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Abstract: We consider finite-range, many-body fermionic lattice models and we study
the evolution of their thermal equilibrium state after introducing a weak and slowly vary-
ing time-dependent perturbation. Under suitable assumptions on the external driving,
we derive a representation for the average of the evolution of local observables via a
convergent expansion in the perturbation, for small enough temperatures. Convergence
holds for a range of parameters that is uniform in the size of the system. Under a spectral
gap assumption on the unperturbed Hamiltonian, convergence is also uniform in temper-
ature. As an application, our expansion allows us to prove closeness of the time-evolved
state to the instantaneous Gibbs state of the perturbed system, in the sense of expectation
of local observables, at zero and at small temperatures. As a corollary, we also establish
the validity of linear response. Our strategy is based on a rigorous version of the Wick
rotation, which allows us to represent the Duhamel expansion for the real-time dynamics
in terms of Euclidean correlation functions, for which precise decay estimates are proved
using fermionic cluster expansion.
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1. Introduction

Adiabatic quantum dynamics. The adiabatic theorem is a fundamental result in quan-
tum mechanics, dating back to the work of Born and Fock [14] and Kato [37]. Let us
review its basic statement. Let H(s) be a family of time-dependent Hamiltonians, de-
pending smoothly on the time parameter s for s ∈ [−1, 0]. We shall suppose that H(s)
has a unique ground state ϕs , and that the energy of the ground state is separated from
the rest of the spectrum by a positive gap. We are interested in the adiabatic regime,
defined as follows. Let η > 0 and consider the time-dependent Schrödinger equation:

i∂tψ(t) = H(ηt)ψ(t), t ∈ [−1/η, 0]. (1.1)

Suppose that at the initial time the system is prepared in the ground state of the Hamil-
tonian, ψ(−1/η) = ϕ−1. We are interested in the evolution of such initial datum under
(1.1), in the adiabatic limit η → 0+. The adiabatic theorem states that:

∥
∥
∥ψ(t) − 〈ψ(t), ϕηt 〉ϕηt

∥
∥
∥ ≤ Cη for all t ∈ [−1/η, 0]. (1.2)

This implies that, at all times t and for η small enough, the solution of the time-dependent
Schrödinger Eq. (1.1) is approximated by the instantaneous ground state, possibly up
to a phase. This important result has been applied to study a wide class of physical
systems, see [47] for a monograph on the topic. It has been generalized to a class of
contracting evolutions that includes the Schrödinger Eq. (1.1) as a special case, see [6]
and references therein.

The constant C in Eq. (1.2) depends on the details of the model, in particular on the
regularity of H(s). The way in which the regularity of H(s) is quantified is typically
via an estimate for ‖Ḣ(s)‖. This quantity is badly behaved in situations in which the
Hamiltonian describes a many-body system, say an interacting Fermi gas on a lattice
�L = [0, L]d ∩Z

d , due to the fact that the norm of the Hamiltonian and of its derivatives
grow linearly with the size of the system. Thus, the standard adiabatic theorem fails in
describing the evolution of many-body quantum systems for η small uniformly in L .

This is not a technical point. In fact, it turns out that the notion of convergence
in Eq. (1.2) is not the natural one for many-body systems: one cannot expect norm
convergence for extensive many-body quantum systems uniformly in their size, see
for instance the discussion in [8]. Instead, a much more natural notion of convergence
involves the expectation value of local observables, which only probe a finite region
in space. In this setting, a many-body adiabatic theorem for quantum spin systems has
been recently proved in [7]. The result has then been extended to Fermi gases in [43].
Specifically, let H (s) be a time-dependent Hamiltonian for a quantum spin systems,
or for lattice fermions, on a large but finite lattice �L ⊂ Z

d . Suppose that H (s) has a
spectral gap for all times s ∈ [−1, 0], and let �L(s) be the projector associated with the
ground state of H (s) on �L . Let PL(t) be the solution of the evolution equation:

i∂t PL(t) = [H (ηt), PL(t)], PL(−1/η) = �L(−1). (1.3)
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Consider the expectation value of a local operator on the time-dependent state, Tr OX PL(t).
Then, under reasonable regularity and locality assumptions on the Hamiltonian, the
many-body adiabatic theorem states that [7,43]:

∣
∣
∣Tr OX PL(t) − Tr OX�L(ηt)

∣
∣
∣ ≤ Cη for all t ∈ [−1/η, 0], (1.4)

where the constant C depends on the observable OX , but it is independent of L . An
important application of this result is the proof of validity of linear response for extended,
many-body quantum systems. To introduce the notion of linear response, let us further
assume that the many-body Hamiltonian has the form:

H (ηt) = H + εg(ηt)P (1.5)

where H and P are given by sums of local operators, and g(t) is a switch function, that
is a bounded function that decays fast enough at negative times. A standard choice is the
exponential switch function, g(t) = et . Consider the dynamics generated by (1.5) for
t ∈ (−∞, 0]. Let PL(t) be the solution of (1.3) with initial datum PL (−∞) = �L(−∞).
Then, [7,43] proved that, see also the reviews [8,32]:

lim
ε→0

lim
η→0+

lim
L→∞

1

ε

[

Tr OX PL(0) − Tr OX PL(−∞)
]

= χO,P (1.6)

where χO,P agrees with the well-known Kubo formula for linear response. The state-
ment (1.6) holds provided the thermodynamic limit of PL(−∞) exists. In general, a
similar result holds for ε, η, L fixed, where ε, η are small uniformly in L and where ε

is small uniformly in η. The Kubo formula is equivalent to the first order term in the
Duhamel expansion for the non-autonomous evolution:

χO,P = −i lim
η→0+

lim
L→∞

∫ 0

−∞
dt g(ηt) Tr

[

OX , eiH tPe−iH t ]PL(−∞). (1.7)

These results have interesting applications in condensed matter physics. In particular,
combined with [10,26,31], they allow to prove the quantization of the Hall conductivity
for gapped interacting fermions starting from the fundamental many-body Schrödinger
equation. Among other extensions that have been obtained in the last few years we
mention: the construction of non-equilibrium almost-stationary states and the application
to the proof of validity of linear response for a class of perturbations that might close the
spectral gap [48]; the proof of exactness of linear response for the quantum Hall effect
[9]; the extension of the many-body adiabatic theorem to infinite systems with a bulk
gap [33].

Despite all this progress, an important limitation of the existing approaches is that
they do not allow to study many-body quantum systems at positive temperature. In
particular, the zero temperature limit is taken before the thermodynamic limit. It is of
obvious physical relevance to consider the situation in which the thermodynamic limit is
taken at fixed positive temperature, to make contact with experimental settings in which
the temperature is possibly small but necessarily non-zero. In what follows, we will focus
on interacting lattice fermionic models, which we shall describe in the grand-canonical
Fock space formalism. We are interested in the following evolution equation:

i∂tρ(t) = [H (ηt), ρ(t)], ρ(−∞) = ρβ,μ,L , (1.8)
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with ρβ,μ,L = e−β(H −μN )/Zβ,μ,L the grand-canonical equilibrium Gibbs state of the
HamiltonianH at temperature T = 1/β and chemical potential μ. A natural question is
to understand under which conditions the many-body evolution of the equilibrium state
can be approximated by an instantaneous Gibbs state, in the sense of the expectation of
local observables. For instance, one would like to understand under which conditions

Tr OXρ(t) = Tr e−β(H (ηt)−μN )OX

Tr e−β(H (ηt)−μN )
+ o(1) (1.9)

with o(1) a quantity that vanishes as η → 0+, uniformly in L (and possibly with a
different temperature T than the one used to define the initial datum).

Our result. In this work, we introduce a different approach to study many-body quan-
tum dynamics in the adiabatic regime, which applies to weakly interacting many-body
systems at small positive temperature. We consider finite-range, time-dependent Hamil-
tonians of the form (1.5), under suitable assumptions discussed below. In our main result,
Theorem 3.7, we derive a representation of Tr OXρ(t) via a convergent expansion in ε,
uniformly in η and in L , for small temperatures. “Small” means that the temperature
parametrizing the initial Gibbs state is such that

T � |ε|−1ηd+2, (1.10)

uniformly in the size of the system. Under suitable assumptions on the decay of corre-
lations of H , the range of allowed ε for which convergence holds is also uniform in β.
These assumptions hold for example for finite-range Hamiltonians of the form

H λ = H 0 + λV (1.11)

with H 0 the second-quantization of a gapped Hamiltonian, V a bounded local many-
body interaction and |λ| small. This is the type of models considered e.g. in [26], where
the universality of the Hall conductivity for weakly interacting Fermi systems has been
proved. This class of weakly interacting systems can be analyzed via fermionic cluster
expansion techniques, which make it possible to prove essentially optimal estimates for
the decay of the Euclidean correlation functions. For these models, the assumptions on
the equilibrium Euclidean correlations required by Theorem 3.7 actually hold at positive
temperature even without a gap condition on H 0, however in this case one is forced to
consider a range of λ, ε that shrinks as T → 0 (but still uniformly in L).

Our method then allows us to prove the validity of an adiabatic theorem for local
observables, in the form of Eq. (1.9), for small temperatures in the sense of (1.10).
In particular, the zero-temperature many-body adiabatic theorem (1.4) is recovered by
taking the limit β → ∞ at finite L .1 Furthermore, the method can also be used to prove
the validity of linear response, and more generally to compute all higher-order response
coefficients in terms of equilibrium correlations, see Corollary 3.11.

1 For finite L and as β → ∞, the average over the Gibbs state of H (ηt) converges to the average over the
ground state projector, parametrized by the chemical potential μ. This is a straightforward consequence of the
fact that for finite L the Hilbert space is finite-dimensional and so the spectrum of H (ηt) is always discrete.
This behavior can be extended to the case in which the limit L → ∞ is taken before the limit β → ∞, as
long as such a limit of the Gibbs state exists [15, Proposition 5.3.23]. Our main result applies to this setting
as well, provided the assumptions hold uniformly in (low) temperature. The existence of such a limit of the
Gibbs state (and its other properties, for example whether it is a pure state) is largely independent from the
subject matter of the present article, so we will not discuss it in detail. For weakly interacting gapped systems,
the existence of the β, L → ∞ limit can often be shown using the same techniques we use in Appendix C to
bound the correlation functions.
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The proof is based on a rigorous Wick rotation, which makes it possible to rewrite the
Duhamel expansion for the quantum evolution of the system in terms of time-ordered,
Euclidean (or imaginary-time) connected correlation functions. Previously, this idea has
been used to rigorously study the linear and quadratic response in a number of interacting
gapped or gapless systems [5,26,29,42]. Here, we extend this strategy at all orders in the
Duhamel expansion for the time-evolution of the state, and we use it to prove convergence
of the Duhamel series for the real-time dynamics.

The method applies to a class of switch functions g(ηt) that can be approximated,
for β large, by functions gβ,η(t), decaying rapidly for t → −∞, such that gβ,η(t) =
gβ,η(t − iβ). This periodicity plays a key role in the proof of the Wick rotation. This
requirement of course restricts the class of switch functions that we are able to consider;
however, let us anticipate that this assumption holds for the standard exponential switch
function, and more generally for the Laplace transform of suitable integrable functions.

Our method is completely different from that used in previous works on adiabatic
theorems [7,43], and it allows to access small positive temperatures. With respect to
the existing results, however, we assume that the time-dependent perturbation is slowly-
varying and weak, since our method is ultimately based on a convergent expansion in
ε, whereas in the previous works [7,43] it is only assumed that the time-dependent
Hamiltonian is slowly varying. The work [7,43] further assume that the ground state
of the time-dependent Hamiltonian H (ηt) is separated by the rest of the spectrum by
a uniform spectral gap, for all times. While we do not make this assumption, for the
aforementioned example (1.11) it can also be proved for small |λ| and small |ε| [20].

Besides the result itself, we believe that a relevant contribution of the present work is to
import methods developed for interacting fermionic models at equilibrium to the study of
real-time quantum dynamics. In perspective, if combined with rigorous renormalization
group techniques (see [12,40,46] for reviews) we think that the approach of this paper
could be extended to study the evolution of the Gibbs state of metallic or semimetallic
systems, where the Fermi energy of the initial datum is not separated from the spectrum
of the Hamiltonian uniformly in the size of the system. There, one does not expect an
adiabatic theorem to hold; however, one might still have a convergent series expansion for
the expectation of local observables in terms of Euclidean correlations, in a physically
relevant range of parameters. This would be useful to establish the validity of linear
response for gapless systems, widely used in applications.

Specifically, the combination of cluster expansion with rigorous renormalization
group recently allowed to study the low temperature properties of a wide class of inter-
acting gapless systems, and in particular to access their transport coefficients defined in
the framework of linear response. Among the recent works, we mention the construction
of the ground state of the two-dimensional Hubbard model on the honeycomb lattice
[24] and the proof of universality of the longitudinal conductivity of graphene [25]; the
construction of the topological phase diagram of the Haldane-Hubbard model [27,28];
the proof of the non-renormalization for the chiral anomaly of Weyl semimetals [29]; the
proof of Luttinger liquid behavior for interacting edge modes of two-dimensional topo-
logical insulators and the proof of universality of edge conductance [5,41,42]. It would
be very interesting to prove the validity of linear response in the setting considered
in these works, starting from many-body quantum dynamics. Renormalization group
methods rely on translation-invariance, and on periodic boundary conditions. It would
be interesting to consider a larger class of boundary conditions, for example adapting
the methods of [4].
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Furthermore, it would be interesting to extend the methods presented in this work
in the direction of studying spin transport, and prove the validity of linear response
for spin-noncommuting many-body Hamiltonians. For non-interacting models, recent
progress has been obtained in [38,39].

The adiabatic evolution of positive temperature quantum systems has been studied in
the last years, e.g. in [1,2,34]. The setting considered in these works is however different
from the one of the present paper. The authors of [1,2,34] consider a small system
coupled to reservoirs, and study the dynamics of the small system when the coupling
with the reservoirs is introduced slowly in time. The key technical tool introduced in
[1,2,34] is an isothermal adiabatic theorem, that proves norm-convergence of the evolved
equilibrium state to the instantaneous equilibrium state of the perturbed system, in the
adiabatic limit. The result holds under a suitable ergodicity assumption, which, as far
as we know, has not been proved for the class of extended, interacting Fermi systems
considered here. Finally, we mention the recent works [35,36] showing that the validity
of a many-body adiabatic theorem for quantum spin systems in the thermodynamic limit
at fixed positive temperature and as η → 0+ is incompatible with the general notion of
approach to equilibrium. We plan to further investigate the connection of our work with
[35,36] in the future.

Ideas of the proof. Let us give a few more details about the method introduced in this
paper. The proof starts by approximating the real-time dynamics generated by H (ηt)
by a suitable auxiliary dynamics, obtained from H (ηt) by replacing the switch function
g(ηt) by a function gβ,η(t) such that limβ→∞ gβ,η(t) = g(ηt) and gβ,η(t) = gβ,η(t −
iβ). This approximation of course introduces an error, whose influence on the expectation
values of local observables is estimated via Lieb-Robinson bounds for non-autonomous
quantum dynamics [13,16]. This error is responsible for the main limitation in the range
of temperatures that we are able to consider. The advantage of replacing g(ηt) with
gβ,η(t) is that it lets us write the Duhamel series in ε for the auxiliary evolution exactly
in terms of Euclidean correlations, implementing a Wick rotation. This is made possible
mainly because the periodicity of gβ,η implies that the Kubo-Martin-Schwinger (KMS)
identity remains true for the thermal expectation of modified observables of the form
gβ,η(t)eiH tOXe−iH t . Once the Duhamel series is represented in terms of Euclidean
correlations, the convergence of the series follows from the good decay properties of
Euclidean correlations. For weakly perturbed gapped models we use cluster expansion
techniques to verify these assumptions. Finally, the connection with the instantaneous
Gibbs state ofH (ηt) is obtained by noticing that, for η small, the Wick-rotated Duhamel
series agrees with the equilibrium perturbation theory in ε for the Gibbs state of the
Hamiltonian H + εg(ηt)P .

An important ingredient of our proof is the complex deformation argument of Propo-
sitions 4.4, 4.5, which allows us to prove the Wick rotation at all orders in the Duhamel
series. Propositions 4.4, 4.5 are the adaptation of Propositions 5.4.12, 5.4.13 of [15] to
our adiabatic setting. The main difference with respect to [15] is that in our case the
observables involved in the correlations are “damped” in time by gβ,η(t): this allows
to rule out the presence of spurious boundary terms at infinity in the complex defor-
mation argument. In [15], these boundary terms are controlled by a suitable clustering
assumption on the real-time correlation functions of the equilibrium state, which are
very hard to prove for interacting models in the infinite volume limit. We are not aware
of any result in this direction for the class of many-body lattice models considered in
the present work.
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Structure of the paper. The paper is organized as follows. In Sect. 2 we introduce the
class of models considered in this work, we introduce their Gibbs state and Euclidean
correlation functions, and we define the quantum dynamics. In Sect. 3 we state our main
result, Theorem 3.7, which provides a representation for the average of the real-time
evolution of local observables via a convergent expansion in ε. As an application, this
representation establishes a many-body adiabatic theorem for the evolution of thermal
states at low temperature. A relevant consequence of the proof of our main result is the
validity of linear response, Corollary 3.11. The proof of the main result will be given
in Sect. 4. In Appendix A we further discuss the class of switch functions considered in
the present work; in Appendix B we discuss some well-known properties about time-
ordered Euclidean correlations, which we include for completeness; and in Appendix
C we review the verification of our Assumption 3.1, which is known to hold for many-
body systems at zero temperature and with a spectral gap, or at positive temperature.
This is done using fermionic cluster expansion, whose convergence is guaranteed by the
Brydges-Battle-Federbush-Kennedy formula for cumulants.

2. The Model

In this section we define the class of models we shall consider in this paper. We will
focus on lattice fermionic systems, with finite-range interactions. We will then define
the time-evolution of such systems, after introducing a time-dependent perturbation.

Remark 2.1. Unless otherwise specified, the constantsC, K etc. appearing in the bounds
do not depend on β, L , η, ε and on time. Their values might change from line to line.
Also, it will be understood that the natural numbers N include zero.

2.1. Lattice fermions. Let  be a d-dimensional lattice, namely

 = SpanZ{a1, . . . , ad} ∼= Z
d ,

where a1, . . . , ad are d linearly independent vectors in R
d . Let L ∈ N, L > 0. We define

the lattice dilated by L as L := SpanLZ{a1, . . . , ad} ∼= LZd . The finite torus of side
L is defined as L := /(L), that is:

L ∼=
{

d
∑

i=1

niai
∣
∣
∣ ni ∈ Z, 0 ≤ ni < L

}

with periodic boundary conditions. The Euclidean distance on the torus L is given by

‖x − y‖L := min
v∈(L)

‖x − y + v‖, ∀ x, y ∈ L .

We shall denote by M ∈ N, M > 0 the total number of internal degrees of freedom of a
particle. This might take into account the spin degrees of freedom, or sublattice labels.
Setting SM := {1, . . . , M}, we define:

�L := L × SM .

We equip �L with the following distance, tracing only the space coordinates. For any
x = (x, σ ), y = (y, σ ′) ∈ �L , we define:

‖x − y‖L := ‖x − y‖L . (2.1)



   75 Page 8 of 56 R. L. Greenblatt, M. Lange, G. Marcelli, M. Porta

We shall describe fermionic particles on �L , in a grand-canonical setting. To this end,
we introduce the fermionic Fock space, as follows. Let the one-particle Hilbert space be
hL := �2(�L). The corresponding N -particle Hilbert space is its N -fold anti-symmetric
tensor product HL ,N := h∧N

L ; notice that the antisymmetric tensor product is trivial
whenever N > MLd . The fermionic Fock space is defined as usual:

FL :=
MLd
⊕

N=0

HL ,N , where hL ,0 := C.

For finite L , the fermionic Fock space is a finite-dimensional vector space. Thus, any
linear operator on FL into itself is automatically bounded, and can be represented as
a matrix. For any x ∈ �L , let ax and a∗

x be the standard fermionic annihilation and
creation operators, satisfying the canonical anti-commutation relations:

{ax, a∗
y } = δx,y1 and {ax, ay} = 0 = {a∗

x , a
∗
y }.

For any subset X ⊆ �L , we denote by AX the algebra of polynomials over C generated
by the fermionic operators restricted to X , {ax, a∗

x : x ∈ X}. An example of operator in
A�L is the number operator, defined as:

N :=
∑

x∈�L

a∗
xax.

The operator N counts how many particles are present in a given sector of the Fock
space: given ψ ∈ F , it acts as

N ψ = (0ψ(0), 1ψ(1), . . . , nψ(n), . . .).

We shall denote by A N
X the subset of AX consisting of operators commuting with N ,

also called gauge-invariant operators. Equivalently, these operators consist of polyno-
mials in the creations and annihilation operators where the number of creation operators
equals the number of annihilation operators.

It is clear that any self-adjoint operator O ∈ A�L can be represented as

O =
∑

X⊆�L

OX , (2.2)

where OX ∈ AX and OX = O∗
X . As L varies, the operator O actually denotes a

sequence of operators. In particular, the operators OX in (2.2) might depend on L . With
a slight abuse of notation, we will not display explicitly such dependence. Notice that
if X ∩ Y = ∅, and if OX and OY are even in the number of fermionic creation and
annihilation operators,

[OX ,OY ] = 0. (2.3)

Finally, let us define the notion of finite-range operators. Given X ⊆ �L , the diameter
of X is defined as:

diam(X) := max
x,y∈X ‖x − y‖L .
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Definition 2.2 (Finite-range operators). We say that O ∈ A�L is a finite-range operator
if the following holds true. There exists R > 0 independent of L such that OX = 0
whenever diam(X) > R. Furthermore, there exists a constant S > 0 independent of L
such that, for all X ⊆ �L :

‖OX‖ ≤ S.

Examples of finite range operators introduced below are the Hamiltonian H and the
perturbation P .

2.2. Dynamics.
Hamiltonian and Gibbs state. The Hamiltonian H is a self-adjoint, finite-range oper-
ator in A N

�L
. The Heisenberg time-evolution of an observable O ∈ A�L generated by

H is, for t ∈ R:

τt (O) := eiH tOe−iH t . (2.4)

Later, we will also consider the Heisenberg evolution for complex times t , whose defi-
nition poses no problem due to the finite-dimensionality of the Hilbert space.

An example of a Hamiltonian which will play an important role in this work is

∑

x,y∈�L

a∗
xH(x; y)ay +

∑

x,y∈�L

a∗
xa

∗
yv(x; y)ayax, (2.5)

with H(x; y) and v(x; y) finite-range, that is both H(x; y) and v(x; y) are vanishing if
‖x − y‖L > R. More generally, we shall say that H is the Hamiltonian for a weakly
interacting lattice model if it has the form:

∑

x,y∈�L

a∗
xH(x; y)ay + λV (2.6)

with λ ∈ R, |λ| small in a sense to be made precise, and V finite-range and of degree
higher than two in the fermionic operators. We shall say that the non-interacting Hamil-
tonian H 0 = ∑

x,y∈�L
a∗
xH(x; y)ay is gapped if the spectrum of H has a spectral gap

uniformly in L .
Given β > 0, μ ∈ R, the grand-canonical equilibrium state 〈·〉β,μ,L associated with

the Hamiltonian H , also called equilibrium Gibbs state, is defined as:

〈·〉β,μ,L := Tr ·ρβ,μ,L , ρβ,μ,L := e−β(H −μN )

Zβ,μ,L
, Zβ,μ,L := Tr e−β(H −μN ),

where the trace is over the fermionic Fock space FL . Obviously, the Gibbs state is
invariant under time evolution:

〈O〉β,μ,L = 〈τt (O)〉β,μ,L ∀t ∈ C.

It will also be convenient to define the imaginary-time, or Euclidean, evolution of O as:

γt (O) := et (H −μN )Oe−t (H −μN ) t ∈ R. (2.7)
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For O ∈ A N
�L

, one has

γt (O) = τ−i t (O) (2.8)

(the restriction to A N
�L

is needed because γ , unlike τ , includes a chemical potential
term). Notice that the imaginary-time evolution is no longer unitary, and the norm of
γt (O) might grow in time. Finally, the following property, also called KMS identity,
holds:

〈γt1(O1)γt2(O2)〉β,μ,L = 〈γt2+β(O2)γt1(O1)〉β,μ,L (2.9)

for any O1 and O2 in A�L . For finite L , which is our case, this identity simply follows
from the definition of Gibbs state, and from the cyclicity of the trace. In order for (2.9) to
hold, it is crucial that the generator of the Euclidean dynamics γt includes the chemical
potential term −μN in its definition. Notice that the dynamics γt in (2.8) trivially
extends to all complex times t ; thus, the identity (2.9) actually holds replacing t1, t2 by
any two complex numbers z1, z2. Equation (2.9) will play a fundamental role in our
analysis.

Time ordering. Let t1, . . . , tn in [0, β), and let a�
x be either ax or a∗

x . We define the
time-ordering of the monomial γt1(a

�1
x1) · · · γtn (a�n

xn ) as:

Tγt1(a
�1
x1

) · · · γtn (a�n
xn ) = (−1)π1(tπ(1) ≥ · · · ≥ tπ(n))γtπ(1)

(a
�π(1)
xπ(1)

) · · · γtπ(n)
(a

�π(n)
xπ(n)

),

(2.10)

where π is the permutation needed in order to bring the times in a decreasing order,
from the left, with sign (−1)π , and 1(condition) is equal to 1 if the condition is true or
0 otherwise. In case two or more times are equal, the ambiguity is solved by putting the
fermionic operators into normal order. Other solutions of the ambiguity are of course
possible; it is worth anticipating that in our applications this arbitrariness will play
no role, since it involves a zero measure set of times. The above definition extends
to operators in A�L by linearity. In particular, for O1, . . . ,On even in the number of
creation and annihilation operators, we have:

Tγt1(O1) · · · γtn (On)

= 1(tπ(1) ≥ tπ(2) ≥ · · · ≥ tπ(n))γtπ(1)
(Oπ(1)) · · · γtπ(n)

(Oπ(n)).
(2.11)

The lack of the overall sign is due to the fact that the observables involve an even number
of creation and annihilation operators.

Euclidean correlation functions. Let ti ∈ [0, β), for i = 1, . . . , n. Given operators
O1, . . . ,On in A�L , we define the time-ordered Euclidean correlation function as:

〈Tγt1(O1) · · · γtn (On)〉β,μ,L . (2.12)

From the definition of fermionic time-ordering, and from the KMS identity, it is not
difficult to check that:

〈Tγt1(O1) · · · γβ(Ok) · · · γtn (On)〉β,μ,L

= (±1)〈Tγt1(O1) · · · γ0(Ok) · · · γtn (On)〉β,μ,L ; (2.13)

in the special case in which the operators involve an even number of creation and anni-
hilation operators, which will be particularly relevant for our analysis, the overall sign
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is +1. The property (2.13) allows to extend in a periodic (sign +1) or antiperiodic (sign
−1) way the correlation functions to all times ti ∈ R. From now on, when discussing
time-ordered correlations we shall always assume that this extension has been taken,
unless otherwise specified.

Next, we define the connected time-ordered Euclidean correlation functions, or time-
ordered Euclidean cumulants, as:

〈Tγt1(O1); · · · ; γtn (On)〉β,μ,L

:= ∂n

∂λ1 · · · ∂λn
log

{

1 +
∑

I⊆{1,2,...,n}
λ(I )〈TO(I )〉β,μ,L

}∣
∣
∣
λi=0

(2.14)

where I is a non-empty ordered subset of {1, 2, . . . , n}, λ(I ) = ∏

i∈I λi and
O(I ) = ∏

i∈I γti (Oi ). For n = 1, this definition reduces to 〈Tγt1(O1)〉 ≡ 〈γt1(O1)〉 =
〈O1〉, while for n = 2 one gets 〈Tγt1(O1); γt2(O2)〉 = 〈Tγt1(O1)γt2(O2)〉 − 〈Tγt1(O1)〉
〈Tγt2(O2)〉. More generally, the following relation between correlation functions and
connected correlation function holds true:

〈Tγt1(O1) · · · γtn (On)〉β,μ,L =
∑

P

∏

J∈P

〈Tγt j1
(O j1); · · · ; γt j|J | (O j|J |)〉β,μ,L ,

where P is the set of all partitions of {1, 2, . . . , n} into ordered subsets, and J is an
element of the partition P , J = { j1, . . . , j|J |}.
Driving the system out of equilibrium. We are interested in driving the system out of
its initial equilibrium, by adding a slowly varying time-dependent perturbation to the
Hamiltonian H . We define, for t ≤ 0:

H (ηt) := H + g(ηt)εP, (2.15)

where: η > 0, ε ∈ R; g(·) is a smooth function vanishing at −∞, whose further
properties will be specified later on; and P ∈ A N

�L
is a self-adjoint and finite-range

operator. As an example, we might consider:

P =
∑

x∈�L

μ(x)a∗
xax,

with μ(x) bounded uniformly in L . More generally, we will not requireP to be quadratic
in the fermionic operators.

The HamiltonianH (ηt) generates the following the Schrödinger-von Neumann non-
autonomous evolution:

i∂tρ(t) = [H (ηt), ρ(t)], ρ(−∞) = ρβ,μ,L , t ≤ 0. (2.16)

We shall denote by U (t; s) the unitary group generated by H (ηt):

i∂tU (t; s) = H (ηt)U (t; s), U (s; s) = 1. (2.17)

Using this unitary group, the solution of Eq. (2.16) can be written as

ρ(t) = U (t;−∞)ρβ,μ,LU (t;−∞)∗. (2.18)

Let OX ∈ A N
X be a local operator. We will be interested in studying its expectation

value in the time-dependent state Tr OXρ(t). In particular, we will be interested in under-
standing the dependence of this quantity on the external perturbation, and in establishing
the validity of linear response, uniformly in the size of the system.
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3. Main Result

In what follows, we will consider Hamiltonians H (ηt) = H + εg(ηt)P of the form
introduced above. We shall denote by 〈·〉t the instantaneous Gibbs state of H (ηt),

〈OX 〉t := Tr e−β(H (ηt)−μN )OX

Tr e−β(H (ηt)−μN )
. (3.1)

Our main result holds under the following assumptions on the Hamiltonian H (through
its Gibbs state) and on the switch function g(t).

Assumption 3.1. (Integrability of time-ordered cumulants) Let S > 0, R > 0. For
n ≥ 1 and for i = 1, . . . , n + 1, let O(i) be finite-range operators, such that ‖O(i)

Xi
‖ ≤ S

and O(i)
Xi

= 0 for diam(Xi ) > R, uniformly in L . For all β > 0, there exists a constant
c ≡ c(β, S, R) > 0 such that the following holds, for all L ∈ N and for all n ∈ N and
for all X ⊆ �L :

∫

[0,β]n
dt (1 + |t |β)

∑

Xi⊆�L

∣
∣
〈

Tγt1(O
(1)
X1

); · · · ; γtn (O
(n)
Xn

);O(n+1)
X

〉

β,μ,L

∣
∣ ≤ cnn! (3.2)

where:

|t |β :=
n
∑

i=1

min
m∈Z |ti − mβ|. (3.3)

Remark 3.2. (i) For weakly interacting fermionic lattice models, recall Eq. (2.6), As-
sumption 3.1 can be proved via cluster expansion techniques for |λ| small enough:
the bound (3.2) holds true for all finite β and L , with a constant c that might grow
with β but it is independent of L . Moreover, if the non-interacting Hamiltonian in
Eq. (2.6) is gapped, and if the chemical potential μ is chosen in the spectral gap, the
bound (3.2) holds for |λ| small uniformly in β, with a constant c that is independent
of β. We shall review these facts in Appendix C. There, we shall focus on the case
of local, quartic interactions; however, the method could also be applied to cover a
larger class of local interactions. The same methods can actually be used to prove the
stability of the spectral gap for many-body Hamiltonians [20].

(ii) It is known that the existence of a spectral gap for the many-body Hamiltonian implies
the spatial exponential decay of correlations [30]. In general, it would be interesting
to understand whether the bound (3.2) can be established under the assumption of
locality and of a spectral gap for the many-body Hamiltonian, with the same n-
dependence as in the right-hand side of (3.2). We are not aware of any result in this
direction, at zero or at positive temperature.

The next assumption specifies the class of switch functions g(t) that we are able to
consider.

Assumption 3.3. (Properties of the switch function) We assume that g(t) has the form,
for all t ≤ 0:

g(t) =
∫ ∞

0
dξ eξ t h(ξ) with h(ξ) ∈ L1(R+), (3.4)
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and where h is a function such that

∫ 1

0
dξ

|h(ξ)|
ξd+2 < ∞,

∫ ∞

1
dξ ξ |h(ξ)| < ∞. (3.5)

Alternatively, the function h(ξ) can be replaced by a finite linear combination of Dirac
delta distributions supported on R+.

Remark 3.4. Thus, g is the Laplace transform of the function h. As discussed in Appendix
A, the properties (3.5) are implied by suitable decay properties of the function g(z) for
complex times. Our setting allows us to include the function g(t) = et , a widely used
switch function in applications, by choosing h(ξ) = δ(ξ − 1).

Next, we introduce a suitable approximation of the switch function, which will play an
important role in our analysis.

Definition 3.5 (Approximation of the switch function). Let η > 0 and suppose that g(t)
satisfies Assumption 3.3. We define:

gβ,η(t) :=
∞
∑

m=0

∫ 2π
βη

(m+1)

2π
βη

m
dξ h(ξ)e

2π
βη

(m+1)ηt

≡
∑

ω∈ 2π
β
N

g̃β,η(ω)eωt ,
(3.6)

where g̃β,η(0) := 0 and for ω ≥ 2π
β

:

g̃β,η(ω) :=
∫ ω

η

ω
η
− 2π

βη

dξ h(ξ). (3.7)

Remark 3.6. (i) The approximation of the switch function satisfies the following key
identity:

gβ,η(t) = gβ,η(t − iβ). (3.8)

(ii) The following estimate holds:

∑

ω∈ 2π
β
N

|g̃β,η(ω)| ≤
∞
∑

m=0

∫ 2π
βη

(m+1)

2π
βη

m
dξ |h(ξ)| = ‖h‖1, (3.9)

where ‖h‖1 ≡ ‖h‖L1(R+).
(iii) Using that, for ξ1 > ξ2 and t ≤ 0,

∣
∣
∣eξ1ηt − eξ2ηt

∣
∣
∣ = η|t |

∣
∣
∣

∫ ξ1

ξ2

dξ eξηt
∣
∣
∣ ≤ η|t |(ξ1 − ξ2)e

ξ2ηt , (3.10)
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we have:

|gβ,η(t) − g(ηt)| ≤
∞
∑

m=0

∫ 2π
βη

(m+1)

2π
βη

m
dξ |h(ξ)|

∣
∣
∣eξηt − e

2π
βη

(m+1)ηt
∣
∣
∣

≤
∞
∑

m=0

∫ 2π
βη

(m+1)

2π
βη

m
dξ |h(ξ)|η|t |2π

βη
eξηt

= 2π |t |
β

∫ ∞

0
dξ |h(ξ)|eξηt .

(3.11)

Therefore,

|gβ,η(t) − g(ηt)| ≤ 2π

βη

∫ ∞

0
dξ

|h(ξ)|
ξ

ξη|t |eξηt

≤ 2π

eβη

∥
∥
∥
h

ξ

∥
∥
∥

1
,

(3.12)

and the right-hand side is finite, thanks to Assumption 3.3.

We are now ready to state our main result.

Theorem 3.7 (Main result). Let ρ(t) be the solution of Eq. (2.16), with time-dependent
Hamiltonian (2.15). Suppose that for some S > 0, R > 0 independent of L, the Hamil-
tonian H and the perturbation P satisfy

‖HX‖ ≤ S, ‖PX‖ ≤ S, HX = 0, PX = 0 for diam(X) > R (3.13)

for all X ⊆ �L . Suppose that theGibbs state 〈·〉β,μ,L ofH satisfies Assumption 3.1with
c ≡ c(β, S, R), and that g(t) satisfies Assumption 3.3. LetOX ∈ AX with diam(X) ≤ R
and ‖OX‖ ≤ S. Then there exists ε0 ≡ ε0(c, h) such that for |ε| < ε0 the following
holds:

Tr OXρ(t) = 〈OX 〉β,μ,L +
∑

n≥1

(−ε)n

n! I (n)
β,μ,L(η, t) + Rβ,μ,L(ε, η, t) (3.14)

where the functions I (n)
β,μ,L(η, t) are given by

I (n)
β,μ,L(η, t)

=
∫

[0,β)n
ds
[ n
∏

j=1

gβ,η(t − is j )
]

〈Tγs1(P); γs2(P); · · · ; γsn (P);OX 〉β,μ,L
(3.15)

and satisfy the estimate

|I (n)
β,μ,L(η, t)| ≤ ‖h‖n1cnn!. (3.16)

The error term Rβ,μ,L(ε, η, t) in (3.14) is bounded as:

|Rβ,μ,L(ε, η, t)| ≤ K |ε|
ηd+2β

, (3.17)
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where the constant K ≡ K (S, R, h) > 0 does not depend on c. Furthermore, we also
have:

∣
∣
∣Tr OXρ(t) − 〈OX 〉t

∣
∣
∣ ≤ K |ε|

ηd+2β
+ C1|ε|

(

η +
1

β

)

+
C2|ε|
βη

, (3.18)

where 〈·〉t is the instantaneous Gibbs state of H (ηt), Eq. (3.1), and Ci ≡ Ci (c, h) for
i = 1, 2.

Remark 3.8.

(i) The series in (3.14) turns out to be equal to the Duhamel series for the quantum
dynamics generated by the Hamiltonian

Hβ,η(t) = H + εgβ,η(t)P, (3.19)

after a complex deformation from real time to imaginary times (Wick rotation).
Thus, our result in particular includes the statement that the Duhamel series for
the dynamics generated by (3.19) is convergent in ε uniformly in L and in η,
under the Assumption 3.1. This information is very useful because, as proved later
in Proposition 4.1, the dynamics generated by Hβ,η(t) is close to the dynamics
generated by the original Hamiltonian H (ηt), in the sense of evolution of local
operators, for β large enough.

(ii) If c can be taken to be independent of β, then the radius of convergence in ε is
independent of β as well and we can use the results to describe the β → ∞ limit.
As commented after Assumption 3.1, this is the case for many-body perturbations
of non-interacting gapped lattice models, with Hamiltonian of the form (2.6) and
for |λ| small enough.

(iii) If cdoes not depend on β, our result allows to take the zero temperature limit β → ∞
after the thermodynamic limit L → ∞. By Eqs. (3.14), (3.15), the existence of these
limits is implied by the existence of the same limits for the equilibrium Gibbs state
〈·〉β,μ,L . To the best of our knowledge, all previous works on many-body adiabatic
dynamics considered the case in which the temperature is sent to zero before the
thermodynamic limit.

(iv) For finite L , the Hilbert space is finite dimensional and the spectrum of H (ηt) is
discrete. Thus, it is straightforward to prove that as β → ∞ and for fixed L the
average over the instantaneous Gibbs state in (3.18) converges to the average over
the ground state projector, which a priori might have a nontrivial degeneracy (we
do not know whether Assumption 3.1 has implications for the multiplicity of the
ground state). This allows to recover the zero temperature many-body adiabatic
theorem, for the class of systems satisfying the assumptions of Theorem 3.7.

(v) To illustrate how the adiabatic theorem (3.18) is implied by (3.14), we observe that
the first two terms in the right-hand side of (3.14) reconstruct the average over the
instantaneous Gibbs state of H (ηt), after replacing the functions gβ,η(t − is j ) in
Eq. (3.15) with g(ηt). To see this, we use the representation of the instantaneous
Gibbs state of H (ηt) in terms of a convergent cumulant expansion in ε; see Eq.
(4.98) below.
Let us now discuss the origin of the various error terms in the right-hand side of
(3.18). The first term is due to Rβ,μ,L , which arises from the approximation of the
real-time dynamics generated by H (ηt) with the real-time dynamics generated by
Hβ,η(t). This error term is estimated via Lieb-Robinson bounds, and its estimate
(3.17) does not use any information about the state. This bound introduces the
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strongest constraint on the range of temperatures that we are able to consider. The
second error term in (3.18) arises from the replacement of gβ,η(t−is j ) with gβ,η(t);
the bound for the difference introduces a factor (η+(1/β))|s j |β , and the factor |s j |β
is controlled using the assumption on the Euclidean correlations (3.2). Finally, the
last error term in (3.18) arises from the replacement of gβ,η(t) with g(ηt), and it
relies on the estimate (3.12).

(vi) If one restricts the attention to the switch functions gβ,η(t) of the type (3.6) the first
and the last error terms in (3.18) are absent. Thus, for this special class of switch
functions it is possible to prove that:

∣
∣
∣Tr OXρ(t) − Tr OXe−β(Hβ,η(t)−μN )

Tr e−β(Hβ,η(t)−μN )

∣
∣
∣ ≤ C |ε|

(

η +
1

β

)

. (3.20)

Referring to the proof of the main result in Sect. 4, the n-th order contribution in ε to
the difference in the left-hand side of (3.20) is only due to the term R(n)

2,1(t) defined
in (4.111), which is estimated in (4.116). Notice that the special switch function

gβ,η(t) are superpositions of exponentials e
2π
β

(m+1)t for m ∈ N; thus for fixed β, the
dependence of gβ,η on η is in general not a rescaling of time. The smallest abiabatic
parameter that can be reached with this type of switch functions is 2π/β.

(vii) In Eq. (3.18), we compare the time-evolved state with the instantaneous Gibbs state,
defined with the same temperature as the initial datum: in the small temperature
regime we are considering, we cannot resolve the heating of the system due to
the perturbation. A better approximation should be obtained introducing a suitable,
time-dependent, renormalization of the instantaneous Gibbs state. We plan to come
back to this point in the future.

The many-body adiabatic theorem (3.18) can be improved, under the additional as-
sumption that the first m derivatives of the switch function vanish at zero.

Corollary 3.9 (Improved adiabatic convergence). Under the same assumptions of Theo-
rem 3.7, the following is true. Suppose that ∂ j

t g(0) = 0 for all 1 ≤ j ≤ m. Furthermore,
suppose that
∫

[0,β]n
dt (1 + |t |m+1

β )
∑

Xi⊆�L

∣
∣
〈

Tγt1(O
(1)
X1

); · · · ; γtn (O
(n)
Xn

);O(n+1)
X

〉

β,μ,L

∣
∣ ≤ Dm+1c

nn!

(3.21)

with Dm+1 > 0 only dependent on m, and that
∫ ∞

1
dξ ξm+1 |h(ξ)| < ∞. (3.22)

Then, the following improved many-body adiabatic theorem holds:

∣
∣
∣Tr OXρ(0) − 〈OX 〉0

∣
∣
∣ ≤ K |ε|

ηd+2β
+ C1,m+1|ε|

(

ηm+1 +
1

β

)

+
C2|ε|
βη

, (3.23)

where K ≡ K (S, R, h),C1,m+1 ≡ C1,m+1(c, h) and C2 ≡ C2(c, h).

Remark 3.10. (i) These switch functions are allowed by our setting; for example, we
might consider g(t) = 1 − (1 − et )m .
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(ii) As β → ∞, a similar result has been first obtained by [7]. We observe that, with
respect to [7], here we show that the improved convergence (Corollary 3.9) holds
under the assumption that the first m derivatives at zero of the switch function are
vanishing, while in [7] it is assumed that the first m + d + 1 derivatives vanish (with
d the spatial dimension of the system).

(iii) The assumption (3.21) holds true for many-body perturbations of gapped lattice
models, and it can be proved via the analysis of Appendix C.

Combined with a few straightforward estimates [Eqs. (4.129) to (4.131)], we also
have the following result.

Corollary 3.11 (Validity of linear response). Under the same assumptions as Theorem
3.7,

Tr OXρ(t) − 〈OX 〉β,μ,L

= −ε

∫ β

0
ds gβ,η(t − is)〈γs(P);OX 〉β,μ,L + Rβ,μ,L(ε, η, t)

(3.24)

where the error term Rβ,μ,L(ε, η, t) is bounded as:

|Rβ,μ,L(ε, η, t)| ≤ K |ε|
ηd+2β

+ C |ε|2 (3.25)

with K is as in (3.17) and C depends on c. In Eq. (3.24), the function gβ,η(t − is) can
be replaced by g(ηt), up to replacing the error term Rβ,μ,L by R̃β,μ,L , such that:

|R̃β,μ,L(ε, η, t)| ≤ C |ε|
(

η +
1

βη

)

+
K |ε|

ηd+2β
+ C |ε|2. (3.26)

Furthermore, the main term in Eq. (3.24) is equal to the first order term in the Duhamel
expansion, up to small errors:

∣
∣
∣

∫ β

0
ds gβ,η(t − is)〈γs(P);OX 〉β,μ,L − i

∫ t

−∞
ds g(ηs)〈[τt (OX ), τs(P)]〉β,μ,L

∣
∣
∣

≤ K

ηd+2β
.

(3.27)

Remark 3.12. Eq. (3.26) shows that, up to an error term vanishing as β → ∞ and
η → 0+, the first order in ε in the Duhamel expansion for the real-time dynamics is
equal to the first order in ε in the expansion for the instantaneous Gibbs state 〈·〉t . To
see this, we rely on the cumulant expansion in ε for the instantaneous Gibbs state, Eq.
(4.98). More generally, the argument can be extended to show that the n-th order term
in ε in the real-time Duhamel expansion for the dynamics generated by H (ηt) is equal
to the n-th order term in ε in the expansion of the instantaneous Gibbs state of H (ηt),
up to vanishing errors as β → ∞ and as η → 0+.

The proof of the main result will be given in Sect. 4, and it is organized as follows. In
Sect. 4.1 we recall how to derive the Duhamel expansion for the many-body evolution, in
a finite volume. In Sect. 4.2 we introduce the auxiliary dynamics, obtained after replacing
g(ηt) with gβ,η(t) inH (ηt), and we prove the closeness of the two dynamics for β large
enough, in the sense of expectation of local observables using Lieb-Robinson bounds.
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In Sect. 4.3 we represent the Duhamel expansion for the auxiliary dynamics in a finite
volume via the Wick rotation: this allows to get an identity for every term in the Duhamel
expansion in terms of time-ordered Euclidean correlations. We then use Assumption 3.1
to establish convergence of the (Wick-rotated) Duhamel series, uniformly in the size
of the system. In Sect. 4.4 we recall the cumulant expansion in ε for the instantaneous
Gibbs state of H (ηt). Finally, in Sect. 4.5 we put everything together, and we prove
Theorem 3.7.

4. Proof of Theorem 3.7

4.1. Duhamel expansion. We start by recalling how to derive the well-known Duhamel
series for the expectation of local observables. Given a time-dependent Hamiltonian
H (ηt) = H + εg(ηt)P , let us consider the associated unitary evolution:

i∂tU (t; s) = H (ηt)U (t; s)
U (s; s) = 1.

(4.1)

For ε = 0 one trivially has U (t; s) = e−i(t−s)H . We are interested in deriving a
perturbative expansion around the evolution generated by H . To this end, we define the
unitary evolution in the interaction picture as:

UI(t; s) := eiH tU (t; s)e−iH s . (4.2)

Clearly, UI(s; s) = 1, and:

i∂tUI(t; s) = eiH t (−H + H (ηt))U (t; s)e−iH s

= εg(ηt)τt (P)UI(t; s).
(4.3)

Next, we write, for T > 0 and for 0 ≥ t ≥ −T :

Tr OU (t;−T )ρβ,μ,LU (t;−T )∗ − Tr Oρβ,μ,L

= Tr τt (O)UI(t;−T )ρβ,μ,LUI(t;−T )∗ − Tr τt (O)ρβ,μ,L
(4.4)

where we used the cyclicity of the trace and the invariance of ρβ,μ,L under the dynamics
generated by H . Finally, by Eq. (4.3):

Tr OU (t;−T )ρβ,μ,LU (t;−T )∗ − Tr Oρβ,μ,L

= (−iε)
∫ t

−T
ds g(ηs) Tr τt (O)[τs(P),UI(s;−T )ρβ,μ,LUI(s;−T )∗]

= (−iε)
∫ t

−T
ds g(ηs) Tr[τt (O), τs(P)]UI(s;−T )ρβ,μ,LUI(s;−T )∗.

(4.5)

The procedure can be iterated. One gets:

Tr OU (t;−T )ρβ,μ,LU (t;−T )∗ = Tr Oρβ,μ,L

+
m
∑

n=1

(−iε)n
∫

−T≤sn≤...≤s1≤t
ds g(ηs1) · · · g(ηsn)

· 〈[· · · [[τt (O), τs1(P)], τs2(P)] · · · τsn (P)]〉β,μ,L

+ R(m+1)
β,μ,L(−T ; t),

(4.6)
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where R(m+1)
β,μ,L(−T ; t) is the Taylor remainder of the expansion, given by:

R(m+1)
β,μ,L (−T ; t) = (−iε)m+1

∫

−T≤sm+1≤...≤s1≤t
ds g(ηs1) · · · g(ηsm+1)

· Tr[· · · [τt (O), τs1 (P)], · · · τsm+1(P)]UI(sm+1; −T )ρβ,μ,LUI(sm+1; −T )∗.

(4.7)

On a finite lattice and for η > 0, the series is absolutely convergent. In fact, by using
the boundedness of the fermionic operators, and the unitarity of the time evolution, we
have the following crude estimate:

∣
∣R(m+1)

β,μ,L(−T ; t)∣∣ ≤|ε|m+1
∫

−T≤sm+1≤...≤s1≤t
ds |g(ηs1)| · · · |g(ηsm+1)|

· 2m+1‖O‖‖P‖m+1

≤‖O‖C
m+1|ε|m+1|�L |m+1η−m−1

(m + 1)!
[ ∫ 0

−∞
ds |g(s)|

]m+1
,

(4.8)

for a universal constant C > 0. Thus, taking m large enough, uniformly in T , the error
term can be made as small as wished. Hence, we have, in the T → ∞ limit:

Tr OU (t;−∞)ρβ,μ,LU (t;−∞)∗ = Tr Oρβ,μ,L

+
∞
∑

n=1

(−iε)n
∫

−∞≤sn≤...≤s1≤t
ds g(ηs1) · · · g(ηsn)

· 〈[· · · [[τt (O), τs1(P)], τs2(P)] · · · τsn (P)]〉β,μ,L .

(4.9)

Equation (4.9) is the Duhamel expansion for the average of O on the time-dependent
state ρ(t) := U (t;−∞)ρβ,μ,LU (t;−∞)∗. In order to extract useful information from
this representation, we need estimates for the various terms that are uniform in the size
of the system. In particular, we would like to prove that the series converges uniformly
in ε, as L → ∞ and for η small.

The main difficulty to achieve this is the control of the time-integral, uniformly in η.
For fixed η, this problem might be approached using Lieb-Robinson bounds, see [44]
for a review. This bound reads, for two operators OX and OY supported on X,Y :

‖[OX , τt (OY )]‖ ≤ Cev|t |−c·dist(X,Y ), (4.10)

for suitable positive constants C, c, v. Combined with the boundedness of the fermionic
operators, this estimate (and its extension to multi-commutators, [16]) can be used to
prove that the series in (4.9) is convergent uniformly in L , however only for |ε| ≤ ε(η)

with ε(η) → 0+ as η → 0+. In the next section, we shall study the time-evolution using
a different approach, which gives estimates that are uniform in η.

4.2. The auxiliary dynamics. Let

Hβ,η(t) := H + εgβ,η(t)P, (4.11)

with gβ,η(t) introduced in Definition 3.5. Here we will prove that the evolutions generated
by H (ηt) and by Hβ,η(t) are close, at small enough temperature, in the sense of the
expectation of local observables. To compare the two evolutions, we will use Lieb-
Robinson bounds for non-autonomous dynamics [13,16].
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Proposition 4.1 (Comparison of dynamics). Let ρ(t), ρ̃(t) be the time-dependent states
evolvingwithH (ηt),Hβ,η(t) respectively, with initial data given byρ(−∞) = ρ̃(−∞)

= ρβ,μ,L . LetOX be a local observable. Then, there exists K > 0, independent of c and
dependent on h, such that for all ε, η, β, L:

∣
∣Tr OX (ρ(t) − ρ̃(t))

∣
∣ ≤ K |ε|

ηd+2β
, for all t ≤ 0. (4.12)

Proof. We start by writing:

g(ηt) = gβ,η(t) + ζη,β(t), (4.13)

where gβ,η(t) is defined in Eq. (3.6), and the error term satisfies the bound, by Eq. (3.11):

|ζη,β(t)| ≤ 2π |t |
β

∫ ∞

0
dξ |h(ξ)|eξηt . (4.14)

Next, we write:

Tr OX (ρ(t) − ρ̃(t))

= lim
T→−∞ Tr OX (U (t;−T )ρβ,μ,LU (t;−T )∗ − Ũ (t;−T )ρβ,μ,LŨ (t;−T )∗)

(4.15)

where U (t; s), Ũ (t; s) are the unitary groups generated by H (ηt), Hβ,η(t), respec-
tively. We estimate the argument of the limit as:

∣
∣
∣Tr

(

U (t;−T )∗OXU (t;−T ) − Ũ (t;−T )∗OX Ũ (t;−T )
)

ρβ,μ,L

∣
∣
∣

≤
∥
∥
∥OX − U (t;−T )Ũ (t;−T )∗OX Ũ (t;−T )U (t;−T )∗

∥
∥
∥,

(4.16)

where we used that ρβ,μ,L ≥ 0, Tr ρβ,μ,L = 1 and the unitarity of time-evolution. Next,
we rewrite the argument of the norm as:

OX − U (t;−T )Ũ (t;−T )∗OX Ũ (t;−T )U (t;−T )∗

= −i
∫ t

−T
ds i

∂

∂s
U (t; s)Ũ (t; s)∗OX Ũ (t; s)U (t; s)∗

= −i
∫ t

−T
dsU (t; s)

[

− H (ηs) + Hβ,η(s), Ũ (t; s)∗OX Ũ (t; s)
]

U (t; s)∗

≡ i
∫ t

−T
ds εζη,β(s)U (t; s)

[

P, Ũ (t; s)∗OX Ũ (t; s)
]

U (t; s)∗,
(4.17)

where in the third line we used that U (t; s)∗ = U (s; t), and in the last line we used
Eq. (4.13). Therefore,

∥
∥
∥OX − U (t;−T )Ũ (t;−T )∗OX Ũ (t;−T )U (t;−T )∗

∥
∥
∥

≤
∫ t

−T
ds |ε|∣∣ζη,β(s)

∣
∣

∥
∥
∥

[

P, Ũ (t; s)∗OX Ũ (t; s)
]∥
∥
∥.

(4.18)



Adiabatic Evolution of Low-Temperature Page 21 of 56    75 

Next, we claim that:
∥
∥
∥

[

P, Ũ (t; s)∗OX Ũ (t; s)
]∥
∥
∥ ≤ C(|t − s|d + 1). (4.19)

This inequality stems from the Lieb-Robinson bound for non-autonomous dynamics,
see Theorem 4.6 of [13] for quantum spin systems, or Theorem 5.1 of [16] for the case
of lattice fermions:

∥
∥
∥

[

OY , Ũ (t; s)∗OX Ũ (t; s)
]∥
∥
∥ ≤ Cev|t−s|−c·dist(X,Y ) (4.20)

for any two local operators OX , OY . The proof of (4.19) is standard, and we give it here
for completeness. Representing the perturbation P in terms of its local potentials, we
have:
∥
∥
∥

[

P, Ũ (t; s)∗OX Ũ (t; s)
]∥
∥
∥ ≤

∑

Y⊆�L

∥
∥
∥

[

PY , Ũ (t; s)∗OX Ũ (t; s)
]∥
∥
∥

=
∑

Y⊆�L
dist(X,Y )≤D|t−s|

∥
∥
∥

[

PY , Ũ (t; s)∗OX Ũ (t; s)
]∥
∥
∥

+
∑

Y⊆�L
dist(X,Y )>D|t−s|

∥
∥
∥

[

PY , Ũ (t; s)∗OX Ũ (t; s)
]∥
∥
∥

(4.21)

with D large enough to be chosen below. By the boundedness of the fermionic operators,
and by the unitarity of the dynamics, the first term in the right-hand side is estimated as:

∑

Y⊆�L
dist(X,Y )≤D|t−s|

∥
∥
∥

[

PY , Ũ (t; s)∗OX Ũ (t; s)
]∥
∥
∥ ≤ K (|t − s|d + 1) (4.22)

where we used the fact that the sum is restricted to sets Y of bounded diameter. For the
second term, we use the Lieb-Robinson bound (4.20), to get:

∑

Y⊆�L
dist(X,Y )>D|t−s|

∥
∥
∥

[

PY , Ũ (t; s)∗OX Ũ (t; s)
]∥
∥
∥

≤
∑

Y⊆�L
dist(X,Y )>D|t−s|, diam(Y )≤R

Cev|t−s|−c·dist(X,Y ).
(4.23)

Choosing D large enough, we have:
∑

Y⊆�L
dist(X,Y )>D|t−s|

∥
∥
∥

[

PY , Ũ (t; s)∗OX Ũ (t; s)
]∥
∥
∥

≤
∑

Y⊆�L
dist(X,Y )>D|t−s|, diam(Y )≤R

Ce−(c/2)·dist(X,Y )

≤ K .

(4.24)
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This concludes the check of (4.19). Using the bound (4.19) in (4.18), we get:
∥
∥
∥OX − U (t;−T )Ũ (t;−T )∗OX Ũ (t;−T )U (t;−T )∗

∥
∥
∥

≤ C
∫ t

−T
ds |ε|∣∣ζη,β(s)

∣
∣(|t − s|d + 1)

≤ K |ε|
β

∫ ∞

0
dξ |h(ξ)|

∫ t

−T
ds eξηs(|s|d+1 + 1),

(4.25)

where in the last step we used the bound (4.14) and we exchanged the order of integration.
Using that:

∫ t

−T
ds eξηs |s|d+1 ≤ C

(ηξ)d+2 , (4.26)

we finally obtain:
∥
∥
∥OX − U (t;−T )Ũ (t;−T )∗OX Ũ (t;−T )U (t;−T )∗

∥
∥
∥

≤ K |ε|
ηd+2β

∫ ∞

0
dξ

|h(ξ)|
ξd+2 .

(4.27)

Equation (4.12) follows from assumption (3.5), after a redefinition of the constant K .
This concludes the proof. ��

4.3. Wick rotation. Here we shall represent each coefficient in the Duhamel expansion
(4.9) for the auxiliary dynamics generated by (4.11) in terms of Euclidean correlation
functions, via a complex deformation argument. The advantage is that useful space-time
decay estimates for Euclidean correlations can be proved using statistical mechanics
tools, such as the cluster expansion. This complex deformation is known in physics as
Wick rotation, and here it will be established rigorously for the auxiliary dynamics. The
next lemma is the main result of the section. Its proof is based on the adaptation of ideas
of Section 5.4 of [15] to our adiabatic setting.

Lemma 4.2 (Wick rotation). Let A ∈ A�L , B ∈ A N
�L

. Let n ∈ N. Let a(s) be a periodic
function with period β, such that:

a(s) =
∑

ω∈ 2π
β
N

ã(ω)e−iωs,
∑

ω∈ 2π
β
N

|ã(ω)| ≤ C, ã(0) = 0. (4.28)

Then, the following identity holds true, for all t ≤ 0:

∫

−∞≤sn≤...≤s1≤t
ds
[ n
∏

j=1

a(is j )
]

〈[· · · [[τt (A), τs1(B)], τs2(B)] · · · τsn (B)]〉β,μ,L

= (−i)n

n!
∫

[0,β)n
ds
[ n
∏

j=1

a(i t + s j )
]

〈Tγs1(B); γs2(B); · · · ; γsn (B); A〉β,μ,L .

(4.29)

Remark 4.3. (i) The function s �→ gβ,η(−is) satisfies the properties (4.28), recall
Definition 3.5.
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(ii) Notice that the function defined in (4.28) extends to a function a(z) on the lower-
half complex plane, that is analytic for Im z < 0 and continuous for Im z ≤ 0.

The proof will be broken in a few intermediate steps. In what follows, it will be
convenient to use the following notations. We define inductively:

C0 := τt (A), Cn(t1, . . . , tn) := a(i tn)[Cn−1(t1, . . . , tn−1), τtn (B)]. (4.30)

Moreover, we set:

B0 := 1, Bn(t1, . . . , tn) :=
[ n
∏

i=1

a(i ti )
]

τt1(B) · · · τtn (B). (4.31)

Also, we shall introduce the n-dimensional simplex of side β as:

�n
β := {

(s1, . . . , sn) ∈ R
n : β > s1 > · · · > sn > 0

}

. (4.32)

The combination of Propositions 4.4, 4.5 below is the adaptation of Propositions 5.4.12,
5.4.13 of [15] to our adiabatic setting. Differently from [15], our results hold without
clustering assumptions on the real-time correlations.

Proposition 4.4 (Basic complex deformation). Let B ∈ A N
�L

, C ∈ A�L . For every
j ∈ N and for all t ≤ 0:

∫ t

−∞
dr a(ir)

∫

�
j
β

ds 〈Bj
(

r − is1, . . . , r − is j
)

[τr (B),C]〉β,μ,L

= i
∫

�
j+1
β

ds 〈Bj+1
(

t − is1, . . . , t − is j+1
)

C〉β,μ,L .

(4.33)

Proof. To start, let us prove the j = 0 case, which reads:
∫ t

−∞
dr a(ir)〈[τr (B),C]〉β,μ,L = i

∫ β

0
ds 〈B1 (t − is)C〉β,μ,L . (4.34)

Let T > 0. By the KMS identity, Eq. (2.9), and using that B commutes with the number
operator:

∫ t

−T
dr a(ir)〈[τr (B),C]〉β,μ,L =

∫ t

−T
dr a(ir)

[

〈τr (B)C〉β,μ,L − 〈Cτr (B)〉β,μ,L

]

=
∫ t

−T
dr a(ir)

[

〈τr (B)C〉β,μ,L − 〈τr−iβ(B)C〉β,μ,L

]

.

(4.35)

By assumption (4.28), we use the trivial but crucial fact a(ir) = a(ir + β) to write:
∫ t

−T
dr a(ir)〈[τr (B),C]〉β,μ,L

=
∫ t

−T
dr
[

a(ir)〈τr (B)C〉β,μ,L − a(i(r − iβ))〈τr−iβ(B)C〉β,μ,L

]

.

(4.36)
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Now, consider the function, for z ∈ C:

f (z) = a(i z)〈τz(B)C〉β,μ,L . (4.37)

For finite L and finite β, this function is analytic on Re z < 0, and it is continuous on
Re z ≤ 0. In fact, the function z �→ 〈τz(B)C〉β,μ,L is entire for finite L , β, while a(i z) is
analytic for Re z < 0 and continuous for Re z ≤ 0, recall Definition (4.28) and Remark
4.3.

For ε > 0 small enough, let  be the complex path for (Re z, Im z):

 = (−T, 0) → (t − ε, 0) → (t − ε,−β) → (−T,−β) → (−T, 0), (4.38)

where every arrow corresponds to an oriented straight line in the complex plane. By
Cauchy’s integral theorem,

∫



dz f (z) = 0. (4.39)

We start by writing:

∫ t

−T
dr a(ir)〈[τr (B),C]〉β,μ,L = lim

ε→0+

∫ t−ε

−T
dr a(ir)〈[τr (B),C]〉β,μ,L , (4.40)

and using Eq. (4.39):

∫ t−ε

−T
dr a(ir)〈[τr (B),C]〉β,μ,L = i

∫ β

0
ds f (t − ε − is) − i

∫ β

0
ds f (−T − is).

(4.41)

We claim that the last term vanishes as T → ∞. In fact:

| f (−T − is)| ≤
∣
∣
∣a(s − iT )〈τ−T−is(B)C〉β,μ,L

∣
∣
∣

≤
(∑

ω

|ã(ω)|
)

e− 2π
β
T ‖τ−T−is(B)‖‖C‖

≤ Ce− 2π
β
T ‖B‖‖C‖e2s‖H ‖,

(4.42)

where we used the unitarity of the real-time dynamics. Notice that all norms in (4.42)
are finite: we are on a finite lattice with side L , and the fermionic Fock space for models
on a finite lattice is finite-dimensional. Hence, the bound (4.42) shows that the T → ∞
limit of the second term in the right-hand side of (4.41) vanishes, for β and L finite. We
thus have

lim
T→∞

∫ t

−T
dr a(ir)〈[τr (B),C]〉β,μ,L

= lim
ε→0+

i
∫ β

0
ds a(i(t − ε) + s)〈τt−ε−is(B)C〉β,μ,L

= i
∫ β

0
ds a(i t + s)〈τt−is(B)C〉β,μ,L ,

(4.43)
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which proves Eq. (4.34). Let us now discuss the j > 0 case, Eq. (4.33). By the KMS
identity and a(ir) = a(ir + β), we get:
∫ t

−T
dr

∫

�
j
β

ds a(ir)〈Bj
(

r − is1, . . . , r − is j
)

[τr (B),C]〉β,μ,L

=
∫ t

−T
dr
∫

�
j
β

ds a(ir)〈Bj
(

r − is1, . . . , r − is j
)

τr (B)C〉β,μ,L

−
∫ t

−T
dr
∫

�
j
β

ds a(i(r − iβ))〈τr−iβ(B)Bj
(

r − is1, . . . , r − is j
)

C〉β,μ,L .

(4.44)

We further rewrite this expression as, recalling the definition of Bj (·), Eq. (4.31):

(4.44) =
∫

�
j
β

ds
∫ t

−T
dr 〈Bj+1

(

r − is1, . . . , r − is j , r
)

C〉β,μ,L

−
∫

�
j
β

ds
∫ t

−T
dr 〈Bj+1

(

r − iβ, r − is1, . . . , r − is j
)

C〉β,μ,L

=: LT
1 − LT

2 .

(4.45)

Let us now introduce the change of variables, for 1 ≤ k < j :

s′
k = sk+1 − s1 + β, s′

j = β − s1. (4.46)

Notice that β > s1 > s2 > · · · > s j > 0, we also have β > s′
1 > s′

2 > · · · > s′
j > 0,

that is (s′
1, . . . , s

′
n) ∈ �

j
β . In terms of these variables, for 2 ≤ k ≤ j :

s1 = β − s′
j

sk = s′
k−1 + s1 − β ≡ s′

k−1 − s′
j .

(4.47)

We then rewrite the term LT
1 in (4.45) as:

LT
1 =

∫

�
j
β

ds′
∫ t

−T
dr

〈Bj+1

(

r − i(β − s′
j ), r − i(s′

1 − s′
j ), . . . , r − i(s′

j−1 − s′
j ), r

)

C〉β,μ,L .

(4.48)

Let us now introduce the function:

f(β,s1,...,s j )(z) := 〈Bj+1(z − i(β − s j ), z − i(s1 − s j ), . . . , z)C〉β,μ,L . (4.49)

The function f(β,s1,...,s j )(z) is analytic for Re z < 0 and continuous on Re z ≤ 0. We
have:

LT
2 =

∫

�
j
β

ds
∫ t

−T
dr f(β,s1,...,s j )(r − is j ); (4.50)

also, relabelling the s′ variables in s variables in Eq. (4.48):

LT
1 =

∫

�
j
β

ds
∫ t

−T
dr f(β,s1,...,s j )(r). (4.51)
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As for the j = 0 case, we will use a complex deformation argument to rewrite LT
1 − LT

2
in a convenient way. To this end, let us now define the complex path for (Re z, Im z), for
ε > 0 small enough:

 = (−T, 0) → (t − ε, 0) → (t − ε,−s j ) → (−T,−s j ) → (−T, 0). (4.52)

By continuity of f(β,s1,...,s j )(z):

LT
1 − LT

2 =
∫

�
j
β

ds lim
ε→0+

[ ∫ t−ε

−T
dr f (r) −

∫ t−ε

−T
dr f (r − is j )

]

= i
∫

�
j
β

ds lim
ε→0+

[ ∫ s j

0
ds j+1 f (t − ε − is j+1) −

∫ s j

0
ds j+1 f (−T − is j+1)

]

= i
∫

�
j
β

ds
[ ∫ s j

0
ds j+1 f (t − is j+1) −

∫ s j

0
ds j+1 f (−T − is j+1)

]

,

(4.53)

where the second identity follows from Cauchy theorem and the last from the continuity
of the integrand. The last term in the right-hand side of (4.53) vanishes as T → ∞. This
is implied by the following estimate, recall Eq. (4.49):

| f(β,s1,...,s j )(−T − is j+1)| ≤ ‖ã‖ j+1
1 ‖C‖‖B‖ j+1e2β( j+1)‖H ‖e− 2π

β
T ( j+1)

. (4.54)

Consider now the first term in the right-hand side of (4.53). The integrand has the form,
for a suitable function F , recall (4.49):

f(β,s1,...,s j )(t − is j+1)

= F(t − i(β − s j + s j+1), . . . , t − i(sk−1 − s j + s j+1), . . . , t − is j+1).
(4.55)

Let us introduce the change of variables, for 2 ≤ k ≤ j :

s′
1 = β − s j + s j+1, s′

k = sk−1 − s j + s j+1, s′
j+1 = s j+1. (4.56)

We notice that β > s′
1 > . . . > s′

k > . . . > s′
j+1 > 0. Thus, the second term in the r.h.s.

of (4.53) can be written as the integral over the simplex �
β
j+1:

i
∫

�
j
β

ds
∫ s j

0
ds j+1 f(β,s1,...,s j )(t − is j+1)

= i
∫

�
j+1
β

ds′ F(t − is′
1, . . . , t − is′

k, . . . , t − is′
j+1)

= i
∫

�
j+1
β

ds′ 〈Bj+1(t − is′
1, . . . , t − is′

k, . . . , t − is′
j+1)C〉β,μ,L .

(4.57)

All in all, from (4.45), (4.53), (4.54), (4.57), relabelling the s′ variables as s variables:
∫ t

−∞
dr

∫

�
j
β

ds a(ir)〈Bj
(

r − is1, . . . , r − is j
)

[τr (B),C]〉β,μ,L

= L∞
1 − L∞

2

= i
∫

�
j+1
β

ds 〈Bj+1(t − is1, . . . , t − isk, . . . , t − is j+1)C〉β,μ,L

(4.58)

which concludes the proof of the proposition. ��



Adiabatic Evolution of Low-Temperature Page 27 of 56    75 

Next, we use Proposition 4.4 to rewrite the coefficients appearing in the Duhamel
expansion in terms of imaginary-time correlations.

Proposition 4.5 (Multiple complex deformation).Under the sameassumptions of Lemma
4.2 the following identity holds:

∫

−∞≤sn≤...≤s1≤t
ds
[ n
∏

i=1

a(isi )
]

〈[· · · [[τt (A), τs1(B)], τs2(B)] · · · τsn (B)]〉β,μ,L

= (−i)n
∫ β

0
ds1 . . .

∫ sn−1

0
dsn

[ n
∏

j=1

a(i t + s j )
]

〈γs1(B) · · · γsn (B)A〉β,μ,L .

(4.59)

Proof. To avoid confusion, in the proof we shall call {r j } the variables corresponding to
real-time integrations and {s j } the variables corresponding to imaginary-time integra-
tions. To simplify the notations, we will omit the β,μ, L subscript in the Gibbs state.
Using the notation (4.30), we rewrite:

∫

−∞≤rn≤...≤r1≤t
dr
[ n
∏

i=1

a(iri )
]

〈[· · · [[τt (A), τr1(B)], τr2(B)] · · · τrn (B)]〉

≡
∫

−∞≤rn≤...≤r1≤t
dr a(irn)〈[Cn−1(r1, . . . , rn−1), τrn (B)]〉.

(4.60)

We have:
∫

−∞≤rn≤...≤r1≤t
dr a(irn)〈[Cn−1(r1, . . . , rn−1), τrn (B)]〉

= −
∫ t

−∞
dr1 . . .

∫ rn−2

−∞
drn−1

∫ rn−1

−∞
drna(irn)〈[τrn (B),Cn−1(r1, . . . , rn−1)]〉

= −i
∫ t

−∞
dr1 . . .

∫ rn−2

−∞
drn−1

∫ β

0
ds1 〈B1(rn−1 − is1)Cn−1(r1, . . . , rn−1)〉

(4.61)

where the last equality follows from Proposition 4.4 for j = 0, applied to the rn inte-
gration. Next, using again (4.30), we write:

Cn−1(r1, . . . , rn−1) = −a(irn−1)[τrn−1(B),Cn−2(r1, . . . , rn−2)] (4.62)

and hence:
∫

−∞≤rn≤...≤r1≤t
dr a(irn)〈[Cn−1(r1, . . . , rn−1), τrn (B)]〉

= i
∫ t

−∞
dr1 . . .

∫ rn−2

−∞
drn−1 a(irn−1)

·
∫ β

0
ds1 〈B1(rn−1 − is1)[τrn−1(B),Cn−2(r1, . . . , rn−2)]〉

= (i)2
∫ t

−∞
dr1 . . .

∫ rn−3

−∞
drn−2

·
∫

�2
β

ds 〈B2(rn−2 − is1, rn−2 − is2)Cn−2(r1, . . . , rn−2)〉,

(4.63)



   75 Page 28 of 56 R. L. Greenblatt, M. Lange, G. Marcelli, M. Porta

where in the last step we applied Proposition 4.4 for j = 1 to the rn−1 integration. We
continue applying Proposition 4.4 until all commutators are exhausted. We find:

∫

−∞≤rn≤...≤r1≤t
dr a(irn)〈[Cn−1(r1, . . . , rn−1), τrn (B)]〉

= (−i)n
∫

�n
β

ds 〈Bn(t − is1, . . . , t − isn)τt (A)〉.
(4.64)

To conclude, recall that by Eq. (4.31):

Bn(t − is1, . . . , t − isn) =
[ n
∏

i=1

a(i t + s j )
]

τt−is1(B)τt−is2(B) · · · τt−isn (B)

≡
[ n
∏

i=1

a(i t + s j )
]

τt

(

γs1(B)γs2(B) · · · γsn (B)
)

(4.65)

where in the last step we used that B commutes with the number operator, which implies
τ−is(B) = γs(B). Plugging (4.65) into the right-hand side of (4.64), and using the
invariance of the Gibbs state under time-evolution, the final claim (4.59) follows. ��

Next, we rewrite the imaginary-time expressions appearing after the Wick rotation as
connected correlation functions. We recall the following relation between the expectation
value of a product of operators, and the truncated expectations:

〈Oi1 · · · Oin 〉 =
∑

P

∏

J∈P

〈O(J )〉T (4.66)

where P are partitions of the ordered set {i1, . . . , in}, with elements J = { j1, . . . , j|J |}
which inherit the order of {i1, . . . , in}, and

〈O(J )〉T := 〈Oj1; Oj2; · · · ; Oj|J | 〉. (4.67)

The next result is a straightforward consequence of the definition of truncated expecta-
tion. We shall use the notation, for J = { j1, . . . , jm}:

B(−is J ) := γs j1
(B) · · · γs jm (B). (4.68)

Proposition 4.6 (Factorization property). The following identity holds true:

〈γs1(B)γs2(B) · · · γsn (B)A〉
=

∑

J⊆{1,...,n}

〈

γs j1
(B); γs j2

(B); · · · ; γs j|J | (B); A〉〈B(−is{1,...,n}\J )
〉 (4.69)

where the sum is over ordered subsets of {1, . . . , n}.
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Proof. Let:

O1 = γs1(B), O2 = γs2(B), . . . , On = γsn (B) , On+1 = A. (4.70)

From (4.66):

〈O1O2 · · · On+1〉 =
∑

P

∏

J∈P

〈O(J )〉T

=
∑

P

〈O(Jn+1)〉T
∏

J∈P: n+1/∈J

〈O(J )〉T
(4.71)

where the sum is over partitions P of {1, . . . , n + 1}, and J are the elements of the
partition. In particular, Jn+1 is the element of the partition that contains n + 1. The
right-hand side of (4.71) can be rewritten as:

〈O1O2 · · · On+1〉 =
∑

Jn+1

〈O(Jn+1)〉T
∑

P̃ of {1,...,n+1}\Jn+1

∏

J∈P̃

〈O(J )〉T (4.72)

which we rewrite as, using again (4.66):

〈O1O2 · · · On+1〉
=

∑

J⊆{1,...,n}
〈γs j1 (B); γs j2

(B); · · · ; γs j|J | (B); A〉T
〈 ∏

j∈{1,...,n}\J
O j

〉

. (4.73)

This concludes the proof of the proposition. ��
The next proposition allows to rewrite the right-hand side of (4.59) in terms of trun-

cated correlation functions, in Euclidean time.

Proposition 4.7 (Reduction to connected Euclidean correlations). Under the same as-
sumptions of Lemma 4.2 the following identity holds:

∫

�n
β

ds
[ n
∏

j=1

a(i t + s j )
]

〈γs1(B)γs2(B) · · · γsn (B)A〉β,μ,L

=
∫

�n
β

ds
[ n
∏

j=1

a(i t + s j )
]

〈γs1(B); γs2(B); · · · ; γsn (B); A〉β,μ,L .

(4.74)

Proof. We omit the β,μ, L labels for simplicity. By Proposition 4.6 we have:

〈γs1(B)γs2(B) · · · γsn (B)A〉
=

∑

J⊆{1,...,n}

〈

γs j1
(B); γs j2

(B); · · · ; γs j|J | (B); A〉〈B(−is{1,...,n}\J )
〉

. (4.75)

Hence, we can rewrite the left-hand side of (4.74) as:
∫

�n
β

ds
[ n
∏

j=1

a(i t + s j )
]

〈γs1(B)γs2(B) · · · γsn (B)A〉

=
n
∑

m=0

∫

�n
β

ds
∑

J⊆{1,...,n}
|J |=m

[∏

j∈J

a(i t + s j )
]〈

γs j1
(B); · · · ; γs jm (B); A〉

·
[ ∏

j∈{1,...,n}\J
a(i t + s j )

]〈

B(−is{1,...,n}\J )
〉

.

(4.76)



   75 Page 30 of 56 R. L. Greenblatt, M. Lange, G. Marcelli, M. Porta

Next, we shall use the following identity:
∫

�n
β

ds
∑

J⊆{1,...,n}
|J |=m

[∏

j∈J

a(i t + s j )
]〈

γs j1
(B); · · · ; γs jm (B); A〉

·
[ ∏

j∈{1,...,n}\J
a(i t + s j )

]〈

B(−is{1,...,n}\J )
〉

=
∫

�m
β

ds
[ m
∏

i=1

a(i t + si )
]〈

γs1(B); · · · ; γsm (B); A〉

·
∫

�n−m
β

ds
[ n
∏

i=m+1

a(i t + si )
]

〈γsm+1(B)γsm+2(B) · · · γsn (B)〉.

(4.77)

Equation (4.77) is obtained via the application of Proposition B.1 in Appendix B, with
the following choices for the functions f and g:

f (s1, . . . , sm) =
[ m
∏

i=1

a(i t + si )
]〈

γs1(B); · · · ; γsm (B); A〉

g(sm+1, . . . , sn) =
[ n
∏

i=m+1

a(i t + si )
]

〈γsm+1(B)γsm+2(B) · · · γsn (B)〉.
(4.78)

We claim that, for all k > 0:

∫

�k
β

ds
[ k
∏

i=1

a(i t + si )
]

〈γs1(B)γs2(B) · · · γsk (B)〉 = 0. (4.79)

Combined with (4.76), (4.77), this implies the final statement, Eq. (4.74): the only term
contributing to the sum over m in Eq. (4.76) is m = n. To prove Eq. (4.79), we proceed
as follows. First, we write:

∫

�k
β

ds
[ k
∏

i=1

a(i t + si )
]

〈γs1(B)γs2(B) · · · γsk (B)〉

= 1

k!
∫

[0,β]k
ds
[ k
∏

i=1

a(i t + si )
]∑

π

1(sπ(1) > sπ(2) > . . . > sπ(k))

· 〈γsπ(1)
(B)γsπ(2)

(B) · · · γsπ(k) (B)〉
(4.80)

where the sum is over permutations of {1, . . . , k}. Let:

G(s1, . . . , sk)

:=
∑

π

1(sπ(1) > sπ(2) > . . . > sπ(k))〈γsπ(1)
(B)γsπ(2)

(B) · · · γsπ(k) (B)〉. (4.81)

We claim that G is β-periodic in all its arguments:

G(s1, . . . , si−1, 0, si+1, . . . , sk) = G(s1, . . . , si−1, β, si+1, . . . , sk). (4.82)
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In particular, the function G extends to a periodic function on R
k , with period β in all

variables. With a slight abuse of notation, let us denote by G such periodic extension.
Notice that the function s �→ a(i t + s) is also periodic with period β (recall definition
(4.28)), which means that the whole integrand in the right-hand side of (4.80) can be
extended to a β-periodic function in all its arguments. Furthermore, we claim that, for
all σ ∈ R:

G(s1, s2, . . . , sk) = G(s1 + σ, s2 + σ, . . . , sk + σ), (4.83)

that is, the function G is translation invariant. Both (4.82), (4.83) are well known; they
ultimately follow from the KMS identity. For the sake of completeness, Eqs. (4.82),
(4.83) will be reviewed in Appendix B, Proposition B.2. Thus, one gets:

∫

�k
β

ds
[ k
∏

i=1

a(i t + si )
]

〈γs1(B)γs2(B) · · · γsk (B)〉

≡ 1

k!
∫

(S1
β)k

ds
[ k
∏

i=1

a(i t + si )
]

G(s1, s2, . . . , sk),

(4.84)

where S1
β = R/βZ. We rewrite this expression as:

1

k!
∑

ωi∈ 2π
β
N

[ k
∏

i=1

ã(ωi )e
ωi t
]

·
∫

(S1
β)k

ds e−i
∑k

j=1 ω j s1e−i
∑k

j=1 ω j (s j−s1)G(0, s2 − s1, . . . , sk − s1)

= 1

k!
∑

ωi∈ 2π
β
N

[ k
∏

i=1

ã(ωi )e
ωi t
]

·
∫

S1
β

ds1 e
−i
∑k

j=1 ω j s1

∫

(S1
β)k−1

ds e−i
∑k

j=2 ω j s j G(0, s2, . . . , sk),

(4.85)

where in the last step we used that e−i
∑k

j=1 ω j (s j−s1)G(0, s2 − s1, . . . , sk − s1), as a
function of s j , j = 2, . . . , k, is a function on (S1

β)k−1. Then, the claim (4.79) follows

from (recall that we can assume ω j ≥ 2π
β

, since ã(0) = 0):
∫

S1
β

ds1 e
−i
∑k

j=1 ω j s1 = 0. (4.86)

This concludes the proof of Proposition 4.7. ��
Remark 4.8. By the same arguments used in the proof of Proposition 4.7, Eq. (4.74) can
also be rephrased as:

∫

�n
β

ds
[ n
∏

j=1

a(i t + s j )
]

〈γs1(B)γs2(B) · · · γsn (B)A〉β,μ,L

= 1

n!
∫

(S1
β)n

ds
[ n
∏

j=1

a(i t + s j )
]

〈Tγs1(B); γs2(B); · · · γsn (B); A〉β,μ,L

(4.87)
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where T denotes the time-ordering, as defined in Eq. (2.10). This is initially defined
for operators whose imaginary-time arguments are in [0, β). The resulting expression
is then extended to a periodic function with period β on the whole R

n . See Proposition
B.2 and Remark B.3 for further details.

We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. By Proposition 4.5:

∫

−∞≤sn≤...≤s1≤t
ds
[ n
∏

j=1

a(is j )
]

〈[· · · [[τt (A), τs1(B)], τs2(B)] · · · τsn (B)]〉β,μ,L

= (−i)n
∫ β

0
ds1 . . .

∫ sn−1

0
dsn

[ n
∏

j=1

a(i t + s j )
]

〈γs1(B) · · · γsn (B)A〉β,μ,L .

(4.88)

Next, by Proposition 4.7:

∫

−∞≤sn≤...≤s1≤t
ds
[ n
∏

j=1

a(is j )
]

〈[· · · [[τt (A), τs1(B)], τs2(B)] · · · τsn (B)]〉β,μ,L

= (−i)n
∫ β

0
ds1 . . .

∫ sn−1

0
dsn

[ n
∏

j=1

a(i t + s j )
]

〈γs1(B); · · · ; γsn (B); A〉β,μ,L .

(4.89)

Finally, by Remark 4.8:

∫

−∞≤sn≤...≤s1≤t
ds
[ n
∏

j=1

a(is j )
]

〈[· · · [[τt (A), τs1(B)], τs2(B)] · · · τsn (B)]〉β,μ,L

= (−i)n

n!
∫

(S1
β)n

ds
[ n
∏

j=1

a(i t + s j )
]

〈Tγs1(B); · · · ; γsn (B); A〉β,μ,L ,

(4.90)

which concludes the proof of Lemma 4.2. ��

4.4. Cumulant expansion for the instantaneous Gibbs state. In this section we shall re-
view the well-known cumulant expansion for the Gibbs state of the HamiltonianH (ηt),

H (ηt) = H + εg(ηt)P, (4.91)

that is:

〈OX 〉t = Tr OXe−β(H (ηt)−μN )

Tr e−β(H (ηt)−μN )
. (4.92)
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Perturbation theory in ε is generated by the following chain of identities:

eβ(H −μN )e−β(H (ηt)−μN ) − 1

=
∫ β

0
ds

∂

∂s
es(H −μN )e−s(H (ηt)−μN )

= −εg(ηt)
∫ β

0
ds es(H −μN )Pe−s(H (ηt)−μN )

= −εg(ηt)
∫ β

0
ds es(H −μN )Pe−s(H −μN )es(H −μN )e−s(H (ηt)−μN )

≡ −εg(ηt)
∫ β

0
ds γs(P)es(H −μN )e−s(H (ηt)−μN ).

(4.93)

Iterating:

eβ(H −μN )e−β(H (ηt)−μN )

= 1 +
∑

n≥1

(−εg(ηt))n
∫ β

0
ds1

∫ s1

0
ds2 · · ·

∫ sn−1

0
dsn γs1(P) · · · γsn (P)

(4.94)

which we can also write as:

e−β(H (ηt)−μN )

= e−β(H −μN )
[

1 +
∑

n≥1

(−εg(ηt))n

n!
∫

[0,β)n
ds Tγs1(P) · · · γsn (P)

]

.
(4.95)

For finite L and finite β, the series is norm convergent, thanks to the boundedness of the
fermionic operators. Thus, the expectation value of a local operator on the Gibbs state
of H (ηt) can be written as:

〈OX 〉t = 〈OX 〉β,μ,L +
∑

n≥1
(−εg(ηt))n

n!
∫

[0,β)n
dt 〈Tγt1(P) · · · γtn (P)OX 〉β,μ,L

1 +
∑

n≥1
(−εg(ηt))n

n!
∫

[0,β)n
dt 〈Tγt1(P) · · · γtn (P)〉β,μ,L

(4.96)

which is analytic in ε for |ε| small enough. We would like to show that analyticity in ε

extends to a ball whose radius is bounded uniformly in L . To this end, Eq. (4.96) can be
further rewritten as (omitting the β,μ, L labels in the state and the [0, β)n domain in
the integral):

〈OX 〉t
= ∂

∂ζ
log

( ∑

n,m≥0

(−εg(ηt))n

n!
ζm

m!
∫

ds 〈Tγs1(P) · · · γsn (P)Om
X 〉
)∣
∣
∣
ζ=0

=
∑

n≥0

εn

n!

· ∂n

∂εn

∂

∂ζ
log

( ∑

�,m≥0

(−εg(ηt))�

�!
ζm

m!
∫

ds 〈Tγs1(P) · · · γs� (P)Om
X 〉
)∣
∣
∣ε=0
ζ=0

.

(4.97)



   75 Page 34 of 56 R. L. Greenblatt, M. Lange, G. Marcelli, M. Porta

Then, it is not difficult to see that the right-hand side can be written as a sum over
time-ordered cumulants, defined as in Eq. (2.14). We have:

〈OX 〉t = 〈OX 〉 +
∑

n≥1

(−εg(ηt))n

n!
∫

ds 〈Tγs1(P); · · · ; γsn (P);OX 〉. (4.98)

Under the assumption (3.2), the series converges for |ε| small enough, uniformly in L .
By using Lemma 4.2, we will show that, for η small enough, the Duhamel series of the
auxiliary dynamics is term-by-term close to the cumulant expansion of the instantaneous
Gibbs state, Eq. (4.98).

4.5. Conclusion: proof of Theorem 3.7. We are now ready to prove our main result,
Theorem 3.7.

Proof of Theorem 3.7. By Proposition 4.1 we have, for all t ≤ 0:

Tr OXρ(t) = Tr OX ρ̃(t) + R1(t)

|R1(t)| ≤ K |ε|
ηd+2β

,
(4.99)

where ρ̃(t) is the evolution of the equilibrium state under the Hamiltonian Hβ,η(t),
Eq. (4.11). Next, we rewrite the first term via its Duhamel series, as discussed in Sect. 4.1.
We have, from Eq. (4.9), replacing g(ηt) with gβ,η(t):

Tr OX ρ̃(t)

= Tr OXρβ,μ,L +
∞
∑

n=1

(−iε)n
∫

−∞≤sn≤...≤s1≤t
ds
[ n
∏

i=1

gβ,η(si )
]

· 〈[· · · [[τt (OX ), τs1(P)], τs2(P)] · · · τsn (P)]〉β,μ,L .

(4.100)

Consider the integral. We apply Lemma 4.2, choosing:

A = OX , B = P, a(s) = gβ,η(−is). (4.101)

We have, omitting the β,μ, L labels:

∫

−∞≤sn≤...≤s1≤t
ds
[ n
∏

i=1

gβ,η(si )
]

〈[· · · [[τt (OX ), τs1(P)], τs2(P)] · · · τsn (P)]〉

= (−i)n

n!
∫

[0,β)n
ds
[ n
∏

j=1

gβ,η(t − is j )
]

〈Tγs1(P); γs2(P); · · · ; γsn (P);OX 〉.
(4.102)
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Equations (4.99), (4.100), (4.102) prove the identity (3.14). The estimate (3.17) follows
from the bound in (4.99). To prove the bound (3.16), we use that:

|I (n)
β,μ,L(η, t)|

=
∣
∣
∣

∫

[0,β)n
ds
[ n
∏

j=1

gβ,η(t − is j )
]

〈Tγs1(P); γs2(P); · · · ; γsn (P);OX 〉
∣
∣
∣

≤ ‖h‖n1
∑

X1,...,Xn⊆�L
diamXi≤R

∫

[0,β)n
ds
∣
∣
∣〈Tγs1(PX1); · · · ; γsn (PXn );OX 〉

∣
∣
∣

≤ ‖h‖n1cnn!

(4.103)

where in the first inequality we used the estimate (3.9), while the last inequality follows
from Assumption 3.1. This proves the bound (3.16), which shows that series in Eq. (3.14)
is absolutely convergent for:

|ε| <
1

c‖h‖1
. (4.104)

To conclude, let us prove Eq. (3.18). Rewriting the functions gβ,η(t − is j ) as in (3.6),
we get:

∫

[0,β)n
ds
[ n
∏

j=1

gβ,η(t − is j )
]

〈Tγs1(P); γs2(P); · · · ; γsn (P);OX 〉

=
∑

ω∈ 2π
β
Nn

[ n
∏

i=1

g̃β,η(ωi )e
ωi t
]

·
∫

[0,β)n
ds e−i

∑n
i=1 ωi si 〈Tγs1(P); γs2(P); · · · ; γsn (P);OX 〉.

(4.105)

Let:

〈TP̂ω1; P̂ω2; · · · ; P̂ωn ;OX 〉
:=
∫

[0,β)n
ds e−i

∑n
i=1 ωi si 〈Tγs1(P); γs2(P); · · · ; γsn (P);OX 〉. (4.106)

We can rewrite Eq. (4.100) in terms of these functions as:

Tr OX ρ̃(t) = Tr OXρβ,μ,L

+
∞
∑

n=1

(−iε)n

n!
∑

ω∈ 2π
β
Nn

[ n
∏

i=1

g̃β,η(ωi )e
ωi t
]

〈TP̂ω1; P̂ω2; · · · ; P̂ωn ;OX 〉,

(4.107)

which is absolutely convergent, since as implied by Assumption 3.1

|〈TP̂ω1; P̂ω2; · · · ; P̂ωn ;OX 〉| ≤ cnn! (4.108)
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To prove Eq. (3.18), we preliminarily observe that, from Eq. (4.98):

〈OX 〉t = Tr OXρβ,μ,L +
∑

n≥1

(−εg(ηt))n

n! 〈TP̂0; P̂0; · · · ; P̂0;OX 〉. (4.109)

Therefore,

Tr OX ρ̃(t) − 〈OX 〉t =
∞
∑

n=1

(−ε)n

n!

·
[ ∑

ω∈ 2π
β
Nn

[ n
∏

i=1

g̃β,η(ωi )e
ωi t
]

〈TP̂ω1; P̂ω2; · · · ; P̂ωn ;OX 〉

− g(ηt)n〈TP̂0; P̂0; · · · ; P̂0;OX 〉
]

;

(4.110)

the expression in the square brackets can be rewritten as

∑

ω∈ 2π
β
Nn

[ n
∏

i=1

g̃β,η(ωi )e
ωi t
](

〈TP̂ω1 ; P̂ω2 ; · · · ; P̂ωn ;OX 〉 − 〈TP̂0; P̂0; · · · ; P̂0;OX 〉
)

+
(

gβ,η(t)n − g(ηt)n
)

〈TP̂0; P̂0; · · · ; P̂0;OX 〉 =: R(n)
2,1(t) + R(n)

2,2(t).

(4.111)

Consider the term R(n)
2,1(t). We have:

|R(n)
2,1(t)| ≤

∑

ω∈ 2π
β
Nn

[ n
∏

i=1

|g̃β,η(ωi )|eωi t
]

·
∫

[0,β)n
ds
∣
∣eiω·s − 1

∣
∣
∣
∣〈Tγs1(P); γs2(P); · · · ; γsn (P);OX 〉∣∣

≤
[ ∑

ω∈ 2π
β
Nn

[ n
∏

i=1

|g̃β,η(ωi )|eωi t
]

|ω|
]

·
∫

[0,β)n
ds |s|β

∣
∣〈Tγs1(P); γs2(P); · · · ; γsn (P);OX 〉∣∣,

(4.112)

where |ω| = ∑n
i=1 |ωi | and |s|β is defined in Eq. (3.3). The integral in the right-hand

side is estimated using Assumption 3.1:
∫

[0,β)n
ds |s|β

∣
∣〈Tγs1(P); γs2(P); · · · ; γsn (P);OX 〉∣∣ ≤ cnn! (4.113)

Then, the argument of the square brackets in the right-hand side of (4.112) is bounded
as follows:

∑

ω∈ 2π
β
Nn

[ n
∏

i=1

|g̃β,η(ωi )|eωi t
]

|ω| ≤ n
( ∑

ω∈ 2π
β
N

ω|g̃β,η(ω)|
)

‖h‖n−1
1 (4.114)
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where we used Eq. (3.9). The sum in the right-hand side of (4.114) is estimated as:

∑

ω∈ 2π
β
N

ω|g̃β,η(ω)| =
∑

ω∈ 2π
β
N

ω

∣
∣
∣

∫ ω
η

ω
η
− 2π

βη

dξ h(ξ)

∣
∣
∣

≤
∑

ω∈ 2π
β
N

(

ω − 2π

β

)∣
∣
∣

∫ ω
η

ω
η
− 2π

βη

dξ h(ξ)

∣
∣
∣ +

2π

β
‖h‖1

≤
∑

ω∈ 2π
β
N

η

∫ ω
η

ω
η
− 2π

βη

dξ ξ |h(ξ)| +
2π

β
‖h‖1 = η‖ξh‖1 +

2π

β
‖h‖1.

(4.115)

All together,

|R(n)
2,1(t)| ≤ n‖h‖n−1

1 ‖(1 + ξ)h‖1

(

η +
2π

β

)

cnn!. (4.116)

Consider now the error term R(n)
2,2(t) in (4.111). We have, using that |g(ηt)| ≤ ‖h‖1 and

|gβ,η(t)| ≤ ‖h‖1, together with (4.108):

|R(n)
2,2(t)| ≤ n2n−1‖h‖n−1

1

∣
∣gβ,η(t) − g(ηt)

∣
∣cnn!. (4.117)

Then, using (3.12) we find:

|R(n)
2,2(t)| ≤ n2n−1‖h‖n−1

1
2π

eβη

∥
∥
∥
h

ξ

∥
∥
∥

1
cnn!. (4.118)

Coming back to (4.110), we have, for |ε| < ε0, with ε0 small enough only dependent
on h and on c:

∣
∣
∣Tr OX ρ̃(t) − 〈OX 〉t

∣
∣
∣ ≤

∞
∑

n=1

|ε|n
n!
(

|R(n)
2,1(t)| + |R(n)

2,2(t)|
)

≤ C1|ε|
(

η +
1

β

)

+
C2|ε|
βη

,

(4.119)

where the constants C1 ≡ C1(c, h) and C2 ≡ C2(c, h) can be obtained from (4.116),
(4.118), respectively. In conclusion, combining the bound (4.119) with (4.99):

∣
∣
∣Tr OXρ(t) − 〈OX 〉t

∣
∣
∣ ≤

∣
∣
∣Tr OXρ(t) − Tr OX ρ̃(t)

∣
∣
∣ +
∣
∣
∣Tr OX ρ̃(t) − 〈OX 〉t

∣
∣
∣

≤ K |ε|
ηd+2β

+ C1|ε|
(

η +
1

β

)

+
C2|ε|
βη

.

(4.120)

This proves (3.18) and concludes the proof of Theorem 3.7. ��
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Proof of Corollary 3.9. Let us show how the strategy used above can be adapted to obtain
the improved result (3.23). Under the assumptions of Corollary 3.9, the function g(z)
is m + 1 times continuously differentiable for Rez ≤ 0, and the same holds for gβ,η(z).
We proceed as in the proof of Theorem 3.7, the only difference being the estimate for
the term R(n)

2,1(0) in Eq. (4.111). We have:

R(n)
2,1(0)=

∑

ω∈ 2π
β
Nn

[ n
∏

j=1

g̃β,η(ω j )
](

〈TP̂ω1 ; P̂ω2 ; · · · ; P̂ωn ;OX 〉 − 〈TP̂0; P̂0; · · · ; P̂0;OX 〉
)

=
∫

[0,β)n
ds
( n
∏

j=1

gβ,η(−is j ) − gβ,η(0)n
)

〈Tγs1 (P); γs2 (P); · · · ; γsn (P);OX 〉.
(4.121)

By differentiability of gβ,η(−is), we have the Taylor expansion, for s ∈ [0, β) and
sβ = s − mβ such that |sβ | = |s|β , recall Eq. (3.3):

gβ,η(−is) − gβ,η(0) =
m
∑

j=1

∂
j
s gβ,η(0)

j ! (−isβ) j + r (m+1)
β,η (s), (4.122)

and the remainder can be estimated in a similar way to (4.115), so that there is some
Lm+1 > 0 such that

|r (m+1)
β,η (s)| ≤ Lm+1

(

η +
1

β

)m+1|s|m+1
β . (4.123)

Concerning the first term in the right-hand side of (4.122), we use that, recalling that by
assumption ∂

j
s g(0) = 0 for all j ≤ m,

∣
∣
∣∂

j
s gβ,η(0)

∣
∣
∣ =

∣
∣
∣∂

j
s gβ,η(0) − η j∂

j
s g(0)

∣
∣
∣

=
∣
∣
∣

∞
∑

r=0

∫ 2π
βη

(r+1)

2π
βη

r
dξ h(ξ)

[(2π

β
(r + 1)

) j − (ξη) j
]∣
∣
∣

≤
∞
∑

r=0

∫ 2π
βη

(r+1)

2π
βη

r
dξ |h(ξ)|

∣
∣
∣

(

ξη +
2π

β

) j − (ξη) j
∣
∣
∣

≤ C̃ j

j
∑

�=1

η j−�

β�

(4.124)

where we used the assumption (3.22). Therefore, from (4.122), (4.123), (4.124):

∣
∣gβ,η(−is) − gβ,η(0)

∣
∣ ≤ Cm+1

[(

η +
1

β

)m+1

|s|m+1
β +

1

β
(1 + |s|m+1

β )
]

(4.125)

which implies

∣
∣
∣

n
∏

j=1

gβ,η(−is j ) − gβ,η(0)n
∣
∣
∣

≤ 2n−1‖h‖n−1
1 Cm+1

[(

η +
1

β

)m+1 n
∑

j=1

|s j |m+1
β +

1

β

n
∑

j=1

(1 + |s j |m+1
β )

]

.

(4.126)



Adiabatic Evolution of Low-Temperature Page 39 of 56    75 

Plugging this bound in (4.121) we get

|R(n)
2,1(0)| ≤ 2n−1‖h‖n−1

1 Cm+1

[(

η +
1

β

)m+1

+
1

β

]

·
n
∑

j=1

∫

[0,β)n
ds (1 + |s j |m+1

β )
∣
∣〈Tγs1(P); · · · ; γsn (P);OX 〉

(4.127)

and so from the assumption (3.21), we obtain, for a new constant C̃m+1:

|R(n)
2,1(0)| ≤ C̃m+1C

ncn
[(

η +
1

β

)m+1
+

1

β

]

n!. (4.128)

The final claim, Eq. (3.23), follows proceeding as in the proof of Theorem 3.7, replacing
the bound (4.116) with (4.128). ��

To conclude the section, we discuss the proof of Corollary 3.11.

Proof of Corollary 3.11. Equations (3.24), (3.25) follow from Eqs. (4.99), (4.102), and
from the convergence of the series in (4.107). Equation (3.26) is proved following the
argument after (4.110). To prove Eq. (3.27), we use that, from (4.102):

∫ β

0
ds gβ,η(t − is)〈γs(P);OX 〉β,μ,L = i

∫ t

−∞
ds gβ,η(s)〈[τt (OX ), τs(P)]〉β,μ,L .

(4.129)

Next, we estimate the error introduced by replacing gβ,η(s) with g(ηs). We have:

∣
∣
∣

∫ t

−∞
ds (gβ,η(s) − g(ηs))〈[τt (OX ), τs(P)]〉β,μ,L

∣
∣
∣

≤
∫ t

−∞
ds |gβ,η(s) − g(ηs)|∣∣〈[τt (OX ), τs(P)]〉β,μ,L

∣
∣

≤ K̃
∫ t

−∞
ds |gβ,η(s) − g(ηs)|(|t − s|d + 1),

(4.130)

where in the last step we used the Lieb-Robinson bound, as in (4.19). Finally, proceeding
as in (4.25)–(4.27), we get:

∫ t

−∞
ds |gβ,η(s) − g(ηs)|(|t − s|d + 1)

≤ K̃

β

∫ 0

−∞
ds
∫ ∞

0
dξ |h(ξ)|eξηs(|s|d+1 + 1)

≤ K

βηd+2 .

(4.131)

This concludes the proof of (3.27) and of the corollary. ��
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A. On the Switch Functions

Here we will discuss functions g(t) that satisfy Assumption 3.3. This assumption holds
true for the standard switch function g(t) = eat with a > 0, where h(ξ) = δ(ξ − a),
and more generally for the finite linear combinations of such functions. More generally,
it is a natural question to understand under which conditions a function g(t) can be
represented as in (3.4), for a function h that satisfies the desired properties. Here we will
give sufficient conditions for this to hold.

Let δ > 0 and let g(z) be analytic for Re z < δ. Suppose that, for all 0 ≤ k ≤ d + 2
and for all x < δ:

∫ ∞

−∞
dy |x + iy|k |g(x + iy)| ≤ C, lim

x→−∞

∫ ∞

−∞
dy |x + iy|k |g(x + iy)| = 0. (A.1)

Furthermore, suppose that for all 0 ≤ k ≤ d + 2 and for all y ∈ R:

∫ 0

−∞
dx |x + iy|k |g(x + iy)| ≤ C, lim

y→±∞

∫ 0

−∞
dx |x + iy|k |g(x + iy)| = 0. (A.2)

Examples of functions satisfying these assumptions are:

g(z) = 1

(z − a)n
(A.3)

http://creativecommons.org/licenses/by/4.0/
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with n ≥ d + 4 and a > δ. Let us check that functions satisfying (A.1), (A.2) verify
Assumption 3.3. Let γ be the straight complex path on the imaginary axis γ : δ/2+i∞ →
δ/2 − i∞. Define, for ξ ≥ 0:

h(ξ) := 1

2π i

∫

γ

dz e−zξ g(z). (A.4)

We have:

|h(ξ)| ≤ e−(δ/2)ξ

2π

∫ ∞

−∞
dy |g(δ/2 + iy)|

≤ Ce−(δ/2)ξ

(A.5)

where we used Eq. (A.1). Let us check that h satisfies Eq. (3.4). Let t ≤ 0 and define:

g̃(t) :=
∫ ∞

0
dξ eξ t h(ξ), (A.6)

which is well defined thanks to (A.5). We have:

g̃(t) = 1

2π i

∫

γ

dz
∫ ∞

0
dξ eξ t e−zξ g(z)

= −1

2π i

∫

γ

dz
g(z)

t − z

= g(t).

(A.7)

In the first identity we applied Fubini’s theorem, and in the last identity we applied
Cauchy integral formula, using that g(z) is analytic for Re z ≤ δ/2 together with
the assumptions (A.1), (A.2). Thus, Eq. (A.4) is the inverse Laplace transform of the
function g.

Equation (A.5) implies that h ∈ L1(R+). More generally, Eq. (A.5) implies, for all
k ≥ 0:

‖(1 + ξ k)h‖1 ≤ Ck, (A.8)

which shows that the second assumption in Eq. (3.5) holds true. Let us now consider the
first assumption in (3.5). We observe that

h(0) = 1

2π i

∫

γ

dz g(z) = 0, (A.9)

since the function g(z) has no poles for Re z < δ: Eq. (A.9) follows from Cauchy integral
formula, combined with the integrability properties (A.1), (A.2). Furthermore, for all
1 ≤ k ≤ d + 2:

∂kξ h(ξ) = (−1)k

2π i

∫

γ

dz e−zξ zkg(z) (A.10)

where we used that zkg(z) is integrable on the path γ , by (A.1). By the same assumption,
∂kξ h(ξ) is bounded uniformly in ξ for 1 ≤ k ≤ d + 2.
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The function zkg(z) has the same analyticity properties as g, in particular it has
no poles for Re z < δ. Thus, by Cauchy integral formula, thanks to the integrability
assumptions (A.1), (A.2) we have:

∂kξ h(0) = (−1)k

2π i

∫

γ

dz zkg(z)

= 0.

(A.11)

Equations (A.9), (A.11) imply that h(ξ)/ξd+2 is bounded as ξ → 0, in particular the
first assumption in (3.5) is satisfied. This concludes the check of Assumption 3.3.

B. Properties of Euclidean Correlations

In this appendix we shall give the proofs of the properties of Euclidean correlation
functions that have been used in the proof of Theorem 3.7. These properties are well-
known, and we collect the proofs here for completeness.

Recall the notation for the n-dimensional simplex of side β:

�n
β := {(s1, . . . , sn) ∈ R

n : β > s1 > · · · > sn > 0}. (B.1)

Proposition B.1. Let n,m ∈ N, 1 ≤ m ≤ n−1. Let f : [0, β]m → C, g : [0, β]n−m →
C, f, g integrable. The following identity holds:

∑

J⊂{1,...,n}
|J |=m

∫ β

0
ds1 . . .

∫ sn−1

0
dsn f (s J )g(s Jc )

=
∫ β

0
ds1 . . .

∫ sm−1

0
dsm f (s{1,...,m})

∫ β

0
dsm+1 . . .

∫ sn−1

0
dsn g(s{m+1,...,n}),

(B.2)

where the sum is over ordered m-tuples J = ( j1, . . . , jm), we used the notation s J =
(s j1, . . . , s jm ) and s Jc = s{1,...,n}\J .

Proof. Let 1�n
β
(s) be the characteristic function of the simplex �n

β , Eq. (B.1). We start
by writing:

∑

J⊂{1,...,n}
|J |=m

∫ β

0
ds1 . . .

∫ sn−1

0
dsn f (s J )g(s Jc)

=
∑

J⊂{1,...,n}
|J |=m

∫

[0,β]n
ds1 · · · dsn f (s J )g(s Jc )1�n

β
(s)

=
∑

J⊂{1,...,n}
|J |=m

∫

[0,β]n
dr1 · · · drn f (r {1,...,m})g(r {m+1,...,n})1�n

β
(πJ (r)),

(B.3)

where in the last step we used the change of variables:

r {1,...,m} = s J , r {m+1,...,n} = s Jc (B.4)
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and we call πJ the permutation such that πJ (r)i = si for i = 1, . . . , n. Now, define:

L(r) :=
∑

J⊂{1,...,n}
|J |=m

1�n
β
(πJ (r)). (B.5)

This function only takes values 0 or 1, since there can be at most one non-vanishing
element in the sum. We claim that:

L(r) = 1�m
β
(r {1,...,m})1�n−m

β
(r {m+1,...,n}). (B.6)

Suppose that r {1,...,m} ∈ �m
β and r {m+1,...,n} ∈ �

(n−m)
β . Then, there exists a unique per-

mutation that maps r = (r {1,...,m}, r {m+1,...,n}) into a decreasing sequence. Equivalently,
there exists a unique J , |J | = m, such that πJ (r) is in �n

β . Thus,

1�m
β
(r {1,...,m})1�

(n−m)
β

(r {m+1,...,n}) = 1 =
∑

J⊂{1,...,n}
|J |=m

1�n
β
(πJ (r)). (B.7)

Suppose now that r {1,...,m} /∈ �m
β . For any J ⊂ {1, . . . , n}, |J | = m, consider the

sequence πJ (r). The action of πJ sends the first m entries of r to m entries in the new
sequence, preserving their relative order. In particular, if r {1,...,m} /∈ �m

β then πJ (r) /∈
�n

β . Therefore,

1�m
β
(r {1,...,m})1�

(n−m)
β

(r {m+1,...,n}) = 0 =
∑

J⊂{1,...,n}
|J |=m

1�n
β
(πJ (r)). (B.8)

A similar discussion applies to the case r {m+1,...,n} /∈ �n−m
β . This concludes the proof

of (B.6). The final claim (B.2) follows after plugging (B.6) into (B.3). ��
Proposition B.2. Let Oi ∈ A�L , i = 1, . . . , n. Let si �= s j for i �= j and 0 ≤ si ≤ β.
Consider:

G(s1, . . . , sn)

:=
∑

π

1(sπ(1) > sπ(2) > . . . > sπ(n))
〈

γsπ(1)
(Oπ(1)) · · · γsπ(n)

(Oπ(n))
〉

β,μ,L ,

(B.9)

where the sum is over permutations of 1, . . . , n. Then, for all i = 1, . . . , n:

G(s1, . . . , si−1, β, si+1, . . . , sn) = G(s1, . . . , si−1, 0, si+1, . . . , sn). (B.10)

Equation (B.10) allows to extendG to aβ-periodic function onRn, that we shall continue
to denote by G. Furthermore, the periodic extension is such that, for all σ ∈ R:

G(s1, . . . , si , . . . , sn) = G(s1 + σ, . . . , si + σ, . . . sn + σ). (B.11)

Remark B.3. (i) In general, the periodic extension of G to R
n might be discontinuous

at equal times, unless the operators commute.
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(ii) Notice that if all operators Oi are even in the fermionic creation and annihilation
operators, Eq. (B.9) agrees with the definition of time-ordered correlation function,
Eqs. (2.11), (2.12). These facts are mentioned in Remark 4.8. Instead, if the operators
Oi are odd in the fermionic creation and annihilation operators, the natural definition
of time-ordering is defined including the sign of the permutation in the sum (B.9),
compare with Eq. (2.10). This gives rise to a β-antiperiodic function on R

n .

Proof. Consider the function G in Eq. (B.9) with si = 0. Since all times are distinct,
the only permutations contributing to the sum are those with π(n) = i . Thus,

G(s1, . . . , si−1, 0, si+1, . . . , sn)

=
∑

π̃

1(sπ̃(1) > sπ̃(2) > . . . > sπ̃(n−1))
〈

γsπ̃(1)
(Oπ̃(1)) · · · γsπ̃(n−1)

(Oπ̃(n−1))Oi
〉

(B.12)

where the sum is over permutations {π̃} of n − 1 elements. Now, by the KMS identity,
Eq. (2.9),

G(s1, . . . , si−1, 0, si+1, . . . , sn)

=
∑

π̃

1(sπ̃(1) > . . . > sπ̃(n−1))
〈

γβ(Oi )γsπ̃(1)
(Oπ̃(1)) · · · γsπ̃(n−1)

(Oπ̃(n−1))
〉

=
∑

π

1(sπ(1) > . . . > sπ(n))
〈

γsπ(1)
(Oπ(1)) · · · γsπ(i) (Oπ(i)) · · · γsπ(n)

(Oπ(n))
〉

(B.13)

where in the last step we set si = β, and used the fact that all the permutations con-
tributing to the last sum are such that π(1) = i . The right-hand side of Eq. (B.13) equals
G(s1, . . . , si−1, β, si+1, . . . , sn), and this concludes the proof of (B.10).

Equation (B.10) allows to extend G to a periodic function over Rn . Let us now prove
the time-translation invariance property, Eq. (B.11). By construction, the function G
satisfies:

G(s1, . . . , sn) = G([s1]β, . . . , [sn]β), (B.14)

where [si ]β is the representative of si in [0, β), that is si = [si ]β + mβ for some m ∈ Z.
Without loss of generality, suppose that [s1]β > . . . > [sn]β ; otherwise, relabel times
so that this condition holds. Then, from Eq. (B.9) it is easy to see that the function G
has the following dependence on times:

G(s1, . . . , sn) = G([s1]β − [sn]β, . . . , [sn−1]β − [sn]β, 0). (B.15)

The shift si → si + σ for all i = 1, . . . , n changes [si ]β − [sn]β into [si ]β − [sn]β plus
an integer multiple of β. By periodicity, this does not affect the value of the function G.
Thus,

G(s1, . . . , sn) = G(s1 + σ, . . . , sn + σ), (B.16)

which concludes the proof of the proposition. ��
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C. Decay of Correlations for Interacting Models

In this appendix we shall discuss the validity of Assumption 3.1 for fermionic lattice
models. The arguments presented in this section are well-known, and we reproduce them
for completeness. For definiteness, we shall consider the following class of many-body
Hamiltonians:

H λ =
∑

x,y∈�L

a∗
xH(x; y)ay + λ

∑

x,y∈�L

a∗
xa

∗
yv(x; y)ayax, (C.1)

where H(x; y) and v(x; y) are finite-range. The discussion that follows actually applies
essentially unchanged to a larger class of Hamiltonians, obtained replacing the quartic
interaction in (C.1) by finite-range interactions of arbitrary even degree in the fermionic
creation and annihilation operators. Let 〈·〉λβ,μ,L be the Gibbs state of the system:

〈O〉λβ,μ,L = Tr e−β(H λ−μN )O

Tr e−β(H λ−μN )
. (C.2)

For |λ| small, the Gibbs state can be expanded in power series around the non-interacting
one, following Sect. 4.4. The main advantage in doing this is that the non-interacting
Gibbs state is quasi-free, which means that all Euclidean correlations can be computed
starting from the Euclidean two-point function using the Wick rule. Let t, t ′ ∈ [0, β),
t �= t ′. Let us denote by 〈·〉0

β,μ,L the non-interacting Gibbs state (λ = 0). We define the
non-interacting two-point function as:

g2(t, x; t ′, y) := 〈Tγt (ax)γt ′(a
∗
y)〉0

β,μ,L . (C.3)

At equal times, the two-point function is defined by normal ordering:

g2(t, x; t, y) = −〈a∗
yax〉0

β,μ,L .

(C.4)

Equation (C.3) is extended to an antiperiodic function over all t, t ′ ∈ R with period β.
The next proposition gives the explicit expression of the two-point function.

Proposition C.1. (Non-interacting two-point function). Let 0 ≤ t, t ′ < β. Then:

g2(t, x; t ′, y) = 1(t > t ′) e
−(t−t ′)(H−μ)

1 + e−β(H−μ)
(x; y) − 1(t ≤ t ′)e

−(t−t ′)(H−μ)

1 + eβ(H−μ)
(x; y).

(C.5)

Proof. Equation (C.5) can be proved by direct computation of the trace involved in
the definition of the non-interacting Gibbs state, representing the Fock space in the
basis of Slater determinants associated with the eigenstates of the Hamiltonian H . The
computation can be found in standard textbooks in condensed matter physics, see e.g.
[22,45]. ��
Next, we collect useful decay estimates for the two-point function.
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Proposition C.2 (Bounds for the two-point function). There exist Cβ, cβ > 0 such that
the following bound holds true:

|g2(t, x; t ′, y)| ≤ Cβe
−cβ‖x−y‖L for all L > 0. (C.6)

Moreover, suppose that μ /∈ σ(H) and dist(μ, σ (H)) ≥ δ with δ > 0 uniformly in L.
Then, the constants Cβ, cβ can be chosen uniformly in β:

|g2(t, x; t ′, y)| ≤ Ce−c(‖x−y‖L+|t−t ′|β). (C.7)

Proof. Let us start by proving (C.6). Suppose that t > t ′, the other case can be studied
in the same way. The starting point is the following formula for the two-point function:

g2(t, x; t ′, y) = e−(t−t ′)(H−μ)

1 + e−β(H−μ)
(x; y)

= 1

2π i

∫

C
dz

e−(z−μ)(t−t ′)

1 + e−β(z−μ)

1

z − H
(x; y),

(C.8)

where the first identity follows from Proposition C.1, and in the second equality the
complex path C is a rectangle that encircles the spectrum of H , and that crosses the
imaginary axis at Im z = ±π/(2β). Thus, the path does not enclose any of the poles of
the Fermi-Dirac function, which are given by z − μ = i 2π

β
(n + 1

2 ) with n ∈ Z, and it
stays away from the spectrum of H . By construction, the only singularities encircled by
the path C correspond to the eigenvalues of H . Since H is bounded uniformly in L , the
length of the complex path is also bounded uniformly in L; in particular, we can choose
C such that for all z ∈ C we have dist(z, σ (H)) ≥ π/(2β). The estimate (C.6) easily
follows from the Combes-Thomas estimate for the Green’s function, see e.g. [3].

Let us now suppose that dist(μ, σ (H)) > δ, and let us prove the estimate (C.7). We
can use a complex representation (C.8), where now the path C splits into the disjoint
union of two non-intersecting paths, C− and C+, that encircle the spectrum of H on the
left or on the right of μ, respectively. The paths can be chosen so that the distance from
any point z ∈ C to the poles is bounded below by a constant proportional to the spectral
gap, uniformly in β. We write:

g2(t, x; t ′, y) = 1

2π i

∫

C−
dz

e−(z−μ)(t−t ′)

1 + e−β(z−μ)

1

z − H
(x; y)

+
1

2π i

∫

C+

dz
e−(z−μ)(t−t ′)

1 + e−β(z−μ)

1

z − H
(x; y).

(C.9)

For z ∈ C+:

∣
∣
∣
e−(z−μ)(t−t ′)

1 + e−β(z−μ)

∣
∣
∣ ≤ Ce−Re (z−μ)(t−t ′)

≤ Ce−c(t−t ′).

(C.10)

Instead, for z ∈ C−:

∣
∣
∣
e−(z−μ)(t−t ′)

1 + e−β(z−μ)

∣
∣
∣ ≤ Ce|Re (z−μ)|(t−t ′−β)

≤ Ce−c(β−(t−t ′)).

(C.11)
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All together, for z ∈ C :

∣
∣
∣
e−(z−μ)(t−t ′)

1 + e−β(z−μ)

∣
∣
∣ ≤ Ce−c|t−t ′|β . (C.12)

The exponential decay in space follows from a Combes-Thomas estimate for the Green’s
function in the complex integral, using that now the distance from z to the spectrum of
H is bounded uniformly in β. This concludes the proof. ��

C.1. Check of Assumption 3.1 for non-interacting fermions. As a warm up, let us check
Assumption 3.1 for non-interacting models, whose Hamiltonian is given by Eq. (C.1)
with λ = 0. In this case, the bounds of Proposition C.2, combined with Wick’s rule, are
enough to show that Assumption 3.1 is satisfied for observables O(i)

Xi
that are quadratic

in the fermionic operators. This allows, in particular, to fulfill the assumptions of The-
orem 3.7 for non-interacting fermions, in the presence of a quadratic, time-dependent
perturbation g(ηt)εP . To see this, we write:

O(i)
Xi

=
∑

x,y∈Xi

Oi (x; y)a∗
xay (C.13)

for a finite-range kernel Oi (x; y) such that |Oi (x; y)| ≤ C . Consider:
〈

Tγt1(O
(1)
X1

); · · · ; γtn (O
(n)
Xn

);O(n+1)
Xn+1

〉0
β,μ,L

=
∑

xi ,yi∈Xi

O1(x1; y1) · · · On+1(xn+1; yn+1)

· 〈Tγt1(a
∗
x1
ay1); · · · ; γtn (a

∗
xn ayn ); a∗

xn+1
ayn+1

〉0
β,μ,L .

(C.14)

The cumulant on the right-hand side can be evaluated using the fermionic Wick’s rule,
in terms of “ring diagrams”. We have:

〈

Tγt1(a
∗
x1
ay1); · · · ; γtn (a

∗
xn ayn ); a∗

xn+1
ayn+1

〉0
β,μ,L

=
∑

π

g2(π(1), π(2))g2(π(2), π(3)) · · · g2(π(n + 1), π(1))
(C.15)

where the sum is over permutations of {1, . . . , n + 1} such that π(1) = 1 and where we
used the short-hand notation:

g2(π(i), π( j)) := g2(tπ(i), xπ(i); tπ( j), yπ( j)) (C.16)

with the understanding that tn+1 = 0. Proposition C.2 can be used to control the space-
time decay of the right-hand side of (C.15). Let us first control the sums over the lattice
sites. For every entry in the sum over permutations, we are led to consider:

∑

xi ,yi∈Xi

e−c‖xπ(1)−yπ(2)‖L e−c‖xπ(2)−yπ(3)‖L · · · e−c‖xπ(n+1)−yπ(1)‖L , (C.17)

where the constant c might depend on β, if we do not have a spectral gap for H . Since
the sets Xi have bounded radius uniformly in L , we can estimate the sum (C.17) by:

Cn
∑

zi∈Xi

e−c‖zπ(1)−zπ(2)‖L e−c‖zπ(2)−zπ(3)‖L · · · e−c‖zπ(n+1)−zπ(1)‖L , (C.18)
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where the sum runs over zi ∈ Xi for i = 1, . . . , n + 1. Next, we estimate the sum as:

∑

�1,...,�n+1
�i≥dist(Xπ(i+1),Xπ(i))

�n+1≥dist(Xπ(n+1),Xπ(1))

e−c�1−c�2−...−c�n+1

·
∑

zi∈Xi

1(‖zπ(1) − zπ(2)‖L = �1, . . . , ‖zπ(n+1) − zπ(1)‖L = �n+1)

≤ Cn+1
∑

�1,...,�n+1
�i≥dist(Xπ(i+1),Xπ(i))

�n+1≥dist(Xπ(n+1),Xπ(1))

e−c�1−c�2−...−c�n+1

≤ Cn+1e−cd(π(1),π(2))−...−cd(π(n+1),π(1))

(C.19)

where d(π(i), π( j)) := dist(Xπ(i), Xπ( j)). Therefore,

∣
∣
〈

Tγt1(O
(1)
X1

); · · · ; γtn (O
(n)
Xn

);O(n+1)
Xn+1

〉0
β,μ,L

∣
∣

≤ Cn+1
∑

π

e−cd(π(1),π(2))−...−cd(π(n+1),π(1))Fπ (t)
(C.20)

where Fπ (t) = 1 if no spectral gap is present, or otherwise:

Fπ (t) = e−c|tπ(1)−tπ(2)|β−...−c|tπ(n+1)−tπ(1)|β . (C.21)

Let us now prove Eq. (3.2). We have, for some R > 0:
∫

[0,β]n
dt (1 + |t |β)

∑

Xi⊆�L

∣
∣
〈

Tγt1(O
(1)
X1

); · · · ; γtn (O
(n)
Xn

);O(n+1)
X

〉0
β,μ,L

∣
∣

≤ Cn+1
∫

[0,β]n
dt (1 + |t |β)

·
∑

Xi⊆�L
diam(Xi )≤R

∑

π

e−cd(π(1),π(2))−...−cd(π(n+1),π(1))Fπ (t).

(C.22)

Since the number of sets Xi with bounded diameter and containing a given point zi is
bounded, we can estimate the Xi sum as:

Kn+1
∑

z1,...,zn

e−c‖zπ(1)−zπ(2)‖L e−c‖zπ(2)−zπ(3)‖L · · · e−c‖zπ(n+1)−zπ(1)‖L

= Kn+1
∑

�1,...,�n+1

e−c�1−c�2−...−c�n+1

·
∑

z1,...,zn

1(‖zπ(1) − zπ(2)‖L = �1, . . . , ‖zπ(n+1) − zπ(1)‖L = �n+1),

(C.23)

where zn+1 = x ∈ X . A crude bound for the last sum is Cn�d1 · · · �dn , uniformly in the
volume of the system (remember that the point zn+1 is fixed). Plugging this estimate in
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(C.23), we get:

Kn+1
∑

z1,...,zn

e−c‖zπ(1)−zπ(2)‖L e−c‖zπ(2)−zπ(3)‖L · · · e−c‖zπ(n+1)−zπ(1)‖L

≤ Kn+1
∑

�1,...,�n+1≥0

e−c�1−c�2−...−c�n+1�d1 · · · �dn

≤ K̃ n+1.

(C.24)

Thus, we obtain the following bound for the cumulant:
∫

[0,β]n
dt (1 + |t |β)

∑

Xi⊆�L

∣
∣
〈

Tγt1(O
(1)
X1

); · · · ; γtn (O
(n)
Xn

);O(n+1)
X

〉0
β,μ,L

∣
∣

≤ C̃n+1
∑

π

∫

[0,β]n
dt (1 + |t |β)Fπ (t).

(C.25)

The integral in the right-hand side is bounded by a power of β, if no spectral gap is
present. Instead, if μ lies in a spectral gap we have, recalling Eq. (C.21):
∫

[0,β]n
dt (1 + |t |β)Fπ (t) =

∫

[0,β]n
dt (1 + |t |β)e−c|tπ(1)−tπ(2)|β−...−c|tπ(n+1)−tπ(1)|β

(C.26)

with the understanding that tn+1 = 0. Recall that |t |β = ∑

i |ti |β . In the permutation
π(1), π(2), . . . , π(n + 1), suppose that i = π(k) and n + 1 = π( j) and that j > k (the
other case is analogous). Then, we write:

|ti |β = |ti − tn+1|β
≤ |tπ(k) − tπ(k+1)|β + |tπ(k+1) − tπ(k+2)|β + . . . + |tπ( j−1) − tπ( j)|β
≤ |tπ(1) − tπ(2)|β + . . . + |tπ(n+1) − tπ(1)|β.

(C.27)

Plugging this into (C.26), we find:
∫

[0,β]n
dt (1 + |t |β)Fπ (t)

≤
∫

[0,β]n
dt (1 + n(|tπ(1) − tπ(2)|β + . . . + |tπ(n+1) − tπ(1)|β))

· e−c|tπ(1)−tπ(2)|β−...−c|tπ(n+1)−tπ(1)|β

≤ Cn
∫

[0,β]n
dt e−(c/2)|tπ(1)−tπ(2)|β−...−(c/2)|tπ(n+1)−tπ(1)|β

≤ Cn
∫

[0,β]n
dt e−(c/2)|tπ(1)−tπ(2)|β−...−(c/2)|tπ(n)−tπ(n+1)|β

≤ Kn .

(C.28)

Using this estimate in Eq. (C.25) we finally find:
∫

[0,β]n
dt (1 + |t |β)

∑

Xi⊆�L

∣
∣
〈

Tγt1(O
(1)
X1

); · · · ; γtn (O
(n)
Xn

);O(n+1)
X

〉0
β,μ,L

∣
∣

≤ cnn!,
(C.29)
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where the factorial comes from the sum over permutations. This concludes the check of
Assumption 3.1 for non-interacting fermions.

C.2. Check of Assumption 3.1 for interacting fermions. Let us now discuss the case of
interacting Fermi systems, with Hamiltonian H λ = H 0 + λV given by Eq. (C.1) with
λ �= 0. Following Sect. 4.4, this Gibbs state (C.2) of H λ can be written as a series in
cumulants of the many-body interaction over the non-interacting Gibbs state; neglecting
from now on the labels β,μ, L ,

〈OX 〉λ = 〈OX 〉0 +
∑

n≥1

(−λ)n

n!
∫

[0,β)n
ds 〈Tγs1(V ); · · · ; γsn (V );OX 〉0. (C.30)

More generally, the interacting Euclidean correlation functions can be written in terms
of the non-interacting ones, as:

〈Tγt1(O
(1)
X1

); · · · ; γtn (O
(n)
Xn

);O(n+1)
X 〉λ = 〈Tγt1(O

(1)
X1

); · · · ; γtn (O
(n)
Xn

);O(n+1)
X 〉0

+
∑

m≥1

(−λ)m

m!
∫

ds 〈Tγs1(V ); · · · ; γsm (V ); γt1(O
(1)
X1

); · · · ; γtn (O
(n)
Xn

);O(n+1)
X 〉0

(C.31)

where the integral is over [0, β)m . All cumulants can be computed in terms of connected
Feynman diagrams, using Wick’s rule, and the bounds of Proposition C.2 allow to prove
estimates for the Feynman diagrams that are uniform in L , and also in β if μ is in a
spectral gap of H . With respect to the case discussed before, the main problem now is that
the observables at the argument of the time-ordering might be quartic in the fermionic
operators: this ultimately implies that the number of Feynman diagrams contributing to
the order n grows as (n!)2, which beats the 1/n! factorial in Eq. (C.31).

For fermionic models, this combinatorial problem is only apparent, as it can be solved
keeping track of the minus signs arising from the anticommutation of the fermionic
operators. The mathematical tool that allows to prove a bound for the cumulants that
grows only as n!, and that is uniform in the size of the system, is the Brydges-Battle-
Federbush-Kennedy (BBFK) formula [11,17–19], for the connected expectations, or
cumulants, of a fermionic theory. See [23] for a review of recent applications to transport
problems in condensed matter systems. Let us review its application to the problem at
hand.

Let A(Pi ) be a short-hand notation for a monomial in the creation and annihilation
operators,

A(Pi ) = γti (a
∗
xi,1) · · · γti (a∗

xi,k )γti (ayi,k ) · · · γti (ayi,1). (C.32)

Pi has to be understood as a set of points, labelled by a sign εi = ±, which denotes
creation operators (ε = +) or annihilation operators (ε = −), and by space-time co-
ordinates (xi , ti ) if εi = + or (yi , ti ) if εi = −. Without loss of generality, we can
suppose that xi,k �= xi,� and yi,k �= yi,� for k �= �, since otherwise A(Pi ) = 0 by Pauli
principle. Monomials of this type appear when writing explicitly the operators V , O(i)

Xi
at the argument of the cumulant in Eq. (C.31) in terms of the fermionic operators. The
BBFK formula provides a very useful identity for

〈TA(P1); A(P2); · · · ; A(Pn)〉0
β,μ,L (C.33)
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in terms of the two-point function, Eq. (C.5). One has, if ti �= t j for i �= j :

〈TA(P1); A(P2); · · · ; A(Pn)〉0
β,μ,L

=
∑

T

αT

[∏

�∈T
g�

] ∫

dμT (s) det[si( f ),i( f ′)g( f, f ′)]. (C.34)

Let us explain the various objects and symbols entering this formula. We view the
monomial Pi as being represented by a cluster of points, labelled by z, t variables, with
a line attached: the line is incoming if the associated fermionic operator is γt (az), or
outgoing if the associated fermionic operator is γt (a∗

z ). Each line is labelled by a label f ,
and we shall think of Pi as being the collection of such labels. The T -sum in Eq. (C.34)
is a sum over anchored trees between the cluster of points P1, . . . , Pn , where the edges
of the trees are associated with the contractions � = ( f, f ′) of incoming and outgoing
lines. An anchored tree between the clusters associated with P1, . . . , Pn becomes a tree
between n points if one collapses the clusters into points. With each edge of the tree we
associate a propagator g�,

g� ≡ g2(x(�), t (�); t ′(�), y(�)), (C.35)

where x(�), t (�) are the space-time labels for the contracted outgoing line f , while
y(�), t ′(�) are the space-time labels for the contracted incoming line f ′. Notice that, in
general, the lines forming the trees are only a subset of all the possible contractions that
can be made between the lines associated with the clusters P1, . . . , Pn (which are the
contractions forming the connected Feynman diagrams).

Informally, given a tree T the sum over the remaining contractions that exhaust
all lines is taken into account by the integral in (C.34). There, s denotes variables
(si j )i, j=1,...,n , and dμT (s) is a T -dependent probability measure supported on a set
of si j ∈ [0, 1] such that si j can be written as a scalar product (ui , u j ) for a family of
vectors (ui ) with ui ∈ R

n of unit norm. Finally, si( f ),i( f ′)g( f, f ′) is a matrix, labelled by
the lines that are not part of T : f, f ′ ∈ (∪i Pi )\PT , where PT takes into account all the
f, f ′ labels that are involved in the tree T . The notation i( f ) indicates the label of the
cluster Pi to which the label f belongs to. Finally, αT is a suitable function of the tree
T , and it takes the values ±1. Its value will not be important in the following.

Equation (C.34) allows us to obtain the estimate:

|〈TA(P1); A(P2); · · · ; A(Pn)〉0
β,μ,L |

≤
∑

T

∏

�∈T
|g�|

∫

dμT (s)
∣
∣ det[si( f ),i( f ′)g( f, f ′)]

∣
∣; (C.36)

the product over the propagators associated with the branches of the tree introduces
a decay factor as function of the space-time distance of the various Pi ’s. To make
good use of Eq. (C.36), we need a bound for the determinant. One possibility could be
to express the determinant in terms of the matrix entries via Leibniz formula, but this
would ultimately produce the same combinatorial growth observed in the naive Feynman
graph expansion, which is useless for the purpose of proving convergence of the series
in (C.31). A better estimate is obtained if g( f, f ′) are the entries of a Gram matrix, that is
if g( f, f ′) = (a f , b f ′) for a f , b f vectors of finite norm in a Hilbert space. In fact, in this
case we could apply the Gram-Hadamard inequality, to obtain:

∣
∣ det[si( f ),i( f ′)g( f, f ′)]

∣
∣ = ∣

∣ det[ui( f ) ⊗ a f , ui( f ′) ⊗ b f ′ ]∣∣ ≤
∏

f

‖a f ‖‖b f ‖ (C.37)
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where the product runs over all the labels in (∪i Pi )\PT . This bound grows as a power of
the dimension of the matrix, instead of factorially, and can be ultimately used to prove
convergence of the series in (C.31).

The problem in our case, and in all applications to lattice fermionic models, is that
the propagator g( f, f ′) cannot be expressed in a Gram form. This issue could be solved
via an ultraviolet multi-scale decomposition of the Matsubara frequencies associated
with imaginary times, as reviewed for instance in [26]. This analysis can be viewed as
a warm-up for the multiscale analysis needed in order to tackle the infrared problem of
interacting, gapless systems. Alternatively, a relatively simple way out to this problem
to observe that g( f, f ′) can be expressed as the linear combination of the entries of Gram
matrices [20,21]. We have:

g( f, f ′) = 1(t ( f ) > t ( f ′))A+
( f, f ′) − 1(t ( f ) ≤ t ( f ′))A−

( f, f ′)

A+
( f, f ′) := e−(t ( f )−t ( f ′))(H−μ)

1 + e−β(H−μ)
(x( f ); y( f ′))

A−
( f, f ′) := e−(t ( f )−t ( f ′))(H−μ)

1 + eβ(H−μ)
(x( f ); y( f ′)).

(C.38)

As discussed in [21] for translation-invariant models, and in [20] for a more general set-
ting that includes the class of Hamiltonians considered in the present paper, the matrices
A±

( f, f ′) admit a Gram representation. We refer the reader to Appendix A of [20]. Let
t ≡ t ( f ), x ≡ x( f ), t ′ ≡ t ( f ′) and y ≡ y( f ′). As proven in Lemma 10 of [20], we
have:

A±
( f, f ′) = 〈u±

t,x, w
±
t ′,y〉 (C.39)

where 〈·, ·〉 is a scalar product on a suitable Hilbert space, and u±
t,x, w±

t ′,y are vectors
in the Hilbert space with norm bounded by one. Recall that the Gram constant of a
matrix M with elements 〈ai , b j 〉 is defined as γM = maxi max{‖ai‖, ‖bi‖}. By the
Gram-Hadamard inequality, the determinant of a Gram matrix of order n is estimated
by γ 2n

M . The identity (C.39), together with the fact ‖u±
t,x‖ ≤ 1 and ‖w±

t ′,y‖ ≤ 1, proves

that the Gram constant of the matrices A± is bounded by 1. Then, by Theorem 1.3 of
[21], we find:

|det[si( f ),i( f ′)g( f, f ′)]| ≤ 22dg , (C.40)

where dg is the dimension of the matrix, and the number raised to the power 2dg is the
sum of the Gram constants of A+ and A−. In our case dg = |(∪i Pi )\PT |/2; if the degree
of the monomial is bounded, as it is in our case, as |Pi | ≤ p for some L-independent
p > 0, then dg ≤ pn

2 − (n − 1) = n
2 (p − 2) + 1.

Let us now come back to Eq. (C.36). Thanks to Eq. (C.40), we have:

|〈TA(P1); A(P2); · · · ; A(Pn)〉0| ≤ 2n(p−2)+2
∑

T

∏

�∈T
|g�|, (C.41)

which can now be used to prove an estimate for the decay of correlations. We are
interested in estimating:

∫

[0,β]n
dt (1 + |t |β)

∑

Xi⊆�L

∣
∣〈Tγt1(O

(1)
X1

); · · · ; γtn (O
(n)
Xn

);O(n+1)
X 〉λ∣∣ (C.42)
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and to do so we replace the cumulant at the argument of the absolute value with its
expansion in λ, Eq. (C.31). Thus, we are led to consider:

∑

Yi⊆�L

∫

[0,β]n+m
ds (1 + |s|β)

· ∣∣〈Tγs1(VY1); · · · ; γsm (VYm ); γsm+1(O
(1)
Ym+1

); · · · ; γsn+m (O(n)
Yn+m

);O(n+1)
X 〉0

∣
∣.

(C.43)

Notice that, by assumption on the model, the sums involve sets with bounded diameter,
diam(Yi ) ≤ R. In order to control the time integrals and the sums over lattice subsets,
we use the estimate (C.41); equal times give zero contribution to the integral, hence we
can assume that all times are different. Let us consider:

∫

[0,β]n+m
ds (1 + |s|β)

∑

Yi⊆�L
diam(Yi )≤R

∑

T

∏

�∈T
|g�|; (C.44)

the T -sum is over the anchored trees connecting the cluster of points associated with
Y1, . . . ,Ym+n,Ym+n+1 with Ym+n+1 ≡ X . Being the sets Yi in Eq. (C.44) of bounded
diameter, we can estimate (C.44) as:

Cn+m
∫

[0,β]n+m
ds

∑

zi∈�L
zn+m+1=x

∑

T on {zi}

∏

�∈T
|g�|(1 + |s�|β)

(C.45)

where |s�|β = |s( f ) − s( f ′)|β if � = ( f, f ′), and we used that

1 + |s|β ≤ 1 + n
∑

�∈T
|s�|β ≤ n

∏

�∈T
(1 + |s�|β).

The constant Cn+m takes into account the sum over Yi � zi , using that their diameter
is bounded. For a given tree, the sum over the space-time coordinates of the points is
performed via a standard pruning argument. One starts from the leaves of the trees,
which are defined as the points attached to the rest of the tree by just one branch. If the
leaf is labelled by x one does nothing, otherwise we integrate over the corresponding
space-time variable and get a factor:

~g~1 := max
y

∑

z

∫ β

0
ds (1 + |s − t |β)|g2(y, t; z, s)| (C.46)

which does not depend on t by time-translation invariance of the estimate for the two-
point function, Proposition C.2. After having integrated out the leaves one deletes them,
thus obtaining a new (smaller) tree. We then integrate over the new leaves, and repeat
the process until all integrations are exhausted. By doing so, we obtain the bound:

|(C.45)| ≤ Cn+m~g~n+m
1 n+m+1, (C.47)

where n+m+1 is the number of trees with n + m + 1 vertices. By Cayley’s formula, it is
well-known that:

n+m+1 = (n + m + 1)n+m−1. (C.48)
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Therefore, using Stirling’s formula, we find:
∫

[0,β]n+m
ds (1 + |s|β)

∑

Yi⊆�L

∑

T

∏

�∈T
|g�| ≤ Kn+m(n + m)! (C.49)

Combined with the determinant bound, this estimate allows to prove that:
∫

[0,β]n+m
ds (1 + |s|β)

∑

Yi⊆�L

∣
∣〈Tγs1(VY1); · · · ; γsn+m (O(n)

Yn+m
);O(n+1)

X 〉0
∣
∣

≤ K̃ n+m(n + m)!
(C.50)

This bound can be used to control all terms in the expansion (C.31). We obtain:

∫

[0,β]n
ds (1 + |s|β)

∑

Xi⊆�L

∣
∣
〈

Tγs1(O
(1)
X1

); · · · ; γsn (O
(n)
Xn

);O(n+1)
X

〉λ∣∣

≤
∑

m≥0

|λ|m
m!

∫

[0,β]n+m
ds (1 + |s|β)

·
∑

Yi⊆�L

|〈Tγs1(VY1); · · · ; γsm (VYm ); · · · γsm+n (O
(n)
Yn+m

);O(n+1)
X 〉0|

≤
∑

m≥0

|λ|m
m! K̃ n+m(n + m)!

=
∑

m≥0

|λ|m K̃ n+m (n + m)!
m!n! n! ≤ Cnn!

(C.51)

where in the last step we used that (n + m)!/(n!m!) ≤ 2n+m , and we took |λ| small
enough to guarantee convergence of the series. This concludes the check of Assumption
3.1 for weakly interacting Fermi systems.

Remark C.3. (i) The uniformity in β, L of the radius of convergence of the series
follows from the spectral gap of the Hamiltonian H , thanks to the estimate for the
two-point function, Proposition C.2. If nothing is assumed about the existence of a
spectral gap, the series is still uniformly convergent in L , but not in β.

(ii) The above argument can be easily adapted to prove the improved estimate (3.21),
thanks to the exponential decay of the two-point function (C.7); we omit the details.
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