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Abstract

On February 11th, 2016, the LIGO and Virgo scientific collaborations announced
the first direct detection of gravitational waves (GWs), a signal caught by the LIGO
interferometers on September 14th, 2015, and produced by the coalescence of two
stellar-mass black holes. The discovery represented the beginning of an entirely new
way to investigate the Universe. The latest gravitational-wave catalog by LIGO, Virgo,
and KAGRA brings the total number of gravitational-wave events to 90, and the count
is expected to significantly increase in the next years when additional ground-based
and space-born interferometers will be operational. From the theoretical point of view,
we have only fuzzy ideas on where the detected events came from, and the answers to
most of the five Ws and How for the astrophysics of compact binary coalescences are
still unknown.

However, two main formation channels have been proposed so far for the formation
of merging compact objects (neutron stars - NSs, and black holes BHs). In the isolated
binary channel, two progenitor stars are bound since their formation, evolve, and then
turn into (merging) compact objects at the end of their life, without experiencing any
kind of external perturbation. This scenario is driven by single and binary stellar
evolution processes, and it is sometimes referred to as the “field” scenario because it
assumes that binaries are born in low-density environments, i.e., that they evolve in
isolation. In contrast, in the dynamical channel, two compact objects get very close to
each other after one (or more) gravitational interactions with other stars or compact
objects. This evolutionary scenario is quite common in dense stellar environments (e.g.,
star clusters), and it is driven mainly by stellar dynamics. In reality, the two formation
pathways might have a strong interplay. In star clusters, the orbital parameters of
binaries might be perturbed by many passing-by objects.

One of the main issues is that most stars form in dense stellar environments, and nu-
merical simulations of merging compact-object binaries in such crowded stellar systems
are very challenging. However, to investigate the origins and the properties of merging
compact objects we need a powerful N-body code, which can handle, at the same time,
the large spatial and time-evolutionary scales of star clusters (∼pc and ∼Gyr), and the
small scales typical of tight binaries (∼AU and ∼days). Therefore, in this thesis, I dis-
cuss the innovative algorithms behind isteddas, a new direct N-body code I developed
in C++ from scratch that natively supports CUDA to run on Graphics Processing Unit
(GPU) supercomputers. I coupled isteddas with the few-body code tsunami, which
numerically integrates the orbits of tight systems (e.g., binaries or three-body encoun-
ters) with very high accuracy, and also with the population-synthesis code sevn, which

1



includes up-to-date prescriptions for the evolution of both single and binary stars.
In this Thesis, I will explain the complex machinery behind isteddas. In particu-

lar, the first chapter is a wide overview of the astrophysical problems that are uniquely
addressed by isteddas. The second, third, and fourth chapters are overviews of
isteddas, tsunami, and sevn, respectively. In those chapters I will go through the
implementation details of the codes, I will explain how they are interfaced with each
other, and I will show some results that validate the first version of the isteddas
code.
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Chapter 1

Gravitational waves from merging
compact objects in star clusters

In this chapter, I will give an overview of the astrophysical aspects involved in
my research. In particular, I will delve into the details of the astrophysical processes
involved in the emission of gravitational waves (GWs), which were detected by the
interferometers of the LIGO-VIRGO collaboration (LVC). These processes are thought
to be crucial for the formation of merging compact-object binaries, such as black holes
(BHs) or neutron stars (NSs) binaries, and promising astrophysical environments where
such mergers can happen are star clusters (SCs). To understand the complex interplay
of all the ingredients necessary to obtain a GW event we utilize a very powerful tool:
N-body simulations. Thus, in this chapter, I am going to describe GWs, the laser
interferometers LIGO and VIRGO, the merger process of compact objects, star clusters,
and, finally, N-body simulations.

1.1 Gravitational waves

As predicted by Einstein’s general relativity (GR), GWs are disturbances or ripples
in the curvature of spacetime, generated by accelerated masses. They are transverse
(oscillating perpendicular to the direction of propagation), travel at the speed of light,
and possess two polarizations. GWs physically manifest themselves as time-dependent
strains or perturbations in spacetime (δL/L), where L is the distance between two
reference points in space and δL is the induced displacement over the baseline L.
Therefore, δL is the quantity to be measured to detect the passage of a GW and, to
measure it, we use the laser interferometers LIGO and Virgo, see Section 1.6. GR
predicts that the induced strain is perpendicular to the axis of GW propagation and is
quadrupolar, that is, a wave traveling along the z-axis stretches (then compresses) the
path along the x-axis while shrinking (then stretching) the y-axis (for one polarization;
in the orthogonal polarization, the elongation/compression occurs along axes rotated
45◦ relative to the x-axis and y-axis). See Appendix.A for a deeper explanation on
GWs’ analytical derivation and quadrupolar emission.

Fundamentally different and complementary to other astrophysical “messengers”
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1 Gravitational waves from merging compact objects in star clusters

such as photons, neutrinos, or cosmic rays, GWs provide unique information about the
most energetic astrophysical processes in the Universe by carrying information about
the dynamics of massive objects such as black holes and neutron stars moving at rel-
ativistic speeds [26]. Single-object events were taken into consideration but even the
most energetic event, a supernova, because of its roughly spherical symmetry, has a
negligible quadrupolar emission. Therefore, the scientific community attributes the de-
tected GWs to the merging of compact objects, that indeed can produce a quadrupolar
wave. In the next section (Section 1.2) I will go through an in-depth discussion about
merging compact objects.

1.2 Merging compact objects
Merging compact-object binaries are binary systems composed of two compact ob-

jects that are so close to each other that they merge via GW emission. The members of
such binaries can be white dwarfs (WDs), NSs, BHs, and their combinations, e.g., BH-
NS binary systems. These systems have been investigated for decades by many authors,
who predicted their existence through theoretical studies that go from the formation
and evolution of the stellar progenitors to accurate numerical relativity simulations of
the final merger phase [58, 59, 125, 160, 215, 230, 245, 294, 321].

From the observational point of view, proving the existence of merging compact-
object binaries has always been challenging. While such systems are potentially loud
GW sources, catching their GW signal is not straightforward. The passage of a GW
produces a relative change in the distance between two points which is

δL

L
=

4m1m2

rl0

G2

c4
, (1.1)

where r is the distance from the GW source, l0 is the orbital separation of the binary,
L is the reference distance, m1 and m2 are the masses of the GW source, G is the
gravitational constant, and c is the speed of light [78]. The factor G2c−4 is minuscule
(∼ 5 × 10−55m2 kg−2), thus, when a GW reaches the Earth, it causes an extremely
small perturbation, which is very hard to detect. Even without direct evidence of
GWs, the loss of orbital energy of a compact binary via GWs was verified through radio
observations of the binary pulsar PSR B1913+16 [129]. The observed orbital decay of
the Hulse–Taylor binary is remarkably consistent with a GW-induced shrinking. This
system, which is expected to merge in ∼300 Myr, provided not only an additional
confirmation of Einstein’s theory of general relativity, but it also suggested that there
might be not just one, but a population of binary NSs that can merge in relatively
short times via GW emission. For the first direct evidence of merging compact-object
binaries and their GW’s fingerprint, we had to wait until 14 September 2015, when
the two ground-based interferometers of the Laser Interferometer Gravitational-wave
Observatory (LIGO) were able to measure the effect of a passing GW. The signal,
named GW150914, was attributed to the coalescence of two stellar-mass BHs with
masses m1 = 36+5

−4 M⊙ and m2 = 29+4
−4 M⊙ [6, 7]. The event carried many scientific

implications with itself and it laid the foundations of a new way to investigate the
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1.3 Formation channels

Universe by allowing us to access data never collected before. An important, solid
conclusion was that GW150914 marked a new starting point for the astrophysical
community. It gave an unprecedented boost to the development of new theoretical
models to study the formation and evolution of compact-object binaries and their
progenitor stars, with a new goal: providing an astrophysical interpretation to GW
sources.

1.3 Formation channels

From the theoretical point of view, two main formation channels have been pro-
posed, so far, for the formation of merging compact objects. In the isolated bi-
nary channel, two progenitor stars are bound since their formation; they evolve,
and then turn into (merging) compact objects at the end of their life, without ex-
periencing any kind of external perturbation [33, 37, 65, 66, 72, 107, 131, 132, 184,
194, 226, 238, 274, 296, 308, 309, 322]. This scenario is driven by single and bi-
nary stellar evolution processes, and it is sometimes referred to as the “field” sce-
nario, because it assumes that binaries are born in low-density environments, i.e., that
they evolve in isolation. In contrast, in the dynamical channel, two compact ob-
jects become bound to each other after one (or more) gravitational interactions with
other stars or compact objects. This evolutionary scenario is quite common in dense
stellar environments (e.g., star clusters), and it is driven mainly by stellar dynamics
[21, 27, 73, 121, 124, 133, 145, 165, 185, 199, 209, 222, 251, 260, 264, 290, 322, 325, 326].
In reality, the two formation pathways might have a strong interplay. In star clusters,
the orbital parameters of binaries might be perturbed by many passing-by objects.
Dynamical interactions might be strong enough to eject the stellar binary from the
cluster and trigger the merger event in the field. Such an apparently isolated merger
would not have occurred if the progenitor stars had evolved in isolation. Such hybrid
scenarios blur the line between the dynamical and the isolated binary channel, and
they have already been investigated by various authors [23, 71, 155, 292].

Our theoretical knowledge of the formation scenarios is hampered by the uncertain-
ties and degeneracies of the astrophysical models. Single-star evolutionary tracks, the
strength of stellar winds (especially for massive stars at low metallicity), core-collapse
and pair-instability supernova (PISN), the orbital parameters of binary stars at birth,
binary mass transfer, compact-object birth kicks, stellar mergers, tidal interactions,
common envelope (CE), and GW recoil, are only part of the uncertain ingredients of
the unknown recipe of merging binaries. In contrast, stellar dynamics is simple and
elegant, but developing accurate and fast algorithms for the long-term evolution of
tight binaries is challenging. Furthermore, studying the evolution of small-scale sys-
tems (2 bodies within ∼ 10−6 pc) in large star clusters (≳ 105 objects within a few pc)
is computationally intensive [4, 50, 51, 134, 149, 196, 201, 205, 252, 303].

Therefore, disentangling different shades of flavors by tasting the final result and go-
ing back to the responsible ingredients is very challenging. The consequence is that the
GW catalog is growing faster than our theoretical understanding of merging compact-
object binaries. At the time of writing, we have already achieved a historic break-
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1 Gravitational waves from merging compact objects in star clusters

through: we have just started talking about a population of BHs. Indeed, the latest
Gravitational Wave Transient Catalog (GWTC) reports ∼ 901 events, see Fig.1.1 for
the complete catalogue by LVK.

Figure 1.1: Compact object masses. Each point represents a different compact object and
the vertical scale indicates the mass in solar masses (M⊙). Blue points repre-
sent black holes and orange circles represent neutron stars. Half-blue / half-
orange mixed circles are compact objects whose classification is uncertain. Each
merger involves three compact objects: two merging objects and the merger prod-
uct. The arrows indicate which compact object merged and the remnant they
produced. (Credits: LIGO-Virgo-KAGRA Collaborations/Frank Elavsky, Aaron
Geller/Northwestern.)

1.4 Isolated binary channel

In a simplistic view, one might assume that the formation of a binary black hole
(BBH) is an inevitable outcome when two massive stars are part of a binary system
and that the mass of each black hole would mirror the mass of its progenitor star
as if they evolve as single stars. However, this holds true only when the binary sys-
tem maintains sufficient separation (referred to as a detached binary) throughout its
entire evolutionary trajectory. If the binary is compact, various processes come into

1LVK-independent analyses have even found a few additional GW candidates (e.g., [219, 223, 318]),
mostly black holes binary (BBH) mergers, and the count is expected to significantly increase in the
next years, at even faster rates than ever because new ground-based interferometers will be operational
and the existing ones will increase their sensitivity [282, 283].
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1.4 Isolated binary channel

play during its evolution, potentially altering its ultimate destiny. Binary population-
synthesis codes are semi-analytical tools commonly employed to investigate the impact
of binary evolution on BBH formation in isolated binaries (e.g., [29, 34, 81–83, 106–
108, 110, 131, 153, 190, 193, 202, 231, 237, 270, 274, 278]). These codes integrate a
description of stellar evolution with models for supernova explosions and a framework
for binary evolution processes. In this section, I outline key binary-evolution processes
and provide a brief examination of their representation in widely utilized population-
synthesis codes.

1.4.1 Mass transfer

When two stars begin an exchange of material, it means they undergo a mass
transfer event, which can be triggered by either stellar winds or Roche-lobe filling
episodes. When a massive star loses mass by stellar winds, depending on the amount of
mass that is lost and on the relative velocity of the wind with respect to the companion
star, its companion could capture some of the ejected material. According to the Bondi
& Hoyle formalism [42], the mean mass accretion rate from stellar winds is modeled as
[131]:

ṁ2 =
1√

1− e2

(
Gm2

v2W

)2
αW

2a2
1

[1 + (vorb/vW )2]3/2
|ṁ1| . (1.2)

Here, e represents binary eccentricity, G is the gravitational constant, m1 and m2 are
the masses of the donor and accreting star, respectively, vW is the wind velocity, αW ∼
3/2 is an efficiency constant, a is the binary’s semi-major axis, vorb =

√
G(m1 +m2)/a

is the binary’s orbital velocity (with m1 denoting the donor’s mass), and ṁ1 signifies
the donor’s mass loss rate. Given that |ṁ1| is typically quite low (|ṁ1| < 10−3M⊙yr−1)
and vW is generally high (> 1000km/s for a line-driven wind) compared to orbital
velocity, this form of mass transfer tends to be inefficient. However, wind-fed systems,
especially those observed in high-mass X-ray binaries [296, 298], including those with
a Wolf-Rayet star companion [85], are not uncommon.

In contrast, mass transfer through Roche lobe overflow is typically more efficient
than wind accretion. The Roche lobe, a teardrop-shaped equipotential surface sur-
rounding a star in a binary system, becomes pivotal in this process. The Roche lobes
of both binary members connect at a single point, known as the Lagrangian L1 point.
A commonly used formula for the Roche lobe is [77]:

RL,1 = a
0.49q2/3

0.6q2/3 + ln (1 + q1/3)
. (1.3)

Here, a represents the binary’s semi-major axis, and q = m1/m2. This formula char-
acterizes the Roche lobe of a star with mass m1, and swapping the subscripts provides
the corresponding Roche lobe of a star with mass m2 (RL,2). If a star’s radius is larger
(smaller) than its Roche lobe, it overfills (underfills) the lobe, leading to the flow of
some of its mass toward the companion star, which can subsequently accrete a por-
tion of it. This mass transfer alters not only the binary stars’ masses and the final
mass of their compact remnants but also the binary’s orbital characteristics. In cases
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1 Gravitational waves from merging compact objects in star clusters

of non-conservative mass transfer, the most realistic scenario, angular momentum loss
occurs, impacting the semi-major axis. Recent work by [43] highlights that highly non-
conservative mass transfer (mass accretion efficiency fMT ≤ 0.5) poses challenges when
reconciling with LVC data under the assumption that all LVC-observed binary black
holes originate from isolated binary evolution. An essential consideration in Roche
lobe overflow is whether the process is stable or unstable and the timescale involved.
A common approach, as outlined by [76, 131, 237, 287], assumes a simple relation be-
tween stellar radius and mass, with the variation in the donor’s radius during Roche
lobe overflow given by:

dR1

dt
=

∂R1

∂t
+ ζ

R1

m

dm1

dt
. (1.4)

In this equation, the term ∂R1/∂t accounts for nuclear burning, and the ζ term mea-
sures the adiabatic or thermal response of the donor star to mass loss. Note that
dm1/dt, representing donor mass loss, is always negative. Similarly, the change in the
donor’s Roche lobe size RL,1 can be approximated as:

dRL,1

dt
=

∂RL,1

∂t
+ ζL

RL,1

m

dm1

dt
. (1.5)

Here, ∂RL,1/∂t accounts for tides and gravitational wave radiation, while ζL describes
the Roche lobe’s response to mass loss—whether it contracts or expands. If ζL > ζ, the
Roche lobe contracts faster than the star’s radius, rendering mass transfer unstable.
Stability persists until the radius undergoes significant changes due to nuclear burning.
Mass transfer instability can occur either on a dynamical timescale (if ζ describes the
adiabatic response of the donor and ζL > ζ) or on a thermal timescale (if ζ describes
the thermal response of the donor and ζL > ζ). If the mass transfer is dynamically
unstable or both stars overfill their Roche lobe, the binary is expected to merge if the
donor lacks a steep density gradient between the core and the envelope or to enter a
common envelope (CE) phase if the donor exhibits a clear core-envelope distinction.

1.4.2 Common envelope (CE)

When two stars undergo a common envelope (CE) phase, their envelopes cease
to co-rotate with their cores. The cores (or the compact object and the companion
star’s core, in the case of a single degenerate binary) find themselves immersed in
a non-co-rotating envelope, initiating a spiraling motion due to gas drag exerted by
the envelope. The energy lost by the cores during this drag contributes to heating
the envelope, causing it to become more loosely bound. If this process results in the
ejection of the envelope, the binary endures. However, the post-CE binary consists of
two exposed stellar cores (or a compact object and an exposed stellar core), and the
orbital separation between the cores (or between the compact object and the stellar
core) is significantly smaller than the initial separation before the CE phase, due to
the spiral-in effect. This reduction in orbital separation is crucial for the fate of a
binary black hole (BBH). If the surviving binary evolves into a BBH, the BBH will
possess a short semi-major axis (a ≲ 100R⊙), considerably shorter than the sum of
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1.4 Isolated binary channel

the maximum radii of the progenitor stars. This compact configuration increases the
likelihood of BBH merger through gravitational wave emission within a Hubble time.

In contrast, if the envelope is not expelled, the two cores (or the compact object and
the core) continue spiraling inward until they eventually merge. The premature merger
of a binary during a CE phase prevents it from evolving into a BBH. The commonly
adopted α formalism [309] is used to describe a common envelope, proposing that the
energy required to unbind the envelope is exclusively derived from the loss of orbital
energy during the cores’ spiral-in. The fraction of orbital energy used to unbind the
envelope is expressed as:

∆E = α (Eb,f − Eb,i) = α
Gmc1mc2

2

(
1

af
− 1

ai

)
. (1.6)

Here, Eb,i (Eb,i) represents the orbital binding energy of the two cores before (after)
the CE phase, ai (af ) is the semi-major axis before (after) the CE phase, mc1 and
mc2 are the masses of the two cores, and α is a dimensionless parameter indicating
the fraction of removed orbital energy transferred to the envelope. If the primary is
already a compact object, mc2 denotes the mass of the compact object. The binding
energy of the envelope is given by:

Eenv =
G

λ

[
menv,1m1

R1

+
menv,2m2

R2

]
. (1.7)

Here, m1 and m2 are the masses of the primary and secondary members of the binary,
menv,1 and menv,2 are the masses of the envelope of the primary and secondary members,
R1 and R2 are the radii of the primary and secondary members, and λ is a parameter
reflecting the concentration of the envelope (smaller λ implies a more concentrated
envelope).

Setting ∆E = Eenv allows us to determine the final semi-major axis af for which
the envelope is ejected. Larger (smaller) values of α correspond to larger (smaller)
final orbital separations. If the resulting af is less than the sum of the radii of the
two cores (or the sum of the Roche lobe radii of the cores), the binary merges during
the CE phase; otherwise, the binary survives. However, it’s acknowledged that the α
formalism [309] provides a simplistic representation of CE physics, which is inherently
more intricate. A comprehensive treatment of CE should consider factors beyond
the orbital energy of the cores and the binding energy of the envelope, including the
thermal energy of the envelope (the combined radiation energy and kinetic energy of
gas particles) [118], recombination energy (as the expanding envelope cools, plasma
recombines, and binding energy is released) [154], tidal heating (cooling) from stellar
spin down (up) [139], nuclear fusion energy [140], envelope enthalpy [138], and accretion
energy that may drive outflows and jets [64, 171, 176, 177, 266, 267]. Additionally, the
envelope concentration parameter λ is expected to vary widely among stars and during
different evolutionary stages of the same star. Some authors [169, 316] have directly
estimated Eenv from their stellar models, enhancing this formalism. However, the α
parameter remains an intrinsic part of the model. Consequently, it is imperative to
employ analytic models and numerical simulations to adequately model CE physics.
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1 Gravitational waves from merging compact objects in star clusters

Although significant efforts have been directed toward this in recent years, the challenge
remains formidable. Some recent studies explore the initiation of CE when unstable
mass transfer prevents envelope co-rotation with the core, resulting in the companion’s
plunge into the envelope [172–175, 299].

Various hydrodynamical simulations focus on the fast spiral-in phase following the
plunge-in [221, 227, 247, 248], during which the two cores spiral in on a dynamical
timescale (approximately 100 days). At the conclusion of this dynamic spiral-in, only
a small fraction of the envelope (approximately 25% according to [221]) appears to
be ejected in most simulations. When the two cores are in close proximity, sepa-
rated by a small gas mass, the spiral-in decelerates, and the system evolves on the
Kelvin-Helmholtz timescale of the envelope (approximately 103−5 years). However,
simulating the system for a Kelvin-Helmholtz timescale poses challenges for current
three-dimensional simulations [162].

1.4.3 Chemically homogeneous evolution (CHE)

Massive stars with rapid rotation may undergo chemically homogeneous evolution
(CHE), wherein the absence of a chemical composition gradient results from rotation-
induced mixing. This tendency is particularly pronounced in metal-poor stars, as stellar
winds are less effective in eliminating angular momentum. In tightly bound binaries,
the spins of the stellar components may even increase during their lifetimes due to
tidal synchronization. Stars undergoing CHE typically exhibit significantly smaller
radii compared to stars that develop a chemical composition gradient, as noted by
[66]. Consequently, even binaries with close proximity (a few tens of solar radii) can
circumvent the common envelope (CE) phase.

1.5 Dynamical channel

The influence of collisional dynamics becomes prominent in binary evolution when
they exist in a dense environment, typically with a stellar density exceeding ∼ 103 stars
pc−3, as observed in star clusters (SC). It is widely believed among astrophysicists that
the majority of massive stars, which serve as progenitors for black holes (BH), originate
within star clusters [159, 235, 307, 311, 312].

Star clusters manifest in various forms. Globular clusters (GC) [114], for instance,
represent aged stellar systems (approximately ∼ 12 Gyr), typically characterized by
considerable mass (MSC ≥ 104M⊙) and high density (central density ρc ≥ 104M⊙pc−3).
These clusters undergo dynamic processes such as the gravothermal catastrophe and
constitute a relatively minor portion of the baryonic mass in the local Universe (less
than ≲ 1% [119]). The majority of studies examining the dynamical formation of
binary black holes (BBH) concentrate on globular clusters [22, 25, 35, 44, 73, 74, 92,
151, 187, 250, 251, 254, 257–259, 264, 277, 326].

Young dense star clusters (YDSC), characterized by youthfulness (approxi-
mately ≲ 100 Myr) and relatively high density (ρc ≥ 103M⊙pc−3), are believed to
be the primary birthplaces of massive stars [159, 235]. After dispersion through gas
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evaporation or disruption caused by the tidal field of their host galaxy, their stellar
constituents become part of the galactic field. Consequently, it is plausible that a
substantial proportion of field BBHs originated in young star clusters, actively partic-
ipating in the cluster’s dynamics. Some young star clusters might endure gas evap-
oration and tidal disruption, evolving into older open clusters, akin to Messier 67.
Studies exploring BBHs in young and open clusters include references such as [27, 69–
71, 97, 145, 155, 156, 185, 325, 326].

Nuclear star clusters (NSC), positioned in the nuclei of galaxies, are a common
feature in galaxies [40, 90, 113, 216]. Typically more massive and denser than globular
clusters, NSCs may coexist with supermassive black holes (SMBHs). Stellar-mass
black holes formed in a galaxy’s innermost regions could potentially be captured in
the accretion disc of the central SMBH, triggering their eventual merger [30, 198, 275].
These distinctive characteristics render nuclear star clusters unique among star clusters.

1.5.1 Two-body encounters, dynamical friction, and core-collapse

The main driver of the dynamics of star clusters is gravity force. Gravitational
two-body encounters between stars lead to local fluctuations in the potential of the
star cluster and drive major changes in the internal structure of the star cluster over a
two-body relaxation timescale [272, 273]:

trelax = 0.34
σ3

G2⟨m⟩ρ ln Λ
, (1.8)

where σ is the local velocity dispersion of the star cluster, ⟨m⟩ is the average stellar
mass in the star cluster, ρ is the local mass density, G is the gravity force and ln Λ ∼ 10
is the Coulomb logarithm. The two-body relaxation timescale is the time needed for a
typical star in the stellar system to completely lose memory of its initial velocity due
to two-body encounters. In star clusters, trelax is much shorter than the Hubble time
(trelax ∼ 10 − 100 Myr in young star clusters [235]), while in galaxies and large-scale
structures, it is much longer than the lifetime of the Universe. Hence, close encounters
are common in dense star clusters.

Dynamical friction is another consequence of gravity force: a massive body of mass
M orbiting in a sea of lighter particles feels a drag force that slows down its motion
over a timescale [53]:

tDF (M) =
3

4
√
2πG2 ln Λ

σ3

Mρ(r)
. (1.9)

It is apparent that two-body relaxation and dynamical friction are driven by the same
force and are related by

tDF (M) ∼ ⟨m⟩
M

trelax , (1.10)

i.e., dynamical friction happens over a much shorter timescale than two-body relaxation
and leads to mass segregation (or mass stratification) in a star cluster. This process
speeds up the collapse of the core of a star cluster and can trigger the so-called Spitzer’s
instability [271]. Two-body relaxation, dynamical friction, and their effects play a
crucial role in shaping the demography of BBHs in star clusters.
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1.5.2 Binary – single-body encounter

The internal energy within a binary system is expressed as:

Eint =
1

2
µv2 − Gm1m2

r
, (1.11)

where µ = m1m2/(m1 +m2) denotes the reduced mass of the binary with components
of mass m1 and m2, v represents the relative velocity between the binary components,
and r stands for the distance separating the two members. According to Kepler’s laws,
Eint = −Eb = −Gm1m2/(2a), where Eb signifies the binding energy of the binary
system, and a is the semi-major axis.

The exchange of internal energy within a binary is achievable only through close
encounters with other stars, wherein the binary’s orbital parameters are perturbed by
the intruder. This scenario occurs when a single star approaches the binary at a prox-
imity of a few times its orbital separation, characterizing it as a three-body encounter.
For such encounters to transpire frequently, the binary must reside in a dense envi-
ronment, as the rate of three-body encounters scales with the local density of stars.
Notably, three-body encounters play a pivotal role in influencing the dynamics of black
hole binaries, contributing to phenomena like hardening, exchanges, and ejections.

1.5.3 Hardening

If a binary of black holes (BBH) experiences multiple three-body encounters over
its lifetime, its semi-major axis will shrink as a consequence of these encounters. This
phenomenon is known as dynamical hardening.

We classify binaries with binding energy greater (lesser) than the average kinetic
energy of a star in the star cluster as hard (soft) binaries. According to Heggie’s law
[121], hard binaries tend to undergo hardening, i.e., they become increasingly bound
through binary–single encounters. In these interactions, a portion of the internal energy
of a hard binary can be transferred to the kinetic energy of the intruder and the center-
of-mass of the binary. This energy transfer results in a reduction of the binary’s internal
energy and, consequently, a decrease in its semi-major axis.

Given that black holes (BHs) are among the most massive objects in star clusters,
most BBHs are expected to be hard binaries. Consequently, BBHs are likely to un-
dergo dynamical hardening through three-body encounters. This hardening process
may be potent enough to contract a BBH to a state where gravitational wave (GW)
emission becomes efficient. Initially, loose BBHs may transform into GW sources due
to dynamical hardening. The hardening rate for hard binaries with a semi-major axis
a can be estimated as [121]

d
dt

(
1

a

)
= 2πξ

Gρ

σ
, (1.12)

where ξ ∼ 0.1− 10 is a dimensionless hardening parameter (estimated through numer-
ical experiments, [123, 240]), ρ is the local mass density of stars, σ is the local velocity
dispersion, and G is the gravitational constant.
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Dynamical hardening predominantly drives the contraction of a binary until it
reaches a sufficiently small semi-major axis for efficient GW emission. This critical
semi-major axis can be determined using the following equation [228]:

da
dt

= −64

5

G3m1m2(m1 +m2)

c5(1− e2)7/2
a−3 . (1.13)

By combining Eqs.1.12,1.13, it is possible to derive a simple analytical estimate of
the evolution of the semi-major axis of a BBH affected by three-body encounters and
GW emission:

da
dt

= −2πξ
Gρ

σ
a2 − 64

5

G3m1m2(m1 +m2)

c5(1− e2)7/2
a−3 . (1.14)

This equation assumes that the binary star is hard, the total mass of the binary star
significantly exceeds the average mass of a star in the star cluster (minimizing ex-
changes), and most three-body encounters have a small impact parameter. The first
term on the right-hand side of Eq.1.14 accounts for the impact of three-body hardening
on the semi-major axis, scaling as da/dt ∝ −a2. This dependence reflects the increased
effectiveness of hardening as the binary size grows, attributable to the geometric cross
section for three-body interactions scaling as a2. The second term represents energy
loss due to GW emission, scaling as da/dt ∝ −a−3, indicating efficient GW emission
only when the two BHs are in close proximity.

1.5.4 Exchange

Dynamical exchanges denote three-body encounters wherein the intruder replaces
one member of the binary. These exchanges have the potential to give rise to new
binary black hole (BBH) systems: for instance, if a binary comprising a black hole
(BH) and a low-mass star undergoes an exchange with a single BH, it results in the
formation of a new BBH. This distinction is fundamental between BHs in the field
and those in star clusters. A BH formed as a solitary entity in the field has minimal
prospects of joining a binary system, whereas a solitary BH in the core of a star cluster
has favorable odds of becoming part of a binary through exchanges.

Exchanges are expected to contribute more to the formation than the destruction
of BBHs. The probability of an intruder replacing a binary member is approximately
zero if the intruder is less massive than both binary members, but it abruptly rises to
around one if the intruder surpasses the mass of one of the binary members [124]. Given
that BHs are among the most massive entities in a star cluster post-formation, they
efficiently acquire companions through dynamical exchanges. Consequently, exchanges
play a crucial role in dynamically forming BH binaries. Direct N-body simulations
[325] demonstrate that over 90% of BBHs in young star clusters form through dynam-
ical exchanges. Additionally, BBHs formed via exchanges exhibit distinctive features
compared to field BBHs [325]:

BBHs formed through exchanges are, on average, more massive than isolated BBHs
because more massive intruders have higher chances of acquiring companions. Ex-
changes lead to the formation of highly eccentric BBHs; subsequent circularization
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1 Gravitational waves from merging compact objects in star clusters

induced by gravitational wave (GW) emission, upon entering the effective GW emis-
sion regime, reduces eccentricity significantly. BBHs born through an exchange are
likely to exhibit misaligned spins, as exchanges and other dynamical interactions tend
to result in isotropically distributed spin directions concerning the binary orbital plane,
erasing any memory of previous alignments. Other simulations [323] compare a set of
field binaries with a set of globular cluster binaries, both run using the same population-
synthesis code. A notable difference observed in their globular cluster simulations is the
scarcity of merging BHs with a mass below 10 solar masses (M⊙). This is attributed
to the tendency of exchanges to disrupt binaries composed of light BHs.
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Figure 1.2: Mass of the secondary BH versus mass of the primary BH in a set of BBH mergers
in isolation and in young star clusters. Yellow stars represent O1 and O2 BBHs
plus GW190412. Blue, green, and red symbols depict simulated BBHs in young
star clusters with metallicities of Z = 0.0002, 0.002, and 0.02. Filled symbols
denote dynamical exchanges, while open symbols represent original binaries. Gray
contours indicate BBHs resulting from isolated binary evolution. Simulations from
[71]. Courtesy of Ugo N. Di Carlo.

Figure 1.2 compares the masses of simulated BBH mergers in isolated binaries and
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young star clusters. While the maximum total mass of BBH mergers in isolated binaries
is approximately 80M⊙, BBH mergers in young star clusters exhibit total masses up
to around 130M⊙ [186]. This discrepancy is primarily due to two factors [186]:

Single stellar evolution at low metallicity can lead to the formation of single BHs
with a mass up to approximately 70M⊙. In the field, such massive BHs remain solitary,
whereas, in a star cluster, they can acquire companions through dynamical exchanges
and merge through dynamical hardening and GW emission. In star clusters, stellar
collisions are relatively common and can result in the production of more massive BHs,
including those within the pair-instability mass gap [69–71, 152, 246]. Spin misalign-
ments serve as another potential discriminant between field binaries and star cluster
binaries [87, 88]. An isolated binary system where both primary and secondary com-
ponents undergo direct collapse is expected to yield a BBH with nearly aligned spins.
In contrast, dynamically formed BH binaries are anticipated to possess misaligned or
even nearly isotropic spins due to the complete reset of any initial spin alignment by
three-body encounters.

Currently, constraints on BHs spins from gravitational wave (GW) detections are
limited. In a few events, such as GW151226 [8], GW170729 [9], and particularly
GW190412 [15], the measured value of the effective spin parameter (χeff ) is signifi-
cantly nonzero, indicating at least partial alignment. However, the majority of events
in GWTC-2 have χeff consistent with zero, which may be attributed to either low
spins, misaligned spins, or a combination of both. On the other hand, a recent popula-
tion study by the LVC [12] suggests that approximately 12% to 44% of BBH systems
exhibit spins tilted by more than 90◦ with respect to their orbital angular momentum,
supporting a negative effective spin parameter.

Notably, GW190412 displays a non-zero precessing spin (χp) to the 90% credible
level [13], and GW190521 [14], the most massive BBH event to date, exhibits mild
evidence for a non-zero precessing spin. This lends support to the idea of a dynamical
formation for these events [13, 14, 93, 100, 256]."

1.5.5 BHs in the pair-instability mass gap

Encounters between binary systems and single massive stars within young star clus-
ters instigate collisions among these massive stellar entities. The presence of dynamical
friction speeds up this process, leading to an accumulation of massive stars in the clus-
ter core in less than a million years. These stellar collisions have the potential to give
rise to exceedingly massive stars (exceeding 150M⊙), as well as blue straggler stars
[189] and exceptionally massive black holes.

Fig.1.3 showcases the dynamic formation of a BBH with a primary mass m1 = 88M⊙
and a secondary mass m2 = 47.5M⊙ [71]. The masses of these BBH components
closely resemble those of GW190521 [14, 16]. Notably, the primary black hole (BH)
in this scenario possesses a mass within the pair-instability mass gap. Its formation is
facilitated by the merger between a giant star with a well-developed helium core and
a main sequence companion, resulting in a massive core helium-burning (cHeB) star
with an oversized hydrogen envelope relative to the helium core [69–71, 152, 246]. Due
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Figure 1.3: Illustration depicting the dynamical assembly of a binary black hole (BBH) re-
sembling GW190521, derived from simulations conducted by [71]. Courtesy of
Ugo N. Di Carlo.

to the rapid timescale for helium, carbon, oxygen, neon, and silicon burning compared
to hydrogen burning, the star undergoes collapse to form a BH before the helium core
surpasses the pair-instability threshold, resulting in a BH with a mass of approximately
88M⊙. Subsequently, this BH obtains a companion through dynamical exchanges and
merges within a Hubble time.

This proposed scenario offers a plausible explanation for the formation of systems
resembling GW190521, not only due to the close match in BBH masses but also be-
cause a BH originating from the direct collapse of a highly massive star may exhibit a
substantial spin (dependent on the final spin of the massive progenitor). Additionally,
this dynamical formation process results in BBHs with spins oriented isotropically. The
primary uncertainties in this model pertain to factors such as mass loss during stellar
collisions [98] and potential envelope loss during the final collapse [89].
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1.5.6 Direct three-body binary formation

In the densest stellar assemblies, such as globular clusters and nuclear star clus-
ters, the substantial stellar velocities often result in dynamical encounters capable of
disrupting a significant fraction of the original binary stars (those binaries existing at
the cluster’s formation). The critical relative velocity vc required to unbind a binary is
determined by [265]:

vc =

√
Gm1m2(m1 +m2 +m3)

m3(m1 +m2)a
, (1.15)

where m1, m2, and m3 represent the masses of the two binary members and the intruder,
respectively, while a denotes the binary semi-major axis.

In these extreme environments, the prevailing mechanism for binary black hole
(BBH) formation involves direct encounters among three single bodies [212, 259] during
core collapse. This results in the creation of highly compact BBHs, resilient to further
disruption by intruders. The timescale for BBH formation through three single-body
encounters is given by [21, 163]:

t3b = 0.1 Myr
(

n

106 pc−3

)−2(
σ

30 km/s

)9(
mBH

30M⊙

)−5

, (1.16)

where n represents the local stellar density, σ is the local velocity dispersion of the
star cluster, and mBH is the typical black hole (BH) mass in the star cluster. BBHs
formed through three single-body encounters share characteristics with those arising
from dynamical exchanges: they tend to be more massive than isolated binaries, possess
high initial eccentricities, and exhibit isotropically oriented spins [18]. Direct three-
body encounters are likely the predominant channel for BBH formation in globular
clusters and nuclear star clusters [212], while binary–single-star exchanges are presumed
to be the prevailing formation mechanism for BBHs in young star clusters [69, 325].
Dynamical exchanges influence both pre-existing BHs and their stellar progenitors in
young star clusters.

1.5.7 Dynamical ejection

In the course of three-body encounters, a portion of the internal energy of a robust
binary undergoes a transfer into the kinetic energy of both the intruders and the center-
of-mass of the binary. Consequently, both the binary and the intruder experience a
recoil, typically characterized by velocities on the order of a few km/s, although they
can extend to several hundred km/s.

Given that the escape velocity from a globular cluster is approximately ∼ 30 km/s,
and even lower for young star clusters or open clusters, both the recoiling binary and
the intruder stand the chance of being expelled from their parent star cluster. Once
ejected, these entities transition into field objects, disengaging from the dynamics of
the star cluster. This not only halts the hardening process for the expelled binary black
hole (BBH) but also precludes the ejected intruder, if another compact object, from
participating in new binary formations through dynamical exchanges.
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1 Gravitational waves from merging compact objects in star clusters

A general expression for the recoil velocity of the binary center of mass, applicable
when (m1+m2) ≫ ⟨m⟩ (where ⟨m⟩ denotes the average mass of a star in a star cluster),
is given by:

vrec ∼
⟨m⟩

m1 +m2

√
2ξ

m1 +m2 + ⟨m⟩
Eb , (1.17)

where Eb = Gm1m2/(2a) is the binary binding energy. This equation allows the
derivation of the minimum binding energy required for the ejection of a binary star
through a binary–single-body encounter, denoted as Eb,min [209]:

Eb,min =∼ (m1 +m2)
3

2ξ⟨m⟩2
v2esc , (1.18)

In many cases, binary neutron stars (BNSs), BBHs, and black hole–neutron star
(BH–NS) systems within young star clusters are expelled prior to merging [69, 244].
The dynamical ejections of BNS and BH–NS binaries have been proposed as potential
explanations for host-less short gamma-ray bursts, constituting around ∼ 25% of all
short gamma-ray bursts [91].

The expulsion of compact objects and compact-object binaries from their parent
star cluster may arise from at least three distinct mechanisms:

• Dynamical ejections, as described above;

• Supernova (SN) kicks [96, 127];

• Gravitational wave (GW) recoil [47, 112, 168].

GW recoil, a relativistic kick occurring during the merger of a BBH, is the outcome
of asymmetric linear momentum loss due to gravitational wave emission, particularly
when the binary exhibits asymmetric component masses and/or misaligned spins. This
phenomenon results in kick velocities reaching up to thousands of km/s, typically falling
within the range of hundreds of km/s.

The ejection mechanisms, whether through dynamics, SN kicks, or GW recoil, play
a significant role in impeding the merger of second-generation black holes (those born
from the merger of two BHs rather than the collapse of a star [105]). In globular
clusters, open clusters, and young star clusters, a BH has a high likelihood of being
ejected by three-body encounters before merging [209], and a very high probability
of ejection by GW recoil after merging [188, 254]. The exception lies in nuclear star
clusters, where merging BHs can more easily avoid ejection by GW recoil due to higher
escape velocities reaching hundreds of km/s [18, 21, 94, 188].

1.5.8 Formation of intermediate-mass black holes by runaway
collisions

Intermediate-mass black holes (IMBHs), characterized by masses in the range 100M⊙ ≲
mBH ≲ 104M⊙, could potentially originate from the direct collapse of metal-poor, ex-
ceptionally massive stars [268]. Various avenues have been proposed for IMBH forma-
tion, with many implicating the dynamic processes within star clusters. The concept
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of massive black hole (BH) formation through runaway collisions was initially intro-
duced around half a century ago [60, 262], subsequently refined by numerous researchers
[69, 70, 95, 111, 117, 185, 189, 191, 232–234, 249].

In dense star clusters, the phenomenon of dynamical friction [53] results in the
deceleration of massive stars due to the drag exerted by lighter bodies, occurring over
a timescale tDF (M) ∼ (⟨m⟩/M)trelax (Eq.1.9).

Given that the two-body relaxation timescale in a young star cluster can be as brief
as trelax ∼ 10−100M⊙ [235], for a star with a mass M ≥ 40M⊙, we estimate tDF ≤ 2.5
Myr, signifying the highly effective nature of dynamical friction in dense massive young
star clusters. Due to dynamical friction, massive stars tend to segregate towards the
core of the cluster before they evolve into black holes.

When the most massive stars in a dense young star cluster migrate to the core via
dynamical friction in a timespan shorter than their lifetime, and before core-collapse
supernovae remove a significant portion of their mass, the density of massive stars
in the cluster core becomes exceptionally high. This heightened density significantly
increases the likelihood of collisions between massive stars. Indeed, direct N-body sim-
ulations illustrate that collisions between massive stars progress in a runaway fashion,
culminating in the formation of a very massive (≫ 100M⊙) star [234].

Determining the final mass of the collision product involves addressing two crucial
questions: how much mass is lost during the collisions? and how much mass does the
resulting very massive star lose through stellar winds?

Hydrodynamical simulations focusing on colliding stars [98, 99] indicate that mas-
sive stars can lose approximately ≈ 25% of their mass during collisions. Even in an
optimistic scenario where no mass is lost during and immediately after the collision,
when the collision product relaxes to a new equilibrium, the resulting very massive
star is expected to be strongly radiation-pressure dominated and likely to lose a signif-
icant fraction of its mass through stellar winds. Recent investigations, accounting for
the Eddington factor’s impact on mass loss [185, 268], reveal that IMBHs are unlikely
to form from runaway collisions at solar metallicity. However, at lower metallicity
(Z ≲ 0.1Z⊙), approximately 10 − 30% of runaway collision products in young dense
star clusters may evolve into IMBHs through direct collapse, successfully avoiding dis-
ruption by pair-instability supernovae.

While the majority of runaway collision products might not transform into IMBHs,
they often manifest as relatively massive black holes (∼ 20 − 90M⊙ [185]). If these
massive black holes remain within their parent star cluster, they prove highly efficient
in acquiring companions through dynamical exchanges. The stable binaries formed by
runaway collision products predominantly take the form of binary black holes (BBHs),
presenting potential sources of gravitational waves (GWs) within the LIGO–Virgo de-
tection range [185].

1.5.9 Hierarchical BBH formation and IMBHs

The scenario of runaway collisions is exclusive to the initial phases of star cluster
evolution, occurring when massive stars are still in their main sequence phase (with a
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lifetime of approximately 6 million years for a star of about 30 solar masses). However,
an alternative could be that intermediate-mass black holes (IMBHs) can form even in
aged clusters, such as globular clusters, through the repeated merging of smaller black
holes [19, 94, 111, 188, 209].

In a stellar binary black hole (BBH) system within a star cluster, the binary is
typically in a hardened state, gradually contracting due to dynamical interactions until
it enters the regime where gravitational wave (GW) emission becomes significant. At
this point, the BBH merges, resulting in a single, more massive black hole. With its
increased mass, the new black hole has favorable conditions for engaging in a new
binary through dynamical exchange. Subsequently, the new binary undergoes further
hardening via three-body encounters, and this cycle may repeat multiple times until
the primary black hole evolves into an IMBH.

This scenario offers a notable advantage as it is independent of stellar evolution,
ensuring confidence in the growth of the black hole through mergers as long as it remains
within the cluster. However, there are several challenges to address. Firstly, the BBH
may face ejection due to dynamical recoil resulting from three-body encounters, with
stronger recoils as the orbital separation decreases (see Eq. 1.18). To avoid ejection
by dynamical recoil, the BBH needs to be sufficiently massive (around ≳ 50M⊙ for a
dense globular cluster [61]). If the BBH is ejected, the sequence is disrupted, and no
IMBH is formed. Secondly, the merger of two black holes induces a relativistic kick,
potentially reaching speeds of hundreds of km/s [168], leading to the possible expulsion
of the black hole from the parent star cluster [128]. Once again, the sequence breaks
and no IMBH is produced. Finally, even if the black hole binary avoids ejection, this
scenario is relatively inefficient, requiring several Gyrs to form an IMBH with a mass
of approximately ∼ 500M⊙ if the seed black hole is around ∼ 50M⊙ [209].

Monte Carlo simulations [111] indicate that both the runaway collision scenario and
the repeated-merger scenario can coexist in star clusters. Runaway collision-induced
IMBHs form efficiently within the first few million years of a star cluster’s lifespan,
while IMBHs resulting from repeated mergers begin formation much later (after ≳ 5
Gyrs) with a less efficient growth rate.

1.5.10 Von Zeipel-Kozai-Lidov resonance

In contrast to the previously discussed dynamical mechanisms, the von Zeipel-
Kozai-Lidov (ZKL) resonance [137, 150, 164, 214, 263, 301] can manifest both in isolated
environments and within star clusters. The ZKL resonance arises in stable hierarchical
triple systems, characterized by an inner binary and an outer body orbiting the inner
binary, where the orbital plane of the outer body is inclined with respect to the orbital
plane of the inner binary. Periodic perturbations exerted by the outer body induce
oscillations in the eccentricity of the inner binary and the inclination between the
orbital planes, without affecting the binary’s semi-major axis. Notably, ZKL resonance,
despite lacking an energy exchange between the inner and outer binaries, can enhance
the merger probability of binary black holes (BBHs) [24, 116, 126, 145, 290]. This
enhancement arises from the dependence of the gravitational wave (GW) emission
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timescale for mergers on the eccentricity (denoted as e) of the binary, given by tGW ∝
(1− e2)7/2 (refer to Eq.1.13 [228]).

Despite the initial perception of hierarchical triples as exotic systems, they are
not uncommon. Approximately ∼ 10% of low-mass stars exist within triple systems
[241, 284, 285], a fraction that rises gradually for more massive stars [75], reaching up
to ∼ 50% for B-type stars [211, 261, 286]. Within star clusters, stable hierarchical
triple systems can dynamically form through four-body or multiple-body encounters.

ZKL resonances find intriguing applications in nuclear star clusters. In scenarios
where a stellar black hole (BH) binary is gravitationally bound to the supermassive
BH (SMBH) at the galaxy’s center, a peculiar triple system emerges, with the stellar
BH binary constituting the inner binary and the SMBH serving as the outer body
[20]. Even in this configuration, the merging binary black hole (BBH) maintains favor-
able conditions for retaining a non-zero eccentricity until emitting gravitational waves
(GWs) within the LIGO–Virgo frequency range.

1.6 GWs detectors

Gravitational wave (GW) detectors operate by measuring the changes in light travel
time between separated reference points, or “test masses”, induced by passing GWs.
These test masses are arranged to approximate a local inertial frame, experiencing
near-perfect free fall, and are positioned over extensive baselines. The variations in
light travel times between pairs of test masses are monitored and detected by the
instrument, translating any alterations in spacetime curvature caused by passing GWs
into modulations in these travel times.

Current ground-based observatories explore the high-frequency segment of the GW
spectrum, spanning from around 10 Hz to approximately 10 kHz, predominantly in-
fluenced by compact sources of stellar mass, such as coalescing binary black holes and
neutron star systems. Employing enhanced Michelson interferometry with suspended
mirrors, all ground-based detectors directly measure a GW’s phase and amplitude.
Detecting GWs in the audio-band frequency range necessitates stringent isolation of
the mirrors from local forces and disturbances. The Advanced LIGO detectors in the
U.S. feature 4 km arm lengths, while Advanced Virgo in Europe and KAGRA in Japan
have 3 km arms. Astrophysical sources typically induce strains (δL/L) on the order
of 10−21 or less, requiring displacement sensitivities (δL) of less than ∼ 10−18 m for
effective GW detection, an exceedingly small displacement comparable to the proton’s
radius of approximately 8.5 · 10−16 m. Figure 1.4 illustrates the configuration of the
current generation of ground-based detectors.

LIGO-Virgo observations, spanning just a few years, have already provided insights
into some of the Universe’s most energetic and cataclysmic phenomena. Discoveries
from events like GW150914 and subsequent black hole and neutron star mergers high-
light the presence of black holes forming orbitally bound binary systems that evolve
through GW emission, merging within a Hubble time. These observations have also
unveiled the existence of black holes with masses ranging from tens to hundreds of
solar masses.
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the University of Maryland, who determined after careful thought and 
experimentation that there were two designs of ground-based detectors 
that might be successful: resonant detectors and laser interferometers. 
Settling on the first, as more practical on a limited budget, in 1965 
Weber built such a detector: a 1.5-tonne, 1 m × 2 m cylindrical bar 
made of solid aluminium that would resonate at a particular set of 
frequencies if excited by a gravitational wave.

The idea was the following. If a gravitational wave went through 
such a ‘Weber bar’, the undulations of spacetime would squeeze and 
stretch the bar, causing vibrations that—if forced at the resonance fre-
quency of the bar—would produce measurable excitations. In 1969, 
Weber announced that he had detected gravitational waves in two 
bars separated by 1,000 km, one in Chicago and one in Maryland24. 
Unfortunately, these results could not be reproduced by other experi-
mental groups, his data analysis methods were found not to be robust 
and the strength of the claimed signals was orders of magnitude greater 
than would be realistic for astrophysical sources. As a result, the physics 
community today does not believe that the signals were detections of 
gravitational waves.

Nevertheless, Weber’s experimental work and techniques, together 
with his unverified announcement, greatly stimulated the field. In 
particular, Rainer Weiss at the Massachusetts Institute of Technology 
(MIT) started to think hard about detecting gravitational waves. In 
1972, Weiss wrote a 23-page note in one of MIT’s quarterly newsletters, 
detailing for the first time the main experimental design and all sources 
of noise for a laser interferometer capable of detecting gravitational 
waves. This design would later become the foundation of the Laser 
Interferometer Gravitational-wave Observatory (LIGO) machines25.

The quietest place on Earth
The design of the detector used in LIGO (in Livingston, Louisiana 
and Hanford, Washington)—which is also used in the existing Virgo 
(near Pisa, Italy), GEO 600 (in Hanover, Germany) and KAGRA (in the 

Kamioka mines, Gifu Prefecture, Japan) detectors and will be used in 
the planned LIGO-India detector (in Hingoli, Maharashtra, India)—
has an ‘L’ shape with equal-length arms connected to a corner station 
(see Fig. 1). When a typical gravitational wave passes by, at some phases 
of the wave one leg of the ‘L’ will be shortened and the other lengthened, 
and at other phases the reverse will happen. Thus, laser photons that 
bounce between the corner station and one end station return to the 
corner station later than laser photons that reflect off the other end 
station. As a result, the interference fringes produced when the light is 
combined at the corner station shift back and forth as the wave changes 
in phase. This shift can be compared with the expectations from differ-
ent types of signals (for example, from binaries) to assess the probability 
that signal or noise is being observed.

This experimental setup raises an important question related to the 
smallness of the effect. To get a sense for the length changes that are 
measured, we note that the first directly detected gravitational waves had 
a maximum (dimensionless) fractional amplitude of 10−21, which means 
that the 4-km LIGO arms changed in length by 10−21 × 4 × 105 cm =  
4 × 10−16 cm. Put differently, the effective force exerted by the gravi-
tational waves is roughly 4 pN at 100 Hz, which is comparable to the 
weight of a eukaryotic cell at the frequency of a sonic toothbrush. Given 
that the proton radius is 10−13 cm, we are trying to measure distance 
changes of the order of 1/200 of the proton radius, with light that has a 
wavelength of the order of 10−4 cm. This seems impossible, even before 
we consider the many noise sources (for example, any shaking of the 
ground). The workaround is to have an enormous number of coherent 
photons that bounce around within the arms (in a Fabry–Perot config-
uration) many times before recombining. For N1 photons of wavelength 
λ, the location of the intensity peak can be measured with a precision 
of about λ/ N1. Similarly, for N2 bounces within the arms, the effective 
length of the interferometer, and thus the change in LIGO arm length, 
increases by a factor of N2. This means that for large enough N1 and N2, 
the necessary precision can be attained. A similar method is in fact used 

Fig. 1 | Operation of a laser interferometer, such as LIGO and Virgo. 
a, Laser light is sent into the instrument to measure changes in the 
length of the two arms. b, A ‘beam splitter’ splits the light and sends out 
two identical beams along the arms. c, The light waves bounce off the 
mirror and return. d, A gravitational wave affects the interferometer’s 

arms differently: one extends and the other contracts as they pass from 
the peaks and troughs of the gravitational waves. e, Normally, the light 
returns unchanged to the beam splitter from both arms and the light waves 
cancel each other out. Image credit: ©Johan Jarnestad/The Royal Swedish 
Academy of Sciences.
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Figure 1.4: Operation of a L-shaped laser interferometer, such as LIGO and Virgo. a) Laser
light is sent into the instrument to measure changes in the length of the two arms.
b) A ‘beam splitter’ splits the light and sends out two identical beams along the
arms. c) The light waves bounce off the mirror and return. d) A gravitational
wave affects the interferometer’s arms differently: one extends and the other con-
tracts as they pass from the peaks and troughs of the gravitational waves. e)
Normally, the light returns unchanged to the beam splitter from both arms, and
the light waves cancel each other out. f) If a gravitational wave passes through
the interferometer, the two beams do not cancel out and their combination reaches
the detector. (Image credit: ©Johan Jarnestad/The Royal Swedish Academy of
Sciences [210])

The latest gravitational-wave catalog encompasses a total of 90 events (see Fig.
1.1), with expectations of a substantial increase in the count in the coming years as
additional ground-based (e.g., the Einstein Telescope) and space-borne (e.g., the Laser
Interferometer Space Antenna, LISA) interferometers become operational.
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1.7 N-body simulations

1.7 N-body simulations
Studying the formation and evolution of merging compact objects in dense star clus-

ters is challenging because it involves the complex interplay between different spatial
and time scales [235]. For a typical GC, with a half-mass radius of ∼1pc, the two-body
relaxation time (trelax) is of the order of Gyrs and the crossing time is of the order of
Myrs [38, 52, 84, 304]. At the same time, the orbital period of tight binaries can be as
short as ∼days [121, 122]. Furthermore, it is also crucial to consider time-scales related
to binary stellar evolution, such as the typical timescale for stable mass transfer (SMT)
O (103) yr, or the common envelope (CE) time scale, that is O (103 − 105) yr [186]. N-
body simulations that aim at investigating merging compact objects in GCs need to
cover, at least, trelax (∼Gyrs) of evolution and to resolve all the mentioned time-scales
simultaneously. Therefore, such simulations are challenging because they require the
use of small time steps, significantly smaller compared to the total integration time.
This means that such simulations are slow, and they accumulate significant numerical
error, in the form of both truncation and round-off errors.

The dynamical evolution of stars is governed by the gravitational N-body problem,
which can be solved numerically using a direct or non-direct approach. In the first
one, all the forces are computed between star pairs, with a computational complexity
of O(N2), where N is the total number of stars. In the second approach, either an
approximated mathematical expression is used instead of the Newton’s gravitational
force, or only the force from close stars is computed directly, softening the O(N2)
computational complexity. Non-direct approaches are faster but less accurate than the
direct approach. Besides stellar dynamics, both direct and non-direct N-body codes
generally include fitting formulas or look-up tables to treat stellar evolution of single
and binary stars.

Given the high computational complexity, special-purpose hardware components,
such as grape, were developed to speed up direct N-body simulation of massive star
clusters [179, 181, 182]. Today, graphics processing units (GPUs) have replaced the
grape system as main computing accelerators for N-body simulations. Various codes
with only Central Processing Unit (CPU) support exist (e.g. myriad, starlab/kira
[149, 236]) but they can take advantage of external libraries to speed-up the force
calculation process through GPUs (e.g. sapporo [32, 98]). The hybrid CPU-GPU
approach represents the state-of-the-art for N-body codes and simulations [1, 2, 31, 36,
51, 134, 197, 203, 252, 253, 303, 305]. Finally, stellar evolution of single and binary
stars is implemented, in most cases, through population-synthesis codes that use, in
general, polynomial fitting formulas [63, 107, 110, 130, 131, 190, 287, 302].
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Chapter 2

The direct N-body code isteddas on
GPU

In this chapter, I will give an overview of the strategies adopted in our code to
numerically solve the N-body problem using GPUs. isteddas (the word for “stars”
in Sardinian language) is a direct N-body code that implements the Hermite 6th order
time integrator combined with the block time steps method, and the Ahmad-Cohen
neighbours scheme. isteddas is written by combining utilities of C and C++ and it
uses CUDA, MPI, and OpenMP to exploit GPU workstations as well as GPU clusters
[201]. The main features of isteddas are described in the following sections.

2.1 The Hermite integrator

The Hermite time integrators (4th, 6th and 8th order) represent the state-of-the-art
for direct N-body simulations [2, 5]. The 4th order scheme is, by far, the most used
algorithm in this context [1, 36, 197, 236, 303, 305], but the 6th order can be more
accurate and almost as fast as the 4th order when implemented on GPUs [218]. The
Hermite integrators are based on the Taylor series of positions, velocities, and accel-
erations and their most important feature is that they need to evaluate the distances
between particles just once per time step. For instance, this is a huge advantage com-
pared to a classic 4th order Runge-Kutta method, which needs to evaluate accelerations
4 times per integration step.

To evolve a stellar system from time t0 to time t1 (∆t = t1− t0, 1 integration step),
the Hermite 6th order integrator takes advantage of a predictor-evaluation-corrector
scheme. The prediction step performs a Taylor expansion on stars’ positions (r)1,

1Throughout the manuscript, I use bold letters to refer to three-dimensional vectors.
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2 The direct N-body code isteddas on GPU

velocities (v) and accelerations (a), using time derivatives up to ...
a :

rp = r0 + v0∆t+ a0
∆t2

2
+ ȧ0

∆t3

6
+ ä0

∆t4

24
+

...
a 0

∆t5

120
, (2.1)

vp = v0 + a0∆t+ ȧ0
∆t2

2
+ ä0

∆t3

6
+

...
a 0

∆t4

24
, (2.2)

ap = a0 + ȧ0∆t+ ä0
∆t2

2
+

...
a 0

∆t3

6
, (2.3)

where the quantities labeled with p are the predicted ones and the quantities labeled
with 0 come from the corrector performed in the previous step, or from initial condi-
tions.

During the evaluation step, the code computes the total force on the star i from all
the other stars in the system, using the classical Newtonian formula and the predicted
values p, v, and a:

ai,1 =
N∑
j ̸=i

mj

|rij,p|3
rij,p , (2.4)

ȧi,1 =
N∑
j ̸=i

mj

|rij,p|3

(
vij,p − 3

rij,p · vij,p

|rij,p|2
rij,p

)
, (2.5)

äi,1 =
N∑
j ̸=i

mj

|rij,p|3

[
aij,p − 6

rij,p · vij,p

|rij,p|2
vij,p+

+
3

|rij,p|2

(
5
(rij,p · vij,p)

2

|rij,p|2
− rij,p · aij,p − |vij,p|2

)
rij,p

]
, (2.6)

where the quantities with subscript “ij, p” are the relative predicted values between
the stars i and j (e.g. rij,p = rj,p − ri,p), and the gravitational constant it is assumed
as G = 1. Finally, in the corrector step, the predicted quantities are corrected to
obtain a more accurate solution using the newly evaluated accelerations. Positions and
velocities are corrected as:

vc = v0 + (a1 + a0)
∆t

2
− (ȧ1 − ȧ0)

∆t2

10
+ (ä1 + ä0)

∆t3

120
, (2.7)

rc = r0 + (vc + v0)
∆t

2
− (a1 − a0)

∆t2

10
+ (ȧ1 + ȧ0)

∆t3

120
. (2.8)

During the correction phase, a new time step for each star is computed using the new
accelerations, as in [218]:

∆t = ηh 6

√
|a1||ä1|+ |ȧ1|2

|a(5)
1 || ...a 1|+ |a(4)

1 |2
, (2.9)

where ηh is an accuracy parameter that set to 0.4 [36, 51]. ...
a 1, a

(4)
1 , and a

(5)
1 are the

third, fourth, and fifth derivatives of the acceleration. Furthermore, ...
a 1 is saved for

the next iteration since it is needed in the predictor for the Taylor expansion.
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2.1 The Hermite integrator

2.1.1 Polynomial interpolation for the sixth-order integrator

For each star, the third, fourth, and fifth derivatives of the acceleration at the next
step ( ...

a 1, a
(4)
1 , and a

(5)
1 ) are estimated analytically during the corrector step using a0,

a1, ȧ0, ȧ1, ä0 and ä1 [218]. It is convenient to define the following summations and
differences between them as:

A+ = a1 + a0 , (2.10)
A− = a1 − a0 , (2.11)
J+ = h(ȧ1 + ȧ0) , (2.12)
J− = h(ȧ1 − ȧ0) , (2.13)
S+ = h2(ä1 + ä0) , (2.14)
S− = h2(ä1 − ä0) , (2.15)

where h = ∆t/2 = (t1 − t0)/2. The coefficients of the polynomial interpolation at the
midpoint t = h are:

a1/2 =
1

16

(
8A+ − 5J− + S+

)
, (2.16)

hȧ1/2 =
1

16

(
15A− − 7J+ + S−) , (2.17)

h2

2
ä1/2 =

1

8

(
3J− − S+

)
, (2.18)

h3

6

...
a 1/2 =

1

8

(
−5A− + 5J+ − S−) , (2.19)

h4

24
a
(4)
1/2 =

1

16

(
−J− + S+

)
, (2.20)

h5

120
a
(5)
1/2 =

1

16

(
3A− − 3J+ + S−) . (2.21)

Thus ...
a 1, a

(4)
1 , and a

(5)
1 are obtained by expanding their midpoint counterparts to t1:

...
a 1 =

...
a 1/2 + ha

(4)
1/2 +

h2

2
a
(5)
1/2 , (2.22)

a
(4)
1 = a

(4)
1/2 + ha

(5)
1/2 , (2.23)

a
(5)
1 = a

(5)
1/2 . (2.24)

Finally, by integrating, we obtain the sixth-order corrector:

v1 = v0 + h

(
A+ − 2

5
J− +

1

15
S+

)
, (2.25)

r1 = r0 + hv1 + h2

(
−2

5
A− +

1

15
J+

)
, (2.26)

here v1 and r1 correspond exactly to vc and rc in Eqs.2.7,2.8.
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2 The direct N-body code isteddas on GPU

2.2 The block time steps method

Stars in an N-body system can have very different accelerations. This corresponds
to have a large variety of evolutionary dynamical time scales. In this context, it is
convenient to assign to all stars their individual time step, which becomes a function
of the physical parameters that describe the kinematic state of stars. To avoid time-
synchronization issues between the stars, and to simplify the parallelization process,
the time step of the i-th star is discretized to powers of two: ∆tdiscretizedi = 2−n, where
n is an integer. In the code, by default, the maximum and minimum time steps are
∆tmax = 2−3 and ∆tmin = 2−35 respectively. For each star, we use Eq.2.9 to calculate
the ideal time step ∆treali , but we always approximate n to the largest integer value,
so the effective time step is ∆tdiscretizedi ≤ ∆treali . Thus, particles are sub-divided into
several groups (blocks) that share the same time step [3] and the groups are indexed
according to n. The latter strategy is very effective to select, for each step, the stars that
need to be integrated, since we need to update positions and velocities only for m stars
per time step, where m ≤ N . Specifically, stars with smaller time steps will be updated
more often than stars with larger time steps, and for the latter, the kinematic state
will be estimated using the predictor step only. This implies that the computational
complexity is reduced from O(N2) to O(mN). This is a significant gain in terms of
performance, with a negligible cost in terms of the precision of the integrator.

Fig.2.1 shows a cartoon that explains the block time steps method. Stars in lower
blocks have a smaller time step compared to stars in higher blocks, and the time steps
are all integer multiples of the minimum one so that it is straightforward to synchronize
the blocks with each other. In Fig.2.1, red arrows show that the stars in block 0 are
always updated (time step dt), while the stars in block 1 are updated every two steps
(2dt) and the stars in block 2 every four steps (4dt). Each star can jump from its
block to another one, accordingly to its time step variation. The jump is possible only
when the current block of the star is synchronized with the block where the star aims
to jump. In Fig.2.1, these jumps are shown as green lines. It is worth noting that
jumps toward lower blocks are always permitted (by construction, a block is always
synchronized with its lower blocks); in contrast, stars can jump toward higher blocks
only at synchronous times (forbidden transitions are shown as yellow arrows that end
up on red crosses).

2.3 The Ahmad-Cohen neighbours scheme

Star clusters may contain a large number of stars (up to ∼ 106 for massive GCs),
and this makes direct N-body simulations very challenging because of the high com-
putational complexity of O (N2). In order to deal with such numerical challenges, a
neighbour procedure that requires fewer total force calculations can be introduced. A
very common strategy for direct N-body simulations is to adopt the Ahmad-Cohen
(AC) neighbour scheme [17, 178]. In this method, the force on a star is split into two
contributions that evolve over different time scales. The first contribution depends only
on near stars and the other one is owed to distant stars. It is apparent that the latter
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Figure 2.1: A cartoon of the block time steps method with four particles (indicated as “A”,
“B”, “C” and “D”) as an example. Horizontally, three example blocks are placed,
with three time steps: dt, 2dt, 4dt. The vertical axis represents the discretized
time. The red arrows represent a particle doing its time step. The green arrows
represent a particle changing time step, and therefore block. The yellow arrows
represent a particle that is trying to change time step, but it fails because the
arriving block is not synchronized with the its actual block. At the bottom of the
cartoon, particles “A” and “B” are in block 0, “C” is in block 1 and “D” is in block
2. Particles “A” and “D” do not change block, “A” keeps doing time steps dt (fast
evolution) while “D” 4dt (slow evolution). “B” changes block after two steps, then
it switch back to the previous block. “C” tries to change time step when blocks
1 and 2 were not synchronized, failing; later it was able to successfully change it
when the two block were synchronized.

force evolves over much slower time scales than the one from close stars, therefore it
does not have to be recalculated with the same frequency. This implies fewer oper-
ations per step and a significant performance gain. The combination with the block
time steps method described above is straightforward: each star will be in two separate
blocks, corresponding to two (discretized) time steps ∆tclose and ∆tfar, calculated for
close and distant stars, respectively. For each star, we only compute the forces from
its neighbours, proceeding with a time step ∆tclose (neighbour steps), and the forces
from distant particles are approximated using a Taylor expansion; in contrast, every
k steps (with k∆tclose = ∆tfar), we compute the force from both close and distant
particles self-consistently. isteddas implements the AC neighbours scheme entirely
on the GPU. This is a significant advantage in terms of performance since, for each
step, there is no need to communicate the neighbours between the CPU and the GPU,
reducing communication latencies.
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2 The direct N-body code isteddas on GPU

To identify neighbours, we use the external C++ library ANN (to see why we have
chosen this library see the subsection 2.4.3) that builds a three-dimensional k-d tree
structure using an approximate nearest neighbor searching algorithm. Actually, there
is the possibility to use a fixed number or a variable number of neighbours.

Let us first discuss the case with a variable number of neighbours. To calculate
the ideal number of neighbours, we evaluate the total number of operations performed
with and without neighbours within a time step ∆tf :

with neighbours: Noperations = nn
∆tf
∆tc

+ (N − nn) ,

without neighbours: Noperations =
∆tf
∆tc

N ,

dividing the above contribution we obtain the cost function:

Cost(nn) =
nn

N
+

∆tc
∆tf

(
1− nn

N

)
, (2.27)

where nn is the number of neighbours. The ideal number of neighbours is retrieved
from the above equation in the minimum of the cost function. To compute both ∆tc
and ∆tf we use the Hermite 4th order time step criterion [178]:

∆t = ηℓ

√
|a1||ä1|+ |ȧ1|2
|ȧ1||

...
a 1|+ |ä1|2

, (2.28)

where ηℓ is a free parameter that we take as 0.05 for ∆tc and 0.1 for ∆tf . In Eq. 2.28,
the time step depends on nn through the accelerations. The cost function is computed
for different values of nn until the maximum value, that is [180]:

nn,max =
1

4

(
N

4

) 3
4

. (2.29)

The ideal value for nn is the one that minimizes the cost function. For each star, we
save the radius of its neighbour sphere, rneigh, which corresponds to the distance of
the star’s nn-th neighbour. To stabilize the number of neighbors per star, that is to
avoid too frequent neighbors’ changes, we have introduced a threshold value, so if the
minimum cost is bigger than 0.6 no neighbours are selected (rneigh = 0). The three-
dimensional k-d tree structure and the number of neighbours are updated every time
all stars are synchronized (every ∆tmax), therefore every time the code computes N2

forces. However, rneigh can change before one global synchronization and the next one.
After the update of the tree structure, we calculate the local star density considering,
for each star, the distance to its 6th nearest neighbor, and we use it to estimate the
system’s radial density profile, ρ (r). Every ∆tf , we update rneigh so the number of
neighbours per star does not change significantly, that is:

rneigh,new = rneigh,old

(
ρ (r∗,old)

ρ (r∗,new)

) 1
3

, (2.30)
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2.3 The Ahmad-Cohen neighbours scheme

where r∗,old and r∗,new are the position of the star in the system at the previous and
current time-step respectively.

Let us now consider the case with a fixed number of neighbours. The more natural
choice is to take as a fixed number of neighbours a multiple of 32 (nn ∝ 32). In this
way, the force calculation on GPU during the neighbour step is more efficient since
32 is the number of threads in a single GPU warp. In this case, we do not use rneigh,
therefore, to always have the right neighbours, we compute the three-dimensional k-d
tree structure every time that at least one star is doing a distant step. This last case,
for isteddas, is much more stable than the configuration with a variable number of
neighbours: the numerical errors are accumulated much slower with respect to the case
with variable neighbours due to the decreased number of operations made, and the
block distribution is more stable overall. Moreover, since it does much less work on
the CPU, we get a reduction of the latencies between the CPU and GPU speeding
up the simulation. Furthermore, using a fixed number of neighbors, there is no need
to calculate and adjust the neighbor distance (see Eq. 2.30), which relies crucially on
the assumption of spherical symmetry of the N-body system. This means that, with
fixed neighbors, we can evolve even systems that are far from spherical symmetry (e.g.,
fractal clusters).

Moving forward, some complications arise when using this scheme combined with
the Hermite integrator. With the AC method, during the neighbour integration steps
(∆tn), no issues are encountered, since the neighbours are constant. Though during
a distant step (i.e. every ∆tf ), the neighbours might have changed, thus the Hermite
corrector is not self-consistent anymore because in Eqs.2.7,2.8 we are summing and sub-
tracting accelerations and derivatives computed with potentially different neighbours,
in fact, the Hermite 6th order corrector writes as:

vc = v0,old + (a1,new + a0,old)
∆t

2
− (ȧ1,new − ȧ0,old)

∆t2

10
+ (ä1,new + ä0,old)

∆t3

120
, (2.31)

rc = r0,old + (vc + v0,old)
∆t

2
− (a1,new − a0,old)

∆t2

10
+ (ȧ1,new + ȧ0,old)

∆t3

120
, (2.32)

where the variables labeled with old and new are computed using the neighbours of
the previous and the actual step respectively. Therefore, we apply the following steps,
as in [178] for the Hermite 4th order integrator, to solve the problem:

• Compute the acceleration and its derivatives due to neighbors based on the list
of neighbours calculated in the previous step (aclose,old).

• Apply the corrector calculated for the acceleration due to neighbors

• Compute the acceleration and its derivatives due to neighbors and distant stars
based on the new list of neighbours calculated in this step (aclose,new and afar,new)

• Compute the acceleration and its derivatives due to distant particles based on
the old neighbor list as afar,old = afar,new + aclose,new − aclose,old.

• Apply the corrector for the acceleration due to distant particles using afar,old and
its derivatives.
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2 The direct N-body code isteddas on GPU

It is worth noting that a, ȧ and ä are computed with the new neighbours list,
during the evaluation step, while ...

a (far and close) is estimated during the corrector
step using the old neighbours list. Since in the Hermite 6th order scheme ...

a is needed
in the predictor step and to calculate the correct individual time steps for stars, it is
important to compute it self-consistently. To achieve this, we keep track of the incoming
and outgoing neighbors with respect to rneigh, and we retrieve ...

a new by subtracting and
summing on ...

a old the contribution from outgoing and incoming neighbours:

...
a new =

...
a old −

...
a outgoing +

...
a incoming . (2.33)

We compute the outgoing and the incoming contributions using the explicit Newtonian
formula for ...

a :

...
a i,1 =

S∑
k=1

mk

|rik,p|3

{
ȧik,p − 9

rik,p · vik,p

|rik,p|2
aik,p+

+
9

|rik,p|2

[
5
(rik,p · vik,p)

2

|rik,p|2
− rik,p · aik,p − |vik,p|2

]
vik,p+

+
1

|rik,p|2

[
24

(rik,p · vik,p)(rik,p · aik,p + |vik,p|2)
|rik,p|2

− 21
rik,p · vik,p

|rik,p|2

(
5
(rik,p · vik,p)

2

|rik,p|2
+

− rik,p · aik,p − |vik,p|2
)
− 3(rik,p · ȧik,p + 3aik,p · vik,p)

]
rik,p

}
,

(2.34)

where, as in Eqs.(2.4,2.5,2.6), the quantities with subscript “ik, p” are the relative
predicted values between stars i and k (e.g. rik,p = rk,p − ri,p), S is the total number
of incoming or outgoing neighbours, and we have assumed the gravitational constant
G = 1.

Finally, to estimate ∆tclose and ∆tfar we use Eq.2.9 only if the neighbours do not
change; otherwise, we use the low order, Hermite 4th order, criterion as in Eq.2.28. This
is necessary because a(4) and a(5) would be inconsistent if the neighbor list changes.
Furthermore, a(4) and a(5) are not needed in the predictor step, and correcting them
with the corresponding Newtonian formulas, as we do for ...

a , would have a significant
computational cost without increasing the order of the integrator.

2.4 Optimizations and parallelization

isteddas runs almost completely on GPU accelerators. Therefore we were able to
minimize the amount of data communication between the CPU and the GPU.

isteddas can run on single or multiple GPUs, and on single or multiple MPI
nodes, in this way, the code can exploit GPU workstations as well as GPU clusters.
One problem that is important to address is related to the evaluation kernel. The
calculation of the newtonian gravitational force involves the computation of the inverse
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square root:

Fij =
mimjG

|ri,j|3
ri,j =

(
1√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2

)3

mimjGri,j , (2.35)

that is famous to be a computationally heavy operation, in fact, in the early 1990s
the fast inverse square root was invented to overcome this problem. The algorithm
is, as one can guess by the name, a faster implementation of the inverse square root
that approximates the exact value of 1/

√
x. We cannot use such an algorithm since we

need as much accuracy as we can. Thankfully, nowadays the algorithms to compute
the inverse square root are quite fast, therefore we use the CUDA function rsqrt(),
which is a native reciprocal square root instruction. However, to speed up the code
as much as possible, we try to optimize every operation. For example, whenever we
can, we use the fused multiply-addition (fma()), which is a floating-point operation
(a ·b+c) performed in one step with a single rounding error. It can be used to compute
the square module of a vector v:

|v|2 = vx · vx + vy · vy + vz · vz = fma (vx, vx, fma (vy, vy, fma (vz, vz, 0))) , (2.36)

where vx, vy, vz are the 3D components of the vector v. In this simple example, we
pass from 5 floating-point operations (3 multiplications and 2 summations) to just 3
floating-point operations. It can also be used to compute the Taylor expansions of any
quantity q, for example, for a third-order expansion:

q1 ≃ q0 + q̇0dt+ q̈0
dt2

2
+

...
q 0

dt3

6
=

= fma
(
dt, fma

(
dt

2
, fma

(
dt

3
,
...
q 0, q̈0

)
, q̇0

)
, q0

)
. (2.37)

In this simple example, we pass from 6 floating-point operations (3 multiplications and
3 summations) to just 3 floating-point operations.

2.4.1 Forces evaluation algorithm

Computing ai,1, ȧi,1, äi,1, and ...
a i,1 can be extremely computationally expensive

due to the huge amount of multiplications, divisions, summations, and inverse square
roots (see Eqs.2.4,2.5,2.6,2.34). However, a lot of these calculations are repeated, there-
fore, for each couple (i, j) of stars, we define the following quantities to avoid these
repetitions:

S0 = rij,p · rij,p , (2.38)
S1 = rij,p · vij,p , (2.39)
S2 = rij,p · aij,p + vij,p · vij,p , (2.40)
S3 = rij,p · ȧij,p + 3vij,p · aij,p , (2.41)
Q1 = −3r2invS1 , (2.42)
Q2 = −r2inv (5S1Q1 + 3S2) , (2.43)
Q3 = −r2inv (8S2Q1 + 7S1Q2 + 3S3) , (2.44)
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where, again, the quantities with subscript “ij, p” are the relative predicted values
between stars i and j (e.g. rij,p = rj,p − ri,p), and rinv = 1/

√
S0. Using the above

quantities we can rewrite the equations for the acceleration and its derivatives as:

ai,1 =
N∑
j ̸=i

mjr
3
invrij,p , (2.45)

ȧi,1 =
N∑
j ̸=i

mjr
3
inv (Q1rij,p + vij,p) , (2.46)

äi,1 =
N∑
j ̸=i

mjr
3
inv (Q2rij,p + 2Q1vij,p + aij,p) , (2.47)

...
a i,1 =

N∑
j ̸=i

mjr
3
inv (Q3rij,p + 3Q2vij,p + 3Q1aij,p + ȧij,p) . (2.48)

By computing this equation we avoid a lot of extra calculations, even the inverse square
root is done just once. On top of this, we also use the tricks explained above (e.g. the
fma() function).

2.4.2 Forces reduction and gather

When simulating star clusters with more than 104-105 stars, it is very useful to use
multiple GPUs to speed up the calculation of the forces. The predictor and corrector
kernels are computed equally on each GPU since they scale with the number of stars
(N), and therefore are light kernels from the computational point of view. Thus they
do not need any kind of communication between GPUs, however, we do transfer the
results of GPU 0 to all the other GPUs every time that all the stars are synchronized.
In this way we avoid the arise of discrepancies in the quantities among the GPUs.

Anyway, the force evaluation is a computationally heavy kernel, it scales at maxi-
mum as N2 (distant step for N stars) and at minimum as N · nn (neighbours step for
N stars). Thus the evaluation process is split among the available GPUs to decrease
the computational load on each GPU, this is done for both the far and the close accel-
erations. This split of the forces evaluation inevitably introduces extra communication
between GPUs and CPUs at each step. The two cases, distant and neighbours steps,
are handled separately with two different GPU kernels, and also different communi-
cation strategies. For the distant step, every GPU computes the interactions between
all the i stars (N) with only a fraction of the j stars (N/ngpu), in this way they will
perform ∼ N2/ngpu operations, that is a perfectly balanced use of the devices. In more
detail, every star has its own one-dimensional block with 128 threads (4 warps), so
each thread will compute and accumulate the forces from (N/ngpu)/128 j stars. Since
we have divided the j stars, at the end a reduction will be necessary to build the total
forces between stars. Instead, for the neighbours step, since nn is much smaller than N
or N/ngpu would not make sense to divide the neighbours among the GPUs (nn/ngpu),
because each i star would have to interact with a very small amount of j star on each
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device, that is not optimal, especially if that number is smaller then 32. Thus, every
GPU computes the interactions between a fraction of the i stars (N/ngpu) with all their
neighbours, or j stars, (nn), in this way they will perform ∼ N ·nn/ngpu operations. In
more detail, every block is, again, one-dimensional and has 128 threads, but this time
it will handle 4 i stars (one for each warp). So, each thread of the warp will compute
and accumulate the forces from nn/32 j stars, and this is the reason why we choose
nn ∝ 32 for the value of the number of neighbours. Since this time we have divided the
i stars, at the end a gather will be necessary to communicate the total forces between
stars to all the GPUs.

For the reduction we apply the following strategy: first of all, there is the single
GPU reduction, which is done at warp level, to be as efficient as possible, using the
CUDA function __shfl_down_sync(), see Fig.2.22. Then, since in the evaluation
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Lane 

𝑣 += __shfl_down_synch(m, 𝑣, 4); 

𝑣 += __shfl_down_synch(m, 𝑣, 2); 

𝑣 += __shfl_down_synch(m, 𝑣, 1); 

unsigned m = 0XFFFFFFFF; 

Figure 2.2: The cartoon shows an example of using warp-level primitives. It uses
__shfl_down_sync() to perform a tree-reduction to compute the sum of the v
variable held by each thread in a warp. At the end of the loop, v of the first thread
in the warp contains the desired sum (8 in this example). m = 0XFFFFFFFF is the
standard mask used to perform this operation, and it is an hexadecimal integer
constant where the prefix 0X means the next number is written in the hexadeci-
mal, and FFFFFFFF is 232 − 1 in decimal notation, or 32 consecutive “1” in binary
notation. A warp comprises 32 lanes, with each thread occupying one lane, so it
needs 5 uses of the function to be reduced. The data exchange is performed be-
tween registers, and it is more efficient than going through shared memory, which
requires a load, a store, and an extra register to hold the address.

kernel each block handles an i star, we reduce all the values of the first threads of
each warp of each block. After these passages, every GPU has the reduced forces on

2See the link https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/ for extra details
about warp level reductions.
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each i star from N/ngpu stars. To obtain the total force from all the N stars of the
simulation there are two final steps: the computed forces are copied to the CPUs that
perform an intra-node reduction between the GPUs within each node and in the end an
MPI reduction (MPI_Allreduce()) is performed between the nodes to finally have the
complete far and close forces for each star. For the gather we use a similar strategy as
above: first of all, there is the single GPU reduction, which is done at warp level exactly
as before. Since every warp handles the interaction of each star with its neighbours,
this is the only reduction required. In fact, after this step, we already pass to the
intra-node gather between the GPUs within each node, and in the end, we perform
an MPI gather (MPI_Allgatherv()) between the nodes to finally have the complete
neighbours forces for each star on all the GPUs.

2.4.3 Ahmad-Cohen tree building optimization

In order to identify neighbours, we needed a nearest-neighbour searching tree li-
brary, therefore we test 5 different codes to decide which one best match our needs
isteddas:

• ANN3 (Approximate Nearest Neighbor searching): a library written in C++,
running on CPU, which supports data structures and algorithms for both exact
and approximate nearest neighbor searching in arbitrarily high dimensions.

• FLANN4 (Fast Library for Approximate Nearest Neighbors): a library for per-
forming fast approximate nearest neighbor searches in high dimensional spaces.
It is written in C++ and runs on GPU [213].

• FAISS5 (Facebook AI Similarity Search): a library for efficient similarity search
and clustering of dense vectors. It contains algorithms that search in sets of
vectors of any size. It is written in C++ and runs on GPU [143].

• hnswlib6 (Hierarchical Navigable Small World graphs library): a library written
in C++ that runs on CPU, for the approximate K-nearest neighbor search it uses
navigable small world graphs with controllable hierarchy [183].

• GGNN7 (Graph-based GPU Nearest Neighbor search): its search structure is
based on nearest neighbor graphs and information propagation on graphs. the
code is designed to take advantage of GPU architectures to accelerate the hier-
archical building of the index structure and for performing the query [115].

These libraries have two main operations: the construction of the tree, and the search
for neighbours. The first operation is the creation of the tree structure from which
the search for neighbours is done. We benchmark these codes based on the usage

3The code is public and available here: http://www.cs.umd.edu/∼mount/ANN/
4The code is public and available here: https://github.com/flann-lib/flann
5The code is public and available here: https://github.com/facebookresearch/faiss
6The code is public and available here: https://github.com/nmslib/hnswlib
7The code is public and available here: https://github.com/chingyaoc/ggnn.pytorch
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that they would have in isteddas, therefore we use a three-dimensional space and
we test a number of points that could resemble the number of stars in star clusters
N = [211, 213, 214, 215, 216, 217]. For each code, and for each number of stars, I save both
the time needed to build the tree structure and the searches (or queries) of the first
64 neighbours on Nq stars. For the benchmarks, Nq is chosen to be an integer fraction
of N : [1, N/128, N/32, N/8, N/2, N ]. The benchmarks in Fig.(2.3,2.4) were done on a
laptop with the specifics in Table 2.1.

CPU : Intel(R) Core(TM) i7-10750H 2.60GHz
RAM : 16GB DDR4
GPU : NVIDIA GeForce GTX 1650 Ti
GRAM : 4GB GDDR6

Table 2.1: Laptop specifics.

Fig.2.3 shows the scalability of each library with respect to the increasing number
of points and the increasing number of queries, moreover, it is also shown the time com-
parison for the creation of the tree. Instead, in Fig.2.4, the same data are rearranged to
show the time comparison for the neighbours searches among the 5 libraries. From the
point of view of building the tree, the two best options are ANN and FLANN, ANN
performs much better with smaller N , and FLANN scales better with increasing N . In
contrast, from the point of view of the searches, hnswlib perform better than anyone
else with Nq = 1 for every N , however increasing N and Nq, the two best options for
isteddas are, again, ANN and FLANN. Probably, the reason behind these results is
that the other libraries are optimized for high-dimensional spaces, while we just need
a three-dimensional tree. For isteddas, on a single GPU, the best possible combi-
nation would be to use ANN with a small number of stars and FLANN with a large
number of stars, with the separation around 214-215 stars. However, because ANN
does not scale on multiple nodes and can use only one CPU (see Section 5.1), while
FLANN can scale on multiple GPUs, it will be crucial to take advantage of FLANN
inside isteddas in order to achieve good scaling over tens or hundreds of GPUs on
the next-generation supercomputers. Since ANN was already implemented inside the
code and the difference between ANN and FLANN is not significantly high on a single
GPU, we stick with it, leaving the implementation of FLANN in isteddas for future
work. The library ANN is implemented in isteddas, and it was modified to run the
search for neighbours in parallel with OpenMP. This optimization speeds up the ANN
library on a single node, however it still cannot scale with multiple nodes.

37



2 The direct N-body code isteddas on GPU

211 212 213 214 215 216 217

N

10 3

10 2

10 1

100

101
tim

e 
[s

]
Tree building

ANN
FLANN
FAISS
hnswlib
GGNN

NN/2N/8N/32N/1281
Nq

10 3

10 2

10 1

tim
e 

[s
]

ANN
N = 2048
N = 8192
N = 16384
N = 32768
N = 65536
N = 131072

NN/2N/8N/32N/1281
Nq

10 4

10 3

10 2

10 1

tim
e 

[s
]

FLANN
N = 2048
N = 8192
N = 16384
N = 32768
N = 65536
N = 131072

NN/2N/8N/32N/1281
Nq

10 3

10 2

10 1

100
tim

e 
[s

]

FAISS
N = 2048
N = 8192
N = 16384
N = 32768
N = 65536
N = 131072

NN/2N/8N/32N/1281
Nq

10 4

10 3

10 2

10 1

100

tim
e 

[s
]

hnswlib
N = 2048
N = 8192
N = 16384
N = 32768
N = 65536
N = 131072

NN/2N/8N/32N/1281
Nq

10 3

10 2

10 1

tim
e 

[s
]

GGNN
N = 2048
N = 8192
N = 16384
N = 32768
N = 65536
N = 131072

Figure 2.3: Benchmarks of the 5 tested libraries. In the top-left panel it is shown the time
taken by each library to build the 3D tree structure in function of the total number
of stars. In the other 5 panels it is shown, for each library, the time taken to
perform a search (or query) of the first 64 neighbours on Nq points. Nq is a
fraction of the total number of stars N : [1, N/128, N/32, N/8, N/2, N ]. N is
chosen as a power of 2: [211, 213, 214, 215, 216, 217].
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Figure 2.4: Benchmarks of the 5 tested libraries. In each panel it is shown, for a certain
total number of stars N , the time taken by each library to perform a search (or
query) of the first 64 neighbours on Nq points (stars). Nq is a fraction of the total
number of stars N : [1, N/128, N/32, N/8, N/2, N ]. N is chosen as a power of 2:
[211, 213, 214, 215, 216, 217].
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Chapter 3

The few body code tsunami

While the 6th order Hermite integrator is a powerful main integrator in isteddas,
it might not be suitable for the long-term integration of stable, very tight systems (e.g.
binaries, triples). To integrate a tight binary, the Hermite integrator would significantly
reduce the time step time, making the numerical integration of the whole systemm stall,
and accumulating numerical error very fast. Thus, implementing a fast, high-accuracy
algorithm to take care of tight systems in isteddas is crucial, especially if our aim is to
investigate the evolution of merging compact-object binaries and their GW emission.
Therefore, we have coupled isteddas with tsunami, a code for the high-accuracy
numerical integration of binaries and hierarchical systems [288, 289, 291]. tsunami
is based on the following techniques: regularization of the equations of motion, chain
coordinates to reduce round-off errors, and Bulirsch–Stoer extrapolation. The first
technique (regularization) takes care of the singularity of the gravitational potential
(when the distance between the two bodies is near zero). The second technique (chain
coordinates) helps reduce the round-off errors in hierarchical systems, which arise when
moving to center-of-mass coordinates, without introducing numerically expensive tech-
niques of compensated summation. The third method (Bulirsch–Stoer extrapolation)
increases the accuracy of the integration and makes it adaptable over a wide dynamical
range. Furthermore, tsunami includes additional features such as perturbative forces,
general relativity corrections through post-Newtonian terms up to 3.5 order, tidal in-
teractions, and a collision-detection algorithm. In this chapter, I will go into further
detail on these techniques.

3.1 The algorithmic regularization chain

tsunami implements the algorithmic regularization chain (ARChain) integrator
for high accuracy computation of particle motion in small N-body system [204, 206–
208]. The method addresses very high accuracy and comparatively little computational
effort by combining: a time-coordinate transformation (regularized time), the 2nd-order
symplectic Leapfrog integrator, the Bulirsch-Stoer algorithm, and the use of chained
coordinates.
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3.1.1 The time regularization

The N-body system Hamiltonian is defined as:

H = K + U =
1

2

N∑
i

mi|vi|2 −
N∑
i<j

mimj

|rij|
, (3.1)

where K and U are the kinetic and potential energy. This Hamiltonian contains a
singularity for |rij| −→ 0 that makes the N-body integration less precise, especially
when at least two bodies are very near to each other. The Algorithmic Regularization
removes the singularity in the Hamiltonian performing a time transformation on the
coordinates:

ds = dt (αU + βΩ + γ) , (3.2)

where ds and dt are the regularized and physical time steps, (α, β, γ) are three param-
eters that determine which kind of transformation is performed:

Logarithmic Hamiltonian (α, β, γ) = (1, 0, 0) ,

Transformed Leapfrog (α, β, γ) = (0, 1, 0) ,

Normal Leapfrog (α, β, γ) = (0, 0, 1) .

Ω is an analytic function that mimics the evolution of the potential energy, however,
since for my purposes I am going to use only the Logarithmic Hamiltonian and the
normal Leapfrog, I will not go into the details of Ω. The Logarithmic Hamiltonian
transformation removes the singularity making the integration more precise, in par-
ticular, in avoiding error accumulation while integrating those systems with very near
bodies inside.

3.1.2 Chain coordinates

In the simulation of a star cluster using an N-body approach, the proximity between
two bodies undergoing a close encounter (approximately AU scale) is represented as a
difference in large numerical values (around pc scale), considering the possible distance
of the bodies from the system’s origin. Consequently, round-off errors can become a
significant source of numerical error. To mitigate this issue, tsunami employs chain
coordinates instead of Cartesian coordinates.

The chain method involves constructing a sequence of inter-particle vectors, ensur-
ing that all particles are encompassed within the chain. Special attention is given to
incorporating small distances into the chain. Initially, distances are sorted to iden-
tify the shortest, which becomes the initial link in the chain. The process continues
by identifying the particle closest to either end of the existing chain and adding it to
the chain, repeating until all particles are included. Following each integration step,
the code assesses whether any non-chained vector is shorter than the smallest chained
vectors in contact with its ends or if any triangle formed by consecutive chain vectors
has a non-chained side shorter than the others, triggering the formation of a new chain
[208]. Fig.3.1 illustrates the decision-making process for constructing the chain.
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Figure 3.1: Visualization of the chain and criteria for switching conditions. Numbered yellow
stars represent the bodies in the example system, and arrows depict the con-
structed chain. Distances like |r5,7| (blue dotted line) are compared with the
shorter of |r5,6| and |r6,7| (green arrows). Inter-particle distances such as |r4,10|
(blue dotted line) are compared with the smallest distances in contact with the
considered distance: |r3,4|, |r4,5|, |r9,10|, |r10,11| (red arrows). [204]

The use of chain coordinates simplifies distance computations, thereby facilitating
the calculation of accelerations and potential energy. Distances between closely posi-
tioned stars in the chain (e.g., (1, 2), (2, 3), (3, 4)) are readily available, while distances
between arbitrary stars can be efficiently computed by summing the necessary chain
vectors (e.g., r3,6 = r3,4 + r4,5 + r5,6).

3.1.3 The modified midpoint method

The modified midpoint method advances a vector of dependent variables y(x) from
a point x to a point x+ dt through a series of n sub-steps, each with a size defined as:

h = dt/n . (3.3)

In theory, one could employ the modified midpoint method independently as an inte-
grator for ordinary differential equations (ODEs). However, its primary significance is
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realized within the more robust Bulirsch-Stoer technique, discussed in the subsequent
paragraph.

The modified midpoint method demands a total of n + 1 evaluations of the right-
hand side. The method’s formulas are presented by [239]:

z0 ≡ y(x) ,

z1 = z0 + hf(x, z0) ,

zm+1 = zm−1 + 2hf(x+mh, zm) for m = 1, 2, ..., n− 1 ,

y(x+ dt) ≈ yn ≡ 1

2
[zn + zn−1 + hf(x+ dt, zn)]

(3.4)

Here, the z’s represent intermediate approximations advancing in steps of h, while yn
stands as the ultimate approximation to y(x+dt). The method essentially resembles a
“centered difference” or “midpoint” method, with modifications at the initial and final
points, hence the term “modified”.

While the modified midpoint method is a second-order technique, it offers the ad-
vantage of requiring only one derivative evaluation per step h, asymptotically for large
n. This is in contrast to, for instance, the second-order Runge-Kutta method, which
necessitates two evaluations. The method’s utility within the Bulirsch-Stoer technique
stems from the error in the presented equations, expressed as a power series in h (the
step size) containing only even powers of h [239]:

yn − y(x+ dt) =
∞∑
i=1

αih
2i . (3.5)

While dt remains constant, h varies with changing n. The significance of this even
power series lies in its capacity to eliminate higher-order error terms by combining
steps, resulting in a gain of two orders at a time.

For instance, assuming n is even, and denoting yn/2 as the result of applying h =
dt/n and using the modified midpoint algorithm (Eqs. 3.4) with half as many steps
(n → n/2), the estimate [239]:

y(x+ dt) ≈
4yn − yn/2

3
, (3.6)

proves to be fourth-order accurate, equivalent to fourth-order Runge-Kutta, yet de-
manding only approximately 1.5 derivative evaluations per step h instead of the 4
required by Runge-Kutta.

3.1.4 The Bulirsch-Stoer algorithm

The numerical integration employed here follows the symplectic Drift-Kick-Drift
(DKD) Leapfrog method, characterized by the following sequence:

Drift rt+dt/2 = vt
dt

2
+ rt ,

Kick vt+dt = at+dt/2dt+ vt ,

Drift rt+dt = vt
dt

2
+ rt ,
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where t denotes the initial time, dt the time-step, and t + dt the final time. In this
scheme, r, v, and a represent positions, velocities, and accelerations, respectively,
with subscripts indicating the time at which these vectors are computed. While the
Leapfrog method is a second-order technique, its accuracy may be limited for highly
constrained systems. Consequently, the Bulirsch-Stoer algorithm is incorporated to
generate higher-order outcomes by extrapolating from a series of lower-order results
via an extrapolation table [239, 306].

In greater detail, the Bulirsch–Stoer algorithm combines Richardson extrapolation,
the use of rational function extrapolation, and the modified midpoint method. This
amalgamation results in accurate numerical solutions for ordinary differential equations
(ODEs) with relatively minimal computational effort. The approach involves treating
the final solution of a numerical calculation as an analytic function of an adjustable
parameter, the integration step dt. By performing the calculation with various dt
values, the analytic function is probed, fitted, and evaluated at dt = 0. The fitting
function can be a rational function or a polynomial of variable degree; in this study, a
polynomial function is utilized.

The original Bulirsch and Stoer sequence, proposed as

n = 2, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, ..., [nj = 2nj−2], ... (3.7)

is adapted in tsunami to a sequence of even multiples of 2:

n = 2, 4, 6, 8, 10, 12, 14, 16, 18, ..., [nj = 2j], ... (3.8)

proving to be more efficient than the original sequence [67, 68].
For each sub-step count, Leapfrog integration occurs from t to t+dt with enhanced

accuracy, and the final results are used to extrapolate the solution ideally over an
infinite number of infinitesimal sub-steps. The sequence’s upper limit is not predeter-
mined; after each n is tested, an extrapolation is attempted, providing extrapolated
values and error estimates. If the errors are satisfactory, the algorithm proceeds to the
next step, initiating with n = 2. The maximum number of sub-steps in tsunami is
set to 18.

A visual representation of the Richardson extrapolation within the Bulirsch-Stoer
method is depicted in Fig. 3.2. Here, different numbers of sub-steps are employed for
multiple integration runs, demonstrating the extrapolation process for quantities such
as the positions and velocities of stars.

Lastly, the modified midpoint method advances a vector of dependent variables y(t)
from time t to t+dt through a sequence of n Leapfrog sub-steps, each of size h = dt/n.

3.2 Coupling isteddas and tsunami

tsunami is completely re-implemented inside isteddas as a module of it and it
runs completely on the CPU. The crucial part of the coupling is the “decision making”,
that is the totality of the effective criteria to decide whether a group of stars must
be regularized with tsunami, or it is better to leave it within isteddas. This is
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Figure 3.2: Illustration of the Richardson extrapolation within the Bulirsch-Stoer method.
The horizontal axis represents time with its step and sub-steps, while the vertical
axis, y, symbolizes a generic integrated and extrapolated quantity. In this context,
the quantities correspond to the positions and velocities of stars. The integration
is repeated with varying sub-step counts, represented by the three example broken
lines (black, red, green).

important because tsunami runs entirely on CPU code while isteddas is designed to
run entirely on GPU. Thus, switching-on regularization would imply significant CPU-
GPU data transfer, which might become a bottleneck if the decision-making is not
carefully implemented.

3.2.1 Decision Making

In isteddas the decision making is similar to that described in [3, 149], but with
some crucial differences. Finding the binary systems in an N-body system is a slow
procedure with time complexity O(N2), but using the already built k-d tree from the
Ahmad-Cohen scheme (see Section 2.3) we have it for free since we already know the
nearest neighbours of every star in the system. There are two possible systems for
which the code decides to integrate a group of stars using tsunami: binary systems or
close encounters. Before entering into details, let us define the important length scale
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to check the proximity of two stars: the close encounter radius, defined as:

Rcl = 2
m̄

σ2
ηr , (3.9)

where m̄ and σ2 are the average mass and the velocity dispersion, and ηr is a free
parameter used to conveniently adjust Rcl. We do not consider the whole N-body
system to compute these quantities, but only the nearest nn,max stars (see eq. 2.29),
in this way, we are computing the local Rcl for each star. In addition, To understand
whether two stars are a bound (soft or hard binary) or unbound (close encounter)
system we use the total energy, that is:

Etot = U +K = −mimj

|rij|
+

1

2
mi|vi − vcom|2 +

1

2
mj|vj − vcom|2 , (3.10)

where U and K are the gravitational potentials and kinetic energy of the two stars,
mi,j and vi,j are the masses and the velocities, vcom = (mivi +mjvj)/(mi +mj) is the
velocity of the two stars’ center of mass, and |rij| is the distance between the two stars.
The sign of the total energy carries an important physical meaning, a negative Etot is
associated with a bound gravitational system, and a positive Etot is associated with
an unbound gravitational system. therefore, comparing Etot with the average kinetic
energy of the N-body system (K̄ > 0) we understand the type of bound between the
two considered stars:

Etot/K̄ ≤ −1 bound system (hard binary) ,
−1 < Etot/K̄ < 0 bound system (soft binary) ,
0 ≤ Etot/K̄ unbound system (close encounter) ,

Putting everything together, we have a binary system if two stars are separated by
a distance lesser than Rcl and they are a hard binary from the energy point of view,
while we have a close encounter if two stars are separated by a distance lesser than
Rcl, they are an unbound system and they are pointing to each other (the dot product
between their relative position and velocity is negative). I can finally summarize the
conditions as:

Binary system: |rij| < Rcl & Eb/K̄ ≤ 1 ,

Close encounter: |rij| < Rcl & Eb/K̄ ≥ 0 & rij · vij < 0 ,

where the vectors rij and vij are the relative position and velocity of the two stars,
and the symbol & is the logic “and”.

Once the code has found two stars for tsunami it also checks if the next nearest
star wants to be part of the system. For close encounters, the code simply checks the
distance between the extra star and the center of mass of the two stars already in
tsunami:

|rij| <
2

3
Rcl .

In this case, we would have a three-body close encounter, however, to add other stars
the check is done considering the center of mass of the most bound couple of stars in
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the system (called inner binary, the one with minimum Eb). For a binary system, we
have the exact same check as above, however, there are other two conditions, based
on orbital parameters, for stars to enter tsunami and form a multiple-body system.
First of all, the orbital eccentricity between the entering body and the harder binary,
and the semi-major axis of the inner binary in the tsunami system are defined as:

e =
1

µ

∣∣∣∣(|vbk| −
µ

|rbk|

)
rbk − (rbk · vbk)vbk

∣∣∣∣ , (3.11)

a =
mb

2

(
|vij|2

2
− mb

|rij|

)−1

, (3.12)

where mb = mi +mj, µ = mb +mk, the quantities labeled with bj are relative to the
center of mass of the inner binary (b) and the entering stars (k), and the ones labeled
with ij are relative to the stars in the inner binary. The other two exclusive conditions
to let a star enter the tsunami integration are relative to the orbit configurations:

e > 1(open orbit case) & |rij| < Rcl

√
0.5Nµ ,

e ≤ 1(close orbit case) & γ ≥ γcrit ,

where N is total number of stars in the N-body system, the symbol & is the logic “and”,
and γ is the perturbation parameter defined as:

γ =
2m̄

mb

(
a

|rij|

)3

, (3.13)

γcrit = 2−6 = 0.015625 is a fixed parameter, m̄ is the average mass of the N-body
system and mb is the mass of the binary system.

At the end of this selection, we could have one or multiple systems of stars that need
to be integrated with the ARChain algorithm, those systems will be called regularized
systems in the rest of this thesis. Inside tsunami the stars will be shifted in the center
of mass reference frame, while in isteddas the center of mass of the regularized system
takes the place of one of those stars and it is evolved with the Hermite integrator, the
other stars become “ghost” particles with m = 0.

It is crucial to identify, and carefully take care of, another set of stars, that is
the perturbers. They will have two roles: they will enter the tsunami integration as
differential external accelerations during the Leapfrog and will be checked to see if new
stars need to be part of the regularized system. The perturbers are selected among the
nearest bodies for each regularized system using the perturbation parameter defined
above (eq. 3.13):

γ > γpert ,

where γpert = 10−6 is a fixed parameter.
The final part of the decision-making is the termination conditions, that is the

checks that establish whether a star will continue to be integrated using the ARChain
or will go back to the Hermite integrator. For binary systems there is a single condition
to break the regularization:

|rij| > 2Rcl .
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In contrast, for multiple stars systems, a particle can exit the regularization if the
following 3 conditions are satisfied:

! [ e < 1 & |rbj| < 10Rcl ] , (3.14)
rbj · vbj > 0 , (3.15)
γ < γcrit , (3.16)

where the symbol & is the logic “and”, and the symbol ! is the logic negation. The
first condition is important for the hierarchical system in which a third body has a
very eccentric and elongated orbit, we want to avoid the body entering and exiting
the regularization at each orbit (see Fig.5.7). The second condition is to ensure that
the body is moving away from the harder binary, while the third condition is, again, a
threshold on the perturbation parameter. After the termination, the exiting stars will
regain their mass in isteddas and, if the regularized system survives, the center of
mass coordinate is updated accordingly.

3.2.2 Time synchronization with the block time-step method

The block time-steps method (see Section 2.2) is a powerful addition to isteddas,
as it significantly increase the performance of the code without losing accuracy. The
centers of mass of the regularized systems are always considered without neighbours in
isteddas (rneigh = 0), therefore they have always single time-step (∆far). When the
center of mass does a step in isteddas, the regularized system relative to the center
of mass is integrated simultaneously in tsunami on the same time-step. However, the
tsunami works with the regularized time coordinate, which is not quantized as the
time step of the centre of mass and is related to physical time through the integral
Equation 3.2. Thus, synchronizing the integration time of the regularized system and
that of the associated centre of mass results in potential time-synchronization errors.
To fix this issue, I implemented the following strategy: the ARChain integrator stops
right after the physical time step that overpasses the centre of mass step, and the initial
quantities of this last step are used to re-initialize the integrator that will run again for
the remaining amount of time using a normal Leapfrog ((α, β, γ) = (0, 0, 1)). In this
way, the last piece of time before the synchronization with isteddas is done without
regularization (the algorithm can not change the time-step), and the ARChain ends the
integration exactly at the desired time. However, using this method results, sometimes,
in a slightly wrong computation of the orbits in the final step, especially when the
regularized system is very tight or very eccentric, and this, after a long integration,
accumulates a lot of errors on the energy of the system. Therefore, I implement another
strategy to solve the synchronization problem without losing precision: as before, the
ARChain integrator stops right after the step that overpasses the desired time, and
the initial quantities of this last step are used to re-initialize the integrator that will
run again for the remaining amount of time but forcing the time-step to be roughly an
order on magnitude smaller than the one computed by the integrator. If the desired
final time is surpassed without reaching the desired precision, the previous step is
retrieved and the timestep is decreased again. I keep adjusting these final time-steps
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to reach the convergence at the isteddas time-step within a certain small threshold.
This strategy does not take more time with respect to the other described strategy
and completely solves the synchronization problem without losing the accuracy of the
ARChain integrator.

3.2.3 Parallelization

tsunami runs on CPU and, in order to speed it up, I parallelize it using OpenMP,
however, it is important to stress that also the ANN library is running in parallel
using OpenMP. Thus, I use the OpenMP tasks: the entire isteddas loop is run by
the master thread of OpenMP on each node, then, when the simulation needs a tree-
search, or to integrate a system in tsunami, a task is open by the master thread, that
spawns the needed amount of threads to parallelize the operation. Using an OpenMP
task is a good strategy since the master thread can go on in the simulation while the
spawned threads keep working in parallel. Thus, even if both the two operations are
needed, the two different tasks will spawn different threads to run them in parallel with
each other. While the ANN library must do its search before the new computation of
forces, and so it needs a barrier before the forces-evaluation kernel on GPU, tsunami
is free to run independently from isteddas. Because of this, the tsunami threads do
not need any barrier and can run asynchronously with the GPU for multiple isteddas
steps until their next synchronization with the isteddas time-step, which can happen,
borderline, after a single step of isteddas. Each thread of tsunami will run one
regularized systems, or multiple if they are too many to evolve. Since each system will
have its own time-step in isteddas, the entire OpenMP task will synchronize with
isteddas when the regularized system with the faster time-step will be synchronized
with the isteddas time-step.
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Chapter 4

The population-synthesis code sevn

In an N-body code, the evolution of single and binary stars can be implemented
following different approaches. A possible strategy is to use a stellar evolution code
(e.g., parsec [45, 54, 55, 62, 217, 276]) to evolve stars every time that is needed,
but this is a very slow approach because stellar evolution codes are very sophisticated
and need to integrate the equations for the internal structure of stars, at each step.
Another strategy is to use fitting formulas for all the stellar parameters. This approach
is very fast but the generation of such formulas is very complicated and time-consuming
since, each time a stellar prescription has to be updated, all the formulas must be re-
derived from scratch. Therefore, it would be hard to keep up with the state-of-the-art
stellar evolution prescriptions. In contrast, a look-up table-based population-synthesis
code uses pre-evolved stellar evolution tracks that are provided in the form of look-up
tables, for a grid of masses and metallicities, which are read and interpolated on the
fly. This strategy has two crucial advantages: (i) it is computationally very fast, and
(ii) users can easily switch to a different set of look-up tables, thus investigating the
impact of different stellar evolution prescriptions is possible without changing any lines
in the code. isteddas is designed to be interfaced with the sevn population-synthesis
code. In this chapter, I will give an overview of the strategies adopted in our code to
implement single and binary stellar evolutionary processes. Moreover, I will describe
sevn following [136].

4.1 sevn description

sevn (short for “Stellar EVolution for N-body”) stands as a rapid binary popula-
tion synthesis code, employing interpolated pre-calculated stellar tracks sets for stellar
evolution computations [136, 192, 268–270]. The evolution is characterized by analyt-
ical and semi-analytical prescriptions, enhancing the code’s versatility and generality.
One key advantage lies in the ease with which stellar evolution models in sevn can
be modified or upgraded by simply loading a new set of look-up tables at runtime.
This flexibility extends to the ability to select stellar tables dynamically without ne-
cessitating alterations to the code’s internal structure or recompilation. While the
present iteration of sevn shares fundamental concepts with its predecessors (as seen
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in [268, 270]), the code has undergone comprehensive refactoring, featuring enhance-
ments in various aspects such as time step and modularity. Additionally, it has been
enriched with new functionalities and options, incorporating the latest parsec stel-
lar evolution tracks [45, 54, 55, 62, 217, 276]. Developed entirely in C++ without
external dependencies, sevn adheres to the object-oriented programming paradigm
and harnesses CPU parallelization through OpenMP. Figure 4.1 illustrates a schematic
overview of the essential sevn components and their interrelations. The subsequent
subsections delve into a comprehensive exploration of sevn’s main features and op-
tions. For accessibility, sevn is publicly accessible at the provided link.

Star

Properties

SSE 
processes

Binary
Binary properties

Binary processes

Mass

Radius

….

SN explosion

SN kicks

Semi-major axis

Eccentricity

…

Common envelope
Roche-Lobe overflow

….

Figure 4.1: In sevn, single stars, binary systems, properties, and processes are represented
with C++ classes. Single stars are characterized by their properties (mass, ra-
dius, ...) and single stellar evolution processes (supernova explosion type and
natal kicks). Binary stars are characterized by their properties (semi-major axis,
eccentricity, ...), binary-evolution processes (mass transfer by winds, Roche-lobe
overflow, CE, tides, ...), and by the two stars component of the binary system.
(Image credit: [136] « J)

4.1.1 Single stars evolution

In the following subsections, I am going to describe the main ingredients used in
sevn to integrate stellar evolution from the ZAMS to the formation of the compact
remnant.
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4.1 sevn description

Stellar evolution tables

The stellar-evolution tables within sevn encapsulate the progression of properties
for a defined set of stellar tracks characterized by their initial mass MZAMS and metal-
licity Z. To function optimally, sevn necessitates two distinct table sets as input:
one tailored for stars initiating their lifecycle from the hydrogen main sequence (MS,
referred to as H stars), and the other tailored for stars depleted of hydrogen (referred
to as pure-He stars). It is assumed within sevn that the stellar models inherently
incorporate wind mass loss.

sevn tables

Table Units Type Interpolation

Time Myr M R
Phase* Myr M R
Mass M⊙ M LIN
Luminosity L⊙ M LOG
Radius R⊙ M LOG
He-core mass M⊙ M LIN
CO-core mass M⊙ M LIN
He-core radius R⊙ O LIN
CO-core radius R⊙ O LIN
Stellar inertia M⊙R⊙

2 O LOG
Envelope binding energy M⊙

2R⊙
−1G−1 O LOG

Surface abundances mass fraction O LIN
(H,He,C,N,O)

Convective envelope

Mass normalized to star mass O LIN
Depth normalized to star radius O LIN
Turnover time yr O LIN

Table 4.1: Summary of the stellar evolution tables used in sevn. The first column reports
the property stored in the table, the second column its units and the third column
specifies if a table is mandatory (M) or optional (O). sevn includes analytic recipes
to replace the optional tables if they are not available. The fourth column indicates
the type of weights used by sevn during the property interpolation: rational (R),
linear (LIN), log (LOG). * The phase table reports the starting time of each sevn
phase (Table 4.2). The envelope binding energy is normalized over the gravitational
constant G (assumed in solar units and years). Table credit: [136].

Table 4.1 provides an overview of the tables incorporated in sevn. Each stellar
evolution model encompasses (at least) seven tables categorized by metallicity, and
these tables for each metallicity are stored in distinct directories. Each table cor-
responds to a specific stellar property, with seven obligatory tables representing key
stellar attributes: time, total stellar mass, He-core mass, CO-core mass, stellar radius,
bolometric luminosity, and stellar phase. Every row in these tables represents a star
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characterized by a given MZAMS and Z, and each column stores the property value at
the time corresponding to the identical row and column in the time table. The initial
column of each row in the mass table designates the MZAMS of the star. The stellar
phase table denotes the initiation time for various stellar phases, while sevn implic-
itly considers the conclusion of the evolution (i.e., stellar lifetime) to be equivalent to
the last reported value in the time tables. Optionally, additional properties like He
and CO core radii, envelope binding energy, and convective envelope properties (mass,
extension, eddy turnover timescale) can be included. In the absence of these optional
tables, sevn computes these properties using alternative analytical approximations.
Although non-mandatory, these tables offer crucial information not commonly found
in most stellar-evolution tracks, significantly contributing to the accurate modeling
of various evolutionary processes. For instance, convective envelope properties aid in
identifying evolutionary phases, estimating mass transfer stability, and playing a piv-
otal role in determining the efficiency of stellar tides. The modular design of sevn
facilitates the seamless integration of new tables to monitor the evolution of additional
stellar properties. Importantly, sevn refrains from assuming a specific definition for
the mass and radius of He and CO cores, deferring to the adopted stellar evolution
models or user choices in generating sevn tables for these estimations.

TrackCruncher

The most important requirement for the tables lies in their ability to encompass
all critical aspects of the stellar tracks from which they originate. Simultaneously,
these tables must remain as compact as possible, typically within a few megabytes
each, to facilitate swift interpolation and mitigate memory costs. To meet these crite-
ria, TrackCruncher code was developed and employed to efficiently generate tables
for sevn. This code identifies the pertinent properties to be stored in sevn tables
from a given set of stellar tracks while estimating the initiation times of sevn phases.
Furthermore, TrackCruncher strategically determines which time steps from the
original tracks can be omitted in the final tables to minimize table size. Specifically,
only those time steps ensuring errors below 2% in a linear interpolation for model-
ing stellar property evolution are retained in the final tables. This undersampling of
tracks substantially reduces table size from the order of gigabytes to around tens of
megabytes. For instance, the complete set of tables for H stars (pure-He stars) utilized
in this study occupies approximately ∼ 30 MB (∼ 10 MB), compared to the original
tracks consuming around ∼ 5GB (∼ 6GB) of disk space. This process significantly di-
minishes both the storage requirements and runtime memory footprint of sevn while
concurrently expediting individual stellar evolution computations. TrackCruncher
is openly accessible at the provided link. It is optimized at processing outputs from
parsec[45], franec [166], and the mist stellar tracks [56], with adaptability for ex-
tension to other stellar evolution codes. Additionally, TrackCruncher serves as a
tool for compressing and reducing the memory size of stellar tracks.
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Stellar phases

The enhancement of stellar evolution property interpolation is notable when em-
ploying the percentage of a star’s lifespan rather than the absolute time value, as dis-
cussed in [270]. To further refine interpolation, the percentage of life is assessed within
three primary stellar macro-phases: the H phase, the He phase, and the CO phase.
In the current iteration of sevn, the definition of macro-phases has been refined to
encompass seven physically motivated phases. The initial phase, spanning from time 0
to the ignition of hydrogen burning in the core, is designated as the pre-main sequence
(PMS, phase id = 0). Core-hydrogen burning characterizes the main sequence (MS,
phase id = 1) until the He core initiates growth, leading the star into the terminal-age
MS (TAMS, phase id = 2). Subsequent phases include shell H burning (SHB, phase id
= 3) when hydrogen in the core is depleted, core He burning (CHeB, phase id = 4) at
the ignition of core helium burning, terminal-age core He burning (TCHeB, phase id
= 5) with a CO core present, and shell He burning (SHeB, phase id = 6), beginning
when the core’s helium is exhausted. The remnant phase (id = 7) initiates when the
evolution time exceeds the star’s lifetime, signifying its transition into a compact rem-
nant. Throughout its evolution, a star may lose its hydrogen envelope due to effective
stellar winds or binary interactions. If the He-core mass exceeds 97.9% of the total
stellar mass, sevn categorizes the star as a Wolf-Rayet (WR) star, transitioning to
a new interpolating track on the pure-He tables. Pure-He stars in sevn correspond
to naked-He stars in other population synthesis codes derived from bse [131]. During
binary evolution, an evolved pure-He star may shed its He envelope, becoming a naked-
CO star in sevn, considered as a compact remnant-like object. The correspondence
between sevn stellar phases and bse stellar types [130] is summarized in Table 4.2.

Interpolation

The code utilizes interpolation to estimate the properties of each star at a given
time. Upon initialization, sevn assigns four interpolating tracks from the hydrogen or
pure-He look-up tables to a star. These tracks encompass two different metallicities
(Z1, Z2) and four distinct ZAMS masses (MZAMS,1, MZAMS,2, MZAMS,3, MZAMS,4, two
per metallicity). The selection criteria are defined as MZAMS,1/3 ≤ MZAMS < MZAMS,1

and Z1 ≤ Z < Z2, where MZAMS and Z denote the ZAMS mass and the metallicity
of the target star. In cases where MZAMS and/or Z match the maximum values in
the tables, MZAMS,1/3 ≤ MZAMS < MZAMS,1 and Z1 ≤ Z < Z2 are employed. The
estimation of a given interpolated property W (e.g., stellar mass) is determined by the
formula:

W =
Z2 − Z

Z2 − Z1

WZ,1 +
Z − Z1

Z2 − Z1

WZ,2 , (4.1)

where
WZ,1 = β1WZAMS,1 + β2WZAMS,2 ,

WZ,2 = β3WZAMS,3 + β4WZAMS,4 ,
(4.2)

and WZAMS,i represents the property W values in the interpolating tracks with MZAMS,i,
while β denotes interpolation weights. sevn incorporates three interpolation weights:
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Phase Phase ID Remnant phase Remnant ID bse stellar-type equivalent

PMS 0 − 0 not avaible
MS 1 − 0 1 if fconv < 0.8, else 0

TAMS 2 − 0
2 if fconv < 0.33, else 3SHB 3 − 0

CHeB 4 − 0 7 if WR, else 4
TCHeB 5 − 0 7 if WR, else:

4 if fconv < 0.33, else 5
SHeB 6 − 0 8 if WR, else:

4 if fconv < 0.33, else 5

Remnant 7

HeWD 1 10
COWD 2 11
ONeWD 3 12
ECNS 4 13
CCNS 5 13
BH 6 14

No compact remnant −1 15

Table 4.2: sevn stellar evolutionary phases (Column 0), identifiers (Column 1), and remnant
types (Column 2). Column 3 shows the correspondence to bse [130, 131] stellar
types: 0, low-mass main sequence (MS); 1, main sequence (MS); 2, Hertzsprung-
gap (HG); 3, first giant branch (GB); 4, core-helium burning (CHeB); 5, early
asymptotic giant branch (EAGB); 7, naked-helium MS (HeMS); 8, naked-helium
HG (HeHG). The bse stellar types 6 (thermally pulsating AGB) and 9 (naked-
helium giant branch) do not have a correspondent sevn phase. ECNS and CCNS
are NSs produced by electron capture and core-collapse supernovae, respectively.
fconv is the mass fraction of the convective envelope over the total envelope mass
(total mass in case of MS stars), WR indicates Wolf-Rayet (WR) stars, i.e., stars
which have a He core mass larger than 97.9% of the total mass. Table credit: [136].

linear, logarithmic, and rational (see [136] for extra details). Linear weights are utilized
for most properties, while logarithmic weights are applied to properties stored and
interpolated in logarithmic scales, such as radius and luminosity. The rational weights
[270] notably enhance interpolation, particularly in estimating the starting times of
stellar phases and the overall star lifetime.

Upon initialization, sevn employs Eqs. 4.1 and 4.2 to set the starting times of
stellar phases, denoted as tstart,p, with WZAMS, i representing the phase times from the
phase table. The stellar lifetime is similarly interpolated, assuming the last element
in the sevn time table establishes the stellar lifetime. For other properties, W needs
to be estimated at a given time t. The corresponding WZAMS, i in the tables is not
determined at the same absolute time t but at the same percentage of life in the phase
of the interpolated star:

Θp =
t− tstart,p

tstart,pnext − tstart,p
, (4.3)
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where tstart,p is the starting time of the current phase p, and tstart,pnext denotes the
starting time of the next phase pnext. Consequently, sevn evaluates WZAMS,i at time:

ti = tstart,p,i +Θp∆p,i , (4.4)

where tstart,p,i and ∆p,i represent the starting time and time duration of the current
phase for the interpolating track. In practice, sevn uses Eq. 4.3 to compute times
for each of the fourth interpolating tracks. It then estimates WZAMS,i in Eq. 4.2 by
linearly interpolating the values stored in the tables. The division into phases ensures
that all interpolating stars share the same internal structure, such as the presence or
absence of a core.

Spin evolution

The modeling of stellar rotation in sevn involves three key properties. The primary
variable tracked is the spin angular momentum, denoted as Jspin. The angular velocity,
Ωspin, is derived from Jspin as Ωspin = JspinI

−1, where I represents the inertia. The
spin parameter, ωspin, is then estimated as the ratio of Ωspin to the critical angular
velocity, Ωcrit, given by Ωcrit =

√
GM(1.5R)−3, where G is the gravitational constant,

and M and R are the stellar mass and radius. The code calculates stellar inertia using
the formula proposed by [131]:

I = 0.1 (M −Mc)R
2 + 0.21McR

2
c . (4.5)

Here, Mc denotes the core mass, and Rc represents the core radius. The initial rotation
of the star is determined by the input value of ωspin. Throughout the evolution, a
portion of the stellar angular momentum is removed through stellar winds and magnetic
braking [242]. Stellar winds are modeled as [131]:

J̇spin,wind =
2

3
ṀwindR

2 , (4.6)

where Ṁwind denotes the wind mass loss rate, and magnetic braking is expressed as:

J̇spin,mb = −5.83× 10−16Menv

M

(
ΩspinR

3
)
M⊙R⊙

2yr−2 . (4.7)

Here, Menv represents the envelope mass of the star, and magnetic braking is inactive
if the star lacks a core. In each time-step, the spin angular momentum is reduced
according to Eqs. 4.6 and 4.7. The constraint is imposed that Jspin cannot become
negative. Following the adjustment of angular momentum, sevn updates angular
velocity and spin. If the spin surpasses unity (indicating over-critical rotation), the
angular momentum is reset to the value for which Ωspin = Ωcrit. Notably, this work
does not consider the amplification of mass loss in stars approaching critical rotation,
and mass accretion on critically rotating stars is not halted. The stellar tracks employed
in this study are computed for non-rotating stars. While this may seem inconsistent, it
is a necessary approach to account for spin-dependent binary evolution processes, such
as stellar tides. Given the adaptability of sevn, future investigations can seamlessly
incorporate rotating stellar tracks (e.g., [217]) to explore the impact of stellar rotation
on stellar and binary evolution, as well as compact object formation (e.g., [192, 195]).
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4.1.2 Compact remnant formation

A compact remnant emerges when the evolutionary time surpasses the stellar lifes-
pan. Based on the final mass of the CO core (MCO,f ), sevn can initiate the formation
of a white dwarf (WD), if MCO,f < 1.38M⊙, an electron capture supernova (ECSN)
leading to a neutron star (NS) for 1.38M⊙ ≤ MCO,f < MCh, where MCh = 1.44M⊙
denotes the Chandrasekhar mass, or a core-collapse supernova (CCSN) resulting in a
NS or a black hole (BH) for MCO,f ≥ MCh. In the case of WD formation, the final
mass and subtype are determined as follows. If the ZAMS mass (MZAMS) of the cur-
rent interpolating track is below the helium flash threshold mass (approximately 2M⊙
[130]), the WD is a helium WD (HeWD) with a mass equal to the final helium mass
of the progenitor star, MHe,f . Otherwise, if MHe,f < 1.6M⊙, the compact remnant is
a carbon-oxygen WD (COWD), otherwise, it is an oxygen-neon WD (ONeWD) [130].
The radius and luminosity of the WD are determined as per [130, 287]:

LWD =
635MZ0.4

[A(t+ 0.1)]1.4
, (4.8)

RWD = max

RNS, 0.0115

√(
MCh

MWD

)2/3

−
(
MWD

MCh

)2/3
 . (4.9)

Here, t represents the age since formation, A is the effective baryon number for the
WD composition (for HeWD A = 4, for COWD A = 15, and for ONeWD A = 17),
and in sevn, the radius of the NS is set to RNS = 11 km. In the case of an ECSN
occurrence (e.g., [146, 297]), the star leaves behind a NS (ECNS, see Table 4.2). The
mass of the NS depends on the chosen supernova model.

Core-collapse supernova

sevn employs two models for core-collapse supernovae, distinguished as the delayed
and rapid models [96]. The primary difference lies in the revival time of the shock:
< 250 ms for the rapid model and > 500 ms for the delayed model. If the final carbon-
oxygen core mass MCO,f ≥ 11M⊙ (in both models) or 6M⊙ ≤ MCO,f < 7M⊙ (in the
rapid model only), the star undergoes direct collapse to form a black hole (BH). In
such instances, the mass of the compact remnant equals the pre-supernova mass of the
progenitor, Mf , with adjustments for neutrino mass loss. In other scenarios, where
the core-collapse supernova explosion is successful, a certain amount of fallback occurs.
Consequently, the final remnant mass depends on MCO,f (which determines the fallback
fraction) and Mf [96]. Ultimately, the compact remnant is classified as a neutron star
(NS, CCNS, Table 4.2) if the final mass is below 3M⊙ and as a BH otherwise.

In the absence of a reliable astrophysical model for NS masses, sevn adopts a
default toy model: it samples the masses of all NSs (resulting from ECSNe or CCSNe)
from a Gaussian distribution centered at 1.33M⊙ with a standard deviation of 0.09M⊙.
This choice is based on a fit to the masses of Galactic binary neutron stars (BNSs)
[147, 224, 225]. However, with this toy model, NSs with a mass greater than 1.6M⊙ are
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rare, a crucial feature for accurately reproducing the primary masses of both GW170817
[11] and GW190425 [10]. The minimum NS mass is fixed at 1.1M⊙.

The default NS radius is set to MNS = 11 km [49], while the bolometric NS lumi-
nosity follows the prescription from [130]:

LNS =
0.02M2/3

[max (t, 0.1)]2
. (4.10)

The BH radius is determined by the Schwarzschild radius, RBH = RS = 2GMBH/c
2,

where c is the speed of light. The BH luminosity is set to an arbitrarily small value
(10−10L⊙ [130]).

Pair instability and pulsational pair instability

Massive stars (MHe,f ≳ 32M⊙, nearing the conclusion of carbon burning) actively
generate electron-positron pairs within their core. The inception of pair creation di-
minishes central pressure, inducing a hydrodynamical instability that leads to core
contraction and the explosive ignition of oxygen, or even silicon. This process initiates
a sequence of pulses intensifying mass loss, known as pulsational pair-instability (PPI)
[313, 315, 317]. Following these pulses, the star returns to hydrostatic equilibrium,
progressing in its evolution until the eventual collapse of the iron core [313, 314]. At
higher core masses (64 ≲ MHe,f ≲ 135, concluding carbon burning), a robust single
pulse dismantles the entire star, leaving no compact remnant—a phenomenon termed
a pair-instability supernova (PISN) [28, 41, 120, 220]. In cores with very high masses
(MHe,f ≳ 135M⊙), pair instability induces the direct collapse of the star. sevn incor-
porates two new models for PPIs and PISNe: M20 and F19. M20 is a reimplementation
of the model introduced in the earlier version of sevn [192], based on a fit by [268] to
black hole masses derived from 1D hydrodynamical simulations [313]. PPI occurs if the
pre-supernova He-core mass, MHe,f , lies within 32M⊙ and 64M⊙, while PISN is trig-
gered for 64 ≤ MHe,f/M⊙ ≤ 135. Beyond MHe,f = 135M⊙, the star directly collapses
to form a black hole, resulting in an intermediate-mass black hole. PISNe leave no
compact remnant, and the final mass of the compact remnant after PPI (MPPI) is de-
rived by adjusting the black hole mass predicted by the chosen core-collapse supernova
model (MCCSN):

MPPI =

{
αPMCCSN if αpMCCSN ≥ 4.5M⊙

0 if αpMCCSN < 4.5M⊙
. (4.11)

The correction factor αP relies on MHe,f and the pre-supernova mass ratio between
the mass of the He core and the total stellar mass [192]. αP can assume values from 1
to 0 (with 0 indicating a PISN). If αPMCCSN < 4.5M⊙, a PISN is triggered, resulting
in a zero-mass compact remnant. The threshold of 4.5M⊙ is based on the least massive
black hole formed in the simulations by [313]. Model F19, based on mesa simulations
of pure-He stars [86], associates the pre-supernova mass of the CO core, MCO,f , as a
reliable indicator for the activation of PISNe and PPIs. In this model, PPI occurs
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if 38 ≤ MCO,f/M⊙ ≤ 60, while the PISN regime begins at MCO,f > 60M⊙. The
He-mass threshold for pair-instability leading to the direct collapse of a very massive
star is approximately MHe ≈ 130− 135M⊙ for their fiducial value of the 12C(α, γ)16O
reaction rate [86, 313]. Therefore, sevn adopts a threshold MHe,f = 135M⊙ for the
transition between PISN and direct collapse in both F19 and M20 models. In both
models, a PISN explosion leaves no compact remnant. The compact remnant mass in
the PPI regime for model F19 is estimated as

MPPI = min (Mf ,MF19) , (4.12)

where Mf is the pre-supernova mass of the exploding star, and MF19 is the mass of the
black hole according to [86]:

MBH =


4 +MCO,f MCO,f < 38M⊙

a1M
2
CO,f + a2MCO,f + a3 log10(Z) + a4 38M⊙ ≤ MCO,f ≤ 60M⊙

0 60M⊙ < MCO,f

,

(4.13)
where a1 = −0.096, a2 = 8.564, a3 = −2.07, a4 = −152.97. Since only pure-He stars
were simulated, sevn implicitly assumes that the first pulse completely removes any
remaining hydrogen layer in the star. This assumption is reasonable, as the binding
energy of the envelope in the late evolutionary stages (≲ 1048 − 1049 erg [136]) is
lower than the energy liberated during a pulse (≳ 1049 erg [313]). In all PPI/PISN
models used in sevn, if the correction for pair-instability results in a zero-mass compact
remnant, the remnant is classified as “No compact remnant” (Table 4.2).

Neutrino mass loss

Irrespective of the supernova mechanism, in order to correctly estimate the final
mass of the compact remnants is essential to incorporate neutrino mass loss. In sevn,
the following correction is implemented [161, 324]:

Mrem = max

[√
1 + 0.3Mrem,bar − 1

0.15
, (Mrem,bar − 0.5M⊙)

]
, (4.14)

where Mrem and Mrem,bar represent the gravitational and baryonic mass of the compact
remnant, respectively. It’s important to note that this correction is not applied to the
default model for neutron star (NS) masses in sevn. The default NS mass model in-
volves drawing masses from a Gaussian distribution, which is already fitted to Galactic
binary neutron star (BNS) masses [224]. As a result, there is no need for an additional
correction to account for neutrino loss.

Supernova kicks

Following a supernova event, whether electron capture supernova (ECSN) or core-
collapse supernova (CCSN), the compact remnant experiences a natal kick. sevn
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incorporates three formalisms for the natal kick. In the first model (Kσ265), the
kick magnitude Vkick is drawn from a Maxwellian curve with a one-dimensional root-
mean-square (rms) value of σkick, and the kick direction is drawn from an isotropic
distribution. The kick is assumed in an arbitrary Cartesian frame of reference where
the compact remnant is at rest. The default 1D rms, σkick = 265 km s−1, is based on
the proper motions of young Galactic pulsars [127]. In the second model, the impact
of reducing the kick dispersion is studied by setting σkick = 150 km s−1. In the third
model (KGM20), the kick magnitude is estimated as

Vkick = fH05
⟨Mej⟩
Mrem

Mej

⟨Mej⟩
, (4.15)

where fH05 is a random number drawn from a Maxwellian distribution with σkick =
265 km s−1; ⟨MNS⟩ and ⟨Mej⟩ are the average NS mass and ejecta mass from single
stellar evolution, respectively, while Mrem and Mej are the compact object mass and
the ejecta mass [109]. The calibration of ⟨Mej⟩ values is conducted using single stellar
sevn simulations at Z = 0.02 and assuming a Kroupa initial mass function. In this
model, ECSNe and stripped (pure-He pre-supernova stars)/ultra-stripped (naked CO
pre-supernova stars) supernovae naturally yield smaller kicks compared to non-stripped
CCSNe due to the lower amount of ejected mass [279, 280]. BHs originating from a
direct collapse receive zero natal kicks from this mechanism.

In a binary system, natal kicks induce changes in orbital properties, the relative
orbital velocity, and the center of mass of the binary (see [131]). Following the kick,
the orbital properties of the binary are updated, considering the new relative orbital
velocity and the new total mass in the binary. If the semi-major axis is smaller than
0 and/or the eccentricity is larger than 1, the binary does not survive the kick. The
center-of-mass velocity and the orbital properties of the binary system change even
without natal kicks (i.e., after WD formation or direct collapse) due to the mass lost
by the system at the formation of the compact remnant (the so-called Blaauw kick
[39]).

4.1.3 Binary stars evolution

sevn includes the following binary evolution processes: wind mass transfer, Roche-
lobe overflow (RLO), common envelope (CE), stellar tides, circularisation at the RLO
onset, collision at periastron, orbit decay by GW emission, and stellar mergers.

Wind mass transfer

In the context of sevn, the assumption is made that the stellar tracks already
account for wind mass loss, thus ensuring a self-consistent treatment of wind mass
loss in single stellar evolution. Within sevn, consideration is given to the potential
accretion of mass and angular momentum by the stellar companion (accretor) from
the mass lost by the donor star. Following the formalism established in [131], the
orbit-averaged accretion rate is determined using the Bondi accretion mechanism [42]
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and the fast wind approximation (wind velocity exceeding orbital velocity). In this
scenario, the mass accretion rate Ṁa is expressed as

Ṁa = − αwind√
1− e2

(
GMa

V 2
wind

)2
Ṁd

2a2
(
1 + V 2

f

)3
/2

, (4.16)

where Ṁd represents the wind mass loss rate of the donor star, a denotes the binary
system’s semi-major axis, and Vwind and Vf respectively stand for the wind velocity
and the ratio between the characteristic orbital velocity and the wind velocity, defined
as

V 2
wind = 2βwind

GMd

Reff

, (4.17)

V 2
f = G

G (Md +Ma)

aV 2
wind

. (4.18)

Here, Reff signifies the stellar effective radius, defined as the minimum between the
star’s radius and its Roche lobe (RL) radius. The mass parameters, Md and Ma,
refer to the donor and accretor masses, respectively. The default dimensionless wind
parameters are set as αwind = 1.5 (appropriate for Bondi-Hoyle accretion [131]) and
βwind = 0.125 (derived from observations of cool super-giant stars [131, 157]).

In eccentric orbits, Eq. 4.16 may predict an accreted mass exceeding the actual wind
mass loss from the donor. To address this, the upper limit for wind mass accretion is
capped at 0.8|Ṁd,wind|. For accretors identified as compact objects (BH, NS, or WD),
the mass accretion rate is constrained by the Eddington limit:

ṀEdd = 2.08× 10−3M⊙yr−1ηEdd (1 +X)−1 Ra

R⊙
, (4.19)

where Ra represents the radius of the accretor (in this case, the compact object),
X = 0.760 − 3.0Z denotes the hydrogen mass fraction of the accreted material, and
ηEdd is a free parameter used to enforce or reduce the Eddington limit [46].

Within the code, pure-He and naked-CO stars do not undergo mass accretion,
given the expectation that the winds of these stars eject a thin envelope on a very
short timescale. The accreted mass contributes additional angular momentum to the
accretor, leading to an increase in its spin, as quantified by

J̇accreted =
2

3
R2

effṀaΩspin,d , (4.20)

where Ωspin,d denotes the angular velocity of the donor star. This expression is derived
under the assumption that winds remove a thin shell of matter from the donor star, as
discussed in the spin evolution section for single-star evolution.

Mass exchange through stellar winds induces changes in the orbital angular mo-
mentum, thereby affecting the orbital parameters [131]:

ȧ

a
= − Ṁd

Ma +Md

−
(
2− e2

Ma

+
1 + e2

Ma +Md

)
Ṁa

1− e2
, (4.21)

ė

e
= −Ṁa

(
1

Ma +Md

+
1

2Ma

)
. (4.22)
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While wind mass loss tends to widen the orbit, the accretion of mass onto the compan-
ion star mitigates this effect, returning some of the lost angular momentum back to the
system. Additionally, wind mass accretion works to reduce eccentricity, promoting the
circularization of the orbit. Nevertheless, the eccentricity variations induced by wind
mass accretion are considered negligible when compared to those driven by stellar tides,
even during phases of intense wind mass loss [131].

Roche-lobe overflow

Under the assumptions of circular and synchronous orbits, an approximate expres-
sion for the Roche lobe (RL) radius can be written [77]:

RL = a
0.49q2/3

0.6q2/3 + ln (1 + q2/3)
, (4.23)

where q represents the mass ratio between the star and its companion. In the framework
of sevn, the initiation of Roche lobe overflow (RLO) occurs whenever the radius of
either star equals or exceeds RL. The RLO persists until this condition is no longer
met or if mass transfer results in a merger or a common envelope (CE). This condition
is assessed at each time step within sevn. The bse stellar types (refer to Table 4.2)
are employed in sevn to implement Roche lobe overflow, assess mass transfer stability,
and handle common envelope events.

Stability criterion

Roche lobe overflow (RLO) induces alterations in the mass ratio, masses, and semi-
major axis of the binary system. Consequently, the Roche lobe (RL) undergoes either
contraction or expansion (as per Equation 21). If the RL contracts more rapidly than
the donor’s radius, or if the RL expands less swiftly than the donor’s radius due to
the adiabatic response of the star to mass loss, the mass transfer becomes dynamically
unstable. This instability can lead to either a stellar merger or the formation of a
common envelope (CE) configuration. The stability of mass transfer is often assessed
by comparing the adiabatic or thermal response of the donor to mass loss (ζ) with the
response to RL variation (ζL):

ζ =
d logR

d logM
, (4.24)

ζL =
d logRL

d logM
. (4.25)

Stars with radiative envelopes typically contract in response to mass loss, while those
with deep convective envelopes tend to maintain the same radius or experience a slight
expansion [101–104, 148, 281]. In practical terms, population synthesis codes com-
monly employ a simplified framework where mass transfer stability is determined by
comparing the mass ratio q = Md/Ma (with Md and Ma being the donor and accretor
masses, respectively) to a critical value qc. If the mass ratio exceeds qc, the mass trans-
fer is considered dynamically unstable. For stars with radiative envelopes (e.g., Main
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Sequence stars, stars in the Hertzsprung-gap phase, and pure-He stars), the critical
mass ratio is often assumed to be relatively large (e.g., > 2), while it is smaller for
stars with deep convective envelopes.

sevn qc option
bse type of the donor QCBSE QCRS QCBB

0 (low mass MS) 0.695 0.695 0.695
1 (MS) 3.0 stable stable
2 (HG) 4.0 stable stable
3/5 (GB/EAGB) Eq.4.26 Eq.4.26 Eq.4.26
4 (CHeB) 3.0 3.0 3.0
7 (HeMS) 3.0 3.0 stable
8 (HeHG) 0.784 0.784 stable
> 9 (WD) 0.628 0.628 0.628

Table 4.3: Critical mass ratios as a function of the donor bse stellar type for different sevn
options. See Table 4.2 for further details on bse types and their correspondence
to sevn phases. The word stable indicates that the mass transfer is always stable.
Table credit: [136].

In sevn, three stability options are available, where the critical mass ratio is con-
tingent on the donor’s stellar type: QCBSE, QCRS, and QCBB (refer to Table 4.2).
The corresponding qc values are outlined in Table 4.3. The QCBSE option mirrors the
stability criterion employed in bse [131], mobse [106, 107, 109, 270]. Specifically, for
giant stars with deep convective envelopes (bse phases 3 and 5),

qc = 0.362 +
1

3

(
1− MHe,d

Md

)−1

, (4.26)

where MHe,d denotes the core helium mass of the donor star. This equation, based on
condensed polytrope models [310], is widely adopted in population synthesis codes (e.g.,
bse, mobse). The QCRS option employs the same qc as [131], with the assumption
that mass transfer is always stable for donor stars with radiative envelopes, i.e., stars
in the Main Sequence (MS) or Hertzsprung-gap (HG) phase (bse phases 1 and 2). The
QCBB option assumes stable mass transfer not only for MS and HG donor stars (bse
phases 1 and 2) but also for donor pure-He stars (bse phases 7, 8).

In addition to the mentioned mass transfer stability criterion, sevn accounts for
special cases. If the Roche lobe (RL) is smaller than the core radius of the donor star
(He core in hydrogen stars and CO core for pure-He stars), mass transfer is invariably
considered unstable, irrespective of the chosen stability criterion. In instances of unsta-
ble mass transfer in WD binaries, where both the donor and accretor are helium-rich
WDs (bse type 10), and the mass transfer is unstable, the accretor undergoes an SNIa
explosion, resulting in a mass-less remnant. For all other cases of unstable mass trans-
fer in WD binaries, the donor is fully engulfed, leaving a mass-less compact remnant,
and no mass is accreted onto the companion. If both stars have a radius R ≥ RL,
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the evolution leads to either a Common Envelope (CE) (when at least one of the two
stars exhibits clear core-envelope separation, corresponding to bse phases 3, 4, 5, 8)
or a stellar merger (for all other bse phases). If the object filling the RL is a Black
Hole (BH) or a Neutron Star (NS), the companion must also be a BH or NS. In this
scenario, the system undergoes a compact binary coalescence.

Stable Mass transfer

In the latest iteration of sevn, modifications have been introduced to the formu-
lation governing stable mass transfer. Noteworthy distinctions are elucidated below.
The donor’s mass loss rate (Ṁd) hinges on its Roche lobe (RL) overflow [131]:

Ṁd = −F (Md)

(
ln

Rd

RL

)3

M⊙yr−1 , (4.27)

with the normalization factor:

F (Md) = 3× 10−6 (min [Md,Mmax,SMT ])
2×


max [Menv,d/Md, 0.01] (A)

103Md (max [Rd, 10
−4])

−1
(B)

1 (C)

, (4.28)

where (A), (B), and (C) correspond to HG phase donors, WD donors, and all other
cases, respectively. Quantities are in solar units, and Mmax,SMT = 5M⊙. For giant-like
stars, the mass transfer is restricted to the thermal rate, as per [131], whereas for other
stellar types (MS stars and WR stars without a CO core), the limit is determined by
the dynamical rate [131]. The mass accretion rate (Ṁa) is parameterized as:

Ṁa =

{
min

(
ṀEdd,−fMTṀd

)
if the accretor is a compact object

−fMTṀd otherwise
, (4.29)

where ṀEdd is the Eddington rate, and fMT ∈ [0, 1], with fMT = 0.5. When an accretor
is a compact object (WD, NS, or BH), the Eddington limit is enforced. Moreover, pure-
He and naked-CO stars undergo no mass accretion during RL overflow. If the accretor
is a WD and the accreted material is hydrogen-dominated (i.e., the donor star is not
a WR star), a nova explosion is triggered, reducing the actual accreted mass by a
factor of ϵnova = 0.001. Furthermore, for stars in bse phases 1, 2, and 4, Eq. 4.29 is
substituted with:

Ṁa = −min

(
1.0, 10

τM
τKH,a

)
Ṁd, where τM =

Ma

|Ṁd|
, (4.30)

and τKH,a is the thermal timescale of the accretor. For bse stellar types 3 and 5, this
model assumes that the accretor can absorb any transferred material (fMT = 1 in Eq.
4.29). Additionally, in a pure-He-pure-He binary, the stars are allowed to accrete mass
during RL overflow following the prescription in Eq. 4.30.
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Orbital variations

In the context of non-conservative mass transfer (fMT ̸= 1), a portion of angular
momentum is expelled from the system, and this angular momentum loss is expressed
as:

∆Jorb,lost = −|∆Mloss|γRLOa
2
√
1− e2

2π

P
, (4.31)

where P denotes the orbital period, and ∆Mloss represents the actual mass lost from
the system in a given evolutionary step, defined as the disparity between the mass shed
by the donor and that assimilated by the companion. Assuming an isotropic loss of
unaccreted mass from the donor, γRLO = M2

d/(Ma + Md)
2. In addition to the mass

loss from the system, conservation of the total binary angular momentum (comprising
stellar spins and orbital angular momentum) is assumed during Roche lobe overflow
(RLO). Consequently, the spin angular momentum lost by the donor is incorporated
into the orbital angular momentum:

∆Jorb,d = −∆Jspin,d = −∆MdR
2
LΩspin,d , (4.32)

where ∆Md represents the mass lost by the donor in an evolutionary step, and Ωspin,d

is the angular velocity of the donor. Conversely, mass accreted onto the companion
diminishes orbital angular momentum and augments the accretor’s spin:

∆Jorb,a = −∆Jspin,a = −∆Ma

√
GMaRacc . (4.33)

The accretion radius, Racc, is computed following the methodology outlined in [170,
295]. The minimum radial distance of the mass stream to the secondary is estimated
as per [170]:

Rmin = 0.0425
(
q−1 + q−2

)0.25
a . (4.34)

If Rmin > Ra (where Ra is the radius of the accretor), it is assumed that the mass
is accreted from the inner edge of an accretion disc, and Racc = Ra. Otherwise, in
the absence of an accretion disc, the material from the donor directly impacts the
accretor in a stream. In this case, the angular momentum of the transferred material
is estimated using the radius at which the disc would have formed if allowed, i.e.,
Racc = 1.7Rmin [295]. Finally, the variation in the semi-major axis resulting from RLO
is approximated as:

∆a =
(Jorb +∆Jorb,lost +∆Jorb,d +∆Jorb,a)

2 (Ma +Md)

G (1− e2)M2
dM

2
a

− a , (4.35)

where the masses are considered after the mass exchange in the current time-step.

Unstable mass transfer

The outcome of an unstable mass transfer is contingent upon the stellar type of
the donor. In instances of unstable mass transfer, stars resembling giants (bse types
3, 4, 5, 8) progress through a common envelope (CE) phase, while stars lacking a
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distinct envelope/core demarcation (bse types 0, 1, 7) directly merge with their com-
panion. Stars in the Hertzsprung-gap (HG) phase (bse type 2) present a distinctive
case wherein the differentiation between the helium core and hydrogen envelope is not
fully established [72, 141]. The resolution of whether unstable mass transfer with an
HG donor leads to a CE evolution (as postulated in the optimistic scenario of [72, 300])
or culminates in a direct merger (as suggested in the pessimistic scenario of [72, 107])
remains uncertain.

Quasi-Homogeneous evolution

In the Quasi-Homogeneous Evolution (QHE) scenario, a star attains a substantial
spin rate through the accretion of material during a stable Roche Lobe Overflow (RLO)
mass transfer. Consequently, the star undergoes full mixing during the Main Sequence
(MS), leading to the complete conversion of hydrogen into helium [48, 229]. The
implementation of the QHE in sevn adheres to the methodology outlined in [79, 80].
Upon activating the QHE option, sevn initiates the QHE evolution for Main Sequence
(MS) stars with metallicity Z ≤ 0.004. These stars must accrete a minimum of 5% of
their initial mass through stable RLO mass transfer and attain a post-accretion mass
of at least 10M⊙. Once a star satisfies the QHE criteria, the evolution of its radius is
halted. Subsequently, at the conclusion of the MS phase, the star transitions into a
pure helium star, and the evolutionary phase directly advances to phase 4 (core helium
burning, see Table 4.2).

Common Envelope (CE) evolution

The Common Envelope (CE) phase constitutes a distinctive evolutionary stage in
a binary system, wherein the binary becomes enveloped within the expanded envelope
of one or both of its components. The loss of co-rotation between the binary orbit and
the envelope induces drag forces that lead to orbit shrinkage, while the CE gains energy
and expands [139]. The CE evolution expounded in this section relies on the energy
formalism [131, 135, 167, 296, 309]. This formalism hinges on a comparison between
the energy required to unbind the stellar envelope(s) and the orbital energy before
and after the CE event. The assessment of these energy terms is contingent on two
parameters: λCE and αCE. The first parameter, λCE, serves as a structural parameter
defining the binding energy of the stellar envelope. Consequently, the binding energy
of the CE is expressed as:

Ebind,i = −G

(
M1Menv1

λCE1R1

+
M2Menv2

λCE2R2

)
, (4.36)

Here, M1 (M2) denotes the mass of the primary (secondary) star, Menv1 (Menv2) repre-
sents the mass of the envelope of the primary (secondary) star, and R1 (R2) corresponds
to the radius of the primary (secondary) star. In cases where the accretor is a compact
object or a star lacking an envelope, Menv2 is set to 0. If both stars possess an envelope,
both lose it upon the ejection of the CE. sevn employs the same formalism for λCE as
utilized in bse [57]. According to this formalism, λCE is contingent on the mass of the
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star, its evolutionary phase, the mass of the convective envelope, and its radius. For
pure-He stars, a constant value of λCE = 0.5 is assumed.

The parameter αCE signifies the fraction of orbital energy transformed into kinetic
energy of the envelope during CE evolution. The variation in orbital energy during CE
is expressed as:

∆Eorb =
1

2
GMc,1Mc,2

(
1

af
− 1

ai

)
, (4.37)

Here, Mc,1 and Mc,2 denote the masses of the cores of the two stars, and af (ai)
corresponds to the semi-major axis after (before) the CE phase. Following the same
formalism as in bse, Ebind = 0, and Mc = M for Main Sequence (MS) stars, pure-
He stars without a CO core, naked-CO stars, and compact remnants. The post-CE
separation is determined by enforcing Ebind,i = αCE∆Eorb. If neither star fills its Roche
Lobe in the post-CE configuration, the CE is assumed to be ejected. Otherwise, the
two stars undergo coalescence. αCE can assume values within the range of 0.5 to 5.
Values of αCE > 1 deviate from the original definition of this parameter, accounting for
the fact that the orbital energy variation is not the sole source of energy contributing
to unbinding the envelope (e.g., [255]).

Tides

Tidal interactions between two stars in a binary system play a crucial role in syn-
chronizing stellar and orbital rotations, leading to orbit circularization (e.g., [132, 144,
200]). sevn incorporates tidal effects on the orbit and stellar rotation using weak
friction analytical models proposed by [132]. This model is built upon the spin-orbit
coupling resulting from the misalignment of tidal bulges in a star and the perturbing
potential generated by its companion. The secular average equations implemented in
sevn are given by:

ȧ = −6ktidesq(q + 1)

(
Reff

a

)8
a

(1− e2)7.5

(
f1 − (1− e2)2/3f1

Ωspin

Ωorb

)
, (4.38)

ė = −27ktidesq(q + 1)

(
Reff

a

)8
e

(1− e2)6.5

(
f3 −

11

18
(1− e2)2/3f4

Ωspin

Ωorb

)
, (4.39)

J̇ = 3ktidesq
2MR2

(
Reff

a

)6(
Reff

R

)2
Ωorb

(1− e2)6

(
f2 − (1− e2)2/3f5

Ωspin

Ωorb

)
, (4.40)

Here, q represents the mass ratio between the perturbing star and the star affected by
tides, Ωspin is the stellar angular velocity, R is the stellar radius, and Reff = min [RL, R]
is the effective radius. The effective radius ensures that, during stable Roche Lobe (RL)
mass transfer, the star’s actual radius remains close to its RL. In all other cases, the
effective radius coincides with the stellar radius. These equations are derived under the
assumption that R < a [132]. The re-scaling factor R2

effR
−2 accounts for the stellar

inertia (Jspin = ΩspinI and I ∝ R2). Polynomial functions f1, f2, f3, f4, and f5 of e2
are utilized [132].
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The term ktides is the inverse of the tidal evolution timescale, estimated for radiative
envelopes [131, 319, 320]:

ktides = 3.156× 10−5

(
M

M⊙

)3.34(
R

R⊙

)(
a

R⊙

)−2.5

yr−1 , (4.41)

and for convective envelopes [131, 243, 320]:

ktides =
2

21

(
τconv
yr

)−1
Mconv

M
min

[
1,

(
π

(Ωorb − Ωspin) τconv

)2
]

yr−1 , (4.42)

where Mconv is the mass of the convective envelope, and τconv is the eddy turnover
timescale. The amount of variation in a, e, and Jspin is estimated by multiplying Eqs.
4.38, 4.39, 4.40 by the current time-step and combining the effects of the two stars in
the system. sevn assumes that compact remnants (WDs, BHs, NSs) and naked-CO
stars are not influenced by tides and act merely as a source of perturbation for the
companion star.

A specific stellar rotation, Ωeq (= Ωorb when e = 0), exists for which Eq. 4.40 is 0,
indicating that no further angular momentum exchange can occur between the star and
the orbit. If necessary, the effective time-step for tidal processes is reduced to ensure
that both stars do not undergo excessive spin-down (or up) past Ωeq [131]. Tidal effects
are particularly pronounced when there is a substantial mismatch between Ωspin and
Ωeq, in tight systems (R ≈ a), and for stars with large convective envelopes (Eq. 4.42
yields larger ktides compared to Eq. 4.41).

Circularization during RLO and collision at periastron

Despite the strong tendency of tides to reduce orbital eccentricity prior to the initi-
ation of Roche Lobe Overflow (RLO), there are instances where RLO commences with
a notable residual eccentricity (e ≈ 0.2− 0.5). Given that the RLO formalism assumes
circular orbits, sevn, by default, provides an option to fully circularize the orbit at the
onset of RLO. Various options for handling orbit circularization are available in sevn.
One approach is to circularize the orbit at periastron, resulting in anew = aold(1− eold)
and enew = 0, where aold and eold denote the semi-major axis and eccentricity before
circularization [300]. Another option is to circularize the system not only at the onset
of RLO but also whenever either of the two stars fills its Roche Lobe at periastron,
i.e., when R ≥ RL,per, with RL,per estimated using Eq.4.23 by replacing the semi-major
axis a with the periastron radius a(1 − e). In this case, the orbit is circularized at
periastron, initiating an RLO episode.

Other available options in sevn assume that circularization conserves either the
orbital angular momentum, i.e., anew = aold(1 − e2old), or the semi-major axis, i.e.,
anew = aold. In the latter case, the orbital angular momentum increases after cir-
cularization. Alternatively, circularization can be disabled, preserving any residual
eccentricity during RLO (this assumption is the default in bse). Throughout RLO,
stellar tides and other processes remain active, implying that the binary can still un-
dergo circularization during an ongoing RLO. During binary evolution, sevn assesses
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whether the two stars are in contact at periastron, specifically if R1 + R2 ≤ a(1 − e).
If this condition is met, sevn triggers a collision. By default, this check is disabled
during an ongoing RLO. The outcome of the collision mirrors the results of unstable
mass transfer during RLO. If at least one of the two stars exhibits a clear core-envelope
separation (bse types > 3, see Table 4.2), the collision triggers a Common Envelope
(CE) event; otherwise, a direct stellar merger occurs.

Grawitational waves

sevn incorporates the impact of gravitational wave (GW) emission on orbital ele-
ments using the same formalism as bse[131]:

ȧ = −64G3M1M2(M1 +M2)

5c5a3(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)

, (4.43)

ė = −304G3M1M2(M1 +M2)

15c5a4(1− e2)5/2

(
1 +

121

304
e2
)
e . (4.44)

These equations, as outlined in [228], capture the effects of gravitational wave-induced
orbital decay and circularization. In contrast to bse—where these equations are ac-
tivated only when the semi-major axis is < 10 AU—in sevn, they become active
whenever the gravitational wave merger timescale, tmerge, is shorter than the Hubble
time.

Stellar mergers

In the event of a merger between two stars in sevn, their carbon-oxygen (CO)
cores, helium (He) cores, and total masses are combined. The resultant merger prod-
uct inherits both the phase and the percentage of the lifespan from the most evolved
progenitor star involved. The determination of the most evolved star relies on the high-
est sevn phase ID (Table 4.2) or, in cases where merging stars share the same phase,
the one with the largest life percentage. Notably, sevn does not necessitate a collision
table for the merger between two stars. The interpolation algorithm independently
determines the new post-merger track without the need to assign a specific stellar type
to the merger product.

Conversely, sevn employs a collision table (Table 4.4) exclusively to describe the
outcomes of mergers involving compact objects. When a star merges with a compact
object (black hole (BH), neutron star (NS), or white dwarf (WD)), the star undergoes
destruction, and no mass is transferred to the compact object. Mergers involving white
dwarfs have the potential to trigger a Supernova Ia (SNIa) explosion, resulting in the
absence of a compact object (Table 4.4). Post-merger oxygen-neon (ONe) white dwarfs
exceeding the Chandrasekhar mass limit (1.44M⊙) evolve into neutron stars (NSs).
Similarly, post-merger neutron stars exceeding the Tolman-Oppenheimer-Volkoff mass
limit (defaulted to 3.0M⊙) become black holes (BHs). Except for cases leading to an
SNIa, the outcome of a merger involving two compact objects yields a compact object
with a mass equivalent to the total mass of the pre-merger system. The mass lost
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through gravitational wave (GW) emission, typically around ∼ 5% of the total system
mass, is not currently accounted for (e.g., [142]). A formalism to address this omission
is slated for inclusion in future versions of sevn.

Compact object Companion Merger outcome

BH/NS/WD H-star/pure-He star BH/NS/WD (no mass accretion)
BH BH/NS/WD BH
NS NS/WD if Mf < 3M⊙: NS, else: BH
HeWD HeWD SNIa
COWD COWD/HeWD if Mf < 1.44M⊙: COWD, else: SNIa
ONeWD WD if Mf < 1.44M⊙: ONeWD, else: NS

Table 4.4: This Table describes the outcome of a merger between a compact object and its
companion, as implemented in sevn. An SNIa leaves no compact remnant. Here
Tolman-Oppenheimer-Volkoff mass limit for NSs and Chandrasekhar mass limit
for WDs are assumed. Table credit: [136].

4.1.4 The evolution algorithm

Adaptive time-step

sevn uses a prediction-correction method to adapt the time-step accounting for
the large physical range of timescales (from a few minutes to several Gyr) typical of
stellar and binary evolution. To decide the time-step, it looks at a sub-set of stellar
and binary properties (total mass, radius, mass of the He and CO core, semi-major
axis, eccentricity, and amount of mass loss during an RLO): if any of them changes
too much during a time-step, the time-step is reduced and repeat the calculation. In
practice, the code chooses a maximum relative variation δmax (0.05 by default) and
impose that

max
P∈properties

|δP | ≤ δmax , (4.45)

where |δP | is the absolute value of the relative property variation. sevn predicts the
next time-step dtnext as

dtnext = min
P∈properties

(
δmax

dtlast
|δPlast|

)
, (4.46)

where dtlast is the last time-step and δPlast is the relative variation of property P during
the last time-step, hence |δPlast|/dtlast represents the absolute value of the δPlast time
derivative. After the evolution step, if the condition in Eq.4.45 is not satisfied, a
new (smaller) time step is predicted using Eq.4.46 and the updated values of δPlast and
dtlast. Then, the evolution of all the properties is repeated with the new predicted time-
step until condition 4.45 is satisfied or until the previous and the new proposed time
steps differ by less than 20%. sevn uses a special treatment when a star approaches
a change of phase (including the transformation to a compact remnant). In this case,
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the prediction-correction method is modified to guarantee that the stellar properties
are evaluated just after and before the change of phase. In practice, if the predicted
time-step is large enough to cross the time boundary of the current phase, sevn reduces
it so that the next evolution step brings the star/binary 10−10Myr before the phase
change. Then, the following time-step is set to bring the star/binary 10−10Myr beyond
the next phase. This allows the code to accurately models stellar evolution across a
phase change. In particular, it is necessary to properly set the stellar properties before
a supernova explosion or WD formation. On top of the adaptive method, sevn includes
a number of predefined time-step upper limits: the evolution time cannot exceed the
simulation ending time or the next output time; the stellar evolution cannot skip more
than two points on the tabulated tracks; a minimum number of evaluations (= 10 by
default) for each stellar phase has to be guaranteed. The time-step distribution in a
typical binary evolution model spans 9− 10 orders of magnitude, from a few hours to
several Myr.

Temporal evolution

Fig.4.2 summarises the sevn temporal evolution scheme. During each time-step,
sevn evolves the two stars independently, then it evaluates and accumulates the prop-
erty variations, ∆P , caused by each binary-evolution process. The binary prescriptions
use as input the orbital and stellar properties at the beginning of the evolution step,
P (t0). After the integration of the binary-evolution processes, sevn updates each stel-
lar and binary property (Fig.4.2). In particular, each binary property (e.g., semi-major
axis, eccentricity) is updated as P (t) = P (t0) + ∆P . Each stellar evolution property
(e.g., mass of each star) is calculated as P (t) = Ps(t) + ∆P , where Ps(t) is the value
of the property at the end of the time-step as predicted by stellar evolution only. For
example, if the property P (t) is the mass of an accretor star during RLO, Ps(t) is the
mass predicted at the end of the time-step by stellar evolution (accounting for mass
loss by winds), while ∆P is the mass accreted by RLO and by wind-mass transfer dur-
ing the time-step. If necessary, the single and binary evolution step is repeated until
the adaptive time-step conditions are satisfied. sevn evolves the compact remnants
passively maintaining their properties constant. sevn treats naked-CO stars similar
to compact remnants: they evolve passively until they terminate their life and turn
into compact remnants. sevn assumes that the transition from a star to a compact
remnant happens at the beginning of the time-step. In this case, sevn assigns a mass
and a natal kick to the new-born compact object, based on the adopted supernova
model. Then, it estimates the next time-step for the updated system. Similarly, sevn
does not use the general adaptive time-step criterion when one the following processes
takes place: RLO circularisation, merger, or CE. In such cases, sevn uses an arbitrar-
ily small time-step (dttiny = 10−15Myr) and calculates only the aforementioned process
during such time-step. Then, it estimates the new time-step. At the very end of each
evolutionary step, sevn sevn if a SNIa must take place. A SNIa is triggered if any
of the following conditions is satisfied: i) a HeWD with mass larger than 0.7M⊙ has
accreted He-rich mass from a WR star, or ii) a COWD has accreted at least 0.15M⊙
from a WR star. Furthermore, sevn checks if any ONeWD (NS) has reached a mass
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larger than 1.44M⊙ (3M⊙) during the time-step. If this happens, the ONeWD (NS)
becomes a NS (BH). Finally, sevn checks if the stars in the binary need to jump to a
new interpolating track.

Initial 
conditionsread I/O

evolve star(s)
OpenMP 

parallelization

all systems
  finished?

 apply binary 
processes

    check change 
          of track

record 
state?

  save properties
final 

time?

  switch to next 
star

   adjust timestep
write output

End

Update stellar and   
binary properties

yes

no
yes

yesyes

no

no

no

changed  
too much or

  special case*?

no

yes

Input 
parameters

changed  
too much? 

Figure 4.2: Schematic representation of the sevn evolution algorithm. The “changed too
much” checks refer to the variation of the stellar and/or binary properties. In the
case of single-stellar evolution or in the case of an ionized binary, sevn skips the
sections “apply binary processes” and “update stellar and binary properties”. The
“special case” check refers to all the cases in which sevn repeats the evolution to
follow a particular binary evolution process, i.e, CE, merger, and circularistaion
at the onset of the RLO. (Image credit: [136] « J)

Change of interpolating tracks

During binary evolution, a star can change its mass significantly due to mass
loss/accretion, or after a stellar merger. In these cases, sevn needs to find a new
track, which better matches the current stellar properties. For stars without a core
(MS H-stars or core He burning pure-He stars), sevn moves onto a new evolutionary
track every time the net cumulative mass variations due to binary processes (RLO,
wind mass accretion) is larger than 1% of the current star mass. When a decoupled
(He or CO) core is present, its properties drive the evolution of the star [130]. For
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this reason, we do not allow stars with a He or CO core (H-star with phase > 2 and
pure-He stars with phase > 4) to change track unless the core mass has changed. After
a stellar merger, sevn always moves the merger product to a new stellar track. When
an H-rich star fulfils the WR star condition (He-core mass larger than 97.9% of the
total mass), the star jumps to a new pure-He track. When a star moves to a new track,
sevn searches the track that best matches the mass (or the mass of the core) of the
current star at the same evolutionary stage (sevn phase and percentage of life) and
metallicity. We define the ZAMS mass of such a track as MZAMS,new. In general, sevn
searches the new track in the H (pure-He) tables for H-rich (pure-He) stars. The only
exceptions occur when a H-rich star is turned into a pure-He star (in this case, sevn
jumps to pure-He tables), and when a pure-He star is transformed back to a H-rich
star after a merger (sevn jumps from a pure-He table to a H-rich table). sevn adopts
two different strategies to find the best MZAMS,new for stars with or without a core. For
stars without a core-envelope separation, sevn finds the best MZAMS,new Hereafter, we
define M as the current mass of the star, Mp as the mass of the star with ZAMS mass
MZAMS, estimated at the same phase and percentage of life of the star that is changing
track. MZAMS,old is the ZAMS mass of the current interpolating track. Assuming a
local linear relation between MZAMS and Mp, MZAMS,old can be estimated using the
equation

M =
Mp,2 −Mp,1

MZAMS,2 −MZAMS,1
(MZAMS,new −MZAMS,1) +Mp,1 . (4.47)

As a first guess, we set MZAMS,1 = MZAMS,old and MZAMS,2 = MZAMS,old + 1.2δM ,
where δM is the cumulative amount of mass loss/accreted due to the binary processes.
MZAMS,new is accepted as the ZAMS mass of the new interpolating track if

|Mp,new −M |
M

< 0.005 , (4.48)

otherwise Eq.4.47 is iterated replacing MZAMS,1 or MZAMS,2 with the last estimated
MZAMS,new. The iteration stops when the condition in Eq.4.48 is fulfilled, or after 10
steps, or if MZAMS,new is outside the range of the ZAMS mass covered by the stellar
tables. If the convergence is not reached, the best MZAMS,new will be the one that
gives the minimum value of |Mp,new|/M (it could also be the original MZAMS,old). sevn
applies this method also when H-rich stars without a CO-core turn into pure-He stars
(phase ≤ 4). If the phase is < 4, sevn sets the evolutionary stage of the new track at
the beginning of the core-He burning (phase 4). For stars with a core, sevn looks for the
best MZAMS,new matching the mass of the innermost core Mc (He-core for stellar phases
2, 3, 4, and CO-core for phases 5, 6, see Table 4.2). For this purpose, sevn makes use
of the bisection method in the ZAMS mass range [max(Mc,MZAMS,min),MZAMS,max],
where MZAMS,min and MZAMS,max represent the boundaries of the ZAMS mass range
covered by the stellar tables (see Table 4.2). sevn iterates the bisection method until
Eq.4.48 is valid considering the core masses. If the convergence is not reached within
10 steps, sevn halts the iteration and the best MZAMS,new is the one that gives the best
match to the core mass. Sometimes (e.g. after a merger) the CO core is so massive
that no matches can be found. In those cases, sevn applies the same method trying
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to match the mass of the He core. If the He-core mass is not matched, sevn applies
the linear iterative method to match the total mass of the star.sevn uses this method
also when a pure-He star turns back to an H-rich star after accreting an hydrogen
envelope or when a H-rich star with a CO core turns into a pure-He star. Finally, the
star jumps to the new interpolating track with ZAMS mass MZAMS,new. sevn updates
the four interpolating tracks and synchronises all the stellar properties with the values
of the new interpolating track. The only exceptions are the mass properties (mass,
He-core mass, CO-core mass). If the track-finding methods do not converge (Eq.4.48 is
not valid), the change of track might introduce discontinuities in these properties. To
avoid this problem, Spera et al. (2019) added a formalism that guarantees a continuous
temporal evolution. In practice, sevn evolves the stellar mass and mass of the cores
using

Mt1 = Mt0(1 + δm), where δm =
mt1 −mt0

mt0

, (4.49)

where Mt1 and Mt0 are the masses of the star (or of the core) estimated at time t1 and
t0, while mt1 and mt0 are the masses obtained from the interpolating tracks at time t1
and t0. Fig.4.3 summarises the algorithm sevn uses to check and handle a change of
track.

4.2 Coupling isteddas and sevn

sevn can work as a stand-alone code (for fast population synthesis studies in the
field) or can be linked to an N-body code, without having performance penalties. Our
dynamical evolution code isteddas is coupled with the new population-synthesis code
sevn.

There are only three quantities that have to be communicated between the two
codes, for each star: mass, radius, and the stellar evolution time-step. The radius is
important to check whether two stars collide/merge or they are only passing close to
each other. The new masses are needed by isteddas to correctly compute the new
accelerations. The evolution time-step is needed to synchronize the evolution of the
stars with the block time-steps method in isteddas.

An aspect that is worth mentioning is that sevn lacks the evolutionary tables for
low-mass stars (mass ≲ 2M⊙). Such low-mass tracks will be included in an upcoming
version of the sevn code (Spera, M., private communication). Therefore, for now,
in isteddas we select and evolve only the stars with a mass larger than a certain
threshold (default at 3M⊙, for safety). The other stars will be considered as non-
evolving point-mass stars. This is an acceptable approximation considering that the
isteddas code is still under development and for preliminary tests, we do not evolve
star clusters for more than a few hundred of Myrs.

4.2.1 Single star evolution

The selected single stars are evolved by sevn, which will adjust the evolutionary
time-step according to its own algorithms, for multiple time steps until the mass has
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Figure 4.3: Schematic representation of the algorithm sevn uses during a change of stellar
track. The elements in the upper row indicate all the cases for which the code
searches for a new stellar track: a significant mass loss/mass accretion due to
binary interactions, a stellar merger, an H-rich star that loses its envelope turning
into a pure-He star, and a pure-He star that accretes a new H envelope turning
back into a H-rich star. In stars with both an He and CO cores, the latter is the
innermost core. In stars with only an He core the innermost and outermost cores
coincide. (Image credit: [136] « J)

changed beyond a certain percentage threshold (by default we choose 2%). For each
time step, the mass of the stars in isteddas is evolved through a linear interpolation
between the initial and the final mass of the stars. This is done during the predictor
step. To perform such interpolation on GPU we communicate two quantities: the
angular coefficient (am) and the intercept (bm) of the line (m(t) = amt+ bm), that is:

am = ṁ =
dm

dt
=

m(t1)−m(t0)

t1 − t0
,

bm = m(t0)− amt0 ,

where for t0 and t1 we consider the initial and final time of the total step performed
by sevn. In Fig.4.4 I show the evolution of an example star born with ∼ 61M⊙ and
Z = 0.002Z⊙ on the ZAMS. The comparison between sevn and the sevn module
in isteddas are perfectly superposed, since they correctly use the same algorithms
to evolve stars, while the interpolation made on GPU slightly differs from them, as
expected. I also plotted the evolution of the core masses, the radius, and the luminosity,
to show a complete picture of the star’s evolution.
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Figure 4.4: The plots in this figure are referred to the evolution of a star born with ∼ 61M⊙
and Z = 0.002Z⊙. In the top-left panel, I show the comparison between the mass
evolution over time simulated in sevn (red), in the sevn module in isteddas
(green), and its GPU interpolation in the isteddas integrator (blue). In the top-
right panel, I show the total mass evolution (blue), and the mass evolution of the
Helium core (red) and the Carbon-Oxygen core (green). In the bottom-left and
bottom-right panels, I show the evolution of the radius and the luminosity of the
star respectively. In the last three plots, I zoomed on the last moment of the life of
the star. In all the plots, the four colored stars represent the important moments
in the star’s evolution: the starting of the Helium burning phase (fuchsia), the
starting of the Carbon-Oxygen burning phase (cyan), the supernova (orange), and
the formation of the black hole (black).
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Using sevn, the mass of stars is no longer a constant, it changes because of the var-
ious mechanisms involved in the stellar evolution, therefore we modified the equations
for the derivatives of the acceleration used in isteddas (Eqs.2.5,2.6,2.34) to consider
the variation of the star’s masses. In this way, all the stars can feel the mass changes
of other stars in the cluster by adjusting their dynamical time-step in isteddas, see
Eq.2.9. Moreover, it is crucial to modify the derivatives of the acceleration to stabilize
the dynamical integrator, in fact, without this correction, the high derivatives tend to
accumulate errors until the simulation becomes unstable. The new acceleration of a
single star (see Eq.2.4) is:

ai =
N∑
j ̸=i

mj

|rij|3
rij =

N∑
j ̸=i

mjQij , (4.50)

where Qij contains all the terms but the mass, and we have assumed the gravitational
constant G = 1. In this way, the derivatives become:

ȧi =
N∑
j ̸=i

mjQ̇ij −→ ȧi =
N∑
j ̸=i

mjQ̇ij + ṁjQij ,

äi =
N∑
j ̸=i

mjQ̈ij −→ äi =
N∑
j ̸=i

mjQ̈ij + 2ṁjQ̇ij ,

...
a i =

N∑
j ̸=i

mj

...
Qij −→ ...

a i =
N∑
j ̸=i

mj

...
Qij + 3ṁjQ̈ij ,

where ṁ corresponds to the angular coefficient am, and all the successive derivatives
of the mass are zero since we interpolate it linearly. The extra terms on the right are
not computationally expensive since we already compute them: in ȧi we need ṁjQij,
but Qij it has already been computed for ai, in äi we need 2ṁjQ̇ij, but Q̇ij it has
already been computed for ȧi, and in ...

a i we need 3ṁjQ̈ij, but Q̈ij it has already been
computed for äi.

These adjustments aim to anticipate mass changes among stars in the cluster, yet
they don’t entirely resolve the issue. When a star, labeled isteddas, progresses to
evolve within sevn (tist ≥ tsevn,i), inactive stars at that point won’t immediately
sense the ṁ change until they become active. Consequently, their time-steps will be
updated too late. To tackle this, synchronizing the entire cluster each time a single
star desires to evolve in sevn was considered. However, this approach would impose
a substantial computational burden and negate the advantages of the block time-step
method. Hence, we opted to synchronize only the neighboring stars, identified through
the Ahmad-Cohen scheme, of the evolving star.

To achieve this, we verify in advance whether star i intends to evolve with sevn
based on the condition:

tist +∆tc ≥ tsevn,i , (4.51)

where ∆tc represents the time-step relative to the star’s neighbors. If this condition
holds true, we proceed to evolve the star in sevn and, in the subsequent step, designate
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all its neighbors as active particles artificially. This adjustment allows them to adapt
their time-steps according to the newly computed accelerations and derivatives based
on the updated ṁ. Importantly, this artificial activation doesn’t disrupt the synchro-
nization of the block time-step method. As the star is placed within the same active
block as the evolving star, the method remains reliable even if the actual time-step
executed by the star doesn’t align as a power of 2. In instances where a star is among
the neighbors of multiple evolving stars, its block in the subsequent step will be set to
the largest (or smallest time-step) among the blocks of the involved evolving stars.

Additionally, there’s another issue concerning the time-step that must be addressed.
In cases where the sevn evolution involves one or multiple exceedingly small steps, the
dynamical time-step of a star might be large enough to bypass these steps, resulting
in the loss of information regarding the changing ṁ. Consequently, if the dynamical
steps of a star meet this condition, we constrain it to not skip over more than a single
sevn step. Subsequently, the neighboring stars follow its time-step using the previously
outlined algorithm.

At the end of star evolution, massive stars can have different fates: become a
neutron star or a black hole after a supernova explosion, or they disintegrate because
of the PISN mechanism. In the first case, we stop the evolution of the mass, assigning
the final mass of the remnant, and we add to the corrected velocity of the body the kick
velocity due to the supernova explosion. In the second case, the star is simply removed
from the N-body system. Since the kick velocity can be much higher then the escape
velocity of the simulated star cluster, those stars who receive a strong kick will become
“super-fast stars”. Since these stars have not reached such high speeds gradually because
of accelerations, but instead, their speeds were instantaneously increased because of the
supernova kick, their neighbours will not be able to adapt their time steps accordingly.
Therefore, after a supernova kick, we checked the velocity of the newborn remnant,
if it is higher than the escape velocity of the cluster (See section 1.5.7) we force its
neighbours to have an equal or smaller time-step with respect to the considered star.
This is achieved in the exact same way as was already explained for the synchronization
of the sevn steps and the isteddas steps.

4.2.2 Binary star evolution

As for the single star evolution, binary stars are also evolved in sevn only if both
stars have greater masses than the chosen threshold. If, instead, only one of the two
stars has a greater mass with respect to the threshold, that star will evolve as a single
star in sevn.

When isteddas detects a binary that is tight enough to be integrated with tsunami
(see the explanation on the decision making in Subsec.3.2.1), if both the stars have
masses greater with respect to the threshold and the system is gravitationally bound,
a binary is created in sevn. It has already been explained that the time steps in sevn
are adaptive, and that we do not evolve stars one step at a time: the stars keep evolving
until their mass has changed beyond a certain percentage threshold. Thus, because of
the nature of the time steps, creating a binary in sevn is not an easy task. First of
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all, it is necessary to synchronize the two stars, to do so, for each evolving star, we
create two of them to track both the actual and the last state of the stars. In this way,
when a binary is created, we can bring back the two involved stars to their last state,
and evolve them again until the exact moment of the binary creation. In particular,
we evolve the stars until they overpass that moment for one step, then we restore their
state and redo the very last step with the needed time step (using a specific function
of sevn to impose a time step). Therefore, at the creation of the binary, the two stars
have the same age in sevn, isteddas, and tsunami, as it is supposed to be.

The selected binaries are evolved by sevn for multiple time steps until either one
of the two masses, the eccentricity, or the semi-major axis of the system has changed
beyond a certain percentage threshold (by default we choose 2%). Then, the inner
dynamics of the binary is evolved with tsunami while the dynamics of its center of
mass is evolved, along with the rest of the star cluster, by isteddas. Because of the
binary evolution, the masses of the two stars change over time, so isteddas interpolates
the total mass of the system in the same way as it was for the single stellar evolution.
However, we can not use the same approach with tsunami due to the way its algorithm
works: it uses the relative error of the energy of the system to adjust its internal time
step, however, by interpolating the masses, we cannot preserve the conservation of
energy and the algorithm will not be able to compute the regularized time steps. In the
worst-case scenario, the Bulirsch-Stoer algorithm will not be able to converge, blocking
the whole simulation. In order to avoid this problem, we wait for the binary system
to be synchronized in sevn and tsunami, then we communicate the changed masses
from sevn to tsunami. The time synchronization between sevn binary evolution and
tsunami dynamical evolution is achieved in the way of the synchronization of two
single stars before the creation of the binary. Thus, for each binary, we have two copies
of it to track both the actual and the last state of the binary stars. When the binary
feels that, on the next step, the dynamical evolution will overpass its evolution time,
the binary is reset to its last state and re-evolved to the exact time when tsunami
will arrive with its own time step. We also implement another check in tsunami:
whether the eccentricity or the semi-major axis of the system has changed beyond a
certain percentage threshold (on default we choose 10%), tsunami will ask for a time
synchronization with sevn in advance with respect to the time set by sevn; this also
happens if tsunami decides to terminate the binary. Somebody could notice that using
this method we evolve every binary star two times, however, this will never become a
computational bottleneck since sevn is orders of magnitudes faster than the dynamical
integrators of isteddas and tsunami.

When, in the next step, the binary is perfectly synchronized in sevn and tsunami,
it will be possible to coherently communicate between the two codes. sevn has to com-
municate to tsunami the new masses of the two stars, and the new orbital parameters,
that are the semi-major axis and the eccentricity (the evolution of binaries can change
these parameters because of the exchange of mass in the system), and simultaneously,
tsunami has to communicate to sevn its own new orbital parameters. The fact
that the orbital parameters are influenced simultaneously by the dynamics and the bi-
nary stellar evolution, complicates this otherwise trivial communication. What would
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physically happen in reality is that the orbital parameters would continuously vary
because of both the contributions happening simultaneously, however, in our case, we
will approximate this behavior by combining the two contributions every time that a
synchronization happens. This is the very reason why we use those thresholds to stop
the codes and synchronize them, to combine the orbital parameters in the smoothest
way possible. The orbital parameter combination is:

a1 = a0 + dasevn + datsunami ,

e1 = e0 + desevn + detsunami ,

where a1 and e1 are the new combined semi-major axis and eccentricity respectively,
a0 and e0 are the previous ones, which is the same for both the codes because of the
previous synchronization, and finally da and de are the contributions from sevn and
tsunami for the actual step and are computed as the difference between the values at
the end of the step minus the values at the end :

dasevn = a1,sevn − a0,sevn ,

desevn = e1,sevn − e0,sevn ,

datsunami = a1,tsunami − a0,tsunami ,

detsunami = a1,tsunami − a0,tsunami .

At this point tsunami has the new orbital parameters and communicates them to
sevn that updates the old ones. However, since tsunami use Cartesian coordinates to
integrate systems, we have to translate these new orbital parameters into new positions
and velocities for the two bodies. The starting point is for tsunami to compute
datsunami and detsunami, to do it we switch from Cartesian coordinates, that are positions
and velocities (x, y, z, vx, vy, vz), to Keplerian coordinates, that are 6 orbital parameters:
eccentricity (e), semi-major axis (a), inclination (i), longitude of the ascending node
(Ω), argument of periapsis (ω) and true anomaly (ν), see appendix B for a detailed
description. Then, using the new eccentricity and semi-major axis but maintaining
fixed the old i, Ω, ω and ν, we pass again to Cartesian coordinates finding the relative
positions of the two stars. Since sevn does not give any information about the phase
of the two bodies in their orbits, we do not have any way of retrieving those four
angles, thus keeping the old ones from tsunami is the only way to return to Cartesian
coordinates.

Moreover, during this operation, we fix the position of the center of mass of the
binary, that is like hypothesizing that the binary system loses mass isotopically, and
we recompute positions and velocities of the two bodies with respect to the center of
mass. To do so we use the following equations:

rCOM =
r1m1 + r2m2

m1 +m2

, (4.52)

vCOM =
v1m1 + v2m2

m1 +m2

, (4.53)

r12 = r2 − r1 , (4.54)
v12 = v2 − v1 , (4.55)
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to obtain the final result:

r1 = rCOM − r12
m2

m1 +m2

, (4.56)

r2 = rCOM + r12
m1

m1 +m2

, (4.57)

v1 = vCOM − v12
m2

m1 +m2

, (4.58)

v2 = vCOM + v12
m1

m1 +m2

. (4.59)

Finally, if the regularized system has more than 2 bodies, tsunami shifts the total
center of mass of the system to zero to be consistent.

4.2.3 Energy conserving scheme

isteddas implements the Hermite 6th order integrator, which is an energy-conserving
scheme, therefore we expect the total energy of the simulation to be conserved over
time, except for the accumulation of numerical errors. On default, the total energy of
the star cluster energy is computed considering point-mass stars with constant masses:

E = K + U =
1

2

N∑
i=0

(
mi|vi|2 −

N∑
j ̸=i

mimj

|rij|

)
, (4.60)

here the potential energy U is divided by 2 because we are computing twice all the
couples (i, j) of stars, and we have assumed the gravitational constant G = 1. It
is crucial for an N-body code to conserve the total energy because the check on the
relative error of the energy:

∆E

E(t0)
=

E(t)− E(t0)

E(t0)
= 0 , (4.61)

is a powerful tool to check whether the simulation has any numerical or algorithmic
errors.

The addition of stellar evolution with sevn breaks the conservation of energy be-
cause of the multiple stellar evolution processes simulated that continuously decrease
the mass of the evolving stars. Because of the mass losses, it is impossible to conserve
the total energy of the system computing it as above. Therefore, to be able to conserve
the energy, we re-inject the energy of the lost mass using ṁ. Theoretically, if the mass
is constant the time derivative of the total energy would be always zero, in this case,
with a varying mass, we would have instead:

Ė =
1

2

N∑
i=0

(
ṁi|vi|2 −

N∑
j ̸=i

ṁimj +miṁj

|rij|

)
, (4.62)

or, more simply:

Ė =
N∑
i=0

(
1

2
ṁi|vi|2 −

N∑
j ̸=i

ṁimj

|rij|

)
. (4.63)
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All the derivatives which do not involve ṁ cancel each other out because, as mentioned
before, if the mass is constant Ė = 0. Thus, for each i star of the system, we integrate
in time the lost energy:

Elost,i =

∫ t

0

Ėidt . (4.64)

To numerically compute it, at each distant step and for each star, we accumulate Ėi∆tf .
At this point, we have retrieved the conservation of the energy as:

∆E

E(t0)
=

E(t)− E(t0)− Elost

E(t0)
= 0 , (4.65)

where Elost is the summation of Elost,i on all the evolving stars of the system.
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Chapter 5

Numerical tests

In this chapter, I am going to show the preliminary results from the code. In
particular, I will show the benchmark of the N-body code isteddas,

5.1 isteddas tests

The benchmarks in this section are done on the new CINECA supercomputer
Leonardo1, that today is the fourth most powerful supercomputer in the world ac-
cordingly to the TOP500 list2. In Table 5.1 there are the specifics of the GPU nodes
of Leonardo.

CPU : Intel(R) Xeon(R) Platinum 8358 2.60GHz (32 cores, 1 thread per core)
RAM : 512 (8× 64) GB DDR4 3200 MHz
GPU : 4 NVIDIA Ampere 100
GRAM : 256 (4× 64) GB HBM2
Network : NVIDIA Mellanox HDR DragonFly++ 200Gb/s

Table 5.1: Leonardo’s nodes specifics. See [293] for further details about Leonardo’s architec-
ture.

I will use a maximum of 2 nodes with 4 parallel GPUs each for the scaling tests,
therefore 8 GPUs at maximum. In particular I will run scaling tests on 1, 2, 4 and
8 GPUs for star clusters with 2048 (211), 4096 (212), 8192 (213), 16384 (214), 32768
(215), 65536 (216), 131072 (217), and 262144 (218) stars (as shown in Table 5.2). The
star clusters are generated using the McLuster3 code [158]. All these clusters have a
King density profile with W0 = 5 (dimensionless parameter which specifies the model
concentration), a half-mass radius of 2 pc, a velocity dispersion of σ = 1.3127 km/s,
they are at the virial equilibrium, and their initial mass function follows the Kroupa

1Check the link https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.4%3A+Leonardo+UserGuide
for extra details about Leonardo.

2TOP500 June 2023 link: https://www.top500.org/lists/top500/2023/06/
3The code is public and available here: https://github.com/ahwkuepper/mcluster.
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IMF within the range of star’s masses 0.1M⊙ < M∗ < 150M⊙. Moreover, these clusters
do not have binary stars, tidal field, mass segregation, or fractality. All the simulations
reach a total time of 10 in code units, check Table 5.2 to see how many Myr this
corresponds for each simulation.

Nstars Mtot [M⊙] ρ [M⊙/pc3] trelax [Myr] Ttot [Myr] τ%

2048 (211) 1322.4 57.37 109.71 4.11 3.75%
4096 (212) 2597.9 77.53 82.65 2.93 3.54%
8192 (213) 5165.0 154.13 41.82 2.08 4.97%
16384 (214) 10398.5 310.31 20.63 1.46 7.07%
32768 (215) 20429.9 609.66 10.69 1.04 9.73%
65536 (216) 41664.7 1243.34 5.14 0.73 14.20%
131072 (217) 83983.8 2506.21 2.53 0.52 20.55%
262144 (218) 169716.0 5064.59 1.24 0.36 29.04%

Table 5.2: List of simulations made for the scaling tests of isteddas. It contains: the to-
tal number of stars, the total mass (in M⊙), the two-body relaxation timescale
computed with Eq.1.8 (in Myr), the total simulated time (in Myr), and the total
simulated time as a percentage of the relaxation time: τ% = Ttot/trelax · 100.

First of all, in Fig.5.1 I show the relative error on the total energy of the cluster
(see Eq.4.61): note how well the energy conservation is maintained by the Hermite 6th

order integrator for all the simulations made for the scaling tests. From the plot, one
could think that the bigger the number of stars, the faster the error grows. In reality,
the rate at which the error grows depends on how many trelax were simulated. So,
the total simulated time as a percentage of the relaxation time (τ% = Ttot/trelax · 100,
see Table 5.2) tells us that higher the number of particles higher τ%, and so faster the
error grows (for the specifically chosen settings of these simulations). In theory, in a set
of simulations with settings chosen ad hoc to have τ% equal in all the simulations, we
would see a similar error plot for all the cases. However, the error is always maintained
quite low (maximum ∼ 10−5), and it is consistent among the simulations with different
numbers of GPUs, proving the correctness of the multi-GPU implementation.

In Fig.5.2 and Fig.5.3 I show the results of the scaling tests on a single node.
In particular, in Fig.5.2 I show the larger contributions to the total running time
of the simulations: the ANN tree contribution (see the subsection 2.4.3), the MPI
contribution, the computation of the forces due to far stars (afar,new in Section 2.3),
and the contribution from the searching algorithm that determines which stars need
to be integrated for each step. Since the ANN tree contribution is the larger one, I
also show its two main internal contributions: The tree construction, and the search
for neighbours, which is the most computationally expensive operation in the code.
Instead, in Fig.5.3 I show less important contributions together with the total running
time for reference: the computation of the forces due to far stars, close stars, and the
contribution from the old neighbours (respectively afar,new, aclose,new, and aclose,old in
Section 2.3), the contributions from the predictor and the corrector, the contribution
from updating the time-steps of all the stars at each step, and the contribution from
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Figure 5.1: Relative error on the total energy of the system (see Eq.4.61) versus the time in
code units for each scaling test simulation. For each simulation multiple lines are
shown, one for each number of GPUs used (1,2,4, and 8), they have the same style
and color since they superpose almost perfectly, as expected.

the memory transfers between CPUs and GPUs. In Fig.5.4 I show the scaling of the
far forces kernel alone. In order to highlight how it performs, I plot the running time
with a single GPU with the running time for other cases. The computation of the
forces was the bottleneck in N-body codes for decades, therefore we optimize it as
much as possible, obtaining a remarkable result. The cases with few stars do not scale
well, as expected, since a single GPU can already handle that number of stars, and
dividing the work just introduces extra operations: memory transfers, reductions, and
gatherings. However, from 32768, stars the scaling on a single node becomes perfect,
while on multiple nodes at least 65536 stars are needed to improve the performance. In
Fig.5.5 I show the results of the scaling tests on two nodes: simulation characteristics
are the same as in Fig.5.2, except for the fact I show just the two cases with more stars
(131072 and 262144). From the plots, it is clear that the MPI implementation slows
down isteddas too much, making it even worse than running the code on a single
node.

The reason behind this behavior is that the far forces kernel is the only part of
the code that can scale with an increasing number of GPUs. isteddas was designed
in this way because that was the main bottleneck for N-body codes. Clearly from all
the scaling tests that I have shown, the actual bottleneck of the code is the ANN tree
and the MPI implementation, and both of these bottlenecks can be solved. For the
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tree, as I extensively discussed in Section 2.4.3, the solution would be to switch to
another library, in particular, we could use FLANN, which already runs on GPU and
can scale on multiple GPUs.Another possible solution would be to think about a new
algorithm to further reduce the number of tree constructions within each macro step,
but this is beyond the scope of this thesis. For MPI, the solution would be to exploit
the new technology in the new GPU supercomputers. For example, each node of the
CINECA’s supercomputer Leonardo is provided with a new NVIDIA Mellanox HDR
Dragonfly++ network card that enables direct communication between GPUs from
different nodes, and provides some preliminary calculations when needed, in order to
speed up communications even more (for example if a reduction operation is called
in the code). Moreover, the communication between GPUs on the same nodes can
avoid passing through the CPU because of the InfiniBand connections between GPUs.
Nowadays, almost all the most powerful supercomputers in the world are provided with
GPUs and use a similar technology to speed up communications among accelerators.
Among them, Frontier4 and LUMI5 (that use AMD GPUs) or Leonardo6, Summit7,
and Sierra8 (that use NVIDIA GPUs). Clearly, this technology represents the future
of GPU computation. In order to use such technology one could use the CUDA-Aware
MPI (for NVIDIA hardware), which is an implementation of MPI that can exploit
the new connections between GPUs, or one could use NCCL, an NVIDIA library for
communication that underneath uses CUDA-Aware MPI. These optimizations will be
done in future works related to the development of isteddas.

4First position in the TOP500, website: https://www.olcf.ornl.gov/frontier/
5Third position in the TOP500, website: https://www.lumi-supercomputer.eu/
6Fourth position in the TOP500, website: https://leonardo-supercomputer.cineca.eu/it/home-it/
7Fifth position in the TOP500, website: https://www.olcf.ornl.gov/olcf-resources/compute-

systems/summit/
8Sixth position in the TOP500, website: https://hpc.llnl.gov/hardware/compute-platforms/sierra
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Figure 5.2: Scaling tests of isteddas. In each panel, it is shown, for a certain total number
of stars N , the measured times versus the number of used GPUs (NGPU ). The
six most important timings are shown together with the total time (“TOT” in
blue): the MPI contribution (“MPI” in red), the ANN tree contribution (“ANN”
in green), the tree construction and tree search contributions to ANN (“ANN-
tree” in yellow, and “ANN-search” in purple), the contribution of the far forces
computation (“I-forces” in grey), and the search for new active stars contribution
(“active_stars” in cyan).
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Figure 5.3: Scaling tests of isteddas. In each panel, it is shown, for a certain total number of
stars N , the measured times versus the number of used GPUs (NGPU ). The seven
important but less costly timings are shown together with the total time (“TOT”
in blue): the contribution of the far, near, and previous near forces computations
(“I-forces” in red, “N-forces” in green, and “oldI-forces” in yellow), the predic-
tor contribution (“predictor” in purple), the corrector contribution (“corrector” in
grey), the contribution for updating the time-steps (“update_Dt” in cyan), and
the memory transfer between CPUs and GPUs contribution (“memory” in black).
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5.1 isteddas tests
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Figure 5.4: Scaling tests of isteddas. The plot shows the ratio between the measured times
for a single GPU and the total number of used GPUs (t1GPU/tNGPU ) versus the
number of used GPUs (NGPU ). The blue line shows the ideal scaling, the other
lines show the scaling of the far forces computation kernel for each simulation.
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Figure 5.5: Scaling tests of isteddas. Same plot type of Fig.5.2. In this case with the “8
GPUS” entry on the x-axis and just for the two more expensive simulations (N
equal to 217 and 218).
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5 Numerical tests

5.2 tsunami tests
The following tests are made on a laptop, its specifications are in Table 2.1. For

Fig.5.6 two simulations were done, both of them on the same star cluster with 2048 stars
and one tight binary system. The two simulations run for the same amount of time on
my laptop (5 minutes). The one with isteddas alone was able to evolve the star cluster
for just ∼ 1400 years. During the simulation, the error keeps increasing almost linearly
(red and red dashed lines), this is due to the vicinity of the two stars in the binary:
the Hermite 6th order integrator is a powerful tool but is not symplectic and cannot
integrate correctly such a tight binary system. Moreover, the block time-step method
(see Section 2.2) assigns the smallest possible time-step to the system because of the
enormous acceleration and its derivatives involved (see Eq.2.9). As a consequence,
the simulation takes so many steps to progress that the numerical error accumulation
becomes an important contribution to the total energy error of the simulation. Thus,
isteddas alone gets “stuck” accumulating numerical errors in simulation with tight
binaries, in this case even a tiny star cluster, as the one in this example, could become
challenging to simulate. Instead, the simulation with tsunami was able to evolve
the star cluster for ∼ 40000 years keeping the relative error on the energy of the star
cluster stable under 10−7 (blue dashed line), since the binary was correctly integrated
with the ARC integrator with a minimal error accumulation (green dotted line). This
plot demonstrates the importance of using two distinct integrators for direct N-body
simulation of star clusters: one to take care of long-range interactions and one to take
care of tight systems such as binary stars, hierarchical systems, and close encounters.

In Fig.5.7 and Fig.5.8 two examples of hierarchical systems are shown, an unstable
one and a stable one respectively. Both of them have three levels of zoom, in order to
show both the motion of the overall system and the specific motion of the tight binaries.
In both the plot the real movement of stars in the combination isteddas+tsunami
came out: tsunami integrates the internal motion of the system (binary stars or
hierarchical system), while isteddas integrates the motion of its center of mass in the
cluster. Therefore, when plotting the orbits, a “twitchy” movement came out, where
the orbits do not evolve smoothly together with the center of mass, they evolve for
the amount of time of the next isteddas step but fixed in the previous center of
mass coordinates. Moreover, in Fig.5.7, one can also see how the decision-making (in
particulate the condition in Eq.3.14) keeps this system in tsunami even when the
third body and the inner binary are very far at their apoastron. This is necessary until
the three bodies are in a bound configuration with a very tight periastron in order to
avoid the system going in and out from tsunami at each orbit.
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5.2 tsunami tests 93
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Figure 5.6: Simulation of a star cluster with 2048 stars and a single binary made with isted-
das alone using just thee Hermite 6th order integrator, and then made with isted-
das+tsunami, using the ARC integrator for the binary. The top panel shows the
relative error of the energy of the star cluster versus the time in years. In red is
shown the error for the simulation with isteddas alone, and the red dashed line
shows the projection of the error. In blue is shown the error for the simulation
where the binary is integrated by tsunami, and in green is shown the error of
the ARC integrator (tsunami) on the binary alone. The bottom panel shows, in
the x-z plane (in astronomic units), the evolution of the orbit of the binary. The
coordinates are re-centered in the center of mass of the binary in order to show
its stability in 413455 years of evolution.



5 Numerical tests

Figure 5.7: Example of the evolution of a hierarchical system in an unstable configuration.
The following plots are in the x-y plane (in astronomic units) where the position
(0,0) is the center of mass of the star clusters. The inner binary is formed by
two stars with masses 0.47M⊙ (blue) and 0.28M⊙ (red), and the third body has
a mass of 0.19M⊙ (green). The top-left panel shows the entire evolution of the
system for 52986 years, from its beginning to its disruption. The top-right panel
is a zoom of the yellow square in the first panel, it shows the orbits in the initial
part of the evolution. The bottom panel is a zoom of the yellow square in the
second panel, it shows the orbit of the inner binary, which is so tight is not visible
in the other two plots.
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5.2 tsunami tests

Figure 5.8: Example of the evolution of a hierarchical system in a stable configuration. The
following plots are in the x-y plane (in astronomic units) where the position (0,0)
is the center of mass of the star clusters. The inner binary is formed by two stars
with masses 0.47M⊙ (blue) and 0.28M⊙ (red), and the third body has a mass of
0.19M⊙ (green). The top-left panel shows the entire evolution of the system for
23113 years. The top-right panel is a zoom of the yellow square in the first panel,
and the bottom panel is a zoom of the yellow square in the second panel, it shows
the orbit of the inner binary, which is so tight is not visible in the other two plots.
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Conclusions

In this thesis work, I presented the strategies in place to develop isteddas, a new
direct N-body code written in C++ and CUDA, that is designed to run natively on
GPUs (proven to be much more proficient than CPUs in handling highly parallelizable
problems) and that uses a combination of a high-order integrator (Hermite 6th order)
with block time-step and the Ahmad-Cohen neighbours scheme to significantly speed
up high-accuracy N-body simulations.

Direct N-body simulations of star clusters still struggle to resolve small-scale binary
interactions while simulating large systems simultaneously. Achieving high resolution
in areas where binary interactions occur is computationally demanding and often lim-
its the size of the simulated cluster or the number of particles that can be realistically
tracked. Some codes avoid a direct N-body approach to solve this computational
problem (e.g. using tree-based codes) and, although the statistical properties of star
clusters are reproduced correctly, they do not compute precisely the trajectories of
stars, overall losing precision. On top of this, most N-body codes are coupled with out-
dated population-synthesis codes to evolve stars. These population-synthesis codes are
difficult to update with the recent prescriptions for single and binary stellar evolution.

isteddas is expected to overcome the shortcomings of current stat-of-the-art N-
body codes.

isteddas can accurately integrate very tight binaries, strong gravitational interac-
tions, and hierarchical few-body systems thanks to the coupling with the state-of-the-
art code tsunami, which implements the Algorithmic Regularization Chain combined
with the Bulirsch-Stoer method. This allows us to resolve all the spans of spatial
and temporal scales of star clusters and to investigate the formation and evolution of
compact-object binaries (i.e., the progenitors of the gravitational-wave events observed
by the LIGO-Virgo-KAGRA collaboration) with high accuracy.

isteddas has also been coupled with the population synthesis code sevn, a new,
up-to-date population-synthesis code based on look-up tables, that takes care of the
evolution of both single and binary stars. Because of the use of look-up tables, updating
sevn does not require much effort and this makes it the perfect tool in order to keep
the simulations always updated with the new stellar evolution prescriptions.

At the moment, a preliminary version of isteddas coupled with tsunami and
sevn is already functional, and some results have been presented in this thesis. The
interface isteddas – tsunami supports the dynamical evolution of tight systems and
binaries and the interface isteddas – sevn supports the evolution of single stars. Bi-
nary stellar evolution, which represents the final coupling of all three codes, is currently
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under testing.
From the point of view of the performance, isteddas demonstrates to be very

effective in computing the forces within the star cluster. In fact, while the raw complete
computation of force scales as N2, the kernel that computes forces in isteddas scales
roughly linearly on multiple GPUs (see Fig.5.4). However, the overall performance of
the code is still sub-optimal since all the extra operations made to optimize the forces
computation are still to be fully optimized, especially the ANN-tree part. Optimization
strategies are possible and they are currently under discussion.

tsunami already demonstrates its efficiency in handling tight systems with respect
to the isteddas integrator (see Fig.5.6). In this thesis, we presented some preliminary
results. However, the interface is still under intensive testing: there are still some
peculiar cases in which the decision-making algorithm is sub-optimal.

sevn was the last addition and its interface and it seems to have almost no impact
on the performance of the code since both isteddas and tsunami are significantly
more computationally demanding.

Regarding the future of the code, the plan is to continue developing and optimizing
the interfaces, also implementing the one between tsunami and sevn. We plan to
further optimize the code by implementing a new GPU library for the approximate
nearest-neighbors search algorithm to overcome the current bottleneck of the N-body
integrator, and by implementing the GPU version of tsunami to speed up the parallel
integration of many regularized systems, in order to optimize the code for star clusters
with a high fraction of binary systems. We also plan to implement the possibility of
adding an external potential to the force calculation in order to simulate the interaction
of dense stellar systems with an external tidal field (e.g., host galaxy).

The combination isteddas – tsunami – sevn, once 100% operational, will be able
to help investigate a plethora of different problems related, in general, to star clusters
and galaxies, not only gravitational waves from compact binary coalescences. The code
will be able to accurately simulate all the trajectories in the system, comprehensive of
binary systems and tight hierarchical systems, and to handle the stellar evolution of
single and binary stars with up-to-date stellar prescriptions.

In essence, the code’s ability to efficiently simulate dense stellar systems while con-
sidering both stellar evolution and dynamics in a comprehensive manner is pivotal.
isteddas fills a critical gap, offering a more coherent and precise approach to under-
standing the multifaceted interactions within star clusters, their relation to compact
object binaries and gravitational waves, their galactic context, and their impact on the
evolution of galaxies as a whole.
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Appendix A

GWs analytical derivation

Let us start with the Riemann curvature tensor in GR:

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γµ

λρΓ
λ
νσ − Γµ

λσΓ
λ
νρ , (A.1)

where ∂ρ is the compact form of the partial derivative:

∂ρ =
∂

∂xρ
, (A.2)

Γµ
νρ are the Christoffel symbol:

Γµ
νρ =

1

2
gµκ (∂νgρκ + ∂ρgνκ − ∂κgνρ) , (A.3)

gµν is the general metric tensor:

gµν = ηαβ∂µξ
α∂νξ

β , (A.4)

ξα is the locally inertial coordinate system, and ηµν is the metric tensor that governs
the local inertial system, that is the Minkowskian, or flat, metric tensor:∣∣∣∣∣∣∣∣

−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1

∣∣∣∣∣∣∣∣ . (A.5)

. The Riemann can be contracted to obtain the Ricci tensor:

Rµν = Rλ
µλν , (A.6)

and the scalar curvature:
R = Rµ

µ . (A.7)

Using the above quantities one can write the Einstein field equations as:

Rµν −
1

2
gµνR = 8πTµν , (A.8)
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A GWs analytical derivation

where Tµν is the momentum-energy tensor and describes the density and flux of energy
and momentum in any space-time, and we assume G = 1 and c = 1. Let us now
consider the weak field limit of GR, that is the linearized theory that arises when the
field equations, are worked out under a first order expansion of a nearly-Minkowskian
metric. This approach will also lead to the prediction of gravitational radiation, though
in this limit we are neglecting the self-gravity by radiation itself. Let us then define:

gµν = ηµν + hµν , |hµν | ≪ 1 , (A.9)

where hµν is the perturbation. The Minkowski metric tensor, rather than the general
metric tensor, will be used to raise or lower indices as a background metric to avoid
the rise of second-order terms. Since any derivatives of the Minkowskian metric tensor
yield 0, the Christoffel symbols become:

Γµνρ =
1

2
(∂νhρµ + ∂νhρµ − ∂µhνρ) , (A.10)

leading to the linearized Riemann tensor:

Rµνρσ = ∂ρΓµνσ − ∂σΓµνρ =
1

2
(∂ρ∂νhµσ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ) . (A.11)

with contractions

Rµν = Rλ
µλν =

1

2

(
∂µ∂λh

λ
ν + ∂ν∂λh

λ
µ − ∂µ∂νh−2hµν

)
, (A.12)

and
R = Rµ

ν = ∂µ∂νhµν −2h , (A.13)

where h = hµ
µ, and 2 = ∂µ∂µ. Let us now impose the condition for harmonic coordi-

nates:
Γλ = ηµνΓλ

µν = 0 −→ ∂µh
µ
ν =

1

2
∂νh . (A.14)

Then, the Einstein tensor simplifies greatly, leading to the linearized field equations:

Rµν −
1

2
gµνR = −1

2

(
2hµν −

1

2
ηµν2h

)
= 16πTµν . (A.15)

Finally, it is convenient to introduce the trace reversed field tensor

h̄µν −
1

2
ηµνh , (A.16)

for which h̄ = −h and ∂µh̄
µ
ν = 0, and the linearized field equations are simply

2h̄µν = −16πTµν . (A.17)

The crucial consequence of the weak field equation is the prediction of gravitational
radiation. In vacuum we have

2h̄µν = ∂λ∂λh̄µν =
(
−∂2

t +∇2
)
h̄µν = 0 , (A.18)
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which is a set of 10 hyperbolic equations for gravitational waves propagating at the
speed of light (c = 1). The simplest solution to look for is that for plane waves:

h̄µν = Aµνe
ikλx

λ

, (A.19)

with Aµν the amplitude tensor and kµ = (ω,k) the wave 4-vector. Using the Lorentz
gauge one could demonstrate that Aµν is a transverse-traceless (TT) tensor, that is:

Aµνu
ν = 0 , Aµ

µ = 0 , (A.20)

for a given time-like unit vector uν . The traceless condition leads to the simplification
that h̄µν = hµν . If we now choose a Lorentz frame where uµ = (1, 0, 0, 0) and spatial
propagation along z alone, then kµ = (ω, 0, 0, kz = ω) and the plane wave is described
by

hTT
µν = Aµνe

i(kzz−ωt) . (A.21)

The only non-vanishing components are

Axx = −Ayy = A+ , Axy = Ayx = A× , (A.22)

corresponding to two independent polarizations in the x − y plane, both transverse
to the propagation direction z. One can compute the accelerations on some particles
that feel the passage of gravitational waves using ḧTT

ij (i, j are the spatial indices), and
verify that the effects of the two different polarization are the ones shows in Fig.A.1.
Let us see how we could get a measurement of the effect of a passing gravitational

 

𝐴+ 𝐴× 

Figure A.1: The cartoon shows the effects of A+ (green) and A× (yellow) polarized GWs on
a ring of free falling particles (blue).

wave, considering two nearby particles, initially at rest, located one at the origin and
one displaced by L along the x axis. Both will remain attached at the respective
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A GWs analytical derivation

initial positions, but the proper distance (calculated at the same time) between the
two particles will be

δL =

∫
|gµνdxµdxν |1/2 ≃ |gxx(x = 0)|1/2L ≃

(
1 +

1

2
hTT
xx (x = 0)

)
L . (A.23)

Now the proper distance δL does depend on time, precisely through the hTT
xx (x = 0) =

A+e−iωt. The above expression tells us an important thing concerning GW detection:
the displacement is proportional to the initial separation L of any masses used in the
detector (this is why ground-based detectors like VIRGO and LIGO are several km
long, or millions of km in space for future experiments as LISA, see Subsec.1.6). With
further mathematical calculations, it is possible to demonstrate that h̄ij can be written
as a quadrupole emission term, both the monopole and the dipole terms disappear
in standard GR. Thus, we do expect gravitational waves signal from events like the
merging of two massive and dense objects, such as black holes or neutron stars, in
fact, the strain in Eq.1.1 can be retrieved from the integral in Eq.A.23 for such binary
systems.
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Appendix B

Keplerian coordinates

The Keplerian coordinates are formed by 6 orbital elements, which are the pa-
rameters required to uniquely identify a specific orbit (see Fig.B.1): eccentricity (e),
semi-major axis (a), inclination (i), longitude of the ascending node (Ω), argument of
periapsis (ω) and true anomaly (ν). When viewed from an inertial frame, two orbit-
ing bodies (a binary system) trace out distinct trajectories. Each of these trajectories
has its focus on the common center of mass. When viewed from a non-inertial frame
centered on one of the bodies, only the trajectory of the opposite body is apparent;
Keplerian elements describe these non-inertial trajectories. An orbit has two sets of
Keplerian elements depending on which body is used as the point of reference, in this
work we use the primary body (the more massive object) as the reference point.

Figure B.1: In this diagram, the orbital plane (yellow) intersects a reference plane (gray) in
the line of nodes and connects the ascending node with the descending node. The
four angles used as orbital parameters are shown in the figure. The celestial body
is the secondary body of the binary, while the primary is in the center.
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B Keplerian coordinates

The 6 orbital elements correspond, in Cartesian coordinates, to the 3 components
of position and velocity of the second body, that, in this reference frame, are equivalent
to the relative positions and velocities between the two bodies. Before going into the
details of the transformation it is useful to define some quantities:

M = m1 +m2 , (B.1)

E =
|v|2

2
− M

|r|
, (B.2)

L = r × v , (B.3)
n = {nx = −Ly; ny = Lx; 0} , (B.4)

where m1 and m2 are the masses of the two bodies, E is the internal energy of the
system, r and v are the position and velocity vectors, L is the specific angular mo-
mentum, n is the line of the nodes (the vector pointing along the ascending node,
see Fig.B.1), and we assume the gravitational constant G = 1. The transformation
between Cartesian and Keplerian coordinates is:

e =
1

M

∣∣∣∣(|v|2 − M

|r|

)
r − (r · v)v

∣∣∣∣ , (B.5)

a = −M

2E
, (B.6)

i = arccos

(
Lz

|L|

)
, (B.7)

Ω = arccos

(
nx

|n|

)
, (B.8)

ω =

{
planar orbit (i = 0) arccos (ex/|e|)− Ω

non-planar orbit (i ̸= 0) arccos (rx/|r|)− arccos (ex/|e|)
, (B.9)

ν =

{
planar orbit (i = 0) arccos (e · n/|e||n|)

non-planar orbit (i ̸= 0) arccos (r · n/|r||n|)− ω
. (B.10)

Before going into the details of the inverse transformation it is useful to define the
modules for positions and velocities:

r0 = a
1− e2

1 + e cos ν
, (B.11)

v0 =

√
M

a (1− e2)
. (B.12)
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Finally, the transformation between Keplerian and Cartesian coordinates is:

rx = r0[cos Ω (cosω cos ν − sinω sin ν)+

− sinΩ cos i (sinω cos ν + cosω sin ν)] , (B.13)
ry = r0[sinΩ (cosω cos ν − sinω sin ν)+

+ cosΩ cos i (sinω cos ν + cosω sin ν)] , (B.14)
rz = r0[sin i (sinω cos ν + cosω sin ν)] , (B.15)
vx = v0[(e+ cos ν) (− cos i cosω sinΩ− cosΩ sinω)+

− sin ν (cosω cosΩ− cos i sinω sinΩ)] , (B.16)
vy = v0[(e+ cos ν) (cos i cosω cosΩ− sinΩ sinω)+

− sin ν (cosω sinΩ + cos i sinω cosΩ)] , (B.17)
vz = v0[(e+ cos ν) cosω sin i− sin ν sin i sinω] . (B.18)
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