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PLEIJEL NODAL DOMAIN THEOREM

IN NON-SMOOTH SETTING

NICOLÒ DE PONTI, SARA FARINELLI, AND IVAN YURI VIOLO

Abstract. We prove the Pleijel theorem in non-collapsed RCD spaces, pro-
viding an asymptotic upper bound on the number of nodal domains of Lapla-
cian eigenfunctions. As a consequence, we obtain that the Courant nodal
domain theorem holds except at most for a finite number of eigenvalues. More
in general, we show that the same result is valid for Neumann (resp. Dirichlet)
eigenfunctions on uniform domains (resp. bounded open sets). This is new
even in the Euclidean space, where the Pleijel theorem in the Neumann case
was open under low boundary-regularity.
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1. Introduction

Given a continuous eigenfunction u of a linear operator L, there is a lot of
interest in studying the properties of its nodal domains, the latter being defined
as the connected components of the set {u �= 0}. In the usual setting, L is an
operator of differential nature, with discrete spectrum λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . .,
and a classical problem is to bound the number of nodal domains of uk in terms of
k. Here uk is an eigenfunction of eigenvalue λk.

There are two main results known in this direction. The first one, due to Courant
[35] (see also Courant and Hilbert [36]), provides a pointwise bound: for every k
the number of nodal domains of uk is less than or equal to k. The second one is
due to Pleijel [79] and provides an asymptotic upper bound, which implies that for
sufficiently large k the number of nodal domains of uk is strictly less than k.
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The original argument of Courant was in the context of regular Sturm-Liouville
problems, while Pleijel studied the Dirichlet problem in bounded smooth domains of
the Euclidean plane. After that, these theorems have been deeply investigated in a
different number of situations, see [10,14,16,17,25,30,37,40,45,57,67,70,80,87] for
a non-exhaustive list. The main goal of the present paper is to obtain an asymptotic
upper bound on the number of nodal domains for Dirichlet and Neumann Laplacian
eigenfunctions in the setting of possibly non-smooth metric measure spaces. In
particular, we focus on the class of RCD(K,N) spaces consisting of metric measure
spaces satisfying a synthetic notion of Ricci curvature bounded from below by K
and dimension bounded from above by N (see the survey by Ambrosio [3] and
Section 2.5 for more details). Nevertheless, our analysis is of interest already in the
Euclidean case since we prove the Pleijel theorem for Lipschitz and even more rough
domains (see Corollary 1.3 and the subsequent discussion). Indeed, the validity of
a Pleijel result in the Neumann case with boundary regularity below C1,1 was an
open question in the field (see the comments after Remark 1.2 in the recent work
of Hassannezhad and Sher [57]).

About the Courant nodal domain theorem, let us just briefly mention that its
validity is open for RCD spaces. This is mainly due to the fact that the weak unique
continuation property for the Laplacian in this setting is currently not known. We
refer to the works of Deng and Zhao [43, 44] for more on this problem, where
also the failure of the strong unique continuation property in the RCD setting is
shown. We remark that a worse, but still pointwise, upper bound on the number
of nodal domains can be easily deduced from the variational characterization of the
eigenvalues (see [67] by Keller and Schwarz).

Before stating our main result, let us first introduce the setting and some nota-
tions referring to Section 2 for the precise definitions. Our investigation deals with
eigenfunctions of the Dirichlet or Neumann Laplacian ΔD, ΔN in a bounded domain
Ω ⊂ X in a RCD(K,N) space (X, d,HN ), where HN denotes the N -dimensional
Hausdorff measure in (X, d). As usual in this kind of problems, some additional
assumptions are required to deal with the Neumann case and we will demand that
Ω is a uniform domain (see Definition 3.1). We will clarify below why we need to
restrict our attention to RCD spaces endowed with the Hausdorff measure, called
non-collapsed in the literature, instead of considering the full RCD class. Here we
limit ourselves to mention that these assumptions are sufficient for the Dirichlet
and Neumann Laplacian in Ω to have discrete spectrum and for the eigenfunctions
to be continuous. We list the Dirichlet and Neumann eigenvalues respectively by

0 ≤ λD
1 (Ω) ≤ λD

2 (Ω) ≤ . . . ≤ λD
k (Ω) ≤ . . . → +∞,

0 = λN
1 (Ω) ≤ λN

2 (Ω) ≤ . . . ≤ λN
k (Ω) ≤ . . . → +∞,

counted with multiplicity. Thanks to the continuity of a Laplacian eigenfunction u
in our setting, it makes sense to define its nodal domains, which are the connected
components of Ω \ {u = 0}. For any k ∈ N, we can now define

MD
Ω (k) := sup{# of nodal domains of u :

u Dirichlet eigenfunction of eigenvalue λD
k (Ω)}
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and analogously MN
Ω in the Neumann case (see Definition 6.3 for more detailed

definitions of MD
Ω ,MN

Ω ). We finally denote by jα the first positive zero of the
Bessel function of index α > 0 and by ωN the volume of the unit ball in the
N -dimensional Euclidean space.

Theorem 1.1 (Pleijel theorem in RCD setting - Neumann and Dirichlet cases).
Let (X, d,HN ) be an RCD(K,N) space, with K ∈ R and N ≥ 2, and let Ω ⊂ X be
an open and bounded set. Then

(1.1) lim
k→+∞

MD
Ω (k)

k
≤ (2π)N

ω2
N jN(N−2)

N

< 1.

If moreover Ω ⊂ X is a uniform domain, then

(1.2) lim
k→+∞

MN
Ω (k)

k
≤ (2π)N

ω2
N jN(N−2)

N

< 1.

In particular, for every k ∈ N large enough, every Dirichlet (resp. Neumann)
eigenfunction of eigenvalue λD

k (Ω) (resp. λ
N
k (Ω)) in any Ω bounded open set (resp.

uniform domain) has less than k nodal domains.

There has been recently a growing interest in the study of eigenvalues and eigen-
functions of the Laplacian and their zero set in the setting of RCD spaces (see
[6–8,18,28,42–44,62,63,93]). However, to the best of our knowledge, Theorem 1.1
is the first non-trivial result related to nodal domains.

The class of non-collapsed RCD(K,N) space includes non-collapsed Ricci limit
spaces as studied by Cheeger and Colding [32,33] and finite dimensional Alexandrov
spaces as shown by Petrunin [78] and Zhang and Zhu [92], and our result is new
also for these classes of spaces where the Courant’s nodal domain theorem is not
known. Additionally, thanks to the recent work of Rajala [84], we know that every
RCD(K,N) space contains a rich class of non-trivial uniform domains; hence it is
possible to find many sets that satisfy the assumptions of our result also in the
Neumann case. We recall that, in the somewhat easier Dirichlet case, Theorem 1.1
goes back to the work of Pleijel [79] in the Euclidean plane and to Bérard and
Meyer [17] for smooth Riemannian manifolds.

When X is bounded it is allowed to take Ω = X in Theorem 1.1. In this case,
Neumann eigenfunctions coincide with the usual Laplacian eigenfunctions on X,
and we have the following.

Corollary 1.2. Let (X, d,HN ) be a compact RCD(K,N) space, with K ∈ R and
N ≥ 2. Denote by {λk}k∈N the eigenvalues of the Laplacian in X and by M(k) the
maximal number of nodal domains of any Laplacian eigenfunction of eigenvalue λk.
Then

(1.3) lim
k→+∞

M(k)

k
≤ (2π)N

ω2
N jN(N−2)

N

< 1.

The result in Theorem 1.1 in the case of Neumann eigenfunctions is interesting
already when taking (X, d,HN ) to be the N -dimensional Euclidean space. We
extract this version below in a self-contained statement, for the convenience of the
reader.
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Corollary 1.3. Let Ω ⊂ RN , N ≥ 2, be a uniform domain. For every k ∈ N denote
by λN

k (Ω) the Neumann Laplacian eigenvalues in Ω and by MN
Ω (k) the maximal

number of nodal domains of a Neumann eigenfunction of eigenvalue λN
k (Ω). Then

(1.4) lim
k→+∞

MN
Ω (k)

k
≤ (2π)N

ω2
N jN(N−2)

N

< 1.

Recall that the class of uniform domains in the Euclidean space includes bounded
Lipschitz domains, but also more irregular domains such as quasi disks and in
particular the interior of a Koch Snowflake (see Section 3 for more details and
references). A Pleijel theorem for Neumann eigenfunctions of Euclidean domains
was firstly proved by Polterovich [80], who considered planar domains with piecewise
real analytic boundary. The general N -dimensional case was obtained by Léna [70]
for domains Ω with C1,1 boundary, where the regularity assumption is required
in order to apply to eigenfunctions a reflection procedure across the boundary of
Ω. The same limitation on the regularity of the boundary appears in the work
of Hassannezhad and Sher [57] (in the context of more general Robin problems),
where it is explicitly stated the problem of the validity of Pleijel theorem under
a weaker regularity of the boundary. Very recently, the techniques introduced in
[70] were employed and refined by Beck, Canzani and Marzuola [15] in the planar
case, where they were able to treat 2-dimensional domains with smooth boundaries
except for a finite number of vertices.

Our work introduces a different strategy and avoids any reflection argument,
allowing us to handle more general domains without imposing any restriction on
the dimension. To explain the basic idea of our method we recall that a key step in
the original proof of the Pleijel theorem is to exploit the fact that an eigenfunction
u in Ω, when restricted to one of its nodal domains U ⊂ Ω, satisfies a zero-Dirichlet
boundary condition in U itself, thus allowing to apply the Faber–Krahn inequality
and get a lower bound for the volume of U . While this is true for a Dirichlet-
eigenfunction and for all its nodal domains, it is in general false for a Neumann
eigenfunction and a nodal domain that touches the boundary. The reflection proce-
dure in [70] is needed precisely to handle this issue, but requires smoothness of the
boundary. Instead our observation is that, by the very definition of nodal domain,
an eigenfunction u (even in the Neumann case) has indeed zero-Dirichlet boundary
conditions in U but relative to the ambient domain Ω, i.e., ignoring the portion of
∂U which is contained in ∂Ω. The key point is then to view Ω as a metric space in
its own right and prove that it is regular enough to satisfy a version of the Faber–
Krahn inequality, which then allows to carry out the rest of the argument. This is
where the uniform condition will enter into play ensuring the required analytical
properties of Ω.

Even if we use mostly techniques coming from the metric setting, we also de-
velop some purely-Euclidean technical tools that we believe could be useful to show
other Pleijel-type results in RN under low boundary-regularity. In particular, we
prove a Faber–Krahn-type inequality and a Green’s formula for eigenfunctions of
uniform domains (see Corollary 5.2 and Corollary 6.2 respectively). Both results
were previously available only assuming C1,1-boundary.

We now comment further on the assumptions and the proof of Theorem 1.1.
The uniformity hypothesis on the domain guarantees the discreteness of the

spectrum of the Neumann Laplacian, a fact even needed to state the theorem.
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Additionally we will make a crucial use of analytical properties of uniform domains
in metric measure spaces, such as Sobolev extension properties, the validity of a
Poincaré inequality and a Sobolev embedding (see Section 3 for more details).

The non-collapsed assumption is more technical in nature, and we leave for
future investigations the general case of possibly collapsed RCD(K,N) spaces. Let
us notice that in collapsed RCD spaces the spectrum of the Laplacian can produce
a singular and in some sense unexpected behaviour in the asymptotic regime (see
the recent work of Dai, Honda, Pan and Wei [38]), and thus this generalization
seems non-trivial as we are going to further clarify in the next lines commenting
the proof.

The main scheme of the proof of Theorem 1.1 is similar to the one usually
employed in the smooth setting, e.g., in [17, 45, 57, 70, 79, 87]. The two primary
ingredients are the Weyl law and an almost-Euclidean Faber–Krahn inequality for
small volumes.

The Weyl law has already been investigated in the setting of RCD(K,N) spaces
(see the papers of Ambrosio, Honda and Tewodrose [8] and of Zhang and Zhu [93]).
In the non-collapsed case, it takes the usual formulation

lim
λ→+∞

N(λ)

λN/2
=

ωN

(2π)N
HN (Ω),

where N(λ) := �{k ∈ N : λD
k (Ω) ≤ λ} is the eigenvalues counting function and

{λD
k (Ω)}k∈N are the Dirichlet eigenvalues of the domain Ω (see Definition 2.5). We

stress that the Weyl law in the Dirichlet case is sufficient for our purposes, even
if in our main statement we consider both Dirichlet and Neumann eigenfunctions.
This thanks to the elementary inequality λN

k (Ω) ≤ λD
k (Ω) between Neumann and

Dirichlet eigenvalues (see Lemma 2.8). We remark that suitable forms of the Weyl
law on the whole space have been studied under slightly more general assumptions
than non-collapsing, but the situation is more intricate and there exist compact
RCD(K,N) spaces for which N(λ) is not asymptotic to λβ for any β ≥ 0. We refer
to [8, 38] for the details.

Concerning the almost-Euclidean Faber–Krahn inequality, it roughly states that
the first Dirichlet eigenvalue of an open set U ⊂ X, of sufficiently small volume,
is bounded below by the first Dirichlet eigenvalue of the Euclidean ball having the
same volume and up to a small error. This will be obtained starting from an almost-
Euclidean isoperimetric inequality for small volumes (similar to the one obtained
by Bérard and Meyer [17] in the smooth setting) and rearrangement methods. In
contrast with the proof in the smooth case, our situation requires to deal with a
set C of possibly “bad” points, and to work with sets U that stay sufficiently far
from C. We refer to Theorem 5.3 and Theorem 3.2 for the precise statements, and
we suggest to compare them with [17, Lemme 16,15]. For both results the non-
collapsed assumption also plays a key role to ensure a more regular infinitesimal
behaviour of the ambient space.

2. Preliminaries

2.1. Calculus in metric measure spaces. The triple (X, d,m) will denote a
metric measure space, where (X, d) is a complete and separable metric space and m

is a non-negative Borel measure, finite on bounded sets. We will also always assume
supp(m) = X, where supp(m) denotes the support of the measure m. For every set
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A ⊂ X we will denote by A its topological closure, by Ac := X \A its complement
and by ∂A its topological boundary. We denote by Br(x) := {y ∈ X : d(x, y) < r}
the ball of radius r and center x. The same set is also denoted by BX

r (x) whenever
we want to emphasize the role of the space X. By d(A,B) := inf{d(x, y) : x ∈
A, y ∈ B} we denote the distance between two sets A,B ⊂ X, so that d(A, ∅) = +∞.
The open ε-enlargement of a set A ⊂ X is denoted by Aε := {x ∈ X : d(A, x) < ε}.
Given a set C ⊂ X, we denote by d|C := d|C×C

the restriction of the distance to

the set C. We will say that (X, d) is proper if closed and bounded subsets of X are
compact.

Given a metric space (X, d) and a rectifiable curve γ : [a, b] → X, we denote by
l(γ) its length (see, e.g., [58, Chapter 5.1]). We say that γ joins x ∈ X and y ∈ X
if γ(a) = x and γ(b) = y.

Definition 2.1 (Nodal domain). Let (X, d) be a metric space, A ⊂ X be any subset
and f : A → R be a continuous function. The nodal domains of f (in A) are the
connected components of A \ {x ∈ A : f(x) = 0}.

In the next result, we recall some elementary properties of nodal sets.

Lemma 2.2. Let (X, d) be a metric space, A ⊂ X be any subset and f : A → R be
a continuous function. Let U ⊂ A be a nodal domain of f . Then either f > 0 or
f < 0 in U . Moreover if A is open and (X, d) is locally connected, then U is also
open.

Proof. The set U is connected by definition; hence f(U) ⊂ R is also connected and
does not contain zero. It follows that f(U) ⊂ (0,∞) or f(U) ⊂ (−∞, 0). For a
proof that (X, d) locally connected implies that U is open whenever A is open, see,
e.g., [76, Theorem 25.3]. �

For every open set Ω ⊂ X we denote by LIP(Ω), LIPloc(Ω) and LIPc(Ω) respec-
tively the space of Lipschitz functions, locally Lipschitz functions and Lipschitz
functions with compact support in Ω. We also denote by LIPbs(Ω) the subset of
LIP(X) of functions having bounded support contained in Ω. When we need to
emphasize the role of the distance, we use the notation LIP(Ω, d) (and similarly
for the other function spaces). The Lipschitz constant of a function f ∈ LIP(X)
is denoted by Lip(f) ∈ [0,∞). The slope lip(f)(x) of a locally Lipschitz function
f ∈ LIPloc(Ω) at a point x ∈ Ω is defined as

lip(f)(x) := lim
y→x

|f(y)− f(x)|
d(y, x)

,

taken to be 0 when x is isolated. The slope satisfies the following Leibniz rule:
lip(fg) ≤ f lip(g) + g lip(f), for every f, g ∈ LIPloc(Ω).

Given p ∈ [1,∞], we use the notation Lp(X,m) (resp. Lp
loc(X,m)) for the space

of Lebesgue p-integrable (resp. p-locally integrable) real functions on X endowed
with the Borel σ-algebra. For brevity, the same function space is also denoted by
Lp(m). When Ω ⊂ X is an open set, we set Lp(Ω) := Lp(Ω,m|Ω), where m|Ω is the

restriction of the measure m to Ω. For a function u ∈ Lp(Ω), we define its essential
support supp(u) as the smallest closed set C such that u = 0 m-a.e. in Ω \ C.

The Cheeger energy Ch : L2(m) → [0,∞] is defined as the convex and lower
semicontinuous functional

Ch(f) := inf
{

lim
n→∞

ˆ
X

lip2(fn) dm : (fn) ⊂ L2(m) ∩ LIPloc(X), lim
n→∞

‖f − fn‖L2(m) = 0
}
.
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The Sobolev space W 1,2(X, d,m) (or W 1,2(X) for short) is then defined as
W 1,2(X, d,m) := {Ch < ∞} equipped with the norm ‖f‖2W 1,2(X)

:= ‖f‖2L2(m) +

Ch(f), which makes it a Banach space. This approach to the definition of Sobolev
space was introduced by Ambrosio, Gigli and Savaré [5], where it is also shown to be
equivalent to the previous definitions given by Cheeger [31] and Shanmugalingam
[86]. For every f ∈ W 1,2(X), there exists a notion of modulus of the gradient called
minimal weak upper gradient, minimal w.u.g. for short, denoted by |Df | ∈ L2(m)
and satisfying

Ch(f) =

ˆ
X

|Df |2 dm.

For every f ∈ LIPloc(X), we have |Df | ≤ lip(f) m-a.e. Moreover, the following
calculus rules are satisfied (see, e.g., [51]): for every f, g ∈ W 1,2(X) it holds

Locality: |Df | = |Dg|m-a.e. in {f = g};(2.1)

Chain rule: For every ϕ ∈ LIP(R) with ϕ(0) = 0,

ϕ(f) ∈ W 1,2(X) and |Dϕ(f)| = |ϕ′(f)||Df |m-a.e.;

Leibniz rule: For every η ∈ LIP ∩ L∞(X),

ηf ∈ W 1,2(X) and |D(ηf)| ≤ |η||Df |+ |Dη||f |m-a.e.

Given Ω ⊂ X open we also define the following local Sobolev spaces

W 1,2
0 (Ω) := LIPbs(Ω)

W 1,2(X)
,

W 1,2(Ω) := {f ∈ L2(Ω) : fη ∈ W 1,2(X), ∀ η ∈ LIPbs(Ω), |Df | ∈ L2(Ω)},
where in the definition of W 1,2(Ω) the minimal w.u.g. |Df | ∈ L2(Ω) is defined by

(2.2) |Df | := |D(fηn)|, m-a.e. in {ηn = 1},
with ηn ∈ LIPbs(Ω) is any sequence satisfying {ηn = 1} ↑ Ω (there is no depen-
dence on the chosen sequence, by the locality property of the minimal weak upper
gradient). We endow W 1,2(Ω) with the norm given by

‖f‖2W 1,2(Ω) := ‖f‖2L2(Ω) + ‖|Df |‖2L2(Ω),

which makes it a Banach space. Observe that by the Leibniz rule we have that for
every f ∈ W 1,2(X) it holds that f |Ω ∈ W 1,2(Ω) and also |Df ||Ω = |Df |Ω| m-a.e.

in Ω (by locality). Moreover, for every f ∈ W 1,2
0 (Ω), we have f = 0 m-a.e. in X \Ω

and thus ‖f |Ω‖W 1,2(Ω) = ‖f‖W 1,2(X), which shows that the map

(2.3) T : W 1,2
0 (Ω) → W 1,2(Ω), T (f) := f |Ω

is a linear isometry. For these reasons, with a little abuse of notation, sometimes
we identify W 1,2

0 (Ω) with T (W 1,2
0 (Ω)) ⊂ W 1,2(Ω) and think of f ∈ W 1,2

0 (Ω) as an
element of L2(Ω).

If we choose Ω = X, then W 1,2(X) = W 1,2(X, d,m) with the same norm and
minimal w.u.g., so the notation is consistent with the one given above.

Remark 2.3. It can be shown (see, e.g., [6, Remark 2.15] by Ambrosio and Honda)
that W 1,2(Ω) coincides, up to m-a.e. equivalence of functions, with the Newtonian
Sobolev space N1,2(Ω, d,m|Ω) defined in [31, 86] (see also [19]). The norms of the

two spaces coincide as well thanks to the equivalence proved in [5] between the
various notions of minimal weak upper gradients.
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Following Gigli [48] we say that (X, d,m) is infinitesimally Hilbertian if W 1,2(X)
is a Hilbert space or equivalently if the Cheeger energy satisfies the parallelogram
identity:

(2.4) Ch(f + g) + Ch(f − g) = 2Ch(f) + 2Ch(g), ∀ f, g ∈ W 1,2(X).

If (X, d,m) is infinitesimally Hilbertian, then W 1,2(Ω) is a Hilbert space as well for
every Ω ⊂ X open (see, e.g., [27, Remark A.3] by Caputo and Rossi). Moreover, we
can give a notion of scalar product between gradients of functions f, g ∈ W 1,2(Ω)
by setting

(2.5) L1(Ω) � ∇f · ∇g :=
1

2

(
|D(f + g)|2 − |Df |2 − |Dg|2

)
,

which is bilinear and satisfies

(2.6)
|∇f · ∇g| ≤ |Df ||Dg|, m-a.e., ∀ f, g ∈ W 1,2(Ω),

|∇f · ∇f | = |Df |2, m-a.e., ∀ f ∈ W 1,2(Ω).

Under the infinitesimally Hilbertian assumption we can define a notion of Lapla-
cian via integration by parts.

Definition 2.4 (Neumann Laplacian). Let (X, d,m) be an infinitesimally Hilber-
tian metric measure space and Ω ⊂ X be open. We say that f ∈ W 1,2(Ω) belongs
to the domain of the Neumann Laplacian, and we write f ∈ D(ΔN ,Ω), if there
exists h ∈ L2(Ω) such that

(2.7)

ˆ
Ω

hg dm = −
ˆ
Ω

∇f · ∇g dm, ∀ g ∈ W 1,2(Ω).

If f ∈ D(ΔN ,Ω) then the function h is unique and is denoted by ΔN f .

Definition 2.5 (Dirichlet Laplacian). Let (X, d,m) be an infinitesimally Hilbertian

metric measure space and Ω ⊂ X be open. Then f ∈ W 1,2
0 (Ω) belongs to the domain

of the Dirichlet Laplacian, and we write f ∈ D(ΔD,Ω), if there exists h ∈ L2(Ω)
such that

(2.8)

ˆ
Ω

hg dm = −
ˆ
Ω

∇f · ∇g dm, ∀ g ∈ W 1,2
0 (Ω).

If f ∈ D(ΔD,Ω) then the function h is unique and is denoted by ΔDf .

Since under the infinitesimally Hilbertian assumption Lipschitz and bounded
functions form a dense subset of W 1,2(X) (see [5]), we have W 1,2

0 (X) = W 1,2(X),
and so the Dirichlet and Neumann Laplacian coincide for Ω = X. In this situation,
we simply write Δ = ΔN = ΔD and call it simply Laplacian operator and write
f ∈ D(Δ) in place of f ∈ D(ΔN ,X) or f ∈ D(ΔD,X).

Definition 2.6 (Eigenfunctions). Let (X, d,m) be an infinitesimally Hilbertian
metric measure space and Ω ⊂ X be open. We say that a non-null f ∈ D(ΔD,Ω)
(resp. D(ΔN ,Ω)) is a Dirichlet (resp. Neumann) eigenfunction of the Laplacian in
Ω of eigenvalue λ ∈ R if ΔDf = −λf (resp. ΔN f = −λf). In the case Ω = X, we
simply write that f is an eigenfunction of the Laplacian of eigenvalue λ.

Remark 2.7 (Compatibility with Euclidean Laplacian). If (X, d,m) = (RN , |·|,L N )

and Ω ⊂ RN is open, the spacesW 1,2(Ω) and W 1,2
0 (Ω) coincide with the usual ones,

also with the same norms, as shown in [86, Theorem 4.5] (see also [19, Theorem A.2
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and Corollary A.4] or [51, Section 2.1.5]). In particular, by polarization, the right-
hand side of both (2.7) and (2.8) coincides with the integral of the scalar product
between weak gradients in the classical sense. This shows that the definition of
eigenfunction (and eigenvalue) of the Neumann or Dirichlet Laplacian in Ω given
above coincides with the usual one in the Euclidean case.

For later use we observe that, whenever Lipschitz functions are dense inW 1,2(X),
for every bounded and open set Ω ⊂ X it holds that

(2.9) {f ∈ W 1,2(X) : d(supp(f),X \Ω) > 0} ⊂ W 1,2
0 (Ω).

Indeed there exist η ∈ LIP(X) such that η = 1 in supp(f) and supp(η) ⊂ Ω and a
sequence fn ∈ LIP(X) with fn → f in W 1,2(X), by density. Then ηfn ∈ LIPbs(Ω)

and ηfn → f in W 1,2(X), which shows that f ∈ W 1,2
0 (Ω).

We state in the next lemma an inequality between Neumann and Dirichlet eigen-
values that will play a key role in the sequel. Note that in the statement by
W 1,2

0 (Ω) ↪→ L2(Ω), we mean, more precisely, that T (W 1,2
0 (Ω)) ↪→ L2(Ω), where T

is defined in (2.3).

Lemma 2.8. Let (X, d,m) be an infinitesimally Hilbertian metric measure space,

and let Ω ⊂ X be open. Let us suppose that W 1,2
0 (Ω) ↪→ L2(Ω) with compact

inclusion. Then −ΔD has discrete spectrum, i.e., the eigenvalues form a diverging
sequence (counted with multiplicity) that we denote by

(2.10) 0 ≤ λD
1 (Ω) ≤ λD

2 (Ω) ≤ . . . λD
k (Ω) ≤ . . . → +∞.

If moreover W 1,2(Ω) ↪→ L2(Ω) with compact inclusion, then also −ΔN has discrete
spectrum denoted by

(2.11) 0 = λN
1 (Ω) ≤ λN

2 (Ω) ≤ . . . λN
k (Ω) ≤ . . . → +∞,

and it holds

(2.12) λN
k (Ω) ≤ λD

k (Ω), ∀ k ∈ N.

Proof. Let us introduce the local Cheeger energies

ChΩD : L2(Ω) → [0,+∞], ChΩD(f) :=

{´
Ω
|Df |2 dm if f = g|Ω for some g ∈ W 1,2

0 (Ω),

+∞ otherwise,

ChΩN : L2(Ω) → [0,+∞], ChΩN (f) :=

{´
Ω
|Df |2 dm if f ∈ W 1,2(Ω),

+∞ otherwise,

and notice that they define two Dirichlet forms, i.e., two densely defined, Markovian,
closed, quadratic forms referring to the books of Bouleau and Hirsch [24] and of
Fukushima, Oshima and Takeda [46]. To check this, it is sufficient to recall the
calculus rules given in (2.1) and, for the L2-lower semicontinuity, the equivalent
definition through relaxation (see [27] for all the details). We denote by LD (resp.

LN ) the infinitesimal generator of ChΩD (resp. ChΩN ) with its associated domain
D(LD) (resp. D(LN )). Notice that, by the very definition, D(ΔN ,Ω) = D(LN )
with ΔN = LN . Regarding the Dirichlet Laplacian, we have f ∈ D(ΔD,Ω) if and
only if f |Ω ∈ D(LD) with ΔDf = LD(f |Ω). In particular, λ is an eigenvalue of

−ΔD (resp. −ΔN ) if and only if it is an eigenvalue of −LD (resp. −LN ).
From the classical theory of Dirichlet forms [24,46], we know that −LD and −LN

are non-negative, densely defined, linear, self-adjoint operators on L2(Ω). Under
these assumptions, it is well known (see, e.g., the book of Davies [39]) that the



PLEIJEL NODAL DOMAIN THEOREM IN NON-SMOOTH SETTING 1147

compactness of the embedding of W 1,2
0 (Ω) (resp. W 1,2(Ω)) in L2(Ω) implies the

discreteness of the spectrum of −LD (resp. −LN ) and thus of −ΔD (resp. −ΔN ).

Since T (W 1,2
0 (Ω)) ⊂ W 1,2(Ω) as Hilbert spaces, we also know that whenever

W 1,2(Ω) ↪→ L2(Ω) with compact inclusion both spectra are discrete.
We also have at disposal the variational characterization of the eigenvalues, see,

e.g., [39, Theorems 4.5.1, 4.5.3]. More precisely, defined

(2.13)
λN (Ω)[M ] := sup{ChΩN (f) : f ∈ M, ‖f‖L2(Ω) = 1},
λD(Ω)[M ] := sup{ChΩD(f) : f ∈ M, ‖f‖L2(Ω) = 1},

we know that for every k ∈ N

(2.14)
λN
k (Ω) = inf{λN (Ω)[M ] : M ⊂ W 1,2(Ω), dim(M) = k},

λD
k (Ω) = inf{λD(Ω)[M ] : M ⊂ T (W 1,2

0 (Ω)), dim(M) = k}.
The inequality (2.12) thus follows immediately from (2.14) since the infimum is

taken on a larger set and ChΩN (f) = ChΩD(f) for every f ∈ T (W 1,2
0 (Ω)). �

We will use in the sequel the notation introduced in the previous lemma, i.e.,
whenever −ΔD (resp. −ΔN ) has discrete spectrum in Ω we will denote by
{λD

k (Ω)}k∈N (resp. {λN
k (Ω)}k∈N) the sequence of its eigenvalues. In the case Ω = X,

assuming the discreteness of the spectrum of −Δ, we will simply write λk in place
of λN

k (X).
For an arbitrary m.m.s. (X, d,m) and any Ω ⊂ X open subset we also introduce

(2.15) λ1(Ω) := inf

{´
|Du|2 dm´
u2 dm

: u ∈ LIPbs(Ω), u �≡ 0

}
and we call λ1(Ω) the first eigenvalue of the Laplacian on Ω with Dirichlet boundary

conditions. Recalling the definition of W 1,2
0 (Ω), we have the following characteri-

zation of λ1(Ω):

(2.16) λ1(Ω) = inf

{´
|Du|2 dm´
u2 dm

: u ∈ W 1,2
0 (Ω), u �≡ 0

}
.

Note that differently from λD
1 (Ω), which we defined only when the inclusion

W 1,2
0 (Ω) ↪→ L2(Ω) is compact, λ1(Ω) is always defined. Nevertheless, even if not

needed, we stress that whenever λD
1 (Ω) exists we do have

λ1(Ω) = λD
1 (Ω),

as follows by (2.16) and (2.14).

2.2. Sets of finite perimeter. Let f ∈ L1
loc(X,m), and let U ⊂ X be open.

Following the works of Miranda [74] and of Ambrosio and Di Marino [4] we define
(2.17)

|Df |(U) := inf

{
lim
n→∞

ˆ
U

lip(fn) dm : fn ∈ LIPloc(U), fn → f in L1
loc(U,m)

}
,

and we say that f is of locally bounded variation if |Df |(U) < +∞ for every U
open and bounded. We also set

|Df |(A) := inf{|Df |(U) : U ⊂ X open, A ⊂ U}, ∀ A ⊂ X Borel

(note that this coincides with (2.17) if A is open). For every couple of Borel sets
E ⊂ X and A ⊂ X we define Per(E,A) := |DχE |(A) < +∞, where χE : X → {0, 1}
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denotes the characteristic function of E. We say that E is of finite perimeter if
Per(E) := Per(E,X) < +∞.

When f is of locally bounded variation (respectively, E is a set of finite perime-
ter), the map A �→ |Df |(A) (respectively, A �→ Per(E,A)) defines a Borel measure
(see [4, 74]). Every f ∈ LIP(X) is of locally bounded variation and |Df | ≤ lip(f)m
(see [4, Remark 5.1]).

From the definitions, it immediately follows that E is of finite perimeter if and
only if Ec is of finite perimeter, in which case Per(E, ·) = Per(Ec, ·) holds.

In the sequel, we will take advantage of the following coarea-type inequality.

Proposition 2.9. Let (X, d,m) be a metric measure space and fix x ∈ X. Then
for a.e. r > 0, the ball Br(x) has finite perimeter and for every Borel set A ⊂ X it
holds

(2.18)

ˆ R

0

Per(Br(x), A) dr ≤ m(BR(x) ∩ A), ∀R > 0.

Proof. Since the function dx(·) := d(x, ·) is 1-Lipschitz, it is of locally bounded vari-
ation and |Ddx| ≤ lip(dx)m ≤ m. Then by the coarea formula (see [74, Proposition
4.2]), we get directly that Br(x) = {dx(·) < r} has finite perimeter for a.e. r > 0
and that ˆ +∞

0

Per(Br(x), E) dr = |Ddx|(E) ≤ m(E), ∀E ⊂ X Borel.

Then (2.18) follows taking E := BR(x)∩A and observing that by the very definition
in (2.17) it holds Per(Br(x), BR(x)) = 0 for every r > R. �

Let (X, d,m) be a metric measure space. Given a Borel set E ⊂ X we define the
upper and lower densities at x as

D(E, x) := lim
r→0+

m(Br(x) ∩ E)

m(Br(x))
, D(E, x) := lim

r→0+

m(Br(x) ∩ E)

m(Br(x))
.

Clearly, if x ∈ X is such that D(E, x) > 0, by definition of limit superior, we have
x ∈ E (since every open ball with center x must intersect E).

The essential boundary and the essential interior are given respectively by

∂eE := {x ∈ X : D(E, x) > 0, D(Ec, x) > 0},
E(1) := {x ∈ X : D(E, x) = D(E, x) = 1},

which are both Borel sets. As a direct consequence of the definition of these sets,
notice that if E ⊂ F , then E(1) ⊂ F (1). Moreover, ∂eE = ∂e(Ec).

We collect in the next lemma all the elementary facts that we will need about
the essential boundary and the essential interior.

Lemma 2.10. Let (X, d,m) be a metric measure space and E,F ⊂ X be Borel sets.
We have the following:

(i) If E is open, E ⊂ E(1).
(ii) ∂eE ⊂ ∂E.
(iii) (E ∩ F )(1) ⊂ E(1) ∩ F (1).
(iv) (Ec)(1) ⊂ (E(1))c. In particular, if E is open, then (Ec)(1) ⊂ Ec.
(v) If E and F are disjoint, then also E(1) and F (1) are disjoint.
(vi) ∂e(E ∩ F ) ∪ ∂e(E ∪ F ) ⊂ ∂eE ∪ ∂eF .
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Proof.

(i) Let x ∈ E. Since E is open, Br(x) ⊂ E for sufficiently small r > 0, thus
D(E, x) = 1 and x ∈ E(1).

(ii) As we have already observed, if x ∈ ∂eE, it holds x ∈ E and x ∈ Ec, thus
x ∈ ∂E.

(iii) The result is a direct consequence of the fact thatD(E∩F, x) ≤ D(E, x) ≤ 1
for every x ∈ X.

(iv) Let x ∈ (Ec)(1), i.e., D(Ec, x) = 1. In particular,

2

3
m(Br(x)) < m(Br(x) ∩ Ec) = m(Br(x))−m(Br(x) ∩E)

for sufficiently small r > 0. Thus m(Br(x) ∩ E) < 1
3m(Br(x)) for r > 0

small enough, which implies x /∈ E(1). The second conclusion follows from
what we have just proven and point (i).

(v) The assumption E ∩ F = ∅ is equivalent to E ⊂ F c. Passing to the
essential interior it holds E(1) ⊂ (F c)(1) and using (iv) one deduces that
E(1) ⊂ (F (1))c which gives the desired conclusion.

(vi) This is proven, e.g., in [23, Prop. 1.16] by Bonicatto, Pasqualetto and Ra-
jala (note that the doubling assumption on m is not used in that statement).

�

We conclude this part with the following elementary and well-known result. Since
we could not find it stated exactly in this form in the literature, we include a proof.

Lemma 2.11. Let (X, d,m) be a metric measure space, and let C ⊂ X be closed.
Then for every E ⊂ C Borel satisfying d(E,X \C) > 0, it holds

Per(E) = PerC(E),

where PerC(E) denotes the perimeter of E computed in the metric measure space
(C, d|C ,m|C).

Proof. First observe that for every f ∈ LIPloc(X) it holds f |C ∈ LIPloc(C, d|C)
and lipC(f) ≤ lip(f), where lipC(f) denotes the slope of f computed in the met-
ric space (C, d|C). This and the definitions imply PerC(E) ≤ Per(E). For the

other inequality it is sufficient to find a sequence fn ∈ LIPloc(C, d|C) such that

d(supp(fn),X \C) > 0, fn → χE in L1(m) and
´
C
lipC(fn) dm → PerC(E). Indeed

extending fn by zero to the whole X, we have
´
X
lip(fn) dm =

´
C
lipC(fn) dm, so

that

Per(E) ≤ lim
n→+∞

ˆ
X

lip(fn) dm = lim
n→+∞

ˆ
C

lipC(fn) dm = PerC(E).

To produce such sequence we consider a sequence gn ∈ LIPloc(C, d|C) such that gn →
χE in L1(C,m|C) and

´
C
lipC(gn) dm → PerC(E), which exists by definition. Then

we take η ∈ LIP(C, d|C) satisfying d(supp(η),X \C) > 0, η = 1 in a neighbourhood

of E, 0 ≤ η ≤ 1. This can be done since d(E,X \C) > 0, one example being η(x) :=(
1− 3

(
d(x,E)

d(X\C,E) −
1
2

)+
)+

. Set fn := ηgn ∈ LIPloc(C, d|C). Clearly fn → χE in
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L1(C;m|C). Moreover by the Leibniz rule for the slope lipC(fn) ≤ gn lipC(η) +

lipC(gn). In addition, lipC(η) = 0 in E. Therefore

PerC(E) ≤ lim
n

ˆ
C

lipC(fn) dm ≤ lim
n

ˆ
C

lipC(fn) dm

≤ lim
n

ˆ
C

lipC(gn) dm+ Lip(η)

ˆ
X \E

gn dm = PerC(E),

where the second term vanishes because gn → χE in L1(C;m|C). �

2.3. PI spaces. Most of the arguments along the note will be carried out in the
general setting of locally doubling m.m. spaces supporting a Poincaré inequality,
also called PI spaces. We refer to the monographs of Björn and Björn [19] and of
Heinonen, Koskela and Shanmugalingam [58] and references therein for a thorough
introduction on this topic and recall here only the properties of these spaces that
will be used in this note.

Definition 2.12 (PI space). A metric measure space (X, d,m) is said to be a PI
space if:

(i) it is uniformly locally doubling, i.e., if there exists a function CD : (0,∞) →
(0,∞) such that

m
(
B2r(x)

)
≤ CD(R)m

(
Br(x)

)
, for every 0 < r < R and x ∈ X,

(ii) supports a weak local (1, 1)-Poincaré inequality, i.e., there exist a constant
λ ≥ 1 and a function CP : (0,∞) → (0,∞) such that for any f ∈ LIPloc(X)
it holds 

Br(x)

∣∣∣∣f −
 
Br(x)

f dm

∣∣∣∣ dm ≤ CP (R) r

 
Bλr(x)

lip(f) dm,

for every 0 < r < R and x ∈ X .

Observe that the uniformly locally doubling assumption implies that PI spaces
are proper. Additionally PI spaces are connected and locally connected (see, e.g.,
[19, Theorem 4.32] or [20, Prop. 4.8]).

We say that a m.m.s (X, d,m) is globally doubling if there exists a constant C > 0
such that for any x ∈ X and for any r > 0

m
(
B2r(x)

)
≤ C m

(
Br(x)

)
.

We recall that a space (X, d,m) is globally doubling if and only if there exist con-
stants s > 0 and c > 0 such that

(2.19)
m(Br(x))

m(BR(x))
≥ c

( r

R

)s

, ∀x ∈ X, and 0 < r < R

(see, e.g., [19, Lemma 3.3] or [54, Proposition 3.2]). Whenever (2.19) holds for
some c > 0 we say that (X, d,m) has doubling dimension s. We remark that, using
our definition, if a space (X, d,m) is of doubling dimension s it is also of doubling
dimension t for every t > s.

Observe that a bounded PI space (X, d,m) is globally doubling taking C =
CD(diam(X)), in the notation of Definition 2.12.

We will need the following approximation result, which is a variation of [75,
Lemma 3.6] by Mondino and Semola.
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Lemma 2.13 (Approximation with non-vanishing slope). Let (X, d,m) be a bounded
PI space. Then for every open subset Ω ⊂ X and any non-negative u ∈ LIPc(Ω),
there exists a sequence of non-negative un ∈ LIPc(Ω) satisfying lip(un) �= 0 m-a.e.
in {un > 0} and such that un → u in W 1,2(X).

Proof. Since (X, d,m) is a bounded PI space it admits a geodesic distance d̃ that is

bi-Lipschitz equivalent to d, i.e., L−1d̃ ≤ d ≤ Ld̃ for some constant L ≥ 1 (see, e.g.,
[58, Corollary 8.3.16]). Hence we can apply [75, Lemma 3.6] to deduce that the

conclusion of the lemma holds in the m.m.s. (X, d̃,m). However u ∈ LIPc(Ω; d) if and

only if LIPc(Ω; d̃), with lip(u) ≥ L−1 ˜lip(u), where ˜lip(·) denotes the slope computed

in the metric space (X, d̃). Hence if ˜lip(u) �= 0 m-a.e. in {u > 0}, then lip(u) �= 0 in

{u > 0} m-a.e. Moreover, since LIPloc(X, d) = LIPloc(X, d̃) and lip(·) ≤ L ˜lip(·), we
have that ‖u‖W 1,2(X,d,m) ≤ L‖u‖W 1,2(X,d̃,m) for all u ∈ LIPbs(X, d). Therefore the

conclusion holds also for the m.m.s. (X, d,m). �

Lemma 2.13 allows to give the following characterization of λ1(Ω).

Lemma 2.14 (Characterization of λ1(Ω) via functions with non-vanishing slope).
Let (X, d,m) be a bounded PI space and Ω ⊂ X be open. Then

(2.20) λ1(Ω) = inf{
´
|Du|2 dm´
u2 dm

: u ∈ LIPc(Ω), u �≡ 0, u ≥ 0,

lip(u) �= 0 m-a.e. in {u > 0}}.

Proof. For every u ∈ LIPbs(Ω), setting ũ := |u|, we have ũ ∈ LIPbs(Ω) and by the
chain rule (see (2.1)) also that |Dũ| = |Du| m-a.e. This shows that (2.20) holds if
we remove the requirement that lip(u) �= 0 m-a.e. in {u > 0}. From this, to get the
validity of the full (2.20) it is sufficient to apply Lemma 2.13. �

We recall the following deep result proved by Cheeger [31], relating the notions
of minimal weak upper gradient and slope, in the setting of PI spaces.

Theorem 2.15. Let (X, d,m) be a PI space. Then

(2.21) lip(f) = |Df |, m-a.e., for every f ∈ LIPbs(X).

Theorem 2.16 is a consequence of the Rellich-Kondrachov compactness theorem
in PI spaces.

Theorem 2.16 ([55, Theorem 8.3]). Let (X, d,m) be a PI space and Ω ⊂ X be open

and bounded. Then the embedding W 1,2
0 (Ω) ↪→ L2(Ω) is compact.

From Theorem 2.16 and the discussion in Section 2.1, we deduce that

(2.22)
The Dirichlet Laplacian has discrete spectrum on any bounded
open subset of an infinitesimally Hilbertian PI space.

The following result is well known. In particular, the proof can be achieved by
a standard Moser iteration scheme (see, e.g., Gilbarg and Trudinger [52, Theorem
8.24]), which is available in a PI space. Indeed, as firstly observed by Saloff-Coste
[85] (see also the work of Haj�lasz and Koskela [55]), a Poincaré inequality and a
doubling condition together imply a Sobolev inequality, which is then sufficient
to perform the Moser scheme (see, for example, the works of Björn and Björn
[19, Chapter 8] or of Björn and Marola [21]).



1152 N. DE PONTI, S. FARINELLI, AND I. Y. VIOLO

Theorem 2.17 (Continuity of eigenfunctions). Let (X, d,m) be an infinitesimally
Hilbertian PI space, Ω ⊂ X be open and u be a Dirichlet or Neumann eigenfunction
of the Laplacian in Ω. Then u is locally Hölder continuous in Ω.

We now pass to the properties of sets of finite perimeter in the setting of PI
spaces. As the measure m is locally doubling, the Lebesgue differentiation theorem
holds (see, e.g., [58, Section 3.4]); hence we have m(E�E(1)) = 0 for every Borel
set E, where E�E(1) := (E \ E(1)) ∪ (E(1) \ E) denotes the symmetric difference
between E and E(1). Moreover by the work of Ambrosio [2, Theorem 5.3], we have
that for every set of finite perimeter E ⊂ X the measure P (E, ·) is concentrated on
∂eE. In particular, we get

(2.23) Per(Bc, .) = Per(B, .) = Per(B, .)|Bc
,

for every ball B = Br(x) ⊂ X having finite perimeter, having used ∂eBr(x) ⊂
∂Br(x) ⊂ (Br(x))

c (see (ii) in Lemma 2.10).
It is well known that every PI space admits an isoperimetric inequality (see

[2, 55, 74]). We report in Proposition 2.18 a simplified version sufficient to our
purposes.

Proposition 2.18 (Isoperimetric inequality for small volumes). Let (X, d,m) be a
bounded PI space of doubling dimension s > 1. Then there exist constants w0 =
w0(X) > 0 and CI = CI(X, s) > 0 such that

(2.24) Per(E) ≥ CIm(E)
s−1
s , ∀E ⊂ X Borel such that m(E) ≤ w0.

Proof. By [2, Theorem 4.3], there exist constants σ = σ(X) ≥ 1 and C = C(X, s) >
0 such that

Per(E,Bσr(x)) ≥ C
m(Br(x))

1
s

r
min (m(Br(x) ∩E),m(Br(x) \ E))

s−1
s ,

∀x ∈ X, ∀ r > 0.

Taking r := diam(X) and w0 := m(X)/2 the result follows (recall that m(X) < +∞
since X is bounded). �

We conclude this part reporting the following technical result.

Proposition 2.19 ([12, Lemma 2.6]). Let (X, d,m) be a PI space. Let E,F ⊆ X
be sets of finite perimeter with P (E, ∂eF ) = 0. Then

P (E ∩ F, ·) ≤ P (E, ·)|F (1)
+ P (F, ·)|E(1)

.

2.4. Pólya–Szegő inequality in metric measure spaces. Here we report a
version of the Pólya–Szegő rearrangement inequality for metric measure spaces,
following the works of Mondino and Semola [75] and of Nobili and Violo [77]. The
main difference with the classical version in the Euclidean space by Pólya and Szegő
[81] is that, even if the initial function lives in a metric space, the symmetrization
will be defined in RN . The result is a generalization of the Pólya–Szegő inequality
introduced by Bérard and Meyer [17] in the case of Riemannian manifolds.

Definition 2.20 (Distribution function). Let (X, d,m) be a metric measure space,
Ω ⊆ X be an open set with m(Ω) < +∞ and u : Ω → [0,+∞) be a non-negative
Borel function. We define μ : [0,+∞) → [0,m(Ω)], the distribution function of
u, as

(2.25) μ(t) := m({u > t}).
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For u and μ as above, we let u# be the generalized inverse of μ, defined by

u#(s) :=

{
ess supu if s = 0,

inf {t : μ(t) < s} if s > 0.

It can be checked that u# is non-increasing and left-continuous.
Next, we define the Euclidean monotone rearrangement into the Euclidean space

(RN , | · |,L N ), where L N is the N -dimensional Lebesgue measure. From now on,
we denote by ωN := L N (B1(0)) the Lebesgue measure of the unit ball in the
Euclidean space RN .

Definition 2.21 (Euclidean monotone rearrangement). Let (X, d,m) be a metric
measure space and Ω ⊂ X be open with m(Ω) < +∞ and N ∈ N. For any
Borel function u : Ω → R+, we define Ω∗ := Br(0) ⊂ RN , choosing r > 0 so
that L N (Br(0)) = m(Ω) (i.e., rN = ω−1

N m(Ω)) and the monotone rearrangement
u∗
N : Ω∗ → R+ by

u∗
N (x) := u#(L N (B|x|(0))) = u#(ωN |x|N ), ∀x ∈ Ω∗.

In particular, u and u∗
N are equimeasurable, i.e., m({u > t}) = L N ({u∗

N > t})
for all t > 0. In the sequel, whenever we fix Ω and u : Ω → [0,∞), the set Ω∗

and the rearrangement u∗
N are automatically defined as above. Observe also that,

given u ∈ L2(Ω), its monotone rearrangement must be defined by fixing a Borel
representative of u. However, this choice does not affect the outcome object u∗

N , as
clearly the distribution function μ(t) of u is independent of the representative.

The following result is essentially contained in [77], see in particular [77, Remark
3.7] (see also [75] for a similar result), since the only difference is that here the
rearrangement is defined in RN instead of an interval. Nevertheless we include a
short argument outlining the main points of the proof.

Theorem 2.22 (Euclidean Pólya–Szegő inequality). Let (X, d,m) be a bounded PI

space, Ω � X be open and fix N ∈ N \ {1}. Suppose there exists a constant C̃ > 0
such that

(2.26) Per(E) ≥ C̃m(E)
N−1
N , ∀E ⊂ Ω Borel.

Then:

(i) For every u ∈ LIPc(Ω) non-negative, u �≡ 0, with lip(u) �= 0 m-a.e. in
{u > 0}, then u∗

N ∈ LIPc(Ω
∗) and it holds

(2.27)

ˆ
{u≤s}

|Du|2 dm ≥
ˆ s

0

(
Per({u > t})
Nω

1
N

N μ(t)
N−1
N

)2 ˆ
RN

|Du∗
N | dPer({u∗

N > t}) dt,

∀ s ∈ (0,maxu].

(ii) The Euclidean-rearrangement maps W 1,2
0 (Ω) to W 1,2

0 (Ω∗) and

(2.28)

ˆ
Ω

|Du|2 dm ≥
( C̃

Nω
1/N
N

)2
ˆ
Ω∗

|Du∗
N |2 dL N , ∀u ∈ W 1,2

0 (Ω).

Proof. It is enough to prove (i), since (ii) then follows by approximation with Lip-
schitz functions using Lemma 2.13 as in [77, Theorem 3.6] (see also [75]).
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We fix u ∈ LIPc(Ω), u �≡ 0, u non-negative, with lip(u) �= 0 m-a.e. {u > 0}. Set
M := sup u. Under these assumptions μ is strictly monotone, absolutely continuous
(hence differentiable almost everywhere) and

(2.29)

ˆ
{u≤s}

|Du|2 dm ≥
ˆ s

0

Per({u > t})2
−μ′(t)

dt, ∀ s ∈ (0,M ].

This can be seen arguing exactly as in the proof of [75, Prop. 3.12 and (3.23)]
(see also [77]), recalling also that |Du| ≤ lip(u)m = |Du|m (see (2.21)). Next we
claim that u∗

N ∈ LIPc(Ω
∗). Recall that by definition Ω∗ = Br(0) ⊂ RN , where

r > 0 satisfies L N (Br(0)) = m(Ω). From the definitions, u∗
N (x) = ũ∗

N (|x|), where
ũ∗
N : [0, r] → R+ is the rearrangement into the space ([0,∞), |.|, NωN tN−1 dt) as

defined in [77, Definition 3.1]. Then the fact that u∗
N ∈ LIP(Ω∗) follows directly

from ũ∗
N ∈ LIP[0, r] which is proved in [77, Prop. 3.4] under the same assumptions

on u and Ω. Finally supp(u∗
N ) ⊂ Ω∗. Indeed supp(u) � Ω, otherwise Ω would be

closed and would coincide with X (as X is connected). This implies that L N ({u∗
N >

t}) ≤ m(supp(u)) < m(Ω) = L N (Ω∗), for all t > 0, because m(Ω \ supp(u)) > 0,
as non-empty open sets in X have positive measure. Since u∗

N is a radial function
centered at the origin this shows supp(u∗

N ) ⊂ Ω. Next we observe that ũ∗
N is

strictly decreasing in (0,m(supp(u))) (since μ(t) is continuous) and in particular
{u∗

N > t} = Brt(0) (and {u∗
N = t} = ∂Brt(0)) for some rt ∈ [0,m(Ω)], for every

t ∈ (0,M). Note that rt can be computed explicitly to be rt = (ω−1
N μ(t))1/N ,

which also shows that (0,M) � t �→ rt is a strictly monotone and locally absolutely
continuous map. In particular,

(2.30) HN (∂Brt(0)) = Nω
1
N

N μ(t)
N−1
N .

Combining these observations with the expression for the derivative of μ given in
[75, Lemma 3.10] (see also [77, Lemma 3.5]), we have

(2.31) −μ′(t) =

ˆ
∂Brt (0)

(lip(u∗
N ))−1 dHN−1 =

Nω
1
N
N μ(t)

N−1
N

lip(ũ∗
N )(rt)

for a.e. t ∈ (0,M),

where we have used (2.30) and that lip(u∗
N )(x) = lip(ũ∗

N )(|x|) which easily follows
from the identity u∗

N (x) = ũ∗
N (|x|). Plugging the above in (2.29) we reachˆ

{u≤s}
|Du|2 dm ≥

ˆ s

0

Per({u > t})2 lip(ũ∗
N )(rt)

Nω
1
N

N μ(t)
N−1
N

dt

=

ˆ s

0

(
Per({u > t})
Nω

1
N

N μ(t)
N−1
N

)2

lip(ũ∗
N )(rt)Nω

1
N

N μ(t))
N−1
N dt

=

ˆ s

0

(
Per({u > t})
Nω

1
N

N μ(t)
N−1
N

)2 ˆ
∂Brt (0)

lip(u∗
N ) dHN−1 dt,

where for the last step we argue as in (2.31). This concludes the proof. �

2.5. RCD spaces. For brevity we do not recall the definition of RCD(K,N) spaces
(with N ∈ [1,∞) and K ∈ R) since it will not be directly used in this note, instead
we recall here all the properties of these spaces that will be needed. For further
details on the definition and on the theory of metric measure spaces with synthetic
Ricci curvature lower bound we refer to the surveys by Ambrosio [3] and by Gigli
[49] and references therein.
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First recall that every RCD space is infinitesimally Hilbertian from the very
definition. In every RCD(K,N) space, the Bishop-Gromov inequality holds from
the work of Sturm [88], that is

(2.32)
m(Br(x))

vK,N (r)
≥ m(BR(x))

vK,N (R)
, ∀x ∈ X, ∀ 0 < r < R,

where the quantity vK,N (r) coincides, for N ∈ N, with the volume of a ball of radius
r in the model space of curvature K and dimension N . For the definition of vK,N

for non-integer N see [88], however in the results of this note only the case N ∈ N

will be relevant.
As a consequence of (2.32), we obtain that for every R0 > 0, N < +∞, and

K ∈ R, there exists a constant CR0,K,N such that for every RCD(K,N) space
(X, d,m), it holds:

(2.33)
m(Br(x))

m(BR(x))
≥ CR0,K,N

( r

R

)N

, ∀x ∈ X, ∀ 0 < r < R ≤ R0.

Taking R = 2r this also shows that every RCD(K,N) space with N < +∞ is
uniformly locally doubling (recall Definition 2.12). It is also proved by Rajala
[82, 83] that every RCD(K,N) space supports also a weak local (1,1)-Poincaré
inequality. Combining the last two observations we conclude that every RCD(K,N)
space with N < +∞ is an infinitesimally Hilbertian PI space.

We recall the following embedding result proved by Gigli, Mondino and Savaré
[50, Theorem 6.3, ii)].

Proposition 2.23. Let (X, d,m) be an RCD(K,N) space, and let Ω ⊂ X be

bounded. Then the inclusion W 1,2
0 (Ω) ↪→ L2(m) is compact.

Given an RCD(K,N) space (X, d,m) we define the Bishop-Gromov density func-
tion θN : X → (0,+∞] by

(2.34) θN (x) := lim
r→0+

m(Br(x))

ωNrN
= lim

r→0+

m(Br(x))

vN,K(r)
,

where the existence of the limits is ensured by (2.32) (see [41, Def. 1.9] by De Philip-
pis and Gigli). As shown in [41, Lemma 2.2] the function θN is lower-semicontinuous
in X.

A key property that we will need is the validity of a local almost-Euclidean
isoperimetric inequality. We will use the following version essentially proved in [77]
(see also the works of Cavalletti and Mondino [29] and of Antonelli, Pasqualetto
and Pozzetta [11] for similar results in the setting of RCD spaces and of Bérard
and Meyer [17] for the Riemannian setting).

Theorem 2.24 (Local almost-Euclidean isoperimetric inequality). Let (X, d,m) be
an RCD(K,N) space for some N ∈ (1,∞),K ∈ R. Then for every x ∈ X with
θN (x) < +∞ and every ε ∈ (0, θN (x)), there exists ρ = ρ(ε, x,N) such that

(2.35) Per(E) ≥ m(E)
N−1
N Nω

1
N

N (θN (x)− ε)
1
N (1− ε), ∀E ⊂ Bρ(x) Borel.

Proof. It is sufficient to prove the statement with ε ∈ (0, θN (x)/2 ∧ 1/2). From
[77, Theorem 3.9], there exists R̄ = R̄(ε,K,N) such that for every x ∈ X, R ∈ (0, R̄],
it holds

Per(E) ≥ m(E)
N−1
N Nω

1
N

N θN,R(x)
1
N (1− (2C

1/N
ε,R (x) + 1)ε− ε), ∀E ⊂ BεR(x),
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where θN,ρ(x) :=
m(Bρ(x))
ωNρN and Cε,R(x) :=

θN,εR(x)
θN,R(x) . Since θN (x) = limρ→0 θN,ρ(x) <

+∞, there exists r̄ = r̄(x, ε) so that θN,ρ(x) ∈ (θN (x) − ε, θN (x) + ε) for all
ρ ≤ r̄. Moreover since ε < θN (x)/2, we have that for every R ≤ r̄, it holds

Cε,R(x) ≤
3
2 θN (x)
1
2 θN (x)

= 3. Hence choosing ρ = ρ(x, ε,K,N) := ε(r̄(ε, x)∧ R̄(ε,K,N)),

we have that

Per(E) ≥ m(E)
N−1
N Nω

1
N

N (θN (x)− ε)
1
N (1− 8ε), ∀E ⊂ Bρ(x),

from which the conclusion follows. �
Next we introduce the subclass of non-collapsed RCD(K,N) space.

Definition 2.25 ([41]). An RCD(K,N) space (X, d,m) is said to be non-collapsed
if m = HN , where HN denotes the N -dimensional Hausdorff measure on (X, d).

After the works of Honda [61] and of Brena, Gigli and Honda [26] this definition is
known to be equivalent to one given by Kitabeppu [68]. As showed in [41, Theorem
1.12] if (X, d,m) is a non-collapsed RCD(K,N) space, then N ∈ N. Moreover by
[41, Corollary 1.7] (see also [8, Theorem 1.4]), it holds that

(2.36)
θN (x) = 1, m-a.e. x ∈ X,

θN (x) ≤ 1, ∀x ∈ X .

Remark 2.26 (Consistency with the smooth setting). It is worth to recall that
RCD spaces are compatible with the smooth setting in the following sense. Any
N -dimensional Riemannian manifold (M, g) with Ricci curvature bounded below
by a number K ∈ R, i.e., Ricg ≥ Kg, endowed with the Riemannian distance and
volume measure is a non-collapsed RCD(K,N) metric measure space as shown by
von Renesse and Sturm [91] and by Cordero-Erausquin, McCann, and Schmucken-
schläger [34]. In particular, the metric measure space (RN , | · |,HN ), where HN is
the N -dimensional Hausdorff measure is a non-collapsed RCD(0, N) space.

We conclude recalling the validity of the Weyl law in non-collapsed setting proved
by Ambrosio, Honda and Tewodrose [8] and by Zhang and Zhu [93].

Theorem 2.27 (Weyl law in RCD spaces). Let (X, d,HN ) be an RCD(K,N) space
and Ω ⊂ X be open and bounded. Then

(2.37) lim
k→+∞

k

λD
k (Ω)

N/2
=

ωN

(2π)N
HN (Ω),

where {λD
k (Ω)}k∈N denotes the spectrum of the Dirichlet Laplacian in Ω defined in

(2.10).

Proof. By the results in [8, 93] it holds that

(2.38) lim
λ→+∞

N(λ)

λN/2
=

ωN

(2π)N
HN (Ω),

where N(λ) := #{k ∈ N : λD
k (Ω) ≤ λ}. This implies (2.37). To see this, set

N−(λ) := #{k ∈ N : λD
k (Ω) < λ}, and observe

N(λD
k (Ω)− 1) ≤ N−(λD

k (Ω)) ≤ k ≤ N(λD
k (Ω)), ∀ k ∈ N.

Note that in [93] formula (2.38) is stated with the further assumption that
diam(Ω) < diam(X) (when Ω �= X), however this assumption is needed in [93] only
to ensure the discreteness of the spectrum, for which we know by Proposition 2.23
that the boundedness of Ω is sufficient. �
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3. Sobolev spaces and Neumann eigenfunctions in uniform domains

Our method to deal with Neumann eigenfunctions in domains with irregular
boundary in RN (or in more abstract RCD spaces) will be to translate the problem
to a global one, by viewing the domain as a metric measure space. The idea is that
if the boundary satisfies an appropriate regularity condition, then the resulting
m.m. space is a PI space and in particular has good analytic properties, like the
isoperimetric inequality and embedding theorems (recall Section 2.3). We stress
that the possibility of using abstract metric spaces to deal with Neumann and
mixed boundary value problems in irregular domains of the Euclidean space was
noted before (see, e.g., [19, p. 33]).

The key notion that we will use is the one of uniform domain that we now
introduce.

Definition 3.1 (Uniform domains). A bounded open subset Ω of a metric space
(X, d) is called a uniform domain if there exists a constant C > 1 such that every
pair of points x, y ∈ Ω can be joined by a rectifiable curve γ : [0, 1] → Ω such that
l(γ) ≤ Cd(x, y) and

d(γ(t), ∂Ω) ≥ C−1min
(
l(γ|[0,t]), l(γ|[t,1])

)
, ∀ t ∈ [0, 1].

Uniform domains were introduced by Martio and Sarvas [73] and by Jones [66]
(see also the work of Väisälä [90]) and are central in the theory of BV and Sobolev
extension domains (see the works by Björn and Shanmugalingam [22], by Gehring
and Osgood [47], by Jones [66], by Herron and Koskela [59, 60] and by Lahti [69]).
Uniform domains are also equivalent to one-sided non-tangentially accessible (1-
sided NTA) domains (see, e.g., [13, Theorem 2.15] by Azzam, Hofmann, Martell,
Nyström, and Toro or the Appendix [56] by Hansen). They include Lipschitz
domains, but also more irregular domains such as the quasi-disks, i.e., images of
the unit ball under a global quasi-conformal maps (see [73, Theorem 2.15], [47], [64,
Section 3] by Jerison and Kenig or also [89, Remarks 2.1] by Toro). In particular,
the interior of the Koch snowflake is an example of uniform domain. It has also
been proved recently that in every doubling quasi-convex metric space (in particular
any bounded RCD(K,N) space) any bounded open set can be approximated from
inside and outside by uniform domains, see the work of Rajala [84] for the precise
statement.

It easily follows from the definition that every uniform domain is both connected
and locally connected (see, e.g., the work of Martio [72]).

The main goal of this section is to prove the following theorem. It says that
a uniform domain in a non-collapsed RCD(K,N) space (and in particular in RN )
when viewed as a m.m. space admits an almost Euclidean isoperimetric inequality
near almost every point (point (ii)) and the eigenvalues of the Laplacian satisfy a
weak version of the Weyl law (point (iii)). Item (i) is a technical condition that we
will need to apply the Faber–Krahn inequality in Proposition 5.1. We remark that,
differently from the preceding sections, in the following statement we will denote by
Y the ambient space, while the notation (X, d,m) is reserved to the metric measure
space associated to the closure of the domain Ω ⊂ Y.

Theorem 3.2. Let (Y, d̃,HN ) be an RCD(K,N) space, and let Ω ⊂ Y be a uni-

form domain. Then the metric measure space (X, d,m) := (Ω, d̃|Ω,H
N |Ω) is an

infinitesimally Hilbertian PI space and satisfies the following properties.
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(i) (X, d,m) has doubling dimension N .
(ii) For every ε > 0, there exists a closed set Cε ⊂ X with m(Cε) = 0 such that

for every x ∈ X \Cε there exists a constant ρ = ρ(x,N, ε) > 0 satisfying

(3.1) PerX(E) ≥ (1− ε)Nω
1
N

N m(E)
N−1
N , ∀E ⊂ BX

ρ (x) Borel,

where PerX and BX
ρ (x) are respectively the perimeter and the metric ball in

the space (X, d,m).
(iii) Denoted by {λk}k the spectrum of the Laplacian in (X, d,m) (recall (2.22))

it holds λk = λN
k (Ω) for all k ∈ N and

(3.2) lim
k→+∞

λ
N/2
k

k
≤ (2π)N

ωNm(X)
.

Remark 3.3 (The ‘bad’ set Cε). If the ambient space (Y, d̃,HN ) is the Euclidean
space then item (ii) in Theorem 3.2 is immediate by taking Cε = ∂Ω and by the
isoperimetric inequality (indeed ∂Ω is negligible as we will show in Lemma 3.6).

More generally if (Y, d̃,HN ) is a Riemannian manifold with d̃ the geodesic distance
then item (ii) follows taking again Cε = ∂Ω and applying the local almost-Euclidean
isoperimetric inequality in [17, Appendix C]. In the general case, as will be shown
in the proof, the set Cε in Theorem 3.2 can be taken to be

Cε := {x ∈ Ω : θN (x) ≤ 1− ε} ∪ ∂Ω,

where θN : X → (0,+∞] is the Bishop-Gromov density function defined in (2.34).
In other words, the set Cε contains ∂Ω plus a subset of the singular points, the latter
being the points where θN < 1. Note that θN ≡ 1 if (Y, d̃,HN ) is a Riemannian
manifold, so that Cε reduces to ∂Ω, in accordance to what we said above.

We start with some basic properties of uniform domains.

Definition 3.4 (Corkscrew-condition). A bounded open subset Ω of a metric space
(X, d) satisfies the corkscrew-condition if there exists a constant ε > 0 such that
for every point x ∈ Ω and all 0 < r ≤ diam(Ω), the set Ω∩Br(x) contains a ball of
radius εr.

In Definition 3.4, it is equivalent to require only x ∈ ∂Ω.
For the proof of the following well-known fact see, e.g., [22, Lemma 4.2].

Lemma 3.5. Every uniform domain satisfies the corkscrew-condition.

Lemma 3.6. Let (X, d,m) be a uniformly locally doubling metric measure space,
and let Ω ⊂ X satisfy the corkscrew-condition. Then m(∂Ω) = 0. In particular, this
holds if Ω ⊂ X is a uniform domain.

Proof. Thanks to the corkscrew-condition, there exists a constant ε > 0 such that
for every x ∈ ∂Ω and r > 0 there exists Bεr(y) ⊂ Br(x)∩Ω. Then by the uniformly
locally doubling assumption, we have

(3.3) m(Br(x) ∩ Ω) ≥ m(Bεr(y)) ≥ Cεm(B2r(y)) ≥ Cεm(Br(x)), ∀ r ∈ (0, 1),

where Cε > 0 is a constant depending only on ε. Therefore no point of x ∈
∂Ω can be a one-density point for ∂Ω. The conclusion follows by the Lebesgue
differentiation theorem for locally doubling metric measure spaces (see, e.g., [58,
Section 3.4]). The result applies to uniform domains, since by Lemma 3.5 they
satisfy they corkscrew-condition. �
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Lemma 3.7 gives a lower bound on the measure of balls in domain satisfying the
corkscrew-condition.

Lemma 3.7. Fix s > 0. Let (X, d,m) be a metric measure space such that for
every R0 > 0 there exists a constant c0 > 0 such that

(3.4)
m(Br(x))

m(BR(x))
≥ c0

( r

R

)s

, ∀x ∈ X, ∀ 0 < r < R ≤ R0.

Then for every bounded domain Ω ⊂ X satisfying the corkscrew-condition, there
exists a constant C > 0 such that

(3.5)
m(Br(x) ∩ Ω)

m(BR(x) ∩ Ω)
≥ C

( r

R

)s

, ∀x ∈ Ω, ∀ 0 < r < R.

In particular, this holds if Ω ⊂ X is a uniform domain.

Proof. Taking R = 2r in (3.4) shows that (X, d,m) is uniformly locally doubling.

Then as in (3.3), we have the existence of a constant C̃ such that for every x ∈ Ω,

m(Br(x) ∩ Ω) ≥ C̃m(Br(x))
(3.4)

≥ c0C̃m(BR(x))
( r

R

)s

≥ c0C̃m(BR(x) ∩ Ω)
( r

R

)s

, ∀ 0 < r < R ≤ diam(Ω).

This proves (3.5) for 0 < r < R ≤ diam(Ω). If instead r > diam(Ω), we have

m(Br(x)) ∩ Ω

m(BR(x) ∩ Ω)
=

m(Ω)

m(Ω)
= 1 ≥ rs

Rs
, ∀x ∈ Ω, ∀R ≥ r.

This shows (3.5) also for diam(Ω) < r < R and concludes the proof. �
The next step is to show that the Sobolev space on a uniform domain coincides

with the Sobolev space on its closure. In what follows, given a m.m. space (X, d,m)
and an open subset Ω ⊂ X, we denote by (Ω, d|Ω,m|Ω) the m.m. space obtained by

endowing Ω with the restriction distance d|Ω := d|Ω×Ω
and measure m|Ω, obtained

by restricting m to the induced Borel σ-algebra on Ω. Note that by definition
(Ω, d|Ω,m|Ω) is a complete and separable metric measure space with supp(m|Ω) = Ω.

Moreover for a function u ∈ L2(Ω,m|Ω) we will denote by u|Ω ∈ L2(Ω,m) the

function which agrees m-a.e. with u in Ω.

Theorem 3.8 (Equivalence betweenW 1,2(Ω, d|Ω,m|Ω) andW 1,2(Ω)). Let (X, d,m)

be a PI space and Ω ⊂ X be a uniform domain. Then W 1,2(Ω, d|Ω,m|Ω) = W 1,2(Ω)

as function spaces. More precisely, for every u ∈ W 1,2(Ω, d|Ω,m|Ω) it holds that

Φ(u) := u|Ω ∈ W 1,2(Ω) and the map Φ : W 1,2(Ω, d|Ω,m|Ω) → W 1,2(Ω) is a surjec-

tive isometry. Moreover if (X, d,m) is infinitesimally Hilbertian, so is (Ω, d|Ω,m|Ω)
and

(3.6)

ˆ
Ω

∇u · ∇v dm =

ˆ
Ω

∇(u|Ω) · ∇(v|Ω) dm, ∀u, v ∈ W 1,2(Ω, d|Ω,m|Ω).

Proof. The result is well known, but for convenience of the reader we include a
short argument which is a combination of results already present in literature. Fix
u ∈ W 1,2(Ω, d|Ω,m|Ω). The fact that Φ(u) = u|Ω ∈ W 1,2(Ω) is checked, e.g.,

in [6, Remark 2.15]. Moreover by [9, Prop. 6.4] for every η ∈ LIPbs(Ω), since
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d(supp(ηu),X \Ω) > 0, it holds that ηu ∈ W 1,2(X) (when extended by zero in
the whole X) and also that |D(ηu)|X = |D(ηu)|Ω m-a.e. in Ω, where |D(·)|Ω is the

w.u.g. in W 1,2(Ω, d|Ω,m|Ω) and |D(·)|X is the w.u.g. in W 1,2(X). Hence by the

arbitrariness of η and by locality we deduce that |Du|Ω = |D(u|Ω)|Ω m-a.e. in Ω,

where |D(·)|Ω is the w.u.g. in W 1,2(Ω) (as defined in (2.2)). This together with the
fact that m(∂Ω) = 0 (recall Lemma 3.6) shows that Φ(u) preserves the norm. It
remains to show that Φ is surjective (note that everything we said up to now holds
for an arbitrary open set Ω with m(∂Ω)=0). Now since Ω is a uniform domain, by
[22, Prop. 5.9], Ω is an extension domain and in particular for every u ∈ W 1,2(Ω)
there exists ũ ∈ W 1,2(X) such that ũ|Ω = u. By density of Lipschitz functions

(see [86] or [19, Theorem 5.1]) there exists a sequence un ∈ LIPbs(X) such that
un → ũ in W 1,2(X). In particular, it holds un|Ω → u in L2(Ω;m|Ω). Moreover

un|Ω ∈ LIP(Ω, d|Ω), and by definition of slope, we have lipΩ(un|Ω)(x) ≤ lip(un)(x)

for every x ∈ Ω, where lipΩ denotes the slope with respect to the metric space

(Ω, d|Ω). Therefore supn
´
Ω
| lipΩ(un|Ω)|

2 dm ≤ supn
´
X
| lip(un)|2 dm < +∞, which

by definition proves that ũ|Ω ∈ W 1,2(Ω, d|Ω,m|Ω). Since ũ|Ω = u and by the ar-

bitrariness of u ∈ W 1,2(Ω), this shows that Φ is surjective. Finally if (X, d,m) is
infinitesimally Hilbertian, then W 1,2(Ω) is a Hilbert space and, since Φ is an isom-
etry, then W 1,2(Ω, d|Ω,m|Ω) is a Hilbert space as well; so (Ω, d|Ω,m|Ω) is infinites-
imally Hilbertian. Then identity (3.6) follows by polarization using the definition
of scalar product between gradients. �

Theorem 3.9. Let (X, d,m) be an infinitesimally Hilbertian PI space, and let
Ω ⊂ X be a uniform domain. Then the metric measure space (Ω, d|Ω,m|Ω) is an

infinitesimally Hilbertian PI space.

Proof. The fact that (Ω, d|Ω,m|Ω) is a PI space is proved in [22, Theorem 4.4] (see

also [1, Prop. 7.1] and [19, Theorem A.21]), recalling also that m(∂Ω) = 0. The
infinitesimal Hilbertianity follows from Theorem 3.8 (alternatively we could apply
[48, Prop. 4.22]). �

From the previous results about the compatibility of the two Sobolev spaces
W 1,2(Ω) and W 1,2(Ω, d|Ω,m|Ω), we can deduce a compatibility between eigenfunc-

tions and eigenvalues in Ω and in (Ω, d|Ω,m|Ω).

Corollary 3.10 (Equivalence between λN
k (Ω) and λk(Ω, d|Ω,m|Ω)). Let (X, d,m)

be an infinitesimally Hilbertian PI space, and let Ω ⊂ X be a uniform domain.
Then:

(i) u ∈ W 1,2(Ω) is an eigenfunction for the Neumann Laplacian in Ω of eigen-
value λ if and only there exists an eigenfunction ũ ∈ W 1,2(Ω, d|Ω,m|Ω) of

the Laplacian in the metric measure space (Ω, d|Ω,m|Ω) of eigenvalue λ and

satisfying ũ|Ω = u. In particular, if this is the case, then u has a Hölder

continuous representative in Ω.
(ii) the embedding W 1,2(Ω) ↪→ L2(Ω) is compact and in particular the Neu-

mann Laplacian in Ω has a discrete spectrum {λN
k (Ω)}k∈N (counted with
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multiplicity) satisfying

0 = λN
1 (Ω) ≤ λN

2 (Ω) ≤ . . . λN
k (Ω) ≤ · · · → +∞.

(iii) denoted by {λk}k the spectrum for the Laplacian in (Ω, d|Ω,m|Ω), it holds
that

λN
k (Ω) = λk, ∀ k ∈ N.

Proof. First observe that the statement makes sense since by Theorem 3.9 we have
that (Ω, d|Ω,m|Ω) is a bounded infinitesimally Hilbertian PI space, and so by (2.22),

we have that the Laplacian in (Ω, d|Ω,m|Ω) has a discrete spectrum {λk}k. It is

sufficient to show (i) and (ii), because then (iii) would follow from the definitions.
Suppose that u ∈ W 1,2(Ω) is an eigenfunction for the Neumann Laplacian in Ω of
eigenvalue λ. Then by Theorem 3.8, there exists ũ ∈ W 1,2(Ω, d|Ω,m|Ω) such that

ũ|Ω = u. Moreover for every v ∈ W 1,2(Ω, d|Ω,m|Ω), again by Theorem 3.8, we have

that v|Ω ∈ W 1,2(Ω). Then applying (3.6), we obtain

ˆ
Ω

∇ũ · ∇v dm =

ˆ
Ω

∇u · ∇v|Ω dm = −λ

ˆ
Ω

uv|Ω dm = −λ

ˆ
Ω

ũv dm,

where in the second identity we used the definition of eigenfunction and in the last
one that m(∂Ω) = 0, because Ω is a uniform domain. This shows that ũ is an eigen-
function of eigenvalue λ for the Laplacian in (Ω, d|Ω,m|Ω). Then by Theorem 2.17

ũ has a Hölder continuous representative in Ω, which implies that u has also a
continuous representative in Ω. Conversely suppose that ũ is an eigenfunction of
eigenvalue λ for the Laplacian in (Ω, d|Ω,m|Ω). Then by Theorem 3.8, we have

ũ|Ω ∈ W 1,2(Ω). Moreover, again by Theorem 3.8, for every v ∈ W 1,2(Ω) there

exists ṽ ∈ W 1,2(Ω, d|Ω,m|Ω) such that ṽ|Ω = v. Therefore as above using (3.6)

−λ

ˆ
Ω

ũ|Ωv dm = −λ

ˆ
Ω

ũṽ dm =

ˆ
Ω

∇ũ · ∇ṽ dm =

ˆ
Ω

∇ũ|Ω · ∇v dm.

This shows that ũ|Ω is an eigenfunction of eigenvalue λ for the Neumann Laplacian

in Ω and completes the proof of (i). For (ii), recall that by Theorem 3.8 the
map Φ : W 1,2(Ω, d|Ω,m|Ω) → W 1,2(Ω), given by Φ(u) = u|Ω, is an isometry

and that by Theorem 2.16 the inclusion ι : W 1,2(Ω, d|Ω,m|Ω) ↪→ L2(Ω,m|Ω) is

compact. Let now un ∈ W 1,2(Ω) be a sequence bounded in W 1,2(Ω). Then the
sequence Φ−1(un) ∈ W 1,2(Ω, d|Ω,m|Ω) is also bounded; hence it has a converging

subsequence in L2(Ω,m|Ω). However by definition Φ−1(un)|Ω = Φ(Φ−1(un) = un

for every n. Hence un has also a converging subsequence in L2(Ω,m|Ω), which

shows that the embedding W 1,2(Ω) ↪→ L2(Ω,m|Ω) is compact. This completes the

proof of (ii). �

Remark 3.11. If the ambient space (X, d,m) is an RCD(K,N) space, withN < +∞,
then the Neumann and Dirichlet eigenfunctions are actually locally Lipschitz in the
interior of the domain, as follows directly from the work of Jiang [65, Theoem 1.1]
(see also [7, Prop. 7.1] by Ambrosio, Honda, Portegies and Tewodrose). Recall that
the continuity of eigenfunctions is crucial to define their nodal domains.
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Next we show that for a uniform domain Ω there is a one to one correspondence
between the nodal domains in Ω and the nodal domains in its closure.

Proposition 3.12 (Compatibility of nodal domains). Let (X, d) be a metric space,
Ω ⊂ X be a uniform domain and f : Ω → R be a continuous function. Denote by C
(resp. C) the set of all the connected components of Ω\{f = 0} (resp. Ω\{f = 0}).
Then

(3.7) C = {U ∪ (∂U ∩ (∂Ω \ {f = 0})) : U ∈ C}.
In particular, the sets C and C have the same cardinality.

Proof. For every U ∈ C we put ϕ(U) := U ∪ (∂U ∩ (∂Ω \ {f = 0})) and we want
to show that ϕ defines a bijective map ϕ : C → C. We note immediately that ϕ is
injective, because if ϕ(U) = ϕ(V ) then U = ϕ(U) ∩ Ω = ϕ(V ) ∩ Ω = V .

To conclude it is sufficient to prove that the sets {ϕ(U)}U∈C are open, closed
and connected in the topology of Ω \ {f = 0} and that their union is Ω \ {f = 0}.
Indeed this would show that {ϕ(U)}U∈C are exactly the connected components of
Ω \ {f = 0}, which would imply (3.7) and in particular that ϕ is surjective.

Note first that the elements of C are open in the topology of Ω\{f = 0} (and thus
also in the one of X) because Ω \ {f = 0} is locally connected (recall Lemma 2.2)
since it is an open subset of Ω which is a uniform domain and thus locally connected.

The key observation is that for every x ∈ ∂Ω \ {f = 0} there exists r > 0 and
U ∈ C such that

(3.8) Br(x) ∩ Ω ⊂ ϕ(U) = U ∪ (∂U ∩ (∂Ω \ {f = 0})).
To prove this note that f(x) �= 0. Then by continuity there exists r0 > 0 so that
Br(x) ∩ Ω ⊂ Ω \ {f = 0} for every r ∈ (0, r0]. In particular, for every r ∈ (0, r0],
the set Br(x) ∩ Ω is contained in

⋃
U∈C U . Suppose that for some r > 0 the set

Br(x) ∩ Ω intersects at at least two distinct sets Ur, Vr ∈ C and take two points
ur ∈ Ur ∩ Br(x), vr ∈ Vr ∩ Br(x). Since Ω is a uniform domain there exists
a rectifiable curve γ : [0, 1] → X contained in Ω, connecting ur and vr and of
length l(γ) ≤ Cd(ur, vr) ≤ 2Cr, where C > 0 is some constant independent of
r. Then γ([0, 1]) must intersect {f = 0} otherwise γ([0, 1]) ⊂ Ω \ {f = 0} and
Ur∪Vr∪γ([0, 1]) would be a connected subset of Ω\{f = 0}, which contradicts the
fact that Ur, Vr are distinct connected components of Ω \ {f = 0}. Therefore, since
γ([0, 1]) ⊂ B(2C+1)r(x), it holds B(2C+1)r(x)∩Ω∩{f = 0} �= ∅ and so by the choice
of r0 we must have (2C + 1)r > r0. This proves that for r small enough Br(x) ∩Ω
intersects at most one set in C. However, as observed above, Br(x)∩Ω ⊂

⋃
U∈C U for

every r ∈ (0, r0]. Therefore for r > 0 small enough we must have that Br(x)∩Ω ⊂ U
for some U ∈ C. Fix one such r > 0 and fix y ∈ Br(x) ∩ ∂Ω. Then for every s > 0
small enough, Bs(y) ∩ Ω �= ∅ and Bs(y) ∩ Ω ⊂ Br(x) ∩ Ω ⊂ U . This shows that
y ∈ ∂U . Therefore for every r > 0 small enough Br(x) ∩ Ω ⊂ U , Br(x) ∩ ∂Ω ⊂ ∂U
for some U ∈ C and as observed above Br(x) ∩ Ω ⊂ Ω \ {f = 0}. Combining these
three facts proves (3.8).

Consider now any U ∈ C and note that ϕ(U) is precisely the closure of U in the
topology of Ω \ {f = 0}. Indeed

U ∩ (Ω \ {f = 0}) =
(
U ∩ (Ω \ {f = 0})

)
∪
(
∂U ∩ (Ω \ {f = 0})

)
= U ∪ (∂U ∩ (∂Ω \ {f = 0})) ∪ (∂U ∩ (Ω \ {f = 0}))
= U ∪ (∂U ∩ (∂Ω \ {f = 0})) = ϕ(U),



PLEIJEL NODAL DOMAIN THEOREM IN NON-SMOOTH SETTING 1163

where we used that U ⊂ Ω \ {f = 0} and that ∂U ∩ (Ω \ {f = 0}) = ∅ because U
is closed in the topology of Ω \ {f = 0}, being a connected component, but also
open as observed above. Moreover U is connected in Ω \ {f = 0} and thus also in
Ω \ {f = 0}; hence ϕ(U) is also connected in the same topology, being the closure
of a connected set. Additionally (3.8) implies that ϕ(U) is open in the topology of
Ω\{f = 0}. It remains to prove that the union of the sets {ϕ(U)}U∈C is Ω\{f = 0},
which can be seen as follows

Ω \ {f = 0} = (Ω \ {f = 0}) ∪ (∂Ω \ {f = 0})
(3.8)
⊂ (Ω \ {f = 0}) ∪

( ⋃
U∈C

ϕ(U)

)

⊂

⎛
⎝ ⋃

U∈C,
U

⎞
⎠ ∪

( ⋃
U∈C

ϕ(U)

)
=

⋃
U∈C

ϕ(U).

�

We pass now to prove the main result of this section.

Proof of Theorem 3.2. The fact that (X, d,m) is an infinitesimally Hilbertian PI
space is contained in Theorem 3.9. Recall also that by Lemma 3.6 it holds
HN (∂Ω) = 0. Item (i) follows immediately combining (2.33) and Lemma 3.7 and
recalling that Ω is bounded.

We pass to the proof of (ii). Fix ε ∈ (0, 1) arbitrary. We choose

Cε := {x ∈ Ω : θN (x) ≤ 1− ε} ∪ ∂Ω

(see (2.34) for the definition of θN ). From the lower semicontinuity of the function
θN (·), it follows that Cε is a closed subset of Ω. Moreover, since θN (x) = 1 for
HN -a.e. x (recall (2.36)) and HN (∂Ω) = 0, it follows HN (Cε) = 0. Note that by
construction 1 − ε < θN (x) ≤ 1 for all x ∈ Ω \ Cε ⊂ Ω. Therefore we can apply
the local almost-Euclidean isoperimetric inequality given by Theorem 2.24 (recall
also Lemma 2.11) and obtain that for every x ∈ Ω \Cε and every ε ∈ (0, 1/4) there

exists ρ = ρ(x,N, ε) < d̃(x,Ωc) such that

PerX(E) ≥ m(E)
N−1
N Nω

1
N

N (1− 2ε)
1
N (1− ε), ∀E ⊂ Bρ(x) = BX

ρ (x) Borel,

which shows (3.1). It remains to show (iii). Denote by λk, k ∈ N the spectrum of
the Laplacian in (X, d,m) (counted with multiplicity and in non-decreasing order).
Recall that by Corollary 3.10 λk = λN

k (Ω) for every k ∈ N, where λN
k (Ω) is the k-th

Neumann eigenvalue of Ω (in non-decreasing order). Recalling Lemma 2.8 we know
that λN

k (Ω) ≤ λD
k (Ω) for every k ∈ N, where λD

k (Ω) is the k-th Dirichlet Laplacian
eigenvalue of Ω. Then (3.2) follows from the Weyl law for the Dirichlet Laplacian
(see Theorem 2.27):

lim
k→+∞

λ
N/2
k

k
= lim

k→+∞

(λN
k (Ω))N/2

k
≤ lim

k→+∞

(λD
k (Ω))

N/2

k
=

(2π)N

ωnHN (Ω)
=

(2π)N

ωnm(X)
,

having used again m(∂Ω) = 0. �
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4. From local to global isoperimetric inequality

In this section, we prove the following crucial result. Informally speaking, it says
that in a PI space satisfying an almost-Euclidean isoperimetric inequality around
almost-every point, the same isoperimetric inequality extends to all sets having
sufficiently small volume and avoiding a ‘bad’ but small region of the space.

Theorem 4.1. Let (X, d,m) be a bounded PI space and fix N > 1. Suppose that
for every ε > 0 there exists a closed set Cε ⊂ X with m(Cε) = 0 such that for every
x ∈ X \Cε there exists a constant ρ = ρ(x,N, ε) > 0 satisfying

(4.1) Per(E) ≥ (1− ε)Nω
1
N

N m(E)
N−1
N , ∀E ⊂ Bρ(x) Borel.

Then for every ε ∈ (0, 1) and η > 0, there exists an open set Uε,η ⊂ X with
m(Uε,η) < η and constants β = β(X, ε,N, η) > 0, β′ = β′(ε) > 0 such that

(4.2) Per(E) ≥ (1− ε)Nω
1
N

N m(E)
N−1
N ,

for every E ⊂ X Borel satisfying

0 < m(E) ≤ β,
m(E ∩ Uε,η)

m(E)
≤ β′.

Observe that assumption (4.1) is the same as item (ii) in Theorem 3.2.
The proof of Theorem 4.1 takes inspiration from the arguments in [17, Appen-

dix C] in the smooth setting, but requires also to deal with the technical issues
arising from working in a non-smooth metric space.

We start with an estimate for the perimeter of the complement of the union of
a finite number of balls.

Lemma 4.2. Let (X, d,m) be a PI space. Suppose that Bi := Bri(xi) ⊂ X, i =
1, . . . , k, k ∈ N, have all finite perimeter and satisfy Per(Bi, ∂

eBj) = 0 for all i �= j.
Then

(4.3) Per(Bc
1 ∩Bc

2 ∩ · · · ∩Bc
k, .) ≤

k∑
i=1

Per(Bi, .)|Bc
1∩Bc

2∩···∩Bc
k

.

Proof. We argue by induction on k. By (2.23), we have that for every ball B ⊂ X
of finite perimeter

Per(Bc, .) = Per(B, .) = Per(B, .)|Bc ,

which shows that the statement holds for k = 1. Suppose that the statement is true
for some k ∈ N, and let Bi := Bri(xi) ⊂ X, i = 1, . . . , k+ 1 be as in the statement.
By a repeated application of (vi) in Lemma 2.10, we get

(4.4) ∂e(Bc
1 ∩Bc

2 ∩ · · · ∩Bc
k) ⊂ ∂eBi ∪ · · · ∪ ∂eBk.

Using (4.4) and the assumption Per(Bk+1, ∂
eBj) = 0 for all j �= k + 1 gives

Per(Bk+1, ∂
e(Bc

1 ∩Bc
2 ∩ · · · ∩Bc

k)) = 0.

Hence we can apply Proposition 2.19 and obtain

(4.5)
Per(Bc

1 ∩Bc
2 ∩ · · · ∩Bc

k+1, .)

≤ Per(Bk+1, .)|(Bc
1∩Bc

2∩···∩Bc
k)

(1)
+ Per(Bc

1 ∩Bc
2 ∩ · · · ∩Bc

k, .)|(Bc
k+1)

(1)
.

Since balls are open sets, by using (iii) and (iv) in Lemma 2.10 it holds

(Bc
1 ∩Bc

2 ∩ · · · ∩Bc
k)

(1) ⊂ Bc
1 ∩Bc

2 ∩ · · · ∩Bc
k,
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that combined with (4.5) and the induction hypothesis gives

Per(Bc
1 ∩Bc

2 ∩ · · · ∩Bc
k+1, .)

≤ Per(Bk+1, .)|Bc
1∩Bc

2∩···∩Bc
k

+ Per(Bc
1 ∩Bc

2 ∩ · · · ∩Bc
k, .)|(Bc

k+1)
(1)

≤ Per(Bk+1, .)|Bc
1∩Bc

2∩···∩Bc
k

+ Per(Bc
1 ∩Bc

2 ∩ · · · ∩Bc
k, .)|Bc

k+1

≤ Per(Bk+1, .)|Bc
1∩Bc

2∩···∩Bc
k∩Bc

k+1

+

k∑
i=1

Per(Bi, .)|Bc
1∩Bc

2∩···∩Bc
k∩Bc

k+1

,

where in the second line we used that (Bc
k+1)

(1) ⊂ Bc
k+1 (recall (iv) in Lemma 2.10)

and in the last line that Per(Bk+1, .) = Per(Bk+1, .)|Bc
k+1

(recall (2.23)) for the

first term and the induction hypothesis for the second term. This concludes the
proof. �

Combining the above estimate with a covering argument we can prove the fol-
lowing proposition, from which Theorem 4.1 will easily follow.

Proposition 4.3 (From local-to-global isoperimetric inequality). Let (X, d,m) be
a PI space. Suppose there exist constants λ > 0, α ∈ (0, 1] and a compact set K ⊂ X
such that for all x ∈ K there exists ρ(x) > 0 so that

(4.6) Per(E) ≥ λm(E)α, ∀E ⊂ Bρ(x)(x) Borel.

Then there exists a constant C = C(K, α, λ) such that

(4.7) Per(V ) ≥ λm(V ∩ K)α − Cm(V ), ∀V ⊂ X Borel.

Proof. We start by extracting once and for all a finite covering K ⊂ ∪M
i=1B ρ(xi)

2

(xi),

with xi ∈ K, and we set ρ := mini ρ(xi) > 0. It is enough to prove (4.7) for sets V
of finite perimeter. Fix one such set V .

We claim that there exist r1, . . . , rM , with ri ∈
(

ρ(xi)
2 , ρ(xi)

)
such that the

following hold:

(a) Bri(xi) has finite perimeter, for every i = 1, . . . ,M ,
(b) Per(V, ∂Bri(xi)) = 0, for every i = 1, . . . ,M ,

(c) Per(Bri(xi), V
(1)) ≤ 3m(V )

ρ(xi)
, for every i = 1, . . . ,M ,

(d) Per(Bri(xi), ∂Brj (xj)) = 0, for every i, j = 1, . . . ,M with i �= j.

It is sufficient to prove that:

(i) for any i ∈ {1, . . . ,M}, there exists Ai ⊂
(

ρ(xi)
2 , ρ(xi)

)
with H1(Ai) > 0

such that (a), (b) and (c) holds for every ri ∈ Ai,
(ii) for every ri > 0 such that Bri(xi) has finite perimeter, (d) holds for every

j �= i and for a.e. rj > 0.

Indeed if these were true, up to removing from each Ai a set of measure zero, we
would have that every choice (r1, . . . , rM ) ∈ Ai × . . . ,×AM satisfies all (a), (b),
(c), and (d). We start proving (i). Fix i ∈ {1, . . . ,M}. From Proposition 2.9, we
have that Br(xi) has finite perimeter for a.e. r > 0 (i.e., (a) holds for a.e. ri > 0).
Moreover since Per(V, .) is a finite measure and {∂Br(xi)}r>0 are pairwise disjoint
sets, we must have that Per(V, ∂Bri(xi)) = 0 for a.e. ri > 0 (i.e., (b) holds for a.e.
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ri > 0). By applying Proposition 2.9 with R := ρ(xi), we get

ˆ ρ(xi)

ρ(xi)

2

Per(Br(xi), V
(1)) dr ≤

ˆ ρ(xi)

0

Per(Br(xi), V
(1)) dr

≤ m(Bρ(xi)(xi) ∩ V (1))

= m(Bρ(xi)(xi) ∩ V ),

and by the Markov inequality

H1

({
r ∈

(
ρ(xi)

2
, ρ(xi)

)
: Per(Br(xi), V

(1)) > 3m(V ∩Bρ(xi)(xi))/ρ(xi)

})
≤ ρ(xi)

3
,

which shows that the set{
r ∈

(
ρ(xi)

2
, ρ(xi)

)
: Per(Br(xi), V

(1)) ≤ 3m(V ∩Bρ(xi)(xi))/ρ(xi)

}

has positive H1-measure, i.e., (c) holds for every ri in a subset of
(

ρ(xi)
2 , ρ(xi)

)
of positive H1-measure. Combining all the above observations gives (i). To show
(ii) fix i, j ∈ {1, . . . ,M}, i �= j and ri > 0 such that Bri(xi) has finite perime-
ter. As above {∂Br(xj)}r>0 are pairwise disjoint sets, therefore we must have
Per(Bri(xi), ∂Br(xj)) = 0 for a.e. r > 0. This proves (ii) and completes the proof
of the claim.

From now on, we assume to have fixed r1, . . . rM such that (a), (b), (c), and
(d) above hold (note that this choice might depend on the set V ) and we set
Bi := Bri(xi). By construction K ⊂ ∪M

i=1Bi. Consider the pairwise disjoints sets
{Ui}Mi=1 defined inductively as follows:

U1 := B1, Ui := Bi ∩ (Bc
i−1 ∩ · · · ∩Bc

1), ∀ i = 2, . . . ,M.

Clearly {Ui}Mi=1 is a family of disjoint Borel sets which is a covering of K. We claim
that

(4.8) Per(V, ∂eUi) = 0, ∀ i = 1, . . . ,M.

Indeed, from (vi) and (ii) of Lemma 2.10, one infers that

∂eUi ⊂ ∂eB1 ∪ ∂e(Bc
2) ∪ · · · ∪ ∂e(Bc

i−1) ⊂ ∂B1 ∪ · · · ∪ ∂Bi−1.

From this, (4.8) follows recalling (b). Thanks to (4.8) we are in position to apply
Proposition 2.19 to deduce that

(4.9) Per(V ∩ Ui) ≤ Per(V, U
(1)
i ) + Per(Ui, V

(1)), ∀ i = 1, . . . ,M.

The goal is now to give an upper bound on each term on the right-hand side of
(4.9). Since Ui are pairwise disjoint by construction, by point (v) of Lemma 2.10,

it follows that also the sets U
(1)
i are pairwise disjoint; hence

(4.10)
M∑
i=1

Per(V, U
(1)
i ) ≤ Per(V ).

To estimate Per(Ui, V
(1)), we note that from (d), it holds

Per(Bi, ∂
e(Bc

1 ∩ · · · ∩Bc
i−1)) = 0,
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indeed ∂e(Bc
1 ∩ · · · ∩Bc

i−1) ⊂ ∂B1 ∪ · · · ∪ ∂Bi−1 (recall (ii) in Lemma 2.10). Hence,
recalling that by construction Ui = Bi ∩ (Bc

i−1 ∩ · · · ∩ Bc
1), we can apply again

Proposition 2.19 to get

Per(Ui, V
(1)) ≤ Per(Bi, V

(1)) + Per(Bc
1 ∩ · · · ∩Bc

i−1, V
(1))|

B
(1)
i

.

From this and Lemma 4.2,

Per(Ui, V
(1))

(4.3)

≤ Per(Bi, V
(1)) +

i−1∑
j=1

Per(Bj , V
(1))|

B
(1)
i ∩Bc

1∩···∩Bc
i−1

≤ Per(Bi, V
(1)) +

i−1∑
j=1

Per(Bj , V
(1))|Bi∩Bc

1∩···∩Bc
i−1

= Per(Bi, V
(1)) +

i−1∑
j=1

Per(Bj , V
(1))|Ui

,

where in the second line we used that B
(1)
i ⊂ Bi ∪ ∂Bi and that Per(Bj , ∂Bi) = 0

for all j �= i, thanks to (d). Summing in i

M∑
i=1

Per(Ui, V
(1)) ≤

M∑
i=1

Per(Bi, V
(1)) +

M∑
i=1

i−1∑
j=1

Per(Bj , V
(1))|Ui

≤
M∑
i=1

Per(Bi, V
(1)) +

M∑
j=1

M∑
i=1

Per(Bj , V
(1))|Ui

≤ 2
M∑
i=1

Per(Bi, V
(1))

(c)
≤ 6

M∑
i=1

m(V )

ρ(xi)
≤ 6M

m(V )

ρ̄
,

(4.11)

where in the third inequality we used that
∑M

i=1 Per(Bj , V
(1))|Ui

≤ Per(Bj , V
(1))

since the sets Ui, i ∈ {1, . . . ,M} are disjoint. Combining (4.9), (4.10), and (4.11),
we get

(4.12)

M∑
i=1

Per(V ∩ Ui) ≤ Per(V ) + 6M
m(V )

ρ̄
.

On the other hand V ∩ Ui ⊂ Bi ⊂ Bρ(xi)(xi); hence by assumption (4.6)

M∑
i=1

Per(V ∩ Ui) ≥ λ

M∑
i=1

m(V ∩ Ui)
α ≥ λ

(
M∑
i=1

m(V ∩ Ui)

)α

≥ λm(V ∩ K)α,

since the function x �→ xα is subadditive and the sets {Ui}Mi=1 cover K. This
combined with (4.12) yields

Per(V ) ≥ λm(V ∩ K)α − 6M
m(V )

ρ̄
.

The constants M and ρ̄ depend only on the initial choice of the covering B ρ(xi)

2

(xi)

and thus depend only on K, α and λ, (and not on V ). This concludes the proof. �

An application of Proposition 4.3 yields immediately the main result of this
section.
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Proof of Theorem 4.1. Fix ε ∈ (0, 1) and η > 0. Let Cε/2 ⊂ X be as in the
statement. Since Cε/2 is closed, by upper regularity there exists an open set Uε,η

containing Cε/2 and such that m(Uε,η) < η. Set Kε,η := X \Uε,η, which is compact
(because it is closed and bounded and X is a proper, being a PI space). In particular,
(4.1) holds also for every x ∈ Kε,η. Therefore the hypotheses of Proposition 4.3

are satisfied with K = Kε,η, α = N−1
N and λ = (1− ε/2)Nω

1
N

N and we deduce that
there exists a constant C depending only on Kε,η, N and ε (and thus only on X, ε,
N and η) such that

Per(E) ≥ (1− ε/2)Nω
1
N
N m(E ∩ Kε,η)

N−1
N − Cm(E)

= (1− ε/2)Nω
1
N
N m(E)

N−1
N

[(
1− m(E ∩ Uε,η)

m(E)

)N−1
N

− Ĉm(E)
1
N

]

≥ (1− ε/2)Nω
1
N
N m(E)

N−1
N

[
1− m(E ∩ Uε,η)

m(E)
− Ĉm(E)

1
N

]
, ∀E ⊂ X Borel,

where Ĉ = C((1 − ε/2)Nω
1
N

N )−1. From this, we obtain that the conclusion of the

theorem holds taking β := Ĉ−NδNε and β′ := δε, where δε :=
1
2

ε
2−ε . �

5. Almost Euclidean Faber–Krahn inequality for small volumes

Similarly to the classical Faber–Krahn inequality in RN , combining the almost
Euclidean isoperimetric inequality for small volumes in Section 4 and the Pólya–
Szegő inequality of Section 2.4, we deduce here an almost-Euclidean Faber–Krahn
inequality for small volumes similar to [17, Lemme 16] by Bérard and Meyer in
the case of Riemannian manifolds. However it is not possible to apply directly the
Pólya–Szegő inequality as in [17], because our isoperimetric inequality applies only
to sets that have small volumes and avoid a bad set with small measure. This
technical difficulty will require a more careful argument, which will eventually lead
to a Faber–Krahn inequality that applies only to sets that again avoid a portion of
the space with small measure (see Theorem 5.3).

We start by recalling the well-known expression of the first Dirichlet eigenvalue
of a ball in the N -dimensional Euclidean space (see, e.g., [17]):

(5.1) λ1(B
R

N

r (0)) =

(
ωN

L N (BRN

r (0))

)2/N

j2(N−2)
N

, ∀ r > 0,

where j (N−2)
N

denotes the first positive zero of the Bessel function (of the first kind)

of index (N−2)
N .

Next we obtain a weaker Faber–Krahn inequality, i.e., with a rough constant,
but that applies to sets also with large volume.

Proposition 5.1 (Faber–Krahn inequality in PI spaces). Let (X, d,m) be a bounded
PI space of doubling dimension N ∈ N \ {1}. Then there exist constants v0 =
v0(X) > 0 and C = C(X, N) > 0 such that

(5.2) λ1(Ω) ≥
C

m(Ω)
2
N

, ∀Ω ⊂ X open, 0 < m(Ω) ≤ v0.

Proof. By Proposition 2.18, there exist constants w0 = w0(X) > 0 and CI =
CI(X, N) > 0 such that

(5.3) Per(E) ≥ CIm(E)
N−1
N , ∀E ⊂ X Borel such that m(E) ≤ w0
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In particular if m(Ω) ≤ v0 := w0, then (5.3) holds for every E ⊂ Ω Borel. Moreover
taking v0 < m(X), we have Ω �= X. Therefore we can apply the Pólya–Szegő
inequality (2.28) and deduce

(5.4)

´
Ω
|Du|2 dm´

Ω
|u|2 dm ≥

( CI

Nω
1/N
N

)2
´
Ω∗ |Du∗

N |2 dL N´
Ω∗ |u∗

N |2 dL N
≥ C

m(Ω)
2
N

,

∀u ∈ W 1,2
0 (Ω), u ≥ 0, u �≡ 0,

where we have also used that ‖u‖L2(Ω,m) = ‖u∗
N‖L2(Ω∗,L N ), m(Ω) = L N (Ω∗), and

in the last passage the identity (5.1) and the fact that u∗
N ∈ W 1,2

0 (Ω∗). By taking
the infimum with respect to all the possible u in the characterization (2.16), we get
the result. �

From the previous proposition we can deduce the following version of the Faber–
Krahn inequality in the Euclidean setting. Even if it will not be used in this note,
we think it is worth being isolated in a separate statement. Indeed it has been
pointed out repeatedly in the previous literature that one of the major difficulties
in counting nodal domains for non-Dirichlet boundary condition in subset of RN

with irregular boundary is the absence of a suitable Faber–Krahn inequality for
subdomains close to the boundary (see, e.g., the discussions by Hassannezhad and
Sher [57, Section 2], by Léna [70, Section 1.2], by Gittins and Léna [53, Section
1.2] and by Beck, Canzani and Marzuola [15, Section 1.1]). This was one of the
main issues faced [70] which also forced the assumption of a C1,1 boundary (see
also [57]). Here we show precisely that a Faber–Krahn-type inequality does hold
in any uniform domain, no matter how close is the support of the function to the
boundary.

Corollary 5.2 (Faber–Krahn inequality for uniform domains). Let Ω ⊂ RN be a
uniform domain. Then there exist constants v0 ∈ (0,L N (Ω)) and C > 0, depending
only on Ω, such that ´

Ω
|∇u|2 dL N´
Ω
u2 dL N

≥ C

(L N (supp(u)))
2
N

,

∀u ∈ W 1,2(Ω), u �≡ 0, such that L N (supp(u)) ≤ v0.

Proof. Let u ∈ W 1,2(Ω). Then by Theorem 3.8 there exists ũ ∈ L2(Ω,L N ) such
that ũ = u L N -a.e. in Ω and such that ũ ∈ W 1,2(Ω, d|Ω,L

N |Ω), where d denotes

the Euclidean distance (recall also Remark 2.7). Moreover by Theorem 3.2 the
m.m.s. (X, d,m) := (Ω, d|Ω,L

N |Ω) satisfies the hypotheses of Proposition 5.1. Fi-

nally by Lemma 3.6, we have L N (∂Ω) = 0. Let v0 < m(X) = L N (Ω) and C > 0 be
the constants given by Proposition 5.1, which depend only on Ω. Consider the open
set Uε := (supp(ũ))ε, ε > 0. Then L N (Uε) → L N (supp(ũ)) = L N (supp(u)) as
ε → 0, having also used that L N (∂Ω) = 0. Hence assuming that L N (supp(u)) <

v0, we have that m(Uε) ≤ v0 for ε small enough. Clearly ũ ∈ W 1,2
0 (Uε) (recall

(2.9)); hence we can apply (5.2) and obtain´
Ω
|∇ũ|2 dL N´
Ω
ũ2 dL N

≥ C

m(Uε)
2
n

.

Letting ε → 0 and recalling that
´
Ω
|∇ũ|2 dL N =

´
Ω
|∇u|2 dL N concludes the

proof. �
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We pass to the statement of our main Faber–Krahn inequality for small volumes.

Theorem 5.3 (Almost Euclidean Faber–Krahn inequality for small volumes). Let
(X, d,m) be a bounded PI space of doubling dimension N ∈ N \ {1}. Suppose that
for every ε > 0 there exists a closed set Cε ⊂ X with m(Cε) = 0 such that for every
x ∈ X \Cε there exists a constant ρ = ρ(x,N, ε) > 0 satisfying

(5.5) Per(E) ≥ (1− ε)Nω
1
N

N m(E)
N−1
N , ∀E ⊂ Bρ(x) Borel,

Then for every ε ∈ (0, 1) and η > 0, there exists an open set Uε,η with m(Uε,η) < η
and constants δ = δ(X, ε,N, η) > 0, δ′ = δ′(X, ε,N) > 0 such that for every Ω ⊂ X
open satisfying

m(Ω) ≤ δ,
m(Ω ∩ Uε,η)

m(Ω)
≤ δ′,

and, denoted by Ω∗ := Br(0) ⊂ RN the ball satisfying m(Ω) = L N (Ω∗), it holds

(5.6) λ1(Ω) ≥ (1− ε)λ1(Ω
∗).

The key point of Theorem 5.3 is that the constant δ′ does not depend on η. This
will be crucial in the proof of the main result, which will be done in Section 6.
Indeed we will eventually need to get rid of δ′ by sending η → 0 (see in particular
(6.8)).

Remark 5.4. Thanks to Theorem 3.2 we know that, given (Y, d̃,HN ) an RCD(K,N)
space and Ω ⊂ Y a uniform domain, the metric measure space (X, d,m) :=

(Ω, d̃|Ω,H
N |Ω) satisfies the hypotheses of the above Theorem 5.3. This will ac-

tually be the way in which we will apply this result in the sequel.

In the proof of Theorem 5.3, we will make use of the following elementary ob-
servation.

Lemma 5.5. Let (X, d,m) be a m.m.s. and f ∈ LIPc(X), f �≡ 0, f ≥ 0. It holds´
X
|Df |2 dm´

X
|f |2 dm ≥ λ1({f > 0}).

Proof. Let ψn := (f − 1
n )

+. Then ψn ∈ LIPc({f > 0}) and for n ∈ N sufficiently
large, ψn �≡ 0. Then for n large, ψn is a competitor in (2.15), so

λ1({f > 0}) ≤ lim
n→+∞

´
X
|Dψn|2 dm´

X
|ψn|2 dm

= lim
n→+∞

´
{f≥1/n} |Df |2 dm´

{f≥1/n} |f − 1/n|2 dm =

´
X
|Df |2 dm´

X
|f |2 dm ,

where the first equality follows from the locality of the weak upper gradient. �

We are now ready to prove the Faber–Krahn inequality for small volumes.

Proof of Theorem 5.3. Fix ε ∈ (0, 1) and η > 0. Let β = β(X, ε
2 , N, η) > 0, β′ =

β′( ε2 ) > 0, U ε
2 ,η

⊂ X be respectively the constants and the set as given in Theo-
rem 4.1 and recall that m(U ε

2 ,η
) < η. In the following, we will simply write β and

β′ to denote these constants and write U to denote the set U ε
2 ,η

.
Let δ, δ′ ∈ (0, 1) be constants small enough to be chosen later and in such a way

that δ will depend in the end only on X, ε,N, η, while δ′ only on X, N, ε.
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Fix Ω ⊂ X open such that

m(Ω) ≤ δ,
m(Ω ∩ U)

m(Ω)
≤ δ′,

and define Ω∗ := Br(0) ⊂ RN where r > 0 is so that L N (Ω∗) = m(Ω). Up to
choosing δ < m(X) we can also assume that Ω �= X.

Let u ∈ LIPc(Ω) be a competitor in the infimum of (2.20). In particular, u �≡ 0,
u ≥ 0, and lip(u) �= 0 m-a.e. in {u > 0}.

We divide two cases:

Case 1 (m({u > 0}) ≤ 3
√
δ′m(Ω)). From Lemma 5.5 and Proposition 5.1, we have

(5.7)

´
X
|Du|2 dm´
X
u2 dm

≥ λ1({u > 0}) ≥ C(X, N)

m(u > 0)
2
N

≥ C(X, N)(3
√
δ′)−

2
N

m(Ω)
2
N

≥
2(jN−2

N
)2ω

2
N

N

L N (Ω∗)
2
N

(5.1)
= 2λ1(Ω

∗),

with C(X, N) > 0 being the constant given by Proposition 5.1, which can be applied

if 3
√
δ′δ ≤ v0(X) (where v0(X) is given by Proposition 5.1) and the last inequality

in (5.7) holds provided 3
√
δ′ < C(X,N)N/2

2N/2(jN−2
N

)NωN
.

Case 2 (m({u > 0}) > 3
√
δ′m(Ω)). Set

s := sup{t : m({u > t}) ≥ 2
√
δ′m(Ω)}

and observe that s > 0 and that

m({u > s}) ≤ 2
√
δ′m(Ω),

m({u > t}) ≥ 2
√
δ′m(Ω), ∀ t < s.

The first one follows because m({u > s}) = limt→s+ m({u > t}) ≤ 2
√
δ′m(Ω), while

for the second note that t �→ m({u > t}) is monotone non-increasing. Set û := u∧s
and ũ := (u − s)+, so that u = û + ũ and û, ũ are in LIPc(Ω) and û ≥ 0, ũ ≥ 0,
û �≡ 0, ũ �≡ 0. Observe that if multiply u by a constant c > 0, u still satisfies the
hypotheses of Case 2 and the number s defined above gets also multiplied by c.

Hence also û gets multiplied by c. Therefore, since the value
´
|Du|2 dm´
u2 dm

is scaling

invariant, up to multiplying u by a constant we can assume that
´
X
û2 dm = 1.

Then ´
X
|Du|2 dm´
X
u2 dm

=

´
X
|Dû|2 + |Dũ|2 dm´

X
û2 dm+

´
X
ũ2 + 2

´
X
ûũ dm

≥
´
X
|Dû|2 + |Dũ|2 dm

1 +
´
X
ũ2 dm+ 2

√´
X
ũ2 dm

.(5.8)

Using again Lemma 5.5 applied with f = ũ and noting that {ũ > 0} = {u > s},
we have

(5.9)

´
X
|Dũ|2 dm´

X
|ũ|2 dm ≥ λ1({u > s}) ≥ C(X, N)

m({u > s}) 2
N

≥ C(X, N)

(2
√
δ′m(Ω))

2
N

,

where the second inequality follows from Proposition 5.1 (which as above can be

applied provided 2
√
δ′δ ≤ v0(X)). Moreover, since m({u > t}) ≥ 2

√
δ′m(Ω), for

every t < s, we have

m({u > t} ∩ U)

m({u > t}) ≤ m(Ω ∩ U)

m({u > t}) ≤ δ′m(Ω)

2
√
δ′m(Ω)

=

√
δ′

2
< β′,
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provided δ′ ≤ (β′)2 (recall that β′ depends only on ε). We also have m({u > t}) ≤
m(Ω) ≤ δ ≤ β, provided δ ≤ β. Therefore we can apply Theorem 4.1 to the set
E = {u > t} and obtain

Per({u > t}) ≥
(
1− ε

2

)
Nω

1
N

N m({u > t})
N−1
N , ∀ t < s.

We can then apply the Pólya–Szegő inequality in point i) of Theorem 2.22 to the
function û (note that assumption (2.26) is satisfied by provided δ ≤ w0(X), where
w0(X) is the constant given by Proposition 2.18), to getˆ

|Dû|2 dm =

ˆ
{u≤s}

|Du|2 dm ≥
(
1− ε

2

)2
ˆ s

0

ˆ
RN

|Du∗
N | dPer({u∗

N > t}) dt

=
(
1− ε

2

)2
ˆ
{u∗

N≤ s}
|Du∗

N |2 dL N =
(
1− ε

2

)2
ˆ
RN

|D(u∗
N ∧ s)|2 dL N ,

where u∗
N ∈ LIPc(Ω

∗) is the Euclidean monotone rearrangement of u (see Defini-
tion 2.21) and where in the second to last equality we used the coarea formula in the
Euclidean space (see, e.g., [71, Theorem 18.1]). Moreover since u∗

N ∧ s ∈ LIPc(Ω
∗),

we haveˆ
RN

|D(u∗
N ∧s)|2 dL N ≥ λ1(Ω

∗)

ˆ
RN

|u∗
N ∧s|2 dL N = λ1(Ω

∗)

ˆ
X

|û|2 dm = λ1(Ω
∗),

where in the first identity we used the equimeasurability of u and uN . Hence

(5.10)

´
|Dû|2 dm´
X
û2 dm

≥
(
1− ε

2

)2

λ1(Ω
∗).

Therefore we can plug (5.9) and (5.10) into (5.8) to get

´
X
|Du|2 dm´
X
u2 dm

≥

(
1− ε

2

)2
λ1(Ω

∗) + C(X,N)

(2
√
δ′m(Ω))

2
N
A2

1 +A2 + 2A
,

where A :=
(´

X
ũ2 dm

) 1
2 . We now minimize in A ∈ [0,∞). To do so we observe

that the function f(t) := a+bt2

1+t2+2t , a, b > 0, has derivative f ′(t) = 2(bt−a)
(1+t)3 . Hence f

has a global minimum in [0,∞) at t = a
b of value f(ab ) =

a
1+ a

b
. Therefore we obtain

´
X
|Du|2 dm´
X
u2 dm

≥
(
1− ε

2

)2
λ1(Ω

∗)

1 +
(
1− ε

2

)2
λ1(Ω∗)(2

√
δ′m(Ω))

2
N C(X, N)−1

(5.1)
=

(
1− ε

2

)2
λ1(Ω

∗)

1 +
(
1− ε

2

)2 (
jN−2

N

)2

(ωN2
√
δ′)

2
N C(X, N)−1

.

Choosing δ′ small enough, depending only on ε,N and X, such that(
1− ε

2

)2
1 +

(
1− ε

2

)2 (
jN−2

N

)2

(ωN2
√
δ′)

2
N C(X, N)−1

> 1− ε,

we get the conclusion.

�
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6. Proof of main theorem

In this section, we prove Theorem 1.1 and Corollaries 1.2, 1.3 combining the
results of all the previous sections. One last ingredient, contained in the next
statement, is a crucial inequality relating the eigenvalue of an eigenfunction with
the first Dirichlet eigenvalue of one of its nodal domains. This can be seen as
a generalization of [17, Lemme 2 in Appendix D] proved there in the setting of
Riemannian manifolds. Recall also that eigenfunctions of the Laplacian in PI spaces
are continuous (see Theorem 2.17).

Proposition 6.1. Let (X, d,m) be a bounded infinitesimally Hilbertian PI space,
Ω ⊂ X be open and f be a Dirichlet or Neumann eigenfunction of the Laplacian in
Ω of eigenvalue λ. If U ⊂ Ω is a nodal domain of (the continuous representative
of ) f , then U is open in X and it holds

(6.1) λ1(U) ≤ λ =

´
U
|Df |2 dm´
U
f2 dm

.

In [17] (in Riemannian setting), it is shown that the first in (6.1) is actually an
equality in the Dirichlet case, however we do not know whether the same is true also
in this more general setting. Nevertheless (6.1) will be sufficient for our purposes.

Specializing Proposition 6.1 to the Euclidean setting we also obtain the following
result which, even if not needed in the sequel, we believe is interesting on its own. In
particular, it extends previous results in [70, Proposition 1.7] and [15, Lemma 3.3],
where the same was proved respectively for C1,1 domains and for planar piecewise
smooth domains.

Corollary 6.2 (Green’s formula for eigenfunctions). Let Ω ⊂ RN be a uniform
domain, and let f be a Neumann eigenfunction in Ω of eigenvalue λ. Then for
every U nodal domain of f , it holdsˆ

U

|∇f |2 dL N = λ

ˆ
U

f2 dL N .

Proof. Let f be as in the statement and U be a nodal domain of f . From Corol-
lary 3.10, there exists f̃ ∈ L2(Ω,L N ) such that f̃ = f L N -a.e. in Ω and such that

f̃ is an eigenfunction for the Laplacian of eigenvalue λ in the m.m.s. (Ω, d|Ω,L
N |Ω),

where d denotes the Euclidean distance (recall also Remark 2.7). Moreover
(Ω, d|Ω,L

N |Ω) is an infinitesimally Hilbertian PI space thanks to Theorem 3.9.

Hence f̃ is continuous in Ω (recall Theorem 2.17). Proposition 3.12 then says

that the set ϕ(U) := U ∪ (∂U ∩ ∂Ω \ {f = 0}) is a nodal domain of f̃ . Finally
by Lemma 3.6, we have L N (∂Ω) = 0. Therefore applying Proposition 6.1 to

(X, d,m) = (Ω, d|Ω,L
N |Ω) and f̃ , we get

λ

ˆ
U

f2 dL N = λ

ˆ
ϕ(U)

(f̃)2 dL N (6.1)
=

ˆ
ϕ(U)

|Df̃ |2 dL N

=

ˆ
U

|Df̃ |2 dL N =

ˆ
U

|∇f |2 dL N ,

where the last equality follows by Theorem 3.8. This concludes the proof. �



1174 N. DE PONTI, S. FARINELLI, AND I. Y. VIOLO

Proof of Proposition 6.1. Let f be a Dirichlet or Neumann eigenfunction of the
Laplacian in Ω of eigenvalue λ, and let U be one of its nodal domains. Since (X, d,m)
is a PI space, the metric space (X, d) is locally connected; hence by Lemma 2.2,
we have that U is open and that either f > 0 or f < 0 in U . Assume without

loss of generality that f is positive in U . Define ψn :=
(
f − 1

n

)+
χU , and note that

d(supp(ψn),X \U) > 0. We claim that ψn ∈ W 1,2
0 (U). To see this, let ϕ ∈ LIP(R)

satisfy |ϕ| ≤ 1, ϕ(t) = 0 for t ≤ 0 and ϕ(t) = 1 for t ≥ d(supp(ψn), U
c). Then ψn =(

f − 1
n

)+
ϕ(d(·,X \U)) with

(
f − 1

n

)+
in W 1,2(X) from the chain rule (see (2.1))

and ϕ(d(·,X \U)) ∈ LIP∩L∞(X). Therefore the Leibniz rule for the minimal weak
upper gradient (see (2.1)) implies that ψn ∈ W 1,2(X). Since d(supp(ψn),X \U) > 0,
the claim follows (recall (2.9)). From (2.16), we have

(6.2) λ1(U) ≤ lim
n→+∞

´
U
|∇ψn|2 dm´
U
ψ2
n dm

.

Now we observe that (ψn)n∈N converges to fχU in L2(m). Indeed

lim
n→+∞

ˆ
U

|ψn − f |2 dm ≤ lim
n→+∞

1

n2
m (U) = 0.

Moreover

lim
n→+∞

‖|Dψn|‖2L2(X) = lim
n→+∞

ˆ
U∩{f> 1

n}
|Df |2 dm =

ˆ
U

|Df |2 dm,

where the first equality follows from the locality of the weak upper gradient and the
second by monotone convergence theorem. This implies that fχU ∈ W 1,2(X) (see,
e.g., [51, Proposition 2.1.19]). Again by the locality of the weak upper gradient, we
have

‖|D(fχU )|‖L2(X) = ‖|Df |‖L2(U),

and so {ψn}n∈N converges to fχU in W 1,2(X). In particular

lim
n→+∞

´
U
|∇ψn|2 dm´
U
ψ2
n dm

=

´
U
|∇f |2 dm´
U
f2 dm

.

The result follows once we observe that

(6.3)

´
U
|∇f |2 dm´
U
f2 dm

= λ.

To see this by definition of eigenfunction (both in the Dirichlet case and the Neu-
mann case) and since supp(ψn) ⊂ U one has

−
ˆ
U

∇f · ∇ψn dm = λ

ˆ
U

fψn dm, ∀n ∈ N,

from which (6.3) follows passing to the limit and noting

lim
n→+∞

∣∣∣∣
ˆ
U

∇f · ∇ψn dm−
ˆ
U

∇f · ∇f dm

∣∣∣∣
≤ lim

n→+∞
‖|Df |‖L2(U)‖|D(ψn − fχU )|‖L2(U) = 0,

where we used the bilinearity of the scalar product, (2.6) and that |D(ψn − f)| =
|D(ψn − χUf)| m-a.e. in U , by locality. �

Before proving Theorem 1.1, we give a precise definition of the nodal domain
counting function which appears in its statement.
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Definition 6.3 (Nodal domains counting functions). Let (X, d,m) be an infinites-
imally Hilbertian PI space and Ω ⊂ X be a uniform domain (resp. bounded open
set). The nodal domain counting function MN

Ω : N → N ∪ {+∞} (resp. MD
Ω : N →

N ∪ {+∞}) is given by

MN
Ω (k) := sup{M(u) : u Neumann eigenfunction in Ω of eigenvalue λN

k (Ω)},(
resp. MD

Ω (k) :=sup{M(u) : u Dirichlet eigenfunction in Ω of eigenvalue λD
k (Ω)}

)
,

k ∈ N,

where {λN
k (Ω)}k (resp. {λD

k (Ω)}k) are the eigenvalues of the Neumann (resp. Dirich-
let) Laplacian in Ω, which has discrete spectrum by Corollary 3.10 (resp. by obser-
vation (2.22)), and where M(u) is the number of nodal domains of the continuous
representative of u in Ω, which exists by Theorem 2.17.

We are finally ready to prove the main result of the note. We will first prove
the Neumann case and then the Dirichlet case. The proofs are essentially identical
with our approach, but to avoid confusion we decided to keep them separated.

Proof of Theorem 1.1 in the Neumann case. Consider the m.m.s. (Ω, d|Ω,m|Ω) and
observe that by Theorem 3.2 it satisfies the hypotheses of Theorem 5.3 (see also
Remark 5.4). Fix ε ∈ (0, 1), η > 0, and let δ = δ(Ω, ε,N, η) > 0, δ′ = δ′(Ω, ε,N) >
0 and Uε,η ⊂ Ω be the constants and the set given by Theorem 5.3 applied to

(Ω, d|Ω,m|Ω). Recall that m(Uε,η) ≤ η.

Let u ∈ W 1,2(Ω) be a Neumann eigenfunction in Ω of eigenvalue λN
k (Ω) > 0.

Let {Ωi}M(u)
i=1 an enumeration of the nodal domains of its continuous representative.

Note that the nodal domains are countable because they are open, since (X, d) is
locally connected (recall Lemma 2.2). However a priori it could be that M(u) =
+∞. Thanks to Corollary 3.10, we know that there exist ũ ∈ W 1,2(Ω, d|Ω,m|Ω)
eigenfunction of the Laplacian in (Ω, d|Ω,m|Ω) of the same eigenvalue λN

k (Ω) and

such that ũ|Ω = u. By Theorem 2.17, it holds that ũ has a continuous representative

in Ω. Hence thanks to Proposition 3.12, we deduce that ũ has the same number of
nodal domains {Ω̃i}i=1,...,M(u), where Ω̃i ⊂ Ω. Thanks to Theorem 3.2, we can now

apply Proposition 5.1 and Proposition 6.1 to the m.m.s. (Ω, d|Ω,m|Ω) and deduce

that for any i ∈ {1, . . . ,M(u)}, it holds

(6.4) λN
k (Ω) ≥ λ1(Ω̃i), λ1(Ω̃i) ≥

C(Ω)

m(Ω̃i)
2
N

,

where λ1(Ω̃i) is the first eigenvalue of the Dirichlet Laplacian computed in the
m.m.s. (Ω, d|Ω,m|Ω) (see Definition (2.15)) and where C(Ω) > 0 is a constant

depending only on Ω and N . Combining the two inequalities above, we deduce
that M(u) < +∞ and that

M(u)

(
C(Ω)

λN
k (Ω)

)N
2

≤
M(u)∑
i=1

(
C(Ω)

λ1(Ω̃i)

)N
2

≤
M(u)∑
i=1

m(Ω̃i) ≤ m(Ω),
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because the sets Ω̃i are pairwise disjoint. We define three sets:

S1 := {i ∈ {1, . . . ,M(u)} : m(Ω̃i) ≥ δ},
S2 := {i ∈ {1, . . . ,M(u)} : m(Ω̃i ∩ Uε,η) ≥ δ′m(Ω̃i)},

S3 := {i ∈ {1, . . . ,M(u)} : m(Ω̃i) ≤ δ,m(Ω̃i ∩ Uε,η) ≤ δ′m(Ω̃i)}.

Notice that S1 ∪ S2 ∪ S3 = {1, . . . ,M(u)}. Clearly

(6.5) #S1 ≤ m(Ω)

δ
.

On the other hand, similarly as above, using (6.4)

#S2 · δ′
(

C(Ω)

λN
k (Ω)

)N/2

≤
∑
i∈S2

δ′m(Ω̃i) ≤
∑
i∈S2

m(Ω̃i ∩ Uε,η) ≤ m(Uε,η) ≤ η,

and thus

(6.6) #S2 ≤
(
λN
k (Ω)

C(Ω)

)N
2 η

δ′
.

Finally by Theorem 5.3 it holds that λ1(Ω̃i) ≥ λ1(Ω
∗
i )(1−ε) for every i ∈ S3, where

Ω∗
i := Bri(0) ⊂ RN is the ball satisfying m(Ω̃i) = L N (Ω∗

i ). Therefore for every
i ∈ S3,

λN
k (Ω)

(6.4)

≥ λ1(Ω̃i) ≥ λ1(Ω
∗
i )(1− ε)

(5.1)
= (1− ε)

(
ωN

L N (Ω∗
i )

) 2
N

j2(N−2)
N

= (1− ε)
αN

m(Ω̃i)
2
N

,

where we have put αN := ω
2/N
N j2(N−2)

N

. This leads to

(6.7) #S3 ≤
(

λN
k (Ω)

(1− ε)αN

)N
2

m(Ω).

Combining (6.5), (6.6) and (6.7), we reach

M(u)

k
≤ #S1 +#S2 +#S3

k

≤ m(Ω)

kδ(Ω, ε,N, η)
+

λN
k (Ω)

N
2

k

1

C(Ω)
N
2

η

δ′(Ω, ε,N)

+

(
λN
k (Ω)

(1− ε)αN

)N
2 m(Ω)

k
.

Note that the right-hand side is independent of u; hence we can take the supremum
among all Neumann eigenfunctions in Ω of eigenvalue λN

k (Ω) and obtain

MN
Ω (k)

k
≤ m(Ω)

k

1

δ(Ω, ε,N, η)
+

λN
k (Ω)

N
2

k

1

C(Ω)
N
2

η

δ′(Ω, ε,N)

+

(
λN
k (Ω)

(1− ε)αN

)N
2 m(Ω)

k
,
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where MN
Ω (k) is as in Definition 6.3. Passing to the lim as k → +∞, using (3.2),

(6.8) lim
k→+∞

MN
Ω (k)

k
≤ (2π)N

ωNm(Ω)

1

C(Ω)
N
2

η

δ′(Ω, ε,N)
+

(2π)N

ωN

1

((1− ε)αN )
N
2

,

sending first η → 0 and then ε → 0 (note that both δ′ and ε are independent of η)
we conclude that

lim
k→+∞

MN
Ω (k)

k
≤ (2π)N

ωNα
N
2

N

=
(2π)N

ω2
N jN(N−2)

N

< 1,

where for the last inequality we refer to [17, Lemme 9]. �

Proof of Theorem 1.1 in the Dirichlet case. Let u ∈ W 1,2
0 (Ω) be a Dirichlet eigen-

function in Ω of eigenvalue λD
k (Ω). Without loss of generality we can assume that

(X, d,m) satisfies the hypotheses of Theorem 5.3. Otherwise we can take a uni-
form domain U ⊂ X such that Ω ⊂ U (which exists by [84]) and replace (X, d,m)
with (U, d|U ,m|U ), which by Theorem 3.2 satisfies the hypotheses of Theorem 5.3.

Moreover it is a direct verification that the function u ∈ L2(Ω) remains a Dirichlet
eigenfunction in Ω of eigenvalue λD

k (Ω) also in the new space (U, d|U ,m|U ). Indeed
W 1,2

0 (Ω) viewed as a subset of L2(Ω) in the space (X, d,m) coincides with W 1,2
0 (Ω)

viewed as a subset of L2(Ω) in the space (U, d|U ,m|U ), and the corresponding min-

imal w.u.g. also coincide (see [9, Prop. 6.4]).
Fix now ε ∈ (0, 1), η > 0, and let δ = δ(X, ε,N, η) > 0, δ′ = δ′(X, ε,N) > 0 and

Uε,η ⊂ X be the constants and the set given by Theorem 5.3 applied to (X, d,m).
Recall that m(Uε,η) ≤ η. From here, the proof proceeds almost verbatim as in the
Neumann case, by considering the sets

S1 := {i ∈ {1, . . . ,M(u)} : m(Ωi) ≥ δ},
S2 := {i ∈ {1, . . . ,M(u)} : m(Ωi ∩ Uε,η) ≥ δ′m(Ωi)},

S3 := {i ∈ {1, . . . ,M(u)} : m(Ωi) ≤ δ,m(Ωi ∩ Uε,η) ≤ δ′m(Ωi)},

where {Ωi}M(u)
i=1 is an enumeration of the nodal domains of the continuous repre-

sentative of u, and then exploiting the inequalities

λN
k (Ω) ≥ λ1(Ωi), λ1(Ωi) ≥

CX

m(Ωi)
2
N

, for all i ∈ {1, . . . ,M(u)}

which hold by Proposition 5.1 and Proposition 6.1 (that we can apply again by
Theorem 3.2), together with

λ1(Ωi) ≥ λ1(Ω
∗
i )(1− ε), for all i ∈ S3,

(Ω∗
i := Br(0) ⊂ RN being the ball satisfying m(Ωi) = L N (Ω∗

i )) that holds by
Theorem 5.3. �

For completeness, we conclude with the proofs of the Corollaries 1.2 and 1.3,
even if they are essentially already included in Theorem 1.1.

Proof of Corollary 1.2. We apply Theorem 1.1 with Ω = X. Notice that the choice
is admissible since X is assumed to be compact, and thus Ω is trivially a uniform
domain inside X. From the discussion in Section 2.1, we know that Δ = ΔN in this
situation, and thus the result follows. �
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Proof of Corollary 1.3. The metric measure space (RN , | · |,HN ), where HN is
the N -dimensional Hausdorff measure is a non-collapsed RCD(0, N) (recall Re-
mark 2.26). Hence the result follows applying Theorem 1.1, recalling also the
compatibility between Neumann eigenfunctions in the metric setting and the usual
ones (see Remark 2.7). �
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[83] T. Rajala, Local Poincaré inequalities from stable curvature conditions on metric spaces,
Calc. Var. Partial Differential Equations 44 (2012), no. 3-4, 477–494, DOI 10.1007/s00526-
011-0442-7. MR2915330

[84] T. Rajala, Approximation by uniform domains in doubling quasiconvex metric spaces, Com-
plex Anal. Synerg. 7 (2021), no. 1, Paper No. 4, 5, DOI 10.1007/s40627-021-00062-3.
MR4221625

https://mathscinet.ams.org/mathscinet-getitem?mr=4173928
https://arxiv.org/abs/2303.11136v2
https://mathscinet.ams.org/mathscinet-getitem?mr=4288676
https://mathscinet.ams.org/mathscinet-getitem?mr=676988
https://mathscinet.ams.org/mathscinet-getitem?mr=3146820
https://doi.org/10.1007/BF02392869
https://mathscinet.ams.org/mathscinet-getitem?mr=631089
https://mathscinet.ams.org/mathscinet-getitem?mr=4071338
https://mathscinet.ams.org/mathscinet-getitem?mr=3637960
https://mathscinet.ams.org/mathscinet-getitem?mr=3273192
https://mathscinet.ams.org/mathscinet-getitem?mr=3973450
https://mathscinet.ams.org/mathscinet-getitem?mr=2976521
https://mathscinet.ams.org/mathscinet-getitem?mr=595191
https://mathscinet.ams.org/mathscinet-getitem?mr=565886
https://mathscinet.ams.org/mathscinet-getitem?mr=2005202
https://mathscinet.ams.org/mathscinet-getitem?mr=4088507
https://mathscinet.ams.org/mathscinet-getitem?mr=3728284
https://mathscinet.ams.org/mathscinet-getitem?mr=4453227
https://mathscinet.ams.org/mathscinet-getitem?mr=2869253
https://mathscinet.ams.org/mathscinet-getitem?mr=80861
https://mathscinet.ams.org/mathscinet-getitem?mr=2457442
https://mathscinet.ams.org/mathscinet-getitem?mr=43486
https://mathscinet.ams.org/mathscinet-getitem?mr=2927398
https://mathscinet.ams.org/mathscinet-getitem?mr=2915330
https://mathscinet.ams.org/mathscinet-getitem?mr=4221625


1182 N. DE PONTI, S. FARINELLI, AND I. Y. VIOLO
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