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Preface

In this digital age, machine learning (a prominent element within the context
of artificial intelligence) has become an integral part of modern life, influenc-
ing various aspects of our daily activities. The predictive power of these tools
is increasing with the advancements in algorithms, increased computational
power, and the availability of large data sets: one basic example of this is
language-based models, which have revolutionized our capabilities of trans-
ferring and processing information. Data is the foundational element of ma-
chine learning, and the quality and relevance of the data sets have a profound
impact on the performance and accuracy of machine learning models. Thus
"data is the new gold", captures the immense value that data holds in our mod-
ern world. With the exponential growth in data, the increasing demand for
better machine-learning tools comes as a natural consequence.

The field of physics is no exception to this, especially with the rise of big
simulations and experiments generating huge amounts of data. Experiments at
particle accelerators like the Large Hadron Collider(LHC) and Fermi lab, grav-
itational waves detector by LIGO and Virgo, climate models and weather simu-
lations, Sloan Digital Sky Survey (SDSS), Cosmic Microwave Background(CMB)
radiation providing insights into the early universe; all these studies generate
massive data sets. In this context, developing more powerful, accurate, and
specialized tools, is essential to meet the evolving needs in physics as well.

In this thesis, we aim to study different types of ML tools to characterize
the many-body problem in the context of classical and quantum statistical me-
chanics, with a focus on unbiased and interpretable methods. We use tech-
niques coming from so-called non-parametric learning (NPL), where the anal-
ysis is done without specifying a fixed set of parameters in an assumption-free
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manner. NPL is a subset of the broad unsupervised learning category; the al-
gorithm learns from the intrinsic structure of the data set. NPL is particularly
valuable in scenarios where data assumptions are uncertain, data distributions
are non-standard, or when dealing with complex data sets where relationships
are difficult to predict beforehand. This works in our favor as the relation be-
tween data sets coming from many-body physics system and their effect on
data structures when physical parameters change is not well understood - the
simple reason being that the typical physicists mindset is very much focused
on performing huge dimensional reduction from microscopic physical infor-
mation (a canonical example of this being mean field theories, where the be-
havior of a large number of degrees of freedom is replaced by a single one).

The thesis is organized as follows. In Chapter 1, we discuss the theoreti-
cal framework behind the NPL methods used. We present basic ideas in our
methodologies, which encompass the overarching principles guiding our ap-
proach. These include the linkage between statistical physics and data anal-
ysis, particularly in relation to intrinsic dimension (Id) and its significance in
understanding critical characteristics. Additionally, we delve into the appli-
cation of Principal Component Analysis (PCA) and introduce the notion of
PCA entropy - a witness of information spreading under linear transforma-
tion, whose relevance to physical phenomena we start investigating here. In
Chapter 2, we describe the data sets we work with; statistical mechanics in-
spired data sets, such as those generated via sampling classical Ising models
through advanced Monte Carlo algorithms, and experimental data of a spinor
Bose-Einstein condensate. The following chapters present the applications I
worked on. In Chapter 3, we present and thoroughly assess a framework for
understanding critical behavior in classical partition functions by employing
NPL techniques on data sets containing thermal configurations; provide a ro-
bust analysis of phase transitions using different NPL methods. In Chapter
4, we present a theoretical framework for information extraction in synthetic
quantum matter for the case of a quantum quench in a spinor Bose-Einstein



vii

condensate experiment. In Chapter 5, we demonstrate how the field of net-
work science can significantly improve and elevate our assumption-free char-
acterization of various phases of matter. We present compelling evidence that
network science offers a transparent and effective set of methods for investi-
gating the properties of distinct phases and phase transitions, enabling us to
identify critical points.
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Chapter 1

Non-paramatric Learning

Machine learning (ML) techniques can be broadly separated into two cate-
gories: parametric and non-parametric learning. Non-parametric methods
are indeed a subset of the broader unsupervised learning category in machine
learning. There are many parametric unsupervised learning methods for ex-
ample, the Gaussian mixture model (GMM): commonly used in a parametric
form, which significantly limits their capacity in fitting diverse multidimen-
sional data distributions encountered in practice [5, 6]. In contrast to paramet-
ric methods, non-parametric learning (NPL) approaches do not make strong
assumptions about the functional form of the relationship between the data set
and output variable [7, 8, 9]. Non-parametric methods are valuable when deal-
ing with complex high-dimensional data sets that don’t follow a predefined
model and learn from the intrinsic structures of the provided data set. The
most popular examples of non-parametric methods include k-nearest neigh-
bors (KNN) [10], kernel density estimation [11, 12], decision trees [13], random
forests [14, 15], and various clustering algorithms [16]. Non-parametric meth-
ods allow for the model to be more flexible and adapt to the complexity of the
data sets without specifying a fixed set of parameters: this makes them very
promising as tools for the unbiased analysis of data sets generated from many-
body physics [8].

In this chapter, we introduce the non-parametric methodologies used later
in the thesis for analyzing large data sets relevant to statistical physics. We
introduce key concepts, including the general philosophy of our approach,
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the connection between statistical physics and data analysis through intrinsic
dimension(Id) and its relevance to critical properties, and the use of Principal
Component Analysis (PCA) along with the introduction of a novel concept
called PCA entropy. This chapter serves as an introduction to the tools and
concepts that will be utilized in this thesis.

1.1 Intrinsic Dimension

FIGURE 1.1: Id with changing scales.(a) With smallest scale of interest
Id ≈ 0, (b) With increased resolution we find Id ≈ 2, (c) Id ≈ 2, (d) When
the entire system is considered Id ≈ 2. Figure adapted from [17].

In the age of big data, we deal with high-dimensional data sets very fre-
quently. These data sets are often characterized by a multitude of features
(higher dimensions), frequently numbering in the thousands. Thankfully, in
many real-world data sets, these high-dimensional spaces tend to be sparsely
populated, with data points effectively residing on lower-dimensional struc-
tures referred to as data manifolds. This characteristic is key to the success of
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dimensionality reduction techniques. However, when dealing with data man-
ifolds that have complex geometries, it is difficult to find a set of coordinates
that can globally describe the manifold, traditional dimensionality reduction
methods face challenges. In such cases, it becomes necessary to directly an-
alyze the data manifold without the intermediate step of dimensionality re-
duction. The concept of intrinsic dimension (Id) plays a very important role
in characterizing these manifolds: it is defined as the minimum number of pa-
rameters needed to accurately describe the important characteristics of the data
set itself [18]. Estimating the Id of these high-dimensional data sets can, how-
ever, be very challenging. The data manifolds can be highly curved, twisted,
or have inhomogeneities, making it hard to determine the true underlying di-
mensionality (see, e.g., an example shown in Fig 1.1). Finding accurate and
reliable estimators of Id is an active area of research [17, 19, 20, 21].

While trying to estimate the Id of the system, we need to fix the scale of
interest; as Id can vary rapidly with the scale as shown in Fig 1.1 [17], which
represents a curved line perturbed by noise.

• In Fig 1.1(a), at the smallest scale the space is poorly sampled and gives
us an extreme situation resulting intrinsic dimension is 0.

• In the intermediate case (b), the noise dominates the signal which makes
it necessary to have two independent directions to describe the dataset.

• For (c), we can recognize only the one-dimensional feature.

• In the case of (d) when the whole data space is considered, the intrinsic
dimension is two.

Because of all the reasons mentioned above estimating Id correctly poses a dif-
ficult task. However, the practical usefulness in dimensionality reduction [19,
22], feature selection [23], anomaly detection [24], data compression [25] of Id

makes it a useful measure for different reasons.
Over the years, multiple approaches have been developed to estimate the

Id [17]. We will briefly summarize some of the methods. Projective methods:
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Through principal component analysis (PCA) [26], by minimizing a projec-
tion error for principle components (we will discuss more on this later in the
chapter). Also Multidimensional Scaling (MDS)[27], ISOMAP [28], autoen-
coders [29]; all involving different kinds of dimensional reduction techniques.
Most of the estimators discussed above exhibit three primary shortcomings.
Firstly, they often struggle when dealing with varying data densities and cur-
vatures. Secondly, there is a notable absence of a robust error-detection pro-
cedure. While the first issue has received attention in terms of mitigation, the
second one has been largely overlooked. However, establishing the reliability
of estimation is essential [19, 20], to circumvent these problems especially the
last one, in Ref. [19], a new Id estimator has been introduced called the two
nearest-neighbor (two-NN) method which we will elaborate further in the fol-
lowing section. The method is relatively unaffected by the variations in density
and curvatures; able to alert when the model fails to describe the data.

1.1.1 TWO-NN method

We present an Id estimator for data sets and a relatively robust response to
variations in data density and curvatures, the so-called two-NN method. Im-
portantly, it possesses the capability to flag instances when the model fails to
accurately describe the data, signaling unreliable measurements. This method
is rooted in the computation of the probability distribution of volume shells
within a uniform Poisson process, building upon concepts described in Ref
[19, 17]. Instead of relying on maximum likelihood estimation, a fitting proce-
dure is introduced that allows for immediate assessment of the correctness in
Id estimation.

Based on these foundational principles, the two-NN method is designed
to assess the Id of a data set by exclusively considering the first and second-
nearest neighbor. It’s important to note that the definition of "neighbor" in
this context relies entirely on the metric used for distance measurements. For
our calculations either the Hamming or the Euclidean distance can be used; in
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practice, we use the Euclidean distance metric. But the two-NN method to pre-
dict the correct Id, relies on two key assumptions; firstly, the points are gener-
ated independently; Secondly, there must be a local homogeneity of the points
in the hyperspace, meaning the local density of the points must be constant
[19, 20]. Let us imagine a data set which lives in RN dimensional hyperspace,
having Nr data points, with each point x⃗i with the first k nearest neighbor dis-
tances r1(x⃗i), r2(x⃗i), · · · rk(x⃗i). When the above-said assumptions are satisfied
the distribution function of the ratio of the second nearest neighbor and the
first f (µ), follows a Pareto distribution [19]:

f (µ) =
Id

µId+1 , (1.1)

where µ is

µi =
r2(x⃗i)

r1(x⃗i)
. (1.2)

Now let’s derive this formula for the Pareto distribution with our given
functional assumptions. The volume encaptured between two nearest neigh-
bors j − 1 and j is given by

∆vj = V0(rd
j − rd

j−1). (1.3)

where V0 represent the volume of the d dimensional unitary hypersphere. If
we take a hypersphere of radius r2(x⃗i) of volume V, with point x⃗i being at the
center, the probability of finding another point within the sphere is given by
Poisson distribution in accordance to our first assumption [30]:

P(V) = ρVe−ρV , (1.4)
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where ρ is the density of the points, which is constant as per our second as-
sumption. Using the same logic if we ask what is the probability that ∆v be-
longs to a spherical hypershell

P(∆v ∈ [v, v + dv]) = ρe−ρvdv. (1.5)

Now if we consider two hypershells ∆vp and ∆vq and let Γ =
∆vq
∆vp

, substituting
Γ in the Eq. 1.5 we get the exact probability distribution function (PDF) for Γ

P(Γ) =
∫ ∞

0
dvpρe−ρvp

∫ ∞

0
dvqρe−ρvq δ(

vq

vq
− Γ)

=
∫ ∞

0
dvp

∫ ∞

0
ρe−ρ(vp+vq)

=
1

(1 + Γ)2 .

(1.6)

Now we have to find the connection between Γ and µ by taking p = 1 and
q = 2

Γ =
∆v2

∆v1
=

V0(rd
2 − rd

1)

V0rd
1

=

(
r2

r1

)d
− 1 = µd − 1. (1.7)

giving us the PDF f (µ)

f (µ) =
dµd−1

µ2d =
d

µd+1 . (1.8)

as you can see we arrive at eq. 1.1 and Id = d.

1.1.2 Implementation of Two-NN method

For every point x⃗i, the first two nearest neighbor distances r1(x⃗i) and r2(x⃗i)

and the ratio µi = r2(x⃗i)/r1(x⃗i) are calculated. Under the condition that the
data set is locally uniform in the range of next-nearest neighbors, as shown in
equation 1.8, the distribution function of µ is given by

f (µ) = Idµ−Id−1. (1.9)
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FIGURE 1.2: Different examples for calculating the Id using different
data set is illustrated, with each data set having 2500 points. The slope
in the bottom panel of each column represents the Id computed by the
two-NN method. For A(A

′
): cube in dimension 14, the two-NN method

retrieves the accurate Id; B(B
′
): A data set drawn from a uniform distri-

bution on a Swiss Roll embedded in a 3D space, where two-NN predicts
the Id, close to the theoretical one; C(C

′
): A Cauchy data set in Id = 20

is analyzed where two-NN method fails to calculate the correct Id, we
elaborate further on this below. The figure is taken from ref. [19].

From the cumulative distribution function (CDF) of f (µ), denoted P(µ), we
then obtain

Id = − ln [1 − P(µ)]
ln(µ)

. (1.10)

In practice, one can use the empirical CDF, Pemp(µ), together with Eq. (1.10) to
estimate the Id by a linear fit of the points {(ln(µ),− ln[1 − Pemp(µ)])}, pass-
ing through the origin. This fit not only gives us the Id but also a practical
test for the reliability of the computation, if we diverge from the linear fit; it
indicates the unstable nature of the calculation, in other words, tells us that the
assumptions made for the two-NN method aren’t fulfilled.

In Fig. 1.2, for the first two examples in (A) random points filling a cube
and (B) uniform distribution on a 3D Swiss Roll, the two-NN method works
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well. However, for the Cauchy data set the Id calculated is strongly affected
by very few points, because of the heavy-tailed nature of the data set which
increases the probability of having r2 ≪ r1, making the Pareto fit unstable. The
resultant Pareto fit would have very few high values µi, so by discarding 10%
of the highest µi, the Id or the slope obtained is 22.16 which is more reliable
and closer to the true Id value.

In practice for the computation of Id, we use the Euclidean distance metric.
The distance calculations are done using sklearn library [31], but we observed
that the distance calculation using the brute force method performed better
than the ball-tree algorithm. We predict maybe at a larger dimension the ball-
tree algorithm would outperform the brute force method.

The Id is a scale-dependent quantity [17]. The scale of the data set, within
the 2-NN method, is fixed by setting Nr (number of configurations taken) at
temperature T as shown in fig. 1.3. We elaborate further in the following chap-
ters. We note that, beyond 2-NN, it is possible to change scale by selecting
a characteristic distance to associate a dimensionality to. In the context of this
thesis, we are not interested in such a specific aspect, which might nevertheless
also relate to physical properties corresponding to a dataset[32, 33, 34].

Implementation of Two-NN method:

• For each point (x⃗i) find the two nearest neighbor distances r1(x⃗i)

and r2(x⃗i).

• Compute µi(x⃗i) =
r2(x⃗i)
r1(x⃗i)

.

• Compute the empirical cumulative distribution function Pemp(µ).

• Using eq. 3.5, calculate the slope for the plot {(ln(µ),− ln[1 −
Pemp(µ)])} which gives us the Id.
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FIGURE 1.3: Id calculation for 2D Ising with varying sample size Nr for
system size L = 40.

1.1.3 Two-NN method applied in physics

In classical models

FIGURE 1.4: Second-order phase transition in 2D Ising model. (a) Id as
a function of temperature is plotted for different system sizes across the
transition. (b) Data collapse of Id on the finite-size scaling. (C) Finite-
size scaling of the minimum temperature to extract Tc.Figure taken from
ref. [32].

In classical physics, the two-NN method has been used in the context of
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classical physics simulations and data analysis, particularly in areas like bio-
physics [35], molecular dynamics [36], statistical models [32, 37], and material
science [38]. We will look closely at the work done in ref. [32], which is one
of the first to study intrinsic dimension as the order parameter for different
types of phase transition (first-order, second-order, and Berezinskii-Kosterlitz-
Thouless) using the two-NN method for the raw configuration data generated
from Monte-Carlo simulation at equilibrium. They find that Id uniquely char-
acterizes the transition regime for all considered cases. Through finite-size
analysis of the Id, they not only accurately identify critical points but also de-
termine critical exponent ν for continuous transitions. Ref. [32] highlights how
raw data sets exhibit distinctive signs of universal behavior without employ-
ing dimensionality reduction techniques, revealing a direct parallel between
conventional order parameters in physical space and the intrinsic dimension
in data space.

In fig. 1.4, one can clearly observe that the Id shows a local minimum close
to Tc indicating that the collective behavior of the system is effectively char-
acterized by a small number of parameters. This observation implies that de-
scribing the system at the critical point requires significantly fewer details than
describing it in its nearby regions, where additional information regarding the
operators needed to deviate from criticality is necessary. The emergent sim-
plicity at the critical point has implications for the structure of data set bring
down Id. This happens because of the approximate mapping between correla-
tion function scaling and Id close to criticality.

In quantum mechanical models

In the context of quantum many-body systems, the presence of intricate corre-
lation patterns creates complex data structures. Typically, understanding the
physical properties of different phases and phase transitions relies on corre-
lation functions and their connection to observable response functions. The
two-NN method has recently been employed to distinguish quantum phases
of matter [39, 40]. In ref. [39], they have introduced a method to characterize
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FIGURE 1.5: Id for Quantum Ising model. (a) Id as a function of h for
varying system sizes. (b) Magnetization variance in the x direction as a
function of the transverse field h. (C) Finite-size scaling for extraction
of critical point hc. Figure taken from ref. [39].

the correlation structure of quantum partition functions via the path integral
manifold. To generate the data set for the transverse-field Ising model (TFIM),
quantum Monte Carlo is being used. As we can observe in fig. 1.5, like the
classical Isng case, there is a local minimum close to hc implying an emergent
simplification in the data structure.
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1.2 Principal Component Analysis

With the rise of big data, the proliferation of large and complex data sets across
various fields has prompted a growing need for robust tools to analyze high-
dimensional data. Principal Component Analysis (PCA) is a dimensionality re-
duction method that stands out as one of the most popular techniques within
the field of data science. At its core, PCA aims to transform a set of initially
correlated variables from the original data set into a new set of uncorrelated
variables termed "principal components" (PCs). This linear transformation is
done with a primary objective: to retain as much information as possible from
the original variables by maximizing the variance of the linear combination
of the original variables. Following the PCA process, the resulting PCs are
ordered, with the dominating few PCs capturing the bulk of the data set’s in-
herent variations (statistical information) [41, 42]. In the following section,
we will formally define PCA and how it can computed from an eigenvalue
problem: from the singular value decomposition (SVD) of the (centered) data
matrix.

1.2.1 Standard PCA

Let us now imagine a data matrix X[Nr, N], with each column N-dimensional
vector, xi ∈ RN representing the ith variable. We intend to find the linear
combination of the vectors xi such that maximizes the variance of

N

∑
i=1

wixi = Xw, (1.11)

with w = {wi}N
i=1 are constants. But we know that variance of Xw can be

written as
Var(Xw) = wTΣw, (1.12)

where Σ is the covariance matrix associated with the data set. Assuming that
w is a unit-norm vector, the problem to maximize wTΣw is very well defined;



1.2. Principal Component Analysis 13

we use a Lagrange multiplier λ, so now we have to maximize

wTΣw − λ(wTw − 1). (1.13)

now when we differentiate with respect to w, we get

Σw − λw = 0 ⇔ Σw = λw. (1.14)

we end up with the eigenvalue equation for the covariance matrix. As wi are
unit-normal vectors, so now we can write

Var(Xwi) = wT
i Σwi = λiwT

i wi = λi. (1.15)

this tells us that the eigenvalues λi of the covariance matrix Σ are the variances
for the corresponding eigenvector’s linear combination Xwi (also known as
the principal components). The elements of PC are called the PC-score and
the elements of wi are called the PC-loading. The eigenvectors obtained from
solving eq. 1.14, give us the orthonormal set of N vectors which successively
maximize variance [41]. The most standard procedure for PCA is to work with
the centered variables x∗i , given by

x∗ij = xij − x̄i. (1.16)

where x̄i is the average of the variable xi, this gives us the column centered
data matrix X∗. Centering the data provides us with the geometric intuition
for PCA, with the variances calculated from the center of gravity of the data
set, as the origin is set at the middle of the data cloud in the hyperspace [43,
41]. On the other hand, centering is not mandatory; while working with un-
processed data is referred to as uncentered PCA. Uncentred principal compo-
nents (PCs) are combinations of the original variables without centering that
maximize non-central second moments, while ensuring that their crossed non-
central second moments are equal to zero [43]. Though it might not be appar-
ent both standard PCA and uncentred PCA behave similarly even when the x̄i
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is large as observed in Ref. [43].

FIGURE 1.6: PCA findings for 2D Ising model.(a) The normalized eigen-
value spectrum of the covariance matrix. (b) The Ising configurations
are mapped onto a two-dimensional plane defined by the two most sig-
nificant principal components with the colored bar showing the tem-
perature. Figure taken from ref. [44].

Once we have the processed data matrix X∗, the covariance matrix can be
written as [41, 42]

Σ =
1

Nr − 1
X∗TX∗ (1.17)

as anticipated before, eq. 1.17 provides us the connection between the eigen-
value decomposition of the covariance matrix Σ with the singular value decom-
position (SVD) of data matrix X∗. Given any arbitrary matrix M[m, n], one can
write the SVD decomposition as

M = UΛV T. (1.18)

where U[m, k] and V [n, k] are orthogonal matrices and Λ[k, k] is a diagonal ma-
trix, with k ≤ min(m, n) being the rank of matrix M [45, 46]. The diagonal
elements:{λi}k

i=1 of Λ[k, k] are called the singular values of M and sorted in de-
creasing order. Now using eq. 1.18 in eq. 1.17, we get
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Σ =
1

Nr − 1
X∗TX∗ = (UΛV T)T(UΛV T)

⇒ (Nr − 1)Σ = VΛ2V T.
(1.19)

as both U and V are orthogonal matrices; UTU = V TV = 1 and Λ2 represent-
ing the square of the diagonal elements which are nothing but the eigenvalues
of the matrix (Nr − 1)Σ, the λi from eq. 1.17. Therefore, PCA is analogous to
performing an SVD on the centered data matrix X∗. In fig. 1.6 example, we
can see that the eigenvalue spectrum is sorted and the biggest eigenvalue is
more than an order of magnitude larger than the next largest, indicating the
effectiveness of the PCA-based dimension reduction which will be discussed
further in the following section. Fig. 1.6(b) hints towards clustering in the data
set at lower temperatures.

1.2.2 PCA-based dimension reduction

From the PCA, we obtain the eigenvalues for the covariance matrix (Nr − 1)Σ
given by

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0. (1.20)

where k is the rank of X∗, that is, k ≤ min(Nr, N). We then define the normal-
ized eigenvalues, which is a standard measure to quantify the proportion of the
total variance that is accounted for by the corresponding principal component.
Namely,

λ̃n =
λn

∑k
n=1 λn

. (1.21)

Till now we have not talked about the dimensionality reduction using PCA; to
compute intrinsic dimension obtained by PCA (IPCA

d ), we use the normalized
eigenvalues (λ̃). We define a an ad hoc cutoff ϵ ∈ (0, 1), then the IPCA

d is defined
as [26, 41, 32]

IPCA
d

∑
n=1

λ̃n ≈ ϵ. (1.22)
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FIGURE 1.7: IPCA
d for Ising model. (1)Upper panel: Clustering effects

in the 2D Ising data set, show the projection of the two leading princi-
pal components for temperature below and above critical temperature
(Tc) on the left and right panels respectively. For T < Tc, there are
two clusters formed by configurations with positive(blue points) and
negative total magnetization(red points) but the two clusters merge to-
gether when the system moves from the ordered phase to the disor-
dered phase. (2) Lower panel: IPCA

d considering the full Ising data
set (global) and data set with configurations only positive magnetiza-
tion(local). Figure taken from ref. [32].

One has to be very careful in choosing the cutoff ϵ, making sure that the esti-
mated IPCA

d is stable with respect to the changes ϵ. In practice, we find a range
where IPCA

d stabilizes to slight changes in ϵ which gives us the optimal ϵ.
We provide an example in fig. 1.7, taken from ref. [32], which studies how

the IPCA
d behaves across the second order phase transition for 2D Ising data set

(generated by Monte-Carlo simulation). When the full data set is considered
for the calculation of the IPCA

d (global), below Tc; there is just one dominating
PC, giving us IPCA

d ≈ 1 but as we cross Tc a sharp increase in IPCA
d is observed,

indicating the critical transition point.
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The effectiveness of this approximation can be assessed by considering the
variability linked to the retained by the PCs. Specifically, by comparing the
sum of variances of the initial IPCA

d variables with the trace (the sum of di-
agonal elements) of the covariance matrix. The information loss due to the
dimensionality reduction is given by the fidelity

F (IPCA
d ) =

∑
IPCA
d

i=1 λ̃i

Tr(Σ)
(1.23)

We obtain fidelity F (IPCA
d ) ∈ [0, 1]; when dimensionality reduction is exact, F

goes to 1 [22].

Implementation for computing IPCA
d :

• Compute the centered data matrix X∗.

• Compute λi by performing SVD on the X∗.

• Calculate the normalized eigenvalues (λ̃i) as per λ̃n = λn
∑k

n=1 λn
.

• Define an ad hoc cutoff ϵ and using ∑
IPCA
d

n=1 λ̃n ≈ ϵ compute the IPCA
d .

1.2.3 PCA entropy

The lack of a universally accepted criterion for selecting a cutoff ϵ in PCA di-
mensionality reduction can be unsatisfying. While we assert that our data-
driven approach offers a way to impartially examine physical systems, it’s
worth noting that some prior knowledge, often derived from trial and error,
is still required to make an informed choice regarding a suitable cutoff. This
leads the way for us to work with PCA entropy SPCA which does not require
any external cutoff input and we work with the entire eigenvalue spectrum of
the covariance matrix ensuring no loss of information. This measure is closely
associated SVD entropy which has been applied in unsupervised methods for
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feature selection in biology [47, 48]to quantify the complexity of ecological net-
works [49] and financial time series [50, 51, 52, 53, 54], and even in the charac-
terization of the dimension of fractals [55].

We start with the eigenvalue decomposition of the sample covariance ma-
trix. We can notice that the normalized eigenvalues λ̃n in Eq. (3.8) satisfy that
(i) λ̃n ≥ 0 for all n , and (ii) ∑n λ̃n = 1 (by construction), we can follow Shan-
non’s entropy formula [56] to define

SPCA := − 1
ln(k)

k

∑
n=1

λ̃n ln(λ̃n). (1.24)

The PCA entropy described in eq. (3.10) can serve as a measure of the corre-
lations between the input variables in the data set. At one extreme, a fully
correlated data set will have SPCA = 0 as there will be only a single principle
component (λ̃1 ≈ 1), and the rest will be negligible. The other extreme would
be when the data set is random or completely uncorrelated then we will end
up with a flat distribution for our eigenvalues implying maximum value for
the SPCA, for which λ̃n = 1/k for all n, we have SPCA = 1.
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Chapter 2

Many-Body Data Sets

In contemporary physics, data-driven approaches gaining popularity, steer-
ing into a new era of discovery and understanding. The rapid advancements
in data collection and analysis techniques have led to the emergence of data-
driven physics. From high-energy particle collisions at particle accelerators [57]
to the study of cosmic phenomena through powerful telescopes [58], experi-
ments by LIGO and VIRGO are generating huge data sets. In recent decades,
with the rise of computing power with exascale machines as well as the refine-
ment of algorithms, numerical techniques have gained widespread application
within physics. These methods, alongside sophisticated data analysis, have
significantly elevated the importance of numerical simulations. Our goal is to
have an understanding of physical phenomena that relies on rigorous analy-
sis of such huge data sets generated specifically for many-body physics in an
assumption-free manner.

In this chapter, we will elaborate on how these data sets are generated con-
centrating on techniques that we will use later: Monte Carlo simulations, and
tracking of configurations of experimental runs. Because of its versatility, the
Monte Carlo method has gained immense popularity. Monte Carlo simula-
tions are computational methods employed for simulating statistical systems,
especially relevant for spin models. The primary objective of these simulations
is to generate an ensemble of configurations that accurately represent the sys-
tem, enabling the calculation of thermodynamic properties. Hence the name
"statistical sampling" in the beginning, in 1949 Nicolas Metropolis coined the
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term Monte Carlo. Monte Carlo(MC) simulations provide a practical alterna-
tive to solving systems analytically or exhaustively enumerating all possible
configurations. [59, 60].

The capability of MC methods to deliver accurate results on equilibrium
statistical mechanics crucially depends on its efficiency, which is strongly algo-
rithmic dependent. A paradigmatic example of this are Markov chain Monte
Carlo applied to spin systems. While simple MC had success in capturing or-
dered and disordered phases of Ising-like models, it was soon discovered that
at continuous phase transitions (e.g. 2D Ising model on square a lattice), sim-
ulations suffer from severe critical slowing down (that is, the time to solution
scales as a large power of the volume). The reason behind this phenomenon
lies in its method of updating one site at a time, which proves effective for
adjusting when the system has small correlation lengths but performs poorly
with larger correlation lengths. As we approach the critical point, the correla-
tion length diverges. Under such conditions, the algorithm tends to progress
slowly through the configuration space of the model. As a consequence, this
slow progression leads to high autocorrelations within the stochastic sequence
of configurations, significantly decreasing the statistical reliability of the out-
comes. To circumvent critical slowing down many cluster algorithms were
proposed: Swensen-Wang [61], Worm algorithm [62, 63], and Wolff’s cluster
flip [64, 65]. In the coming sections, we delve into the fundamental principles
that underlie both single and cluster flip MC simulations. These simulations
will serve as our means of producing data sets.

The second route we employ is a statistical sampling of many-body experi-
ments, from the lens of "in situ" imaging. The basic idea here is to collect large
samples of snapshots, where each snapshot corresponds to a projective mea-
surement of a large number of degrees of freedom. While such capabilities
are by now established on several quantum simulation platforms, below, we
will describe how this can be achieved in gases of bosonic particles, relevant to
experiments with Bose-Einstein condensates.
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2.1 Markov Chain Monte Carlo

In the realm of many-body theory in equilibrium, the partition function Z is
arguably the most important and frequently employed entity for modeling a
physical system, is given by

Z = ∑
{x}

e−βE(x), (2.1)

where β is the inverse temperature 1/kBT (kB is Boltzmann constant), E is the
energy of the configuration x and {x} are the microscopic configurations of the
system. It is the sum of all possible Boltzmann weights PB = e−βE(x). But in
statistical mechanics, we are usually interested in the thermodynamic average,
so-called thermal expectation value, of some observable O.

⟨O⟩ =
∑
{x}

O{x}e−βE{x}

Z (2.2)

but we know that the number of accessible states grows exponentially with the
number of degrees of freedom in the system making this computation imprac-
tical. The solution to this problem comes in the form of Markov process and
MC simulation done using the process is called Markov Chain Monte Carlo
(MCMC).

A Markov process is a stochastic process in which the probability Px(t) fol-
lows the master equation

Px(t + 1)− Px(t) = ∑
x
′
[Px(t)W[x

′ → x]− Px′ (t)W[x → x
′
]], (2.3)

where W[x → x
′
] is the transition probability. In eq. 2.3, on the right-hand side

the first term describes incoming processes and the second part is the outgoing
process. Markov chains have two properties:

1. Stationarity: Should not vary over time. For t ≫ 1, we have Px(t) = Px
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2. Memory-less evolution: Transition probability depends only on the last
step.

this memory-less evolution is called Markovianity. We know that total proba-
bility is conserved which makes

∑
x

Px(t) = 1 (2.4)

2.1.1 Ergodicity and Detailed Balance

The motivation for us during the simulation is to generate the Markov chain
iteratively such that the probability distribution approaches PB(x). That can
only be achieved by imposing two more conditions on the Markov process,
namely ergodicity and detailed balance. Ergodicity implies that given some
configuration x with a finite number of iterations of the algorithm, any other
configuration x

′
should be reachable. Essentially, the algorithm should never

become trapped in a particular configuration, making it incapable of moving
away from it. This signifies that the algorithm has the capacity to explore the
entire configurational space.

After applying the stationarity condition in eq. 2.3, we get

∑
x
′

Px(t)W[x
′ → x] = ∑

x
′

Px′ (t)W[x → x
′
] (2.5)

which is called the global balance condition. An individual solution within the
framework of global balance is to make each element of the sum equal, one at
a time.

Px(t)W[x
′ → x] = Px′ (t)W[x → x

′
]. (2.6)



2.1. Markov Chain Monte Carlo 23

we end up with so-called detailed balanced condition. Detailed balance and er-
godicity together imply the convergence to the Boltzmann distribution. De-
tailed balance is not the necessary but a sufficient condition to ensure conver-
gence to the Boltzmann distribution which gives us

W[x → x
′
]

W[x′ → x]
=

e−βE(x
′
)

e−βE(x)
= e−β∆E (2.7)

where ∆E is the change in the energy due to the update of the configuration.

2.1.2 Implementation of Metropolis algorithm

In ref. [66], first introduced an algorithm to make sure that the algorithm fol-
lows a detailed balance, which is called Metropolis’ algorithm. One of the
simplest way to enforce detailed balance is given by

W[x → x
′
] =

e−β∆E, if ∆E > 0

1, if ∆E < 0
(2.8)

Using the Ising model as an example, we provide the algorithm

Implementation of Metropolis algorithm:

• Pick a random site k.

• Compute the change in energy ∆E for flipping the spin at site k.

• Pick a random number with uniform dist. r ∈ [0, 1]

• Flip spin k only if r < W[x → x
′
]

• Go back to the first step.

The algorithm is simple and easy to implement. However, we must check
the detailed balance for this case. In the case of ∆E > 0, we have W[x → x

′
] =
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e−β∆E but W[x
′ → x] = 1. Thus giving us

W[x → x
′
]

W[x′ → x]
=

e−β∆E

1
= e−β∆E (2.9)

as required by the condition, it follows the detailed balance.

2.2 Wolff’s algorithm

In the context of phase transitions within Ising models, we’ve pointed out a
significant challenge that Monte Carlo (MC) simulations, known as "critical
slowing down". This problem becomes harder as the system size grows, mak-
ing it progressively challenging to generate statistically independent samples.
In the subsequent discussion, we will discuss Wolff’s algorithms that provide
solutions to this issue [64, 65]. Although numerous algorithms are available
for the 2D Ising model, we will concentrate on: the Wolff cluster algorithm.
Ulli Wolff in 1989 generalized the notion of spin-flip for an arbitrary O(n) σ

model on the lattice and proposed a new Monte Carlo algorithm with the aim
of solving the critical slowing down problem [65].

The implementation of Wolff’s algorithm in the 2D Ising model
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Implementation of Wolff’s algorithm:

• Pick a random spin σk at site k, add it to the cluster C.

• Whichever the neighbors of σk have the same sign as σk add them to
the C with probability Padd (We will derive it in following section).

• Mark all the inspected sites to avoid visiting again.

• For every new spin added to C, inspect the neighbors not in C and
add them with probability Padd.

• Iterate until no new spin is added to the cluster.

• Once the cluster is built, flip all the spin in the cluster.

Now we must show the legitimacy of this Monte Carlo proposal, in or-
der to prove that one has to show that the algorithm respects ergodicity and
detailed balance. As single flip operations are allowed, one can imagine a sit-
uation where Wolff’s algorithm mimics the Metropolis algorithm, therefore it
has to be ergodic. We must bear in mind that the detailed balance is a sufficient
condition in order to have a well-defined Monte Carlo integration procedure.

2.2.1 Detailed Balance

For our convenience let’s take the example of the 2D Ising model. Let x and x
′

be two different configurations, have the transition probability W[x → x
′
] then

the detailed balance is given by

W[x → x
′
]

W[x′ → x]
= e−β∆E (2.10)

where ∆E is the change in energy after flipping the cluster. Let the border of
the cluster has m + n spins where m is the number of spins separating aligned
spins and n separating the anti-aligned spins. The energy difference for x → x

′
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depends only on the boundary elements as that is the only place where changes
from aligned to anti-aligned occur (and vice versa). For the Ising model

∆E = 2Jm − 2Jn = 2J(m − n). (2.11)

In the same way for the cluster flip, the probability of not flipping the edges of
the cluster

W[x → x
′
] = Πσ∈∂C(1 − padd) = (1 − padd)

m. (2.12)

then when we go from x
′

to X

W[x
′ → x] = Πσ∈∂C(1 − padd) = (1 − padd)

n. (2.13)

from this we ger
W[x → x

′
]

W[x′ → x]
= (1 − Padd)

(m−n) (2.14)

For detailed balance taking into account eq. 2.10 and eq. 2.11, we must have

Padd = 1 − e−2βJ (2.15)

For the 2D Ising model, the detailed balance is satisfied for Padd = 1 − e−2βJ

making the Wolff cluster flips legitimate.

2.3 Spinor Bose-Einstein condensate: Data set

Quantum simulators provide potent tools for the exploration of strongly corre-
lated quantum materials. Nevertheless, making sense of measurement results
in such systems presents substantial difficulties. The motivation is to apply
the non-parametric learning techniques that work efficiently in statistical mod-
els to characterize the data coming from different experiments in an unbiased
manner.

To illustrate these ideas, we focus on a concrete example. We take the data
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coming from ref. [67], where they present an approach for deducing the non-
equilibrium quantum effective action using analog quantum simulators and
validate the method through experimental demonstration, focusing on a quasi-
one-dimensional spinor Bose gas out of equilibrium.

FIGURE 2.1: Experimental platform and extraction of correlation func-
tions.. (a)87Rb in magnetic field Bz. The spin dynamics take place in
the F = 1 hyperfine manifold. (b) Spatially resolved snapshots of the
dynamics are taken at different time intervals. From the atomic densi-
ties(grey shadings), Fx and Fy(Green lines) orthogonal spin projections
were inferred as per eq. 2.16. (c) The distribution of F⊥ from eq. 2.17,
over 18s evolution time. Figure taken from ref. [67].

The quantum simulation is built on a spinor Bose–Einstein condensate (BEC)
employing around 105 Rubidium (87Rb) atoms in a quasi-one-dimensional elon-
gated harmonic dipole trap [68]. (the data is taken from [67]; see this publica-
tion for further details on the experiment) This leads to spin dynamics in the
F = 1 hyperfine manifold. The system is initialized with all atoms in the mag-
netic substate mF = 0, but by changing a control parameter the spin-changing
collision processes are brought into resonance. Because of this quench across
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a quantum phase transition, the system is brought far from equilibrium. Af-
ter the quench, at different times t the densities with spatial resolution along
the longitudinal trap direction [69] nF,mF is measured in the state with hyper-
fine manifold F and magnetic sublevel mF. With measured densities, one can
simultaneously infer the two orthogonal spin projections Fx and Fy from the
observed via

Fx = (n1,+1 − n1,−1) / (n1,+1 + n1,0 + n1,−1) ,

Fy = (n2,+2 − n2,−2) / (n2,+2 + n2,0 + n2,−2) , (2.16)

At the final parameters of the quench, which places the system into the regime
of the easy-plane ferromagnetic phase [70], these define the transverse spin
field [71]

F⊥ = Fx + iFy (2.17)

After approximately 1–3 s, the F⊥ approaches the ground state distribution
which is manifested as the formation of a ring in the transverse spin histogram.
However, in this regime, the system is still highly excited and transverse spin
phase excitations evolve dynamically in a self-similar fashion [72].

For the purpose of our investigation of the system, we use the data set
formed by the bare densities nα measured at different times t, with α = (F, mF).
For the measurement of every time slice, there are Nr = 225 independent re-
alizations for each of the measured densities [see Eq. (2.16)]. Each density is
linearly sampled at Ns = 184 spatial locations, which gives the number of fea-
tures (entries) of each vector N⃗ α

i (t). Combining all these into a data matrix
would give us

Mα(t) = {N⃗ α
1 (t), N⃗ α

2 (t), . . . , N⃗ α
Nr
(t)}. (2.18)

Therefore, for each time slice, we have a data matrix Mα(t)[Nr, Ns]. Further,
we also consider joint data sets formed by concatenating horizontally subsets
of the original data sets at a given time. More specifically, each row in a joint
data set is formed by appending, one after the other(order of concatenation is
irrelevant), single realizations of the observables of choice. Thus, for example,
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if we combine all six densities, the resulting data sets will contain Ns = 184 ·
6 = 1104 columns and Nr rows. When needed, we will simply specify joint
data sets by using the symbol of the corresponding observables joined by “∥”.
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Chapter 3

Non-parametric learning critical
behavior in Ising partition
functions: PCA entropy and
intrinsic dimension

3.1 Introduction

Classical statistical mechanics revolves around the pivotal concept of the parti-
tion function [73]. Indeed, this quantity contains all relevant information about
a statistical system at equilibrium, and thermodynamic quantities can be ob-
tained from it. This quantity is defined as follows:

Z = ∑
{S}

e−βH(S), (3.1)

where β is the inverse temperature, H is the Hamiltonian of the system and
{S} are the microscopic configurations of the system. The probability that the
system is in some particular state S is then given by Boltzmann law, namely

P(S) = e−βH(S)

Z
. (3.2)
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functions: PCA entropy and intrinsic dimension

A full knowledge of such probabilities would then allow us to compute any ex-
pectation value of physical quantities. However, a major problem in statistical
mechanics is that, for a vast majority of cases, we only know the relative but not
the absolute probability. In other words, we know e−βH(S) but not Z. Power-
ful computational techniques such as Monte Carlo methods [74, 75] and tensor
networks [76, 77, 78], provide ways to circumvent this problem and allow for
an efficient evaluation of expectation values of local observables such as two-
point correlators, which are crucial to characterize phase transitions. Nonethe-
less, a significant part of the information encoded in the partition function may
be left unexplored by such traditional approaches. This is an important point
to consider, in particular, for systems that feature states of matter that cannot
be described by ‘typical’ observables.

On the other hand, these methodologies—especially, Monte Carlo simulations,—
by allowing a controlled generation of large volumes of synthetic microscopic
snapshots of the systems of interest, offer a fresh perspective on many-body
problems as data structure ones [32, 79, 44]. This has brought into play pow-
erful tools from several fields such as high-dimensional statistics, inference,
and machine learning, which are being adopted more and more in the physi-
cal sciences [80, 81, 82]. Among several methods that stem from these fields,
unsupervised learning approaches have become prominent algorithms. Broadly
speaking, such techniques aim at a characterization of the data through the un-
derstanding of underlying data relations. In condensed matter and statistical
physics, such approaches have been mostly employed in the study of phase
transitions and critical phenomena, including 2D [83, 44, 32, 84, 85] and 3D
systems [86, 87, 88]. Additionally, there have been parallel efforts to estimate
thermodynamic quantities such as the entropy—which are computationally
very costly in traditional schemes—, using machine learning [89, 90] and infor-
mation theoretic approaches [91], which work with reduced sampling. These
previous works nonetheless call for methods that offer greater interpretability.

In this work, we put forward a theoretical approach for learning critical be-
havior in partition functions of classical spin models in an assumption-free
manner. This is done by performing non-parametric statistical tests on large
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data sets of many-body snapshots that are sampled according to a probabil-
ity distribution as in Eq. (3.2). We showcase our approach by studying phase
transitions in two- (2D) and three-dimensional (3D) Ising models.

In the first place, we study the intrinsic dimension (Id) [17, 92, 19] of data
sets in a range of temperatures across the featured phase transitions. This con-
cept is relevant due to the following observations: (i) the points in a data set
can normally be represented as points in a high-dimensional metric space, and
(ii) such points may lie on a manifold, whose (intrinsic) dimension is lower
than that of the embedding space, as correlations among input variables can
induce a non-trivial structure on the data. Thus, the intrinsic dimension quan-
tifies the minimum number of variables needed to faithfully describe the data.
This concept has been widely used in data science for multiple applications,
for example, in the fields of molecular science [19, 93, 94, 95] and image pre-
processing [96, 97, 98, 99]. Recently, it has been realized that structural changes
in the data associated with statistical mechanical problems can reveal critical
phenomena. In terms of the data manifold, this can be unveiled as a reduc-
tion of the intrinsic dimension close to the critical point [32, 39]. In partic-
ular, Mendes-Santos et al. [32], showed this for the planar Ising model and
other important 2D classical lattice models. Here, we extend the aforemen-
tioned work by considering the 3D Ising model, thereby analyzing the role of
the physical dimensionality on the intrinsic dimension of the data manifolds.
Concretely, we use two Id-estimators: (i) the two nearest neighbor (TWO-NN)
method [19]—a state-of-the-art estimator based on the distribution of the ra-
tios between second- and first-nearest neighbor distances—, and (ii) a popular
projection method known as principal component analysis (PCA) [41, 42]. We
find that in general, it is harder to precisely determine the phase transition of
the 3D Ising model through the intrinsic dimension, compared to the 2D case.
We argue that this can be regarded as a non-trivial manifestation of the higher
data dimensionality concomitant to the 3D model.

Motivated by these findings, we propose a second statistical test purely
based on the eigendecomposition of the covariance matrix that is done within
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PCA. More specifically, in analogy to Shannon’s entropy [56], we define an en-
tropy of the normalized eigenvalue spectrum of the covariance matrix. This
quantity is dubbed PCA entropy (SPCA). For the 2D case, we find a remarkable
qualitative similarity to the exact thermodynamic entropy. In particular, SPCA

exhibits an inflection point close to the critical temperature. This is made more
explicit by considering its derivative with respect to temperature, a quantity
that resembles the heat capacity, which shows a clear divergence at the transi-
tion point. From the latter, we can perform a linear finite-size scaling analysis
to estimate the critical temperature with less than 1% error. Similar results hold
for the 3D model, using the same amount of data as for the intrinsic dimension
estimation. Hence, the PCA entropy presents itself as a versatile tool to address
higher-dimensional systems where a reliable intrinsic dimension estimation
may become quite challenging. We note that similar spectral entropies have
been introduced in the literature, mostly as unsupervised learning approaches
for feature selection or as a measure of signal complexity. Applications range
from biology [100, 47, 48, 101] and ecology [49] to stock market dynamics [50,
51, 52, 53, 54] and fractals [55]. Further, the PCA entropy has very recently been
introduced as a theory-agnostic measure to rank operators in quantum simula-
tors according to their relevance (information content) [2]. While some authors
work with the spectrum of a covariance matrix as in the present work, some
other authors define the entropy directly with the (normalized) singular val-
ues of the data matrix (the latter approach is sometimes dubbed SVD entropy).
Our definition is based on the spectrum of the covariance matrix, since its nor-
malized eigenvalues give the proportion of total variance accounted for by the
principal components, and hence, a direct measure of the relevant information
contained in the principal components [42, 80].

The chapter is organized as follows. In section 3.2, we provide a detailed de-
scription of our models and the corresponding data sets, as well as the method-
ology employed to create these data sets. Following that, in section 3.3, we fo-
cus on the intrinsic dimension estimation for the 3D Ising model. Subsections
3.3.1 and 3.3.2 delve into two different methods for estimating the intrinsic
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dimension, namely, the TWO-NN method and PCA, respectively. We sum-
marize the results and shortcomings of the methods to quantitatively capture
the phase transition in the considered system. In section 3.4, we introduce the
PCA entropy, SPCA, and show its striking qualitative resemblance to the ther-
modynamic entropy of Ising models. This is exploited by extracting the tran-
sition point via a finite-size analysis of its numerical derivative with respect to
temperature. Finally, we draw some conclusions and discuss further potential
applications of our techniques in section 3.5.

3.2 Models and data sets

Before exploring the different tools considered in this work, we start by defin-
ing the models and the associated data sets that we consider for our study. In
this work, we investigate the 2D and 3D classical Ising model with periodic
boundary conditions having nearest neighbor interaction:

H = − ∑
⟨i,j⟩

SiSj, (3.3)

where Si = ±1 are the spin degrees of freedom defined on the sites of a square
and cubic lattice for 2D and 3D, respectively [102, 103, 104]. The 2D Ising model
is a paradigmatic model in statistical mechanics and beyond, and it is char-
acterized by a second-order phase transition and Z2 spontaneous symmetry
breaking. The system goes under an order-to-disorder phase transition at the
critical temperature Tc = 2/ ln(1 +

√
2) ≈ 2.269 [102].

The exact solution of the Ising model on the simple cubic lattice is one of the
long-standing open problems in rigorous statistical mechanics. The use of con-
formal bootstrap methods to calculate the critical exponents and critical point
is still under active investigation [105, 106]. Nevertheless multiple numerical
studies, especially Monte Carlo simulations, have been done to characterize the
critical properties. Similar to the case of the 2D Ising model, the 3D system fea-
tures a second-order phase transition, with the critical temperature predicted
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at Tc ≈ 4.51 [104, 107].
The data sets that we shall use for our subsequent analysis consist of equi-

librium spin configurations of the systems introduced above. To form such
data sets, we perform a stochastic sampling of the partition function of these
models through Markov chain Monte Carlo (MC) simulations. Concretely, we
use the Wolff cluster algorithm [65, 64], starting from the configuration with
either all up spins or all down spins, chosen at random. Next, 30000 to 50000
‘cluster flips’ are performed for the system to equilibrate. After this, we col-
lect Ns = 10000 state configurations, {x⃗i ≡ (Si

1, Si
2, . . . , Si

N)}Ns
i=1, where Si

n is
the spin variable at site n in the i-th realization, and N = L2 for D = 2 or
N = L3 for D = 3, with L being the linear size of the system. Importantly,
the collected configurations are separated by a number of cluster flips in the
range of 1000 to 1500, so as to have as little correlation among them as possible
(for a detailed discussion on decorrelation of sampled state configurations and
autocorrelation times see Appendix 3.6.1).

For each temperature, we perform five independent MC simulations as
described above, leading to an overall number of sampled configurations of
50000. This constitutes the total number of points in the data set at a given
temperature. To perform statistics, we then use a subsampling algorithm [108,
109], wherein Nb ‘batches’ of data are formed by selecting, for each of them,
Nr = 10000 configurations at random but without repetitions from the whole
ensemble of 50000 sampled configurations. Each batch of data is then rep-
resented as a matrix with Nr rows (number of realizations) and N columns
(number of degrees of freedom), that is, X = {x⃗1, x⃗2, . . . , x⃗Nr}. For more details
on the subsampling technique, see Appendix 3.6.2.

3.3 Intrinsic dimension

High-dimensional data sets usually have hidden internal structures which es-
sentially live on low-dimensional manifolds. Such manifolds can then be described—
without losing relevant information—by a smaller number of features than the
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FIGURE 3.1: TWO-NN Id estimation for the 3D Ising model.(a) Empiri-
cal cumulative distribution of data for L = 20 and temperature 4.30 and
4.70, where the dashed line shows the linear fit used to estimate Id. With
the scale used in this plot, the linear fit above corresponds to Pareto dis-
tribution. (b) Id as the function of T for different L. While we expect the
Id to increase at high temperatures, and to drop as T → 0, close to the
transition point, this quantity features a local minimum, which becomes
more apparent as the system size is increased.

embedding dimension. The reduced number of variables needed to describe
the data is known as intrinsic dimension, Id [17, 92]. This key observation is
the reason for the great success of dimensional reduction algorithms. How-
ever, estimating the Id of high-dimensional data sets is a problem that is far
from trivial, since the corresponding data manifolds might be highly curved
and twisted. Hence, this is an active field of research, with however some re-
cent methodologies that have been shown to be able to mitigate the effects of
curvature and inhomogeneities [19].

On the other hand, recent studies have shown the versatility and poten-
tial of the Id as an unsupervised learning scheme to study critical phenom-
ena in a variety of classical [32] and quantum [39] statistical mechanical mod-
els. Nonetheless, thus far, such efforts have been only carried out for low-
dimensional systems. A systematic study of how volume can affect the esti-
mation of the Id of data sets associated to such many-body problems, hence,
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remains an open question. In our work, we take a first step along this di-
rection by systematically investigating the intrinsic dimension in the 3D Ising
model. Specifically, we use two different methods to estimate the Id of data
sets, namely, TWO-NN [19] and PCA [41].

3.3.1 TWO-NN method

Although there are multiple ways to calculate the Id, the two-NN method
has recently gained popularity for its versatility in dealing with very high-
dimensional data sets. This Id-estimator only relies on the statistics of distances
to each point’s first two nearest neighbors. The method is rooted in computing
the distribution function of neighborhood distances, which are functions of .
For every point x⃗i, the first two nearest neighbor distances r1(x⃗i) and r2(x⃗i)

and the ratio µi = r2(x⃗i)/r1(x⃗i) are calculated. Under the condition that the
data set is locally uniform in the range of next-nearest neighbors, it has been
shown in Ref. [19] that the distribution function of µ is given by

f (µ) = Idµ−Id−1. (3.4)

From the cumulative distribution (CDF) of f (µ), denoted P(µ), we then obtain

Id = − ln [1 − P(µ)]
ln(µ)

. (3.5)

In practice, one can use the empirical CDF, Pemp(µ), together with Eq. (3.5) to
estimate the Id by a linear fit of the points {(ln(µ),− ln[1− Pemp(µ)])}, passing
through the origin as illustrated in Fig. 3.1(a).

In Fig. 3.1(b), we plot the estimated values of Id as a function of tempera-
ture, for varying system size L, for the 3D Ising model. Though for small sys-
tem sizes, there is no noticeable signal in the behavior of the Id, as the system
size is increased we observed that (i) at high temperatures the Id monotonically
increases as expected (since high-temperature Ising snapshots correspond to
disordered (random) spin configurations), and (ii) most remarkable, around
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FIGURE 3.2: PCA-based Id estimation for 3D Ising model.(a) IPCA
d as a

function of T for different system sizes with cutoff ϵ = 0.10. For such
an ad hoc cutoff, IPCA

d abruptly drops to 1 below Tc ≈ 4.51, while it rises
above the transition. (b) IPCA

d for L = 32, with varying cutoff ϵ [see
Eq. (3.9)]. For sufficiently large values of ϵ, IPCA

d does not drop to 1 just
below the transition point. However, a signature of the transition can
be observed as a visible change in the slope around Tc ≈ 4.51.

the transition point, the Id features a local minimum. As understood for 2D
classical spin systems featuring continuous phase transitions, at the transition
point the system becomes parametrically simpler due to universality, which in
turn simplifies the concomitant data structure [32]. However, because of the
higher dimensionality of the problem, unlike for the 2D Ising model, here we
observe that the signal is weaker (for the accessed system sizes), making it sig-
nificantly more challenging to get a reliable quantitative characterization of the
phase transition through the Id.

3.3.2 PCA-based Id estimation

We now try a different approach to estimate the Id of 3D Ising partition func-
tions data sets. Specifically, we use the popular non-parametric technique
known as PCA. The main idea behind PCA is that the essential information
within a data set is contained in the variability of the data. Hence, one aims at
finding the directions along which the data exhibit the highest variance. This
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can be accomplished by means of a linear transformation of the set of coor-
dinates [41]. The procedure to find such high-variance directions can be ap-
proached in different ways, for example, by diagonalizing the covariance ma-
trix, or equivalently, by performing a singular value decomposition (SVD) of
the data matrix [41, 42]. These approaches are briefly explained below. Each
data set is represented by a rectangular matrix X [Nr, N], having the Monte
Carlo snapshots as its rows, with Nr being the sample size. For convenience,
we subtract the mean of each column from the entries of the columns to obtain
the “centered data matrix”, X∗[44]. In this case, the sample covariance matrix
can be estimated as [41, 42]

Σ =
1

Nr − 1
X∗TX∗, (3.6)

which is a N × N symmetric matrix (X∗T is the transpose of X∗). It can be
shown that the principal axis and their variance are defined, respectively, by
the eigenvectors and eigenvalues of this matrix, which are obtained by solving
the eigenvalue problem

Σw⃗n = λnw⃗n. (3.7)

In practice, it is convenient to determine these quantities through an SVD of
X∗. In effect, one can readily show that the eigenvalues of Σ are proportional
to the squared singular values of X∗. Here we perform a full SVD on the matrix
X∗ using the package scikit-learn[31], which gives us λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0,
where k is the rank of X∗, that is, k ≤ min(Nr, N). We then define the normal-
ized eigenvalues, which is a standard measure to quantify the proportion of the
total variance that is accounted for by the corresponding principal component.
Namely,

λ̃n =
λn

∑k
n=1 λn

. (3.8)
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The IPCA
D can then be defined by choosing an ad hoc cutoff parameter ϵ for the

integrated normalized spectrum of the covariance matrix [41]

IPCA
d

∑
n=1

λ̃n ≈ ϵ. (3.9)

As discussed in recent works (see, in particular, Ref. [32]), the PCA-based Id

estimation differs from the TWO-NN one, in that the former can be regarded
as a global estimator, while the latter is a local one. The implication of this fact
is that rather than featuring a local minimum around the transition point, IPCA

d
drastically drops to 1 below the transition point [32]. We recover such behavior
in the 3D case, too, specifically, for a value of the cutoff parameter of ϵ ∼ 0.1;
see Fig. 3.2(a). We note that such a value is much smaller than the reported
value in the case of 2D Ising [32]. We ascribe this as the clear signature of
a non-trivial volume effect in the 3D case, which suppresses the dominance
of the biggest contributing explained variance λ̃1 (in data science, this is re-
lated to the so-called curse of dimensionality issue [110]). As we can observe
in Fig. 3.2(b), for different values of the cutoff parameter ϵ, Ipca

d can vary sig-
nificantly and require substantial fine-tuning to find the working window for
the cutoff. Nevertheless, we note that even in those cases, a signature of the
transition is still clearly visible through the form of a change in the slope of
IPCA
d .

In summary, the intrinsic dimension obtained via PCA can indeed host sig-
natures of a phase transition, however, their visibility—and in fact, even their
nature—is very sensitive to the choice of the cutoff parameter, signaling a de-
gree of arbitrariness, and also making it challenging to obtain controlled esti-
mates for the case of the 3D Ising model.



42
Chapter 3. Non-parametric learning critical behavior in Ising partition

functions: PCA entropy and intrinsic dimension

FIGURE 3.3: SPCA comparison for varying samplesize. Comparison of
SPCA, for different sample sizes Nr, with the exact thermodynamic en-
tropy per spin of the 2D Ising model with L = 48 as a function of tem-
perature. Both entropies have been normalized such that their maxi-
mum possible value is 1 [see Eq. (3.10)].

3.4 PCA entropy

In order to circumvent the aforementioned difficulties in the unsupervised
characterization of phase transitions in higher dimensional systems using Id-
based approaches, we now consider a complementary measure of data set
complexity, namely, the PCA entropy, SPCA. This quantity—and the closely
related SVD entropy—has recently been employed in unsupervised schemes
for feature selection in biology [47, 48, 101], to quantify the complexity of eco-
logical networks [49] and financial time series [50, 51, 52, 53, 54], and even in
the characterization of the dimension of fractals [55]. Further, very recently,
this quantity has been employed as an unbiased metric to rank operators in
quantum simulators based on their relevance (information content) [2]. It is
one of the primary goals of this work to show that SPCA can readily be used to
characterize correlations and critical phenomena in other many-body problems
as well. In the particular context of this work, we shall see that this quantity
is less sensitive to volume effects, as opposed to the Id estimators discussed
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FIGURE 3.4: SPCA as a function of temperature for different system sizes
L = 32 − 80, for 2D Ising model. These plots exhibit a clear crossing
point in the vicinity of the transition point, suggestive of a finite-size
scaling analysis.

above. At the same time, as we will illustrate for the Ising models under con-
sideration, this quantity bears a remarkable qualitative resemblance with the
thermodynamic entropy. Importantly, the calculation of the PCA entropy is
computationally very amenable.

The starting point to define the PCA entropy is the eigendecomposition of
the sample covariance matrix. Specifically, by noticing that the normalized
eigenvalues λ̃n in Eq. (3.8) satisfy that (i) λ̃n ≥ 0 for all n (as they are propor-
tional to the squared singular values of X∗), and (ii) ∑n λ̃n = 1 (by construc-
tion), we can follow Shannon’s entropy formula [56] to define

SPCA := − 1
ln(k)

k

∑
n=1

λ̃n ln(λ̃n). (3.10)

In general, the PCA entropy in Eq. (3.10) can be used as a measure of the cor-
relations among the input variables in the analyzed data set. Indeed, note that
for an extremely ‘correlated’ data set, which under PCA can be fully described
by a single principal component (i.e., λ̃1 ∼ 1, λ̃n ∼ 0, for n ≥ 2), we get
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SPCA = 0. Instead, for a fully ‘uncorrelated’ data set (e.g., a collection of inde-
pendent random variables), for which λ̃n = 1/k for all n, we have SPCA = 1.
Note that with the definition in Eq. (3.10), the maximum value that SPCA can
take is precisely 1.

Physically it is then clear that in the limits of T → 0 and T → ∞, for which
the data sets are very ‘ordered’ and ‘random-like’, respectively, the behavior
of SPCA should, at least qualitatively, correspond to that of the thermodynamic
entropy, that is, we expect SPCA to vanish as T → 0 and SPCA ∼ 1 as T → ∞.
That is exactly what we observe in Fig. 3.3, where we plot SPCA for varying
number of sample sizes (Nr), in the case of the 2D Ising model with L = 48.
Furthermore, we compare those curves with the exact thermodynamic entropy
per spin, which is computed using the explicit solution for finite square lattices
with periodic boundary conditions (see, for instance, Refs. [90, 111, 112]). Note
that the latter entropy is also normalized by its maximum possible value, in
order to facilitate a direct comparison. This comparison suggests that SPCA

should asymptotically coincide with the thermodynamic entropy as T → ∞
and Nr → ∞. Apart from this limit, it is still quite remarkable the qualitative
similarity between these two entropies, as already anticipated, even more so,
as this is achieved even with reduced sampling, for example, Nr = 2500 in
Fig. 3.3, which requires a very modest computational overhead.

In Fig. 3.4, we plot SPCA for the 2D Ising model for different system sizes in
a reduced range of temperatures around the transition point. In these and fur-
ther calculations, we have fixed Nr = 10000. We note that SPCA features a flex
close to the transition point, which is immediately highlighted by the crossing
of the curves when varying the system size L. This suggests a finite-size scal-
ing analysis. To perform such an analysis in a more accurate way and allow for
quantitative predictions, we compute the numerical derivative of SPCA, which
we approximate here by its symmetric difference quotient:

δSPCA

δT
:=

SPCA(T + ∆T)− SPCA(T − ∆T)
2∆T

. (3.11)
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FIGURE 3.5: Calculating T2D
c from SPCA. (a) Plot of δSPCA/δT as a func-

tion of temperature for the 2D Ising model. The location of the flex
in SPCA is revealed by the peak in its derivative, occurring at T∗(L).
Solid lines show a smoothing curve of the data obtained via a stan-
dard smoothing spline function. (b) Linear finite-size scaling of the
temperature where we get the maxima T∗(L). This linear fit yields
T2D

c = 2.266 ± 0.061.

This is shown in Fig. 3.5(a) for the 2D Ising model. We use a smooth spline ap-
proximation (using the function splrep from the package scipy [113]), to smooth
out the curves and track the temperature at which they feature a local max-
ima, T∗(L). The temperature window in which we perform the smoothing
spline is T ∈ [2.2, 2.31]; solid lines in Fig. 3.5(a). This allows us to carry out a
linear finite-size scaling analysis as shown in Fig. 3.5(b), which leads to an es-
timated critical temperature T2D

c = 2.266 ± 0.061, in excellent agreement with
the exact value. In Fig. 3.5(b), we observe larger error bars for smaller system
sizes. This is a consequence of the numerical derivative not having a promi-
nent peak (and, in addition, the interpolation is more affected by fluctuations
in the sampling when compared to larger lattices). For larger system sizes the
peak in the derivatives is more pronounced and the calculation of T∗(L) is
less noisy; hence, we observe the sharp decrease in error bars. The error bars
have been computed using the subsampling procedure explained in Sec. 3.2
and Appendix 3.6.2, averaging over 10 subsamples of data, each containing
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Nr = 10000 data points. That is, for each batch of data we get a smooth spline
approximation, and extract the corresponding local maxima T∗

i , we then com-
pute the mean T∗ and the subsampling error.

The corresponding results for the 3D Ising model are shown in Figs. 3.6 and
3.7. First, we note that, as opposed to the 2D case, the curves of SPCA do not
clearly cross as we vary L. This is most likely due to the fact that since we have
fixed Nr = 10000, there will be a different normalization factor, ln(k), in the
definition in Eq. (3.10) depending on whether L3 is smaller of bigger than Nr.
Indeed, if N = L3 < Nr, then k = N, otherwise k = Nr. (For all the values of L
considered in Fig. 3.4, it is always that case that N = L2 < Nr, and hence, we
always normalize the entropy by ln(N). Imposing a similar constraint in the
3D case would yield a bigger computational overhead or limit us in the system
sizes that we can consider.) Yet, a similar analysis using the derivative of SPCA,
shown in Fig. 3.7(a), where we have used a temperature window T ∈ [4.4 −
4.53] for the smoothing spline; solid lines in Fig. 3.7(a), allows us to perform
a similar linear finite-size scaling analysis, shown in Fig. 3.7(b), yielding an

FIGURE 3.6: SPCA as a function of temperature for different system sizes
L = 12 − 40, for 3D Ising model.
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FIGURE 3.7: Extracting T3D
c from SPCA. (a) Plot of δSPCA/δT as a func-

tion of temperature for the 3D Ising model. The location of the flex
in SPCA is revealed by the peak in its derivative, occurring at T∗(L).
Solid lines show a smoothing curve of the data obtained via a stan-
dard smoothing spline function. (b) Linear finite-size scaling of the
temperature where we get the maxima T∗(L). This linear fit yields
T3D

c = 4.518 ± 0.070.

estimated critical temperature T3D
c = 4.518 ± 0.070, once again in very good

agreement with the reported value in the literature.
Finally, we note that the smoothing splines shown in Figs. 3.5(a) and 3.7(a),

were done using a smoothing condition parameter s [113], so that ∑i(gi −
yi)

2 ≤ s, where g(x) is the smoothed interpolation of (x, y). In practice, we
found that setting s to less than 1% of the maximum of y gives stable results,
and concretely, we set s = 0.005.

3.5 Conclusions and outlook

In summary, we have introduced a theoretical framework to learn critical be-
havior in partition functions of classical systems using non-parametric unsu-
pervised approaches. We have showcased our methods by studying phase
transitions in classical Ising models in 2D and 3D rectangular lattices, harvest-
ing thermal configurations from MC simulations. In the first place, we have
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unveiled the role of volume in the estimation of the intrinsic dimension of data
sets of thermal MC configurations. The intrinsic dimension is widely used in
machine learning and has recently been applied in unsupervised studies of
critical phenomena in 2D classical systems. We explored this property for the
first time in 3D systems. We found that, while it is still possible to detect the
transition point with reasonable accuracy through changes in the behavior of
this quantity as a function of temperature, in general, its estimation becomes
much more challenging than in the 2D case. The latter holds when using both
local and global estimators such as the TWO-NN method and PCA, respec-
tively. Further, this observation is very likely a direct manifestation of what in
data science is known as the curse of dimensionality [110]. In the quest to over-
come this difficulty, we have then introduced the concept of PCA entropy—a
“Shannon entropy” of the normalized spectrum of the covariance matrix. This
and related spectral entropies are widely used in unsupervised approaches for
feature selection tasks as well as a measure of signal complexity. Here, we
have applied this quantity for the first time to data sets of statistical mechanics
systems and found a striking qualitative similarity with the thermodynamic
entropy of the Ising model, exhibiting in particular a flex around the transi-
tion point, both for the 2D and 3D cases. This allows for a very accurate esti-
mation of the critical temperature (with less than 1% error) by a conventional
finite-size scaling analysis. Further, we have argued how the PCA entropy
can asymptotically recover the thermodynamic entropy while being compu-
tationally efficient and interpretable—as opposed to other machine learning
approaches—due to its own definition.

Several interesting questions remain as directions for future research. In
particular, it would be very interesting to see the scope of the PCA entropy in
the study of different kinds of phase transitions such as Berezinskii-Kosterlitz-
Thouless (BKT) transitions. In this respect, analyzing whether and how the
PCA entropy is sensible to the effects of topology is a question well deserv-
ing of attention. Besides, characterizing the limitations of the intrinsic dimen-
sion due to volume effects in different systems is another critical question to
be explored. Additionally, our methods can readily be applied to learn path
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integrals of quantum statistical systems, thereby complementing and extend-
ing previous theoretical works [39]. Finally, the analysis of experimental data
sets associated with many-body problems is also immediately within reach, as
already exemplified in recent related works [114, 2]. Along a separate route,
it is essential to mention that the dimensional analysis performed here indi-
cates that manifolds describing partition functions are in fact very rich and
correlated: a very promising route to unfold such correlations is provided by
network theory—that we are illustrating, in the context of Ising partition func-
tions, in a parallel work [115].

3.6 Appendix

3.6.1 Analysis of the decorrelation of state configurations via

Id and SPCA

In this appendix, we elaborate on how we minimize the correlation between
the configuration extracted from the Monte Carlo simulation. In order to make
sure that we have attained the desired data set with decorrelated configura-
tions, we study Id and SPCA as the function of sampling interval ds, the number
of Wolff’s cluster flips between two consecutive configurations saved. For all
the calculations below we have Nr = 5000 with the configurations taken from
the same Monte Carlo simulation and averaged over 5 realizations. The system
sizes are fixed, L = 48 for 2D and L = 24 for 3D Ising.

In Fig. 3.8, we can observe that after an initial increase in Id with ds, the Id

value saturates and stabilizes within error bars for increments of ds. The point
after which the Id saturates indicates the minimum value of ds required to build
the uncorrelated data set. We call such a value decorrelation time and denoted
d⋆s . This decorrelation time increases with temperature: for 2D at T = 2.27,
d⋆s ≃ 10 seems to be enough to decorrelate the configurations, but for T = 2.35
we need d⋆s ≃ 40. We observe a similar trend for the 3D case with increasing
temperature requiring higher times: at T = 4.60, we get d⋆s ≃ 500. In practice,
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FIGURE 3.8: Id as a function of the sampling interval ds, for 2D and 3D
Ising partition function data sets, respectively, at different temperatures.
After some transient behavior, the Id saturates at some given value and
does not change further. This insensitivity with respect to the sampling
interval signals the point after which configurations sampled during
the MC simulations are essentially uncorrelated from each other. This
defines the decorrelation time d⋆s (see main text).

however, we set a final sampling interval to be at least two or three times d⋆s ,
which for the latter case, for example, corresponds to 1000 − 1500 cluster flips
in between sampled state configurations.

FIGURE 3.9: SPCA as a function of the sampling interval ds for 2D and 3D
Ising partition function data sets, respectively, at different temperatures.
We observe compatible values of the d⋆s , with those estimated from the
Id analysis; c.f. Fig. 3.8.
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In Fig. 3.9 what we observe for SPCA complements the findings from Id,
with SPCA rising and eventually saturating at some given value as ds is in-
creased. We note that, in general, the values of d⋆s that can be read out from the
latter plots are compatible with those estimated using the Id, both in 2D and
3D.

We note that the decorrelation time d⋆s is an intrinsic property of the spe-
cific algorithm utilized to carry out the MC sampling. This is analogous to the
autocorrelation time, which is a paramount quantity to analyze in any MC simu-
lation. Indeed, the key difficulty in (dynamic) MC is that the successive states
in the underlying Markov chain are correlated, naturally increasing the error
of estimates [116]. For some given observable, for example, the magnetization
M, the autocorrelation function C(t) as a function of the MC time t is given by

C(t) =

〈
MjMj+t

〉
− ⟨M⟩2

⟨M2⟩ − ⟨M⟩2 , (3.12)

with j denoting some reference time, which we can choose arbitrarily since at
equilibrium time translational invariance holds. In the above definition, we
use

⟨Mα⟩ = 1
Nt

Nt

∑
i=1

Mα
i ,

〈
MjMj+t

〉
=

1
Nt − t

Nt−t

∑
i=1

Mi Mi+t, (3.13)

where Nt is the total number of MC steps.
For well-formulated algorithms, it is typically expected that the autocorre-

lation function introduced above will decay exponentially with t, that is,

C(t) ≃ exp(τ/t), (3.14)

where τ is the autocorrelation time of the observable in the given algorithm.
To be more precise, this time is called the exponential autocorrelation time
τexp. A second autocorrelation time is so-called integrated autocorrelation time
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(IAT), τint, which determines the statistical errors in the MC estimates of ob-
servables [116]. The latter can be estimated as follows

τint(W) =
1
2

W−1

∑
t=1

C(t) + R(W), (3.15)

with
R(W) =

C(W)

1 − C(W)
C(W−1)

, (3.16)

that shall converge fast for W ≫ 1.
We computed the IAT for the temperatures above for the 2D and 3D sys-

tems, using 10000 successive configurations after the equilibration. We found
τint ≃ 33, 40, and 48 for T = 2.18, 2.27, and 2.35 respectively in the 2D case. For
the 3D case we get τint ≃ 46, 51, and 54 for T = 4.45, 4.51, and 4.60 respectively.

Whether or not the autocorrelation time of observables and the decorrela-
tion time estimated via the Id and SPCA analyses can be related to each other is a
question well deserving a more in-depth exploration, which however we leave
for future research. Nevertheless, we should mention that the used decorre-
lation times, as defined above, are a crucial piece of information to ensure the
reproducibility of the results discussed in this work.

3.6.2 Subsampling

In this appendix, we describe the subsampling algorithm used to perform
statistics on the collected data and establish the corresponding error bars.

Given a data set with a total number of points NT: X ≡ {x⃗1, . . . , x⃗NT}, we re-
peatedly compute a quantity of interest ϕ on Nb ‘batches’ (subsamples) of data,
which are obtained by randomly drawing samples of size Nr without replace-
ment from the finite population {x⃗1, . . . , x⃗NT}. We denote such estimates as
ϕ(Xfi), with β = 1, . . . , Nb. From these estimates, we can compute the sample
mean:

ϕ =
1

Nb

Nb

∑
β=1

ϕ(Xfi). (3.17)
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FIGURE 3.10: SPCA as a functions of temperature different value of Nb,
for 2D and 3D Ising partition function data sets. The system size for 2D
is L = 32 and for 3D L = 12.

The associated standard error can be estimated as [108, 109]

SE ≈
√

Nr

NT − Nr
×
√

1
Nb

∑
β

(ϕ(Xβ)− ϕ)2. (3.18)

This formula is known as the (stochastic) delete-d Jackknife standard error
estimator (with d = NT − Nr), which is usually employed within subsam-
pling schemes [108]. We note that this method is also related to the boot-
strap method [109], with the main difference that samples are drawn without
replacement. The latter fact is crucial, for example, when estimating the Id

through the TWO-NN algorithm, which works under the assumption of no
repetitions in the considered data points (if repetitions occur, different estima-
tors based on discrete distances can be employed [117]).

Finally, it can be shown that under adequate conditions the distribution
of ϕ(Xβ) will converge to the sampling distribution of ϕ. In particular it is
required that Nr → ∞ as NT → ∞, but with Nr/NT → 0. In practice, the
choice of the parameters above is data-dependent. Here, we have NT = 50000,
and found consistent results with the choices Nb = 10 and Nr = 10000 (unless
otherwise specified), as mentioned in the main text.
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In Fig. 3.10, we check the effects on SPCA while changing Nb for some fixed
system size. We find negligible change in SPCA value for changing Nb = 10
to Nb = 20 in the case of both 2D and 3D Ising partition function data sets.
We can observe that in Fig. 3.10 the SPCA values lay on top of each other for
varying Nb.
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Data-driven discovery of relevant
information in quantum simulators

4.1 Introduction

Recent remarkable advances in highly controlled synthetic quantum devices
have revolutionized the study of strongly correlated systems [118, 119, 120,
121, 122, 123]. A key element of many of such platforms is their capacity to
produce large data sets of many-body snapshots, for example, via generalized
projective measurements of the entire wave function [69]. However, the analy-
sis of such outcome poses in general serious challenges, which typically force
us to rely on assumptions for certain quantities, disregarding part of the infor-
mation content of the generated data—in data science language, a dimensional
reduction with an uncontrolled loss of information. A particularly important
problem is the identification of the most informative observables to describe
such quantum many-body systems—a paramount task at the core of quan-
tum field theory [124, 125], that is even more daunting for systems driven out
of equilibrium. To address this, one needs to develop methods to process the
maximum amount of information in quantum simulator output, which are able
to identify relevant features—and thus degrees of freedom—emerging from
the underlying physical system, without making any assumption nor uncon-
trolled dimensional reduction.
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FIGURE 4.1: Assumption-free unveiling of relevant information in
quantum simulation. (a) We start from snapshots of a many-body sys-
tem, which are represented as 2D arrays at different times. At a fixed
time, each row corresponds to a different realization, while each column
is a different data feature, e.g., the atomic density in a given magnetic
substate at a given spatial location. (b) Using non-parametric unsuper-
vised learning tools, we perform an exploratory analysis to uncover
interesting features of the data, without making any assumptions. (c)
From this description, we infer relevant properties of the physical sys-
tem: (Upper panel) By quantifying the information content of different
observables, the spectral entropy of the sample covariance matrix pro-
vides a metric to rank the latter according to the strength of the corre-
lations captured by them, thence guiding the identification of relevant
(i.e., most informative) degrees of freedom. (Lower panel) After a quick
fall to relatively small values, the intrinsic dimension of data sets fea-
tures a long, stable plateau as a function of time (shaded region), pro-
viding a lower bound for the timescale after which the dynamics may
become simpler and be captured by universal scaling.
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In this work, we introduce a theoretical framework for data-driven infor-
mation discovery in quantum simulation, which is schematically illustrated
in Fig. 4.1. We start by considering collections of independent quantum sim-
ulator snapshots, which resolve, for example, the dynamics of a many-body
system in space and time [Fig. 4.1(a)]. Such data sets are characterized using
non-parametric unsupervised learning methods [Fig. 4.1(b)]. Finally, from this
system-agnostic and unsupervised description of the data, we infer relevant
information for the physical system under study [Fig. 4.1(c)].

This framework is based on three techniques: (i) spectral entropies calcu-
lated from a principal component analysis (PCA) of the data, (ii) the infor-
mation imbalance between a subset and the full set of observations, and (iii)
the intrinsic dimension of the concomitant data manifolds. These tools which
quantify—from different angles—the information content and correlations in
the data, have found several successful applications in various fields, such as
chemical and biomolecular science [47, 48, 101, 126, 127, 128, 93, 94, 21], ecol-
ogy [49], stock market dynamics [50, 51, 52, 129, 53, 54], and image analysis [96,
98, 99, 130].

To demonstrate the capabilities of our approach we apply it to experimen-
tal data of a spinor Bose-Einstein condensate (BEC) [131]: we evaluate the
full set of experimentally measured densities without knowledge of the post-
processing steps which are necessary in order to infer the relevant spin vari-
ables from them. Our main results are as follows: (I) PCA spectral entropies
and information imbalance allow for a theory-agnostic determination of the
most informative measured observables. The predictive power of these meth-
ods is demonstrated by showing that they can also unveil combinations of the
measured densities, which are key to describe the spin structure of the sys-
tem [72, 131, 70]. (II) The behavior of the intrinsic dimension as a function
of time, displays a rapid decay to significantly smaller values, after which it
features very long, stable plateaus. As argued below, this observation is in
strong agreement with the formation of spin structure and the emergence of
self-similar dynamics [132, 72, 133, 131, 134].
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4.2 Quantum simulation on a spinor BEC and data

sets

We consider the dynamics realized by a BEC of 87Rb in the F = 1 hyperfine
spin ground state manifold confined in a quasi-one-dimensional elongated
harmonic dipole trap (the data evaluated here are taken from [131]; see this
publication for further details on the experiment). The system is initialized
with all atoms in the magnetic substate mF = 0. By instantaneously changing
a control parameter we tune spin-changing collision processes into resonance.
This procedure implements a quench across a quantum phase transition which
brings the system far from equilibrium. For different times t after the quench,
we simultaneously infer the two orthogonal spin projections Fx and Fy from the
observed densities with spatial resolution along the longitudinal trap direction
[69] via

Fx = (n1,+1 − n1,−1) / (n1,+1 + n1,0 + n1,−1) ,

Fy = (n2,+2 − n2,−2) / (n2,+2 + n2,0 + n2,−2) , (4.1)

where nF,mF is the density in the state with hyperfine manifold F and magnetic
sublevel mF. At the final parameters of the quench, which places the system
into the regime of the easy-plane ferromagnetic phase [70], these define the
transverse spin field F⊥ = Fx + iFy [71]. Here, the interplay between energy
offsets and spin interactions favor a finite transverse magnetization. During
the dynamics, the transverse spin field approaches its ground state distribu-
tion, which manifests itself in the formation of a ring in the transverse spin his-
togram after approximately 1–3 s, as shown in Fig. 4.2(b). Nevertheless, in this
regime, the system is still highly excited and transverse spin phase excitations
evolve dynamically in a self-similar fashion [72]. Such relaxation dynamics is
quite rich but complex, making a controlled microscopic characterization ex-
tremely challenging. In fact, the interpretation above is motivated by heuristic
arguments. The key point we are interested in here is to lay such description
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based solely on experimental observations, analyzed in a blind-folded manner.
That is, we wish to extract essential descriptive elements (most important op-
erators and complexity of the dynamics) without relying on any assumption.

At each evolution time, we obtain a data set with Nr = 225 independent
realizations for each of the measured densities [see Eq. (4.1)]. Such data sets
are denoted by a matrix Mα(t) = {N⃗ α

1 (t), N⃗ α
2 (t), . . . , N⃗ α

Nr
(t)}, where each row

N⃗ α
i (t) contains the spatial density profile of a single realization in one of the

considered internal states, succinctly labeled here by α = (F, mF). Each density
is linearly sampled at 184 spatial locations, which gives the number of features
(entries) of each vector N⃗ α

i (t). Further, we also consider joint data sets formed
by concatenating horizontally subsets of the original data sets at a given time.
More specifically, each row in a joint data set is formed by appending, one after
the other, single realizations of the observables of choice. Thus, for example, if
we combine all six densities, the resulting data sets will contain 184 · 6 = 1104
columns and Nr rows. The particular order in which we concatenate the com-
bined observables is irrelevant for our methods. When needed, we will simply
specify joint data sets by using the symbol of the corresponding observables
joined by “∥”.

4.3 Assumption-free identification of relevant ob-

servables

We now perform a descriptive analysis of the data sets above, with the task
of identifying the most informative observables. We start by introducing a
PCA-based spectral entropy. PCA is a non-parametric approach that uses an
orthogonal transformation to seek for the directions along which the data ex-
hibit more variation [136, 80]. This problem can equivalently be posed in terms
of a singular value decomposition (SVD) of the column-centred data matrix M⋆

(where the mean value of each column is subtracted from the entries in the col-
umn). (For simplicity, we have omitted the observable and time indices of our
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FIGURE 4.2: Assumption-free identification of relevant observables. (a)
PCA entropy, SPCA, and information imbalance, ∆(A → B), as met-
rics of relevance: lower values of SPCA signal stronger correlations
within a data set, while lower values of ∆(A → B) indicate that more
information—from the full space of observations—is retained by the
features of a given data set. Both metrics clearly show that n1,±1 and
n2,±2 are more relevant (in the sense above) over the full evolution
[panels (a.1) and (a.4)]. Identification of relevant groups is also pos-
sible by analysing joint data sets: for pairs of observables, n1,+1 ∥ n1,−1
and n2,+2 ∥ n2,−2, have a lower SPCA [⋆ markers in panel (a.2)], and
are hence more relevant than any other pair (see ranking of all pos-
sible pairs in Ref. [135]). Information imbalance provides a comple-
mentary view on the relevance of such pairs, namely, the full space
of measured observables is better described if features from both rel-
evant pairs are considered simultaneously [points with ∆(A → B) ∼ 0
in panel (a.5), corresponding to the joint data sets n1,±1 ∥ n2,±2. Note
that the points of the latter four data sets lie on top of each other—
they are equally informative—, both in panel (a.2) and (a.5)]. Finally,
we can rank new operators defined from the identified relevant pairs,
as illustrated here for a few combinations of n1,+1 and n1,−1, with their
difference n1,+1 − n1,−1 being more relevant [panels (a.3) and (a.6)]. (b)
Histogram of the transverse spin variable in the Fx − Fy plane at t = 3s,
featuring a ring-like structure. Based on physical arguments [72, 131,
70], this variable is the relevant field to describe the quenched system.
Our theory-agnostic approach identifies the relevant observables from
which this variable is inferred [see Eq. (4.1)], hence cross-validating the
latter analysis.

previous notation). This allows to find the eigenvalues of the covariance ma-
trix Σ = M⋆T M⋆/(Nr − 1), that is, Σw⃗k = λkw⃗k, with λ1 ≥ λ2 ≥ · · · ≥ λR ≥ 0
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(R is the rank of M⋆). The eigenvalues give a measure for the variance of the
data along the principal axes, determined by the corresponding eigenvectors.
We then define the normalized eigenvalues λ̃k := λk/ ∑k λk [137]. By construc-
tion, λ̃k ≥ 0 and ∑R

k=1 λ̃k = 1. The PCA spectral entropy can be thus defined in
analogy to Shannon’s entropy [56], namely,

SPCA := − 1
ln(R)

R

∑
k=1

λ̃k ln(λ̃k), (4.2)

where for convenience we have normalized by its maximum possible value,
ln(R), which is obtained for a flat eigenvalue distribution. Thus, for a per-
fectly uncorrelated process (e.g. white noise), SPCA = 1. Instead, for data with
correlations among the variables SPCA < 1. This quantity can hence be used
as a measure for ranking observables according to their information content
(strength of their correlations).

As a second way to quantify the information content of observations, we
compute their information imbalance in terms of distance ranks (for details see
Refs. [126, 127, 135]). As opposed to PCA, this method is not based on a linear
transformation; instead, it quantifies the relative information content between
different distance measures. Concretely, given a data set with Nr points and F
features, one defines distance measures A and B between data points on two
subsets of the feature space and computes the corresponding rank matrices
RA/B

ij , such that RA/B
ij = m if j is the m-th nearest neighbor of i (according to

A/B). The information imbalance—from A to B—can then be estimated as the
average rank in B restricted to nearest neighbors in A, that is

∆(A → B) ≈ 2
N2

r
∑

i,j:RA
ij =1

RB
ij. (4.3)

With this definition, one can show that when the ranks computed with the two
metrics are consistent with each other ∆(A → B) ∼ 0 (‘A captures B reliably’),
whereas when they are fully uncorrelated ∆(A → B) ∼ 1 (‘A cannot predict
B’) [126, 127, 135]. Here, we consider the joint data sets of the six measured
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observables (data points have 184 · 6 = 1104 coordinates). Space A is formed
by the subset features corresponding to, for example, a single observable or a
pair of observables (in which cases, we compute distances using only 184 or
184 · 2 = 368 coordinates, respectively), while B is chosen as the full space of
features. This way, the information imbalance from A to B gives us a direct
measure of the relevance of observables and their combinations to describe the
full space of observations. Throughout this work, we use the Euclidean metric
to compute distances between data points.

Our main results are shown in Fig. 4.2(a). Let us first analyze the results for
the PCA entropy [panels (a.1)–(a.3)]. A clear separation between two groups
of observables is noted as the system evolves [panel (a.1)], with n1,±1 and
n2,±2 yielding lower values of SPCA. According to the interpretation above, we
conclude that these observables capture stronger correlations and are hence
more relevant. Next, we consider joint data sets of two different observables
[panel (a.2)]. The most relevant pairs according to this analysis are n1,+1 ∥ n1,−1

and n2,+2 ∥ n2,−2. The latter result is in excellent agreement with the physics-
motivated analysis, in which such observables play a key role in the definition
of the transverse spin [see Eq. (4.1) and Fig. 4.3(b)]. (The densities n1,0 and
n2,0, are only important for normalization.) Going one step further, in panel
(a.3) we explore the relevance of concrete functional combinations of the pair
{n1,+1, n1,−1} (similar results hold for {n2,+2, n2,−2}). We find that the differ-
ence n1,+1 − n1,−1 has the lowest SPCA, once again in remarkable agreement
with the physics-motivated ansatz [138].

We now turn our attention to the information imbalance analysis [panels
(a.4)–(a.6)]. These results are completely consistent with the analysis above
based on SPCA, and provide a complementary view on the relevance of ob-
servables. In fact, in panel (a.4), we can see that the observables with a lower
PCA entropy have also a lower information imbalance; thus, they retain more
information of the full space of features. Interestingly, in the analysis of pairs
of observables [panel (a.5)], we note that in order to capture the full space of
observations, one needs to consider features from both relevant pairs. Indeed,
we see that the joint data sets n1,±1 ∥ n2,±2 have ∆(A → B) ∼ 0 for the full
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evolution [note that the points of those data sets are on top of each other in
panel (a.5) of Fig. 4.2]. The new operator n1,+1 − n1,−1 has also a significantly
lower information imbalance, compared to other combinations [panel (a.6)].

In Ref. [135], we show results for other possible joint data sets. We also
include details on the subsampling analysis [108, 109] used for the estimation
of error bars.

4.4 Complexity evolution of data sets

We now provide a further characterization of the data sets. Specifically, we
study their intrinsic dimension Id, at the considered evolution times. The Id

quantifies the minimum number of variables needed to describe the data [139,
92, 128], thereby providing a measure of their (Kolmogorov) complexity [140,
141, 37, 114]. Here we use a distance-based Id estimator, namely, the TWO-NN
algorithm [128], which works as follows. For each point N⃗i in a generic data
set, we compute the distance to its first and second nearest neighbors, denoted
by ri1 , ri2 . Next, we define the ratio µi := ri2/ri1 . For data points that are locally
uniformly distributed on a Id-dimensional hypersphere, the distribution of µ

is given by f (µ) = Idµ−Id−1 [128]. The cumulative distribution function F(µ),
then satisfies

− ln[1 − F(µ)] = Id ln(µ), (4.4)

which is used to estimate Id through a linear fit of the points {(ln(µ),− ln[1 −
Femp(µ)])}, where Femp(µ) is the empirical cumulate [135].
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FIGURE 4.3: Complexity of the dynamics via intrinsic dimension. In-
trinsic dimension as a function of time for (a) the relevant observables,
n1,+1 − n1,−1 and n2,+2 − n2,−2, (b) all measured densities individually,
and (c) joint data sets of all six observables together. In all instances,
an initially large Id quickly decays to smaller values (around t = 0.6s),
subsequently exhibiting long plateaus. The insets in panel (a) show his-
tograms of the transverse spin in the Fx − Fy plane at selected times.
The first drop in the Id is associated to a grow in the spin length, which
remains approximately constant for t1s. In the latter regime a ring-
like structure is then observed (illustrated here at t = 3s, 12s). Spatial
correlations of spin phase excitations exhibit self-similar dynamics in a
regime that starts around t ∼ 3s [131]. The observed structural sim-
plification of the data strongly correlates with such universal dynamics.
Hence, the plateaus in the plot of Id provide a lower bound for the onset
of simpler dynamics and universal scaling. Panel (c) also shows the Id
estimate based on PCA for various values of the cutoff ζ (see main text).
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Shown in Fig. 4.3(a) is the plot of Id as a function of time, of the data sets cor-
responding to the identified relevant operators, n1,+1 − n1,−1 and n2,+2 − n2,−2.
We observe the same trend in both instances: a quick decay of Id to consider-
ably smaller values, subsequently displaying long, stable plateaus. The reduc-
tion of the Id signals a simplification of the data structure due to the buildup
of correlations among the input variables. The latter is a direct manifestation
of the correlations among the elementary constituents of the system. From
the physical viewpoint, the post-quench correlations are associated with the
formation of a ring-like structure, with an approximately constant radius, in
the transverse component of the collective spin degree of freedom (insets) [72,
131]. In turn, spatial correlations of the spin phase excitations exhibit uni-
versal scaling dynamics [72]. In the present experiment, the universal scal-
ing regime starts approximately at t ∼ 5s [131]. The physical basis for such
scaling evolution is a dynamical reduction of the relevant parameters in the
system. This is strongly consistent with the observed structural simplification
of the data, as also observed in recent studies of critical behavior—in and out
of equilibrium—in classical and quantum statistical mechanics systems [142,
143, 144, 114]. Therefore, in the present case, the observed Id plateau provides
a theory-agnostic lower bound for the timescale after which the dynamics may
become simpler, allowing for the emergence of self-similar behavior.

Importantly, this prediction can be made by directly studying the Id of data
sets of all measured densities, as shown in Fig. 4.3(b), where we observe an
overall similar trend. We note, however, that the “irrelevant” observables n1,0

and n2,0, have a growing Id, rather than a plateau. This further confirms the rel-
evance predictions based on PCA entropy and information imbalance. Further,
in Fig. 4.3(c) we plot the Id of joint data sets of the six measured observables
together, showing once again the noted trend. In this plot, we also show an
Id estimation based on PCA, which is defined by choosing an ad hoc cutoff pa-
rameter ζ, for the integrated spectrum of the covariance matrix [136, 142], i.e.,

∑Id
k=1 λ̃k ≈ ζ. We find that for all considered values of ζ, we recover the same

qualitative features as the TWO-NN Id-estimate. A quantitative agreement can
also be achieved for a suitable choice of ζ in the range 0.7 ≤ ζ ≤ 0.9, at the
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different evolution times. This agreement further confirms the applicability
of PCA in our previous analysis and implies that curvature effects of the data
manifold are negligible.

4.5 Conclusions

We have introduced an assumption-free method to diagnose and rank rel-
evant correlations in the dynamics of out-of-equilibrium quantum systems.
The method exploits the full spectrum of principal components, as well as re-
cently developed techniques based on information imbalance. We have suc-
cessfully identified the most relevant operators describing the dynamics of
Bose-Einstein condensates, confirming previous heuristic approaches (and thus,
validating the physical relevance based solely on experimental observations).
Utilizing manifold characterization methods, we have also found stable plateaus
of the intrinsic dimension of the data sets corresponding to different times,
thus providing bounds on the time frame realizing universal quantum dy-
namics. Our approach is immediately extended to other classes of quantum
simulators—including fermion gases and lattice spin models—providing a flex-
ible, assumption-free framework to discover physical phenomena, as well as
to validate their functioning. Our work complements recent theoretical ap-
proaches with similar goals regarding the identification of relevant observ-
ables [145, 146] and characterizing the complexity of quantum dynamics [114,
147, 148].

4.6 Supplemental Material

4.6.1 More on information imbalance

In the following, we summarize the main ideas that lead to Eq. (4.3) in the
main text, but the reader is referred to Ref. [126] for a more detailed expla-
nation. The notion of information imbalance refers to a statistical test aimed at
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FIGURE 4.4: Information imbalance of joint data sets of four observ-
ables. All joint data sets that combine features from the two relevant
pairs {n1,+1, n1,−1} and {n2,+2, n2,−2} have a very small information im-
balance. Instead, the joint data sets that only use features from one of
the relevant pairs cannot predict so well the full space of features. The
latter are indicated with square markers in this plot.

assessing the relative information content of different distance measures de-
fined on the same data space [126, 127]. This is done by analyzing the ranks
of the first nearest neighbors of each point. More specifically, given a finite
data set M = {N⃗i}Nr

i=1 and two distance measures DA(N⃗i, N⃗j) and DB(N⃗i, N⃗j),
we can rank the neighbors of a point N⃗i, in the two spaces under considera-
tion, by sorting, from smallest to largest, the pairwise distances between such
a point and the rest of points using the corresponding metric. These rankings
are encoded in the so-called rank matrices RA/B

i,j . Thus, for example, RA
i,j = 1

if N⃗j is the 1st nearest neighbor of N⃗i in space A, RA
i,j = 2 if N⃗j is the 2nd

nearest neighbor of N⃗i, etc. The key insight of this method is the fact that the
full correlation structure between the two metrics under study is essentially
captured by the conditional rank distribution p(RB|RA = 1), that is, the prob-
ability distribution of the ranks RB

ij in space B restricted to those pairs (i, j)
for which RA

ij = 1 (i.e., the pairs of nearest neighbors in A). Then, the closer
this distribution is to a delta function peaked at 1, the more information (at
the level of local neighborhoods) about space B is contained within space A.
The deviation of p(RB|RA = 1) from such a delta function is quantified by the
conditional expectation ⟨RB|RA = 1⟩, which is used to define the information
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imbalance from space A to space B, namely

∆(A → B) =
2

Nr
⟨RB|RA = 1⟩ = 2

N2
r

∑
i,j:RA

ij =1

RB
ij. (4.5)

In the limit case where the two spaces are completely equivalent (meaning
that first nearest neighbors in A are exactly the same as those in B), we have
that ∑j:RA

ij =1 RB
ij = 1 (for a given i), and hence ∑i,j:RA

ij =1 RB
ij = Nr. Therefore,

the information imbalance in Eq. (4.5), ∆(A → B) vanishes as 1/Nr. A van-
ishing information imbalance indicates that A can fully predict B in the sense
specified above. In the extremely opposite case in which the two spaces are
completely independent, we have that ∑j:RA

ij =1 RB
ij =

1
Nr−1 · 1

2 Nr(Nr − 1) = Nr
2

and hence ∑i,j:RA
ij =1 RB

ij =
N2

r
2 . Therefore, the resulting information imbalance is

∆(A → B) = 1, implying that A cannot predict B. Finally, we note that, due to
its own definition, the information imbalance is asymmetric; therefore, one can
study predictability between the two considered distances in both directions.

4.6.2 Relevance ranking via SPCA and information imbalance:

further combinations

In this section, we show the ranking of further combinations of operators. As
explained in the main text, we analyse joint data sets formed by concatenat-
ing horizontally measured data sets. Thus, for example, n1,+1 ∥ n1,−1 refers to a
data set for which we have concatenated horizontally the data sets correspond-
ing to the observables n1,+1 and n1,−1. Complementing Fig. 4.2 of the main text,
in Figs. 4.6 and 4.5, we show the ranking of all joint data sets formed by two
observables, according to SPCA and ∆(A → B), respectively. As mentioned in
the main text, the joint data sets with a lower value of SPCA, throughout almost
the whole evolution, are n1,+1 ∥ n1,−1 and n2,+2 ∥ n2,−2 (⋆ markers in Fig. 4.6).
These pairs of observables are indeed the most relevant ones to describe the
physics of the quenched system. We also note that the joint data set n1,0 ∥ n2,0

is the one with the largest PCA entropy, and hence is the “least” informative
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FIGURE 4.5: Information imbalance of joint data sets of two observ-
ables. This plot shows the results for all joint data sets of two observ-
ables (cf. Fig. 4.2(a.5) of the main text). Note that the points correspond-
ing to the joint data sets n1,+1 ∥ n2,+2, n1,+1 ∥ n2,−2, n1,−1 ∥ n2,+2, and
n1,−1 ∥ n2,−2, lie basically on top of each other (they are equally infor-
mative), with an information imbalance ∆(A → B) ∼ 0. These four
data sets combine features of the two relevant pairs {n1,+1, n1,−1} and
{n2,+2, n2,−2}.
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FIGURE 4.6: PCA entropy of joint data sets of two observables. This
plot shows the results for all joint data sets of two observables (cf.
Fig. 4.2(a.2) of the main text).
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one. This is also in agreement with physical considerations as the populations
in the respective substates are only important to normalize properly the col-
lective transverse spin variable (see Eq. (4.1) in the main text). Information
imbalance—which does not rely on a linear transformation as does PCA, but
on ranks of nearest neighbors—provides a complementary view on the rele-
vance of the analysed observations. Let us recall that ∆(A → B) ∼ 0 means
that A can reliably predict B, whereas ∆(A → B) ∼ 1 implies that A can-
not predict B. Here, we measure the information imbalance from a space A
of features corresponding to joint data sets of two observables, to the space B
of features corresponding to the joint data set of all six observables together.
In Fig. 4.5, we observe that the joint data set with the largest information im-
balance (smallest information content) is n1,0 ∥ n2,0, in full agreement with the
ranks obtained using the PCA entropy. Next, we observe that the joint data sets
with the smallest information imbalance are not n1,+1 ∥ n1,−1 and n2,+2 ∥ n2,−2,
but those where features from these two relevant pairs are combined, namely:
n1,+1 ∥ n2,+2, n1,+1 ∥ n2,−2, n1,−1 ∥ n2,+2, and n1,−1 ∥ n2,−2 (markers with darker
color in Fig. 4.5). In fact, any of these four joint data sets can predict almost
entirely the full space of features, since ∆(A → B) ∼ 0 for such data sets. The
meaning of this observation is that in order to predict better the full space of
features (given by the coordinates of the joint data set of the measured six ob-
servables), one needs to consider features from both of the identified relevant
pairs n1,+1 ∥ n1,−1 and n2,+2 ∥ n2,−2.

Similar conclusions apply if one considers groups of more than two ob-
servables. This is illustrated here for groups of four observables (quadruplets)
in Figs. 4.7 and 4.4. In terms of PCA entropy the most relevant joint data
set is the one that combines the features of the two relevant pairs, namely,
n1,+1 ∥ n1,−1 ∥ n2,+2 ∥ n2,−2 (⋆ markers in Fig. 4.7). We note however that in
this case the relative difference in PCA entropy is not as pronounced as in
the case of single or two observables. Regarding information imbalance, we
observe once again those joint data sets that combine features from the two
relevant pairs can predict almost entirely the full space of features. There
are indeed only two combinations that only involve features from a single
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FIGURE 4.7: PCA entropy of joint data sets of four observables. The
joint data set with the smallest PCA entropy is the one that combines
the two relevant pairs (⋆ markers).

relevant pair (plus the two “irrelevant” observables n1,0 and n2,0), namely,
n1,0 ∥ n1,+1 ∥ n1,+1 ∥ n2,0 and n1,0 ∥ n2,0 ∥ n2,+2 ∥ n2,−2 (square markers in Fig. 4.4),
which clearly have a significantly larger information imbalance compared to
the rest.

4.6.3 Linear fit to estimate Id from the empirical cumulates in

the TWO-NN method

In this section, we show examples of the linear fitting procedure used to esti-
mate the value of the intrinsic dimension in the TWO-NN method; see Eq. (4.4)
in the main text. In Fig. 4.8, we show the empirical cumulative distributions
of the ratios µi = ri2/ri1 , sorted in ascending order, for the observable n2,+2 −
n2,−2, at all evolution times. If the condition of constant density in the range of
first two nearest neighbors holds, a plot of the resulting points {ln(µ),− ln[1−
Femp(µ)]} will be a line that passes through the origin and whose slope gives
the estimated value of Id. Verifying that the empirical cumulates are indeed
consistent with a Pareto distribution as described above, is the first step to
guarantee the applicability of the TWO-NN method. Besides, on its own, this
kind of plot is also very informative about the local structure of complicated
data manifolds.



72
Chapter 4. Data-driven discovery of relevant information in quantum

simulators

0.00 0.05
ln(µ)

0

2

4

−
ln

[1
−
F

em
p
(µ

)]

t = 0.0s

0.00 0.05
ln(µ)

0

2

4

t = 0.2s

0.0 0.1 0.2
ln(µ)

0

2

4

t = 0.4s

0.0 0.2 0.4
ln(µ)

0.0

2.5

5.0

t = 0.6s

0.0 0.2 0.4
ln(µ)

0

2

4

−
ln

[1
−
F

em
p
(µ

)]

t = 0.8s

0.0 0.2
ln(µ)

0

2

4

t = 1.0s

0.0 0.2
ln(µ)

0

2

4

t = 3.0s

0.0 0.2 0.4
ln(µ)

0.0

2.5

5.0

t = 6.0s

0.0 0.5
ln(µ)

0

5

−
ln

[1
−
F

em
p
(µ

)]

t = 9.0s

0.00 0.25 0.50
ln(µ)

0.0

2.5

5.0

t = 12.0s

0.0 0.2
ln(µ)

0

2

4

t = 15.0s

0.0 0.2 0.4
ln(µ)

0

2

4

t = 18.0s

FIGURE 4.8: Empirical cumulative distributions at all evolution times
for the data sets corresponding to the relevant observable n2,+2 − n2,−2.
The black curve show the linear fit according to Eq. (4.4) in the main text,
whose slope gives the estimated value of Id. This procedure is valid as
long as the empirical cumulative distribution function is consist with a
Pareto distribution, at least over a significant range of values of ln(µ),
as is the case here.

4.6.4 Subsampling error estimation

Due to the limited number of realizations used in the present analysis, we
opted for using a technique known as subsampling [108, 109] to have a sensi-
ble estimation of the statistical errors. The subsampling algorithm is described
below.

At a given time and for a given measured observable, we have Nr = 225
independent realizations forming our data set, that is, M = {N⃗i}Nr

i=1, where for
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simplicity we have omitted the indices labeling the observable and the evolu-
tion time. Using these data we compute a certain numerical statistic ϑ. Given
two preset integers b and q < Nr, the subsampling analysis proceeds as fol-
lows:

1. Form b random ‘batches’ (subsamples) of data by drawing q < Nr points
at random but without replacement from the data set {N⃗1, N⃗2, . . . , N⃗Nr}.

2. Estimate the statistic of interest on each subsample, that is, ϑi, for i ∈
{1, . . . , b}.

3. Compute the subsample mean ϑ = 1
b ∑b

i=1 ϑi. The standard error can
then be estimated as follows

SE ≈
√

q
Nr − q

·

√√√√1
b

b

∑
i=1

(ϑi − ϑ)2, (4.6)

This formula is known as the delete-d Jackknife standard error estimator (with
stochastic subsampling) [108, 109].

While formally this method requires q/Nr → 0, q → ∞, and b → ∞ as Nr →
∞ (so that the distribution of the ϑi converges to the sampling distribution
of ϑ), in practice the choice of these parameters is problem specific. In our
analysis, we did not find significant changes for b ≥ 30. Hence, we fixed b =

30. Furthermore, to compute a meaningful statistic on each subsample, we set
q = 100.

We used this method as sampling is performed without replacement. This
is important as the TWO-NN algorithm used to estimate the Id works under
the assumption of no repetitions among the data points.





75

Chapter 5

Network science Ising states of
matter

5.1 Introduction

Networks [149, 150, 151, 152, 153] encode the information present in a large
variety of natural and artificial interacting systems by representing them as
graphs, i.e. a set of nodes (representing the element of the system) connected
by links or edges (representing typically the interactions). In particular, the un-
derlying architecture of complex systems is encoded in networks that strongly
deviate from random graphs whose information content can be mined by ex-
ploiting their statistical, combinatorial as well as the geometrical and topolog-
ical nature [154]. Networks are hence a simple yet very powerful framework
that has been able in the last twenty years to transform our understanding of
complex systems. These complex networks obey relevant organization princi-
ples while retaining also a stochastic nature.

Recently great attention has been addressed to formulate unsupervised ma-
chine learning algorithms to detect different phases of matter [80, 83, 44, 86,
155, 142]. The core of such approaches is that learning methods - in particular,
unsupervised - shall be capable of revealing hidden structures in data sets, that
correspond to physical information (such as, e.g., the existence of order param-
eters). However the very advanced, complementary tools of network science
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to extract information from complex data of interacting systems have not yet
been systematically employed for this task.

Here we want to show how network science can enrich and enhance our un-
supervised characterization of phases of matter. Indeed we will show evidence
that network science provides a very transparent set of methods to investigate
the characteristics of different phases across critical phase transitions and al-
lows the determination of unsupervised indicators of their critical points.

Historically networks have been used in condensed matter for describing
physical interactions existing among the elements of a system, as well as struc-
tured in configuration and Hilbert space. In principle, they can be used as well
to represent abstract data structures coming from numerical simulations or di-
rectly from experiments, giving access to a whole new toolbox to define and
interpret many-body correlations (of arbitrary order, if expressed in terms of
local observables).

Reflecting this two-fold possible application of network science, recently
several works have explored the use of networks to model or represent inter-
actions in condensed matter systems. For instance, networks can be considered
to define Hamiltonians whose interaction terms are determined by a complex
network rather than by a lattice. In particular networks can be used to de-
fine different critical phenomena including the Ising model [156, 157, 158] and
the inverse Ising model [159], as well as quantum critical phenomena includ-
ing the transverse Ising model [160, 161, 162], the Bose-Hubbard model [163],
the Jaynes-Cummings-Hubbard model [164], in addition to others classical col-
lective phenomena and inverse problems [165, 166, 167, 168]. Alternatively,
networks can define quantum environments [169, 170] or even multilayer cou-
plings between interdependent superconductor networks [171]. Networks also
can be used to represent correlations in complex and financial networks [172,
173] as well as in quantum systems. In particular recently network structures
have been shown to encode the quantum long-range mutual information (and
other measures of quantum correlations) existing among the nodes of quan-
tum lattice models in one [174, 175, 176] and two dimensions [177], providing
in some cases indicators for quantum critical points.
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As we will see in this work, weighted networks [178] are amenable to be
analysed and treated with Topological Data Analysis (TDA) [179, 180, 181,
182] which provides a very efficient way to probe topological, large scale and
global network properties. TDA, although until now only applied to point
clouds, is raising significant interest to do unsupervised inference of phase
transitions [183, 184, 185, 186, 187, 85, 188], and has wide applications, includ-
ing the characterization of universal dynamics in quantum gases [189] and of
confinement in lattice field theory [190, 191, 192].

Finally and most relevantly for our work, networks have been proposed to
capture the underlying structure of quantum spin systems as revealed by wave
function snapshots that can be probed experimentally as well as sampled from
Monte Carlo simulations [193]. However, despite these very pioneering works
[174, 193], little attention has been so far addressed to study phases of matter
using network science.

Here we launch a large scale systematic study of the phase of matter based
on network science. We leverage a multiplicity of tools developed in network
science and we reveal the combinatorial, statistical, geometrical and topolog-
ical network representation of different phases of matter. We provide an in-
depth characterization of the networks generated from single snapshots of spin
system configurations.

In Ref. [193] it was shown that wave function networks constructed starting
from quantum wave function snapshots are strongly deviating from random
graphs and for a wide range of values of the threshold distances they give rise
to networks with very broad degree distribution. An open question is whether
the complex properties of these networks are inherently quantum effects or
they can be observed in classical systems as well.

In this work we consider 2D Ising snapshot networks (IsingNets) follow-
ing a construction proposed in Ref. [193] applied to classical 2D Ising model
snapshots and we characterize their structure using advanced statistical, com-
binatorial, geometrical and topological tools of network theory. In order to
provide an in-depth analysis of the IsingNet, across different phases we fo-
cus our attention on IsingNets obtained starting from Monte Carlo simulations
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of the 2D Ising model performed across the phase transition. IsingNets are
obtained from a sample of state configurations of the 2D Ising model which
constitute the set of nodes of the IsingNets. Each pair of nodes of an IsingNet
is associated with a distance, here taken to be the Euclidean distance between
the configuration snapshots. IsingNets are constructed starting from the fully
connected distance matrix between the nodes by connecting only the nodes
whose distance is smaller than a threshold value of the distance.

Our in-depth network analysis of the IsingNets will allow us to go well
beyond the characterization of these networks based solely on the degree dis-
tribution. Possibly in the future, this in-depth analysis can be conducted also
on networks built from quantum wave function snapshots in order to assess
which are the properties inherently quantum in the latter networks.

Our analysis is conducted following two main directions whose goal is dif-
ferent but complementary. First, we will perform an analysis of the IsingNets
that is agnostic about the choice of the distance threshold. In particular, we will
study network properties as a function of the distance threshold. These include
percolation properties, persistence homology, network embedding and statis-
tical characterization of the distance matrices. Secondly, we will consider spe-
cific choices of the distance threshold and we will characterize the statistical,
combinatorial and geometrical/spectral properties of the IsingNets, showing
the important roles of degree-degree and weight-degree correlations in these
systems.

Anticipating our main results we have found that IsingNets reflect the sym-
metry of the configuration space of the 2D Ising model in a prominent way. In
particular, the percolation properties of the IsingNets strongly deviate from
the percolation properties of networks in which the same distances among
the nodes are distributed randomly. In fact, below the critical temperature
of the 2D Ising model, the IsingNets are characterized by two giant compo-
nents whereas their randomized counterpart displays only a single giant com-
ponent. When the threshold distance defining the IsingNets is raised signifi-
cantly these two giant clusters merge, but interestingly they keep a rather com-
pact structure as revealed by our persistent homology results highlighting that
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the Betti number of their clique complex are strongly suppressed with respect
to their random counterpart. Our statistical and combinatorial analysis of the
IsingNets strongly demonstrates the complex organization of these networks
which display strong heterogeneity in both their topological (degree, cluster-
ing coefficient, degree correlations) and their weighted network properties. In
particular nodes of higher-degree are characterized by having neighbours con-
nected by stronger affinity weights (smaller distances). Finally, the IsingNets
display very interesting spectral properties indicating a significant geometrical
organization of these networks at criticality as it is revealed by their spectral
properties.

While our analysis is performed on data coming from Monte Carlo simula-
tions the approach can be readily applied also to experimental data.

5.2 The 2D Ising model Monte Carlo simulations

We consider a square 2D dimensional lattice of dimension L× L where on each
site n is located the spin Sn ∈ {−1, 1}. The nearest neighbour spins are inter-
acting through the Hamiltonian

H = − ∑
⟨n,m⟩

SnSm. (5.1)

The 2D Ising model is characterized by Z2 spontaneous symmetry breaking
and undergoes a second-order phase transition at Tc = 2/ ln(1 +

√
2) ≈ 2.269

[102]. Starting from Markov Chain Monte Carlo simulations of this model, for
each temperature single snapshots x⃗i = {S1, S2, . . . , SL2} of the spin system are
sampled at equilibrium [1]. More specifically, we use the Wolff cluster algo-
rithm [194, 195], starting from the configuration with either all up spins or all
down spins, chosen at random. Next, 30000 to 50000 ‘cluster flips’ are per-
formed for the system to equilibrate. After this, we collect snapshots every
1000 to 1500 cluster flips to ensure that the collected state configurations are
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as uncorrelated as possible [1]. In total, we gather 10000 snapshots during a
Monte Carlo run.

For each temperature, five independent Monte Carlo simulations are per-
formed as prescribed. By combining the sampled configuration snapshots of
these runs, we thus obtain a data set with Nr = 50000 independent thermal
configurations {x⃗i}Nr

i=1. The starting point to construct the IsingNets is a set of
N configuration snapshots i ∈ {1, 2, . . . , N} randomly selected from the data
set described above, and the fully connected distance matrix d of elements dij

between these states. Here the distance dij between two generic snapshots x⃗i

and x⃗j is taken to be their Euclidean distance. As discussed in previous works,
such manifolds are typically living in very high dimensional subspaces [142,
1], so that simple dimensional reductions are not applicable, and a full-fledged
network analysis is needed.

5.3 Network characterization across the distance fil-

tration

5.3.1 Weight filtration

As anticipated in the introduction, in this first Section, our analysis focuses on
the properties of IsingNets observed as a function of the distance filtration. We
consider IsingNets which are graphs G = (V, E) formed by a set of N nodes V
and a set of links E with (i, j) ∈ E only if the nodes (state configurations) i and
j have distance dij < r. Here r determines the distance filtration and indicates
a tunable parameter that ranges from the minimum of the distances rmin =

mini,jdij between the N nodes to their maximum distance rmax = maxi,jdij. We
are thus here completely agnostic about the best choice of r as we study the
properties of IsingNets across all possible choices of the distance threshold r.

In particular as a function of r we will explore the percolation properties
of the IsingNets which define an agglomeration from N disconnected nodes
to a single connected component as r is raised from rmin to rmax and we will
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compare this process with the corresponding null model obtained from the
same process applied to a randomized distance drand matrix. The randomized
distance matrix drand is constructed by randomly reshuffling the upper trian-
gular elements of d and subsequently symmetrizing the matrix. Therefore the
null model networks display the same distribution of “distances" as the true
IsingNet while being completely randomized. Note however that one of the
main differences between the distance matrix d and the randomized distance
matrix drand is that the entries of drand are not proper distances as they do not
obey the triangular inequality.

In this section, we will use a combination of tools coming from network sci-
ence to analyse the IsingNets described above. In particular, anticipating the
detailed description of the methods used to perform this analysis in the fol-
lowing paragraphs, we will use persistent homology [182, 180, 181] to further
characterize topologically the mentioned aggregation process. In this way, we
will show that persistent homology is able to detect the position of the critical
temperature of the 2D Ising model under study. This analysis will be accom-
panied by the visualization of the network using Minimum Spanning Trees
[196, 173], the results of the network embedding conducted using the UMAP
(Uniform manifold approximation and projection for dimension reduction) al-
gorithm [197], and the statistical characterization of the distance matrix as a
function of the temperature conducted using the closeness centrality [198] dis-
tribution.

5.3.2 Percolation process

We start our investigation exploring the percolation process [199, 150, 200, 201,
151] monitoring the connected component of the network as a function of the
filtration parameter r. To contrast the behavior of the percolation process of
IsingNets with a null-hypothesis percolation process, we consider the process
defined on the actual IsingNet distance matrix d with the same process defined
starting from a matrix drand obtained by randomly permuting distances among
pair of nodes.
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The percolation process of IsingNets reveals a major difference with the
percolation process on the randomized distance matrix: mainly the IsingNets
obtained for the 2D Ising model below the phase transition, i.e. T < Tc display
for a very significant range of values of the filtration parameter r, two giant
components while the randomized process only displays one giant component.
This phenomenon is evident from the plot in Figures 5.1 and 5.2 showing the
relative size of the largest component R and the second largest component R2,
which are both giant, i.e. extensive for a wide range of r values. Indeed below
the critical temperature Tc, the IsingNets display two transitions as the value
of the filtration parameter is raised (see Figures 5.1 and 5.2). The first transi-
tion is characterized by the emergence of the two equal size giant components
corresponding to the symmetry of the configuration snapshots of the 2D Ising
model for T < Tc and the second one is characterized by the merging of these
two giant components for very large values of r, characterized by the disap-
pearance of a significant second largest connected component (orange line in
Figure 5.1 (a) and Figure 5.2 (a). This phenomenology is dramatically different
from the percolation obtained in the randomized null model where the giant
component is unique for every value of r (see Figures 5.1 and 5.2). For temper-
atures above the critical one (see Figure 5.3), instead, only one giant component
is observed corresponding to the paramagnetic state of the 2D Ising model. In
order to further characterize the percolation process we also monitor as a func-
tion of r the average size of finite components ⟨s̄⟩, the number of components
ns̄ and the inverse participation ratio Y whose inverse determines the number
of typical clusters. Specifically the inverse participation ratio Y is defined as

Y = ∑
p

(
s̄p

∑q s̄q

)2

=
1

N2 ∑
p

s̄2
p. (5.2)

where s̄p indicates the size of the p-th largest component. The abrupt increase
of Y at large r further indicates the merging of two giant components (Figure
5.1 (g) and Figure 5.2 (g)).
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(a)
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FIGURE 5.1: The percolation properties of the IsingNet (left panels) gen-
erated from 2D Ising model Monte Carlo simulations on spin systems
of linear size L = 40 at temperature T = 2.12 < Tc are shown as a
function of filtration parameter r. Nodes are connected if their distance
is less than r. Five quantities are measured: the fraction of nodes in
the largest connected component (the first row, blue line) and the frac-
tion of nodes in the second largest connected component (the first row,
orange line), the average size of components that are smaller than the
second largest component ⟨s⟩ (the second row), the number of compo-
nents ns (the third row) and the inverse participation ratio Y (the fourth
row). The results are compared with these quantities obtained from cor-
responding percolation properties obtained from a randomly permuted
distance matrix (right panels). The number of nodes of the IsingNets is
N = 6000.
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(a)

(c)

(e)

(g)
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FIGURE 5.2: Same as Figure 5.1 but with IsingNets obtained from 2D
Ising model simulations at T = 2.35.
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(a)

(c)

(e)

(g)
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(d)

(f)

(h)

FIGURE 5.3: Same as Figure 5.1 but with IsingNets obtained from 2D
Ising model simulations at T = 2.50.

On an Erdös-Renyi random graph the average size of finite component ⟨s̄⟩
plays the role of the percolation susceptibility [199], diverging in correspon-
dence with the emergence of the (single) giant component. In the IsingNets
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(see Figures 5.1-5.3 the average size of finite component ⟨s̄⟩ has a very sup-
pressed maximum with respect to the same quantity measured on the consid-
ered null model, indicating that the agglomeration of the two giant clusters
proceeds by subsequent agglomeration of very small components and isolated
nodes rather than by the agglomeration of finite clusters of diverging average
size as in a random graph. This is also confirmed by the behavior of the number
of clusters ns̄ as a function of the filtration parameter r which for the IsingNets
decays less steeply than in the randomized null model. Finally, the inverse par-
ticipation ratio Y for low temperatures reveals a significant plateau at Y = 1/2
indicating the existence of two giant components of approximately equal size
(see Figure 5.1). Above the critical temperature, for T > Tc as the filtration
parameter is raised only one giant component emerges and the difference with
respect to the randomized null model is reduced (see Fig. 5.3).

5.3.3 Persistent homology

Topology is the study of shapes and their invariant properties under contin-
uous deformations (see for an introduction [154, 179]). Major examples of
topological invariants are the Betti numbers. The Betti number β0 indicates
the number of connected components, the Betti number β1 indicates the num-
ber of one-dimensional holes, the number of β2 indicates the number of two-
dimensional holes, etc. For instance, a point has Betti numbers β0 = 1 and
βn = 0 for any other value of n, a circle has non-zero Betti numbers β0 = β1 = 1
and a sphere has non-zero Betti numbers β0 = β2 = 1. An important result
of algebraic topology [154, 179, 182, 180, 181] is that the n̄-dimensional Betti
number βn̄ is the rank of the n̄-dimensional homology group of the considered
topological space.

In the discrete setting, the Betti numbers are defined in general for sim-
plicial complexes. Simplicial complexes are a type of higher-order network
formed by a set of simplices such as nodes, links, triangles, tetrahedra, etc.
They have the additional property of being closed under the inclusion of faces
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of each simplex. This last property implies that if a triangle belongs to the sim-
plicial complexes also all its links and nodes belong to the simplicial complex.

H0

H1

H2

r
FIGURE 5.4: A schematic illustration of the filtration process. The bar-
codes are used to show the appearance and disappearance of topologi-
cal features corresponding to different homology classes as the filtration
parameter r is increased. The filtration process ends at r = rmax when
all N nodes are fully connected and form a N-simplex. Simplices of
different dimensions are indicated by different colors.
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(a) (b) (c)

(d) (e) (f)
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FIGURE 5.5: The persistent diagram corresponding to homology classes
in H0, H1, H2, and H3 of the IsingNet clique complexes are plotted as a
function of the filtration parameter r. Panels (a), (b), and (c) show the
persistent diagrams of IsingNets obtained from the spin system of linear
size L = 40 at T = 2.12 (a), T = 2.25 (b), and T = 2.50 (c). Panels (d),
(e), and (f) show the persistent diagram of corresponding randomized
null models obtained at T = 2.12 (d), T = 2.25 (e), and T = 2.50 (f). The
networks are formed by N = 100 nodes.
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FIGURE 5.6: The Betti numbers β0, β1, β2, and β3 of the IsingNet clique
complexes are plotted as a function of the filtration parameter r. Panels
(a), (b), and (c) show the persistent diagrams of IsingNets obtained from
the spin system of linear size L = 40 at T = 2.12 (a), T = 2.25 (b),
and T = 2.50 (c). Panels (d), (e), and (f) show the persistent diagram
of corresponding randomized null models obtained at T = 2.12 (d),
T = 2.25 (e), and T = 2.50 (f). The networks are formed by N = 100
nodes.
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(a) (b)

(d)(c)

FIGURE 5.7: The Betti distance dβ (panel (a) and (b)) and the Wasserstein
distance dW (panel (c) and (d)) between the persistent diagrams of the
IsingNets and its randomized null models are plotted as a function of
the temperature T for homology H0 and H1. The plot shows the finite
size scaling of the distances on systems of size L = 32, L = 40, and L =
48. The dashed line indicates the critical temperature Tc. The IsingNets
on which the persistent diagrams have been calculated have N = 300
nodes.

Topological data analysis [179, 180, 181, 182, 178, 202] and in particular
persistent homology allows to characterize the topological properties of data
as a function of a filtration parameter and is becoming increasingly impor-
tant in network and data science with applications ranging from the study of
gene-expression to the investigation of brain networks. As mentioned in the
introduction TDA is recently becoming a very popular computational tool to
study phase transitions as well [189, 190, 191, 192, 183, 184, 185, 186, 187, 85,
188]. However, in this context, most of the TDA so far are performed on point
clouds rather than on networks. In our setting, when each pair of nodes (i, j)
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is assigned a distance dij, persistent homology characterizes the topology of
data by forming a simplicial complex representation of the data and character-
izing its homology, i.e. the connected components (H0 homology classes); the
independent cycles -one-dimensional holes- (H1 homology classes); the two-
dimensional holes (H2 homology classes) etc. The simplicial complexes [154,
178, 180, 181] that we use to perform the topological data analysis are the so-
called Vietoris-Rips complexes of the network generated by filling all the sim-
plices having all links at distance dij < r. Thus as a function of r the set of
simplicial complexes forms a filtration.

As the filtration parameter r is raised, first each node belongs to a differ-
ent connected component, then connected components merge progressively
as described also by the previous paragraph (see Figure 5.4 for a schematic
description of the filtration). However, as r increases there is the potential
also for one-dimensional holes (or network cycles) to emerge with each in-
dependent cycle represented by a different H1 homological class. Eventually,
as r increases these cycles will become filled and thus disappear. Moreover,
also higher-dimensional holes represented by higher dimensional homological
classes Hn̄might arise and eventually coalesce as r is further increased giving
rise to barcodes representing the topology of the data.

By monitoring the homology classes as a function of r, the results of per-
sistent homology are typically summarized by barcodes where each homology
class is represented as a bar that extends through the corresponding range of
values of r for which the homology class is observed (see Figure 5.4). The bar-
codes are then represented by persistent diagrams where for each homology
class the value of r where the homology class is disappearing (death) is plotted
versus the value of r corresponding to the first appearance of the homology
class (birth), see for instance Figure 5.5. Significant homology classes are the
ones represented by points far from the diagonal which last for a large interval
of values of the filtration parameter r.

The investigation of the persistent diagrams for the IsingNets can further
characterize these discrete structures by revealing important properties about
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how the clusters merge as a function of r. In particular, the persistent dia-
grams of the IsingNets allow us to show that clusters remain compact with a
suppression of the Betti numbers with respect to the corresponding persistent
diagram of the randomized null models. This result is evident from Figure 5.5
and Figure 5.6 where we plot the persistent diagram (for homology Hn̄ with
n̄ ∈ {0, 1, 2, 3} and the Betti numbers βn̄ with n̄ ∈ {0, 1, 2, 3} as a function of
the filtration parameter r for IsingNets and their randomized null models as a
function of the temperature T. Indeed the persistent diagrams of IsingNets cor-
responding to homology Hn̄ with n̄ ∈ {0, 1, 2, 3} (see Figure 5.5) reveal that ho-
mology classes for the IsingNets are less persistent than the homology classes
of the null model as they are represented in the diagram by points closer to
the diagonal than in the null model. Moreover also the Betti numbers βn̄ with
n̄ ∈ {0, 1, 2, 3} are strongly suppressed with respect to their null model coun-
terpart.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 5.8: Minimum spanning trees (MST) of the IsingNets obtained
from the spin system of linear size L = 40 are plotted for different tem-
peratures T above and below the phase transition at Tc = 2.269 . . .. The
nodes are colored using a K-means clustering algorithm with K = 2.
The number of nodes of the MSTs is N = 2000. The MSTs are generated
at T = 2.12 (a), T = 2.20 (b), T = 2.26 (c), T = 2.28 (d), T = 2.30 (e),
T = 2.35 (f), T = 2.38 (g), T = 2.50 (h), T = 3.50 (i).

The persistent diagrams of IsingNets can be compared to the persistent di-
agrams of their randomized null model as a function of the temperature. This
comparison can be performed by considering different measures of distances
between persistent diagrams.

Here we show both the Weisserstein distance and the Betti distance among
the persistent diagrams of the IsingNets and their corresponding randomized
null model. The Weissestein distance captures the minimum distance over all
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perfect matchings between points in two persistent diagrams, i.e.,

dW =

[
inf

η:I→N
∑
x∈I

||x − η(x)||2∞
]1/2

(5.3)

where x ∈ I indicates a point x = (b, d) with birth b and dead d in the persis-
tent diagram of the IsingNet, while η(x) ∈ N indicates the matched point in
the persistent diagram of the corresponding null model. The map η denotes
any bijection between I and N. The Betti distance computes the L2 distance
between Betti curves of two persistent diagrams.

dβ =

[
∑

r

(
β[I](r)− β[N](r)

)2
]1/2

(5.4)

where β[I](r) and β[N](r) indicate the Betti number of the IsingNet and the
corresponding null model with filtration parameter r.

These distance measures provide good indicators of the critical points as
they display a maximum approaching the critical temperature of the 2D Ising
model as the size L of the 2D lattice increases (see Figure 5.7). Note that here,
due to the computational cost of calculating the persistent diagrams corre-
sponding to higher-order homological classes, we focus here only on homol-
ogy classes H0 and H1.

This is rather clear evidence that the IsingNets have a topology that encodes
fundamental properties of the underlying spin system.

5.3.4 Minimum Spanning Tree Visualization

Our unsupervised analysis of the IsingNets includes their visualization which
reveals their highly heterogeneous structure below the critical temperature Tc

and at criticality. A very efficient way to visualize the IsingNets is by plotting
their Minimum Spanning Trees (MST) [196, 173]. The MST is the subtree of the
network whose sum of the distances between the connected nodes is minimal,
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and its topology reveals important properties of the fully connected weighted
distance matrix of the IsingNets. In particular, as shown in Figure 5.8 for T
deep in the ferromagnetic phase the topology of the MST of the IsingNets is
dominated by very relevant hub nodes, and the network displays a clear par-
tition between the two clusters detected by the K-means algorithm with K = 2
indicated in the figure by two different colors of the nodes. As the temperature
is raised to the critical region, T ≃ Tc the hubs of MST become less dominant.
Above the phase transition, the MST becomes clearly more random with a sup-
pression of the hubs in the MST.

5.3.5 Network embedding

Our analysis of the IsingNets is here enriched by considering the UMAP 2-
dimensional embedding of the fully connected network endowed with the
distance matrix d. UMAP is a widely used embedding algorithm exploiting
dimension reduction (for more detail see for instance Ref.[203]). The embed-
ding is here performed as a function of the temperature T and the nodes are
colored according to their clustering in two groups performed using K-means
(see Figure 5.9).

The UMAP embedding provides a clear visualization of the two main clus-
ters of the nodes of the IsingNets present for T < Tc and corresponding to the
symmetry among configuration snapshots and of their merging as the temper-
ature T is raised above the critical temperature.
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(d) (e) (f)

(g) (h) (i)

FIGURE 5.9: IsingNets obtained from the spin system of linear size L =
40 at different temperatures T are embedded into a two-dimensional
space using Uniform Manifold Approximation and Projection (UMAP)
embedding algorithm. The nodes are colored using a K-means cluster-
ing algorithm. The number of nodes of the IsingNets is N = 104. The
IsingNets are generated at T = 2.12 (a), T = 2.20 (b), T = 2.26 (c),
T = 2.28 (d), T = 2.30 (e), T = 2.35 (f), T = 2.38 (g), T = 2.50 (h),
T = 3.50 (i).

5.3.6 Metric-based centrality measures

To conclude our characterization of the IsingNets without imposing a fixed
value of the filtration parameter, we present here the statistical properties of
some important geometrical aspects of the IsingNet captured by the closeness
centrality of the nodes.
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The closeness centrality Cli of a node i measures how close is the node to
the other nodes of the network, and is defined as the inverse of the average
distance of node i to the other nodes of the network, i.e.

CLi =
N − 1

∑j ̸=i dij
(5.5)

We investigate the statistical properties (the mean ⟨Cl⟩, the standard devia-
tion σ(Cl), the skewness Sk(Cl) and the kurtosis Ku(Cl)) of the distribution
of the closeness centrality in IsingNets as a function of the temperature T. In
Figure 5.10 we show that the average closeness centrality decreases as a func-
tion of the temperature, demonstrating that on average the distances between
the nodes are higher at higher temperatures. The higher-order statistics of the
closeness centrality distribution are even more revealing of the IsingNets orga-
nization and the skewness and kurtosis of the closeness distribution provide a
good unsupervised indicator of the critical point (see Figure 5.10). Indeed the
standard deviation of the closeness centrality displays a maximum for temper-
atures close to the critical temperature; the skewness of the closeness central-
ity is negative below the critical temperature and positive above the critical
temperature and the kurtosis becomes negative above the critical temperature,
while at very high temperature is is strongly affected by noise.
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(a) (b)

(c) (d)

FIGURE 5.10: The mean ⟨Cl⟩, standard deviation σ(Cl), skewness
Sk(Cl), and kurtosis Ku(Cl) of closeness distribution at different tem-
peratures T and sizes L are plotted on the IsingNets where all the dis-
tance between each pair of nodes is retained. The closeness is calcu-
lated via Eq. 5.5. The corresponding random networks are formed by
randomly permuting the distances between node pairs. The average
closeness centrality of the IsingNets coincides by construction with the
average of the null model (not shown) however the higher-order statis-
tics strongly depart from the null model behavior. The vertical green
dashed lines indicate the critical temperature Tc the horizontal black
dashed lines indicate Sk(Cl) = 0 in panel (c) and Ku(Cl) = 0 in panel
(d).
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5.4 Network characterization of IsingNets at a given

value of the threshold distance r

5.4.1 IsingNets at given threshold distance r

In this section, we study the properties of IsingNets where we fix a given choice
of filtration parameter r. In particular we will consider the IsingNets, whose
N × N adjacency matrix A has elements

Aij = θ(r − dij), (5.6)

with θ(x) = 1 for x > 0 and θ(x) = 0 otherwise. In the following, we will
indicate with i ∼ j two neighbour nodes for which Aij = 1.

We adopt the same choice of the parameter r proposed in Ref. [193] where
it was shown that for a wide range of choices of r the IsingNets are scale-free
presenting often power-law exponents less than two which are known to occur
in a variety of context [204, 205, 206, 207]. In particular, here we take r equal to
the average distance of the 5th nearest neighbour.

Similarly, the randomized network forming our null model in this section
is performed by thresholding the randomized distance matrix drand with the
same threshold used for the corresponding IsingNet.

We consider the statistical and combinatorial properties of these networks
where we assign to each link (i, j) a weight wij equal to the inverse of the dis-
tance dij, provided this distance is smaller than r, i.e.

wij =
1

dij
Aij (5.7)

We provide an in-depth network analysis of these networks investigating
their degree and strength distribution, and going beyond these statistical prop-
erties providing evidence of the presence of degree correlations, of a nontriv-
ial k-core structure and of weight degree correlations. Moreover, the investi-
gation of the spectral properties of the IsingNets will demonstrate non-trivial
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signatures of criticality. This analysis provides clear evidence that not only the
degree distribution of IsingNets is strongly different from the one of an Erdös-
Renyi random graph, but the network also obeys important higher-order cor-
relations reflecting the correlations existing in the spin system configuration
snapshots.

5.4.2 Degree and strength distribution

One of the most simple yet fundamental property of a network is its degree
distribution P(k) which characterize globally the network starting from the
knowledge of the node’s degrees where the degree ki of the node i indicates
the sum of the links incident to it, i.e.

ki =
N

∑
j=1

Aij. (5.8)

Thus while the degree is a local property of the nodes the degree distribution
P(k) is able to characterize the global properties of the networks. In particular
scale-free [208, 209, 210] and in general degree distribution with second

〈
k2〉

(and eventually first ⟨k⟩) moment diverging with the network size have been
shown to have a significant role in determining the response of the network to
random damage and the critical behavior of the dynamics defined on top of
these networks, such as epidemic spreading and the Ising model [209, 149].

For weighted networks it is also possible to define weighted degree also
called strength si of the generic node i [211] given by the sum of the weights of
its incident links, i.e.

si =
N

∑
j=1

wij. (5.9)

From the sequence of the node’s strengths, it is possible to extract also the
strength distribution P(s/s0) where s0 is the minimal strength of the links.
This distribution has been shown to display broad distributions in a number of
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real weighted networks, such as collaboration networks and airport networks
[212].

In Figure 5.11 we plot the degree P(k) and strength P(s/s0) distribution for
temperatures below and above the phase transition demonstrating that these
distributions are broad. We note that below the critical temperature Tc, the
networks are not only broad but also dense, i.e. having an average degree
growing with the network size (for models of these networks see [204, 205,
206, 207]).

To quantify the scale-free nature of these distributions we plot the ratio be-
tween the second moment, the average degree ⟨k⟩ and the average strength
⟨s⟩ as a function of the temperature, showing that that ⟨k⟩, and ⟨k2⟩/⟨k⟩ are
good indicators of the critical point displaying a maximum for T = Tc without
noticeable finite size effects for the sizes investigated in this work (see Figure
5.12).
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(a) (b)

(c) (d)

FIGURE 5.11: Degree distribution P(k) and strength distribution
P(s/s0) of IsingNets obtained from the spin system of linear size L = 40
formed by N = 104 nodes at temperature T = 2.12 and T = 2.50. Panel
(a) shows the degree distribution of IsingNet at T = 2.12. Panel (b)
shows the strength distribution of the same network as panel (a). Panel
(c) is the same as panel (a) but obtained at T = 2.50. Panel (d) is the
same as panel (b) but obtained at T = 2.50.
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(a) (b)

(c) (d)

FIGURE 5.12: The average degree ⟨k⟩ (panel (a)) and the average
strength ⟨s⟩ (panel (b)) are plotted together with the ratio ⟨k2⟩/⟨k⟩
(panel (c)) and ⟨s2⟩/⟨s⟩ (panel (d)) as a function of temperature T. The
dashed line indicates the critical temperature Tc. The IsingNets are
formed by N = 104 nodes.

5.4.3 Degree correlations

In order to go beyond single node statistics and to explore how far IsingNets
are from random networks with a given degree distribution, in this section
we characterize the degree correlations [150, 151] of the IsingNets. Degree-
degree correlations measure to what extent the degree of two end nodes of the
same link are correlated. Degree correlations are typically classified as either
assortative or disassortative. Assortative degree correlations imply that highly
connected nodes are more likely to be connected to highly connected nodes
while low degree nodes are more likely to be connected to low degree nodes
than in a maximally random network with the same degree distribution. Con-
versely, disassortative networks are networks in which highly connected nodes
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are more likely to be connected to low degree nodes than in the maximally ran-
dom network with the same degree distribution. Examples of assortative net-
works are social networks while examples of disassortative networks include
the Internet and the protein interaction networks. The degree-degree correla-
tions can be quantified by considering the average degree of the neighbour of
a node knn(i) defined as

knn(i) =
1
ki

∑
j∼i

k j (5.10)

When knn(i) tends to be higher for nodes of higher degree ki the network is
classified as assortative. Instead when knn(i) is typically lower for nodes of
higher degree ki then the network is classified as disassortative. The IsingNets
are clearly displaying a disassortative behavior for T < Tc that deviates strongly
from the behavior of the null model in which the distance matrix d is reshuf-
fled (see Figure 5.13). On the contrary, for T > Tc the trend of knn versus k does
not appear to be fully monotonic, while nodes of larger degrees remain more
likely to connect to low degree nodes.

Interestingly the degree correlations are also affecting the average cluster-
ing coefficient C(k) [213, 151, 214] of nodes of degree k which display a decay
as a function of k typical of networks with disassortative degree correlations
(see Figure 5.13).

Degree-degree correlations can also be detected by the Pearson correlation
coefficient r̄ [150] between degrees of linked nodes which is plotted as a func-
tion of the temperature in Fig. 5.14(a) showing a clear negative (disassorta-
tive) correlations for low temperatures which strongly deviates from the null
model. In Fig. 5.14(b) we also report the average clustering coefficient C as
a function of the temperature showing that IsingNets display a much larger
average clustering coefficient than the null model counterpart and that this av-
erage clustering coefficient is higher deep in the ferromagnetic phase (lower
temperatures).
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FIGURE 5.13: Average nearest neighbour degree knn and clustering co-
efficient C(k) on IsingNets obtained from Monte Carlo simulations of
the spin system of linear size L = 40 and corresponding null models
with N = 2000 nodes. The threshold distance of connecting two nodes
is the 5th nearest neighbour average distance. The random network
is obtained by randomly permuting distances between node pairs and
nodes are connected with the same threshold. The average neighbour
degree knn is shown as a function of degree k on IsingNets and corre-
sponding null models. Panel (a) and (b) show knn obtained at T = 2.12
(a) and T = 2.35 (b). Panel (c) and (d) show knn of the corresponding
null model at T = 2.12 (c) and T = 2.35 (d). Panel (e) and (f) show C(k)
obtained at T = 2.12 (e) and T = 2.35 (f). Panel (g) and (h) show C(k)
of the corresponding null model at T = 2.12 (g) and T = 2.35 (h).
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(a) (b)

FIGURE 5.14: Pearson correlation coefficient r̄ (a) and average clus-
tering coefficient C (b) on IsingNets and corresponding null models
formed at different temperatures. The Pearson correlation coefficient r
is calculated on networks with 104 nodes and the average clustering co-
efficient C is calculated for IsingNet with N = 2000 nodes coming from
Monte Carlo simulation with linear size L = 40. The threshold distance
of connecting two nodes is the 5th nearest neighbour average distance.
The random network is obtained by randomly permuting distances be-
tween node pairs and nodes are connected with the same threshold.

5.4.4 K-core structure

Networks can be decomposed in nested K-cores characterizing their core-periphery
structure [215, 216, 217]. A K-core is a subgraph of the network formed by a set
of M(K) nodes each having at least K connections with the other nodes of the
set. Power-law networks with exponent γ ∈ (2, 3] display a significant K-core
structure with the maximum K diverging with the network size and a power-
law decay of M(K) as a function of K. On the contrary Erdös and Renyi net-
works have a finite number of K-cores also when the average degree diverges.
Here we show that IsingNets have a very rich K-core structure having statisti-
cal properties that change below and above the critical temperature (see Figure
5.15). Indeed above the critical temperature, we observe a behavior similar to
the expected behavior for sparse scale-free networks with power-law exponent
between two and three presenting a broad (seemingly power-law straight line
on a log-log plot) decay of M(K) versus K. However, below the critical tem-
perature where the average degree diverges, the K-cores include more nodes
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while the decay of M(K) versus K is better approximated by an exponential
(straight line in a log-linear plot) rather than by a power-law.

(a) (b)

FIGURE 5.15: Fraction of nodes in the K−core M(K) as a function of the
core size K on IsingNet and null model with N = 104 nodes at T = 2.12
(a) and T = 2.50 (b).The IsingNets are generated from 2D Ising model
Monte Carlo simulations of the spin system of linear size L = 40. Panel
(a) is shown with a linear-log scale and panel (b) is shown with a log-log
scale.

5.4.5 Weight-topology correlations

Interestingly in weighted networks not only the network topology can reveal
relevant degree correlations showing that the networks deviate from maxi-
mally random networks, but also the weights can be distributed in a non-
random way. In particular, there are two main network analyses that are able to
detect weight-topology correlations. The first analysis [211] involves studying
the normalized strength s/k versus the degree k for each node of the network.
If the weights are distributed randomly and independently on the degree of
the two end nodes there should not be any significant dependence of s/k with
k. Conversely if s/k increases with k it implies that nodes with higher degrees
are incident in average to links with larger weights. The second analysis [218]
investigates the weight-topology correlations aiming at revealing the weight
heterogeneity among links that connect to the same node. This heterogeneity
if any can be quantified by calculating the inverse participation ratio Y for the
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weights of the links ending to node i, defined as

Yi = ∑
j∼i

(
wij

si

)2

. (5.11)

If the weights wij of the links (i, j) incident to node i are homogeneous, Yi ∼
1/ki. If the weights are highly heterogeneous, Y−1

i indicates the effective num-
ber of links with significant weight. Interestingly when we measure Yi for the
IsingNets we observe that this second type of weight heterogeneity is missing
in the data and that Yi ∼ 1/ki indicating that for each node i the weights of
the links incident to it have all weights of comparable order or magnitude (see
figure 5.16).
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(a) (b)

(c) (d)

(e) (f)

FIGURE 5.16: The ratio of strength and degree and the inverse partic-
ipation ratio on IsingNets obtained from Monte Carlo simulations of
the spin system of linear size L = 40 are shown versus degree on net-
works formed at different temperatures. The networks are formed by
N = 5000 samples. The threshold distance of connecting two nodes
is the 5th nearest neighbour average distance. The random networks
are obtained by randomly permuting distances between node pairs and
nodes are connected with the same threshold. The first row shows the
strength degree ratio s/k versus degree k on IsingNets and the second
row shows which on corresponding random networks. The third row
shows the inverse participation ratio Y(k) versus degree k. The net-
works are formed by simulation obtained at temperature T = 2.12 (left
column), T = 2.35 (right column).



110 Chapter 5. Network science Ising states of matter

5.4.6 Spectral properties of Ising networks

The IsingNets do not only have very interesting combinatorial and statistical
properties encoded in their highly correlated structure but display also rele-
vant geometrical properties reflected in their spectrum. In particular, the criti-
cal IsingNets display non-trivial spectral properties characterized by a power-
law scaling close to criticality and a highly degenerate spectral gap. The spec-
tral properties of networks are usually probed by considering the spectrum of
the graph Laplacian describing diffusion processes. The graph Laplacian ∆ is
defined as ∆ = D − A where D is the diagonal matrix whose diagonal ele-
ments are the degrees of the nodes (i.e. Dii = ki), and A is the adjacency matrix
of the network. The graph Laplacian ∆ is semi-definite positive and the spec-
trum always includes a zero eigenvalue with degeneracy given by the number
of connected components of the network, i.e. given by the Betti number β0.
The smallest non-zero eigenvalue of the graph Laplacian of a network is also
called the Fiedler eigenvalue and is typically indicated as λ2 (as it is the sec-
ond smallest eigenvalue in a connected network). In the literature, often one
distinguishes between network models displaying a finite Fiedler eigenvalue
λ2 → λ⋆

2 > 0 in the limit N → ∞ and network models in which λ2 → 0
as N → ∞. In the first case, we say that the networks display a spectral gap
whereas in the latter case we say that the “spectral gap closes". Examples of
networks with finite spectral dimension are random graphs above the percola-
tion threshold and examples of networks in which the spectral gap closes are
finite dimensional lattices.

In several networks in which the spectral gap closes, it is possible to ob-
serve the spectral dimension dS [154, 219]. The spectral dimension dS is the
dimension perceived by diffusion processes on the networks encoded in the
graph Laplacian. On a lattice, the spectral dimension coincides with the Eu-
clidean dimension d of the lattice while on general network topology, the spec-
tral dimension can be distinct from the Hausdorff dimension of the network.
Interestingly also small world networks with infinite Hausdorff dimension can
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have a finite spectral dimension dS ≥ 2 [154, 220]. The spectral dimension de-
termines the scaling of the cumulative density of the eigenvalues ρc(λ) of the
graph Laplacian for λ ≪ 1 in networks where the spectral gap closes. In par-
ticular we have that networks with a spectral dimension dS have a cumulative
distribution ρc(λ) that obeys for λ ≪ 1

ρc(λ) ≃ CλdS/2, (5.12)

where C is a constant. In Figure 5.17 we show that the IsingNets display non-
trivial spectral properties that have very peculiar characteristics strongly devi-
ating from their corresponding null model. Particularly noticeable are the spec-
tral properties of IsingNets close to the critical point where one observes the co-
existence of a highly degenerate finite Fiedler eigenvalue λ2 with a power-law
scaling of the cumulative distribution

ρc(λ) ≃ Cλd̂/2, (5.13)

for λ > λ2 with a exponent given by d̂ ≃ 0.78 ± 0.04 for L = 40. Above the
critical temperature, the degeneracy of the Fiedler eigenvalue is reduced and
one observes a nontrivial spectrum reminiscent of the scale-dependent spectral
dimension discussed in Refs. [221] within the critical region that at higher
temperatures converges with the spectrum of the null model. Below the critical
dimension, the spectral gap remains highly degenerate while the rest of the
spectrum remains broadly distributed.

The spectrum of the graph Laplacian is also key to characterize the network
von Neumann entropy SVN [222, 223, 224] defined as

SVN = −∑
λ

λ

⟨k⟩N
ln
(

λ

⟨k⟩N

)
. (5.14)

The von Neumann entropy strongly departs from the von Neumann entropy
of the null model for low temperatures displaying a local maximum for T = Tc

(see Figure 5.18).
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An interesting open question that will be addressed in the following works
is the relation between these spectral properties of the IsingNets graph Lapla-
cians and the intrinsic dimension and the entropy measures that have been re-
cently proposed starting from the unsupervised PCA analysis of spin systems
[142, 1].

Slope=0.29 Slope=0.39

(a) (b)

(d)(c)

FIGURE 5.17: The cumulative distribution ρc(λ) of the eigenvalues λ
of graph Laplacian ∆ of IsingNets and corresponding null models at
different temperatures T. The distribution is shown at T = 2.12 (a), T =
2.27 (b), T = 2.50 (c), and T = 3.50 (d). Data are shown for Isingnets
generated from Monte Carlo simulations of spin system of linear size
L = 40. In panel (b), the dashed lines indicate a power-law growth
shown in Eq. 5.13 with exponent d̂ = 0.78 ± 0.04.
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FIGURE 5.18: The von Neumann entropy SVN of different system size L
is shown versus the temperature T. The IsingNets are formed by N =
104 nodes. The dashed line indicates the critical temperature Tc.

5.5 Conclusions

In this work, we have launched a systematic network analysis of unsupervised
learning of different states of matter. The analyzed IsingNets obtained from
Monte Carlo simulations of the 2D Ising model are shown to reveal the statisti-
cal, combinatorial, geometrical and topological organization of these networks.
Through the paper, we have shown that true IsingNets are highly non-random
by comparing their structural properties with the structural properties of the
randomized counterparts. Importantly, we have also identified several indica-
tors of the phase transition.

We have addressed the characterization of IsingNets following two dif-
ferent approaches. In the first approach, we have studied the structure of
IsingNets as the filtration parameter r is increased, which enforces an effective
percolation process in which nodes are subsequently aggregated by consider-
ing connected pairs of nodes at increasing distances. This percolation process
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reveals the presence of two giant components in IsingNets in the ferromagnetic
state, each one corresponding to configurations with different magnetization.
The same filtration scheme has also been used here to study the topology of
the data by constructing the clique complexes of the IsingNets and calculating
their persistent diagram. Interestingly, the persistent diagrams reveal that real
IsingNets are formed by compact clusters as the Betti numbers of their clique
complex are strongly suppressed with respect to the clique complex of the cor-
responding randomized null models. This network analysis conducted across
the filtration is also enriched by effective visualization of the network embed-
ding conducted using MST and the UMAP embedding and by the statistical
characterization of the distribution of closeness centralities.

Secondly, our investigation of IsingNets has been conducted by consider-
ing only links at a distance less than a threshold value r taken to be the average
distance of the 5th nearest neighbours nodes according to the (fully connected)
distance matrix. These networks display a broad degree and strength distribu-
tion but their complexity extends well beyond the degree and strength distri-
bution because IsingNets have strong degree-degree correlations and weights-
degree correlations, and a rich core structure that changes significantly across
the phase transition reflecting the highly nontrivial structure of the spin system
that they describe.

This work opens new perspectives for the unsupervised characterization of
the study of phases of matter using the tools of network science. This work
can be extended in different directions. On one side, the analysis performed
here for the 2D Ising model can be extended to the study of other classical
critical phenomena with the goal of characterizing the possible presence or
the lack of universalities among the networks constructed from spin system
configuration snapshots. Similarly, the same toolbox can be utilized to attack
out-of-equilibrium critical behavior.

Another natural extension is to consider path integrals of quantum sys-
tems [225]. While the data structures of such objects might feature anisotropies
due to the different roles of space and imaginary time correlations, they shall
be equally amenable to the analysis discussed here. Moreover, single-sliced
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path integrals can also be represented as networks, as discussed in Ref. [193]:
this last route provides a very promising venue for future investigation is the
application of the proposed network science tools to study directly experimen-
tal data of many-body wave function snapshots.
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Chapter 6

Outlook

In summary, our study presents theoretical frameworks for understanding the
critical behavior in partition functions of classical systems using non-parametric
unsupervised methods. We illustrate our approach by investigating phase
transitions in classical Ising models within 2D and 3D lattices, utilizing thermal
configurations obtained through Monte Carlo (MC) simulations. We compare
the strengths and weaknesses of the two-NN method against PCA entropy.
We find that Id study for 3D proves to be notably more challenging than in 2D
due to the curse of dimensionality [110]. To overcome this challenge, we have
introduced the concept of PCA entropy, which is a novel application in the
context of statistical mechanics. This entropy metric exhibits striking qualita-
tive similarities with the thermodynamic entropy of the Ising model, partic-
ularly around the transition point in both 2D and 3D cases, enabling precise
estimation of the critical temperature through conventional finite-size scaling
analysis. Using PCA entropy and information imbalance, we are able to rank
relevant correlations in the dynamics of out-of-equilibrium quantum systems
in an assumption-free manner. We have successfully identified the most rel-
evant operators describing the dynamics of Bose-Einstein condensates. From
the intrinsic dimension characterization, we are able to find the time bound of
universal dynamics.

Further, we systematically analyze networks generated from unsupervised
learning of different states of matter, with a focus on IsingNets derived from
2D Ising model Monte Carlo simulations. Our analysis uncovers the statistical,
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combinatorial, geometrical, and topological aspects of these networks. To char-
acterize IsingNets, we employ two distinct approaches. First, we investigate
their structure as we increase the filtration parameter r. This process enforces
an effective percolation mechanism that aggregates nodes based on connected
pairs at increasing distances, revealing the presence of two substantial compo-
nents in the ferromagnetic state, each corresponding to configurations with dif-
ferent magnetization. We also study network topology by constructing clique
complexes and calculating their persistent diagrams. Interestingly, these dia-
grams reveal that real IsingNets are composed of compact clusters, with signif-
icantly suppressed Betti numbers compared to randomized null models. Our
network analysis, conducted across the filtration process, is further enhanced
by effective network visualization techniques, including Minimum Spanning
Tree (MST) and UMAP embedding. We also provide statistical characteriza-
tions of closeness centralities. In a second approach, we examine IsingNets by
considering links at a distance less than a threshold value r. typically set as
the average distance to the 5th nearest neighbor nodes based on the fully con-
nected distance matrix. These networks exhibit diverse degree and strength
distributions, reflecting their complexity, which extends beyond these distribu-
tions. Notably, IsingNets feature strong degree-degree correlations, weights-
degree correlations, and a dynamic core structure that undergoes significant
changes across phase transitions, highlighting the intricate structure of the spin
system they represent.

In the thesis, we employ the Ising model as a test system, but our findings
have broader applicability. The results have the potential to pave the path for
new avenues of exploration in the fields of Statistical Mechanics and Quan-
tum Field Theory. A crucial area for investigation involves the characteriza-
tion of constraints on intrinsic dimension due to volume-related effects near
the critical point. The natural extension would be to analyze various types
of phase transitions, such as Berezinskii-Kosterlitz-Thouless (BKT) transitions
especially in the scope of PCA entropy and network theory. For quantum sys-
tems, our methods can be readily used to learn path integrals of quantum
statistical systems, extending previous works [39]. Data sets generated from
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many-body experiments would be of great interest as shown in recent works
[2, 193].

Another possible future research direction concerns out-of-equilibrium sta-
tistical mechanics. Since we have worked with systems in equilibrium it would
be interesting to study how these tools perform in characterizing out-of-equilibrium
dynamics for problems such as directed percolation [226, 227]. In this context,
to apply these techniques for spin systems with disorder driven out of equi-
librium, systems having a (de)-localization transitions would be an interesting
direction for future research.
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