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MAXIMAL AND TYPICAL TOPOLOGY OF REAL
POLYNOMIAL SINGULARITIES

by Antonio LERARIO & Michele STECCONI

Abstract. — We study the structure of polynomial singularities given by semi-
algebraic conditions on the jet of maps from the sphere to Euclidean space. We
prove upper and lower bounds for the homological complexity of these singulari-
ties. The upper bound is proved using a semialgebraic version of stratified Morse
Theory for jets. For the lower bound, we prove a general result stating that small
continuous perturbations of C1 manifolds can only enrich their topology. In the
case of random maps, we provide asymptotic estimates for the expectation of the
homological complexity, generalizing classical results of Edelman–Kostlan–Shub–
Smale.

Résumé. — Nous étudions la structure des singularités polynomiales données
par des conditions semi-algébriques sur le jet de fonctions de la sphère à l’espace
euclidien. Nous prouvons des bornes supérieure et inférieure pour la complexité
homologique de ces singularités. La limite supérieure est prouvée en utilisant une
version semi-gébrique de la théorie de Morse stratifiée pour les jets. Pour la borne
inférieure, nous prouvons un résultat général indiquant que de petites perturbations
continues des variétés C1 ne peuvent qu’enrichir leur topologie. Dans le cas des
fonctions aléatoires, nous fournissons des estimations asymptotiques de l’espérance
de la complexité homologique, généralisant des résultats classiques d’Edelman–
Kostlan–Shub–Smale.

1. Introduction

In this paper we deal with the problem of understanding the structure
of the singularities of polynomial maps

(1.1) ψ : Sm → Rk,

where each component of ψ = (ψ1, . . . , ψk) is the restriction to the sphere
of a homogeneous polynomial of degree d. For us “singularity” means the
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set of points in the sphere where the r-jet extension jrψ : Sn → Jr(Sn,Rk)
meets a given semialgebraic set W ⊆ Jr(Sn,Rk). Example of these type
of singularities are: zero sets of polynomial functions, critical points of a
given Morse index of a real valued function or the set of Whitney cusps of
a planar map.

Because we are looking at polynomial maps, this problem has two dif-
ferent quantitative faces, which we both investigate in this paper.

(1) From one hand we are interested in understanding the extremal
cases, meaning that, for fixed m, d and k we would like to know
how complicated can the singularity be, at least in the generic case.

(2) On the other hand, we can ask what is the typical complexity of
such a singularity. Here we adopt a measure-theoretic point of view
and endow the space of polynomial maps with a natural Gaussian
probability measure, for which it makes sense to ask about expected
properties of these singularities, such as their Betti numbers.

1.1. Quantitative bounds, the h-principle and the topology
semicontinuity

Measuring the complexity of Z = jrψ−1(W ) with the sum b(Z) of its
Betti numbers, problem (1) above means producing a-priori upper bounds
for b(Z) (as a function of m, d, k) as well as trying to realize given subsets
of the sphere as jrψ−1(W ) for some W and some map ψ.

For the case of the zero set Z = ψ−1(0) of a polynomial function ψ :
Sm → R of degree d, the first problem is answered by a Milnor’s type
bound(1) b(Z) ⩽ O(dm) and the second problem by Seifert’s theorem:
every smooth hypersurface in the sphere can be realized (up to ambient
diffeomorphisms) as the zero set of a polynomial function.

In the case of more general singularities, both problems are more subtle.
The problem of giving a good upper bound on the complexity of Z =
jrψ−1(W ) will require us to develop a quantitative version of stratified
Morse Theory for semialgebraic maps (Theorem 2.3). We use the word
“good” because there is a vast literature on the subject of quantitative
semialgebraic geometry, and it is not difficult to produce a bound of the
form b(Z) ⩽ O(dm+1); instead here (Theorem 2.8 and Theorem 2.9) we
prove the following result.
(1) Milnor’s bound [21] would give b(Z) ⩽ O(dm+1), whereas [19, Proposition 14] gives
the improvement b(Z) ⩽ O(dm). In the context of this paper the difference between these
two bounds is relevant, especially because when switching to the probabilistic setting it
will give the so called “generalized square root law”.
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REAL POLYNOMIAL SINGULARITIES 591

Theorem 1.1. — For the generic polynomial map ψ : Sm → Rk with
components of degree d, and for W ⊆ Jr(Sm,Rk) semialgebraic, we have:

(1.2) b(jrψ−1(W )) ⩽ O(dm).

(The implied constant depends on W .)

In the case W is algebraic we do not need the genericity assumption on
ψ for proving (1.2), but in the general semialgebraic case some additional
complications arise and this assumption allows to avoid them through the
use of Theorem 2.3. We believe, however, that (1.2) is still true even in the
general case(2) . Moreover, for our scopes the genericity assumption is not re-
strictive, as it fits in the probabilistic point of view of the second part of the
paper, where a generic property is a property holding with probability one.

For what concerns the realizability problem, as simple as it might seem
at first glance, given W ⊆ Jr(Sm,Rk) it is not even trivial to find a map
f : Sm → Rk whose jet is transversal to W and such that b(jrf−1(W )) > 0
(we prove this in Corollary 2.15).

Let us try to explain carefully what is the subtlety here. In order to pro-
duce such a map, one can certainly produce a section of the jet bundle σ :
Sm → Jr(Sm,Rk) which is transversal to W and such that b(σ−1(W )) > 0
(this is easy). However, unless r = 0, this section needs not to be holonomic,
i.e. there might not exist a function f : Sm → Rk such that σ = jrf .

We fix this first issue using an h-principle argument: the Holonomic Ap-
proximation Theorem [8, p. 22] guarantees that, after a small C0 perturba-
tion of the whole picture, we can assume that there is a map f : Sm → Rk
whose jet jrf is C0 close to σ.

There is however a second issue that one needs to address. In fact, if
the jet perturbation was C1 small (i.e. if σ and jrf were C1 close), Thom’s
Isotopy Lemma would guarantee that σ−1(W ) ∼ jrf−1(W ) (i.e. the two
sets are ambient diffeomorphic), but the perturbation that we get from the
Holonomic Approximation Theorem is guaranteed to be only C0 small! To
avoid this problem we prove the following general result on the semiconti-
nuity of the topology of small C0 perturbations (see Theorem 2.13 below
for a more precise statement).

(2) In the algebraic case in fact one can use directly Thom–Milnor bound, but in the
general semialgebraic case it is necessary first to “regularize” the semialgebraic set,
keeping control on its Betti numbers. In the algebraic (or even the basic semialgebraic
case) this is the procedure of Milnor [21], in the general semialgebraic case it is not clear
what this controlled regularization procedure would be. The nondegeneracy assumption
on the jet allows us to avoid this step.

TOME 74 (2024), FASCICULE 2
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Theorem 1.2. — Let S, J be smooth manifolds, W ⊆ J be a closed
cooriented submanifold and σ ∈ C1(S, J) such that σ ⋔W . Then for every
γ ∈ C1(S, J) which is sufficiently close to σ in the C0-topology and such
that γ ⋔W , we have:

(1.3) b(γ−1(W )) ⩾ b(σ−1(W )).

In particular we see that if small C1 perturbations of a regular equa-
tion preserve the topology of the zero set, still if we take just small C0

perturbations the topology of such zero set can only increase.
To apply Theorem 1.2 to our original question we consider S = Sm

and J = Jr(Sm,Rk), W ⊆ Jr(Sm,Rm) is the semialgebraic set defining
the singularity and σ : Sm → Jr(Sm,Rk) is the (possibly non-holonomic)
section such that σ ⋔ W and b(σ−1(W )) > 0. Moreover we can construct
σ in such a way that its image meets only a small (relatively compact
and cooriented) subset of the smooth locus of W . Then for every f ∈
Cr+1(Sm,Rk) with τ = jrf sufficiently close to σ and such that jrf ⋔ W ,
we have:

(1.4) b(jrf−1(W )) ⩾ b(σ−1(W )) > 0.

(We will use the content of Corollary 2.15 and the existence of a function
f such that (1.4) holds in the second part of the paper for proving the
convergence of the expected Betti numbers of a random singularity.)

1.2. The random point of view and the generalized square-root
law

Switching to the random point of view offers a new perspective on these
problems: from Theorem 1.1 we have an extremal bound (1.2) for the com-
plexity of polynomial singularities, but it is natural to ask how far is this
bound from the typical situation. Of course, in order to start talking about
randomness, we need to choose a probability distribution on the space of
(homogeneous) polynomials. It is natural to require that this distribution is
gaussian, centered, and that it is invariant under orthogonal changes of vari-
ables (in this way there are no preferred points or directions in the sphere).
If we further assume that the monomials are independent, this distribution
is unique (up to multiples), and called the Kostlan distribution.

ANNALES DE L’INSTITUT FOURIER
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To be more precise, this probability distribution is the measure on
R[x0, . . . , xm](d) (the space of homogeneous polynomials of degree d) in-
duced by the gaussian random polynomial:

(1.5) P (x) =
∑

|α|=d

ξα ·
(

d!
α0! · · ·αm!

)1/2
xα0

0 · · ·xαm
m ,

where {ξα} is a family of standard independent gaussian variables. A list
of k independent Kostlan polynomials P = (P1, . . . , Pk) defines a random
polynomial map:

(1.6) ψ = P |Sm → Rk.

In particular, it is now natural to view such a ψ as a random variable
in the space C∞(Sm,Rk) and to study the differential topology of this
map, such as the behavior of its singularities, described a preimages of jet
submanifolds W ⊆ Jr(Sm,Rk) in the previous section.

In this direction, it has already been observed by several authors, in
different contexts, that random real algebraic geometry seems to behave as
the “square root” of generic complex geometry. Edelman and Kostlan [7,17]
were the first to observe this phenomenon: a random Kostlan polynomial
of degree d in one variable has

√
d many real zeroes, on average(3) . Shub

and Smale [25] generalized this result and proved that the expected number
of zeroes of a system of m Kostlan equations of degrees (d1, . . . , dm) in m

variables is
√
d1 · · · dm (the bound coming from complex algebraic geometry

would be d1 · · · dm).
Moving a bit closer to topology, Bürgisser [3] and Podkorytov [23] proved

that the expectation of the Euler characteristic of a random Kostlan alge-
braic set has the same order of the square-root of the Euler characteristic
of its complex part (when the dimension is even, otherwise it is zero). A
similar result for the Betti numbers has also been proved by Gayet and
Welschinger [11–13], and by Fyodorov, Lerario and Lundberg [10] for in-
variant distributions.

Using the language of the current paper, these results correspond to
the case of a polynomial map ψ : Sm → Rk and to the “singularity”
Z = j0ψ−1(W ), where

(1.7) W = Sm × {0} ⊂ J0(Sm,Rk) = Sm × Rk

(3) In the notation of the current paper this correspond to the case of ψ : S1 → R
of degree d, whose expected number of zeroes is 2

√
d. The multiplicative constant “2”

appears when passing from the projective to the spherical picture

TOME 74 (2024), FASCICULE 2
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and j0ψ(x) = (x, ψ(x)) is the section given by the map ψ itself. Here we
generalize these results and prove that a similar phenomenon is a very
general fact of Kostlan polynomial maps.

Theorem 1.3. — Let W ⊂ Jr(Sm,Rk) be a closed intrinsic(4) semial-
gebraic set of positive codimension. If ψ : Sm → Rk is a random Kostlan
polynomial map, then

(1.8) Eb(jrψ−1(W )) = Θ(dm
2 ).(5)

(The implied constants depend on W .)

We call the previous Theorem 1.3 the “generalized square root law” af-
ter comparing it with the extremal inequality b(jrψ−1(W )) ⩽ O(dm) from
Theorem 1.1, whose proof is ultimately based on bounds coming from com-
plex algebraic geometry(6) . In the case W has codimension m (i.e. when
we expect jrψ−1(W ) to consist of points), we actually sharpen (1.8) and
get the explicit asymptotic to the leading order, see Theorem 3.7 below.
Moreover, a similar result holds for every fixed Betti number bi(jrψ−1(W ))
when i is in the range 0 ⩽ i ⩽ m−codim(W ), see Theorem 3.9 for a detailed
statement.

Remark 1.4. — The ingredients for the proof of Theorem 1.3 are: Theo-
rem 2.3 for the upper bound and Corollary 2.15 for the lower bound. The
main property that we use in this context is the fact that a Kostlan map
ψ : Sm → Rk has a rescaling limit when restricted to a small disk Dd =
D(x, d−1/2) around any point x ∈ Sm. In other words, one can fix a diffeo-
morphism ad : Dm → Dd of the standard disk Dm with the small spherical
disk D(x, d−1/2) ⊂ Sm and see that the sequence of random functions:

(1.9) Xd = ψ ◦ ad : Dm → Rk

converges to the Bargmann–Fock field, see Theorem 3.3. In a recent pa-
per [20] we introduced a general framework for dealing with random vari-
ables in the space of smooth functions and their differential topology –
again we can think of Xd ∈ C∞(Dm,Rk) as a sequence of random vari-
ables of this type. The results from [20], applied to the setting of random
Kostlan polynomial maps are collected in Theorem 3.3 below, which lists

(4) We say that W ⊂ Jr(Sm,Rk) is intrinsic if it is invariant under diffeomorphisms of
Sm, see Definition 2.6. This property it is satisfied in all natural examples.
(5) We write f(d) = Θ(g(d)) if there exist constants a1, a2 > 0 such that a1g(d) ⩽ f(d) ⩽
a2f(d) for all d ⩾ d0 sufficiently large.
(6) The reader can now appreciate the estimate O(dm) instead of O(dm+1) from Theo-
rem 1.1.
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the main properties of the rescaled Kostlan polynomial Xd. Some of these
properties are well-known to experts working on random fields, but some of
them seem to have been missed. Moreover, we believe that our language is
more flexible and well-suited to the setting of differential topology, whereas
classical references look at these random variables from the point of view
of functional analysis and stochastic calculus.

Of special interest from Theorem 3.3 are properties (2), (5) and (7),
which are closely related. In fact (2) and (5) combined together tells that
open sets U ⊂ C∞(Dm,Rk) which are defined by open conditions on the r-
jet of Xd, have a positive limit probability when d → ∞. Property (7), tells
that the law for Betti numbers of a random singularity Zd = jrX−1

d (W )
has a limit. (Even in the case of zero sets this property was not noticed
before, see Example A.1.)

We consider Theorem 3.3 as a practical tool that people interested in
random algebraic geometry can directly use, and we will show how to con-
cretely use this tool in a list of examples that we give in Appendix A.

Remark 1.5. — The current paper, and in particular the generalized
square-root law Theorem 1.3, complement recent work of Diatta and Ler-
ario [6] and Breiding, Keneshlou and Lerario [2], where tail estimates on
the probabilities of the maximal configurations are proved.

1.3. Structure of the paper

In Section 2.1 we prove a quantitative semialgebraic version of strati-
fied Morse Theory, which is a technical tool needed in the sequel, and in
Section 2.2 we prove Theorem 2.8 and Theorem 2.9 (whose combination
give Theorem 1.1). In Section 2.3 we discuss the semicontinuity of topology
under holonomic approximation and prove Theorem 2.13 (which is Theo-
rem 1.2 from the Introduction). In Section 3 we introduce the random point
of view and prove the generalized square-root law. Appendix A contains
three short examples of use the random techniques.

Acknowledgements
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2. Quantitative bounds, the h-principle and the topology
semicontinuity

2.1. Stratified Morse Theory

Let us fix a Whitney stratification W =
⊔
S∈S S (see [14, p. 37] for

the definition) of the semialgebraic subset W ⊂ Jr(Sm,Rk) =: J , with
each stratum S ∈ S being semialgebraic and smooth (such decomposition
exists [14, p. 43]), so that, by definition a smooth map f : M → J , is
transverse to W if f −⋔ S for all strata S ∈ S . When this is the case,
we write ψ −⋔ W and implicitly consider the subset ψ−1(W ) ⊂ M to be
equipped with the Whitney stratification given by ψ−1S = {ψ−1(S)}S∈S .

Definition 2.1. — Given a Whitney stratified subset Z =
⋃
i∈I Si of a

smoooth manifold M (without boundary), we say that a function g : Z → R
is a Morse function if g is the restriction of a smooth function g̃ : M → R
such that

(1) g|Si
is a Morse function on Si.

(2) For every critical point p ∈ Si and every generalized tangent space
Q ⊂ TpM (defined as in [14, p. 44]) we have dpg̃(Q) ̸= 0, except for
the case Q = TpSi.

Note that the condition of being a Morse function on a stratified space
Z ⊂ M depends on the given stratification of Z.

Remark 2.2. — The definition above is slightly different than the one
given in the book [14, p. 52] by Goresky and MacPherson, where a Morse
function, in addition, must be proper and have distinct critical values.

The following theorem is the quantitative version of stratified Morse
theory for semialgebraic maps we need in order to prove Theorem 1.1.

Theorem 2.3. — Let W ⊂ J be a semialgebraic subset of a real alge-
braic smooth manifold J , with a given semialgebraic Whitney stratification
W =

⊔
S∈S S and let M be a real algebraic smooth manifold. There exists

a semialgebraic subset Ŵ ⊂ J1(M,J × R) having codimension larger or
equal than dimM , equipped with a semialgebraic Whitney stratification
that satisfies the following properties with respect to any couple of smooth
maps ψ : M → J and g : M → R.

(1) If ψ −⋔Wand j1(ψ, g) −⋔ Ŵ , then g|ψ−1(W ) is a Morse function with
respect to the stratification ψ−1S and

(2.1) Crit(g|ψ−1(W )) =
(
j1(ψ, g)

)−1 (Ŵ ).

ANNALES DE L’INSTITUT FOURIER
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(2) There is a constant NW > 0 depending only on W and S , such
that if ψ−1(W ) is compact, ψ −⋔W and j1(ψ, g) −⋔ Ŵ , then

(2.2) bi(ψ−1(W )) ⩽ NW# Crit(g|ψ−1(W )),

for all i = 0, 1, 2 . . .

Proof. — Let S ∈ S be a stratum of W , hence S ⊂ J is a smooth
submanifold and since ψ −⋔ W implies that ψ −⋔ S, we also have that
ψ−1(S) is a submanifold of M of the same codimension which we denote
by k. Define

(2.3)
Ŝ= {j1

p(F, f) ∈ J1(M,J×R) : F (p) ∈S and dpf ∈ dpF ∗(TF (p)S
⊥)}

= {j1
p(F, f) ∈ J1(M,J × R) : F (p) ∈ S and ∃λ ∈ TF (p)S

⊥

s.t. dpf = λ ◦ dpF}.
Orthogonality here is meant in the sense of dual vector spaces: if Q ⊂ T

are vector spaces, then Q⊥ = {ξ ∈ T ∗ : ξ(Q) = 0}.
It is clear, by this definition, that Ŝ is semialgebraic and its codimension

is equal to the dimension of M .

Claim 2.4. — j1
p0

(ψ, g) ∈ Ŝ if and only if p0 is a critical point for
g|ψ−1(S).

If j1
p0

(ψ, g) ∈ Ŝ, then of course p0 ∈ ψ−1(S) and there exists a (Lagrange
multiplier) conormal covector λ ∈ Tψ(p0)S

⊥ such that dp0g = λ ◦ dp0ψ. It
follows that dp0g vanishes on Tp0ψ

−1(S) = dp0ψ
−1(Tψ(p0)S). This proves

the “only if” statement of the Claim as a consequence of the following
inclusion

(2.4) dp0ψ
∗ (Tp0S

⊥) ⊂
(
Tp0ψ

−1(S)
)⊥
.

To conclude the proof of Claim 2.4 we need to show the opposite in-
clusion. We do this by showing that the dimensions of the two spaces are
equal. First observe that, since by hypotheses ψ −⋔ S, the image dp0ψ is
a complement to Tψ(p0)S in Tψ(p0)J and this is equivalent (it is the dual
statement) to say that the restriction of dp0ψ

∗ to (Tψ(p0)S)⊥ is injective.
It follows that

(2.5)

dim dp0ψ
∗ (Tp0S

⊥) = dim
(
Tp0S

⊥)
= codimS

= codimψ−1(S)

= dim
(
Tp0ψ

−1(S)
)⊥
.

This concludes the proof of Claim 2.4.

TOME 74 (2024), FASCICULE 2
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Claim 2.5. — Given a Whitney stratification of Ŝ, and a critical point
p0 ∈ M of the map g|ψ−1(S), if j1(ψ, g) −⋔ Ŝ at p0 then this critical point is
Morse.

Let us pass to a coordinate chart ϕ defined on a nighborhood U ⊂
J1(M,J × R) of j1

p0
(ψ, g):

(2.6) ϕ =
(
x =

(
x1

x2

)
, y =

(
y1

y2

)
, a, Y =

(
Y 1

Y 2

)
, A

)
:

U → Rm × Rs+k × R × R(s+k)×m × Rm

(2.7) j1
p(F, f) 7→

(
x(p), y(F (p)), g(p), ∂(y ◦ F )

∂x
,
∂g

∂x

)
;

where y2 = 0 is a local equation for S and x2 = 0 is a local equation
for ψ−1(S). Indeed, by the implicit function theorem (applied to the map
ψ in virtue of the transversality assumption ψ −⋔ S) we can assume that
y2(ψ(x1, x2)) = x2. In this coordinate chart we have that the restriction of
dpF

∗ to the space Tψ(p)S
⊥ is represented by the matrix (Y 2)T , thus

(2.8) Ŝ ∩ U =
{
y2 = 0 : A ∈ Im

(
(Y 2)T

)}
∩ ϕ(U).

Let us denote by x 7→ (x, ỹ(x), ã(x), Ỹ (x), Ã(x)) the local expression of the
jet map p 7→ j1

p(ψ, g) with respect to the above coordinates. By construction
we have that

(2.9)
(
Ỹ 2(p0)

)T
=
(

0
1k

)
.

In particular the image of the above matrix is a complement to the subspace
spanned by the firstm−k coordinates and we may assume, reducing the size
of the neighborhood if needed, that this property holds for every element
(x, y, a, Y,A) ∈ ϕ(U), so that there exist unique vectors λ ∈ Rk and ξ ∈
R(m−k) such that

(2.10) A =
(
A1
A2

)
=
(
Y 2)T λ+

(
ξ

0

)
.

Now, this defines a smooth function ξ : U → Rk such that the equations
y2 = 0; ξ = 0 are smooth regular equations for ϕ(Ŝ ∩ U).

Notice that this ensures that ϕ(U) intersects only the smooth locus of
Ŝ. Now, since by hypotheses j1(ψ, g) is transverse to all the strata of Ŝ
then it must be transverse to the smooth locus in the usual sense, even
if the latter is a union of strata (this follows directly from the definition
of transversality). Therefore, while proving Claim 2.5, we are allowed to
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REAL POLYNOMIAL SINGULARITIES 599

forget about the stratification of Ŝ and just assume that the map j1(ψ, g)
is transverse to the smooth manifold Ŝ ∩ ϕ(U) in the usual sense.

In this setting we can see that if j1(ψ, g) −⋔ Ŝ at p0, then the following
matrix has to be surjective:

(2.11)
(

d y2

d ξ

)
◦ dp0

(
j1(ψ, g)

)
=
(

0 1k

∂ξ̃
∂x1 (p0) ∂ξ̃

∂x2 (p0)

)
∈R(k+k)×((m−k)+k),

where ξ̃(x) = ξ(x, ỹ(x), ã(x), Ỹ (x), Ã(x)). Therefore the lower left block
∂ξ̃
∂x1 (p0) is surjective as well and hence invertible. This concludes our proof
of Claim 2.5 since such matrix is in fact the hessian of the map g|ψ−1(S) at
the critical point p0:

(2.12) dp0

(
g|ψ−1(S)

)
= ∂

∂x1

∣∣∣
p0

(
∂g

∂x1

)
= ∂Ã1

∂x1 (p0) = ∂ξ̃

∂x1 (p0).

The last equality is due to the equation (2.10) combined with the observa-
tion that Ỹ 2 is of the form

(
0 ∗

)
for all p in a neighborhood of p0, since

∂ỹ2

∂x1
(p) = 0.

At this point, Claim 2.4 and Claim 2.5 prove that, for whatever strati-
fication of Ŝ, if j1(ψ, g) −⋔ Ŝ and ψ −⋔ S then g|ψ−1(S) is a Morse function
and that its critical set coincide with the set

(
j1(ψ, g)

)−1 (Ŝ), so that con-
dition (1) of Definition 2.1 is satisifed along the stratum S. In order to
establish when g|ψ−1(W ) is a Morse function along the stratum ψ−1(S) on
the stratified manifold W , in the sense of Definition 2.1, we now need to
prove a similar statement to ensure condition (2).

Let us consider the set DqS of degenerate covectors at a point q ∈ S

that are conormal to S (conormal and degenerate covectors are defined as
in [14, p.44]), in other words:

(2.13) DqS =
{
ξ ∈ T ∗

q J :
ξ ∈ TqS

⊥, ξ ∈ Q⊥ for some Q
generalized tangent space at q

}
.

It is proved in [14, p.44] that DS =
⋃
q∈S DqS is a semialgebraic subset of

codimension greater than 1 of the conormal bundle TS⊥(7) to the stratum
S. We claim that the subset DŜ ⊂ Ŝ containing the jets that do not satisfy
condition (b) of Definition 2.1 has the following description:

(2.14) DŜ =
{
j1
p(F, f) ∈ J1(M,J × R) :

F (p) ∈ S

and dpf ∈ dpF
∗(DF (p)S)

}
.

(7)TS⊥ = T ∗
SJ , in the notation of [14].
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In fact, since ψ −⋔W , then all the generalized tangent spaces of the stratified
subset ψ−1(W ) ⊂ M at a point p ∈ ψ−1(S) are of the form dpψ

−1(Q).
It follows that if a conormal covector dpg = λ ◦ dpψ is degenerate then
λ ∈ Dψ(p)S.

Note that DŜ is a subset of Ŝ of codimension ⩾ 1, thus the codimension
of DŜ in J1(M,J×R) is ⩾ m+1. As a consequence we have that j1(ψ, g) −⋔
DŜ if and only if j1(ψ, g) /∈ DŜ. Therefore if j1(ψ, g) −⋔ Ŝ and j1(ψ, g) /∈
DŜ then ψ −⋔ S and g|ψ−1(W ) is a Morse function on ψ−1(W ) along the
stratum ψ−1(S).

We are now ready to define Ŵ =
⋃
S∈S Ŝ. An immediate consequence

of Claim 2.4 is that Ŵ satisfies equation (2.1). Moreover, since Ŝ ⊃ DŜ

are semialgebraic, Ŵ is semialgebraic and admits a semialgebraic Whitney
stratification Ŝ (refining the one of Ŝ) such that all the subsets Ŝ and
DŜ are unions of strata. With such a stratification, if the jet map j1(ψ, g)
is transverse to Ŵ then, for each stratum S ∈ S , it is also transverse to
Ŝ and it avoids the set DŜ, so that g|ψ−1(W ) is a Morse function, in the
sense of Definition 2.1. This proves that Ŵ satisfies condition (1) of the
Theorem.

Let us prove condition (2). Let Z = ψ−1(W ) ⊂ M be compact. Without
loss of generality we can assume that each of the critical values c1, . . . , cn
of g|Z corresponds to only one critical point (this can be obtained by mak-
ingcontaining the jets that do not satisfy condition (2) of Definition 2.1:
a C1 small perturbation of g, which won’t affect the number of its critical
points). Consider a sequence of real numbers a1, . . . an+1 such that

(2.15) a1 < c1 < a2 < c2 < · · · < an < cn < an+1.

By the main Theorem of stratified Morse theory [14, p. 8, 65], there is an
homeomorphism

(2.16) Z ∩ {g ⩽ al+1} ∼= (Z ∩ {g ⩽ al}) ⊔B A,

with

(2.17) (A,B) = TMDp(g) ×NMDp(g),

where TMDp(g) is the tangential Morse data and NMDp(g) is the normal
Morse data. A fundamental result of classical Morse theory is that the
tangential Morse data is homeomorphic to a pair

(2.18) TMDp(g) ∼= (Dλ × Dm−λ, (∂Dλ) × Dm−λ),

while the normal Morse data is defined as the local Morse data of g|Np

for a normal slice (see [14, p. 65]) at p. A consequence of the transversality
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hypothesis ψ −⋔W is that there is a small enough normal slice Np such that
ψ|Np

: Np → J is the embedding of a normal slice at ψ(p) for W . Therefore
the normal data NMDp(g) belongs to the set ν(W ) of all possible normal
Morse data that can be realized (up to homeomeorphisms) by a critical
point of a Morse function on W . By Corollary 7.5.3 of [14, p. 95] it follows
that the cardinality of the set ν(W ) is smaller or equal than the number
of connected components of the semialgebraic set

⋃
S∈S (TS⊥\DS), hence

finite(8) . Let

(2.19) NW := max
Y ∈ν(W ),
λ∈{0,...,m}

bi
((
Dλ × Dm−λ, (∂Dλ) × Dm−λ)× Y

)
∈ N.

From the long exact sequence of the pair (Z ∩ {g ⩾ al+1}, (Z ∩ {g ⩾ al})
we deduce that

(2.20) bi(Z ∩ {g ⩽ al+1}) − bi(Z ∩ {g ⩽ al})
⩽ bi (Z ∩ {g ⩽ al+1}, Z ∩ {g ⩽ al})
= bi (A,B)
= bi (TMDp(g) ×NMDp(g))
⩽ NW .

Since Z is compact, the set Z ∩ {g ⩽ a1} is empty, hence by repeating the
inequality (2.20) for each critical value, we finally get

(2.21) bi(Z) = bi(Z ∩ g ⩽ an+1) ⩽ NWn = NW# Crit
(
g|ψ−1(W )

)
.

This concludes the proof of Theorem 2.3. □

Below we will restrict to those semialgebraic sets W ⊂ Jr(Sm,Rk) that
have a differential geometric meaning, as specified in the next definition.

Definition 2.6. — A submanifold W ⊂ Jr(M,Rk) is said to be intrin-
sic if there is a submanifold W0 ⊂ Jr(Dm,Rk), called the model, such that
for any embedding φ : Dm ↪→ M , one has that jrφ∗(W ) = W0, where

(2.22) jrφ∗ : Jr
(
φ(Dm),Rk

) ∼=−→ Jr
(
Dm,Rk

)
, jrφ(p)f 7→ jrp(f ◦ φ).

Intrinsic submanifolds are, in other words, those that have the same
shape in every coordinate charts, as in the following examples.

(1) W = {jrpf : f(p) = 0};
(2) W = {jrpf : jsf(p) = 0} for some s ⩽ r;
(3) W = {jrpf : rank(df(p)) = s} for some s ∈ N.

(8) In the book this is proved only for any fixed point p, as a corollary of Theorem 7.5.1
[14, p.93]. However the same argument generalizes easily to the whole bundle.
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Remark 2.7. — In the case when J = Jr(M,Rk) we can consider Ŵ to be
a subset of Jr+1(M,Rk+1) taking the preimage via the natural submersion

(2.23)
Jr+1(M,Rk+1) → J1 (M,Jr(M,Rk) × R

)
,

jr+1(f, g) 7→ j1(jrf, g).
In this setting Theorem 2.3 can be translated to a more natural statement
by considering ψ of the form ψ = jrf . Moreover, in this case, observe that
if W is intrinsic (in the sense of Definition 2.6 below), then Ŵ is intrinsic
as well.

2.2. Quantitative bounds

In this section we prove Theorem 1.1, which actually immediately follows
by combining Theorem 2.8 and Theorem 2.9.

Next theorem gives a deterministic bound for on the complexity of Z =
jrψ−1(W ) when the codimension of W is m.

Theorem 2.8. — Let P ∈ R[x0, . . . , xm]k(d) be a polynomial map and
consider its restriction ψ = P |Sm to the unit sphere:

(2.24) ψ : Sm → Rk.

Let also jrψ : Sm → Jr(Sm,Rk) be the associated jet map and W ⊂
Jr(Sm, Rk) be a semialgebraic set of codimension m. There exists a con-
stant c > 0 (which only depends on W , m and k) such that, if jrψ −⋔ W ,
then:

(2.25) #jrψ−1(W ) ⩽ c · dm.

Proof. — Let us make the identification Jr(Rm+1,Rk) ≃ Rm+1 ×RN , so
that the restricted jet bundle Jr(Rm+1,Rk)|Sm corresponds to the semial-
gebraic subset Sm × RN . Observe that the inclusion Sm ↪→ Rm+1 induces
a semialgebraic map:

(2.26) Jr(Rm+1,Rk)|Sm
i∗−→ Jr(Sm,Rk),

that, roughly speaking, forgets the normal derivatives. Notice that while
the map jrψ = jr(P |Sm) is a section of Jr(Sm,Rk), (jrP )|Sm is a section
of Jr(Rm+1,Rk)|Sm . These sections are related by the identity

(2.27) i∗ ◦ (jrP )|Sm = jrψ.

Thus, defining W = (i∗)−1(W ), we have

(2.28) jrψ−1(W ) = ((jrP )|Sm)−1 (W ).
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Since W is a semialgebraic subset of Rm+1 × RN , it can be written as:

(2.29) W =
ℓ⋃
j=1

{
fj,1 = 0, . . . , fj,αj = 0, gj,1 > 0, . . . , gj,βj > 0

}
,

where the fj,is and the gj,is are polynomials of degree bounded by a con-
stant b > 0. For every j = 1, . . . , ℓ we can write:

(2.30)
{
fj,1 = 0, . . . , fj,αj

= 0, gj,1 > 0, . . . , gj,βj
> 0
}

= Zj ∩Aj ,

where Zj is algebraic (given by the equations) and Aj is open (given by
the inequalities).

Observe also that the map (jrP )|Sm is the restriction to the sphere Sm
of a polynomial map

(2.31) Q : Rm+1 → Rm+1 × RN

whose components have degree smaller than d. Therefore for every j =
1 . . . , ℓ the set ((jrP )|Sm)−1(Zj) = (Q|Sm)−1(Zj) is an algebraic set on the
sphere defined by equations of degree less than b ·d and, by [19, Proposition
14] we have that:

(2.32) b0(Q|Sm)−1(Zj)) ⩽ Bdm

for some constant B > 0 depending on b and m. The set (Q|Sm)−1(Zj)
consists of several components, some of which are zero dimensional (points):

(2.33) (Q|Sm)−1(Zj) = {pj,1, . . . , pj,νj
}︸ ︷︷ ︸

Pj

∪Xj,1 ∪ · · · ∪Xj,µj︸ ︷︷ ︸
Yj

.

The inequality (2.32) says in particular that:

(2.34) #Pj ⩽ Bdn.

Observe now that if jrψ −⋔ W then, because the codimension of W is m,
the set jrψ−1(W ) = (Q|Sm)−1(W ) consists of finitely many points and
therefore, since (Q|Sm)−1(Aj) is open, we must have:

(2.35) jrψ−1(W ) ⊂
ℓ⋃
j=1

Pj .

(Otherwise jrψ−1(W ) would contain an open, nonempty set of a component
of codimension smaller than m.) Inequality (2.34) implies now that:

□(2.36) #jrψ−1(W ) ⩽
ℓ∑
j=1

#Pj ⩽ ℓbdm ⩽ cdm.
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Using Theorem 2.3 it is now possible to improve Theorem 2.8 to the case
of any codimension, replacing the cardinality with any Betti number.

Theorem 2.9. — Let P ∈ R[x0, . . . , xm]k(d) be a polynomial map and
consider its restriction ψ = P |Sm to the unit sphere:

(2.37) ψ : Sm → Rk.

Let also jrψ : Sm → Jr(Sm,Rk) be the associated jet map and W ⊂
Jr(Sm, Rk) be a closed semialgebraic set (of arbitrary codimension). There
exists a constant c > 0 (which only depends on W , m and k) such that, if
jrψ −⋔W , then:

(2.38) bi
(
jrψ−1(W )

)
⩽ c · dm.

Proof. — Let J = Jr(Sm,Rk) and let Ŵ be the (stratified according
to a chosen stratification of W ) subset of Jr+1(Sm,Rk+1) coming from
Theorem 2.3 and Remark 2.7. Let g be a homogeneous polynomial of degree
d such that

(2.39) Ψ = (ψ, g) ∈ R[x0, . . . , xm]k+1
(d)

satisfies the condition jr+1Ψ −⋔ Ŵ (almost every polynomial g has this
property by standard arguments) and (jrψ)−1(W ) is closed in Sm, hence
compact. Then by Theorem 2.3, there is a constant NW , such that

(2.40) bi
(
jrψ−1(W )

)
⩽ NW#{(jr+1Ψ)−1(Ŵ )}

and by Theorem 2.8, the right hand side is bounded by cdm. □

Given P = (P1, . . . , Pk) with each Pi a homogeneous polynomial of de-
gree d in m+ 1 variables, we denote by

(2.41) ψd : Sm → Rk

its restriction to the unit sphere (the subscript keeps track of the depen-
dence on d).

Example 2.10 (Real algebraic sets). — Let us take W = Sm × {0} ⊂
J0(Sm,Rk), then j0ψ−1(W ) is the zero set of ψd : Sm → Rk, i.e. the set of
solutions of a system of polynomial equations of degree d. In this case the
inequality (2.25) follows from [19].

Example 2.11 (Critical points). — If we pick

W = {j1f = 0} ⊂ J1(Sm,R),
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then Zd = j1ψ−1
d (W ) is the set of critical points of ψd : Sm → R. In 2013

Cartwright and Sturmfels [4] proved that

(2.42) #Zd ⩽ 2(d− 1)m + · · · + (d− 1) + 1

(this bounds follows from complex algebraic geometry), and this estimate
was recently proved to be sharp by Kozhasov [18]. Of course one can also
fix the index of a nondegenerate critical point (in the sense of Morse The-
ory); for example we can take W = {df = 0, d2f > 0} ⊂ J2(Sm,R), and
j2ψ−1

d (W ) is the set of nondegenerate minima of ψd : Sm → R (similar
estimates of the order dm holds for the fixed Morse index, but the problem
of finding a sharp bound is very much open).

Example 2.12 (Whitney cusps). — When

W = {Whitney cusps} ⊂ J3(S2,R2),

then ψ3
df

−1(W ) consists of the set of points where the polynomial map ψd :
S2 → R2 has a critical point which is a Whitney cusp. In this case (2.25)
controls the number of possible Whitney cusps (the bound is of the order
O(d2)).

2.3. Semicontinuity of topology under holonomic approximation

Consider the following setting: M and J are smooth manifolds, M is com-
pact, and W ⊂ J is a smooth cooriented submanifold. Given a smooth map
F : M → J which is transversal to W , it follows from standard transver-
sality arguments that there exists a small C1 neighborhood U1 of F such
that for every map F̃ ∈ U1 the pairs (M,F−1(W )) and (M, F̃−1(W )) are
isotopic (in particular F−1(W ) and F̃−1(W ) have the same Betti num-
bers, this is the so-called “Thom’s isotopy Lemma”). The question that we
address is the behavior of the Betti numbers of F̃−1(W ) under small C0

perturbations, i.e. how the Betti number can change under modifications
of the map F without controlling its derivative.

In this direction we prove the following result.

Theorem 2.13. — Let M,J be smooth manifolds and let W ⊂ J be a
smooth cooriented closed submanifold. Let F : M → J be a smooth map
such that F −⋔ W . If a smooth map F̃ is strongly(9) C0−close to F such
that F̃ −⋔W , then for all i ∈ N there is a group Ki such that

(2.43) Hi
(
F̃−1(W )

)
∼= Hi

(
F−1(W )

)
⊕Ki.

(9) Meaning: in Whitney strong topology. In particular if C ⊂ M is closed and U ⊂ J is
open, then the set {f ∈ C0(M,J) : f(C) ⊂ U} is open, see [15].
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Figure 2.1. A small C0 perturbation of a regular equation can only
increase the topology of its zero set.

Proof. — Call A = F−1(W ) and Ã = F̃−1(W ). Let E ⊂ M be a closed
tubular neighborhood (it exists because A is closed), meaning that E =
int(E) ∪ ∂E is diffeomorphic to the unit ball of a metric vector bundle
over A (via a diffeomorphism that preserves A). Denote by π : E → A the
retraction map. Since F̃ is C0−close to F we can assume that there is a
homotopy Ft connecting F = F0 and F̃ = F1 such that Ft(∂E) ⊂ J\W .
Define analogously π̃ : Ẽ → Ã in such a way that Ẽ ⊂ int(E). It follows
that there is an inclusion of pairs u : (E, ∂E) → (E,E\Ẽ). By construction,
the function Ft induces a well defined mapping of pairs Ft : (E, ∂E) →
(J, J\W ) for every t ∈ [0, 1], in particular there is a homotopy between F0
and F1 (meant as maps of pairs). Moreover with t = 1, this map is the
composition of u and the map F1 : (E,E\Ẽ) → (J, J\W ).

The fact that W is closed and cooriented guarantees the existence of
a Thom class ϕ ∈ Hr(J, J\W ), where r is the codimension of W . By
transversality we have that also A and Ã are cooriented with Thom classes
F ∗

0 ϕ = ϕE ∈ Hr(E, ∂E) ∼= Hr(E,E\A) and F ∗
1 ϕ = ϕẼ ∈ Hr(Ẽ, ∂Ẽ) ∼=
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Hr(Ẽ, Ẽ\Ã). We now claim the commutativity of the diagram below.

(2.44)

H∗+r(J, J\W )

H∗+r(Ẽ, ∂Ẽ) H∗+r(E,E\Ẽ) H∗+r(E, ∂E)

H∗(Ã) H∗(A)

F∗
1 F∗

1 =F∗
0

η−1
u∗

π̃∗(·)∪ϕẼ

π∗

π∗(·)∪ϕE

(where η is the excision isomorphism). For what regards the upper trian-
gular diagram, the commutativity simply follows from the fact that all the
maps Ft are homotopic and that the excision homomorphism is the inverse
of that induced by the inclusion (E,E\Ẽ) ⊂ (Ẽ, ∂Ẽ). To show that the
lower rectangle commutes, observe that since π̃ is homotopic to the iden-
tity of Ẽ we have that π ◦ π̃ is homotopic to π|Ẽ . Thus the commutativity
follows from the property of the cup product, saying that for all φ ∈ H∗(A)
we have

(2.45) u∗ ◦ η−1 ◦
(
π̃∗ (π|Ã)∗

φ
)

∪ ϕẼ

=
(
u∗ ◦ η−1 ◦ (π|Ẽ)∗

φ
)

∪
(
u∗ ◦ η−1 ◦ F ∗

1 ϕ
)

= π∗φ ∪ ϕE ,

where in the last equality we used the identity u∗ ◦ η−1 ◦ F ∗
1 = F ∗

0 implied
by the commutativity of the upper triangle. Since the vertical maps are
(Thom) isomorphisms, there exists a homomorphism U : H∗(Ã) → H∗(A)
such that U ◦ π∗ = id. □

Remark 2.14. — The above proof also provides a way to determine how
small should the perturbation be. In fact we showed that if Ft : M → J

is a homotopy such that F1
−⋔ W and Ft(∂E) ⊂ J\W for all t ∈ [0, 1],

where E is a closed tubular neighborhood of F−1(W ), then the map F̃ =
F1 satisfies (2.43). Notice that to have such property it is enough that
F̃ −⋔W and F̃ |∂E is C0−close to F |∂E . This implies that the size of the C0

neighborhood of F in which the identity (2.43) holds depends only on the
restriction of F to a codimension 1 submanifold.

Corollary 2.15. — Let M be a compact manifold of dimension m.
Let W ⊂ Jr(M,Rk) be a Whitney stratified submanifold of codimen-
sion 1 ⩽ l ⩽ m being transverse to the fibers of the canonical projection
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π : Jr(M,Rk) → M . Then for any number n ∈ N there exists a smooth
function ψ ∈ C∞(M,Rk) such that jrψ −⋔W and

(2.46) bi
(
(jrψ)−1(W )

)
⩾ n, ∀i = 0, . . . ,m− l.

Proof. — Let B ⊂ Jr(M,Rk) be a small neighbourhood of a regular
point jrpf of W so that (B,B ∩W ) ∼= (RN+l,RN × {0}). Moreover we can
assume that there is a neighbourhood U ∼= Rm of p ∈ M and a commutative
diagram of smooth maps

(2.47)

Rm × Rk × {0} Rm × Rk × Rl

B ∩W B Rm

U

∼=

π

∼=

∼=

This follows from the fact that π|W is a submersion, because of the transver-
sality assumption. For any 0 ⩽ i ⩽ m− l consider the smooth map

(2.48) φi : Rm →Rl, u 7→

(
i+1∑
ℓ=1

(uℓ)2 −1,
m∑

ℓ=i+2
(uℓ)2 −1, um−l+3, . . . , um

)

Clearly 0 is a regular value for φi, with preimage(10) φ−1
i (0) ∼= Si×Sm−l−i

and it is contained in the unit ball of radius 2. Let C ⊂ Rm be a set of
n(m − l + 1) points such that |c − c′| ⩾ 5 for all pair of distinct elements
c, c′ ∈ C. Now choose a partition C = C0⊔C1⊔. . . Cm−l in sets of cardinality
n and define a smooth map φ : Rm → Rl such that φ(x) = φi(x − c)
whenever dist(x,Ci) ⩽ 2. We may also assume that 0 is a regular value for
φ. Notice that φ−1(0) has a connected component

(2.49) S ∼= {1, . . . , n} ×
(
S0 × Sm−l ⊔ S1 × Sm−l−1 ⊔ · · ·Sm−l × S0) .

Construct a smooth (non necessarily holonomic) section F : U → Jr(U,Rk)
such that F −⋔ W and such that F = (u, 0, φ) on a neighbourhood of
S, so that F−1(W ) still contains S as a connected component, hence
bi(F−1(W )) ⩾ n for all i = 0, . . . ,m− l.

Let E ⊂ U be a closed tubular neighborhood of F−1(W ). To conclude
we use the holonomic approximation theorem [8, p. 22], applied to F : U →
Jr(U,Rk) ∼= U × Rk+l near the codimension 1 submanifold ∂E ⊂ U . Such
theorem ensures that for any ε > 0 there exists a diffeomorphism h : U →

(10) Except for the case l = 1. Here one should adjust the definition of φi in order to
have bi(φ−1

i (0)) > 0.
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U , an open neighborhood O∂E ⊂ U of ∂E and a smooth function ψ : U →
Rk such that

(2.50) distC0
(
(jrf)|h(O∂E), F |h(O∂E)

)
< ε, and distC0 (h, id) < ε.

Moreover, we can assume that jrψ −⋔W , by Thom transversality Theorem
(see [15] or [8]). In particular, it follows that

(2.51) distC0 ((jrf) ◦ h|∂E , F |∂E) < (1 + C(F )) · ε,

where C(F ) is the lipshitz constant of F |U , which can be assumed to be
finite (if not, replace U ∼= Rm with an open ball that still contains F−1(W )).
Consider the smooth manifold J = Jr(U,Rk). By the diagram (2.47) it
follows that W ⊂ J is a closed and cooriented smooth submanifold, so that
by Theorem 2.13 and Remark 2.14 we know that if ε > 0 is small enough,
then the map F̃ = (jrf) ◦ h satisfies the identity (2.43). Therefore for each
i = 0, . . . ,m− l, we have

□(2.52)

bi

(
(jrf)−1 (W )

)
= bi

(
((jrf) ◦ h)−1 (W )

)
⩾ bi

(
(F ◦ h)−1 (W )

)
= bi

(
F−1(W )

)
⩾ n.

3. Random Algebraic Geometry

3.1. Kostlan maps

In this section we give the definition of a random Kostlan polynomial
map P : Rm+1 → Rk, which is a Gaussian Random Field (GRF) that
generalizes the notion of Kostlan polynomial.

Definition 3.1 (Kostlan polynomial maps). — Let d,m, k ∈ N. We
define the degree d homogeneous Kostlan random map as the measure on
R[x]k(d) = R[x0, . . . , xm]k(d) induced by the gaussian random polynomial:

(3.1) Pm,kd (x) =
∑

α∈Nm+1, |α|=d

ξαx
α,

where xα = xα0
0 . . . xαm

m and {ξα} is a family of independent gaussian ran-
dom vectors in Rk with covariance matrix

(3.2) Kξα
=
(
d

α

)
1k =

(
d!

α0! . . . αm!

)
1k.
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We will call Pm,kd the Kostlan polynomial of type (d,m, k) (we will simply
write Pd = Pm,kd when the dimensions are understood).

(In other words, a Kostlan polynomial map Pm,kd is given by a list of
k independent Kostlan polynomials of degree d in m + 1 homogeneous
variables.)

There is a non-homogeneous version of the Kostlan polynomial, which
we denote as

(3.3) pd(u) = Pd(1, u) =
∑

β∈Nm, |β|⩽d

ξβu
β ∈ G∞(Rm,Rk),

where u = (u1, . . . , um) ∈ Rm and ξβ ∼ N
(
0, ( dβ )1k

)
are independent.

Here we use the notation of [20], where G∞(Rm,Rk) denotes the space
of gaussian random field on Rm with values in Rk which are C∞. Next
Proposition collects some well known facts on the Kostlan measure.

Proposition 3.2. — Let Pd be the Kostlan polynomial of type (d,m, k)
and pd be its dehomogenized version, as defined in (3.3).

(1) For every x, y ∈ Rm+1:

(3.4) KPd
(x, y) =

(
xT y

)d
1k.

Moreover, given R ∈ O(m + 1) and S ∈ O(k) and defined the
polynomial P̃d(x) = SPd(Rx), then Pd and P̃d are equivalent(11) .

(2) For every u, v ∈ Rn

(3.5) Kpd
(u, v) = (1 + uT v)d1k.

Moreover, if R ∈ O(m) and S ∈ O(k) and defined the polynomial
p̃d(x) = Spd(Rx), then pd and p̃d are equivalent.

Proof. — The proof of this proposition simply follows by computing ex-
plicitly the covariance functions and observing that they are invariant under
orthogonal change of coordinates in the target and the source. For example,

(11) Two random fields are said to be equivalent if they induce the same probability
measure on C∞(Rm,Rk).
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in the case of Pd we have:

(3.6)

KPd
(x, y) = E{Pd(x)Pd(y)T }

=
∑

|α|,|α′|=d

E
{
ξαξ

T
α′

}
xαyα

′

=
∑

|α|=d

(
d

α

)
(x0y0)α0 . . . (xmym)αm1k

= (x0y0 + · · · + xmym)d1k,
from which the orthogonal invariance is clear. The case of pd follows from
the identity:

□(3.7) Kpd
(u, v) = KPd

((1, u), (1, v)) .

3.2. Properties of the rescaled Kostlan

The main feature here is the fact that the local model of a Kostlan
polynomial has a rescaling limit. The orthogonal invariance is used to prove
that the limit does not depend on the point where we center the local model,
hence it is enough to work around the point (1, 0, . . . , 0) ∈ Sm. These
considerations lead to introduce the Gaussian Random FieldXd : Rm → Rk
(we call it the rescaled Kostlan) defined by:

(3.8) Xd(u) = Pm,kd

(
1, u1√

d
, . . . ,

um√
d

)
.

Next result gives a description of the properties of the rescaled Kostlan
polynomial, in particular its convergence in law as a random element of
the space of smooth functions, space which, from now, on we will always
assume to be endowed with the weak Whitney’s topology as in [20].

Theorem 3.3 (Properties of the rescaled Kostlan). — Let Xd : Rm →
Rk be the Gaussian random field defined in (3.8).

(1) (The limit) Given a family of independent gaussian random vectors
ξβ ∼ N(0, 1

β!1k), the series

(3.9) X∞(u) =
∑
β∈Nm

ξβu
β ,

is almost surely convergent in C∞(Rm,Rk) to the Gaussian Random
Field(12) X∞ ∈ G∞(Rm,Rk).

(12)X∞ is indeed a random analytic function, commonly known as the Bargmann–Fock
ensemble.
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(2) (Convergence) Xd ⇒ X∞ in G∞(Rm,Rk), that is:

(3.10) lim
d→+∞

E{F (Xd)} = E{F (X∞)}

for any bounded and continuous function F : C∞(Rm,Rk) → R.
Equivalently, we have

(3.11)

P{X∞ ∈ int(A)} ⩽ lim inf
d→+∞

P{Xd ∈ A}

⩽ lim sup
d→+∞

P{Xd ∈ A}

⩽ P{X∞ ∈ A}

for any Borel subset A ⊂ C∞(Rm,Rk).
(3) (Nondegeneracy of the limit) The support of X∞ is the whole

C∞(Rm,Rk). In other words, for any non empty open set U ⊂
C∞(Rm,Rk) we have that P{X∞ ∈ U} > 0.

(4) (Probabilistic Transversality) For d ⩾ r and d = ∞, we have
supp(jrpXd) = Jrp (Rm,Rk) for every p ∈ Rm and consequently for
every submanifold W ⊂ Jr(Rm,Rk), we have

(3.12) P{jrXd
−⋔W} = 1.

(5) (Existence of limit probability) Let V ⊂ Jr(Rm,Rk) be an open set
whose boundary is a (possibly stratified) submanifold(13) . Then

(3.13) lim
d→+∞

P{jrpXd ∈ V, ∀p ∈ Rm} = P{jrpX∞(Rm) ∈ V, ∀p ∈ Rm}.

In other words, we have equality in (3.11) for sets of the form U =
{f : jrf ∈ V }.

(6) (Kac–Rice densities) Let W ⊂ Jr(Rm,Rk) be a semialgebraic sub-
set of codimension m, such that(14) W −⋔ Jrp (Rm,Rk) for all p ∈ M

(i.e. W is transverse to fibers of the projection of the jet space).
Then for all d ⩾ r and for d = +∞ there exists a locally bounded
function ρWd ∈ L∞

loc(Rm) such that(15)

(3.14) E#{u ∈ A : jruXd ∈ W} =
∫
A

ρWd ,

for any Borel subset A ⊂ Rm. Moreover ρWd → ρW∞ in L∞
loc.

(13) For example V could be a semialgebraic set
(14) In this paper the symbol −⋔ stands for “it is transverse to”.
(15) A formula for ρW

d is presented in [20], as a generalization of the classical Kac–Rice
formula.
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(7) (Limit of Betti numbers) Let W ⊂ Jr(Rm,Rk) be any closed semi-
algebraic subset transverse to fibers. Then:

(3.15) lim
d→+∞

E
{
bi
(
(jrXd)−1(W ) ∩ Dm

)}
= E

{
bi
(
(jrX∞)−1(W ) ∩ Dm

)}
,

where bi(Z) = dimHi(Z,R). Moreover, if the codimension of W is
l ⩾ 1, then the r.h.s. in equation (3.15) is strictly positive for all
i = 0, . . . ,m− l.

Proof. — The proof uses a combination of results from [20].
(1). — Let Sd =

∑
|β|⩽d ξβu

β ∈ G∞(M,Rk). The covariance function of
Sd converges in Whitney’s weak topology:

(3.16) KSd
(u, v) =

∑
|β|⩽d

uβvβ

β! 1k
C∞

−−→ exp(uT v)1k.

It follows by [20, Theorem 3] that Sd converges in G∞(M,Rk), moreover
since all the terms in the series are independent we can conclude with the
Ito–Nisio(16) Theorem [16] that indeed the convergence holds almost surely.

(2). — By [20, Theorem 3] it follows from convergence of the covariance
functions:

(3.17) KXd
(u, v) =

(
1 + uT v

d

)d
1k

C∞

−−→ KX∞(u, v) = exp(uT v)1k

(3). — The support of X∞ contains the set of polynomial functions
R[u]k, which is dense in C∞(Rm,Rk), hence the thesis follows from [20,
Theorem 6].

(4). — Let d ⩾ r or d = +∞. We have that

(3.18)

supp(jruXd) = {jruf : f ∈ R[u]k of degree ⩽ d} =

= span{jruf : f(v) = (v − u)β with |β| ⩽ d} =

= span{jruf : f(v) = (v − u)β with |β| ⩽ r} =

= Jru(Rm,Rk).

The fact that P{jrXd
−⋔W} = 1 follows [20, Theorem 8].

(16) It may not be trivial to apply the standard Ito-Nisio theorem, which actually regards
convergence of series in a Banach space. See Theorem 36 of [20] for a statement that is
directly applicabile to our situation
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(5). — Let A = {f ∈ C∞(Rm,Rk) : jrf ∈ V }. If f ∈ ∂A, then jrf ∈ V

and there is a point u ∈ Rm such that jruf ∈ ∂V . Let ∂V be stratified
as ∂V =

∐
Zi with each Zi a submanifold. If jrf −⋔ ∂V then it means

that jrf is transversal to all the Zi and there exists one of them which
contains jruf (i.e. the jet of f intersect ∂V ). Therefore the intersection
would be transversal and nonempty, and then there exists a small Whitney-
neighborhood of f such that for every g in this neighborhood jrg still
intersects ∂V. This means that there is a neighborhood of f consisting of
maps that are not in A, which means f has a neighborhood contained in Ac.
It follows that f /∈ A and consequently f /∈ ∂A, which is a contradiction.
Therefore we have that

(3.19) ∂A ⊂ {f ∈ C∞(Rm,Rk) : f is not transverse to ∂V }.

It follows by point (4) that P{X ∈ ∂A} = 0, so that we can conclude by
points (2) and (3).

(6). — By previous points, we deduce that we can apply the results
described in Section 7 of [20].

(7). — This proof is postponed to Section 3.3. □

Given a C∞ Gaussian Random Field X : Rm → Rk , let us denote by
[X] the probability measure induced on C∞(Rm,Rk) and defined by:

(3.20) [X](U) = P(X ∈ U),

for every U belonging to the Borel σ−algebra relative to the weak Whitney
topology, see [15] for details on this topology. Combining Theorem 3.3
with Skorohod Theorem [1, Theorem 6.7] one gets that it is possible to
represent [Xd] with equivalent fields X̃d such that X̃d → X̃∞ almost surely
in C∞(Rm,Rk). This is in fact equivalent to point (2) of Theorem 3.3. In
other words there is a (not unique) choice of the gaussian coefficients of
the random polynomials in (3.3), for which the covariances E{X̃dX̃

T
d′} are

such that the sequence converges almost surely. We leave to the reader to
check that a possible choice is the following. Let {γβ}β∈Nm be a family of
i.i.d. gaussian random vectors ∼ N(0,1k) and define for all d < ∞

(3.21) X̃d =
∑

|β|⩽d

(
d

β

) 1
2

γβ

(
u√
d

)β
and

(3.22) X̃∞ =
∑
β

(
1
β!

) 1
2

γβu
β .
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Proposition 3.4. — X̃d → X̃∞ in C∞(Rm,Rk) almost surely.

However, we stress the fact that in most situations: when one is interested
in the sequence of probability measures [Xd], it is sufficient to know that
such a sequence exists.

3.3. Limit laws for Betti numbers and the generalized
square-root law

Figure 3.1. The random set Sd = {Xd = 0} ⊂ Dm is a rescaled version
of Zd ∩D(p, d−1/2), where Zd = {ψd = 0}.

Let W0 ⊂ Jr(Rm,Rk) be a semialgebraic subset. Consider the random
set

(3.23) Sd = {p ∈ Dm : jrpXd ∈ W0},

where Xd : Rm → Rk is the rescaled Kostlan polynomial from Theorem 3.3
(see Figure 3.1). We are now in the position of complete the proof of Theo-
rem 3.3 by showing point (7). Let us start by proving the following lemma.
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Lemma 3.5. — Let r be the codimension of W0 and suppose 0 ⩽ i ⩽
m− r ⩽ m− 1. Then

(3.24) E{bi(S∞)} > 0.

Proof. — From Corollary 2.15 we deduce that there exists a function
f ∈ C∞(Dm,Rk) such that jrf −⋔ W0 and bi

(
(jrf)−1(W0)

)
̸= 0. Since

the condition on f is open, there is an open neighbourhood O of f where
bi((jrg)−1(W0)) = c > 0 for all g ∈ O. Thus P{bi(S∞) = c} > 0 because
every open set has positive probability for X∞, by Theorem 3.3(3) therefore
E{bi(S∞)} > 0. □

We complete the proof of Theorem 3.3 with the next Proposition.

Proposition 3.6.

(3.25) lim
d→∞

E{bi(Sd)} = E{bi(S∞)}.

Proof. — Let bi(Sd) = bd. Define a random field Yd = (Xd, xd) : Rm →
Rk × R to be the rescaled Kostlan polynomial of type (m, k + 1). Con-
sider the semialgebraic subset W ′ = W ∩ Jr(Dm,Rk) of the real algebraic
smooth manifold Jr(Rm,Rk) and observe that Sd = (jrXd)−1(W ′) is com-
pact. Now Theorem 2.3, along with Remark 2.7, implies the existence of a
semialgebraic submanifold Ŵ ′ ⊂ Jr+1(Rm,Rk+1) of codimension m and a
constant C, such that

(3.26) bd ⩽ C#
{(
jr+1(Yd)

)−1 (Ŵ ′)
}

=: Nd

whenever jrXd
−⋔ W ′ and jr+1Yd

−⋔ Ŵ ′, hence almost surely, because of
Theorem 3.3(4). Since Yd ⇒ Y∞ by Theorem 3.3(2), we see that [bd, Nd] ⇒
[b∞, N∞] and it is not restrictive to assume that (bi, Nd) → (bi, N∞) almost
surely, by Skorokhod’s theorem (see [1, Theorem 6.7]). Moreover E{Nd} →
E{N∞} by Theorem 3.3(6). Now we can conclude with Fatou’s Lemma as
follows

(3.27)

2E{N∞} = E{lim inf
d

Nd +N∞ − |bd − b∞|}

⩽ lim inf
d

E{Nd +N∞ − |bd − b∞|}

= 2E{N∞} − lim sup
d

E{|bd − b∞|},

so that

□(3.28) lim sup
d

E{|bd − b∞|} ⩽ 0.
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In the sequel, with the scope of keeping a light notation, for a given
W ⊂ Jr(Sm,Rk) and ψ : Sm → Rk we will denote by Zd ⊆ Sm the set

(3.29) Zd = jrψ−1(W ).

If W is of codimension m, then by Theorem 3.3, Zd is almost surely a finite
set of points and the expectation of this number is given by next result.

Theorem 3.7 (Generalized square-root law for cardinality). — LetW ⊂
Jr(Sm,Rk) be a semialgebraic intrinsic subset of codimension m. Then
there is a constant CW > 0 such that:

(3.30) E{#Zd} = CW d
m
2 +O(dm

2 −1).

Moreover, the value of CW can be computed as follows. Let

Y∞ = e− |u|2
2 X∞ ∈ G∞(Dm,Rk)

and let W0 ⊂ Jr(Dm,Rk) be the local model for W . Then

(3.31) CW = m
vol(Sm)

vol(Sm−1)E#{u ∈ Dm : jruY∞ ∈ W0}.

In order to prove Theorem 3.7, we will need a preliminary Lemma, which
ensures that we will be in the position of using the generalized Kac-Rice
formula of point (6) from Theorem 3.3.

Lemma 3.8. — If W ⊂ Jr(M,Rk) is intrinsic, then W is transverse to
fibers.

Proof. — Since the result is local it is sufficient to prove it in the case
when M = Rm. In this case we have a natural identification (see [15,
Chapter 2, Section 4])

For any point u ∈ Rm we consider the embedding iu : Dm → Rm obtained
as the isometric inclusion in the disk with center u and let τu : Rm → Rm be
the translation map x 7→ u+ x. Let u, v ∈ Rm be two points with distance
smaller than 1, he fact that the submanifold W is intrinsic implies that
jrvf ∈ W if and only if (jriu)∗(jrvf) ∈ W0, where W0 ⊂ Jr(Dm,Rk) is the
model for W . From this we deduce that also the jet jru(f ◦ τv−u) is in W ,
since:

(3.32)

(jriv)∗ (jrvf) = jr(τv−u ◦ iu)∗(jrvf)

= (jriu)∗
(
jr (τv−u)∗

(
jrτv−u(u)f

))
= (jriu)∗ (jru (f ◦ τv−u)) .
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By interchanging the role of u and v, we conclude that jru(f ◦ τv−u) ∈ W

if and only if jrvf ∈ W . Notice that such statement is thus true for any
couple of points u, v ∈ Rm, regardless of their distance.

We thus claim that T (W ) is of the form Rm × W , under the natural
identification (see [15, Sec. 2.4]):

(3.33) T : Jr(Rm,Rk) ∼= Rm × Jr0 (Rm,Rk), jruf 7→ (u, jr0(f ◦ τu)).

To see this, observe that if (v, jr0g) ∈ T (W ), hence (v, jr0g) = T (jrvf) for a
jet jrvf ∈ W such that g = f ◦ τv, then

(u, jr0g) = T (jru(f ◦ τv−u)) ∈ T (W ). □

Figure 3.2. A family of shrinking embedding of the unit disk.

The reason why we consider intrinsic submanifold is to be able to easily
pass to the rescaled Kostlan polynomial Xd ∈ G∞(Dm,Rk) by composing
ψd with the embedding of the disk aRd defined by:

(3.34) aRd : Dm ↪→ Sm, u 7→
R
(

1
u√

d

)
√(

1 + |u|2

d

)
for any R ∈ O(m+ 1) (see Figure 3.2).

Proof of Theorem 3.7. — Let us consider the set function µd : B(Sm) 7→
R such that A 7→ E{#(jrXd)−1(W ) ∩ A}. It is explained in [20] that µd
is a Radon measure on Sm. Because of the invariance under rotation of
Pd, by Haar’s theorem µ needs to be proportional to the volume measure.
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Therefore for any Borel subset A ⊂ Sm we have E{#Zd} = µd(Sm) =
µd(A) vol(A)−1 vol(Sm). Define Yd ∈ G∞(Dm,Rk) as

(3.35) Yd =
(

1 + |u|2

d

)− d
2

Xd.

Observe that Yd ⇒ Y∞ = exp(− |u|2

2 )X∞ and that Yd is equivalent to the
GRF ψd ◦ aRd for any R ∈ O(m+ 1).

Now let W0 ⊂ Jr(Dm,Rk) be the (semialgebraic) model of W . By the
same proof of point (7) from Theorem 3.3, adapted to Yd, there is a con-
vergent sequence of functions ρd → ρ+∞ ∈ L1(Dm) such that

(3.36) E{#(jrYd)−1(W0)} =
∫
Dm

ρd →
∫
Dm

ρ∞ = E{#(jrY∞)−1(W0)}.

In conclusion we have for A = aRd (Dm), as d → +∞

□(3.37)

E{#Zd} = µd(A) vol(A)−1 vol(Sm)

= E{#(jrYd)−1(jrφ∗(W ))} vol(A)−1 vol(Sm)

= E{#(jrYd)−1(W0)}

 ∫ π
0 |sin θ|m−1d θ∫ arctan(d− 1

2 )
0 |sin θ|m−1d θ


= E{#(jrY∞)−1(W0)}m vol(Sm)

vol(Sm−1)d
m
2 +O(dm

2 −1).

Building on the previous results, we can now prove the general case for
Betti numbers of a random singualrity.

Theorem 3.9 (Generalized square-root law for Betti numbers). — Let
W ⊂ Jr(Sm,Rk) be a closed semialgebraic intrinsic (as defined in Defini-
tion 2.6) of codimension 1 ⩽ l ⩽ m. Then there are constants bW , BW > 0
depending only on W such that

(3.38) bW d
m
2 ⩽ E{bi(Zd)} ⩽ BW d

m
2 ∀i = 0, . . . ,m− l

and E{bi(Zd)} = 0 for all other i.

Proof. — The proof is divided in two parts, first we prove the upper
bound, using the square-root law from Theorem 3.7, then the we use The-
orem 7 to deduce the lower bound. The globalization step for the lower
bound is a generalization of the so-called “barrier method” from [11,22].

(1) Assume W is smooth with codimension s. Let us consider

(3.39) Pm,k+1
d |Sm = Ψd = (ψd, ψ1

d) ∈ G∞(Sm,Rk+1)
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and Let Ŵ ⊂ Jr+1(Sm,Rk+1) be the intrinsic semialgebraic sub-
manifold coming from Theorem 2.3 and Remark 2.7. Thus, using
Theorems 2.3 and 3.7, we get

(3.40) E{bi(Zd)} ⩽ NWE#
{

(jr+1Ψd)−1(Ŵ )
}
⩽ NWCŴ d

m
2 .

(2) Consider the embeddings of the m dimensional disk aRd : Dm ↪→ Sm

defined in (3.34). For any fixed d ∈ N, choose a finite subset Fd ⊂
O(m + 1) such that the images of the corresponding embeddings
{aRd (Dm)}R∈Fd

are disjoint. Denoting by ZRd the union of all con-
nected components of Zd that are entirely contained in aRd (Dm), we
have

(3.41) bi(Zd) ⩾
∑
R∈Fd

bi(ZRd ).

Let W0 ⊂ Jr(Dm,Rk) be the model of W as an intrinsic submani-
fold, it is closed and semialgebraic. By Definition 2.6, we have

(3.42) (aRd )−1 ((jrψd)−1(W )
)

=
(
jr(ψd ◦ aRd )

)−1 (W0) ⊂ Dm.

Recall that for any R ∈ O(m + 1), the GRF ψd ◦ aRd is equivalent
to Yd ∈ G∞(Dm,Rk) defined in 3.35, hence taking expectation in
Equation (3.42) we find

(3.43) E{bi(Zd)} ⩾ #(Fd)E{bi(Sd)},

where Sd = (jr(Yd))−1 (W0). is easy to see (repeating the same
proof) that Theorem 3.3(7) holds also for the sequence Yd ⇒ Y∞,
so that E{Sd} → E{S∞}. We can assume that E{S∞} > 0, because
of Lemma 3.5, thus for big enough d, the numbers E{bi(Sd)} are
bounded below by a constant C > 0. Now it remains to estimate
the number #(Fd). Notice that aRd (Dm) is a ball in Sm of a certain
radius εd, hence it is possible to choose Fd to have at least Nmε−1

d

elements, for some dimensional constant Nm > 0 depending only
on m. We conclude by observing that

□(3.44) εd ≈ d− m
2 .

Appendix A. Examples of applications of Theorem 3.3

Example A.1 (Zero sets of random polynomials). — Consider the zero
set Zd ⊂ RPm of a random Kostlan polynomial Pd = Pm+1,1

d . Recently
Gayet and Welschinger [11] have proved that given a compact hypersurface
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Y ⊂ Rm there exists a positive constant c = c(Rm, Y ) > 0 and d0 =
d0(Rm, Y ) ∈ N such that for every point x ∈ RPm and every large enough
degree d ⩾ d0, denoting by Bd any open ball of radius d−1/2 in RPm, we
have:

(A.1) (Bd, Bd ∩ Zd) ∼= (Rm, Y )

(i.e. the two pairs are diffeomorphic) with probability larger than c. This
result follows from Theorem 3.3 as follows. Let Dm ⊂ Rm be the unit disk,
and let U ⊂ C∞(Dm,R) be the open set consisting of functions g : Dm → R
whose zero set is regular (an open C1 condition satisfied almost surely by
Xd, because of point (4)), entirely contained in the interior of Dm (an open
C0 condition) and such that, denoting by B ⊂ Rm the standard unit open
ball, the first two conditions hold and (B,B ∩ {g = 0}) is diffeomorphic
to (Rm, Y ) (this is another open C1 condition). Observe that, using the
notation above:

(A.2) (Bd, Bd ∩ Zd) ∼ (B,B ∩ {Xd = 0})

(this is simply because Xd(u) = Pd(1, ud−1/2)). Consequently point (5) of
Theorem 3.3 implies that:

lim
d→+∞

P{(A.1)} = lim
d→∞

P {(B,B ∩ {Xd = 0}) ∼ (Rm, Y )}(A.3)

= lim
d→∞

P {Xd ∈ U}(A.4)

= P {X∞ ∈ U} > 0.(A.5)

We stress that, as an extra consequence of Theorem 3.3, compared to [11]
what we get is the existence of the limit of the probability of seeing a given
diffeomorphism type.

Example A.2 (Discrete properties of random maps). — Let [Xd] ⇒ [X∞]
be a converging family of gaussian random fields. In this example we intro-
duce a useful tool for studying the asymptotic probability induced by Xd

on discrete sets as d → ∞. The key example that we have in mind is the
case when we consider a codimension-one “discriminant” Σ ⊂ C∞(Sm,Rk)
which partitions the set of functions into many connected open sets. For
instance Σ could be the set of maps for which zero is not a regular value:
the complement of Σ consists of countably many open connected sets, each
one of which corresponds to a rigid isotopy class of embedding of a smooth
codimension-k submanifold Z ⊂ Sm. The following Lemma gives a simple
technical tool for dealing with these situations.

Lemma A.3. — Let E be a metric space and let [Xd], [X∞] be a random
fields such that [Xd] ⇒ [X∞]. Let also Z be a discrete space and ν : U ⊂
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E → Z be a continuous function defined on an open subset U ⊂ E such
that(17) P{X∞ ∈ U} = 1. Then, for any A ⊂ Z we have:

(A.6) ∃ lim
d→∞

P {Xd ∈ U, ν(Xd) ∈ A} = P {ν(X∞) ∈ A} .

Proof. — Since ν−1(A) is closed and open by continuity of ν, it follows
that ∂ν−1(A) ⊂ E\U . Therefore P{X∞ ∈ ∂ν−1(A)} = 0 and by Portman-
teau’s Theorem [1, Theorem 2.1], we conclude that

□(A.7) P{Xd ∈ ν−1(A)} −−−→
d→∞

P{X∞ ∈ ν−1(A)}, ∀ A ⊂ Z.

Equation (A.7), in the case of a discrete topological space such as Z, is
equivalent to narrow convergence ν(Xd) ⇒ ν(X), by Portmanteau’s Theo-
rem, because ∂A = ∅ for all subsets A ⊂ Z. Note also that to prove narrow
convergence of a sequence of measures on Z, it is sufficient to show (A.7)
for all A = {z}, indeed in that case the inequality

(A.8)

lim inf
d→∞

P{νd ∈ A} = lim inf
d→∞

∑
z∈A

P{νd = z}

⩾
∑
z∈A

P{ν = z} = P{ν ∈ A}

follows automatically from Fatou’s lemma.
Following Sarnak and Wigman [24], let us consider one simple appli-

cation of this Lemma. Let Hm−1 be the set of diffeomorphism classes
of smooth closed connected hypersurfaces of Rm. Consider U = {f ∈
C∞(Dm,R) : f −⋔ 0} and let ν(f) be the number of connected components
of f−1(0) entirely contained in the interior of Dm. For h ∈ Hm−1 let νh(f)
be the number of those components which are diffeomorphic to h ⊂ Rm. In
the spirit of [24], we define the probability measure µ(f) ∈ P(Hm−1) as

(A.9) µ(f) = 1
ν(f)

∑
h∈Hm−1

νh(f)δh.

Let us consider now the rescaled Kostlan polynomial Xd : Dm → R as
in Theorem 3.3. The diffeomorphism type of each internal component of
f−1(0) remains the same after small perturbations of f inside U , hence
µ : U → P(Hm−1) is a locally constant map, therefore by Lemma A.3 we
obtain that for any subset A ⊂ P(Hm−1),

(A.10) ∃ lim
d→∞

P{Xd ∈ U and µ(Xd) ∈ A} = P{µ(X∞) ∈ A}.

(17) Of course, E ∖ U = Σ is what we called “discriminant” in the previous discussion.
Note that we do not require that P{Xd ∈ U} = 1, however it will follow that limd P{Xd ∈
U} = 1.
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Moreover since in this case Xd ∈ U with P = 1, for all d ∈ N and the
support of X∞ is the whole C∞(Dm,R), we have

(A.11) ∃ lim
d→∞

P{µ(Xd) ∈ A} = P{µ(X∞) ∈ A} > 0.

Example A.4 (Random rational maps). — The Kostlan polynomial
Pm,k+1
d can be used to define random rational maps. In fact, writing
Pm,k+1
d = (p0, . . . , pk), then one can consider the map φm,kd : RPm 99K RPk

defined by:

(A.12) φm,kd ([x0, . . . , xm]) = [p0(x), . . . , pm(x)].

(When m > k, with positive probability, this map might not be defined on
the whole RPm; when m ⩽ k with probability one we have that the list
(p0, . . . , pk) has no common zeroes, and we get a well defined map φm,kd :
RPm → RPk.) Given a point x ∈ RPm and a small disk Dd = D(x, d−1/2)
centered at this point, the behavior of φm,kd |Dd

is captured by the random
field Xd defined in (3.8): one can therefore apply Theorem 3.3 and deduce,
asymptotic local properties of this map.

For example, when m ⩽ k for any given embedding of the unit disk
q : Dm ↪→ RPk and for every neighborhood U of q(∂Dm) there exists a
positive constant c = c(q) > 0 such that for big enough degree d and with
probability larger than c the map

(A.13) Xd = φm,kd ◦ ad : Dm → RPk

(defined by composing φ with the rescaling diffeomorphism ad : Dm →
Dd) is isotopic to q thorugh an isotopy {qt : Dm → RPk}t∈I such that
qt(∂Dm) ⊂ U for all t ∈ I.

The random map φm,kd is strictly related to the random map ψm,kd : Sm →
Rk:

(A.14) ψm,kd (x) = Pm,kd (x),

which is an easier object to work with. For example the random algebraic
variety {φd = 0} is the quotient of {ψd = 0} modulo the antipodal map. If
we denote by Dd any sequence of disks of radius d− 1

2 in the sphere, then
ψd|Dd

≈ Xd, so that we can understand the local asymptotic behaviour
of ψd using Theorem 3.3 (see Figure 3.1). For instance, from point (7) it
follows that

(A.15) E {bi ({ψd = 0} ∩Dd)} → E {bi ({X∞ = 0} ∩ Dm)} .

Example A.5 (Random knots). — Kostlan polynomials offer different
possible ways to define a “random knot”. The first is by considering a
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random rational map:

(A.16) φ1,3
d : RP1 → RP3,

to which the discussion from Example A.4 applies. (Observe that this dis-
cussion has to do with the local structure of the knot.)

Another interesting example of random knots, with a more global flavour,
can be obtained as follows. Take the random Kostlan map Xd : R2 → R3

(as in (3.8) with m = 2 and k = 3) and restrict it to S1 = ∂Dm to define a
random knot:

(A.17) kd = Xd|∂Dm : S1 → R3.

The difference between this model and the previous one is that this is global,
in the sense that as d → ∞ we get a limit global model k∞ = X∞|∂D :
S1 → R3. What is interesting for this model is that the Delbruck–Frisch–
Wasserman conjecture [5,9], that a typical random knot is non-trivial, does
not hold: in fact k∞ charges every knot (included the unknot) with positive
probability.

Proposition A.6. — The random map:

(A.18) kd = Xd|∂D2 : S1 → R3.

is almost surely a topological embedding (i.e. a knot). Similarly, the random
rational map φ1,3

d : RP1 → RP3 is almost surely an embedding.
Proof. — We prove the statement for kd, the case of φ1,3

d is similar. Since
S1 is compact, it is enough to prove that kd is injective with probability
one.

Let Fd = R[x0, x1, x2]3(d) be the space of triples of homogeeous polyno-
mials of degree d in 3 variables. Recall that kd = Xd|∂D2 , where, if P ∈ Fd,
we have set:

(A.19) Xd(u) = P

(
1, u√

d

)
, u = (u1, u2) ∈ R2.

Let now S1 = ∂D2 ⊂ R2 and ϕ :
(
(S1 × S1)\∆

)
× Fd → R3 be the map

defined by

(A.20) ϕ(x, y, P ) = P

(
1, x√

d

)
− P

(
1, y√

d

)
.

Observe that ϕ ⋔ {0}. By the parametric transversality theorem we con-
clude that ϕ is almost surely transversal to W = {0}. This imples that,
with probability one, the set

(A.21) {x ̸= y ∈ S1 × S1 | kd(x) = kd(y)}
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is a codimension-three submanifold of S1 × S1 hence it is empty, so that
kd is injective. □

Theorem 3.3 implies now that the random variable kd ∈ C∞(S1,R3)
converges narrowly to k∞ ∈ C∞(S1,R3), which is the restriction to S1 =
∂D2 of X∞. Note that, since the support of X∞ is all C∞(D2,R3), it follows
that the support of k∞ is all C∞(S1,R3) and in particular every knot (i.e.
isotopy class of topological embeddings S1 → R3, a set with nonempty
interior in the C∞ topology) has positive probability by Theorem 3.3(3).
Moreover, denoting by γ1 ∼ γ2 two isotopic knots, we have that

(A.22) P (∂{k∞ ∼ γ}) ⩽ P{k∞ is not an immersion} = 0

by Theorem 3.3(4), because the condition of being an immersion is equiva-
lent to that of being transverse to the zero section of J1(S1,R3) → S1 ×R3.
Theorem 3.3(2), thus implies that for every knot γ : S1 → R3 we have:

(A.23) lim
d→∞

P{kd ∼ γ} = P{k∞ ∼ γ} > 0.
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