
Master in High Performance Computing

Optimization of the Direct Simulation
Monte Carlo code (DSMC3D) for

rarefied gas flow simulations

Supervisor(s):
Dr. Ivan Girotto ICTP-MHPC
Reviewer :
Dr. Andrew Emerson CINECA, HPC department

Candidate:
Dr. Orlenys Natali Troconis

7th edition
2020–2021

i

To all of the scientists in refugee situation.

ii

Acknowledgement
Thanks to my supervisor Ivan Girotto for sharing with me his knowledge, for his patience,

thanks for understanding me when I needed to perform a surgical procedure, for your un-

derstanding when I needed to meet my mother after so many years. Thank you even for

the moments in which you lost your patience because it gave me a boost. Thank you for

proposing this thesis to me as a door to the possibility to find a job.

Thanks to my Cineca colleague Andrew Emerson for his detailed review and valuable com-

ments for this thesis. Thanks a lot to dedicate your time to read, comment and to explain

me your observations. I really appreciate! Thanks to my Cineca colleague Laura Bellantani

to guide me in the use of the parallel profiling tool intel APS.

Thanks to Dr. Gianluca Di Staso for his support in the initial phase of this project. Thanks

for your patience and for sharing with me your code.

Thanks to the International Center of Theoretical Physics (ICTP - Trieste, Italy) for giving

me the opportunity to study this master, for help me not only from the economical point

of view but as well to recover my professional path after been in a difficult situation as a

refugee in Spain.

Thanks to my dear friend Ralph Gebauer because thanks to you I realized the existence

of the master in HPC. Thanks for supporting me everyday with you friendship. Thanks a

lot my dear friend from the deep of my hart! You really know the meaning of the word:

friendship! Thanks to Prof. Joe Niemela for his support when I asked him help when I was

in a difficult situation. I will always be grateful to you!

Thanks to my MHPC colleagues Saeid Aliei, Mattia Mencagli and Marco Celoria for their

help when I need it. Thanks to my ICTP friends: Alessandro Porcella and Emily Sabina for

their friendship and support.

Thanks to the most important person in my life: my mom Irma Troconis. Thanks for all of

your love. Te amo mami! Thanks to my syster Aimara Troconis for been with me from the

distance everyday since I left my country. Te amo hermanita!

Thanks to two important people that help me during my hard time in Spain: Nieves Alvarez

(QEPD) and Luis Vidal. Gracias por haberme ayudado siempre Luis!

iii

Abstract

The Direct Simulation Monte Carlo DSMC method has become the method of choice

for modeling rarefied gas dynamics in a variety of scenarios after its introduction 50 years

ago. Several parallel DSMC codes have been developed over the last 30 years to leverage

the increasing computational power of parallel machines. In this work we are going to focus

on the DSMC3D code developed at Eindhoven University of Technology. The code is based

on the message passing interface paradigm (MPI) using a cartesian domain decomposition.

However, at large scales the code presents some load balancing issues that impact the per-

formance. The main objective of the project is to introduce another level of parallelization

using a shared memory approach with OpenMP that allows us to reduce the number of

MPI’s processes.

Keywords: direct simulation Monte Carlo, shared memory, distributed memory

List of Figures

2.1 ICTP cluster: ARGO. 5

2.2 Cineca cluster: Marconi - A3 (Skylake). 6

2.3 Output example for the unbalance case (𝑃 = 417.54Pa). 7

2.4 Flow with open boundary conditions. 9

2.5 Breakdown of the average x call time for 𝑃 = 835.08Pa, density = 1.008×1023,

number of molecules=400000, 𝑣𝑥 = 10m/sec, 𝛾 = 1.67, mass = 6.63×10−26kg.

Benchmark for processes with maximum (𝑁𝑚𝑎𝑥) and minimum (𝑁𝑚𝑖𝑛) number

of particles and master process. Run on ARGO long queue using the intel

compiler. Grid 200 x 40 x 10 cells. 12

3.1 Particles configuration before (red dots) and after the streaming step (green

dots) [10] . 15

3.2 Sketch of the data structure used in the DSMC original code. Explana-

tion for the 𝑑𝑠𝑚𝑐_𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔 (left) and the particles selection for the colli-

sion phase 𝑑𝑠𝑚𝑐_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 (right). The highlighted number in the yellow

square represents the cell id number. In the example we are using a 2D grid

𝑁𝑋 ×𝑁𝑌 = 2× 4 cells. 16

3.3 Sketch representing the pre-collision, 𝜉1, 𝜉2, and post-collision, 𝜉*1 , 𝜉*2 , particles

velocities. The velocity of the center of mass, 𝜉𝑐𝑚, is given by Eq. 3.1. The

pre and post relative velocities are 𝜉𝑟 and 𝜉*𝑟 , respectively [10]. 17

3.4 Sketch of the new data structure. The highlighted number in the yellow

square, represents the cell id number. In the example we are using a 2D grid

𝑁𝑋 ×𝑁𝑌 = 2× 4 cells. 20

v List of Figures

3.5 Script example to generate the aps report directory in Marconi-skl. 24

3.6 APS report graphic for the optimized code 1 node (48 cores) - 4 MPI tasks

and 12 OMP threads. 25

3.7 Speedup for original vs hybrid (denoted by omp1th, omp4th, omp6th and

omp12th) code in Marconi for 1, 2, 4 and 8 nodes. The hybrid version corre-

sponds to the use of 1, 4, 6 and 12 threads. Parameters defined on table 3.1,

for a total number of steps=1000. 26

3.8 Elapsed and time spent inside the MPI library of the total simulation using

aps-report profiling intel tool for original vs hybrid code in Marconi for 1, 2, 4

and 8 nodes. The stacked plots for the original code are those with 48, 96, 192

and 384 MPIs. The stacked plots for the hybrid version are those combining

number of MPIs and OMP threads (for example 48 + 1th, 8 + 6th, etc). The

parameters are defined on table 3.1, for a total number of steps=1000. 27

3.9 Top MPI functions using aps-report profiling intel tool for original vs hybrid

code in Marconi for 1, 2, 4 and 8 nodes. The stacked plots for the original

code are those with 48, 96, 192 and 384 MPIs. The stacked plots for the

hybrid version are those combining number of MPIs and OMP threads (for

example 48 + 1th, 8 + 6th, etc). Parameters defined on table 3.1, for a total

number of steps=1000. 27

3.10 Rank-to-rank communication matrix for 1node Marconi-skl original code. Top

left original code 48MPI vs hybrid code (top right: 48 MPI + 1 thread, bottom

left: 8 MPI + 6 threads and bottom right: 4 MPI + 12threads) 28

3.11 Average and maximum time in the communication between two ranks (time

collected from the rank-to-rank communication matrix). The stacked plots

for the original code are those with 48, 96, 192 and 384 MPIs. The stacked

plots for the hybrid version are those combining number of MPIs and OMP

threads (for example 48 + 1th, 8 + 6th, etc). 28

List of Tables

3.1 Parameters of the simulation . 23

Contents

List of Figures iv

List of Tables vi

Contents vii

1 Introduction and Motivation 1

2 Performance study and bottlenecks 4

2.1 Architecture description and compilers used 4

2.2 Performance metrics . 6

2.3 Flow with open boundary conditions . 8

2.3.1 Algorithm description for a flow with open boundary conditions . . . 9

2.4 The observed imbalance . 11

3 Code Optimization 13

3.1 Original vs the new data structure. The Poiseuille flow 13

3.1.1 The new data structure implementation 18

3.2 Performance results . 23

4 Conclusions 29

Bibliography 31

Chapter 1

Introduction and Motivation

The Direct Simulation Monte Carlo method was invented more than 50 years ago by

Graeme Bird to describe rarefied gas flows [1, 2]. Since that time, the power of the largest

computers available for scientific simulation has been increased dramatically due to both

continuous advances in processor hardware and the advent of massively parallel supercom-

puters based on cheap commodity components. Initially, parallel machines used single or

few core CPUs; in the last decade, accelerator chips such as GPUs and many core CPUs

(e.g., the Intel KNL processor) have been leveraged for scientific use, including in the largest

parallel machines.

In 1988 the fastest supercomputer (as measured by the LINPACK benchmark) was an

8 processor Cray YMP, which could factor a dense matrix at the rate of 2.1 gigaflops (2.19

floating point operations per second). In 2019 the fastest current machine computes the same

benchmark (for a much larger matrix) at 122 petaflops (122× 1015 floating point operations

per second). In 2022 the world arrived to the exascale (1018) machines, the first one in the

top 10 list (October 2023) being the Frontier machine installed at the Oak Ridge National

Laboratory (ORNL) in Tennessee, USA, operated for the Department of Energy (DOE).

It currently has achieved 1.194 PFlop/s using 8.699.904 cores. At the moment of writing

this thesis (October 2023), the only new machine to grace the top 10 of the list was the

No. 4 Leonardo system at EuroHPC/CINECA in Bologna, Italy. The machine achieved a

linkpack performance 𝑅𝑚𝑎𝑥 of 238.70 PFlop/s [11]. While these performance numbers are

2

for dense-matrix operations, many scientific computational methods, including DSMC, have

benefited from similar factors of speed increase due to Moore’s Law and massive parallelism.

The fundamental DSMC algorithm is inherently parallel. In each time step, particles

advect independently and may experience collisions with surface elements representing the

surfaces of complex objects embedded in the gas flow. Particles are then grouped by grid cell,

and pairwise collisions and chemical reactions are computed independently within each grid

cell. Thus, the advection step can be parallelized over particles, and the collision-chemistry

step can be parallelized over grid cells.

Several parallel DSMC codes have been developed over the last 30 years to leverage the

increasing computational power of parallel machines. In this work we are going to focus on

the DSMC3D code developed at Eindhoven University of Technology by Doctor Gianluca

Di Stasso [10]. The code is based on the message passing interface paradigm (MPI) using

a cartesian domain decomposition. The software was developed to study different kinds of

flows, but we are going to focus in two specific cases: the Poiseuille flow and a flow with

open boundary conditions.

In an MPI base code with a high number of processes load balancing means to dis-

tribute equal amounts of computation to each process while minimizing the volume of com-

munication between them. The DSMC method is expensive in terms of time due to its

particle-based and Monte Carlo nature. The design of the code may require a large amount

of inter-processor communications, that implies load balancing problems and difficulties in

reaching very good parallel scaling performances. In the case of the flow with open boundary

conditions load balancing problems are naturally present since in this case there is a gradient

in the number of particles that makes some processes do more computation than others.

Inspired by the load balancing problems, the main objectives of the thesis are to perform

a deep benchmark of the DSMC3D code for the case of a flow with open boundary conditions,

and introduce another level of paralellization with OpenMP in order to reduce the number

of MPIs processes using a new data structure that allows threaded parallelism over the cells

grid using a standard Poiseuille flow as a model.

The thesis is organized in three chapters: in the first one we present the performance

3

study and bottlenecks for the DSMC3D code for a flow with open boundary conditions. In

the second chapter we introduce a new data structure to be used for the DSMC code for a

Poiseuille flow set-up and present a benchmark for the results obtained in MARCONI-skl

Cineca cluster. Finally, some general conclusions will be presented.

Chapter 2

Performance study and bottlenecks

2.1 Architecture description and compilers used

We are using two HPC architectures: the ICTP’s HPC system ARGO and the Cineca’s HPC

system MARCONI (figures 2.1 and 2.2). Overall, ARGO is a heterogeneous cluster, with

nodes belonging to various generations of Intel CPU micro architectures. We are using the

long queue, based on sandybridge and ivybridge architecture, where we are able to run up to

8 nodes with a time limit of one day. The characteristics of the long queue ARGO partition

for ivybridge micro-architecture are [8]

• Nodes: 8.

• Processors: 2 x 10-cores Intel Ivybridge.

• Cores: 20 cores/node.

• RAM: 64 GB/node

• 40 Gbps Infiniband technology

• Peak Performance: not available.

On MARCONI we are using the third partition 𝐴3 based on Intel Xeon 8160 (SkyLake).

The basic characteristics of Marconi A3 are [5]

• Nodes: 3188.

CHAPTER 2. PERFORMANCE STUDY AND BOTTLENECKS 5

Figure 2.1: ICTP cluster: ARGO.

• Processors: 2 x 24-cores Intel Xeon 8160 (SkyLake) at 2.10 GHz.

• Cores: 48 cores/node.

• RAM: 192 GB/node

• 100 Gb/s Intel OmniPath technology 1

• Peak Performance: ∼ 10 PFlop/s.

The compiler used for the next benchmarks on both architectures is the intel compiler

and for each configuration we used the full node. On ARGO the benchmark is for 1, 2, 4

and 8 nodes, i.e. 20, 40, 80 and 160 cores, respectively. On MARCONI the benchmark is for

1, 2, 4, 8, 16, 32 and 64 nodes, i.e. the number of processes are 48, 96, 192, 384, 768, 1536

and 3072, respectively.

1At the time of setup, MARCONI was the largest Omnipath cluster in the world.

CHAPTER 2. PERFORMANCE STUDY AND BOTTLENECKS 6

Figure 2.2: Cineca cluster: Marconi - A3 (Skylake).

2.2 Performance metrics

There are different metrics for measuring the performance of the DSMC code. In this

project we focus on three of them: the absolute time, the average time per call and the time

per particle. The total time is the elapsed time for a specific kernel (in seconds) which is

based on the use of the 𝑔𝑒𝑡𝑡𝑖𝑚𝑒𝑜𝑓𝑑𝑎𝑦 c function. The average time per call is defined as the

total time divided by the number of calls of a specific kernel

𝐴𝑉 𝐺× 𝐶𝐴𝐿𝐿 =
𝑇𝑜𝑡𝑎𝑙𝑇 𝑖𝑚𝑒

𝑁𝑢𝑚𝐶𝑎𝑙𝑙𝑠
(seconds). (2.1)

The time per particle is the total time of a specific kernel divided by the mean value of the

number of particles for master process < 𝑁 >,

𝑇𝑖𝑚𝑒_𝑝𝑒𝑟_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 =
𝑇𝑜𝑡𝑎𝑙𝑇 𝑖𝑚𝑒

< 𝑁 >
(seconds), (2.2)

CHAPTER 2. PERFORMANCE STUDY AND BOTTLENECKS 7

where < 𝑁 > is computed as the sum of the number of particles at each time step divided

by the number of steps

< 𝑁 >=

∑︀
𝑖𝑠𝑡𝑒𝑝 𝑁

< 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑡𝑒𝑝𝑠 >
(2.3)

Figure 2.3 corresponds to an output example for a run on Marconi for 1600 steps. At

each time step the number of particles for each process is printed, this allows us to compute

the mean value of N for master process. The functions reported in the log file, are those

which the time is higher than 0.5% of the total time of the simulation.

Figure 2.3: Output example for the unbalance case (𝑃 = 417.54Pa).

Finally, the speed-up of the code for the different configurations is computed dividing

the total time of the simulation for 1 node by the time for the different cases,

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑖𝑚𝑒(1𝑛𝑜𝑑𝑒)

𝑇𝑖𝑚𝑒(𝑛𝑛𝑜𝑑𝑒𝑠)
, (2.4)

for example the speed-up for 2 nodes is 𝑇𝑖𝑚𝑒(1𝑛𝑜𝑑𝑒)/𝑇 𝑖𝑚𝑒(2𝑛𝑜𝑑𝑒𝑠).

CHAPTER 2. PERFORMANCE STUDY AND BOTTLENECKS 8

2.3 Flow with open boundary conditions

A flow with open boundary conditions is simulated thanks to the imposition of a desired

pressure at the inlet/outlet sections of the flow domain. The different pressures in the

boundaries, inflow and outflow 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡, respectively, implies a gradient in the number

of particles along the velocity direction. The problem is defined so that the inlet/outlet

surfaces are normal to the x-component of the mean flow velocity vector.

Figure 2.4 explains why we expect load balance issues in a fluid with open boundary

conditions when it is described with a full 3-D DSMC code using the message passing interface

paradigm (MPI). The gradient in the number of particles along the velocity direction implies

that some processes will receive more particles than others; in the figure the process identified

as Proc a with Na particles, and near to the inlet boundary, will do more computation than

a process near to the outlet boundary, Proc b with Nb particles, if some message needs to be

passed from Proc a then Proc b has to wait until Proc a finishes the computation, impacting

the performance of the entire simulation. Moreover, if for some reason the number of particles

for the processes near to the inlet boundary increases a lot and they need to reallocate

memory, then the communication part starts to be affected consequently impacting the

performance.

In the next sections we describe the main algorithm for the open boundary conditions

case and we will show the computation imbalance in place on both architectures described

in subsection 2.1, from the qualitative and quantitative points of view.

CHAPTER 2. PERFORMANCE STUDY AND BOTTLENECKS 9

Figure 2.4: Flow with open boundary conditions.

2.3.1 Algorithm description for a flow with open boundary condi-

tions

In order to understand the different plots for the benchmark on the two architectures (ARGO

and MARCONI), in this section we are going to explain the main functions used in the

algorithm that describes the DSMC3D code (see 1).

The starting point is the initialization of the grid, particles and sampling variables by the

functions 𝑖𝑛𝑖𝑡_𝑑𝑠𝑚𝑐_𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦, 𝑖𝑛𝑖𝑡_𝑑𝑠𝑚𝑐_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑑𝑠𝑚𝑐_𝑖𝑛𝑖𝑡_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 (to initialize

the different velocity components and kinetic energy) and 𝑑𝑠𝑚𝑐_ℎ𝑦𝑑𝑟𝑜𝑣𝑎𝑟 (to initialize the

different components of the momentum).

The time step loop consist of: 𝑑𝑠𝑚𝑐_𝑏𝑐_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑥 which determines the inlet bound-

ary conditions according to the pressure and temperature of the incoming flow (pressure

boundary conditions). The number of sampled particles for the inlet boundary is deter-

mined by a Poisson distribution which mean value is given by equation (3.18) in refer-

ence [10]. Particles are moved and computed their interaction with the boundaries, thanks

to the functions 𝑑𝑠𝑚𝑐_𝑠𝑡𝑒𝑝 and 𝑑𝑠𝑚𝑐_𝑏𝑐. In 𝑑𝑠𝑚𝑐_𝑏𝑐_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑥_𝑟𝑒𝑚𝑜𝑣𝑒 kernel, par-

CHAPTER 2. PERFORMANCE STUDY AND BOTTLENECKS 10

ticles are simply removed when they cross inlet or outlet boundaries. The communication

part corresponds to the function 𝑑𝑠𝑚𝑐_𝑚𝑝𝑖; in this case we split it into the different parts

namely NOMPI (the part in which there are no MPI communication calls), the Send-Receive

part called MPI-Sendrecv (in which the different buffers and their size are sent and re-

ceived), the MPI-Allreduce and MPI-Barrier part. It is important to make note that the

kernels 𝑑𝑠𝑚𝑐_𝑏𝑐_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑥 and 𝑑𝑠𝑚𝑐_𝑏𝑐_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑥_𝑟𝑒𝑚𝑜𝑣𝑒 include collective oper-

ations (𝑀𝑃𝐼_𝐴𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒). The 𝑑𝑠𝑚𝑐_𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔 kernel assigns an index to the particles

according to its position in the cell and subcell (more details about the indexing function in

the next chapter). In 𝑑𝑠𝑚𝑐_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 stochastic binary collisions for particles that resides

in the same subcell are performed in a random fashion. Finally, the variables are sampled

and some statistics are calculated.

Algorithm 1 Main loop of the dsmc code for a flow with open bc
Initialization:cells, particles and sampling variables
1: for Every time step do
2: dsmc_bc_pressure_x (&dsmc_particle,istep_DSMC);
3: dsmc_step ();
4: dsmc_bc ();
5: dsmc_bc_pressure_x_remove(&dsmc_particle,istep_DSMC);
6: dsmc_mpi ();
7: dsmc_indexing ();
8: dsmc_collision ();
9: dsmc_data_sampling ();

10: dsmc_hydrovar ();
11: statistics_dsmc ();
12: end for

CHAPTER 2. PERFORMANCE STUDY AND BOTTLENECKS 11

2.4 The observed imbalance

The imbalance is due to the unequal distribution of workload between the processes and this

impacts parallel performance.

At the end of the simulation we were able to get the log (2.3) file for each process and

as well to identify the process with the maximum and minimum number of particles 𝑁𝑚𝑎𝑥

and 𝑁𝑚𝑖𝑛, respectively. Using such information we can plot the breakdown of the main loop

for each of them as well for the master process. From figure 2.5 we can conclude that the

process with the highest number of particles is spending most of the time on the kernels

related with computation (𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛, 𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔 and 𝑑𝑎𝑡𝑎_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔), on the other hand the

process with fewer number of particles is spending most of the time on kernels with MPI

calls inside (𝑑𝑠𝑚𝑐_𝑏𝑐_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑥, 𝑑𝑠𝑚𝑐_𝑏𝑐_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑥_𝑟𝑒𝑚𝑜𝑣𝑒 and the different parts

of 𝑑𝑠𝑚𝑐_𝑚𝑝𝑖).

CHAPTER 2. PERFORMANCE STUDY AND BOTTLENECKS 12

Figure 2.5: Breakdown of the average x call time for 𝑃 = 835.08Pa, density = 1.008× 1023,
number of molecules=400000, 𝑣𝑥 = 10m/sec, 𝛾 = 1.67, mass = 6.63× 10−26kg. Benchmark
for processes with maximum (𝑁𝑚𝑎𝑥) and minimum (𝑁𝑚𝑖𝑛) number of particles and master
process. Run on ARGO long queue using the intel compiler. Grid 200 x 40 x 10 cells.

Chapter 3

Code Optimization

3.1 Original vs the new data structure. The Poiseuille

flow

A serial or parallel DSMC code involves two important kinds of data: particles and grid cells.

They can be implemented using two kinds of data layout approaches: Array of Structures

(AoS) or Structure of Arrays (SoA). In the DSMC code the AoS is used as the data layout

approach. Particles are defined using a type definition structure identified as 𝑑𝑠𝑚𝑐_𝑡𝑦𝑝𝑒

with around 27 features for a 3-D simulation. Grid cells are defined with a type definition

structure called 𝑐𝑒𝑙𝑙_𝑡𝑦𝑝𝑒 with around 34 features.

The 𝑑𝑠𝑚𝑐_𝑡𝑦𝑝𝑒 stores the information related with the particle in a 3D fashion and its

connection with the 𝑐𝑒𝑙𝑙_𝑡𝑦𝑝𝑒. Part of the features of the data structure 𝑑𝑠𝑚𝑐_𝑡𝑦𝑝𝑒 are: the

molecule’s position components and its variation, velocity components (all of them declared

as double), molecule position in cell and sub cells 1 (integers), one integer called cross refer-

ence list to be used in the collision phase, and some double declared physical characteristics:

mass, diameter, omega (viscosity temperature power law exponent), scattering (reciprocal

of scattering parameter) and the collision cross section.
1In our case the number of sub cells are equal to the number of cells.

CHAPTER 3. CODE OPTIMIZATION 14

The 𝑐𝑒𝑙𝑙_𝑡𝑦𝑝𝑒 data store the information for grid cells. Part of the features are: minimum

and maximum cell coordinate, the cells center coordinates, a counter for the molecules in

each cell, the molecules sum per cell, the cell address, sum of molecules kinetic energy and

momentum flux tensor terms, the fluid velocity in the cell and the selected couples (used in

the collision phase).

The main loop routine for the dsmc code is described in the algorithm sketch 2. Particles

are allocated as an array of size equal to the number of molecules in the simulation, adopting

the AoS data layout approach each of the main kernels are loops over the particles and when

it is needed each of the elements of the 𝑑𝑠𝑚𝑐_𝑡𝑦𝑝𝑒 structure is accessed through the dot

operation.

Algorithm 2 Main loop of the dsmc code
Initialization: cells, particles and sampling variables
1: for Every time step do
2: Move particles: dsmc_step ();
3: Set boundary conditions: dsmc_bc ();
4: Communicate (migrate particles): dsmc_mpi ();
5: Index particles into cells: dsmc_indexing ();
6: Select collision pairs and perform collisions: dsmc_collision ();
7: Data sampling: dsmc_data_sampling ();
8: end for

CHAPTER 3. CODE OPTIMIZATION 15

The move step 𝑑𝑠𝑚𝑐_𝑠𝑡𝑒𝑝 updates each particle that advects (independent of all others)

for a straight-line distance determined by its velocity and the time step (see Fig. 3.1). In the

DSMC code this is implemented as one large loop over all particles a process owns. Once the

particles experiment the move step, then periodic boundary conditions are imposed thanks

to the 𝑑𝑠𝑚𝑐_𝑏𝑐.

Figure 3.1: Particles configuration before (red dots) and after the streaming step (green
dots) [10]

In the communication part, particles which ended their advection in a ghost grid cell

owned by another process are sent to that process. In the first stage each process copies

the particles into a send buffer and count how many should be sent in each direction. The

process then compresses its own particle list and remove those that it is losing. In the

second stage, each process sends a message to each neighbour with the count of particles

it is going to receive. Each process allocates memory (if it is needed) for the incoming

particles. In the original version of the code the reallocation is done by one particle at a

time. The particles buffer is sent thanks to the MPI_Sendrecv call using a data type defined

as MPI_DSMC_TYPE, which is created using the option MPI_Type_contiguous (sizeof

(dsmc_type), MPI_BYTE, &MPI_DSMC_TYPE) in order to preserve the exact same bit

sequence.

Once the communication step is ended, particles are sorted and indexed into the cell

network. This step is done through a big loop over the particles that each process owns,

in that way a list of particles for all its owned grid cells is created. Because particles

continuously move to new cells or are added and deleted, the list rapidly becomes unordered

with respect to grid cells. The sort creates a linked list for each grid cell of the particles

CHAPTER 3. CODE OPTIMIZATION 16

it contains. This requires one integer vector of length number of grid cells, which stores

the index of the first particle in the cell, and a second integer vector of length number of

particles, where each particle stores the index of the next particle in the same cell. These

two vectors can be created by a single loop over all the particles [9]. At the end of indexing

kernel the cross_reference_list (to be used in the collision phase) is created.

Figure 3.2 shows the data structure used in the DSMC original code

Figure 3.2: Sketch of the data structure used in the DSMC original code. Explanation for
the 𝑑𝑠𝑚𝑐_𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔 (left) and the particles selection for the collision phase 𝑑𝑠𝑚𝑐_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
(right). The highlighted number in the yellow square represents the cell id number. In the
example we are using a 2D grid 𝑁𝑋 ×𝑁𝑌 = 2× 4 cells.

The collision phase is performed in the kernel 𝑑𝑠𝑚𝑐_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 where stochastic binary

collisions between particles that reside in the same cell are done using the information ob-

tained in the indexing function, specifically the 𝑐𝑟𝑜𝑠𝑠_𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑙𝑖𝑠𝑡. The aim of this step

is to determine the post collision velocity satisfying the balance of momentum and energy,

given by the following equations

𝑚1𝜉1 +𝑚1𝜉2 = 𝑚1𝜉
*
1 +𝑚1𝜉

*
2 = (𝑚1 +𝑚2)𝜉𝑐𝑚, (3.1)

𝑚1𝜉
2
1 +𝑚1𝜉

2
2 = 𝑚1𝜉

*2
1 +𝑚1𝜉

*2
2 . (3.2)

where 𝜉1, 𝜉2 are the pre-collisional velocities, 𝜉*1 , 𝜉*2 the post-collisional velocities and 𝜉𝑐𝑚 is

the mass center velocity.

Moreover, the magnitude of the relative velocity should remain unchanged:

CHAPTER 3. CODE OPTIMIZATION 17

|𝜉𝑟| = |𝜉1 − 𝜉2| = |𝜉*𝑟 | = |𝜉*1 − 𝜉*2 |. (3.3)

Figure 3.3 is a graphical representation of the pre and post collision particles velocities.

The momentum and energy conservation were used as validation test for the new data

structure implementation.

More details about how to fully define the post collision relative velocity 𝜉*𝑟 in terms of

the solid angle for the hard sphere model (HS) used in the code and how to determine the

number of attempted collisions in terms of the collision cross section and particle’s diameter

can be found in reference [10].

Figure 3.3: Sketch representing the pre-collision, 𝜉1, 𝜉2, and post-collision, 𝜉*1 , 𝜉*2 , particles
velocities. The velocity of the center of mass, 𝜉𝑐𝑚, is given by Eq. 3.1. The pre and post
relative velocities are 𝜉𝑟 and 𝜉*𝑟 , respectively [10].

CHAPTER 3. CODE OPTIMIZATION 18

3.1.1 The new data structure implementation

In the previous section we see that in the DSMC code most of the loops are over the

particles, except in the collision kernel. The parallelization is achieved by distributing cells

and particles among MPI processes, in a pure distributed memory approach [6]. Hence if

we introduce another level of parallelization, but with a shared memory approach, using

OpenMP threads [3], the parallelism will be over particles. In the indexing kernel we will

face the case in which two different particles may reside in the same cell and in order to

consistently update the number of particles for each cell, an atomic or critical operation is

needed.

Figure 3.4 shows the data structure used in this thesis allowing threaded parallelism over

cells. For each cell we allocate a fixed size of particles named as 𝑀𝐴𝑋_𝑃𝐴𝑅𝑇_𝐶𝐸𝐿𝐿.

In the initialization step a loop over particles is made in order to assign the cell posi-

tion of each particle. Once particles are assigned to the corresponding cell, we can see

in the figure 3.4 the cell address is defined according to the cell location and the selected

𝑀𝐴𝑋_𝑃𝐴𝑅𝑇_𝐶𝐸𝐿𝐿, meanwhile the particle location is determined by the cell location,

the selected 𝑀𝐴𝑋_𝑃𝐴𝑅𝑇_𝐶𝐸𝐿𝐿 and the counter of the number of molecules that the

cell is receiving.

The main functions are loops over the cells and the particles that each cell owns (see the

algorithmic description in 4). Since each cell owns its particles, there is no need to create a

cross_reference_list for the collision phase mentioned in the previous section.

As in the original code, each particle experiments the moving step accordingly to their

velocity and time step, thanks to the 𝑑𝑠𝑚𝑐_𝑠𝑡𝑒𝑝 function. The boundary conditions are

defined in 𝑑𝑠𝑚𝑐_𝑏𝑐 function, in a similar way as in the original code but with a parallel for

loop over cells.

The communication step is very similar to the original version. The particles that a spe-

cific process owns are checked to determine if the position corresponds to the domain of that

process or if the particle ended its advection in a ghost grid cell owned by another process.

The main differences between the original and the hybrid version of the 𝑑𝑠𝑚𝑐_𝑚𝑝𝑖 function

are: the loops are over cells and particles that each cell owns, each process allocates enough

CHAPTER 3. CODE OPTIMIZATION 19

memory for the incoming particles at the beginning of the 𝑑𝑠𝑚𝑐_𝑚𝑝𝑖_𝑜𝑚𝑝 function and

not one particle at a time (as in the original version) and finally after the 𝑀𝑃𝐼_𝑆𝑒𝑛𝑑𝑟𝑒𝑐𝑒𝑣

communication, we assign each incoming particle (from right or left) to the corresponding

cell (see algorithm 5).

In the 𝑑𝑠𝑚𝑐_𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔_𝑜𝑚𝑝 version we classify particles as the ones which are in the

correct cell position (consolidated particles) or those which are not. If a particle finishes

their advection in an incorrect cell number we need to assign it to the correct one and then

copy the particle in 𝑑𝑠𝑚𝑐_𝑠𝑝𝑎𝑟𝑡𝑎_𝑛𝑒𝑤 buffer 2; since the parallelism is over cells, a critical

operation is needed in order to correctly update the number of particles. After the first

loop in which we check the particle position in cell, we copy the consolidated particles to

the 𝑑𝑠𝑚𝑐_𝑠𝑝𝑎𝑟𝑡𝑎_𝑛𝑒𝑤 buffer and at the end we swap the pointers 𝑑𝑠𝑚𝑐_𝑠𝑝𝑎𝑟𝑡𝑎_𝑛𝑒𝑤 and

𝑑𝑠𝑚𝑐_𝑠𝑝𝑎𝑟𝑡𝑎 (see algorithm 6).

The 𝑑𝑠𝑚𝑐_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑜𝑚𝑝 version is similar to the original one: loops are over the cells.

In this case since each cell has its own particles, we randomly select the particles in the cell

and perform the binary collisions without using the 𝑐𝑟𝑜𝑠𝑠_𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑙𝑖𝑠𝑡.

2We identify as sparta the new data structure for particles inspired in the open source code SPARTA
DSMC [9]

CHAPTER 3. CODE OPTIMIZATION 20

Figure 3.4: Sketch of the new data structure. The highlighted number in the yellow square,
represents the cell id number. In the example we are using a 2D grid 𝑁𝑋 × 𝑁𝑌 = 2 × 4
cells.

Algorithm 3 Original dsmc code
Init:cells,particles,sampling variables
1: for Every time step do
2: for each particle do
3: step;
4: end for
5: for each particle do
6: bc;
7: end for
8: for each particle do
9: check position x;

10: end for
11: Communicate mpi in x;
12: if it is needed then
13: Allocate more memory
14: end if
15: 𝑑𝑠𝑚𝑐_𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔();
16: for each cell do
17: Select pairs from 𝑐𝑟𝑜𝑠𝑠_𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑙𝑖𝑠𝑡;
18: binary collisions:
19: end for
20: 𝑑𝑠𝑚𝑐_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔();
21: end for

CHAPTER 3. CODE OPTIMIZATION 21

Algorithm 4 New data structure dsmc code
Init:cells,particles,particles-new-structure,sampling variables
1: for Every time step do
2: #pragma omp parallel for ... collapse(3)
3: for each cell do
4: for each particle in the cell do
5: step;
6: end for
7: end for
8: #pragma omp parallel for ... collapse(3)
9: for each cell do

10: for each particle in the cell do
11: bc;
12: end for
13: end for
14: 𝑑𝑠𝑚𝑐_𝑚𝑝𝑖_𝑜𝑚𝑝();
15: 𝑑𝑠𝑚𝑐_𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔_𝑜𝑚𝑝();
16: #pragma omp parallel for ... collapse(3)
17: for each cell do
18: for particles in the cell do
19: binary collisions;
20: end for
21: end for
22: 𝑑𝑠𝑚𝑐_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑜𝑚𝑝();
23: end for

CHAPTER 3. CODE OPTIMIZATION 22

Algorithm 5 𝑑𝑠𝑚𝑐_𝑚𝑝𝑖_𝑜𝑚𝑝

1: Allocate memory for the incoming particles.
2: #pragma omp parallel for ... collapse(3)
3: for each cell do
4: Set cell location;
5: for each particle in the cell do
6: Check if the particle is in the process domain;
7: if particle is in a ghost grid cell owned by other process then
8: fill 𝑡𝑜𝑟𝑖𝑔ℎ𝑡 or 𝑡𝑜𝑙𝑒𝑓𝑡 buffer
9: #pragma omp critical

10: counter how many particles 𝑡𝑜𝑙𝑒𝑓𝑡 or 𝑡𝑜𝑟𝑖𝑔ℎ𝑡;
11: else
12: particle remains in the process;
13: end if
14: end for
15: end for
16: 𝑀𝑃𝐼_𝑆𝑒𝑛𝑑𝑟𝑒𝑐𝑣 communication how many particles will receive other process;
17: 𝑀𝑃𝐼_𝑆𝑒𝑛𝑑𝑟𝑒𝑐𝑣 communication for the particles buffers;
18: for each incoming particle: fromleft or fromright do
19: Set the correct cell position for the particles;
20: Update the number of particles of those cells;
21: end for

Algorithm 6 𝑑𝑠𝑚𝑐_𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔_𝑜𝑚𝑝

1: #pragma omp parallel for ... collapse(3)
2: for each cell do
3: Set cell location;
4: for each particle in the cell do
5: Check the cell position;
6: if cell position is not the correct then
7: fill 𝑑𝑠𝑚𝑐_𝑠𝑝𝑎𝑟𝑡𝑎_𝑛𝑒𝑤
8: #pragma omp critical
9: update the number of particles in the cell

10: else
11: particle is consolidated in 𝑑𝑠𝑚𝑐_𝑠𝑝𝑎𝑟𝑡𝑎
12: end if
13: end for
14: end for
15: #pragma omp parallel for ... collapse(3)
16: for each cell do
17: copy consolidated particles to 𝑑𝑠𝑚𝑐_𝑠𝑝𝑎𝑟𝑡𝑎_𝑛𝑒𝑤
18: Update the number of particles
19: end for
20: swap 𝑑𝑠𝑚𝑐_𝑠𝑝𝑎𝑟𝑡𝑎_𝑛𝑒𝑤 and 𝑑𝑠𝑚𝑐_𝑠𝑝𝑎𝑟𝑡𝑎

CHAPTER 3. CODE OPTIMIZATION 23

3.2 Performance results

In this section we show the performance results corresponding to a Poiseuille flow described

by the parameters of table 3.1 in which we report the values corresponding to Argon gas for

the Hard Sphere model (HS) [2].

Parameter Nomenclature Value

Number of cells sxxsyxsz 73728
Number of subcells subellsx x subcellsy x subcellsz 1
Boundaries 𝑥𝑚 = 𝑦𝑚 = 𝑧𝑚, 𝑥𝑝 = 𝑦𝑝 = 𝑧𝑝 0, 1.0000
Number of particles dsmc_molecules_number_total 1769472
Number density dsmc_number_density 2× 1020

Temperature dsmc_temperature 300 K
Molecular mass dsmc_mass 6.63× 10−26 kg
Viscosity index (HS model) 𝜔 0.81
Molecular diameter dsmc_diameter 4.09× 10−10m

Table 3.1: Parameters of the simulation

In order to measure the benefits of the new data structure and code optimization we

use the Application Performance Snapshot (APS) tool developed by Intel VTune [7]. The

application allows us to perform analysis for share memory codes and identify critical areas

impacting the code performance, such as MPI and OpenMP usage, CPU utilization, memory

access efficiency, etc. On Marconi it is possible to use the APS report tool generating a

directory that contains the necessary files to be analysed in a post process step. In figure

3.5 we show a script example on Marconi for submitting a job script for the hybrid code.

Once the job is finished we will have a directory with the nomenclature: aps_result_date

from where we can extract the data in a post process step, asking for an interactive session

and running the command: aps –report=aps_result_date. The result will be a .html file

that we can open in a browser (see figure 3.6).

CHAPTER 3. CODE OPTIMIZATION 24

Figure 3.5: Script example to generate the aps report directory in Marconi-skl.

We focus our attention on the elapsed and top MPI functions time of both versions:

original vs hybrid code. In figure 3.7 we see the performance results in terms of speedup

for the original vs hybrid code, we see that the best configurations, i.e. those that offer a

speedup higher or similar the orginal version, in terms of number of MPIs tasks and OMP

threads corresponds to those with 6 or 12 threads. In the particular case of 4 nodes (i.e.

192 cores in total) we see that the configuration with 4 nodes is the one that offers a better

performance.

Figure 3.8 shows that besides we do not have a big benefit in total time of the hybrid

version compared to the original one, the fact that we reduce the number of tasks replacing

CHAPTER 3. CODE OPTIMIZATION 25

7.90 3.59
(3.64, 3.55)

Ranks per node: 4
OpenMP threads per rank: 12
HW Platform: Intel(R) Xeon(R) Processor code named Skylake
Logical Core Count per node: 48

32.03s

Your application is memory bound.
Use memory access analysis tools like Intel® VTune™ Amplifier for a detailed metric
breakdown by memory hierarchy, memory bandwidth, and correlation by memory
objects.

1.69% <10%

2.56% <10%
83.10% <20%
0.10% >50%

0.01% <10%

Current run Target Delta

MPI Time

OpenMP Imbalance
Memory Stalls
FPU Utilization

I/O Bound

Elapsed Time

SP FLOPS CPI
MAX MIN

1.69% of Elapsed Time
(0.54s)

0.29% of Elapsed Time
(0.09s)

MPI Time

MPI Imbalance

TOP 5 MPI Functions %

Sendrecv 0.70

Allreduce 0.10

Bcast 0.01

Cart_create 0.00

Cart_sub 0.00

2.56% of Elapsed Time
(0.82s)

OpenMP Imbalance
83.10% of pipeline slots

10.42% of cycles

54.90% of cycles

0.05% of remote accesses

Memory Stalls

Cache Stalls

DRAM Stalls

NUMA

0.10%

0.09 Out of 64.00

15.08%

FP Instruction Mix
% of : 22.27%

% of : 21.47%
% of : 0.80%
% of : 0.00%

% of : 77.72%

0.86

1.50

FPU Utilization

SP FLOPs per Cycle

Vector Capacity Usage

Packed FP Instr.
128-bit
256-bit
512-bit

Scalar FP Instr.

FP Arith/Mem Rd Instr. Ratio

FP Arith/Mem Wr Instr. Ratio
0.01%
(AVG 0.01, 0.01)

AVG 3.2 KB, 4.6 KB

AVG 55.3 MB, 55.5 MB

I/O Bound

PEAK

Read
MAX

Write
MAX

Resident:
Per node:

 8535.11 MB
Average: 8535.11 MB

Per rank:
 2144.84 MB

Average: 2133.78 MB
Virtual:

Per node:
 13521.61 MB

Average: 13521.61 MB
Per rank:

 3381.07 MB
Average: 3380.40 MB

Memory Footprint

Peak:

Peak:

Peak:

Peak:

Additional Performance
Analysis Tools:

Intel® Trace Analyzer and

MPI Analyzer and Profiler

Vectorization Optimization
& Thread Prototyping

Visualize System Storage
Bottlenecks

R

Figure 3.6: APS report graphic for the optimized code 1 node (48 cores) - 4 MPI tasks and
12 OMP threads.

them by OMP threads impacts in a positive way the reduction in communication time. The

main reason that explains the lack of a big benefit in total time of the hybrid version is the

fact that the 𝑑𝑠𝑚𝑐_𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔_𝑜𝑚𝑝 function contains a critical call that is needed to correctly

update the number of particles in each cell, resulting in a slow down when increasing the

number of threads.

In figure 3.9 we see in more detail the most relevant MPI functions and the reduction

in communication time for the hybrid version. In most of the cases we see that the best

configuration in terms of number of MPI tasks and OMP threads corresponds to the case in

which the number of threads is set to 6 (as we concluded before from Fig. 3.7). The most

expensive MPI calls correspond to MPI_Allreduce and MPI_Sendrecv, but we see the effect

when increasing the number of tasks of the MPI_Bcast, such effect is reduced in the hybrid

version of the code.

CHAPTER 3. CODE OPTIMIZATION 26

Figure 3.7: Speedup for original vs hybrid (denoted by omp1th, omp4th, omp6th and
omp12th) code in Marconi for 1, 2, 4 and 8 nodes. The hybrid version corresponds to
the use of 1, 4, 6 and 12 threads. Parameters defined on table 3.1, for a total number of
steps=1000.

We analyze in more details the communication time between ranks with the communi-

cation matrix, which can be generated to report either the communication time between

ranks (in seconds) or the amount of data transferred in the communication (in megabytes).

Since the Intel APS version in Marconi-skl does not support the graphical representation

.html file of the rank to rank communication matrix (the intel aps version is too old), for

the post processing I used the Galileo 100 Cineca cluster [4]. To generate such a plot in a

post process step, once you have the directory aps_result_date, you can use the command:

aps-report -D -x –format=html aps_result_date that will result in .html file like the ones

shown in figure 3.10

In figure 3.11 we collect the average and maximum times reported in the rank-to-rank

communication matrix for each of the configurations and again we see the positive effects in

both times of the reduction in number of tasks for the hybrid code.

CHAPTER 3. CODE OPTIMIZATION 27

Figure 3.8: Elapsed and time spent inside the MPI library of the total simulation using
aps-report profiling intel tool for original vs hybrid code in Marconi for 1, 2, 4 and 8 nodes.
The stacked plots for the original code are those with 48, 96, 192 and 384 MPIs. The
stacked plots for the hybrid version are those combining number of MPIs and OMP threads
(for example 48 + 1th, 8 + 6th, etc). The parameters are defined on table 3.1, for a total
number of steps=1000.

Figure 3.9: Top MPI functions using aps-report profiling intel tool for original vs hybrid
code in Marconi for 1, 2, 4 and 8 nodes. The stacked plots for the original code are those
with 48, 96, 192 and 384 MPIs. The stacked plots for the hybrid version are those combining
number of MPIs and OMP threads (for example 48 + 1th, 8 + 6th, etc). Parameters defined
on table 3.1, for a total number of steps=1000.

CHAPTER 3. CODE OPTIMIZATION 28

Application Performance Snapshot
Rank-to-rank communication matrix

Full summary report can be generated with command ./aps-report -g <path-to-aps-results-folder>

AVG:
1.056sec

MAX:
2.958sec

P0
P0

P23 P47

P23

P47

Additional Performance
Analysis Tools:

Intel® Trace Analyzer and

MPI Analyzer and Profiler

Vectorization Optimization
& Thread Prototyping

Like this report?

Application Performance Snapshot
Rank-to-rank communication matrix

Full summary report can be generated with command ./aps-report -g <path-to-aps-results-folder>

AVG:
0.432sec

MAX:
0.832sec

P0
P0

P23 P47

P23

P47

Additional Performance
Analysis Tools:

Intel® Trace Analyzer and

MPI Analyzer and Profiler

Vectorization Optimization
& Thread Prototyping

Like this report?

Intel® VTune™ Profiler

Application Performance Snapshot
Rank-to-rank communication matrix

Full summary report can be generated with command ./aps-report -g <path-to-aps-results-folder>

AVG:
0.105sec

MAX:
0.264sec

P0
P0

P7

P7

Additional Performance
Analysis Tools:

Intel® Trace Analyzer and

MPI Analyzer and Profiler

Vectorization Optimization
& Thread Prototyping

Like this report?

Intel® VTune™ Profiler

Application Performance Snapshot
Rank-to-rank communication matrix

Full summary report can be generated with command ./aps-report -g <path-to-aps-results-folder>

AVG:
0.106sec

MAX:
0.23sec

P0
P0

P3

P3

Additional
Performance Analysis
Tools:

Intel® Trace Analyzer and

MPI Analyzer and Profiler

Vectorization Optimization
& Thread Prototyping

Like this report?

Figure 3.10: Rank-to-rank communication matrix for 1node Marconi-skl original code. Top
left original code 48MPI vs hybrid code (top right: 48 MPI + 1 thread, bottom left: 8 MPI
+ 6 threads and bottom right: 4 MPI + 12threads)

Figure 3.11: Average and maximum time in the communication between two ranks (time
collected from the rank-to-rank communication matrix). The stacked plots for the original
code are those with 48, 96, 192 and 384 MPIs. The stacked plots for the hybrid version are
those combining number of MPIs and OMP threads (for example 48 + 1th, 8 + 6th, etc).

Chapter 4

Conclusions

In this project we investigated a DSMC application and it’s performance for two kind of

approaches: pure MPI and hybrid MPI + OpenMP. We have found that the introduction of

another level of parallelization with OpenMP threads improves the load balancing problems

impacting the communication part of the code, but with a no big benefit in total time of the

simulation due to threads overhead in one of the most relevant kernels: the one that indexes

particles through the cells.

We start from the benchmark of the MPI code describing a flow with open boundary

conditions, that has an implicit load imbalance nature due to the gradient in the number of

particles in the flow direction. The analysis of the log file allows us to compute the process

with the highest and lowest number of particles. We found that the process with the highest

number of particles expends most of the time in computation, while process with the lowest

number of particles expends more time in communication kernels. We show in numbers the

imbalance issues of the MPI code.

After identifying the main bottlenecks of the MPI code, we proceed to introduce another

level of parallelization with OpenMP threads using as a model case the Poiseuille flow and

changing the data structure of the original code in such a way to parallelize over cells and not

over particles. The strong scaling analysis on Marconi-skl CINECA’s cluster with an intel

CHAPTER 4. CONCLUSIONS 30

tool called Application Performance Snapshot (APS) for a flow with 1769472 particles and

73728 cells allows us to study the best configuration in terms of number of MPI processes

and OpenMP threads that scales similar or better than the pure MPI version. We found that

for the case of 8 nodes (384 cores) the configuration with 4 tasks per node and 12 threads

per task shows a speedup of around 1.5 times better than the pure MPI code.

For future possible studies I suggest applying the hybrid version of the code for a flow

with open boundary conditions where the benefit for the load balancing problems should be

more evident. An improvement in the kernel that indexes the particles would be necessary

to overcome the slow down due to the critical section that is present in order to correctly

update the number of particles in the cell.

Bibliography

[1] G. A. Bird. Approach to Translational Equilibrium in a Rigid Sphere Gas. The Physics

of Fluids, 6(10):1518–1519, 10 1963.

[2] G.A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Number

v. 1 in Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon

Press, 1994.

[3] Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, and Jeff McDonald. Par-

allel programming in OpenMP. Morgan and Kaufmann, San Diego, CA, 2001.

[4] Cineca. Galileo 100 user guide: https://wiki.u-gov.it/confluence/display/scaius/ug3.3

[G100].

[5] Cineca. Marconi user guide: https://wiki.u-gov.it/confluence/display/scaius/ug3.1

[Marconi-skl partition].

[6] G. Di Staso, H.J.H. Clercx, S. Succi, and F. Toschi. Dsmc–lbm mapping scheme for

rarefied and non-rarefied gas flows. Journal of Computational Science, 17:357–369, 2016.

Discrete Simulation of Fluid Dynamics 2015.

[7] Intel Application Performance Snapshot (APS) linux guide.

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide-

application-snapshot-linux/2023-0/introducing-application-performance-

snapshot.html. Introducing application performance snapshot — Intel Corporation,,

2023. [Version: 2023.0].

BIBLIOGRAPHY 32

[8] International Center for Theoretical Physics (ICTP). Argo user guide: https://argo-

doc.ictp.it ICTP, 2020.

[9] S. J. Plimpton, S. G. Moore, A. Borner, A. K. Stagg, T. P. Koehler, J. R. Torczynski,

and M. A. Gallis. Direct simulation Monte Carlo on petaflop supercomputers and

beyond. Physics of Fluids, 31(8):086101, August 2019.

[10] Gianluca Di Staso. Hybrid discretizations of the Boltzmann equation for the dilute gas

flow regime. PhD thesis, Eindhoven University of Technology, 2018. PhD thesis, Applied

Physics.

[11] Top 500 list website. http://www.top500.org. Ornl’s exaflop machine frontier keeps top

spot, new competitor leonardo breaks the top10 — Copyright 1993-2022 TOP500.org

(c), top 500, 2023. [Online; accessed 12-January-2023].

	List of Figures
	List of Tables
	Contents
	Introduction and Motivation
	Performance study and bottlenecks
	Architecture description and compilers used
	Performance metrics
	Flow with open boundary conditions
	Algorithm description for a flow with open boundary conditions

	The observed imbalance

	Code Optimization
	Original vs the new data structure. The Poiseuille flow
	The new data structure implementation

	Performance results

	Conclusions
	Bibliography

