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1 Introduction

Scattering amplitudes, the most basic observables of flat spacetimes, take the form of
conformal correlators on the celestial sphere once rewritten in a basis that makes their
SL(2,C) transformation properties manifest [1–4]. The map amounts to trading the on-shell
momentum of a bulk particle for the data of the point (z, z̄) at which it pierces the celestial
sphere and a conformal dimension ∆. In that way, each incoming or outgoing particle is
associated with an operator O∆(z, z̄) on the celestial sphere which is thus identified as a
‘celestial CFT’ (CCFT) operator (see [5–8] for reviews on celestial holography).

Celestial CFT correlation functions, by their very definition, should be consistent with
all known asymptotic symmetry constraints. The latter can be elegantly expressed in a
CFT language as current algebras on the celestial sphere arising from insertions of celestial
operators of a certain (sometimes negative) integer conformal dimension ∆ (see e.g. [9–14]).
This ‘conformally soft’ sector is governed, at leading order, by the Goldstone and memory
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modes associated with spontaneously broken supertranslation (for gravity) and large gauge
(for gauge theory) symmetries. Both of these modes turn out to play a key role in the universal
infrared (IR) properties of scattering amplitudes [15]. Indeed, in gravity,1 a descendant of the
memory mode gives rise to the supertranslation current, whose insertion into the S-matrix
was famously shown to reproduce Weinberg’s soft graviton theorem [16, 17]. On the other
hand, the supertranslation Goldstone boson, denoted C(z, z̄), is responsible for the fact
that amplitudes with an IR cutoff can be factorized into a hard and a soft piece, the latter
containing all IR divergences [18, 19]. The deep lesson we have learned in the last years
is that IR divergences are present in order to set to zero all amplitudes that violate BMS
asymptotic symmetry conservation laws [20–22]. IR divergences arising from virtual soft
gravitons exchanges are accounted for by the supertranslation Goldstone C(z, z̄) current
algebra. While the gravitational memory effect [23–25] is an IR-safe observable, the Goldstone
two-point function is logarithmic with an IR-divergent level proportional to the gravitational
cusp anomalous dimension [18, 19] (see also [26] for the QED analog).

Studies of the supertranslation Goldstone mode have also played an important role in
the following works. In [27], an effective action for supertranslation modes was derived
from an analysis of the gravitational field equations and action principle near spatial infinity
i0. In particular, the supertranslation Goldstone mode was related there to the Goldstone
associated with the breaking of ‘spi supertranslations’ at i0 [28, 29]. In [30] (see also [31, 32]),
the authors solved the long-standing problem of deriving a covariant and supertranslation-
invariant formula for the flux of angular momentum in asymptotically flat spacetimes. One
of the key observations they have made is that any supertranslation-invariant flux is defined
with respect to a particular point which defines the origin of the coordinate system and that
one needs to define the lowest l = 0, 1 harmonics of the boundary gravitons at u → ±∞ in
order to completely define a covariant and supertranslation-invariant flux. In [33–35], the
structure of conformal multiplets in CCFT was analyzed and, in the conformally soft sector,
Goldstone modes correspond to the operators at the top of ‘celestial diamonds’. Because of
their divergent logarithmic two-point function, the question was raised whether they should
be excluded from the original CCFT spectrum or whether they could be somehow included
in a logarithmic extension of the theory [35]. Finally, a novel point of view on the CCFT soft
sector was put forward in [36–38], where it was shown that the infinite-dimensional space of
vacua in asymptotically flat spacetime can be thought of from a geometric perspective where
soft insertions implement parallel transport about the infinite-dimensional vacuum manifold.

Logarithmic CFTs (log CFTs) are conformal field theories whose correlation functions
might exhibit logarithmic singularities [39]; see also [40–42] for early works and [43–47]
for reviews, including discussions of their relevance in the description of certain statistical
models. They are characterized by the fact that they contain reducible but indecomposable
representations of the conformal group, called logarithmic multiplets. A remarkable feature
of log CFTs is the fact that the full conformal invariance of the theory is preserved despite the
presence of a scale. This feature makes them a priori interesting to study in the context of
celestial holography, given the persistence of a length scale in asymptotically flat spacetimes
(in contrast to AdS spacetime where the presence of both the AdS radius and Newton constant

1In this work we focus on the gravitational case, but similar statements hold for gauge theory.
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allows to build dimensionless quantities). In fact, encounters of logarithmic CFT patterns in
the celestial CFT literature have recently appeared [48–50]. In [49], a logarithmic partner
of the celestial stress tensor [51] was considered as a composite operator made out of the
celestial stress tensor and the superrotation Liouville field [52, 53]. From the celestial OPE
side, the presence of logarithms in the IR-finite parts of loop-corrected gluon OPEs was
observed in [48, 50] (see also [54]). This has raised the possibility that certain sectors of
celestial CFT could be organized by logarithmic CFT multiplets.

The goal of this paper is to investigate the presence of logarithmic CFT doublets in the
soft sector of CCFT associated with supertranslations. It is structured as follows. In section 2,
we review the basic celestial CFT objects needed for our discussion, such as celestial operators
as conformal primaries and soft (Goldstone and memory) modes associated to supertranslation
symmetry. We also provide a new derivation of the Goldstone boson two-point function
which was first inferred in [18] from Weinberg’s formula for the factorization of IR divergences
from virtual gravitons. Section 3 provides a brief review of the definition of logarithmic
CFT primaries and multiplets. We also introduce there a ‘log-shadow transform’, a non-local
transform which maps a log CFT doublet of weights (h, h̄) to another log CFT doublet of
weights (2− h, 2− h̄). In section 4, we show that the quantum operator associated with a
log u behavior of the gravitational shear at late time induces a log CFT doublet structure in
the supertranslation currents sector. We start by reviewing in section 4.1 the form of this
quantum operator in terms of ladder operators, which was already pointed out in [55, 56]
in QED. We then show that this primary operator modifies the transformation property of
the Goldstone supertranslation current to that of a logarithmic primary and that they form
together a logarithmic pair of conformal weights (32 ,−1

2). We then identify the log-primary
in section 4.3 as an IR-regulated expression of the supertranslation Goldstone current and
use this regulated mode to compute the two-point functions of the logarithmic pair. We end
in section 5 with a discussion on our results. In particular, we provide an interpretation
of our two-point log CFT structure by drawing an analogy with the case of a free scalar
in 2d CFT, where we show that a similar structure can be obtained when considering the
operator extracting the divergent part of the correlator, which is related to the presence of
the free scalar zero-mode. We also comment on the scenario in which logarithmic correlation
functions can appear in Coulomb gas models when the Liouville puncture operator is included
in the spectrum of a gravitationally dressed CFT.

2 Celestial CFT operators

In this section, we present the generic set-up and give a brief introduction to the constructions
of primary operators in celestial CFT.

2.1 Massless fields in flat space

We start by introducing the main set-up, following mostly the notation of [57]. We consider a
massless bosonic spin-s (s = 0, 1, 2, . . . ) field ϕ

(s)
I in flat space R1,3. The index I = µ1 . . . µs

is a collection of symmetrized indices, (µi = 0, . . . , 3) in Cartesian coordinates Xµ = (t, x⃗).
At late times, the massless field admits the mode expansion

ϕ
(s)
I (X) = K(s)

∑
α=±

∫
d3p

(2π)32p0

[
ϵ∗α
I (q⃗)a(s)

α (p⃗)eipµXµ + ϵα
I (q⃗)a(s)

α (p⃗)†e−ipµXµ
]

(2.1)
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with K(s) a constant and where the momentum is parametrized as (see e.g. [17])

pµ = ωqµ(w, w̄), qµ = 1√
2
(1 + ww̄, w + w̄, i(w̄ − w), 1− ww̄) (2.2)

and the polarization tensors ϵ±I (q⃗) = ϵ±µ1(q⃗) . . . ϵ±µs
(q⃗) with

ϵ+µ (q⃗)= ∂wqµ = 1√
2
(−w̄,1,−i,−w̄), ϵ−µ (q⃗)= ϵ+µ (q⃗)∗= ∂w̄qµ = 1√

2
(−w,1,−i,−w) .

(2.3)

The ladder operators a
(s)
α (p⃗) satisfy the usual commutation relations, which in this basis read

[
a(s)

α (ω, z, z̄), a
(s)
β (ξ, w, w̄)†

]
= 16π3

ω
δ(ω − ξ)δ(2)(z − w)δαβ . (2.4)

Using the transformation properties of the spin-s field under Poincaré

ϕ′(s)
µ1...µs

(X ′) = Λµ1
ν1

. . .Λµs
νs

ϕ(s)
ν1...νs

(X), X ′µ = Λµ
νXν + tµ , (2.5)

we can deduce the transformation of the ladder operators. In particular, the Lorentz
group induces on the frequency and the holomorphic coordinates the following SL(2,C)
Möbius action:

w′ = aw + b

cw + d
, ω′ =

∣∣∣∣∂w′

∂w

∣∣∣∣−1
ω, q′µ =

∣∣∣∣∂w′

∂w

∣∣∣∣Λµ
νqν(w, w̄) , (2.6)

where Λµ
ν is the Lorentz matrix related to the SL(2,C) transformations. Ladder operators

transform under Poincaré transformations as

a(s)
α

′(ω′, w′, w̄′) =
(

∂w′

∂w

)−J
2
(

∂w̄′

∂w̄

)J
2

e−iωqµ(w,w̄)Λµ
νtν a(s)

α (ω, w, w̄). (2.7)

2.2 Celestial primaries

A conformal primary wavefunction is a solution of the linearized spin-s equation of motion
that transforms under SL(2,C) as a 2d conformal primary of weight ∆ and spin J and a
4d spinor/tensor of spin s [3, 58, 59]:

ϕ
(s)
∆,α

(
Λµ

νXν ,
aw+b

cw+d
,
āw̄+b̄

c̄w̄+d̄

)
=(cw+d)∆+J(c̄w̄+d̄)∆−JDs(Λ)ϕ(s)

∆,α (X
µ,w, w̄) , (2.8)

where α = ± is the helicity index, J = αs, Ds(Λ) is the 3 + 1 d spin-s representation of the
Lorentz algebra and Λ(M) is the Lorentz matrix related to the SL(2,C) element:

M =
(

a b

c d

)
∈ SL(2,C). (2.9)

An operator on the celestial sphere is then constructed using the symplectic product [60]

O(s),±
∆,α (w, w̄) =

(
ϕ
(s)
I (X), ϕ

(s)
∆∗,−α (Xµ ∓ iϵ, w, w̄)

)
Σ

, (2.10)
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where the ± superscript indicates whether the operator is a creation or annihilation operator.
This formal definition is equivalent, up to a normalization constant (see e.g. [61] for de-

tails), to the Mellin transform of the usual momentum space operators a
(s)
α (ω, z, z̄), a

(s)†
α (ω, z, z̄)

O(s),+
∆,α (z, z̄) ∼ a

(s)
∆,α(z, z̄) =

∫ +∞

0
dω ω∆−1a(s)

α (ω, z, z̄),

O(s),−
∆,α (z, z̄) ∼ a

(s),†
∆,α (z, z̄) =

∫ +∞

0
dω ω∆−1a

(s)
−α(ω, z, z̄)

†
.

(2.11)

These operators act on the vacuum creating boost eigenstates, which form a basis on
the space of square normalizable wavefunctions for ∆ in the continuous principal series,
∆ ∈ 1 + iλ, λ ∈ R [1, 58]. It is easy to prove that the Mellin basis operators transform
under Poincaré as

a
(s)
∆,α

′
(w′, w̄′) =

(
∂w′

∂w

)−∆+J
2
(

∂w̄′

∂w̄

)−∆−J
2

e−iqµ(w,w̄)Λµ
νtνδ∆a

(s)
∆,α(w, w̄) , (2.12)

where translations implement a shift in the conformal dimension δ∆a
(s)
∆,α := a

(s)
∆+1,α. Focusing

on the SL(2,C) part of Poincaré by fixing t = 0, if we rewrite w′ = f(w), w̄′ = f̄(w̄), we
see that a

(s)
∆,α(w, w̄) transforms as a conformal primary field:

a
(s)′
∆,α(w

′, w̄′) = (∂f)−h
(
∂̄f̄
)−h̄

a
(s)
∆,α(w, w̄) (2.13)

of weights

h = ∆+ J

2 , h̄ = ∆− J

2 . (2.14)

The complex conjugate operator a
(s),†
∆,−α(z, z̄) transforms in the same way with the swap

J → −J . In what follows we will focus in particular on spin-two operators a
(2)
∆,α(z, z̄).

2.3 Soft gravitational phase space

The mode expansion for a graviton is read from (2.1) with s = 2:

hµν(X) = κ
∑
α=±

∫
d3p

(2π)32p0

[
ϵ∗α
µν(q⃗)aα(p⃗)eipµXµ + ϵα

µν(q⃗)aα(p⃗)†e−ipµXµ
]

(2.15)

where κ =
√
32πG and we dropped the spin superscript in a, a†. One can obtain the boundary

field at future null infinity I + by using retarded Bondi coordinates2 and taking the large
r limit. This leads to (see e.g. [17])

Czz =
κ

8iπ2

∫ ∞

0
dω
[
a+e−iωu−a†

−eiωu
]
, Cz̄z̄ =

κ

8iπ2

∫ ∞

0
dω
[
a−e−iωu−a†

+eiωu
]

, (2.16)

where the gravitational shear is defined as Czz(u, z, z̄) = limr→∞ r−1hzz(u, r, z, z̄) (and
similarly for the Cz̄z̄ component).

2We use the same coordinate conventions as in [18], where the Minkowski metric is given by ds2 = −dudr +
r2dzdz̄.
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The asymptotic shear is paired with the news tensor Nzz = ∂uCzz through the Ashtekar-
Streubel symplectic structure [28, 62, 63]. Together, they describe the ‘hard’ part (as opposed
to the ‘soft’ piece described below) of the gravitational phase space and satisfy the following
commutation relations:3[

Nz̄z̄(u), Cww(u′)
]
= −16πiGδ(u − u′)δ(2)(z − w) . (2.17)

Under the action of the extended BMS group (see [8] for a recent review on BMS
symmetries in the context of celestial holography), they transform as [64]

δ(T ,Y,Ȳ)Czz =
(
Y∂+Ȳ ∂̄+3

2∂Y− 1
2 ∂̄Ȳ

)
Czz+

(
T + ∂Y+∂̄Ȳ

2

)
Nzz−2∂2T −u∂3Y (2.18)

δ(T ,Y,Ȳ)Nzz =
(
Y∂+Ȳ ∂̄+2∂Y

)
Nzz+

(
T + ∂Y+∂̄Ȳ

2

)
∂uNzz−∂3Y , (2.19)

where T (z, z̄) and Y(z), Ȳ(z̄) denote the supertranslation and superrotation4 generators,
respectively.

Goldstone boson. The supertranslation Goldstone mode, denoted C(z, z̄), is related to the
infinite vacua degeneracy of asymptotically flat spacetimes [2, 17]. It was shown to play a
key role in the context of (conformal) dressing leading to IR-finite amplitudes [18, 19], as
we will briefly review below. It owes its name to the fact that it transforms as a pure shift
under the action of an infinitesimal supertranslation, δT C(z, z̄) = T (z, z̄) while it transforms
under superrotations as a primary of weights (−1

2 ,−1
2) [18, 52]:

δ(Y,Ȳ)C(z, z̄) =
(
Y∂ + Ȳ ∂̄ − 1

2∂Y − 1
2 ∂̄Ȳ

)
C(z, z̄) . (2.20)

An expression of the supertranslation Goldstone boson in terms of creation and anni-
hilation operators can be found in [19]:

C(z, z̄) = iκ

8π2

∫ ∞

0
dω

∫
d2y

2π

[
z − y

z̄ − ȳ

(
a+(ω, y, ȳ)− a†

−(ω, y, ȳ)
)

+ z̄ − x̄

z − x

(
a−(ω, y, ȳ)− a†

+(ω, y, ȳ)
)]

= iκ

8π2

∫ ∞

0
dω

∫
d2y

2π

[
z − y

z̄ − ȳ
δa+ + z̄ − ȳ

z − y
δa−

]
,

(2.21)

with δa± := a± − a†
∓. Using the commutation relations (2.4) one can check that C(z, z̄)

satisfies the commutation relation:5

[C(z, z̄), Cww(u)] = −8πiG
z̄ − w̄

z − w
Θ(u) . (2.22)

3In Nz̄z̄(u, z, z̄) and Cww(u′, w, w̄) we dropped the dependence on z and z̄ to make the notation more com-
pact.

4We allow for conformal Killing vector fields with possible isolated poles on the celestial sphere [64].
5Θ(u) = sign(u) denotes the sign function with the property: ∂uΘ(u) = 2δ(u).
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We also recall that from C(z, z̄) descends an additional primary field known as the
Goldstone supertranslation current (see e.g. [18, 33]):

Czz(z, z̄) = ∂2
z C(z, z̄) . (2.23)

It is thus a (32 ,−1
2) primary descendant6 and, using ∂z

1
z̄−ȳ = 2πδ(2)(z − y), one can write [19]

Czz(z, z̄) = iκ

8π2

∫ ∞

0
dω

[
a+(ω, z, z̄)− a†

−(ω, z, z̄)

+
∫

d2y

π

z̄ − ȳ

(z − y)3
(
a−(ω, z, z̄)− a†

+(ω, z, z̄)
)]

,

(2.24)

and satisfies ∂2
z̄Czz = ∂2

zCz̄z̄ and C†
z̄z̄ = Czz. Notice that expression (2.24) is the combination

of a ∆ = 1, J = 2 mode and the shadow transform7 of a ∆ = 1, J = −2 primary. Also,
the relation (2.23) implies that for a given expression of Czz there is a global translation
ambiguity in the Goldstone mode C(z, z̄) → C(z, z̄) + t since a global (Poincaré) translation
t is such that ∂2

z t = 0.

Memory modes. The (leading) soft graviton operator N (0)
zz (and similarly its complex

conjugate N (0)
z̄z̄ ) is defined as the following zero mode of the news tensor [17, 65]

N (0)
zz =

∫ ∞

−∞
duNzz(u) = Czz|I +

+
− Czz|I +

−
. (2.25)

Since it can be expressed as a difference of the u → ±∞ values of the shear, it is sometimes
referred to as the ‘memory mode’. It transforms as a (32 ,−1

2) primary under the extended
BMS symmetries

δ(T ,Y)N (0)
zz =

(
Y∂ + Ȳ ∂̄ + 3

2∂Y − 1
2 ∂̄Ȳ

)
N (0)

zz , (2.26)

while N (0)
z̄z̄ is a (−1

2 , 3
2) primary. Its commutation relations with the shear are[

N (0)
zz , Cw̄w̄(u)

]
=
[
N (0)

z̄z̄ , Cww(u)
]
= −16πiGδ(2)(z − w) . (2.27)

From (2.25) we can also read off the usual expressions [17, 57]

N (0)
zz = − κ

4π
lim
ω→0

ω
[
a+(ω) + a†

−(ω)
]

, N (0)
z̄z̄ = − κ

4π
lim
ω→0

ω
[
a−(ω) + a†

+(ω)
]

. (2.28)

Using the commutation relations (2.4) one can prove that these modes satisfy (2.27). The
two above operators can be combined to obtain the memory operators [33]

Nzz = 1
2π

[
N (0)

zz +
∫

d2w

π

z̄ − w̄

(z − w)3 N
(0)
w̄w̄

]

Nz̄z̄ = 1
2π

[
N (0)

z̄z̄ +
∫

d2w

π

z − w

(z̄ − w̄)3 N
(0)
ww

]
,

(2.29)

6We recall that a primary descendant state is a descendant of an SL(2,C) primary which is also annihilated
by L1 and L1. A primary descendant field is the operator associated with a primary descendant state.

7The shadow transform is defined in eq. (3.16).
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of conformal weights
(
3
2 ,−1

2

)
and

(
−1

2 , 3
2

)
, respectively. They also satisfy

[Nzz, C(w, w)] = −4G

π

z̄ − w̄

z − w
, [Nz̄z̄, C(w, w)] = −4G

π

z − w

z̄ − w̄
. (2.30)

Alternatively, the memory operators can be obtained as level-two primary descendants of
the memory scalar mode, namely

Nzz = ∂2
z N(z, z̄), Nz̄z̄ = ∂2

z̄ N(z, z̄) , (2.31)

with N(z, z̄) the
(
−1

2 ,−1
2

)
primary defined as [33]

N(z, z̄) = 1
2π

[∫
d2w

2π

z − w

z̄ − w̄
N (0)

zz +
∫

d2w

2π

z̄ − w̄

z − w
N (0)

w̄w̄

]
. (2.32)

The first descendant of the leading soft graviton operator is referred to as the super-
translation current Pz

Pz = 2
κ2 ∂̄N (0)

zz , (2.33)

whose insertion in the S-matrix was shown to give rise to Weinberg’s soft graviton theorem
[16, 17]. Using the definition of the modes in terms of creation and annihilation operators,
one easily computes the two-point functions involtving C and Pz. From a CFT point of
view, these are equivalent to the OPEs [18]:

PzC(w, w̄) ∼ − i

z − w
, PzPw ∼ 0 . (2.34)

The first OPE is precisely compatible with that of a current with its Goldstone mode, while
the second one states that the current is invariant under supertranslations.

Revisiting the Goldstone two-point function. We now turn to the computation of
the Goldstone boson two-point function ⟨CC⟩ explicitly from the modes (2.21). Let us first
notice that, from (2.4), we read that

⟨δa±(z, z̄, ω)δa±(w, w̄, ξ)⟩ = 0

⟨δa±(z, z̄, ω)δa∓(w, w̄, ξ)⟩ = −16π3

ω
δ(ω − ξ)δ(2)(z − w) ,

(2.35)

so that the two-point function reduces to

⟨C(z, z̄)C(w,w̄)⟩ (2.36)

= −κ2

4(2π)4
∫ ∞

0
dω

∫ ∞

0
dξ

∫
d2x

2π

d2y

2π

[
z−x

z̄−x̄

w̄−ȳ

w−y
⟨δa+(x)δa−(y)⟩+

z̄−x̄

z−x

w−y

w̄−ȳ
⟨δa−(x)δa+(y)⟩

]
= κ2

2(2π)3
∫ ∞

0

dω

ω

∫
d2x

[
z−x

z̄−x̄

w̄−x̄

w−x
+ z̄−x̄

z−x

w−x

w̄−x̄

]
.

The integrals over ω and (x, x̄) diverge so they need to be regularized. We are interested in
the IR behaviour and will neglect UV divergences. We will use dimensional regularization
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(dim-reg) with d = 2 + 2ϵ to treat the IR divergences in the (x, x̄) integral. Notice that this
also cures the IR divergence in ω as in d-dimension the two-point function (2.35) becomes

⟨δa±(z, z̄, ω)δa∓(w, w̄, ξ)⟩ = −16π3

ωd−1 δ(ω − ξ)δ(d)(z⃗ − w⃗) . (2.37)

We will then focus on the following regulated expression:

Cϵ(z, z̄) = iκ

8π2

∫ ∞

0
dωω2ϵ

∫
d2+2ϵw

2π

[
z − w

z̄ − w̄
δa+(w, w̄, ω) + z̄ − w̄

z − w
δa−(w, w̄, ω)

]
. (2.38)

Notice that in the limit ϵ → 0 we recover the expression for the Goldstone mode C.
The regulated two-point function is thus

⟨Cϵ(z, z̄)Cϵ(w,w̄)⟩= κ2µ2ϵ
0

2(2π)3
∫ Λ

0
dωω−1+2ϵ

∫
d2+2ϵx

[
z−x

z̄−x̄

w̄−x̄

w−x
+ z̄−x̄

z−x

w−x

w̄−x̄

]
, (2.39)

where µ0 is the mass scale introduced in dim-reg to preserve the mass dimension of the
two-point function, and Λ is the UV cutoff. The ω integral reduces to∫ Λ

0
dωω−1+2ϵ = Λ2ϵ

2ϵ
= 1

2ϵ
+ logΛ ∼ 1

2ϵ
, (2.40)

neglecting as announced the UV divergence. Hence,

⟨Cϵ(z, z̄)Cϵ(w, w̄)⟩ = κ2

4(2π)3
µ2ϵ
0
ϵ

∫
d2+2ϵx

[
z − x

z̄ − x̄

w̄ − x̄

w − x
+ z̄ − x̄

z − x

w − x

w̄ − x̄

]
. (2.41)

The integral

Iϵ := µ2ϵ
0

∫
d2+2ϵx

z − x

z̄ − x̄

w̄ − x̄

w − x
(2.42)

can then be computed using standard QFT techniques and gives the following result (see
appendix B):

Iϵ =
6π2+ϵ(1 + ϵ)Γ(2 + ϵ)2

Γ(1 + ϵ)Γ(4 + 2ϵ) sin(πϵ) |z − w|2+2ϵµ2ϵ
0 . (2.43)

This lead to the following expression for the two-point function:

⟨Cϵ(z, z̄)Cϵ(w, w̄)⟩ = κ2

16π3
1
ϵ

Iϵ

= 3κ2

8π3ϵ

π2+ϵ(1 + ϵ)Γ(2 + ϵ)2

Γ(1 + ϵ)Γ(4 + 2ϵ) sin(πϵ) |z − w|2+2ϵµ2ϵ
0 .

(2.44)

The form of this two-point function is that of a primary field of weights
(
−1+ϵ

2 ,−1+ϵ
2

)
, namely

we see that the dimensional regularization induces a shift in the conformal dimension of
C. We can then expand (2.44) for small ϵ and get:

⟨Cϵ(z, z̄)Cϵ(w, w̄)⟩ = κ2

16π2 |z − w|2 1
ϵ

(1
ϵ
− 2

3 + γE + log π + log |z − w|2µ2
0

)
+ . . .

= κ2

16π2 |z − w|2
( 1

ϵ2
+ 1

ϵ
log |z − w|2µ2

)
+ . . . ,

(2.45)

where µ2 = µ2
0πeγE− 2

3 and the dots denote finite terms in limit ϵ → 0.
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A few comments are now in order: the second term in the expression coincides with the
value computed in [18].8 Notice that the prefactor κ2

16π2ϵ
= 1

ϵ
2G
π matches with the gravitational

cusp anomalous dimension which appears in the level of the Goldstone current (see also [26, 66]
for related works). In [18], the supertranslation Goldstone two-point function was originally
derived from Weinberg’s factorization formula [15] in the following way: soft factorization
states that a scattering amplitude A with an IR cutoff can be expressed as a product of a
soft S-matrix (which includes all IR divergences) and a hard piece (which is IR finite),

A = AsoftAhard . (2.46)

The two-point function of the Goldstone supertranslation current C is such that the correlators
of vertex operators Wk = eiηkωkC(zk,z̄k) exactly account for the soft part, namely

Asoft = ⟨W1 . . .Wn⟩ . (2.47)

We see that (2.45) also contains an extra leading divergent piece of the form 1
ϵ2 |z − w|2.

It is important to note that this term does not spoil the above soft factorization. Actually,
such a divergence is also present in Weinberg’s soft (virtual particle) exponential for massless
states, but this term eventually drops out from the final expression due of total momentum
conservation.9 We expect that the extra ϵ−2 term in our derivation is scheme dependent and
can be reabsorbed in the next ϵ−1 term. Finally, while the Goldstone two-point function is
clearly divergent, it is important to note that the gravitational memory effect (see e.g. [23–25])
is determined by the PzC OPE (2.34), and is therefore an IR safe observable [18].

3 Log CFT

In this section, we aim to give a short and self-contained summary of properties of logarithmic
CFTs; see for instance [43, 44]. Log CFTs get their name from the particular behaviour
of their correlation functions which contain logarithms of the spacetime coordinates. This
peculiarity is due to the fact that, for these theories, the representation of the conformal group
is not irreducible but falls into a reducible but indecomposable representation. This means
that the dilatation operator D cannot be completely diagonalized but it can be at most put
into a Jordan block form such that the primary states fall into rank r multiplets (a = 1, . . . , r),

D |Oa⟩ = −i∆b
a |Ob⟩ , ∆ =



∆ 1 0 · · · 0
0 ∆ 1 · · · 0
...

...
... . . . 0

0 0 0 ∆ 1
0 0 0 0 ∆


. (3.1)

It follows then that all of these theories are non-unitary. Indeed, reflection positivity would
require the two-point function ⟨Oa(x)Oa(−x)⟩ to be positive, for all x and (Hermitian) fields
Oa. However, for log CFTs, this is not possible, unless all multiplets have rank r = 1. This
follows from the fact that the dilatation operator is not Hermitian, thus in particular time
translation on the cylinder is not implemented by a unitary operator.

8The extra µ2 factor compared to [18] can be reabsorbed in the UV regulator.
9We are grateful to Sruthi Narayanan for clarifying this point.
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In what follows, we will focus on two-dimensional log CFTs and give a brief exposition
on the field representation of the conformal group in log CFTs.

3.1 Log primaries and log CFT doublets

In logarithmic CFTs, states are organized into logarithmic multiplets of rank r ≥ 1. A
logarithmic doublet Oa = (Ψ,Φ) of weights (h, h̄) is composed of a primary operator Φ and
its logarithmic partner Ψ which transform under the global conformal group as [39]:

Ψ′
(
f(z), f̄(z̄)

)
= (∂f)−h(∂̄f̄)−h̄ (Ψ(z, z̄)− log |∂f |Φ(z, z̄)) ,

Φ′
(
f(z), f̄(z̄)

)
= (∂f)−h(∂̄f̄)−h̄Φ(z, z̄)

(3.2)

where f(z), f̄(z̄) are elements of the SL(2,C) group. If this transformation extends to the
full Virasoro algebra, we refer to these fields as Virasoro primary and log Virasoro primary.
Using (3.2), we can also find the general equation for the infinitesimal transformations of the
logarithmic partner. Writing f(z) = z − Y(z), f̄(z̄) = z̄ − Ȳ(z̄), we get

Ψ′(z − Y , z̄ − Ȳ) = (1− ∂Y)−h(1− ∂̄Ȳ)−h̄
[
Ψ(z, z̄)− 1

2 log
(
(1− ∂Y)(1− ∂̄Ȳ)

)
Φ(z, z̄)

]
= (1 + h∂Y)(1 + h̄∂̄Ȳ)

[
Ψ(z, z̄) + ∂Y + ∂̄Ȳ

2 Φ(z, z̄)
]

.

(3.3)
Then if we consider z → z + Y, z̄ → z̄ + Ȳ the field transformation becomes

Ψ′(z, z̄) = (1 + h∂Y)(1 + h̄∂̄Ȳ)
[
(1 + Y∂ + Ȳ ∂̄)Ψ + ∂Y + ∂̄Ȳ

2 Φ
]

, (3.4)

so that the transformation properties of the log doublet can be written as

δΨ(z, z̄) =
(
Y∂ + Ȳ ∂̄ + h∂Y + h̄∂̄Ȳ

)
Ψ(z, z̄) + 1

2(∂Y + ∂̄Ȳ)Φ(z, z̄)

δΦ(z, z̄) =
(
Y∂ + Ȳ ∂̄ + h∂Y + h̄∂̄Ȳ

)
Φ(z, z̄) .

(3.5)

These relations constrain the TΨ OPE with the stress tensor to be

T (z)Ψ(w, w̄) = 1
(z − w)2

(
hΨ(w, w̄) + 1

2Φ(w, w̄)
)
+ ∂Ψ(w, w̄)

z − w
+ . . . (3.6)

If we identify Ψ = O1, Φ = O2, then the two-point function of a logarithmic scalar
doublet can always be written in the form [39, 47]

⟨Oa(z1, z̄1)Ob(z2, z̄2)⟩ =
1

z2h
12 z̄2h̄

12

(
k̃O − kO log |z12|2 kO

kO 0

)
ab

, (3.7)

with kO ̸= 0 and k̃O some constant that cannot be fixed by conformal invariance. We remark
that Ψ is not uniquely specified because we may add to it any multiple of Φ, Ψ → Ψ+ kΦ,
without affecting its defining properties, but changing the constant k̃O in (3.7) while kO
will remain invariant. Because of this, k̃O may be tuned to any desired value, so it is not
expected to be physical [46]. The constant kO, on the other hand, is expected to be physically
meaningful. Another remarkable feature of a log CFT which can be observed from (3.7) is
that the two-point function of the two primary fields vanishes, ⟨ΦΦ⟩ = 0.
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3.2 Scale invariance

The presence of logarithms would seem to signal that the n-point function is now scale
dependent, as the quantity inside logarithms has to be dimensionless. However, this scale
is physically irrelevant due to the Ward identities induced by global conformal invariance,
as we review below (see [43]).

Let us start exploring the idea in the context of standard irreducible CFTs. Suppose
that we analyze the system at a fixed reference scale µ, the basis of primary operators at
this scale frame will then be defined as Oi,µ(z). Of course, the n-point function should not
depend on this scale so we can fix a Callan-Symanzik equation to be such that

µ
d

dµ
⟨Oi1,µ(z1) . . .Oin,µ(zn)⟩ =

n∑
k=1

⟨Oi1,µ(z1) . . . µ
d

dµ
Oik,µ(z) . . .Oin,µ(zn)⟩ = 0. (3.8)

The total derivative with respect to the scale can be explicitly written as
d

dµ
Oi,µ(z) = lim

δµ→0

µ

δµ

[
Oi,µ+δµ

(
z + δµ

µ
z

)
−Oi,µ(z)

]
, (3.9)

where we have taken into account the coordinate scale variation. The expression in the
brackets is then the standard primary field variation under a rescaling and we can use its
transformation properties to rewrite

µ
d

dµ
Oi,µ(z) = lim

δµ→0

µ

δµ

[
z

δµ

µ
∂Oi,µ (z) + hi

δµ

µ
Oi,µ(z)

]
= z∂Oi,µ(z) + hiOi,µ(z). (3.10)

Thus, it follows that the Callan-Symanzik equation turns exactly into the dilatation Ward
identity,

µ
d

dµ
⟨Oi1,µ(z1) . . .Oin,µ(zn)⟩ =

n∑
k=1

(zk∂zk
+ hk)⟨Oi1,µ(z1) . . .Oin,µ(zn)⟩ = 0 , (3.11)

which is trivially satisfied due to conformal invariance.
Even in a standard CFT, it is of course natural to introduce a reference scale, and all

the operators will then be defined at that scale. However, due to conformal invariance, the
theory will not depend on the value assigned at the specific chosen scale, namely the field
basis is dependent on the original choice of scale but the theory is not. The exact same thing
happens in a logarithmic CFT, even if the construction is more subtle due to the presence
of logarithms. In this case, the different transformation properties of log primaries lead to
a Callan-Symanzik equation of the form [43]

µ
d

dµ
⟨Oi1,l1;µ(z1) . . .Oin,ln;µ(zn)⟩=

n∑
k=1

⟨Oi1,l1;µ(z1) . . .
(

δjk

lk
zk∂zk

+hjk

lk

)
Ojk,µ(zk) . . .Oin,µ(zn)⟩=0

(3.12)
where

h =



h 1 0 . . . 0 0
0 h 1 . . . 0 0
0 0 h . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . h 1
0 0 0 . . . 0 h


. (3.13)
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The r.h.s. of (3.12) turns out to coincide with the dilatation Ward identity for a logarithmic
primary field which must be satisfied in a logarithmic CFT, suggesting again that any n-
point function will be independent on the chosen reference scale. We can see an explicit
realization of this fact by considering the two-point function of logarithmic field in a doublet
(Õh,µ,Oh,µ) at a chosen scale µ:

⟨Õh,µ(z)Õh,µ(0)⟩ = − κ

(µz)2h
log(µz). (3.14)

This can be rewritten using (3.2) as

⟨µh
(
Õh,µ + log µOh,µ

)
(z)µh

(
Õh,µ + log µOh

)
(0)⟩ = − κ

z2h
log(z). (3.15)

By equating (3.14) and (3.15) we can see that, while the form of the logarithmic primary
field depends on the specific scale µ, we can fix µ to an arbitrary value and the theory will
still be invariant under the conformal group.

3.3 Log-shadow transform

The shadow transform of a conformal primary Φ of weights (h, h̄) is defined as (see e.g. [67])

Φ̃(z, z̄) = Kh,h̄

∫
d2w

Φ(w, w̄)
(z − w)2−2h(z̄ − w̄)2−2h̄

, (3.16)

with the shadow normalization10 Kh,h̄ = Γ(2−2h̄)
πΓ(2h−1) . The shadow operator Φ̃ is still a conformal

primary but now of weights (1− h, 1− h̄). Given a logarithmic primary Ψ of weights (h, h̄),
we define its ‘logarithmic shadow transform’ as

Slog [Ψ] (z, z̄) = −Kh,h̄

∫
d2w

Ψ(w, w̄) + log|z − w|2Φ(w, w̄)
(z − w)2−2h(z̄ − w̄)2−2h̄

, (3.17)

and Slog [Φ] (z, z̄) being the shadow defined as (3.16). We prove in appendix A that
Slog [Ψ] (z, z̄) transforms as a logarithmic primary field under SL(2,C) with Φ̃(z, z̄) a primary
field. We also check that it squares to

Slog [Slog [Ψ]] (z, z̄) = (−1)−4h̄
[
Ψ(z, z̄) +

( 1
1− 2h

+ 1
1− 2h̄

− 2πi

)
Φ(z, z̄)

]
, (3.18)

which allows us to define the inverse log-shadow S−1
log of a logarithmic doublet as

S−1
log [Ψ] (z, z̄) = (−1)4h̄

[
Slog [Ψ] (z, z̄)−

( 1
1− 2h

+ 1
1− 2h̄

− 2πi

)
Φ̃(z, z̄)

]
S−1
log [Φ] (z, z̄) = (−1)4h̄Φ̃(z, z̄) .

(3.19)

4 Supertranslation log doublet

In this section, we turn to the study of log CFT structures in the context of the soft sector
of CCFT associated to supertranslation. We show that the presence of a log u piece in the
radiative data at future null infinity I + gives rise to a log CFT doublet associated with
an IR-regulated Goldstone supertranslation current.

10The normalization is chosen here such that ˜̃Φ = Φ.
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4.1 Supertranslation Goldstone and its partner

Let us consider the following combinations of soft Fourier modes

Bzz(z, z̄)= iκ

8π2 lim
ω→0

ω(a+(ω,z, z̄)−a†
−(ω,z, z̄)), Bz̄z̄(z, z̄)= iκ

8π2 lim
ω→0

ω(a−(ω,z, z̄)−a†
+(ω,z, z̄)) .

(4.1)
As we will see below, from the gravitational phase space point of view, these modes correspond
to the presence of a log u piece in the radiative data at the corners of I +,

Czz(u, z, z̄) u→+∞∼ 2Bzz(z, z̄) log u + . . . (4.2)

This mode and its analog for QED has been studied in [55, 56].11 It was argued there that,
while absent in the classical theory, such a log u mode turns out to be non-vanishing in the
quantum theory. Most interestingly, such a term for QED was shown to be associated with
the τ−1 decay of Coulombic modes as they approach timelike infinity, and the quantization
of (4.1) leads to an asymptotic charge which reproduces the quantum part of Sahoo-Sen’s
logarithmic12 corrections [74] to the subleading soft photon theorem [55, 56]. It was also
argued in [56] that including the term (4.2) does not amount to introducing a new independent
mode in the quantum system, as Bzz is fixed in terms of the classical free data.

The relation between soft operators of the form (4.1) and the log u fall-off at u → +∞
was first presented in [55]; we give below an alternative proof of this relationship (which
holds for gravity but is also readily adapted for the QED case). The aim is thus to show that
Bzz can be expressed in terms of creation and annihilation operators as in (4.1), under the
assumption that the fall-offs of the shear (2.16) (and thus the news tensor) are given by

Czz(u, z, z̄) u→+∞= uNvac
zz (z) + C+

zz(z, z̄) + 2Bzz(z, z̄) log u + o(1/u),

Nzz(u, z, z̄) u→+∞= Nvac
zz (z) + 2

u
Bzz(z, z̄) + o(1/u2),

Czz(u, z, z̄) u→−∞= uNvac
zz (z) + C−

zz(z, z̄) + o(1/u),

Nzz(u, z, z̄) u→−∞= Nvac
zz (z) + o(1/u2) ,

(4.3)

where the Goldstone currents can be written as C±
zz =−2D2

zC± with Dz being the superrotation-
covariant derivative [75, 76] and C± the supertranslation Goldstone boson at I ±. Notice
that we included for generality in the above expressions the ‘vacuum news’ Nvac

zz considered
in [75–78], but what follows does not depend on whether this term is present or not. The
first step is to analyze the Fourier transform of the shear (2.16), which is given by

f̃(ω, z, z̄) =
∫ +∞

−∞
dueiωu−|u|ϵCzz(u, z, z̄)

= κ

4iπ

∫ ∞

0
dξ
[
a+δ(ω − ξ)− a†

−δ(ω + ξ)
]
= κ

4iπ

[
a+(ω)θ(ω)− a†

−(−ω)θ(−ω)
]

,

(4.4)

11The QED analog of Bzz was denoted
ln

Az in [55].
12See also [68–73] for other works on logarithmic soft theorems.
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where ϵ is a regulator meant to be small. By inspecting the relation above, we can see that
showing (4.1) is equivalent to prove the following equality

Bzz = − 1
2π

lim
ω→0+

ω
(
f̃(ω) + f̃(−ω)

)
. (4.5)

In the remaining part of this section, we are going to show how to prove (4.5). We start by
analysing f̃(ω) which can be rewritten using integration by parts as

f̃(ω) =
∫ 0

−∞
du ei(ω−iϵ)uCzz +

∫ +∞

0
du ei(ω+iϵ)uCzz

= 1
iω − ϵ

∫ ∞

0
du

d

du

[
ei(ω+iϵ)uCzz

]
− 1

iω − ϵ

∫ ∞

0
du ei(ω+iϵ)uNzz

+ 1
iω + ϵ

∫ 0

−∞
du

d

du

[
ei(ω−iϵ)uCzz

]
− 1

iω + ϵ

∫ 0

−∞
du ei(ω−iϵ)uNzz

= 2πδ(ω)Czz(0) +
i

ω − iϵ

∫ 0

−∞
du ei(ω−iϵ)uNzz +

i

ω + iϵ

∫ +∞

0
du ei(ω+iϵ)uNzz ,

(4.6)

where we used the shear fall-off conditions to see that the total derivative will always be
suppressed as u goes to infinity. We can then study the behavior of

ω
[
f̃(ω) + f̃(−ω)

]
= 4πωδ(ω)Czz(0)

+ iω

ω − iϵ

∫ 0

−∞
du ei(ω−iϵ)uNzz +

iω

ω + iϵ

∫ +∞

0
du ei(ω+iϵ)uNzz

− iω

ω + iϵ

∫ 0

−∞
du e−i(ω+iϵ)uNzz −

iω

ω − iϵ

∫ +∞

0
du e−i(ω−iϵ)uNzz

(4.7)

in the limit ω → 0. We would like to firstly analyse the following terms in (4.7)

iω

ω − iϵ

∫ 0

−∞
du ei(ω−iϵ)uNzz −

iω

ω + iϵ

∫ 0

−∞
du e−i(ω+iϵ)uNzz. (4.8)

In order to do so, we split the integrals into two regions (−∞,−1/Λ) ∪ (−1/Λ, 0], where Λ is
a small but positive finite number. We can use (4.3) and the asymptotic behavior of the news
tensor to evaluate the integrals, thus allowing (4.8) to be written in the region (−∞,−1/Λ) as

iωNvac
zz

ω − iϵ

∫ −1/Λ

−∞
du ei(ω−iϵ)u − iωNvac

zz

ω + iϵ

∫ −1/Λ

−∞
du e−i(ω+iϵ)u

= Nvac
zz ω

[
e−

ϵ+iω
Λ

(ω − iϵ)2 − e−
ϵ−iω

Λ

(ω + iϵ)2

]
.

(4.9)

If we expand for small |ω ± iϵ|, we get

Nvac
zz ω

[ 1
(ω − iϵ)2 − 1

(ω + iϵ)2 + iΛ
ω − iϵ

− iΛ
ω + iϵ

]
+ o(ω)

= 2πNvac
zz ω

[
−iδ′(ω) + Λδ(ω)

]
+ o(ω) .

(4.10)

This is vanishing in the limit of small frequencies so we do not get contributions in the interval
(−∞,−1/Λ). We then can focus on the region (−1/Λ, 0]. If we consider the news tensor to
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be regular inside (−1/Λ, 0] then we can expand the exponential for |ω ± iϵ| ≪ Λ and get

iω

ω − iϵ

∫ 0

−1/Λ
du ei(ω−iϵ)uNzz −

iω

ω + iϵ

∫ 0

−1/Λ
du e−i(ω+iϵ)uNzz

= −
(

iω

ω + iϵ
− iω

ω − iϵ

)∫ 0

−1/Λ
du Nzz − 2ω

∫ 0

−1/Λ
du uNzz + o(ω2)

= −2πωδ(ω)
∫ 0

−1/Λ
du Nzz − 2ω

∫ 0

−1/Λ
du uNzz + o(ω2) ,

(4.11)

which is also vanishing in the limit ω → 0+. We conclude then that (4.7) receives no
contribution from the integral between (−∞, 0] for small frequencies.

We now analyse the other terms in (4.7) in the same way

iω

ω + iϵ

∫ +∞

0
du ei(ω+iϵ)uNzz −

iω

ω − iϵ

∫ +∞

0
du e−i(ω−iϵ)uNzz. (4.12)

Splitting again the integration region into [0, 1/Λ) ∪ (1/Λ,+∞), we can perform the same
steps. The main difference is that in the regime (1/Λ,+∞) the news tensor has a different
asymptotic behaviour, which makes

iω

ω + iϵ

∫ +∞

1/Λ
du ei(ω+iϵ)uNzz −

iω

ω − iϵ

∫ +∞

1/Λ
du e−i(ω−iϵ)uNzz (4.13)

= iω

ω + iϵ

∫ +∞

1/Λ
du ei(ω+iϵ)u

(
Nvac

zz + 2
u
Bzz

)
− iω

ω − iϵ

∫ +∞

1/Λ
du e−i(ω−iϵ)u

(
Nvac

zz + 2
u
Bzz

)

= iω

ω + iϵ

[
e−

ϵ−iω
Λ

ϵ − iω
Nvac

zz + 2BzzΓ
(
0,

ϵ − iω

Λ

)]
− iω

ω − iϵ

[
e−

ϵ+iω
Λ

ϵ + iω
Nvac

zz + 2BzzΓ
(
0,

ϵ + iω

Λ

)]

where Γ(x, y) is the incomplete gamma function. Expanding the expression above for small
|ω ± iϵ| we obtain

− 2πωNvac
zz

(
iδ′(ω) + Λδ(ω)

)
+ 2ωBzz

{
i

ω + iϵ
(−γE − log Λ(ϵ − iω))− i

ω − iϵ
(−γE − log Λ(ϵ + iω))

}
+ o(ω)

= −2πωNvac
zz

(
iδ′(ω) + Λδ(ω)

)
− (γE + logΛ)4πBzzωδ(ω)

− 2iωBzz

[ log(ϵ − iω)
ω + iϵ

− log(ϵ + iω)
ω + iϵ

]
+ o(ω).

(4.14)

By inspecting the regions with positive and negative frequencies, it is possible to show that

−i

[ log(ϵ − iω)
ω + iϵ

− log(ϵ + iω)
ω + iϵ

]
= −πP

1
|ω|

+ 2πP
1
|ω|

θ(−|ω|)− 2πδ(ω)P log |ω| (4.15)

which implies that

iω

ω + iϵ

∫ +∞

1/Λ
du ei(ω+iϵ)uNzz −

iω

ω − iϵ

∫ +∞

1/Λ
du e−i(ω−iϵ)uNzz

= −2πωNvac
zz

(
iδ′(ω) + Λδ(ω)

)
− γE4πBzzωδ(ω)

− 2BzzπωP
1
|ω|

+ 4πBzzωP
1
|ω|

θ(−|ω|)− 4πBzzωδ(ω)P log |Λω| .

(4.16)
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The only non vanishing term in the limit ω → 0+ is the first one in the third line,13 namely

lim
ω→0

[
iω

ω + iϵ

∫ +∞

1/Λ
du ei(ω+iϵ)uNzz −

iω

ω − iϵ

∫ +∞

1/Λ
du e−i(ω−iϵ)uNzz

]
= −πBzz . (4.17)

As in the other case, no contributions are coming from the region [0, 1/Λ).
Combining all the pieces, we therefore obtain that

Bzz = − 1
2π

lim
ω→0+

ω
(
f̃(ω) + f̃(−ω)

)
= iκ

8π2 lim
ω→0

ω
(
a+(ω)− a†

−(ω)
)

. (4.18)

4.2 Transformation properties

Under an infinitesimal conformal transformation, the shear transforms as a (32 ,−1
2) ‘quasi-

conformal Carrollian primary’14

δCzz =
(
Y∂ + Ȳ ∂̄ + 3

2∂Y − 1
2 ∂̄Ȳ

)
Czz +

u

2 (∂Y + ∂Ȳ)Nzz − u∂3Y . (4.19)

This corresponds to a finite transformation of the form

C ′
zz(u′, z′, z̄′) = (∂f)−

3
2 (∂̄f̄)

1
2 C(u, z, z̄) + (∂f)

1
2 (∂̄f̄)

1
2 uS(f, z) , (4.20)

where z′ = f(z), z̄′ = f̄(z̄), u′ = |∂f |u and S(f, z) = f ′′′(z)
f ′(z) −

3
2

(
f ′′(z)
f ′(z)

)2
denotes the Schwarzian

derivative.
From this property, we can then deduce the transformations of the asymptotic components

of Czz in the limit u → +∞ under a superrotation. Using (4.3), we have

C ′
zz(u′, z′, z̄′) = |∂f |uNvac

zz
′ + C+

zz
′ + 2 log uB′

zz + 2 log |∂f | B′
zz + C̃ ′

zz(u′, z′, z̄′)
Czz(u, z, z̄) = uNvac

zz + C+
zz + 2 log uBzz + C̃zz(u, z, z̄) ,

(4.21)

where C̃zz denotes the o(u−1) terms. Using (4.20) we can match the two expressions:

|∂f |uNvac
zz

′ + C+
zz

′ + 2 log uB′
zz + 2 log |∂f | B′

zz + C̃ ′
zz(u′, z′, z̄′)

= (∂f)−
3
2 (∂̄f̄)

1
2
[
uNvac

zz + C+
zz + 2 log uBzz + C̃zz(u, z, z̄)

]
+ (∂f)

1
2 (∂̄f̄)

1
2 S(f, z)u ,

(4.22)

implying the following finite transformation laws

Nvac
zz

′ = (∂f)−2Nvac
zz + S(f, z)

C+
zz

′ = (∂f)−
3
2 (∂̄f̄)

1
2
(
C+

zz − 2 log |∂f |Bzz

)
Bzz

′ = (∂f)−
3
2 (∂̄f̄)

1
2Bzz

C̃ ′
zz(u′, z′, z̄′) = (∂f)−

3
2 (∂̄f̄)

1
2 C̃zz(u, z, z̄).

(4.23)

These can be written in infinitesimal form as
δNvac

zz = (Y∂ + 2∂Y)Nvac
zz − ∂3Y

δC+
zz =

(
Y∂ + Ȳ ∂̄ + 3

2∂Y − 1
2 ∂̄Ȳ

)
C+

zz +
∂Y + ∂̄Ȳ

2 2Bzz

δBzz =
(
Y∂ + Ȳ ∂̄ + 3

2∂Y − 1
2 ∂̄Ȳ

)
Bzz .

(4.24)

13limω→0 θ(−|ω|) = 0.
14We use the terminology introduced in [57] for tensors living at I ; see also [79–81].
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Hence, comparing with the log CFT doublet transformation laws (3.5), we can see that
the presence of Bzz modifies the transformation property of the Goldstone current C+

zz to that
of a logarithmic primary field of weights

(
3
2 ,−1

2

)
in a doublet with Bzz. On the contrary, the

transformation properties for C−
zz remain the one of a conformal primary as in the u → −∞

asymptotic region there is no log u contribution.15 Defining the supertranslation Goldstone
current Czz as the linear combination

Czz = C+
zz + C−

zz

2 , (4.25)

we thus have

C ′
zz = (∂f)−

3
2 (∂̄f̄)

1
2 (Czz − log |∂f |Bzz) . (4.26)

4.3 Two-point functions

We will now argue that the logarithmic primary field (4.25) can be interpreted as an IR-
regulated Goldstone current. Indeed, we will show below that the following expression

Czz = iκ

8π2

[∫ ∞

0
dω ω2ϵ(a+(ω, z, z̄)− a†

−(ω, z, z̄))

+
∫

d2+2ϵy

π

z̄ − ȳ

(z − y)3 |z − y|−2ϵ
∫ ∞

0
dω ωϵ(a−(ω, y, ȳ)− a†

+(ω, y, ȳ))
] (4.27)

transforms as a logarithmic primary field. In the above, we used dimensional regularization
with d = 2 + 2ϵ and one can see that (4.27) consists of the sum of two primary operators,
with conformal weights

(
3
2 + ϵ,−1

2 + ϵ
)

and
(
3
2 + ϵ

2 ,−1
2 + ϵ

2

)
respectively, which turn out to

be the same in the limit ϵ → 0. The primary partner of Czz can be written as

Bzz =
[
Bzz +

∫
d2y

π

z̄ − ȳ

(z − y)3Bȳȳ

]

= iκ

8π2 lim
ω→0

ω

[
(a+(ω, z, z̄)− a†

−(ω, z, z̄)) +
∫

d2y

π

z̄ − ȳ

(z − y)3 (a−(ω, y, ȳ)− a†
+(ω, y, ȳ))

]
(4.28)

where we used (4.1).
Let us check that the transformation property of Czz, in the limit ϵ → 0, does correspond to

the one of a logarithmic field with Bzz as primary partner. Under a conformal transformation,
the field Czz transforms as16

C ′
zz = iκ

8π2 (∂f)−
3
2 (∂̄f̄)

1
2

[
|∂f |−2ϵ

∫ ∞

0
dω ω2ϵ(a+ − a†

−)+

|∂f |−ϵ
∫

d2+2ϵy

π

z̄ − ȳ

(z − y)3 |z − y|−2ϵ
∫ ∞

0
dω ωϵ(a− − a†

+)
]

.

(4.29)

Now let us focus on the first term, and expand the expression for ϵ small,

|∂f |−2ϵ
∫ ∞

0
dω ω2ϵ(a+ − a†

−) =
∫ ∞

0
dω ω2ϵ(a+ − a†

−)− log |∂f |2ϵ

∫ ∞

0
dω ω2ϵ(a+ − a†

−) + o(ϵ) .

(4.30)
15This can be relaxed easily to include them as well.
16We drop the explicit dependence of the arguments for notation simplicity.

– 18 –



J
H
E
P
1
2
(
2
0
2
4
)
0
3
1

In the second term, we notice the appearance of a log |∂f | term multiplied by the operator

2ϵ

∫ ∞

0
dω ω2ϵ(a+ − a†

−). (4.31)

By splitting the integral in (4.31) into two regions, using a small cut-off λ:

2ϵ

∫ λ

0
dω ω2ϵ(a+ − a†

−) + 2ϵ

∫ ∞

λ
dω ω2ϵ(a+ − a†

−) , (4.32)

we can expand the first integral in a series around ω = 0. Using the soft expansion

(a+(ω, z, z̄)− a†
−(ω, z, z̄)) ≃ 1

ω
lim
ξ→0

ξ(a+(ξ, z, z̄)− a†
−(ξ, z, z̄)) +

∞∑
n=0

ωncn(z, z̄) (4.33)

and assuming that this expression is convergent in a small radius around ω = 0, we can
plug it in the first term of (4.32) to get

2ϵ

∫ λ

0
dω ω2ϵ−1 lim

ξ→0
ξ(a+(ξ, z, z̄)− a†

−(ξ, z, z̄)) +
∞∑

n=0
2ϵ

∫ λ

0
dω ω2ϵ+ncn(z, z̄)

= λϵ lim
ξ→0

ξ(a+ − a†
−) +

∞∑
n=0

2ϵ

2ϵ + 1 + n
λ2ϵ+n+1cn(z, z̄) = lim

ξ→0
ξ(a+ − a†

−) + o(ϵ).
(4.34)

This implies that, as no other 1/ϵ poles will come from the UV region (λ,+∞), (4.31) reduces to

2ϵ

∫ ∞

0
dω ω2ϵ(a+ − a†

−) = lim
ξ→0

ξ(a+ − a†
−) + o(ϵ) . (4.35)

Notice that this is equivalent to writing

lim
∆→1

(∆− 1)
∫ ∞

0
dω ω∆−1(a+ − a†

−) = lim
ξ→0

ξ(a+ − a†
−) , (4.36)

which is the statement that soft modes can be extracted as poles of Mellin-transformed
operators [12, 14]. Using this result we can then write

|∂f |−2ϵ
∫ ∞

0
dω ω2ϵ(a+−a†

−)=
∫ ∞

0
dω ω2ϵ(a+−a†

−)−log |∂f | lim
ξ→0

ξ(a+−a†
−)+o(ϵ) . (4.37)

Plugging this back into (4.29) and using a similar argument for the second term, we then have

C ′
zz = (∂f)−

3
2 (∂̄f̄)

1
2

[
Czz−

log |∂f | iκ

8π2

(
lim
ξ→0

ξ(a+ − a†
−) +

∫
d2+2ϵy

π

z̄ − ȳ

(z − y)3 |z − y|−2ϵ lim
ξ→0

ξ(a− − a†
+)
)
+ o(ϵ)

]
.

(4.38)
This implies that for ϵ → 0 and using (4.28), we are left with

C ′
zz = (∂f)−

3
2 (∂̄f̄)

1
2

[
Czz − log |∂f | iκ

8π2 lim
ξ→0

ξ

(
(a+ − a†

−) +
∫

d2y

π

z̄ − ȳ

(z − y)3 (a− − a†
+)
)]

= (∂f)−
3
2 (∂̄f̄)

1
2

[
Czz − log |∂f |Bzz

]
, (4.39)

which is the transformation property of a logarithmic primary of weights (32 ,−1
2) partnered

with Bzz. In appendix C, we provide an alternative definition of Czz related to derivative
operators of the form ∂∆O(∆), with O(∆) a primary operator of conformal dimension ∆.
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Let us now turn to the two-point functions of the log pair. Computing first the ⟨BzzBww⟩
two-point function, we have

⟨BzzBww⟩ = − κ2

64π4

〈
lim
ω→0

ω

[
a+ − a†

− +
∫

d2x

π

z̄ − x̄

(z − x)3
(
a− − a†

+

)]

× lim
ξ→0

ξ

[
a+ − a†

− +
∫

d2y

π

ȳ − w̄

(y − w)3 (a− − a†
+)
]〉

= − κ2

64π5

[ ∫
d2y

w̄ − ȳ

(w − y)3 lim
ω,ξ→0

ωξ⟨(a− − a†
+)(a+ − a†

−)⟩

+
∫

d2x
z̄ − x̄

(z − x)3 lim
ω,ξ→0

ωξ⟨(a+ − a†
−)(a− − a†

+)⟩
]

= κ2

2π2
z̄ − w̄

(z − w)3 lim
ω→0

ωδ(ω) = 0 ,

(4.40)

which is expected from the primary field in a logarithmic doublet. We then find

⟨CzzBww⟩=− κ2

64π4

〈∫ ∞

0
dω

[
ω2ϵ

(
a+−a†

−

)
+
∫

d2+2ϵx

π

z̄−x̄

(z−x)3 |z−x|−2ϵωϵ
(
a−−a†

+

)]
×

× lim
ξ→0

ξ

[
a+−a†

−+
∫

d2+2ϵy

π

w̄−ȳ

(w−y)3 (a−−a†
+)
]〉

=− κ2

64π5

[∫
d2+2ϵy

w̄−ȳ

(w−y)3
∫ ∞

0
dωω2ϵ lim

ξ→0
ξ⟨(a−−a†

+)(a+−a†
−)⟩

+
∫

d2+2ϵx
z̄−x̄

(z−x)3 |z−x|−2ϵ
∫ ∞

0
dωωϵ lim

ξ→0
ξ⟨(a+−a†

−)(a−−a†
+)⟩
]

= κ2

4π2

[
z̄−w̄

(z−w)3+
z̄−w̄

(z−w)3 |z−w|−2ϵ lim
ξ→0

ξ−ϵ
]

.

(4.41)
Hence, using that as ϵ → 0, limξ→0 ξ−ϵ = 1 we conclude

⟨CzzBww⟩ =
κ2

2π2
z̄ − w̄

(z − w)3 . (4.42)

Finally, we turn to the two-point function ⟨CzzCww⟩,

⟨CzzCww⟩=− κ2

64π5

∫ ∞

0
dωdξ ω2ϵξϵ

∫
d2x

z̄−x̄

(z−x)3 |z−x|−2ϵ⟨(a−−a†
+)(a+−a†

−)⟩

− κ2

64π5

∫ ∞

0
dωdξ ωϵξ2ϵ

∫
d2x

w̄−ȳ

(w−y)3 |w−y|−2ϵ⟨(a+−a†
−)(a−−a†

+)⟩

= κ2

2π2
Λϵ

ϵ

z̄−w̄

(z−w)3 |z−w|−2ϵ

= κ2

2π2
z̄−w̄

(z−w)3
(1

ϵ
−log |z−w|2

)
+o(ϵ) ,

(4.43)

where, in the last step, we have expanded for ϵ → 0 and neglected the UV divergence.
Combining this last equation with (4.40) and (4.42), we thus recognise the logarithmic
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doublet structure of the form (3.7) with k̃O = ϵ−1 and kO = κ2

2π2 . As discussed there, we
know that we should not expect the divergence in k̃O to be physical as it can always be
reabsorbed with a shift Czz → C ′

zz = Czz − k̃O
2 Bzz. As a result, we arrive at the following

IR-finite two-point functions of a logarithmic doublet of weights (32 ,−1
2), namely

⟨C ′
zzC

′
ww⟩ = − κ2

2π2
z̄ − w̄

(z − w)3 log |z − w|2

⟨C ′
zzBww⟩ =

κ2

2π2
z̄ − w̄

(z − w)3

⟨BzzBww⟩ = 0 .

(4.44)

5 Discussion

In this paper, we have shown that the presence of the operator (4.1) induces a logarithmic
CFT doublet structure in the soft sector of celestial CFT. While we focused on the case of
gravity, our analysis carries along for the QED case as well. The quantization of this operator
was shown in [55, 56] to source the fields at timelike infinity and to induce the quantum
part of Sahoo-Sen’s logarithmic soft photon theorem. It was also pointed out there that the
log u quantum mode is also closely related to the asymptotic dressed operators considered in
the Faddeev-Kulish construction [82]. Recently, logarithmic corrections to the subleading
soft graviton theorem were derived from the Ward identity associated with superrotation
charge conservation [83]. It is interesting to note that the derivation there did not require
the inclusion of a log u operator; the fall-off conditions considered there for the gravitational
shear at u → ∞ were only relaxed so as to encompass gravitational tail effects (namely
∼ u−1). The object that played a central role in the derivation of [83] (see also [84, 85]) was
rather the supertranslation Goldstone two-point function. The latter appeared because the
superrotation charge involves an extra contribution accounting for the dressing of operators
by the Goldstone boson, which is obviously related to the Faddeev-Kulish construction as
well. It would thus be interesting to clarify the connection between different derivations of
logarithmic corrections to soft theorems [55, 56, 83–86] based on symmetry principles. From
what we have discussed, logarithmic CFT structures can be expected to play an important
role once accounting for (quantum) loop corrections. This is also in line with the analyses
of [48, 50] which have unveiled the presence of logarithmic CFT operators in IR-finite gluon
OPEs in CCFT at one-loop.

We conclude this section by discussing below an analogy between the structure we have
found with the case of a free scalar in 2d CFT when considering the divergent part of the
correlator associated to the scalar zero-mode. This is followed by a short discussion on the
appearance of logarithmic correlation functions in Coulomb gas models when the Liouville
puncture operator is included in the spectrum of a gravitationally dressed CFT.

5.1 The example of the free scalar field

We begin this section with a recap of the treatment of the free scalar field in dimensional
regularization. The action for the free scalar field in d-dimension is given by

S = 1
2

∫
ddx ∂µΦ(x)∂µΦ(x). (5.1)
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The two-point correlation functions of the scalar field takes then the following form

⟨Φ(x)Φ(y)⟩ = π
d
2−1Γ

(
d − 2
2

) 1
|x − y|d−2 . (5.2)

In dimensional regularization near 2d, we take d = 2+2ϵ and expanding (5.2) for ϵ → 0 we get

⟨Φ(z, z̄)Φ(w, w̄)⟩ = 1
ϵ
− log |z − w|2µ2 + o(ϵ) (5.3)

where µ is the mass scale which enforces the argument to be dimensionless. Notice that, in
this setup, there is a divergent part followed by the usual logarithmic two-point function. In
standard expressions (see [87]), the divergent term is typically left inside the logarithm or
not written explicitly. In order to extract the divergent part of the correlator, we can define
the field φ = ϵΦ such that the two-point correlator becomes

⟨Φ(z, z̄)φ(w, w̄)⟩ = 1− ϵ log |z − w|2µ2 ϵ→0−−→ 1

⟨φ(z, z̄)φ(w, w̄)⟩ = ϵ − ϵ2 log |z − w|2µ2 ϵ→0−−→ 0.
(5.4)

From the expressions above, it is apparent that φ extracts the divergent part induced by
the presence of the zero mode of Φ. To make it even more explicit, it is possible to expand
Φ in modes (see e.g. [87, 88])

Φ(z, z̄) = χ − iϕ0 log |z|2 + i
∑
n ̸=0

( 1
n

ϕnz−n + 1
n

ϕ̄nz̄−n
)

, (5.5)

with the commutation rules [χ, ϕ0] = i and [ϕn, ϕm] = [ϕ̄n, ϕ̄m] = nδn+m,0, [ϕn, ϕ̄m] = 0 . To
enforce (5.3) the zero mode χ has to satisfy

⟨χχ⟩ = 1
ϵ

, (5.6)

while all the other modes give a finite contribution acting on the vacuum. We can conclude
then that in the limit ϵ → 0 the operator φ extracts the contribution of the zero mode as

φ(z, z̄)= ϵΦ(z, z̄)= ϵχ+ϵ

−iϕ0 log |z|2+i
∑
n ̸=0

( 1
n

ϕnz−n+ 1
n

ϕ̄nz̄−n
) ϵ→0−−→ ϵχ, (5.7)

and all the other operators evaluate to zero in this limit.
The example of the free scalar field is suggestive of the behavior of the Goldstone mode.

To make it manifest, we define the normalised mode

Ĉϵ =
√

ϵCϵ (5.8)

such that at leading order in the ϵ the correlator is

⟨Ĉϵ(z, z̄)Ĉϵ(w, w̄)⟩ = κ2

16π2 |z − w|2
(1

ϵ
+ log(|z − w|2µ2)

)
. (5.9)
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This structure resembles the two-point function of the free scalar. Following the same
reasoning as in (5.7), we can then relate the following operator B̂ϵ = ϵĈϵ with the Ĉϵ zero
mode. Moreover, we can use (4.36) to rewrite B̂ϵ in the limit ϵ → 0 as follows

B̂ϵ(z, z̄) =
√

ϵ

2

∫
d2+2ϵw

2π

[
z − w

z̄ − w̄
Bww + z − w

z̄ − w̄
Bww

]
, (5.10)

then making it clear that the mode Bzz is needed in the construction of the zero mode B̂ϵ

in this regularization scheme.

5.2 Liouville theory in CCFT

As discussed in [52, 75–78] (see also eq. (4.3)), the inclusion of superrotations in the soft
gravitational phase space involves the vacuum news tensor Nvac

zz , a (2, 0) mode which has
the transformation properties of a 2d stress-tensor,

δYNvac
zz = (Y∂ + 2∂Y)Nvac

zz − ∂3Y . (5.11)

It is related to the so-called ‘superboost scalar field’ Φ [52], which satisfies

DADAΦ(z, z̄) = R̊ → Φ(z, z̄) = φ(z) + φ̄(z̄)− log Ω(z, z̄), (5.12)

where DA is the covariant derivative with respect to the 2d metric q̊ABdxAdxB = 2Ω(z, z̄) dzdz̄

of Ricci tensor R̊. The vacuum news tensor can be expressed in terms of the holomorphic
part of Φ as

Nvac
zz = 1

2(Dzφ)2 − D2
zφ . (5.13)

The superboost field φ(z) was used in [49] to construct a composite operator which was
argued to form a logarithmic pair with the celestial stress tensor. It has also been noted
in [52, 53] that Nvac

zz is precisely proportional to the stress tensor of a Euclidean Liouville
theory defined by the action

S = γ2

4π

∫
d2x

√
q̊

[1
2DAΦDAΦ+ R̊Φ

]
, (5.14)

where we introduced a parameter γ. Notice that since the Liouville cosmological constant Λ
is zero in (5.14), the action reduces to that of a Coulomb gas. In particular, we can make
a field redefinition Φ = ϕ/γ to bring the action in the form

S = 1
4π

∫
d2x

√
q̊

[1
2DAϕDAϕ + γR̊ϕ

]
. (5.15)

Following the notation of [87], we see that this is a Coulomb gas with central charge

c = 1 + 12γ2 = 1− 24α2
0 , (5.16)

where we introduced α0 such that γ = i
√
2α0 to make contact with standard notation.
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We want to analyze the properties of the operator content of this theory, which is usually
represented by vertex operators

Vα =: ei
√
2αϕ : (5.17)

of conformal weight

hα = α(α − 2α0) = α(α + i
√
2γ) . (5.18)

For the moment, we will be agnostic about the value of γ but we remark that, if γ is purely
imaginary, then vertex operators with real conformal weights will be those with α ∈ R, while
for γ ∈ R we will have to consider purely imaginary α. In this case, vertex operators turn
into those usually considered in Liouville theory, Vλ(z) =: eλϕ : (z) with λ ∈ R.

We can now discuss the appearance of logarithmic operators in Coulomb gas models, as
studied in [89]. We first recall that, in this theory, only correlators which satisfy the neutrality
condition

∑
αi = 2α0 are non-vanishing; in particular, the only non-zero two-point functions

will be those of the form ⟨VαV2α0−α⟩ [87]. From (5.18), we see that the operators Vα and
V2α0−α have the same conformal dimension and when α = α0, the two operators degenerate
to the same one. It turns out that, for this value of α, there exists a second operator,

VP =: ϕ ei
√
2α0ϕ := 1

i
√
2

dVα

dα

∣∣∣∣
α=α0

, (5.19)

which is also a primary field of the same dimension than Vα0 , namely hα0 = −α2
0. In Liouville

theory, where α0 is imaginary, VP is known as the ‘puncture operator’ [90]. Notice that
dVα
dα will be a primary field only if α = α0, while for generic values of α it will turn into a

logarithmic primary. This is easy to see from the relation between hα and α as we can rewrite

dVα

dα
= 2(α − α0)

dVα

dh
= 4(α − α0)

dVα

d∆ , (5.20)

which shows that for α ̸= α0, dVα
dα is related to operators of the form ∂∆O(∆) (with O(∆) a

primary) which are known to be logarithmic17 [43, 44, 91]. While the puncture operator (5.19)
is an ordinary primary field, its inclusion in the spectrum will give rise to logarithmic
correlation functions [89, 92, 93]. For this reason, it is sometimes referred to as a ‘pre-
logarithmic’ operator, namely a primary operator whose OPEs with other primaries will
contain logarithmic operators. An interesting case in this context is the one of a gravitationally
dressed CFT where α2

0 < 1 and the Coulomb gas is used to couple another a CFT with 2d

gravity [94]. If we denote by Φh the operators of the CFT coupled to gravity, the dressed
operators will take the form

O(z) =: VαΦh : (5.21)
17This is easy to check from the transformation properties of primary fields

∂∆O(∆)′(z′, z̄′) =
(

∂f

∂̄f̄

)−J

∂∆
(
|∂f |−∆O(∆)(z, z̄)

)
= (∂f)−h(∂̄f̄)−h̄

[
∂∆O(∆) + log |∂f |O(∆)] .
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with conformal weight equal to hα + h = 1. This means that, if h = 1 + α2
0, then hα = −α2

0
and one thus needs to also include the puncture operator to dress the fields, which will give
rise to a logarithmic structure [89, 94]. If the superrotation Liouville field can be interpreted
as some gravitational dressing (see [33, 95, 96] for subleading conformally soft dressings),
then the above discussion would allow to understand the appearance of logarithmic operators
in CCFT as a result of the inclusion in the spectrum of the Liouville puncture operator. It
would also be interesting to explore possible connections with the recent works highlighting
the use of Liouville theory in celestial holography [97–100].
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A More on the log-shadow

In this appendix we would like to prove that Ψ̃ transforms as a logarithmic primary of weights
(1 − h, 1 − h̄). Under a generic SL(2,C) transformation:

z′ = f(z) = az + b

cz + d
, z̄′ = f̄(z̄) = āz̄ + b̄

c̄z̄ + d̄

∂f(z) = 1
(cz + d)2 , ∂̄f̄(z̄) = 1

(c̄z̄ + d̄)2

(A.1)

we have

Ψ̃′(z′, z̄′) = −Kh,h̄

∫
d2w

Ψ′(w, w̄) + log|z′ − w|2Φ(w, w̄)
(z′ − w)2−2h(z̄′ − w̄)2−2h̄

. (A.2)

Changing the integration variable to x′ = w = f(x), x̄′ = w̄ = f̄(x̄), we can use the
following property:∣∣∣∣det ∂w

∂x

∣∣∣∣ = 1
(cx + d)2(c̄x̄ + d̄)2

; z′ − x′ = f(z)− f(x) = z − x

(cz + d)(cx + d) (A.3)
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to rewrite (A.2) as:

Ψ̃(z′, z̄′) = −Kh,h̄

∫
d2x

(cx + d)−2h(c̄x̄ + d̄)−2h̄

(z − x)2−2h(z̄ − x̄)2−2h̄

[
Ψ′(x′, x̄′) + log |z − x|2

|cz + d|2|cx + d|2
Φ′(x′, x̄′)

]
(A.4)

We can then substitute the transformed fields with the identities (3.2) and rewrite:

Ψ̃′(z′, z̄′) = −Kh,h̄(∂f)h−1(∂̄f̄)h̄−1
∫

d2x
1

(z − x)2−2h(z̄ − x̄)2−2h̄

×
[
Ψ(x, x̄)− log |∂f(x)|Φ(x, x̄) + log

(
|z − x|2|∂f(z)||∂f(x)|

)
Φ(x, x̄)

]
= −Kh,h̄(∂f)h−1(∂̄f̄)h̄−1

∫
d2x

Ψ(x, x̄) + log
(
|z − x|2|∂f(z)|

)
Φ(x, x̄)

(z − x)2−2h(z̄ − x̄)2−2h̄

= (∂f)h−1(∂̄f̄)h̄−1
[
Ψ̃(z, z̄)− log|∂f(z)|Φ̃(z, z̄)

]
,

(A.5)

which is exactly the transformation property of a (1 − h, 1 − h̄) log primary.
The shadow logarithmic doublet Õa = (Ψ̃, Φ̃) thus transforms as a log CFT doublet

of weights (1 − h, 1 − h̄).
We can also be interested into computing the square of the log-shadow to verify if it

also squares to 1. We need to compute:

˜̃Ψ(z, z̄)=K1−h,1−h̄Kh,h̄

∫
d2wd2x

Ψ(x, x̄)
(z−w)2h(z̄−w̄)2h̄(w−x)2−2h(w̄−x̄)2−2h̄

+ (A.6)

+K1−h,1−h̄Kh,h̄

∫
d2wd2x

Φ(x, x̄)
(z−w)2h(z̄−w̄)2h̄(w−x)2−2h(w̄−x̄)2−2h̄

log |w−x|2

|z−w|2
.

Because J = h − h̄ ∈ Z/2 the integral in (A.6) can be computed using the following formula
found in [101]:

I1=
∫

d2w
1

(z−w)2h(z̄−w̄)2h̄(w−x)2−2h(w̄−x̄)2−2h̄
=(−1)−4h̄π2Γ(1−2h)Γ(2h−1)

Γ(2h̄)Γ(2−2h̄)
δ2(z−x)

(A.7)
so that using the definition of Kh,h̄ (A.6) turns out be equal to (−1)−4h̄Ψ. If we assume to work
only with semi-integers conformal weights then it follows that the usual shadow squares to 1.

To compute (A.6) we notice that:

1
2(∂h + ∂h̄)I1 =

∂I1
∂∆ =

∫
d2w

1
(z − w)2h(z̄ − w̄)2h̄(w − x)2−2h(w̄ − x̄)2−2h̄

log |w − x|2

|z − w|2
= I2

(A.8)
where ∆ = h + h̄. This implies:

I2 = π2δ2(z − x)(−1)−4h̄Γ(1− 2h)Γ(2h − 1)
Γ(2h̄)Γ(2− 2h̄)

× (A.9)

×
( 1
1− 2h

+ 1
1− 2h̄

− 2πi − π cot 2πh + π cot 2πh̄

)
.

Because h and h̄ always differ by a semi-integer the cotangent part of this expression can
be dropped and we get:

I2 = π2δ2(z − x)(−1)−4h̄Γ(1− 2h)Γ(2h − 1)
Γ(2h̄)Γ(2− 2h̄)

( 1
1− 2h

+ 1
1− 2h̄

− 2πi

)
(A.10)
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making the expression for the squared log-shadow:

˜̃Ψ(z, z̄) = (−1)−4h̄
[
Ψ(z, z̄) +

( 1
1− 2h

+ 1
1− 2h̄

− 2πi

)
Φ(z, z̄)

]
. (A.11)

We can clearly see that it does not square to the identity in the general case, but it shifts
the log primary with the partner primary. However we can see that the inverse shadow
for the doublet is well defined, as:

S−1
log [Ψ] (z, z̄) = (−1)4h̄

[
Ψ̃(z, z̄)−

( 1
1− 2h

+ 1
1− 2h̄

− 2πi

)
Φ̃(z, z̄)

]
(A.12)

S−1
log [Φ] (z, z̄) = (−1)4h̄Φ̃(z, z̄) . (A.13)

B Regulated integral computation

In this appendix, we compute explicitly the integral (2.42) in dimensional regularization
d = 2 + 2ϵ. At first, let us rewrite the integral using Feynman parameters as

Iϵ = µ2ϵ
0

∫
ddz

(z − z1)2(z̄ − z̄2)2

|z − z1|2|z − z2|2
= µ2ϵ

0

∫ 1

0
du

∫
ddz

(z − z1)2(z̄ − z̄2)2

(u|z − z1|2 + (1− u)|z − z2|2)2
. (B.1)

Focusing on the z integral, we re-parameterize it with the following change of variables:

z = x + uz1 + (1− u)z2, z̄ = x̄ + uz̄1 + (1− u)z̄2 z12 = z1 − z2 . (B.2)

This leaves us with the expression∫
d2+2ϵx

|x|4 + u2(1− u)2|z12|2 − 4u(1− u)|x|2|z12|2

(|x|2 + u(1− u)|z12|2)2
, (B.3)

where terms linear in x, x̄ have been dropped due to the parity properties of the integral.
The expression depends on |x|2 so we can factorize the angular component and get:

Jϵ =
2π1+ϵ

Γ(1 + ϵ)

∫ ∞

0
dr r1+2ϵ r4 + R4 − 4r2R2

(r2 + R2)2 , (B.4)

where we have defined R2 = u(1 − u)|z12|2.
Jϵ is linearly divergent at infinity, as we can highlight by splitting it as:

Jϵ =
2π1+ϵ

Γ(1 + ϵ)

[∫ ∞

0
dr r1+2ϵ − 6

∫ ∞

0
dr

r3+2ϵR2

(r2 + R2)2

]
, (B.5)

where the second term is finite for ϵ < 0. As the first term is a divergent dimensionful term
that does not contain any scale, in dim-reg it can be directly set to zero. Any possible finite
ambiguity will be taken into account by changing µ0.

This leaves us with:

Jϵ = − 12π1+ϵ

Γ(1 + ϵ)

∫ ∞

0
dr

r3+2ϵR2

(r2 + R2)2 = 6π2+ϵ(1 + ϵ)
Γ(1 + ϵ) sin πϵ

R2+2ϵ . (B.6)
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Iϵ can then be easily obtained by integrating over u, which gives

Iϵ =
6π2+ϵ(1 + ϵ)Γ(2 + ϵ)2

Γ(1 + ϵ)Γ(4 + 2ϵ) sin πϵ
|z12|2+2ϵµ2ϵ

0 . (B.7)

Notice that this expression as a function of ϵ can be analytically continued also in the region
ϵ > 0. If we now consider the expansion in small ϵ we get:

Iϵ = π|z12|2
(1

ϵ
− 2

3 + γE + log π + log(|z12|2µ2
0)
)
+ . . .

= π|z12|2
(1

ϵ
+ log(|z12|2µ2)

)
+ . . .

(B.8)

with µ2 = πeγE− 2
3 µ2

0.

C Relation between Czz and ∂∆O(∆)

In section 4.2, we have proved that Czz behaves like a logarithmic primary field. The aim
of this appendix is to relate the latter to logarithmic fields of the form ∂∆O(∆). Such
derivative operators were already considered in celestial CFT in the case of loop corrected
gluon OPEs [48, 50]. The presence of the Bzz operator may give rise to their presence
also for graviton operators.

To connect with the Czz operator we define:

A± = iκ

8π2 lim
∆→1

∂∆
[
(∆− 1)

(
a
(2)
∆,± − a

(2),†
∆,±

)]
= iκ

8π2 lim
δ→0

∂δ

[
δ
(
a
(2)
1+δ,± − a

(2),†
1+δ,±

)]
(C.1)

where a
(2)
1+δ,+, a

(2),†
1+δ,+ are defined in (2.11). Notice that from equation (4.36) we know that

(∆− 1)
(
a
(2)
∆,± − a

(2),†
∆,±

)
is regular in the limit ∆ → 1 so that A+ is finite. We are interested

at first in the transformation properties of A± under conformal transformations. Using the
transformation properties of the Mellin ladder operators we can write

A′(z′, z̄′)± = iκ

8π2 (∂f)− 3
2 (∂̄f̄) 1

2 lim
δ→1

∂δ

[
|∂f |−δδ

(
a

(2)
1+δ,±−a

(2),†
1+δ,±

)]
= iκ

8π2 (∂f)− 3
2 (∂̄f̄) 1

2 lim
δ→1

[
|∂f |−δ∂δ

(
δ
(

a
(2)
1+δ,±−a

(2),†
1+δ,±

))
−log |∂f |δ

(
a

(2)
1+δ,±−a

(2),†
1+δ,±

)]
=(∂f)− 3

2 (∂̄f̄) 1
2

[
A±−log |∂f | iκ

8π2 lim
δ→0

δ
(

a
(2)
1+δ,±−a

(2),†
1+δ,±

)]
=(∂f)− 3

2 (∂̄f̄) 1
2 [A±−log |∂f |B±] ,

where as A+ is finite in the δ → 0 limit we get no other contribution from |∂f |−δ. Then we
see that A+ is a logarithmic field in a doublet with the primary

B+ = iκ

8π2 lim
δ→0

δ
(
a
(2)
1+δ,± − a

(2),†
1+δ,±

)
. (C.2)

However from (4.36) we also know that

B+ = iκ

8π2 lim
δ→0

δ
(
a
(2)
1+δ,± − a

(2),†
1+δ,±

)
= iκ

8π2 lim
ω→0

ω(a+ − a†
−) = Bzz , (C.3)
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which proves that the derivative operator A+ is in a logarithmic doublet with Bzz. We
can then relate A+ with C+

zz. Then taking into consideration also A− and the log-shadow
transform we can also suggest an alternative definition for Czz:

Czz ∼
[
A+ −

∫
d2y

π

z̄ − ȳ

(z − y)3
(
A− + log |z − y|2Bȳȳ

)]
. (C.4)

Using the properties of the log shadow it is easy to see that this operator will also be
logarithmic and in a doublet with Bzz. Notice that if Bzz = 0 the operator defined in (C.4)
is also vanishing, which underlines the fact that the logarithmic structure is present only
if Bzz is non vanishing.

This discussion allowed us to bridge ∂∆O(∆) with Czz. We now want to make some
additional considerations on the A+ operator. To do so we will at first massage its expression
by explicitly writing the definition of the derivative:

A+ = lim
δ→0

lim
ϵ→0

(δ + ϵ)
(
a
(2)
1+δ+ϵ,± − a

(2),†
1+δ+ϵ,±

)
− δ

(
a
(2)
1+δ,± − a

(2),†
1+δ,±

)
ϵ

. (C.5)

Under the assumption that the limits are well defined, we can exchange their ordering to find

A+= iκ

8π2 limϵ→0

[(
a
(2)
1+ϵ,±−a

(2),†
1+ϵ,±

)
+1

ϵ
lim
δ→0

δ
(
a
(2)
1+ϵ+δ,±−a

(2),†
1+ϵ+δ,±

)
− 1

ϵ
lim
δ→0

δ
(
a
(2)
1+δ,±−a(2),†

)]
.

For ϵ finite, the second term vanishes for δ → 0, while the last term is identical to Bzz

and we are left with

A+ = lim
ϵ→0

[
iκ

8π2

(
a
(2)
1+ϵ,± − a

(2),†
1+ϵ,±

)
− 1

ϵ
Bzz

]
= lim

ϵ→0

iκ

8π2

[∫ ∞

0
ωϵ(a+ − a†

−)−
1
ϵ
lim
ω→0

ω(a+ − a†
−)
]

.

(C.6)

This expression shows that A+ is basically a regulated version of the small ϵ limit of:∫ ∞

0
ωϵ(a+ − a†

−) . (C.7)

In fact, if (C.7) gives a divergent result in connected n-point functions due to the presence
of the soft pole, A+ is the same operator with the additional term 1/ϵBzz that removes
the soft pole giving a finite result. Notice that regulated operators of the form (C.7) are
precisely those used to write the dim-reg expression for Czz (4.27), which tightens the relation
between Czz and A+.
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