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Abstract: In this paper, we consider the long-term behavior of some special solutions to the Wave
Kinetic Equation. This equation provides a mesoscopic description of wave systems interacting
nonlinearly via the cubic NLS equation. Escobedo and Velázquez showed that, starting with initial
data given by countably many Dirac masses, solutions remain a linear combination of countably many
Dirac masses at all times. Moreover, there is convergence to a single Dirac mass at long times. The
first goal of this paper is to give quantitative rates for the speed of said convergence. In order to study
the optimality of the bounds we obtain, we introduce and analyze a toy model accounting only for the
leading order quadratic interactions.
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1. Introduction

In recent years, there has been an increasing interest in understanding the average behavior of
out-of-equilibrium systems of many waves undergoing weakly nonlinear interactions. A fundamental
example of such a system is given by the cubic Schrödinger equation.

The kinetic formalism for such wave system, known as wave kinetic theory, consists in studying
the evolution of the variance of the Fourier coefficients of such wave systems in the kinetic limit (i.e.,
as their size grows and the strength of the interactions diminishes), see [15] for details. This variance,
upon rescaling in time, has been shown to satisfy the Wave Kinetic Equation (WKE):

∂tn(t, ξ) = K(n(t, ·)), ξ ∈ R3, (1.1)
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where

K(n)(ξ) =

∫
(R3)2

{ξ=ξ1−ξ2+ξ3}

δR(|ξ1|
2 − |ξ2|

2 + |ξ3|
2 − |ξ|2) n1n2n3n

(
1
n
−

1
n1

+
1
n2
−

1
n3

)
dξ1 dξ3

with n j = n(ξ j).
Kinetic equations for wave systems first appeared in the work of Peierls [17], Nordheim [16] and

in the work of Hasselman in the context of water waves [11, 12]. A rigorous mathematical derivation
was only recently achieved, starting with the work of Buckmaster, Germain, Hani, Shatah [1], that of
Collot and Germain [2], and culminating with the recent works of Deng and Hani [3–7], where a full
derivation is obtained. Other wave systems have also recently been considered, see for instance [10,18].

Despite the rigorous justification of the WKE, many questions remain unanswered regarding the
behavior of solutions to (1.1). The study of the well-posedness and long-term behavior of certain
solutions to the WKE (1.1) was initiated by Escobedo and Velázquez in [8], as well as in [9]. In
their work, they consider radial initial data in 3D, where one can explicitly integrate the delta function
in (1.1) in the angular variables, leading to the isotropic WKE:

∂tg1 =

∫
D(ω1)

Φ

[(
g1
√
ω1

+
g2
√
ω2

)
g3g4
√
ω3ω4

−

(
g3
√
ω3

+
g4
√
ω4

)
g1g2
√
ω1ω2

]
dω2dω3dω4,

g1 |t=0 = gin(ω1), gidωi = g(t, dωi),

Φ = min{
√
ω1,
√
ω2,
√
ω3,
√
ω4},

D(ω1) = {ω3 ≥ 0, ω4 ≥ 0;ω3 + ω4 ≥ ω1}, ω1 ≥ 0.

(1.2)

Here g(t, ω) = |ξ| n(t, |ξ|2) and ω = |ξ|2, where n is the solution to (1.1). It is convenient to work with g
so that it can be interpreted as a density of particles in the space {ω ≥ 0} [8]. One can thus define

Mass: M =

∫
R+

g(t, dω), Energy: E =

∫
R+

ωg(t, dω).

Both quantities above are conserved as long as they are both initially finite.
Escobedo and Velázquez then consider the weak formulation of the Eq (1.2), namely

d
dt

(∫
R+

ϕ(t, ω)g(t, dω)
)

=

∫
R

∂tϕ(t, ω) g(t, dω)

+

∫
R3

+

Φ
g1g2g3
√
ω1ω2ω3

[ϕ4 + ϕ3 − ϕ2 − ϕ1] dω1dω2dω3,

ω4 = ω1 + ω2 − ω3 ≥ 0, ϕi = ϕ(ωi),

(1.3)

almost everywhere for any test function ϕ ∈ C2
c ([0,T ) × R+).

One may show that (1.3) is globally well-posed in a space of Radon measuresMρ defined in (1.13)
below. Moreover, it is possible to study the long-term behavior of such measure solutions and, among
other results, Escobedo and Velázquez prove that [8]:

• If the (conserved) mass M =
∫
R+ gindω is finite, then

g(t, ·) ⇀ δR∗ as t → ∞, (1.4)

with R∗ = infA∗ where the set A∗ is defined in (2.6)-(2.7).
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• If supp(gin) ⊆ N, then
supp(g(t, ·)) ⊆ N for any t > 0. (1.5)

The goal of this paper is to quantify the speed of the convergence in (1.4) in a special case where
we start with energy concentrated on a set of discrete frequencies away from the origin. In this setting,
we first observe an instantaneous spreading of energy towards all (discrete) frequencies, before the
solution converges to a single Dirac mass concentrated at R∗. These complicated dynamics were first
studied qualitatively in [8] in a more general scenario. The purpose of this article is to present some
quantitative results in the special case of initial data displaying discrete dynamics.

1.1. Statement of results

We consider the case supp(gin) ⊆ N. It is therefore useful to introduce a set of test functions
ϕn ∈ C∞c (R+) such that supp(ϕn) ⊂ B(n, 1/2) and define

Fn(t) :=
∫
R+

ϕn(ω)g(t, dω). (1.6)

Since supp(g(t, ·)) ⊆ N by (1.5), the functions Fn fully describes the dynamics of g solving (1.3).
By a direct inspection of the weak formulation (1.3), we will derive the (infinite) system of ODE’s
describing the evolution of Fn. The particular structure of the equations is not relevant for the statement
of the main result, but the equations of interest can be found in Lemma 2.4. Our first result, proved in
Section 3, is the following:

Theorem 1.1. Let gin = M1δ1+
∑∞

j=2 m jδ j be the initial data of (1.2) with M1 > 0 and (m j)∞j=2 ∈ `
1,r(R+)

with r > 1 (see (1.12)). Define

M2 :=
∞∑
j=2

m j, E =

∞∑
j=1

j m j =: M1 + E2,

and, without loss of generality, assume M1 + M2 = 1. Then, there exists t0 > 0 such that for any t > t0

the following inequalities hold true:

c2

t − t0 + 3E/b1(t0) + C2
≤ F2(t) ≤ 1 − F1(t) ≤

c1(t0)
√

b1(t0)(t − t0) + 3E
, (1.7)

where c1(t0), b1(t0) are given in (3.2) whereas c2,C2 are explicitly computable. Moreover, if M1 ≥

3E2/19 then t0 = 0.

Notice that, being the mass conserved, we have

Fk(t) ≤
∞∑
j=2

F j(t) = 1 − F1(t)

for all k ≥ 2. Therefore, the upper bound in Theorem 1.1 is true for all Fk with k ≥ 2, whereas we are
only able to prove the lower bound for F2.

Thanks to the result above, we know that, if we wait long enough or we start with M1 large enough,
the convergence towards the Dirac mass at {1} is at least O(t−1/2) but cannot be faster than O(t−1).
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Remark 1.2. If we set t0 = 0 but M1 < 3E2/19 then we need to change the lower bound in (1.7) to
O(t−α) with a time-rate α > 1, explicitly given in (3.4). This suggests that the rate of convergence could
be faster for small times and slow down as mass concentrates at {1}. Note that the convergence is at
most polynomial for all times.

Remark 1.3. If the lower bound for 1 − F1 in (1.7) were sharp, then one could derive lower and upper
bounds for the speed of convergence of all the functions Fn for n large enough. In such case, they
would decay as On(t−1). This is the content of Proposition 3.4 in Section 3.

In order to understand whether there exist solutions exhibiting a decay that saturate the lower bound
in (1.7), we propose a toy model where we only keep the terms in (1.3) involving at least one interaction
with the leading term F1. Moreover, we replace all terms F1 by its limit 1. In Section 4, we show that
these reductions give rise to the following quadratic toy model:

d
dt

Fn = 4
Fn
√

n
F2n−1
√

2n − 1
− 4

Fn
√

n

n−1∑
k=2

Fk
√

k
− 2

(
Fn
√

n

)2

+ 2
∞∑

k=n+1

FkFk+1−n
√

k(k + 1 − n)
. (1.8)

We then look for self-similar solutions of the form

Fn(t) = βn

√
n

t
, for βn ∈ [0,∞), 2 ≤ n ∈ N. (1.9)

Analogous ansatzs in the continuous setting are common in the literature, see for instance the related
works of Kierkels and Velázquez [13, 14] in the WKE context.

In such a toy model, positivity of solutions cannot be expected to hold anymore, unlike in (1.3). In
fact, the question of existence of solutions (1.9) with strictly positive βn remains an interesting open
question, which we answer with a further reduction. Indeed, our next result consists of showing the
existence of strictly positive solutions for a truncated version of (1.8), since positivity is a key and
physical feature of the solutions to the full WKE (1.2). In Section 4, we show that simple truncations
of (1.8) do not admit positive solutions. We thus consider:

−
√

n βn = 4 βn β2n−1 − 4 βn

n−1∑
k=2

βk − 2β2
n + 2

3N−2∑
k=n+1

βkβk+1−n, for n = 2, . . . ,N, (1.10)

where N ∈ N, N ≥ 2, may be as large as desired. We then have the following:

Theorem 1.4. Fix any N ∈ N with N ≥ 4. Fix λ1, λ2 > 0 such that λ1λ2 > N/4. Then there exists some
δ0(N, λ1, λ2) > 0 such that for all δ < δ0, there exists a solution to (1.10) (which solves (1.8) for n ≤ N
with the ansatz (1.9)) such that

β2 =
√
λ1λ2 + 1/8 +

√
2/4 + O(

√
N δ max{λ1, λ2}),

β2N = λ1 + O(δ),
β2N+1 = λ2 + O(δ),

0 < β j = O(
√

N δ max{λ1, λ2}), j = 3, . . . ,N,
0 < β j = O(δ), j = 2N + 2, . . . , 3N − 2,

β j = 0, otherwise.

(1.11)
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The result in the theorem above is an example of a solution whose leading order terms are
β2, β2N , β2N+1. This suggests that there could be self-similar solutions to (1.8) of the form (1.9). In
fact, our long-term goal is not only to construct such solutions on the toy model (1.8), but to carry
out a nonlinear perturbative argument for the full (1.3) around this “approximate” solution found in
Theorem 1.4.

1.2. Outline

The article is organized as follows: In Section 2, we discuss some background results and present
the discrete WKE associated to (1.3) with initial data given by a linear combination of Dirac masses. In
Section 3 we prove Theorem 1.1. In Section 4, we introduce our toy model, discuss possible truncations
and prove Theorem 1.4. Finally, in Section 5, we give the derivation the discrete WKE from (1.3).

1.3. Notation

The set of natural numbers N is taken without 0, namely N = {1, 2, . . . }, and we define R+ = [0,∞).
When the index set in a sum consists only of non-positive indices, we consider that sum to be zero,
e.g.,

∑n−1
k=1 ak = 0 whenever n ≤ 1.

We let `1,r(R+), r ≥ 0, be the Banach space of sequences (m j)∞j=1, m j ≥ 0, with the norm:

∞∑
j=1

jr m j < ∞. (1.12)

Finally, we consider the spaceMρ of non-negative Radon measures µ such that

‖µ‖ρ = sup
R>1

1
(1 + R)ρ

1
R

∫ R

R/2
µ(dω) +

∫ 1

0
µ(dω) < ∞. (1.13)

In this note we will consider initial data µ0 in Mρ with some ρ < −2, which guarantees a finite
and conserved energy. This is equivalent to requiring (m j) j∈N ∈ `1,r(R+) with r > 1, as stated in
Theorem 1.1.

We will often omit the differential in some integrals when it is clear from the context, e.g.,∫ ∞

0
µ(t, dω) =

∫ ∞

0
µ(t).

2. Previous results and discrete WKE

In this section, we summarize a few results in [8] which will be useful in the rest of the paper.
Furthermore, we present the equations satisfied by Fn defined in (1.6). A full proof of the derivation,
which is technically simple yet computationally tedious, is given in Section 5.

First of all, by [8, Proposition 2.28] we know that if gin ∈ Mρ with ρ < −2 then the weak solution
to (1.2) has conserved and finite energy and mass for all times. As mentioned after (1.13), we know
that our initial data in Theorem 1.1 is in Mρ with ρ < −2 and therefore we always have finite and
conserved mass and energy.
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Then we need two key results that will allow us to prove bounds on F1(t), and they are the foundation
of our analysis for Fn(t) for n > 1. The first one is a combination of [8, Proposition 2.22] and [8,
Lemma 2.25].

Lemma 2.1. Suppose that g ∈ Mρ. Then, for any ϕ ∈ C2
b(R+),∫

R3
+

Φ

[(
g1
√
ω1

+
g2
√
ω2

)
g3g4
√
ω3ω4

−

(
g3
√
ω3

+
g4
√
ω4

)
g1g2
√
ω1ω2

]
ϕ1 =

∫
R3

+

g1g2g3
√
ω1ω2ω3

Gϕ (2.1)

where both integrals are in dω1dω2dω3 and the following notation is used:

Gϕ(ω1, ω2, ω3) =
1
3

[√
ω−H

1
ϕ(ω1, ω2, ω3) +

√
(ω0 + ω− − ω+)+H

2
ϕ(ω1, ω2, ω3)

]
, (2.2)

H1
ϕ(ω1, ω2, ω3) = ϕ(ω+ + ω0 − ω−) + ϕ(ω− + ω+ − ω0) − 2ϕ(ω+), (2.3)

H2
ϕ(ω1, ω2, ω3) = ϕ(ω+) + ϕ(ω− + ω0 − ω+) − ϕ(ω0) − ϕ(ω−), (2.4)

and

ω+(ω1, ω2, ω3) = max{ω1, ω2, ω3}, ω−(ω1, ω2, ω3) = min{ω1, ω2, ω3},

ω0(ω1, ω2, ω3) = {ω1, ω2, ω3} − {ω+, ω−}.

Moreover, if ϕ is convex we have that Gϕ ≥ 0.
Let g ∈ Mρ be a weak solution to (1.3) and ϕ ∈ C(R+) be a convex function. Then

d
dt

(∫ ∞

0
ϕ(ω)g(t, dω)

)
≥ 0, for a.e. t ≥ 0. (2.5)

The nice monotonicity formula (2.1) is a direct computation using the symmetries of the Eq (1.3).
The proof can be found in [8, Proposition 2.22].

The next result guarantees that if we consider initial data gin with discrete support, the dynamics
will be discrete and nontrivial for later times. Before we state these results, we define some auxiliary
sets to identify supp(g(t)), with g being the solution to (1.3). Let A1 = supp(gin), define An inductively
as:

An+1 = {x + y − z : x, y, z ∈ An} ∩ (0,∞). (2.6)

The idea behind these sets is the following: The wave interactions captured by the WKE (1.3) are
those between waves of different frequencies satisfying ω4 = ω1 + ω2 − ω3. As a result, waves with
frequencies in the set An will produce waves with frequencies in the set An+1. In order to consider a
set that includes all possible frequencies, we cannot stop this process at any finite n and it is therefore
natural to define:

A∗ =

∞⋃
n=1

An. (2.7)

Notice that, if we start with a finite number of Dirac masses, namely

gin = M1δ1 +

N0∑
j=2

m jδ j
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for some finite N0 ≥ 2, it is easy to show that

A1 = {1, 2, . . . ,N0} =⇒ A∗ = N. (2.8)

We are now ready to state the following:

Lemma 2.2 (Lemma 3.5 in [8]). Let ρ < −1, gin ∈ Mρ and let g be the weak solution to the WKE (1.3).
Suppose that M =

∫
R+

gin(dω) > 0. Then for any x ∈ A∗, any t > 0 and any r > 0 we have that∫
B(r,x)

g(t, dω) > 0.

The lemma above guarantees that N = A∗ ⊂ supp(g(t)) for all times t > 0. In order to show the
opposite inclusion, whence proving that supp(g(t)) = N, we need the following result.

Lemma 2.3 (Lemma 3.8 in [8]). Let ρ < −1, gin ∈ Mρ and let g be the weak solution to the WKE (1.3).
Suppose that M =

∫
R+

gin(dω) > 0 and that inf A∗ > 0. Then supp(g(t)) ⊂ A∗ for any t ≥ 0.

The dynamics of our problem are therefore discrete. Thanks to Lemmas 2.2 and 2.3, we know that
the functions

Fn(t) =

∫
R+

ϕn(ω)g(t, dω) =

∫
{n}

g(t, dω), n ≥ 1, (2.9)

as introduced in (1.6), fully capture the dynamics of the problem. Thanks to the conservation of mass,
we may assume that our solutions have unit mass. Then the conserved energy yields:

+∞∑
n=1

Fn(t) = M1 + M2 = 1, E =

∞∑
n=1

nFn(t) = M1 + E2, (2.10)

where M2, E2 are as defined in Theorem 1.1. In order to prove lower bounds on F2, it is convenient to
define

Hn(t) := (Fn(t))−1, t > 0. (2.11)

We know these functions are well defined, since Lemma 2.2 guarantees that Fn(t) > 0 for all t > 0 and
n ∈ N. Next we state the (infinite) system of ODE’s for these quantities.

Lemma 2.4. Let Fn,Hn be respectively given in (1.6) and (2.11). Then

d
dt

Fn = Fn(Qn − Un) − F2
nLn + Cn, (2.12)

d
dt

Hn = Hn(Un − Qn) + Ln − H2
nCn (2.13)

where the terms Ln,Qn,Un,Cn are defined as follows:

Ln =
2
n

F1 +
2
n

 n−1∑
k=2

Fk +

2n−1∑
k=n+1

Fk
√

2n − k
√

k

 ; (2.14)

Qn =
4
√

n
F1F2n−1
√

2n − 1
+

∞∑
k=n+1

F2
k

k
+

1
√

n

n−1∑
k=d n

2 e

F2
k

k

√
2k − n (2.15)
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+
2
√

n

2 n−1∑
m=2

FmF2n−m
√

2n − m
+

n−1∑
k=d n+1

2 e

k−1∑
m=n+1−k

FkFm
√

km

√
k + m − n

 ;

Un =
4
√

n
F1

n−1∑
k=2

Fk
√

k
+

2
√

n

 n−1∑
k=2

n+k∑
m=n+1

FkFm
√

km

√
n + k − m + 2

n−1∑
k=2

k−1∑
m=2

FkFm
√

k

 (2.16)

+
2
√

n

∞∑
k=n+1

n+k−1∑
m=k+1

FkFm
√

km

√
n + k − m;

Cn = 2F1

∞∑
k=n+1

FkFk+m−n
√

k(k + m − n)
+

n−1∑
k=d n+1

2 e

F2
k F2k−n

k
(2.17)

+ 2

 n−1∑
k=2

k−1∑
m=2

FkFmFk+m−n
√

kn
+

∞∑
k=n+1

n−1∑
m=2

FkFmFk+m−n
√

k(k + m − n)


+
√

n

2 ∞∑
k=n+2

k−1∑
m=n+1

FkFmFk+m−n
√

km(k + m − n)
+

∞∑
k=n+1

F2
k F2k−n

k
√

2k − n

 .
The proof of Lemma 2.4 is a long albeit elementary computation, and so we postpone it to Section 5.

Remark 2.5. In the definitions of Ln,Qn,Un,Cn, we have isolated the terms containing F1 that appear
as first terms on the right-hand side. For the long-term behavior, one should have in mind that F1 = 1
up to small errors. Therefore when deriving a toy model or when doing a perturbative argument, it is
natural to replace F1 by 1 and consider all the other terms as lower order terms to be neglected (more
precisely, one would hope to bootstrap a suitable smallness condition).

3. Bounds on the rates of convergence

In this section, we prove Theorem 1.1 and Proposition 3.4. We start by studying the function
F1. In particular, we want to be as quantitative as possible since, in view of the conservation of the
mass (2.10), bounds on F1 will yield a priori bounds for the rest of the Fn, n ≥ 2.

Proposition 3.1. Let M1,M2 ≥ 0 be such that M1 + M2 = 1. Then for t > t0 we have

1 − F1(t) ≤
c1(t0)

√
b1(t0) (t − t0) + 3E

, (3.1)

c1(t0) =
√

3E(1 − F1(t0)), b1(t0) = 2F1(t0)(1 − F1(t0))2. (3.2)

When t0 = 0, notice that c1(0) =: c1 =
√

3E(1 − M1) and b1(0) =: b1 = 2M1(1 − M1)2. Using (3.1),
we readily obtain the following:

Corollary 3.2. For t > t0 we have that

1 − F1(t) ≥ F2(t) ≥
c2

(t − t0 + 3E/b1(t0))α + C2
, (3.3)

where c2,C2 can be explicitly computed and

α = max
{

1,
3E

16F1(t0)

}
. (3.4)
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Remark 3.3. Given that F1(t) → 1 as t → ∞ monotonically, one can always choose t0 large enough
so that

3E
16F1(t0)

≤ 1 =⇒ F1(t0) ≥
3E
16
. (3.5)

This is telling us that a lower bound with a rate O(t−α) with α > 1 cannot be sustained for all times.
Moreover, since E = E2 − M1, if we start with M1 ≥ 3E2/19 then we can take t0 = 0 and α = 1.

The proof of Theorem 1.1 directly follows by combining Proposition 3.1 with Corollary 3.2.
Therefore, we just prove the latter results. The start of the proof of Proposition 3.1 is similar to
Theorem 3.2 in [8]. The convergence result presented in Theorem 3.2 in [8] is correct. However, the
rate of convergence one could derive from the last differential inequality in the proof of Theorem 3.2
in [8] (see the second equality at page 53 in [8]) does not hold due to an error in said inequality. We
fix this error as part of the proof of Proposition 3.1. In fact, if the convergence rate that can be deduced
from [8] were true, we would be able to prove that 1−F1(t) = O((t−t0)−1) and therefore Proposition 3.4
would not be a conditional result.

Proof of Proposition 3.1. To obtain the bound for F1, namely (1.7), we follow the argument in the
proof of [8, Theorem 3.2]. In particular, choose the test function:

ϕ1(ω) := (3 − 2ω)+ . (3.6)

Notice that supp(ϕ1) ⊂ [0, 3/2] which implies F1(t) =
∫
ϕ1(ω)g(t).

Given that ϕ1 in (3.6) is convex and that g solves (1.3), we apply Lemma 2.1 to get

F′1(t) =
d
dt

(∫
{1}

g(t)
)
≥

∫
R3

+

g1g2g3
√
ω1ω2ω3

Gϕ1 , (3.7)

where we omit the explicit dependencies on t, dω j to ease the notation. Recalling the definitions of
G·,H

1
· ,H

2
· in (2.2)-(2.3), we claim that

H2
ϕ1
≥ 0. (3.8)

Indeed, the coefficient ofH2
ϕ1

in the formula of Gϕ1 is nonzero only if ω0 +ω− −ω+ > 0. Note also that
supp(ϕ1)∩ supp(g(t)) = {1} so we only need to consider ω+, ω0, ω− ∈ N, where the following happens:

• If ω+ < 1 then ω0 < 1 and ω− < 1 thusH2
ϕ1

= 0.
• If ω+ = 1, we must have ω0 = ω− = 1 since ω0 + ω− − ω+ > 0. In this caseH2

ϕ1
= 0.

• If ω+ > 1, there are two options:

(1) Suppose at least one ω0 or ω− is 1. Given that ω0 + ω− − ω+ > 0, the only option is ω− = 1
and ω0 = ω+. In this caseH2

ϕ1
= 0.

(2) If ω0 and ω− are not 1, then only ϕ1(ω0 + ω− − ω+) may be nonzero (if ω0 + ω− − ω+ = 1)
and thusH2

ϕ1
≥ 0.

Therefore, combining the inequality (3.7) with (3.8) and the definition of G· (2.2), we get

F′1(t) ≥
1
3

∫
R3

+

g1g2g3
√
ω0ω+

H1
ϕ1
. (3.9)
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We can also restrict integration to the set ω+ > 1 or we would haveH1
ϕ1

= 0. From the definition of ϕ1

we see that ϕ1(ω+) = 0 as well as ϕ1(ω+ + ω0 − ω−) = 0. Consequently,

F′1(t) ≥
1
3

∫
{ω+>1, ω j∈N}

g1g2g3
√
ω0ω+

ϕ1(ω+ + ω− − ω0).

For ϕ1(ω+ + ω− − ω0) to be nonzero we must also have that ω0 = ω+ > 1 and ω− = 1. Indeed, if
ω+ − ω0 > 0, since all frequencies are concentrated in N, we must have ω+ − ω0 ≥ 1. Having also that
ω− ≥ 1, we conclude ω+ + ω− − ω0 ≥ 2, which is outside the support of ϕ1. Similarly, since ω0 ≤ ω+

if ω− ≥ 2 we have ω+ + ω− − ω0 ≥ 2. Therefore

F′1(t) ≥
1
3

∫
{ω−=1, ω0=ω+>1}

g1g2g3
√
ω0ω+

,

≥
1
3

F1(t)
(∫
N−{1}

1
√
ω

g(t)
)2

≥
1
3

F1(t0)
(∫
N−{1}

1
√
ω

g(t)
)2

. (3.10)

In the last inequality we used the fact that F1(t) is monotone nondecreasing. We may choose t0 = 0 if
F1(0) = M1 , 0, whereas if M1 = 0 any t0 > 0 would do in view of Lemma 2.2.

At this stage, we note that the factor ω−1/2 on the right-hand side of (3.10) was missing in the proof
of Theorem 3.2 in [8], and it is not clear why it can be removed. In fact, without it one can simply
exploit the conservation of mass to conclude, see [8]. Here we have to be more careful. We exploit both
the conservation of the mass and energy and use an interpolation inequality. Namely, by the Hölder
inequality ∫

N−{1}
g(t) ≤

( ∫
N−{1}

1
√
ω

g(t)
) 2

3
( ∫
N−{1}

ω g(t)
) 1

3

≤

( ∫
N−{1}

1
√
ω

g(t)
) 2

3

E
1
3 , (3.11)

where we used the conservation of the energy in the last inequality. Combining the bound above
with (3.10), and using the conserved, normalized mass, we find that

F′1(t) ≥
1
3

F1(t0)
E

(∫
N−{1}

g(t)
)3

=
F1(t0)

3E
(1 − F1(t))3 .

Solving this differential inequality we obtain that

1 − F1(t) ≤
c1(t0)

√
b1(t0)(t − t0) + 3E

, (3.12)

where c1, b1 are defined in (3.2). �

Proof of Corollary 3.2. To prove the lower bound on F2, it is convenient to make use of H2 = F−1
2 ,

which is well defined thanks to Lemma 2.2. On account of (2.13) we have that

d
dt

H2 ≤ H2(U2 − Q2) + L2, (3.13)
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where

U2 =
2
√

2

∞∑
k=3

FkFk+1
√

k(k + 1)
, Q2 =

4
√

6
F1F3 +

∞∑
k=3

F2
k

k
, (3.14)

L2 = F1 +
F3
√

3
≤ 2. (3.15)

Using the Cauchy-Schwarz inequality, we bound U2 as

U2 ≤

∞∑
k=3

F2
k

k
+

1
2

∞∑
k=4

F2
k

k
. (3.16)

For k ≥ 2 we know that

Fk ≤

∞∑
j=2

F j = 1 − F1. (3.17)

Since Fk > 0 for all k (see Lemma 2.2), (3.1) yields

U2 − Q2 ≤
1
2

∞∑
k=4

F2
k

k
≤

1
8

(1 − F1)2 ≤
1
8

c1(t0)2

b1(t0)(t − t0) + 3E
. (3.18)

Without loss of generality, let us assume that t0 = 0 and M1 > 0 from now on. We denote c1(t0) = c1

and b1(t0) = b1 for this choice. Then∫ t

s
(U2(τ) − Q2(τ)) dτ ≤

∫ t

s

1
8

c2
1

b1τ + 3E
dτ ≤

c2
1

8b1
log

(
b1t + 3E
b1s + 3E

)
. (3.19)

We define α = c2
1/(8b1) as announced in (3.4). Then

exp
(∫ t

s
(U2(τ) − Q2(τ)) dτ

)
≤

(
b1t + 3E
b1s + 3E

)α
. (3.20)

Integrating (3.13) yields

H2(t) ≤ e
∫ t

0 (U2(s)−Q2(s)) dsH2(0) +

∫ t

0
e
∫ t

s (U2(τ)−Q2(τ)) dτL2(s) ds.

If α , 1, combining (3.20) with (3.15), we estimate the second term as follows:∫ t

0
e
∫ t

s (U2(τ)−Q2(τ)) dτL2(s) ds ≤ 2
∫ t

0

(
t + 3E/b1

s + 3E/b1

)α
ds

=
2

α − 1

[
(0 + 3E/b1)

(
t + 3E/b1

0 + 3E/b1

)α
− (t + 3E/b1)

]
.

Putting these estimates together, we obtain

H2(t) ≤
2

α − 1

[
3E/b1

(
t + 3E/b1

3E/b1

)α
− (t + 3E/b1)

]
+

(
t + 3E/b1

3E/b1

)α
H2(0).

When α = 1 one would have a logarithmic correction instead of a power law in the bound above. Since
H2(t) = F−1

2 (t), we deduce the following:
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• When α > 1, we conclude that

F2(t) ≥ c2((t + 3E/b1)α + C2)−1.

• If α = 1 we have
F2(t) & c2((t + 3E/b1) log(t + 3E/b1) + C2)−1.

• When α < 1, the term in t is dominant and therefore we have that

F2(t) & c2((t + 3E/b1) + C2)−1.

This concludes the proof of the corollary. �

Given the result in Theorem 1.1, it is natural to ask what could be the maximal speed of convergence
of Fn with n > 1. If the lower bound for 1 − F1 in (1.7) were sharp, then we can derive sharp lower
and upper bounds for the speed of convergence of all the functions Fn for n large enough. This is the
content of the following conditional result.

Proposition 3.4. Under the same assumptions as in Theorem 1.1, suppose that the following inequality
were true:

1 − F1(t) ≤
c

t − t0 + C
, (3.21)

for some constants c,C > 0 and t > t0. Then for any n large enough such that

γn :=
2c
√

n

(
1

√
n + 2

+ 1{n>2}
1

√
n + 1

+ 1{n>2}
2
√

2

)
< 1, (3.22)

the following inequality holds for all t > t0

cn

t − t0 + C
≤ Fn(t) ≤

c
t − t0 + C

, (3.23)

where cn can be explicitly computed.

Proof. Recall the definitions of Ln,Un in (2.14)–(2.16). Thanks to the bound on the total mass, we
deduce that Ln ≤ 4/n. Therefore, from (2.12) we get

d
dt

Fn ≥ −UnFn −
4
n

F2
n . (3.24)

Regarding Un, exploiting the conservation of the mass, we have

∞∑
k=n+1

n+k−1∑
m=k+1

FkFm
√

km

√
n + k − m ≤

1
√

n + 2

∞∑
k=n+1

Fk

∞∑
m=n+2

Fm ≤
1

√
n + 2

(1 − F1)2. (3.25)

If n > 2, we have additional terms in Un, which we bound as follows:

n−1∑
k=2

n+k∑
m=n+1

FkFm
√

km

√
n + k − m ≤

1
√

n + 1

n−1∑
k=2

Fk

n+k∑
m=n+1

Fm ≤
1

√
n + 1

(1 − F1)2, (3.26)
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and

2
n−1∑
k=2

k−1∑
m=1

FkFm
√

k
≤

2
√

2

F1

n−1∑
k=2

Fk +

n−1∑
k=2

Fk

k−1∑
m=2

Fm

 ≤ 2
√

2
(1 − F1)(F1 + (1 − F1)). (3.27)

The upper bound above is the worst in terms of decay in time since it contains a factor F1. Therefore,
since (1 − F1) ≤ 1, combining (3.25)–(3.27) we obtain

Un ≤ γ̃n(1 − F1), γ̃n =
2
√

n

(
1

√
n + 2

+ χn>2
1

√
n + 1

+ χn>2
2
√

2

)
. (3.28)

For simplicity of notation, consider now t0 = 0 in (3.21). Combining (3.24) with (3.28) we obtain

d
dt

Fn ≥ −
γn

t + C
Fn −

4
n

F2
n , (3.29)

where γn = γ̃nc was given in (3.22). Defining Gn := (t + C)γn Fn, we find

d
dt

Gn ≥ −
4

n(t + C)γn
G2

n. (3.30)

Since γn < 1 by hypothesis, by a comparison principle we get

1
Gn(0)

−
1

Gn(t)
≥ −

4
n(1 − γn)

(
(t + C)1−γn −C1−γn

)
, (3.31)

which immediately implies

Fn(t) ≥
1

4
n(1−γn)

(
(t + C) −C1−γn(t + C)γn

)
+ (CFn(0))−1(t + C)γn

, (3.32)

whence proving Proposition 3.4, where cn can be computed from the inequality above. �

4. Toy model

In this section we discuss the toy model announced in the introduction (1.8). Our main goal is to
understand if there could be solutions exhibiting a decay of order O(t−1), which could be possible for
particular initial data and would justify the optimality of the lower bound in Theorem 1.1. Investigating
this question directly on the full system (2.12) seems hard. For example, a naive ansatz imposing a
polynomial decay for Fn is not consistent with the equations, and this is because F1 cannot decay and
it behaves different with respect to all the other Fn. Therefore, we first aim at reducing the complexity
of the system by performing the following reductions:

• By (2.12), for n ≥ 2, dFn/dt is a weighted sum of products of the form FiF jFk. We drop all terms
where {i, j, k} ∩ {1} = ∅.
• All the remaining terms have at most one factor of F1. In view of Proposition 3.1, we substitute

such terms by 1.
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The resulting toy model may be written as

d
dt

Fn = 4
Fn
√

n
F2n−1
√

2n − 1
− 4

Fn
√

n

n−1∑
k=2

Fk
√

k
− 2

(
Fn
√

n

)2

+ 2
∞∑

k=n+1

FkFk+1−n
√

k(k + 1 − n)
. (4.1)

The idea behind our approximating toy model is that the leading order terms are dictated by interactions
with F1. Indeed, we know that all the mass is converging towards F1 and therefore interactions between
F j with j , 1 are lower order. In this toy model though, many nice properties such as positivity of the
solution cannot be expected to hold anymore. On the other hand, the advantage of the Eq (4.1) is that
the right-hand side is quadratic. We thus propose the natural self-similar ansatz of the form

Fn(t) = βn

√
n

t
, for 2 ≤ n ∈ N.

We plug this ansatz into (4.1) and derive equations for the coefficients (βn)n≥2

−
√

n βn = 4 βn β2n−1 − 4 βn

n−1∑
k=2

βk − 2β2
n + 2

∞∑
k=n+1

βkβk+1−n. (4.2)

Our goal is to investigate wheter or not there are positive solutions to this toy model, always with the
idea in mind of having something consistent with the behavior observed in the full WKE, especially
regarding Lemmas 2.2 and 2.3 about the positivity of the coefficients βn. We do not focus too much
on the mass and energy properties since one can suitably rescale the time in the self-similar ansatz to
adjust the parameters.

For the sake of understanding this toy model, we would like to introduce a suitable truncation and
exhibit positive solutions to truncated system. The aim would be to use such solutions as the starting
point of a perturbative argument in the full WKE. First of all, we observe the following:

Remark 4.1. Consider a solution of the form βn = 0 for all n ≥ N. In the case N = 4, it is
straightforward to check that β2, β3 must be given by

β2 =

√
2 + 3

√
3

14
> 0, β3 =

−2
√

2 +
√

3
14

< 0,

after imposing β2, β3 , 0. Similarly, if N = 5 the only real-valued solutions have β4 < 0. For N = 6,
one can numerically compute the four exact (nonzero) real-valued solutions to the system, but none of
them lies in (0,∞)4.

These examples suggest that if we truncate brutally all the n ≥ N, there is no guarantee of finding
strictly positive solutions to our system, which is clearly not consistent with Lemma 2.2.

To overcome the issues related to a standard truncation as explained in Remark 4.1, we allow the
presence of large gap between high and low frequencies. This is helpful because we are able to “force”
a positive solution in the low frequencies by using very high frequencies as given parameters of the
chosen cut-off. Essentially, we are exploiting the highly nonlocal nature of the system (4.2) and this
can be heuristically motivated by the presence of a high-to-low frequency cascade. More specifically,
we consider the truncated system for β := (β2, . . . , βN) by setting

βk = 0 for all N + 1 ≤ k < 2N, and k ≥ 3N − 1. (4.3)
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We keep N − 1 functions λ := (β2N , β2N+1, . . . , β3N−2) as parameters which are a priori fixed. With this
in mind, (4.2) reads

−
√

n βn = 4 βn β2n−1 − 4 βn

n−1∑
k=2

βk − 2β2
n + 2

3N−2∑
k=n+1

βkβk+1−n, for n = 2, . . . ,N. (4.4)

Exploiting (4.3), we may rewrite this as:

−
√

n βn = 4 βn β2n−11{2n−1≤N} − 4 βn

n−1∑
k=2

βk − 2β2
n

+ 2
N∑

k=n+1

βkβk+1−n + 2
3N−2∑

k=2N+1

βkβk+1−n, for n = 2, . . . ,N.

(4.5)

For this system, we have a special solution given by

β0 = (γ, 0, . . . , 0), λ0 = (λ0
1, λ

0
2, 0, . . . , 0), (4.6)

where

γ =

√
2 +

√
2 + 16λ0

1λ
0
2

4
. (4.7)

Around this particular solution, we are able to show the existence of many solutions β to (4.5) with
strictly positive components. Therefore, we have many solutions for the system (4.2) when truncated
at N except for the coefficients 2N, 2N + 1. This is the content of Theorem 1.4 which we restate more
precisely as follows:

Theorem 4.2. Fix any N ∈ N with N ≥ 4. Fix λ0
1, λ

0
2 > 0 such that

λ0
1λ

0
2 > N/4. (4.8)

Then there exists some δ0(N, λ0
1, λ

0
2) > 0 such that for all δ < δ0, there exists a solution to (4.5) (which

solves (4.2) for n ≤ N) such that β2, . . . , βN , β2N , β3N−2 > 0, and βk = 0 for the rest of k ∈ N ∩ [2,∞).
Moreover, this solution satisfies

β2 = γ + O(
√

N δ max{λ0
1, λ

0
2}),

β j = O(
√

N δ max{λ0
1, λ

0
2}), j = 3, . . . ,N,

β2N = λ0
1 + O(δ),

β2N+1 = λ0
2 + O(δ),

β j = O(δ), j = 2N + 2, . . . , 3N − 2.

(4.9)

Proof. The idea of the proof is to construct the positive solutions by using the implicit function theorem
for a map whose zeros are solutions to (4.4). We have to carefully set the parameters in the special
solution (4.6) in order to guarantee the positivity of the new solution. The proof is divided into four
steps.
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Step 1. Consider the map

f : RN−1×RN−1 −→ RN−1,

f (β, λ) = ( fn(β, λ))N
n=2

where

fn(β, λ) = 2β2
n + 4 βn

n−1∑
k=2

βk − 4 βn β2n−11{2n−1≤N}

− 2
N∑

k=n+1

βkβk+1−n − 2
3N−2∑

k=2N+1

βkβk+1−n −
√

nβn

(4.10)

and
β = (β2, . . . , βN), λ = (λ1, . . . , λN−1) = (β2N , . . . , β3N−2).

Notice that fn(β, λ) = 0 for all 2 ≤ n ≤ N corresponds to solution to (4.4). We thus consider the special
point:

β0 = (γ, 0, . . . , 0), λ0 = (λ0
1, λ

0
2, 0, . . . , 0),

where γ is defined in (4.7). We know that f (β0, λ0) = 0. Moreover, the Jacobian matrix at this point is
non-singular. More precisely,

Jβ f (β0, λ0) = diag
(
4γ −

√
n
)

2≤n≤N
+

(
−2γ δ(i, j)=(i,i+1)

)
1≤i, j≤N−1

. (4.11)

Notice that this is an upper triangular matrix, meaning that it is invertible provided

4γ −
√

n , 0, for all n = 2, . . . ,N − 1.

For reasons that will be clear later, we impose that

γ >
1
4

√
N, (4.12)

which implies that every diagonal entry in (4.11) is strictly positive.
By the implicit function theorem, there exist ε, δ > 0 such that β can be written as a smooth function

of λ in small neighborhoods of our zero, i.e.,

β : B(λ0, δ) −→ B(β0, ε),
λ 7−→ β(λ)

and such that f (β(λ), λ) = 0 for all λ ∈ B(λ0, δ). Moreover, we know that

Jλβ(λ0) = −Jβ f (β0, λ0)−1 · Jλ f (β0, λ0). (4.13)

Step 2. We now compute the Jacobian matrix Jλβ(λ0). Set

cn =
2γ

4γ −
√

n
, n = 2, . . . ,N − 1, (4.14)
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and let

A :=



1 c2 c2c3 c2c3c4 . . .
∏N−1

j=2 c j

0 1 c3 c3c4 . . .
∏n−1

j=3 c j

0 0 1 c4 . . .
∏N−1

j=4 c j
...

. . .
. . .

. . .
...

...
. . .

. . . cN−1

0 . . . 0 1


.

Then, it is easy to check that

Jβ f (β0, λ0)−1 = A · diag
(

1
4γ −

√
n

)
2≤n≤N

, (4.15)

which is an upper triangular matrix with strictly positive entries in the upper triangle, thanks to (4.12)
and (4.14). Similarly, we may compute

Jλ f (β0, λ0) = −2



λ0
1 λ0

2 0 0 0 . . . 0
0 λ0

1 λ0
2 0 0 . . . 0

0 0 λ0
1 λ0

2 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

0 · · · · · · λ0
1


. (4.16)

Therefore, using (4.13) it is not hard to deduce that Jλβ(λ0) is an upper triangular matrix with strictly
positive entries on the upper triangle.

Step 3. We are finally in the position of constructing the solution β with all positive entries. By the
Fundamental Theorem of Calculus, we have that

β(λ) = β0 +

∫ 1

0
Jλβ(λ0 + t (λ − λ0)) · (λ − λ0) dt (4.17)

where Jλβ is the Jacobian matrix of β with respect to λ.
Let us choose λ ∈ B(λ0, δ) such that λ − λ0 ∈ (0,∞)N−1. Since the entries of the matrix Jλβ(λ0) are

strictly positive in the upper triangle, we have that

[Jλβ(λ0 + t (λ − λ0)) · (λ − λ0)] j

∣∣∣∣
t=0

> 0, for all j = 1, . . . ,N − 1.

By continuity of the Jacobian matrix, we can extend this positivity to any t ∈ [0, 1] as long as λ − λ0 is
small enough (i.e., by potentially making δ > 0 smaller). By (4.17), this implies that

[β(λ)] j > 0, for all j = 1, . . . ,N − 1.

Step 4. Let us further impose

λ0
1λ

0
2 >

1
4

N (4.18)
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in order to guarantee that γ >
√

N/2. This implies that cn in (4.14) satisfies cn ≤ 1 and therefore the
entries of the matrix in (4.15) are of size 1/

√
N. Hence, the entries of the matrix Jλβ(λ0), see (4.13),

have size ‖λ0‖∞/
√

N. Therefore, by summing up at most N-terms of size ‖λ0‖∞/
√

N, we infer∥∥∥Jλβ(λ0)) · (λ − λ0)
∥∥∥
∞
.
√

N max{λ0
1, λ

0
2} δ.

By the continuity of the Jacobian matrix, one can arrange:∥∥∥Jλβ(λ0 + t (λ − λ0)))) · (λ − λ0)
∥∥∥
∞
.
√

N max{λ0
1, λ

0
2} δ, ∀t ∈ [0, 1],

by further reducing δ if necessary. Therefore, in view of (4.17), we choose δ small enough so that

β(λ)1 = β2(λ) = γ + O(
√

N
∥∥∥λ0

∥∥∥
∞
δ),

β(λ) j = O(
√

N
∥∥∥λ0

∥∥∥
∞
δ), j = 2, . . . ,N − 1,

λ1 = β2N = λ0
1 + O(δ),

λ2 = β2N+1 = λ0
2 + O(δ),

λ j = β2N+ j−1 = O(δ), j = 3, . . . ,N − 1,

(4.19)

where γ is defined in (4.7) and we impose (4.18). This concludes the proof. �

5. Derivation of the discrete system

We are going to derive the equations of Fn by the weak formulation (1.3). As test functions, we
choose

ϕn(ω) = χ(n−1/2,n+1/2), for n ∈ N \ {0}, (5.1)

where the χ are C∞c (R) functions supported inside intervals of the form (n− 1/2, n + 1/2) and such that
ϕn(n) = 1.

From the definition of Fn, see (1.6), and (1.3) we have

∂tFn =

∫
R3

+

Φ
g1g2g3
√
ω1ω2ω3

[ϕn,4 + ϕn,3 − ϕn,1 − ϕn,2]dω1dω2dω3 =: I[g, ϕn],

ω4 = ω1 + ω2 − ω3.

(5.2)

Notice that we always have ω3 , ω2 since otherwise also ω4 = ω1 and the integrand above vanishes.
Analogously, we have ω4 , ω1.

We have to distinguish several cases depending on the values of ϕn,1.

• Case ϕn,1 = ϕn,2 = 1.
First notice that we have ϕn,3 = ϕn,4 = 0. Indeed, if ϕn,3 = 1, this implies ω4 = ω1 + ω2 − ω3 = n,

meaning that ϕn,4 = 1. But if ϕn,i = 1 for i = 1, . . . , 4 the integrand is zero. Therefore we have
ϕn,3 = ϕn,4 = 0.

When ω3 < n then Φ =
√
ω3, hence

I[g, ϕn1{ϕn,1=ϕn,2=1}∩{ω3<n}] = −
2
n

F2
n

n−1∑
k=1

Fk. (5.3)
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For ω3 > n we have Φ =
√
ω4 =

√
2n − ω3, therefore

I[g, ϕn1{ϕn,1=ϕn,2=1}∩{ω3>n}] = −
2
n

F2
n

2n−1∑
k=n+1

Fk
√

2n − k
√

k
. (5.4)

• Cases ϕn,1 = 1, ϕn,2 = 0 or ϕn,1 = 0, ϕn,2 = 1.
In view of the symmetry of the integrals, the two cases under consideration are equal. If ϕn,3 = 1,

then ω4 = ω2 meaning that ϕn,4 = 0. But if ϕn,1 = ϕn,3 = 1 and ϕn,2 = ϕn,4 = 0 then the integrand is
zero. Analogously when ϕn,4 = 1. Hence we only have to consider ϕn,3 = ϕn,4 = 0.

We use the following convention for the indices in this case

k = ω2 and m = ω3.

We start with the case ω2 < n. When ω3 > n then Φ =
√

n + k − m and

I[g, ϕn1{ϕn,1=1,ϕn,2=0}∩{ω2<n,ω3>n}] = −
1
√

n
Fn

n−1∑
k=1

n+k∑
m=n+1

FkFm
√

km

√
n + k − m. (5.5)

When ω3 < ω2 one has Φ =
√

m meaning that

I[g, ϕn1{ϕn,1=1,ϕn,2=0}∩{ω3<ω2<n}] = −
1
√

n
Fn

n−1∑
k=2

k−1∑
m=1

FkFm
√

k
. (5.6)

If ω2 < ω3 < n then Φ =
√

k so that

I[g, ϕn1{ϕn,1=1,ϕn,2=0}∩{ω2<ω3<n}] = −
1
√

n
Fn

n−1∑
m=2

m−1∑
k=1

FkFm
√

m
. (5.7)

When ω2 > n, first consider ω3 < ω2. If ω3 < n then Φ =
√

m and

I[g, ϕn1{ϕn,1=1,ϕn,2=0}∩{ω3<n<ω2}] = −
1
√

n
Fn

∞∑
k=n+1

n−1∑
m=1

FkFm
√

k
. (5.8)

For n < ω3 < ω2 one has Φ =
√

n hence we get

I[g, ϕn1{ϕn,1=1,ϕn,2=0}∩{n<ω3<ω2}] = −Fn

∞∑
k=n+2

k−1∑
m=n+1

FkFm
√

km
. (5.9)

For ω3 > ω2 > n then Φ =
√

n + k − m and

I[g, ϕn1{ϕn,1=1,ϕn,2=0}∩{n<ω2<ω3}] = −
1
√

n
Fn

∞∑
k=n+1

n+k−1∑
m=k+1

FkFm
√

km

√
n + k − m. (5.10)

This concludes all the possibles cases for ϕn,1 = 1, ϕn,2 = 0. In account of the symmetry ω1 ↔ ω2, we
remark again that all the terms appearing here are multiplied by a factor 2 in (2.12).
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• Case ϕn,3 = ϕn,4 = 1.
In this case we also have ϕn,1 = ϕn,2 = 0 since otherwise the integrand is zero. The indices

convention in this case are
k = ω2 and m = ω1.

We also have ω1 + ω2 = 2n, hence, if ω1 < ω2 then ω2 > n and Φ =
√

m. Since we can always
exchange ω1 and ω2 we conclude that

I[g, ϕn1{ϕn,3=ϕn,4=1}] =
4
√

n
Fn

n−1∑
m=1

FmF2n−m
√

2n − m
. (5.11)

• Case ϕn,3 = 1, ϕn,4 = 0.
In this case we know that ϕn,1 = ϕn,2 = 0 since otherwise the integrand is zero. We again denote

k = ω2 and m = ω1.

First we consider ω1 < ω2. In account of the symmetries, the case ω2 < ω1 will be the same. If ω2 < n
then Φ =

√
k + m − n and

I[g, ϕn1{ϕn,3=1,ϕn,4=0}∩{ω1<ω2<n}] =
1
√

n
Fn

n−1∑
k=d n+1

2 e

k−1∑
m=n+1−k

FkFm
√

km

√
k + m − n. (5.12)

For ω1 < n < ω2 one has Φ =
√

m hence

I[g, ϕn1{ϕn,3=1,ϕn,4=0}∩{ω1<n<ω2}] =
1
√

n
Fn

∞∑
k=n+1

n−1∑
m=1

FkFm
√

k
. (5.13)

When n < ω1 < ω2 then Φ =
√

n, from which we get

I[g, ϕn1{ϕn,3=1,ϕn,4=0}∩{n<ω1<ω2}] = Fn

∞∑
k=n+2

k−1∑
m=n+1

FkFm
√

km
. (5.14)

The three terms above are multiplied by a factor 2 in (2.12) in view of the symmetry ω1 ↔ ω2.
We are left only with the case ω1 = ω2. If ω2 > n then

I[g, ϕn1{ϕn,3=1,ϕn,4=0}∩{ω1=ω2>n}] = Fn

∞∑
k=n+1

F2
k

k
. (5.15)

When ω2 < n one has

I[g, ϕn1{ϕn,3=1,ϕn,4=0}∩{ω1=ω2<n}] =
Fn
√

n

n−1∑
k=d n

2 e

F2
k

k

√
2k − n. (5.16)

• Case ϕn,4 = 1, ϕn,3 = 0.
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In this case one has ϕn,1 = ϕn,2 = 0. We assume ω1 < ω2 as done previously. We again denote
k = ω2 and m = ω1.

For ω1 < ω2 < n then Φ =
√

k + m − n so that

I[g, ϕn1{ϕn,4=1,ϕn,3=0}∩{ω1<ω2<n}] =

n−1∑
k=2

k−1∑
m=2

FkFmFk+m−n
√

kn
. (5.17)

For ω1 < n < ω2 one has Φ =
√

m hence

I[g, ϕn1{ϕn,4=1,ϕn,3=0}∩{ω1<n<ω2}] =

∞∑
k=n+1

n−1∑
m=1

FkFmFk+m−n
√

k(k + m − n)
. (5.18)

When n < ω1 < ω2 then Φ =
√

n, from which we get

I[g, ϕn1{ϕn,3=1,ϕn,4=0}∩{n<ω1<ω2}] =
√

n
∞∑

k=n+2

k−1∑
m=n+1

FkFmFk+m−n
√

km(k + m − n)
. (5.19)

The three terms above are multiplied by a factor 2 in (2.12) in view of the symmetry ω1 ↔ ω2.
We are left only with the case ω1 = ω2. If ω2 > n then

I[g, ϕn1{ϕn,4=1,ϕn,3=0}∩{ω1=ω2>n}] =
√

n
∞∑

k=n+1

F2
k F2k−n

k
√

2k − n
. (5.20)

When ω2 < n we get

I[g, ϕn1{ϕn,4=1,ϕn,3=0}∩{ω1=ω2<n}] =

n−1∑
k=d n+1

2 e

F2
k F2k−n

k
. (5.21)

Therefore, from (5.3)–(5.21) the identity (2.12) follows: Notice the crucial cancellations of (5.9)
with (5.14) and (5.8) with (5.13). The proof of (2.13) immediately follows by the fact that ∂tHn =

−F−2
n ∂tFn.

6. Conclusions

In this paper, we consider solutions to the Wave Kinetic Equation with initial data given by a
countable sum of delta functions, whose dynamics are discrete for all times. We derive a system
of equations that describe this dynamics and carry out a quantitative study of their convergence to a
single delta function. In particular, we prove upper and lower bounds for the rate of convergence. In
order to study the optimality of these bounds, we introduce and analyze a toy model which captures
the leading order quadratic interactions. Finally, we show the existence of a family of non-negative
solutions to a truncation of this toy model.
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