )

+ 𝑏𝐴𝑓 (𝑝
𝑛
𝑓 , 𝑣 𝑓 ; 𝑑

𝑛
𝑓 ) + 𝑐 𝑓 (𝑢

𝑛
𝑓 , 𝑢

𝑛
𝑓 , 𝑣 𝑓 ; 𝑑

𝑛
𝑓 )

=
1
Δ𝑡
𝑚 𝑓 (𝑢𝑛−1

𝑓 , 𝑣 𝑓 ; 𝑑𝑛𝑓 ) + 𝑓 𝑓 (𝑣 𝑓 ; 𝑑𝑛𝑓 ) +
(
𝑢
𝑓

𝑁
, 𝑣 𝑓

)
Γ
𝑓

𝑁

(5.46)

+ 1
Δ𝑡
𝑐𝐴𝐿𝐸𝑓 (𝑑𝑛−1

𝑓 , 𝑣 𝑓 , 𝑢
𝑛
𝑓 ; 𝑑

𝑛
𝑓 ) + (𝑔, 𝑣 𝑓 )Γ𝐼 ∀𝑣 𝑓 ∈ 𝑉 𝑓 ,

• incompressibility equation

𝑏𝐵𝑓 (𝑢
𝑛
𝑓 , 𝑞 𝑓 ; 𝑑

𝑛
𝑓 ) = 0 ∀𝑞 𝑓 ∈ 𝑄 𝑓 , (5.47)

• extension equation

𝑎𝑒𝑓 (𝑑
𝑛
𝑓 , 𝑒 𝑓 ) = 0 ∀𝑒 𝑓 ∈ 𝐸 𝑓 ,0, (5.48a)
𝑑𝑛𝑓 = 𝑑∗,𝑛𝑠 on Γ𝐼 , (5.48b)

• structure equation

1
Δ𝑡2

𝑚𝑠 (𝑑𝑛𝑠 , 𝑒𝑠) + 𝑎𝑠 (𝑑𝑛𝑠 , 𝑒𝑠) =
2
Δ𝑡2

𝑚𝑠 (𝑑𝑛−1
𝑠 , 𝑒𝑠) + 𝑓𝑠 (𝑒𝑠) +

(
𝑑𝑠𝑁 , 𝑒𝑠

)
Γ𝑠
𝑁

(5.49)

− 1
Δ𝑡2

𝑚𝑠 (𝑑𝑛−2
𝑠 , 𝑒𝑠) − (𝑔, 𝑒𝑠)Γ𝐼 ∀𝑒𝑠 ∈ 𝐸𝑠,

and

𝑢0
𝑓 = 𝑢0, 𝑑−1

𝑠 = 𝑑0 − Δ𝑡𝑑0,𝜕𝑡
𝑠 , 𝑑0

𝑠 = 𝑑0. (5.50)

It can be easily seen that thanks to the fact that we use an extrapolation for the fluid–displacement
problem (5.48), the variable 𝑑𝑛

𝑓
can be computed at the beginning of the time step and then substituted

into the fluid momentum and incompressibility equations.
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5.3 Optimality system and optimisation algorithms

In this section, we will present some techniques for dealing with the optimal control problem intro-
duced at the end of Section 5.2. In the first part, we will derive an optimality system via Lagrange
multiplier techniques. This will allow us to find the formula of the objective functional gradient
that will open many ways of tackling a minimisation problem by gradient–based optimisation al-
gorithm. In the second part, we will rewrite the problem in the context of non–linear least square
minimisation problem and describe the Gauss–Newton optimisation technique.

5.3.1 Optimality system

One of the ways to address the constrained optimisation problem is to reformulate the initial problem
in terms of a Lagrangian functional by introducing the so–called adjoint variables. In this way, the
optimal solution to the original problem is sought among the stationary points of the Lagrangian,
see, for instance, [76, 83].

We define two sets of variable: the state variables 𝑉𝑛 =

{
𝑢𝑛
𝑓
, 𝑝𝑛

𝑓
, 𝑑𝑛𝑠

}
∈ 𝑉 𝑓 × 𝑄 𝑓 × 𝐸𝑠 and

the adjoint variables Θ =
{
𝜉 𝑓 , 𝜂 𝑓 , 𝜉𝑠

}
∈ 𝑉 𝑓 × 𝑄 𝑓 × 𝐸𝑠. The Lagrange functional for our optimal

control problem is defined as follows:

L
(
𝑉𝑛,Θ, 𝑑𝑛𝑓 , 𝑔

)
= 𝐽𝛾 (𝑢𝑛𝑓 , 𝑑

𝑛
𝑠 ; 𝑔) −

[
1
Δ𝑡
𝑚 𝑓 (𝑢𝑛𝑓 , 𝜉 𝑓 ; 𝑑

𝑛
𝑓 ) + 𝑎 𝑓 (𝑢

𝑛
𝑓 , 𝜉 𝑓 ; 𝑑

𝑛
𝑓 ) (5.51)

+ 1
Δ𝑡
𝑐𝐴𝐿𝐸𝑓 (𝑑𝑛𝑓 , 𝜉 𝑓 , 𝑢

𝑛
𝑓 ; 𝑑

𝑛
𝑓 ) + 𝑏

𝐴
𝑓 (𝑝

𝑛
𝑓 , 𝜉 𝑓 ; 𝑑

𝑛
𝑓 ) + 𝑐 𝑓 (𝑢

𝑛
𝑓 , 𝑢

𝑛
𝑓 , 𝜉 𝑓 ; 𝑑

𝑛
𝑓 )

− 1
Δ𝑡
𝑚 𝑓 (𝑢𝑛−1

𝑓 , 𝜉 𝑓 ; 𝑑𝑛𝑓 ) − 𝑓 𝑛𝑓 (𝜉 𝑓 ; 𝑑
𝑛
𝑓 ) −

1
Δ𝑡
𝑐𝐴𝐿𝐸𝑓 (𝑑𝑛−1

𝑓 , 𝜉 𝑓 , 𝑢
𝑛
𝑓 ; 𝑑

𝑛
𝑓 )

]
− 𝑏𝐵𝑓 (𝑢

𝑛
𝑓 , 𝜂 𝑓 ; 𝑑

𝑛
𝑓 ) −

[
1
Δ𝑡2

𝑚𝑠 (𝑑𝑛𝑠 , 𝜉𝑠) + 𝑎𝑠 (𝑑𝑛𝑠 , 𝜉𝑠) − 𝑓 𝑛𝑠 (𝜉𝑠)
]

+
(
𝑢
𝑓

𝑁
, 𝜉 𝑓

)
Γ
𝑓

𝑁

+
(
𝑑𝑠𝑁 , 𝜉𝑠

)
Γ𝑠
𝑁

+ (𝑔, 𝜉 𝑓 )Γ𝐼 − (𝑔, 𝜉𝑠)Γ𝐼 .

As has been pointed out before, the fluid displacement 𝑑𝑛
𝑓

can be precomputed before, so that we
do not need to introduce a Lagrange multiplier or a lifting function for this variable.

We now apply the necessary conditions for finding stationary points of L. Setting to zero the
first variations w.r.t. 𝜉 𝑓 ∈ 𝑉 𝑓 and 𝜂 𝑓 ∈ 𝑄 𝑓 and 𝜉𝑠 ∈ 𝐸𝑠 yields the state equations (5.46)– (5.47)
and (5.49). Setting to zero the first variations w.r.t. 𝑢𝑛

𝑓
, 𝑝𝑛

𝑓
and 𝑒𝑛𝑠 yields the adjoint equations:
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• adjoint fluid momentum equation
1
Δ𝑡
𝑚 𝑓 (𝛿𝑣 𝑓 , 𝜉 𝑓 ; 𝑑𝑛𝑓 ) + 𝑎 𝑓 (𝛿𝑣 𝑓 , 𝜉 𝑓 ; 𝑑𝑛𝑓 ) + 𝑐 𝑓 (𝛿𝑣 𝑓 , 𝑢

𝑛
𝑓 , 𝜉 𝑓 ; 𝑑

𝑛
𝑓 )

+ 𝑐 𝑓 (𝑢𝑛𝑓 , 𝛿𝑣 𝑓 , 𝜉 𝑓 ; 𝑑
𝑛
𝑓 ) + 𝑏

𝐵
𝑓 (𝛿𝑣 𝑓 , 𝜂 𝑓 ; 𝑑

𝑛
𝑓 ) (5.52)

+ 𝑐𝐴𝐿𝐸𝑓

(
𝑑𝑛
𝑓
− 𝑑𝑛−1

𝑓

Δ𝑡
, 𝜉 𝑓 , 𝛿𝑣 𝑓 ; 𝑑𝑛𝑓

)
=

(
𝑢𝑛𝑓 −

3𝑑𝑛𝑠 − 4𝑑𝑛−1
𝑠 + 𝑑𝑛−2

𝑠

2Δ𝑡
, 𝛿𝑣 𝑓

)
Γ𝐼

∀𝛿𝑣 𝑓 ∈ 𝑉 𝑓 ,

• adjoint incompressibility equation

𝑏𝐴𝑓 (𝜉 𝑓 , 𝛿𝑞 𝑓 ; 𝑑
𝑛
𝑓 ) = 0 ∀𝛿𝑞 𝑓 ∈ 𝑄 𝑓 , (5.53)

• adjoint structure equation
1
Δ𝑡2

𝑚𝑠 (𝛿𝑒𝑠, 𝜉𝑠) + 𝑎𝑠 (𝛿𝑒𝑠, 𝜉𝑠) (5.54)

=

(
𝑢𝑛𝑓 −

3𝑑𝑛𝑠 − 4𝑑𝑛−1
𝑠 + 𝑑𝑛−2

𝑠

2Δ𝑡
,− 3

2Δ𝑡
𝛿𝑒𝑠

)
Γ𝐼

∀𝛿𝑒𝑠 ∈ 𝐸𝑠 .

Finally, setting to zero the first variations w.r.t. 𝑔 ∈ 𝐿2(Γ𝐼 ) yields the optimality condition:

𝛾 (ℎ, 𝑔)Γ𝐼 +
(
ℎ, 𝜉 𝑓

)
Γ𝐼

− (ℎ, 𝜉𝑠)Γ𝐼 = 0 ∀ℎ ∈ 𝐿2(Γ𝐼 ). (5.55)

5.3.2 Sensitivity derivatives

In order to obtain the expression for the gradient of the optimisation problem at hand, we will
resort to the sensitivity derivatives approach; see, for instance, [76, 83]. The approach consists of
finding equations for directional derivatives of the state variables with respect to the control, called
sensitivities.
The first derivative 𝑑J𝛾

𝑑𝑔
of J𝛾 is defined through its action on the variation �̃� as follows:〈

𝑑𝐽𝛾

𝑑𝑔
, �̃�

〉
=

(
𝑢𝑛𝑓 −

3𝑑𝑛𝑠 − 4𝑑𝑛−1
𝑠 + 𝑑𝑛−2

𝑠

2Δ𝑡
, �̃� 𝑓 −

3
2Δ𝑡

𝑑𝑠

)
Γ𝐼

+ 𝛾(𝑔, �̃�)Γ𝐼 , (5.56)

where �̃� 𝑓 ∈ 𝑉 𝑓 , 𝑝 𝑓 ∈ 𝑄 𝑓 and 𝑑𝑠 ∈ 𝐸𝑠 are the solutions to:

• sensitivity fluid momentum equation

1
Δ𝑡
𝑚 𝑓 (�̃� 𝑓 , 𝑣 𝑓 ; 𝑑𝑛𝑓 ) + 𝑎 𝑓 (�̃� 𝑓 , 𝑣 𝑓 ; 𝑑𝑛𝑓 ) + 𝑐

𝐴𝐿𝐸
𝑓

(
𝑑𝑛
𝑓
− 𝑑𝑛−1

𝑓

Δ𝑡
, 𝑣 𝑓 , �̃� 𝑓 ; 𝑑𝑛𝑓

)
+ 𝑏𝐴𝑓 (𝑝 𝑓 , 𝑣 𝑓 ; 𝑑

𝑛
𝑓 ) + 𝑐 𝑓 (�̃� 𝑓 , 𝑢

𝑛
𝑓 , 𝑣 𝑓 ; 𝑑

𝑛
𝑓 )

+ 𝑐 𝑓 (𝑢𝑛𝑓 , �̃� 𝑓 , 𝑣 𝑓 ; 𝑑
𝑛
𝑓 ) = (�̃�, 𝑣 𝑓 )Γ𝐼 ∀𝑣 𝑓 ∈ 𝑉 𝑓 , (5.57)
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• sensitivity incompressibility equation

𝑏𝐵𝑓 (�̃� 𝑓 , 𝑞 𝑓 ; 𝑑
𝑛
𝑓 ) = 0 ∀𝑞 𝑓 ∈ 𝑄 𝑓 , (5.58)

• sensitivity structure equation

1
Δ𝑡2

𝑚𝑠 (𝑑𝑠, 𝑒𝑠) + 𝑎𝑠 (𝑑𝑠, 𝑒𝑠) = −(�̃�, 𝑒𝑠)Γ𝐼 ∀𝑒𝑠 ∈ 𝐸𝑠 . (5.59)

We can make use of the adjoint equations (5.52)– (5.54) in order to find the representation of the
gradient of the functional J𝛾 . Let 𝜉 𝑓 , 𝜂 𝑓 and 𝜉𝑠 be the solutions to (5.52)– (5.54) and �̃� 𝑓 , 𝑝 𝑓 and
𝑑𝑠 be the solutions to (5.57)– (5.59). By setting 𝛿𝑣 𝑓 := �̃� 𝑓 in (5.52), 𝛿𝑞 𝑓 := 𝑝 𝑓 in (5.53), 𝛿𝑒𝑠 := 𝑑𝑠
in (5.54), and 𝑣 𝑓 := 𝜉 𝑓 in (5.57) and 𝑞 𝑓 := 𝜂 𝑓 in (5.58), 𝑒𝑠 := 𝜉𝑠 in (5.59), we obtain:(

𝑢𝑛𝑓 −
3𝑑𝑛𝑠 − 4𝑑𝑛−1

𝑠 + 𝑑𝑛−2
𝑠

2Δ𝑡
, �̃� 𝑓 −

3
2Δ𝑡

𝑑𝑠

)
Γ𝐼

= (�̃�, 𝜉 𝑓 )Γ𝐼 − (�̃�, 𝜉𝑠)Γ𝐼 ,

so that it yields the explicit formula for the gradient of J𝛾:

𝑑J𝛾
𝑑𝑔

(𝑢𝑛𝑓 , 𝑑
𝑛
𝑠 ; 𝑔) = 𝛾𝑔 + 𝜉 𝑓 |Γ𝐼 − 𝜉𝑠 |Γ𝐼 , (5.60)

where 𝜉 𝑓 and 𝜉𝑠 are determined from 𝑔 through (5.52)– (5.54). Notice that the gradient expres-
sion (5.60) is consistent with the optimality condition (5.55) derived in the previous section.

5.3.3 Gradient–based algorithm for the optimisation problem

In view of being able to provide a closed–form formula for the gradient for the objective functional
J𝛾 , the natural way to proceed is to resort to a gradient–based iterative optimisation algorithm.
In order to keep the exposition simple, we will describe the idea using a simple gradient method
with a fixed step, while, in practice, we will use more sophisticated gradient–based methods. For
every time step 𝑡𝑛, given an initial guess 𝑔 (0) , which we set from the previous time step, we update
successive values of 𝑔 ( 𝑗 ) with

𝑔 ( 𝑗+1) = 𝑔 ( 𝑗 ) − 𝛼
𝑑J𝛾
𝑑𝑔

(
𝑢
𝑛, ( 𝑗 )
𝑓

, 𝑑
𝑛, ( 𝑗 )
𝑠 ; 𝑔 ( 𝑗 )

)
. (5.61)

Combining this with (5.60) we obtain:

𝑔 ( 𝑗+1) = 𝑔 ( 𝑗 ) − 𝛼
(
𝛾𝑔 ( 𝑗 ) + 𝜉 ( 𝑗 )

𝑓

���
Γ𝐼

− 𝜉
( 𝑗 )
𝑠

���
Γ𝐼

)
, (5.62)

where 𝜉 ( 𝑗 )
𝑓

and 𝜉 ( 𝑗 )𝑠 are determined from (5.52)– (5.54) with 𝑔 replaced by 𝑔 ( 𝑗 ) .
To summarise, we describe in Algorithm 5.1 the procedure used to find 𝑔𝑛 at every time step

𝑡𝑛. Some of the common convergence criteria for Algorithm 5.1 are values of the functional or
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Algorithm 5.1 Gradient–based algorithm for optimisation

Input: 𝑔 (0) := 𝑔𝑛−1, 𝛼 > 0
𝑗 := 0
while Convergence criteria are not met do

Solve (5.46)– (5.49) for 𝑢𝑛, ( 𝑗 )
𝑓

∈ 𝑉 𝑓 , 𝑑𝑛, ( 𝑗 )𝑠 ∈ 𝐸𝑠 with 𝑔 = 𝑔 ( 𝑗 )

Solve (5.52)– (5.54) for 𝜉 ( 𝑗 )
𝑓

∈ 𝑉 𝑓 , 𝜉 ( 𝑗 )𝑠 ∈ 𝐸𝑠 with 𝑢𝑛
𝑓
= 𝑢

𝑛, ( 𝑗 )
𝑓

, 𝑑𝑛𝑠 = 𝑑
𝑛, ( 𝑗 )
𝑠

Update 𝑔 ( 𝑗+1) := (1 − 𝛼𝛾) 𝑔 ( 𝑗 ) − 𝛼
(
𝜉
( 𝑗 )
𝑓

���
Γ𝐼

− 𝜉
( 𝑗 )
𝑠

���
Γ𝐼

)
𝑗 := 𝑗 + 1

end while
return 𝑔𝑛 := 𝑔 ( 𝑗 )

of the gradient norm smaller than a given tolerance and the maximum number of optimisation
iterations. Most commonly, a couple of them are used together. In practice, the methods we will
use to solve such problems are Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Newton Conjugate
Gradient (CG) algorithms, which show faster convergence and higher efficiency with respect to the
steepest–descent algorithm.
Remark (Sensitivity of “black–box” gradient optimisation algorithms to small data). In the numer-
ical results presented at the end of this chapter, the structure (and consequently fluid) displacement
has a very small magnitude. In this case, the “black–box” gradient optimisation algorithm as, for
example, the algorithms from the scipy library [183] used for the simulations in Chapters 3 and 4,
sometimes show very slow convergence. This prompted us to search for different optimisation
methods, and one of these will be described in the following section. Nevertheless, we believe that
in other FSI settings, the procedure above might be very effective.

5.3.4 Non–linear least squares setting

We use non–linear least squares to develop a computational algorithm for the constrained optimal
control problem.

We define the non–linear operator 𝑁𝑛 : 𝐿2(Γ𝐼 ) → 𝐿2(Γ𝐼 ) × 𝐿2(Γ𝐼 ) by

𝑁𝑛 (𝑔) =
(
𝑢𝑛
𝑓

���
Γ𝐼

− 3𝑑𝑛𝑠 −4𝑑𝑛−1
𝑠 +𝑑𝑛−2

𝑠

2Δ𝑡

���
Γ𝐼√

𝛾𝑔

)
, (5.63)

where 𝑢𝑛
𝑓

and 𝑑𝑛𝑠 are solutions to the state equations (5.46)– (5.49) with 𝑔 as a stress function on
the interface Γ𝐼 . Then, the functional J𝛾 can be rewritten as

𝐽𝛾 (𝑢𝑛𝑓 , 𝑑
𝑛
𝑠 ; 𝑔) = 1

2
| |𝑁𝑛 (𝑔) | |2𝐿2 (Γ𝐼 )×𝐿2 (Γ𝐼 ) . (5.64)

The non–linear least square optimisation problem is the following: minimise the functional (5.64)
over 𝑔 ∈ 𝐿2(Γ𝐼 ) subject to (5.46)– (5.49).
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To tackle this problem, we undertake the strategy described in [77, 98]. The functional 𝑁𝑛 can be
linearised at a point �̄� ∈ 𝐿2(Γ𝐼 ) by using its Fréchet derivative 𝑁 ′

𝑛 (�̄�) : 𝐿2(Γ𝐼 ) → 𝐿2(Γ𝐼 ) × 𝐿2(Γ𝐼 )
by

𝑁𝑛 (𝑔) = 𝑁𝑛 (�̄�) + 𝑁 ′
𝑛 (�̄�) [𝑔 − �̄�] +𝑂

(
| |𝑔 − �̄� | |2

𝐿2 (Γ𝐼 )×𝐿2 (Γ𝐼 )

)
.

Then, solutions of the nonlinear least squares problem can be obtained by repeatedly solving the
linear least squares problem: minimise over ℎ ∈ 𝐿2(Γ𝐼 ) the following

1
2
| |𝑁 (�̄�) + 𝑁𝑛′(�̄�) [ℎ] | |2𝐿2 (Γ𝐼 )×𝐿2 (Γ𝐼 ) , (5.65)

where ℎ = 𝑔 − �̄�. Hence, starting with arbitrary 𝑔 (0) , we can find a sequence {𝑔 (𝑘 ) } obtained by
𝑔 (𝑘 ) = 𝑔 (𝑘−1) + ℎ (𝑘 ) , where ℎ (𝑘 ) is the solution of the linear least square problem above. We will
make use of the conjugate gradient algorithm.

5.3.5 Fréchet derivative and its conjugate

For �̄� ∈ 𝐿2(Γ𝐼 ), the Fréchet derivative 𝑁𝑛′(�̄�) [·] : 𝐿2(Γ𝐼 ) → 𝐿2(Γ𝐼 ) × 𝐿2(Γ𝐼 ) is defined by

𝑁𝑛
′(�̄�) [ℎ] =

(
𝑤 𝑓

��
Γ𝐼

− 3
2Δ𝑡 𝜙𝑠 |Γ𝐼√
𝛾ℎ

)
, (5.66)

where 𝑤 𝑓 and 𝜙𝑠 are the solutions to

1
Δ𝑡
𝑚 𝑓 (𝑤 𝑓 , 𝑣 𝑓 ; 𝑑𝑛𝑓 ) + 𝑎 𝑓 (𝑤 𝑓 , 𝑣 𝑓 ; 𝑑𝑛𝑓 ) + 𝑐

𝐴𝐿𝐸
𝑓

(
𝑑𝑛
𝑓
− 𝑑𝑛−1

𝑓

Δ𝑡
, 𝑣 𝑓 , 𝑤 𝑓 ; 𝑑𝑛𝑓

)
+ 𝑏𝐴𝑓 (𝜓 𝑓 , 𝑣 𝑓 ; 𝑑

𝑛
𝑓 ) + 𝑐 𝑓 (𝑤 𝑓 , �̄� 𝑓 , 𝑣 𝑓 ; 𝑑

𝑛
𝑓 )

+ 𝑐 𝑓 (�̄� 𝑓 , 𝑤 𝑓 , 𝑣 𝑓 ; 𝑑𝑛𝑓 ) = (ℎ, 𝑣 𝑓 )Γ𝐼 ∀𝑣 𝑓 ∈ 𝑉 𝑓 , (5.67)

𝑏𝐵𝑓 (𝑤 𝑓 , 𝑞 𝑓 ; 𝑑
𝑛
𝑓 ) = 0 ∀𝑞 𝑓 ∈ 𝑄 𝑓 , (5.68)

and

1
Δ𝑡2

𝑚𝑠 (𝜙𝑠, 𝑒𝑠) + 𝑎𝑠 (𝜙𝑠, 𝑒𝑠) = −(ℎ, 𝑒𝑠)Γ𝐼 ∀𝑒𝑠 ∈ 𝐸𝑠, (5.69)

where �̄� 𝑓 is the solution to the fluid state equations (5.46)– (5.49) with 𝑔 replaced by �̄�.
The adjoint of 𝑁𝑛′(�̄�) [·] is (𝑁𝑛′(�̄�))∗ [·] : 𝐿2(Γ𝐼 ) × 𝐿2(Γ𝐼 ) → 𝐿2(Γ𝐼 ), given by

(𝑁𝑛′(�̄�))∗
[
𝑟

𝑠

]
= 𝛽 𝑓

��
Γ𝐼

− 3
2Δ𝑡

𝜑𝑠 |Γ𝐼 +
√
𝛾𝑠, (5.70)
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where 𝛽 𝑓 and 𝜑𝑠 are solutions of

1
Δ𝑡
𝑚 𝑓 (𝑣 𝑓 , 𝛽 𝑓 ; 𝑑𝑛𝑓 ) + 𝑎 𝑓 (𝑣 𝑓 , 𝛽 𝑓 ; 𝑑𝑛𝑓 ) + 𝑐

𝐴𝐿𝐸
𝑓

(
𝑑𝑛
𝑓
− 𝑑𝑛−1

𝑓

Δ𝑡
, 𝛽 𝑓 , 𝑣 𝑓 ; 𝑑𝑛𝑓

)
+ 𝑏𝐵𝑓 (𝑣 𝑓 , 𝛼 𝑓 ; 𝑑

𝑛
𝑓 ) + 𝑐 𝑓 (𝑣 𝑓 , �̄� 𝑓 , 𝛽 𝑓 ; 𝑑

𝑛
𝑓 )

+ 𝑐 𝑓 (�̄� 𝑓 , 𝑣 𝑓 , 𝛽 𝑓 ; 𝑑𝑛𝑓 ) = (𝑟, 𝑣 𝑓 )Γ𝐼 ∀𝑣 𝑓 ∈ 𝑉 𝑓 , (5.71)

𝑏𝐴𝑓 (𝑞 𝑓 , 𝛽 𝑓 ; 𝑑
𝑛
𝑓 ) = 0 ∀𝑞 𝑓 ∈ 𝑄 𝑓 , (5.72)

and

1
Δ𝑡2

𝑚𝑠 (𝑒𝑠, 𝜑𝑠) + 𝑎𝑠 (𝑒𝑠, 𝜑𝑠) = −(𝑟, 𝑒𝑠)Γ𝐼 ∀𝑒𝑠 ∈ 𝐸𝑠 . (5.73)

Indeed, by setting 𝑣 𝑓 := 𝑤 𝑓 in (5.71), 𝑞 𝑓 := 𝜓 𝑓 in (5.72) and 𝑒𝑠 := 𝜙𝑠 in (5.73), we get

(
𝑤 𝑓 , 𝑟

)
Γ𝐼

=
1
Δ𝑡
𝑚 𝑓 (𝑤 𝑓 , 𝛽 𝑓 ; 𝑑𝑛𝑓 ) + 𝑎 𝑓 (𝑤 𝑓 , 𝛽 𝑓 ; 𝑑

𝑛
𝑓 ) + 𝑐

𝐴𝐿𝐸
𝑓

(
𝑑𝑛
𝑓
− 𝑑𝑛−1

𝑓

Δ𝑡
, 𝛽 𝑓 , 𝑤 𝑓 ; 𝑑𝑛𝑓

)
+ 𝑏𝐵𝑓 (𝑤 𝑓 , 𝛼 𝑓 ; 𝑑

𝑛
𝑓 ) + 𝑐𝑢 (�̄� 𝑓 , 𝑤 𝑓 , 𝛽 𝑓 ; 𝑑

𝑛
𝑓 ) + 𝑐𝑢 (𝑤 𝑓 , �̄� 𝑓 , 𝛽 𝑓 ; 𝑑

𝑓
𝑛 )

+ 𝑏𝐴𝑓 (𝜓 𝑓 , 𝛽 𝑓 ; 𝑑
𝑛
𝑓 ) = (ℎ, 𝛽 𝑓 )Γ𝐼

and

(−𝜙𝑠, 𝑟)Γ𝐼 =
1
Δ𝑡2

𝑚𝑠 (𝜙𝑠, 𝜑𝑠) + 𝑎𝑠 (𝜙𝑠, 𝜑𝑠) = −(ℎ, 𝜑𝑠)Γ𝐼 .

This leads to (
𝑤 𝑓 −

3
2Δ𝑡

𝜙𝑠, 𝑟

)
Γ𝐼

= (𝛽 𝑓 −
3

2Δ𝑡
𝜑𝑠, ℎ)Γ𝐼

that, in turn, gives us〈
(𝑁𝑛′(�̄�) [ℎ],

(
𝑟

𝑠

)〉
=

(
𝑤 𝑓 −

3
2Δ𝑡

𝜙𝑠, 𝑟

)
Γ𝐼

+ √
𝛾(ℎ, 𝑠)Γ𝐼

=

(
𝛽 𝑓 −

3
2Δ𝑡

𝜑𝑠, ℎ

)
Γ𝐼

+ √
𝛾(ℎ, 𝑠)Γ𝐼

=

〈
ℎ, (𝑁𝑛′(�̄�))∗

[
𝑟

𝑠

]〉
.

The Fréchet derivative (5.66) and its conjugate (5.70) derived here are the key elements of the
Gauss–Newton optimisation algorithm that will be described in the next section.
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Algorithm 5.2 Gauss–Newton (GN) algorithm

Input: 𝑔 (0) := 𝑔𝑛−1, 𝐼𝑡𝑚𝑎𝑥 and 𝜀𝑡𝑜𝑙
for 𝑗 = 1, . . . , 𝐼𝑡𝑚𝑎𝑥 do

Solve (5.46)– (5.47) for 𝑢𝑛, ( 𝑗 )
𝑓

∈ 𝑉 𝑓 and 𝑝𝑛, ( 𝑗 )
𝑓

∈ 𝑄 𝑓 with 𝑔 = 𝑔 ( 𝑗−1)

Solve (5.49) for 𝑑𝑛, ( 𝑗 )𝑠 ∈ 𝐸𝑠 with 𝑔 = 𝑔 ( 𝑗−1)

Solve (5.48) for 𝑑𝑛, ( 𝑗 )
𝑓

with 𝑑∗,𝑛𝑠 = 𝑑
𝑛, ( 𝑗 )
𝑠

if 1
2

∫
Γ𝐼

����𝑢𝑛, ( 𝑗 )𝑓
− 3𝑑𝑛, ( 𝑗)𝑠 −2𝑑𝑛−1

𝑠 +𝑑𝑛−2
𝑠

2Δ𝑡

����2 𝑑Γ < 𝜀𝑡𝑜𝑙 then
break

end if
Compute ℎ ( 𝑗 ) by the Conjugate Gradient Algorithm 5.3 with 𝐴 = 𝑁 ′

𝑛

(
𝑔 ( 𝑗−1) ) ,

𝑏 = −𝑁𝑛
(
𝑔 ( 𝑗−1) ) and 𝐴∗ =

(
𝑁 ′
𝑛

(
𝑔 ( 𝑗−1) ) )∗

Set 𝑔 ( 𝑗 ) := 𝑔 ( 𝑗−1) + ℎ ( 𝑗 ) .
end for
Set 𝑢𝑛

𝑓
:= 𝑢𝑛, ( 𝑗 )

𝑓
, 𝑝𝑛

𝑓
:= 𝑝𝑛, ( 𝑗 )

𝑓
, 𝑑𝑛

𝑓
:= 𝑑𝑛, ( 𝑗 )

𝑓
, 𝑑𝑛𝑠 := 𝑑𝑛, ( 𝑗 )𝑠 , 𝑔𝑛 := 𝑔 ( 𝑗 )

return 𝑢𝑛
𝑓
, 𝑝𝑛

𝑓
, 𝑑𝑛

𝑓
, 𝑑𝑛𝑠 , 𝑔

𝑛

5.3.6 The Gauss–Newton optimisation algorithm

The nonlinear least squares problem described in Section 5.3.4 can be solved using the Gauss–
Newton Algorithm 5.2.

In Algorithm 5.3, we show the conjugate gradient algorithm used in the Gauss–Newton opti-
misation process. More details can be found in [77, 73, 67].

Now that we have described the whole setting on the continuous level, we can move onto a
spatial discretisation and a reduced–order model setting. This will be the topic of the following
sections.

5.4 Finite Element discretisation

In this section, we present the Finite Element spatial discretisation for the previously introduced
optimal control problem. We assume to have at hand two well–defined triangulations T𝑓 and T𝑠
over the domains Ω 𝑓 and Ω𝑠, respectively, and an extra lower–dimensional triangulation T𝐼 of the
interface Γ𝐼 . In theory, there is no requirement for the meshes T𝑓 and T𝑠 to be conforming on the
interface Γ𝐼 , but in the numerical examples listed later in the chapter, this limitation was imposed by
the software. We can then define usual Lagrangian FE spaces 𝑉 𝑓 ,ℎ ⊂ 𝑉 𝑓 , 𝑄 𝑓 ,ℎ ⊂ 𝑄𝑖 ,𝐸 𝑓 ,ℎ ⊂ 𝐸 𝑓 ,
𝐸 𝑓 ,0,ℎ ⊂ 𝐸 𝑓 ,0 and 𝑋ℎ ⊂ 𝐿2(Γ𝐼 ) endowed with 𝐿2(Γ𝐼 )–norm. The spaces𝑉 𝑓 ,ℎ, 𝐸 𝑓 ,ℎ and 𝐸 𝑓 ,0,ℎ are
endowed with 𝐻1

0 (Ω
𝑓 )–norm, the space 𝑄 𝑓 with 𝐿2(Ω 𝑓 )–norm and the space 𝐸𝑠,ℎ with 𝐻1

0 (Ω
𝑠)–

norm.
As it has been highlighted in Chapter 4, the discretisation of the fluid subsystem leads to a saddle–
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Algorithm 5.3 Conjugate gradient (CG) algorithm for the least squares problem

Input: 𝐴, 𝐴∗, 𝑏, ℎ (0) , itmax, 𝜀𝑡𝑜𝑙
𝑟 (0) := 𝑏 − 𝐴[ℎ (0) ]
𝑝 (0) := 𝐴∗ [𝑟 (0) ]
for 𝑗 = 0, . . . , itmax do

if | |𝐴∗ [𝑟 ( 𝑗 ) ] | |𝐿2 (Γ𝐼 ) < 𝜀𝑡𝑜𝑙 then
return ℎ ( 𝑗 )

end if
Compute

𝜎 ( 𝑗 ) :=
| |𝐴∗ [𝑟 ( 𝑗 ) ] | |2

𝐿2 (Γ𝐼 )

| |𝐴[𝑝 ( 𝑗 ) ] | |2
𝐿2 (Γ𝐼 )×𝐿2 (Γ𝐼 )

Set ℎ ( 𝑗+1) := ℎ ( 𝑗 ) + 𝜎 ( 𝑗 ) 𝑝 ( 𝑗 )

Set 𝑟 ( 𝑗+1) := 𝑟 ( 𝑗 ) − 𝜎 ( 𝑗 )𝐴[𝑝 ( 𝑗 ) ]
Compute

𝜏 ( 𝑗 ) :=
| |𝐴∗ [𝑟 ( 𝑗+1) ] | |2

𝐿2 (Γ𝐼 )

| |𝐴∗ [𝑟 ( 𝑗 ) ] | |2
𝐿2 (Γ𝐼 )

Set 𝑝 ( 𝑗+1) := 𝐴∗ [𝑟 ( 𝑗+1) ] + 𝜏 ( 𝑗 ) 𝑝 ( 𝑗 )
end for
return ℎ ( 𝑗 )

point problem. In order to guarantee the well–posedness of the discretised problem, we require the
FE spaces 𝑉 𝑓 ,ℎ and 𝑄 𝑓 ,ℎ to satisfy the following inf–sup condition in the ALE–coordinates, see,
for example, [153]: there exists 𝑐 ∈ R+ s.t.

inf
𝑞 𝑓 ,ℎ∈𝑄 𝑓 ,ℎ\{0}

sup
𝑣 𝑓 ,ℎ∈𝑉 𝑓 ,ℎ\{0}

𝑏𝐵
𝑓
(𝑣 𝑓 ,ℎ, 𝑞 𝑓 ,ℎ; 𝑑 𝑓 ,ℎ)

| |𝐽 1
2 𝑣 𝑓 ,ℎ𝐹

−𝑇 | |𝑉 𝑓 ,ℎ
| |𝐽 1

2 𝑞 𝑓 ,ℎ | |𝑄 𝑓 ,ℎ

≥ 𝑐, (5.74)

for every 𝑑 𝑓 ,ℎ ∈ 𝐸 𝑓 ,ℎ. A very common choice in this framework is to use the so–called generalised
Taylor–Hood finite element spaces, namely the Lagrange polynomial approximation of the second–
order for the fluid velocity and displacement, and of the first–order for pressure. We point out that
the order of the polynomial space 𝑋ℎ will not lead to big computational efforts as it is defined on
the 1–dimensional curve Γ𝐼 .
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5.4.1 Discrete optimal control problem for domain decomposition formulation

Using the Galerkin projection, we can derive the following discretised optimisation problem.
Minimise over 𝑔ℎ ∈ 𝑋ℎ the functional

𝐽𝛾,ℎ (𝑢𝑛𝑓 ,ℎ, 𝑑
𝑛
𝑠,ℎ; 𝑔ℎ) =

1
2

∫
Γ𝐼

�����𝑢𝑛𝑓 ,ℎ − 3𝑑𝑛
𝑠,ℎ

− 4𝑑𝑛−1
𝑠,ℎ

+ 𝑑𝑛−2
𝑠,ℎ

2Δ𝑡

�����2 𝑑Γ + 𝛾
2

∫
Γ𝐼

|𝑔ℎ |2 𝑑Γ (5.75)

under the constraints that 𝑢𝑛
𝑓 ,ℎ

∈ 𝑉 𝑓 ,ℎ, 𝑝𝑛𝑓 ,ℎ ∈ 𝑄 𝑓 ,ℎ, 𝑑𝑛𝑓 ,ℎ, 𝑑
𝑛
𝑠,ℎ

∈ 𝐸𝑠,ℎ satisfy the following
variational equations subject to the following state equations for 𝑛 ≥ 1:

• FEM fluid momentum equation

1
Δ𝑡
𝑚 𝑓 (𝑢𝑛𝑓 ,ℎ, 𝑣 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) + 𝑎 𝑓 (𝑢𝑛𝑓 ,ℎ, 𝑣 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) + 𝑏

𝐴
𝑓 (𝑝

𝑛
𝑓 ,ℎ, 𝑣 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ)

+ 𝑐𝐴𝐿𝐸𝑓

(
𝑑𝑛
𝑓 ,ℎ

− 𝑑𝑛−1
𝑓 ,ℎ

Δ𝑡
, 𝑣 𝑓 ,ℎ, 𝑢

𝑛
𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ

)
+ 𝑐 𝑓 (𝑢𝑛𝑓 ,ℎ, 𝑢

𝑛
𝑓 ,ℎ, 𝑣 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) (5.76)

=
1
Δ𝑡
𝑚 𝑓 (𝑢𝑛−1

𝑓 ,ℎ , 𝑣 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) + 𝑓 𝑓 (𝑣 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ)

+
(
𝑢
𝑓

𝑁
, 𝑣 𝑓 ,ℎ

)
Γ
𝑓

𝑁

+ (𝑔ℎ, 𝑣 𝑓 ,ℎ)Γ𝐼 ∀𝑣 𝑓 ,ℎ ∈ 𝑉 𝑓 ,ℎ,

• FEM incompressibility equation

𝑏𝐵𝑓 (𝑢
𝑛
𝑓 ,ℎ, 𝑞 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) = 0 ∀𝑞 𝑓 ,ℎ ∈ 𝑄 𝑓 ,ℎ, (5.77)

• FEM extension equation

𝑎𝑒𝑓 (𝑑
𝑛
𝑓 ,ℎ, 𝑒 𝑓 ,ℎ) = 0 ∀𝑒 𝑓 ,ℎ ∈ 𝐸 𝑓 ,0,ℎ, (5.78a)

𝑑𝑛𝑓 ,ℎ = 𝑑
∗,𝑛
𝑠,ℎ

on Γ𝐼 , (5.78b)

• FEM structure equation

1
Δ𝑡2

𝑚𝑠 (𝑑𝑛𝑠,ℎ, 𝑒𝑠,ℎ) + 𝑎𝑠 (𝑑𝑛𝑠,ℎ, 𝑒𝑠,ℎ) =
2
Δ𝑡2

𝑚𝑠 (𝑑𝑛−1
𝑠,ℎ , 𝑒𝑠,ℎ) + 𝑓𝑠 (𝑒𝑠,ℎ) (5.79)

+
(
𝑑𝑠𝑁 , 𝑒𝑠,ℎ

)
Γ𝑠
𝑁

− 1
Δ𝑡2

𝑚𝑠 (𝑑𝑛−2
𝑠,ℎ , 𝑒𝑠,ℎ) − (𝑔ℎ, 𝑒𝑠,ℎ)Γ𝐼 ∀𝑒𝑠,ℎ ∈ 𝐸𝑠,ℎ,

and

𝑢0
𝑓 ,ℎ = 𝑢0,ℎ, 𝑑−1

𝑠,ℎ = 𝑑
𝑠
0,ℎ − Δ𝑡𝑑

𝑠,𝜕𝑡

0,ℎ , 𝑑0
𝑠,ℎ = 𝑑

𝑠
ℎ,0, (5.80)
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where 𝑢𝑛0,ℎ is the Galerkin projection of 𝑢0 onto 𝑉 𝑓 ,ℎ, 𝑑∗,𝑛𝑠,ℎ is the Galerkin projection of 𝑑∗,𝑛𝑠 onto
𝐸𝑠,ℎ, 𝑑𝑠0,ℎ and 𝑑𝑠,𝜕𝑡0,ℎ are the Galerkin projection of 𝑑𝑠0 and 𝑑𝑠,𝜕𝑡0 onto 𝐸𝑠,ℎ, respectively. Notice that
the structure of the equations (5.76) – (5.79) and of the functional (5.75) is the same as the one
of the continuous case. This allows us to provide the following expression of the gradient of the
discretised functional (5.75):

𝑑J𝛾,ℎ
𝑑𝑔ℎ

(𝑢𝑛𝑓 ,ℎ, 𝑑
𝑛
𝑠,ℎ; 𝑔ℎ) = 𝛾𝑔ℎ + 𝜉 𝑓 ,ℎ |Γ𝐼 − 𝜉𝑠,ℎ |Γ𝐼 , (5.81)

where 𝜉 𝑓 ,ℎ and 𝜉𝑠,ℎ are the solutions to the discretised adjoint problem: find 𝜉 𝑓 ,ℎ ∈ 𝑉 𝑓 ,ℎ, 𝜂 𝑓 ,ℎ ∈
𝑄 𝑓 ,ℎ and 𝜉𝑠,ℎ ∈ 𝐸𝑠,ℎ that satisfy

• FEM adjoint fluid momentum equation

1
Δ𝑡
𝑚 𝑓 (𝛿𝑣 𝑓 ,ℎ, 𝜉 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) + 𝑎 𝑓 (𝛿𝑣 𝑓 ,ℎ, 𝜉 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) + 𝑐 𝑓 (𝛿𝑣 𝑓 ,ℎ, 𝑢

𝑛
𝑓 ,ℎ, 𝜉 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ)

+ 𝑐 𝑓 (𝑢𝑛𝑓 ,ℎ, 𝛿𝑣 𝑓 ,ℎ, 𝜉 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) + 𝑏
𝐵
𝑓 (𝛿𝑣 𝑓 ,ℎ, 𝜂 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ)

+ 𝑐𝐴𝐿𝐸𝑓

(
𝑑𝑛
𝑓 ,ℎ

− 𝑑𝑛−1
𝑓 ,ℎ

Δ𝑡
, 𝜉 𝑓 ,ℎ, 𝛿𝑣 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ

)
(5.82)

=

(
𝑢𝑛𝑓 ,ℎ −

3𝑑𝑛
𝑠,ℎ

− 4𝑑𝑛−1
𝑠,ℎ

+ 𝑑𝑛−2
𝑠,ℎ

2Δ𝑡
, 𝛿𝑣 𝑓 ,ℎ

)
Γ𝐼

∀𝛿𝑣 𝑓 ,ℎ ∈ 𝑉 𝑓 ,ℎ,

• FEM adjoint incompressibility equation

𝑏𝐴𝑓 (𝜉 𝑓 ,ℎ, 𝛿𝑞 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) = 0 ∀𝛿𝑞 𝑓 ,ℎ ∈ 𝑄 𝑓 , (5.83)

• FEM adjoint structure equation

1
Δ𝑡2

𝑚𝑠 (𝛿𝑒𝑠,ℎ, 𝜉𝑠,ℎ) + 𝑎𝑠 (𝛿𝑒𝑠,ℎ, 𝜉𝑠,ℎ) (5.84)

=

(
𝑢𝑛𝑓 ,ℎ −

3𝑑𝑛
𝑠,ℎ

− 4𝑑𝑛−1
𝑠,ℎ

+ 𝑑𝑛−2
𝑠,ℎ

2Δ𝑡
,− 3

2Δ𝑡
𝛿𝑒𝑠,ℎ

)
Γ𝐼

∀𝛿𝑒𝑠,ℎ ∈ 𝐸𝑠,ℎ .

In (5.81), the restriction ·|Γ𝐼 is meant as an 𝐿2(Γ𝐼 )–projection onto space 𝑋ℎ. The above formulae
allow us to write down the gradient–based algorithm similar to Algorithm 5.1. We would also
like to stress that at the algebraic level, the discretised minimisation problem acts only on the
finite–dimensional space R𝑝 of the variable 𝑔ℎ, where 𝑝 is the number of Finite Element degrees
of freedom that belong to the interface Γ𝐼 .
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5.4.2 Non–linear least squares setting

We use non–linear least squares to develop a computational algorithm for the constrained optimal
control problem. We introduce a notation that will be used throughout the section: the restriction
·|Γ𝐼 is meant as an 𝐿2(Γ𝐼 )–projection onto space 𝑋ℎ. We define the non–linear operator 𝑁𝑛,ℎ :
𝑋ℎ → 𝑋ℎ × 𝑋ℎ by

𝑁𝑛,ℎ (𝑔ℎ) =
©«𝑢

𝑛
𝑓 ,ℎ

���
Γ𝐼

− 3𝑑𝑛
𝑠,ℎ

−4𝑑𝑛−1
𝑠,ℎ

+𝑑𝑛−2
𝑠,ℎ

2Δ𝑡

����
Γ𝐼√

𝛾𝑔ℎ

ª®¬ , (5.85)

where 𝑢𝑛
𝑓 ,ℎ

and 𝑑𝑛
𝑠,ℎ

are solutions to the state equations (5.76)– (5.79) with 𝑔ℎ ∈ 𝑋ℎ as a disctretised
stress function on the interface Γ𝐼 . Then, the functional J𝛾,ℎ can be rewritten as

𝐽𝛾,ℎ (𝑢𝑛𝑓 ,ℎ, 𝑑
𝑛
𝑠,ℎ; 𝑔ℎ) =

1
2
| |𝑁𝑛,ℎ (𝑔ℎ) | |2𝑋ℎ×𝑋ℎ

. (5.86)

The non–linear least square optimisation problem is the following: minimise the functional (5.86)
over 𝑔ℎ ∈ 𝑋ℎ subject to (5.76)– (5.79). This problem can be tackled in a similar fashion as
on the continuous level, namely using the Gauss–Newton Algorithm 5.2. Considering that the
discrete non–linear least squares optimisation problem described above has the same structure as
the continuous one, it is straightforward to derive the Fréchet derivative and its conjugate for the
functional 𝑁𝑛,ℎ.

For �̄�ℎ ∈ 𝑋ℎ, the Fréchet derivative 𝑁 ′
𝑛,ℎ

(�̄�ℎ) [·] : 𝑋ℎ → 𝑋ℎ × 𝑋ℎ is defined by

𝑁 ′
𝑛,ℎ (�̄�ℎ) [𝑙ℎ] =

(
𝑤 𝑓 ,ℎ

��
Γ𝐼

− 3
2Δ𝑡 𝜙𝑠,ℎ

��
Γ𝐼√

𝛾𝑙ℎ

)
, (5.87)

where 𝑤 𝑓 ,ℎ and 𝜙𝑠,ℎ are the solutions to

1
Δ𝑡
𝑚 𝑓 (𝑤 𝑓 ,ℎ, 𝑣 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) + 𝑎 𝑓 (𝑤 𝑓 ,ℎ, 𝑣 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) + 𝑐

𝐴𝐿𝐸
𝑓

(
𝑑𝑛
𝑓 ,ℎ

− 𝑑𝑛−1
𝑓 ,ℎ

Δ𝑡
, 𝑣 𝑓 ,ℎ, 𝑤 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ

)
+ 𝑏𝐴𝑓 (𝜓 𝑓 ,ℎ, 𝑣 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) + 𝑐 𝑓 (𝑤 𝑓 ,ℎ, �̄� 𝑓 ,ℎ, 𝑣 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) (5.88)
+ 𝑐 𝑓 (�̄� 𝑓 ,ℎ, 𝑤 𝑓 ,ℎ, 𝑣 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) = (𝑙ℎ, 𝑣 𝑓 ,ℎ)Γ𝐼 ∀𝑣 𝑓 ,ℎ ∈ 𝑉 𝑓 ,ℎ,

𝑏𝐵𝑓 (𝑤 𝑓 ,ℎ, 𝑞 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) = 0 ∀𝑞 𝑓 ,ℎ ∈ 𝑄 𝑓 ,ℎ, (5.89)

and
1
Δ𝑡2

𝑚𝑠 (𝜙𝑠,ℎ, 𝑒𝑠,ℎ) + 𝑎𝑠 (𝜙𝑠,ℎ, 𝑒𝑠,ℎ) = −(𝑙ℎ, 𝑒𝑠,ℎ)Γ𝐼 ∀𝑒𝑠,ℎ ∈ 𝐸𝑠,ℎ, (5.90)

where �̄�𝑠,ℎ is the solution to the fluid state equations (5.82)– (5.83) with 𝑔ℎ replaced by �̄�ℎ.
The adjoint of 𝑁 ′

𝑛,ℎ
(�̄�ℎ) [·] is

(
𝑁 ′
𝑛,ℎ

(�̄�ℎ)
)∗

[·] : 𝑋ℎ × 𝑋ℎ → 𝑋ℎ, given by(
𝑁 ′
𝑛,ℎ (�̄�ℎ)

)∗ [
𝑟ℎ
𝑠ℎ

]
= 𝛽 𝑓 ,ℎ

��
𝐿2 (Γ𝐼 ) −

3
2Δ𝑡

𝜑𝑠,ℎ
��
𝐿2 (Γ𝐼 ) +

√
𝛾𝑠ℎ, (5.91)
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where 𝛽 𝑓 ,ℎ and 𝜑𝑠,ℎ are solutions of

1
Δ𝑡
𝑚 𝑓 (𝑣 𝑓 ,ℎ, 𝛽 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) + 𝑎 𝑓 (𝑣 𝑓 ,ℎ, 𝛽 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) + 𝑐

𝐴𝐿𝐸
𝑓

(
𝑑𝑛
𝑓 ,ℎ

− 𝑑𝑛−1
𝑓 ,ℎ

Δ𝑡
, 𝛽 𝑓 ,ℎ, 𝑣 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ

)
+ 𝑏𝐵𝑓 (𝑣 𝑓 ,ℎ, 𝛼 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) + 𝑐 𝑓 (𝑣 𝑓 ,ℎ, �̄� 𝑓 ,ℎ, 𝛽 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) (5.92)
+ 𝑐 𝑓 (�̄� 𝑓 ,ℎ, 𝑣 𝑓 ,ℎ, 𝛽 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) = (𝑟ℎ, 𝑣 𝑓 ,ℎ)Γ𝐼 ∀𝑣 𝑓 ,ℎ ∈ 𝑉 𝑓 ,ℎ,

𝑏𝐴𝑓 (𝑞 𝑓 ,ℎ, 𝛽 𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ) = 0 ∀𝑞 𝑓 ,ℎ ∈ 𝑄 𝑓 ,ℎ, (5.93)

and

1
Δ𝑡2

𝑚𝑠 (𝑒𝑠,ℎ, 𝜑𝑠,ℎ) + 𝑎𝑠 (𝑒𝑠,ℎ, 𝜑𝑠,ℎ) = −(𝑟ℎ, 𝑒𝑠,ℎ)Γ𝐼 ∀𝑒𝑠,ℎ ∈ 𝐸𝑠,ℎ . (5.94)

Now, having at hand the high–fidelity FEM model, we are able to derive a reduced–order model:
this will be the topic of the following section.

5.5 Reduced–Order Model
As highlighted in Section 2, reduced–order methods are efficient tools for significant reduction of
the computational time for parameter–dependent PDEs. We will now deal with the ROM for the
problem obtained in the previous section, where the state FSI problem is assumed to be dependent
on a set of physical parameters. We start with describing the reduced basis generation based on the
Proper Orthogonal Decomposition (POD) technique, which is followed by an online phase based
on a Galerkin projection onto the reduced spaces.

5.5.1 Reduced Basis Generation

Firstly, as it has been highlighted in Section 5.4, the discretised fluid subsystem has the saddle–point
structure. We therefore mention again the need for a supremiser, as it is described in Section 3.4.1,
to stabilise the reduced–order problem. In the case of the fluid dynamics problem with a moving
domain, having at our disposal an ALE map, we are able to perform a pullback of the equation (3.21)
onto the reference domain Ω 𝑓 and obtain the following problem for a supremiser variable: find
𝑠𝑝 ∈ 𝑉 𝑓 satisfying(

𝐽∇𝑠𝑛𝑝,ℎ𝐹
−1𝐹−𝑇 ,∇𝑣 𝑓 ,ℎ

)
Ω 𝑓

= 𝑏𝐵𝑓

(
𝑣 𝑓 ,ℎ, 𝑝

𝑛
𝑓 ,ℎ; 𝑑𝑛𝑓 ,ℎ

)
∀𝑣 𝑓 ,ℎ ∈ 𝑉 𝑓 ,ℎ . (5.95)

Once we have at our disposal the snapshots for variables 𝑢𝑛
𝑓 ,ℎ

, 𝑝𝑛
𝑓 ,ℎ

, 𝑑𝑛
𝑓 ,ℎ

, 𝑑𝑛
𝑠,ℎ

, 𝑔𝑛
ℎ

and the
supremisers 𝑠𝑛

𝑝,ℎ
, we are ready to construct a set of reduced basis functions. Again our choice

is to use the POD as it is described in Section 2.3. In order to implement this technique, we
will need two main ingredients: the matrices of the inner products and the snapshot matrices,
obtained by a full–order model (FOM) discretization as the one presented in the previous sections.
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First, we define the basis functions for the FE element spaces used in the weak formulation (5.75)

and (5.76) – (5.79): 𝑉 𝑓 ,ℎ = span{𝜙𝑢 𝑓

𝑗
}N

𝑢 𝑓

ℎ

𝑗=1 , 𝑄 𝑓 ,ℎ = span{𝜙𝑝 𝑓

𝑗
}N

𝑝 𝑓

ℎ

𝑗=1 , 𝐸𝑠,ℎ = span{𝜙𝑑𝑠
𝑗
}N

𝑑𝑠
ℎ

𝑗=1 , and

𝑋ℎ = span{𝜙𝑔
𝑗
}N

𝑔

ℎ

𝑗=1, where N∗
ℎ
, for ∗ ∈

{
𝑢 𝑓 , 𝑝 𝑓 , 𝑑𝑠, 𝑔

}
, denotes the dimension of the corresponding

FE space. Notice that we do not require a basis for a fluid displacement variable 𝑑𝑛
𝑓
: we will deal

with it in a simplified manner that will be described later in the section.
We proceed by building the snapshot matrices. First, we sample the parameter space and draw

a discrete set of 𝐾 parameter values. Then, the snapshots, i.e., the high–fidelity FE solutions
at each parameter value in the sampling set and at each time–step 𝑡1, ..., 𝑡𝑀 , are collected into
snapshot matrices S𝑢 𝑓

∈ RN
𝑢 𝑓

ℎ
×𝑀𝐾 , S𝑠𝑝 ∈ RN

𝑢 𝑓

ℎ
×𝑀𝐾 , S𝑝 𝑓

∈ RN
𝑝 𝑓

ℎ
×𝑀𝐾 , S𝑑𝑠 ∈ RN𝑑𝑠

ℎ
×𝑀𝐾 and

S𝑔 ∈ RN𝑔

ℎ
×𝑀𝐾 .

The next step is to define the inner–product matrices 𝑋𝑢 𝑓
, 𝑋𝑠𝑝 , 𝑋𝑝 𝑓

, 𝑋𝑑𝑠 and 𝑋𝑔:

(𝑋𝑠𝑝 ) 𝑗𝑘 = (𝑋𝑢 𝑓
) 𝑗𝑘 =

(
∇𝜙𝑢 𝑓

𝑘
,∇𝜙𝑢 𝑓

𝑗

)
Ω 𝑓
, for 𝑗 , 𝑘 = 1, ...,N𝑢 𝑓

ℎ
,

(𝑋𝑝 𝑓
) 𝑗𝑘 =

(
𝜙
𝑝 𝑓

𝑘
, 𝜙

𝑝 𝑓

𝑗

)
Ω 𝑓
, for 𝑗 , 𝑘 = 1, ...,N 𝑝 𝑓

ℎ
,

(𝑋𝑑𝑠 ) 𝑗𝑘 =
(
∇𝜙𝑑𝑠

𝑘
,∇𝜙𝑑𝑠

𝑗

)
Ω𝑠
, for 𝑗 , 𝑘 = 1, ...,N𝑑𝑠

ℎ
,

(𝑋𝑔) 𝑗𝑘 =
(
𝜙
𝑔

𝑘
, 𝜙
𝑔

𝑗

)
Γ𝐼

, for 𝑗 , 𝑘 = 1, ...,N𝑔

ℎ
.

We are now ready to introduce the correlation matrices C𝑢 𝑓
, C𝑠𝑝 , C𝑝 𝑓

, C𝑑𝑠 and C𝑔, all of dimension
𝑀𝐾 × 𝑀𝐾 , as

C∗ := S𝑇∗ 𝑋∗𝑆∗

for every ∗ ∈ {𝑢 𝑓 , 𝑠𝑝, 𝑝 𝑓 , 𝑑𝑠, 𝑔}. Once we have built the correlation matrices, we are able to carry
out a POD compression on the sets of snapshots. This can be achieved by solving the following
eigenvalue problems:

C∗Q∗ = Q∗Λ∗ (5.96)

where ∗ ∈ {𝑢 𝑓 , 𝑠𝑝, 𝑝 𝑓 , 𝑑𝑠, 𝑔}, Q∗ is the eigenvectors matrix and Λ∗ is the diagonal eigenvalues
matrix with eigenvalues ordered by decreasing order of their magnitude. The 𝑘–th reduced basis
function for the component ∗ is then obtained by applying the matrix S∗ to 𝑣∗

𝑘
, the 𝑘–th column

vector of the matrix Q∗:

Φ∗
𝑘 :=

1√︁
𝜆∗
𝑘

S∗𝑣
∗
𝑘
,

where 𝜆∗
𝑘

is the 𝑘–th eigenvalue from (5.96). Therefore, we are able to form the set of reduced
bases as

A∗ :=
{
Φ∗

1, ...,Φ
∗
𝑁∗

}
,
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where the integer numbers 𝑁∗ indicate the number of the basis functions used for each component
for ∗ ∈ {𝑢 𝑓 , 𝑠𝑝, 𝑝 𝑓 , 𝑑𝑠, 𝑔}. Now, it is time to include the supremiser enrichment of the velocities
spaces discussed at the beginning of this section. We provide the following renumbering of the
functions for the velocities for simplicity:

Φ
𝑢𝑖
𝑁𝑢 𝑓

+𝑘 := Φ
𝑠𝑝

𝑘
, for 𝑘 = 1, ..., 𝑁𝑠𝑝 , 𝑖 = 1, 2,

and we redefine 𝑁𝑢 𝑓
:= 𝑁𝑢 𝑓

+ 𝑁𝑠𝑝 . Hence, the new basis function sets are

A𝑢 𝑓 :=
{
Φ
𝑢 𝑓

1 , ...,Φ
𝑢 𝑓

𝑁𝑢 𝑓

}
,

including the extra basis functions obtained from the corresponding supremiser. Finally, we intro-
duce separate reduced basis spaces – for the state and the control variables, respectively:

𝑉∗
𝑁 = span(A∗), dim(𝑉∗

𝑁 ) = 𝑁∗,

for ∗ ∈ {𝑢 𝑓 , 𝑝 𝑓 , 𝑑𝑠, 𝑔}. Now, due to the supremiser enrichment the spaces𝑉𝑢 𝑓

𝑁
and𝑉 𝑝 𝑓

𝑁
are inf–sup

stable in the sense (5.74); the proof can be found in [18].

Harmonic extension of the fluid displacement

In order to generate a reduced basis for the fluid displacement, we resort to the idea described in
[19]. Having at hand a reduced basis for the structure displacement A𝑑𝑠 , we can build reduced
basis functions for the variable 𝑑 𝑓 by performing a harmonic extension of each basis function
Φ
𝑑𝑠
𝑖
, 𝑖 = 1, ..., 𝑁𝑑𝑠 to the fluid domain. The 𝑖–th reduced basis function Φ

𝑑 𝑓

𝑖
is therefore defined by

−ΔΦ𝑑 𝑓

𝑖
= 0 in Ω 𝑓 , (5.97a)

Φ
𝑑 𝑓

𝑖
= Φ

𝑑𝑠
𝑖

on Γ𝐼 , (5.97b)

for 𝑖 = 1, ..., 𝑁𝑑𝑠 . We can then define the fluid displacement reduced space 𝑉𝑑 𝑓

𝑁
as

𝑉
𝑑 𝑓

𝑁
:= span

{
Φ
𝑑 𝑓

𝑖

}𝑁𝑑𝑠

𝑖=1
.

The reasons for defining the basis functions for 𝑑 𝑓 in such a way are two: the POD compression is
quite expensive and, moreover, since we impose the non–homogeneous Dirichlet condition in the
equations (5.78) for 𝑑𝑛

𝑓 ,ℎ
, we would need to introduce the Lagrange multiplier or a lifting function

as it is done in Section 3.4.
Then, during the online phase, the reduced fluid displacement will be computed just as a

linear combination of the basis Φ𝑑 𝑓

𝑖
, with coefficients that are the coefficients of the reduced solid

displacement. We will see in the next section the final formulation of the online phase of the
algorithm.



110 CHAPTER 5. FLUID–STRUCTURE INTERACTION PROBLEM

5.5.2 Online phase

Following the description of two techniques for dealing with the optimal control problem at the
FOM level in Section 5.4, we will provide a reduced–order online phase procedure for each of them.

Online phase for the gradient–based optimisation algorithms

Once we have introduced the reduced basis spaces, we can define the reduced function expansions

(𝑢𝑛𝑓 ,𝑁 , 𝑝
𝑛
𝑓 ,𝑁 , 𝑑

𝑛
𝑠,𝑁 , 𝑔𝑁 ) ∈ 𝑉

𝑢 𝑓

𝑁
×𝑉 𝑝 𝑓

𝑁
×𝑉𝑑𝑠

𝑁
×𝑉𝑔

𝑁
,

as

𝑢𝑛𝑓 ,𝑁 :=
𝑁𝑢 𝑓∑︁
𝑘=1

𝑢𝑁
𝑓 ,𝑘

Φ
𝑢 𝑓

𝑘
, 𝑝 𝑓 ,𝑁 :=

𝑁𝑝 𝑓∑︁
𝑘=1

𝑝𝑁
𝑓 ,𝑘

Φ
𝑝 𝑓

𝑘
,

𝑑𝑛𝑠,𝑁 :=
𝑁𝑑𝑠∑︁
𝑘=1

𝑑𝑁
𝑠,𝑘

Φ
𝑑𝑠
𝑘
, 𝑔𝑁 :=

𝑁𝑔∑︁
𝑘=1

𝑔
𝑘
Φ
𝑔

𝑘
.

In the previous definitions, the underlined variables denote the coefficients of the basis expansion of
the reduced solution. Then, the online reduced problem reads as follows: minimise over 𝑔𝑁 ∈ 𝑉𝑔

𝑁

the functional

𝐽𝛾,𝑁 (𝑢𝑛𝑓 ,𝑁 , 𝑑
𝑛
𝑠,𝑁 ; 𝑔𝑁 ) =

1
2

∫
Γ𝐼

�����𝑢𝑛𝑓 ,𝑁 −
3𝑑𝑛
𝑠,𝑁

− 4𝑑𝑛−1
𝑠,𝑁

+ 𝑑𝑛−2
𝑠,𝑁

2Δ𝑡

�����2 𝑑Γ + 𝛾
2

∫
Γ𝐼

|𝑔𝑁 |2 𝑑Γ, (5.98)

where (𝑢𝑛
𝑓 ,𝑁

, 𝑝 𝑓 ,𝑁 , 𝑑𝑠,𝑁 ) satisfy the following reduced state equations: for 𝑛 ≥ 1:

• ROM fluid momentum equation

1
Δ𝑡
𝑚 𝑓 (𝑢𝑛𝑓 ,𝑁 , 𝑣 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) + 𝑎 𝑓 (𝑢𝑛𝑓 ,𝑁 , 𝑣 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) + 𝑏

𝐴
𝑓 (𝑝

𝑛
𝑓 ,𝑁 , 𝑣 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 )

+ 𝑐𝐴𝐿𝐸𝑓

(
𝑑𝑛
𝑓 ,𝑁

− 𝑑𝑛−1
𝑓 ,𝑁

Δ𝑡
, 𝑣 𝑓 ,𝑁 , 𝑢

𝑛
𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁

)
+ 𝑐 𝑓 (𝑢𝑛𝑓 ,𝑁 , 𝑢

𝑛
𝑓 ,𝑁 , 𝑣 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) (5.99)

=
1
Δ𝑡
𝑚 𝑓 (𝑢𝑛−1

𝑓 ,𝑁 , 𝑣 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) + 𝑓 𝑓 (𝑣 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 )

+
(
𝑢
𝑓

𝑁
, 𝑣 𝑓 ,𝑁

)
Γ
𝑓

𝑁

+ (𝑔𝑁 , 𝑣 𝑓 ,𝑁 )Γ𝐼 ∀𝑣 𝑓 ,𝑁 ∈ 𝑉 𝑓 ,𝑁 ,

• ROM incompressibility equation

𝑏𝐵𝑓 (𝑢
𝑛
𝑓 ,𝑁 , 𝑞 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) = 0 ∀𝑞 𝑓 ,𝑁 ∈ 𝑄 𝑓 ,𝑁 , (5.100)
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• ROM structure equation

1
Δ𝑡2

𝑚𝑠 (𝑑𝑛𝑠,𝑁 , 𝑒𝑠,𝑁 ) + 𝑎𝑠 (𝑑𝑛𝑠,𝑁 , 𝑒𝑠,𝑁 ) =
2
Δ𝑡2

𝑚𝑠 (𝑑𝑛−1
𝑠,𝑁 , 𝑒𝑠,𝑁 ) + 𝑓𝑠 (𝑒𝑠,𝑁 ) (5.101)

+
(
𝑑𝑠𝑁 , 𝑒𝑠,𝑁

)
Γ𝑠
𝑁

− 1
Δ𝑡2

𝑚𝑠 (𝑑𝑛−2
𝑠,𝑁 , 𝑒𝑠,𝑁 ) − (𝑔𝑁 , 𝑒𝑠,𝑁 )Γ𝐼 ∀𝑒𝑠,𝑁 ∈ 𝐸𝑠,𝑁 ,

with

𝑑𝑛𝑓 ,𝑁 :=
𝑁𝑑𝑠∑︁
𝑘=1

𝑑
𝑛,∗
𝑠,𝑘

Φ
𝑑 𝑓

𝑘
, (5.102)

where 𝑑𝑛,∗
𝑠,𝑘

are some extrapolation of reduced coefficients from previous time steps 𝑑𝑛−1
𝑠,𝑘

, 𝑑𝑛−2
𝑠,𝑘

, ...

and

𝑢0
𝑓 ,𝑁 = 𝑢0,𝑁 , 𝑑−1

𝑠,𝑁 = 𝑑𝑠0,𝑁 − Δ𝑡𝑑
𝑠,𝜕𝑡

0,𝑁 , 𝑑0
𝑠,𝑁 = 𝑑𝑠𝑁 ,0. (5.103)

where 𝑢𝑛0,𝑁 is the Galerkin projection of 𝑢0 onto 𝑉𝑢 𝑓

𝑁
, 𝑑𝑠0,𝑁 and 𝑑𝑠,𝜕𝑡0,𝑁 are the Galerkin projection of

𝑑𝑠0 and 𝑑𝑠,𝜕𝑡0 onto 𝑉𝑑𝑠
𝑁

, respectively.
Similarly to the offline phase, we notice that the structure of the equations (5.99)– (5.101) and

the functional (5.98) are the same as the ones of the continuous case, so this enables us to provide
the following expression of the gradient of the reduced functional (5.98):

𝑑J𝛾,𝑁
𝑑𝑔𝑁

(𝑢𝑛𝑓 ,𝑁 , 𝑑
𝑛
𝑠,𝑁 ; 𝑔𝑁 ) = 𝛾𝑔𝑁 + 𝜉 𝑓 ,𝑁 |Γ𝐼 − 𝜉𝑠,𝑁 |Γ𝐼 , (5.104)

where 𝜉 𝑓 ,𝑁 and 𝜉𝑠,𝑁 are the solutions to the discretised adjoint problem: find 𝜉 𝑓 ,𝑁 ∈ 𝑉
𝑢 𝑓

𝑁
,

𝜂 𝑓 ,𝑁 ∈ 𝑉 𝑝 𝑓

𝑁
and 𝜉𝑠,𝑁 ∈ 𝑉𝑑𝑠

𝑁
that satisfy

• ROM adjoint fluid momentum equation

1
Δ𝑡
𝑚 𝑓 (𝛿𝑣 𝑓 ,𝑁 , 𝜉 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) + 𝑎 𝑓 (𝛿𝑣 𝑓 ,𝑁 , 𝜉 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) + 𝑐 𝑓 (𝛿𝑣 𝑓 ,𝑁 , 𝑢

𝑛
𝑓 ,𝑁 , 𝜉 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 )

+ 𝑐 𝑓 (𝑢𝑛𝑓 ,𝑁 , 𝛿𝑣 𝑓 ,𝑁 , 𝜉 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) + 𝑏
𝐵
𝑓 (𝛿𝑣 𝑓 ,𝑁 , 𝜂 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 )

+ 𝑐𝐴𝐿𝐸𝑓

(
𝑑𝑛
𝑓 ,𝑁

− 𝑑𝑛−1
𝑓 ,𝑁

Δ𝑡
, 𝜉 𝑓 ,𝑁 , 𝛿𝑣 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁

)
(5.105)

=

(
𝑢𝑛𝑓 ,𝑁 −

3𝑑𝑛
𝑠,𝑁

− 4𝑑𝑛−1
𝑠,𝑁

+ 𝑑𝑛−2
𝑠,𝑁

2Δ𝑡
, 𝛿𝑣 𝑓 ,𝑁

)
Γ𝐼

∀𝛿𝑣 𝑓 ,𝑁 ∈ 𝑉𝑢 𝑓

𝑁
,

• ROM adjoint incompressibility equation

𝑏𝐴𝑓 (𝜉 𝑓 ,𝑁 , 𝛿𝑞 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) = 0 ∀𝛿𝑞 𝑓 ,𝑁 ∈ 𝑉 𝑝 𝑓

𝑁
, (5.106)
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• ROM adjoint structure equation

1
Δ𝑡2

𝑚𝑠 (𝛿𝑒𝑠,𝑁 , 𝜉𝑠,𝑁 ) + 𝑎𝑠 (𝛿𝑒𝑠,𝑁 , 𝜉𝑠,𝑁 ) (5.107)

=

(
𝑢𝑛𝑓 ,𝑁 −

3𝑑𝑛
𝑠,𝑁

− 4𝑑𝑛−1
𝑠,𝑁

+ 𝑑𝑛−2
𝑠,𝑁

2Δ𝑡
,− 3

2Δ𝑡
𝛿𝑒𝑠,𝑁

)
Γ𝐼

∀𝛿𝑒𝑠,𝑁 ∈ 𝑉𝑑𝑠
𝑁
.

Above, the restriction ·|Γ𝐼 is meant as an 𝐿2(Γ𝐼 )–projection onto space 𝑉𝑔
𝑁

. The above formulae
allow us to write down the gradient–based algorithm similar to Algorithm 5.1. We would also like
to stress that from the numerical implementation point of view the reduced minimisation problem
can be recast in the setting of the finite–dimensional space R𝑝, where 𝑝 is the number of reduced
basis functions used for the control variable 𝑔𝑁 in the online phase, that is 𝑝 = 𝑁𝑔.

Online phase in the non–linear least squares optimisation setting

We use non–linear least squares to develop a computational algorithm for the constrained optimal
control problem. We introduce a notation that will be used throughout the section: the restriction
·|Γ𝐼 is meant as an 𝐿2(Γ𝐼 )–projection onto space 𝑉𝑔

𝑁
. We define the non–linear operator 𝑁𝑛,𝑁 :

𝑉
𝑔

𝑁
→ 𝑉

𝑔

𝑁
×𝑉𝑔

𝑁
by

𝑁𝑛,𝑁 (𝑔𝑁 ) =
©«𝑢

𝑛
𝑓 ,𝑁

���
Γ𝐼

− 3𝑑𝑛
𝑠,𝑁

−4𝑑𝑛−1
𝑠,𝑁

+𝑑𝑛−2
𝑠,𝑁

2Δ𝑡

����
Γ𝐼√

𝛾𝑔𝑁

ª®¬ , (5.108)

where 𝑢𝑛
𝑓 ,𝑁

and 𝑑𝑛
𝑠,𝑁

are solutions to the state equations (5.99)– (5.101) with 𝑔𝑁 ∈ 𝑉
𝑔

𝑁
as a

disctretised stress function on the interface Γ𝐼 . Then the functional J𝛾,𝑁 can be rewritten as

𝐽𝛾,𝑁 (𝑢𝑛𝑓 ,𝑁 , 𝑑
𝑛
𝑠,𝑁 ; 𝑔𝑁 ) =

1
2
| |𝑁𝑛,𝑁 (𝑔𝑁 ) | |2𝑉𝑔

𝑁
×𝑉𝑔

𝑁

. (5.109)

The non–linear least square optimisation problem is the following: minimise the functional (5.109)
over 𝑔𝑁 ∈ 𝑉𝑔

𝑁
subject to (5.99)– (5.101). This problem can be tackled in a similar fashion as on

the continuous level, namely by the use of Gauss–Newton Algortihm 5.2. Considering that the
reduced non–linear least squares optimisation problem described above has the same structure as
the continuous one, it is straightforward to derive the Fréchet derivative and its conjugate for the
functional 𝑁𝑛,𝑁 .

For �̄�𝑁 ∈ 𝑉𝑔
𝑁

, the Fréchet derivative 𝑁 ′
𝑛,𝑁

(�̄�𝑁 ) [·] : 𝑉𝑔
𝑁
→ 𝑉

𝑔

𝑁
×𝑉𝑔

𝑁
is defined by

𝑁 ′
𝑛,𝑁 (�̄�𝑁 ) [ℎ𝑁 ] =

(
𝑤 𝑓 ,𝑁

��
Γ𝐼

− 3
2Δ𝑡 𝜙𝑠,𝑁

��
Γ𝐼√

𝛾ℎ𝑁

)
, (5.110)
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where 𝑤 𝑓 ,𝑁 and 𝜙𝑠,𝑁 are the solutions to

1
Δ𝑡
𝑚 𝑓 (𝑤 𝑓 ,𝑁 , 𝑣 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) + 𝑎 𝑓 (𝑤 𝑓 ,𝑁 , 𝑣 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) + 𝑐

𝐴𝐿𝐸
𝑓

(
𝑑𝑛
𝑓 ,𝑁

− 𝑑𝑛−1
𝑓 ,𝑁

Δ𝑡
, 𝑣 𝑓 ,𝑁 , 𝑤 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁

)
+ 𝑏𝐴𝑓 (𝜓 𝑓 ,𝑁 , 𝑣 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) + 𝑐 𝑓 (𝑤 𝑓 ,𝑁 , �̄� 𝑓 ,𝑁 , 𝑣 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) (5.111)

+ 𝑐 𝑓 (�̄� 𝑓 ,𝑁 , 𝑤 𝑓 ,𝑁 , 𝑣 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) = (ℎ𝑁 , 𝑣 𝑓 ,𝑁 )Γ𝐼 ∀𝑣 𝑓 ,𝑁 ∈ 𝑉𝑢 𝑓

𝑁
,

𝑏𝐵𝑓 (𝑤 𝑓 ,𝑁 , 𝑞 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) = 0 ∀𝑞 𝑓 ,𝑁 ∈ 𝑉 𝑝 𝑓

𝑁
, (5.112)

and

1
Δ𝑡2

𝑚𝑠 (𝜙𝑠,𝑁 , 𝑒𝑠,𝑁 ) + 𝑎𝑠 (𝜙𝑠,𝑁 , 𝑒𝑠,𝑁 ) = −(ℎ𝑁 , 𝑒𝑠,𝑁 )Γ𝐼 ∀𝑒𝑠,𝑁 ∈ 𝑉𝑑𝑠
𝑁
, (5.113)

where �̄�𝑠,𝑁 is the solution to the fluid state equations (5.105)– (5.106) with 𝑔𝑁 replaced by �̄�𝑁 .
The adjoint of 𝑁 ′

𝑛,𝑁
(�̄�𝑁 ) [·] is

(
𝑁 ′
𝑛,𝑁

(�̄�𝑁 )
)∗

[·] : 𝑉𝑔
𝑁
×𝑉𝑔

𝑁
→ 𝑉

𝑔

𝑁
, given by(

𝑁 ′
𝑛,𝑁 (�̄�𝑁 )

)∗ [
𝑟𝑁
𝑠𝑁

]
= 𝛽 𝑓 ,𝑁

��
𝐿2 (Γ𝐼 ) −

3
2Δ𝑡

𝜑𝑠,𝑁
��
𝐿2 (Γ𝐼 ) +

√
𝛾𝑠𝑁 , (5.114)

where 𝛽 𝑓 ,𝑁 and 𝜑𝑠,𝑁 are solutions of

1
Δ𝑡
𝑚 𝑓 (𝑣 𝑓 ,𝑁 , 𝛽 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) + 𝑎 𝑓 (𝑣 𝑓 ,𝑁 , 𝛽 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) + 𝑐

𝐴𝐿𝐸
𝑓

(
𝑑𝑛
𝑓 ,𝑁

− 𝑑𝑛−1
𝑓 ,𝑁

Δ𝑡
, 𝛽 𝑓 ,𝑁 , 𝑣 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁

)
+ 𝑏𝐵𝑓 (𝑣 𝑓 ,𝑁 , 𝛼 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) + 𝑐 𝑓 (𝑣 𝑓 ,𝑁 , �̄� 𝑓 ,𝑁 , 𝛽 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) (5.115)

+ 𝑐 𝑓 (�̄� 𝑓 ,𝑁 , 𝑣 𝑓 ,𝑁 , 𝛽 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) = (𝑟𝑁 , 𝑣 𝑓 ,𝑁 )Γ𝐼 ∀𝑣 𝑓 ,𝑁 ∈ 𝑉𝑢 𝑓

𝑁
,

𝑏𝐴𝑓 (𝑞 𝑓 ,𝑁 , 𝛽 𝑓 ,𝑁 ; 𝑑𝑛𝑓 ,𝑁 ) = 0 ∀𝑞 𝑓 ,𝑁 ∈ 𝑉 𝑝 𝑓

𝑁
, (5.116)

and

1
Δ𝑡2

𝑚𝑠 (𝑒𝑠,𝑁 , 𝜑𝑠,𝑁 ) + 𝑎𝑠 (𝑒𝑠,𝑁 , 𝜑𝑠,𝑁 ) = −(𝑟𝑁 , 𝑒𝑠,𝑁 )Γ𝐼 ∀𝑒𝑠,𝑁 ∈ 𝑉𝑑𝑠
𝑁
. (5.117)

With all this, we are able to write down the ROM version of the Gauss–Newton algorithm in
Algorithm 5.4.
At this point, we conclude the theoretical exposition and we present numerical experiments on a
two–dimensional haemodynamic benchmark FSI problem in the following section.

5.6 Numerical results
We now present some numerical results obtained with the Gauss–Newton optimisation algorithm
described in the previous section on a haemodynamics benchmark FSI problem. All the numerical
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Algorithm 5.4 ROM Gauss–Newton (ROM–GN) algorithm

Input: 𝑔 (0)
𝑁

:= 𝑔𝑛−1
𝑁

,𝐼𝑡𝑚𝑎𝑥 and𝜀𝑡𝑜𝑙
for 𝑗 = 1, 2, ..., 𝐼𝑡𝑚𝑎𝑥 do

Solve (5.99)– (5.100) for 𝑢𝑛, ( 𝑗 )
𝑓 ,𝑁

∈ 𝑉𝑢 𝑓

𝑁
and 𝑝𝑛, ( 𝑗 )

𝑓 ,𝑁
∈ 𝑉 𝑝 𝑓

𝑁
with 𝑔𝑁 = 𝑔

( 𝑗−1)
𝑁

Solve (5.101) for 𝑑𝑛, ( 𝑗 )
𝑠,𝑁

∈ 𝑉𝑑𝑠
𝑁

with 𝑔𝑁 = 𝑔
( 𝑗−1)
𝑁

Set 𝑑𝑛, ( 𝑗 )
𝑓 ,𝑁

:=
𝑁𝑑𝑠∑
𝑘=1

𝑑
𝑛, ( 𝑗 )
𝑠,𝑘

Φ
𝑑 𝑓

𝑘
, where 𝑑𝑛, ( 𝑗 )

𝑠,𝑘
are the reduced coefficients of 𝑑𝑛, ( 𝑗 )

𝑠,𝑁

if 1
2

∫
Γ𝐼

����𝑢𝑛, ( 𝑗 )𝑓 ,𝑁
− 3𝑑𝑛, ( 𝑗)

𝑠,𝑁
−2𝑑𝑛−1

𝑠,𝑁
+𝑑𝑛−2

𝑠,𝑁

2Δ𝑡

����2 𝑑Γ < 𝜀𝑡𝑜𝑙 then
break

end if
Compute ℎ ( 𝑗 )

𝑁
by the Conjugate Gradient Algorithm 5.3 with 𝐴 = 𝑁 ′

𝑛,𝑁

(
𝑔
( 𝑗−1)
𝑁

)
,

𝑏 = −𝑁𝑛,𝑁
(
𝑔
( 𝑗−1)
𝑁

)
, 𝐴∗ =

(
𝑁 ′
𝑛,𝑁

(
𝑔 ( 𝑗−1) ) )∗ and ℎ = ℎ𝑁 .

Set 𝑔 ( 𝑗 )
𝑁

:= 𝑔 ( 𝑗−1)
𝑁

+ ℎ ( 𝑗 )
𝑁

end for
Set 𝑢𝑛

𝑓 ,𝑁
:= 𝑢𝑛, ( 𝑗 )

𝑓 ,𝑁
, 𝑝𝑛

𝑓 ,𝑁
:= 𝑝𝑛, ( 𝑗 )

𝑓 ,𝑁
, 𝑑𝑛

𝑓 ,𝑁
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Figure 5.3: Physical reference domain. In blue: the reference fluid domainΩ 𝑓 . In red: the reference
solid domain Ω𝑠. In green: the fluid–structure interface Γ𝐼 .
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simulations for the offline phase were obtained using the software FEniCS [1], whereas the online
phase simulations were carried out using RBniCS [3].

The reference domains Ω 𝑓 and Ω𝑠 are presented in Figure 5.3: the fluid domain is 2.5𝑐𝑚 in
height 10𝑐𝑚 long; the leaflets are situated 1𝑐𝑚 downstream the inlet boundary Γ𝑖𝑛, they are 0.2𝑐𝑚
thick and 1.1𝑐𝑚 in height. The values of physical parameters are listed in Table 5.1. We consider
zero initial conditions for fluid velocity and the structure displacement, homogeneous Dirichlet
boundary conditions on walls Γ

𝑓
𝑤 for the fluid velocity and on Γ𝑠𝑤 for the structure displacement,

and homogeneous Neumann conditions on the outlet Γ𝑜𝑢𝑡 , meaning that we assume free outflow on
this portion of the boundary. A pressure impulse 𝑝𝑖𝑛 is applied at the inlet boundary Γ𝑖𝑛:

𝑝𝑖𝑛 (𝑡) = �̄�
(
1 − cos

(
2𝜋𝑡
0.2

))
, 𝑡 ∈ [0, 0.01]

and the range of �̄� is reported in Table 5.1. On average, the Gauss–Newton algorithm converges
in 2–3 iterations and we present additional details in Tables 5.2– 5.3. In particular, in Table 5.2,
we list the values for the functional J𝛾,ℎ and the corresponding number of nested CG iterations
at each GN iteration, while Table 5.3 contains the absolute and relative errors with respect to the
monolithic (entire–domain) solutions 𝑢𝑛

ℎ
, 𝑝𝑛
ℎ
, 𝑑𝑛
ℎ
, obtained by the reliable method described in [18]

i.e.,

• Absolute error 𝑢𝑛
𝑓 ,ℎ

:= | |𝑢𝑛
ℎ
− 𝑢𝑛

𝑓 ,ℎ
| |𝐿2 (Ω 𝑓 ) , Relative error 𝑢 𝑓 ,ℎ :=

| |𝑢𝑛
𝑓 ,ℎ

−𝑢𝑛
ℎ
| |
𝐿2 (Ω 𝑓 )

| |𝑢𝑛
ℎ
| |
𝐿2 (Ω 𝑓 )

,

• Absolute error 𝑝𝑛
𝑓 ,ℎ

:= | |𝑝𝑛
ℎ
− 𝑝𝑛

𝑓 ,ℎ
| |𝐿2 (Ω 𝑓 ) , Relative error 𝑝𝑛

𝑓 ,ℎ
:=

| | 𝑝𝑛
𝑓 ,ℎ

−𝑝𝑛
ℎ
| |
𝐿2 (Ω 𝑓 )

| | 𝑝𝑛
ℎ
| |
𝐿2 (Ω 𝑓 )

,

• Absolute error 𝑑𝑛
𝑠,ℎ

:= | |𝑑𝑛
ℎ
− 𝑑𝑛

𝑠,ℎ
| |𝐿2 (Ω𝑠 ) , Relative error 𝑑𝑛

𝑠,ℎ
:=

| |𝑑𝑛
𝑠,ℎ

−𝑑𝑛
ℎ
| |
𝐿2 (Ω𝑠 )

| |𝑑𝑛
ℎ
| |
𝐿2 (Ω𝑠 )

.

Three physical parameters are considered: the Lamè coefficients 𝜆𝑠 and 𝜇𝑠 for the structure and �̄�
– the intensity parameter of the pressure impulse 𝑝𝑖𝑛. Details of the offline stage and the finite–
element discretisation are summarised in Table 5.1. High–fidelity solutions are obtained by carrying
out the minimisation by the Gauss–Newton algorithm with the maximum number of iterations 5
for the algorithm itself and 30 for the conjugate gradient algorithm, and the tolerance in both cases
has been chosen as a minimum between 10−6 and the first step approximation divided by 100 (the
choice is due to the fact that at initial time steps the problem variables have small magnitude).

Figure 5.4 shows the fluid velocity and pressure at the final time 𝑡 = 0.01 computed at the
parameter value (�̄�, 𝜆𝑠, 𝜇𝑠) = (110, 80000, 40000) and Figure 5.5 shows the structure displacement
for the same parameter computed at three different time instances 𝑡 = 0.005, 𝑡 = 0.0075 and 𝑡 = 0.01.

Snapshots are sampled from a training set of 𝐾 parameters uniformly sampled from the 3–
dimensional parameter space for each time–step 𝑡𝑖 , 𝑖 = 1, ..., 𝑀 and the first 𝑁max POD modes have
been retained for each component. Figure 5.6a shows the POD singular values for all the state
and the control variables. It can be noticed that the rates of decay of the eigenvalues for the fluid
velocity and structure displacement are slightly slower than for other variables, but overall we can
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Physical parameters FE parameters
𝜈 𝑓 0.035 Velocity–pressure space in a cell P2 × P1

𝜌 𝑓 1 Fluid displacement space in a cell P2

𝜌𝑠 1.1 Structure displacement space in a cell P2

Range �̄� [90, 120] Total velocity–pressure dofs 66,171
Range 𝜆𝑠 [800000, 1600000] Fluid displacement dofs 58,720
Range 𝜇𝑠 [400000, 1000000] Structure displacement dofs 1,220

Final time 𝑇 0.01 Dofs at interface 292
Time step Δ𝑡 10−4

Optimization Snapshots training set parameters
Algorithm Gauss–Newton(GN) Timestep number 𝑀 100

itmax for CG alg. 30 Parameters training set size 𝐾 64
itmax for GN alg. 5 Maximum retained modes 𝑁max 100

Table 5.1: Computational details of the offline stage

(a) The fluid velocity at the final time

(b) The fluid pressure at the final time

Figure 5.4: The high–fidelity fluid velocity (a) and pressure (b) at the final time 𝑡 = 0.01 (the mesh
displacement has been magnified for visualisation purposes).
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(a) 𝑡 = 0.005 (b) 𝑡 = 0.0075 (c) 𝑡 = 0.01

Figure 5.5: The high–fidelity structure displacement at 3 different times (the mesh displacement
has been magnified for visualisation purposes).

GN Itearation Functional value J𝛾,ℎ CG iterations
1 1.42 × 10−8 30
2 1.27 × 10−10 30
3 2.14 × 10−12 27

Table 5.2: The value of the FOM functional and the corresponding number of nested CG iterations
at each GN iteration at the final time step

GN Itearation Absolute error Relative error
𝑢𝑀
𝑓 ,ℎ

𝑝𝑀
𝑓 ,ℎ

𝑑𝑀
𝑠,ℎ

𝑢𝑀
𝑓 ,ℎ

𝑝𝑀
𝑓 ,ℎ

𝑑𝑀
𝑠,ℎ

1 2.14 × 10−5 0.258 5.94 × 10−8 0.002 0.017 0.01658
2 9.51 × 10−6 0.003 5.93 × 10−8 0.001 0.0002 0.01653
3 9.23 × 10−6 0.005 5.93 × 10−8 0.001 0.0004 0.01654

Table 5.3: 𝐿2 absolute and relative errors between the high–fidelity solution and the monolithic
solution at each GN iteration at the final time step
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Figure 5.6: Results of the offline stage: POD singular eigenvalue decay (a) and retained energy (b)
of the first 𝑁max POD modes.

Parameter POD modes
�̄� 110 velocity 𝑢 𝑓 30 pressure 𝑝 𝑓 20
𝜆𝑠 80000 displacement 𝑑𝑠 20 supremiser 𝑠𝑝 20
𝜇𝑠 40000 control 𝑔 20

Table 5.4: Computational details of the online stage

see an evident exponential decay of the singular values for each component. In Figure 5.6b, we can
see the behaviour of the energy 𝐸𝑛 retained by the first 𝑁 modes for the components 𝑢 𝑓 , 𝑝 𝑓 and 𝑑𝑠.
Here, the retained energy for the component ∗ ∈ {𝑢 𝑓 , 𝑝 𝑓 , 𝑑𝑠} is defined as

𝐸∗
𝑛 :=

∑𝑛
𝑘=1 |𝜆∗𝑘 |∑𝑁∗
𝑘=1 |𝜆

∗
𝑘
|
.

The retained energy for the components 𝑠𝑝 and 𝑔 show the same behaviour as for the component
𝑝 𝑓 . We can notice that the first mode of the fluid pressure retains around 0.75% more energy with
respect to the first mode of the fluid velocity and 2% more energy compared to the first mode of
the structure displacement, which is the one that retains less energy. The retained energy gives us
an idea of the number of modes we would need to choose to preserve all the necessary physical
information in the reduced model.

In Table 5.4, we list the values of the parameters for which we conduct a numerical test of
the ROM and the number of POD modes for each component of the problem. The reduced–order
solutions are obtained by carrying out the minimisation by the Gauss–Newton algorithm with the
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(a) The fluid velocity at the final time

(b) The fluid pressure at the final time

Figure 5.7: The reduced–order fluid velocity (a) and pressure (b) at the final time 𝑡 = 0.01 (the
mesh displacement has been magnified for visualisation purposes).

(a) 𝑡 = 0.005 (b) 𝑡 = 0.0075 (c) 𝑡 = 0.01

Figure 5.8: The reduced–order structure displacement at 3 different times (the mesh displacement
has been magnified for visualisation purposes).
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GN Itearation Functional value J𝛾,𝑁 CG iterations
1 1.42 × 10−8 15
2 2.20 × 10−10 15
3 1.94 × 10−10 15
4 1.75 × 10−10 14

Table 5.5: The value of the ROM functional and the corresponding number of nested CG iterations
at each ROM-GN iteration at the final time step

GN Iteration Absolute error Relative error
𝑢 𝑓 ,𝑁 𝑝 𝑓 ,𝑁 𝑑𝑠,𝑁 𝑢 𝑓 ,𝑁 𝑝 𝑓 ,𝑁 𝑑𝑠,𝑁

1 4.9034e-05 0.3847 5.4018e-08 0.0056 0.0262 0.0151
2 4.5359e-05 0.1619 5.3899e-08 0.0052 0.0110 0.0150
3 4.4968e-05 0.1606 5.3918e-08 0.0051 0.0109 0.0150
4 4.4609e-05 0.1614 5.3902e-08 0.0051 0.0110 0.0150

Table 5.6: 𝐿2 absolute and relative errors between the reduced–order solution and the monolithic
solution at each ROM-GN iteration at the final time step

maximum 5 iterations for the algorithm itself and 15 for the conjugate gradient algorithm, and
the tolerance in both cases has been chosen the same as in the full–order model – a minimum
between 10−6 and the first step approximation divided by 100 (the choice is again due to the
fact that at initial time steps the problem variables have small magnitude). Figure 5.7 shows the
reduced–order fluid velocity and pressure at the final time 𝑡 = 0.01 computed at the parameter value
(�̄�, 𝜆𝑠, 𝜇𝑠) = (110, 80000, 40000) and Figure 5.8 shows the reduced–order structure displacement
for the same parameter computed at three different time instances 𝑡 = 0.005, 𝑡 = 0.0075 and
𝑡 = 0.01.

On average, the reduced Gauss–Newton algorithm converges in 2–4 iterations and we present
additional details in Tables 5.5– 5.6. In Table 5.5, we list the values for the functional J𝛾,𝑁 and
the corresponding number of nested CG iterations at each GN iteration, while Table 5.6 contains
the absolute and relative errors with respect to the monolithic (entire–domain) solutions 𝑢𝑛

ℎ
, 𝑝𝑛
ℎ
, 𝑑𝑛
ℎ
,

obtained using the method described in [18]. The errors we will consider are the following

• Absolute error 𝑢𝑛
𝑓 ,𝑁

:= | |𝑢𝑛
ℎ
− 𝑢𝑛

𝑓 ,𝑁
| |𝐿2 (Ω 𝑓 ) , Relative error 𝑢 𝑓 ,𝑁 :=

| |𝑢𝑛
𝑓 ,𝑁

−𝑢𝑛
ℎ
| |
𝐿2 (Ω 𝑓 )

| |𝑢𝑛
ℎ
| |
𝐿2 (Ω 𝑓 )

,

• Absolute error 𝑝𝑛
𝑓 ,𝑁

:= | |𝑝𝑛
ℎ
− 𝑝𝑛

𝑓 ,𝑁
| |𝐿2 (Ω 𝑓 ) , Relative error 𝑝𝑛

𝑓 ,𝑁
:=

| | 𝑝𝑛
𝑓 ,𝑁

−𝑝𝑛
ℎ
| |
𝐿2 (Ω 𝑓 )

| | 𝑝𝑛
ℎ
| |
𝐿2 (Ω 𝑓 )

,

• Absolute error 𝑑𝑛
𝑠,𝑁

:= | |𝑑𝑛
ℎ
− 𝑑𝑛

𝑠,𝑁
| |𝐿2 (Ω𝑠 ) , Relative error 𝑑𝑛

𝑠,𝑁
:=

| |𝑑𝑛
𝑠,𝑁

−𝑑𝑛
ℎ
| |
𝐿2 (Ω𝑠 )

| |𝑑𝑛
ℎ
| |
𝐿2 (Ω𝑠 )

.

Analysing the results, we are able to see that the reduced basis method gives us a solution
as accurate as the high–fidelity one. In Figure 5.9, we can notice that the errors for the ROM
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(a) FOM fluid velocity error (b) FOM fluid pressure error

(c) ROM fluid velocity error (d) ROM fluid pressure error

Figure 5.9: The error plots of FOM and ROM fluid solutions w.r.t the monolithic solutions at the
final time 𝑡 = 0.01 (the mesh displacement has been magnified for visualisation purposes).

solutions (especially, for the fluid pressure) are slightly bigger in the ROM case, but it is mostly
concentrated on the fluid–structure interface; in the rest of the domain it is still quite small as
evidenced in Table 5.6. This could be due to the fact that quite a small number of time steps have
been considered and the fluid velocity and the structure displacement do not develop a significant
magnitude. The reduced–order approximation of the optimisation problem at hand allowed us
to reduce the dimensions of the high–fidelity optimisation functional by more than 10 times and
enabled us to use 2 times fewer iterations in the CG while maintaining a very small number of GN
iterations, which, in turn, requires a small number of nonlinear solves of the fluid subsystem. We
also remark that the use of good hyper–reduction techniques (see, for instance, [81]), will allow us
to obtain very efficient solvers in terms of computational time.

Regarding the computational time, one time step of the FOM takes between 7 and 9 minutes,
whereas one time step of the ROM (without hyper–reduction) takes around 1–3 minutes.

Remark (Stability in the case of “added mass” effect). As it has been highlighted in the introduction
partitioned approaches to FSI problems might, under some physical and geometrical conditions,
be unstable: this happens, for example, if the physical domain has a slender shape, or, as in our
numerical test, if the fluid density 𝜌 𝑓 is close to the solid density 𝜌𝑠 and this is usually the case
in haemodynamics applications, where the density of the blood is quite close to the density of the
walls of the vessel. The reason for this instability is the so–called “added mass” effect: the fluid
acts like an added mass to the solid, thus changing its natural behaviour; we refer to [38] for a
detailed derivation of the “added mass” effect and relative consequences. Nevertheless, numerical
tests presented in this section show that our partitioned algorithm is stable under the assumption of
the “added mass” effect in both FOM and ROM settings.
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5.7 Conclusions and perspectives
In this chapter, we proposed a reduced–order model for the optimisation–based domain decom-
position formulation of the parameter–dependent non–stationary FSI problem with incompressible
Navier–Stokes equations and linear elasticity model.

The original problem cast into the optimisation–based domain–decomposition framework leads
to the optimal control problem aiming at minimising the velocity coupling error at the fluid–
structure interface; the problem, then, has been tackled using either an iterative gradient–based
optimisation algorithm or by the Gauss–Newton algorithm in the non–linear least squares optimi-
sation framework. These allowed us to obtain a complete separation of the solvers on different
subdomains.

On the reduced–order level, we have built a model for which the generation of the reduced basis
spaces is carried out separately in each subdomain and for each component of the problem. In the
Galerkin projection, the optimal–control problem was solved much faster, not only because of the
reduced dimensions but also because of the smaller number of optimisation iterations.

Another extremely important feature of the algorithm presented here is the fact that they are
stable under the assumption of the “added mass” effect, which is the cause of numerical instabilities
in many partitioned approaches for FSI problems.

The aforementioned techniques could be promising for various areas of computational physics.
First of all, these algorithms can be used when complex time–dependent problems arise and domain
decomposition becomes necessary due to a large number of degrees of freedom and complex
geometries. The future extensions of this methodology, just to name a few, may include combining
this segregated approach with further domain–decomposition methods used for separate components
of the multiphysics problem, compressible or non–Newtonian fluids and nonlinear elasticity models
and combining the presented technique with optimal control problems.



Chapter 6

Conclusions and perspectives

In this final chapter, I provide a summary of the work presented throughout the thesis and suggest
possible future perspectives.

6.1 Summary

The goal of this thesis has been to provide an extensive overview of optimisation–based domain
decomposition methods and reduced order models, and their applications to fluid dynamics and
multiphysics problems. In the course of the work, we have managed to develop reliable domain–
decomposition ROM methods for parameter–dependent incompressible Navier–Stokes equations
in both stationary and non–stationary regimes, and for Fluid–Structure interaction problems. The
techniques used here rely on the highly–evolved fields of optimal control and reduced basis methods.

In the first two chapters, we provided a general setup of any domain–decomposition algorithm
(Chapter 1) and a reduced–order model (Chapter 2). We introduced basic notations and provided an
overview of classical approaches for each setting. In the rest of the thesis, we provided an extensive
description and analysis of applications to various problems.

In Chapter 3, we proposed a reduced–order model for the optimisation–based domain decompo-
sition formulation of the parameter–dependent stationary incompressible Navier–Stokes equations.
The original problem cast into the optimisation–based domain–decomposition framework leads to
the optimal control problem aimed at minimising the coupling error at the interface; the problem,
then, has been tackled using an iterative gradient–based optimisation algorithm, which allowed us
to obtain a complete separation of the solvers on different subdomains. At the reduced–order level,
we have managed to build a model for which the generation of the reduced basis spaces is carried
out separately in each subdomain and for each component of the problem solution. Furthermore,
as the numerical results show, the reduction of the optimal–control problem can be observed not
only in the dimensions of the different components of the problem, i.e., the functional, the state and
the adjoint equations but also in the number of the iterations of the optimisation algorithm. The
presented model has been tested on two CFD benchmark problems: backward–facing step and the
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lid–driven cavity flows.
Chapter 4 deals with non–stationary fluid dynamics problems. We described and conducted,

based on the a priori estimates, the convergence analysis of an optimisation–based domain decom-
position algorithm for nonstationary Navier–Stokes equations. The original problem, cast into the
optimisation–based domain–decomposition framework, leads to the optimal control problem aimed
at minimising the coupling error at the interface; the problem, then, has been tackled using an
iterative gradient–based optimisation algorithm, which allowed us to obtain a complete separation
of the solvers on different subdomains. At the reduced–order level, we provided two techniques: a
POD–Galerkin projection and a data–driven POD–NN, both of them on separate domains. In the
Galerkin projection, the optimal–control problem was solved much faster, not only because of the
reduced dimensions but also because of the smaller number of iterations. In the POD–NN, results
are less accurate, but the computational time is way cheaper with respect to the other methods. The
presented model has been tested on two non–stationary CFD problems, namely backward–facing
step and the lid–driven cavity flows.

In Chapter 5, we focused on the application of the methodology in the context of multi-
physics problems. In particular, we considered a non–stationary FSI problem with the incompress-
ible Navier–Stokes equations and the linear elasticity model. The original problem cast into the
optimisation–based domain–decomposition framework leads to the optimal control problem aiming
at minimising the velocity coupling error at the fluid–structure interface; the problem, then, has been
tackled using either an iterative gradient–based optimisation algorithm or by the Gauss–Newton
algorithm in the non–linear least squares optimisation framework. These allowed us to obtain a
complete separation of the solvers on different subdomains. At the reduced–order level, we have
built a model for which the generation of the reduced basis spaces is carried out separately in each
subdomain and for each component of the problem. In the Galerkin projection, the optimal–control
problem was solved much faster, not only because of the reduced dimensions but also because of the
smaller number of optimisation iterations. Another extremely important feature of the algorithms
presented in Chapter 5 is the fact that they are stable under the assumption of the “added mass”
effect, which causes numerical instabilities in many partitioned approaches to FSI problems: this
has been confirmed by the numerical experiments of the model presented for a two–dimensional
haemodynamics benchmark FSI problem.

6.2 Perspectives

In this last section, I would like to provide some ideas for possible improvements for the techniques
developed in this thesis and future perspectives.

In Chapter 3, in the numerical examples presented, we faced a problem of sensitivity of
gradient–based optimisation algorithms to the initial guess. As mentioned in that section, this
could be due to the non–uniqueness of the solution because of possible bifurcation phenomena
present in many stationary fluid dynamics problems. In this context, one direction of improvement
could be changing the perspective of how to address the resulting optimal–control problem or, in
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the cases where bifurcation phenomena are proved to develop, account for them in the objective
functional, as it is done, for instance, in [139].

In Chapter 4, we conducted a comparison between classical POD–Galerkin ROM and the POD–
NN model based on the use of artificial neural networks. In terms of computational time, the POD–
NN is very effective, but the approximation can be very poor when dealing with discontinuities,
especially in the initial and final time steps. One of the possible scenarios could be a combination
of the ROM and the POD–NN model based on the a posteriori error estimates, so that the time
steps in which a much more computationally effective ANN model fails to produce a sufficient
approximation, the ROM is applied. Similar ideas can be found inter alia in [16].

In the course of the thesis, we considered only the two–domain decomposition and the obvious
extension could be considering many–domain decomposition models that could greatly alleviate
computational costs. In addition to this, we might also consider the models where different
discretisation techniques, such as FEM, FV or DG, are used on the different subdomains. Regarding
the Galerkin–POD ROM, as it has been mentioned a few times throughout the thesis, the online
stage can be made much less expensive by ensuring an affine–decomposition assumption of the
nonlinear problems via various techniques, such as EIM, DEIM or EQM.

In Chapter 5, we developed a stable fully–segregated model for an FSI problem. The future
extensions of this methodology, just to name a few, may include combining this segregated approach
with further domain–decomposition methods used for separate components of the multiphysics
problem, compressible or non–Newtonian fluids and nonlinear elasticity models. In addition, this
technique can be applied in a similar fashion to other multiphysics problems, and not only FSI.

Recently, the authors of the paper [46] have introduced a novel partitioned approach for ROMs,
where they couple either two different reduced–order models on each subdomain or a reduced–
order model on one subdomain and a full–order (Finite Element) model on the other for the case
of nonstationary diffusion–advection problems. In this context, the construction followed in this
thesis could be also applicable to the coupling presented in the paper, as long as there is a way of
casting functions defined on the subdomain interface onto the approximation spaces used on the
corresponding subdomains.

Finally, I would like to mention the combination of domain–decomposition methods with opti-
mal control or inverse problems. An optimisation–based domain approach to domain–decomposition
described here together with an optimal control problem leads to multi–objective optimisation set
up on each subdomain, as it is done, for instance, in [74].
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