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Abstract

In feature selection current methods are often limited by the types and dimensions
of data they can handle. Supervised methods, in particular, are rigid regarding
their target space, typically requiring it to be one-dimensional and of a specific type
(e.g. continuous or categorical). This thesis introduces feature selection methods
which mitigate these limitations using a statistic called the Information Imbal-
ance. This method identifies a low-dimensional subset of input features that best
preserves pairwise distance relations found in the target feature space by ranking
nearest neighbors. First, we derive a weighted Information Imbalance approach to
handle class-imbalanced medical data, along with an optimization routine capable
of managing missing data. The study on COVID-19 severity prediction showcased
this approach, successfully isolating a 13-feature subset from a pool of roughly
150 features. This subset outperformed traditional feature selection methods in
subsequent predictions for patient severity. We then introduce an Information
Imbalance variant that can handle binary and categorical data. We benchmarked
this approach on Amazon Rainforest biodiversity data. By quantifying the rel-
ative information content of continuous features, like average temperature, and
categorical features, like the label of the region in which data are recorded, this
method identifies plausible predictors of species richness and asymmetric infor-
mation even between variables which are not correlated. Finally, we introduced a
differentiable variant of the Information Imbalance, implemented in the easy-to-use
Python package, DADApy. Differentiable Information Imbalance (DII) optimizes
relative feature weights via gradient descent, addressing combinatorial challenges
of high-dimensional data. The weights correct for different units of measure and
relative importance and allow for feature selection through sparsity-inducing opti-
mization approaches. In molecular dynamics simulations, this method reduced the
feature set to three collective variables effectively describing a beta-pin peptide.
In another application on machine learning potentials, the input feature space was
compressed, reducing run time while preserving accuracy.
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Chapter 1

Introduction

Background
We live in a data-dominated world. In the last decades, the amount of data
has grown exponentially: In 1990, data was measured in petabytes (1 petabyte
= 1 million gigabytes), in the 2000s it grew to exabytes (1 exabyte = 1 billion
gigabytes), and now in the 2020s, data volumes are measured in zettabytes (1
zettabyte = 1 trillion gigabytes) [4, 5, 6]. By now, the internet is supported by
an unmeasurable amount of servers globally, on the order of hundreds of millions,
and data centers consume more electricity than countries [7]. Information and
computing technology is projected to account for 20 % or more of the global
electricity demand [4] by 2030, over 8, 000 TWh, more than the current electricity
consumption of the EU, the USA and India combined [8, 9, 10]. Even if we
optimize algorithms, architecture and hardware, the operational energy reduction
is estimated to be only approximately 25%, not enough to offset the environmental
impact from this exponential growth of data and AI [6].

While humanity urgently needs to reduce the growing hunger of data process-
ing, this enormous ecological footprint comes paired with advancements. For one,
we can now better than ever quantify the evolution of our planet, as done e.g. by
the International Panel on Climate Change (IPCC), which analyzes and summa-
rizes incredible amounts data into their IPCC reports [11]. Data is also used to
understand diseases [12], mitigate pandemics [13, 14], and improve technologies
and scientific methods [15]. On the other end of the spectrum, what might be
termed ’dark data science’ exploits vast amounts of information for purposes like
consumer surveillance [16], online marketing [17], algorithmic political manipula-
tion [18], and digital inequality [19]. As data grows, so do its applications, with
each fueling the other’s expansion.

The data sets grow in "length" and "width", meaning in the number of sam-
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ples and in the number of features. This growth is due to better data collection
capabilities, advanced machine learning techniques and more storage possibilities.
The "wide" data sets, with many features, are termed "high-dimensional", and
have increasingly become a focus of research. The meaning of high-dimensional
varies between fields: In molecular dynamics (MD) simulations we have between
tens to 1000s potential collective variables (CVs) [20, 3]. Features from genetic
sequencing [21, 22] or the parameters in neural networks such as language models
[23] are commonly in the 10.000s and larger. Ecological databases can include tens
or hundreds of biotic or abiotic features, or even 10.000s of features e.g. for species
abundance data of the Amazon rain forest [24, 25].

The width of these data sources leads to practical problems: Non-interpretability
and overfitting of models are the most obvious ones. Very often, most of the fea-
tures defining a data point are redundant, irrelevant, or affected by noise. In these
cases one can employ feature selection, discarding all except a small subset of
relevant features to improve model performance and increase interpretability. Fea-
ture selection is everywhere. It takes many forms and shapes and may be implicit
or explicit. The graphic in the overview on feature selection gives an idea of the
field.

Executive summary
Chapters 2 - 6 of this thesis are structured as follows:

• First, an overview over feature selection (chapter 2) is given and our main
working tool, the Information Imbalance, is introduced (chapter 3).

• Then we discuss the problems we addressed to use the Information Imbalance
in class-imbalanced classification tasks in a clinical data set (chapter 4), and
to categorical feature spaces in an ecological data set (chapter 5).

• Furthermore, we present the main technical contribution of this thesis, a
"Differentiable Information Imbalance" (DII) which is optimizable with gra-
dient descent and allows finding optimal feature sets and the features’ relative
weights (chapter 6).

• Finally, we draw conclusions and emphazise the main findings (chapter 7).

Information Imbalance

In this thesis we develop a class of feature selection methods based on the Infor-
mation Imbalance, and describe attempts to improve performance in different
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settings of feature selection. Working on improving feature selection methods is,
in our opinion, timely and important, since many available methods are narrow in
their applicability, as described in chapter 2. For example, many feature selection
methods are designed for regression or classification, assuming already an under-
lying relationship of specific type between input and output (embedded methods),
often limited to a single prediction target and certain data types. Wrapper meth-
ods, which use the downstream model to iteratively evaluate the performance of
feature subsets, are inefficient, since their paradigm, as we will see, leads to a
combinatorial explosion in the number of tests. The more universal filter methods
(which do not assume an underlying model), are often limited to one-dimensional,
sometimes discrete, ground truths (label / target) data, and no flexible multi-target
filter methods are available in user-friendly software packages.

We try to address the problem from a different angle, where we allow as much
flexibility as possible in the data type and dimensionalities of input and ground
truth data sets. Our different philosophy for feature selection is inspired by a sim-
ple principle, the one underlying the Information Imbalance (chapter 3). Qualita-
tively, we try reproduce the neighborhood relationship using the smallest possible
number of variables, which may or may not include the target space variables.
We retain only the most informative features, such that they produce nearest
neighbor relationships which are very similar to the ones in the target space. In
essence, the algorithm searches for the best low-dimensional neighborhood clone
of the target space. Both, the target space and the input space can have a wide
range of dimensions, from extremely high-dimensional to low-dimensional (or even
one-dimensional).

Even though we aim to develop an universal, one-fits-all feature selection al-
gorithm, we had to adapt to various use cases. Throughout this thesis, different
variants of the Information Imbalance statistic are developed, to solve various
issues of feature selection with different data sources.

Unbalanced class prediction with categorical variables and
missing data in medicine

In chapter 4 we investigate feature selection based on a variant of Information
Imbalance to predict COVID-19 severity using a clinical dataset with significant
missing data and categorical and binary features. The ground truth data in this
case consisted in 14 binary features which encoded the patient fate. Together
with the medical professionals, they were organized into a severity tree, result-
ing in a tree-specific target distance space and eight unbalanced severity classes
of patient fate, which we aimed to predict. Information Imbalance was extended
to include class weights to compensate for the unbalance in class populations.
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Which clinical features are informative of COVID severity? Classify patients according to hierarchical COVID severity
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Out of an original set of ∼150 features across 1300 patients, measurable upon
hospitalization of any patient, an optimal 13-feature subset was identified, yield-
ing high predictive accuracy for disease outcomes. That combination of features
suggested on the one hand a systemic inflammation and autoimmunity, signaled
by neutrophils and autoantibodies, and on the other hand an immune paralysis
and anti-inflammatory effort. However, due to missing values, these features were
only jointly available for 102 patients. To address this, patient-specific optimal n-
plets were developed, which allowed prediction of disease severity even in patients
without full feature sets. Although this approach reduced predictive performance
slightly, it still achieved a meaningful accuracy for predicting severe outcomes.

In this chapter we also introduce a metric to assess the intrinsic importance of
each feature independent of its availability. This identified several important but
underrepresented biomarkers—such as IL-6, direct bilirubin (BILD), and glycated
hemoglobin (HBA1CM)—that are crucial for COVID-19 severity prediction but
were frequently missing in the dataset. We advocate for enhanced data collection
especially of those of the intrinsically important features which are severely under-
sampled, to improve future predictive models.

The study found that Weighted Information Imbalance feature selection, com-
bined with k-NN or support vector classifiers, outperformed traditional feature
selection methods in identifying minority class patients at high risk for severe
outcomes. Notably, this approach did not require data imputation, making it
adaptable to real-world clinical datasets with incomplete information. The rec-
ommended feature sampling schemes could improve patient triaging and resource
allocation in clinical settings. The optimal 13 features provide, together with a
classifier, a way to assess patient fate a-priori, especially on the coarsest level where
only mild vs. dangerous disease progression is predicted.

The database included numerous categorical variables, resulting in degenerate
values and distances. In this specific research project we addressed this issue by
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(a) creating a specific severity tree distance as the target for the output space and
(b) adding small random values to the degenerate values in the input space. Con-
structing case-specific distances is not always feasible, and the chapter 5 provides a
more systematic approach to handling categorical variables. To manage the com-
binatorial explosion of enumerating all potential feature tuples, in this first project
we applied a beam search heuristic; an automated approach to this challenge is
proposed in chapter 6.

Treating categorical variables: Biodiversity data in ecology
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Subsequently, chapter 5 addresses the challenges of analyzing Information Im-
balance in categorical non-ordinal data, where the traditional method is not suit-
able to capture relationships effectively. We propose two solutions, to use con-
tinuous features to predict categorical features and vice versa. Both only use the
distance information from the continuous space, while considering instead only the
classes in the categorical feature.

The approach is tested for investigating species diversity and richness in the
Amazon Rainforest using 27 features suspected to related to Amazon biodiversity.
Assessing biodiversity is a challenging task, particularly at biogeographic scales.

The analysis revealed asymmetric information flows, where climatic variables
moderately predict species richness, while species richness does not provide signifi-
cant information about environmental conditions. Notably, there is nearly perfect
information symmetry between Fisher’s alpha diversity index and species richness
in 500 trees, suggesting their interchangeable use in ecological studies. Addi-
tionally, collecting intensity shows predictive value for species richness, indicating
ongoing sampling efforts are crucial for capturing the richness of Amazonian bio-
diversity. The findings underscore the need for improved sampling strategies and
further research on the interplay between community composition and ecosystem
functions for effective conservation.
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An open question remains the treatment of categorical but ordinal data. In
the future the analysis should also be extended to other ecological data sets and
the multi-variate case, to test whether there are larger feature sets which improve
predictability.

An optimizable Information Imbalance for high dimension-
sional data
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In the final technical chapter, chapter 6, we develop an optimizable version
of the Information Imbalance, the Differentiable Information Imbalance (DII),
where feature weights are determined via gradient descent. This statistic is an
advancement in feature selection and weighting methodologies, solving the issues
of combinatorial explosion during enumeration of feature tuples, as well as finding
an effective weighting between the features. By employing the Differentiable In-
formation Imbalance as a loss function, the relative feature weights of the inputs
are optimized, simultaneously performing unit alignment and relative importance
scaling, while preserving interpretability. Furthermore, this method can gener-
ate sparse solutions: This is particularly advantageous in high-dimensional spaces
where traditional methods often struggle. We will show that in the examples we
considered, the DII can determine the minimal required set size of informative
features while preserving the essential structure of the data.

In practical applications, DII demonstrated robustness and consistency, par-
ticularly in analyzing molecular dynamics simulations of the peptide CLN025. The
method successfully extracted a small subset of collective variables (RGYR, PC1
and PC2, with weights of 1.0, 3.5 and 4.7) that accurately identified distinct states
of the peptide, including the β-pin and collapsed denatured states. This analy-
sis yielded an impressive overall cluster purity of 89% when comparing reduced
variable spaces to those constructed from a much larger feature space.

Furthermore, DII was applied to training Behler-Parrinello machine learning

10



potentials, selecting highly informative subsets of input features from a set of
176 descriptors. The optimized subsets enabled the machine learning potential
to maintain nearly the same predictive accuracy while significantly reducing com-
putational costs, achieving a runtime reduction of one-third. This demonstrates
DII’s effectiveness in improving both the efficiency and accuracy of predictive
modeling in complex systems.

While the method can parse any data type, it is most suitable for continuous
features. A limitation is given by ground truth metrics with many nominal or
binary features, which can lead to a degenerate ground truth rank matrix. Merg-
ing the finding described in Chapter 6 with those described in Chapters 4 and 5
remains an open challenge. Overall, the findings underscore DII’s potential to help
feature selection in practical problems by offering a robust, efficient, and versatile
framework. Its accessibility through the python library DADApy enables future
explorations in distance-based methods and metric learning.

Key takeaways

The thesis here shows how versatile of a feature selection method the Information
Imbalance is: It can be tailored to fit many use cases and provides flexibility in han-
dling diverse data types and structures. Especially the optimizable version marks
a leap forward in feature selection, by addressing some open problems in the field.
Its implementations in a software package DADApy allow further development by
the community.

Contributions

In chapter 4, the clinical analysis was carried out by Dr.med. Emanuela Sozio. In
chapter 6, the linear scaling estimator of the DII was developed by Vittorio del
Tatto, while the analyses in subsection 6.4.3 were carried out by Felix Wodaczek.

Note

This thesis uses the words "feature" and "variable" interchangeably. The words
"target", "output" and "ground truth" space are used synonymously for the target
space of the metric, meaning B in ∆(A → B).
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Chapter 2

Feature selection: The state of the
art

2.1 Why select features?
Feature selection is an essential step in many data analysis pipelines. Very often,
most of the features defining a data point are redundant, irrelevant, or affected
by large noise and have to be discarded or combined. In the related field of
dimensionality reduction, many powerful methods have been developed to auto-
matically map the data to a low-dimensional representation, without significantly
reducing the information content. Prominent examples are principal component
analysis [26], autoencoders [27] and kernel-based methods [28, 29]. A critical prob-
lem of many dimensionality reduction methods is that the variables obtained are
non-interpretable. In autoencoders, the variables at the bottleneck are highly non-
linear functions of the input features. In other approaches, such as Umap [30] and
kernel-based methods[28, 29], the variables are not even explicit functions of the
features.

However, many use cases do require that the original features are preserved,
where the only allowed modification could be neglecting some of these features by a
selection procedure or scaling the features relative to each other. The most obvious
reason to use feature selection over dimensionality reduction is to preserve inter-
pretability and integrate domain-specific knowledge. In healthcare and finance,
the domain experts interpret selected features in order to explain the mechanism
of a disease [31, 32, 12], build predictive models [33], or adjust investments strate-
gies [34]. Similarly, in molecular dymanics (MD) simulations, it is beneficial if the
selected collective variables (CVs) are interpretable for better mechanistic under-
standing [20]. In text classification by natural language processing (NLP) feature
selection preserves interpretability and improves accuracy [35]. In general, features
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can be selected to avoid overfitting and improve predictive performance [36]. In
a study on leukemia cancer, for example, it was demonstrated that the disease
can be best identified using just 19 out of more than 7000 genes [37]. Finally, in
feature spaces where the features are already non-interpretable combinations of
some original features of raw data, as in the case of extracted features [38], general
dimensionality reduction techniques might add another layer of transformation to
the data, which feature selection avoids.

In contrast to general dimensionality reduction, far less methods exist for fea-
ture selection.

2.2 Common problems in feature selection
There are uncertainties that are associated to all feature selection applications:

• How do we account for different units of measure and / or intrinsic impor-
tance when selecting feature sets?

• What is the optimal dimension of the reduced feature space, meaning how
many features do we need to retain a sufficient amount of information?

• How do we quantify this "sufficient amount" of information?

• Which is the optimal combination of relevant, non-redundant features?

The first mentioned difficulty is related with the heterogeneity of the variables:
In many cases a data point is defined by features with different nature and units
of measures, sometimes referred to as multi-view features [39]. Associating these
different features to perform analysis is termed feature fusion [39]. For example, in
atomistic simulations one can describe a molecule in water solution providing the
value of all the distances between the atoms of the molecule, which are measured
in nanometers, together with the number of hydrogen bonds they form with the
solvent, which are dimensionless. In a clinical context, the features associated
with a patient my include blood exams, gene expression data, and many others
[1]. If one wants to mix heterogeneous variables in a low-dimensional description,
one should choose a weight factor to match their units of measures. Even if the
features have the same unit of measure, some features can carry more information
than others and should hence receive a higher weight.

Another difficulty for feature selection, the choice of the number of variables
which are actually necessary to describe the system, has a lower bound in the in-
trinsic dimension [40]. The intrinsic dimension is, informally, the dimension of the
manifold which contains the data. However, this number is often scale-dependent
[41] and position-dependent [42]. Moreover, if one wants to visualize the data in
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one graph, the number of variables is necessarily limited to two or three. This
typically implies neglecting part of the information, and poses the problem of
choosing which variables should be retained for visualization. The selected and
appropriately weighted set of features should contain enough information to ef-
fectively address the task at hand. When used with a downstream model, the
performance of different models can be compared to quantify the information con-
tent of the feature set (see "wrappers" below) [43]. However, this approach leads
to a combinatorial explosion when multiple feature sets, each with potentially dif-
ferent relative weights, need to be compared. A more straightforward method for
quantifying information content is therefore desirable.

2.3 Types of feature selection algorithms
Feature selection can be characterized according to several criteria, most notewor-
thy by the presence or absence of a ground truth (supervised and unsupervised),
the type of algorithm (filter, wrapper or embedded methods), and considering the
accepted data types. An overview is presented in Fig. 2.1.

2.3.1 Supervised and unsupervised feature selection

Feature selection methods can be supervised and unsupervised [44]. In supervised
feature selection, labeled data is used to identify features that have the strongest
relationship with the target variable [43]. Common methods are e.g. mutual infor-
mation maximization [45], decision trees [46] or recursive feature elimination [47].
In unsupervised feature selection, there is no label or target variable [48]. The se-
lection is based on intrinsic properties of the data, such as variance or redundancy.
Examples include Principal Component Analysis (PCA) and clustering-based ap-
proaches [48]. There are also semi-supervised feature selection algorithms that
combine both [44].

2.3.2 Filters, wrappers and embedded methods

Considering the nature of the algorithm, feature selection methods can be classified
into filter, wrapper and embedded methods [43]: Filter methods are independent
of downstream task and the features are ranked according to a separate criterion
[49]. Wrapper methods, on the other hand, use the downstream task, such as a pre-
diction accuracy, as feature selection criterion, but hence suffer from combinatorial
explosion problems because of the need to test all possible feature sets combina-
torically or heuristically [43]. If the downstream task is akin to a classification
problem, then embedded methods can perform well, because they incorporate the
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Figure 2.1: The chart shows an overview over the field of dimensionality reduction
with a focus on feature selection. Exemplary methods for each category are shown
in gray. The yellow highlighted fields denote the categories that are covered by
the Information Imbalance ∆ or the Differentiable Information Imbalance DII.

feature subset selection into the training [43]. These algorithms are often based
on regression, like FSOR [50] and additive models [51], or on support vector ma-
chines, like KP-SVM and its variants [52, 53]. Filter methods, on the other hand,
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become the logical methods of choice if the downstream tasks are not simple mod-
els. While wrapper and embedded methods of feature selection are supervised by
definition because they utilize downstream models which building on relationships
with the target data, filters include both, supervised and unsupervised methods.
Unsupervised filter methods do not utilize target data [54]. They include variance
[55] and Laplacian [56] scores and methods which can find feature subsets, pre-
serving clusters of the original data manifold, like multi-cluster feature selection
(MCFS) [57] and k-means clustering feature selection [58]. Supervised filters, on
the other hand, make use of target data: the "label" or "ground truth". Simple,
univariate supervised filters such as correlation coefficient scores, estimated mu-
tual information [59], the chi-square test or ANOVA [60] are efficient, but ignore
feature relationships and therefore have problems finding optimal sets [36]. Spe-
cific feature subset evaluation filters like FOCUS rely on enumerating all possibly
subsets, similar to wrapper methods [61, 62] and have the same combinatorial
problems. The relief algorithm and its variants [63, 62] are more efficient because
they do not explicitly evaluate the feature subsets. Instead, they utilizes nearest
neighbor information to weight features relative to each other (non-myoptic), but
feature subsets can still include redundancy [62]. Generally, filter-based feature se-
lection methods have been shown to improve accuracy and precision in many down
stream machine learning classficiation algorithms such as SVM and Bayesion Net-
works [64], while tree-based classifiers tend to work better with more features [64,
65]. A review on feature selection filter methods can be found in [49]. Overall, the
field of feature selection is clearly lacking the powerful, automatic tools available
to dimensionality reduction, as most of the method we mention have important
limitations.

2.3.3 Supported data types

Feature selection algorithms can be categorized based on the types of data they
support [66]. Data can be classified as either static or streaming, and the input and
output (target) spaces may consist of various continuous or discrete values. While
the output space is often one-dimensional (labels), it could also encompass mul-
tiple dimensions or even high-dimensional spaces. Additionally, features may be
heterogeneous, originating from diverse sources and incorporating different units
of measurement [39]. However, very few feature selection algorithms are designed
to accommodate multiple data types, as illustrated in Fig. 2.1 ("Data types sup-
ported"). On top of this, many methods available in software packages cannot
handle missing data.

The primary topic of this thesis is the Information Imbalance method, a filter
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approach that can operate in both, supervised and unsupervised manners, and
is compatible with most data types, as highlighted in yellow in Fig. 2.1. It
is a similarity-based method, seeking to preserve data similarity [66], and also
an information-theoretical-based method, maximizing relevance and minimizing
redundancy between features, even though it is not directly involving entropy or
mutual information [66]. The following chapter introduces this method.
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Chapter 3

Information Imbalance: An overview

3.1 Intuition
The Information Imbalance (∆) is a measure which allows comparing the infor-
mation content of distances in two feature spaces [13]. Informally, the Information
Imbalance quantifies how well pairwise distances in the first space allow predicting
pairwise distances in the second space, in terms of a score between 0 (optimal
prediction) and 1 (random prediction).

i
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Figure 3.1: Distance ranks in two feature spaces to measure the relative
information contained in these spaces. Reprinted with permission from
[13]. a): Illustration of the distance rank of two points in different feature spaces
A and B. The rank rij of point j relative to i is equal to 1 in space A, meaning
that j is the first neighbor of i. In space B, j is the third nearest neighbor of
point i. b): Illustration of how ranks can be used to verify that space x is less
informative than space y. A small distance rank in y automatically implies a small
distance rank in x, but not vice versa.
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The statistic is based on distance ranks: If data points of the same data set
have many features, then we can consider any subset of these features and calculate
pairwise distances between the points. For point i, point j, which is the nearest
neighbor, receives rank 1, the second nearest neighbor rank 2, etc. These ranks
will generally be different if we use a different feature set to consider the same
points i and j (Fig. 3.1a).

The core idea of the Information Imbalance approach is that distance ranks
can be used to identify whether one metric is more informative than the other. In
Figure 3.1b, a noisy curved dataset shows that the y-axis is more informative than
the x-axis because x can be predicted from y, but not vice versa. This asymmetry
is captured in rank differences: point i’s nearest neighbor by y-distance is j, but j
ranks as the 7th nearest by x-distance. Similarly, i’s nearest neighbor by x-distance
is k, who ranks 35th by y-distance. In other words, near neighbors in space y are
also near neighbors in space x, but near neighbors measured in x might be far in
space y. Space y is a good proxy for space x, but space x is not a good proxy for
space y

This general property is exploited in the definition of the Information Imbalance
which we provide below: Nearest neighbors are better preserved when passing from
a more informative to a less informative space than when doing the opposite, as
clear from Figure 3.1b.

3.2 Definition of Information Imbalance
Given a data set where each point i can be expressed in terms of two feature
vectors, XA

i ∈ RDA and XB
i ∈ RDB (i = 1, . . . , N), the Information Imbalance

∆(dA → dB) provides a measure of the prediction power which a distance built
with features A carries about a distance built with features B. The Information
Imbalance is defined using copula variables, and estimated as the average distance
rank according to dB, restricted to the nearest neighbors according to dA [13]:

∆
(
dA → dB

)
= ∆(A → B) ≈ 2

N
⟨rB|rA = 1⟩, (3.1)

which is for all practical purposes estimated as:

∆(A → B) ≈ 2

N2

∑
i,j: rAij=1

rBij (3.2)

Here, we consider ∆
(
dA → dB

)
and ∆(A → B) (eq. 3.1) as synonymous.

⟨·⟩ denotes the expectation value, in this context, the arithmetic mean over the
data. N is the number of data points. rAij (resp. rBij) is the distance rank of
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data point j with respect to data point i according to the distance metric dA

(resp. dB). For example, rAij = 7 if j is the 7th neighbor of i according to dA.
Information Imbalance hence estimates the conditional rank distribution p(rB |
rA = 1). ∆

(
dA → dB

)
will be close to 0 if dA is a good predictor of dB, since the

nearest neighbors according to dA will be among the nearest neighbors according
to dB. If dA provides no information about dB, the ranks rBij in Eq. (3.2) will be
uniformly distributed between 1 and N − 1, and ∆

(
dA → dB

)
will be close to 1.

Several distance metrics could be used to calculate these distance ranks. Since
the method is focused on the identification of a feature space which reproduces the
nearest neighbors of another feature space, it is not very sensitive to the precise
choice of the distance metric. While the distance between two ’far’ points will
likely be very different if computed, e.g., with the Hamming distance or with the
Euclidean metric, the nearest neighbors are more preserved across metrics. In this
thesis we will typically use the Euclidean distance, unless otherwise specified.

Unlike the Pearson correlation coefficient, the Information Imbalance is not a
symmetric measure and can be calculated from space A to space B and vice versa.
Both statistics will result in a number between zero and 1, and together they show
the informative relationship between the two spaces.

To illustrate this, consider a dataset from a 3D Gaussian distribution where the
z-axis has a much smaller standard deviation than the x and y axes (Fig. 3.2). We
can compute distances using all dimensions, d2xyz = (xi−xj)

2+(yi−yj)
2+(zi−zj)

2,
or just subsets like dxy or dyz.

z 21012
x

2
1
0

1
2

y
2
1

0
1
2

Figure 3.2: 3D Gaussian distribution with small standard deviation along z.

Now one can compare the rank distributions between spaces: In Figure 3.3,
the top row compares ranks based on two distances. The second row shows the
probability distribution p(rA | rB = 1), which represents the ranks in space A
restricted to nearest neighbors according to distance B and v.v.
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Figure 3.3: Different relationships between two distance measures using
the Information Imbalance. Reprinted with permission from [13]. a), c),
e): Scatter plots of the ranks between ordered pairs of points for different feature
spaces from a 3D Gaussian dataset with a small variance along z. The highlighted
regions indicate the points considered for generating below plots. b), d), f): Prob-
ability of ranks in a feature space, given two points are nearest neighbors in the
other space. g): The four different types of relationships that can characterize the
relative information content of two spaces A and B. h): Information Imbalance
plane for the 3D Gaussian dataset discussed. The different colors mark the regions
corresponding to the types from panel g.

Panels a and b show that ranks in dxyz and dxy are nearly identical, with distri-

21



butions sharply peaked around one. This is due to the small variance along z which
leads very similar distance ranks in the two spaces. The closer the conditional rank
distribution p(rB | rA = 1) is to being peaked at one, the more information about
space B is captured within space A. In panels c and d, comparing dxy to dx, the
more informative dxy leads to ranks clustered around small values but not v.v. For
independent features (x and y in panels e and f), rank distributions are uniform,
leading to an average rank of ∼ N

2
between pairs of points, and to an Information

Imbalance of ∼ 1 both ways (uninformative).
The relationship between spaces A and B can now be categorized into four types

by comparing the Information Imbalances ∆(A → B) and ∆(B → A): equivalence,
independence, mutual information sharing, or one space fully encompassing the
other.

These types, explained in Fig. 3.3g, are visualized by plotting the two Imbal-
ances against each other in Information Imbalance planes (like in Fig. 3.3h).

The Imbalance plane for the previously discussed 3D Gaussian dataset in Fig.
3.3h shows that the small variance in the z-axis makes spaces xyz and xy nearly
equivalent. It also correctly identifies x as being part of xyz and classifies x and y
as orthogonal.

Additionally, a point marked by a black star represents a dataset from a 4D
isotropic Gaussian distribution, demonstrating that spaces x̃ỹz̃ and ỹz̃q̃ share sym-
metric information.

Since the Information Imbalance relies only on the local neighborhood of each
point, it is particularly well-suited for studying nonlinear data manifolds.

The method can be used in a supervised and unsupervised manner, by employ-
ing a separate target space or sub-selecting features within one space, respectively.
Both have been applied recently in a model of a glass-forming liquid, remarkably
with similar selected features [67].

The algorithm for Information Imbalance analyses between feature spaces is
publicly available as the MetricComparisons class in the Python package DADApy
[3] and a comprehensive description can be found in the according documentation
[68], which includes a dedicated tutorial.

The following chapter is the first technical chapter of this thesis. A weighted
Information Imbalance approach is introduced for feature selection in a medical
data set.
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Chapter 4

Unbalanced class prediction with
categorical variables and missing
data in medicine

4.1 Introduction to clinical predictions
In many fields, and in particular in statistical medicine, one attempts to develop a
predictor using relatively few data points (the patients), characterized by a num-
ber of features which can be large. These features encompass demographics, vi-
tal parameters, comorbidities, medications, blood test values, radiological exams,
clinical scores and more. Furthermore, they can be of any data type, e.g. quan-
titative (weight, age, blood value levels), binary (presence of diabetes or other
comorbidities), nominal (types of ventilation), or ordinal (sequential organ fail-
ure assessment (SOFA) score). Many of these features are typically irrelevant or
redundant, namely correlated with each other, and a selection of few, relevant fea-
tures is desirable. For medical professionals, having to consider too many features
confuses the clinical work.

Typically, a feature is considered relevant if it correlates with the target, for
example if it discriminates between target classes. This simple concept is at the
basis of most feature selection algorithms. Briefly recalling the overview provided
in chapter 2, feature selection methods can be broadly divided into filter, wrapper
and embedded methods. Filters are simple statistics to rank the features indepen-
dently of the subsequent prediction (classifier agnostic), while wrapper and embed-
ded methods use the predictor as criterion to select feature subsets [43, 69]. Among
the classic embedded feature selection methods, lasso-regularized regression [70]
provides interpretable feature selection while drawing a linear relationship between
input features and target. Sparse additive models (SPAMs) [71] and sparse neural
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additive models (SNAMs) [72] extend this to the non-linear case. Variable rank-
ing filter methods tend to be easier and faster to use than other feature selection
methods, but they have the drawback of being univariate methods with inability
to find the optimal dimension of the feature space, namely the number of variables
that are necessary to make a good prediction [43, 36]. Furthermore, many existing
feature selection algorithms suffer from the inability to handle missing and noisy
data [69].

In this chapter we show that the Information Imbalance [13] can be used as a
filter to perform feature selection in a clinical framework. This offers the chance to
address two of the challenges mentioned in chapter 2: performing feature selection
with missing data, and dealing with mixtures of real, categorical and binary fea-
tures. The second challenge, as we will see, can be addressed only partially using
the Information Imbalance in its standard formulation of ref. [13]. The chapter
hereafter, chapter 5, will be dedicated to a more principled manner of addressing
it.

We illustrate the procedure on a database of ∼ 1300 COVID-19 patients from
Udine, including hundreds of features for each patient. These features are ex-
tremely heterogeneous, some related with the clinical history, others with the sta-
tus of the patients at the admission to the hospital, other with the course of the
disease, including complications, treatments and clinical outcome. Very impor-
tantly, the database is highly incomplete, as is common in clinical databases: the
outcome of specific exams (say a TC scan) is typically available only for subsets
of the patients, and the clinical history before the admission is often known only
partially.

The Information Imbalance approach allows comparing two feature spaces, and
deciding if one is more informative than the other. Feature spaces are collections
of features that are used to characterize the data. For example, let’s say that space
A includes age, a specific comorbidity, and the value of a blood test, while space
B includes the parameters measured in a TC scan and (also) age. To estimate the
Information Imbalance, one finds for each patient their nearest neighbor, which is
the other patient that is most similar (closest) according to a distance estimated
using the features in space A. In this study we use the Euclidean distance. Say
that for patient number 1, the most similar is patient 412, such that patient 412
has distance rank 0 with respect to patient 1 in space A. Next, one computes the
Euclidean distance between patient 1 and 412 in space B, i.e. using the features
of space B, and finds the number of patients which are closer to patient 1 than
patient 412. One repeats this test for all the patients and computes the average of
this number. The Information Imbalance, denoted in the following ∆(A → B), is
proportional to this average. If ∆(A → B) is small, space A is predictive of space
B, as patients which are close in A are also close in B, and therefore the average
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will be taken over small distance ranks. If instead this number is large, the nearest
neighbor patients in A are typically "far" in B, which implies that space A is not
informative of space B.

In this chapter we show that Information Imbalance can be adapted to work as
a filter to perform feature selection in clinical databases. An important advantage
over other filter methods is that the approach described in this chapter automat-
ically selects features which are not only relevant, but also uncorrelated. Indeed,
the Information Imbalance can directly be computed for distances including arbi-
trarily many features. This is a practical advantage with respect to other methods
which are based on comparison between two variables at a time. It also allows
comparing the predictive power of subsets of features of different sizes. This, as
we will see, allows finding maximally informative subsets of features along with
the optimal dimension.

4.2 Methods

4.2.1 The clincal data set

This chapter includes a retrospective clinical study involving data of 1308 COVID-
19 patients from Udine hospital. The data set includes patients admitted to the In-
fectious Disease ward of the Azienda Sanitaria Universitaria Friuli Centrale Santa
Maria della Misericordia of Udine, a 1000-bed tertiary-care teaching hospital iden-
tified as a regional referral center for COVID-19 patients, from March 2020 to
March 2021. Informed consent was obtained from all participants.

For all patients the following parameters were collected: evaluation of in/ex-
clusion criteria; socio-demographics (age, gender, race, height, weight); date and
time of the onset of symptoms and of the admission to the hospital; ward of hos-
pitalization; co-morbidities (dyslipidemia, obesity, diabetes, chronic obstructive
pulmonary disease, chronic kidney injures, liver disease, hypertension, solid and
hematologic neoplasms, autoimmune diseases, primary or secondary immunosup-
pression), including Charlson score index; findings from routine physical examina-
tion (temperature, heart rate, breathing rate, blood pressure, SPO2, neurological
status); routine diagnostics performed (chest X-ray, CT scan, ultrasound, microbi-
ological tests and blood tests performed); date and time of blood sampling initial
and final diagnosis; type and focus of infection; date of discharge; date and time of
ICU admission and discharge; needs for organ support and/or invasive ventilation;
any serious adverse event or complication which occurred during hospitalization;
therapies carried out; lab parameters from routine blood testing which were as-
sessed at presentation (within 48 hours of admission); data from blood gas analysis,
such as PaO2/FiO2 ratio, alveolar arterial gradient, and lactate.
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The features were divided into input (measurable upon hospitalization) and
output (severity of outcome of COVID infection) features. 14 output features
were decided upon by medical knowledge. The natural hierarchy in the severity of
these features led to the creation of a "severity tree" (Fig. 4.1).

All patients
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complication complication
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Figure 4.1: The severity tree splits patients into eight severity classes of different
class size. These classes are depicted here as the leaves. The gray numbers on the
left indicate tree distances between nodes. Distances between patients on the tree
are measured one-way, such that the distance between patient A in the first big
leaf (no event, no complication) to patient B in the third class (no event, other
complication, 120 patients) is 2. This number is found by starting from patient A
and reaching patient B: We start in leaf 1, take two steps in tree distance down to
the level between orange and red, and then take two steps up to patient B’s class.
Counting this trajectory only one directional, the distance between the patients is
2.

In the severity tree, death, intubation and transfer to ICU were used to split
patients into an "event" group, where at least one of these three events occurred,
and a "no event" group. The second split is given by the presence or absence of
complications. The difference between infectious and non-infectious complications
makes up the third split of the tree, as seen in Fig. 4.1, leading to a classification
of patients into eight severity classes.

These output features were available for all patients, yielding a distance - and
an identical distance rank - between 0 and 3 for each pair of patients on the tree.
The distance between two patients is then estimated by counting the number of
links separating their leaves in the severity tree, divided by two (one directional).
Since there are only eight classes in the severity tree, the distances between all
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patients in this output space are degenerate, meaning that many patients have the
same distances from each other. Furthermore, there is a high class imbalance, i.e.
the biggest class contains more than half of the patients.

138 input variables were selected, including age, gender, physical exams (e.g.
blood pressure, temperature), blood test (e.g. diagnostic antibodies and inter-
leukins), hemogas (e.g. partial pressures of oxygen and CO2, pH of the blood)
values and chronic comorbidities (e.g. diabetes) and medications (e.g. diuretics,
steroids). Potential input spaces are tuples of these input variables. As many
real world data, the input data is characterized by missing values, which leads
to reduced patient numbers for certain combinations of input features. In some
possible input spaces also distances between data points are degenerate, due to
categorical, binary and repeated values.

4.2.2 Class-corrected Weighted Information Imbalance

As described in the dedicated section section 3.2 in eq. 3.2, the Information Im-
balance ∆ is defined as follows [13]:

∆(A → B) =
2

N

∑N
i=1 r

B′
i

N
, (4.1)

where rB
′

i = rBi given rAi = 1. N is the number of all data points, in this case
all patients. Here, a data point is a patient. The Information Imbalance between
feature space A and feature space B, ∆(A → B), is proportional to the average of
the neighbor ranks in space B, conditioned to nearest neighbors in space A, and
normalized such that if A predicts space B perfectly, ∆(A → B) ≈ 0, and if A
has no information on B, ∆(A → B) ≈ 1. Note that due to the tree structure in
the COVID-19 output space in this paper we assign the nearest neighbor rank 0,
which leads to very small numeric differences in the case of few data points. This
chapter uses the Euclidean distance as distance metric in the input feature spaces.

For the high dimensional classification of COVID-19 severity, Information Im-
balance is used in the feature selection step. The task is to find input variable
spaces in which the nearest neighbors optimally describe the distribution of the
output classes. The severity tree output space is degenerate with high class imbal-
ance, where leaf 1 has more than half of the total patients. Using naive classifiers
in class imbalanced data sets biases class prediction heavily towards the majority
class, especially when feature selection is performed. Subsequently, the class pre-
dictive accuracy is low in the minority classes [73]. The original implementation
of Information Imbalance was developed for continuous in- and output spaces and
has the described shortcomings when applied to few, imbalanced output classes.
However, in sick patient prediction there is a high cost associated to false negatives.
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To find feature spaces which also predict the neighborhood of the patients in
small classes, we introduce class weights wi,l =

1
leafsizel

, for each patient i in class
l. Furthermore, the distances in the severity tree are highly degenerate. The
structure of our tree leads to a total of four distinct distances and identical four
distance ranks, where rank 0 means that two patients are in the same class and rank
3 means the two patients are on opposite sides of the tree (event vs. no event).
Since the classes are imbalanced, the average probability to find a certain rank
neighbor from the different classes is not uniform. Therefore, the normalization
a is built to reflect this and bring the average value of ∆ to a value of 1, when
the nearest neighbor ranks are distributed randomly. The adjusted "Weighted
Information Imbalance ∆w" becomes:

∆w(A → B) ≈ a

∑N
i=1 r

B′
i wi∑N

i=1wi

(4.2)

If more than one nearest neighbor exists at the same distance in the output space
B, the nearest neighbor rank is the mean over these M nearest neighbors of patient

i: rB
′

i =
∑M

j=1 r
B′
i,j

M
.

For this implementation the input space needs to provide clear nearest neighbor
assignments, in order to find the according ranks in the output tree. To resolve
the degeneracy in the input space, small random numbers are added to duplicated
input values. Since this makes the estimated Imbalance a stochastic variable, we
repeated the optimization ten times with different random seeds, verifying that
the results are robust. For the ten implementations, the Weighted Information
Imbalances of optimal tuples with the same tuple sizes are mostly identical, up
to the second digit (equal to figure 4.3a) with standard deviations on the order
of 10−4. Also the chosen tuples for each size are largely congruent, with the best
single variable always being brain natriuretic peptide (BNP) and the best 13-plets
of the ten implementations being identical to the one present in this chapter in
subsection 4.3.2, except in one case, where eosinophils (FLEOS) have been selected
instead of lymphocytes (FLLINF).

Variables were normalized by dividing them by their standard deviation in
order to move them into a comparable value range.

The problem of missing data was treated in a constrained, data-set-reductive
manner, by which only feature tuples were considered which were present in at
least 100 patients. Then ∆w was calculated for the feature tuple in question
using only these ≥ 100 data points with the additional constraint that the base-2
Jensen-Shannon divergence of the tuple class distribution towards the full class
distribution (of the 1308 patients) was ≤ 0.06 , in order to ensure proportionate
stratified sampling, i.e. such that the share of the classes in the sub-sample is
proportionate to the full sample. This subset of ≥ 100 patients has no missing
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values and can hence be passed on to the downstream classifiers, kNN and SVC,
without problems.

4.2.3 Beam search

Input spaces with more than 1 variable were selected by applying ∆w to a pool of
candidate feature tuples selected by beam search with beam width 55. Beam search
is a heuristic algorithm [74] which is employed because the full exhaustive search
of all possible variable k-tuples (out of D features) would lead to combinatorial
explosion with complexity O(Dk). Like in the vanilla greedy approach, the pool
of candidate feature tuples is sequentially extended by adding new features to the
best scoring previous tuples. However, in beam search, not only the one best
result is chosen and variables added to it, but the n best results, where n denotes
the beam width. In this case, the 55 best results were iteratively extended. The
computational complexity of beam search is O(D · n · k) [75] for beam width n.

4.2.4 Prior-corrected k-NN prediction of severity

After finding ∆-optimized sets of features, we use an adjusted k-nearest neighbor
(k-NN) prediction in a leave-one-out (LOO) approach. Comparing the predicted
severity class to their actual class, we evaluate the performance of the method
with cumulative distribution functions (CDFs) of the distances d, i.e. consider
the fractions of cases in which the class was predicted correctly (d = 0), or a
neighboring class was predicted (d = 1), or the same side of the severity tree
was predicted (d = 2). The empirical probability distribution of classes for each
patient calculated from their nearest neighbors’ classes cannot be taken at face
value due to the class imbalance. Effectively, the class imbalance makes it much
more likely to find a majority class NN than to a minority class NN. The average
global density of minority class points is smaller. For this reason we divide the
empirical probabilities by the prior probabilities P 0 of the classes in the samples,
to create a metric which measures how much bigger or smaller the local density
of the various classes is around the patient, in comparison to the average global
density. If this value is greater than 1 for a class, this class is more likely than
average to be the class of the patient. Since several classes can have values greater
than one, the prediction is based on the class with the maximum value.

P 0
i,l =

leafsizei,l∑Nl
k=1 leafsizei,k

(4.3)

ρi,l =
P emp
i,l

P 0
i,l

(4.4)
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4.2.5 Identifying important but rarely available features by
“usage when available”

Due to the missing values in the input data set, the globally selected best variables
are a function of their intrinsic goodness of prediction as well as their availability,
especially together with other orthogonal features. To decouple these effects to find
intrinsically valuable features, the optimal tuple for each patient is found using ∆w

in a leave-one-out (LOO) procedure. The "usage when available" statistic Uf for
each feature f is simply defined as the ratio of the number of times a feature is used
in all patient-specific ∆w-optimized tuples nf,∆w , over the count of the availability
of that feature across all patients af :

Uf =
nf,∆w

af
(4.5)

4.2.6 Mutual information and sequential feature selection

Two other standard feature selection methods are compared to Information Imbal-
ance. A frequently used filter is the estimated mutual information (MI) between
each feature and the output classification [59], and a straight forward wrapper
method is sequential feature selection (SFS). For both the implementation in scikit-
learn [76] is employed and for both methods the data set has to be complete. Thus
missing values were filled in by imputation (scikit-learn KNNImputer with 10 NN,
uniform weights and Euclidean distance). The MI between each feature and the
output classes were calculated with the scikit-learn class mutual_info_classif (3-
NN). Forward SFS was calculated using the wrapper SequentialFeatureSelector (5-
fold, 10-NN) and SVC (balanced class weights) respectively). The prior-corrected
k-NN predictor was used for classification in a Leave-One-Out (LOO) cross vali-
dation approach, and compared with a support vector classification (SVC) LOO
prediction as implemented in scikit-learn (sklearn.svm.SVC), using default settings
and balanced class weights.

4.3 Results
This study is based on a dataset of 1308 COVID-19 patients with ∼ 150 features,
and 33% of missing values. Some of these features are input features, measurable
upon admission in the hospital. These include age, gender, physical exams (e.g.
blood pressure, temperature), blood tests (e.g. biomarkers like interleukins), arte-
rial blood gas (e.g. partial pressures of oxygen and CO2, pH of the blood), chronic
comorbidities (e.g. diabetes) and chronic medications (e.g. diuretics, steroids).
36% of all input features were missing, with only 28 features being complete, and
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25 features available in a quarter of the patients or less. The output features
were 14, all binary. These features could only be measured later on during the
COVID-19 infection, and are therefore the variables that a clinician might be will-
ing to predict. These are available for all patients and include death, intubation,
transfer to ICU, and 11 complications (heart attack, pulmonary embolism, arry-
thmia, atrial fibrillation, stroke, thrombosis, pneumothorax, pneumomediastinum,
hemorrhage, delirium, and secondary infections during hospitalization).

4.3.1 Correlation and Information Imbalance between nu-
merical patient features

We first use the classic Information Imbalance to investigate the relationships
between the input features. We consider the 90 numerical input features for which
it is possible to estimate the standard Information Imbalance introduced in ref.
[13]. We computed the Information Imbalance ∆ between each pair of features
using the implementation in the Python package DADApy [3]. ∆(A → B) is close
to zero if feature A predicts feature B well. It is close to one if feature A does not
provide information on feature B. For each pair of features we also computed the
standard Pearson and Spearman correlation coefficients r and ρ, which are ±1 in
the case of a perfect positive or negative correlation, and 0 if there is no correlation.
If two features correlate strongly, ∆(A → B) and ∆(B → A) should both be small
and similar numbers, if both predict each other to an equal amount. However,
if one feature predicts the other, but not vice versa, there exists an asymmetric
correlation, and this is reflected in an asymmetric Information Imbalance. This
phenomenon, as we will see, is not captured by Pearson and Spearman correlations.

In the table in Fig. 4.2a, we report the Information Imbalance and the corre-
lation coefficients between the 20 pairs of features with the lowest ∆(A → B). To
highlight some possible relationships, we plot some of these feature as a function
of each other in the bottom panels (Fig. 4.2b).

The Information Imbalance faithfully captures features which have strong cor-
relations with each other. The top-eight positive correlation couples (all r > 0.8)
are contained in the top-20 Information Imbalances. A clear sanity check is dis-
played in the first rows: the two different laboratory methods for the glomeru-
lar filtration rate (GFR and GFR.1), which hold the same values, display per-
fect correlations and extremely low Information Imbalances. This is also true for
the prothrombin time (and international normalized) ratios (PT/INR and PTR),
where one is just a normalized version of the other. Correlation and Information
Imbalance pick up on the linear relationship between hematocrit (EHCT) and
hemoglobin (EHB). EHCT is the percentage of volume occupied by red blood cells
relative to whole blood, and therefore is often related to hemoglobin (EHB). Also,
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b

a

No. Feature A Feature B Pearson r(A,B) Spearman ρ(A,B) Δ(A→ B) Δ(B→ A)

1 GFR.1 GFR 1.000 1.000 0.037 0.037
2 PT/INR PTR 1.000 0.998 0.049 0.050
3 EHCT EHB 0.981 0.976 0.236 0.261
4 EWBC FLNEU 0.874 0.959 0.276 0.283
5 PaO2/FiO2 PaO2 0.177 0.279 0.351 0.805
6 FiO2 PaO2/FiO2 -0.906 -0.770 0.425 0.441
7 EMCH EMCV 0.947 0.916 0.448 0.450
8 EHCT ERBC 0.861 0.853 0.527 0.541
9 CRE GFR -0.533 -0.842 0.560 0.592
10 CRE GFR.1 -0.533 -0.842 0.560 0.579
11 EHB ERBC 0.820 0.819 0.561 0.592
12 Oxygen saturation PaO2 0.599 0.807 0.571 0.593
13 BILD BILT 0.962 0.874 0.573 0.598
14 TROP FIBCL -0.496 -0.507 0.574 0.713
15 IGM HDL -0.003 0.109 0.612 0.810
16 IGG HDL -0.295 -0.055 0.628 0.876
17 A-a gradient PaCO2 -0.455 -0.695 0.651 0.691
18 BNP Birth -0.504 -0.708 0.662 0.792
19 TROP Anion gap 0.063 -0.382 0.699 0.858
20 HBA1CM IGA 0.100 0.042 0.711 0.804
... ... ... ... ... ... ...
21 BMI GFR -0.077 -0.044 1.029 1.040

more predictivemore predictiveNo informationSymmetric information
PaO2/FiO2TROP

Figure 4.2: a: Features ordered according to the lowest Information Imbalances
towards another feature, and their Pearson and Spearman correlation coefficients.
Yellow colored rows have notably asymmetric Information Imbalances, where
|∆(A → B) − ∆(B → A)| > 0.1. b: Scatter plots of several of the feature
vs. each other from A. The values are the normalized features.

the strongest negative correlation pairing is in the top-20 imbalance table (row 6).
Thus the strongest correlations account for nine rows in the top-20 Information
Imbalances.

The other eleven rows are made up by pairings which have less strong corre-
lations, but six of them have high asymmetries in their Information Imbalances
towards each other (yellow rows in 4.2a), describing a relationship where one vari-
able is more informative about the other than vice versa. These six pairings have
predominantly very low correlations, showcasing that correlation fails to identify
these asymmetric relationships. The effect is especially pronounced in row five,
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where PaO2/FiO2 (oxygen partial pressure over fractional inspired oxygen) has a
low Information Imbalance towards PaO2 (oxygen partial pressure) and such ex-
plains this feature space well, while the same is not true v.v. This can be used as a
proof of concept because indeed PaO2/FiO2 is the value of PaO2 divided by FiO2
(fractional inspired oxygen) - a simple relationship via one confounding variable
which is not detected by correlation (r=0.177). It should be noted that, from a
clinical point of view, measuring the PaO2/FiO2 ratio can become very challeng-
ing: if patients are not on invasive mechanical ventilation, it is almost impossible
to know the exact FiO2, because the devices deliver a variable inspired oxygen
concentration. Information Imbalance also detected similar cases where the exact
relationship is not known: Here we report asymmetric relationships between tro-
ponin (TROP), a well-known marker of cardiac injury, and tissue damage marker
fibrinogen (FIBCL), as well as between the immunoglobulins IGM / IGG and
the high-density lipoprotein (HDL). TROP values are more predictive of FIBCL
values than the other way around. Fibrinogen is a plasma acute-phase reactant
protein produced by the liver and is a major coagulation factor. Its concentration
increases with inflammation, and it is traditionally considered a risk factor for
cardiovascular disease [77, 78], which might explain the connection to troponin.
Troponin, on the other hand, is a very specific marker: recent studies showed that
troponin dosage should be considered as a prognostic indicator in all patients with
moderate/severe COVID-19 at hospital admission and in the case of clinical dete-
rioration [79]. Retrospective data have placed a strong emphasis on the possibility
that acute myocardial injury represents a critical component in the development
of serious complications in patients hospitalized with COVID-19 [80, 81, 82]. To
the best of our knowledge, there is no literature concerning the exact relationships
between IGM / IGG and HDL.

We point out here that inter-feature asymmetric relationships could be impor-
tant. They are not captured by standard correlation analyses, and they could lead
to redundancy effects when tuples of features are used for predictive purposes.

4.3.2 Feature selection by optimization of the Information
Imbalance

We now consider a classical problem in feature selection, finding a small subset of
the 138 input features which is maximally predictive with respect to the output
features. In the case of the database analyzed in this chapter, the output features
are 14. These features are all binary ("yes" or "no") and are quite heterogeneous
in nature. In accordance with the medical insight of the clinicians co-authoring
this study, we organized the output features in a "severity tree" (Fig. 4.1 and
subsection 4.2.1).
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In short, death, intubation and transfer to ICU were used to split patients into
two classes, one for which at least one of such events has occurred (the patients
whose course has been more severe), the other in which no event has occurred. The
other output features are associated to infectious and non-infectious complications,
which are important to decide a clinical strategy. This leads to a classification of
patients into eight severity classes. The distance between two patients is then
estimated by counting the number of links separating their leaves in the severity
tree, divided by two (see Figure 4.1).

This tree distance is the target of the feature selection, however the nominal
value of the distances is unimportant and only their relative order matters, since
the Information Imbalance method uses distance ranks, i.e. the closest neighbor
in distance is assigned rank 0, the second closest rank 1, etc. The feature selection
algorithm presented in this chapter works as follows. We try to identify a distance
A, built as the Euclidean distance using a combination of several input features,
whose distance ranks are maximally informative with respect to distance ranks
B measured on the severity tree. Degeneracies in input features were treated
by addition of small random numbers (see subsection 4.2.2). A more rigorous
procedure aimed at dealing with degeneracies will be introduced in chapter 5. The
Information Imbalance between A and B is used as a feature selection filter to
discriminate between different choices of A (namely of input features) and select
the best one. The classes, "leaves" of the severity tree, are not populated uniformly:
class 1 has 717 patients, and the smallest class has only 12 patients. Therefore,
the Information Imbalance has been modified by introducing class weights, aimed
at compensating the occurrences of the different severity classes in the data set
(see subsection 4.2.2). We denote this modified, Weighted Information Imbalance
by ∆w.

To identify the best combination of input features, we find the combination
of n input variables minimizing ∆w , which are present in at least 100 patients
(see subsection 4.2.2). For small n, the search can be performed exhaustively by
testing all the possible combination of variables. For large n, the number of possible
combinations grows factorially. We use the deterministic beam search algorithm
(see subsection 4.2.3) which allows finding the best combination of variables for
arbitrary n with great confidence. In Fig. 4.3a, we plot the optimal value of ∆w

as a function of n. This value decreases up to n ≃ 13, then starts growing slowly,
indicating that adding more variables reduces the information. This can happen
when the new variables only add noise, and no independent information. This
analysis indicates that the most informative combination of features includes 13
variables (blue dot in Fig. 4.3a). The globally best n-plets of features as a function
of n (until n=13), corresponding to Fig. 4.3 are:

1. BNP
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Figure 4.3: a) The optimal (lowest) Information Imbalances ∆w as a function of the
number of input features. b) Accuracies of 10-NN predictions at given prediction
levels for tuple sizes as marked in a (the line shows the average over the 10 best ∆w

results for each tuple size). The accuracy corresponds to the fraction of patients
predicted correctly at a given prediction level. The prediction level corresponds to
the maximum tolerated distance of the true vs. the predicted class on the severity
tree, as depicted on the right. Together, the lines of one color can be considered
the CDF of the fraction of patients predicted correctly. c) Accuracies of the top
13-plets, benchmarked vs. randomly drawn 13-plets (green), and random nearest
neighbors assignments (grey). The average over the top-10 ∆w results is shown as
bold line and the standard deviation as shade. The predictions were generated by
LOO. The graphic on the right explains prediction levels: 0 denotes the fraction
of patients for whom the correct class was predicted; 1 indicates the fraction for
whom the occurrence of event and complication (yes or no) was predicted correctly;
2 means the patients predicted on the correct tree side (event vs. no event). The
remaining fraction of patients was predicted wrongly (distance = 3).

2. AT3, IP10

3. TC, A-a gradient, IP10

4. FLNEU%, AT3, IP10, ASMA

5. FLNEU%, AT3, IP10, ACARG, ASMA

6. FLLINF%, AT3, IL-10, TROP, ANCA1, ASMA

7. GOT, FLNEU%, AT3, IL-10, TROP, ANCA1, ASMA

8. Steroid therapy, FLNEU%, GPT, AT3, IL-10, TROP, ANCA1, ASMA

9. Hepatopathy, FLLINF%, GPT, AT3, IL-10, TROP, ANA1, ANCA1, ASMA

10. Hepatopathy, FLLINF%, GPT, AT3, IL-10, ACARG, TROP, ANA1, ANCA1,
ASMA

35



11. Hepatopathy, steroid therapy, potassium sparing diuretics, FLLINF%, GOT,
AT3, IL-10, TROP, ANA1, ANCA1, ASMA

12. Hepatopathy, steroid therapy, potassium sparing diuretics, FLEOS%, FLNEU%,
GPT, AT3, IL-10, TROP, ANA1, ANCA1, ASMA

13. Pathologies: Hepatopathy (liver disease); Chronic therapies: Steroid
therapy, potassium sparing diuretics; Blood exams: Alanin amino-
transferase (GPT), antithrombin III (AT3), interleukin 10 (IL-10),
troponin (TROP), antinuclear antibodies (ANA), antineutrophil
cytoplasmatic antibodies (ANCA), anti smooth muscle antibod-
ies (ASMA), Lymphocytes (FLLINF), percentage of eosinophils
(FLEOS%), percentage of neutrophils (FLNEU%).

In the following, we consider the optimal 13-plet as the feature space optimiz-
ing ∆w. This combination of 13 features suggests on the one hand a systemic
inflammation and autoimmunity, signaled by neutrophils and autoantibodies, and
on the other hand an immune paralysis and anti-inflammatory effort (i.e. steroid
therapy, IL-10). Furthermore, it has already been suggested that the up-regulation
of inflammatory markers can lead to the progression of the disease to the severe
form and eventually cause liver damage in these patients [83], which suggests why
hepathopathy might be an important feature.

The information provided by these input features on the severity of the course
of the disease is assessed by using these variables to predict the class of each
patient. We first use a prior-corrected k-NN classifier, in which the class of a
patient is assumed to be the same of their 10 nearest neighbors according to the
input features (see subsection 4.2.4 for details). This predictor has no variational
parameters, and lacks therefore tunability, but allows assessing directly the con-
sistency between the neighborhood of the patients induced by our optimization
procedure. Later in this study, we also use a support vector classifier (SVC) to
compare the results to the k-NN classification. In Fig. 4.3b, we plot the accuracies
of the prediction at different prediction levels, and for a different number of fea-
tures ranging from 1 to 20. The accuracy corresponds to the fraction of patients
predicted correctly at a given prediction level, defined by the maximum tolerated
distance of the true vs. the predicted class on the severity tree. Level 0 is the
fraction of patients predicted completely correctly, level 1 is the correct prediction
of having an event and complication, and level 2 is the fraction for whom only
the event was predicted correctly (correct tree side). The remaining percentage
belongs to patients misclassified according to having an event or not (level 3).
The accuracies are estimated by a leave-one-out (LOO) validation procedure. The
performance increases with the number of features, as seen in the height of the
CDF curves. This effect staggers with bigger tuple sizes and levels out.
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Our approach automatically also leads to a selection of features which are prac-
tically uncorrelated. This is demonstrated by calculation of the Pearson correlation
coefficient and the pairwise classic Information Imbalance for all the numerical fea-
tures contained in the ∆w-optimized nplets (Fig. 4.4). The mean of the pairwise

       Correlation        Imbalance

Figure 4.4: The pairwise Pearson correlation heat mat of the numerical features of
the ∆w-optimized n-plets(3, 13, and 20) from Fig. 4.3a, and the pairwise, classical
Information Imbalances of the same n-plets.

correlations of numerical features in the best 13-plet is r = 0.02, and the pairwise
Information Imbalances mean is ∆ = 0.96. Both numbers mean the features are
practically uncorrelated with each other and do not hold information about each
other. This happens "for free" since adding a feature which can be predicted by
other already selected features does not significantly improve ∆w.

We note that the Weighted Information Imbalance of the top-ranking ∆w-
optimized tuples of the same size is very similar. E.g. the best 13-plet has ∆w =
0.69, while the tenth best 13-plet has ∆w = 0.70 and differs by only 3 features
from the best. Therefore, in Fig. 4.3b and c the plotted lines are averages over
the top ten results.

To put these results in context, we need to compare them to a baseline. We
first performed a comparison with the predictive performance of randomly selected
tuples. Secondly, we performed a comparison with a prediction performed by as-
signing each patient a "nearest neighbor" at random. To be comparable to our
∆w-optimized tuples, both comparisons use averages over the ten best perform-
ing random 13-plets (Fig. 4.3c with shaded standard deviation). The prediction
accuracy is much higher in the ∆w-optimized 13-plets than when using random
variables. With the ∆w-optimized 13-plets the exact target class predictions are
about 27% of cases (distance = 0), while predicting the correct side of the severity
tree (event vs. no event, distance = 2) has a quota of around 77%. In comparison,
the completely random result distinguishes event vs. no event with under 50%
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accuracy and the random 13-plets from our data set predict the same with an
accuracy of under 60%.

4.3.3 Accuracy of prediction compared to other methods

Accuracy of prediction compared to mutual information and sequential
feature selection

We then compared our results to standard feature selection methods, namely to
selection by a mutual information (MI) score and to forward sequential feature
selection (SFS). MI is a filter method which ranks the individual features against
the output classes, while SFS uses the predictor method (here: k-NN and SVC)
in a greedy approach to search the best n-plets, and is hence a wrapper method
(see subsection 4.2.6). Using the top ranking 13 features selected by MI, the 13-
plet selected by SFS (different for k-NN and SVC), the 13-plet selected by our
approach, and all features, we perform a prediction with these four sets of features
using two different approaches, the k-NN predictor with k=10 and a SVC predictor
with balanced class weights.

Unlike Information Imbalance, these two feature selection methods do not pro-
vide a way to select the optimal tuple size at the feature selection stage. Therefore,
the predictive performances of optimal tuples of several sizes selected with MI and
SFS was compared. Using 13-plets of features remained the standard, since in all
three feature selection models this size was optimal or nearly optimal. The results
are presented in Fig. 4.5a.

Using the k-NN predictor the accuracy of the prediction is significantly higher
if one uses our approach. Using SVC, SFS performs better than the other feature
selection methods, especially at a prediction level 0 (Fig. 4.5a SVC). However, do-
ing the prediction only for the seven minority classes, i.e. excluding the no-event-
no-complication class (Fig. 4.5b), the feature tuple obtained with our approach
consistently outperforms all other tuples in both, k-NN and SVC predictions. The
SFS tuple has especially low accuracy for minority classes in the SVC predic-
tion, even though balancing class weights were employed in the tuple generation
and prediction. We recall that in imbalanced multiclass prediction the problem is
twofold: prediction in imbalanced datasets tends to favor the majority class, and
on top of this, prediction is more complex than in binary prediction, because there
can be several majority and minority classes with various relationships towards
each other [84, 85]. Furthermore, the error introduced in the imputation could
effect the minority classes more, as previously elaborated for standard imputation
methods [86].

Their reliance on imputation is an Achilles’ heel of both, NMI and SFS, because
most standard implementations, such as scikit-learn [76], need data sets without
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Figure 4.5: Accuracy of prediction using the top ∆w-optimized 13-plet, vs. us-
ing the 13 features with the highest mutual information (MI, filter) score on the
imputed data set (red) and the 13-plet selected by forward sequential feature selec-
tion (SFS, wrapper) on the imputed data set (olive). The dashed grey line shows
the prediction using the complete, imputed dataframe without prior feature selec-
tion. LOO was used for generating the predictions. Accuracy corresponds to the
fraction of patients predicted correctly at a given prediction level. The prediction
level corresponds to the maximum tolerated distance of the true vs. the predicted
class on the severity tree, as depicted on the right. a) Accuracies, using k-NN and
SVC predictors, respectively. b) The same as a, but considering the predictions
of the seven minority classes only (excluding no-event-no-complication). The SFS
13-plets for k-NN and SVC prediction are two distinct ones, using k-NN and SVC
predictors accordingly in the SFS-construction of the 13-plets.

missing values. In our dataset, slightly more minority class data had to be imputed
than majority class data (38% vs. 35%) and the different feature selection methods
selected tuples with 49% (NMI), 19% (SFS with 10-NN) and 32% (SFS with SVC)
imputed data. Weighted Information Imbalance, as introduced in this chapter, uses
a data-set-reductive approach (see subsection 4.2.2) and hence does not impute
features. It is a non-parametric algorithm employing class-balancing weights which
can intrinsically handle multiclass ground truths.

Accuracy of prediction compared to regularized classifiers

Information Imbalance is not a classification method. However, in the application
described in this chapter the ground truth metric is defined on a severity tree. Its
leaves can be considered as categories (classes) which can be used as a target for a
classification method. Therefore, a comparison with regularized classifiers, which
do not employ explicit prior feature selection, is presented: The prediction accura-
cies are compared with two regularized classifiers, the sklearn [76] implementations
of
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1. L1 (lasso) regularized logistic regression classification
sklearn.linear_model.LogisticRegression with
penalty=’l1’, C=1 or 0.04, max_iter=200, class_weight=’balanced’,
solver=’liblinear’, tol=0.01

2. Regularized sparse SVC
sklearn.svm.SVC with C=10 or 1, kernel=’rbf’, gamma=’auto’,
class_weight=’balanced’.

The results presented in Fig. 4.6 show that, in terms of general prediction accu-
racy, these regularized classification methods perform at least as good, sometimes
better, as the feature-selection-plus-classification models. Sparse SVC even reaches
over 50% at the class level. This effect, however, does not translate to the minority
classes, where this same classifier only reaches 19% correct predictions, while In-
formation Imbalance selection and subsequent SVC reach 41%. For all prediction
levels of minority classes, modestly regularized (C = 1) sparse SVC yields the
second best results.

All in all, given the importance of minority classes in the clinical setting, we
conclude that the Information Imbalance filter method finds a superior feature
subspace for severity prediction in the present COVID-19 database than the two
other feature selection methods considered here, and also then state-of-the art
regularized classifiers, considering the performance in minority classes.

4.3.4 Predictive power for patients without the optimal in-
put tuples

The 13 features which have been identified as optimal as described above are
simultaneously available for only 102 patients due to missing values in the data
set. Our method, however, can find for each patient their patient-specific best
n-plet.

The patient-specific optimal n-plets (Fig. 4.7) were found in a leave-one-out
(LOO) approach by considering all features that were present in the respective
patient, then beam-searching over these starting from the 1-plets. For each of
these feature tuples the Weighted Information Imbalance is calculated using all the
patients who have full information in these features, and the search is stopped when
the Information Imbalance flattens or starts increasing. In this way, the patient-
specific optimal tuple is found, and along with it the optimal dimensionality.

Then we performed a 10-NN prediction of severity for each patient, using their
optimal n-plet of features in a LOO cross validation, where we use all other pa-
tients who share the same features as training set. As default, the algorithm only
considers possible feature tuples which are available in at least 100 patients and
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Figure 4.6: Accuraciess of prediction of several models, corresponding to Fig. 4.5
(SVC only), and compared with two classifiers, logistic lasso regression and sparse
SVC. The accuracy corresponds to the fraction of patients predicted correctly at a
given prediction level. The prediction level corresponds to the maximum tolerated
distance of the true vs. the predicted class on the severity tree, as depicted on
the right. 0: exact class predicted; 1: event and complication predicted; 2: event
predicted.

have a base-2 Jensen-Shannon divergence of ≤ 0.06, in order to be representative
of all classes in the full set.

The average predictive performance of the features selected in this manner is
still very significant but is reduced as compared to what observed for the optimal
13-plets (Fig. 4.7). The prediction of the correct side of the tree (event vs. no
event) is reduced by about 7% to roughly 70% and the correct class prediction
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Figure 4.7: Accuracies of 10-NN predictions at given prediction levels by the op-
timal 13-plets (averaged over the ten best), which are available in roughly 102
patients, vs. accuracies using for each patient in the database (1308 patients)
their optimal input feature tuple. The accuracy corresponds to the fraction of
patients predicted correctly at a given prediction level. The prediction level cor-
responds to the maximum tolerated distance of the true vs. the predicted class on
the severity tree, as depicted on the right. Together, the lines of one color can be
considered the CDF of the fraction of patients predicted correctly.

drops from 27% to about 23%. This result is not surprising: The variables which
turn out to be most informative happen to be simultaneously available only for a
relatively small fraction of 102 patients, while the rest the patients do not have
complete data for these features. Hence, their respective ∆w-optimized n-tuple has
higher (worse) Information Imbalance than the optimal 13-plet, which influences
the prediction accuracy.

4.3.5 Identifying important but rarely available features

Approximately one third of the data are missing in the data set. For this reason,
the optimal 13 features as described above are simultaneously available for only
102 patients. Moreover, missing values are not evenly distributed among the fea-
tures: some "cheap" exams are performed routinely for all the patients, others are
performed only for a small fraction of the patients. As a consequence, optimal
features might not be available for a generic patient.

This result pushed us to develop a quality measure for the input features which
takes into account the fact that ∆w-optimized n-plets contain features that are
"good" in two ways: firstly, they are intrinsically important, and secondly, available
together in the same patients. For this quality measure we use all resulting patient-
specific optimal feature tuples from the previous subsection 4.3.4 (Fig. 4.7).

We estimate, for each feature f , the number of patients NPf for which f is
included in the most informative ∆w-optimized tuple (which is patient-specific).
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The usage Uf of feature f is then estimated by the ratio between NPf and the
number of patients for which f is available. If Uf is close to one, then the feature
has been chosen for each patient where it was available, and has a high intrinsic
importance for the Information Imbalance towards the severity tree target classes.

a      Important in data set b      Intrinsically important
- -

-

Figure 4.8: a) Statistics of the features present in the top ten 13-plets. The grey
bar indicates the fraction of 13-plets in which the variable is present. The blue
dots indicate in how many patients the feature is available (scale defined on the
right y-axis). b) Intrinsically important features estimated by the "usage when
available" statistic Uf . The gray bars indicates the value of Uf , which is large
when a variable is always used when present. The blue dots are the same as in
panel A.

Fig. 4.8a shows the features which are used in the 10 most predictive 13-plets
(predictive performance of these in Fig. 4.3c) which, we recall, are present at the
same time in ∼ 100 patients. 9 of the 13 features are used in all the ten best
models. The blue dots indicate the fraction of patients for which the variable is
available. For example, information about steroid therapy, which is used in all the
10 best models, is available for all the patients. AT3, also used in all the best
models, is available for approximately 350 patients.

Fig. 4.8b on the other hand shows the value of the "usage when available "
statistic Uf . Some of those variables are present in both sets of Fig. 4.8, namely the
cytokine IL-10 (interleukin 10), the anticoagulant protein AT3 (antithrombin III),
the autoantibodies ANCA and ASMA (antineutrophil cytoplasmic antibodies and
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anti-smooth muscle antibody), the liver enzymes GPT and GOT (alanin amino-
transferase and aspartate aminotransferase), and the percentage of eosinophils,
FLEOS%.

The Uf statistic finds also intrinsically good predictors which are underrepre-
sented due to missing values, and as such do not appear in the most used features of
the ∆w-optimized tuples. For the COVID-19 severity prediction some of these are
direct bilirubin (BILD), the diabetes indicator glycated hemoglobin (HBA1CM),
interleukin 6 (IL-6), and the enzyme lactate dehydrogenase (LDH), which indeed
have a high value of Uf (panel b) but do not enter in the best model (panel a). IL-
6 is a pro-inflammatory cytokine and has previously been linked with COVID-19
severity [87]. Abnormal bilirubin levels indicate sepsis, and the severity of patients
could be linked to the fact that they have developed sepsis, and therefore a con-
dition of a dysregulated systemic response. Glycated hemoglobin is linked to a
condition of decompensated diabetes, which predisposes to infections. Diabetes is
known to predispose severe COVID-19 infections [88].

4.4 Discussion
In this chapter we illustrate a first attempt to use the Information Imbalance [13]
to perform feature selection. We considered a clinical database, which introduces
two critical difficulties: missing data and the coexistence of variables of totally
different nature (binary, categorical and real) in the dataset. While we believe
that for the first problem (missing data) the approach described in this chapter is
robust, and can be used in other contexts, the difficulties met in mixing variables
of different nature in the same distance prompted us to further research, which
will be described especially in chapter 6.

Technical discussion

Focusing the discussion on the results presented in this chapter, we considered a
database of 1300 COVID-19 patients from Udine hospital with ∼ 150 features for
each patient and one third of missing data. In order to deal with unbalanced classes
in a clinical setting we had to include weights in the Information Imbalance defi-
nition. We find that the optimal feature tuples selected by our approach perform
better in the k-NN prediction of COVID severity classes than two other standard
feature selection methods, mutual information (a filter) and sequential feature se-
lection (a wrapper), implemented in a standard statistical analysis package [76]
(see Fig. 4.5). Regulated classifiers which do not include a prior feature selection
step can reach slightly higher accuracies for the prediction of all classes (Fig. 4.6).
This effect, however, does not translate to minority classes, which in our database
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correspond to patients developing very severe symptoms. Information Imbalance
feature selection followed by SVC classification outperforms all other methods in
identifying those patients.

The classification task, as applied in our study, serves to validate the utility of
the ∆w selected features in distinguishing between severity classes of COVID-19,
rather than introducing a complete novel classification model. A future direction
of research could extend our algorithm into a framework including techniques for
quantifying of the uncertainty of prediction, but is beyond the scope of the cur-
rent chapter and would overshadow the core contribution of the presented feature
selection method.

As common in most real world clinical data, also in this case the accuracy does
not allow to perform exact prediction of the patient fate into their severity class
(prediction level 0 in Figs. 4.3 and 4.5). Exact predictions, as tested in a leave-one-
out-cross-validation approach, happen in 30% - 40% of cases, depending on which
predictor is used and which classes is considered. However, in over 70% of the cases
we were able to predict if the patient will suffer a serious event (death, transport
to ICU or intubation, prediction level 2) or not. In this sense, the hierarchical tree
structure of the output space is of advantage, because even if the exact prediction
is not possible, a warning along a less stratified prediction level of the output tree
is nevertheless possible. The feature tuples derived from our approach keep the
high accuracy described above also for minority class patients, as opposed to tuples
generated with other feature selection techniques.

One important advantage of the approach presented here is that it works with-
out imputation[89], namely it does not require the preprocessing step of assigning
missing values of the input features. While MI and SFS in their standard imple-
mentations need complete data sets and such require imputation, our approach
finds patient-specific optimal input feature tuples in the original, incomplete data.

A limitation of the method is presented by the nature of the ground truth
space. Since Information Imbalance finds input feature spaces which reproduce
the neighborhood relationships observed in a ground truth space, it works best if
the ground truth is either continuous, or at least has classes for which one can
meaningfully identify a distance similar to our severity tree. The method, as for-
mulated in this chapter, is less suitable for learning a ground truth distance which
can take only a few values, and would not be appropriate for binary classifica-
tion tasks. Furthermore, continuous input features are more likely to be chosen
in small tuples, because they can carry more information than categorical vari-
ables. The optimal 13-plet of this study includes three binary "yes/no" variables
(hepatopathy, steroid therapy, potassium sparing diuretics), proving that there are
several informative binary features in this COVID-database that hold information
complementary to the chosen numerical features.

45



The threshold of ≥ 100 patients without missing data and Jensen-Shannon
divergence of ≤ 0.06 for Information Imbalance feature selection were practical
choices, which can influence the specific results of the optimal tuple. While these
choices have proven to balance performance and representativeness effectively, dif-
ferent informative feature tuples could be selected for different thresholds. The
optimal 13-plet should be considered one out of several possible informative fea-
ture combinations in this data set.

Clinical discussion

The optimal variables of our data set include cytokines (such as IL-10), autoan-
tibodies (ANA, ASMA, ANCA), and therapies that reduce the immune response
(steroid therapy and immunomodulators as chronic home therapy). These findings
are of medical interest because the pathogenic mechanisms that drive COVID-
19 clinical deterioration can likely be contributed to systemic inflammation, dis-
ordered coagulation (AT3), and immune dysfunction. The cytokine storm that
characterizes the unfavorable outcome of patients comprises classical markers of
systemic inflammation such as IL-6, which is now largely disposable as a single
diagnostic test also at urgent request in the majority of hospitals around the world.
IL-6 increases during COVID-19 illness decline as patients recover, correlating with
the severity of the disease course [87]. When IL-6 levels are already very high, the
focus can be shifted to the degree of immunoparalysis and anti-inflammatory effort
(IL-10) [87].

COVID-19 is known to alter the coagulation state and, in severe cases, lead to
hypercoagulation, which is causally involved in negative patient outcomes. AT3
levels decrease in inflammatory conditions and AT seems to possess anti-viral
properties [90]. The role of transaminases (GPT and GOT), and history of liver
disease are also interesting. The hepatic consequences of an SARS-CoV-2 infec-
tion are recognized as an important component of COVID-19 and this aspect is
most clinically relevant in patients with pre-existing cirrhosis [91]. There are sev-
eral other potential contributors to abnormal liver biochemistries in COVID-19,
including ischaemic hepatitis, hepatic congestion related to cardiomyopathy, and
transaminase release due to the breakdown of skeletal and cardiac muscle [92].

This chapter also tested the features for their intrinsic importance decoupled
from their availability in the data set by employing a simple usage statistic, which
we called Uf . This analysis can be used to provide recommendations to clinicians
for future data collections, because it identifies potentially important features for
COVID severity prediction, which are, however, not abundant enough in our data
set. For example, we find that conjugated (direct) bilirubin (BILD), is available
for less than 30% of the patients in the current data set, yet it is selected very
often, when present, for the patient-optimal prediction. A similar scenario is found
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for glycated hemoglobin (HBA1CM) and interleukin 6 (IL-6). The collection of
these features should be emphasized in future data collection efforts.

The use of clinical features and diagnostic features as biomarkers is of great
clinical interest, in order to facilitate improved triaging and earlier therapeutic
decisions. The model presented here could help the clinicians to focus on the
variables of greatest interest in order to target the allocation of resources and
escalation of care.

The analysis of patient severity in this chapter included many categorical vari-
ables, especially in the output space. We solved the issue of degenerate values and
distances in these spaces by (a) developing a specific severity tree distance as target
for the output space, and by (b) adding small random numbers to the degenerate
values in the input space. In the following chapter 5 we extend the Information
Imbalance framework to include categorical values and allow quantification of in-
formation between categorical and continuous spaces. As highly relevant use case
we consider biodiversity data from the Amazon Rainforest.
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Chapter 5

Treating categorical variables:
Biodiversity data in ecology

Many datasets include categorical, non-ordinal variables, which may convey valu-
able information about other features but cannot be handled by methods that
assume the variable’s value carries intrinsic meaning. In the Information Imbal-
ance approach, distances between data points are computed using feature values.
However, commonly used distance measures depend on the magnitude of feature
values, while categories are only labels, whose value has no specific meaning.

A relevant example of non-ordinal variables can be found in location-based fea-
tures in ecological datasets, which will be analyzed in this chapter. In ecological
studies, particularly those involve large geographic regions, the full population can-
not be classified directly, so the area is sampled through smaller plots distributed
across the region [93]. These plots are characterized by various features, includ-
ing administrative units like countries and regions. Such metadata are categorical,
typically non-ordinal and represented by a word string: The feature "region" could
include 50 different geographical regions, and to use this feature in Information Im-
balance, it needs to be encoded in numbers. Yet the nominal value of the numbers
should not be considered an order, since their sequence is arbitrary. Despite this,
categorical features can still provide valuable information about target features.

To account for this, this chapter introduces two new forms of Information
Imbalance that can extract insights from categorical data. ∆con2cat and ∆cat2con

are designed to capture the information content of a continuous feature about
a categorical feature and v.v. Both only use the distance information from the
continuous space, while considering instead the classes present in the categorical
feature. We use these measures to analyze an Amazon Rainforest dataset.
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5.1 Information Imbalance between categorical and
continuous features

The dataset which will be analyzed in this chapter includes categorical data
without order, namely not ordinal data. In these use cases, if a point j is not in
the same class as point i, it is irrelevant in which other class it is, and it is always
considered as "other". If a classifiers predict it in another class, the prediction is
wrong, whatever the other class is. The specific challenge that we tried to address is
quantifying the Information Imbalance between those variables and other variables
which are instead real numbers, which can be sorted and ordered.

5.1.1 Predicting categorical features with continuous fea-
tures

If a continuous groundtruth space A is informative about a categorical (binary,
discrete) input space B, then the nearest neighbors according to the continuous
A should be in the same "bin" in the categorical space B. Since all the points in
one bin will have the same distance from any given point, these distances should
therefore be assigned the same rank. Denoting by αi the class of data point i we
define

rBij =

{
0, if αi = αj

N, otherwise

With this definition of the ranks in space B we estimate the Information Imbalance
as

∆con2cat (A → B) =
1

N

N∑
i=1

1

N −Nαi

N∑
j:rAij=1

rBij , (5.1)

where Nαi
=
∑

j δαi,αj
is the number of data points belonging to the same class of

point i.
This definition is justified by considering the normalization factor of the In-

formation Imbalance, which is 1
Ei(rij)

. Ei(rij) is the expected average rank of any
random point to point i. For the classic Information Imbalance Ei(rij) = N

2
for

every point. In the case of categorical variables the normalization can be derived
taking into account that point i in class αi (with Nα(i) points) has a class proba-
bility of pα(i) =

Nα(i)

N
. The expected distance rank of a generic other point to i is

Ei(rij) = pα(i) 0 + (1− pα(i))N . Hence, the normalization factor is

1

Ei(rij)
=

1

pα(i) 0 + (1− pα(i))N
=

1

N −Nα(i)

. (5.2)
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Importantly, ∆con2cat (A → B) exhibits the same statistical behavior than the
classic Information Imbalance ∆(A → B), as described below in Limiting cases.

Limiting cases

If the continuous space A has perfect information about B, meaning that each
point i’s nearest neighbor in A, is in the same class as i according to B, all the
ranks will be 0 and the result is ∆con2cat = 0.

In the opposite extreme case, in which each nearest neighbour from A is far in
B (meaning in another class), each assigned rank is N , the sum of the ranks is N2,
and ∆con2cat = 2N2

N2 = 2. This case corresponds to a situation in which the nearest
neighbor according to distance A is systematically the furthest neighbour according
to distance B and is the same values as for the classic Information Imbalance.

In the case of two equal sized classes with Nα(i) being half of N , the presented
statistic happens to reduces to the classic Information Imbalance, because in both
cases the expectation value of a random rank is N

2
. This is coincidental and does

not hold for any other class distribution.

Simple example

An example is shown in Fig. 5.1. The categorical (binary) variable on the x-axis
is distributed in several different ways over a continuous variable (y-axis).
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Figure 5.1: The x-axis shows a binary feature with different class distributions.
The x-axis holds a continuous feature with full information about the discrete
feature (top row) or no relationship with the binary feature (bottom row).

Fig. 5.2 shows the results of the calculations using the classic ∆ and the version
"continuous predicts categorical" ∆con2cat.
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Figure 5.2: The classic (blue) and the continuous-to-categorical (orange) Informa-
tion Imbalances for the example in Fig. 5.1 for 5000 points. Expected values of
the Information Imbalance are marked with big black dots.

When categorical spaces 2 to 6 are predicted by the continuous feature, the
classic Information Imbalance (blue) completely fails to capture the information
content and outputs values of approximately 1, i.e. misidentifies the relationship
as uninformative. ∆con2cat correctly asses the full informativeness of feature 1
predicting these categorical features. Categorical features 7 to 11 are randomly
distributed across the continuous feature. The lack of information is correctly
identified by both frameworks.

Limitations

The presented statistic, ∆con2cat, is derived univariately, i.e. by considering only
single features for building the distances between points. In the future one could
extend the algorithm to multivariate distances. This could be done, e.g. by con-
sidering the degeneracy of multivariate distances between point i and all other
points. Furthermore, the definition 5.1) is designed to estimate the Information
Imbalances for "few" (<

√
N) classes. As the number of classes increases, the

information that a continuous variable holds about a categorical one, as measured
by ∆con2cat, decreases. In the appendix (Comparison of Classic Information Imbal-
ance and Categorical Information Imbalance) we examine this phenomenon and
consider the case of categorical but ordinal variables within the presented frame-
work.
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5.1.2 Predicting continuous features with categorical fea-
tures

For the opposite case of predicting continuous features with categorical features,
we follow this logic: A categorical ground truth space A is informative about a
continuous input space B if all points within one class of space A are as close
as possible in space B. If class αi from the categorical space has, say, 20 points
including point i, then in the most informative case, the other 19 points are distance
ranks 1− 19 from point i in continuous space B. Based on this consideration, we
define the Information Imbalance from categorical to continuous variables as

∆cat2con (A → B) :=
1

N

1

Nclass

Nclass∑
k=1

(
2
∑Nα

i=1,i∈α
∑Nα

j=1,j∈α r
B
ij

N2
α

)
, (5.3)

where Nα is the number of points in a class α, and Nclass is the total number of
classes. The underlying logic of eq. 5.3 is explained in more detail in the appendix
in ’Logic of the Information Imbalance from categorical to continuous features’.

Simple example

In the toy example in Fig. 5.3 an increasing number of classes (x-axis,
[1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 25, 50, 100, 250] classes) is distributed over a continu-
ous variable (y-axis). Consider features on the x-axis predicting feature on the
y-axis.

We note that this example includes best case scenarios, where varying numbers
of discrete classes are distributed in a way to hold optimal information about the
continuous feature. E.g. the x-feature in the second plot in the top row, which
has two distinct values (classes), holds a certain amount of information about the
continuous feature: When its value is 0, then the continuous feature takes on small
values between 0 − 249, while when its value is 1, then the continuous feature is
larger, 250− 500. The information held by the categorical feature is certainly not
perfect, because within the given continuous ranges we do not know exact nearest
neighbor relationships.

If eq. 5.3 is applied to the the use case in Fig. 5.3 (500 data points), we find
the expected behavior. If all points are in a single class, there is no information,
and ∆cat2con ≈ 1 (Fig. 5.4). When more and more classes are added, and the
categorical space approaches the distribution of a continuous space, then ∆cat2con

approaches zero.
Fig. 5.4 shows that when the data is distributed over more and more classes,

the classic Information Imbalance becomes reliable, while with few classes (< 10)
the results are very noisy.
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Figure 5.3: The x-axis shows a discrete feature with increasing number of classes.
The y-axis represents a continuous feature.
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Figure 5.4: Information Imbalances for categorical features with various numbers
of classes within 500 data points predicting a continuous feature. The categorical
features are maximally informative about the continuous feature (see Fig. 5.3).
∆cat2con in green. Orange and yellow show results using the classic implementation
of ∆ with two different parameter settings.
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5.2 An application to the analysis of predictivity
in ecology

5.2.1 The Amazon Rainforest

Figure 5.5: Example aereal view of the Amazon rainforest [94].

The lowland Amazonia rainforests of the Amazon River basin and the Guiana
Shield span an area of nearly 6 million square kilometers. These forests are home
to an estimated 390 billion trees (diameters at breast height, i.e. at 1.30 meters
of 10 cm or greater) [95]. It is a cradle for life and biodiversity, and home to an
estimated 15.000 tree species alone [95]. In comparison, in Europe we have around
500 tree species in total [96]. However, a cumulative total of 17% of the Amazon
Rainforest was deforested by 2019, with the majority for agricultural use, and
an additional 17% classified as degraded due to logging, fires, and other human
activities [97]. An example can be seen in image 5.6.

Furthermore, in a business as usual scenario estimates that by 2050, about 40%
percentage of the original Amazon Rainforest will deforested [24].

This year in August and September, the Amazon forest saw the worst wild fires
in the last two decades, with smoke covering large parts of South America [99] (see
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Figure 5.6: Deforestation of secondary growth forest around Km 114 of the BR-163
highway. Tapajós National Forest to the left. [98].

image 5.7), with health warnings all over the continent, even in distant cities like
Buenos Aires [100].

The stresses of deforestation, droughts and wildfires, together with warming
temperatures and climate change, pose a great risk to the Amazon: The Amazon
rainforest system may soon cross a tipping point, where the stable interactions
that dominated the forest’s interaction with environmental conditions (the climate)
can be replaced by other feedback systems. When this happens to the Amazon
rainforest, large scale forest collapse and widespread, self-reinforcing savannization
are the result [101]. This new system will be dominated by a positive feedback
loop, exacerbated and exacerbating climate change. Any process intensifying the
stress on the climate system or the Amazon forest system is hence expected to
further deteriorate both [102].
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Figure 5.7: Total aerosol optical depth (AOD) analysis at 550 nm indicating smoke
transport over South America on September 21st, 2024, by the Copernicus Atmo-
sphere Monitoring Service (CAMS) [99].

5.2.2 Biodiversity and related estimators

Biodiversity is measured in many ways, most frequently via its correlating proxy,
species diversity. Species diversity is a measure of the variety and abundance
of different species within a community, ecosystem, or geographic area, which
combines two main components [103]:
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1. Species richness R: The total number of different species present in an area.
It simply counts how many species exist without considering their abun-
dances.

2. Species evenness E: The relative abundance of each species in an area. Even-
ness measures how evenly individuals are distributed among the species. A
community where all species have similar abundances has high evenness,
while a community dominated by one or a few species has low evenness.

Species richness R can be considered a richness density, since R = S
area

, where
S is the number of species in the area sample. Evenness (E) is calculated from
diversity and richness, not directly measured. It is often treated as a secondary
calculation to understand how much of the diversity is due to evenness rather than
just the number of species. Species diversity D, species richness R, and evenness
E, then have the following relationship [103]:

D = R · E (5.4)

There are many estimators of species diversity and evenness. The software Bio-
verse features over 200 diversity indexes [103]. Among the most used proportional
abundance indexes which describe species diversity, are

• Fisher’s alpha [104, 105], α = S/ln(1 + N
α
) (solved iteratively; emphasizes

number of species),

• the Shannon-Wiener Index [106], H ′ = −
∑

(piln(pi)) (an entropy measure;
emphasizes rare species) and

• the Inverse Simpson’s Index [107], D = 1∑
p2i

(emphasizes common species).

Most diversity indices aim to be independent of the area sampled, but in prac-
tice they can still be influenced by the area indirectly. When the sampled area is
increased one tends to find more species [105] and their value can change [103].
Nevertheless, they are often used to estimate of species richness in large areas,
following three steps [105, 25]:

1. First, Fisher’s alpha is calculated with the sample number of stems Ns and
sample number of species Ss,

2. then the number of trees is extrapolated to the full area, and finally

3. the overall species richness is estimated as S = α ln(1 + N
α
).
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This estimation assumes a log series behavior [25, 105] of the species abundance
distribution ("SAD"; histogram of abundance data, i.e.individual counts, for each
species in the sample). It has been criticized because in reality SADs often do not
follow log series [25].

In real applications, assessing species diversity, especially at biogeographic ex-
tent (large scales) is difficult [103]. Two common types of estimations are:

(1) Extrapolation of species richness relationships, SRRs (only presence/ab-
sence data at each location for each species are required) using a ’species accu-
mulation curve’ [93]. It shows the number of species discovered vs. an effort of
collecting them, e.g. the number of individuals sampled or a proxy such as area
or biomass sampled, or hours of collection. The true species richness Rmax, can
be estimated by considering the asymptote of the curve and might be corrected in
various ways, such as with maximum likelihood optimization [93].

(2) Estimation by species abundance distribution, SAD (abundance data for
each species at each location required) [103]. These methods estimate the true
species richness Rmax by leveraging the number of rare species as an indication
for the number of unobserved species [103]. Typical examples include the non-
parametric Chao1 [108] and Chao2 [109] estimators, first- and second-order Jack-
knive and bootstrapping [93]. However, non-parametric estimators are ineffective
when the total area surveyed is small (e.g. less than 2% as often the case in nature
reserves), and many rare species are not observed.

Among the many active research questions in biodiversity research, two impor-
tant ones are:

(1) On large scales (biogeographic scales), sampling units are often just species
lists from various sources. Research is needed on how to combine data from differ-
ent sources optimally and to design better sampling schemes. Should one sample
a greater number of smaller sampling units or less and larger units [103]? When
and how to include historical digitized data [110]? Also the integration of citizen
science [111] with other data could be evaluated.

(2) For conservation we need to know how changes in community composition
affect ecosystem function. In order to establish the most effective protected areas,
one needs to know the current diversity, but, importantly, also be able to maintain
diversity while species are lost. A metric is needed to indicate whether rare species,
which are more likely to go extinct, uphold the most diversity. That metric should
encompass abundance, phylogenetic information and evenness [103]

In the following sections we will introduce an ecological dataset of the Amazon
Rainforest including various measures of species richness, and several categorical
variables, which, importantly do not encode an order. These are the variables
that have to do with the geographic regions of data collection, including binary
variables.
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5.2.3 Methods

The dataset

We applied the aforementioned framework of categorical Information Imbalance,
along with the classic Information Imbalance, to examine the pairwise information
content among 27 features from a 2023 study on Amazon rainforest biodiversity
[105]. The features are described in detail in table 5.1. After excluding 233 en-
tries with missing values for the feature "bases_sum," the dataset comprised 1,819
points. Following [1], we added small random numbers to duplicated values in fea-
tures classified as "continuous" (as indicated in the "Interpreted type" column) in
order to create non-degenerate distances between points when using these features
univariately for the distance rank calculation.

Information Imbalances between continuous and categorical variables in
the Amazon biodiversity data set

All subsequent results are derived from univariate Information Imbalance analyses,
unless stated otherwise: We examined the information content of individual fea-
tures in relation to other single features. For all continuous features, we applied the
classic Information Imbalance method from DADApy [112] MetricComparisons,
using the function return_inf_imb_matrix_of_coords(). To determine the In-
formation Imbalance from continuous features to categorical ones, we utilized the
function imb_cont2cat, as specified as ∆con2cat in eq. 5.1. Conversely, we used
the function imb_cat2cont, represented as ∆cat2con in eq. 5.3. The code for these
functions can be found in the appendix in Code for Categorical Information Im-
balance.

Network graph visualizations

Network graph visualizations were created with Cytoscape [113] (version 3.10.2)
after exporting (1 - pairwise Information Imbalances) as a square matrix, i.e. the
pairwise interaction matrix. The diagonal was filled with zeros. The plugin app
aMatReader was used to import the matrix files as an adjacency matrix. The
visualization is a degree sorted circular layout.
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Table 5.1: The 27 features from the Amazon biodiversity study [105] considered,
extracted from the supplementary material files "PlotData.csv" and "PlotsAbi-
otic.csv". 233 points with missing values in the feature "bases_sum" were deleted,
leading to a data set of 1819 points. The first column is their name as used in this
thesis, the 5th column the name according to the aforementioned .csv files. "Nr.
classes" describes how many unique values the feature has, and "Interpreted type"
refers to how the feature was treated according to this thesis.

Feature Category Nr. classes Interpreted type Name in [105] SM Explanation

Country location 9 categorical Country Country in which plot is located
Subdivision location 57 continuous Subdivision Subdivision of country

Region location 6 categorical region Region in which plot is located
Longitude location 1556 continuous longitude Longitude of the plot
Latitude location 1645 continuous latitude Latitude of the plot

Pebas region location 2 categorical Pebas Pebas region or not
Forest abiotic 7 categorical forest Forest-soil type combination

Flooded abiotic 2 categorical Flooded Floodplain forests (Várzea and
Igapó), permanently inundated
terrain, or waterlogged swamps

NutrientPoor abiotic 2 categorical Podzol Very nutrient-poor white sand
podzols (terrains)

Terrafirm abiotic 2 categorical / Terrafirm terrain; not flooded and
not nutrient poor

year metadata 52 continuous year_est Year of establishment of the plot
ColD metadata 432 continuous ColD Collection density/intensity

PlotSize measure of area 60 continuous PlotSize Size (ha) of the plot
N_plot tree count 655 continuous N Number of trees per plot; counted

directly
D_ha tree count 586 continuous D Number of trees per hectare (tree

density)
S_plot diversity index 271 continuous S Number of species per plot

(tree species richness per plot);
counted directly

S_ha diversity index 277 continuous S.ha Number of species per hectare
(tree species richness per
hectare); spatial prediction

S_500 diversity index 247 continuous S.500 Number of species per 500 trees
(tree species richness per 500
stems); spatial prediction

fa_plot diversity index 1798 continuous fa.plots Fisher’s alpha diversity index per
plot; calculated iteratively from
S_plot and N_plot

bases_sum abiotic 1552 continuous SB Log(sum of bases); soil parameter
encoding soil fertility

pH abiotic 1734 continuous pH Acidic = low pH; soil parameter
encoding soil fertility

AnnualRain climatic 773 continuous AnnualRain Annual Rainfall (mm)
CWD climatic 645 continuous CWD Cumulative Water Deficit (mm);

measure of drought stress
MCWD climatic 910 continuous MCWD Maximum Cumulative Water

Deficit (mm); maximum drought
stress over a year

AnnualT climatic 774 continuous AnnualT Annual average temperature (°C)
TSeas climatic 774 continuous TSeas Temperature seasonality (stan-

dard deviation of monthly tem-
perature)

AnSeas climatic 774 continuous AnSeas Annual seasonality in rainfall; a
measure of the seasonal variation
in rainfall
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5.3 Results

5.3.1 Information Imbalance between pairs of variables

Firstly, we computed the Information Imbalance between individual features. ∆con2cat

and ∆cat2con were used where applicable. The values are plotted all together in
Fig. 5.8a, which shows the value of ∆(A → B) versus ∆(B → A) for each pair
of variables A and B. The pairwise Information Imbalances between individual
features exhibit a range of behaviors.

The relationships range from symmetric informative relationships, to symmet-
ric but less informative relationships, and to asymmetric relationships.

Fig. 5.8b illustrates this concept: ∆(Country → Subdivision) is high (uninfor-
mative), while ∆(Subdivision → Country) is low (informative). This suggests that
knowing the sub-region within a country provides significant information about the
country, but the reverse is not true.

Fig. 5.8c highlights the relationships between features and the diversity index
’species richness in 500 trees’ (S_500). The species richness itself is not particu-
larly informative about other features (except for related diversity indices), whereas
several other features, particularly climatic variables, are moderately informative
about species richness (∆ ≥ 0.49). For instance, annual average temperature pro-
vides some information about species richness. This can be interpreted as follows:
while species richness does not predict the climate, certain climatic conditions can,
to some extent, predict species richness. Additionally, collecting intensity (ColD)
is informative about species richness, a point that will be discussed in the following
subsection.

Interestingly, feature pairs with asymmetric Information Imbalance relation-
ships tend to not exhibit correlations. Both, collecting intensity and annual average
temperature have very low Pearson correlation coefficients with species richness
(Figs. 5.8d and e), yet, according to Information Imbalance, they are moderately
informative. However, this informativeness is unidirectional.

5.3.2 Information Imbalance network graphs

Network graphs can be employed to visualize pairwise informative relationships
by using bold, dark arrows to represent informative connections. Each pair of
features is depicted with two arrows, corresponding to the directions (A → B)
and (B → A). For these network graph visualizations, it is desirable to assign
higher values to more informative relationships so that the thickness of the arrows
reflects the degree of information content, where thicker arrows correspond to
smaller Information Imbalances. Fig. 5.9 illustrates the network for the present
use case of 27 ecological variables, with two different cut-off thresholds.
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Figure 5.8: a, b, c) The pairwise Information Imbalance ∆(A → B) and
∆(B → A) plotted into Information Imbalance planes. a) All pairwise imbal-
ances between the 27 features. There are many symmetric relationships with
varying information content, and asymmetric relationships. b) Proof of concept:
∆(Country → Subdivision) is high (uninformative), while ∆(Subdivision →
Country) is low (informative). c) Information Imbalances from and to the species
richness in 500 trees, ∆(S_500 → Feature) on x-axis and ∆(Feature → S_500)
on y-axis. d and e) Scatter plots of the species richness in 500 trees (S_500)
vs. the annual average temperature (AnnualT) and collection intensity (ColD),
respectively, with the Pearson correlation coefficient stated above the plots.

In Fig. 5.9a, we observe that the four diversity indices—S_plot, S_ha, fa_plot,
and S_500 (highlighted in the pink circle)—do not exhibit highly informative rela-
tionships with other features, particularly in the outgoing direction. Species rich-
ness does not appear to provide substantial information about abiotic, climatic, or
location-based variables. As previously noted in Fig. 5.8, certain features, partic-
ularly climatic ones, hold moderate amounts of information about species richness,
as indicated by the yellow incoming arrows. In contrast, stronger relationships are
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Figure 5.9: Network graphs can be used to visualize pairwise informative rela-
tionships, by featuring bold, dark arrows for an informative relationship (thicker
arrow for smaller Information Imbalance). a) Relationships between features with
Information Imbalances smaller 0.7. b) Only very informative relationships are
displayed, with ∆ ≤ 0.16.

observed between other features.
To focus on the strongest relationships, Fig. 5.9b visualizes only very informa-

tive connections, specifically where ∆ < 0.16. There is nearly perfect information
between two of the diversity indices: ∆(fa_plot → S_500) and ∆(S_500 →
fa_plot), both carry an Information Imbalance ≈ 0. This is not surprising, as
the species richness in 500 trees (S_500) is a monotonic function of Fisher’s alpha
diversity index, S_500 = α ln(1 + 500

α
).

A second noteworthy observation is that collecting intensity (ColD) is highly
informative about several climatic variables, soil pH, and certain location-based
variables. At first glance, this may seem counterintuitive: shouldn’t location and
climate be more predictive of where data collection is most intense? The answer is
that while location and weather are indeed predictive to some degree, they are less
informative than the reverse relationship. In simple terms, not every region with
favorable environmental conditions has high data collection intensity, but when
collection intensity is high at a particular plot, it is likely that favorable climatic
and geographic conditions are present. Although weaker, collecting intensity also
holds some information about species richness, indicating that the sampling ef-
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fort has not yet reached its asymptote. In other words, continued sampling still
provides additional information about species richness. This relationship is ex-
pected to diminish as sampling coverage and intensity increase—a particularly
challenging task in the Amazon. The fact that the relationship is already not very
strong (∆(ColD → S_500) = 0.57) highlights the remarkable effort of ecologists
in characterizing the tree species richness of the world’s largest rainforest.

5.4 Discussion
The aim of many studies, including ours, is to explain species richness, or other
biodiversity proxis, using features that are easier to measure.

The two versions of Information Imbalance dealing with categorical (non-ordinal)
values, ∆con2cat and ∆cat2con, were applied to analyze categorical features, includ-
ing features of geographic region and binary ("yes"/"no") features. They correctly
identified the asymmetric information between "Country" and "Subdivision" of the
country: The knowledge of a subdivision automatically implies the knowledge of
a country, but not vice versa.

The Information Imbalance analysis provides insights into the relationships
between features in the Amazon biodiversity dataset. Notably, species richness
in 500 trees (S_500) shows asymmetric relationships with climatic and location-
based variables, where climatic features such as annual average temperature hold
some predictive value for species richness, but not vice versa. This indicates
that while the richness of species does not provide information about environ-
mental conditions, certain environmental factors can moderately predict biodi-
versity levels. Also the authors of the database found the climatic variables,
especially cumulative water deficit, moderately predictive of species richness by
linear regression [105]. However, with the most informative relationship being
∆(AnnualT → S_500) ≈ 0.49, we can conclude that no single feature in this
data set holds enough information to predict species richness. This also shows the
need to expand the Categorical Information Imbalance framework as presented
here to multi-feature application.

Interestingly, these asymmetric relationships are invisible to correlation. The
Pearson correlation coefficient between the annual average temperature and the
species richness in 500 trees is r = −0.01, while from our distance-based perspec-
tive, the annual average temperature does hold a moderate amount of information
about the species richness.

We find symmetric, nearly perfect information between two of the diversity
indices: Fisher’s alpha per plot, fa_plot, and the species richness in 500 trees,
S_500. This is due to the fact that S_500 is a monotonic function of Fisher’s
alpha. Hence, from an information-theoretic perspective, the use of one index or
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the other is essentially equivalent, and ecologists may choose whichever is more
practical or intuitive for their purposes. It has been noted [105] that S_500 is
easier to understand.

Also collecting intensity (ColD) holds some predictive power for species rich-
ness (but not vice versa), suggesting that more intense data collections can still
contribute valuable information about biodiversity, even though the value is mod-
erate. A similar notion was mentioned in the study [105]. This result highlights
the remarkable achievement of ecologists who have been sampling the Amazon
until now, as well as the ongoing need for more sampling in many plots to fully
capture the richness of Amazonian biodiversity. This emphasizes the importance
of understanding how sampling strategies may influence biodiversity data and the
ongoing effort to achieve representative sampling across the vast and ecologically
complex Amazon region.
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Chapter 6

An optimizable Information
Imbalance for high dimensionsional
data

0 0 0
D Features

⨀
Weights

select & weight
automatically

Features d scaled Featuresd Features

select 

In the last two chapters we saw methods to deal with categorical and missing
data in Information Imbalance analysis. However, important inefficiencies remain:

• Enumerating all possible feature sets leads to a combinatorial explosion.

• The correct alignment for different units of measure and importance.

This chapter introduces an attempt to treat these problems in a new manner,
which does not require performing a combinatorial search. We introduce a variant
of the Information Imbalance which can be optimized by gradient descent. This
allows performing feature selection and determining feature weights in a unified
framework. In particular, the value of the new statistic can be used to deter-
mine the optimal dimension of a reduced feature set. The method’s capabilities
are demonstrated on real world applications: Selecting collective variables (CVs)
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from a molecular dynamics simulation, and selecting input features for a machine
learning potential.

6.1 Introduction to automatic feature selection and
weighting

As described in chapter 2, feature selection methods can be broadly divided into
wrapper, embedded, and filter methods [43]. Information Imbalance belongs to the
filter methods, a group of efficient feature selection methods which are independent
of a downstream task and make use of a separate criterion to rank features.

While unsupervised filter techniques exploit the topology of the original data
manifold in various ways [54, 55, 56, 57, 58], the supervised ones calculate a
statistic in relation to a ground truth.

The classic supervised filters include correlation coefficient scores, mutual in-
formation [59], chi-square tests, and ANOVA methods [60], which are efficient
but typically consider one feature at a time, resulting in selected subsets with re-
dundant information [36]. More advanced filters can select subsets of features and
assign relative weights to the features. The relief algorithm and its variants [63, 62]
employ nearest neighbor information to weight features. However, the identified
subsets can include redundant features [62].

Many of these methods are limited by the data types that are permissibly for
input and output features. Furthermore, the field of feature selection is lacking
the numerous powerful and out-of-the-box tools that are available in related fields
such as dimensionality reduction. For the several remaining challenges, there is no
user-friendly method which solves them all:

The first, shared challenge in most of these feature selection approaches is
related to the choice of the number of variables that are actually necessary to
describe the system. A lower bound to such a number is provided by the intrinsic
dimension [40]. Moreover, if one wants to visualize the data within a single graph,
the number of variables is necessarily limited to two or three. This typically
implies neglecting part of the information, and poses the problem of choosing
which variables should be retained.

A second complication arises when the variables are heterogeneous; in many
cases, a data point is defined by features with different nature and units of mea-
sures [39]. For example, in atomistic simulations, one can describe a molecule
in water solution by providing the value of all the distances between the atoms
of the molecule, which are measured in nanometers, together with the number
of hydrogen bonds that they form with the solvent, which are dimensionless. In
order to mix heterogeneous variables in a low-dimensional description, feature se-
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lection algorithms should enable the automatic learning of feature-specific weights
to correct for units of measure [39] and information content [114].

A third problem is posed by the combinatorial explosion, which arises from
explicit enumeration of all possible feature subsets. This enumeration is accepted
for the sake of finding non-redundant subsets of features by so called supervised
feature subset evaluation methods [61, 62]. When various relative scalings of the
features have to be considered for unit alignment or importance weighting, the
enumeration approach described above becomes even more unfeasible.

In this chapter, we propose a feature selection filter algorithm which mitigates
many of the aforementioned problems. Our approach aims to find a small subset of
features that can best reproduce the neighbors of the data points based on a target
feature space that is assumed to be fully informative. The algorithm finds, for each
input feature, an optimal weight that accounts for different units of measure and
different importance of the features. It also provides information on the optimal
number of features.

The approach builds on the Information Imbalance (∆) as introduced in chap-
ter 3, which allows comparing the information content of distances in two feature
spaces [13]. In all previous works based on Information Imbalance, the analy-
ses were either univariate (see chapter 5), or the distance space maximizing the
prediction quality has been constructed by means of strategies including full com-
binatorial search of the optimal features [15], greedy search approaches [1] (see
chapter 4) and grid search optimization of scaling parameters [115], with draw-
backs related to the algorithm efficiency.

Here we make a major step forward by introducing the Differentiable Informa-
tion Imbalance DII, which allows learning the most predictive feature weights by
using gradient-based optimization techniques. The input feature space, as well as
the ground truth feature space (targets, labels), can have any number of features.
This provides a data analysis framework for feature selection where the optimal
features and their weights are identified automatically. Moreover, carrying out the
optimization with a sparsity constraint, such as L1 regularization, allows finding
representations of a data set formed by a small set of interpretable features. If
the full input feature set is used as ground truth, then the approach can be used
as an unsupervised feature selector, whereas it acts in a supervised fashion if a
separate ground truth is employed [67]. To our knowledge, there is no other fea-
ture selection filter algorithm implemented in any available software package which
has above mentioned capabilities. The DII algorithm is publicly available in the
Python package DADApy [3] and a comprehensive description can be found in the
according documentation [68], which includes a dedicated tutorial.

In the following, we will first show the effectiveness of our method on artificial
examples in which the optimal set of features is known. Then we move to a real-
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world application and show that our approach allows addressing one of the most
important challenges in molecular modeling and solid state physics: Identifying
the optimal set of collective variables (CVs) for describing the configuration space
of a molecular system. As a second application, we use our method to select
a subset of Atom Centered Symmetry Functions (ACSFs), descriptors of atomic
environments, as input for a Behler-Parrinello machine learning potential [116],
which learns energies and forces in systems of liquid water. In the same application,
we show that Smooth Overlap of Atomic Orbitals (SOAP) [117, 118] descriptors
can be used as ground truth to choose informative subsets of ACSF descriptors.
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6.2 Differentiable Information Imbalance
Given a data set where each point i can be expressed in terms of two feature vectors,
XA

i ∈ RDA and XB
i ∈ RDB (i = 1, . . . , N), the standard Information Imbalance

∆(dA → dB) provides a measure of the prediction power which a distance built
with features A carries about a distance built with features B. The Information
Imbalance is proportional to the average distance rank according to dB, restricted
to the nearest neighbors according to dA [13]:

∆
(
dA → dB

)
:=

2

N2

∑
i,j: rAij=1

rBij . (6.1)

Here, rAij (resp. rBij) is the distance rank of data point j with respect to data point
i according to the distance metric dA (resp. dB). For example, rAij = 7 if j is
the 7th neighbor of i according to dA. ∆

(
dA → dB

)
will be close to 0 if dA is a

good predictor of dB, since the nearest neighbors according to dA will be among the
nearest neighbors according to dB. If dA provides no information about dB, instead,
the ranks rBij in Eq. (6.1) will be uniformly distributed between 1 and N − 1, and
∆
(
dA → dB

)
will be close to 1. As shown in ref. [115], the estimation of Eq. (6.1)

can potentially be improved by considering k neighbors for each point. Considering
dB as the ground truth distance, the goal is identifying the best features in space
A to minimize ∆(dA → dB). If the features in A and the distances dA are chosen
in such a way that they depend on a set of variational parameters w, finding the
optimal feature space A requires optimizing ∆

(
dA(w) → dB

)
with respect to w.

However, ∆ is defined as a conditional average of ranks, which cannot be minimized
by standard gradient-based techniques.

Here we extend Eq. (6.1) to a differentiable version that we call Differentiable
Information Imbalance (DII) in order to automatically learn the optimal distance
dA(w). We approximate the non-differentiable, rank-dependent sum in Eq. (6.1)
by introducing the softmax coefficients cij:

DII
(
dA(w) → dB

)
:=

2

N2

N∑
i,j=1
(j ̸=i)

cij(λ, d
A(w)) rBij , (6.2)

where

cij(λ, d
A(w)) :=

e−dAij(w)/λ∑
m(̸=i) e

−dAim(w)/λ
. (6.3)

The coefficients cij in Eq. (6.2) approximate the constraint rAij = 1, such that
cij → δ1,rAij as λ → 0 (δ denotes the Kronecker delta). Therefore, in the limit of
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small λ, the DII converges to ∆ (see also [68]):

lim
λ→0

DII
(
dA(w) → dB

)
= ∆

(
dA(w) → dB

)
. (6.4)

For any positive and small λ, the quantity DII
(
dA → dB

)
can be seen as a con-

tinuous version of the Information Imbalance, where the coefficients cij assign, for
each point i, a non-zero and exponentially decaying weight to points j ranked af-
ter the nearest neighbor in space dA. The parameter λ is chosen according to the
average and minimum nearest neighbor distances (see subsection 6.2.1).

The DII is differentiable with respect to the parameters w for any distance
dA which is a differentiable function of w. In this chapter, we assume that the
variational parameters are weights, w = (w1, ... , wDA), scaling the features in space
A as w ⊙ XA

i = (w1X1
i , ... , w

DA XDA
i ) (the symbol ⊙ denotes the element-wise

product). We construct dA(w) as the Euclidean distance between these scaled
data points, dAij(w) = ∥w ⊙

(
XA

i −XA
j

)
∥. In this case, the coefficients cij can be

written as

cij =
e−∥w⊙(XA

i −XA
j )∥/λ∑

m(̸=i) e
−∥w⊙(XA

i −XA
m)∥/λ

, (6.5)

and the derivatives of DII
(
dA(w) → dB

)
with respect to the parameters wα can

be computed:

∂

∂wα
DII

(
dA(w) → dB

)
=

2wα

λN2

∑
i,j

(i ̸=j)

cij r
B
ij

−
(Xα

i −Xα
j )

2

∥w ⊙
(
XA

i −XA
j

)
∥
+
∑
m(̸=i)

cim
(Xα

i −Xα
m)

2

∥w ⊙ (XA
i −XA

m) ∥

 .

(6.6)

These derivatives can be used in gradient-based methods to minimize the DII
with respect to the variational weights.

If one aims at a low-dimensional representation of the feature space A, as in
the case of feature selection, it is desirable that several of the weights are set to
zero. While for up to DA ∼ 10 a full combinatorial search of all feature subsets
can be carried out, optimizing the DII over each subset, for larger feature spaces a
sparsification heuristic becomes necessary. We complement the DII optimization
with two approaches for learning sparse features: Greedy backward selection and
L1 (lasso) regularization. Greedy selection removes one feature at a time from
the full set, according to the lowest weight. L1 regularization selects the subset of
features that optimizes the DII while simultaneously keeping the L1 norm of the
weights small (see section 6.2.3). While greedy backward selection gives reliable
results for up to ≈ 100 features, in larger feature spaces this algorithm becomes
computationally demanding, and it is advisable to use L1 regularization to find
sparse solutions.
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6.2.1 Adaptive softmax scaling factor λ

Qualitatively, the scaling factor λ in the softmax coefficient cij(λ,w) defines the
size of the neighborhoods in the input space dA(w) used for the rank estimation.
Since λ is the same for every data point, regardless of whether the point is an
outlier or within a dense cloud, this factor mainly decides how many neighbors are
included in dense regions of the data manifold. Importantly, choosing λ too small
makes the optimization less efficient, as in the limit λ → 0 the derivative of the
DII (see Eq. (6.6)) can be shown to vanish for almost all values of the parameters
w.

To automatically set λ, we take the average of two distance variables, d̂Amin and
d̂Aavg, which heuristically define the “small distance” scale in space dA. Both of
these numbers are based on d̂Ai , here denoting the difference between 2nd and 1st
nearest neighbor distances for each data point i, d̂Ai = dAik − dAij, where rAij = 1 and
rAik = 2:

d̂Amin := min
i

d̂Ai , (6.7a)

d̂Aavg :=
1

N

∑
i

d̂Ai . (6.7b)

Setting λ to the average of d̂Amin and d̂Aavg at each step of the DII optimization
has proven to enhance both the speed and stability of convergence. Indeed, using
differences between nearest neighbor points to determine λ is more robust than
using nearest neighbor distances directly, as in high dimensions first-, second- and
higher-order neighbor distances tend to be very similar on a relative scale [119,
120].

6.2.2 Invariance property of the DII

In the limit λ → 0, the DII defined in Eq. (6.2) is invariant under any global
scaling of the distances in space A, dAij 7→ |c| dAij with c ∈ R. Similarly, in the
small λ regime, DII(dA(w) → dB) is invariant under any uniform scaling of the
weight vector, w 7→ cw, if dA(w) is built as the usual Euclidean distance in the
scaled feature space. This property can be easily verified by observing that the
softmax coefficients cij can be replaced by δ1,rAij when λ → 0, and the ranks rAij are
invariant under a global scaling of the distances dAij. The same invariance holds
even for λ > 0 if λ is chosen adaptively (see subsection 6.2.1), as in the adaptive
scheme a global scaling of the distances dAij implies a scaling of λ by the same
factor, which leaves the cij coefficients untouched.
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6.2.3 Optimization of the DII

The optimization of the DII is implemented in FeatureWeighting.return_-
weights_optimize_dii in DADApy by gradient descent utilizing the analytic
derivative of the DII. The default value of the initial feature weights is the in-
verse standard deviation of each feature. Pseudocodes of the DII optimization
algorithms are provided in the appendix in ’DII pseudocodes’.

Learning rate decay

We employ two different schemes of learning rate decay, (1) cosine learning rate
decay and (2) exponential learning rate decay. When both schemes are used, we
select the solution with lower DII among those found with the two schemes. In the
first scheme, the learning rate is updated according to ηk = 0.5η0 ·(1+cos( πk

nepochs
)),

where k denotes the training epoch, η0 the initial learning rate, and nepochs the total
number of epochs in the training. The exponential decay follows ηk = η0 · 2−k

10 .
This schedule cuts the learning rate by half every 10 epochs. While the cosine
decay leads to optimal results in the absence of L1 regularization, or for weak
regularization, the exponentially decaying learning rate is especially suited for
high L1 regularization [121]. In both schemes, “GD clipping” is used, as described
hereafter in the section on L1 regularization.

L1 regularization

This method is implemented in DADApy in FeatureWeighting.return_weights_-
optimize_dii when a L1 penalty different from 0 is chosen, and several different L1

values are screened in FeatureWeighting.return_lasso_optimization_dii_-
search. Optimizing the DII with respect to the feature weights while simulta-
neously introducing sparsity, i.e. limiting the number of features used, can be
considered a convex optimization problem of the form:

min
w∈RD

(
f(w) + pΩ(w)

)
, (6.8)

where f : RD → R is a differentiable function such as DII
(
dA(w) → dB

)
, at

least locally convex, and Ω : RD → R is a sparsity-inducing, non-smooth, and
non-Euclidean norm with penalization strength p [122]. We use the L1 norm,
Ω(w) =

∑D
α=1 |wα| (also called lasso regularization):

min
w∈RD

(DII + pΩ(w)) = min
w∈RD

 2

N2

N∑
i,j=1
(j ̸=i)

cij(λ, d
A(w)) rBij + p

D∑
α=1

|wα|

 (6.9)
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The L1 norm has the shortcoming that in N ≪ D setting, with very few
samples but many dimensions, a maximum of N variables can be selected. The L1

regularization tends to select just one variable from a group of correlated variables
and ignore the others [123], which helps building optimal groups of maximally
uncorrelated features, like also the Information Imbalance itself does (see Figure 4.4
in chapter 4).

Naive gradient descent with L1 regularization usually does not produce sparse
solutions, as a weight becomes zero only when it falls directly onto zero during
the optimization [121]. This is very unlikely with most learning rate regimes.
Instead, we employ the two-step weight updating approach [124], also known as
“GD clipping” [121]:

wα
t+ 1

2
=wα

t −
∂DII

(
dA(w) → dB

)
∂ wα

if wα
t+ 1

2
> 0 then wα

t+1 = max(0, wα
t+ 1

2
− η p)

if wα
t+ 1

2
< 0 then wα

t+1 = |min(0, wα
t+ 1

2
+ η p)|

(6.10)

Here, p denotes the L1 penalty strength, and t is the epoch index. First, the
update is performed only with the GD term, which may result in a change of
sign for the weight. Subsequently, the L1 term is applied, shrinking the weight
magnitude. If this shrinkage would change the weight’s sign, the weight is instead
set to zero. Since the DII is sign invariant, all weights are kept positive during
the optimization.

Backward greedy optimization

This approach is implemented in DADApy in FeatureWeighting.return_backward_-
greedy_dii_elimination, and the pseudocode in the appendix, algorithm 2. It
starts with a standard optimization run using all the DA features of the input
space. From the solution of the first optimization, the feature corresponding to
the smallest weight is discarded (set to zero), and a new optimization with DA−1
features is carried out. This procedure is iterated until the single most informative
feature is left. The greedy backward approach is an alternative to the L1 regu-
larization and is applicable to moderately large data sets with DA ≲ 100 features
and N ≲ 500 data points, since the computational complexity scales linearly with
the number of features.

6.2.4 A linear scaling estimator of the DII

The DII scales quadratically with the number of points N , with a computational
complexity of O(N2 · D), where the main steps of the algorithm (computing the
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DII and its gradient, Equation 6.2 and Equation 6.6) both involve a double sum
over the rows (index i) and the columns (index j) of the N × N matrices in the
equations. D is the number of features. We notice that the additional sums over
index m (denominator of the cij coefficients, Equation 6.3, and second term in the
gradient, Equation 6.6 do not depend on index j and can therefore be precomputed
for each index i, avoiding three nested loops.

The computational time can be dramatically decreased by subsampling the
rows of the matrices rij, dij and cij appearing in Eq. (6.2), reducing them to a
rectangular shape Nrows × N (with Nrows < N). This subsampling is performed
only once at the beginning of the training, so that the rectangular shape of such
matrices is kept fixed during all the DII optimization. If the DII is written as
the average of N conditional ranks,

DII
(
dA(w) → dB

)
=

2

N

1

N

N∑
i=1

( N∑
j=1
(j ̸=i)

cij(λ, d
A(w)) rBij

)
=

2

N
⟨rB|rA ≈ 1⟩ ,

(6.11)
the subsampling is equivalent to replacing 1/N

∑N
i=1 with 1/Nrows

∑Nrows
i=1 . This

means computing the average of Nrows conditional ranks instead of N . Different
schemes to set Nrows result in different scaling laws of the algorithm with respect to
N . Setting Nrows to a fraction of N (green curve in Fig. 6.3A, Nrows = N/2) brings
to a quadratic scaling with a smaller prefactor, while sampling a fixed number of
points Nrows independently of N (red curve, Nrows = 100) brings to a linear scaling
O(N ·D). In the latter case we observe a striking reduction of the runtime, while
the accuracy of the recovered weights is almost perfectly preserved (Fig. 6.3B).

6.3 Methods
We here provide details on the two datasets used in this chapter: a molecular
dynamics of a small peptide, and a set of configurations of liquid water used for
training a neural network potential.

Extraction of collective variables from the CLN025 MD

All collective variables used in subsection 6.4.2 were extracted from the MD sim-
ulation using PLUMED 2 [125]. The ground truth pairwise heavy atom distances
were computed using the “DISTANCE” CV on all pairs of non-hydrogen atoms.
The radius of gyration was obtained with the “GYRATION” CV and the Cα

atoms. The number of hydrophobic contacts were calculated using the “COOR-
DINATION” CV (R0=0.45) and using the amino acids THR, TRP, and TYR of
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CLN025, and sidechain carbons not directly bonded with an electronegative atom.
The number of hydrogen bonds was also calculated using the “COORDINATION”
CV (R0=0.25). For backbone H-bonds and sidechain H-bonds only hydrogens and
oxygens of the backbone and the sidechain were considered, respectively, while for
the sidechain-to-backbone interactions, the cross of these were considered. For the
quantification of the alpha-helical content and the anti-parallel beta sheet content,
the CVs “ALPHARMSD” and “ANTIBETARMSD” were used with all residues of
the peptide. For the principle components PC1, PC2 and the PCA residual, first a
pdb file containing the average structure of the trajectory and the two first princi-
ple directions was created using the CVs “COLLECT_FRAMES_ATOMS” with
all heavy atoms, and “PCA” using the previous output and optimal alignment.
Subsequently, each frame of the trajectory was projected onto the two principle
components referenced in the pdb file using “PCAVARS”.

Block cross validation of CLN025

To account for the equilibration of the system, the first ∼ 15 ns of the trajectory
were discarded throughout the analysis (1,580 of 41,580 trajectory frames). Block
cross validation (Fig. 6.4A) was carried out by splitting the remaining frames into
4 consecutive blocks. The training blocks were built by subsampling each block
to every 7th frame to de-correlate, leaving 1428 points per training block. The
optimal tuple and weight results from each block were used to calculate the DII
in 21 test sets built from the remaining three blocks (repeatedly subsampling each
block with stride 7, starting from frames 1 to 7).

ACSF and SOAP descriptors

The systems for creating ACSF and SOAP descriptors are based on 1593 liquid
H2O structures whose forces and energies were found using DFT via the CP2K
[126] package with the revPBE0-D3 functional. We use the DScribe Python pack-
age [127, 128] to calculate SOAP and ACSF descriptors from the atomic posi-
tions. The data points were chosen as follows: The 1593 structures (with 64 H2O
molecules each) yielded 192,000 atomic environments, from which a subset of ∼350
was sampled to reduce the computational time of feature selection. The ACSF de-
scriptors were constructed on a grid of hyperparameters (G2: η ∈ [10−3, 100.5]
logspace nη = 15, RS = 0, G4: η ∈ [10−3, 100.5] logspace nη = 6, ζ ∈ {1, 4},
λ ∈ [−1, 1] linspace nλ = 4, RS = 0), resulting in 176 (+2 cutoff functions) differ-
ent features for each atomic environment. The 546 SOAP descriptors were selected
with nmax = 6, lmax = 6 and a cutoff radius of 6Å.

The optimization of ACSF with respect to the ground truth of SOAP is carried
out starting from γi = 1 ∀ i ∈ [1, 176].
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6.4 Applications and Results

6.4.1 Benchmarking the approach: Gaussian random vari-
ables and their monomials

We first test the DII approach using two illustrative examples where the distances
dA(w) and dB are built with the same features, so that the target weights mini-
mizing Eq. (6.2) are known. In particular, we take as ground truth distance dB

the Euclidean distance in the space of the scaled data points wGT ⊙Xi, where the
weights wGT are fixed and known. We aim at recovering the target weights by
scaling the unscaled input features, w⊙Xi, with the proposed DII-minimization.

In each example, we carry out several optimizations, both without regulariza-
tion and in presence of a L1 penalty, which induces sparsity in the learned weights.
For each optimization, we employ a standard gradient descent algorithm, initial-
izing the parameters w with the inverse of the features’ standard deviations (see
subsection 6.2.3 for details). In order to judge the quality of the recovered weights
in the various settings, we calculate the cosine similarity between the vector of the
optimized weights and wGT . This evaluation metric, which is bounded between
0 (minimum overlap) and 1 (maximum overlap), only depends on the relative an-
gle between the two vectors, reflecting the fact that the DII recovers the target
weights up to a uniform scaling factor (see ’Invariance property of the DII’).

10 Gaussian random variables

In the first example, we use a data set of 1500 points drawn from a 10-dimensional
Gaussian with unit variance in each dimension, and we construct a ground truth
distance dB by assigning non-zero weights wα

GT to all its 10 components (Table II
in Fig. 6.1A). The target weights w6

GT to w10
GT are close to zero, such that these

features carry almost no information.
The optimization without any L1 regularization yields a very good result in

terms of DII and overlap (blue in Fig. 6.1A I, II, and III). If a soft L1 regularization
strength is employed, the results are qualitatively the same, but the irrelevant
features α = 6-10 receive zero weights, leading to an effective feature selection
(green in Fig. 6.1A II and III). Table II in Fig. 6.1A shows the learned weights for
different strengths of the L1 penalty, scaled in such a way that the largest weight
is identical to the largest component of wGT . Since in DII only the relative
weights are important, this is permissible and helps illustrate. By increasing the
regularization strength, more features are set to zero following the order of their
ground truth weights. When features of higher importance, namely with higher
ground truth weights, are forced to zero, then the resulting DII increases and the
cosine similarity decreases, showcasing the loss of information (Fig. 6.1A III).
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Figure 6.1: A: The input features are 10 i.i.d. Gaussian random variables, X1-X10.
The same features are used as ground truth, but scaled. I: DII as a function of
the number of non-zero weights, optimized with (orange) and without (blue) L1

regularization. The insets show two example features, with ground truth weights
(gray) and weights during optimization (orange). II: Ground truth and final op-
timized weights at selected L1 strengths. III: Cosine similarity (overlap) of the
ground truth and optimized weights in gray, DIIs in black with colored mark-
ers, for several L1 strengths and associated numbers of non-zero features. B: The
feature space consists of the 285 monomials up to order three of the ten Gaus-
sian variables from A. As ground truth, ten features were selected at random and
scaled, while all the other feature weights are zero. I, II, III: Analogous to A.



285 monomials

Secondly, to test the method in a high-dimensional setting, we created a data set
with 285 features including all the products up to order three of the 10 Gaussian
random variables used in the previous example. Products of Gaussian random vari-
ables are distributed according to Meijer G-functions, which may not be Gaussian
[129]. The ground truth distance dB is here built by only selecting ten of these
monomials, with various weights (Table II in Fig. 6.1B). All other feature weights
in the ground truth can be considered zero.

Since in this case the correct solution is very sparse in the full feature space,
an appropriate sparsity-inducing regularization becomes essential to obtain good
results. Without any L1 regularization, all the 285 features receive a non-zero
weight. Even if, in this case, the ground truth features are assigned the highest
weights, there might not be a clear cut-off in the weight spectrum to distinguish
them from the less-informative features.

As shown in Fig. 6.1B, the correct level of regularization can be identified
by computing the DII as a function of the non-zero features or regularization
strength. Several different L1 strengths lead to the same number of non-zero
features with different features and/or weights. In these cases, the lowest DIIs per
numbers of non-zero features should be selected, as in Fig. A.2 (appendix). The
intermediate L1 strength of 0.0001 results in the best performance, as it coincides
with the lowest DII and the largest weight overlap (orange in Fig. 6.1B I, II, and
III). The eight most relevant ground truth features are correctly identified, with
an overlap between the learned and the ground truth weights which is remarkably
close to 1.

Furthermore, panel I in Fig. 6.1B shows that weights found with L1 regular-
ization have a lower DII than the ones without L1 regularization in the same
optimization time, which means that the weights resulting from a certain level of
regularization are effectively better than the unregulated ones. As in the previous
example, when the regularization is too strong, some of the relevant features are
discarded, resulting in a drop in the weight overlap and an increase in the DII.

Comparison with other methods

We then benchmarked the DII method against other feature selection methods.
We perform the benchmark on the example with 285 monomials, in which the
ground truth is known.

There are very few methods available in software packages which can be ap-
plied to the specific task we are considering, which is selecting and scaling features
from a high-dimensional input space to be maximally informative about a multi-
dimensional continuous ground truth, defining a pairwise distance. Considering
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filter methods, we compare DII to relief-based algorithms (RBAs), specifi-
cally RReliefF and MultiSURF, implemented in scikit-rebate [130], which support
a continuous ground truth [62]. The RBAs stand out among filter methods be-
cause they can assign feature weights. They output weights between -1 (most
irrelevant) and 1 (most relevant) for each feature, but importantly only work with
one-dimensional ground truth. This poses a problem for all use cases in this pa-
per because the ground truth is always defined by the multi-dimensional vector of
features used to compute the target distance. RBAs extended to the multi-label
case [131, 75] but, to our knowledge, are not implemented in software packages.
We applied the algorithms vs. each feature of the ground truth separately and
(a) summed all resulting weights that scale the input features (orange and red in
Fig. 6.2) or (b) set all resulting weights except the largest to zero and summed
these sparse vectors (green and purple in Fig. 6.2). Then we calculated the co-
sine similarity (overlap) with the 285-dimensional ground truth vector (all weights
zero except the ten relevant weights, which are set to their value). The methods
detect the most important input feature in most cases, leading to overall cosine
similarities ranging from 0.56 to 0.84 for the various settings (Fig. 6.2).
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Cosine similarity with the ground truth vector

DII with L1=0.0001

RBA RReliefF sum all

RBA RReliefF sum best
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Figure 6.2: The overlap of the weight vector resulting from different feature selec-
tion and weighting methods with the ground truth weight vector, calculated as the
cosine similarity. For the Relief-based algorithms (RBAs) RReliefF and RBA Mul-
tiSURF, “sum all” refers to the sum over the ten individual optimizations (for each
ground truth feature as univariate label) of the resulting weight vectors, while “sum
best” means the same sum over individual optimizations, but setting all weights
to zero except the largest one in each feature vector. The “decision tree” results
refer to the Gini and Permutation importance selected feature weights as provided
by the decision tree regression aimed at the full ten-dimensional target space.
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As a second benchmark we use a method from scikit-learn [76], which can han-
dle the task’s requirements: The decision tree regressor
(sklearn.tree.DecisionTreeRegressor). Unlike DII and the relief-based algo-
rithms, this method is not a filter but an embedded method. The feature selection
is determined as a side product during the building of a regressor model. There is
no filter algorithm implemented in scikit-learn which can solve a problem as posed
here. Tuning the algorithm for various error criteria and splitters, the defaults
(criterion=’squared_error’, splitter=’best’) performed best. The feature
importances were derived with two metrics: Gini importance and Permutation
importance for for feature evaluation [46]. The latter is expected to be more ro-
bust for features with many unique values, like in the test example here. They
lead to feature vectors with a cosine similarity of up to 0.83 with respect to the
ground truth. In comparison, the DII method with a L1regularization of 0.0001
(orange in Fig. 6.1B) finds a weight vector with eight non-zero weights and a
cosine similarity of 0.99.

Scalability test

We test the scalability of our algorithm with respect to the number of points N
used to perform the minimization of the DII on the example of 285 monomials
(Fig. 6.1B). We construct the ground-truth distance dB by multiplying 5 features
with non-zero weights. In Fig. 6.3A we show the runtime for a single optimization
of the DII as a function of N (ranging from 100 to 10000). As a quality validation
measure, we report in Fig. 6.3B the overlap (cosine similarity) between the learned
and the ground-truth weights. The tests have been performed using the JAX
implementation of the algorithm on a GPU nVidia TU104GL [Quadro RTX 5000].

The standard algorithm (Nrows = N , blue line) scales quadratically with the
number of points N . The computational time can be dramatically decreased by
performing the sum over i only on a fixed subset of points, as explained in subsec-
tion 6.2.4. This leads to a striking reduction of the runtime, and in the best case
to a linear scaling O(N ·D) in the number of data points. Notably, the accuracy
of the recovered weights is almost preserved (Fig. 6.3B).
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A

B

Figure 6.3: A: Runtime of the DII optimization as a function of the data set size
N , using the 285 monomial features in the input space and 5 non-zero features in
the ground-truth space. Each optimization is carried out with 1000 epochs, setting
the L1 penalty to 10−3. Different colors show how the runtime is affected by differ-
ent row subsampling schemes: No subsampling (blue), linear subsampling in the
number of points (green), constant Nrows (red). The dashed and dotted black lines
show least square fits with the expected scaling laws. B: Overlap between learned
weights and ground truth weights, computed as the cosine similarity between the
two weight vectors.

In conclusion, in all test examples the DII method is able to recover the ground
truth weights with good accuracy, and better than the very few other applicable
methods, as measured by a larger weight overlap with the ground truth. In the
following sections, we apply our feature selection method to cases in which the
optimal solution is not known and illustrate how our approach can be used to give
an explicit system description by extracting few features from a larger data set.
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6.4.2 Identifying the optimal collective variables for describ-
ing a free energy landscape of a small peptide

We now illustrate how the DII can be used to identify the most informative
collective variables (CVs) to describe the free energy landscape of a biomolecule.
As opposed to the previous example, in this test the ground truth variables and
the input variables are different sets.

We consider a temperature replica-exchange MD simulation (400 ns, 340 K
replica analyzed only, dt = 2 fs) [132] of the 10-residue peptide CLN025 [133],
which folds into a β-hairpin. The data set is composed of 1429 frames (subsampled
from 41,580 trajectory frames) containing all atom coordinates. The ground truth
metric dB is constructed in the feature space of all the 4,278 pairwise distances
between the 93 heavy atoms of the peptide, which can be assumed to hold the
full conformational information of the system. We consider a feature space A
with ten classical CVs that do not depend on knowledge of the folded state of
the β-hairpin peptide: Radius of gyration (RGYR), anti-β-sheet content, α-helical
content, number of hydrophobic contacts, principal component 1 (PC1), principal
component 2 (PC2), principal component residuals, the number of hydrogen bonds
in the backbone, in the side chains, and between the backbone and side chains (see
section 6.3 for details).

Since the CV feature space is only 10-dimensional, it is possible to look for the
optimal distance dA by an exhaustive search of all possible 1023 subsets containing
one to ten CVs, without using the L1 regularization to produce sparse solutions.
For each subset of CVs, the DII is used as a loss to automatically optimize the
scaling weights, which are initialized to the inverse standard deviations of the cor-
responding variables. Even when all feature subsets can be constructed, gradient
descent optimization of the DII is useful, as the most naive choices of the scaling
weights - setting them to the inverse standard deviations of the variables, or all
equal to 1 - likely define suboptimal distances, since the CVs have different units
of measure and importance. The optimization of the feature weights for all 1023
subsets takes about 4.5 h on a CentOS Linux 7 with 24 CPUs Intel Xeon E5-2690
(2.60GHz) with 15 GB RAM using the function “return_weights_optimize_dii”
with 80 epochs (Fig. 6.4A, green curve).

Fig. 6.4A shows the results of the subset optimizations by computing the DII
with block cross-validation (see section 6.3). The training and validation DIIs
averaged over all cross-validation splits show a high degree of consistency, verify-
ing the transferability of the DII results between non-overlapping pieces of the
trajectory. As shown in the inset graph in Fig. 6.4A, the DII result improves dur-
ing the gradient descent optimization. The best single CV is anti-β-sheet content
[134], while the best triplet contains RGYR, PC1 and PC2 with weights of 1.0,
3.5 and 4.7. Remarkably, the weight of PC2 is higher than the weight of PC1,
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Figure 6.4: A: Green: Optimal DII results for CV subsets of different sizes, using
their gradient descent optimized weights. Inset: DII gradient descent optimiza-
tion for the optimal 5-plet. Blue and orange: Average and standard deviations
of the DII calculated from all the training-validation splits. B: Free energy iso-
surfaces in the space of the optimal 3-plet of CVs (RGYR, PC1 and PC2, with
weights of 1.0, 3.5 and 4.7), corresponding to three different values of the free
energy. The renderings around the free energy surfaces are sampled at different
values of the CVs and free energy. C: Red and blue renderings are cluster centers
obtained from the optimal 3-plet space and from the full space of all pairwise heavy
atom distances, respectively. The two main cluster centers of both belong to the
dominant peptide conformations: The β-pin and the collapsed denatured state.
The collapsed and β-pin clusters identified in the optimal 3-plet space share 92%
and 87% of the frames with the corresponding full space clusters.

confirming that the gradient optimization of the DII provides non-trivial results.
We estimated the density in the space of the best three scaled variables (Fig. 6.4B)
using point-adaptive k-NN (PAk) [135], implemented in the DADApy package [3].
The free energy derived from this density clearly shows two favorable main states,
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which are the folded β-hairpin state and a denatured collapsed state [136] with
negative values of the free energy in Fig. 6.4B.

The cluster centers found by Density Peak Clustering in its unsupervised ex-
tension [137] are depicted by the renderings denoted “collapsed”, “intermediate”,
and “β-pin” in Fig. 6.4C, while additional example structures from less favorable
free energy regions are shown around Fig. 6.4B. The clustering was also performed
in the full space of all 4,278 heavy atom distances, which holds the full information
of the system.

The populations of both, β-pin and collapsed clusters show a remarkable over-
lap between the clustering structures obtained in the optimal 3-plet case and from
the full feature space of 4,278 heavy atom distances. Taking the cluster populations
from the full space as ground truth classes, such overlap can be simply measured
as the fraction of points (trajectory frames) that belong to the same cluster in
both representations, also referred to as cluster purity [138]: The β-hairpin clus-
ter from the 3-plet space has 87% purity, and the collapsed state cluster has 92%
purity, considering the full space as reference. Taken together, all clusters have a
89% overall cluster purity towards the full space clusters. This consistency also
emerges by visually comparing the red and blue renderings of the two dominant
cluster centers (left and right structures in Fig. 6.4C). As a comparison, running
the clustering algorithm using the single best CV, the anti-β-sheet content, brings
to an overall cluster purity of 45%, i.e., the trajectory frames clustered into the
pin, collapsed, or other clusters using the single best variable, capture 45% of the
same frames of the according clusters using the full space for clustering. Hence,
no single one-dimensional CV is informative enough to describe CLN025 well, but
a combination of only three scaled CVs carries enough information to achieve an
accurate description of this system.

Benchmarking the results against decision tree regression

Because of the good performance of decision tree regression on the previous ex-
ample and its ability to handle multi-target (even high-dimensional), continuous
ground truth data, we apply this feature selection algorithm also to this use case.
The results are illustrated in Fig. 6.5. The best three variables using the Gini
importance weights are: 0.29 anti-β-sheet content, 0.25 PC1, 0.1 PC2; using the
permutation importance they are: 1.27 PC1, 1.04 anti-β-sheet content, 0.97 PC2.

Clustering in these reduced spaces leads to maximum cluster purities compared
to the full space clusters of 55% for Gini importance and 63% for the permutation
importance and several additional inconsistencies when compared to the full space
clustering: The collapsed loop cluster is bigger than the native β-pin cluster, which
contradicts the results obtained by full space clustering, where the β-pin cluster
is the largest (with most frames) with the lowest free energy. Visual comparison

85



3
 b

e
s
t 
C

V
s

3
 b

e
s
t 
C

V
s

F
u
ll 

sp
a
c
e

Cluster center

Cluster center

Cluster center

Population

Population

Population

≅ 63%

≅ 55%

446

447

311

311

672

671

84381 5500

collapsed other(s) β-pin
G

in
i 
im

p
o
rt

a
n
c

e
P

e
rm

u
ta

tio
n
 im

p
o
rt

a
n
c

e

Figure 6.5: The Density Peak Clustering cluster centers and populations of
CLN025 are shown derived from three different sets of collective variables: blue
is the clustering done in the full space of 4,378 variables, orange in the space
of the three best variables as selected and weighted by the Gini importance of
the Decision Tree Regression model, and yellow as selected and weighted by the
Permutation importance. The numbers on the right are the cluster purities with
respect to the full space, measured as the fraction of points (trajectory frames)
that belong to the same cluster in both representations.

confirms that the cluster centers of the two metastable states, the β-hairpin and
the collapsed loop, derived from the decision tree regression feature selection, are
less similar to the full space cluster centers than the DII-derived CV space in
Fig. 6.4. In particular, even if the backbone is in a similar conformation, the side
chains are arranged in a different manner.

Robustness test

We also test the robustness of the method using four uncorrelated trajectory blocks
and performing the DII-optimization in each of these blocks. This was done by
cutting the MD trajectory of the peptide CLN025 into 4 blocks of 10000 frames
each and subsampling every 7th frame, to create 4 uncorrelated data sets of 1429
points each - the same size of data set as in the main analyses (subsection 6.4.2).
For each of these sets, we found the optimal number of non-zero features and
optimal relative weights of these features with DII-optimization, using the full
space consisting of 4,378 heavy atom distances as target. Fig. 6.6 shows that the
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DII decreases steadily until approximately 5 to 6 features, when the information
content reaches its maximum. More than seven or eight features increase the DII,
since noise seems to be added but no more independent information.

2 4 6 8 10
Number of non-zero features

0.2

0.3
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Figure 6.6: The DII for each of four uncorrelated trajectory blocks of CLN025
with 1429 frames each, vs. the number of selected (non-zero) features of a total of
ten input features.

The input variables on which we performed the feature selection were the same
collective variables as previously ((subsection 6.4.2)). Fig. A.3 in the appendix
shows the normalized (to the unit vector) relative weights for the selected number
of non-zero features and each block, corresponding to Fig. 6.6.

The resulting DIIs, as well as selected features and their weights, show ex-
cellent consistency across the blocks. (Fig. 6.6 and appendix: Robustness test of
DII selection features from peptide CLN025 MD trajectory), meaning that they
hold similar information for the same number of non-zero features.
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6.4.3 Feature selection for Machine Learning Potentials

In another use case of the DII approach, we demonstrate its capabilities for se-
lecting features for training Behler-Parrinello machine learning potentials (MLPs)
[116]. MLPs can learn energy and forces of atomic configurations derived from
quantum mechanical calculations. The Behler-Parrinello MLP uses Atom Centered
Symmetry Functions (ACSFs) as inputs for the predictions [139]. The ACSFs are
a large set of radial and angular distribution functions, which describe the environ-
ment around an atom, and are permutationally, rotationally, and translationally
invariant.

The data set used here consists of N ∼ 350 atomic environments of liquid water
molecules, derived from a larger data set that has previously been used to fit a
MLP, which can accurately predict various physical properties of water [140]. The
input features in this example are 176 ACSF descriptors (see section 6.3). The
ACSF descriptor dimensions combinatorially grow with the number of atom types,
which makes them computationally costly and makes feature selection attractive
[141]. Since the ACSF space is too large for full combinatoric feature selection, we
search for sparse solutions using both, L1 regularized DII and greedy backward
selection (“L1 reg.” and “greedy” in Fig. 6.7, see section 6.2.3). We aim to select
informative ACSFs before the training to reduce the number of input features and
thus reduce the training and prediction time.

Here we can use another descriptor as ground truth: In the case of atomic
environments, one of the most complete, accurate, and robust descriptions is given
by the Smooth Overlap of Atomic Orbitals (SOAP) descriptors [117, 118], based
on the expansion of the local density in spherical harmonics. 546 SOAP features
(nmax = 6, lmax = 6) are defined as the ground truth for feature selection. In
this manner, we can put SOAP and ACSF, two comprehensive representations of
atomic environments, into relation [144] and show that SOAP is a suitable ground
truth to select informative ACSFs as inputs for a MLP. The SOAP space captures
the full spacial arrangement of atoms by encoding the local atomic densities and
accounting for symmetries [145]. Both SOAP and ACSF descriptor spaces, as well
as further local atomic density descriptors, such as the atomic cluster expansion
(ACE) representation, have been shown to be compressible without significant loss
of information, improving computational efficiency [112, 146].

The resulting DII for various numbers of ACSFs can be seen in Fig. 6.7A.
With both greedy and L1 regularized selection, we find that the optimized DII
asymptotically approaches an optimal value with growing number of non-zero fea-
tures. However, even relatively small feature spaces with ∼ 10-30 non-zero features
have low DII values, making effective feature selection possible. We validate the
selected features and their weights on validation sets of atomic environments of
equal size as the training set. The resulting DIIs are slightly higher but mostly
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Figure 6.7: Selection of the optimal feature subsets from DA = 176 ACSF de-
scriptors, against a ground truth of DB = 546 SOAP descriptors, using a data
set of N ∼ 350 atomic environments. A: The optimized DII per number of non-
zero features is shown by blue circles and orange diamonds, using L1 regularized
search and greedy backward selection, respectively. The bars represent validation
results, using as data points atomic environments other than the ∼350 environ-
ments used for DII feature selection. The gray bars depict the range between the
lowest and highest DII results for 10 random selections of the specified number of
non-zero features. B: Test root-mean-square error (RMSE) with features chosen
via L1 regularized DII (blue circles) and at random (gray triangles) by Behler-
Parrinello-type MLPs [116] as implemented in n2p2 [142, 143]. Markers represent
the average RMSE of six MLPs with different train-test splits per number of non-
zero features, the filled area shows the range from worst to best performer. C:
Run-time of force and energy prediction on a single structure performed by the
same MLPs as in B. The filled area shows the range from worst to best performer,
despite being barely visible due to similar run-times across the six MLPs.
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comparable to the training DIIs, showcasing the robustness and transferability
of the results. As a sanity check for our selection, we also show that randomly
selected feature sets have a significantly higher DII than optimized sets, meaning
they are less informative about the ground truth space (Fig. 6.7A gray).

To show that the features selected by DII are indeed physically relevant, we
report in Fig. 6.7B the root-mean-square error (RMSE) of atomic forces for Behler-
Parrinello MLPs using ACSF subsets of different sizes (nACSF ∈ {10, 18, 25, 38, 50,-
176}). We find that MLPs with features selected by L1 regularized DII optimiza-
tion outperform random input features for all tested numbers of input features
nACSF. The difference in prediction accuracy is most pronounced at small nACSF,
where it is least likely that random selection chooses meaningful features. After
nACSF ≈ 20 input features, the optimized subsets reach an accuracy of < 100 meV,
which is on par with the original MLP trained on these data [140]. Compressions
of local atomic density representations for machine learning potentials have also
previously been shown to require a minimum set size of 10-20 PCA features, since
further compression fails to faithfully preserve the geometric relationships between
data points and leads to increased prediction errors [147]. With nACSF = 50 in-
put features, the MLP performs roughly equally well to using the full data set,
while having less than half the run-time (Fig.6.7C). This shows that DII can be
used to select features for downstream tasks such as energy and force fitting in
MLPs, by optimizing for a complex ground truth and finding a space with fewer
but optimally weighted features that contain the same information.
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6.5 Discussion
This chapter presents the Differentiable Information Imbalance, DII, designed to
automatically learn the optimal distance metric dA over a set of input features.
The metric reproduces the neighborhoods of the data points as faithfully as possi-
ble according to a ground truth distance dB. Here dA is defined as the Euclidean
distance, and the optimization parameters are weights that scale individual fea-
tures, such that the presented DII is an automatic and universal feature selection
and weighting algorithm.

While many other methods are restricted to single variable outputs as “labels”
or “targets”, DII can handle any dimensionality of input and output. Continuous
and discrete data is supported and the method can be used in a supervised and
unsupervised manner. The weights are optimized automatically, and by using the
values of the DII as a quality measure one can compare the information content
of several feature sets, and select the sets corresponding to the lowest DII for each
number of features (see appendix: Choosing tuples by DII). It is one of very few
filter methods that account for feature dependencies but do not rely on explicit
feature subset evaluation [62].

In illustrative examples where the optimal feature weights are known, we
showed that the DII can reliably find the correctly weighted ground truth fea-
tures out of high-dimensional input spaces. The behavior of the DII as a function
of the subset size appears to be anti-correlated with the cosine similarity between
ground truth and optimized weights. This implies that the DII value can be used
for assessing the quality of the selected feature subsets when the actual ground
truth weights are unknown. The weighted feature sets as provided by DII op-
timization have a higher cosine similarity to the ground truth than sets derived
from two other feature selection classes, relief-based algorithms (RBAs) [130] and
decision tree regressions.

We further applied the method to analyze a molecular dynamics (MD) simula-
tion of a biomolecular system. Extracting a small subset of informative collective
variables (CVs) from a pool of many candidate CVs from a MD trajectory is a
general problem with both practical and conceptual benefits, including using such
CVs in enhanced sampling techniques and obtaining an interpretable description
of the free energy landscape. For the peptide CLN025, the selected CVs are the
first two principle components (3.5 PC1, 4.7 PC2) and the radius of gyration (1.0
RGYR). Applying clustering in the space of these three scaled CVs leads to the
correct identification of the β-pin state and collapsed denatured state of CLN025,
in accordance with the clusters built from a much larger feature space, which in-
cludes all heavy atom distances. The reduced space clusters are highly meaningful
with a 89% overall cluster purity towards the extended space clusters, while re-
duced variable spaces built from clustering results of the decision tree regression
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lead to lower cluster purities. Tests of uncorrelated parts of the MD trajectory
show great consistency of the results, highlighting the robustness of the method.

In a second application, our method successfully selects highly informative
subsets of input features for training a Behler-Parrinello machine learning potential
that achieves optimal performance in terms of the mean absolute error of force
and energy. We find that using just 50 informative ACSF descriptors selected by
our approach, instead of 176, significantly reduces the MLP’s computational cost,
cutting the runtime by one third while maintaining nearly the same accuracy.

The DII is not necessarily a simple monotonic function of the number of
non-zero features post-optimization (cardinality). In some cases, the selection
of additional features can introduce noise or redundancies that can negatively
impact the description of the ground-truth space. Furthermore, if the optimal
non-zero features for a two-dimensional description are, say, X3 and X61, the
optimal features for a three dimensional description could be completely different,
say X5, X9 and X44. The DII is hence also not necessarily a submodular function
of the number of features.

To extract small subsets of features from high dimensional input data, we im-
plemented two different sparsity inducing heuristics: L1 regularization and greedy
backward optimization. Greedy algorithms have previously been shown to be a
fast and effective alternative to convex L1 regularization in sparse coding [148],
and work even if the problem is only approximately submodular [149]. When a
feature space is very large, greedy backward optimization will lead to long calcu-
lations and L1 regularization becomes more suitable. Both heuristics are able to
find relevant results in the examples presented here.

Like RBAs [62], also DII has a computational complexity of O(N2 ·D), where
N is the number of points and D is the number of features. However, by applying
a simple subsampling trick (see subsection 6.2.4), the computational complexity
reduces up to O(N · D) with a degradation of the accuracy which is barely de-
tectable.

The requirement of a ground truth reference space could pose a difficulty to
some applications. In MD simulations, all heavy atom distances are a good, trans-
lationally invariant alternative to the set of all atomic positions, if one wants to
completely encode the conformation of a molecule. In other cases, if no indepen-
dent ground truth is known or a lower-dimensional subspace is desired, the full
space could be used as ground truth. This approach could be employed, for exam-
ple, for large gene sequencing data with thousands of features and just hundreds of
data points. In this fashion, the method acts as an unsupervised feature selection
filter. An open question in this case is the relative weighting of the ground truth
features.

Furthermore, even though the method can be applied to any data set, it is most
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suitable for continuous features. A limitation is given by ground truth metrics with
many nominal or binary features, which can lead to a degenerate ground truth rank
matrix, making the optimization more difficult.

The Differentiable Information Imbalance introduced in this thesis could have
relevant implications in a wide range of distance-based methods, such as k-NN
classification, clustering, and information retrieval. The approach could also be
used to identify how much information original features carry compared to oth-
erwise not-interpretable transformations such as UMAP [30] or highly non-linear
neural network representations, by optimizing the original features towards such
representations.

The Differentiable Information Imbalance has been implemented in the Python
library DADApy [3] and is well-documented [68], including a tutorial for ease of
use. This accessibility allows for a wide audience to explore further use cases and
limitations effectively.

This chapter has shown a powerful development of the Information Imbalance:
Its evolution into an optimizable statistic. This allowed us to remedy not only the
challenges that remained from its other applications, but also to solve several open
question in feature selection in general.

The next chapter will discuss the results of this thesis and outline the key
takeaways, as well as open questions and possible future directions.
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Chapter 7

Conclusion

This thesis has explored the idea of using the Information Imbalance and its vari-
ants to perform feature selection, providing a comprehensive study of its appli-
cability across diverse fields such as medicine, ecology, and molecular dynamics.
Central to this research is the idea that effective feature selection and weighting are
crucial for interpretability and enhancing model performance, especially in scenar-
ios where data is complex and high-dimensional. The foundation of Information
Imbalance revolves around the disparity of information contained within different
feature spaces towards each other. Having the possibility of estimating efficiently
the information content of a description allows understanding how different vari-
ables contribute to model outcomes.

The exponential growth of data, transitioning from petabytes in the 1990s to
the current zettabytes, has triggered the development of sophisticated approaches
to manage, interpret, and derive knowledge and value from vast datasets. As
outlined in the introduction, the dual nature of data’s impact—enabling advance-
ments while also presenting ecological challenges—sets the stage for all kinds of
innovative solutions, among them the Information Imbalance.

The research was guided by three core technical questions:

1. How can Information Imbalance be adapted to handle class imbalances and
missing data in medical datasets while ensuring robust feature selection?

2. In what ways can Information Imbalance be enhanced to optimize feature
selection in datasets with continuous and categorical features?

3. Could the introduction of feature weights be a way to circumvent combinato-
rial problems and unit alignment for selection of features in high-dimensional
spaces?

Several extensions of the Information Imbalance method have been shown in
chapter 4, chapter 5 and chapter 6:
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Initially we derive a weighted Information Imbalance approach which is able
to deal with class imbalanced medical data and can handle missing data.

Then versions of Information Imbalance are introduced which can work with
binary and discrete data, as we exemplified on biodiversity data from the Amazon
Rainforest, where variables such as “region” are categorical, yet other variables,
such as diversity indexes, are continuous variables.

Finally we described a variant of the Information Imbalance which is differen-
tiable and optimizable, and which is also implemented in an easy-to-use python
package, DADApy. This approach allows choosing feature subsets automatically
along with the optimal size of subset. Moreover, it allows assigning meaningful
relative weights to the chosen features.

Key Findings

The findings of this research demonstrate significant progress in addressing the
challenges of feature selection:

In the first application of a severity prediction for a medical use case, Infor-
mation Imbalance was compared as a feature selector to other methods, and the
features selected by it were used to perform a subsequent kNN and support vector
classification. The adaptation of the statistic to account for class imbalance in
clinical datasets proved to be effective. The construction of a custom distance
for the output space, the severity tree, was especially well suited to quantify pa-
tient fate. The study on COVID-19 severity prediction showcased the successful
identification of a 13-feature subset from a pool of approximately 150 features.
This method not only outperformed traditional techniques but also handled the
complexities of missing data, emphasizing the need for improved data collection
strategies for critical medical features.

The application of Information Imbalance in ecological studies, specifically as-
sessing biodiversity in the Amazon Rainforest, highlighted the asymmetrical in-
formation between environmental conditions and species richness. By leveraging
both, continuous and categorical features with dedicated statistics, we identified
important predictors, underscoring the necessity for enhanced sampling strategies
to better capture the diversity of ecosystems.

The introduction of the Differentiable Information Imbalance (DII) as an op-
timizable feature selection method marks an advancement in the field of feature
selection. Utilizing gradient descent, DII effectively addressed the combinato-
rial challenges associated with high-dimensional data. The feature weights, which
are the targets of the optimization, correct for different units of measure and
relative importance, and allows inducing feature selection through sparsity. The
method’s application in molecular dynamics simulations demonstrated its robust-
ness, achieving high descriptive power with a significantly reduced feature set of

95



only three collective variables.

Takeaway

The overarching takeaway from this research is the versatility and broad applicabil-
ity of the Information Imbalance framework for feature selection. This framework
offers flexibility in handling a variety of data types and structures: its variants can
be adapted across fields to enhance predictive analyses in areas like healthcare,
ecology, and molecular dynamics. By effectively managing continuous, categorical,
and binary features across both high and low dimensions, the framework enables
the integration of diverse data types. Additionally, the Differentiable Information
Imbalance variant introduces an approach to optimally align features and deter-
mine the most suitable reduced feature set by optimizing a "loss function".

Limitations

A challenge that remains open in this thesis is the possibility to integrate the var-
ious Information Imbalance formulations designed to address different use cases.
E.g. the functional form of ∆cat2con, the variant that captures information from a
categorical space in relation to a continuous space, differs from the original Infor-
mation Imbalance. Looking ahead, it would be desirable to develop a single formu-
lation capable of handling all data types, or to create an integrated framework that
automatically determines the appropriate variant. Ideally, this integrated version
would also be incorporated into the differentiable framework, thereby enhancing
the Differentiable Information Imbalance.

A second limitation is posed by ground truth feature spaces with many different
features. While the Differentiable Information Imbalance can weight input features
relative to each other, the challenge of constructing an optimal ground truth by
weighting multiple target features relative to each other remains. What should one
do when we have several features that would make good targets for our feature
selection, but they have different units and intrinsic importance? Indeed, the
integration of several reasonable target variables into a model is an open field of
research [150]. For Information Imbalance, such features cannot simply be bundled
into one Euclidean distance space without alignment. Future research could borrow
from fields like multi-criteria decision-making (MCDM) in operations research,
where the several ground truth features are called ’criteria’ [151, 152], or latent
variable modeling, where the given ground truth features could be interpreted as
’observed variables’ [153].
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Outlook

This thesis has demonstrated the broad applicability of the Information Imbalance
method, which offers flexibility across diverse data types and dimensions. This
adaptability arises from its conceptual foundation, relying on distance ranks be-
tween data points, which can accommodate any number of dimensions and can be
tailored to system-specific needs, as shown with the COVID severity tree distances.
Its applications extend beyond feature selection and weighting, with promising uses
in fields like dimensionality reduction [154, 155] and metric learning [156], through
the construction of a distance space dA(w) with a more expressive functional form.

Information Imbalance reproduces neighborhood relationships using a small
number of variables, which may or may not include the target space variables,
and therefore adds fluidity between supervised and unsupervised methods: When
using a distinct ground truth, it functions as a supervised feature selector, while
it works as an unsupervised method when sub-selecting features within the full
feature space. An intriguing hybrid approach could involve using space B as
target, and reusing all features of space B, additionally to features of space A, as
input data space from which features are selected, enabling feature selection that
bridges supervised and unsupervised methods.

Additionally, the Differentiable Information Imbalance optimizes feature weights
to identify a reduced feature space. Creating new features by combining input fea-
tures could lead to even more compressed and informative representations, though
potentially at the cost of interpretability. This could involve extending the weight
vector to a matrix that is optimized [157, 122], providing a more flexible and
possibly lower-dimensional solution.

Beyond these possibilities of advancing the method, there are many more ap-
plications of the here presented Information Imbalance framework. Potential areas
include analyzing genetic sequencing data [22], high-dimensional imaging in neu-
roscience [158] and medicine [159], and large datasets in astronomy [160] and envi-
ronmental monitoring [161], where advanced imaging and model outputs provide
ample high-dimensional data.

In summary, this thesis significantly broadens the scope of Information Imbal-
ance applications, offering a solid foundation for future developments in feature
selection and dimensionality reduction. Information Imbalance based methods
present advantages over existing alternatives in automated feature selection and
flexible analysis of high-dimensional data.
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Appendix A

Appendix

Code for Categorical Information Imbalance

1

2 import scipy.spatial.distance as scidist
3 from scipy.stats import rankdata
4 import warnings
5

6 def return_dist_inds_scipy(X):
7 scdist=scidist.squareform(scidist.pdist(X))
8 distranks = np.argsort(scdist , axis =1)
9 zero_dists = np.sum(np.sort(scdist , axis =1)[:, 1:] <=

1.01 * np.finfo(np.float32).eps)
10 if zero_dists > 0:
11 warnings.warn(
12 "There␣are␣points␣with␣neighbours␣at␣0␣distance ,␣

meaning␣the␣dataset␣probably␣has␣identical␣
points .\n"

13 "This␣can␣cause␣problems␣in␣various␣routines .\nWe
␣suggest␣to␣either␣perform␣smearing␣of␣
distances␣using\n"

14 "remove_zero_dists ()\n"
15 "or␣remove␣identical␣points␣using\n"
16 "remove_identical_points ()).")
17

18 return distranks
19

20 def imb_cont2cat(continous_vector , binary_vector): #2D arrays
of shape (N,1), not (N,)

21 N = continous_vector.shape [0]
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22 dist_inds = return_dist_inds_scipy(continous_vector)
23 NN = dist_inds [:,1]
24

25 # calculate a correction factor each of the classes of
discrete values

26 binary_set = set(binary_vector [:,0]) # the [:,0] because
the input is a 2D array ...

27 correction_list = []
28 for i in binary_set:
29 binary_inds = np.where(binary_vector == i)[0]
30 p_alpha = len(binary_inds)/N # class probability
31 c = 1/(N*(1- p_alpha))
32 correction_list.append(c)
33

34 count = 0
35 for i in range(N):
36 c = correction_list[np.where(np.array(list(binary_set

)) == binary_vector[i]) [0][0]] # get correction
factor for i’s class

37 if binary_vector[i] == binary_vector[int(NN[i])]:
38 count += c*0 # in the same class rank = 0
39 else:
40 count += c*N # in different classes rank = N
41 return count/(N)
42

43

44 def imb_cat2cont(binary_vector , continous_vector): #2D
arrays of shape (N,1), not (N,)

45 N = continous_vector.shape [0]
46 cont_NNinds = return_dist_inds_scipy(continous_vector)
47 i_sum = []
48 i_min_sum = []
49 i_term = 0
50 for i in set(binary_vector [:,0]): # the [:,0] because the

input is a 2D array.
51 binary_inds = np.where(binary_vector == i)[0]
52 summi = 0
53 number_items = len(binary_inds)
54 for j in binary_inds:
55 for k in binary_inds:
56 if j != k:
57 summi += (np.where(cont_NNinds[j] == k)

[0][0] + 1) # add the rank of j and k
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in same class # plus one so the ranks
start from 1

58 i_sum.append(summi)
59 i_term += 2*summi /(( number_items)*( number_items)) #

this is summi/minimum_ranksum_possible
60 i_term = i_term/len(set(binary_vector [:,0])) # average

over all classes
61 i_term = i_term/N # bring in range [0:1]
62 return i_term , i_sum , i_min_sum

Comparison of Classic Information Imbalance and
Categorical Information Imbalance
To evaluate the behavior of the classic and continuous-predicts-categorical Infor-
mation Imbalance with more and more classes, consider the example of data points
from Fig. 5.1. Because the classes are non-overlapping in the continuous feature
(on the y-axis), the continuous feature (x-axis) should retain high information
(measured by ∆con2cat) about the categorical feature, even when classes are added:
Indeed, Fig. A.1 shows that even with 100 classes, we still find ∆con2cat ≈ 0.25
(blue), and with fewer than 25 classes the relationship from continuous to cate-
gorical is evaluated as highly informative.

Because the categorical features here are also distributed across the continuous
feature in a ordinal (sequential) manner, also the classic Information Imbalance
should capture the informativeness of the continuous feature towards the categor-
ical. In Fig. A.1, the classic Information Imbalance (orange) performs well, when
the number of categorical classes exceeds roughly

√
N =

√
500 = 22 classes. For

5,000 data points we observe the same, that with roughly
√
5000 = 71 classes or

more the classic implementation leads to good results. When the number of classes
is lower than

√
N , then ∆con2cat performs better, even though its dedicated use

case is for non-ordinal data. Therefore, the current framework allows for working
with categorical-ordinal data, but the type of data and number of classes have to
be carefully considered.

Future development should aim at versions of the Information Imbalance that
are dedicated to handle ordinal data, and possibly even converge in a common
framework with the categorical Information Imbalance.
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Figure A.1: The classic and continuous-to-categorical Information Imbalances for
the example in Fig. 5.3 for 500 points.

Logic of the Information Imbalance from categorical
to continuous features
The heart of equation 5.3 describing ∆cat2con comes from the following considera-
tion:

For the classic Information Imbalance, its core could be understood as the factor
describing how much worse than the optimum (wto) the actual sum of ranks is,
the factor Fwto:

Fwto =

∑N
i=1

∑N
j:rAij=1 r

B
ij

N
, (A.1)

where the numerator captures the actual count of NN ranks in space B, and the
denominator, N , captures the count of NN ranks in B if B had perfect information
about A.

We can define a similar factor (of being worse than the optimum) for each
cluster in the categorical-predicts-continuous case. If Nα points, including i, are
in the same class k in the categorical space, then in the best case, all other points
in that class will have distance ranks 1 to (Nα − 1) from point i, equaling the
sum of the arithmetic series (the Gauss sum) between ranks (Nα − 1) and one:
Smin
α = Nα−1

2
(1 + (Nα − 1)) = (Nα−1)Nα

2
≈ N2

α

2
. This is the minimum sum of ranks
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possible in the continuous space, for each point i to the points of the same class.
The class specific F class−α

wto is:

F class−α
wto =

∑Nα

i=1,i∈α
∑Nα

j=1,j∈α r
B
ij

Smin
α

≈
2
∑Nα

i=1,i∈α
∑Nα

j=1,j∈α r
B
ij

N2
α

(A.2)

Eq. A.2 can be summed over all classes and divided by the number of classes,
Nclass, and finally normalized with 1/N to remain in the same interval between
approximating zero (fully informative) and one (A is not informative about the
ranks in B).

Choosing tuples by DII
The example plotted in Fig A.2 is a L1-search of the 285 monomials of the ten
Gaussian random variables as input, with ten of them scaled as ground truth.
The figure shows how several different L1 strengths lead to the same number of
non-zero features with different features and/or weights. In these cases, the lowest
DIIs per numbers of non-zero features should be selected.
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Figure A.2: The resulting DIIs for a L1-search with many L1 strengths plotted as
a function of non-zero features on a log-log graph. Several different L1 strengths
can lead to the same number of non-zero features with different features and/or
weights. The gray line corresponds to the DII represented in Fig. 1B III of the
main paper.
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Robustness test of DII selection features from pep-
tide CLN025 MD trajectory
Four independent trajectory parts of the MD simulations of CLN025 are compared.
The analyses show that independent parts lead to consistently chosen features (Fig.
A.3) with consistent values of the DII (section on DII robustness, Fig. 6.6)

The first observation in Fig. A.3 is that the DII is not a submodular function
of the number of features, meaning that the most informative single-feature, which
is the anti-β-sheet content, is not part of the most informative duplets, triplets
or quadruplets of features, whose main features always contain the principle com-
ponents, and never the anti-β-sheet content. Secondly, the chosen features are
mostly in good agreement across the four trajectory blocks. In certain instances,
such as the most informative feature triplets, there are two competing features
(RGYR and the PC residuals) which complement PC1 and PC2 and lead to simi-
lar DIIs. In the chosen sets of four features this conflict resolves and both of these
features form part of very consistent quadruplets. Finally, in almost any feature
tuple bigger than two features, PC2 is the most important feature - a non-trivial
observation.
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Figure A.3: The selected features and their relative weights for each number of se-
lected non-zero features (large number in each plot) and each block, corresponding
to Fig. 6.6. The ten input features are: Radius of gyration (RGYR); anti-β-sheet
content (β-ness); α-helical content (α-ness); the number of hydrogen bonds in
the backbone (H-bonds_bb), in the side chains (H-bonds_sc), and between the
backbone and side chains (H-bonds_mix); the number of hydrophobic contacts
(Hydroph.), principal component 1 (PC1); principal component 2 (PC2) and the
principal component residuals (PC_res).
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DII pseudocodes
We provide in Algorithm 1 a simple pseudocode for the optimization of the Dif-
ferentiable Information Imbalance. The hyperparameters include the number of
training epochs nepochs, the starting learning rate η0 (which is reduced with an ex-
ponential or cosine decay during the training, if decaying_lr is "exp" or "cos"),
the strength of the L1 regularization p and the softmax parameter λ0. If λ0 is not
set by the user, the adaptive scheme is applied. Additionally, if no initial value
w0 of the scaling weights is set, the algorithm automatically sets it to the inverse
of the features’ standard deviations. Similarly, if no starting learning rate is pro-
vided, the algorithm chooses a suitable one. The value of the α-component of the
weight vector at epoch t is denoted by wα

t (α = 1, ..., D).
In Algorithm 2 we describe the backward greedy approach for the search of

the optimal subsets of D′ features (D′ < D). Here, the notation w(D′) is used to
denote a weight vector with D′ non-zero components, and the standard deviation
of feature α is written as stdα. In each optimization, setting a component of
the initial weight vector w0 to zero is equivalent to removing the corresponding
feature from space A, as the derivative of the DII with respect to wα is equal to
zero throughout the entire training by setting wα

0 = 0 (see Eq. (6) in the main
text).
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Algorithm 1: Pseudocode for the optimization of DII
(
dA(w) → dB

)
.

Parameters: nepochs, η0, w0, λ0

Compute rank matrix in space B: rBij ;
t = 0 ; /* epoch index */
Compute and save starting DII: DII0 = DII

(
dA(w0) → dB

)
;

while t < nepochs do
Compute wt-dependent distances in space A: dAij(wt);
Compute softmax coefficients: cij(λ, d

A(wt));
if λ0 is None then

Compute λt given the current distances: λt = λt(d
A
ij(wt)) ;

/* adaptive lambda */
else

λt = λ0;
end
if decaying_lr is True then

Compute ηt according to chosen schedule ; /* set learning rate
*/

else
ηt = η0;

end
Compute gradient of DII: ∇wtDII

(
dA(wt) → dB

)
;

wt+1 = wt − ηt ∇wtDII
(
dA(wt) → dB

)
; /* gradient descent step

*/
if p ̸= 0 then

for α = 1, ..., D do
if wα

t+1 > 0 then
wα

t+1 = max(0, wα
t+1 − ηtp) ; /* L1 regularization step

*/
else

wα
t+1 = |min(0, wα

t+1 + ηtp)|;
end

end
end
Compute and save DII with new weights:
DIIt+1 = DII

(
dA(wt+1) → dB

)
;

t = t+ 1;
end
Result: DIIt, wt for t = 0, ..., nepochs
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Algorithm 2: Pseudocode for the backward greedy optimization the
DII.
D′ = D ; /* number of non-zero components */
w0 = (1/std1, 1/std2, ..., 1/stdD) ; /* initialize starting weight
vector */

while D′ > 0 do
Optimize DII(w0) according to Alg. (1) and extract optimized
weights ŵ = argminw DII;

Save the optimal D′ non-zero weights: ŵ(D′) = ŵ;
Set the smallest among the D′ non-zero weights to zero: min ŵ = 0;
Set the new initial weight vector: w0 = ŵ;
D′ = D′ − 1 ; /* reduce the dimensionality by 1 */

end
Result: ŵ(D′) for D′ = 1, ..., D

Feature selection by Information Imbalance optimization: Clinics, molecular mod-
eling and ecology © 2024 by Romina Wild is licensed under CC BY-NC-ND 4.0.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-
nd/4.0/
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