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Abstract

In this thesis we study generalized global symmetries in Quantum Field Theory. In the modern

definition, symmetries are viewed as extended topological operators. On the one hand this new

paradigm efficiently encodes all the information a symmetry usually comes with (e.g. ’t Hooft

anomalies) and on the other it allows for many interesting generalizations. After the Introduc-

tion, the first chapter is a brief review of basic concepts used throughout the thesis. The rest

of this work is conceptually divided into two parts. In the first one, we consider conventional

symmetries in exotic theories characterized by randomly distributed interaction couplings as

well as non-invertible symmetries in well-known 2 dimensional theories corresponding to Calabi-

Yau non-linear sigma models. In the second part instead we showcase two applications of the

holographic approach to symmetries, the SymTFT. In particular we show how this tool can

be used efficiently to discuss anomalies (defined as obstructions to gauging) of non-invertible

symmetries in higher dimensions, and also how it can be used to establish holographic corre-

spondences relating a Topological Quantum Field Theories and the universal effective theories

describing the spontaneous breaking phases of continuous symmetries.
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Chapter 1

Introduction

This thesis is devoted to the study of symmetries in Quantum Field Theory (QFT). Symmetries

and conservation laws play a crucial role in physics, particularly in QFT, where their significance

is even more pronounced, as they can offer insights into strongly coupled regimes that are

otherwise inaccessible. The first distinction we have to make when discussing symmetries is

between spacetime and internal symmetries. The first class consists of all transformations that

act on the spacetime manifold, such as parity and time reversal, or those generated by the

conformal or supersymmetry algebras. Internal symmetries act on states and operators of the

theory while commuting with all the space-time symmetries generators. Another very important

distinction is between global and gauge symmetries. Gauge symmetries are a redundancy

of the theory. Namely, their action relates indistinguishable physical configurations, and to

obtain a physical theory, we have to break them to single out one element for each gauge

orbit. Global symmetries instead relate different physical configurations, which happen to

share the same observables. This distinction is important in understanding how symmetries

put constraints on a theory. For instance, gauge symmetries are not matched across dualities

or along renormalization group (RG) flows, while global symmetries are. A caveat to this

distinction between global and gauge symmetries arises when we consider theories on manifolds

with boundaries. Indeed, in the presence of boundaries, the theory needs further data to be

completely specified, that is, we need to specify boundary conditions. In the case of a gauge

symmetry in the bulk, it is important to define the behavior of gauge transformations at the

boundary, with the standard approach being to allow only those transformations that become

trivial at the boundary. In these situations, the symmetry becomes global on the boundary

and does have consequences on the dynamics of the theory.

In this thesis the focus is on internal global symmetries. Whenever a theory enjoys such

a structure there are many consequences on can draw from it. First of all, these structures

provide an organization principle not only for the spectrum of the theory but also for its

infrared (IR) behavior. This is the (generalized) Landau Paradigm program, whose aim is to

understand all possible phases of a theory in terms of its global symmetries and how those are

realized on the vacuum of the theory. Symmetries themselves are RG invariants and dictate

which operators can be generated in the low energy effective actions. As we will describe more

extensively in the next chapter, a symmetry is equivalent to the presence of topological extended
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operators and, in the case of continuous symmetries, of conserved currents. The behavior of

these operators inside correlation functions is completely fixed by the symmetry structure and

leads to selection rules, which, in the most general form, can be understood as relations between

correlators containing different operators related by the symmetry action. A crucial method

for employing symmetries as a diagnostic tool for the properties of a theory involves the use

of background gauge fields. Indeed, a set of observables that is most easily detected using

background fields are anomalies; these can be defined as the failure of the partition function

of the theory to be invariant, up to counterterms, under background gauge transformations.

Importantly, anomalies are preserved under RG flow, and hence their matching between UV and

IR imposes constraints on the possible IR phases. In absence of anomalies, a global symmetry

can be gauged, namely, we can consistently make the background gauge fields dynamical. For

continuous symmetries this generically changes the dynamics of the theory in a dramatic way,

while gauging discrete symmetries changes only the global aspects of the theory. In particular

the gauging of discrete symmetries is a reversible operation, namely, the gauged theory always

has a dual (or ”quantum”) symmetry which can be gauged to retrieve the original theory.

In recent years many efforts have been made to generalize the notion of symmetry. This

comes from the realization that all conventional symmetries can be comfortably described in

terms of topological operators [9]. This presentation of the symmetry has the advantage of

being an efficient packaging of all the information that a symmetry contains. As we will de-

tail in the next chapter, all the previously mentioned features, including background gauge

fields and anomalies, can be represented in terms of these operators. Another benefit of this

presentation is that it lends itself particularly well to generalizations. Conventional group-like

symmetries are represented by codimension 1 operators whose fusion rules follow the group law;

then either considering operators supported on lower dimensional manifolds or allowing more

general fusion rules leads to interesting generalizations, which have been intensively investi-

gated in the last few years. In particular, topological operators supported on a codimension

(p+ 1) manifold generate a p-form symmetry, which naturally acts on p-dimensional extended

operators by linking. On the other hand, topological operators whose fusion rules are not group-

like and do not admit inverses, are called non-invertible. As it turns out, the mathematical

framework that best encapsulates the structures that one obtains from these generalizations

is that of (higher) category theory [10–14]. In 2 and 3 dimensions the relevant categorical

structures, at least for finite symmetries, have been known for quite some time in the physics

communities (see e.g. [11, 12, 15–38]), more recently efforts have been made to understand the

relevant higher-categories in higher dimensions as well [6–8,14,39–54]. These efforts, fueled by

the known results in 2d, resulted in the discovery and analysis of many generalized symmetry

structures in higher dimensions [55–89] as well as their applications [12, 30, 90–102] to study

the dynamics of the theory (see also [103–107] and [108] for reviews and more complete lists

of references). These generalizations are also important to bring to completion the generalized

Landau paradigm program. Indeed, some phases are outside of this paradigm if one sticks

to conventional symmetries, a prime example being confinining or deconfining phases of 4d

non-Abelian gauge theories. In this case the order parameter that distinguishes the two phases

is not a local operator. Instead, it is a Wilson line, whose vacuum expectation value signals
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the breaking of a 1-form symmetry as well as a perimeter law behavior, hence a deconfined

phase [9]. By now many other examples of vacuum and phases structures dictated by general-

ized symmetries have been discussed in various dimensions [12, 80, 109–114]. As conventional

symmetries (aka invertible 0-form symmetries), higher-form and/or non-invertible symmetries

impose selection rules and can have anomalies, which are again best described using the topo-

logical defects themselves. Therefore, the modern take on symmetries is to define them as

topological operators. The topological nature implies that, in any quantization scheme, if they

are placed on a space-like slice, they become operators on the Hilbert space commuting with

the Hamiltonian, recovering the standard notion of symmetry in quantum systems [115]1.

A very fruitful perspective that has been adopted when studying symmetries is that of the

Symmetry Topological Field Theory (SymTFT) [9, 116–119]. This is a Topological Quantum

Field Theory (TQFT) in one dimension higher than the physical QFT that we want to study,

which contains all of the information on the symmetry structures of the physical theory. For

2d QFTs with a (unitary) fusion category symmetry the SymTFT picture can be made rig-

orous [120–123] (see section 2.3.3 for more details), and it shares some similarities with the

Chern-Simons/WZW correspondence [124, 125] although it applies to 3d TQFTs with gapped

boundaries and general 2d QFTs, not necessarily conformal invariant. Rigorous generaliza-

tions in higher dimensions have also been considered [126–130]. The holographic flavor of the

SymTFT picture is reminiscent of the AdS/CFT correspondence. The two setups are indeed

related and the SymTFTs for holographic theories can be derived from a full-fledged string

theory [7,67,69,117,131–134]. Other, somewhat related, holographic approaches to symmetries

involve brane and/or geometric engineering [14, 67–72, 82, 117, 132, 134–174] or the realization

of symmetry defects directly as branes in the gravity theory (that become topological in some

limit) [69–72,175,176].

This thesis is organized as follows.

Chapter 2. We review some background material to explain the basic concepts used

throughout the thesis. We start by introducing symmetries as topological operators in gen-

eral dimension, and then we focus on the 2d case to discuss more in detail the mathematical

description of non-invertible symmetries. We proceed with a review on the holographic ap-

proach to symmetries, starting with a discussion of TQFTs to conclude with a description of

the SymTFT and how this captures the symmetries of a physical QFT.

Chpater 3. This is a transcription of the original works [1] and [3], in which we either

investigated symmetries in exotic QFTs [1] or exotic symmetries in well-know theories [3].

More precisely in [3] we studied the non-invertible symmetries along the conformal manifold of

some Calabi-Yau sigma models. Starting from the Gepner point, where the theory is rational

and has a large amount of non-invertible line defects, we can use tools discussed in Chaper 2 to

find the symmetries preserved by the exactly marginal deformations. This analysis shows that

1Non-invertible symmetry defects apparently evade Wigner theorem being non-invertible, hence non unitary,

when acting only on the untwisted Hilbert space. The expectation is that a notion of unitarity is recovered

considering the action on the full Hilbert space that includes twisted sectors, see e.g. [36].
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along many submanifolds of the conformal manifold there are preserved non-invertible lines

which can be useful to impose constraints on correlation functions and also that non-invertible

symmetries are not special to rational CFTs.

In [1] instead we studied the fate of invertible 0-form symmetries explicitly broken by some

randomly distributed interaction. There are two scenarios that we considered: the disorder

case in which the random couplings are taken to be space-dependent or the average case in

which the random couplings are homogeneous. The results are pretty different in the two cases.

Symmetries in average theories turn out to behave very similar to standard symmetries in non-

disordered QFTs, while the non-locality introduced by the average over homogeneous couplings

turns out to have a rather profound impact on the structure of the symmetries in an average

of QFTs. In particular in the second scenario we find that topological defects implementing

the symmetries are not genuine and need a d-dimensional bulk attached to be well defined.

The selection rules imposed by those operators have a compelling interpretation in terms of a

higher-dimensional gravity dual and its wormholes that prevent factorization of the observables.

Chapter 4. This Chapter in a transcription of the original works [2] and [4], both of

which can be regarded as applications of the SymTFT setup. In [2] we discuss anomalies for

a special type of non-invertible symmetries, the duality defects, in 4 dimensions. We define ’t

Hooft anomalies as obstruction to consistently gauge the symmetry via a Lagrangian algebra

insertion in the path integral. This is a stronger definition with respect to the one appeared

in the literature according to which an anomaly is an incompatibility with a trivially gapped

phase. More precisely our definition regards as non-anomalous situations in which there is no

compatible trivially gapped phase but there is a compatible TQFT, while an anomaly in our

definition also implies incompatibility with a trivially gapped phase. We study the problem

using the SymTFT approach reviewed in Chapter 2. This is useful as it allows us to rephrase

the gauging as an operation in steps, which in turn gives two successive layers of obstruction to

gauging. The first necessary condition is the presence of a duality invariant gapped boundary

condition for the SymTFT on which the duality defect becomes invertible. Thus the first step

to gauge the non-invertible symmetry is to condense a subgroup of the 1-form symmetry in

order to reach this particular global variant of the theory. The second and final step is to

gauge the now invertible duality defect, thus the second necessary condition is the absence of

anomalies for this symmetry. In this context the notion of symmetry fractionalization comes

into play as it allows us to mix the couplings to backgrounds in order to find an anomaly free

symmetry. We make these two conditions very explicit in terms of the 1-form symmetry group

and the other data appearing in the definition of a duality defect.

In [4] we investigate non-topological boundary conditions for the SymTFTs describing con-

tinuous symmetries. These boundary conditions induce dynamical edge modes giving rise to

a, possibly interacting, boundary theory. We show that gauging a suitable Lagrangian algebra

in the SymTFT we are able to trivialize the bulk theory on closed manifolds and establish

a full-fledged holographic duality. We argue that these types of holographic correspondences

involving a TQFT in the bulk can be dual only to specific boundary theories. More precisely

we conjecture, confirming our expectation with many examples, that when the TQFT involved
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is the SymTFT for a certain symmetry the boundary theory is the effective field theory (EFT)

for the spontaneous breaking of that symmetry. This conjecture allows us to derive the EFT for

the spontaneous breaking of a non-Abelian 2-group, which has implications for the low energy

dynamics of U(N) QCD.

We collect in two appendices some of the more techincal materials.
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Chapter 2

Background Material

In this first chapter we review standard material on symmetries in QFT. Many more complete

reviews on the subject have already appeared [103–107].

2.1 Symmetries and Topological Defects

We begin to discuss the relation between symmetries and topological defects showing how

topological operators can be constructed out of conserved currents. We will then describe

what properties of the operators can be generalized to accommodate both higher-form and

non-invertible symmetries. Consider a standard U(1) symmetry in a d-dimensional euclidean

QFT. This is implemented by a one-form current J (1) that satisfies the conservation equation

d ∗ J (1) = 0. The operator

Q(Σd−1) =

∫
Σd−1

∗J (1) (2.1.1)

is topological, indeed, upon a small deformation of its support, we have

Q(Σ′
d−1)−Q(Σd−1) =

∫
Bd

d ∗ J (1) = 0 , (2.1.2)

where Bd is a manifold bounded by Σd−1 and Σ′
d−1. We can then construct the topological

operator

Uα(Σd−1) = eiαQ(Σd−1) . (2.1.3)

For a U(1) symmetry all charges are integer multiples of a fundamental unit, therefore, as-

suming a properly normalized current, the parameter α is identified modulo 2π. For a general

continuous group G we are always able to construct, from the integrals of the currents, a set

of topological operators Ug(Σd−1) labelled by group elements g ∈ G.

The arguments we just presented give an intuitive picture as to why symmetries are related

to topological operators; however, before discussing possible generalizations, let us see how we

can make more precise statements in QFT by considering its correlation functions. The first

two most important features of these topological operators are the action on local operators

and fusion rules, both of which can be derived from the Ward identities associated with the

symmetry. These identities dictate how the Ug(Σd−1) behave inside correlation functions, the
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basic relation is1

⟨d ∗ J (1)(x)O1(x1) . . .On(xn)⟩ =
n∑
i=1

δ(x− xi)⟨O1(x1) . . . δOi(xi) . . .On(xn)⟩ (2.1.4)

where δOi is the infinitesimal G-symmetry action on the operator Oi. Integrating this relation

in x over a d-dimensional ball Bd bounded by Σd−1 we obtain the action of the charge operator,

on all those local operators inserted at points xi ∈ Bd, namely all local operators linking with

Σd−1. In particular

⟨Q(Σd−1)O1(x1) . . .On(xn)⟩ =
∑

i|xi∈Bd

⟨O1(x1) . . . δOi(xi) . . .On(xn)⟩ , (2.1.5)

QΣd−1
implements the action of the Lie algebra of G, the full group action is obtained by

exponentiation and is implemented by the operators Ug(Σd−1)

⟨Ug(Σd−1)O1(x1) . . .On(xn)⟩ =

 ∏
i|xi∈Bd

Ri(g)

 ⟨O1(x1) . . .On(xn)⟩ , (2.1.6)

where Ri is the representation of G in which Oi transforms. Since this is a relation valid in any

correlation function it can be promoted to an operator equation

Ug(Σd−1)Oi(x) = Ri(g) · (Oi)(x)Ug(Σ
′
d−1) (2.1.7)

where Σd−1 links with x while Σ′
d−1 does not.Thus as we sweep the operator Ug(Σd−1) past Oi(x)

we act on it with the element g ∈ G. These relations prove that the operators Ug(Σd−1) are

topological, namely that correlation functions do not change under small deformations of their

support. Large deformations can cross the insertion points of local operators, and correlation

functions do change but in a very mild and controlled way. Starting from the Ward Identity

with two current insertions it is easy to show that the fusion of two topological defects follows

the group law, namely, in any correlation function

Ug(Σd−1)Ug′(Σd−1) = Ugg′(Σd−1) . (2.1.8)

The support of the operators Ug(Σd−1) is an oriented manifold Σd−1, in particular reversing its

orientation is an involution on the set of topological operators which we take to correspond to

inversion in the group

Ug(Σd−1) = Ug−1(Σd−1). (2.1.9)

For more general symmetries we will not have a notion of inverse element, but this involution

induced by orientation reversal will provide the closest analog possible.

One can consider more intricate geometrical configurations of topological defects, one of the

simplest ones is a junction at which three operators meet in codimension 2. This configuration

is consistent, for the type of defects we have described so far, only if the labels of the three

operators satisfy (with all three orientations going towards the junction) g1g2g3 = 1 ∈ G. In

other words, this configuration is another way to describe the fusion of defects. We can go higher

1Here and in the rest of this chapter we are assuming that the symmetry is not spontaneously broken.
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in codimension considering more defects meeting on a submanifold and generically there are

many possible different-looking configurations one can consider at some fixed codimension. The

expectation is that, since the defects are topological, all those configurations are equivalent,

but this is not always the case. This is important especially when we reach the maximum

codimension and consider operators meeting at points. In fact, as we will see later, violations

of this equivalence can signal an anomaly of the symmetry.

An immediate generalization from the case of continuous group symmetries is that to the

discrete case. In all key equations (2.1.9), (2.1.8), and (2.1.9) it is not necessary for the group

to be continuous and can be applied equally to G discrete. Thus, from now on, we take these

to be the defining properites of invertible, group-like symmetries for any group G.

Another interesting generalization one can consider goes in a somewhat orthogonal direction

than the ones we will discuss below: instead of considering more exotic defects we can con-

sider more exotic theories. Interesting classes of unusual theories, which however have many

applications, is that of disordered/averaged theories. The fate of symmetries in these setups is

investigated in 3.

Higher-form symmetries

A first important generalization is to allow supports of different codimensions for the topolog-

ical defects. Consider a topological defect Ug(Σd−p−1) supported on an oriented manifold of

codimension p + 1 and labeled by g ∈ G for some group G. There are two immediate conse-

quences. First, it is clear that Ug(Σd−p−1) cannot act on operators of dimensions lower than p,

indeed if an operator is supported on a manifold of dimension less than p, there is always room

for Ug(Σd−p−1) to move around it without ever interacting. Therefore, the lowest dimension

an operator needs to have to be charged under Ug(Σd−p−1) is p, from here the name p-form

symmetry for the structure carried by the operators Ug(Σd−p−1). In general an operator of

codimension p + 1 can act on operators supported in dimension p and higher, for simplicity

here we limit ourselves to the simplest action by linking. The second important consequence

is that higher-form symmetries are necessarily Abelian; indeed there is no notion of ordering

for (d− p− 1)-dimensional submanifolds in d-dimensions, namely we can always exchange the

order of fusion for higher-form symmetry defects,

Ug(Σd−p−1)Ug′(Σd−p−1) = Ug′(Σd−p−1)Ug(Σd−p−1) = Ugg′(Σd−p−1) (2.1.10)

then gg′ = g′g and G is necessarily Abelian. Apart from these two extra constraints higher-form

symmetries behave analogously to 0-form symmetries. We have Ward identities that can be

uplifted to operator equations

Ug(Σd−p−1)Vi(γp) = gqiVi(γp)Ug(Σ
′
d−p−1) , (2.1.11)

where we denoted by qi the charge of Vi. The fusion rules follow the group law and we have

again an involution induced by orientation reversal. Continuous p-form symmetries imply the

presence of a p+ 1-form current J (p+1) that is conserved d ∗ J (p+1) = 0.
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Non-invertible symmetries

The second interesting generalization is to consider topological operators with more general

fusion rules. These generically take the form

Ua(Σd−p−1)Ub(Σd−p−1) =
∑
c

N c
a,b(Σd−p−1)Uc(Σd−p−1) , (2.1.12)

here a, b, c are labels for the topological defects, while N c
a,b(Σd−p−1) are the fusion coefficients,

which generically depend on the topology of the support Σd−p−1. Generically these fusion

coefficients can be interpreted as partition functions of (d − p − 1)-dimensional Topological

Quantum Field theory. Importantly, the defects Ua generically do not have an inverse. We still

have a dual defect obtained via orientation reversal, denoted Ua, and the fusion of dual defects

always contains the identity with coefficient 1

Ua(Σd−p−1)Ua(Σd−p−1) =
∑
c

N c
a,a(Σd−p−1)Uc(Σd−p−1) ⊃ 1 . (2.1.13)

A consequence of these fusion rules is that shrinking the defects down to a point we get numbers,

called quantum dimensions, that satisfy the same fusion ring. Invertible defects always have

quantum dimension 1, while non-invertible operators have dimensions greater than 1 (in unitary

theories). Being topological the defects Ua(Σd−p−1) still imply selection rules on correlators,

these however can be somewhat complicated due to the non-invertible action. For instance, as

we mentioned in the introduction, an hallmark of non-invertibility is that defects map genuine

operators into non-genuine ones, thus selection rules can relate correlators of operators of the

untwisted sector to those of the various twisted sectors. The mathematical structure that

properly describes these symmetries is that of higher category theory. Intuitively, we label n-

dimensional topological defects with objects in a higher category, morphisms between objects

are represented by n − 1-dimensional defects functioning as interfaces on the worldvolumes

of the defects. Higher morphisms are lower dimensional defects separating morphisms on one

degree lower and so on. Therefore the expectation is that general symmetries are described

by appropriate higher-categories [6, 10–14, 57, 65, 118]. Relatively simple examples of these

structures arise when we only consider invertible defects, for instance forming 2-groups [177–

179]. These can be tought of as a group extension involving a 0-form and an higher-form

symmetry.

We will not delve into the structure of higher categories in this thesis. In the next section,

we will consider the case of 1-categories that describe line defects.

2.2 The 2d case: Topological Defect Lines

The setting in which generalized symmetries are best understood is that of 2-dimensional QFTs.

The reason for this is that in 2 dimensions the most general situation we can consider is that

of 0-form symmetries with non-invertible fusion rules. In principle we can also have 1-form

symmetries, but those are generated by local operators and always lead to decomposition and

universes [76,180] (as any d− 1-form symmetry in d dimensions). All universes are decoupled,
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and in each one we can at most have a 0-form symmetry. Moreover, 0-form symmetries are

generated by line operators, which are clearly the simplest type of extended operator to consider.

This is due to their internal structure being entirely determined by local operators living on

the worldline. In the next two subsections we first briefly describe the mathematical structure

formed by these defect lines and then discuss a class of examples.

2.2.1 Fusion Categories

The mathematical structure that describes 0-form symmetries is that of fusion categories [11,12,

17,29,31,181–184]. Let us motivate the various ingredients in the construction from a physical

perspective. As we tried to motivate in the previous section, a 0-form symmetry is equivalent

to the presence of a collection of topological line operators, which we denote by La for a in

some labeling set. We will assume to be dealing with a finite number of defects in this section,

techincally, this means that the category is finite and semisimple. On line operators we can

define an operation of direct sum ⊕, in terms of correlation functions of the QFT we set

⟨La ⊕ Lb . . .⟩ = ⟨La . . .⟩+ ⟨Lb . . .⟩ (2.2.1)

where the dots denote any other possible insertion. We will consider oriented line defects,

reversing the orientation induces involution which we denote as a 7→ a. We can think of this

orientation reversal as a way of bending the lines (which is of course allowed since these defects

are topological)

a a
=

a a

1

.

The topological property of these line operators allows us to define their fusion, denoted ⊗.

Physically, we can bring a line La on top of another line Lb, and no divergence arises from

this procedure. This necessarily produces another topological line operator, which in the most

general case can be written as a direct sum. This leads to the operator equation

La ⊗ Lb =
⊕
c

N c
a,bLc (2.2.2)

valid in correlation functions as long as we can deform the two lines to be on top on each other

in a continuous way, namely without crossing any local operator. The fusion coefficients N c
a,b

are positive integers, they depend on the basis we choose to describe the line defects. On any

given line operator there exist topological local operators. One way of realising this is the case

is to consider the line operators as a (topological) quantum mechanics coupled to the bulk

theory, then this quantum mechanics has its own operators and we can consider their insertion

in the path integral. Intuitively there are two types of these operators to consider. There are

operators µa that live on a specified line La

a a
µa

,
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we can represent those as maps µa : La → La, but there are also operators µa,b that separate

two different lines La, Lb

a b
µa,b

,

those can be thought of as maps µa,b : La → Lb. In general, we can define vector spaces

Hom(La, Lb) containing the morphisms between lines. Local operators on a fixed line defect

La have additional structure as we have a multiplication ⊗a given by the operator product

expansion

µa ×a νa =
∑
ρ

ρa , (2.2.3)

or, pictorially,

a a

µa νa
=
∑

ρ a a

ρa

.

This is important as it leads us to define a very useful basis for line defects. In particular for

any algebra of local operators we can find a basis of projectors (idempotents) πi such that

πi ⊗ πj = δijπi . (2.2.4)

This means that if a line defect has a non-trivial algebra of topological local operators on it

we can split it into other line defects. To see this consider a line La with an algebra of local

operators generated by projectors πi,a. Inserting πi on the line La produces another defect Li,a

which, thanks to the fusion rules of the projectors, has no topological local operators on it

besides πi (which behaves as the identity). In particular writing the identity on La as

1a =
∑
i

πi,a (2.2.5)

we can rewrite the line La itself as a direct sum

La =
⊕
i

Li,a . (2.2.6)

The lines Li,a cannot be split any further, this leads us to considering a basis of lines generated

by those defects that cannot be written as a sum of other lines. These are called simple line

defects. In the basis of simple lines, which we still label by latin letters, we can unambiguously

talk of fusion coefficients N c
a,b. Notice that the fusion of two simple lines is generically non

simple, in particular on the line La ⊗ Lb we have local topological operators that can be

organized into projectors πa,b;c onto the simple lines Lc appearing in the fusion. Therefore the

coefficient N c
a,b counts how many different operators living on La⊗Lb project on the line Lc. We

can give another interpretation to N c
a,b considering higher junctions of line defects. A natural

configuration to consider is the trivalent junction at which the simple lines a, b, c meet

c

a b

µca,b

.
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At the junction there is a topological local operator insertion µca,b, in particular bringing the

lines a and b together we see that µca,b is a map La⊗Lb → Lc and belongs to Hom(La⊗Lb, Lc).

Since La ⊗ Lb is non-simple we can also think of µca,b as an endormophism of La ⊗ Lb, hence

we see that it corresponds to one of the operators πa,b;c projecting onto Lc. Since N c
a,b counts

the number of different projectors available, it also counts the different junction operators µca,b
that we have, in other words N c

a,b = dim (Hom(La ⊗ Lb, Lc)). Notice that the fusion of a line a

with its orientation reversal a always contains the identiy, i.e. N1

a,a = 1.

Another important quantity that we can associate to these line defects is their quantum

dimension. We can consider correlation functions with an insertion of a loop of some line La

that encircles no local operator. Shrinking the loop generically produces a number

La

= da

,

called quantum dimension of La. These numbers have several important properties. First one

can show that they have to satisfy the same fusion rules as the simple lines, namely

dadb =
∑
c

N c
a,bdc . (2.2.7)

In conformal theories one can also show that da ≥ 0 for every line La and, if the CFT is also

compact, one has the stronger constraint da ≥ 1.

We could move on and consider even higher junctions, but this is not really needed, in the

sense that an arbitrary network of lines can always be resolved in terms of trivalent junctions

only. Therefore to define correlation functions with a network of lines inserted we only need to

understand how to relate different meshes with only trivalent junctions. It turns out that we

can do so by using repeatedly the so-called F -move. This operation defines the F -symbols of

the symmetry

d

ca b

eµea,b

νde,c

=
∑

f,α,β

[
F d
a,b,c

]
(e,µ,ν);(f,α,β)

d

a b c

f
αfb,c

βda,f

(2.2.8)

This collection of numbers is subject to the Pentagon equations, which guarantee that, starting
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from the same configuration and using F -moves, we always obtain the same result. In pictures,

e

da b c

F

F F

e

da b c

F

e

da b c
e

da b c

F

e

da b c
.

(2.2.9)

The corresponding equations are

∑
λ

[
F e
abf

]
(g,β,γ);(ℓ,σ,λ)

[F e
ℓcd](f,α,λ);(k,ψ,ρ) =∑
h

∑
δµν

[
F k
abc

]
(h,δ,ν);(ℓ,σ,ψ)

[F e
ahd](g,µ,γ);(k,ν,ρ) [F

g
bcd](f,α,β)(h,δ,µ) .

(2.2.10)

The data we have discussed so far define a fusion category C: the set S corresponds to the

objects of the category Obj(C), with the local operators living on the lines being morphisms

between objects, the fusion product ⊗ is a tensor product on C whose is given by the F -symbols.

We also should point out that there is a gauge freedom in the F -symbols given by the possibility

of changing basis in the Hom spaces of trivalent junctions; only equivalence classes under these

changes of basis give inequivalent F -symbols.

Action on local operators and twisted sectors. Lines link with local operators. This

allows to define an action of any line La on a local operator O, the result is, generically, a new

local operator La · O:

O

La

=
La · O

.
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This action by linking should not be confused with the action we obtain sweeping a line La

past a local operator

O
La

= O

La

=
∑

c

Lc

La

=
∑

c

Lc

La

O′

,

here the sum over c runs over all lines in the fusion channel La ⊗ La and O′ is an operator in

the twisted sector of Lc. We can retrieve the linking action by closing the line La on itself, this

produces the tadpole diagrams

∑
c

LcO′
La

.

Assuming faithfulness of the action of line operators the empty loop of La vanishes unless

Lc = 1, and we recover the standard linking action. For some local operators it may happen

that La · O = 0, this is the situation we mentioned in the introduction, where a non-invertible

line maps genuine operators in twisted sectors. From the action we obtained sweeping a line

past a local operator we see that the most general action is encoded in the lasso diagrams [12]

La

Lb

Lc

µda,b

µcb,d

O
,

these define the elements of the Tube algebra associated to the fusion category [185, 186], see

also [36] for a more physical perspective and [51–53,81] for generalisations to higher dimensions.

Operators, both genuine and twisted ones, transform in representations of this algebra from

which selection rules follow [36].

Invertible symmetries. When we are dealing with only invertible lines all the structure

above collapses to a simpler one. Indeed as we already know the fusion product reduces to the

group operation, and all line operators associated to a fixed group element g ∈ G are simple

and have quantum dimension dg = 1. The only extra datum are the F -symbols which take the
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particularly simple form

ghk

kg h

gh
= F (g, h, k)

ghk

g h h

hk
(2.2.11)

for g, h, k ∈ G. One can check that the pentagon equation reduce to the condition

F (g, h, k)F (h, k, l)F (g, hk, l)

F (gh, k, l)F (g, h, kl)
= 1 (2.2.12)

while gauge transformations allow the transformation

F (g, h, k) 7→ F (g, h, k)
f(h, k)f(g, hk)

f(gh, k)f(g, h)
. (2.2.13)

The most convenient framework to understand these conditions is that of group cohomology

(see e.g. [187]), and can be summarized saying that F (g, h, k) defines a class in the third

cohomology of G valued in U(1), namely F ∈ H3(G,U(1)). This group classifies the possible

anomalies of a 0-form symmetry G in 2 dimensions [188,189]. Thus the symmetry category for

a group G, conventionally denoted Vec(G)α also encodes the anomaly α. This also shows that

gauge inequivalent solutions to the Pentagon equations are isolated, this is a general fact valid

in Fusion Categories known as Oceanu’s rigidity [181].

Example: Tambara-Yamagami Categories. To keep the topic of fusion categories from

being too abstract let us discuss a concrete set of examples provided by Tambara-Yamagami

categories. These are constructed starting from an Abelian group A and adding a defect D
with fusion rules

g ⊗ h = gh , g ⊗D = D ⊗ g = D , D ⊗D =
⊕
g∈A

g . (2.2.14)

The remaining data specifying the category are provided by the F -symbols. Specifically the

F -symbols to consider are[
FD
g,D,h

]
D;D ≡ γ(g.h) ,

[
F ghk
g,h,k

]
gh;hk

≡ α(g.h, k) ,
[
FD
D,D,D

]
g,h

≡ χ(g, h) , (2.2.15)

the Pentagon equations constraint these data as follows. The function γ : A × A → U(1) is

constrained to be a non-degenerate symmetric bicharacter, namely it satisfies

γ(g, h)γ(h, g)−1 = 1 , (2.2.16)

the cocycle α(g, h, k) instead needs to be trivial, so that the symmetry A is non-anomalous.

Finally one has

χ(g, h) =
ϵ√
|A|

γ(g, h)−1 , (2.2.17)
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where ϵ = ±1 is the Frobenius-Schur indicator of the defect D. The FP indicator is a quantity

that can be defined for every self-dual defect as κa = da
[
F a
a,a,a

]
0,0
, we then see that the quantum

dimension of the non invertible line is

dD =
√

|A| . (2.2.18)

The usual notation to denote TY categories is then TY(A)γ,ϵ. This symmetry structure arises

in theories that are self-dual under gauging the symmetry A [29, 57, 63, 65, 66], a prominent

example being the critical Ising model.

2.2.2 RCFTs and Verlinde Lines

A concrete class of examples where we can understand in detail the non-invertible symmetry

structure is that of Rational Conformal Field Theories in 2d. In this subsection we briefly

review these particular cases, with an emphasis on the ”bootstrap” approach one can take to

find the set of topologial defect lines of the theory [12, 16, 31, 190]. RCFTs are CFTs with an

extended symmetry algebra and a finite number of primaries of the extended symmetry algebra

A. This means that the Hilbert space of the theory is a finite sum of irreducible representations

of the chiral algebra H =
⊕

i,iMi,iHi ⊗Hi. The torus partition function is

Z(τ, τ) =
∑
i,i

Mi,iχi(τ)χ
∗
i
(τ) = TrH

(
qL0− c

24 qL0− c
24

)
(2.2.19)

where τ is the complex modulus of the torus and

χi(τ) = TrHi

(
qL0− c

24

)
(2.2.20)

is the character of the i-th representation of A. The coefficientsMi,i are positive integers chosen

to have a modular invariant torus partition function. To an RCFT we can associate an S matrix

and a T matrix studying the modular properties of the characters

S · χi(τ) = χi

(
−1

τ

)
=
∑
j

Si,jχj(τ) , T · χi(τ) = χi (τ + 1) =
∑
j

Ti,jχj(τ) (2.2.21)

and the partition function is required to be invariant under both transformations. The bootstrap

idea is to find constraints on the action of the topological line defects of the theory, in RCFTs

this program shows its full potential as the constraints one obtains are actually enough to

fully determine a large set of topological lines and their action on local operators, sometimes

called Verlinde lines [15,16,191,192]. The only caveat is that we can only bootstrap lines that

commute with the chiral algebra, so that they do not mix different representations. One could

still only require that the lines commute with the Virasoro algebra contained in A, but the

equations obtained are very difficult to solve. Let us stick to the standard situation and only

consider lines that commute with A. The simplest bootstrap equation is derived considering a

putative line L inserted along the spatial cycle of the torus. The line acts on the Hilbert space

of the theory and the path integral produces the twined partition function2

Z(L) = TrH

(
qL0− c

24 qL0− c
24L
)
, (2.2.22)

2We omit the dependence on τ where redundant.
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via an S transformation we can turn this into the L-twisted partition function

S · Z(L) = ZL (2.2.23)

and the constraint is that the twisted Hilbert space should have a well defined interpretation,

namely it should split in irreducible representations of A with positive integer multiplicities.

We can parametrize the action of the line L with some unknown coefficients Xi,i so that

L · Φi,i = Xi,iΦi,i (2.2.24)

where Φi,i is a physical primary of the theory. Notice that this is the practical step where we

are using that L commutes with the chiral algebra. Then we have

Z(L) =
∑
i,i

Mi,iXi,iχiχ
∗
i

S−→ ZL =
∑
i,i,j,j

Mi,iXi,iSi,jS
∗
i,j
χjχ

∗
j
≡
∑
j,j

Nj,jχjχ
∗
j

(2.2.25)

where Nj,j ∈ N are the multiplicities in the twisted sector. The constraint is∑
i,i

Mi,iXi,iSi,jS
∗
i,j

= Nj,j , (2.2.26)

which in general can be difficult to solve. For the diagonal modular invariantMi,i = δi,i however

the Verlinde formula provides a solution

Xi =
Sk,i
S0,i

, (2.2.27)

so that we have a line Lk for every representation k of A acting as

Lk · Φi,i =
Sk,i
S0,i

Φi,i . (2.2.28)

The twisted sector multiplicities for the line Lk are given by

Nk
j,j

=
∑
i

Sk,iSi,jS
∗
i,j

S0i

, (2.2.29)

and are positive integers. The fusion of these lines is also governed by the same coefficients

Lk ⊗ Lj =
∑
i

N i
k,jLi . (2.2.30)

This analysis provides us with the set of lines as well as their action on local operators, however

this is not the full story, as we also have an action on twisted sectors. It is not hard to see that

using T on the twined partition function we obtain the action of a line L on its own twisted

sector, but to see how L acts on other twisted Hilbert spaces requires more work. We can repeat

the bootstrap analysis considering a more general network of lines on the torus. Representing

the torus as a rectangle with opposite sides identified we define as

[ZLb,Lc(La)]µ,ν =

La

Lb

Lc

Lb

La

µcab

νcab
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the Lb-twisted partition function acted on by La (we take time running from bottom to top).

The line Lc is introduced to resolve the network into trivalent junctions, thus we need N c
a,b > 0.

The morphisms µca,b and νca,b are also arbitrary and each choice corresponds to a different

partition function. Via an S transformation, which amounts to a rotation of 90 degrees, we

obtain

S · [ZLb,Lc(La)]µ,ν = Lb

La

Lc

La

Lb

νcab

µcab

=
∑

d,α,β

[
F a
b,a,b

]
(c,µ,ν);(d,α,β)

Lb

La

Ld

La

Lb

βdab

αdab

,

therefore, in formulas,

S · [ZLb,Lc(La)]µ,ν =
∑
d,α,β

[
F a
b,a,b

]
(c,µ,ν);(d,α,β)

[
ZLa,Ld

(Lb)
]
α,β

. (2.2.31)

These equations contain the basic one we have discussed above and generalize it to bootstrap

the action of topological lines on twisted sectors. Even in RCFTs these equations can be hard to

solve in complete generality, thus in irrational theories, unless one focuses on some particular

type of defects making an ansatz for their action, there is very little hope of being able to

solve them. Nevertheless there are ways of hunting for non-invertible line defects in irrational

theories, at least for those having a conformal manifold, more on this in 3.

The importance of defects. An important point that is highlighted by this approach is

that to properly define a symmetry defect, it is not enough to define a topological operator, but

there are more constraints this operator has to fulfill (see also [107]). Indeed, in a CFT setting,

we could define a topological operator simply as any operator that acts on conformal families

and commutes with the Virasoro generators, with no constraints on its action. However, as

we have seen above, there are bootstrap equations the defect need to satisfy. Concretely, we

require the twisted sectors to have a well-defined Hilbert space interpretation. If a defect L
satisfies this constraint, another defect that differs only by an overall normalization, L′ = xL
with x a generic real number, does not. Hence L′ does not define a good defect. As an example

of why this is important consider the case of the Ising CFT, this has three topological defect

line operators 1, η,D with fusion rules

η ⊗ η = 1 , η ⊗D = D ⊗ η = D , D ⊗D = 1+ η , (2.2.32)

corresponding to a Tambara-Yamagami category with symmetry Z2 generated by η [12]. The

linking action on the three primaries 1, σ, ϵ is

1 σ ϵ

η 1 -1 1

D
√
2 0 −

√
2
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and the two nontrivial defects have a well-defined twisted Hilbert space. Consider now the

linear combination

L =
1

2
η +

1√
2
D − 1

2
1 , (2.2.33)

it is easy to check that this line is invertible:

L⊗ L = 1 . (2.2.34)

What is preventing us from taking this to be a defect of the theory instead of the Tambara-

Yamagami line D ? As we have probably stressed enough in this section the reason why this line

does not define a consistent defect in the theory is that it does not solve the bootstrap equations,

hence does not have a good twisted sector. In general only linear combinations with positive

integer coefficients guarantee that the defects we obtain are well defined. As operators on the

Hilbert space any linear combination of defects is well defined, but the bootstrap equations

impose further constraints.

2.3 The Holographic perspective on symmetries

In this section we discuss a very useful tool to describe the symmetry structure of general

QFTs in general dimensions: the Symmetry Topological Field Theory [9, 116–119]3. This

construction provides a very powerful framework to study the realization of symmetry and

anomalies in QFT as well as possible phases of the theory [2,7,8,67,69,98,99,109–112,133,195–

198]. The general idea is somewhat a generalization of anomaly inflow [199–201], according to

which the anomalies of a d-dimensional theory are captured by an invertible field theory (i.e.

with a 1-dimensional Hilbert space on every manifold) in (d + 1)-dimension. Indeed, instead

of considering an invertible theory, we can couple the QFT to a full-fledged TQFT in one

dimension higher. Intuitively one can think that the coupling occurs via the symmetries of the

boundary QFT. Namely we can imagine turning on a background on the boundary and extend

it dynamically to one dimension higher, where by dynamically we mean that we are essentially

gauging the symmetry of the boundary theory in (d + 1) dimensions. Imposing Dirichlet

boundary conditions BQFT on the TQFT we can interpret the boundary value of the bulk fields

as a background for the QFT. This constructs a (d + 1) dimensional theory, which depends

on the extension in the bulk, and is a reminiscient set-up of that of relative theories [202]. To

recover the original d-dimensional theory we need to trivialize the dependence on the extra

dimension. This can be done imposing a topological boundary condition Btop on the other side

3see also [193,194] for a condensed matter theory perspective.

32



of the set-up, resulting in the so-called the sandwich picture

TQFTd+1

Btop BQFT

.

Since the extra boundary condition is topological we can shrink the interval and recover the

d-dimensional theory. The TQFTd+1 is called the Symmetry theory (or SymTFT in short) for

the original quantum field theory and it captures all the information contained in the boundary

symmetry. We should, however, be a bit more precise. In general a QFT may have various

symmetries and the construction outlined above can be applied to any of those, not necessarily

the full symmetry. Therefore it is more correct to refer to the TQFTd+1 as the SymTFT for

a specific symmetry of the boundary theory. Symmetries in QFT are described by (higher)

categories, therefore this construction provides a physical argument as to why there should

exist, for a given symmetry category C in d-dimensions, a TQFT Z(C)d+1 in one dimension

more interpreted as its SymTFT.

Generally a TQFT can have more than one topological boundary condition, thus we often

have many possibilities for Btop, each of which corresponds to a global variant of the theory.

Here we define the global variants of the theory as the allowed boundary conditions of the

SymTFT.

We still have not explained the meaning of the SymTFT or how it captures the information

of the boundary symmetry. Moreover, we have only given a physical construction of this theory

without a very precise definition. In order to fill those gaps we need to give a quick review of

what TQFTs are, what are their observables, and also what we mean by topological boundary

conditions.

2.3.1 Topological Quantum Field Theories

TQFTs are among those few QFTs that can be given a rigorous axiomatic definition [203] (see

e.g. [204] for a nice review) which is also computationally useful, especially in low dimensions.

Intuitively TQFTs are QFTs which do not depend on the metric on spacetime, hence have

a vanishing stress energy tensor. This implies that all their observables are independent of

distances on spacetime and only the topological classes of the objects involved are meaningful.

We start by giving a lightning review of the axiomatic definition, then proceed and discuss

examples that highlight aspects important for our discussion.

Axiomatic TQFTs. Formally TQFTs in d dimensions are defined as symmetric monoidal

functors from a category of oriented d-dimensional bordisms to that of complex vector spaces.
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Let us quickly introduce those ingredients. Objects in the category of bordisms are (d − 1)-

dimensional manifolds. In general we can equip those manifold with extra structures depending

on the TQFT. For instance we can add a G-principal bundle, for G a discrete group, if we want

to describe backgrounds for a G 0-form symmetry or we can input a spin structure to describe

spin TQFTs. For simplicity let us focus on oriented manifolds only. A morphism between

two manifolds Md−1 and M ′
d−1 in the bordisms category is d-dimensional manifolds Md with

boundaries such that ∂Md =Md−1⊔M ′
d−1, where the bar denotes orientation reversal. We can

view the d-dimensional manifold as a mapMd :Md−1 →M ′
d−1 with a particular choice of an in

and an out boundary. The usual notation for the category of d-dimensional oriented bordisms

is BordSO
d , with SO standing for the structure group of the tangetn bundle. In presence of extra

structures onMd−1 those are extended in d-dimensions and one enriches the notation to denote

the category of the associated bordisms. The category of (finite dimensional) complex vector

spaces instead has as objects complex vector spaces, which are all built as direct products of

the unique simple object C. Morphisms instead are linear maps between vector spaces and the

category is denoted by VecC. Then a d-dimensional TQFT is a functor

Z : BordSO
d → VecC . (2.3.1)

Physically this means the following. To every object in BordSO
d the TQFT assigns an object of

VecC, this is simply the fact that to every (d − 1)-dimensional manifold the theory assigns an

Hilbert space

Z(Md−1) = H(Md−1) . (2.3.2)

To a morphism Md = Md−1 ⊔M ′
d−1 of BordSO

d the functor assigns a linear map between the

vector spaces associated to Md−1 and M ′
d−1,

Z(Md) : H(Md−1) → H(M ′
d−1) , (2.3.3)

physically this is the time evolution of a state in H(Md−1) to a state in H(M ′
d−1). The adjectives

symmetric and monoidal attached to the functor Z are needed to guarantee that the path

integral on disjoint manifolds factorizes on the various components, that it is compatible with

the tensor product of Hilbert spaces and that gluing manifolds along a common boundary

amounts to the compoisition of linear maps.

We can make contact with the path integral of the theory as follows. Consider a d-

dimensional manifold Nd with ∂Nd = Md−1, the path integral on Md produces the wave-

functional of a state in H(Md−1). This is the same result as the action of the functor Z which

produces the map

Z(Nd) : C → H(Md−1) . (2.3.4)

A special choice is Nd = Dd the d-dimensional disk, the path integral on this topology produces

the Hartle-Hawking state. Changing the internal topology of Nd with a fixed boundary, we can

probe the Hilbert space on ∂Nd. In general dimensions the difficulties in concretely using this

approach lies in the complexity of the classification of the topological classes of d-dimensional

bordisms (even more so if we add more structures). In low dimensions however the axiomatic

approach can be fruitful. For instance in 2d one has a finite amount of data that uniquely
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specify the TQFT (this stems from the possibility of constructing every 2d manifolds gluing

pairs of pants), and one can show important results such as the equivalence of TQFTs and

symmetric Frobenius algebras [205].

TQFTs, symmetries and operators. The axiomatic definition is a very convenient frame-

work as it packages in an efficient way the properties of the path integral. However, for our

purposes, it is more useful to understand the operator content and correlation of the theory.

As we already mentioned, TQFTs have a vanishing stress-energy tensor thus all the opera-

tors are necessarily topological, then, following the modern philosophy, TQFTs are essentially

determined by their symmetries. In other words all operators in a TQFT are generators of a

symmetry and, at the same time, are charged under another. Let us be more precise. In general

a TQFT can have operators of all possible codimensions, each corresponding to a higher-form

symmetry (not necessarily invertible). Consider for instance operators Ua(Σd−p−1) and Uâ(Σp),

in codimensions p + 1 and d − p respectively, both these classes of operators are topological

hence generate a p-form and a (d− p− 1)-form symmetries. However the two classes also have

a natural linking configuration which imply that one class of operators is charged under the

other and viceversa. Explicitly we can write, taking Σd−p−1 and Σ′
p linking once,

Ua(Σd−p−1)Uâ(Σ
′
p) = χ(a, â)Uâ(Σp)Ua(Σd−p−1) (2.3.5)

where χ(a, â) is a, generically complex, number encoding the action of one operator on the

other. Notice that the labels a, â can be interpreted as the charges of the operators. Indeed, in

order for an operator to be detectable in correlation functions of a TQFT (hence distinguishable

from the identity), it has to be charged under a symmetry. Thus far in this thesis we have only

considered linking configurations as possible interactions of topological defects. In 2d this is not

a problem if we also discuss junctions of line defects. However in higher dimensions this is no

longer true: there are other configurations of topological defects of various dimensions which we

need to consider. In TQFTs we can always interpret those configurations as a topological defect

acting on another one, for instace we can have a 0-form symmetry acting on lower dimensional

extended operators. This is realized by a defect Ua(Σp) piercing a 0-form symmetry generator

Ub(Σd−1) and getting transformed to a new defect Ua′(Σp)

Ua(Σp)

Ub(Σd−1)

Ua′(Σp)

.
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Alternatively we can consider a cylinder of Ub(Σd−1) around Ua(Σp) (with other directions

compactified), shrinking the cylinder results in a new defect Ua′(Σp)

Ua(Σp)

Ub(Σd−1) =

Ua′(Σp) .

0-form symmetries act by linking on local operators, however, in TQFTs we can often get rid of

local operators simply focusin on a specific vacuum of the theory. One might be then tempted

to say that in each vacuum the 0-form symmetries act trivially but, due to the actions we have

just mentioned, this is not necessarily true. Moreover, in the absence of local operators, it is

not necessary for the 0-form symmetry defects to be of codimension 1: they can be constructed

as a mesh of lower-dimensional defects. This is the idea of condensation defects [13]: we can

gauge a discrete higher form symmetry in higher codimension to construct a topological defect.

Condensation defects are important for many reasons. For once, especially in higher dimensions,

certain non-invertible defects are non invertible precisely for the appereance of condensation

defects in fusion rules (see e.g. [7, 8, 57, 63, 65]). Another reason is that in 3d TQFTs with

only line operators it is a theorem that all 0-form (unitary) symmetries are implemented by

condensation defects [13], this has also implications for the classifications of modular invariants

in RCFT [17].

Besides 0-form symmetries acting on lower dimensional defects we can have more intricate

configurations. As an example consider surface defects in 4d, these link with lines and hence

generate a 1-form symmetry. However we can also consider the configuration of three surfaces

Σ
(i)
2 , i = 1, 2, 3 such that Σ

(3)
2 links with the line Σ1 = Σ

(1)
2 ∩Σ(2)

2 on which the two other surfaces

intersect. This triple linking configuration carries information that can distinguish TQFTs with

the same operator content [206](we will expand on this in the following subsections). We will

not attempt to classify all possible non-trivial configurations, which seems a rather complicated

task. Rather, to provide a more concrete perspective on the topics we just discussed, we now

discuss examples of TQFTs that are relevant for the rest of this thesis.

Discrete Abelian gauge theories. A gauge theory for a discrete Abelian 0-form symmetry

A has two types of extended operators. The first one can be thought of as the Wilson lines for

the gauge field of A, these are labelled by representations of A. In the discrete Abelian case

these representations are elements of the Pontryagin dual group Â = Hom(A, U(1)) ≃ A, where
the isomorphism is non-canonical, we will denote these Wilson lines as Wâ(Σ1). The second

type of operators can be defined as disorder operators for the Wilson lines. This means that we
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pick a submanifold Σd−2 in spacetime and the insertion of an operator Ua(Σd−2) is defined as

the integral path of the configurations of the gauge field A such that, for every cycle Σ1 linking

with Σd−2 we have

Wâ(Σ1) = χâ(a) , (2.3.6)

where χâ(a) is the character of the element a ∈ A of the representation â ∈ Â. Thus the

discrete A gauge theory has a symmetry A[1] × Â[d−2] with the apices denoting the degree of

the higher-form symmetries. By definition there is a non-trivial linking, or braiding,

B(a,â),(b,b̂) = χâ(b)χb̂(a) , (a, â), (b, b̂) ∈ A× Â . (2.3.7)

which simply indicates that the generators of one symmetry are charged under the other and

viceversa. Depending on A the theory can also have 0-form symmetries. One that is always

present is charge conjugation, namely

C · (a, â) = (a−1, â−1) (2.3.8)

which respects the braiding in the sense that

BC·(a,â),C·(b,b̂) = B(a,â),(b,b̂) , (2.3.9)

and is implemented by a condensation defect.

Now, every Abelian group is isomorphic to a product of Zn’s with different n’s. In this sense

the Zn gauge theory is a building block for discrete Abelian gauge theories. To this extent it

is often useful to use the lagrangian formulation of the Zn gauge theory given in [207]. One

simply writes (in Euclidean signature)

S =
in

2π

∫
Md

A1 ∧ dAd−2 , (2.3.10)

where A1 and Ad−2 are a standard U(1) gauge field and an higher-form one. The action is

gauge invariant if and only if n ∈ Z. In this formulation the operator content is clear: there

are no gauge invariant local operators, we only have Wilson lines and Wilson surfaces, both of

which are labelled by elements of Zn

Wa(Σ1) = e
ia

∫
Σ1

A1 , Ub(Σd−2) = e
ib
∫
Σd−2

Ad−2 , a, b ∈ Zn . (2.3.11)

One can see that the operators Wn and Un are trivial in correlation functions computing the

linking of a Wilson surface and a Wilson line,

⟨Wa(Σ2)Ub(Σd−2)⟩ = e2iπLk(Σ2,Σd−2)
ab
n , (2.3.12)

where Lk(Σ2,Σd−2) is the linking number of the surfaces involved. This justifies labeling oper-

ators by elements of Zn. Charge conjugation now acts reversing the signs of both A1 and Ad−2,

and is an evident 0-form symmetry of the theory acting on lines by (a, b) 7→ (−a,−b). This

discussion can be repeated for the gauge theory of an higher-form symmetry. For instance we

can write the action

S =
in

2π

∫
Md

Ap ∧ dAd−p−1 (2.3.13)
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for the Zn p-form gauge theory, from which the operator content and braiding follow as in the

0-form symmetry case.

For certain choices of d and p we might be able to write more general topological actions.

For instance take d = 3 and p = 1, then we may write

S =
in

2π

∫
M3

A1 ∧ dB1 +
ik

4π

∫
M3

A1 ∧ dA1 (2.3.14)

and we have modified the initial BF action with the addition of a Chern-Simons term. Gauge

transformations are standard an impose n.k ∈ Z. Gauge invariant operators are Wilson lines

of A1 and B1, which satisfy the constraints

e
in

∫
Σ1

A1 = e
ik

∫
Σ1

A1 = e
in

∫
Σ1

B1 = 1 . (2.3.15)

We have a Zn 1-form symmetry generated by the lines of B1, while the Wilson lines of A1

generate a Zgcd(k,n) 1-form symmetry. The Chern-Simons term also modifies the linking of the

lines, inducing a self-linking for the Wilson lines of A1.

Another example is for d = 4 and p = 2 in which case we can write

S =
in

2π

∫
M4

B2 ∧ dC1 +
inp

4π

∫
M4

B2 ∧B2 , (2.3.16)

this extra term modifies gauge transformations of the 1-form C1 mixing them with those of B2:

B2 7→ B2 + dλ1 , C1 7→ C1 − pλ1 + dλ0 . (2.3.17)

The quantization condition for p is np ∈ 2Z on general manifolds and we also have the identi-

fication p ∼ p+ 2n [207]. The gauge invariant operators of the theory are the surfaces

Ua(Σ2) = e
ia

∫
Σ2

B2 , (2.3.18)

and the non-genuine lines

W̃b(Σ1,Σ2) = e
ib
∫
Σ1

C1+ibp
∫
Σ2

B2 (2.3.19)

with ∂Σ2 = Σ1. Since the surface operator Un(Σ2) is trivial the genuine lines are those for

which bp is a multiple of n, namely

Wa(Σ1) =
(
W̃n/gcd(n,p)

)a
(2.3.20)

with a ∈ Zgcd(p,n). Notice that when a is a multiple of p the surface operators Ua(Σ2) can be

cut open on a Wilson line, so that there are gcd(p, n) non-trivial closed surface operators.

3d TQFTs and Modular Tensor Categories. In low dimensions d = 2, 3 TQFTs are very

well understood. We already mentioned that in d = 2 we even have a classification of TQFTs in

terms of Frobenius algebras, we now quickly describe the 3d case. As we have already mentioned

we can assume that the TQFT has no local operators without loss of generality, moreover we

know that surface operators in 3d implement 0-form symmetries and, in a theory with only line

defects, the expectation is that every 0-form can be constructed by condensing an appropriate
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set of lines [13]. Then let us focus only on the line content of the theory, the punchline is that

those defects are described by a Modular Tensor Category (MTC), see e.g. [17,28,192,208,209]

for an extensive treatment. In 2d we have seen that line defects form a Fusion category, in 3d

this is still true, namely we again have a fusion product and a set of F -symbols, but we have

more structure to take into account. In particular, the presence of an extra dimension allows

us to consider configuration of braided lines which are all built from the basic diagram

c

µ

a b

The possibility of distentangling lines leads to the definition of a new datum in the category

called the R-matrix:
c

µ

a b

=
∑

ν [R
c
ab]µ,ν

c

a b

ν

This additional datum has to satisfy a compatibility condition with the F -symbols called the

Hexagon equation, see e.g. [28]. Similarly to the F -symbols the R-matrix depends on the basis

we choose for the morphisms in trivalent junctions. An gauge equivalence class of compatible

F -symbols and R-symbols gives a braided category, in order to obtain a full fledged MTC there

are more constraints to be satisfied. To explain those we have to define two crucial observables,

which play a central role in 3d TQFTs, and are invariant under chenges of basis in trivalent

vertices. One observable is given by the spins, a set of numbers θa we can attach to each simple

line a. These are defined by the diagram

daθa =

where da is the quantum dimension of the simple line a. Two lines linking define the S-matrix

Sab

a b

DSab =
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Here D is the total quantum dimension of the category defined as

D =

√∑
a

d2a (2.3.21)

where the sum runs over the simple lines of the category. In an MTC the spins are phases

|θa| = 1 and the S-matrix is unitary. The adjective modular comes from the fact that the S

matrix, togheter with the T matrix defined as

Tab = e−2iπc−/24θaδab (2.3.22)

form a representation of SL(2,Z), namely

(ST )3 = S2 = C , C2 = 1 . (2.3.23)

The number c− is the chiral central charge and is defined as

1

D
∑
a

θad
2
a = e2iπ

c−
8 , (2.3.24)

while C is the charge conjugation matrix. If the data F and R, which we can use to express both

the spins and the S-matrix, satisfy these extra conditions we obtain an MTC that describes

line operators in generic 3d TQFTs (at least when we are considering a finite number of lines).

Quantities such as the S-matrix and the spins, being gauge invariant, can be computed as

correlators in the TQFT.

The framework of MTCs can be enriched including 0-form symmetries acting as automor-

phisms of the set of simple lines, this is described by G-crossed categories [28].

Non-Compact TQFTs. As a final class of examples of TQFTs we want to describe a simple

case of a TQFT with a continuous/non-compact spectrum of topological operators. These are

relevant for the SymTFT description of continuous symmetries [206, 210, 211] (see also [212]),

have nice holographic properties (see the second half of chapter 4 in this thesis) and also come

into play in the structure of generalized symmetries in 4 dimensions [213]. To our knowledge,

there is no axiomatic definition for this type of theories, which in fact seem to have divergent

partition functions on general manifolds (see B.8). However normalized correlators are always

valid observables, and, from a SymTFT perspective, these are the objects of central importance.

The idea to describe these TQFTs is to consider actions that look very similar to those of finite

group gauge theories, but relax the compactness of one (or both) the fields involved. As an

example consider

S =
i

2π

∫
M3

a1 ∧ dA1 , (2.3.25)

where A1 is a standard U(1) gauge field while a1 is an R gauge field. The difference between R
and a U(1) gauge fields lies in their gauge transformations: U(1)-valued gauge transformations

include what are called large gauge transformations. In the case of a 1-form gauge field A1

these are gauge parameters λ0 such that
∫
Σ1
dλ ̸= 0 for a 1-cycle Σ1. Of course their integral

cannot be arbitrary but is quantized in certain units, generically one takes
∫
Σ1
dλ ∈ 2πZ.
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For higher form gauge fields one can think of large gauge transformations as not globally

defined U(1) gauge fields of lower degree. Instead, R gauge fields do not have such large gauge

transformation. This has an important impact on the spectrum of operators of the theory,

indeed the quantization of the charges of Wilson lines is a direct consequence of the presence

of large gauge transformations. If we disallow those we have a valid line operator for every real

number. This means that the gauge invariant operators of the theory we are considering are

Wn(Σ1) = e
in

∫
Σ1

A1 , Uα(Σ1) = e
iα

∫
Σ1

a1 (2.3.26)

with n ∈ Z and α ∈ R. However it turns out that not all values of α give independent operators,

indeed computing the linking correlator

⟨Wn(Σ1)Uα(Σ
′
1)⟩ = e2iπLk(Σ1,Σ′

1)nα (2.3.27)

we see that α and α + 1 are identified. This leaves us with a U(1)[1] × Z[1] symmetry in the

theory. Many other interesting examples are discussed, from a different perspective, in the

second half of Chapter 4.

2.3.2 Boundary conditions

A central ingredient in any holographic construction is the boundary conditions. In the setup

outlined at the beginning of this section, we mentioned both a topological boundary condition

and a non topological one ( often called physical). The study of boundary conditions in general

QFTs is very complicated, many results are known in 2d CFTs, where it is possible, in cer-

tain cases (especially in RCFTs), to classify all conformal boundary conditions that preserve

some symmetry [191, 214–218]. In higher dimensions the situation is much more complicated,

and there are no equivalent results. However, in the SymTFT setup, there are a couple of

caveats. On the one hand, the non-topological boundary is not really a boundary condition

for the TQFT, but we have to allow for more general possibilities. Indeed, as we have already

mentioned, it is best to think of the physical boundary as a coupling of a QFT to the TQFT in

one dimension higher, which is equivalent to saying that we are not only putting some Dirichlet

boundary condition for the TQFT fields but also adding some edge modes. This is because we

want the SymTFT to be universal, namely to be shared by all those QFTs with same symmetry.

It is of course possible, and interesting, to study what happens when we do not add those edge

modes and only consider the dynamics induced by a non-topological boundary for the SymTFT.

This is explored in the second half of 4. We will not discuss here the details of the general cou-

pling between the SymTFT and the boundary degrees of freedom. Rather we will assume that

such coupling allows all the bulk defects to consistently end on lower-dimensional, and possibly

non-topological, operators in the physical boundary and also that we can push a bulk defect

onto the boundary retaining its topological nature. In this part of the thesis we will be mostly

interested in the topological boundary condition, which can be much better characterized. The

intuitive reason for this is that a topological boundary preserves as much as possible of the

bulk symmetries, including topological invariance. Basically a topological boundary condition

is such that correlators of the whole theory do not depend on the location, or the geometry,
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of the boundary, but only on its topology. Let us now consider the properties we expect from

such boundary conditions. In a (d + 1)-dimensional TQFT we can have defects Ua(Σd−p) for

every codimension p = 1, . . . d− 2 (we can again not discuss local operators). In presence of a

topological boundary we can push all bulk defects onto the boundary without changing correla-

tion functions. A natural way in which we can characterize a topological boundary is in terms

of the category of defects it hosts, or, equivalently, in terms of which defects become trivial on

it. In this sense we can think of the operation of pushing a bulk defect onto the boundary as a

map f from the category of bulk defects to those of the boundary. Intuitively, we expect this

map to be surjective, namely all boundary defects are induced by those of the bulk, but not

injective, i.e. some of the bulk defects are mapped to the identity on the boundary. The name

of the game then is to understand which consistency conditions we have to impose on a set of

bulk defects in order for them to be trivializable on the boundary. This is quite a difficult task

in general, so let us proceed by examples.

Topological boundaries in 3d Zn gauge theories. Consider the action

S =
in

2π

∫
M3

A1 ∧ dB1 (2.3.28)

The bulk defects are Wilson lines labelled by a pair (a, b) ∈ Zn × Zn, with braiding

B(a,b),(a′,b′) = e2iπ
ab′+a′b

n , (2.3.29)

based on our general consideration we now should look for defects that we can consistently

set to the identity on the boundary. The key observation here is that if two defects link non-

trivially we cannot have both of them become trivial on the boundary. The reason is that,

given a link in the bulk, we can resolve it in two ways, which have to give the same result. We

can first unlink them in the bulk, possibly getting a phase, and then close the slab mving the

topological boundary, or we can close the slab first and unlink them after. Another condition

that we have to require is that this set has to be maximal, namely all those lines not included

in it have to link non-trivially with at least one line of the set. This follows from requiring

that the symmetry hosted on the boundary acts fatihfully, we will see this later. These sets of

defects are in one to one correspondence with subgroups B ⊆ Zn and, thinking of the Wilson

lines of B1 as labelled by elements of the Pontryagin dual Ẑn, we have

LB = {(a, χ) ∈ Zn × Ẑn : a ∈ B , χ ∈ N(B)} (2.3.30)

where N(B), the normalizer of B, is defined as

N(B) = {χ ∈ Ẑn : χ(b) = 1 ∀ b ∈ B} . (2.3.31)

It is not difficult to generalize this to a generic discrete gauge theory, see e.g. Appendix B.2.

For a general n there can be many subgroups of Zn, but two choices that always exist are

B = ∅ and B = Zn, which correspond to boundary conditions which trivialize respectively all

Wilson lines of B1 or A1. In this simple case we also have a direct approach to study boundary

conditions as literal boundary conditions for the fields A1 and B1, for instance we can set A1 = 0
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which corresponds to the boundary hosting all Wilson lines of B1, but using topological defects

directly allows to understand also more complicated situations in which no simple lagrangian

presentation is known.

Algebras, boundary conditions and gauging The example of 3d discrete gauge theories

can be easily generalized to higher dimensions with arbitrary Abelian groups, and the result

is always that topological boundary conditions can be labeled by maximal sets of trivially

braiding defects. These sets identify what are called Lagrangian Algebra objects in the category

of defects [17, 219]. From a physical perspective the requirement of having trivial braiding

translates into the condition for the symmetry of being anomaly free, while the maximality

implies that there are no defects invariant under the action of the algebra. Let us explain

this in some more detail. To gauge a symmetry we need to couple the theory to a dynamical

background, for discrete symmetries this is equivalent to the insertion of topological defects

along the various cycles of spacetime. In order for the gauged partition function to be well

defined it should not depend on the details of the mesh of defects we are inserting. Requiring

this to be the case constraints the type of defects we can insert, the precise conditions depend

on both the dimensionality of defects and that of spacetime and it is difficult to make general

statements for general non-invertible symmetries. For general line defect operators in 2 and

3 dimensions these conditions are very well-known. Gaugable symmetries in 2d are given

by algebra objects in the fusion category [11], which generalize the choice of non-anomalous

subgroups and of discrete torsion. In 3d gaugable 1-form symmetries correspond to connected

commutative special Frobenius algebras [17, 219], which are not necessarily maximal. When

also maximality is obeyed they are called Lagrangian Algebras. Some more techincal details

on these procedures in 2 and 3 dimensions are collected in B.1.Note that, by definition, after

gauging a Lagrangian algebra the theory becomes trivial as there are no defects invariant under

it. Therefore no object of the original category survives the gauging. One might object that, as

it always happens for discrete symmetries, the gauged theory necessarily has a dual symmetry,

however in the cases we are considering this dual symmetry has no non-trivial charged objects

on which it can act.

When the symmetries involved are invertible, one can proceed ”by hand” and figure out

the set of topological boundary conditions and Lagrangian algebras also in higher dimensions,

however the non-invertible cases are more difficult to treat, though there exist definitions for

algebras in certain higher categories [43, 44]. The general picture we get is that there is a cor-

respondence between topological boundary conditions and Lagrangian algebra objects, namely

maximal gaugable symmetries. Physically we can think of this correspondence as follows. Di-

vide space-time in two halves, separated by the trivial interface. On one half we can gauge

a Lagrangian algebra, namely insert a fine enough mesh of defects, this has the effect of triv-

ializing the theory on that half of spacetime. On the interface we allow the defects of the

Lagrangian algebra to terminate topologically. What was originally the trivial interface now

separates the trivial theory from the starting TQFT, thus providing a topological boundary

condition [26, 220–222]. One might be tempted now to state that there is a one-to-one corre-

spondence between topological boundary conditions and Lagrangian algebras. This, however, is
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not true as just stated, due to the freedom of stacking on the topological boundary a decoupled

TQFT to obtain a different boundary. Moreover, since stacking of TQFTs is not an equivalence

relation, we cannot eliminate this freedom by taking equivalence classes. Therefore, to keep

our discussion simple, in what follows we will focus directly on lagrangian algebras rather than

boundary conditions.

2.3.3 The SymTFT

We are finallyready to present the SymTFT approach. The setup is the same discussed at

the beginning of this section, a slab with two boundaries. The topological boundary Btop

corresponds to a bulk Lagrangian algebra L whose defects are allowed to terminate on the

boundary. As the SymTFT is determined by the symmetry C of the QFT, which coincides with

the category of defects hosted by Btop, we will denote by Z(C) the category of bulk defects.

Symmetry generators and Charged objects. The defects of the bulk TQFT which are

not allowed to terminate on the topological boundary (i.e. do not participate in the Lagrangian

algebra L), hence remain as non-trivial defects on the boundary, generate the symmetry C that

acts on the QFT.

Btop BQFT

La

f

Btop

BQFT

f(La)

Roughly speaking we can think of those defects as elements of the ”quotient” of the set of

bulk defects with respect to the Lagrangian algebra corresponding to the boundary, namely

C = Z(C)/L. With the intuition that, if two bulk defects are related by fusion with a defect

in the algebra, they must be identified on the boundary. For invertible symmetries this is

precise, since we can define the quotient of the group of bulk symmetries with respect to one

of its Lagrangian subgroups, for non-invertible symmetries the situation is technically more

complicated. For 3d TQFTs of lines the defects confined on a topological boundary Btop form

the module category of the Lagrangian algebra ModZ(C)(L) [219], so that ModZ(C)(L) = C
as fusion categories. The expectation is that a similar statement should also hold in higher

dimensions and for higher categories [39,50,223,224]. In 3d the map f : Z(C) → C induced by

pushing the bulk defects onto the boundary is a (forgetful) functor between the bulk MTC and

the boundary fusion category (see e.g. [36]).

Charged objects are realized as bulk defects of the Lagrangian algebra stretching between

the two boundaries. Upon closing the slab these correspond to non-topological operators of the
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QFT. The action of C on those operators is obtained by letting the defects link in the bulk

La ∈ L

Btop BQFT

Lb /∈ L

resolving this configuration in terms of the categorical data in Z(C) yields the action of C. In

general a bulk defect could have various consistent endpoints on the two boundaries, so that

the picture drawn can describe families of operators on the boundary. For example, the lines

of a 3d SymTFT for a 2d CFT can end, at the physical boundary, on a whole conformal family

and not just on the primary operators. Similarly, there could be several possible topological

endpoints on Btop, leading to physical operators with different properties.

In this picture we can also describe twisted sectors operators and the symmetry action on

them. To construct a twisted sector operator we can take a bulk defect La not participating

in the algebra and let it end on the physical non-topological boundary. Since this bulk defect

cannot end topologically on Btop it does not become trivial on the boundary, rather, it reduces

to a defect f(La) of C

La

f(La)

Btop BQFT

Closing the slab we obtain an operator in the twisted sector of the f(La). The action of C
on those operators can again be described by appropriately linking the bulk defects with the

configuration above. Also in this context there could be several choices for the endpoints of the

defects on the two boundaries that lead to different physical operators. Another description of

non-local boundary operators arises compactifying the SymTFT to lower dimensions, in this

setup twisted sector operators are described by topological boundary conditions for the reduced

TQFT [224].
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Global Variants. A SymTFT can have several Lagrangian algebras4, thus to any given

SymTFT we can associate various QFTs in one dimension less. These define the possible

global variants of the boundary theory, and the common lore is that any two such variants

are related by a generalized discrete gauging operation (or topological manipulation). In other

words, starting from any given global variant with a certain symmetry category, we can reach all

the other ones by successive gaugings, possibly with the inclusion of discrete torsion. This can

be explicitly checked in SymTFTs with invertible defects, see e.g. [7, 66, 116, 133] and Chapter

4 of this thesis for some examples. Again the situation is more involved for non-invertible

symmetries, and most of the results are in low dimensions as we will discuss momentarily. Still

the common lore is that there is a one-to-one correspondence between topological manipulations

in the boundary theory and lagrangian algebras of the SymTFT. This lore applies at least to

categories in which there is no charged object which is also topological. When some of the

charged objects are topological one must allow for a more general notion of Lagrangian algebra,

that includes also non-genuine defects [88].

The 2d − 3d case. As we have already mentioned generalised symmetries of 2d QFTs are

described by fusion categories, at least as far as we are interested in discrete and finite symme-

tries. In these cases there is a mathematically rigorous construction of the SymTFT. Indeed,

for any unitary fusion category C, it is possible to construct a 3d TQFT, the Turaev-Viro the-

ory [120–122], that admits at least one topological boundary hosting topological line defects

described by the seed category C5. The line defects of the Turaev-Viro theory are described by a

(finite and semisimple) modular tensor category called Drinfeld center Z(C) of C [122,123]. As

we have discussed in the section 2.2, the 2d perspective is that the action of a fusion category

C on the operators of a 2d QFT is via the lasso actions, which generate the Tube algebra of C.
The SymTFT provides an alternative description via linking in 3d, the connection between the

two is that representations of the Tube algebra, which label the operators of the QFT, are in

one to one correspondence with the anyons of the Drinfeld center Z(C) [225–227]. Physically

the correspondence is realized noticing that the lasso actions, from the SymTFT perspective,

happen on the topological boundary Btop and hence cannot change the bulk anyon attached to

the local operators, which is then an invariant of the Tube algebra representation. See [36] for

a complete account of this correspondence from a physical point of view.

In this context, it is also possible to render precise the correspondence between bulk La-

grangian algebras and topological manipulations in the boundary fusion category. Possible

gaugings in the boundary fusion category C are given by algebra objects. More precisely in-

equivalent gaugings are labelled by module categoriesM over C, and two algebras corresponding

to the same module category are said to be Morita equivalent [11]. After gauging an algebra

4By definition a TQFT to be interpreted as a SymTFT must have at least one topological boundary condition.

There are situations in which we have a (d+1)-dimensional TQFT that does not adimt any topological boundary

consition attached to a d-dimensional theory, these are generally called relative theories [202]. Famous examples

of this are chiral WZW models in 2d [124,125,208] and N = (2, 0) theories in 6d [131], which need, respectively,

a 3d or 7d Chern-Simons theory to be well defined.
5Generalizations of the state sum procedure used to construct the Turaev-Viro theory in 3d have also been

considered in higher dimensions, especially in both math and condensed matter theory literature [126–130].
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in a certain Morita equivalence class we get a dual symmetry C ′, and it can be shown that

two unitary fusion categories C and C ′ are dual in this sense if and only if they have the same

Drinfeld center Z(C) [11, 182]. This result can also be stated in a slightly different form. The

notion of Morita equivalence can be generalised to fusion categories, and physically amount to

the statement that two fusion categories C and C ′ are Morita equivalent if and only if they are

connected by a discrete gauging (see e.g. [228, 229]). Then the correspondence between bulk

lagrangian algebras and boundary topological manipulations amounts to the statement that the

Drinfeld center Z(C) is the unique invariant of the fusion category C under categorical Morita

equivalence6.

6The study of higher-categories from the point of view of Morita equivalence classes and how those are

related to Drinfeld centers has appeared in the math literature [42,230–233].
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Chapter 3

Generalized Symmetries in Quantum

Field Theory

In this chapter we study how symmetries are realized in QFT. In the first half we study non-

invertible symmetries preserved along some branch of the conformal manifold of a Calabi-Yau

sigma model. In the second half instead we study how conventional 0-form are realized in

disordered or averaged theories.

3.1 Non-Invertible Symmetries in Calabi-Yau conformal

field theories

Despite their seemingly exotic nature, non-invertible symmetries exist in many familiar quan-

tum field theories. In particular, as we have explained in the first chapter of this thesis, one of

the arenas in which generalized symmetries are best understood is that of 2-dimensional CFTs.

The Verlinde lines we have described in 2.2.2 are a useful example to study non-invertible

symmetry in part because the associated rational CFTs are essentially exactly solvable. Look-

ing beyond these examples, our goal here is instead to find irrational CFTs that still possess

non-invertible global symmetry, where the existence of new symmetries may yield new insight

into the dynamics. Below we will carry this out by constructing non-invertible global symme-

tries for supersymmetric CFTs described by non-linear sigma models with Calabi-Yau target

spaces, specifically, K3 surfaces, and quintic threefolds [234–236]. These models are interest-

ing in that they provide some of the first examples of irrational theories with non-invertible

symmetries (excluding interesting symmetries of the compact boson and orbifolds at generic

radii [31, 237, 238].) Moreover, in string theory such CFTs can describe the string worldsheet

and it is expected, though not proven, that any worldsheet global symmetry should give rise

to a spacetime gauge symmetry. If that is the case we expect string theory on the spacetimes

we describe below to exhibit novel gauge structures, perhaps implying the existence of novel

branes as in [171,239–241], which is an interesting target for future investigation.
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Summary of Results

Our starting point is the observation that Calabi-Yau CFTs come in moduli spaces known

as conformal manifolds. Along these manifolds the scaling dimensions and operator product

coefficients of generic operators vary. The typical point in the conformal manifold is an irrational

CFT with a current algebra given by the appropriate (extended) superconformal algebra. The

moduli space is parameterized by exactly marginal local operators, which moreover preserve the

supercharges. It is locally factorized into the Kähler moduli, corresponding to size deformations

of the target space, and complex structure moduli corresponding to deformations in the shape

of the target space (or more pragmatically deformations in the coefficients of the equations

defining the target space.)

At special loci in these conformal manifolds, some Calabi-Yau CFTs admit Gepner points

[242–244] where the models are described formally by Fermat Calabi-Yau’s with a suitable

discrete gauging (orbifolding). At these Gepner points the CFT specializes and becomes ra-

tional. In such theories, there are many non-invertible symmetries described by the Verlinde

lines reviewed above. Our first task, carried out in Sections 3.1.1 and 3.1.2 below is thus to

construct explicitly the symmetries of these Gepner models by reviewing their operator content

and S-matrices following [234, 235, 245–249]. We achieve this by using a Cardy condition and

demanding that the twisted sector Hilbert spaces, describing operators at the end of the lines,

has a well-defined positive integral dimension at each energy level and spin [16,31,190,214]. We

also provide an equivalent perspective using an associated three-dimensional topological field

theory which encodes the symmetries of these models [9, 69,116–119,133,195].

In Section 3.1.3 we derive our main results. Specifically, we move away from the Gep-

ner point by deforming the action by exactly marginal operators. We then track which non-

invertible symmetries are preserved by these deformations. We content ourselves to an investi-

gation of the fusion rules, leaving a detailed study of the F-symbols to future work. Remarkably,

we find that at many special loci in the moduli space preserve some of the non-invertible sym-

metry. These theories are generically irrational, and correspondingly little is known about their

non-BPS spectrum of scaling dimensions and OPE coefficients. While the exact non-invertible

symmetry depends in detail on the special locus investigated, we highlight several special cases

to get a feeling for our results:

• We begin with a warm up of the torus SCFT. The Gepner point of interest corresponds

to a square torus of unit volume. As we deform away from is point, we find that an

interesting non-invertible symmetry is preserved at any modulus τ as long as the B field

is taken to always vanish and the volume (defined by the metric G) obeys:

τ = x+ iy, det(G) =
1 + x2 + y2

2y
. (3.1.1)

Specifically, along this locus in moduli space there are topological defect lines (TDLs)

with fusion algebra of a Z2 × Z2 Tambara-Yamagami category [31, 250, 251]. This fusion

category has invertible lines ηi generating the group Z2 × Z2 as well as a single non-

invertible line D obeying:

D ×D† = 1+ η1 + η2 + η1 × η2 . (3.1.2)
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• In the case of the K3 CFT we find a variety of subloci in moduli space preserving non-

invertible symmetries. For instance along a four-dimensional subspace preserving the

full N = 4 superconformal algebra we find a fusion algebra containing of a Tambara-

Yamagami Z4
2 category

D ×D† = 1+
4∑
i=1

ηi +
∑
i<j

ηi × ηj
∑
i<j<k

ηi × ηj × ηk + η1 × η2 ×3 ×η4 . (3.1.3)

As discussed in [12,31,37,57,62,63] Tambara-Yamagami fusion category symmetries arise

when a model is self-dual under gauging invertible symmetries. Thus, our identification

of Tambara-Yamagami fusion category symmetry in the K3 sigma model implies that at

these special loci there are new self-dualities of these CFTs.

• In the case of the quintic threefold, we again find many loci preserving non-invertible

symmetry. Notably in this case, these are all loci in the complex structure moduli space;

the unique Kähler modulus is frozen to its Gepner value. As a particular highlight, we

mention that along various ten-dimensional loci in complex structure moduli space we

find (at least) a fusion category symmetry characterized by Fibonacci line W obeying the

fusion rule:

W ×W = 1+W. (3.1.4)

The fact that non-invertible symmetry appears in the irrational CFTs discussed above

implies new constraints on these models which may be useful, for example, in constraining

correlation functions or in a bootstrap type analysis of their spectral data [190,252–255].

To this end in Section 3.1.3 we review results of [36] which characterize these selection

rules in representation theoretic terms. Finally we then apply these considerations in

Section 3.1.3 to conformal perturbation theory of the K3 sigma model near its Gepner

point as recently studied in [256]. In particular, we show that the non-invertible symmetry

at the Gepner point implies that only certain powers of the coupling can appear with non-

zero coefficients in calculations of the perturbed scaling dimensions. This is consistent

with observations of similar phenomena in [256].

3.1.1 LG/CY Correspondence and Supersymmetric Minimal Mod-

els

In this section we briefly review the Landau-Ginzburg/Calabi-Yau correspondence to provide

the necessary context, then we prepare the stage to study the topological defect lines in Gepner

models analyzing the case of a single minimal model.

Landau-Ginzburg/Calabi-Yau Correspondence

Gepner [244, 257] was the first one to provide evidence relating N = 2 minimal models with

Calabi-Yau sigma models. We won’t attempt to give an historically accurate account of the

subsequent developments, the interested reader can consult [234,235]. Here we instead recall the
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arguments of [246], providing evidence for this relation. We considerN = (2, 2) supersymmetric

theories in two dimensions. The particular class of models we are going to look at are U(1)

gauge theories with r + 1 chiral multiplets P and X1, . . . , Xr with a specific superpotential

W = P
(
Xk1+2

1 + · · ·+Xkr+2
r

)
, ki ∈ N0, ∀ i = 1, . . . , r (3.1.5)

and a linear twisted superpotential

W̃ = tΣ (3.1.6)

where Σ = D+D−V , V being the vector multiplet, and t = r − iθ encodes the FI parameter r

and the theta angle. The U(1) gauge group transformations are

P → e−iHλP, Xi → eiwiλXi (3.1.7)

where

H := lcm {ki + 2} ,

wi :=
H

ki + 2
.

(3.1.8)

Before analysing the phases of this system let’s look at the symmetries of the action, in particu-

lar to the R-symmetries. In superspace notation the F-terms involving the two superpotentials

are of the form ∫
dθ+ dθ−W (P,Xi) + h.c

∫
dθ+ dθ̄−W̃ (Σ) + h.c , (3.1.9)

then, in order for the theory to enjoy both left and right moving R-symmetries we need to find

charge assigments for the chiral multiplets such that W has charges (−1,−1) under U(1)+R ×
U(1)−R. For the twisted superpotential instead one can check that a consistent charge assigments

for the vector multiplet are possible only if W̃ is linear [246]. This ensures that theR-symmetries

are classical symmetries of the action, but they may still be affected by ABJ-anomalies as they

couple to fermions of a given chirality only. It is simple to check that the anomaly cancellation

condition is

−1 +
r∑
i=1

1

ki + 2
= 0 , (3.1.10)

i.e. that the gauge charges of the chirals sum to zero. If this condition is verified the twisted

superpotential is not renormalized and the FI parameter r is a true parameter of the theory

[235,246]. We now look at the space of classical vacua to try to understand the IR phases of this

system. The scalar potential is (in the following the lowercase letters are the expectation values

of the scalar components of the superfield denoted by the corresponding uppercase symbol)

U(xi, σ, p) =

∣∣∣∣∣∑
i

xki+2
i

∣∣∣∣∣
2

+ |p|2
∑
i

|(ki + 2)xki+1
i |2 + e2

2

(∑
i

H|xi|2

ki + 2
−H|p|2 − r

)

+ 2|σ|2
(∑

i

H2|xi|2

(ki + 2)2
+H2|p|2

)
.

(3.1.11)
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Notice that the second term vanishes if |p| = 0 and/or |xi| = 0 for all i = 1, . . . r1. We can

identify two regions with qualitatively different behaviour. For r > 0 we see that the susy vacua

necessarily have |p| = |σ| = 0, the leftover equations are∑
i

H

ki + 2
|xi|2 = r∑

i

xki+2
i = 0 .

(3.1.12)

The first one identifies a compact submanifold of Cr, for instance in the case ki = k this

is simply a sphere. Modding out by the U(1) gauge group we find that the first equation

identifies a complex weighted projective space CP[w1, . . . , wn] with weights given by the gauge

charges (notice that if ki = k for all i then wi = 1). The second equation then identifies a

complex hypersurface M inside the weighted projective space, in particular M is Kähler and

the vanishing of its first Chern class turns out to be equivalent to the anomaly cancellation

condition for the R-symmetries (3.1.10) (see e.g. Chapter 14 of [258]). The system at low

energies reduces to a non-linear sigma model on M (one checks that all fields except the

components of the xi tangent toM get a mass at tree level), thus an anomaly free R-symmetry

in the IR sigma model is equivalent to the CY condition. At least classically we found a

region of the parameter space in which the low energy theory is a Calabi-Yau sigma model,

although classical these computations are qualitatively correct also taking into account quantum

corrections [246]. The other regime of interest is instead r < 0, in this case the susy vacua are

|σ| = |x1| = · · · = xr = 0 , |p| =
√

−r
H

(3.1.13)

around these vacua the only the xi are massless (unless some ki = 0) with interactions de-

termined by a superpotential obtained integrating out P . This can be done replacing P with

its expectation value, so that, modulo reabsorbing an overall constant in the xi’s, the new

superpotential is simply

Xk1+2
1 + · · ·+Xkr+2

r . (3.1.14)

Notice that, since P is charged under the gauge group, we have an Higgsing from U(1) to ZH
with the unbroken gauge group acting as

Xi 7→ eiwiλXi (3.1.15)

where eiHλ = 1. Thus in this regime the theory below the breaking scale is a theory of only

chirals with superpotential (3.1.14), a.k.a a Landau-Ginzburg model, orbifolded by the action

(3.1.15). The theory of a single chiral superfield with superpotential W = Xk+2 flows in the IR

to an N = 2 minimal model Mk of central charge

c =
3k

k + 2
, (3.1.16)

1For a generic superpotential of the form W = PG(X1, . . . , Xr), where G is a quasi homogeneous function,

one requires that the equations ∂Xi
G = 0 for i = 1, . . . r have a unique common solution at X1 = X2 = . . . =

Xr = 0. In our example this transversality condition is automatically built in.
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in particular to the so called A-series minimal model corresponding to choosing the diagonal

modular invariant partition function [245]. Then our initial model, for negative values of the

FI parameter, flows in the IR to an orbifolded product of minimal models

r∏
i=1

Mki

/
ZH (3.1.17)

this is the Gepner model.

From the perspective of the NLSM we discussed before this Gepner model should correspond

to a particular value of the Kähler modulus, that is it should correspond to a particular point on

the conformal manifold, the Gepner point. The path connecting a generic point and this special

point is smooth and there are no singularities (at least as long as one keeps a generic value of

the theta angle [246]). There is much more to this story, with many possible generalizations

(for instance taking a gauge group U(1)n) and further subtleties to be addressed, however this

general picture is enough to provide context.

Minimal Models: Representations and Fusion Rules

Minimal models for the N = 2 superconformal algebra (see Appendix A.1 for our conventions)

form a discrete series with central charge

c =
3k

k + 2
, (3.1.18)

where k ∈ N is the level. At these values of c unitarity allows only a finite number of super-

conformal primaries, these are labelled by their weight and U(1)R charges

h
(λ)
l,m =

l(l + 2)

4(k + 2)
+
λ2

2
− (m− 2λ)2

4(k + 2)

q
(λ)
l,m =

m+ kλ

k + 2

(3.1.19)

with λ = 0 in the NS sector and λ = −1/2 in the R sector. The variables l,m are valued in

(l,m) ∈ Pk = {l = 0, . . . , k , |m| ≤ l , l +m = 0 (mod 2)} . (3.1.20)

Chiral primaries in the NS sector have m = l while antichirals have m = −l, Ramond sector

ground states are obtained by spectral flow.

To each superconformal primary representation H(λ)
l,m we associate two characters

ch
(λ)
l,m(τ, z) = TrH(λ)

l,m
e2iπτL0e2iπzj0

c̃h
(λ)

l,m(τ, z) = TrH(λ)
l,m

(−1)F e2iπτL0e2iπzj0 = e−iπq
(λ)
l,mch

(λ)
l,m

(
τ, z +

1

2

) (3.1.21)

where, since the fermionic modes have U(1)R charge ±1, we represented fermion parity as

(−1)j0−q
(λ)
l,m . To discuss SL(2,Z) transformation is convenient to work with characters of the

bosonic subalgebra, this is equivalent to realize the minimal model as the coset ŝu(2)k ×
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û(1)2/û(1)k+2 which we will discuss momentarily. The bosonic sub-representations include

only states with a fixed fermion number mod 2, their characters are

χ
(λ)
l,m(τ, z) =

1

2

(
ch

(λ)
l,m(τ, z) + c̃h

(λ)

l,m(τ, z)
)

(3.1.22)

which only contains states with even fermion numbers, and

χ̃
(λ)
l,m(τ, z) =

1

2

(
ch

(λ)
l,m(τ, z)− c̃h

(λ)

l,m(τ, z)
)
. (3.1.23)

Following [249] we relabel the primaries using new variables a = l, c = m−2λ and b = [a+ c] =

−2λ, where here and in the following we define

[x] ≡ x mod 2. (3.1.24)

We have

ha,c =
a(a+ 2)− c2

4(k + 2)
+

[a+ c]

8

qa,c =
c

k + 2
− [a+ c]

2

(3.1.25)

and the new variables take values in

(a, c) ∈ P ′
k = {(a, c) | a = 0, . . . , k , |c− [a+ c]| ≤ a} . (3.1.26)

Now we set2

χ
(λ)
l,m(τ, z) = χa,c(τ, z) χ̃

(λ)
l,m(τ, z) = χk−a,c+k+2(τ, z) . (3.1.29)

Notice that for (a, c) ∈ P ′
k the pair (k − a, c + k + 2) does not belong to P ′

k, thus we have to

enlarge the indexing set for characters to

Qk = P ′
k ∪ {(k − a, c+ k + 2), (a, c) ∈ P ′

k} = {(a, c) | 0 ≤ a ≤ k , 0 ≤ c ≤ 2k + 3}. (3.1.30)

It turns out that χa,c with (a, c) ∈ Qk do have nice modular properties and yield a unitary

representation of SL(2,Z) with S and T matrices

Sac;a′c′ =
1

k + 2
sin

(
π(a+ 1)(a′ + 1)

k + 2

)
eiπ

cc′
k+2 e−iπ

[a+c][a′+c′]
2

Tac;a′c′ = e2iπ(ha,c−
c
24)δa,a′δc,c′ .

(3.1.31)

2The notation

χ̃
(λ)
l,m(τ, z) = χk−a,c+k+2(τ, z) . (3.1.27)

is justified noticing that the states of lowest weight surviving the projection are obtained acting with G±
−1/2 in

the NS sector and G±
0 in the R sector. It is then easy to check that

qa,c ± 1 = qk−a,c+k+2 mod 2

hk−a,c+k+2 − ha,c =
a+ c+ 1

2
mod 1

(3.1.28)

then hk−a,c+k+2 mod 1 is the eigenvalue of T : τ 7→ τ + 1 on χk−a,c+k+2(τ, z).
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As usual S2 = C, C2 = 1 with

Ca′c′;ac = δa′,a+δc′,c+

(a+, c+) =

(a,−c mod 2(k + 2)) if [a+ c] = 0

(k − a, k + 2− c mod 2(k + 2)) if [a+ c] = 1 .

(3.1.32)

Notice that in this basis of half-characters the T matrix is diagonal, while this would not be

the case if we were working with the full characters ch
(λ)
l,m(τ, z).

By means of the Verlinde formula we can obtain the fusion coefficients for the bosonic

subrepresentations

Nαγ
ac;a′c′ =

∑
(d,f)∈Qk

Sac;dfSa′c′;dfS
∗
αγ;df

S00;df

=


(
N ŝu(2)k

)α
a,a′

(
N û(1)k+2

)γ
c,c′
, if [a+ c] [a′ + c′] = 0(

N ŝu(2)k

)k−α
a,a′

(
N û(1)k+2

)γ+k+2

c,c′
, if [a+ c] [a′ + c′] = 1


for (ac), (a′c′) , (αγ) ∈ Qk ,

(3.1.33)

where(
N ŝu(2)k

)l
a,a′

= δ (|a− a′| ≤ l ≤ min (a+ a′, 2k − a− a′)) δ (a+ a′ ≡ l mod 2)(
N û(1)k+2

)n
c,c′

= δ (c+ c′ ≡ n mod 2(k + 2))
(3.1.34)

are the fusion coefficients for the ŝu(2)k and û(1)k+2 Kac-Moody algebras. One can check that

this result is consistent with the conservation of the U(1)R charge in the OPE.

Symmetries and Orbifolds

In the rest of the paper we will only consider the minimal model with diagonal modular invari-

ant, the torus partition function is

Z(τ, z) =
∑

(a,c)∈Qk

|χa,c(τ, z)|2 =
∑

(l,m)∈Pk

λ=0,−1/2

TrH(λ)
l,m

(
(1 + (−1)FL+FR)qL0− c

12 q̄L0− c
12yj0 ȳj0

)
, (3.1.35)

with q = e2iπτ , y = e2iπz. Requiring modular invariance automatically includes the GSO pro-

jection, and in the diagonal case the physical primaries have to be fermionic or bosonic on

both sides. Notice in particular that among those the holomorphic and antiholomorphic super-

currents do not survive the projection, rather they can appear only when paired with another

fermionic state on the other side.

We now construct the Verlinde lines of the theory, the simplest way to do so is bootstrap

them from the partition function. In Appendix A.3 we also give an alternative derivation using

the folding trick. The idea is to make an ansatz for the action of the line on the physical

primaries of the theory, and then constrain it imposing concistency of the twisted Hilbert
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spaces. This is a well known construction, we repeat it here as a warm up for the more involved

case of Gepner models. In the diagonal theory the circle Hilbert space is

H =
⊕

(a,c)∈Qk

Ha,c ⊗Ha,c (3.1.36)

and a physical primary Φac corresponds to the state |a, c⟩ ⊗ |a, c⟩. A topological line Lr,s

commutes with the Virasoro generators, here we also require it to be supersymmetric, namely

to commute with all the generators of the bosonic subalgebra. We parametrize the action on

primaries as

Lr,sΦa,c = Xa,c
r,sΦa,c (3.1.37)

and constrain it imposing that the twisted partition function Zr,s(τ, z) admits a decomposition

in characters of the bosonic subalgebra with integer multiplicities. We have

Zr,s(τ, z) =
∑

(a,c),(a′,c′)
(a′′,c′′)

Xa,c
r,sSac;a′c′S

∗
ac;a′′c′′χa′,c′(q, y)χa′′,c′′(q̄, ȳ) (3.1.38)

then we require ∑
(a,c)∈Qk

Xa,c
r,sSac;a′c′S

∗
ac;a′′c′′ ∈ N . (3.1.39)

A natural solution for the multiplicities is given by the fusion coefficients, namely

Xa,c
r,s =

Srs;ac
S00;ac

,
∑

(a,c)∈Qk

Xa,c
r,sSac;a′c′S

∗
ac;a′′c′′ = Na′′c′′

rs;a′c′ (3.1.40)

corresponding to

Zr,s(τ, z) =
∑

(a′,c′)(a′′,c′′)

Na′′c′′

rs;a′c′χa′,c′(q, y)χa′′,c′′(q̄, ȳ) . (3.1.41)

The action by linking on physical primaries is the usual one

Lr,sΦa,c =
Srs;ac
S00;ac

Φa,c (3.1.42)

and fusion immediately follows from the Verlinde formula

Lrs × Lr′s′ =
∑

(r′′,s′′)∈Qk

N r′′s′′

rs;r′s′Lr′′s′′ , (3.1.43)

we therefore have |Qk| = 2(k + 1)(k + 2) topological defect lines.

The partition functions Zr,s(τ, z) are traces over the twisted Hilbert spaces. The states in

those spaces are mapped, by the state operator correspondence, to non-genuine local operators,

namely local operators attached to the topological line Lr,s. When inserted in correlation

functions these twist defects generically introduce branch cut singularities, corresponding to

the action of the attached TDL. We also notice that, since Lr,s acts non-trivially on the physical

primaries of the theory the corresponding twisted Hilbert spaces cannot contain the identity

operator, namely the ground state necessarily has positive Virasoro weights.

We first want to find the set of invertible lines. To this extent it is useful to recall that

the fusion of a line and its orientation reversal always contains the identity. Reversing the
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orientation however is equivalent to act with charge conjugation on the labels of the line. From

the explicit expression of the fusion coefficients it is simple to compute

N rs
ac;a+c+ =

δ(0 ≤ r ≤ min(2a, 2k − 2a)) δ(r = 0 mod 2) δs,0 if [a+ c] = 0

δ(0 ≤ r ≤ k − |2a− k|) δ(r = 0 mod 2) δs,0 if [a+ c] = 1
(3.1.44)

which consistently obey N00
ac;a+c+ = 1. A line is invertible if only the identity appears in the

fusion channel with its charge conjugate, we then see that the invertible lines are L0,s and Lk,s;

where s = 0, . . . , 2k + 3. Thus there are 4(k + 2) invertible lines. The fusion among those is

controlled by the coefficients

Nac
0s;0s′ =

δa,0δc,s+s′ [s][s′] = 0

δa,kδc,s+s′+k+2 [s][s′] = 1
(3.1.45)

Nac
ks;ks′ =

δa,0δc,s+s′ [k + s][k + s′] = 0

δa,kδc,s+s′+k+2 [k + s][k + s′] = 1
(3.1.46)

Nac
ks;0s′ =

δa,kδc,s+s′ [k + s][s′] = 0

δa,0δc,s+s′+k+2 [k + s][s′] = 1
= Nac

0s′;ks . (3.1.47)

The group structure depends on k:

• k even. It is easy to see that

L2n
k,1 = L0,2n+n(k+2) L2n+1

k,1 = Lk,2n+1+n(k+2) (3.1.48)

and in particular L
2(k+2)
k,1 = 1, therefore Lk,1 generates a Z2(k+2) group. We also have

L2
k,0 = 1 (3.1.49)

so Lk,0 generates a Z2. By computing

Lk,0 · Lk,1 · Lk,0 = Lk,1 (3.1.50)

we see that the symmetry structure is a direct product. One also checks that all invertible

lines can be obtained fusing Lk,0 and Lk,1. Thus the invertible lines for k even form a

group Z2 × Z2(k+2) with the generators acting as

Lk,0Φac = (−1)aΦac , Lk,1Φac = (−1)ae
2iπ

2(k+2)(c−
k+2
2

[a+c])Φac . (3.1.51)

• k odd. In this case fusing L0,1 with itself we can generate all lines, in particular

Ln0,1 =

L0,n n = 0, 1 mod 4

Lk,n+(k+2) n = 2, 3 mod 4
(3.1.52)

so L
4(k+2)
0,1 = 1. Thus the invertible lines form a Z4(k+2) group, with the generator acting

as

L0,1Φac = e
2iπ

4(k+2)
(2c−(k+2)[a+c])Φac . (3.1.53)
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These match known symmetries of the minimal models see e.g. [234,248].

For any value of k we have a Zk+2 subgroup generated by L0,2

L0,2Φac = e2iπ
c

k+2Φac (3.1.54)

notice that under this subgroup a full superconformal family transforms with the same charge

since

L0,2Φk−a;c+k+2 = e2iπ
c

k+2Φk−a;c+k+2 . (3.1.55)

Another symmetry present for all values of k is a Z2 generated by Lk,k+2. This acts by

Lk,k+2Φac = (−1)a+cΦac (3.1.56)

i.e. it leaves invariant the NS sector primaries while giving a sign on the R ones, one way

of interpreting this is as the symmetry dual to (−1)F which has been trivialized by the GSO

projection. Both these Zk+2 and Z2 will play an important role in the construction of the

Gepner models.

As a warm-up for the next section we compute the partition functions of the diagonal

minimal model orbifolded by the Zk+2 described above. To do so we need to twist and twine

the partition function by the generator of Zk+2 and then sum over the group elements. The

twined partition function is simple to write down, acting with (a s-th power of) the symmetry

operator on the Hilbert space we get

Z(τ, z, s) =
∑

(a,c)∈Qk

e2iπ
sc

k+2χac(q, y)χac(q̄, ȳ) . (3.1.57)

The twisted partition function is obtained with a S modular transformation

Zs(τ, z) = Z

(
−1

τ
,
z

τ

)
=

∑
(a,c),(a′,c′),(a′′,c′′)∈Qk

e2iπ
sc

k+2Sac;a′c′S
∗
ac;a′′c′′χa′c′(q, y)χa′′c′′(q̄, ȳ)

=
∑

(a′,c′),(a′′,c′′)∈Qk

Na′′c′′

a′c′;02sχa′c′(q, y)χa′′c′′(q̄, ȳ) =
∑

(a,c)∈Qk

χac(q, y)χa,c+2s(q̄, ȳ)
(3.1.58)

Where we used the Verlinde formula and, in the last step, the explicit form of the fusion

coefficients. To write down the orbifold partition function we need both twisting and twining,

the simplest way to twine a twisted partition function is to use the T transformation. We have

T · Zs(τ, z)
∑

(a,c)∈Qk

e2iπs
2c+2s
2(k+2)χac(q, y)χa,c+2s(q̄, ȳ)

∗ . (3.1.59)

therefore

Zs(τ, z, r) =
∑

(a,c)∈Qk

e2iπr
2c+2s
2(k+2)χac(q, y)χa,c+2s(q̄, ȳ) . (3.1.60)

The partition function of the gauged theory is then

ZZk+2
(τ, z) =

1

k + 2

k+1∑
s,r=0

Zs(τ, z, r) =
1

k + 2

k+1∑
s,r=0

∑
(a,c)∈Qk

e2iπr
2c+2s
2(k+2)χac(q, y)χa,c+2s(q̄, ȳ) (3.1.61)
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the sum over r sets

2c+ 2s = 0 mod 2(k + 2) → c+ 2s = −c mod 2(k + 2) (3.1.62)

thus

ZZk+2(τ, z) =
∑

(a,c)∈Qk

χac(q, y)χa,−c(q̄, ȳ) . (3.1.63)

This partition function is modular invariant3 and defines a sensible SCFT. We now want to

determine the symmetries of the orbifolded theory. The first thing we notice is that

Na′c′

0,2s;ac = δa,a′δc′,c+2s = Na′c′

ac;02s (3.1.64)

i.e. the fusion of the generic Verlinde line with the Zk+2 symmetry is abelian

L0,2sLacL0,−2s = Lac (3.1.65)

therefore we may hope that Lac survives the gauging operation. Another independent way we

have to study the symmetries of the orbifold is to use modular covariance. The Hilbert space

of the gauged theory is

H(Zk+2) =
⊕

(a,c)∈Qk

H(a,c) ⊗H(a,−c) (3.1.66)

then we make an ansatz for the action of some new TDL L(a,c) on it. Denoting again a physical

primary as Φac we set

L(r,s)Φac = Xac
rsΦac , (3.1.67)

clearly this action preserves the full chiral algebra. We then constraint this ansatz by requir-

ing that the TDL L(r,s) gives a consistent twisted Hilbert space. Specifically, via a modular

transformation of the twined partition function, we impose∑
(a,c)∈Qk

Xac
rsSac;a′c′S

∗
a,−c;a′′c′′ ∈ N . (3.1.68)

Using the symmetry Sa−c;a′c′ = Sac;a′−c′ we see that there is an obvious solution

Xac
rs =

Sac;rs
S00;ac

(3.1.69)

corresponding to ∑
(a,c)

Xac
rsSac;a′c′S

∗
a,−c;a′′c′′ = Na′′,−c′′

rs;a′c′ . (3.1.70)

This shows that the lines Lr,s acting as

L(r,s)Φac =
Sac;rs
S00;ac

Φac , (3.1.71)

yield a consistent twisted Hilbert space. Whenever we gauge a discrete symmetry we expect a

dual one to show up in the gauged theory. Indeed one can easily show that this dual symmetry

is generated by L0,2, which acts by

L0,2sΦac = e2iπs
c

k+2Φac. (3.1.72)

3One can quickly check this using that Sa−c;a′c′ = Sac;a′−c′
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giving charge to the new physical primaries coming from the old twisted sectors. It is also

easy to see that gauging this new Zk+2 symmetry we get back to the original theory with the

diagonal modular invariant. One can repeat a similar analysis for the Z2 generated by Lk,k+2

and also for the product Z2 × Zk+2. In particular one can check that gauging the product we

obtain the charge-conjugation invariant partition function

ZZ2×Zk+2
(τ, z) =

∑
(a,c)∈Qk

χac(q, y)χa+c+(q̄, ȳ)
∗ . (3.1.73)

This property is well known in the literature [234,242,259] and is important in the construction

of mirror manifolds.

The 3d TQFT

A very useful realization of the N = 2 minimal models, that we implicitly used throughout this

section, is as the coset (see e.g. [260] for a complete list of references)

Mk =
ŝu(2)k × û(1)2

û(1)k+2

. (3.1.74)

In particular when the minimal model is presented in this form it is immediate to write down

the 3d TQFT corresponding to it. This is simply the Chern-Simons theory with gauge group

Gk =
SU(2)k × U(1)2 × U(1)−(k+2)

Z(1)
2

(3.1.75)

where Z(1)
2 is the one-form symmetry deriving from common center of gauge group factors.

The Wilson lines for SU(2)k × U(1)2 × U(1)k+2 can be labelled by three integers (a, s, c) with

a = 0, . . . , k for SU(2)k, s = 0, 1, 2, 3 and c = 0, . . . , 2(k + 2)− 1 for the two U(1)s. The fusion

rules are

L(a,s,c) × L(a′,s′,c′) =

min(a+a′,2k−a−a′)∑
a′′=|a−a′|

a′′=a−a′ mod 2

L(a′′,s+s′,c+c′) (3.1.76)

while the topological S matrix and spins are

Sasc;a′s′c′ =
1

k + 2
sin

(
π(a+ 1)(a′ + 1)

k + 2

)
e2iπ

ss′
4 e−2iπ cc′

2(k+2) .

θasc = eiπ
a(a+2)
2(k+2) eiπ

s2

2 eiπ
m2

k+2

(3.1.77)

Also the F -symbols are factorized, see [17] for explicit expressions. The Z(1)
2 is generated by the

line (k, 2, k + 2), which has θk,2,k+2 = 1 for any k, hence can always be gauged. The eigenvalue

of the action by linking on other lines is

Sk,2,k+2;asc

S000;asc

= (−1)a+c+s (3.1.78)

while fusion is

L(k,2,k+2) × L(a,s,c) = L(k−a,s+2,c+k+2) . (3.1.79)
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Then in the theory with gauge group (3.1.75) we identify

(a, s, c) ∼ (k − a, s+ 2, c+ k + 2) (3.1.80)

and keep only gauge invariant lines with a + c + s = 0 mod 2. Notice that the action by

fusion has no fixed points, therefore there is no doubled line. These of course match the field

identifications and restrictions in the coset (3.1.74). In our analysis above we have chosen,

following [249], a particular gauge fixing in which s = 0, 1 = [a+c], then anyons can be labelled

by a pair of integers (a, c) ∈ Qk. The S-matrix, fusion rules and F -symbols are well defined

on the anyons of the gauged theory, one only needs to be careful with the gauge fixing chosen

when writing down explicit expressions.

When discussing the full CFT and not only a chiral half the coupled 3d-2d system consists

of a 3d bulk given by a Chern-Simons theory with gauge group Gk × G−k with two boundary

conditions, a conformal one and a topological one. Anyons of the theory are labelled by four

integers (aL, cL, aR, cR) ∈ Qk ×Qk giving the labels of the Wilson lines for Gk and G−k respec-

tively. Lines can terminate on the conformal boundary giving rise to local, but not necessarily

genuine, operators labeled by the same four integers (aL, cL, aR, cR). As usual the physical

spectrum is determined by the topological boundary condition [17].

3.1.2 Symmetries of Gepner Models

By the Landau-Ginzburg/Calabi-Yau correspondence the Gepner model can be constructed as

an orbifold of a tensor product of N = 2 minimal models, in particular(
r⊗
i=1

Mki

)/
ZH (3.1.81)

where Mki is a minimal model at level ki and H = lcm{ki + 2}, with the group ZH being

generated by the line operator
r⊗
i=1

L0,2 . (3.1.82)

The levels are chosen to satisfy the Calabi-Yau condition (3.1.10) so that the total central

charge is a multiple of 3

c =
r∑
i=1

3ki
ki + 2

= 3(r − 2) . (3.1.83)

Before carrying out the ZH orbifold we have to perform the correct GSO projection. This has to

be imposed simultaneously on all the minimal models, namely we are going to allow only states

whose components along the single minimal models are all either in the NS or in R sector. We

detail the construction of the Gepner model via subsequent gaugings starting from the product

of GSO-projected minimal models in the first subsection. In the rest of this section we study

the spectrum of the model as well as its symmetries.
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Construction of the Model

To construct the model we start from the product of GSO-projected minimal models, the

partition function is simply

Z(τ, z) =
r∏
i=1

∑
(ai,ci)∈Qki

|χai,ci(q, y)|
2 , (3.1.84)

and the physical primaries are

Φ{ai,ci} =
r⊗
i=1

Φ(i)
ai,ci

. (3.1.85)

Clearly the TDLs of the tensor product theory are just tensor products of the lines of each

minimal model, therefore in total we have

r∏
i=1

2(k1 + 1)(ki + 2) (3.1.86)

topological line defects. To achieve the correct GSO projection consider the lines

Lk1,k1+2 ⊗ Lki,ki+2 i = 2, . . . r , (3.1.87)

these generate a Zr−1
2 group and act as

Lk1,k1+2 ⊗ Lki,ki+2Φ{ai,ci} = (−1)a1+c1+ai+ciΦ{ai,ci} . (3.1.88)

Therefore gauging this Zr−1
2 enforces the correct projection, and the addition of the correspond-

ing twisted sectors ensures modular invariance. Instead of going through the gauging procedure

via the insertion of defects a quicker way to obtain the correct expression is to consider the

diagonal modular invariant partition function one would write using the full superconformal

characters

ZGSO(τ, z) =
∑

{li,mi}
λ=0,−1/2

r∏
i=1

|ch(λ)
li,mi

(q, y)|2 +
r∏
i=1

|c̃h
(λ)

li,mi
(q, y)|2 , (3.1.89)

in which the proper NS/R alignement is imposed by hand and is manifestly S and T invariant.

Now, rewriting it in terms of the half-characters χac, we have

ZGSO(τ, z) =
∑
A∈Sr

ZA(τ, z)

ZA(τ, z) =
∑

{ai,ci}

PGSO
{ai,ci}

∏
i∈A⊥

χai,ci(q, y)χai,ci(q̄, ȳ)
∏
i∈A

χai,ci(q, y)χki−ai,ci+ki+2(q̄, ȳ)
(3.1.90)

where A is an ordered subset of {1, . . . , r} of even order, A⊥ is its complement and

PGSO
{ai,ci} =

∏
j>1

1 + (−1)a1+c1+aj+cj

2
(3.1.91)

enforces the proper projection. We have also denoted by Sr the set of all ordered subsets of

{1, . . . , r} of even order. The sum over A is the sum over twisted sectors of the Zr−1
2 , indeed

63



|Sr| = 2r−1 and there are exactly 2r−1−1 non-empty ordered subsets of {1, . . . , r} of even order,

one for each non-trivial element of Zr−1
2

4.

We now repeat the bootstrapping analysis for the TDLs of this theory. The physical pri-

maries are labelled as Φ{ai,ci},A and are subject to the NS/R alignement constraint [a1 + c1] =

[ai + ci] ∀i = 2, . . . , r. A TDL L{ri,si},B acts by

L{ri,si},BΦ{ai,ci},A =

(
ζAB

r∏
i=1

Xai,ci
ri,si

)
Φ{ai,ci},A , (3.1.93)

here we have added an extra sign ζAB which parametrizes the quantum Zr−1
2 symmetry acting

on the twisted sectors, namely ζAB = (−1)δAB and ζA∅ = 1. The constraint on multiplicities is∑
A∈Sr

ζAB
∑

{ai,ci}

PGSO
{ai,ci}

∏
i∈A⊥

Xri,si
ai,ci

Sai,ci;a′i,c′iS
∗
ai,ci;a′′i ,c

′′
i

∏
i∈A

Xri,si
ai,ci

Sai,ci;a′i,c′iS
∗
ki−ai,ci+ki+2;a′′i ,c

′′
i
∈ N .

(3.1.94)

We first notice that

PGSO
{ai,ci} =

1

2r−1

∑
A′∈Sr

(−1)
∑

i∈A′ ai+ci =
1

2r−1

∑
A′∈Sr

∏
i∈A′

Ski,ki+2;ai,ci

S0,0;ai,ci

,

Ski−ai,ci+ki+2;a′i,c
′
i
= (−1)a

′
i+c

′
iSai,ci;a′i,c′i .

(3.1.95)

Then

(3.1.94) =
1

2r−1

∑
A,A′∈Sr

(−1)
∑

i∈A a
′′
i +c

′′
i ζAB

∏
i∈A′

(∑
ai,ci

Xri,si
ai,ci

Ski,ki+2;ai,ci

S0,0;ai,ci

Sai,ci;a′i,c′iS
∗
ai,ci;a′′i ,c

′′
i

)
×

∏
i∈A′⊥

(∑
ai,ci

Xri,si
ai,ci

Sai,ci;a′i,c′iS
∗
ai,ci;a′′i ,c

′′
i

)
.

(3.1.96)

Now, setting

Xri,si
ai,ci

=
Sri,si;ai,ci
S00;ai,ci

(3.1.97)

and using that Xri,si
ai,ci

is a one-dimensional representation of the fusion ring5 we find the multi-

plicities

1

2r−1

(∑
A∈Sr

(−1)
∑

i∈A a
′′
i +c

′′
i ζAB

) ∑
A′∈Sr

∏
i∈A′⊥

N
a′′i c

′′
i

ri,si;a′i,c
′
i

∏
i∈A′

N
a′′i c

′′
i

ki−ri,si+ki+2;a′i,c
′
i
. (3.1.100)

4A generic element of Zr−1
2 corresponds to the line⊗

j∈A

Lkj ,kj+2 with A ∈ Sr . (3.1.92)

5Concretely
Sr,s;a,c

S00;a,c

Sr′,s′;a,c

S00;a,c
=

∑
(r′′,s′′)∈Qk

Nr′′s′′

rs;r′s′
Sr′′,s′′;a,c

S00;a,c
. (3.1.98)

In the case at hand
Sr,s;a,c

S00;a,c

Sk,k+2;a,c

S00;a,c
=
Sk−r,s+k+2;a,c

S00;a,c
(3.1.99)

which is equivalent to the statement that the line Lk,k+2 is invertible in the fusion ring of a single minimal

model.
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The factor
1

2r−1

(∑
A

(−1)
∑

i∈A∈Sr
a′′i +c

′′
i ζAB

)
(3.1.101)

is again a projector, and the whole expression is always a positive integer. Clearly for ζAB = 1

and ri = si = 0 we get back the original partition function. We then can conclude that the

GSO-projected theory has TDLs L{ri,si},B acting as

L{ri,si},BΦ{ai,ci},A =

(
ζAB

r∏
i=1

Sri,si;ai,ci
S00;ai,ci

)
Φ{ai,ci},A , (3.1.102)

however because of the NS/R alignement condition on physical primaries the parametrization

above is redundant. Namely a line with labels {ri, si} and one in which we replace (rj, sj) 7→
(kj − rj, sj + kj + 2) for any even number of values of j = 1, . . . , r act in the same way on

physical primaries and can be identified. Nevertheless, because of the presence of the quantum

symmetry, the total number of faithfully acting lines is preserved by the orbifold, and still

equals (3.1.86). We shall comment further on these redundancies later.

Among the TDLs we found there is also the ZH group that we have to gauge to obtain the

Gepner model. Indeed setting (ri, si) = (0, 2) for every i = 1, . . . r as well as B = ∅ we obtain

a line L{0,2},∅ acting as

L{0,2},∅Φ{ai,ci},A = e
2iπ

∑r
i=1

ci
ki+2Φ{ai,ci},A . (3.1.103)

The final step is then to gauge this symmetry. We start by letting a line L{0,2s},∅ act on the

circle Hilbert space, namely we insert it along the space cycle of the torus. This gives us the

twined partition function

ZGSO(τ, z, s) =
∑

A;{ai,ci}

PGSO
{ai,ci}e

2iπs
∑r

i=1
ci

ki+2×

×
∏
i∈A⊥

χai,ci(q, y)χai,ci(q̄, ȳ)
∏
i∈A

χai,ci(q, y)χki−ai,ci+ki+2(q̄, ȳ)
(3.1.104)

where s ∈ ZH is the extra fugacity. By means of an S transformation on the expression above,

or directly employing the multiplicities (3.1.100), we obtain the twisted partition functions

ZGSO,x(τ, z) =
∑

A;{ai,ci}

PGSO
{ai,ci}×

×
∏
i∈A⊥

χai,ci(q, y)χai,ci+2x(q̄, ȳ)
∏
i∈A

χai,ci(q, y)χki−ai,ci+ki+2+2x(q̄, ȳ) ,
(3.1.105)

with x ∈ ZH . To combine both the twisting and twining operations we need to know how

the symmetry acts on twisted sectors. For invertible abelian symmetries however this action

is already completely encoded in the modular transformations. Indeed the T transformation

mixes the two cycles of the torus, and acting with it on ZGSO,x twines the twisted partition

function. Since T is diagonal on the half-characters the result of its action is the phase

exp

[
2iπ

(∑
i∈A⊥

hai,ci − hai,ci+2x +
∑
i∈A

hai,ci − hki−ai,ci+2x+ki+2

)]
(3.1.106)
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multiplying the characters. From the explicit expression of the weights we have

hai,ci − hai,ci+2x = x
ci + x

ki + 2
mod 1 ,

hai,ci − hki−ai,ci+2x+ki+2 =
ai + ci + 1

2
+ x

ci + x

ki + 2
mod 1 .

(3.1.107)

Using the NS/R alignement constraint, the Calabi-Yau condition (3.1.10) and the fact that the

order of A is always even the phase simplifies to

e
2iπx

∑r
i=1

ci
ki+2 . (3.1.108)

Acting multiple times with T we obtain power of this phase, therefore the twisted and twined

partition function is

ZGSO,x(τ, z, s) =
∑

A∈Sr;{ai,ci}

PGSO
{ai,ci}e

2iπs
∑r

i=1
ci

ki+2×

×
∏
i∈A⊥

χai,ci(q, y)χai,ci+2x(q̄, ȳ)
∏
i∈A

χai,ci(q, y)χki−ai,ci+ki+2+2x(q̄, ȳ) .
(3.1.109)

The Gepner model partition function is then obtained summing over x, s ∈ ZH

ZGep(τ, z) =
1

H

∑
s,x∈ZH

ZGSO,x(τ, z, s) (3.1.110)

The sum over s produces a projector

P ZH

{ai,ci} =
1

H

∑
s∈ZH

e
2iπs

∑r
i=1

ci
ki+2 = δ

(
r∑
i=1

ci
ki + 2

= 0 mod 1

)
(3.1.111)

we might then express the total partition function as a sum over the twisted sector contributions

ZGep(τ, z) =
∑

x∈ZH ;A∈Sr

Zx,A(τ, z) (3.1.112)

with

Zx,A(τ, z) =
∑

{ai,ci}

PGSO
{ai,ci}P

ZH

{ai,ci}×

×
∏
i∈A⊥

χai,ci(q, y)χai,ci+2x(q̄, ȳ)
∏
i∈A

χai,ci(q, y)χki−ai,ci+ki+2+2x(q̄, ȳ) .
(3.1.113)

This is the partition function of the Gepner model.

Another method to construct Gepner models is via simple current extensions [247,258]. In

particular starting from the tensor product of the GSO-projected minimal models (3.1.84) the

simple current of interest are

Ji = Φk1,k1+2 ⊗ 1 . . .⊗ Φki,ki+2 ⊗ . . .1 i = 2, . . . r

Jorb = Φk1,k1+4Φ
3(r−2)
k1,k1+2

r⊗
i=2

Φki,ki+4 .
(3.1.114)
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Extending the diagonal theory by these currents means to gauge the corresponding Verlinde

lines. The Ji correspond to the Zr−1
2 group imposing the GSO projection, while Jorb corresponds

to a line acting as

Φ{ai,ci} 7→ (−1)3r(a1+c1)(−1)
∑r

i=1(ai+ci)e
2iπ

∑
i

ci
ki+2Φ{ai,ci} . (3.1.115)

In the theory before NS/R alignement this is not a ZH action, rather its order depends on the

various levels ki [247]. However proceeding in steps as we did and performing first the Zr−1
2

gauging it is immediate to check that, on physical primaries of the NS/R aligned theory, the

action above turns exactly in the ZH we have considered. Another way to state this is that

the identification of the ZH in the theory (3.1.84) is ambiguous because of the redundancies

we discussed around (3.1.102). The fact that the action of Jorb and ZH coincide after GSO

projection precisely means that the two are identified in the aligned theory.

Spectrum and Exactly Marginal Deformations

By inspection of the partition function we read off the circle Hilbert space

H =
⊕

x∈ZH ;A

H(x,A)

H(x,A) =
⊕
{ai,ci}

⊗
i∈A⊥

Hai,ci ⊗Hai,ci+2x

⊗
i∈A

Hai,ci ⊗Hki−ai,ci+ki+2+2x

(3.1.116)

subject to the conditions∑
i

ci
ki + 2

= 0 mod 1 , [a1 + c1] = [a2 + c2] = . . . = [ar + cr] . (3.1.117)

The first condition ensures that, for all states at the Gepner point, both the left and right

U(1)R charges are integer for states coming from the NS sector (and half-integer for R sector

states). This integrality condition is crucial in string compactification as it ensures spacetime

supersymmetry. We start by noticing that this spectrum contains a single spectral flow operator.

The vacuum state is unique and the spectral flow operator is obtained acting on it with 1/2

units of spectral flow. Clearly doing this only on a subsets of the minimal models violates NS/R

alignement, only acting on all minimal models simultaneously we get a state that’s still in the

spectrum. The spectral flow operator corresponds to the state

r⊗
i=1

|0, 1⟩ ⊗ |0, 1⟩ ∈ H0,∅ (3.1.118)

which satisfies the constraints and has

hL = hR =
c

24
=
r − 2

8
qL = qR = − c

6
= −r − 2

2
. (3.1.119)

We can also spectral flow by −1/2 unit obtaining a state with hL = hR = (r − 2)/8 and

qL = qR = (r − 2)/2. Similarly with a ±1 unit of spectral flow we obtain states with hL =

hR = (r − 2)/2 and qL = qR = ±(r − 2). The CY sigma model has an (extended) N = (2, 2)

algebra, which at the Gepner point, is realized as the diagonal subalgebra of the tensor product
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of algebras of the single minimal models. Note that hL−hR ∈ Z consistently with T invariance

of the partition function and that qL, qR ∈ 1
2
Z, with the half-integer charge state being those

in the R sector.

We are interested in the states corresponding to exactly marginal deformations, as those

allow to probe the moduli space of the Calabi-Yau manifold. In order to preserve N = 2

supersymmetry the deformation has to be BPS. The condition of marginality selects a subset of

the BPS operators, the requirement being that the deformation preserves both the holomorphic

and antiholomorphic R-symmetries. It turns out that the superconformal Ward identities imply

that anyN = 2-supersymmetric marginal deformation is exactly marginal [234,261]. Therefore,

modulo complex conjugation, there are two classes of operators to consider:

• Given a chiral-chiral primary ϕ(z, z̄) with qL = qR = 1 its descendant(
G

−
−1/2G

−
−1/2ϕ

)
(w, w̄) (3.1.120)

has hL = hR = 1 and qL = qR = 0.

• Given an antichiral-chiral primary ϕ(z, z̄) with qL = −qR = 1 its descendant(
G+

−1/2G
−
−1/2ϕ

)
(w, w̄) (3.1.121)

has hL = hR = 1 and qL = qR = 0.

In both those cases, in order to have a real deformation one has to add the complex conjugate

field given by (a descendant of) the antichiral-antichiral or chiral-antichiral primary. In terms

of representations of the bosonic subalgebra notice that the exactly marginal deformation has

the same total fermion parity of its primary state, thus to detect its presence in the spectrum

it is enough to find the corresponding primary.

The BPS spectrum of the Gepner model, in the NS sector, consists of the four chiral rings.

A primary of the Gepner model is chiral or antichiral if it is so under every N = 2 subalgebra

of to the single minimal models6. Let’s then take the generic state in a sector with both

A,A⊥ ̸= ∅, requiring the holomorphic side to be chiral or antichiral we need to set ci = ±ai
for all i. Requiring the antiholomorphic side to be of the same type as the holomorphic part

6To see this we consider the generator of the diagonal subalgebra

G±
−s =

r∑
i=1

1⊗ . . .⊗G
(i);±
−s ⊗ . . .1 (3.1.122)

and let it act on a tensor product state

G±
−s

r⊗
i=1

|ϕi⟩ (3.1.123)

assuming that the ϕi are orthonormal we see that the norm of such descendant state is∣∣∣∣∣
∣∣∣∣∣G±

−s

r⊗
i=1

|ϕi⟩

∣∣∣∣∣
∣∣∣∣∣
2

=

r∑
i=1

∣∣∣∣∣∣G(i);±
−s |ϕi⟩

∣∣∣∣∣∣2 . (3.1.124)

Then the total state is annihilated if and only if all its components are.
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we would need ci + 2x = ±ai for i ∈ A⊥ and ci + ki + 2 + 2x = ±(ki − ai) for i ∈ A. Clearly

this sets x = 0 and the remaining equation is

±ai + ki + 2 = ±(ki − ai) mod 2(ki + 2) ⇒ 2ai + 2 = 0 mod 2(ki + 2) (3.1.125)

which has no solution in the range ai = 0, . . . ki. The first extremal case to consider, that is

present for any r, is A = ∅. Here it is easy to find the BPS states

r⊗
i=1

|ai,±ai⟩ ⊗ |ai,±ai⟩ ∈ H(0,∅) , (3.1.126)

of course only those with integral U(1)R charges survive the projection. The other extremal

case to consider is when r is even and A = {1, . . . r}. Here again ci = ±ai for all i, but we are

no longer forced to set x = 0, rather we need to solve the equations

2(ai + 1± x) = 0 mod 2(ki + 2) ∀i = 1, . . . r (3.1.127)

which fix

ai = ki + 1− x ,

ai = x− 1 .
(3.1.128)

for + and − signs respectively. In the range ai = 0, . . . , ki we have 1 ≤ s ≤ min(ki) + 1.

Therefore for r even we find two extra conjugate BPS states for each non-zero x ∈ ZH
r⊗
i=1

|ki + 1− x, ki + 1− x⟩ ⊗ |x− 1, x− 1⟩ ∈ H(s,{1,...r})

r⊗
i=1

|x− 1,−x+ 1⟩ ⊗ |ki + 1− x,−ki − 1 + x⟩ ∈ H(x,{1,...r})

(3.1.129)

which also satisfy the charge constraint. We conclude that the chiral-chiral or antichiral-

antichiral states can only belong to the untwisted sector and, for r even to the twisted sectors

with A = {1, . . . , r}. Marginal deformations correspond to those states with |qL| = |qR| = 1, in

the untwisted sector this constraint is

r∑
i=1

ai
ki + 2

= 1 (3.1.130)

due to the CY condition the state with ai = 1 for all i are always a solution. The chiral-chiral

and antichiral-antichiral states in H(s,{1,...,r}) have charges

qL =
r∑
i=1

ki + 1− x

ki + 2
=
c

3
+ 1− x = r − 1− x ; qR = x− 1

qL = 1− x ; qR = −r + 1 + x

(3.1.131)

respectively. Those giving rise to a marginal deformation have

r − 1− x = x− 1 = 1 ⇐⇒ x = 2 , r = 4 . (3.1.132)
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We can repeat the analysis for the chiral-antichiral states and their conjugates. For A,A⊥ ̸= ∅
the equations are

ci = ±ai , ∀i
ci + 2x = ∓ai , i ∈ A⊥

ci + ki + 2 + 2x = ∓(ki − ai) , i ∈ A

(3.1.133)

and one easily sees that there is no admissible solution. We again consider first the extremal

case A = ∅, here we do not have to impose the third equation above, therefore we have

ci = ±ai x = ∓ai (3.1.134)

hence ai = a for all i. The corresponding states are

r⊗
i=1

|a,±a⟩ ⊗ |a,∓a⟩ ∈ H(∓a,∅) . (3.1.135)

The other extremal case is again A = {1, . . . , r} for r even. Here we have ci = ±ai and x = ±1,

the states are
r⊗
i=1

|ai,±ai⟩ ⊗ |ki − ai,∓(ki − ai)⟩ ∈ H(±1,{1,...,r}) . (3.1.136)

Thus we have an antichiral-chiral BPS state for every H(x,∅) with appropriate x and, if r is even,

we have more coming from the twisted sector H(±1,{1,...r}). Among those in the H(x,∅) sectors

only for x = ±1 we have a marginal deformation. Instead the conditions on the R charge of

the states showing up for r even are

r∑
i=1

ai
ki + 2

= 1 ,
r∑
i=1

ki − ai
ki + 2

= 1 (3.1.137)

if the first condition is met the second requires

1 =
r∑
i=1

ki − ai
ki + 2

= r − 3 (3.1.138)

i.e r = 4. Summarizing, the marginal deformations are:

• chiral-chiral and antichiral-antichiral states. For any r

r⊗
i=1

|ai,±ai⟩ ⊗ |ai,±ai⟩ ∈ H(0,∅)

r∑
i=1

ai
ki + 2

= 1 . (3.1.139)

For r = 4 and H > 2 we also have

4⊗
i=1

|ki − 1, ki − 1⟩ ⊗ |1, 1⟩ ∈ H(2,{1,...,4})

4⊗
i=1

|1,−1⟩ ⊗ |ki − 1, 1− ki⟩ ∈ H(2,{1,...,4}) .

(3.1.140)
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• antichiral-chiral and chiral-antichiral states. For any r there’s only one with the correct

R-charges
r⊗
i=1

|1,±1⟩ ⊗ |1,∓1⟩ ∈ H(∓1,∅). (3.1.141)

For r = 4 and H > 2 we also have
4⊗
i=1

|ai,±ai⟩ ⊗ |ki − ai,∓(ki − ai)⟩ ∈ H(±1,{1,...,4}) ,

r∑
i=1

ai
ki + 2

= 1 . (3.1.142)

The case r = 4 is evidently special as it admits particular marginal deformations. The theory

has c = 3(r − 2) = 6, corresponding to a sigma model on a K3 surface. We notice that for

r = 4 we have the same number of chiral-chiral and antichiral-chiral marginal deformations.

It is also known that there is an enhancement of supersymmetry and the theory enjoys an

N = (4, 4) superconformal algebra, therefore the marginal deformations moving along the

moduli space should preserve the full supersymmetry. Indeed the degeneracy between chiral-

chiral and antichiral-chiral states meets the expectation that N = 2 BPS states pair up to form

a BPS multiplet for the larger algebra. For r = 4 we also have the states
r⊗
i=1

|ki, ki⟩ ⊗ |0, 0⟩ ∈ H(1,{1,...4})
r⊗
i=1

|ki,−ki⟩ ⊗ |0, 0⟩ ∈ H(−1,{1,...4}) (3.1.143)

which correspond to holomorphic operators with hL = 1 and qL = ±2. Similar states exist also

for the antiholomorphic side. Together with the R-symmetry generator we have three currents

that transform in the adjoint of SU(2)R, the R-symmetry of the N = 4 algebra. It is known,

see e.g. [262], that for any CY sigma model the chiral algebra is extended, for K3 the resulting

symmetry is N = 4 supersymmetry, while in general the algebra is the N = 2 one extended by

the square of the spectral flow operator [263]. One could then expect that also when r is odd

new holomorphic and antiholomorphic states corresponding to this operator show up in the

spectrum, this however is not the case. Indeed if the complex dimension of the CY is odd this

operator is a fermion with half-integer weight, therefore, due to the GSO projection, it cannot

appear as a purely left-moving state, rather it can only appear tensored with a right-moving

fermion. When r is even instead these operators are bosonic, and appear tensored with the

identity in the antiholomorphic sector precisely in the twisted sectors with A = {1, . . . , r}.

Topological Defect Lines and 3d TQFT

We now investigate the symmetries of the model. Again our strategy is to bootstrap the action

of line operators on physical primaries imposing consistency of the twisted Hilbert spaces. The

physical primaries appearing in (3.1.112) can be labelled as Φ{ai,ci},A,x with the set of labels

{ai, ci} subject to∑
i

ci
ki + 2

= 0 mod 1 , [a1 + c1] = [a2 + c2] = . . . = [ar + cr] . (3.1.144)

Since we obtained the Gepner model as a ZH orbifold of the GSO-projected theory we can

factor out the dual ZH symmetry in our ansatz, we set

L{ri,si},B,ηΦ{ai,ci},A,x = ζABe
2iπ ηx

H

(
r∏
i=1

Xai,ci
ri,si

)
Φ{ai,ci},A,x . (3.1.145)

71



Inserting L{ri,si},B,η as an operator acting on the Hilbert space and acting with an S transfor-

mation we obtain the multiplicities in the twisted sector∑
x∈ZH ;A∈Sr

ζABe
2iπ ηx

H

∑
{ai,ci}

PGSO
{ai,ci}P

ZH

{ai,ci}×

×
∏
i∈A⊥

Xai,ci
ri,si

Saici;a′ic′iS
∗
ai,ci+2x;a′′i ,c

′′
i

∏
i∈A

Xai,ci
ri,si

Saici;a′ic′iS
∗
ki−ai,ci+ki+2+2x;a′′i ,c

′′
i
.

(3.1.146)

To rewrite this in a more manageable form we use

Sk−a,c+k+2+2x;a′,c′ = (−1)a
′+c′e2iπ

xc′
k+2Sac;a′c′

P ZH

{ai,ci} =
1

H

∑
s∈ZH

e
2iπs

∑r
i=1

ci
ki+2 =

1

H

∑
s∈ZH

r∏
i=1

S0,2s;aici

S00;aici

(3.1.147)

and also (3.1.95) for the GSO projector. We get

(3.1.146) =
1

2r−1H

∑
x∈ZH ;A

ζAB(−1)
∑

i∈A a
′′
i +c

′′
i e

2iπx

(
η
H
+
∑r

i=1

c′′i
ki+2

)

∑
{ai,ci};
A′,s∈ZH

∏
i∈A′⊥

Xai,ci
ri,si

S0,2s;aici

S00;aici

Saici;a′ic′iS
∗
ai,ci;a′′i ,c

′′
i

∏
i∈A′

Xai,ci
ri,si

S0,2s;aici

S00;aici

Ski,ki+2;ai,ci

S0,0;ai,ci

Saici;a′ic′iS
∗
ai,ci;a′′i ,c

′′
i
.

(3.1.148)

Again we see that there is a natural solution

Xai,ci
ri,si

=
Sri,si;ai,ci
S00;ai,ci

(3.1.149)

that gives the integer multiplicities

N
Gep {a′′i ,c′′i }
{ri,si},{a′i,c′i}

=
1

2r−1H

∑
x∈ZH ;A∈Sr

ζAB(−1)
∑

i∈A a
′′
i +c

′′
i e

2iπx

(
η
H
+
∑r

i=1

c′′i
ki+2

)

∑
A′∈Sr,s∈ZH

∏
i∈A′⊥

N
a′′i ,c

′′
i

ri,si+2s;a′i,c
′
i

∏
i∈A′

N
a′′i ,c

′′
i

ki−ri,si+ki+2+2s;a′i,c
′
i
.

(3.1.150)

We conclude that the Gepner model enjoys line defects L{ri,si};B,η acting as

L{ri,si};B,ηΦ{ai,ci};A,s = ζABe
2iπ ηx

H

(
r∏
i=1

Sri,si;ai,ci
S00;ai,ci

)
Φ{ai,ci},A,x

= ζABe
iπ

(
2ηx
H

+
∑

i
sici
ki+2

− [a1+c1][ri+si]

2

) r∏
i=1

sin
(
π(ri+1)(ai+1)

ki+2

)
sin
(
π(ai+1)
ki+2

) Φ{ai,ci},A,x .

(3.1.151)

By our analysis of the lines of a single minimal model we see that any line for which at least

one ri ̸= 0, ki is non-invertible. The fusion ring is simple to describe, we have

L{ri,si};B,η × L{r′i,s′i};B′,η′ =
∑

{r′′i ,s′′i }

r∏
i=1

N
r′′i ;s

′′
i

ri,si;r′i,s
′
i
L{r′′i ,s′′i };BB′,η+η′ (3.1.152)

72



with the dual symmetry labels following a group law. The remarks concerning the redundancy

of our parametrization apply also in this case. Namely the set of labels of faithfully acting

lines is the quotient of
⊕

iQki , where the 2r-tuple {ri, si} takes values, with respect to the

equivalence relations

(rj, sj) ∼ (kj − rj, sj + kj + 2) ∀j ∈ A , A ∈ Sr
(ri, si) ∼ (ri, si + 2) ∀i = 1, . . . , r .

(3.1.153)

Of course, accounting for the dual symmetry labels, the total number of lines still equals

(3.1.86). If we identify these lines with those of the theory prior to GSO projection and

orbifold the equivalences above derive by fusion with the gauged lines, which are invisible in

the Gepner model. Both the multiplicities N
Gep {a′′i ,c′′i }
{ri,si},{a′i,c′i}

and the fusion coefficients are well

defined on the quotient. In the multiplicities of the twisted sectors this is guaranteed by the

sum over s ∈ ZH and A′ ∈ Sr, as changing the representative of the line only reshuffles the

terms in the sums. For the fusion coefficients, since the identifications follow from fusing with

invertible lines, changing representatives of the lines on the left hand side does not affect the

fusion coefficients or the equivalence class of the result of the fusion.

Also in this case we can give a 3-dimensional description of this symmetry. Since we only

performed orbifolds in 2d the 3d TQFT corresponding to the Gepner model is the same one

corresponding to the product of GSO-projected minimal model. This is just the Chern-Simons

theory with gauge group

GGep = Gk1 × . . .×Gkr ×G−k1 × . . .×G−kr (3.1.154)

with Gki as in (3.1.75). The MTC data of this TQFT can be computed from those of a single

factor. In particular anyons are labelled, in our choice of gauge, by a 4r-tuple {(ri, si); (r̄i, s̄i)}
with (ri, si), (r̄i, s̄i) ∈ Qki and their fusion is

L{(ri,si);(r̄i,s̄i)} × L{(r′i,s′i);(r̄i′,s̄i′)} =
∑

{(r′′i ,s′′i );(r̄i′′,s̄i′′)}

r∏
i=1

N
r′′i ,s

′′
i

ri,si;r′i,s
′
i
N r̄i

′′,s̄i′′

r̄i,s̄i;r̄i′,s̄i′
L{(r′′i ,s′′i ),(r̄i′′,s̄i′′)} .

(3.1.155)

From the TQFT perspective gauging a 0-form symmetry in the boundary amounts to change

topological boundary condition. The topological boundary condition for the tensor product of

GSO-projected minimal models is the diagonal one, corresponding to the diagonal lagrangian

algebra
⊕

{(ri,si)} L{(ri,si);(ri,si)}. In general we can read off the lagrangian algebra corresponding

to a gapped boundary directly from the torus partition function. Consider the 3d TQFT on

a solid torus with an inner and an outer torus boundaries, on the outer boundary we impose

the conformal boundary condition, while on the inner one we set the topological boundary

condition. Evaluating the path integral of the TQFT in this configuration produces the torus

partition function of the CFT. Now, shrinking the inner torus leaves behind the lagrangian

algebra corresponding to the chosen boundary condition, which we can write out as a sum of

anyons, possibly with multiplicities. Since the path integral on a solid torus with the insertion of

an anyon produces a character of the chiral algebra we can extract the anyons of the lagrangian

algebra by comparing with the explicit expression of the partition function. For instance the
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L{(ri,si)},{(r̄i,s̄i)};A;x

L{(αi,βi);({ᾱi,β̄i)}

= γ
L{(ri,si)},{(r̄i,s̄i)};A;x

Figure 3.1: An anyon of LGep can end on both the (red) topological and the (green) conformal

boundaries, upon shrinking of the bulk we obtain a local operator in the CFT. The symmetry

of the boundary CFT is captured by linking in the bulk.

lagrangian algebra imposing the GSO-projection is

LGSO =
⊕

{(ri,si)},A∈Sr

PGSO
{ri,si}L{(ri,si);(ri,si)} × LA (3.1.156)

where LA is the bulk line with ri = si = 0 ∀i and r̄j = kj, s̄j = kj+2 ∀j ∈ A. And similarly one

can write down an expression for the lagrangian algebra corresponding to the ZH-orbifolded
theory

LGep =
⊕

{(ri,si)},A∈Sr,x∈ZH

PGSO
{ri,si}P

ZH

{ri,si}L{(ri,si);(ri,si)};A,x (3.1.157)

with

L{(ri,si);(ri,si)};A,x = L{(ri,si);(ri,si)} × LA × L{(0,0);(0,2x)} . (3.1.158)

Anyons participating in a lagrangian algebra can end on both the conformal and topological

boundaries, therefore producing local operators in the CFT.

Bulk lines that are not condensed on the topological boundary generate the symmetry of the

CFT. In the bulk the symmetry action is detected linking an anyon of the lagrangian algebra

with a generic bulk line. In our case, for the gapped boundary corresponding to the Gepner

model, we consider the configuration in Fig.3.1, then

γ =
r∏
i=1

Sαi,βi;ri,si

S00;ri,si

∏
i∈A⊥

S∗
ᾱi,β̄i;ri,si+2x

S00;ri,si+2x

∏
i∈A

S∗
ᾱi,β̄i;ki−ri,si+ki+2+2x

S00;ki−ri,si+ki+2+2x

= e
−2iπx

(∑r
i=1

β̄i
ki+2

)
(−1)

∑
i∈A[ᾱi+β̄i]

r∏
i=1

Sαi,βi;ri,siS
∗
ᾱi,β̄i;ri,si

S2
00;ri,si

.

(3.1.159)

When L{αi,βi},{ᾱi,β̄i} is also participating in LGep the quantity above reduces to its quantum

dimension, as it should given the commutativity of the lagrangian algebra. In (3.1.159) the two

phases in front of the product give the action of the dual symmetries, with η = H
∑

i β̄i/(ki+2)

and ζAB = (−1)
∑

i∈A[ᾱi+β̄i]. Due to the boundary condition many bulk lines will be mapped to

the same boundary line, hence act on lines in LGep with the same eigenvalue. As representatives

of the faithfully acting lines we can take all those with αi = βi = 0 and impose the identifications

implied by the projectors PGSO and P ZH , then (3.1.159) matches what we found directly in the

CFT.
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3.1.3 Symmetric Marginal Deformations and Selection Rules

We found a wealth of non-invertible lines at the Gepner point of the Calabi-Yau sigma model.

We now want to investigate the existence of continuous families of SCFTs which preserve some

subcategory of lines. To this extent we look at marginal deformations invariant under the action

of the lines described in the previous section. On general grounds, for an operator Φ of a 2d

QFT to be invariant under the action of a TDL L, the two have to commute [12]. Shrinking L
produces a number, then the condition is

LΦ = ⟨L⟩Φ (3.1.160)

where ⟨L⟩ is the quantum dimension of L, which can also be seen as the eigenvalue of L on

the identity operator (we are assuming a CFT with a unique vaccum). Therefore a physical

primary Φ{ai,ci},A,x of the Gepner model is invariant under a line L{ri,si},B,η if

ζABe
2iπ sη

H

r∏
i=1

Sri,si;ai,ci
S00;ai,ci

=
r∏
i=1

Sri,si;00
S00;00

. (3.1.161)

Since we are going to consider only exactly marginal deformations we can take Φ{ai,ci};A,x to be

in the NS sector, then the invariance condition is slightly simpler

ζABe
iπ

(
2sη
H

+
∑

i
sici
ki+2

) r∏
i=1

sin
(
π(ri+1)(ai+1)

ki+2

)
sin
(
π(ai+1)
ki+2

) =
r∏
i=1

sin
(
π(ri+1)
ki+2

)
sin
(

π
ki+2

) . (3.1.162)

The operator we add to the action is a descendant of the BPS primaries we discussed in the

previous section. To obtain it we act on those primaries with a product of the supercharges

G±, Ḡ± of the diagonal N = (2, 2) algebra. In terms of the supercharges of each tensor factor

the operators we are interested in are

GxḠy =
r∑

i,j=1

1⊗ . . .⊗G(i);x ⊗ . . .⊗ 1̄⊗ . . .⊗ Ḡ(j);y ⊗ . . .⊗ 1̄ , (3.1.163)

with x, y = ±. As states in the Gepner model Hilbert space these operators correspond to

|GxḠy⟩ =
r∑

i,j=1

|0, 0⟩ ⊗ . . .⊗ |ki, ki + 2⟩ ⊗ . . . |0, 0⟩ ⊗ . . . |kj, kj + 2⟩ ⊗ . . .⊗ |0, 0⟩ . (3.1.164)

The summands belong to the twisted Hilbert spaces H(0,A={i,j}) if i ̸= j, while are in the

untwisted Hilbert space if i = j. A line L{ri,si};B;η acting on a component gives (−1)ri+siζ{ij},B i ̸= j

(−1)ri+si i = j .
(3.1.165)

A single term in the sum (3.1.163), upon acting on the BPS primary, gives raise to an operator

participating in the deformation. For each such component the commutation condition is

ζ{i,j},B(−1)ri+siζABe
iπ

(
2sη
H

+
∑

l
slcl
kl+2

) r∏
l=1

sin
(
π(rl+1)(al+1)

kl+2

)
sin
(
π(al+1)
kl+2

) =
r∏
l=1

sin
(
π(rl+1)
kl+2

)
sin
(

π
kl+2

) , ∀i, j . (3.1.166)
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We can take the line L{ri,si},;B,η to commute or anticommute with both the product of super-

charges and the BPS primary. Requiring (anti-)commutativity with the supercharges we see

that we have to set (−1)ri+si = ±1 for all i = 1, . . . , r and ζ{ij},B = 1.

Now, solving for the commutativity with the BPS primary in full generality is complicated.

In order to continue our analysis we consider specific examples. In the following we shall only

focus on chiral-chiral and antichiral-chiral deformations, as we can use charge conjugation to

relate those to the antichiral-antichiral and chiral-antichiral ones. In the literature the usual

way to denote Gepner models is as
∏

y(ky)
my where my is the number of times ky appears in

the list (k1, . . . , kr), we’ll make use of this notation in the remainder of this section.

Torus

The simplest target space we can consider for the superconformal sigma model is the torus.

The theory is free, and consists of a complex scalar X parametrizing the torus, a complex left

moving fermion ψ and a complex right moving one λ. The conformal manifold is the Narain

moduli space

M = O(2, 2,Z)\O(2, 2,R)/O(2)×O(2) . (3.1.167)

A point in M consist of a choice of metric Gij = Gji and B-field Bij = −Bji on the target

torus, with i, j = 1, 2. The partition function of the theory on a torus worldsheet with modular

parameter τ at a point m ∈ M is the product of the bosonic one and the GSO-projected

fermion partition function. The R-symmetry charges are

q q̄

ψ 1 0

λ 0 1

X 0 0

The tangent space of M can be probed deforming the action by the operator

O =
(
δGijδ

αβ + iδBijϵ
αβ
)
∂αX

i∂βX
j (3.1.168)

where we wrote X = X1 + iX2 and introduced coordinates σα on a flat worldsheet. In terms

of X and z = σ1 + iσ2 we have

O = g∂X∂̄X + f∂X∂̄X̄ + c.c. (3.1.169)

where we introduced the complex parameters

g = δG11 − δG22 − 2iδG12 , f = δG11 + δG22 + 2iδB12 . (3.1.170)

To compare O with the exactly marginal deformations obtained from the N = (2, 2) algebra

we write down the chiral rings using the sigma model fields. We have7

(chiral-chiral) = {1, ψ, λ, ψλ}
(antichiral-chiral) = {1, ψ̄, λ, ψ̄λ}

(3.1.171)

7Note that because of the GSO projection the fields ψ, λ and their conjugates cannot appear in the partition

function on their own, to survive the projection they need to be tensored with another fermionic state on the

other holomorphic half.
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Using the explicit realization of the N = (2, 2) algebra generators in terms of the sigma model

fields one can check that the two marginal operators ∂X∂̄X and ∂X̄∂̄X are descendants of the

bosonic BPS primaries ψλ and ψ̄λ respectively. In other words g couples to the chiral-chiral

deformation while f to the antichiral-chiral one.

On M there are three Gepner points: (1)3, (2)2 or (1)(4), each of which has total central

charge c = 3. The last two cases however, as presented, do not fulfill the CY condition. In

particular, for both (2)2 and (1)(4),

2∑
i=1

1

ki + 2
=

1

2
. (3.1.172)

We can solve this issue in both cases adding a minimal model with k = 0. On its own this

is the trivial (spin) theory, with a single ground state in both the NS and R sectors with

vanishing charges and weights. However its presence is detected by the ZH orbifold: without

it we would not project on NS sector states with integer U(1)R charges. The (1)3 model is the

least interesting as the Verlinde lines of the k = 1 minimal model are all invertible. We shall

then mainly focus on the (2)2(0) case. In this simple case one can check by hand that there is

only one chiral-chiral marginal deformation corresponding to the state

(|2, 2⟩)⊗2 ⊗ |0, 0⟩ ⊗ (|2, 2⟩)⊗2 ⊗ |0, 0⟩ ∈ H(0,∅) . (3.1.173)

Also there’s a unique antichiral-chiral marginal operator corresponding to

(|1,−1⟩)⊗2 ⊗ |0, 0⟩ ⊗ (|1, 1⟩)⊗2 ⊗ |0, 0⟩ ∈ H(3,∅) . (3.1.174)

Now let’s look at what lines are preserved by these deformations.

• A line L{ri,si};B,η (anti)commutes with the chiral-chiral operator if

eiπ
2s1+2s2

4

sin
(

3π(r1+1)
4

)
sin
(

3π(r2+1)
4

)
sin
(
π(r1+1)

4

)
sin
(
π(r2+1)

4

) = ±1 . (3.1.175)

To eliminate the imaginary part we set 2s1 + 2s2 = 0 mod 4, then

sin
(

3π(r1+1)
4

)
sin
(

3π(r2+1)
4

)
sin
(
π(r1+1)

4

)
sin
(
π(r2+1)

4

) = ±1 (3.1.176)

which are solved by

(r1, r2)+ = (0, 0), (2, 0), (0, 2), (1, 1), (2, 2);

(r1, r2)− = (0, 1), (1, 0), (2, 1), (1, 2) .
(3.1.177)

Any solution in which r1 or r2 is 1 corresponds to a non-invertible line. It is easy to

see that the antichiral-antichiral state conjugate to (3.1.173) is also invariant under those

lines.
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• For L{ri,si};B,η to (anti-)commute with the antichiral-chiral operator we need instead

eiπ(
s1+s2

4
+η)

2∏
i=1

sin
(

2π(ri+1)
4

)
sin
(
π(ri+1)

4

) = ±2 . (3.1.178)

We can eliminate the imaginary part with s1 + s2 = η mod 4, then

2∏
i=1

sin
(

2π(ri+1)
4

)
sin
(
π(ri+1)

4

) = ±2 , (3.1.179)

which are solved by

(r1, r2)+ = (0, 0), (2, 2);

(r1, r2)− = (2, 0), (0, 2) .
(3.1.180)

Thus only invertible lines commute with this deformation.

By construction the symmetries of the chiral-chiral deformation form a fusion subcategory

SCC of the full symmetry of the Gepner model. For instance, in SCC we have the line D =

L1,1,1,3;∅,0, this fuses as

D ×D† = 1+ η1 + η2 + η1 × η2 (3.1.181)

where η1 = L0,2,0,0;∅,0 and η2 = L0,0,2,0;∅,0 are Z2 generators. These are the fusion of a Tambara-

Yamagami category over a group Z2 × Z2. The Gepner model (2)2(0) is known to sit at the

point in M corresponding to the square torus Gij = δij, Bij = 0. Sitting at this point

and deforming with a linear combination of the exactly marginal chiral-chiral and antichiral-

antichiral operators, which we denote ΦCC and Φ†
CC respectively, we preserve SCC. We first have

to address the relation between ΦCC and ∂X∂̄X. The latter is a superconformal descendant of

the fermion product ψλ, since the fermion action and the chiral rings are independent on the

point in the conformal manifold it is natural to identify ψλ with the state (3.1.173). The relation

between ΦCC and ∂X∂̄X could still depend on the moduli through the supercharges. However

the Gepner point corresponds to the square torus with no B-field, then the supercurrents at

this point are simply those of the free field realization of the N = (2, 2) superconformal algebra,

namely

G−(z) =
1

2
ψ̄∂X G+(z) =

1

2
ψ∂X̄

Ḡ−(z̄) =
1

2
λ̄∂̄X Ḡ+(z̄) =

1

2
λ∂̄X̄ .

(3.1.182)

From these expressions and using the free field OPEs one easily gets that the marginal descen-

dant of ψλ is ∂X∂̄X, thus leading us to the conclusion that ΦCC = ∂X∂̄X. Then consider the

two real operators

O1 = g1

(
ΦCC + Φ†

CC

)
, O2 = −ig2

(
ΦCC − Φ†

CC

)
(3.1.183)

where 2g1 = δG11 − δG22 and g2 = δG12. The values of the metric components as a function of

g1 and g2 are

G11 = 1 + g1 , G22 = 1− g1 , G12 = g2 . (3.1.184)
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Figure 3.2: Setting g2 = 0, so that Re(τ) = Re(ρ) = 0 we can consider −1 < g1 < 1. The

submanifold on which SCC is preserved is given by the curve Im(ρ) = 1
2

(
Im(τ) + 1

Im(τ)

)
plotted

here.

For Gij to be positive definite we have to restrict gi inside the disk g
2
1+g

2
2 < 1. As we change g1

and g2 we trace out a 2-dimensional submanifold of M on which the symmetry SCC is preserved.

A convenient presentation of M is obtained introducing two complex parameters [264]

τ =
1

G11

(
G12 + i

√
detG

)
, ρ = B12 + i

√
detG ; (3.1.185)

corresponding respectively to the complex structure and complexified area of the target torus.

Integer-valued change of coordinates on G, namely G 7→ MTGM with M ∈ SL(2,Z), induce
PSL(2,Z) transformations on τ leaving ρ invariant. The PSL(2,Z) acting on ρ is generated by

T -duality on both compact directions as well as shifts of the B-field by integers. T duality on

only one direction exchanges ρ and τ , parity in both the worldsheet and the target torus induce

further Z2 identifications. Then M is a product of two copies of the fundamental domain of

SL(2,Z) in the upper-half plane with some extra discrete Z2 identifications. In terms of g1 and

g2 we have

τ =
1

1 + g1

(
g2 + i

√
1− g21 − g22

)
, ρ = i

√
1− g21 − g22 . (3.1.186)

or, using an S-transformation on both to have Imτ, Imρ > 1

τ =
1

1− g1

(
−g2 + i

√
1− g21 − g22

)
, ρ =

i√
1− g21 − g22

. (3.1.187)

Now for gi inside the disk we span the whole τ fundamental domain while moving along the

complex direction in the ρ plane from i to i∞.

K3 surface

The first interacting case we consider is a sigma model on a K3 surface with central charge

c = 6. The Gepner point can be realized as the product of four minimal models at level
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k = 2, conventionally denoted (2)4. We start looking in more detail to the BPS spectrum. The

chiral-chiral states in the untwisted sector are

4⊗
i=1

|ai, ai⟩
4⊗
i=1

|ai, ai⟩ (3.1.188)

and 19 of those satisfy the charge requirement∑
i

ai
4

= 1 . (3.1.189)

The values of ai for these BPS states are (non-trivial) permutations of the following

(a1, a2, a3, a4) = (2, 2, 0, 0); (2, 1, 1, 0); (1, 1, 1, 1) . (3.1.190)

For r = 4 we know that there is another chiral-chiral state with the appropriate U(1)R charges

in the twisted component H(2,{1,...,4}), this is given by

(|1, 1⟩)⊗
4

⊗
(
|1, 1⟩

)⊗4

∈ H(2,{1,...,4}) . (3.1.191)

In total we have 20 chiral-chiral states. Acting with charge conjugation on each of those states

we obtain the 20 antichiral-antichiral states corresponding to marginal deformations. Notice

that the state (3.1.191) has the same weight and R-charges of the chiral-chiral state

(|1, 1⟩)⊗
4

⊗
(
|1, 1⟩

)⊗4

∈ H(0,∅) . (3.1.192)

appearing in the untwisted sector. These two however are not indistinguishable as the quantum

numbers of the corresponding primaries under the dual symmetries are different.

The analysis of antichiral-chiral states corresponding to marginal deformations is essentially

the same. In the twisted Hilbert spaces H(x,∅), we have antichiral-chiral states of the form

(|a,−a⟩)⊗
4

⊗ (|a, a⟩)⊗
4

∈ H(a,∅) (3.1.193)

of those only the one with a = 1 has left and right R-charges equal to −1 and 1. The remaining

antichiral-chiral states sit in H3,{1,...4} and are of the form

4⊗
i=1

|ai,−ai⟩ ⊗ |2− ai, 2− ai⟩ ∈ H3,{1,...4} . (3.1.194)

The charge constraint ∑
i

ai
4

= 1 (3.1.195)

selects 19 of them, with the values of ai again given by permutations of the 4-tuples in (3.1.190).

We then have 20 chiral-chiral and 20 antichiral-chiral states (plus conjugates), which pair up

into BPS multiplets for the N = 4 algebra, consistently with h1,1 = 20 for K3. Now let’s look

at the symmetries.

• For chiral-chiral states we look at each vector (3.1.190) separately.
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– (a1, a2, a3, a4) = (2, 2, 0, 0). The invariance condition is

eiπ
2s1+2s2

4

sin
(

3π(r1+1)
4

)
sin
(

3π(r2+1)
4

)
sin
(
π(r1+1)

4

)
sin
(
π(r2+1)

4

) = ±1 . (3.1.196)

which is symmetric in r1 and r2. Note that this condition only constraints the action

of the line on two minimal models, namely the parameters r3, s3, r4, s4, η are not fixed

by this condition. This already shows that the deformation preserves non-invertible

lines. To eliminate the imaginary part we set 2s1 + 2s2 = 0 mod 4, then

sin
(

3π(r1+1)
4

)
sin
(

3π(r2+1)
4

)
sin
(
π(r1+1)

4

)
sin
(
π(r2+1)

4

) = ±1 (3.1.197)

which are solved by

(r1, r2)+ = (0, 0), (0, 2), (1, 1), (2, 2)

(r1, r2)− = (0, 1), (1, 2) .
(3.1.198)

Here we reported only one element of the orbit of the swap symmetry r1 ↔ r2 on the

solutions. Any solution in which r1 or r2 is 1 corresponds to a non-invertible line.

– (a1, a2, a3, a4) = (2, 1, 1, 0). We impose

eiπ
2s1+s2+s3

4

sin
(

3π(r1+1)
4

)
sin
(

2π(r2+1)
4

)
sin
(

2π(r3+1)
4

)
sin
(
π(r1+1)

4

)
sin
(
π(r2+1)

4

)
sin
(
π(r3+1)

4

) = ±2 (3.1.199)

hence for 2s1 + s2 + s3 = 0 mod 4 we have

sin
(

3π(r1+1)
4

)
sin
(

2π(r2+1)
4

)
sin
(

2π(r3+1)
4

)
sin
(
π(r1+1)

4

)
sin
(
π(r2+1)

4

)
sin
(
π(r3+1)

4

) = ±2 (3.1.200)

with solutions

(r1, r2, r3)+ = (0, 0, 0); (0, 2, 2); (1, 0, 2); (2, 0, 0); (2, 2, 2)

(r1, r2, r3)− = (0, 0, 2), (1, 0, 0); (1, 2, 2); (2, 0, 2)
(3.1.201)

where we again reported only one representative for the swap symmetry of r2 and

r3. Again we see that there are solutions in which at least one among r1, r2 or r3

is 1, together with the freedom of choosing the parameter r4, we see that there are

preserved non-invertible TDLS along the deformations.

– (a1, a2, a3, a4) = (1, 1, 1, 1). This is the last chiral-chiral state we have to consider.

Since it sits in a twisted component of the Hilbert space the invariance condition

now also involve the dual symmetries and becomes

ζA;{1,...,4}e
iπ( s1+s2+s3+s4

4
+η)

4∏
i=1

sin
(

2π(ri+1)
4

)
sin
(
π(ri+1)

4

) = ±4 . (3.1.202)
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We can leave the dual symmetry labels A, η free and only require s1+ s2+ s3+ s4 =

0 mod 4. Then
4∏
i=1

sin
(

2π(ri+1)
4

)
sin
(
π(ri+1)

4

) = ±4 (3.1.203)

with solutions

(r1, r2, r3, r4)+ = (0, 0, 0, 0); (0, 0, 2, 2); (2, 2, 2, 2)

(r1, r2, r3, r4)− = (0, 0, 0, 2), (0, 2, 2, 2);
(3.1.204)

where we again reported only one representative for the orbit of the permutation

symmetry. This deformation is invariant only under invertible lines.

Let’s take stock. The majority of the chiral-chiral deformations preserve at least one

non-invertible line. It is interesting to notice also that we can deform the Gepner

model with multiple chiral-chiral operators and still preserve non-invertible lines. For

instance we can turn on simultaneously some of the deformations given by permutations

of (a1, a2, a3, a4) = (2, 2, 0, 0), still preserving some non-invertible lines.

• For antichiral-chiral states we again consider the vectors (3.1.190) separately, each giving

rise to a state of the form (3.1.194).

– (a1, a2, a3, a4) = (2, 2, 0, 0). The invariance condition is

ζB,{1,...,4}e
iπ( 2s1+2s2

4
+ 3η

2 )
sin
(

3π(r1+1)
4

)
sin
(

3π(r2+1)
4

)
sin
(
π(r1+1)

4

)
sin
(
π(r2+1)

4

) = ±1 . (3.1.205)

We can leave B free and set 2s1 + 2s2 + 2η = 0 mod 4. The remaining equation is

sin
(

3π(r1+1)
4

)
sin
(

3π(r2+1)
4

)
sin
(
π(r1+1)

4

)
sin
(
π(r2+1)

4

) = ±1 (3.1.206)

Which is the same one we solved for the chiral-chiral deformation with (a1, a2, a3, a4) =

(2, 2, 0, 0). Notice that the lines preserving this deformation are not the same ones

preserving the chiral-chiral one, but the two sets have a non-empty intersection. For

instance lines with η = 0, 4 that preserve the chiral-chiral deformation will preserve

also this one.

– (a1, a2, a3, a4) = (2, 1, 1, 0). We impose

ζB,{1,...,4}e
iπ( 2s1+s2+s3

4
+ 3η

2 )
sin
(

3π(r1+1)
4

)
sin
(

2π(r2+1)
4

)
sin
(

2π(r3+1)
4

)
sin
(
π(r1+1)

4

)
sin
(
π(r2+1)

4

)
sin
(
π(r3+1)

4

) = ±2 (3.1.207)

hence for 2s1 + s2 + s3 + 2η = 0 mod 4 we have again an equation we solved in the

chiral-chiral case. Also here to lines with η = 0, 4 will preserve both chiral-chiral

and antichiral-chiral deformations.
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– (a1, a2, a3, a4) = (1, 1, 1, 1). The invariance condition is now

eiπ(
s1+s2+s3+s4

4
+η)

4∏
i=1

sin
(

2π(ri+1)
4

)
sin
(
π(ri+1)

4

) = ±4 . (3.1.208)

We can leave the dual symmetry label η free and require s1+s2+s3+s4 = 0 mod 4.

Then
4∏
i=1

sin
(

2π(ri+1)
4

)
sin
(
π(ri+1)

4

) = ±4 (3.1.209)

which we have solved above.

We see that the structure of the lines preserved by these antichiral-chiral deformations

closely follows the one we found for chiral-chiral deformations.

Note that lines that preserve both the chiral-chiral and antichiral-chiral deformations given

by the same vector in (3.1.190), will also preserve the exactly marginal N = 4 deformation we

obtain taking their sum. Using what we found above we can also enlarge the submanifold of

the moduli space that enjoys non-invertible symmetries. Consider both the chiral-chiral and

antichiral-chiral deformations given by (a1, a2, a3, a4) = (2, 2, 0, 0), (0, 0, 2, 2). These preserve

the line with

ri = 1 , i = 1, . . . , 4

s1 = s3 = 1 , s2 = s4 = 3
(3.1.210)

as well as η = 0, 4. Therefore we have a 4-dimensional subspace of the moduli space with a

non-invertible symmetry. More precisely denoting D = L1,1,1,3,1,1,1,3;∅,0 we have

D ×D† = 1+
4∑
i=1

ηi +
∑
i<j

ηi × ηj
∑
i<j<k

ηi × ηj × ηk + η1 × η2 ×3 ×η4 (3.1.211)

where

η1 = L2,0,0,0,0,0,0,0;∅,0 , η2 = L0,0,2,0,0,0,0,0;∅,0

η3 = L0,0,0,0,2,0,0,0;∅,0 , η4 = L0,0,0,0,0,0,2,0;∅,0
(3.1.212)

generate a Z4
2 group. Including D we have a Z4

2 Tambara-Yamagami symmetry.

Quintic Threefold

For the Quintic threefold the Gepner point is (3)5, namely we take five minimal models with

k = 3. The central charge is c = 9. Again we start with chiral-chiral primaries, the states of

the form
5⊗
i=1

|ai, ai⟩ ⊗
5⊗
i=1

|ai, ai⟩ (3.1.213)

for ai = 0, 1, 2, 3 are 45 = 1024, of those the charge constraint∑
i

ai
5

= 1 (3.1.214)
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selects 101. This matches h2,1 = 101 counting (2, 1) forms on the quintic. These correspond

to complex structure deformations of the underlying Calabi-Yau. For each of those states the

vector (a1, a2, a3, a4, a5) is a permutation of one of the following five

(a1, a2, a3, a4, a5) = (3, 2, 0, 0, 0), (3, 1, 1, 0, 0), (2, 2, 1, 0, 0), (2, 1, 1, 1, 0), (1, 1, 1, 1, 1) . (3.1.215)

The antichiral-chiral states are of the form

(|a,−a⟩)⊗
5

⊗
(
|a, a⟩

)⊗5

∈ H(a,∅) (3.1.216)

but of those only the one with a = 1 has left R charge −1. Thus there is only one complex

Khaler modulus, which agrees with h1,1 = 1 for the quintic. Now we look at the symmetries.

• For chiral-chiral states it is enough to find the solution of the invariance constraint (which

is invariant under permutations) for each of the five vectors (3.1.215). We have

– (a1, a2, a3, a4, a5) = (3, 2, 0, 0, 0). A line L{ri,si},B,η leaving invariant the deformation

has to satisfy

eiπ
3s1+2s2

5

sin
(

4π(r1+1)
5

)
sin
(

3π(r2+1)
5

)
sin
(
π(r1+1)

5

)
sin
(
π(r2+1)

5

) = ±1

2

(
1 +

√
5
)

(3.1.217)

with all labels other than r1, s1 and r2, s2 free. By choosing 3s1 + 2s2 = 0 mod 5 we

can look for solutions of

sin
(

4π(r1+1)
5

)
sin
(

3π(r2+1)
5

)
sin
(
π(r1+1)

5

)
sin
(
π(r2+1)

5

) = ±1

2

(
1 +

√
5
)
. (3.1.218)

We find

(r1, r2)+ = (0, 0); (0, 3); (2, 0); (2, 3) 3s1 + 2s2 = 0 mod 10

(r1, r2)− = (1, 0); (1, 3); (3, 0); (3, 3) 3s1 + 2s2 = 5 mod 10
(3.1.219)

for the two signs. Therefore for each pair of (r1, r2)± we choose (s1, s2) accordingly

while all other labels are free. Here, as long as ri is either 1 or 2 the corresponding

TDL is non-invertible.

– (a1, a2, a3, a4, a5) = (3, 1, 1, 0, 0). Invariance requires

ei
π
5
(3s1+s2+s3)

sin
(

4π(r1+1)
5

)
sin
(

2π(r2+1)
5

)
sin
(

2π(r3+1)
5

)
sin
(
π(r1+1)

5

)
sin
(
π(r2+1)

5

)
sin
(
π(r3+1)

5

) = ±1

2

(
3 +

√
5
)

(3.1.220)

thus for 3s1 + s2 + s3 = 0 mod 5 we need to solve

sin
(

4π(r1+1)
5

)
sin
(

2π(r2+1)
5

)
sin
(

2π(r3+1)
5

)
sin
(
π(r1+1)

5

)
sin
(
π(r2+1)

5

)
sin
(
π(r3+1)

5

) = ±1

2

(
3 +

√
5
)
. (3.1.221)

Note that this is symmetric in r2 and r3, in the solutions below we write only one

solution per orbit of this swap symmetry. We find

(r1, r2, r3)+ = (0, 0, 0); (0, 3, 3); (1, 0, 3); (2, 0, 0); (2, 3, 3); (3, 0, 3); (3, 3, 0)

(r1, r2, r3)− = (0, 0, 3); (1, 0, 0); (1, 3, 3); (2, 0, 3); (3, 0, 0); (3, 3, 3) .
(3.1.222)
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– (a1, a2, a3, a4, a5) = (2, 2, 1, 0, 0). Invariance requires

ei
π
5
(2s1+2s2+s3)

sin
(

3π(r1+1)
5

)
sin
(

3π(r2+1)
5

)
sin
(

2π(r3+1)
5

)
sin
(
π(r1+1)

5

)
sin
(
π(r2+1)

5

)
sin
(
π(r3+1)

5

) = ±
(
2 +

√
5
)

(3.1.223)

thus for 2s1 + 2s2 + s3 = 0 mod 5 we need to solve

sin
(

3π(r1+1)
5

)
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3π(r2+1)
5
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(

2π(r3+1)
5

)
sin
(
π(r1+1)

5

)
sin
(
π(r2+1)

5

)
sin
(
π(r3+1)

5

) = ±
(
2 +

√
5
)
. (3.1.224)

Note that this is symmetric in r1 and r2, in the solutions below we write only one

solution per orbit of this swap symmetry. We find

(r1, r2, r3)+ = (0, 0, 0); (0, 3, 0); (3, 3, 0)

(r1, r2, r3)− = (0, 0, 3); (0, 3, 3); (3, 3, 3) .
(3.1.225)

We see that a line preserving this deformation necessarily acts invertibly on it, al-

tough it may act non-invertibly on other operators of the theory.

– (a1, a2, a3, a4, a5) = (2, 1, 1, 1, 0). Invariance requires

ei
π
5
(2s1+s2+s3+s4)

sin
(
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(

2π(r2+1)
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(

2π(r3+1)
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(
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5

)
= ±1

2

(
7 + 3

√
5
) (3.1.226)

thus for 2s1 + s2 + s3 + s4 = 0 mod 5 we need to solve
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(
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5
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(
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5
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(
π(r1+1)

5
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(
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√
5
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(3.1.227)

Note that this is symmetric in r2, r3 and r4, in the solutions below we write only

one solution per orbit of this permutation symmetry. We find

(r1, r2, r3, r4)+ = (0, 0, 0, 0); (0, 0, 3, 3); (3, 0, 0, 0); (3, 3, 3, 0)

(r1, r2, r3, r4)− = (0, 0, 0, 3); (0, 3, 3, 3); (3, 3, 0, 0); (3, 3, 3, 3) .
(3.1.228)

Again a line preserving this deformation necessarily acts invertibly on it.

– (a1, a2, a3, a4, a5) = (1, 1, 1, 1, 1). Invariance requires

ei
π
5
(s1+s2+s3+s4+s5)

5∏
i=1

sin
(

2π(ri+1)
5

)
sin
(
π(ri+1)

5

) = ±1

2
(11 + 5

√
5) (3.1.229)

thus for s1 + s2 + s3 + s4 + s5 = 0 mod 5 we need to solve

5∏
i=1

sin
(

2π(ri+1)
5

)
sin
(
π(ri+1)

5

) = ±1

2
(11 + 5

√
5) (3.1.230)
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Note that this is symmetric in all ri, in the solutions below we write only one solution

per orbit of this permutation symmetry. We find

(r1, r2, r3, r4, r5)+ = (0, 0, 0, 0, 0); (0, 0, 0, 3, 3); (0, 3, 3, 3, 3);

(r1, r2, r3, r4, r5)− = (0, 0, 0, 0, 3); (0, 0, 3, 3, 3); (3, 3, 3, 3, 3) .
(3.1.231)

We see that a line preserving this deformation is necessarily invertible.

• The symmetries preserved by the Khaler structure deformation obey

ei
π
5 (2η−

∑
i si)

5∏
i=1

sin
(

2π(ri+1)
5

)
sin
(
π
5

)
sin
(
π(ri+1)

5

)
sin
(
2π
5

) = ±1 (3.1.232)

which, after having picked 2η =
∑

i si mod 5, is the same equation as the last case among

the chiral-chiral deformations. Again only invertible symmetries preserve this operator.

Also in this example we can look for higher dimensional submanifolds preserving a non-invertible

symmetry. As a simple illustration consider the chiral-chiral deformations with

(a1, a2, a3, a4, a5) = (3, 2, 0, 0, 0); (3, 0, 2, 0, 0); (3, 0, 0, 2, 0); (3, 0, 0, 0, 2) , (3.1.233)

from our analysis we see that each one of those commutes with the line W = L2,0 ⊗ (1)⊗4,

whose fusion rule is

W ×W = 1+W . (3.1.234)

Thus on this 4-dimensional submanifold we have at least a Fibonacci category symmetry. We

can also turn on the deformations

(a1, a2, a3, a4, a5) =(3, 1, 1, 0, 0); (3, 1, 0, 1, 0); (3, 1, 0, 0, 1);

(3, 0, 1, 1, 0); (3, 0, 1, 0, 1); (3, 0, 0, 1, 1) ,
(3.1.235)

and W is still preserved, enlarging the Fibonacci-symmetric submanifold of the moduli space

to 10 dimensions. We can also consider the submanifolds obtained turning on the deformations

above with a1 ↔ ai for i = 2, 3, 4, 5. On each of those 10-dimensional subspaces we have a

different Fibonacci category symmetry.

Selection Rules

The presence of these topological defects at the Gepner point and along certain submanifolds of

the moduli space imposes constraints on the dynamics of the theory. The presence of a fusion

category symmetry in a 2d QFT implies degeneracies between twisted and untwisted sectors,

as non-invertible lines transform local operators in twist defects. This is properly addressed

using the tube algebra built out of the fusion category, see e.g. [36, 81]. The elements of such

algebra correspond to the lasso actions [12]

Φ

L′

L =

L̂L′ · Φ

L′

.

(3.1.236)
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In general one also needs to specify a junction vector in Hom(L × L̄,L′), however in our case

all junction spaces are at most one-dimensional and we can omit this extra label. More general

lasso actions can be obtained acting on operators in twisted sectors. The total Hilbert space,

which includes the twisted Hilbert spaces for all the topological defect lines of the theory, splits

in representations of the Tube algebra. Therefore operators, both local and twisted, will also

be organized in such representations. Representations of the tube algebra are in canonical one-

to-one correspondence with anyons of the Drinfeld center of the fusion category, with the fusion

rules of the 3d TQFT anyons coinciding with tensor products of Tube algebra representations.

Moreover the representation in which a local operator of the CFT transforms is determined by

the 3d bulk anyon ending on it (see Fig.3.1). The most immediate consequence of the symmetry

are selection rules. In case of a fusion category symmetry these state that a correlation function

can be non-zero only if the tensor product of the Tube algebra representations of all operators

contains the identity [36].

A subsets of interesting selection rules however can be accessed without employing the full

power of the Tube algebra. Two important observables on the conformal manifold of a CFT are

the two and three point functions of the exactly marginal deformations. The former gives the

Zamolodchikov metric of the conformal manifold, while the latter encode information about the

curvature [262]. We shall consider the CFT on a genus zero surface, this allows us to nucleate

a non-invertible line defect linking with all operators in the correlator at the price of dividing

by its quantum dimension. Let Φ1 and Φ2 be exactly marginal operators, and consider its their

two point function. Opening an L loop and dividing by ⟨L⟩ the correlator is unchanged, namely

⟨Φ1Φ2⟩ =
1

⟨L⟩
⟨

Φ2Φ1

L

⟩ . (3.1.237)

Now, pinching the line in between the locations of the two local operators and fusing we get8

⟨Φ1Φ2⟩ =
1

⟨L⟩
∑
L′

√
⟨L′⟩
⟨L⟩

⟨
Φ2Φ1

L L
L′

⟩

=
1

⟨L⟩
∑
L′

√
⟨L′⟩
⟨L⟩

⟨ L̂L̄′ · Φ2L̂L′ · Φ1

L′

⟩

(3.1.238)

where the sum over L′ runs over the lines appearing in the fusion channel L × L̄. Recall that

this channel always contains the identity, so that

⟨Φ1Φ2⟩ =
1

⟨L⟩2
⟨L̂ · Φ1L̂ · Φ2⟩+

1

⟨L⟩
∑
L′ ̸=1

√
⟨L′⟩
⟨L⟩

⟨ L̂L̄′ · Φ2L̂L′ · Φ1

L′

⟩ . (3.1.239)

8The coefficient

√
⟨L′⟩
⟨L⟩ ensures the proper normalization of the completeness relation, see e.g. [28]
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This is the general selection rule implied by the presence of a non-invertible line on two point

functions, we see that it relates correlators of local operators to those of the twisted sectors.

From this expression one can show that if, say, Φ1 is invariant under L, i.e. L̂ · Φ1 = ⟨L⟩Φ1,

then all non-trivial lasso actions annihilate Φ1 [261]. The proof is simple enough, take Φ2 = Φ1,

then the first term on the right hand side of (3.1.239) already saturates the left hand side. The

remaining terms then have to give zero, but since each can be interpreted as the norm squared

of a vector in a twisted Hilbert space (we are assuming a unitary theory), they each vanish

separately, implying that the image vector of Φ1 under the lasso L̂L′ is null. In other words

Φ

L

= ⟨L⟩Φ ⇒

Φ

L′

L

= 0 . (3.1.240)

Now take the selection rule (3.1.239) with Φ1 and Φ2 different and suppose Φ1 is invariant. By

the argument above all contributions from twisted sectors vanish and we have

⟨Φ1Φ2⟩ =
1

⟨L⟩2
⟨L̂ · Φ1L̂ · Φ2⟩ =

1

⟨L⟩
⟨Φ1L̂ · Φ2⟩ , (3.1.241)

thus for the correlator to be non-zero also Φ2 has to be invariant. This implies that, as we move

away from the Gepner point preserving some non-invertible line, the mixed components of the

Zamolodchikov metric involving the perturbation and any other marginal operator not invariant

under the preserved lines vanish. A similar selection rule can be derived for three-point function

on the sphere

⟨Φ1Φ2Φ3⟩ =
1

⟨L⟩2
⟨L̂ · Φ1L̂ · Φ2L̂ · Φ3⟩+

+
1

⟨L⟩2
∑
L′ ̸=1
L′′ ̸=1

√
⟨L′⟩⟨L′′⟩⟨

L̂L̄′ · Φ2L̂L′ · Φ1 L̂L′ · Φ3

L′ L′′

⟩ .
(3.1.242)

Now, if two out of three operators are invariant the correlator is non vanishing only if the also

the third operator commutes with the line L:

⟨Φ1Φ2Φ3⟩ =
1

⟨L⟩
⟨Φ1Φ2L̂ · Φ3⟩ ≠ 0 → L̂ · Φ3 = ⟨L⟩Φ3 . (3.1.243)

When the Φi are BPS operators this selection rule can be translated as a constraint on the

moduli dependence of the chiral ring coefficients. It implies that, as we move along submanifolds

of the moduli space, certain chiral ring coefficients are forced to vanish.

Constraints on Conformal Perturbation Theory

Besides selection rules in the deformed theory we can use the full symmetry at the Gepner

point to simplify the use of conformal perturbation theory to compute corrections to conformal
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weights and 3-point function coefficients. For concreteness let us focus on 2-point correlators,

but the method applies to higher point functions as well. Suppose we turn on the marginal

deformation O, in our case this will be expressed as O = GḠΦ where Φ is a BPS primary

and G, Ḡ are the appropriate supercharges. Two-point functions of the deformed theory can

be written

⟨Φ1Φ2⟩λ = ⟨Φ1Φ2e
λ
∫
d2wO(w)⟩ (3.1.244)

and the corrections to the weights of Φ1 and Φ2 form a power series in λ

h(λ) =
∞∑
n=0

h(n)λn , (3.1.245)

with the n-th term determined by the integrated correlation function∫
d2w1 . . . d

2wn⟨Φ1Φ2O(w1) . . .O(wn)⟩ (3.1.246)

computed at the Gepner point. By using the selection rules implied by the Tube algebra we

can find patterns of zeros in the series of correction. Consider for example the case of the K3

sigma model and take the deformation to be the one deriving from the chiral-chiral state

(|2, 2⟩)⊗2 ⊗ (|0, 0⟩)⊗2 ⊗ (|2, 2⟩)⊗2 ⊗ (|0, 0⟩)⊗2 . (3.1.247)

To use the selection rules implied by the Tube algebra we have to compute the tensor products

of all the representations of the Tube algebra associated to the operator insertions. In the

following we will always indicate a representation Γ of the Tube algebra by the corresponding

3d anyon, in particular we will write

Γ =
(
µ⃗, ⃗̄µ

)
(3.1.248)

where µ⃗, ⃗̄µ are 2r-components vectors containing the Wilson lines labels

µ⃗ = ((a1, c1), . . . , (ar, cr)); (ai, ci) ∈ Qki (3.1.249)

Let’s start from discussing the representation of O. The primary Φ is in a representation

Γ0 = (µ⃗0, µ⃗0) µ⃗0 = ((2, 2), (2, 2), (0, 0), (0, 0)) (3.1.250)

which corresponds to an invertible line in 3d. The supercharges of the diagonal superalgebra

instead are in a reducible representation of the Tube algebra. More precisely, for a general

Gepner model,

ΓG =
r⊕
i=1

(
µ⃗i, 0⃗

)
ΓḠ =

r⊕
i=1

(
0⃗, µ⃗i

)
(3.1.251)

where

µ⃗i = ((0, 0), . . . (ki, ki + 2), . . . , (0, 0)) . (3.1.252)

Now, in a correlator with n insertion of O we have to compute the n-th tensor powers of the

three representations Γ0,ΓG and ΓḠ. This is greatly simplified by the fact that the irreducible
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factors in ΓG and ΓḠ corresponds to lines that are not only invertible but also of order 2. We

find

Γ⊗n
G =

⊕
k1+...+k4=n

(
n

k1 . . . k4

)(
µ⃗k1,...,k4 , 0⃗

)
,

µ⃗k1,...,k4 =
(
(2[k1], 4[k1]), (2[k2], 4[k2]), (2[k3], 4[k3]), (2[k4], 4[k4]), 0⃗

) (3.1.253)

and similarly for ΓḠ. It is also easy to compute tensor powers of Γ0, we have

Γ⊗n
0 =

(
µ⃗⊗n
0 , µ⃗⊗n

0

)
µ⃗⊗n
0 = ((2[n], 2n), (2[n], 2n), (0, 0), (0, 0)) , (3.1.254)

notice that only n mod 4 matters as Γ⊗4
0 = 1. Then the representations entering in the corre-

lators are

Γ⊗n
O = Γ⊗n

G ⊗ Γ⊗n
Ḡ

⊗ Γ⊗n
0 =

⊕
ki,k̄i

(
n

k1 . . . k4

)(
n

k̄1 . . . k̄4

)(
µ⃗On , ⃗̄µOn

)
(3.1.255)

with

µ⃗On = ((2[k1 + n], 4[k1] + 2n), (2[k2 + n], 4[k2] + 2n), (2[k3], 4[k3]), (2[k4], 4[k4])) (3.1.256)

and similarly for ⃗̄µOn . To give a concrete example we consider the 12 lightest non-BPS primaries

corresponding to the states |ϕij⟩, these are all of the form

|ϕ12⟩ = |1, 1⟩ ⊗ |1,−1⟩ ⊗ (|0, 0⟩)⊗2 ⊗ |1, 1⟩ ⊗ |1,−1⟩ ⊗ (|0, 0⟩)⊗2 (3.1.257)

with i and j denoting the tensor factor with |1, 1⟩ and |1,−1⟩ respectively. Note that ϕ†
ij = ϕji.

These are all degenerate operators with h = h̄ = 1/4 and vanishingR-charges. We are interested

in the two point functions ⟨ϕ†
ijϕlk⟩λ. The associated tube algebra representations Γϕij are of

the form

Γϕ12 = (µ⃗ϕ12 , µ⃗ϕ12) µ⃗ϕ12 = ((1, 1), (1,−1), (0, 0), (0, 0)) , (3.1.258)

and correspond to non-invertible lines. The tensor products µ⃗ϕji ⊗ µ⃗ϕkl contain the identity if

and only if k = i, l = j, thus the only non-zero correlators at the Gepner point are ⟨ϕjiϕij⟩.
Turning on λ we can have mixing among the operators, which is constrained by the selection

rules. Since ΓOn only contains invertible anyons we see that a necessary condition for the

identity to appear in µ⃗ϕji ⊗ µ⃗ϕkl ⊗ µ⃗On is that µ⃗ϕji ⊗ µ⃗ϕkl contains at least one invertible line.

This immediately shows that the only non-vanishing 2-point functions are those of the form

⟨ϕjiϕij⟩λ or ⟨ϕijϕij⟩λ. For those correlators the relevant representations are of the form

Γ12 ⊗ Γ12 =
(
µ⃗⊗2
ϕ12
, µ⃗⊗2

ϕ12

)
, µ⃗⊗2

ϕ12
= ((0, 2)⊕ (2, 2), (0,−2)⊕ (2,−2), (0, 0), (0, 0))

Γ12 ⊗ Γ21 = (µ⃗ϕ12 ⊗ µ⃗ϕ21 , µ⃗ϕ12 ⊗ µ⃗ϕ21) ,

µ⃗ϕ12 ⊗ µ⃗ϕ21 = ((0, 0)⊕ (2, 0), (0, 0)⊕ (2, 0), (0, 0), (0, 0)) .

(3.1.259)

This conclusion holds for any deformation such that µ⃗On contains only invertible lines, in our

specific example however we can do better. Indeed also all correlators of the form ⟨ϕijϕij⟩λ
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vanish whenever i or j is different than 1 or 2. This is because when tensoring, say µ⃗⊗2
ϕ13

with

µ⃗On we get terms that in the third tensor factor have the pair (2[k3], 4[k3] + 2), which never

trivializes allowing the singlet representation. It follows that the correlators to consider are

⟨ϕ12ϕ12⟩λ and ⟨ϕjiϕij⟩λ, namely the only mixing allowed by the deformation is between ϕ12 and

itself. We can also study the power series in λ in more detail, starting from ⟨ϕ12ϕ12⟩λ. The

selection rule requires the product Γ⊗2
ϕ12

⊗ Γ⊗n
O to contain the identity, this forces us to choose

k3, k̄3 and k4, k̄4 even, then any representation appearing in the decomposition in the tensor

product is of the form (µ⃗⊗2
ϕ ⊗ µ⃗On , µ⃗⊗2

ϕ ⊗ ⃗̄µOn) with

µ⃗⊗2
ϕ ⊗ µ⃗On =

(
(2[k1 + n], 4[k1] + 2n+ 2)⊕ (2[k1 + n+ 1], 4[k1] + 2n+ 2),

(2[k1 + n], 4[k2] + 2n− 2)⊕ (2[k2 + n+ 1], 4[k2] + 2n− 2), (0, 0), (0, 0)
)
.

(3.1.260)

Now we notice that when n = 0, 2 mod 4 there is no value of k1 or k2 such that

4[k1] + 2n+ 2 = 4[k1]± 2 = 0 mod 8 (3.1.261)

and the singlet representation appears only when n = 1, 3 mod 4. Therefore, the power series in

only contains the odd powers λ2m+1. Another two-point function we can consider is ⟨ϕ21ϕ12⟩λ.
In this case, for the n-th order correction we find

µ⃗ϕ ⊗ µ⃗ϕ† ⊗ µ⃗On =
(
(2[k1 + n], 4[k1] + 2n)⊕ (2[k1 + n+ 1], 4[k1] + 2n),

(2[k1 + n], 4[k2] + 2n)⊕ (2[k2 + n+ 1], 4[k2] + 2n), (0, 0), (0, 0)
) (3.1.262)

which shows that for n = 1, 3 mod 4 the identity does not appear in the tensor product, and

the series is in even powers λ2m. These result are compatible with those of [256]. Similar

computations can be repeated for other operators, more complicated correlation functions or

more general Gepner models.

3.2 Toplogical operators, on average

Global symmetries constitute an indispensable tool for studying physical systems, especially

when the dynamics cannot be analyzed using exact techniques. The idea of symmetry is some-

times vaguely stated and often confused with slightly different concepts, such as selection rules.

While these two ideas are often connected, they are logically distinct. Topological operators

provide a clear definition of symmetry, which encodes all of the dynamical consequences. The

aim of the rest of this chapteris to extend the formalization of symmetries of [9] to QFTs where

the interactions are randomly distributed, for the case of 0-form global symmetries. We believe

that a more systematic treatment of symmetries in QFTs of this kind can be useful, given the

notorious difficulties in treating such systems. There are two relevant possibilities considered

here.

1. The random couplings h(x) vary in space and are distributed according to a probability

functional P [h].
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2. The random couplings h are constant and drawn from a probability density P (h).

Scenario 1. is relevant for statistical mechanical systems with impurities or disorder (for a review

see [265]). There are two main variants of disorder QFT: quenched if the impurities are treated

as external random sources and annealed if the impurities are taken dynamical. Physically

the two situations depend on the time scale we are looking at. At extremely long time-scales,

where the entire system reaches equilibrium, we should take the impurities dynamical. Since

impurities have very long thermalizations time scales, quenching is useful for time-scales where

the system essentially thermalizes, with the impurities taken fixed. In the quenched case, the

properties of the QFT will of course depend on the impurities. If we assume that impurities

are random, possible observables are taken by averaging over the impurities with the chosen

distribution. In a lattice formulation an impurity is modelled by an interaction which is different

at any site, and its presence is unpredictable. In the continuum limit it is often the case that we

can describe such systems as the average over an ensemble of field theories where the coupling

constants are space dependent. Particularly interesting is the case of the Ising model perturbed

with a random magnetic field (dubbed as random field Ising model) [266] or with a random

interaction between nearby spins (dubbed as random bond Ising model) [267]. See e.g. [268–271]

for recent works on these models.

Scenario 2. is relevant for quantum gravity and has received significant attention lately.

The connection between averaging and euclidean gravity path integrals dates back to [272,273]

in association to Euclidean wormholes. In the context of the AdS/CFT correspondence [274–

276], the connection has been invoked in [277] as a possible way to interpret from a boundary

point of view the origin of interactions between disconnected components of a boundary theory

induced by bulk Euclidean wormholes (factorization puzzle). Further elaborations with concrete

examples appear in [278]. Ensemble averaging features also in the Sachdev-Ye-Kitaev (SYK)

model [279–281]. A concrete connection has recently been made in [282], where it has been

shown that the sum over geometries in Jackiw-Teitelboim gravity [283,284] with n disconnected

boundaries is dual to the ensemble average of an n-point correlation function in a matrix model.

Other notable examples of ensemble averaging after [282] include averages over free compact

bosons in 2d [285,286] (see also e.g. [287–291] for related studies and generalizations), averages

over OPE coefficients in effective 2d CFTs [292, 293], averages over the gauge coupling in 4d

N = 4 super Yang-Mills theory [294].

In both scenarios 1. and 2. we focus on correlation functions of local operators with

quenched disorder averaging. These include averages of products of correlators, which are

effectively independent observables. In disconnected spaces, when h is constant, also averaged

single correlators can lead to averages of products of correlators, which is the mechanism leading

to the factorization puzzle in the context of AdS/CFT. In order to distinguish scenario 1. from

scenario 2. we dub the first as “quenched disorder” and the latter as “ensemble average”, but

it should be kept in mind that quenching is involved also in scenario 2.

We start from a pure theory, that is an ordinary QFT with no disorder, and deform it with

a certain local interaction. In the quenched disorder case the strength of this interaction varies

from point to point, while it is constant in ensemble average. In both cases the interaction can

break part of all of the global symmetries of the pure system, so that each specific realization
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generically has less symmetries and less predictive power than the pure theory. On the other

hand it has been noticed in several examples that symmetries of the pure systems can be

recovered after the average on the coupling is taken into account. These statements are mostly

based on the observation that the averaged system satisfies selection rules which are not enjoyed

by the generic specific realization. Intuitively speaking, even if the random coupling breaks the

symmetry, this re-emerges provided we average over all the ensemble in a sufficiently symmetric

way (in a sense to be clarified). For simplicity, in what follows we refer to such symmetries as

disordered symmetries and averaged symmetries respectively in the context of quenched disorder

and ensemble average. Note that this is distinct from the notion of emergent symmetries used

in pure QFTs when a symmetry is approximately conserved in the IR. In the disorder case the

symmetry is exact at all energy scales, but only on average.9

We will review these kind of arguments from a spurionic point of view at the beginning of

section 3.2.1 for quenched disorder, and in section 3.2.5 for ensemble average, deriving under

which condition the selection rules of the pure theory are satisfied after the average.

This is still an imprecise information since, as we emphasized, having a global symmetry

is stronger than just observing the validity of some selection rule. This is crucial in order

to get stronger dynamical constraints implied by ’t Hooft anomalies, and eventually gauging

the symmetry. Our goal is to clarify the sense in which these systems recover the symmetry,

aiming to construct the analog of topological operators for both quenched disorder and ensemble

average QFTs.

Sections 3.2.1, 3.2.2 and 3.2.3 focus on quenched disordered systems. We consider theories

defined in the continuum and admitting a description in terms of an action (Hamiltonian)

obtained from that of the pure theory S0 by adding a local operator O0(x) with a space-time

dependent coupling h(x):

S[h] = S0 +

∫
ddxh(x)O0(x) . (3.2.1)

This is what we will call a specific realization. Correlation functions of local operators Oi for

a given value of h(x) are computed by a path integral:〈
O1(x1) · · · Ok(xk)

〉
=

∫
Dµ e−S[h] O1(x1) · · · Ok(xk)∫

Dµ e−S[h]
. (3.2.2)

Given a probability functional P [h], a set of observables of the disordered system are the

averaged correlation functions〈
O1(x1) · · · Ok(xk)

〉
=

∫
DhP [h]

〈
O1(x1) · · · Ok(xk)

〉
, (3.2.3)

or more generally the averages of products of correlators

N∏
j=1

〈
O(j)

1 (x
(j)
1 ) · · · O(j)

nj (x
(j)
kj
)
〉
. (3.2.4)

The starting point for systematizing global symmetries of the disordered system which are not

enjoyed by the specific realizations is to derive Ward identities for the averaged correlators.

9We can also have emergent symmetries in both senses, namely emerging after average and in the IR. We

will discuss this case in section 3.2.3.
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We do this in section 3.2.1, starting from the simplest case of continuous 0-form invertible

symmetries. The Noether current Jµ associated to the symmetry of the pure theory is no longer

conserved in the specific realizations if O0(x) is charged under the symmetry. However we find

that the shifted current in (3.2.37) leads to standard Ward identities (3.2.41) for averaged single

correlators and the less standard identities (3.2.45) for averages of products of correlators.

In order to generalize our results to discrete symmetries, where a Noether current is un-

available, in section 3.2.1 we construct the symmetry operators, topological on average, which

implements the finite group action. This is not as easy as in pure theories because of the dis-

order. The topological operator Ũg is a complicated power series of integrated currents which

however can be resummed to give the simple expression

Ũg = Ug⟨Ug⟩−1 , (3.2.5)

where Ug is the topological operator of the pure theory. Its action on averages of simple

correlators is given in (3.2.58). In products of correlators (3.2.4) the operator Ũg is topological

on average only if inserted in all the correlators involved, as in (3.2.61). This characterizes

intrinsically the disordered symmetries and implies somewhat exotic selection rules which are

weaker with respect to symmetries not broken by the random interactions.

The Ward identities satisfied by Ũg, when the latter is supported on a compact surface

Σ(d−1) are valid regardless of how the symmetry is realized on the vacuum. When the symmetry

operator is well defined also on infinite surfaces the disordered symmetry is not spontaneously

broken and implies selection rules. The same is not true for spontaneously broken symmetries,

we will briefly discuss this situation in the final section 3.2.6.

Beyond selection rules, our analysis allows us to show that disordered symmetries (both

continuous and discrete) can be coupled to external backgrounds, can be gauged, and can have

’t Hooft anomalies, precisely like ordinary symmetries. We also argue that a symmetry of a pure

system with a ’t Hooft anomaly, when it reappears as disordered symmetry, enjoys the same

’t Hooft anomaly thus implying the same constraints on the dynamics, and that a possible

higher-group structure of the underlying 0-form symmetry with higher-form symmetries of

the pure theory is recovered after average due to the topological nature of the higher-group

structure. Symmetry Protected Topological (SPT) phases [189], protected by what we denoted

disordered symmetries, appeared already in condensed matter, see e.g. [295–302]. Our findings

can possibly provide a different theoretical QFT-based framework for such phases of matter.

In section 3.2.2 the above results, derived directly from the disordered theory, are repro-

duced using the replica trick, the standard way to deal with theories of this kind. Disordered

symmetries manifest themselves as standard symmetries in the replica theory, thus offering a

conceptual different viewpoint on these kind of symmetries. Aside from providing a sanity check

of the results, the replica theory allows us to also study another scenario: disordered symme-

tries emerging at long distances, discussed in section 3.2.3. The effect of the disorder can now

lead to the more exotic selection rules (3.2.104) and (3.2.105). The phenomenon manifests in

the replica theory as two irreducible representations of the replica symmetry transforming in

different representations of the emergent disordered symmetry. As an interesting application

of this result we consider the prime example of an emergent symmetry, conformal invariance,

94



and we show that as a consequence of these exotic selection rules, a quenched disordered sys-

tem can flow in the IR to a fixed point described by a Logarithmic conformal field theory

(LogCFT) [303–307].

We analyze ensemble average in section 3.2.5. While the intuitive idea that the average

restores the symmetry is still true, and selection rules apply (section 3.2.5), the status of the

averaged symmetry is drastically different. A hint already comes from the replica trick: when

applied with constant couplings, the replica theory is non-local, and even if the symmetry is

manifest its Noether current is not a local operator. This is problematic for constructing a

topological operator. Indeed, independently of the replica trick, we imitate the analysis done

for disordered theories, and we get the exotic topological charge operator (3.2.134). This is not

really a co-dimension one operator, since it depends both on a closed surface Σ(d−1) and on a

filling region D(d) such that ∂D(d) = Σ(d−1). In particular the operator cannot be supported on

homologically non-trivial cycles. Crucially, the operator Q̂ implies selection rules, because the

second term in (3.2.134), when inserted on average of correlation functions of local operators,

vanishes when integrated over the full space. If the space manifold is connected, there are

only two possible filling regions of a homologically trivial Σ(d−1), and Q̂ is independent of the

choice. On the other hand on a disconnected space there are several choices of filling region

D(d), and the charge operator does depend on these choices. Nevertheless, we do have selection

rules for averages of correlators, if one takes into account all the connected components of

space, and we can construct operators (A.5.20) implementing the finite group action. In each

connected component the selection rules can be violated, allowing the charges to escape from

one component to the other. We have then the somewhat exotic situation of a 0-form symmetry

in the sense of selection rules on correlation functions of local operators, but without having

genuine topological operators (even after average). In contrast to ordinary symmetries and

disordered symmetries in the quenched disordered case above, averaged symmetries cannot be

coupled to background gauge fields in ordinary ways and hence cannot be gauged.

In section 3.2.5 we comment about the gravity interpretation of these results. Whenever

the average theory admits a gravitational bulk dual, the local charge violation in presence of

disconnected space has the natural interpretation in the bulk as charge violation induced by

Euclidean wormholes configurations, as pointed out in [308–310]. The difficulty (impossibility)

of gauging averaged boundary symmetries that we have found clarify why such symmetries

cannot be identified with bulk gauge symmetries.

We conclude in section 3.2.6. In appendix A.4 we work out some specific examples for

concreteness, and in appendix A.5 we explicitly construct the operator which implements the

action of the group for averaged symmetries.

3.2.1 Symmetries in quenched disorder

In this section we study global 0-form symmetries in quenched disorder theories which arise

only after the average. We start in section 3.2.1 by reviewing how Ward identities for ordinary

0-form symmetries are recasted in terms of topological operators in pure QFTs. We generalize

the analysis to theories with quenched disorder in section 3.2.1 and construct the topological
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operator implementing the symmetry group action in section 3.2.1. We then discuss ’t Hooft

anomalies and gaugings for both continuous and discrete disordered symmetries in sections

3.2.1 and 3.2.1.

Pure theories and explicit symmetry breaking

Consider a standard d-dimensional Euclidean QFT described by the action S0. If this theory

is invariant under some continuous symmetry group G, correlation functions of local operators

must satisfy the usual constraints imposed by the Ward-Takahashi identities:

i
〈
∂µJ

µ(x)O1(x1) . . .Ok(xk)
〉
=

k∑
l=1

δ(d)(x− xl)
〈
O1(x1) . . . δOl(xl) . . .Ok(xk)

〉
. (3.2.6)

Here Jµ(x) is the Noether current10 and δOl(xl) is the transformation of the local operator Ol

under the action of the Lie algebra of G. For instance if G = U(1) and Ol has charge ql, then

δOl = iqlOl. Integrating over the full space X(d), the left hand side of (3.2.6) vanishes if X(d)

has no boundary and the symmetry is not spontaneously broken, and we get selection rules on

the correlators.

The modern approach [9] to interpret the same constraints consists in associating global

symmetries to co-dimension one topological operators Ug[Σ
(d−1)], g ∈ G, namely extended op-

erators supported on some (d− 1)-dimensional closed surface Σ(d−1), which are invariant under

continuous deformations of their support. In the case of continuous symmetries such topological

operators are simply11

Ug[Σ
(d−1)] = eiαQ[Σ(d−1)] , (3.2.7)

where Q[Σ(d−1)] =
∫
Σ(d−1) Jµn

µ is the Noether operator which measures the charge enclosed

within the region D(d) delimited by Σ(d−1) with ∂D(d) = Σ(d−1). We can then write integrated

Ward identities. For instance, if G = U(1) we have〈
Q[Σ(d−1)]O1(x1) . . .Ok(xk)

〉
= χ(Σ(d−1))

〈
O1(x1) . . .Ok(xk)

〉
, (3.2.8)

with

χ(Σ(d−1)) =
∑

l,xl∈D(d)

ql . (3.2.9)

The integrated Ward identity can be iterated using the fact that Jµ(x) is uncharged with

respect to Q[Σ(d−1)],12 resulting in〈
Qn[Σ(d−1)]O1(x1) . . .Ok(xk)

〉
= χn(Σ(d−1))

〈
O1(x1) . . .Ok(xk)

〉
. (3.2.10)

This implies that the exponentiated operators (3.2.7) satisfy〈
Ug[Σ

(d−1)]O1(x1) . . .Ok(xk)
〉
= eiαχ(Σ

(d−1))
〈
O1(x1) . . .Ok(xk)

〉
, g = eiα . (3.2.11)

10For convenience we define the Noether current as δS = i
∫
ϵ(x)∂µJµ. Notice that this has an extra factor of

i with respect to the one obtained by Wick rotating the standard Minkowski current.
11In the following we suppress the group and algebra indices. In (3.2.7) the element g ∈ G is the exponential

of α valued in the dual of the Lie algebra of G.
12This is not true for non-abelian G. However with simple manipulations one can reach the same conclusion.

Here we focus on the abelian case just for notational simplicity.
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More generally the integrated Ward identities associated to a finite transformation g ∈ G can

be written as〈
Ug[Σ

(d−1)]O1(x1) . . .Ok(xk)
〉
=
〈
O′

1(x1)Ug[Σ
′
d−1]O2(x2) . . .Ok(xk)

〉
, (3.2.12)

where O′
1(x1) = (R1(g) ·O1)(x1) is the transformed operator according to its representation R1

under G, Σ(d−1) is a surface linking with the point x1 and Σ′(d−1) is its deformation across the

point. The selection rules on correlation functions now follow from the fact that a topological

operator Ug[Σ
(d−1)] supported on a very big surface at infinity is trivial, but shrinking it to a

point, Ug passes and transforms all the local operators. We then get

⟨O1(x1) . . .On(xn)⟩ = R1(g) . . . Rn(g) · ⟨O1(x1) . . .On(xn)⟩ , (3.2.13)

which is the desired selection rule. A correlation function of local operators can be non-

vanishing only if the direct product of representations contains the singlet representation. While

Q[Σ(d−1)] and Ug[Σ
(d−1)] enforce equivalent constraints on the theory, the advantage of using the

exponentiated operator Ug[Σ
(d−1)] is that in (3.2.12) we do not need to define the infinitesimal

transformation δO so that the generalization to discrete symmetries is straightforward.

If we add a deformation of the pure theory which explicitly breaks G, the Ward identities

(3.2.6) acquire a new term and, as expected, the operator Q[Σ(d−1)] (or equivalently Ug[Σ
(d−1)])

is no longer topological. For example, for G = U(1) and a deformation described by the action

(the term hO0(x) is always paired with its hermitian conjugate, which we leave implicit)

S = S0 + h

∫
ddxO0(x) , (3.2.14)

where O0(x) is a local operator with charge q0 under U(1) and h is a coupling, we get

i
〈
∂µJ

µ(x)O1(x1) . . .Ok(xk)
〉
=

k∑
l=1

δ(d)(x− xl)
〈
O1(x1) . . . δOl(xl) . . .Ok(xk)

〉
− ihq0

〈
O1(x1) . . .Ok(xk)O0(x)

〉
.

(3.2.15)

Integrating over an open region D(d) with boundary Σ(d−1) we have〈
Q[Σ(d−1)]O1 . . .Ok

〉
= χ(Σ(d−1))⟨O1 . . .Ok⟩ − hq0

∫
D(d)

ddx
〈
O1 . . .OkO0(x)

〉
. (3.2.16)

If the coupling h is irrelevant, at large distances and for sufficiently large surfaces Σ(d−1),

the second term in the r.h.s. of (3.2.16) is suppressed with respect to the first one, and the

operators Q(Σ(d−1)) become approximately topological.13 In this case we say that the symmetry

G is emergent in the IR.

Quenched disorder and Ward identities

Theories with quenched disorder in the continuum limit can often be described starting from

a pure theory S0 and adding a perturbation like in (3.2.14) (see e.g. [311, 312]), where h is

13For a related discussion on approximate symmetries in the language of topological operators see [93].
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taken to be space-dependent (again we always implicitly pair up h(x)O0(x) with its hermitian

conjugate):

S[h] = S0 +

∫
ddxh(x)O0(x) . (3.2.17)

The random coupling is sampled from a distribution P [h] and we should think of an ensemble

of systems, each member being described by the action (3.2.17). Note that the considerations

above on the explicit breaking are valid, with minor modifications, for each member of the

ensemble.

A relevant example (which we will extensively consider in the sections 3.2.2 and 3.2.3) is

the case of white noise, where P [h] is Gaussian

P [h] ∝ exp
(
− 1

2v

∫
ddxh2(x)

)
, (3.2.18)

parametrized by a coupling v which governs the width of the Gaussian distribution. Dimensional

analysis fixes the dimension of v to be

[v] = d− 2∆O0 , (3.2.19)

where ∆O0 is the classical scaling dimension of the operator O0. The disorder is classically

irrelevant in the RG sense when

∆O0 >
d

2
. (3.2.20)

The equation (3.2.20) is called Harris criterion [313]. If the disorder is classically relevant or

marginal, it has an important effect on the IR dynamics. For instance, other fixed points could

emerge, so called random fixed points, which can also have logarithmic behavior (see section

3.2.3), or we could have no fixed points at all. When (3.2.20) is satisfied, the IR behaviour of

the system is unaffected by the impurities.

Like in the pure theory case, if the coupling h(x) breaks a symmetry G and is irrelevant,

then the symmetry G will appear as an emergent symmetry in the IR theory. On the other

hand, in disordered theories symmetries might also appear on average, but exactly, namely at

all energy scales, independently on the scaling dimension of h(x). It is important to keep into

account this distinction in the considerations that will follow. The latter case is the one that

we will call disordered symmetries.

The observables we are interested in are averaged correlation functions of local operators

defined as (we adopt here the notation of [312])

⟨O1(x1) . . .Ok(xk)⟩ =
∫
DhP [h]

∫
Dµ e−S[h]O1(x1) . . .Ok(xk)∫

Dµ e−S[h]
, (3.2.21)

where µ is the path integral measure and P [h] is an arbitrary distribution, not necessarily of the

form (3.2.18). Correlation functions can be obtained as usual by coupling each local operator

Oi to an external source Ki and by taking functional derivatives with respect to the Ki’s of the

averaged generating functional ZD[Ki] defined as

ZD[Ki] :=

∫
DhP [h]

∫
Dµ e−S[h]+

∫
KiOi∫

Dµ e−S[h]
=

∫
DhP [h]Z[Ki, h]

Z[0, h]
. (3.2.22)
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We can also define the disordered free energy WD[Ki] as

WD[Ki] :=

∫
DhP [h] logZ[Ki, h] =

∫
DhP [h]W [Ki, h] = W [Ki, h] , (3.2.23)

that generates averages of connected correlation functions

⟨O1(x1) . . .Ok(xk)⟩c =
δkWD[Ki]

δK1(x1) . . . δKk(xk)

∣∣∣∣
Ki=0

. (3.2.24)

We stress that, unlike standard QFTs, in quenched disorder theories not all correlators can be

determined from the connected ones and in particular

⟨Oi(x)⟩⟨Oj(y)⟩ ≠ ⟨Oi(x)⟩ ⟨Oj(y)⟩ . (3.2.25)

This is one of the crucial properties of disordered systems which will play an important role in

the following. This motivates to introduce a more general generating functional

Z
(N)
D [K

(1)
i , ..., K

(N)
i ] :=

∫
DhP [h]

N∏
j=1

Z[K
(j)
i , h]

Z[0, h]
(3.2.26)

whose functional derivatives produce the average of products of correlators. The generalization

of (3.2.25) is

Z
(N)
D [K

(1)
i , ..., K

(N)
i ] ̸=

N∏
j=1

ZD[K
(j)
i ] . (3.2.27)

Now suppose that the pure theory S0 has some global 0-form invertible symmetry G. If the ran-

dom deformation is G−invariant every realization of the system enjoys the symmetry, therefore

G is a symmetry of the full disordered theory and it will show up in the averaged correlators.

Indeed from the Ward identities of the theory in presence of a random source h(x), by simply

taking the average we immediately get the expected identities. This applies also to higher-form

symmetries which cannot be broken by adding local operators to the action [9, 207].

If the random deformation breaks some or all of the symmetries of the pure theory, the

story is more interesting. In this case we want to understand if and under which conditions the

disordered theory still enjoys these symmetries. We start by considering an internal invertible

continuous 0-form symmetry G, but our conclusions apply also in more general setups. In order

to gain some intuition it is useful to use a spurionic argument. The path integral of the theory

coupled to a random source h(x) is

Z[h] =

∫
Dµ exp

(
−S0 −

∫
h(x)O0(x)

)
. (3.2.28)

Because of the explicit breaking the partition function obeys

Z[h] = Z[R∨
0 (g) · h], g ∈ G (3.2.29)

where O0 transforms in representation R0 of G, and R∨
0 is its transpose. Turning on sources

Ki for operators of the pure theory we see that the generating functional satisfies

Z[Ki, h] =

∫
Dµ exp

(
−S0 −

∫
h(x)O0(x) +

∫
Ki(x)Oi(x)

)
= Z[R∨

i (g) ·Ki, R
∨
0 (g) · h].

(3.2.30)
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Thus the correlators before averaging are not G−invariant but

δ

δK1 . . . δKn

Z[Ki, h]

∣∣∣∣
Ki=0

= R1(g) . . . Rn(g) ·
δ

δK1 . . . δKn

Z[Ki, R
∨
0 (g) · h]

∣∣∣∣
Ki=0

. (3.2.31)

This implies that

⟨O1(x1) . . .On(xn)⟩ =
∫

DhP [h] 1

Z[h]

δZ[Ki, h]

δK1 . . . δKn

∣∣∣∣
Ki=0

(3.2.32)

= R1(g) . . . Rn(g) ·
∫
DhP [h] 1

Z[h]

δZ[Ki, R0(g)
∨ · h]

δK1 . . . δKn

∣∣∣∣
Ki=0

.

We can now change variable in the h-path integral, R0(g
−1)∨ · h(x) → h(x). Crucially, if the

probability measure DhP [h] is invariant, the averaged correlator obeys the G selection rules

⟨O1(x1) . . .On(xn)⟩ = R1(g) . . . Rn(g) · ⟨O1(x1) . . .On(xn)⟩ , (3.2.33)

but only on average. For example, a space-dependent coupling breaks translations, but if P [h]

is translation-invariant (like e.g. in (3.2.18)), then momentum conservation is recovered on

average.

Although the above spurion analysis is enough to determine selection rules, it does not

provide the explicit form of the conserved currents and which Ward identities are satisfied (and

how). The existence of topological operators is not even guaranteed and the common lore

which identifies symmetries with topological defects needs a more detailed analysis in order

to be verified. Let us then derive the form of Ward identities for disordered symmetries. For

notational simplicity we focus on G = U(1), but the analysis can be extended to any Lie group.

Consider the generating functional ZD[Ki] defined in (3.2.22). The usual Ward identities are

derived by changing variables in the path integral at the numerator, transforming all the fields

with a space-time dependent U(1) element eiϵ(x), so that

S0 → S0 + i

∫
ϵ(x)∂µJ

µ(x) , (3.2.34)

Jµ being the Noether current. Here the symmetry is broken by h(x) in any specific realization,

nevertheless we can modify the standard procedure by changing variable also in the path integral

at the denominator. Since h(x) is space dependent, Poincaré invariance is explicitly broken in

each specific realization and generally ⟨Jµ⟩ ̸= 0. This suggests that even if the symmetry is

recovered on average the current must be modified somehow. The above-mentioned change of

variable in both numerator an denominator, expanding at first order in ϵ(x) leads to∫
DhP [h]

(〈
− ∂µJ

µ − q0hO0 + qiKiOi

〉
K
+
Z[Ki, h]

Z[0, h]

〈
∂µJ

µ + q0hO0

〉)
= 0 . (3.2.35)

By taking functional derivatives with respect to the sources Ki and then setting them to zero

we get〈
∂µJ̃µ(x)O1(x1) · · ·

〉
+ q0

〈
h(x)Õ0(x)O1(x1) · · ·

〉
=
∑
i

qiδ
(d)(x− xi)

〈
O1(x1) · · ·

〉
, (3.2.36)
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where we introduced the shifted operators

J̃µ(x) := Jµ(x)− ⟨Jµ(x)⟩ , Õ0(x) := O0(x)− ⟨O0(x)⟩ . (3.2.37)

The vacuum expectation values should be thought of as certain (generally non-local) functionals

of h(x), whose presence is important in the average.

Since h(x) is integrated over all space-dependent configurations, the second term in (3.2.36)

vanishes identically provided that the probability measure satisfies certain invariance conditions.

Indeed we are allowed to perform the change of variable h(x) → e−iq0ϵ(x)h(x) in the h path

integral of (3.2.22), and if the probability measure is invariant under this formal transformation

we obtain

q0

∫
DhP [h]

(〈
hO0

〉
Ki

− Z[Ki, h]

Z[0, h]

〈
hO0

〉)
= 0 . (3.2.38)

Taking arbitrary functional derivatives with respect to the external sources and setting them

to zero we find

q0
〈
h(x)Õ0(x)O1(x1) . . .

〉
= 0 , (3.2.39)

which implies the vanishing of the second term in the left hand side of (3.2.36). By changing

variables in the path integral, we also get the relation〈
∂µJµ(x) + q0h(x)O0(x)

〉
= 0 , (3.2.40)

valid before averaging. We are now ready to discuss Ward identities. If q0 = 0, namely the U(1)

symmetry is unbroken in any realization of the ensemble, plugging (3.2.40) in (3.2.36) leads to

the averaged version of the ordinary Ward identities (3.2.6). This is of course expected, given

that (3.2.6) holds even before average in this case. More interestingly, for q0 ̸= 0, thanks to

(3.2.39) we find the disordered Ward identities

i
〈
∂µJ̃µ(x)O1(x1) · · · Ok(xk)

〉
=

k∑
i=1

iqiδ
(d)(x− xi)

〈
O1(x1) · · · Ok(xk)

〉
. (3.2.41)

Several comments are in order.

• The relation we obtained has the same form of a standardWard identity, but for a modified

current J̃µ = Jµ− ⟨Jµ⟩. The modification is proportional to the identity operator in any

of the specific realization of the ensemble, and can be thought of as an h−dependent

counterterm which restores the conservation in the disordered theory. Note that the

Ward identities written as in (3.2.41) apply for arbitrary correlation functions of local

operators which do not contain explicit powers of h(x).

• Before averaging the current Jµ (as well as its shifted version J̃µ) is sensitive to the UV

renormalization of the theory, i.e. it acquires a non-vanishing anomalous dimension (in

contrast to ordinary conserved currents in pure theories). A proper definition of Jµ would

require a regularization of the theory and a choice of renormalization scheme. Luckily

enough, if we are only interested in averaged correlators, we do not need to worry about

these issues, since (3.2.41) guarantees that J̃µ is effectively conserved inside averaged

correlators.
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• The Ward identities (3.2.41) are valid independently of the behavior of the current at

infinity. When the integral of ∂µJ̃
µ over the full space diverges (this requires the space to

be non compact) the disordered symmetry is spontaneously broken. We do not discuss

spontaneous disordered symmetry breaking in detail in this paper. We briefly comment

on it in the conclusions. If the symmetry is not spontaneously broken the integral of

∂µJ̃
µ over the full space vanishes. Thus (3.2.41) implies the selection rules we already

derived from the spurionic argument. However (3.2.41) is a more refined constraint being

a local conservation equation: local currents can be used to discuss ’t Hooft anomalies

and eventually gauging the symmetry, as we will see shortly. Moreover we will show in

the next subsection that, with some modification with respect to the usual story, the

conservation of J̃µ leads to topological operators as in the pure case.

• Since the random coupling h(x) is space dependent, in every member of the ensemble

translational symmetry is explicitly broken. The analysis above can be repeated for the

stress-energy tensor T µν , showing that also traslational invariance is recovered in a theory

with quenched disorder, provided P [h] is translational invariant.

With simple modifications we have a similar identity for any Lie group G:

i
〈
∂µJ̃

µ
a (x)O1(x1) · · ·

〉
=
∑
i

δ(d)(x− xi)
〈
O1(x1) · · · ri(Ta) · Oi(xi) · · ·

〉
. (3.2.42)

Here Ta is a Lie algebra generator and ri is the representation of the Lie algebra, induced by Ri,

under which Oi transforms. A more general situation could take place, in which the disorder

deformation does not break the full group, but leaves a subgroup H ⊂ G unbroken. In this

case any specific realization is H−symmetric, and thus the currents Jµα , with Tα generator of

h = Lie(H), satisfy the standard Ward identity without the necessity of averaging. In particular

⟨∂µJµα⟩ = 0, even if the expectation value of the current itself is not necessarily vanishing due

to the lack of Poincaré invariance. Even if G/H is generically not a group, the associated

currents, which are not conserved in any specific realization, after the appropriate shift by their

expectation values turn out to satisfy the Ward identity (3.2.42) in the disordered theory, and

reconstruct the full group G.

Sometimes a 0-form symmetry G can form an higher-group structure with higher-form

symmetries of the theory [177–179]. In this case G is not really a subgroup of the full symmetry

structure, since the product of several G−elements can also produce an element of the higher-

form symmetry. This kind of extension is classified by group-cohomology classes, the Postnikov

classes: for instance in a 2-group, mixing G with a 1-form symmetry Γ, the relevant datum

is a class β ∈ H3(BG,Γ), with BG the classifying space of G. The important thing is that

this is a discrete datum and cannot change under continuous deformation. Suppose we add

a disorder breaking G, and this re-emerges as a disordered symmetry. A natural question is

whether the higher-group structure is also recovered. The answer is affirmative as a consequence

of the discrete nature of this structure. Indeed the probability distributions P [h] have some

tunable continuous parameters, like v in the Gaussian case (3.2.18), such that the pure theory

is recovered in some limit (v → 0 in the Gaussian case). The cohomology class characterising
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the higher-group is discrete and cannot change with this continuous parameter. Since all these

disordered theories are continuously connected to the pure one, the higher-group structure is

unchanged.

Up to this point disordered symmetries seem to behave like ordinary global symmetries in

pure theories. The difference arises by considering averages of products of correlators

N∏
j=1

〈
O(j)

1 (x
(j)
1 ) · · · O(j)

kj
(x

(j)
kj
)
〉
. (3.2.43)

Because of (3.2.27) these are independent correlators, and we do not expect them to sat-

isfy Ward identities immediately implied by (3.2.41), or to be constrained by the usual selec-

tion rules. Let us consider the more general generating functional Z
(N)
D [{K(j)

i }] introduced in

(3.2.26). With the same manipulations which led to (3.2.38), we get

q0

N∑
j=1

∫
DhP [h]

((〈
hO0

〉
K

(j)
i

− Z[K
(j)
i , h]

Z[0, h]
⟨hO0⟩

)∏
l ̸=j

Z[K
(l)
i , h]

Z[0, h]

)
= 0 , (3.2.44)

while the individual terms of the sum are generically non-vanishing. This implies that the only

Ward identity we can prove from Z
(N)
D [{K(j)

i }] are obtained by changing variable in all the path

integrals involved: if we try to change variables only in a subset of these path integrals, the

extra term arising would be not be of the form (3.2.44), but the sum would be over that subset

of indices. Repeating the steps above we obtain the Ward identities for averages of products of

correlators:

N∑
j=1

〈
∂µJ̃µO(j)

1 · · · O(j)
kj

〉(∏
l ̸=j

〈
O(l)

1 · · · O(l)
kl

〉)
=

N∑
j=1

kj∑
ij=1

q
(j)
ij
δ(d)(x− x

(j)
ij
)
N∏
l=1

〈
O(l)

1 · · · O(l)
kl

〉
.

(3.2.45)

These Ward identities imply weaker selection rules. For instance, the correlator

⟨O1(x1) · · · Ok1(xk1)⟩⟨Ok1+1(xk1+1) · · · Ok1+k2(xk1+k2)⟩ (3.2.46)

can be non zero when
∑k1

i=1 qi ̸= 0 and
∑k1+k2

i=k1+1 qi ̸= 0, provided that
∑k1+k2

i=1 qi = 0.

In a theory with quenched disorder ordinary and disordered symmetries can be present at

the same time, and we see that their different action shows up in looking at averages of products

of correlators.

See appendix A.4.1 for an explicit derivation of (3.2.41) for a two-point (k = 2) function in

a simple solvable model.

Topological operators for disordered symmetries

We now address the question of whether there exist topological symmetry operators imple-

menting disordered symmetries, placing them in the general framework of [9]. This is im-

portant to e.g. generalize to discrete symmetries, coupling them to backgrounds and discuss

non-perturbative anomalies. For notational simplicity we again focus on the G = U(1) case,
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but all the considerations can be extended to any Lie group. We introduce the modified charge

operator

Q̃[Σ(d−1)] =

∫
Σ(d−1)

J̃µn
µ = Q[Σ(d−1)]−

〈
Q[Σ(d−1)]

〉
(3.2.47)

which satisfies the integrated Ward identity〈
Q̃[Σ(d−1)]O1(x1) . . .Ok(xk)

〉
= χ(Σ(d−1))⟨O1(x1) . . .Ok(xk)⟩ , (3.2.48)

with χ(Σ(d−1)) as in (3.2.9), as well as the generalization to arbitrary products

N∑
j=1

〈
Q̃[Σ(d−1)]O(j)

1 · · · O(j)
kj

〉(∏
l ̸=j

⟨O(l)
1 · · · O(l)

kl
⟩

)
= χ(Σ(d−1))

N∏
l=1

⟨O(l)
1 · · · O(l)

kl
⟩ . (3.2.49)

The reason why the naive procedure of constructing the symmetry operator by exponenti-

ating Q̃[Σ(d−1)] does not work can be already understood at the second order: Q̃2[Σ(d−1)] does

not measure the square of the total charge. Let Φ be a generic product of local operators.14

We have

⟨Q̃2Φ⟩ = ⟨Q̃QΦ⟩ − ⟨Q⟩⟨Q̃Φ⟩ = χ⟨QΦ⟩ − χ⟨Q⟩⟨Φ⟩+ ⟨Q̃Q⟩⟨Φ⟩ = χ2⟨Φ⟩+ ⟨Q̃Q⟩⟨Φ⟩ . (3.2.50)

In the second step we used both the Ward identity (3.2.48) and (3.2.49) with N = 2. We

deduce that what measures the total charge square is not Q̃2 but

Q̃2 := Q̃2 − ⟨Q̃Q⟩ = Q2 − 2⟨Q⟩Q+ 2⟨Q⟩2 − ⟨Q2⟩ . (3.2.51)

In order to construct the topological symmetry operator we need, for any n ∈ N, an operator

Q̃n such that

⟨Q̃nO1 · · · Ok⟩ = χn⟨O1 · · · Ok⟩ (3.2.52)

and then define the symmetry operators as

Ũg =
∞∑
n=0

(iα)n

n!
Q̃n , g = eiα . (3.2.53)

To prove that such operators exist, and show how to compute them, we start from ⟨QnΦ⟩ (again
Φ denotes a generic product of local operators), and we rewrite one Q as Q̃ + ⟨Q⟩, so that we

can use a linear Ward identity for Q̃, and we iterate until we eliminate all the Qs:

⟨QnΦ⟩ = ⟨Q̃Qn−1Φ⟩+ ⟨Q⟩⟨Qn−1Φ⟩ = χ⟨Qn−1Φ⟩+ ⟨Q⟩⟨Qn−1Φ⟩
= χ2⟨Qn−2Φ⟩+ χ⟨Q⟩⟨Qn−2Φ⟩+ ⟨Q⟩⟨Qn−1Φ⟩
...

= χn⟨Φ⟩+
n−1∑
k=0

χk⟨Q⟩⟨Qn−k−1Φ⟩ .

(3.2.54)

14In order to avoid cluttering in the formulas, from now on we will adopt a lighter notation omitting often

the support of local operators or indices.
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The terms χk⟨Q⟩⟨Qn−k−1Φ⟩ can be managed as follows. We eliminate one χ by using the linear

Ward identity for the averaged product of two correlators for Q̃, which we then re-expand as

Q− ⟨Q⟩:

χk⟨Q⟩⟨Qn−k−1Φ⟩ =χk−1
(
⟨Q̃Q⟩⟨Qn−k−1Φ⟩+ ⟨Q⟩⟨Q̃Qn−k−1Φ⟩

)
=χk−1

(
⟨Q2⟩⟨Qn−k−1Φ⟩ − 2⟨Q⟩2⟨Qn−k−1Φ⟩+ ⟨Q⟩⟨Qn−kΦ⟩

)
.

(3.2.55)

Then we eliminate an other χ from each term, again using the linear Ward identity, in some

terms with the product of two correlators, in others with the product of three correlators. We

continue in this way until we eliminate all the χs, and remain with a sum of averages of products

of expectation values of ⟨Qa⟩ for various a, and ⟨QbΦ⟩ for a certain b, generally different for

each term. This defines the operator Q̃n. For instance

Q̃3 = Q3 − 3⟨Q⟩Q2 − 3⟨Q2⟩Q+ 6⟨Q⟩2Q− ⟨Q3⟩+ 6⟨Q⟩⟨Q2⟩ − 6⟨Q⟩3 . (3.2.56)

While this seems very complicated, one can check until arbitrarily high order that the expansion

can be beautifully resummed as

Ũg =
∞∑
n=0

(iα)n

n!
Q̃n = eiαQ

〈
eiαQ

〉−1

, (3.2.57)

where Q̃0 := 1. Note that this is the only result consistent with
〈
Ũg
〉
= 1, which must be true

by construction since ⟨Q̃n⟩ = 0 as a direct consequence of the Ward identities (3.2.52) satisfied

by Q̃n in absence of local operators.

The operator Ũg in averaged correlators behaves as

⟨Ũg[Σ(d−1)]O1 · · · Ok⟩ = eiαχ(Σ
(d−1))⟨O1 · · · Ok⟩ (3.2.58)

and is hence a topological symmetry operator, on average. It satisfes the group law

⟨ŨgŨhΦ⟩ = ⟨ŨghΦ⟩ , (3.2.59)

Φ being an arbitrary product of local operators. As a consequence, the naive expectation that

eiαQeiβQ = ei(α+β)Q is wrong because of the disorder. Note that before averaging the operator

Ũ is subject to renormalization and its proper definition requires a choice of renormalization

scheme. We do not need to keep track of these subtleties, however, because they are washed

away after the average is taken.

We now consider how Ũg behaves inside averages of products of correlators (3.2.43), extend-

ing (3.2.49) to finite symmetry actions. This is important because, as we mentioned, products

of correlators is what really characterizes disordered symmetries with respect to ordinary ones,

and we need the symmetry operator version of the criterion we discussed at the end of section

3.2.1. In principle one could explicitly construct the correct combination of charges Q̃n entering

the Ward identities using the results above. For example, in the average of products of two

correlators, at quadratic order in the charges we have

⟨Q̃2Φ1⟩⟨Φ2⟩+ ⟨Φ1⟩⟨Q̃2Φ2⟩+ 2⟨Q̃1Φ1⟩⟨Q̃1Φ2⟩ = χ2⟨Φ1⟩⟨Φ2⟩ , (3.2.60)
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Φ1,2 being two distinct generic products of local operators. Similarly for multiple products.

We claim that the correct Ward identities consist in inserting Ũg in all the (un)factorized

correlators under average:

N∏
j=1

〈
Ũg[Σ(d−1)]O(j)

1 (x
(j)
1 ) · · · O(j)

kj
(x

(j)
kj
)
〉
= eiαχ(Σ

(d−1))

N∏
j=1

〈
O(j)

1 (x
(j)
1 ) · · · O(j)

kj
(x

(j)
kj
)
〉
. (3.2.61)

This can be checked by expanding both members in powers of α, which gives a series of Ward

identities for the Q̃n’s. For example, for two correlators (N = 2) we have

k∑
l=0

(
k

l

)〈
Q̃lΦ1

〉〈
Q̃k−lΦ2

〉
= χk

〈
Φ1

〉〈
Φ2

〉
, (3.2.62)

where χ = χ1 + χ2 are the sum of charges of the local operators in the product Φ1,2 which are

inside the support of the charge operators. Checking (3.2.62) directly is cumbersome, but we

can proceed as follows. We rewrite the last term appearing in (3.2.54) using (3.2.62) (assuming

its validity) with Φ1 = Q and Φ2 = Qn−k−1Φ.15 In this way we get

Q̃n = Qn −
n−1∑
k=0

k∑
l=0

(
k

l

)〈
Q̃lQ

〉
Q̃k−lQ

n−k−1 = QQ̃n−1 −
n−1∑
l=0

(
n− 1

l

)
⟨Q̃lQ⟩Q̃n−l−1 . (3.2.63)

This is a recursion formula which determines Q̃n in terms of all the Q̃m for m < n, and it

is equivalent to (3.2.62). It can be checked that computing the topological charges with this

formula gives the same result as computing them directly from the linear Ward identities,

proving in this way the validity of (3.2.61) and (3.2.62).

For averages of multiple correlators the group law (3.2.59) generalizes to

N∏
j=1

〈
ŨgŨhΦj

〉
=

N∏
j=1

〈
ŨghΦj

〉
. (3.2.64)

We are finally able to characterize disordered symmetries in full generality. These are symme-

tries of theories with quenched disorder implemented by symmetry operators Ũg, g ∈ G, which

become topological after quenched average. They satisfy the identity (3.2.58) and the group

law (3.2.59) as operator equations valid in any averaged correlator. Differently from ordinary

global symmetries, in averages of products of correlators like (3.2.43) they are topological only

if inserted in each factor of the product, and satisfy the generalized group law (3.2.64) inside

averaged correlators. Disordered symmetries are symmetries of the pure system broken by the

disorder but with a symmetric probability measure. It is then not surprising that Ũg can be

written in terms of the corresponding topological operator Ug of the pure system as

Ũg[Σ
(d−1)] = Ug[Σ

(d−1)]
〈
Ug[Σ

(d−1)]
〉−1

. (3.2.65)

However the characterization above is intrinsic and does not require to know the pure system.

The resummation of the series (3.2.53) into the compact expression (3.2.65) allows us to imme-

diately generalize the analysis to more general groups G, including discrete ones where there is

no current or charge operator available.

15Note that Φ can include integrated current operators Jµ, hence powers of charges Q, but not powers of Q̃.

The latter is still the integral of a local operator, but with an explicit dependence on h(x), in which case the

analysis does not apply.
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’t Hooft anomalies for continuous disordered symmetries

We examine in this and the next subsections some general properties of disordered symme-

tries. We will argue that the concept of ’t Hooft anomalies, for both continuous and discrete

symmetries, extends to this context. In particular we show that disordered symmetries inherit

the anomaly of their pure counterpart. This is important because we can use anomalies to

constraint the IR dynamics of quenched disordered theories, whose flow is generally extremely

complicated. We start discussing ’t Hooft anomalies for continuous disordered symmetries,

postponing to section 3.2.1 the case of discrete symmetries.

A theory with a global symmetry can be coupled to a background gauge field A which

acts as an external source for the conserved current J , and results in a partition function

Z[A]. A ’t Hooft anomaly arises whenever Z[A] is not invariant under gauge transformations

of the background (see e.g. [314] for a modern review). Denoting by Aλ the gauge transformed

background, we have

Z[Aλ] = ei
∫
X(d) α(λ,A)Z[A] , (3.2.66)

where the phase in the exponent is the t’Hooft anomaly, a functional depending on λ and

A, which cannot be cancelled by local counterterms. Coupling to backgrounds for disordered

symmetries is more subtle, because the symmetry is explicitly broken in any specific realization

of the ensemble. If the symmetry is restored on average, however, a coupling to an external

background becomes possible via the shifted current J̃ defined in (3.2.37), namely we define

Z[A] =

∫
DhP [h]

∫
Dµe−S0−

∫
h(x)O0(x)+

∫
AµJ̃µ

. (3.2.67)

A ’t Hooft anomaly for a disordered symmetry G can be defined in close analogy with the

ordinary case (3.2.66):

Z[Aλ] = ei
∫
X(d) α(λ,A)Z[A] . (3.2.68)

Anomalies (both continuous and discrete) are known to be invariant under RG flow thanks

to their topological nature (typically associated to a Chern-Simons level taking value in a

cohomology group, see e.g. [315, 316]). In particular, the value of the anomaly cannot depend

on possible continuous parameters entering in the disorder distribution P [h], such as v in

the Gaussian example (3.2.18). By adiabatically changing such parameters, we can make the

distribution arbitrarily peaked around h = 0, in which case we effectively recover the pure

theory.16 We then expect that a ’t Hooft anomaly (3.2.68) associated to a disordered symmetry

G can only appear if the associated pure theory (before adding the disorder perturbation) had a

’t Hooft anomaly for the same symmetry G. Moreover, the two anomalies must coincide. This

can be easily verified for all anomalies which, from a path integral point of view, can be seen to

derive from the non-invariance of the path integral measure [317]. Starting from the left hand

side of (3.2.68) when λ is infinitesimal, we perform a change of variable in the path integral in

Z[Aλ], which corresponds to an x-dependent transformation under G such that Aλ → A. As

in pure theories, the non-invariance of the measure leads to the anomaly term. The derivative

of the current coming from the action variation is cancelled by the explicit symmetry breaking

16For the gaussian case this is achieved by taking v → 0.
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term and we are left with the anomalous term only. Crucially, the latter does not depend on

the disorder h and hence we immediately get the infinitesimal version of the right hand side of

(3.2.68), where α is exactly the same as in the underlying pure theory. If the anomaly vanishes,

the disordered symmetry can be gauged by making the gauge field Aµ in (3.2.67) dynamical.

We report in appendix A.4.2 an example of matching of ’t Hooft anomalies between the

pure and the disorder theories using the replica trick, which will be introduced in section 3.2.2,

for the case of the U(1) chiral anomaly in four dimensions.

Discrete disordered symmetries: ’t Hooft anomalies and gauging

The topological operators Ug[Σ
(d−1)] are crucial to handle discrete symmetries for which there

is no current. In pure theories the coupling to background gauge fields associated to a discrete

symmetry group G can be achieved by modifying the path integral with the topological sym-

metry operators [9]. There are several equivalent ways to introduce a background gauge field

for a discrete symmetry group G. One of these (see e.g. [178] for further details) consists in

taking an atlas {Ui} of the d-dimensional space X(d) and assigning group-valued connections

Aij ∈ G on Ui ∩Uj such that Aij = A−1
ji and AijAjkAki = 1 on triple intersections Ui ∩Uj ∩Uk.

A codimension one symmetry operator Ugp [Σ
(d−1)
p ] assigns Aij = gp (or g−1

p depending on its

orientation) if Σ
(d−1)
p has a non trivial intersection number with the line dual to Ui ∩ Uj and

Aij = 1 otherwise.17 The resulting sets of connections Aij defines a background gauge field for

G and can be represented by a cohomology class A ∈ H1(X(d), G). The operators Ugp [Σ
(d−1)
p ]

can intersect in three-valent junctions of codimension two provided that

gigjgk = 1 , (3.2.69)

or also in higher multi-valued junctions. The configuration described above requires few choices,

and one must check independence on those. Since the operators are topological local changes in

their support are immaterial. We could also change the mesh locally near the junctions, which

corresponds to resolve a multi-valent junction in three-valent ones in different ways. This

corresponds to background gauge transformations and a non-invariance under them signals a

’t Hooft anomaly for discrete symmetries. In d dimensions a ’t Hooft anomaly is classified by

a class α ∈ Hd+1(BG,U(1)).18

Consider now a theory T with quenched disorder, obtained by deforming a pure theory T0,

and denote by Th the member of the ensemble with coupling h(x). Suppose T has a discrete

disordered symmetry G. As we have seen this is implemented by the operators

Ũg[Σ
(d−1)] = Ug[Σ

(d−1)]
〈
Ug[Σ

(d−1)]
〉−1

. (3.2.70)

We introduce a fine-enough mesh of topological operators Ũgi [Σ
(d−1)
i ] satisfying (on average) the

cocycle condition (3.2.69) in the three-valent junctions. Since Ũgi [Σ
(d−1)
i ] is not topological in Th,

the junctions (as well as the operators Ũ themselves) are not really well-defined because of UV

17In the dual triangulation the charts Ui are points, the intersections Ui ∩ Uj are lines, and so on.
18Strictly speaking, this is the case for bosonic theories in d < 3 dimensions. More in general, anomalies are

classified by a cobordism group [318].
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divergences. However we can employ an arbitrary regularization scheme for these divergences,

without the need of specifying a renormalization scheme to try to define the junctions and

the operators Ũ (recall the second comment after (3.2.41)). This is because we know that the

operators become topological after the average and hence such divergences are expected to be

washed away from the integration over h(x). We define

ZTh
[
{gi} , h

]
=

∫
Dµ e−S[ϕ]−

∫
h(x)O0(x)

∏
i

Ũgi [Σ
(d−1)
i ] =

〈∏
i

Ũgi [Σ
(d−1)
i ]

〉
(3.2.71)

which, contrary to the pure case, does depend on the specific location of the planes Σ
(d−1)
i . At

this point there is no notion of background gauge fields. However, as a consequence of the

Ward identity discussed in section 3.2.1,

ZT
[
{gi}

]
=

∫
DhP [h]ZTh

[
{gi} , h

]
(3.2.72)

is independent of the choice of location for Σi and hence the set of operators Ũgi inserted in

(3.2.72) corresponds to a well-defined discrete gauge field A ∈ H1(X(d), G). It is important

to emphasize here that the gauge field A arises only after the average over h(x) is performed.

Differently said, if a pure system has a symmetry G, perturbing it with quenched disorder and

coupling it to a background are non-commutative operations. In what follows we denote the

above partition function by ZT [A].

Local modifications of the three-valent junctions change the gauge field by an exact 1-

cocycle A → Aλ = A + δλ. This can change the partition function ZT [A] by a phase, which

represents a class α ∈ Hd+1(BG,U(1)): this is the diagnostic for an ’t Hooft anomaly for a

discrete disordered symmetry. Since the topological operator Ũg[Σ
(d+1)] is different from the one

in the pure theory by the stacking of an h(x)−dependent functional, it is not a priori obvious

that the contact terms arising in the local moves are the same as those in the pure theory,

precisely as it occurred in the continuous case discussed in section 3.2.1. However, the fact that

anomalies are classified by classes in Hd+1(BG,U(1)), which are discrete, immediately proves

that they cannot depend on the strength of the disorder and must be equal to those of the

pure theory. As a result, a system with a disordered symmetry with a ’t Hooft anomaly cannot

be trivially gapped. This is in agreement with previous works in condensed matter where –

mostly in the context of topological insulators [295–299, 301] but not only (see e.g. [300]) –

SPT phases of matter where the symmetry is disordered were found. We see that in general

disordered symmetries can lead to protected non-trivial topological phases (see [302] for a recent

analysis).19

Now suppose that the ’t Hooft anomaly vanishes. Then ZT [A] is well defined and is possible

to gauge the symmetry by summing over all consistent insertions of symmetry operators, or

equivalently over cohomology classes A ∈ H1(X(d), G). We denote the resulting theory by T/G,

19In [302] it is considered a Lorentizan theory with a disorder coupling depending on space but not in time.

In this set-up it is found that purely disordered symmetries, i.e. in absence of pure symmetries, necessarily have

a trivial t’ Hooft anomaly. This is not in contradiction with our findings, based on Euclidean theories.
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whose partition function is20

ZT/G =
∑

A∈H1(X(d),G)

ZT [A] . (3.2.73)

At this point everything is essentially the same as in the pure case (see e.g. [9, 11]). The

operators of T with a counterpart in T/G are the gauge-invariant ones, while we also add

the (d− 2) dimensional operators in the twisted sector of G. Indeed the topological operators

Ũg[Σ
(d−1)] become trivial in T/G, and their boundary operators turn into genuine operators (on

average). Finally, since A ∈ H1(X(d), G) is dynamical, T/G has a dual symmetry generated by

the Wilson lines of the G gauge field. This is a (d− 2)-form symmetry whose charged objects

are the operators coming from the twisted sectors of G. For G abelian the symmetry is the

Pontryagin dual G∨, while it is a non-invertible symmetry in the non-abelian case [11].

3.2.2 Disordered symmetries and the replica trick

Disordered systems are often treated by means of the replica trick, which expresses the averaged

correlation functions as certain limits of correlation functions of a standard QFT, the replica

theory. In this section we interpret the disordered symmetries from the point of view of the

replica theory. In addition to provide a sanity check of the results found in section 3.2.1, the

method of replicas allows us to consider emergent symmetries in the disordered theory for

which the results in the previous section do not apply. We will discuss emergent symmetries in

section 3.2.3. For the rest of this section and the next section we assume a Gaussian probability

distribution like (3.2.18) (and its generalization for complex h) with variance v.21

The replica trick

To fix our notation we briefly review the replica trick. This is a useful tool that allows to

compute connected and full (i.e. both its connected and disconnected parts) correlators of the

disordered theory as limits of correlators of a pure theory. The starting point of the replica

trick is the identity

W = logZ = lim
n→0

(
∂Zn

∂n

)
. (3.2.74)

The idea is to replicate the pure system n times, indexing each copy with a label a

Zn[h,Ki] =

∫ n∏
a=1

Dµa exp

(
−
∑
a

S0,a −
∑
a

∫
h(x)O0,a(x) +

∑
i,a

∫
Ki(x)Oi,a(x)

)
,

(3.2.75)

20In the pure case it is possible to modify this sum weighting the terms with phases. Consistency conditions

related with associativity constraint these phases to be of the form
∫
X(d) A

∗ν, where ν ∈ Hd(BG,U(1)) is a

discrete torsion class and we think A as a homotopy class of maps X(d) → BG, so that A∗ν ∈ Hd(X(d), U(1)).

Since the same kind of constraints are valid also in the disordered theories, we expect the very same modification

of the gauging procedure to be possible also in this context.
21Normalization factors of P [h], which ensure that probabilities add to one, will not play a role in our

considerations and are then left implicit.
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with the same random field coupling h and external sources Ki for all replicas. When P [h] is

Gaussian the average over h(x) can be performed explicitly and we get

Wn[Ki] :=

∫
DhP [h]Zn[h,Ki] =

∫ n∏
a=1

Dµa e−Srep+
∑

i,a

∫
KiOi,a , (3.2.76)

where

Srep =
∑
a

S0,a −
v

2

∑
a,b

∫
ddxO0,a(x)O0,b(x) (3.2.77)

is the replica action. We see how a coupling between the replica theories has been generated

after the average. Renormalization will possibly induce other couplings in the replica theory,

all compatible with the symmetries of the system. Among these, importantly the replica theory

enjoys an Sn replica symmetry that permutes the various copies of the pure theory. We now

assume that Wn can be analytically continued for arbitrary values of n including the origin in

the complex n-plane.22 Using (3.2.74) we find

WD = lim
n→0

(∂Wn

∂n

)
, (3.2.78)

where WD is defined in (3.2.23), and thus〈
O1(x1)O2(x2) . . .

〉
c
= lim

n→0
∂n

(〈∑
a

O1,a(x1)
∑
b

O2,b(x2) . . .
〉rep)

, (3.2.79)

where we used the fact that

lim
n→0

Wn[Ki] = 1 . (3.2.80)

Note that the in the left hand side of (3.2.79) we have the connected part of the correlator

(indicated with the subscript c) which is computed in the replica theory by a suitable limit

of a full correlator. Moreover, we see from (3.2.79) that a local operator O inside connected

correlators of the disordered theory is mapped in the replica theory to its Sn-singlet component∑
aOa.

The replica trick is also useful to compute general correlation functions in the disordered

theory. Denoting by

Sa[h] = S0,a +

∫
h(x)O0,a(x) , (3.2.81)

we have

⟨O1(x1) . . .Ok(xk)⟩ =
∫

DhP [h]
∫
Dµ e−S[h]O1(x1) . . .Ok(xk)

Z[h]

=

∫
DhP [h]

∫∏
aDµa e−

∑
a Sa[h]O1,1(x1) . . .Ok,1(xk)

Z[h]n
,

(3.2.82)

which is an identity for any positive integer n. Assuming again that it can be analytically

continued for n→ 0 we get23

⟨O1(x1) . . .Ok(xk)⟩ = lim
n→0

⟨O1,1(x1) . . .Ok,1(xk)⟩rep . (3.2.83)

22This is a notoriously subtle limit. In particular we can have the phenomenon of spontaneous replica

symmetry breaking (see [319] and references therein). We assume in what follows that the replica symmetry is

not spontaneously broken.
23Note that we have actually taken the limit n → 0 in the denominator of (3.2.82) (Zn[h] → 1) before

integrating over h, while in the numerator it is kept after the integration over h.
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In general correlators, in contrast to connected correlators, local operators are mapped to a

specific copy (the same for all operators in the correlation function) in the replica theory. Equa-

tion (3.2.83) can easily be generalized to averages of products of general correlation functions.

For example, omitting for simplicity the x-dependence of the local operators, we have

〈 k∏
i=1

O(1)
i

〉〈 l∏
j=1

O(2)
j

〉
= lim

n→0

∫
DhP [h]

∫∏
a Dµa e−

∑
a Sa[h]

∏k
i=1 O

(1)
i,1

∏l
j=1O

(2)
j,2

Zn[h]

= lim
n→0

〈 k∏
i=1

O(1)
i,1

l∏
j=1

O(2)
j,2

〉rep
,

(3.2.84)

and similarly for more than two products. The last observables which we need to evaluate

are averages of products of N connected correlators. Before averaging, these correlators are

obtained by taking functional derivatives of the productW [K
(1)
i ] · · ·W [K

(N)
i ]. For each of them

we can use the replica trick to express this product as a unique path integral. We then have

N∏
l=1

〈 kl∏
jl=1

O(l)
jl

〉
c
=

( N∏
k=1

lim
nk→0

∂

∂nk

)〈 N∏
l=1

kl∏
jl=1

nl∑
a
(l)
jl

=1

O(l)

jl,a
(l)
jl

〉rep
, (3.2.85)

where Srep is the replica theory for n =
∑N

i=1 ni replicas. Note that averages of products of gen-

eral or connected correlators in the disordered theory are always expressed in the replica theory

as suitable limits of a single general correlator. Since any correlator can be expanded in its

connected components, (3.2.85) is actually sufficient to compute generic correlation functions

of the disordered theory. Any operator of the disordered theory gives rise to a multiplet trans-

forming in the n-dimensional (natural) representation of Sn. Averages of connected correlators

of operators of the disordered theory are given by the Sn singlet operators inside the natural

representation in the replica theory. More general correlation functions of the disoredered the-

ory are instead given by considering operators singlets under subgroups Sni
⊂ Sn induced by

the natural representation in the replica theory.

Disordered symmetries from replica theory

Our first task is to understand how disordered symmetries manifest themselves in the replica

theory. For concreteness we consider again the case of a G = U(1) symmetry, the replica action

reads

Srep =
∑
a

S0,a −
v

2

∑
a,b

∫
ddxO0,a(x)O0,b(x) . (3.2.86)

The U(1)n symmetry of the replicated pure part is broken by the disorder coupling to its

diagonal U(1) subgroup, which is then a symmetry of the replica theory. In particular there is

a conserved current

JµD =
∑
a

Jµa (3.2.87)

constructed as the Sn singlet out of the multiplet induced by the current Jµ of the disordered

theory.
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We can recover the Ward identities of the disordered symmetry from those produced by JµD
in the replica theory by using (3.2.85) for averages of products of connected correlators. The

general key idea is to write a sum of averages of products of connected correlators with current

insertions that, once mapped to correlators of the replica theory, reconstruct the complete

diagonal current JµD. Then we can use the Ward identity in the replica theory and finally we

rewrite the results back in terms of the disordered theory.

Determining the Ward identities for averages of single connected correlators is simple, be-

cause the diagonal current JD appears directly in the replica theory and we can immediately

use the ordinary Ward identities there. We have〈
∂µJµ(x)O1(x1)O2(x2) · · ·

〉
c
= lim

n→0
∂n

(〈
JµD(x)

∑
a

O1,a(x1)
∑
b

O2,b(x2) . . .
〉rep)

=
∑
i

qiδ
(d)(x− xi) lim

n→0
∂n
〈∑

a

O1,a(x1)
∑
b

O2,b(x2) . . .
〉rep

=
∑
i

qiδ
(d)(x− xi)⟨O1(x1)O2(x2) . . .⟩c , (3.2.88)

which reproduces the connected version of (3.2.41). Averages of products of connected corre-

lators are also easy to treat, because it is enough to consider a sum of correlators where the

current is inserted in each term to reconstruct JD in the replica theory and then use the Ward

identities there. Skipping obvious steps, we get

N∑
j=1

⟨∂µJµ(x)O(j)
1 . . .O(j)

kj
⟩c
(∏

l ̸=j

⟨O(l)
1 . . .O(l)

kl

〉
c

)
=

N∑
j=1

kj∑
ij=1

δ
i
(j)
j
q
(j)
ij

N∏
l=1

⟨O(l)
1 . . .O(l)

kl
⟩c , (3.2.89)

which is similar to (3.2.45), but expressed in terms of connected correlators and the unshifted

current.

Due to the different way the replica trick handles connected and general correlators, deter-

mining the Ward identities for the latter will produce the improved current J̃µ. We use (3.2.83)

to write

⟨∂µJµO1 · · · On⟩ = lim
n→0

⟨∂µJµ,1O1,1 . . .Ok,1⟩rep

= lim
n→0

⟨∂µJµ,1O1,1 . . .Ok,1⟩rep − lim
n→0

1

n− 1
⟨
n∑
a=2

∂µJµ,aO1,1 . . .Ok,1⟩rep

+ lim
n→0

⟨∂µJµ,2O1,1 . . .Ok,1⟩rep .

(3.2.90)

In the last step, the last two terms add to zero due to the Sn symmetry enjoyed by the replica

theory. In the limit n→ 0 we have

lim
n→0

⟨∂µJµ,1O1,1 . . .Ok,1⟩rep − lim
n→0

1

n− 1
⟨
n∑
a=2

∂µJµ,aO1,1 . . .Ok,1⟩rep

= lim
n→0

⟨∂µJµ,DO1,1 . . .Ok,1⟩rep
(3.2.91)

and

lim
n→0

⟨∂µJµ,2O1,1 . . .Ok,1⟩rep = ⟨∂µJµ⟩⟨O1 · · · Ok⟩ . (3.2.92)
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Therefore, by using the standard Ward identities of the replica theory, from (3.2.90) we get

(3.2.41), as expected. The Ward identities (3.2.45) for products of generic correlators can be

derived using a similar treatment:

N∑
j=1

〈
∂µJµO(j)

1 · · · O(j)
kj

〉(∏
l ̸=j

〈
O(l)

1 · · · O(l)
kl

〉)
= lim

n→0

N∑
j=1

⟨∂µJµ,j
N∏
j=1

(O(j)
1,j · · · O

(j)
kj ,j

)⟩rep

= lim
n→0

N∑
j=1

⟨∂µJµ,j
N∏
j=1

(O(j)
1,j · · · O

(j)
kj ,j

)⟩rep − lim
n→0

N

n−N
⟨

n∑
a=N+1

∂µJµ,a

N∏
j=1

(O(j)
1,j · · · O

(j)
kj ,j

)⟩rep

+ lim
n→0

N⟨∂µJµ,N+1

N∏
j=1

(O(j)
1,j · · · O

(j)
kj ,j

)⟩rep (3.2.93)

=
N∑
j=1

kj∑
ij=1

q
(j)
ij
δ(d)(x− x

(j)
ij
)
N∏
l=1

〈
O(l)

1 · · · O(l)
kl

〉
+N⟨∂µJµ⟩

∏
i

⟨O(i)
1 · · ·O(i)

ki
⟩ .

The last term in the right-hand-side in the third row of (3.2.93) precisely combines with the

left-hand-side to reproduce the shifted current J̃µ and hence the Ward identities (3.2.45).

The above analysis shows that the replica counterpart of the disordered symmetry is an

ordinary symmetry generated by the diagonal current JµD and all the Ward identities of the

disordered theory reduce to Ward identities involving JµD in the replica theory. The exotic

selection rules (see discussion around (3.2.46)) of the disordered symmetry are a consequence

of the non-trivial map between the observables of the replica theory and those in the theory

with quenched disorder.

3.2.3 Disordered emergent symmetries and LogCFTs

Our analysis of Ward identities in section 3.2.1 applies for disordered symmetries, namely

symmetries which are present in the underlying UV theory, are broken by the disorder, and

get restored after disorder average. On the other hand, as in pure theories, we can have

genuinely emergent symmetries in the IR, namely symmetries which are not present in the

UV theory even before adding the disorder coupling. If the symmetry emerges for each theory

in the ensemble, then we expect that it gives rise to approximate selection rules of the same

kind as in pure theories with emergent symmetries in the IR. However, we could also have

symmetries that emerge in the IR only after disorder average. By definition, this implies the

existence of additional selection rules which are valid on average in the IR of the theory. For

non-emergent, actual disordered symmetries such selection rules arise from a conserved current

which is a shifted version of the current operator Jµ of the UV theory J̃µ = Jµ − ⟨Jµ⟩. For

emergent symmetries we cannot determine its explicit form, as the description in terms of the

UV action is useless, and the analysis in section 3.2.1 does not hold. However, as we will see,

we can deduce which are the selection rules that the emergent disordered symmetry imposes

on averaged correlation functions using the replica theory.

From a symmetry point of view, the key qualitative feature of the replica theory (for any

finite n) is the presence of a Sn global permutation symmetry not present in the original

theory with disorder. In the analysis in section 3.2.2 the internal symmetry G generated
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by the current JµD commutes with Sn, namely the infinitesimal transformations δOj,a of the

fields do not mix different replicas. This is guaranteed by the fact that G in the replica

theory is the diagonal subgroup of the Gn global symmetry of the replica theories when v = 0.

On the other hand, in the case of an emergent symmetry this is not necessarily the case:

each irreducible representation of Sn can sit in a different G-representation, or even more

generally, the local operators could sit in representations of the semi-direct product G ⋊ Sn.

We expect that emergent symmetries in the replica theory of this kind correspond to disordered

emergent symmetries in the theory with disorder. As we will see below, even in the deep IR

the resulting selection rules will be modified with respect to those coming from (3.2.41) and its

generalizations. As an application we will show how these modified Ward Identities allow for

logarithmic conformal field theories (LogCFTs) as IR fixed points of disordered systems.

3.2.4 Emergent disordered symmetries

Let us analyze in some detail the Ward Identities for emergent symmetries in the replica the-

ory. We study theories in which the total symmetry is a direct product G × Sn, since this

particular case already exhibits interesting features. For further simplification, we consider

G = U(1) and correlators where only the singlet and the standard representations of Sn are

involved. Generalizations to other representations of Sn or more general groups G should be

straightforward.

Consider the average of a single correlation function of k local operators in the disordered

theory. We consider both the general and the connected part of the correlator. Using (3.2.83)

and (3.2.79), they are mapped in the replica to the n→ 0 limit of respectively ⟨O1,1 . . .Ok,1⟩rep

and ∂n⟨
∑

a1
O1,a1 . . .

∑
ak
Ok,ak⟩rep, omitting the space dependence of the operators in the corre-

lators for simplicity. The replica theory is an ordinary pure theory and the emergent symmetry

should manifest with the existence of a vector local operator JµD, which becomes conserved in

the IR. The operator JµD is necessarily a singlet of Sn, since U(1) commutes with Sn by defi-

nition. Note that we do not need to assume the knowledge of the full multiplet Jµa for which

JµD =
∑n

a=1 J
µ
a . Indeed, while in the UV, for weak disorder, the existence of vector operators

in the natural representation of Sn is guaranteed, we do not need to keep track of the IR fate

of the non-singlet components. Assuming that JµD is conserved in the IR also at finite n, the

following standard selection rules on k-point correlators apply:

k∑
j=1

⟨
n∑

aj=1

δOj,aj

k∏
j ̸=i=1

n∑
ai=1

Oi,ai⟩rep = 0 , (3.2.94)

k∑
j=1

⟨δOj,1

k∏
j ̸=i=1

Oi,1⟩rep = 0 . (3.2.95)

The key point is now to look more closely to the variations δOj,aj . Indeed, the natural repre-

sentation of Sn is reducible and the Oi’s split in

O(S)
i =

n∑
a=1

Oi,a , O(F )
i,a = Oi,a −

1

n
O(S)
i , (3.2.96)
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which transform in the singlet and in the standard, or fundamental, representation respec-

tively.24 The U(1) symmetry acts as

δO(S)
i = qS,iO(S)

i , δO(F )
i,a = qF,iO(F )

i,a , (3.2.97)

where the charges are generically different, qS,i ̸= qF,i, and can possibly depend on n. The

variations entering the Ward identities of the replica theory are then

δOi,a = δO(F )
i,a +

1

n
δO(S)

i = qF,iOi,a +
∆qi
n

n∑
a=1

Oi,a , (3.2.98)

where

∆qi := qi,S − qi,F . (3.2.99)

Since in connected correlators we only have singlet components, plugging (3.2.98) in (3.2.94)

gives simply

k∑
j=1

qS,j⟨
k∏
i=1

n∑
ai=1

Oi,ai⟩rep = 0 . (3.2.100)

On the other hand, plugging (3.2.98) in (3.2.95) equals

0 =
k∑
j=1

qF,j⟨
k∏
i=1

Oi,1⟩rep +
k∑
j=1

∆qj
n

⟨
n∑
b=1

Oj,b

k∏
j ̸=i=1

Oi,1⟩rep

=
k∑
j=1

(
qF,j +

∆qj
n

)
⟨
k∏
i=1

Oi,1⟩rep +
k∑
j=1

∆qj
n

⟨
n∑
b=2

Oj,b

k∏
j ̸=i=1

Oi,1⟩rep

=
k∑
j=1

qF,j⟨
k∏
i=1

Oi,1⟩rep +
k∑
j=1

∆qj⟨Oj,2

k∏
j ̸=i=1

Oi,1⟩rep

+
1

n

k∑
j=1

∆qj

(
⟨

k∏
j ̸=i=1

Oi,1⟩rep − ⟨Oj,2

k∏
j ̸=i=1

Oi,1⟩rep
)
. (3.2.101)

The existence of the limit n→ 0 requires that

∆qj(n) = nKj +O(n2) , as n→ 0 , (3.2.102)

where

Kj =
∂∆qj
∂n

∣∣∣∣
n=0

. (3.2.103)

We can use (3.2.102) to go back to the averaged correlators of the disordered theory and obtain

the desired selection rules

k∑
j=1

qj⟨
k∏
i=1

Oi⟩+
k∑
j=1

Kj

(
⟨
k∏
i=1

Oi⟩ − ⟨Oj⟩⟨
k∏

j ̸=i=1

Oi⟩
)
= 0 , (3.2.104)

k∑
j=1

qj⟨
k∏
i=1

Oi⟩c = 0 , (3.2.105)

24More general representations arise for composite operators of the disordered theory which, once replicated,

correspond to multiplets of Sn transforming in a (reducible) tensor product of two or more natural representa-

tions.
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where

qj = qF,j|n=0 = qS,j|n=0 , j = 1, . . . , k . (3.2.106)

A similar analysis can be repeated for averages of products of correlation functions of the kind

(3.2.43). We report here only the final result:

N∑
m=1

km∑
j=1

[(
q
(m)
j +K

(m)
j

) N∏
l=1

⟨Υ(l)⟩

+K
(m)
j

(∑
a̸=m

⟨Υ(m)
j ⟩⟨O(m)

j Υ(a)⟩
∏
l ̸=m,a

⟨Υ(l)⟩ −N⟨O(m)
j ⟩⟨Υ(m)

j ⟩
∏
l ̸=m

⟨Υ(l)⟩

)]
= 0 (3.2.107)

where we introduced the notations

Υ(l) =

kl∏
i=1

O(l)
i , Υ

(l)
j =

kl∏
i=1,i ̸=j

O(l)
i . (3.2.108)

When Kj = 0, the selection rules (3.2.104) are the standard ones associated to a U(1) conserved

symmetry, while for Kj ̸= 0 we get additional terms which affect the disconnected component of

the correlator only, given that the connected part satisfies the ordinary selection rule (3.2.105).

The fact that (3.2.105) holds implies that in the disordered theory we have a notion of operators

Oi carrying a definite U(1) charge qi, yet in disconnected correlators some effect is responsible

for the appearance of the extra terms proportional to Kj. It would be interesting to understand

the origin of these extra factors directly from the disordered theory.

For k = 2, (3.2.104) and (3.2.105) simplify and can be rewritten as

(q1 + q2)⟨O1⟩c⟨O2⟩c + (K1 +K2)⟨O1O2⟩c = 0 ,

(q1 + q2)⟨O1O2⟩c = 0 .
(3.2.109)

If K1+K2 ̸= 0, independently of the value of q1+q2, the connected part of the 2-point function

has to vanish and only a disconnected component is allowed. We are not aware of disordered

theories with Kj ̸= 0 for an internal global symmetry. On the other hand, we will show in

the next section that the exotic selection rules derived above, applied to the case of emergent

conformal symmetry, are at the origin of the possible appearance of logarithmic CFTs in the

IR of disordered theories.

LogCFTs

Infrared fixed points of theories with quenched disorder can be described by non-unitary

LogCFTs, first discussed in 2d [304,305]. See e.g. [320] for a review of 2d LogCFTs or [306] for

an introduction to LogCFTs in d dimensions from an axiomatic point of view. It was recognized

in [305] that LogCFTs are intrinsically associated in having primary operators that are highest

weight of indecomposable but not irreducible representations of the conformal group. A deriva-

tion of how LogCFTs can arise as random fixed points was given in [307] and more recently

in [312] by means of (suitable generalizations of) Callan-Symanzik equations, in both cases us-

ing replica methods. We provide here an alternative derivation, working out the generalization

of (3.2.109) when the emergent group is assumed to be the conformal one.
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In the IR fixed point of the replica theory we have a dilatation current Jµd which yields the

topological dilatation operator

D
[
Σ(d−1)

]
=

∫
Σ(d−1)

Jµd nµ . (3.2.110)

The conformal Ward identities applied to a primary operator O imply

D
[
Σ(d−1)
x

]
O(x) = δDO(x) +O(x)D

[
Σ(d−1)

nox

]
, (3.2.111)

where

δDO = (∆ + xµ∂µ)O(x) , (3.2.112)

(Σ
(d−1)
nox ) Σ

(d−1)
x is a closed codimension 1 surface (not) encircling x. The dilatation operator

acts diagonally only on the irreducible representations (3.2.96):

δDO(S)
i (x) = (∆S,i(n) + xµ∂µ)O(S)

i (x) , δDO(F )
i,a (x) = (∆F,i(n) + xµ∂µ)O(F )

i,a (x) . (3.2.113)

Thus on Oi,a(x) we have

δDOi,a(x) = (∆F,i + xµ∂µ)Oi,a(x) +
∆S,i −∆F,i

n

n∑
α=1

Oi,α(x) , (3.2.114)

where in general ∆S,i(n) ̸= ∆F,i(n) for finite n. We plug the above transformations in (3.2.95)

with k = 2 and equal operators. In this way we find the analogues of (3.2.109) for scaling

transformations:

(xµ∂µ + 2∆) ⟨O(x)⟩c⟨O(0)⟩c + 2K⟨O(x)O(0)⟩c = 0 ,

(xµ∂µ + 2∆) ⟨O(x)O(0)⟩c = 0 ,
(3.2.115)

where

∆ := ∆F |n=0 = ∆S|n=0 , K = ∂n(∆S −∆F )|n=0 . (3.2.116)

The general solution of (3.2.115) reads

⟨O(x)O(0)⟩c =
c1

|x|2∆

⟨O(x)O(0)⟩ = c2
|x|2∆

− c1 log(µ|x|)
|x|2∆

,
(3.2.117)

where c1,2 are two integration constants with mass dimension −2∆ and µ is an arbitrary mass

scale. Note that in a LogCFT, due to the peculiar way dilatations act on operators, the

presence of a mass scale is actually compatible with conformal symmetry (see e.g. [306] for a

more detailed explanation). We see that the log term arises when K ̸= 0, which acts as a source

term in the second equation in (3.2.115).

Whenever the LogCFT has some internal global symmetry G which is not emergent in the

IR but is an exact symmetry present along the whole RG flow (i.e. present for each member of

the ensemble and not broken by the disorder), the derivation above shows that logarithms can

only appear in two-point functions of operators singlets under G. Indeed, in the replica theory

the symmetry G gets replicated in n (unbroken) copies Ga, while the conformal symmetry
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generally is not, being only emergent at the fixed point. A representation ρ of G acting on a

primary operator O is then replicated into n copies ρa, each acting only on Oa. Let g ∈ Ga, by

simple manipulations we get

ρa(g) · O(S) = ρa(g) · Oa −Oa +O(S)

= (ρa(g)− 1) · O(F )
a +

1

n
(ρa(g) + (n− 1)1) · O(S) .

(3.2.118)

Since Ga are internal symmetries, which necessarily commute with the dilatation operator D,

we have

0 = [D, ρa(g)] · O(S) = (∆F −∆S) (ρa(g)− 1) · O(F )
a . (3.2.119)

Unless ρ is in the trivial representation, the only solution of (3.2.119) is

∆S(n) = ∆F (n) , (3.2.120)

which implies that the factor K defined in (3.2.116) vanishes, and thus logharithms cannot

appear in the two-point function of O at the IR fixed point.

3.2.5 Symmetries in ensemble average

We discuss in this section the case in which the random coupling is taken to be constant:

h(x) → h . (3.2.121)

Such set-up, which does not physically describe impurities as in quenched disorder, is partic-

ularly interesting in the light of the recent understanding of the role of average QFTs in the

AdS/CFT correspondence [282]. As in the case of quenched disorder, we are interested in the

situation where a symmetry is explicitly broken in any element of the ensemble and we want

to see when and under which conditions it can emerge after the average. To distinguish them

from the case of disordered systems, we will call these symmetries averaged symmetries. A

notable example of this kind is the O(N) symmetry in the SYK model [279–281] which rotates

the N Majorana fermions, broken by the random fermion coupling, and restored after average

(provided the average is taken with an O(N)-invariant distribution, as is often the case).

We will see that the simple replacement (3.2.121) leads to crucial differences with respect

to the quenched disorder case. We discuss the importance of connectedness of the full space

in section 3.2.5, we derive the Ward identities and the topological operators emerging after

ensemble average in section 3.2.5, and finally in section 3.2.5 we comment on the implications

of our results in the context of the AdS/CFT correspondence where the ensemble average is

supposed to be the dual theory of a bulk theory of gravity in d+ 1 dimensions.

Selection rules in disconnected spaces

The presence of a constant random coupling h over the entire space X(d) leads to a new effect,

not present in the quenched disorder, which is the lack of factorization of correlation functions
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in disconnected spaces. For definiteness, consider a theory deformed by a random coupling h in

a space X(d) which is the union of two spaces X(d) = X
(d)
1 ⊔X(d)

2 , with X
(d)
1 ∩X(d)

2 = ∅. At this
stage we are not specifying whether the coupling is a constant or not, we only assume that it

breaks a global 0-form symmetry G of the pure theory. For each element of the ensemble we

can define a generating functional introducing sources Ki for the local operators Oi. Since the

space manifold is disconnected, for each local operator O we effectively need two sources, K1

and K2, defined in X
(d)
1 and X

(d)
2 . For any h, constant or not, the total functional factorizes25

Z[X(d), K, h] = Z[X
(d)
1 , K1, h] Z[X

(d)
2 , K2, h] , (3.2.122)

and so will do arbitrary correlation functions of local operators Φ:

⟨Φ⟩X = ⟨Φ1⟩X1⟨Φ2⟩X2 , (3.2.123)

with obvious notation. When h is space dependent (quenched disorder), its support and its

probability measure splits into X1 and X2. Hence quenched averaged correlators factorize in

the two distinct components:26

⟨Φ1⟩X1⟨Φ2⟩X2 = ⟨Φ1⟩X1
⟨Φ2⟩X2

. (3.2.124)

Thanks to this factorization, the selection rules of the disordered theory are realized indepen-

dently on each connected component:

⟨Φi⟩Xi
= Ri ⟨Φi⟩Xi

, i = 1, 2, (quenched disorder) , (3.2.125)

where Ri are the direct products of the representations of the local operators in X
(d)
i , which

should each contain a singlet to get a non-vanishing correlator.

Crucially, in the ensemble average case (3.2.124) cannot hold, because a constant h does

not split on the connected components and the average correlates the operators across X
(d)
1 and

X
(d)
2 . In particular, we now get the selection rules

⟨Φ1⟩X1⟨Φ2⟩X2
= R1 ·R2 ⟨Φ1⟩X1⟨Φ2⟩X2

, (ensemble average) . (3.2.126)

In contrast to the quenched disorder case, averages of single correlators in the ensemble average

effectively turn into averages of products of correlators when the space is disconnected. The

constraint (3.2.126) is weaker than (3.2.125), obtained in the quenched average theory. In

(3.2.126) we need the singlet to appear only in the product R1 · R2, in (3.2.125) separately

for R1 and R2. For symmetries that emerge after ensemble average, which we dub average

symmetries, the charge is then not conserved on a single connected component of the manifold,

but can “escape” to the other connected components (see the end of appendix A.4.1 for an

explicit computation in a free scalar model). We will see how this relates to the violation

of global symmetries by Euclidean wormholes in section 3.2.5. The above analysis is trivally

generalized to a space with an arbitrary number of disconnected components and to arbitrary

products of correlation functions of local operators.

25This follows from the observation that any map whose domain is disconnected can be written uniquely as

a sum of maps each supported in a connected component.
26It should not be confused this factorization of correlators in disconnected space with the non-factorization

of products of averaged correlators due to quenched disorder considered in section 3.2.1 and present in any space

X(d), connected or not.
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Ensemble average and Ward identities

The analysis presented in section 3.2.1 can be repeated in the case of constant h. For con-

creteness we consider again the case in which the pure theory has a U(1) global symmetry

under which O0 has charge q0. We have one complex parameter h and the average generating

functional is

Z[Ki] =

∫
dhdh̄ P [h̄h]

∫
Dµe−S0−(h

∫
O0+c.c.)+

∫
KiOi∫

Dµe−S0−(h
∫
O0+c.c.)

. (3.2.127)

We derive identities between correlators by changing variables inside the various integrals in

(3.2.127). By changing variable in the numerator with an infinitesimal space-dependent sym-

metry transformation of parameter ϵ(x), we get

⟨∂µJµ(x)Φ⟩ =
∑
i

δ(d)(x− xi)qi⟨Φ⟩+ q0⟨D(x)Φ⟩ , (3.2.128)

where the sum runs over all the local operators defining Φ and we have defined

D(x) := −hO0(x) + h̄O0(x) . (3.2.129)

Note that (3.2.128) holds before taking the average. Indeed, this is nothing else than the Ward

identities one obtains in a pure theory for an explicitly broken symmetry. We are now not

allowed to do a change of variable in the h integral to possibly prove the vanishing on average

of the last term in (3.2.128). However, we can perform a global transformation h → e−iq0ϵh,

with ϵ constant, inside (3.2.127). In this way, we get∫
X(d)

〈
D(x)Φ

〉
=

∫
X(d)

〈
D(x)

〉〈
Φ
〉
, (3.2.130)

where X(d) is the full space manifold. Finally we can perform a space dependent U(1) trans-

formation only in the path integral in the denominator of (3.2.127), getting

⟨∂µJµ⟩ = q0⟨D⟩ , (3.2.131)

valid before ensemble average. From now on we will assume that O0 is a scalar under spatial

rotations,27 so that every element of the ensemble is so(d) invariant. We then have ⟨Jµ⟩ = 0

and thanks to (3.2.131) the relation (3.2.130) simplifies to∫
X(d)

〈
D(x)Φ

〉
= 0 . (3.2.132)

See appendix A.4.1 for an explicit derivation of (3.2.132) for a two-point function in a simple

solvable model. The combination ∂µJµ − q0D(x) satisfies the condition∫
X(d)

ddx
〈
(∂µJµ(x)− q0D(x)) Φ

〉
= 0 , (3.2.133)

27This assumption is not crucial. For non-scalar deformations, rotational invariance is broken before the

average and we need to keep track of all the vacuum expectation values induced by the random variable, as

done in the quenched disorder case. This can be repeated in the ensemble average case, but makes the analysis

more involved.
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which ensures that the Ward identities (3.2.128), when integrated over the full space and after

ensemble average, imply charge conservation. As expected from a spurionic argument, the

symmetry is restored after average.28

Let us now see if we can define more general operators Q̂[Σ(d−1), D(d)], topological after

ensemble average. The natural choice from (3.2.133) is

Q̂[Σ(d−1), D(d)] = Q[Σ(d−1)]− q0

∫
D(d)

ddxD(x) , Q[Σ(d−1)] :=

∫
Σ(d−1)

nµJ
µ(x) , (3.2.134)

where D(d) is an arbitrary region such that ∂D(d) = Σ(d−1). Note that this requires Σ(d−1)

to be homologically trivial otherwise, by definition, the surface D(d) does not exist. In the

terminology of [321], the operator (3.2.134) is a non-genuine co-dimension one operator, since

it requires a topological surface attached to it.29

We can discuss the dependence of Q̂ in (3.2.134) on the choice of the filling region D(d).

Given another such manifold D′(d) we can glue it along Σ(d−1) with the orientation reversal of

D(d) to form a closed manifold Y (d) = D′(d) ⊔D(d), and Q̂[Σ(d−1), D(d)] is independent on D(d)

if and only if ∫
Y (d)

〈
D(x)Φ

〉
= 0 . (3.2.135)

We see that (3.2.135) is not satisfied unless the space-time X(d) is connected, and we will

generically refer to Q̂ as a non-genuine operator. On the other hand, if X(d) is connected any

homologically trivial co-dimension one submanifold Σ(d−1) of X(d) divides X(d) −Σ(d−1) in two

disjoint connected components glued along Σ(d−1), hence necessarily Y (d) = X(d) and (3.2.135)

reduces to (3.2.132), showing the independence of Q̂[Σ(d−1), D(d)] on the filling region. Q̂ is still

expressed with an integral over D(d), but the dependence of the non-genuine symmetry operator

on the filling region is only apparent, and for all practical purposes this can be regarded as

independent on the filling region. We refer to this situation as a quasi-genuine co-dimension

one operator.

If X(d) has several connected components, Y (d) can be a proper sub-region, since adding

or removing from it an entire connected component which does not intersect Σ(d−1) preserves

the property that Y (d) is the union of regions glued along Σ(d−1). For instance if X(d) has two

connected components X
(d)
1 and X

(d)
2 , and suppose Σ(d−1) is entirely contained in X

(d)
1 , the

latter is divided by Σ(d−1) into two regions D(d) and D
′(d), and choosing one or the other leads

to different operators Q̂[Σ(d−1)], since (3.2.132) holds only in the entire space and not to each

connected component:〈∫
D(d)

D(x)Φ
〉
=
〈(∫

D
′(d)

+

∫
X

(d)
2

)
D(x)Φ

〉
̸=
〈∫

D
′(d)
D(x)Φ

〉
. (3.2.136)

In this case we cannot define a quasi-genuine co-dimension one topological operator and there-

fore, even if the total charge is conserved thanks to (3.2.133), we cannot measure it locally in

a subregion of the entire (disconnected) space.

28In a pure theory the identities (3.2.128) apply but D(x) does not integrate to zero when inserted in arbitrary

correlators. As a consequence no selection rules are implied, as expected for an explicitly broken symmetry!
29The requirement is however of different nature. In [321] (and subsequent works) the surface is required to

122



Figure 3.3: Selection rules (3.2.138) for correlators when X(d) is connected. The integral over

the region D(d) in the left panel equals the integral over the region D
′(d) in the right panel

thanks to (3.2.132). When D(d) is shrunk to a point the region D
′(d) extends to the whole X(d).

In order to measure the charge of operators in the whole space, we can consider Q̂ on a

codimension 1 closed surface Σ(d−1) = Σ
(d−1)
1 ⊔ Σ

(d−1)
2 , with Σ

(d−1)
i ⊂ X

(d)
i (i = 1, 2), and two

regions D
(d)
i such that ∂D

(d)
i = Σ

(d−1)
i . In each given connected component, the charge cannot

be conserved, as we have seen, but if we simultaneously consider the two regions, then the Ward

identities still apply. In the schematic notation of section 3.2.5 we have

⟨Q̂[Σ, D]Φ⟩X = ⟨Q̂[Σ1, D1]Φ1⟩X1⟨Φ̂2⟩X2
+ ⟨Φ1⟩X1⟨Q̂[Σ2, D2]Φ2⟩X2

=
(
χ1(Σ1) + χ2(Σ2)

)
⟨Φ̂1⟩X1⟨Φ̂2⟩X2

=
(
χ1(Σ1) + χ2(Σ2)

)
⟨Φ̂⟩X ,

(3.2.137)

where χ1,2(Σ1,2) denotes the sum of the charges of the local operators Φ1,2 which are inside

the surface Σ
(d−1)
1,2 . Since Σ(d−1) depends now on D(d), it is crucial to consider the complement

space in both connected spaces at the same time. The generalization to spaces X(d) with more

than two connected components is obvious.

We refer the reader to appendix A.5 for a proof of the existence of the operator Ûg which

implements the action of the group rather than the action of the corresponding Lie algebra.

By definition, the operator Ûg, given in (A.5.20), satisfies

⟨Ûg[Σ(d−1), D(d)]O1 · · · On⟩ = eiαχ(Σ
(d−1))⟨O1 · · · On⟩ . (3.2.138)

Since Ûg[∅, X(d)] = 1, (3.2.138) implies the selection rules we derived from the spurion argument

(see figure 3.3). The equivalent of (3.2.137) for a finite group action precisely reproduces the

selection rule (3.2.126). With Σ(d−1) as in figure 3.4, we have

⟨Φ⟩X = ⟨Ûg[Σ, D]Φ⟩X = ⟨Ûg[Σ1, D1]Φ1⟩X1⟨Ûg[Σ2, D2]Φ2⟩X2
= eiα(χ1(Σ1)+χ2(Σ2)⟨Φ⟩X (3.2.139)

while, say,

⟨Φ⟩X = ⟨Ûg[Σ1, D1]Φ1⟩X1⟨Φ2⟩X2
̸= eiαχ1(Σ1)⟨Φ⟩X . (3.2.140)

have a well-defined gauge-invariant operator, here the surface is required to make the operator topological (on

average).
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Figure 3.4: Violation of the selection rules (3.2.140) when X(d) is disconnected. The integral

over the region D
(d)
1 in X

(d)
1 (left) is not equal to the integral over the region D

′(d)
1 in X

(d)
1 (right)

because of the presence of the component X
(d)
2 . An equality sign would require to reverse the

region of integration also in X
(d)
2 (right) from D

(d)
2 to its complement.

We have then found an instance of a theory with a global zero-form symmetry in the sense of

giving rise to selection rules for correlation functions of local operators, but with no genuine

co-dimension one topological operator. Aside of being topological only on average, the operator

Ûg[Σ, D] is not genuine and it can be defined only on homologically trivial cycles.

The local charge violation (3.2.140) in a single connected component of space when X(d)

is an union of several connected components indicate the presence of non-local interactions in

the theory. Their presence is manifest by using the replica trick. Consider a Gaussian random

distribution P [h̄h] ∝ exp(−h̄h/v) (e.g. as in the SYK model). Repeating the steps described

in section 3.2.2 we find non-local interactions among replicas

Srep =
n∑
a=1

S0,a − v

∫
ddx

∫
ddy

n∑
a,b=1

O0,a(x)O0,b(y) . (3.2.141)

The replica theory enjoys a diagonal U(1)D global symmetry, but the naive diagonal current

JµD =
∑

a J
µ
a does not satisfy standard Ward identities. By performing an infinitesimal U(1)

transformation with a local parameter α(x) we get

δSrep =

∫
dxα(x)∂µJ

µ
D(x)− q0v

∑
a,b

∫
dx dy

(
α(y)− α(x)

)
O0,a(x)O0,b(y) (3.2.142)

=

∫
X(d)

dxα(x)

(
∂µJ

µ
D(x) + q0v

∑
a,b

∫
X(d)

dy
(
O0,a(x)O0,b(y)−O0,a(x)O0,b(y)

))
.

Thus the Ward identities for the diagonal symmetry are modified by a non-local term and read〈(
∂µJ

µ
D(x) + q0v

∑
a,b

∫
X(d)

ddy
(
O0,a(x)O0,b(y)−O0,a(y)O0,b(x)

) )
Φ
〉rep

=
∑
i

δ(d)(x− xi)qi
〈
Φ
〉rep

.
(3.2.143)

In the replica theory the operator

∂µJ
µ
D(x) + q0v

∑
a,b

∫
X(d)

ddy
(
O0,a(x)O0,b(y)−O0,a(y)O0,b(x)

)
(3.2.144)
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Figure 3.5: Example of a wormhole bulk geometry contributing to the average correlator

⟨OO⟩⟨O†O†⟩, with O a charged boundary operator.

satisfies the Ward identities and its integral over the full space evidently vanishes (inside ar-

bitrary correlators), implying the U(1)D selection rules. This is how the properties of the

averaged symmetry show up in the replica theory, where the non-local nature of the symmetry

is manifest for Gaussian distributions. The property (3.2.132) of the operator D(x) defined

in (3.2.129) is mapped to the property of the extra term in (3.2.144) of integrating to zero

exactly as an operator equation. This is consistent with the dictionary between correlators of

the averaged theory and the replica one.

A gravity discussion

We have found that averaged global symmetries are intrinsically different from ordinary global

symmetries. They imply selection rules as dictated by the global symmetry but, in contrast to

ordinary global symmetries, they do not admit genuine co-dimension one operators, topological

after average. Even in a connected space such operators cannot be defined in homologically

non-trivial cycles. As a result, these symmetries cannot consistently be coupled to an external

background field, at least not in a natural way.30 Note that this is different from the concept

of ’t Hooft anomalies. In the latter the obstruction is in making the gauge fields dynamical but

there is a well defined notion of coupling the theory to backgrounds gauge fields. The difficulty

of coupling the symmetry to an external background is clear in the replica theory from the

presence of the second term in (3.2.144), which is non-local and not manifestly the divergence

of a current.

The results have interesting consequences when applied to averaged theories which are

assumed to have an holographic dual bulk gravitational theory in asymptotically AdS space-

times.

In the ordinary AdS/CFT correspondence a given theory of gravity in asymptotically AdS

space-time is dual to a given CFT. Ordinary global symmetries of the CFT become gauge

symmetries in the bulk. This correspondence fits nicely with the widely accepted common

lore that in quantum gravity unbroken global symmetries cannot exist [322–325]. A natural

question then arises: when the dual theory is given by an ensemble average, what is the bulk

interpretation of the symmetries emerging after average? In [308] (see also [309, 310]) it has

30For discrete symmetries, for example, coupling to an external background field corresponds to insert a mesh

of symmetry defects on homologically non-trivial cycles of space.
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been conjectured that boundary emergent symmetries correspond in the bulk to global, and

not gauge, symmetries which are broken non-perturbatively by Euclidean wormhole configu-

rations, which allow the global symmetry charge to flow from one connected component to

another one, see figure 3.5. From the boundary point of view, this charge violation induced by

bulk wormholes correspond to the lack of selection rules in the average theory that we have

discussed before, when the space is not connected, in agreement with the findings in [308–310].

Since averaged symmetries simply cannot be gauged, our results clarify why they cannot be

interpreted as gauge symmetries in the bulk, at least in the case where the average is of the

form (3.2.14).31

Note that boundary emergent symmetries are compatible with recent works where, moti-

vated by the connection with the lore of spectrum completeness in gravitational theories [326],

“absence of global symmetries in gravitational theories” is replaced by “absence of topological

operators”, including those related to non-invertible symmetries [327,328].

3.2.6 Conclusions

We have studied disordered QFTs where an ordinary symmetry of a pure QFT is explicitly

broken by a random coupling, but the symmetry re-emerges after quenched average. We focused

our attention to understand if and under what conditions we can have operators, topological

on average, in analogy to ordinary QFTs [9]. We considered quenched disorder theories, where

the pure theory is deformed with a space dependent coupling, and ensemble average theories,

where the latter is kept constant.

In the quenched disordered case, we can write Ward identities for averages of products of

correlators and construct the symmetry operator implementing the finite group action, topo-

logical after average. Such disordered symmetries can be coupled to external background, can

be gauged, and can have ’t Hooft anomalies (i.e. can exclude a trivially gapped phase at long

distances), precisely like ordinary symmetries. Using the replica trick, we also discussed gen-

uinely emergent symmetries in the IR after average, namely symmetries which are not present

in the UV theory even before adding the disorder coupling. We pointed out that whenever a

symmetry G is emergent in the IR, exotic selection rules can explain the origin of LogCFTs.

In ensemble average theories the analogy to pure QFTs is more loose. We still have selection

rules for averages of correlators and we can construct operators implementing the finite group

action, but the charge operator is not purely codimension-1 and cannot be defined if Σ(d−1) is

homologically non-trivial. When the space is disconnected, the selection rules apply only glob-

ally and in each connected component charge violation can occur. Such averaged symmetries

cannot be coupled to background gauge fields in ordinary ways. The difficulty (impossibility)

of gauging emergent boundary symmetries clarify why such symmetries cannot be identified

with bulk gauge symmetries when the average theory admits a gravitational bulk dual.

It would be interesting to analyze spontaneous breaking of disordered symmetries in more

detail. There are essentially two ways in which the disordered symmetry could spontaneously

31In particular, our results do not straightforwardly apply when the average is over OPE coefficients, as e.g.

discussed in [292,293].
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break: i) the symmetry is spontaneously broken in the pure theory before adding the random

interaction, ii) the symmetry is unbroken in the pure theory and the random interaction induces

a spontaneous breaking of the disordered symmetry. Let us consider the case of continuous

symmetries. From the replica theory point of view, i) and ii) are distinguished by which

components of the replica currents Jµa are subject to spontaneous breaking, all components

in case i) and only the singlet
∑

a J
µ
a in case ii). Assuming the existence of the analytic

continuation in n and of a smooth n → 0 limit, we expect for d > 2 gapless excitations

(Goldstone boosons) in the replica theory, giving rise to power-like correlators. From the

disordered theory point of view, in case i) there is a Goldstone mode in the pure theory which

acquires a mass in each specific realization of the ensemble, turning into a pseudo Goldstone

boson. In contrast, no Goldstone boson is present in the pure theory in the more exotic case ii).

In both cases it would be nice to identify which correlators (if any) exhibit power like-behavior

on average as a result of the spontaneous breaking of the disordered theory.

It would be also interesting to generalize our findings to quantum disorder, namely to

Lorentzian theories where the random coupling depends only on space. The natural extension of

our analysis beyond 0-form symmetries does not seem straightforward. Higher-form symmetries

can be broken only by non-local deformations, which should be also taken random. It is possibly

easier to consider a set-up in d = 2 where non-invertible symmetries can be obtained by 0-form

symmetries only, and see if and in what sense we can have a non-invertible symmetry re-

emerging after average.

An important remark about the ensemble average case is that, in comparing our findings

with the existing literature on the factorization problem in AdS/CFT, one should keep in mind

that we only considered averaging over couplings. There are other setups, like averaging over

OPE coefficients [292, 293] or over different modular invariants [34], where global symmetries

could behave differently from our findings. In particular [34] discusses the gauging of a 1-form

global symmetry in certain gravitational toy models, but this is not in contrast with our result

about the impossibility of gauging average 0-form symmetries. It is a very interesting problem

for the future to discuss the status of global symmetries in these other contexts, possibly finding

a unified picture.
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Chapter 4

Some applications of the holographic

approach to symmetries

In this chapter we present two applications of the SymTFT. In the first half of the chapter we

study ’t Hooft anomalies of duality defects, defined as obstructions to gauge the symmetries.

In the second half instead we employ the SymTFT as a bulk theory for a holographic duality,

arguing that the boundary theories are effective theories describing the spontaneous breaking

of a symmetry.

4.1 Anomalies of self-duality symmetries: fractionaliza-

tion and gauging

An important step towards the applications of generalized symmetries is the development of

a concrete characterization of ’t Hooft anomalies and of their dynamical consequences for RG

flows. While for invertible (higher) symmetries a complete classification of ’t Hooft anomalies

is given by the appropriate cobordism group [318, 329–331], for non-invertible symmetries the

correct general framework remains unclear. A standard approach is to define anomalies as

obstructions to the gauging of a symmetry C. Gauging (or condensation) in higher fusion

categories is however a subtle procedure, as it requires the specification of a certain type of

consistent algebra objects A ∈ C. While the mathematical theory governing such objects

has been developed for 1-categories [17, 219] and recently for 2-categories [43], a complete

characterization of the required consistency conditions is to this day still missing. A more

modern perspective would be to characterize ’t Hooft anomalies as obstructions to the existence

of a trivially-gapped C-symmetric phase. As pointed out in [95], for non-invertible symmetries

this latter definition of ’t Hooft anomalies implies also that there is an obstruction to gauging,

while the converse is generically not true. This observation has been recently reformulated as

the existence of certain weakly (respectively, strongly) symmetric boundary conditions in [95].1

We focus on self-duality symmetries, which appear when a d = 2n dimensional QFT T is

1The two notions coincide for invertible symmetries and the obstruction to define them is equivalent to an

’t Hooft anomaly [332,333]. In the non-invertible case the two notions bifurcate.
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mapped back to itself after gauging a discrete (n− 1)-form symmetry A [57, 63,65,66]:

T /A ∼= T , (4.1.1)

possibly with a choice of discrete torsion which we leave implicit. Above ∼= means equivalence

up to a change of duality frame. The corresponding symmetry category C is best described as

a graded category, graded by the group G of self-dualities:

C =
⊕
g∈G

Cg , C0 = nVecA , Cg = {Ng} . (4.1.2)

Here nVecA is the category describing an anomaly-free (n − 1)-form symmetry A, and in the

last equality we meant that the connected component2 π0(Cg) has a single simple object Ng

for g ̸= 0. The fusion rules of the Ng’s respect the G-grading up to condensates CA of the

symmetry A [13]. In particular

Ng ×N g = CA . (4.1.3)

We will consider the cases of G = Z2 in d = 2 and G = Z4, Z3 in d = 4. Our analysis

however can in principle be extended to more general cases.3 Examples of theories with duality

symmetries are the Ising CFT and the c = 1 boson in 2d [12, 31], and N = 4 SYM and pure

Maxwell theory (for specific values of the complexified gauge coupling) in 4d [57].4

We will define an ’t Hooft anomaly for a non-invertible duality defect as the obstruction

to constructing a condensable algebra A containing all the Ng’s. It is believed (although not

proven) that compatibility with a trivially-gapped phase is equivalent to the existence of such

an algebra which furthermore contains the full category C. In two dimensions for Tambara-

Yamagami (TY) categories [250], this viewpoint has been examined in [29] by exploiting the

concept of fiber functor. In this case, condensable algebras are of the form A = B⊕ nν N with

B ⊂ A a subgroup and nν an integer. The symmetry admits a trivially-gapped realization only

if B = A. If instead B ⊊ A, the symmetry only admits a duality-invariant TQFT. We will

regard N to be anomaly-free in both cases.

Our aim is to give a unified treatment of anomalies for duality symmetries which can

be generalized to higher dimensions. A fundamental tool to this purpose is the Symmetry

TFT Z(C) [118].5 Given a fusion (d − 1)-category C, Z(C) is a (d + 1)-dimensional TQFT

which encodes the full categorical data, and in particular the anomalies, of the symmetry C.
Topological manipulations (generalized gaugings) in the QFT are belived to be in one-to-one

2Given a (higher) category C, π0(C) denotes the set of simple objects of C modded out by the equivalence re-

lation x ∼ y if Hom(x, y) is nontrivial [334]. Physically, the modding procedure corresponds to the condensation

of symmetries localized on the defects.
3In d = 4, theories of class S [335] can have self-duality defects with non-Abelian G [8,67]. Moreover, it has

been recently pointed out that there exist duality defects in 6d SCFTs [336].
4See also [80] for an extension to theories with lower amounts of SUSY, and [45] for the mathematical

treatment of self-duality categories in 3d.
5See e.g. [7,8,53,83,133,195] and references therein for recent applications. Notice that in the mathematics

literature the notation Z(C) is used to denote the Drinfeld center [183] of a Fusion category C, while here it

denotes the Symmetry TFT for the symmetry C. While the two concepts are equivalent in 2d, one must be

careful when extending the correspondence to higher categories. See for example [334].
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correspondence with topological boundary conditions of Z(C). Hence an ’t Hooft anomaly

corresponds to the absence of certain “magnetic” topological boundary conditions in Z(C)
which would trivialize N on the boundary. A similar perspective has been considered recently

in [99,195].

The Symmetry TFT for duality defects has been identified as a (2n + 1)-dimensional

Dijkgraaf-Witten (DW) theory, further gauged by a 0-form symmetry [7,133]. In Section 4.1.1

we use this fact to lay out a general approach to identify obstructions to the existence of those

magnetic boundary conditions. The resulting obstruction theory consist of two conditions:

1. The first one is the existence of a G-invariant Lagrangian algebra LD in the ungauged

DW theory. In the language of [133], the duality symmetry is “non-intrinsic”. Hence

intrinsically non-invertible symmetries are necessarily anomalous.

2. When that condition is satisfied, the second obstruction corresponds to the cancellation of

a pure ’t Hooft anomaly for an invertible symmetry. Given a G-invariant Lagrangian alge-

bra LD, the group G generally acts on it through a nontrivial automorphism. This action

is not unique and corresponds to a choice of equivariantization η̃ of LD [337]. We propose

and check in several examples that such a choice encodes symmetry fractionalization data

for the boundary symmetry, which can sometimes be used to cancel the cubic ’t Hooft

anomaly (see [338] for other examples of this phenomenon). This allows to overcome the

difficulty of generalizing the equivariantization procedure to higher categories.

In Section 4.1.2 we examine, in two dimensions, duality defects that are described by

Tambara-Yamagami categories TY(A)γ,ϵ. The full classification of their anomalies is known

in both the mathematical [251, 339, 340] and physical literature [29]. We show how our pre-

scription precisely reproduces the known results. We then generalize this strategy to analyze

the anomalies of non-invertible duality defects in 4d [57,63,66] in Section 4.1.3. Notice that even

though a complete definition of “gauging” for higher categories is still absent, the obstructions

are nevertheless accessible from the Symmetry TFT. These defects are present, for instance,

in N = 4 SYM and the analysis of their anomalies is a crucial first step in understanding the

dynamics of duality-preserving RG flows [74]. Gauging these symmetries in N = 4 SYM also

leads to certain N = 3 SCFTs [341]. Our findings shed light on their consistency. In Section

4.1.4 we consider the compactification of the 4d/5d setup on a torus, obtaining a 2d/3d system

with a Tambara-Yamagami symmetry associated with a finite group Ã = A × A, where A is

the 4d 1-form symmetry group. We show how in this case the 4d obstruction theory correctly

descends to the 2d one. We conclude in Section 4.1.5 with several applications of our results and

further directions. Technical material and general proofs are gathered in various appendices.

Notation We use additive notation for the Abelian groups A, B, etc. We indicate the Pon-

tryagin dual to A as A∨ = Hom
(
A, U(1)

)
. For simplicity, we indicate group-cohomology groups

as Hp
(
A, U(1)

)
as opposed to the lengthier (though equivalent) notation Hp

(
BA, U(1)

)
for the

cohomology groups of the classifying space BA of A. For group-cohomology classes, and more

generally for cochains, we use multiplicative notation with values in U(1), with the exception

of integrals, examples or where otherwise stated where we use additive notation with values in
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R/Z. In order to limit confusion, we sometimes use the notation 0 and 1 for the trivial element

and the generator of Zn, respectively.

4.1.1 A proposal from the Symmetry TFT

A promising approach to analyze the structure and the anomalies of categorical symmetries is

the Symmetry TFT [117, 118]. Given a symmetry category C in d dimensions, the associated

Symmetry TFT is a (d+ 1)-dimensional TQFT Z(C) admitting a gapped boundary condition

LC, which we call electric, that gives rise to the symmetry C on the boundary. Formally this

means that the category ModLC

(
Z(C)

)
of LC-modules, which describes topological operators

confined to the gapped boundary, coincides with C: ModLC

(
Z(C)

)
= C . General gapped

boundary conditions are in one-to-one correspondence with Lagrangian algebra objects L of

the bulk category (see e.g. [342]). This correspondence is realized by noticing that Z(C) is

trivialized (i.e., it becomes an invertible TQFT) after condensing L, and its unique state is

the gapped boundary condition. Besides, topological operators charged under L are confined

to the boundary where they form the category ModL

(
Z(C)

)
. The correspondence allows us

to talk about maximal gaugings of the bulk theory and of gapped boundaries interchangeably,

and to use the same symbol L for them.

This setup can be coupled to a dynamical theory T via a “sandwiching” procedure:

T ≃ Z(C) C
LC

SPT (4.1.4)

where the (d+1)-dimensional manifold is a slab with two boundaries, one supporting a dynam-

ical theory (with free boundary conditions) and one on which we impose the gapped boundary

condition LC. Different choices of L give rise to symmetry categories belonging to the same

Morita equivalence class M(C) of the symmetry C. Physically, elements in the same class are

related by (generalized) discrete gauging operations. The reason why the Symmetry TFT is a

useful tool for detecting anomalies is that, at least in a large class of examples, the correspon-

dence between gapped boundary conditions and elements of the Morita equivalence class M(C)
is one-to-one:6 all the allowed topological manipulations can be realized by condensing the

appropriate Lagrangian algebra in the bulk. In QFT language we define an ’t Hooft anomaly

as an obstruction to gauging the symmetry C. In the Symmetry TFT language this translates

to the lack of an associated boundary condition NC, which would implement the topological

manipulation of “gauging C”. Notice that, in the absence of anomalies, one can expect multiple

boundary conditions NC as there might be different gaugings that involve C.
In this work we focus on self-duality defects [29,57,63,65,66], for which Z(C) is known [7,133].

The Symmetry TFT description of C is closely related to the one of nVec(A) (the category

6This is certainly true for maximally-degenerate categories, such as those considered in this work. Physically

this means that there is no charged object which is also topological. In these cases the Symmetry TFT is

constructed by a state-sum model and is a generalization of the Turaev-Viro theory [120] (see also [126–128,130]

for concrete generalizations in both condensed matter physics and in mathematics).
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describing an anomaly-free (n − 1)-form symmetry A). The Symmetry TFT for nVec(A) is a
generalized untwisted Dijkgraaf-Witten theory,

Z
(
nVec(A)

)
= DW(A) , (4.1.5)

and nVec(A) is associated to the canonical (or electric) Dirichlet boundary condition in DW(A).
Concretely, for d = 2n dimensional boundaries, DW(A) is a (d + 1)-dimensional pure n-form

gauge theory for A with action

S = 2πi

∫
Xd+1

A ∪ dB , A ∈ Cn(Xd+1,A) , B ∈ Cn(Xd+1,A∨) . (4.1.6)

This theory has an n-form symmetry A × A∨ generated by the Wilson surface operators of

B and A, respectively. The canonical Dirichlet boundary condition simply sets to zero the

pull-back of A to the boundary. The duality symmetry G is a subgroup of the full 0-form

symmetry of the Dijkgraaf-Witten theory,7 and it acts by exchanging electric and magnetic

operators according to an isomorphism

ϕ : A → A∨ . (4.1.7)

In this work we will focus on the cases that G is isomorphic to Z2 for n = 1, and to either Z3

or Z4 for n = 2, corresponding to duality or triality symmetries. Therefore in the following we

assume that G is Abelian (although a similar discussion could be made for non-Abelian G).

Generically G also acts on boundary conditions through its action on the associated Lagrangian

algebras L. Gauging the symmetry G , possibly with discrete torsion ϵ, gives the sought-after

Symmetry TFT Z(C):

DW(A) Z(C)

Gϵ

Rep(G)

(4.1.8)

In these diagrams dashed lines represent gaugings in the bulk. The upper arrow indicates

gauging with discrete torsion, while the lower one the “inverse” operation of gauging8 the dual

symmetry Rep(G) (for G Abelian, Rep(G) ∼= G∨). We will argue that the choice of ϵ acts as a

kind of pure G anomaly for the duality defects. From the bulk perspective, the duality defects

Ng are related to the liberated twist defects Σg of the 0-form symmetry G in DW(A) [7, 133]
which are the objects carrying charge under the quantum symmetry Rep(G).

The gapped boundary conditions LDW for DW(A) are classified by the maximal (La-

grangian) sublattices LDW of mutually local charges. Condensing such objects leads in the

bulk to a trivial theory (i.e., an invertible TQFT, or SPT phase) whose unique state is the

7Depending on A, in general there are other 0-form symmetries in the theory that map A × A∨ → A × A∨

(e.g., charge conjugation that acts separately on A and A∨). Any subgroup G of the full symmetry could be

considered. In this work, for simplicity, we focus on symmetries G that descend to “dualities” (and are thus

controlled by the map (4.1.7)) and are generically present for any A. However, the discussion that follows is

quite general.
8Precisely, the gauging of Rep(G) should be accompanied by stacking with the inverse SPT ϵ−1, that we

leave implicit.
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gapped boundary condition [222,342]. From (4.1.8), we can always induce a gapped boundary

condition L for Z(C) from a gapped boundary LDW of DW(A) by first condensing Rep(G) and

then LDW:

DW(A) Z(C)

nVec

LDW

Rep(G)

L
(4.1.9)

Here with nVec we denote the trivial (d + 1)-dimensional theory obtained after condensing

LDW in DW(A). When LDW is the canonical Dirichelet boundary condition for DW(A), this
two-step gauging defines a canonical Dirichlet boundary condition LC for the Symmetry TFT

Z(C). Since the liberated twist defects Σg in Z(C) are charged under the Rep(G) symmetry,

they are confined to the boundary LC, which thus describes a system with a non-invertible

self-duality symmetry. This construction was implicitly used in [7].

Gauging the non-invertible symmetryNg on the boundary, on the contrary, must correspond

to a gapped boundary on which the twist defects Σg are trivialized. Thus, in order to detect

the absence of a self-duality anomaly, we must construct a different set of boundary conditions

NC for Z(C) whose symmetry ModNC

(
Z(C)

)
is trivially charged under Rep(G). We will refer

to these as Neumann boundary conditions, since the G gauge field remains dynamical on the

boundary.

The crucial insight comes from considering — when it exists — a G-invariant Lagrangian

algebra LD in DW(A). This ensures that gauging LD leads, in the bulk, to an SPT phase for G,

rather than to a completely trivial theory as in (4.1.9). The SPT phase is completely specified

by an element Y living in the appropriate cobordism group.9 It turns out that the datum Y

cannot be fixed by the choice of LD alone, but it requires a further piece of data, which we

dub η̃, describing how the symmetry G acts on the algebra morphisms of LD. This is called an

equivariantization of LD [183, 337]. We denote the equivariantized algebra by a pair (LD, η̃).

The SPT phase Y also contains a nonempty G-twisted sector with a unique simple object Mg

for each g ∈ G. In the 3d setting, these can be formally described as local modules twisted by

a G-action, see Appendix B.1. Since LD is G-invariant, the operation of gauging G commutes

with the condensation of (LD, η̃), and composing the two operations we end up with a bulk

Dijkgraaf-Witten theory for G with twist Yϵ:

DW(A) Z(C)

SPT(G)Y DW(G)Yϵ

(LD, η̃)
Gϵ

Rep(G)

Gϵ

(4.1.10)

We stress that while DW(A) is an n-form gauge theory, DW(G)Yϵ is always a standard (1-

form) gauge theory. Its magnetic operators are the former twist defects Mg. In 3d their spin is

9For d = 2 this is just a bosonic SPT ∈ H3
(
G,U(1)

)
. For d = 4 instead we will work on spin manifolds and

the correct group to consider is either Tor
(
Ω

spinG
5 (pt)

)
or Tor

(
Ωspin

5 (BG)
)
depending on whether (−1)F sits

inside the duality group or not, respectively. The same observations apply to the discrete torsion ϵ.
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determined by the total twist Yϵ.10

The theory DW(G)Y ϵ always admits a canonical (electric) Dirichlet boundary condition,

corresponding to gauging Rep(G), that gives rise to an invertible symmetry G on the boundary

(such occurrences have been dubbed non-intrinsic in [133]). This also coincides with one of

the algebras L we have previously introduced in (4.1.9), in the special case that LDW = LD is

G-invariant.

However, if Y ϵ = 1, then also the magnetic defects Mg are condensable. This allows us to

define another boundary condition, the Neumann boundary condition NC we were looking for:

DW(A) Z(C)

SPT(G)Y DW(G)Yϵ=1

nVec

(LD, η̃)

Rep(G)

NC
Gϵ

NDW

(4.1.11)

Thus, the existence of a duality-invariant Lagrangian algebra (LD, η̃) in DW(A) and the trivi-

ality of Y ϵ are sufficient conditions for the self-duality symmetry C to be anomaly-free.

Let us argue that they are also necessary.11 Suppose that there exists an algebra NC of Z(C)
containing the liberated twist defects Σg, i.e., such that Hom(NC,Σg) ̸= ∅. It follows that NC

has a natural grading in terms of the charge of its elements under Rep(G):

NC =
⊕

g ∈G
Ng . (4.1.12)

Algebra objects come equipped with a product (or morphism) ×NC (see Appendix B.1, where it

is called m) mapping Ng×NC N
h → Ngh and respecting the grading. The consistency conditions

for NC to be a (gaugeable) algebra object are also graded over G, and in particular imply that

N0 must itself be an algebra, although not a maximal (i.e., Lagrangian) one. They also imply

that Ng ̸=0 are (local) modules over N0, i.e., they survive the condensation of N0. Physically

this corresponds to the fact that one can gauge NC sequentially. One first condenses just N0.

This preserves the Rep(G) symmetry, since N0 has trivial grading, and besides the Ng’s become

invertible G defects. Since the Ng’s were part of the algebra NC, the symmetry Rep(G) after

the first condensation must be anomaly free.

Assuming that Ng with g ∈ G and Rep(G) are the only defects surviving the condensation

of N0, it follows that the resulting theory is the Dijkgraaf-Witten theory for G with trivial

twist, DW(G). In other words, we can identify the vertical red arrow in (4.1.10) on the right

with the condensation of N0, as in (4.1.13). The assumption can be rigorously proven in 3d,12

whilst we do not know how to do that in 5d, which is why our argument remains heuristic.

Now, further gauging the Rep(G) symmetry (and stacking with a discrete torsion ϵ−1) leads

10In the 5d case, instead, the twist determines a triple linking between magnetic defects [195].
11See [86] for another argument, in the case A = Zn, in favour of the necessity of a duality-invariant algebra.
12The assumption and its consequence can be proven for 3d MTCs. The fact that Ng are invertible as

bimodules and the fact that NC is Lagrangian imply that dim(Ng) = dim(N0) = |A|. After condensing N0, the

resulting MTC has dimension D = |G|, which is saturated by the |G| invertible lines Ng times the |G| elements

of Rep(G). The fact that the Ng’s is charged under Rep(G) gives the canonical braiding of the DW theory.
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us to an SPT phase Y = ϵ−1 for G. Chasing the diagram below shows that we can define a

gauging of DW(A) by sequentially gauging Gϵ -N0 - Rep(G):

DW(A) Z(C)

SPT(G)ϵ−1 DW(G)

(LD, η̃)

Gϵ

N0

Rep(G)

(4.1.13)

Since it produces an invertible TQFT with an action of G, the so-defined gauging must cor-

respond to (i.e., it must induce) a duality-invariant Lagrangian algebra (LD, η̃) in DW(A).
Intuitively, one can think of N0 as the image of LD under the gauging of G. We have thus

argued that there necessarily is a duality-invariant Lagrangian algebra in DW(A).
As we stressed, our reasoning is mathematically rigorous only in the case of 3d TFTs, where

the concepts above can be explicitly implemented. We however expect the same ideas to apply

also to higher categorical settings, once a complete definition of the higher Symmetry TFT is

given. We arrive at the following proposal for the (lack of) anomalies of duality defects:

First obstruction. There must exist, in DW(A), a G-invariant boundary condition (LD, η̃).

This allows to make the symmetry G invertible. In the language of [133], the self-duality

symmetry is non-intrinsic. We further explain in Appendix B.6 that this condition is equivalent

to the existence of a duality-invariant TQFT [31,78].13

Second obstruction. The invertible self-duality symmetry is anomaly-free. This is equiva-

lent to the vanishing of the total Dijkgraaf-Witten twist, which depends on the equivarianti-

zation data η̃. In practice, the invertible self-duality symmetry suffers from a mixed anomaly

with the symmetry S on the non-intrinsic boundary which can be computed explicitly. We

conjecture (and show in examples) that the equivariantization data encodes how the 0-form

symmetry fractionalizes with the (n − 1)-form symmetry S. Following [338], this can be used

to shift the value of the anomaly ϵ, i.e., to change the SPT phase Y in the bulk.

4.1.2 Anomalies of duality symmetries in 1+1 dimensions

This section is devoted to the discussion of anomalies in two-dimensional QFTs whose symme-

tries are described by Tambara-Yamagami (TY) categories [250]. We indicate such categories

as TY(A)γ,ϵ and we review their definition in Section 4.1.2. The results are already known

both in the physics and mathematics literature [29, 340] but here we present their derivation

from the point of view of the Symmetry TFT which can be generalized to higher dimensions.

Physically TY(A)γ,ϵ is the symmetry of a 2d theory which is self-dual under the gauging of

an Abelian symmetry A. Examples, especially in the realm of 2d CFTs, are ubiquitous, the

most famous one being the realization of Kramers-Wannier duality in the Ising CFT [12, 22]

13A similar analysis connecting the two concepts when A is cyclic has recently appeared in [86]. Our results

coincide with theirs when they overlap.
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for A = Z2. Many other examples come from either considering free theories14 as described for

instance in [31], or other minimal models which can flow to the Ising CFT, such as the c = 7/10

tricritical Ising CFT.

As a concrete example of anomalous versus non-anomalous theories, the TY(Z2)γ,1 symme-

try of the Ising CFT is anomalous on non-spin manifolds,15 while the diagonal TY(Z2 ×Z2)γ,1

symmetry of (Ising)2 is anomaly-free. The question of which TY categories are anomalous is not

a purely academic one, as it can imply strong constraints on duality-preserving RG flows [12].

For instance, the aforementioned tricritical Ising model has an anomalous non-invertible sym-

metry as well as a duality-preserving relevant deformation. As a direct consequence of the

anomaly, the resulting RG flows cannot end in a trivially gapped theory. Depending on the

sign of the deformation, the theory either flows to the gapless Ising model or to a gapped theory

with three degenerate vacua.

Our Symmetry TFT analysis gives a simple characterization of the known obstruction theory

in two steps, as already pointed out in Section 4.1.1. The first obstruction is equivalent to the

absence of a duality-invariant Lagrangian algebra LD, which otherwise gives rise to a global

variant with invertible symmetry S ⋊ρ Z2. The second obstruction is instead the standard

’t Hooft anomaly for Z2 subgroups of S⋊ρZ2 in that global variant. When there exists such an

anomaly-free Z2 subgroup, it can be gauged. The combined sequential gauging of LD and of

Z2 corresponds, in the original theory, to a gauging that involves the non-invertible symmetry

defect.

Algebras in TY categories and anomalies

We start by reviewing the basic properties of Tambara-Yamagami categories TY(A)γ,ϵ [250].
We assume that the reader has some familiarity with the theory of Fusion Categories, for which

excellent reviews are [11,12,17,28,183,209]. Given an Abelian group A, the Tambara-Yamagami

symmetry is a Z2-graded fusion category

C = C0 ⊕ C1 , (4.1.14)

where C0 = VecA (the category of A-graded vector spaces) describes an Abelian 0-form symme-

try A with trivial anomaly,16 while C1 has a single simple object N . The fusion rules consistent

with the grading are uniquely fixed and read:

a× b = (a+ b) , a×N = N × a = N , N ×N =
⊕

a∈A
a . (4.1.15)

Here a, b ∈ A are the simple objects in C0, and + in the first equation is the binary group

operation in A. The category is uniquely determined by a triplet (A, γ, ϵ) where γ : A ×
A → U(1) is a non-degenerate symmetric bicharacter, whilst [ϵ] ∈ H3

(
Z2, U(1)

) ∼= Z2 is the

Frobenius-Schur indicator of the self-dual defect N . This data enters in the associator, or

14Examples include the c = 1 boson at squared radius R2 = 2k, its Z2 orbifold, or multiple bosons at special

points on the Narain moduli space.
15On spin manifolds it can be fermionized to the (−1)FL symmetry of the Majorana CFT.
16Such an anomaly would be represented by a trivial class [0] ∈ H3

(
A, U(1)

)
.
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F -symbol, of the TY category:[
F a,N , b
N

]
N ,N

=
[
FN , a,N
b

]
N ,N

= γ(a, b) ,
[
FN ,N ,N
N

]
a, b

=
ϵ√
|A|

γ(a, b)−1 , (4.1.16)

where ϵ = ±1, while all other non-vanishing associators are equal to 1. The bicharacter γ has a

nice physical interpretation (see, e.g., [29]). Since a theory T with TY symmetry is mapped to

itself under the gauging of A, symbolically T /A ∼= T , we can consider constructing the defect

N as a topological domain wall between T and T /A:

T /AT

N

(4.1.17)

On the two sides of the wall the 0-form symmetries are A and A∨, respectively. To identify

them we must specify a group isomorphism ϕ : A → A∨ such that the associated bicharacter γ

defined as

γ(a1, a2) = ϕ(a1) a2 ∈ U(1) (4.1.18)

is symmetric.17 We can then consider lines a ∈ A and β ∈ A∨ ending on the defect N from

the two sides. The endpoints of these objects are mutually nonlocal, and pick up a canonical

phase β(a) as they pass through each other. Indeed, from the point of view of the left side, a is

a topological symmetry defect for the symmetry A and the endpoint of β is a charged operator

(while vice versa from the point of view of the right side). Using the isomorphism ϕ this is

converted into the symmetric bicharacter γ:

a ϕ(b) = γ(a, b) a ϕ(b)
(4.1.19)

We now review the classification of bosonic gaugeable symmetries A in TY(A)γ,ϵ, which are

described by symmetric Frobenius algebras in C [17]. These are defined by an object A ∈ C
together with a choice of three-valent junction m : A×A → A which is strictly associative:

A

A

A A

m

m

=

A

A

AA

m

m

(4.1.20)

This diagram encodes the cancellation of ’t Hooft anomalies for the symmetryA. We give a brief

review of the relevant concepts in Appendix B.1. The classification problem has been solved in

the mathematics literature in [340] and given a physical interpretation from the viewpoint of

TQFTs in [29].

17The requirement that γ be symmetric is equivalent to the canonical pairing between A∨ and A being

invariant under ϕ: α(a) = ϕ(a)
(
ϕ−1(α)

)
where a and α are elements of A and A∨, respectively. Physically this

translates into the fact that the electric and magnetic frames are equivalent due to self-duality.
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Such algebras for the TY category can be divided into two types depending on whether A
also contains the element N or not. If not, the gaugeable algebras correspond to gauging a

subgroup B of A with discrete torsion [ν] ∈ H2
(
B, U(1)

)
. From the latter one constructs its

commutator18

χν(b1, b2) =
ν(b1, b2)

ν(b2, b1)
. (4.1.21)

This defines a map [ν] → χν from H2
(
B, U(1)

)
to the group of alternating bicharacters which

turns out to be an isomorphism [251]. The Frobenius algebra corresponding to the pair
(
B, [ν]

)
is:

A ≡ AB, ν =
⊕

b∈B
b , mb+b′

b, b′ = ν(b, b′) . (4.1.22)

On the other hand, when including also N the most general algebra reads:19

A ≡ A0 ⊕A1 = AB, ν ⊕ nν N , nν ≥ 1 . (4.1.23)

The choices of B, ν and nν for which such an object can be consistently defined on orientable

2-manifolds are severely restricted by the following two obstructions [29, 251,340].

First obstruction. We introduce the subgroup N(B) ⊂ A∨ of characters annihilating B:

N(B) =
{
β ∈ A∨

∣∣∣ β(b) = 1 , ∀b ∈ B
}
. (4.1.24)

This group is canonically isomorphic to (A/B)∨, while the quotient A∨/N(B) is canonically

isomorphic to B∨. We also define the radical Rad(ν) ⊂ B of the class [ν]:

Rad(ν) =
{
b ∈ B

∣∣∣ χν(b, b′) = 1 , ∀b′ ∈ B
}
. (4.1.25)

The alternating bicharacter χν is non-degenerate on B/Rad(ν).
For the first obstruction to vanish these subgroups must be related as

ϕ
(
Rad(ν)

)
= N(B) . (4.1.26)

Besides, there must exist an involutive automorphism

σ : B/Rad(ν) → B/Rad(ν) with σ2 = 1 (4.1.27)

such that the symmetric and alternating bicharacters, when restricted to B and then projected

to B/Rad(ν), satisfy

γ
(
σ(a), b

)
= χν(a, b) for a, b ∈ B/Rad(ν) . (4.1.28)

18Notice that χν is well defined (it is independent from the choice of representative ν), alternating (meaning

that χν(a, a) = 1) and antisymmetric (meaning that χν(a, b) = χν(b, a)
−1). One can prove that χν : B × B →

U(1) is bilinear (in the multiplicative sense), see for instance [343]. Then alternating implies antisymmetric,

while the opposite is false and in fact dropping the alternating property one can describe fermionic Lagrangian

algebras, see also after (4.1.58).
19Notice that, if we restrict to spin manifolds, there are more candidate algebras because it is possible to gauge

discrete symmetries with a nontrivial Arf twist (i.e., a discrete torsion constructed out of the spin connection,

see e.g. [116,344]). This difference will become apparent in the Symmetry TFT.
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Note that the projections from B to B/Rad(ν) are well defined. One can prove, using the equa-

tion above, that ν(a, b) and ν
(
σ(b), σ(a)

)
, when projected to B/Rad(ν), define equivalent coho-

mology classes inH2
(
B/Rad(ν), U(1)

)
.20 Thus there exists a 1-cochain η̃ ∈ H1

(
B/Rad(ν), U(1)

)
such that21

ν(a, b)

ν
(
σ(b), σ(a)

) = dη̃(a, b) , η̃(a) η̃
(
σ(a)

)
= 1 . (4.1.30)

From (4.1.24)–(4.1.26) it easily follows that

|A|n2
ν = |B|2 , (4.1.31)

where22 n2
ν =

∣∣B/Rad(ν)∣∣. The positive integer nν appearing here turns out to be the same as

the one in (4.1.23). Notice in particular that a necessary condition to satisfy the first obstruction

is that |A| is a perfect square. Since, as it follows from (4.1.15), the quantum dimension of N
is |A| 12 , this reproduces the known fact that gauging is not possible in presence of non-integer

quantum dimensions [12].

The rough idea that leads to these formulas is the following. Decomposing the defining

equation of a Frobenius algebra into its graded components, one finds that A1 must be an

invertible A0-bimodule: A1 ×A0 A1 = 1A0 , where ×A0 is the tensor product in the category

of A0-bimodules [17, 20, 183]. Physically this means that we can gauge A0, and then A1 will

become an invertible Z2 global symmetry of the gauged theory. Eqns. (4.1.26)–(4.1.28) are

necessary in order to endow A1 with a bimodule structure, and in particular (4.1.30) ensures

that the bimodule is invertible. This furthermore implies that dim(A1) = dim(A0) which

reproduces (4.1.31) in terms of the integer nν in (4.1.23).

A beautiful alternative perspective on this condition was given in [29]. Suppose we want to

construct a TQFT in which the duality symmetry generated by N is preserved. As the TQFT

must have symmetry A, it can be labelled by a doublet (B, ν) where B denotes the preserved

(as opposed to spontaneously broken) subgroup while ν is an SPT phase for B. The partition

20To prove it, one checks that the 2-cochains ν(a, b) and ν
(
σ(b), σ(a)

)
produce the same bicharacter χν in

(4.1.21) and so, by isomorphism, must be different representatives of the same cohomology class.
21It is always possible to choose η̃ such that it satisfies both relations. Consider the case B = A and

define the two subgroups Aσ = {a ∈ A | a = σ(a)} as well as Aσ = {a + σ(a) | a ∈ A}, clearly Aσ ⊂ Aσ ⊂
A. One checks (see [251]) that γ can be consistently reduced to a bicharacter γ̄ on the quotient Aσ/Aσ:

γ
(
a + b + σ(b), a′ + b′ + σ(b′)

)
= γ(a, a′) for any a, a′ ∈ Aσ. Let µ−1 be a quadratic refinement of γ̄ (see

Sec. 4.1.2). Now, take the first equation and restrict it to Aσ:

a, b ∈ Aσ : dη̃(a, b) =
ν(a, b)

ν(b, a)
= χν(a, b) = γ(a, b) = γ̄

(
π(a), π(b)

)
= dµ

(
π(a), π(b)

)
(4.1.29)

using (4.1.28), and π is the projection Aσ π−→ Aσ/Aσ. It follows that η̃
∣∣
Aσ = ξ ·π∗µ for some ξ ∈ H1

(
Aσ, U(1)

) ∼=
(Aσ)∨. Since the map A∨ → (Aσ)∨ given by restriction is surjective, it is always possible to find another

solution η̃′ = ζ · η̃ where ζ ∈ A∨ is a character such that ζ
∣∣
Aσ = ξ−1 and thus η̃′

∣∣
Aσ = π∗µ. This implies

η̃′
∣∣
Aσ

= η̃′
(
a + σ(a)

)
= 1 for all a ∈ A. Using dη̃

(
a, σ(a)

)
= 1 from the first equation in (4.1.30), the second

equation follows. The general case for B ⊂ A is a straightforward generalization.
22Since χν is a non-degenerate alternating bicharacter on B/Rad(ν) with values in U(1), there exists an

isotropic subgroup G such that B/Rad(ν) = G × G∨ and in particular
∣∣B/Rad(ν)∣∣ = |G|2 = n2ν is a perfect

square, where nν = |G|. See, e.g., Lemma 5.2 in [345].
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function is

Z[B] =

exp
(
2πi
∫
B∗ν

)
if π(B) = 0 ,

0 otherwise .
(4.1.32)

Here B is a background field coupled to A, whilst π is the projection map of the short exact

sequence 1 → B i−→ A π−→ A/B → 1. The class B∗ν ∈ H2
(
X2, U(1)

)
(using now additive

notation) is integrated over the spacetime 2-manifoldX2.
23 Imposing that the duality symmetry

be unbroken means that

N · Z[B] ≡ 1√
|H1(X,A)|

∑
a∈H1(X,A)

exp

(
2πi

∫
X

a ∪ ϕ(B)

)
Z[a]

!
= Z[B] , (4.1.33)

where we used the symmetric bicharacter to identify A∨ with A. It can be checked that (4.1.33)

reproduces exactly the first obstruction condition. We report the detailed manipulation and

its extension to the four-dimensional case in Appendix B.6.

Second obstruction. Having discussed the structure of A1, we can simply gauge A sequen-

tially by first gauging A0 and then A1. After the first step, A0 becomes the identity defect

while A1 becomes an invertible Z2 symmetry: A2
1 = 1. In order to be able to gauge the full

algebra, it must happen that A1 has a trivial self-anomaly ϵtot. This comes in two parts: a

“bare” contribution from the original Frobenius-Schur indicator ϵ of the duality defect, and a

further contribution Y coming from the bimodule morphism A1 × A1 → 1. The latter turns

out to be given by the Arf invariant of η̃ restricted to the elements of B/Rad(ν) invariant under
the involution σ:

Y = sign

( ∑
b∈B/Rad(ν)
σ(b)= b

η̃(b)

)
= Arf(η̃) . (4.1.34)

We stress that here we are using multiplicative notation for η̃, so that Y is the sign of a

sum of phases (alternatively, in (4.1.113) we indicate the correct normalization). The second

obstruction then vanishes if and only if

ϵtot = ϵ Y = 1 . (4.1.35)

Later on, around eqn. (4.1.140), we will find an alternative formula for the spectrum of

values that Y can take as we explore the possible consistent choices of η̃ — the so-called

fractionalization classes.

A note on quadratic refinements

At various points in this work we use the existence and properties of quadratic refinements.

23The class B∗ν can be thought of in two ways. Abstractly, B is a homotopy class of maps from X2 to the

classifying space BA, while ν is a 2-form in H2
(
BA, U(1)

)
, so that the pull back B∗ν is a 2-form on X2 that can

be integrated. More concretely, B ∈ H1(X2,A) is a 1-cochain in simplicial cohomology that to each edge (ij)

of a triangulation of X2 associates an element of A, while ν : A×A → U(1) is an element of group cohomology

H2
(
A, U(1)

)
, so that the 2-cochain (B∗ν)ijk = ν(bij , bjk) ∈ H2

(
X2, U(1)

)
associates to each face (ijk) a value

in U(1) and can be integrated.
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A function q : A → U(1) (with A a finite Abelian group) is called a quadratic function if

q(a) = q(−a) and (using multiplicative notation)

ζ(a, b) ≡ q(a+ b)

q(a) q(b)
(4.1.36)

is a symmetric bicharacter. One easily derives that q(0) = 1, q(ta) = q(a)t
2
for any t ∈ Z, and

ζ(a, a) = q(a)2 . (4.1.37)

Any quadratic function q, by definition, comes equipped with an associated symmetric bichar-

acter ζ as in (4.1.36). However also the converse is true: any symmetric bicharacter ζ arises

from a (not necessarily unique) quadratic function q, which is called a quadratic refinement of

ζ. The set of quadratic refinements forms a torsor over Hom(A,Z2), indeed one easily proves

that the ratio of two quadratic refinements is a Z2-valued character on A.24

A closely related statement is that any symmetric 2-cocycle ν ∈ Z2
(
A, U(1)

)
is exact.

This follows from the isomorphism between altenating bicharacters χν (4.1.21) and classes

[ν] ∈ H2
(
A, U(1)

)
. In the special case that the symmetric 2-cocycle ν(a, b) is bilinear, exactness

is equivalent to the existence of a quadratic refinement.

Symmetry TFT description

It is possible to reformulate the properties of Tambara-Yamagami categories TY(A)γ,ϵ in terms

of their 3d Symmetry TFT, i.e., using the language of modular tensor categories (MTCs).25 Let

us review this fact, that will be useful in order to discuss anomalies in the following sections.

In particular let us describe how the data (A, γ, ϵ) appears from the bulk viewpoint.

One starts from a pure 3d gauge theory for A (i.e., a Dijkgraaf-Witten theory for A with no

torsion), which is the Symmetry TFT describing the invertible symmetry VecA.
26 The spectrum

of lines of the A gauge theory is A×A∨, the lines being labelled by pairs (a, α) ∈ A×A∨. All

the F -symbols are trivial while the braiding is canonically determined by the pairing between

A and A∨:

B(a1,α1),(a2,α2) = α1(a2)α2(a1) . (4.1.38)

It follows that the topological spins are

θ(a,α) = α(a) . (4.1.39)

Crucially, the theory enjoys electric-magnetic (EM) duality due to A and A∨ being isomorphic.

More precisely, the choice of an isomorphism ϕ naturally induces an automorphism of the

24The set of quadratic functions q : A → U(1) is an extension of the group of symmetric bicharacters

ζ : A × A → U(1) by Hom(A,Z2). For each bicharacter, a quadratic function is easily constructed. For

A = Zn the bicharacters are ζr(a, b) = exp
(
2πir
n ab

)
with r ∈ Zn. Given one of them, a quadratic refinement is

qr(a) = exp
(πir(n+1)

n a2
)
. If n is odd then r ∈ Zn and the quadratic function is unique. If n is even then r ∈ Z2n

and the quadratic functions for r and r + n produce the same bicharacter Zr. The case that A is a product of

cyclic factors is similar.
25Given a fusion category C as the symmetry of some 2d theory, the corresponding 3d Symmetry TFT is given

via the Turaev-Viro construction [120] by the TQFT whose MTC is the Drinfeld center of C denoted Z(C).
26Mathematically this corresponds to the fact that the Drinfeld center of VecA is A× A∨.
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Drinfeld center
Φ : A× A∨ → A× A∨

(a, α) 7→
(
ϕ−1(α), ϕ(a)

)
.

(4.1.40)

However not all choices of isomorphism are consistent EM dualities since Φ needs to preserve

the braiding. This condition is equivalent to the bicharacter γ(a, b) = ϕ(a) b associated with ϕ

being symmetric. Note that Φ squares to 1, so that the duality group is G ∼= Z2.

If the boundary theory is self-dual under gauging, we can construct the full Symmetry

TFT that includes the duality defect by gauging the duality symmetry G [133]. The gauging

operation comes with a choice of discrete torsion ϵ ∈ H3
(
G,U(1)

) ∼= Z2 which translates to

the Frobenius-Schur indicator of the duality defect N on the boundary. To summarize, the

data (A, γ, ϵ) of the boundary Tambara-Yamagami category appears from the bulk viewpoint

as the choice of a duality symmetry G ∼= Z2 of the A Dijkgraaf-Witten theory and of a discrete

torsion for the gauging.

To properly discuss the gauged theory, we first describe the data of the 3d Dijkgraaf-Witten

theory enriched by the 0-form symmetry (a G-crossed category in the language of [28]). This

includes data describing the topological twist defects for the G ∼= Z2 symmetry. The full tensor

category is graded:

Z(VecA)Z2 = Z(VecA)⊕Z(VecA)Φ , (4.1.41)

where Z(VecA)Φ describes the twisted sector for the Z2 symmetry. The number of simple

components of Z(VecA)Φ is the same as the number of Φ-invariant anyons [28]. The latter are

all of the form
(
a, ϕ(a)

)
with a ∈ A. Thus there are |A| simple objects in Z(VecA)Φ which

we denote as σa, a ∈ A (not to be confused with the involution σ). The fusion and braiding

data for the Z2 extension has been computed in [339], although we use here a slightly different

notation similar to the one employed in [133]. We find

(a, α)× (b, β) = (a+ b, α + β) , (a, α)× σb = σb+a+ϕ−1(α)

σa × σb =
⊕
c∈A

(
a+ b+ c, ϕ(−c)

)
.

(4.1.42)

These fusion rules are derived by realizing the G symmetry defects as 2d condensates [13] of

the anti-diagonal lines
(
a, ϕ(−a)

)
(see e.g. [133] for the case A = Zn).27 Since the quantum

dimension of (a, α) is 1, we also have

dim(σa) =
√

|A| . (4.1.43)

The non-vanishing R-matrices, in a gauge, are given by [339]:

R
(a1+a2, α1+α2)
(a1, α1), (a2, α2)

= α2(a1) , R
σa1+a2+ϕ−1(α1)

(a1, α1), σa2
= fa2(a1) ,

R
σa1+a2+ϕ−1(α2)

σa1 , (a2, α2)
= 1 , R(a3,α3)

σa1 , σa2
= fa1(−a3)−1 .

(4.1.44)

In the last entry, (a3, α3) must be a fusion channel of σa1 × σa2 . Besides, fa : A → U(1) is a

collection (for a ∈ A) of functions given by fa = ϕ(a)·f0, or more explicitly fa(b) = γ(a, b) f0(b),

27Indeed, the anti-diagonal lines are absorbed by the σb’s, and σb × σ−b is a 1d condensate of anti-diagonal

lines.
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Object Definition Dim # of Objects Spin θ

L(a, x) ηx ×
(
a, ϕ(a)

)
1 2 |A| γ(a, a)

X(a, b)

(
a, ϕ(b)

)
⊕
(
b, ϕ(a)

)
2 |A|

(
|A| − 1

)
/2 γ(a, b)

Σ(a, x) ηx × σa
√
|A| 2|A| (−1)x

√
ϵ

|A|1/2
∑
b∈A

fa(b)−1

Table 4.1: Objects (lines) of the 3d Symmetry TFT Z
(
TY(A)γ,ϵ

)
.

required to satisfy

fa(b) fa(b
′) = γ(b, b′) fa(b+ b′) . (4.1.45)

Notice that the equations for different values of a are all equivalent. In these equations, distinct

choices for f0 differ by an A-character and only reshuffle the fa’s, therefore the set of fa’s forms

a torsor over A∨. However f0 should be chosen such that f0(b) = f0(−b), in other words f0 is a

quadratic refinement of γ−1, which alwasys exists (see Section 4.1.2). Possible different choices

are related by Hom(A,Z2) and correspond to different gauge choices. The (gauge dependent)

spins of the twisted sector lines are [339]:

θ(σa) =

√
1

|A|1/2
∑
b∈A

fa(b)−1 , (4.1.46)

where the choice of sign for the square root is gauge.

We can now discuss the gauging of the symmetryG ∼= Z2 with a twist ϵ ∈ H3
(
G,U(1)

) ∼= Z2.

The gauged theory Z(VecA)Z2/Z2 is isomorphic to Z
(
TY(A)γ,ϵ

)
and is graded by the quantum

Z2 1-form symmetry whose charged objects are the liberated twisted sectors σa. There are three

types of objects, whose properties are summarized in Table 4.1. In the first line, L(a, x) arise

from the Φ-invariant elements
(
a, ϕ(a)

)
in the ungauged theory. The label x ∈ {0, 1} specifies

the dressing by the Z2 line η ≡ L(0,1) generating the dual 1-form symmetry Rep(Z2). The lines

X(a, b) with a ̸= b arise from long orbits of generic invertible objects and absorb the Z2 line η.

Finally, Σ(a, x) are the liberated twisted sectors, which are the charged objects under the dual

Rep(Z2) symmetry and thus span the non-trivially graded component. The total dimension of

the category is

dim
(
Z
(
TY(A)γ,ϵ

))
=

( ∑
ℓ simple

dim(ℓ)2

)
1/2

= 2 |A| . (4.1.47)

The topological manipulations of the theory with TY symmetry correspond to Lagrangian

algebras of this Symmetry TFT. By definition of Drinfeld center, there should exist a Lagrangian

algebra corresponding to the global variant with full TY symmetry. As an object, this is given

by

LTY = 1⊕ η ⊕
⊕
b ̸=0

X(0, b) , (4.1.48)
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and indeed:

dim
(
LTY

)
= 2 |A| = dim

(
Z
(
TY(A)γ,ϵ

))
. (4.1.49)

This is the algebra induced by the electric Lagrangian subgroup Le =
⊕

α∈A∨(0, α) in the

pure A gauge theory, following our discussion in Section 4.1.1. While Le is clearly not duality

invariant, it can be uplifted to an algebra in Z
(
TY(A)γ,ϵ

)
by adding to it its images under Φ.28

The resulting object is well defined in Z
(
TY(A)γ,ϵ

)
, it has vanishing spin (see Table 4.1) and

has dimension 2 |A| so it is Lagrangian. This provides an explicit realization of the sequential

gauging procedure outlined in (4.1.9). The symmetry on the corresponding boundary can be

computed using the sequential gauging prescription. In the trivially-graded sector C0 the simple

objects are the elements of the quotient (A×A∨)/A∨ ≃ A. They generate the 0-form symmetry

and we label them simply by a. On the other hand, in the CΦ sector all of the twist defects fall

into a single orbit, without fixed points under fusion with Le as can be checked from (4.1.42).

Let us denote this object by N . The bulk fusion rules imply (4.1.15), giving back the TY(A)γ,ϵ
symmetry.

First obstruction and Lagrangian algebras

Our first goal is to describe how the first obstruction appears from the Symmetry TFT per-

spective. We have already mentioned in Section 4.1.1 that the first obstruction precludes

the existence of a discrete gauging (B, ν) which renders the duality symmetry N invertible.

Since, from the Symmetry TFT perspective, discrete gauging operations correspond to differ-

ent choices of gapped boundary condition L, it is natural to rephrase the first obstruction in the

language of Lagrangian algebras of the DW theory. A similar logic has been followed recently

in [99], where the obstructions to gauge the entire symmetry category (i.e. the case B = A in

our notation) when |A| is odd have been found counting the number of bulk lines with trivial

spin. However such method is hard to generalize to higher dimensions (which is the main aim in

our work) since it relies on the notion of topological spin which has no known analog in higher

categories. In this and the next two sections, instead, we provide a complete bulk classification

of the obstruction theory for TY(A)γ,ϵ and besides we develop methods that allow us to extend

the results to higher-dimensional cases.

The crucial point which makes this problem accessible is that the Symmetry TFT for the

TY category is a G ∼= Z2 gauging of the Dijkgraaf-Witten theory DW(A) [133]. By gauging

G back and forth, we can rephrase the problem in terms of gauging Lagrangian algebras of a

bulk theory that only consists of invertible symmetries. As already argued in Section 4.1.1, a

sufficient condition for N to be anomalous is the absence of G-invariant Lagrangian algebras

in DW(A), namely, of Lagrangian algebras LD satisfying

Φ(LD) = LD . (4.1.50)

A duality-invariant Lagrangian algebra of DW(A) also gives rise to a duality-invariant bound-

ary condition, where the duality symmetry becomes invertible. Hence we realize that, in the

terminology of [133], intrinsic non-invertible symmetries are anomalous.

28If a line
(
a, ϕ(a)

)
(like the identity in this case) is duality invariant, we must add L(a,0) ⊕ L(a,1) to the

algebra.
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Notice that the obstruction we are discussing here is a priori distinct from the first obstruc-

tion we discussed in Section 4.1.2. However the main result of this section is to show that the

two obstructions are equivalent. In order to do so, we make the first obstruction more explicit

by classifying all Lagrangian algebras of DW(A) and providing explicit equivalent conditions

for their duality invariance in terms of the data (A, γ).
The 3d theory DW(A) can be thought of as the Symmetry TFT of any theory with a non-

anomalous 0-form symmetry A, and as such the correspondence between topological manipula-

tions and bulk Lagrangian algebras is particularly explicit, but yet non-trivial. The (bosonic)

topological manipulations of the boundary are determined by two pieces of data [116]:

• The choice of a subgroup B ⊂ A to be gauged.

• The choice of a class [ν] ∈ H2
(
B, U(1)

)
which plays the role of the discrete torsion.

The resulting symmetry after gauging is an extension of A/B by the quantum symmetry B∨ [346]

(see Appendix B.2 for details).

On the other hand, global variants of the boundary theory correspond to different interfaces

between DW(A) and the trivial 3d theory (i.e., to gapped boundaries), and thus are specified by

gauging a subgroup L ⊂ A×A∨, Lagrangian with respect to the braiding. Correspondingly, the

lines of L can end on the boundary, and the topological lines of the boundary theory generating

the 0-form symmetry are labelled by the quotient group

S =
(
A× A∨)/L . (4.1.51)

Thus we expect a correspondence between pairs
(
B, [ν]

)
and Lagrangian algebras L such that

(4.1.51) coincides with the symmetry after gauging B with discrete torsion [ν]. Notice that the

braiding induces a canonical isomorphism29

L ∼= S∨ . (4.1.52)

The simplest case is when H2
(
A, U(1)

)
= 0 (e.g., if A = Zn) so that the topological

manipulations are simply labelled by the gauged subgroup B ⊂ A.30 Then we consider

LB ≡ B×N(B) ⊂ A× A∨ (4.1.53)

which has cardinality |A| and is made of lines of vanishing spin (in particular it trivializes the

braiding, see (4.1.24)), hence it is Lagrangian. Moreover

SB =
(
A× A∨)/LB = (A/B)× B∨ (4.1.54)

is precisely the symmetry after gauging B.
29This can be seen as follows. The braiding is a bilinear non-degenerate pairing on A×A∨ and thus induces

an isomorphism A×A∨ → (A×A∨)∨. Saying that L is Lagrangian is equivalent to saying that its image under

this isomorphism is the subgroup of linear functions on A× A∨ which vanish over L. The latter is canonically

isomorphic to the Pontryagin dual of (A× A∨)/L = S.
30Indeed if H2

(
A, U(1)

)
= 0 then H2

(
B, U(1)

)
= 0 for every subgroup B of A.
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In the general case we define the linear map ψν : B → B∨ associated to χν :

ψν(b1) b2 = χν(b1, b2) . (4.1.55)

Given the pair
(
B, [ν]

)
we construct the subgroup LB,[ν] ⊂ A × A∨ as follows. Since B∨ =

A∨/N(B), any element of A∨ can be presented as a pair (β, η) ∈ N(B) × B∨ (even though

the sum is different from the one in A∨) and we denote this element simply as βη ∈ A∨. The

association is not canonical, however different choices agree on η (which is the projection from

A∨ to B∨) while may differ on β. We denote by c̃ ∈ H2
(
B∨, N(B)

)
the cocycle which makes

A∨ an extension of B∨ by N(B). Then we construct

LB,[ν] =
{(
b, βψν(b)

)
∈ A× A∨

∣∣∣ b ∈ B, β ∈ N(B)
}
. (4.1.56)

This contains N(B) as a subgroup (for b = 0), while its quotient by N(B) is isomorphic to B,
hence LB,[ν] is a group extension

1 → N(B) → LB,[ν] → B → 1 (4.1.57)

whose corresponding cocycle is ψ∗
ν(c̃) ∈ H2

(
B, N(B)

)
(see Appendix B.2 for details). Moreover

LB,[ν] has cardinality |A|, and since χν is alternating the spin of the lines is trivial:

θ(b, β) = χν(b, b) = 1 . (4.1.58)

Here (b, β) is a shorthand for
(
b, βψν(b)

)
, and β does not contribute because it belongs to

N(B). One could weaken the alternating condition and just ask χν to be antisymmetric. In

that case the spins would be ±1 and one would allow for fermionic Lagrangian algebras, which

correspond to fermionizations of the boundary symmetry. We will not discuss such cases here,

but note that they are a natural candidate to explain why certain duality symmetries — such

as TY(Z2)γ,1 — can be gauged on spin manifolds.

We have thus shown that LB,[ν] is a Lagrangian algebra with respect to the braiding. In

Appendix B.2 we prove that any Lagrangian algebra of A×A∨ arises in this way. This classifi-

cation of boundary conditions of the Dijkgraaf-Witten theory coincides with previously known

results from category theory [347]. The boundary condition corresponding to LB,[ν] is obtained

from the original one by gauging B with discrete torsion [ν]. Indeed the symmetry on that

boundary is

S =
(
A× A∨)/LB,[ν] ∼=

(
LB,[ν]

)∨
, (4.1.59)

which is the group extension dual to (4.1.57), namely

1 → B∨ → S → A/B → 1 . (4.1.60)

The cocycle is ψν ◦ c ∈ H2(A/B,B∨), where c ∈ H2(A/B,B) determines A as an extension of

A/B by B. One can show that this is indeed the symmetry after gauging B with discrete torsion

[ν] (see Appendix B.2 for the proof).

We should now determine whether DW(A) admits duality-invariant Lagrangian algebras

LB,[ν]. In the simplest case that [ν] = 0 and hence LB = B×N(B), duality invariance is simply
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equivalent to ϕ(B) = N(B). Since
∣∣N(B)

∣∣ = |A|/|B| this requires |B|2 = |A| and in particular

the cardinality of A must be a perfect square (nν = 1 in (4.1.23) in this case). However this is

in general not sufficient: ϕ(b) ∈ A∨ must vanish on B, so that B must be a Lagrangian subgroup

of A with respect to the symmetric bicharacter γ associated with ϕ.

In the cases with discrete torsion, we observe that

Φ
(
LB,[ν]

)
=
{(
ϕ−1
(
βψν(b)

)
, ϕ(b)

)
∈ A× A∨

∣∣∣ b ∈ B, β ∈ N(B)
}

(4.1.61)

is equal to LB,[ν] if and only if for all b ∈ B and β ∈ N(B) there exist b′ ∈ B and β′ ∈ N(B)
such that

b′ = ϕ−1
(
βψν(b)

)
, b = ϕ−1

(
β′ψν(b

′)
)
. (4.1.62)

Before stating the general condition under which these equations can be solved, consider the

simpler case B = A for whichN(B) = 0. Define the group homomorphism σ = ϕ−1◦ψν : A → A
in terms of which the two conditions become b′ = σ(b), b = σ(b′). They have a solution if and

only if σ2 = 1. In particular both σ and ψν must be automorphisms.

When B ⊊ A is a proper subgroup, there are further conditions for duality invariance. The

proof is technical and we report it in Appendix B.3.1. Let us remind that the radical of the

class [ν] is

Rad(ν) = Ker(ψν) ⊂ B . (4.1.63)

Besides, the projection of χν to B/Rad(ν) being non-degenerate gives an isomorphism

ψν : B/Rad(ν) →
(
B/Rad(ν)

)∨ . (4.1.64)

Then duality invariance of LB,[ν] is equivalent to the following conditions:

1. ϕ
(
Rad(ν)

)
= N(B). In particular N(B) ⊂ ϕ(B), and |B| = nν |A|1/2 ≥ |A|1/2. In other

words, B cannot be smaller than Lagrangian and |A| must be a perfect square, hence

reproducing the known obstruction induced by non-integer quantum dimensions [12].

2. Assuming condition 1., also ϕ projects to an isomorphism ϕ : B/Rad(ν) →
(
B/Rad(ν)

)∨.
Then we can define an automorphism

σ ≡ ϕ−1 ◦ ψν : B/Rad(ν) → B/Rad(ν) (4.1.65)

which, by construction, satisfies γ
(
σ(a), b

)
= χν(a, b). The second condition is that

σ2 = 1 . (4.1.66)

Notice that the conditions we obtained for LB,[ν] to be duality invariant are equivalent to the

first obstruction we reviewed in Section 4.1.2. We thus arrive to the punchline of this section:

the first obstruction is equivalent to the absence of duality-invariant Lagrangian algebras in

DW(A), or in other words, to the non-invertible duality symmetry being intrinsic.

A straightforward consequence of the conditions above concerns the action of the duality

symmetry G on the symmetry S =
(
A×A∨)/LB,[ν] of the invariant boundary. To this purpose,

it is convenient to present S as a group extension (4.1.60) and further view B∨ as an extension
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of Rad(ν)∨ by
(
B/Rad(ν)

)∨
, hence presenting the elements of S as triplets (β, η, ã) with β ∈(

B/Rad(ν)
)∨
, η ∈ Rad(ν)∨ and ã ∈ A/B. Using that S = L∨

B,[ν] we find that the duality

exchanges Rad(ν)∨ with A/B, while it acts on
(
B/Rad(ν)

)∨
as the automorphism σ∨:

Φ : (β, η, ã) →
(
σ∨(β), ϕ(ã), ϕ−1(η)

)
. (4.1.67)

When the data
(
B, [ν]

)
defines a duality-invariant Lagrangian subgroup, using the definition

of σ in (4.1.65) and σ2 = 1 we can relate the symmetric and the antisymmetric bicharacters as

χν(b1, b2) = γ
(
σ(b1), b2

)
, γ(b1, b2) = χν

(
σ(b1), b2

)
. (4.1.68)

This in turn implies a condition for the class [ν]:

ν(b1, b2) ν
(
σ(b1), σ(b2)

)
= dζ̃(b1, b2) or equivalently

ν(b1, b2)

ν
(
σ(b2), σ(b1)

) = dη̃(b1, b2) .

(4.1.69)

This is because the l.h.s. of both equations is a symmetric 2-cocycle (see Section 4.1.2 or

footnote 20). Those relations coincide with the known relation (4.1.30) (also appearing in the

equivariantization of the algebras in TY categories, see Section 4.1.2).

We can neatly express the condition (4.1.69) by noticing that the action ρ : G → Aut(A)
of any group G on a generic Abelian group A induces an action on H2

(
A, U(1)

)
given by

(ρg ξ)(a1, a2) = ξ
(
ρ−1
g (a1), ρ

−1
g (a2)

)
(4.1.70)

for each g ∈ G and ξ ∈ H2
(
A, U(1)

)
. Then (4.1.69) can be expressed as

σ [ν] = ρ1 [ν] = [ν−1] , (4.1.71)

where 1 is the generator of G ∼= Z2. This reformulation will be convenient later on.

Examples

To make concrete the discussion above, we show a few examples. For convenience, here we use

additive notation for the phases by thinking of them as elements of R/Z instead of U(1).

1. The simplest example is A = Zn for which there is no discrete torsion, and the subgroups

are in correspondence with the divisors of n. Let n = pq, and B = {qx | x = 0, . . . , p− 1} ∼= Zp
so that N(B) = {py | y = 0, . . . , q − 1} ∼= Zq.

When we gauge B on the boundary, the global symmetry is the direct product of the dual

symmetry Zp and the quotient Zq. From the bulk perspective, the prescription is that this

boundary condition is obtained by allowing the lines of the form (qx, py) to terminate on

the boundary hence becoming transparent there. On the other hand, the 0-form symmetry is

generated by the remaining lines stacked at the boundary, which indeed form the group Zp×Zq.
For what concerns duality invariance, we need B ∼= N(B) and hence p = q: this implies

that n = p2 must be a perfect square. Any symmetric bicharacter takes the form γ(a, b) =

rab/n (mod 1) for some r ∈ Zn (r must be coprime with n for the bicharacter to be non-

degenerate), and we notice indeed that Zp ⊂ Zp2 is Lagrangian in all cases:

γ(px, py) = 0 . (4.1.72)

The integer coefficient introduced in (4.1.23) here is nν = |B|/|A|1/2 = 1.
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2. A less trivial example is A = Zn×Zn with n a prime number. There are n+ 3 subgroups:

the trivial one, the n + 1 subgroups isomorphic to Zn generated by (1, 0) and (s, 1) with

s = 0, . . . , n − 1, and the full A. Only the last one admits non-trivial discrete torsion [ν] ∈
H2
(
Zn × Zn, U(1)

) ∼= Zn which could be represented as

ν
(
(x1, x2), (y1, y2)

)
=
r

n
x1y2 or equivalently as ν

(
(x1, x2), (y1, y2)

)
= − r

n
x2y1 .

(4.1.73)

The corresponding alternating bicharacter is given by the matrix

χν =
1

n

(
0 r

−r 0

)
, with r ∈ Zn . (4.1.74)

In total there are 2n+2 boundary theories. One can explicitly see that these are in one-to-one

correspondence with the Lagrangian algebras LB,[ν] in A× A∨.

Let us show that the induced global symmetry at the boundary is the one obtained by

gauging B with discrete torsion ν. The cases B = {0} or B ∼= Zn are similar to the one

discussed above and the corresponding Lagrangian algebras are, respectively:

LB,[0] =
{(

(0, 0); (a1, a2)
) ∣∣∣ a1, a2 ∈ Zn

}
for B = {0} ,

LB,[0] =
{(

(a1, 0); (0, a2)
) ∣∣∣ a1, a2 ∈ Zn

}
for B ∼= Zn generated by (1, 0) ,

LB,[0] =
{(

(sa1, a1); (a2,−sa2)
) ∣∣∣ a1, a2 ∈ Zn

}
for B ∼= Zn generated by (s, 1) .

(4.1.75)

When B = Zn × Zn the resulting boundary theory has symmetry B∨ ∼= Zn × Zn even for

non-trivial discrete torsion. According to our prescription, and using that N(B) is trivial and
the map ψν has the same matrix form of χν defined in (4.1.74), the corresponding Lagrangian

subgroup of A× A∨ is

LB,[ν] =
{(

(a1, a2); (−ra2, ra1)
) ∣∣∣ a1, a2 ∈ Zn

}
, (4.1.76)

and indeed (A×A∨)/L = Zn×Zn. To see the effect of the discrete torsion we use a Lagrangian

description of the DW theory:

S =
2πi

n

∫
X3

(
A1 ∪ dB1 + A2 ∪ dB2

)
. (4.1.77)

The generic line with charges
(
(a1, a2); (b1, b2)

)
is

exp

[
2πi

n

∫
γ

(
a1A1 + a2A2 + b1B1 + b2B2

)]
. (4.1.78)

Hence, as a boundary condition, L in (4.1.76) corresponds to A1 + rB2 = A2 − rB1 = 0.

Changing variables according to A1 → A1 + rB2, A2 → A2 − rB1 we obtain the same bulk

Lagrangian as in (4.1.77) but with an extra boundary term

δSbdry =
2πir

n

∫
∂X3

B1 ∪B2 , (4.1.79)

which is precisely the discrete torsion for the gauging on the boundary.
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Let us discuss which of those algebras are duality invariant, and in particular which sym-

metric bicharacters admit duality-invariant algebras. There are two natural classes of non-

degenerate symmetric bicharacters, diagonal and off-diagonal:

γ
(D)
t1, t2 =

1

n

(
t1 0

0 t2

)
and γ

(O)
t =

1

n

(
0 t

t 0

)
. (4.1.80)

Here non-degeneracy requires t1, t2, t to be invertible elements of Zn.31 Note that B = {0}
cannot lead to duality-invariant algebras because it is smaller than Lagrangian.

Consider the case of γ
(O)
t . First we look at Lagrangian algebras associated with subgroups

B ∼= Zn which, according to our general analysis, need to be Lagrangian with respect to γ
(O)
t

because [ν] = 0. The two subgroups B =
〈
(1, 0)

〉
,
〈
(0, 1)

〉
are always Lagrangian, while

B =
〈
(s, 1)

〉
is Lagrangian only if

2st = 0 mod n (4.1.81)

which can never be satisfied if n is odd. Then we look at the cases with B = A. In order to

satisfy ϕ
(
Rad(ν)

)
= N(B) = {0} in (4.1.26) we need a discrete torsion (4.1.74) with r ̸= 0.

From (4.1.65) we find

σ =

(
t−1r 0

0 −t−1r

)
. (4.1.82)

The duality-invariant condition σ2 = 1 reads (t−1r)2 = 1 mod n, which can always be satisfied

by the values r = ±t.
Consider now the case of γ

(D)
t1,t2 . The subgroups B ∼= Zn are Lagrangian with respect to γ

(D)
t1,t2

only when B =
〈
(s, 1)

〉
with t1 s

2+ t2 = 0 mod n. For B = A, instead, we need a non-vanishing

discrete torsion (4.1.74), and since

σ =

(
0 −t−1

1 r

t−1
2 r 0

)
, (4.1.83)

the duality-invariance condition reads r2 = −t1t2 mod n. This equation and the previous one

for s do not always have solutions. For instance, if t1 = t2 = 1, then r (or s) must be a square

root of −1 which exists for n = 2, 5, 13, . . . but not for n = 3, 7, 11, . . .

In summary, while TY(Zn×Zn)γ,ϵ with off-diagonal bicharacter γ always trivializes the first

obstruction, when the bicharacter is diagonal the category is necessarily anomalous for certain

values of n for which the first obstruction forbids the gauging. We also notice that in all of

these examples, when there is a duality-invariant Lagrangian algebra associated with B ∼= Zn
we have nν = 1, while for B ∼= A we have nν = n.

3. We conclude with a more complicated example which is representative of the general case

B ⊊ A but [ν] ̸= 0, hence B is non-Lagrangian. Take A = Z4×Z4 which, besides the subgroups

we already considered, also has the subgroup

B =
{
(x, 2y)

∣∣ x ∈ Z4 , y ∈ Z2

} ∼= Z4 × Z2 (4.1.84)

31For n prime, they are just non-vanishing. However these two bicharacters will be used also for n non prime,

hence t1, t2, t must be coprime with n.

151



(as well as the similar one with the two factors swapped) hence realizing

N(B) =
{
(0, 2ỹ)

∣∣ ỹ ∈ Z2

} ∼= Z2 ⊂ A∨ . (4.1.85)

The most general alternating bicharacter on B is

χν =
1

4

(
0 a

b 0

)
with 2(a+ b) = 0 mod 4 , (4.1.86)

hence a, b ∈ Z4 must be either both even or both odd. If a, b are both even then Rad(ν) = B
and duality invariance cannot be satisfied. If a, b are odd, instead,

Rad(ν) =
{
(2z, 0)

∣∣ z ∈ Z2

} ∼= Z2 ⊂ Z4 × Z2 . (4.1.87)

The condition ϕ
(
Rad(ν)

)
= N(B) cannot be satisfied with the diagonal bicharacter γ

(D)
t1, t2 , while

with the off-diagonal one γ
(O)
t the condition is met (for both the invertible elements t = 1, 3).

The second condition for duality invariance involves

σ = ϕ−1 ◦ ψν =
(
tb 0

0 ta

)
. (4.1.88)

The condition σ2 = 1 is equivalent to (tb)2 = (ta)2 = 1 which is automatically satisfied. In this

case we get nν = 2.

Second obstruction and equivariantization

In the previous section we rephrased the first obstruction to the gauging of a 2d duality sym-

metry in terms of the existence of a duality-invariant Lagrangian algebra LD in the 3d TQFT

DW(A). Gauging LD leads to a bulk SPT phase Y ∈ H3
(
G,U(1)

)
for the duality symmetry

G ∼= Z2, which determines the DW twist of the corresponding G gauge theory as explained in

(4.1.10). The total twist ϵtot = ϵ Y in turn determines whether a Neumann boundary condition

is allowed (and N is anomaly-free).

In order to understand the origin of Y we must describe in detail how to make the gauging

of LD consistent with the presence of a 0-form symmetry. Naively this should amount to

the requirement that LD be G-invariant as an object: Φ(LD) = LD as stressed in (4.1.50).

This is however not sufficient, as the algebra LD comes with a specific choice of morphism

m : LD × LD → LD that is associative and commutative (see Appendix B.1 for the definitions)

and a set of projections πx ∈ Hom(LD, x). An equivariantization of LD is the definition of a

consistent action of the 0-form symmetry on the projections that leaves m invariant (for more

details we refer the reader to Appendix B.1 and [337] for a thorough treatment). To define this

structure the proper context is that of G-crossed MTCs [28]. In this framework a symmetry

defect Ug acts on the junction spaces V z
x, y, where x, y, z ∈ A×A∨ label simple objects32 , by a

unitary automorphism [Ug]zx, y : V z
x, y → V

g(z)
g(x), g(y) as

Ug
(
vzx, y

)
= [Ug]zx, y · v

g(z)
g(x), g(y) (4.1.89)

32Throughout this section we leave implicit that all simple objects are invertible and hence all junction spaces

are one-dimensional.
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where v is a chosen basis vector of V z
x, y (see Figure 4.1). The phases [Ug]zx, y have to satisfy several

compatibility conditions with the data of the underlying category, in particular consistency with

the braiding requires

[Ug]zx, y Rz
x, y = R

g(z)
g(x), g(y) [Ug]

z
y, x . (4.1.90)

Using the R-matrices (4.1.44) and the G ∼= Z2 action on elements of DW(A) one easily sees

that this equation admits a simple solution

[Ug](a+b,α+β)(a,α), (b,β) = α(b) , (4.1.91)

for g = 1 the generator of Z2.

Now let us come to the equivariantization. For the algebras discussed in Section 4.1.2, a

consistent33 choice of m is

mx+x′

x, x′ = ν(b′, b) where x =
(
b, βψν(b)

)
∈ LD . (4.1.92)

In the following we will use x, y, z, . . . to denote elements of LD in order to lighten the notation.

Working in components we expand

m =
⊕
x, y

mz
x, y and mz

x, y ∈ V z
x, y (4.1.93)

where z = x + y. The defects Ug act on the projectors πx : LD → x by an automorphism

η̃g(x) : πx → πg(x) as follows (see Figure 4.1)

Ug(πx) = η̃g(x) · πg(x) (4.1.94)

Using these transformations, m is invariant if 34

m
g(z)
g(x), g(y) = mz

x, y [Ug]zx, y
η̃g(z)

η̃g(x) η̃g(y)
. (4.1.95)

The equivariantization datum η̃ can be neatly interpreted in cohomology. First acting with

gauge transformations πx → µ(x) πx on the vector spaces associated to πx and πg(x) we can

identify

η̃g(x) ∼ η̃g(x)
µ
(
g(x)

)
µ(x)

. (4.1.96)

Second, consistency with the group composition law demands that

η̃g(x) η̃h
(
g(x)

)
= η̃gh(x) . (4.1.97)

Interpreting η̃g as a cochain in C1
(
LD, U(1)

)
, so that η̃ ∈ C1

(
G, C1

(
LD, U(1)

))
, we can rewrite

(4.1.97) and (4.1.96) in terms of a differential. Using now additive notation, for the sake of

clarity and for later convenience, they look, respectively, as

dρη̃ = 0 , η̃ ∼ η̃ + dρµ , (4.1.98)

33Commutativity of the algebra requires mz
x, x′ = mz

x′, xR
z
x, x′ , which, in our case, becomes mz

x, x′/mz
x′, x =

χν(b
′, b).

34Here we use that all objects in the algebra LD are invertible and appear with multiplicity one in the DW(A)
theory.

153



g(z)

Ug

x

y

vzx,y
= [Ug]zx, y

g(z)

Ug

x

y

v
g(z)
g(x), g(y)

LD

Ug

x
πx

= η̃g(x)
LD

Ug

x
πg(x)

g(x)

Figure 4.1: Graphical representation of the action of a symmetry defect Ug on the junction

spaces V z
x, y (above) and on the projectors πx (below).

for any µ ∈ C0
(
G, C1

(
LD, U(1)

)) ∼= C1
(
LD, U(1)

)
. Here dρ is a twisted differential, while ρ is

the G-action on anyons. We obtain that η̃ is naturally an object in twisted group cohomology

(see e.g. [178] and Appendix B.4 for a review):

η̃ ∈ H1
ρ

(
G, C1

(
LD, U(1)

))
. (4.1.99)

Restricting the solution ((4.1.91)) to elements of LD we find

[Ug]x+x
′

x, x′ = χν
(
b, b′
)
= χν

(
σ(b), σ(b′)

)−1
(4.1.100)

where in the second step we used the relations between the symmetric and antisymmetric

bicharacters (4.1.68). Since m
g(x+x′)
g(x), g(x′) = ν

(
σ(b′), σ(b)

)
from (4.1.92), then (4.1.95) becomes

ν(b, b′)

ν
(
σ(b′), σ(b)

) = dη̃g (4.1.101)

which we recognize as the first equation in (4.1.30) with a caveat. The set of solutions for η̃g,

with g = 1, form a torsor over L∨
D while the solutions of (4.1.30) are related by elements of(

B/Rad(ν)
)∨
, therefore, strictly speaking, the solutions sets of the two equations differ. How-

ever we will see below that the two sets of equations give rise to the same second obstruction.35

For later convenience we also notice that the set of solutions to (4.1.101) for η̃ forms a torsor

over

H1
ρ

(
G, L∨

D) = H1
ρ(G,S) , (4.1.102)

whose elements we denote by η. This will be useful for the upcoming reinterpretation of the

second obstruction in terms of symmetry fractionalization in Section 4.1.2. All in all we found

that an equivariantization of a duality-invariant Lagrangian algebra LD is specified by the

35Physically the extra solutions correpond to symmetry fractionalization patterns between Z2 and S for which

there is no mixed ’t Hooft anomaly.
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choice of an element η̃ ∈ H1
ρ

(
G, C1

(
LD, U(1)

))
satisfying (4.1.101), and that any two choices

differ by an element η of H1
ρ

(
G, L∨

D).

Given an equivariantization η̃ of LD, we ask what is the SPT phase Y ∈ H3
(
G,U(1)

)
for

G that we obtain after gauging (LD, η̃). Indeed, the theory after gauging has a single genuine

line 1 (and thus is an invertible TQFT) but also a single non-genuine topological twist line Mg

for each g ∈ G. The spins θMg of such objects are gauge dependent by a G-character [28]. In

the presence of a discrete torsion Y , the θMg ’s do not form a G-character: their deviation from

being a character is physical and is induced by the SPT phase Y . In the present case that

G ∼= Z2,
36 θM does not square to 1 but instead

θM =
√
Y (1, 1, 1) , (4.1.103)

the sign of the square root being pure gauge. We can thus detect the Z2 SPT phase through

the gauge-invariant quantity θ2M = Y . We now show how to reproduce (4.1.34). A key fact is

that, given a choice of equivariantization η̃ for LD, there is a unique non-genuine twist line M

after gauging (LD, η̃). It is then possible to show, using the defining equation (B.1.25) for a

twisted local module M that

fa(b)
−1 = η̃(b) for b ∈ B/Rad(ν) and σ(b) = b , (4.1.104)

where fa is the function introduced in (4.1.45). The equation holds for all the values of a for

which Hom(σa, M) ̸= 0.37 We will use the notation M (a) to account for the different choices

one has for the equivariantization η̃: upon gauging, each choice leads to a theory with a unique

non-genuine operator, however different choices lead to different SPT phases Y and the label a

(whose possible values depend on LD in a complicated way) keeps track of the equivariantization

chosen.

Since θ2M must be well defined, the spins squared of the components of M must coincide.

Since, as an object, M (a) can be described as the orbit of the twist defect σa under fusion with

the lines of LD, using the fusions in (4.1.42) we get:38

M (a) =
⊕
u

σa+u where u = b+ ϕ−1
(
βψν(b)

)
for all

(
b, βψν(b)

)
∈ LD .

(4.1.105)

Consistency with the existence of a unique local module requires that θ2σa = θ2σa+u
, i.e.

θ2M(a) =
1√
|A|

∑
c∈A

fa(c)
−1 !

=
1√
|A|

∑
c∈A

fa+u(c)
−1 =

1√
|A|

∑
c∈A

fa(c)
−1 γ(u, c)−1 , (4.1.106)

36In order not to clutter we will suppress the label g in what follows, as there is only one nontrivial G defect

anyway.
37To show that the result holds, consider (B.1.25) and set g(xi) = xi. The matrix rL can then be eliminated

on the two sides. Decomposing the module Mg in its components and using the formulas (4.1.44) for the R

matrix gives the desired result.
38Besides identifying twist defects related by fusion with the lines of LD, one also has to impose locality

conditions, that depend on η̃ (see Appendix B.1). Together these constraints single out a unique twist defect

for each choice of equivariantization.

155



from which we can extract some consequences. For our purposes it will be enough to consider

u = b+ ϕ−1(ψν(b)) with b ∈ B, we then impose

θ2M(a) =
1

|B|
∑
b∈B

θ2M(a) =
1

|B|
√

|A|

∑
b∈B
c∈A

fa(c)
−1 γ(b+ ϕ−1(ψν(b)), c)

−1

=
1

|B|
√

|A|

∑
b∈B
c∈A

fa(c)
−1 γ(b, c)−1 γ(ϕ−1(ψν(b)), c)

−1 .
(4.1.107)

Any b ∈ B can be split as

b = ι(ϕ−1(β)) + s(x) (4.1.108)

with β ∈ N(B) and x ∈ B/Rad(ν). Here ι is the inclusion of Rad(ν) in B and s : B/Rad(ν) → B
is a section. Using linearity of γ and that ψν(ϕ

−1(β)) = 0 we see that the only β-dependent

factor in the summand is β(c), so that the sum over β constraints c ∈ B. We then have

θ2M(a) =
|Rad(ν)|
|B|
√

|A|

∑
b′∈B

x∈B/Rad(ν)

fa(b
′)−1 γ(s(x), b′)−1 γ(σ(s(x)), b′)−1 .

(4.1.109)

We now split also b′ as (4.1.108) obtaining

θ2M(a) =
|Rad(ν)|
|B|
√

|A|

∑
β′∈N(B)

x,x′∈B/Rad(ν)

fa(ϕ
−1(β′))−1fa(s(x

′))−1 γ(s(x), s(x′))−1 γ(σ(s(x)), s(x′))−1

(4.1.110)

where we noticed that fa(ϕ
−1(β) + b) = fa(ϕ

−1(β))fa(b) for any β ∈ N(B) and b ∈ B. Because
of this fa restricted on Rad(ν) is a character, hence the sum over β′ yields θ2

M(a) = 0 unless

fa(ϕ
−1(β′)) = 1 for any β′ ∈ N(B), i.e. fa must restrict to the trivial character on Rad(ν) to

avoid an inconsistent answer. Plugging this in we get

θ2M(a) =
|Rad(ν)|2

|B|
√

|A|

∑
β′∈N(B)

x,x′∈B/Rad(ν)

fa(s(x
′))−1 γ(s(x) + σ(s(x)), s(x′))−1 (4.1.111)

notice that, due to the property of fa mentioned above, this expression is independent of the

sections chosen hence we shall drop them in the following. Using (4.1.68) we rewrite

γ(σ(x), x′) = γ(x, σ(x′))−1 (4.1.112)

so that summing over x constraints x′ to be fixed by σ. All in all the spin of the twist defect is

θ2M(a) =
|Rad(ν)|√

|A|

∑
b∈B/Rad(ν)
σ(b)=b

fa(b)
−1 (4.1.113)

hence, due to (4.1.104), confirming that

θ2M(a) = Arf(η̃) = Y . (4.1.114)

Notice that this computation automatically provides with the proper normalization to ensure

that Arf(η̃) = ±1.
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Example. Consider A = Zn×Zn with off-diagonal bicharacter γ
(O)
1 . The invariant algebra is

LD =
{(

(a1, a2); (−a2, a1)
) ∣∣ a1, a2 ∈ Zn

}
. (4.1.115)

Our choice for the functions fa in (4.1.45) is

f(a1, a2)(b1, b2) = exp

(
−2πi

n
b1b2

)
γ(a, b) . (4.1.116)

From this it is simple to show that

θ2σa = exp

(
−2πi

n
a1a2

)
. (4.1.117)

A module M (a) is given, as an object, by

M (a) =


⊕

b∈Zn
σb, a2 for n odd ,⊕

b∈Zn
σa1+2b, a2 for n even .

(4.1.118)

Imposing the spin θ2σa to be constant on the orbit M (a) strongly constrains the possible local

module candidates. One finds that for n odd there is only one consistent choice of module

M , namely M (0,0) while for n even there are four, corresponding to (a1, a2) =
(
s1,

n
2
s2) and

s1,2 ∈ {0, 1}. Their spins squared are:

M (a) M (0, 0) M (1, 0) M (0, n/2) M (1, n/2)

θ2M 1 1 1 −1
(4.1.119)

It is possible to check that all four satisfy the locality condition (B.1.25) for the four inequivalent

choices of η̃, parametrized by H1
ρ(Z2, Zn ×Zn) = Z2 ×Z2. We will see in the next section how

the same result can be obtained in terms of symmetry fractionalization.

Second obstruction and symmetry fractionalization

The discussion in the previous section gave us a description of the second obstruction from a

purely bulk perspective. It however requires precise knowledge of the full categorical data of the

3d MTC, hence it is hard to generalize it to higher-dimensional cases. Moreover it leaves one

conceptual problem to address: what is the physical interpretation of the different choices of

equivariantization from the point of view of the boundary? We make here a proposal that solves

both issues: different choices of equivariantization in the bulk lead to different ways to couple

the symmetry to backgrounds fields. This goes by the name of symmetry fractionalization.39

Even though we do not know how to turn on background fields for the non-invertible sym-

metry directly, we can use the vanishing of the first obstruction to reduce the problem to the

discussion of inequivalent couplings to standard Z2 background fields on the invertible bound-

ary. There we also have the 0-form symmetry S = Z(A)/LD, which crucially has a mixed

39This is a slight abuse of terminology since the term “symmetry fractionalization” is commonly used to indi-

cate the decoration of defect junctions by higher-codimension defects, while here we mix two 0-form symmetries.

Yet, we use the term in order to better uniformize the 2d discussion here with the 4d one.
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anomaly with G. It is known [338,348] that in such cases the cubic G anomaly might not have

an intrinsic value: it can be changed by choosing different symmetry fractionalization classes.

Analyzing this phenomenon will lead to the required condition for the vanishing of the second

obstruction.

Let us start by determining the mixed anomaly between G and S. The duality action Φ,

which leaves LD invariant, descends to an action on the quotient S = (A×A∨)/LD, which we

already described in detail in Section 4.1.2. For simplicity we consider here the case B = A, so
that S = A∨. The general case is qualitatively analogous and we report it in Appendix B.3.2.

We use the duality isomorphism ϕ to write the background for A∨ as ϕ(B) with B ∈ H1(X,A).
The partition function of the invertible boundary theory coupled to a background B can be

easily expressed in terms of the reference electric boundary:

Zinv

[
ϕ(B)

]
=

∑
b∈H1(X,A)

exp

[
2πi

∫
X

b∗ν + 2πi

∫
X

b ∪ ϕ(B)

]
Ze[b] . (4.1.120)

Here b∗ν ∈ H2
(
X,U(1)

)
is the pull-back of ν ∈ H2

(
A, U(1)

)
, understood in additive notation

(see footnote 23). The duality maps Ze to the partition function of the magnetic theory Zm,

which in turn can be expressed as a discrete gauging of the electric theory:

Φ · Ze[b] = Zm

[
ϕ(b)

]
=

∑
a∈H1(X,A)

exp

[
2πi

∫
X

ϕ(a) ∪ b
]
Ze[a] . (4.1.121)

The action of Φ on the invertible boundary can be derived combining (4.1.120) with (4.1.121),

using that Φ only acts on the partition functions Z, and it reads

Φ · Zinv

[
ϕ(B)

]
= exp

[
2πi

∫
X

B∗ν

]
Zinv

[
ϕ(σB)

]
. (4.1.122)

The overall phase stems from a mixed ’t Hooft anomaly between G and S. Crucially, from

(4.1.122) we find that G ∼= Z2 acts non trivially on S through an automorphism ρ : G→ Aut(S)
such that

ρ1(B) = σB , (4.1.123)

so that the total symmetry of the invertible boundary is a semidirect product S ⋊ρG. Thanks

to

exp

[
2πi

∫
X

B∗(ν ◦ σ)] = exp

[
−2πi

∫
X

B∗ν

]
, (4.1.124)

which is the integrated additive version of (4.1.69), the aforementioned anomaly is consistent

with the Z2 symmetry. Let us write the inflow action for the anomalous phase, introduc-

ing a background filed A ∈ H1(X,Z2) for G. The general construction is detailed in Ap-

pendix B.4.1. The bottom line of that discussion is that such anomalies are classified by

µ ∈ H1
ρ

(
Z2, H

2
(
A, U(1)

))
in terms of which the 3d inflow action is

Sµ = 2πi

∫
X3

µ(A) ∪B ∪B . (4.1.125)

In components this is defined as(
µ(A) ∪B ∪B

)
ijkl

= µ(Aij)
(
ρAij

Bjk , ρAik
Bkl

)
. (4.1.126)
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A gauge variation A→ A+ dλ produces a boundary term

Sµ → Sµ + 2πi

∫
∂X3

µ(λ) ∪B ∪B . (4.1.127)

The class µ can be thought of as a function µ : Z2 → H2
(
A, U(1)

)
satisfying the twisted cocycle

condition (using addivite notation)

ρg µ(h) + µ(g) = µ(g + h) , (4.1.128)

and subject to the the identification

µ(g) ∼= µ(g) + ρg ξ − ξ for any ξ ∈ H2
(
A, U(1)

)
. (4.1.129)

Because of the relation (4.1.69), which in additive notation reads σ ·ν = −ν, we can consistently

choose

µ(0) = 0 , µ(1) = ν . (4.1.130)

Notice that this makes sense because Φ2 leaves Zinv invariant. With this choice, taking a

background such that the pull-back of A to the boundary ∂X3 is 0 and performing a gauge

transformation A → A + dλ with λ
∣∣
∂X3

= 1, one reproduces the anomalous phase (4.1.122).

This construction also provides a convenient way to determine whether the anomalous phase

(4.1.122) corresponds to a true anomaly or can be cancelled by a local counterterm. Indeed the

latter situation occurs if and only if µ is cohomologically trivial, namely

ν = σ · ξ − ξ (4.1.131)

for some ξ ∈ H2
(
A, U(1)

)
. In this case the anomalous phase is eliminated by modifying the

action coupled to B ∈ H1(X2,A) by the addition of the local counterterm

Sc.t. = 2πi

∫
X2

B∗ξ . (4.1.132)

If there exists no ξ satisfying (4.1.131) then the anomalous phase cannot be cancelled and there

is an anomaly. To show the power of this method, let us discuss the example of A = Zn × Zn
with diagonal symmetric bicharacter γ

(D)
1,1 and

ν
(
(x1, x2), (y1, y2)

)
=
r

n
x1y2 with r2 = −1 mod n . (4.1.133)

Then σ acts on A as σ(x1, x2) = (rx2,−rx1), and since the most general ξ ∈ H2
(
A, U(1)

)
is represented as ξ

(
(x1, x2), (y1, y2)

)
= s

n
x1y2 or equivalently as ξ

(
(x1, x2), (y1, y2)

)
= − s

n
x2y1

then (
σ · ξ − ξ

)(
(x1, x2), (y1, y2)

)
= −2s

n
x1y2 . (4.1.134)

For n odd, we can always choose s = −2−1r hence the anomalous phase can be cancelled by a

local counterterm and it is not an anomaly. On the other hand, for n even, r is necessarily odd

and thus no choice of s can cancel the anomalous phase: in this case this is a genuine anomaly.

As already argued, the question of what is the value of the pure G ∼= Z2 anomaly on the

invertible boundary is not well-posed until we specify how G couples to a background field
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A ∈ H1(X2, G). In the boundary global variant where the full symmetry category is invertible,

the presence of another 0-form symmetry S allows one to make discrete choices for that coupling

labelled by a class

η ∈ H1
ρ(G,S) , (4.1.135)

which satisfies the twisted cocycle condition ρg η(h) + η(g) = η(g + h) and is subject to the

identification η(g) ∼= η(g)+ρg c−c for any c ∈ S, similarly to (4.1.128)–(4.1.129). So η specifies

a (twisted) homomorphism from G to S which allows one to modify the minimal coupling

prescription for A, declaring that the latter effectively couples to the diagonal subgroup of G

and the image η(G) ⊂ S. The anomaly cannot be unambiguously determined until we specify

η because different choices correspond to different Z2 subgroups of the full 0-form symmetry

group and, due to the mixed anomaly (4.1.125), they can have different anomalies.

This phenomenon is sometimes called symmetry fractionalization, even though the term is

more often used for the mixing of a 0-form symmetry with higher-form symmetries [338,348]40

(which will be relevant for the 4d/5d case), but we will use the same terminology to emphasize

a unified description. The crucial point is that in general there is no canonical choice and

we can only talk about differences of anomalies induced by a certain class η. This is easy to

implement at the level of background fields. When A ∈ H1(X2,Z2) is activated, the symmetry

fractionalization class changes the background B ∈ H1(X2,S) to

B′ = B + A∗η = B + η(A) . (4.1.136)

By plugging this expression into the mixed anomaly (4.1.125) we change the pure Z2 anomaly,

classified by H3
(
Z2, U(1)

)
, by an extra piece

Spure = 2πi

∫
X3

µ(A) ∪ η(A) ∪ η(A) ≡ 2πi

∫
X3

A∗y (4.1.137)

that can be written in terms of a class y ∈ H3
(
Z2, U(1)

)
. An explicit expression for y(g1, g2, g3)

can be derived by recasting µ(A) ∪ η(A) ∪ η(A) as(
µ(A) ∪ η(A) ∪ η(A)

)
ijkl

= −µ(−Aij)
(
η(Ajk) , ρAjk

η(Akl)
)
. (4.1.138)

This is useful because A appears with only three different pairs of indices, and we conclude

that

y(g1, g2, g3) = −µ(−g1)
(
η(g2) , ρg2η(g3)

)
. (4.1.139)

The possible non-triviality of this 3-cocycle is determined by its value at g1 = g2 = g3 = 1, and

we will denote simply by µ and η their values at g = 1. Since µ = ν and ρ η = −η we obtain

y ≡ y(1, 1, 1) = ν(η, η) . (4.1.140)

Going back to multiplicative notation, we obtain that

Y = ν(η, η) , (4.1.141)

we will see in examples that coincides with the SPT phase obtained by the equivariantization

procedure in Section 4.1.2.

40See, e.g., [28,349–352] and references therein for discussions of symmetry fractionalization in the condensed

matter literature.
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Examples

Let us apply the general discussion to the previously discussed examples.

1. The first example is A = Zn where a duality-invariant lattice is present only for n = p2.

The choice of discrete torsion ν is trivial, so there is no way to shift the “bare” Frobenius-Schur

indicator ϵ and the second obstruction vanishes if and only if ϵ = 1.

2. Next we consider TY(Zn × Zn). Choosing the diagonal bicharacter γ
(D)
1,1 in (4.1.80), the

duality-invariant boundaries are obtained by gauging the full A with discrete torsion ν such

that (see (4.1.74))

χν =
1

n

(
0 r

−r 0

)
with r2 = −1 mod n . (4.1.142)

Thus the action ρ : Z2 → Aut(A∨) is ρ1(a1, a2) = (ra2,−ra1). We look for all possible symmetry

fractionalization classes η ∈ H1
ρ(Z2,Zn × Zn), which are determined by η ≡ η(1) = (x1, x2)

constrained by x2 = rx1. Taking into account the identification

(x1, rx1) ∼ (x1, rx1) + (rc2 − c1,−rc1 − c2) (4.1.143)

and setting c2 = 0, c1 = −1 we realize that x1 ∼ x1 + 1 and hence all cocycles are exact:

H1
ρ(Z2,Zn × Zn) = 0 . (4.1.144)

Thus the phenomenon of symmetry fractionalization is absent in this case and there is only a

single equivariantization for LD. The second obstruction again vanishes if and only if ϵ = 1.

Choosing instead the off-diagonal bicharacter γ
(O)
1 is more interesting. As already discussed,

the duality-invariant boundaries are associated with the alternating bicharacters

χν =
1

n

(
0 r

−r 0

)
with r2 = 1 mod n . (4.1.145)

Then ρ1(a1, a2) = (−ra1, ra2) and the most general cocycle η ∈ H1
ρ(Z2,Zn×Zn) has η = (x1, x2)

with

(r − 1)x1 = 0 mod n , (r + 1)x2 = 0 mod n , (4.1.146)

and is subject to the identifications x1 ∼ x1 − (r + 1)c1, x2 ∼ x2 − (r − 1)c2. Without loss of

generality we can take r = 1, so that 2x2 = 0 and x1 ∼ x1 + 2. Hence for n odd there is no

symmetry fractionalization while for n even:

H1
ρ(Z2,Zn × Zn) = Z2 × Z2 (n even) (4.1.147)

generated by ηs1, s2 =
(
s1,

n
2
s2
)
with s1,2 ∈ {0, 1}. A representative for ν is

ν(a, b) = exp

(
2πi

n
a1b2

)
(4.1.148)
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and therefore

Y = ν(η, η) = exp
(
πi s1s2

)
= Arf(η̃) . (4.1.149)

Thus the second obstruction vanishes if and only if

ϵ = 1 and s1s2 = 0 , or ϵ = −1 and s1s2 = 1 , (4.1.150)

in agreement with the discussion in [29] for the case A = Z2 × Z2 and with our computations

using the equivariantization of LD around (4.1.119).

4.1.3 Anomalies of duality symmetries in 3+1 dimensions

We now extend the classification of anomalies for non-invertible duality defects to the four-

dimensional case. As in 2d, we find that there are two obstructions to gauging a non-invertible

duality symmetry. The first obstruction again hinges upon the absence of a duality-invariant

bulk Lagrangian algebra LD. This maps to the fact that the 4d theory T coupled to the

Symmetry TFT must admit a duality-invariant global variant. The second obstruction is the

presence of a cubic anomaly:

ϵtot ∈ Ωspin
5 (BG) , (4.1.151)

which can be contaminated by a mixed anomaly involving the 0-form symmetry G and a 1-

form symmetry S through a symmetry fractionalization mechanism similar to the 2d case, now

encoded in a class η ∈ H2
ρ(G,S).

Well-known examples of 4d theories with self-duality symmetries are the free Maxwell the-

ory, super-Yang-Mills theories with N = 4 supersymmetry and whose gauge algebra is invariant

under Langlands duality (i.e., ADEFG as well as B2
∼= C2) [7, 57, 63, 66] and various theories

of class S [8, 68]. Understanding the anomalies in these symmetries has immediate interest-

ing consequences. For example, it has been recently observed [80] that the N = 1∗ massive

deformation of N = 4 SYM preserves a self-duality symmetry. The well-known results about

vacuum degeneracy in N = 1∗ can then be reinterpreted as anomaly matching conditions. A

second natural application is to constrain which N = 3 theories can be described through a

discrete gauging of N = 4, which we comment upon in the conclusions.

Duality defects

Much of our analysis in Section 4.1.2 can be generalized to self-duality defects in four-dimensional

theories that are self-dual under the gauging of a 1-form symmetry A, possibly with discrete

torsion [57, 63, 66]. Again, the self-duality must be supplied with a choice of isomorphism

ϕ : A → A∨. While a complete description of the underlying fusion 3-category C is still out of

reach, some of the relevant data can be spelled out explicitly.41 As stated in the introduction,

this is a graded category with the grading being implemented by the duality group G, that for

41The Symmetry TFT analysis offers a complementary viewpoint on the data constituting the duality category

on the boundary, which might be easier to handle. We explain how the data we describe here is matched between

bulk and boundary in Section 4.1.3.
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N

a

ϕ(b)

= γ(a, b)

N

a
ϕ(b)

Figure 4.2: Braiding of lines WL
a and WR

ϕ(b) on the duality defect N . Unlinking the line

configuration gives rise to the symmetric bicharacter γ(a, b).

now we take to be cyclic. The fusion rules take the form

a×Ng = Ng × a = Ng , Ng(Σ)×Ng(Σ) =
∑

a∈H2(Σ,A)

a = CA(Σ) , (4.1.152)

where Ng ̸=0 are the duality interfaces, Σ the 3-manifold where they live, a a 1-form symmetry

surface, and CA(Σ) the condensate of A on Σ. The fusion of Ng × Nh is also known, and is

group-like at the level of connected components, i.e., forgetting the appearance of condensates

(see footnote 2). It was analyzed in [7, 8]. Assuming that G is cyclic, let N be a generator of

it.

A first piece of categorical data can be obtained by noticing that the 1-form symmetry

surfaces can end topologically on N thus defining topological line operators WL
a and WR

β ,

where L/R encode the side (Left or Right) on which the 1-form symmetry surfaces a, β end.42

These line defects must compose according to the A group law, modulo undetectable decoupled

objects:43

WL
a ×WL

b = WL
a+b (4.1.153)

and similarly for WR
β . Following the same logic as in the Tambara-Yamagami case, we consider

the braiding between endlines of 1-form symmetry surfaces a and β = ϕ(b) ending on the two

sides of the duality defect N . The endline of WR
β is an ’t Hooft line TLβ from the point of

view of the left side, and hence it braids canonically with WL
a . We conclude that the braiding

between WL
a and WR

ϕ(b) is given by a symmetric bicharacter γ:

BWL
a ,W

R
ϕ(b)

= ϕ(b) a = γ(a, b) , (4.1.154)

where the symmetry of γ follows from the fact that we should get the same result if we worked

in the magnetic frame instead. The configuration is depicted in Figure 4.2.

The lines WL
a and WR

β form a 3d TQFT A, but such a description is clearly non-minimal:

lines of the formKa = WL
a ×WR

ϕ(−a) are decoupled from the bulk 1-form symmetry and constitute

an undetectable sector A0. Quotienting this out gives the minimal description Amin of the

42One could think of those as 2-morphisms WR
a : a × 1N → 1N and WL

β : 1N × β → 1N , where 1N is the

identity endomorphism of N .
43The importance of modding out such decoupled TQFTs has been recently emphasized in [54] in a related

context.
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category of lines living on the defect.44 This produces, in general, a set of lines La forming

a minimal TQFT AA,q with 1-form symmetry A [353], where q a quadratic refinement of the

symmetric bilinear form γ. This resonates with previous results obtained from the Symmetry

TFT perspective [7].

Finally, as in the 2d case, we can associate to N a pure G anomaly ϵ. This is a higher

analogue of the Frobenius-Schur indicator. Indeed, ϵ can be understood as a standard G

’t Hooft anomaly on four-manifolds with trivial H2(X,A). On these manifolds, {Ng} behave

as a standard invertible symmetry according to the fusion rules (4.1.152). At the level of the

Symmetry TFT, the presence of a nontrivial ϵ gives a DW twist for the theory Z(C). All in

all, we find that the known data defining a self-duality category in 4d, or at least a subset

of it, is given by a pure anomaly ϵ for the self-duality group and a symmetric bicharacter

γ : A× A → U(1).

In the ensuing analysis we will make two simplifying assumptions. First, we will consider

duality defects on spin manifolds, w2(TX) = 0. The classification of discrete gauging operations

(global variants of a gauge theory) is different on non-spin manifolds, as the set of discrete theta

angles is larger.45 Physically this amounts to the possibility of assigning a well-defined spin to

lines as this cannot be screened by heavy neutral fermions [354]. This restriction has physical

consequences on the obstruction theory outlined above: some duality defects can be anomaly

free on spin manifolds, but anomalous in the presence of a nontrivial w2.
46. As a prototypical

example, consider the su(2) N = 4 SYM theory. This admits an S-invariant global variant

SO(3)− on spin manifolds. On non-spin (but orientable) manifolds this variant splits into

SO(3)b− and SO(3)f−, where b/f (bosonic/fermionic) refer to the spin of the generator of the

lattice of genuine lines. According to [354] (Appendix C) the two objects are interchanged by

S. Thus, although the duality symmetry in SU(2) N = 4 SYM might be non-anomalous on

spin manifolds, it is anomalous on generic orientable manifolds.47

Our second assumption is to consider duality defects for which G does not contain fermion

parity. This for example excludes the vanilla S-duality of the N = 4 SYM theory, for which

S4 = (−1)F , but includes the situation where S is twisted by a discrete R-symmetry [80]. At

the practical level, this implies that the relevant cobordism classification for cubic G anomalies

is given by Ωspin
5 (BG) as opposed to Ω

spinG
5 (pt). Both groups have been computed, e.g., in

[240,355].

44Formally one stacks A with the orientation reversal of A0 and gauges the diagonal symmetry A : Amin =

(A×A0)/A.
45As an illuminating example, consider A = Zn with n even. On generic manifolds, discrete torsion terms are

classified by H4
(
B2Zn, U(1)

)
= Z2n, while on spin manifolds the order-two element of this group vanishes due

to the Wu formula B ∪ B = B ∪
(
w2 + w2

1

)
mod 2, where wj(TX) are the Stiefel-Whitney classes of X. This

discussion generalizes to arbitrary A in a straightforward manner.
46Loosely speaking, this is some kind of mixed anomaly with gravity, due to the dependence on w2(TX).
47We will briefly comment on the interpretation of this fact from the point of view of gapped phases in

Appendix B.6.
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Symmetry TFT and Lagrangian algebras

The Symmetry TFT for 4d duality defects can be described in close analogy with the 2d

case [7, 133]. We start from a 5d Dijkgraaf-Witten theory for a 1-form symmetry A with

trivial twist. This has topological surface operators labelled by pairs (a, α) ∈ A × A∨ with

antisymmetric canonical braiding

B(a1,α1),(a2,α2) = α1(a2) α2(a1)
−1 ∈ U(1) . (4.1.155)

As in three dimensions, the 5d pure 2-form gauge theory for A enjoys electric-magnetic duality,

corresponding to a choice of isomorphism ϕ.48 There is an important difference, though, with

respect to the 3d case. The most general ansatz for a duality is

S : A× A∨ → A× A∨

(a, α) 7→
(
I ◦ ϕ−1(α), ϕ(a)

) (4.1.156)

for some automorphism I : A → A to be determined. Let γ : A×A → U(1) be the bicharacter

associated with ϕ, namely γ(a, b) = ϕ(a) b, then S preserves the braiding if and only if

γ
(
a, I ◦ ϕ−1(α)

)
γ
(
ϕ−1(α), a

)
= 1 . (4.1.157)

This equation may have multiple solutions, depending on the Abelian group A, but here we

limit ourselves to EM dualities that can be defined universally. If I is the identity then γ

is an antisymmetric non-degenerate bicharacter, which however does not exist for all Abelian

groups49 and thus we will not study this case any further. On the other hand, if I is the

inversion

I(a) = −a (4.1.158)

then γ must be a symmetric non-degenerate bicharacter, which always exists. We will thus

consider this case in the following.50 With this choice of definition, S is an order-four automor-

phism:

S2(a, α) = (−a,−α) ⇒ S2 = C , (4.1.159)

where we defined the charge-conjugation operator C : A × A∨ → A × A∨. The 5d DW(A)
theory enjoys a larger set of 0-form symmetries, for any group A. Indeed we can define another

generator

T : (a, α) 7→
(
a+ ϕ−1(α), α

)
, (4.1.160)

and in this way construct an order-three automorphism of A× A∨:

CST : (a, α) 7→
(
ϕ−1(α), −α− ϕ(a)

)
such that (CST )3 = 1 . (4.1.161)

48This isomorphism appears in the construction of the element S of EM duality in the bulk (which might not

be a symmetry element of the boundary theory), while the isomorphism we used in (4.1.154) was associated

with the generator N of G on the boundary. As we discuss below, the two isomorphisms are essentially the

same, possibly up to composition with charge conjugation.
49For instance A = Zn with n ̸= 2 does not admit any.
50Other automorphisms I may exist and lead to EM dualities for certain Abelian groups A.
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The Symmetry TFT for the duality or triality defects is then defined by gauging the group G

generated by S or CST , respectively. This gauging admits a choice of discrete torsion, which

on spin manifolds is classified by

ϵ ∈ Ωspin
5 (BG) , (4.1.162)

and can be thought of as the higher analogue of the Frobenius-Schur indicator we introduced

before.

Notice that if we gauge the group G = Z4 generated by S, the generator maps (b, 0)
S7→(

0, ϕ(b)
)
and thus the isomorphism ϕ appearing in (4.1.156) is precisely the one extracted from

the boundary theory using (4.1.154). The same is true if we gauge G = Z6 generated by ST

since (b, 0)
ST7→
(
0, ϕ(b)

)
. On the other hand, if we gauge G = Z3 generated by CST , the

isomorphisms in (4.1.156) and (4.1.154) differ by C.

The same argument for the first obstruction corresponding to the absence of G-invariant

Lagrangian algebras in the DW(A) theory carries over to the 5d case. We are thus led to study

the properties of gapped boundaries of the pure 2-form gauge theory for A. These are labelled

by two discrete choices, as in 2d:

• a subgroup B ⊂ A to be gauged;

• a class [ν] ∈ H4
(
B2B, U(1)

)
specifying the discrete torsion.

Recall that in 2d the discrete-torsion classes are classified by alternating bicharacters. The

analog here is the identification of H4
(
B2B, U(1)

)
with the dual of the universal quadratic

group Γ(B) (see [178,356] for details):

H4
(
B2B, U(1)

) ∼= Γ(B)∨ . (4.1.163)

This means that any discrete torsion class [ν] is represented by a quadratic function qν : B →
U(1). The group Γ(B) is equipped with a quadratic function Q : B → Γ(B) and is such that

for any Abelian group V , any quadratic function q : B → V factorizes as q = q̃ ◦ Q with

q̃ : Γ(B) → V a group homomorphism. Therefore, a quadratic function qν : B → U(1) is

represented by a group homomorphism q̃ν : Γ(B) → U(1). The topological term implementing

the discrete torsion is

Storsion =

∫
X4

B∗ν =

∫
X4

q̃ν
(
P(B)

)
. (4.1.164)

Here P ∈ H4
(
B2B,Γ(B)

)
is the special element whose representative homomorphism51 is the

identity map, q̃P : Γ(B) id→Γ(B), called the universal Pontryagin square class. Then one con-

structs its pull back P(B) ≡ B∗P ∈ H4
(
X4,Γ(B)

)
which is called the Pontryagin square of B,

whilst q̃ν ∈ Γ(B)∨ is the homomorphism associated with the quadratic function qν .

As already explained in Section 4.1.2, each quadratic function qν has an associated sym-

metric bicharacter χν : B × B → U(1). Crucially, if X4 is a four-dimensional spin manifold,

then two discrete torsions ν, ν ′ leading to two quadratic functions qν , qν′ which are different

quadratic refinements of the same bicharacter, lead to the same topological term [353, 354]:

51Indeed (4.1.163) generalizes to H4
(
B2B,C

) ∼= Hom
(
Γ(B),C

)
for any Abelian group C.
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∫
X4
B∗ν =

∫
X4
B∗ν ′. Thus, by working on spin manifolds, we can safely label topological ma-

nipulations of the boundary theory in terms of a choice of subgroup B ⊂ A and of a symmetric

bicharacter χν . Then most of the results will be closely analogous to the 2d/3d case, just

replacing antisymmetric with symmetric bicharacters.

As explained, on spin manifolds we can label the Lagrangian algebras LB,[ν] in terms of the

data (B, χν). The corresponding gapped boundary has a 1-form symmetry

S =
(
A× A∨)/LB,[ν] . (4.1.165)

One can easily adapt the 3d discussion in order to explicitly write the form of the general

Lagrangian algebra. The symmetric bicharacter χν : B×B → U(1) induces a group homomor-

phism ψν : B → B∨ as in the 3d case. Given a pair (B, χν) we construct the Lagrangian algebra

LB,[ν] ⊂ A× A∨ as

LB,[ν] =
{(
b, βψν(b)

)
∈ A× A∨

∣∣∣ b ∈ B , β ∈ N(B)
}
. (4.1.166)

This has cardinality |A| and is Lagrangian since B(b1,β1),(b2,β2) = χν(b2, b1) χν(b1, b2)
−1 = 1,

where (b, β) is a shorthand for
(
b, βψν(b)

)
and we used the symmetry of χν . As in the 3d case

(see Appendix B.2) one can show that all Lagrangian algebras of the 5d DW(A) theory are of

this form.

First obstruction

After fixing a choice of electric-magnetic duality, we ask what are the conditions for a duality-

invariant Lagrangian algebra LD = Φ(LD) to exist. We will study two cases: Φ = S (duality)

and Φ = CST (triality). Other cyclic 0-form symmetry groups, when they exist, can be treated

similarly. As we previously showed, all Lagrangian algebras are of the form (4.1.166). To verify

whether a lattice is Φ-invariant, as in 3d, we impose that the pairing between L and Φ(L) be

trivial. The analysis is analogous to the 3d case. For both choices of Φ, we find the necessary

condition

ϕ
(
Rad(ν)

)
= N(B) , (4.1.167)

where Rad(ν) is the kernel of ψν . As in the 3d case, this implies that |B|2 = k|A| for some

positive integer k =
∣∣B/Rad(ν)∣∣ ∈ N, and again B cannot be smaller than Lagrangian. Notice

however that since χν is now symmetric rather than antisymmetric, we cannot conclude that

|A| (and in particular k) is a perfect square. Indeed we will see explicit counterexamples, hence

showing that in higher categories the obstruction from non-integer quantum dimensions of [12]

does not hold.

The remaining conditions depend on Φ and are listed below.

Duality. The automorphism σ = ϕ−1ψν of B/Rad(ν) must satisfy

σ2 = −1 . (4.1.168)

In particular σ allows us to relate the two symmetric bicharacters as

γ
(
σ(a), b

)
= χν(a, b) . (4.1.169)
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From the two equations above it follows that σ is an order-two automorphism of the group of

symmetric bilinear forms on B/Rad(ν):

χν
(
σ(a), σ(b)

)
χν(a, b) = 1 . (4.1.170)

Triality. The automorphism τ = ϕ−1ψν must satisfy

1 + τ + τ 2 = 0 . (4.1.171)

It is simple to show that the above implies that τ is an order-three operation: τ 3 = 1. Also in

this case, the restriction to B/Rad(ν) of

γ
(
τ(a), b

)
= χν(a, b) (4.1.172)

holds. Using the two above equations it follows that τ is an order-three automorphism of the

group of symmetric bilinear forms on B/Rad(ν):

χν
(
τ 2(a), τ 2(b)

)
χν
(
τ(a), τ(b)

)
χν(a, b) = 1 . (4.1.173)

Examples

1. Let us study the case of A = Zn with the standard symmetric bicharacter γ(a1, a2) =

exp
(
2πi
n
a1a2

)
. Consider a factorization n = pq and a subgroup

B =
{
b q
∣∣ b = 0, . . . , p− 1

} ∼= Zp (4.1.174)

so that N(B) ∼= Zq. Since duality invariance requires B to contain ϕ−1
(
N(B)

)
as a subgroup,

q must divide p and we set p = ℓq. A choice of ψν is associated with another symmetric

bicharacter χν defined on B:

χν(b1, b2) = exp

(
2πir

p
b1b2

)
, (4.1.175)

where r ∈ {0, . . . , p − 1}. Notice that Rad(ν) ∼= Zgcd(r,p) hence imposing ϕ
(
Rad(ν)

)
= N(B)

forces gcd(r, p) = q, namely r = sq with gcd(s, ℓ) = 1. Furthermore, since the restriction of γ

to B is γ(qb1, qb2) = exp
(
2πi
ℓ
b1b2

)
, over B/Rad(ν) ∼= Zp/Zq ∼= Zℓ we have

σ(b) = ϕ−1ψν(b) = s b mod ℓ . (4.1.176)

Thus we find that:

1. On spin manifolds, there is a duality-invariant LD for A = Zn if and only if there exists

an ℓ such that n = ℓq2 and −1 is a quadratic residue mod ℓ, i.e., there exists also an s

such that

s2 = −1 mod ℓ . (4.1.177)

This equation has solutions for ℓ = 1, 2, 5, 10, 13, 17, 25, 26, . . .
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2. On spin manifolds, there is a triality-invariant LD for A = Zn if and only if there exist

ℓ, s such that n = ℓq2 and

s2 + s+ 1 = 0 mod ℓ . (4.1.178)

This equation has solutions for ℓ = 1, 3, 7, 13, 19, 21, 31, 37, . . .

These results coincide with the recent classification [78] of 4d topological Zn gauge theories that
are duality or triality invariant on spin manifolds.52 As in the 3d case, we provide a precise

connection between the two approaches in Appendix B.6.

2. Another interesting case to consider is A = Z2 × Z2 which is the 1-form symmetry group

of a Spin(4k) gauge theory. On Z2 × Z2 there are four symmetric non-degenerate quadratic

forms:

γ(D) =
1

2

(
1 0

0 1

)
, γ(O) =

1

2

(
0 1

1 0

)
, γ+ =

1

2

(
1 1

1 0

)
, γ− =

1

2

(
0 1

1 1

)
. (4.1.179)

In this case −1 acts as the identity on A and duality is an involution. Thus given any choice

of γ, the first obstruction is cancelled by choosing B = A, σ = 1 and χν = γ. The case of

triality is slightly more involved. Let us consider B = A. It is simple to show that the only two

Z2 ×Z2 isomorphisms τ satisfying τ 2 + τ + 1 = 0 are τ± =
(
1 1
1 0

)
and

(
0 1
1 1

)
, which are inverses

to each other. If γ = γ(D) we can solve the triality obstruction by taking χν = γ± and τ = τ±,

similarly if γ = γ± we can take χν = γ(D) and τ = τ∓. On the other hand, if γ = γ(O) then

γ
(
τ±(a), b

)
is not symmetric and the obstruction is present for B = A. Let us then consider

γ = γ(O) and B = Z2. Since N(B) is also Z2, we must have that B = ϕ
(
N(B)

)
. It is simple to

verify that taking B to be the diagonal Z2 this is indeed satisfied. We conclude that the first

obstruction for A = Z2 × Z2 vanishes for both duality and triality.

This example, combined with the previous one, allows us to discuss the first obstruction for

N = 4 Spin(2m) SYM (and its global variants). Recall that the 1-form symmetry group is

A =

Z4 if m = 2k + 1 ,

Z2 × Z2 if m = 2k .
(4.1.180)

We thus find that the first obstruction vanishes in all cases.

Second obstruction and symmetry fractionalization

While in absence of duality- (or triality-) invariant Lagrangian algebras the non-invertible

self-duality symmetry is anomalous, when such an invariant algebra does exist the anomalies

are determined by those on the invariant boundary, where the symmetry is invertible. The

philosophy is the same as in the 2d/3d case: due to a mixed anomaly between the 1-form

52Let us also notice a few facts. In the case of duality invariance, the possible values of ℓ are those that can

be written as ℓ = x2 + y2 for coprime x, y. The condition can never be satisfied by ℓ multiple of 4; indeed, if ℓ

is even then s must be odd, but then s2 = 1 mod 4. In the case of triality invariance, the possible values of ℓ

are those that can be written as ℓ = x2 + xy + y2 for coprime x, y. The condition can never be satisfied by ℓ

multiple of 9.
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symmetry S = A × A∨/LD and the invertible duality symmetry G we can shift the value of

the pure G anomaly by changing the symmetry fractionalization class η ∈ H2
ρ(G, S). We now

determine the mixed anomaly in the simpler case B = A, the generalization to proper subgroups

being straightforward but technically tedious.

Duality. In the case of Φ = S and so G = Z4 the invariant partition function is given by:53

Zinv

[
ϕ(B)

]
=

∑
b∈H2(X,A)

exp

(
2πi

∫
X4

b∗ν + 2πi

∫
X4

ϕ(B) ∪ b
)
Ze[b] , (4.1.181)

where Ze is the partition function corresponding to the reference electric boundary condition,

while ν is defined through a bicharacter χν such that

γ
(
σ(a), b

)
= χν(a, b) and σ2 = −1 . (4.1.182)

The action of S-duality on Zinv is easily determined using the action of S-duality on the electric

theory:

S · Ze[B] =
∑

a∈H2(X,A)

exp

(
2πi

∫
X4

ϕ(B) ∪ a
)
Ze[a] . (4.1.183)

We find

S · Zinv

[
ϕ(B)

]
= Gν exp

(
2πi

∫
X4

B∗ν

)
Zinv

[
ϕ(σB)

]
, (4.1.184)

where Gν ≡
∑

b∈H2(X,B) exp
(
2πi
∫
X
b∗ν
)
. Here, assuming that X4 is spin, we used the simplify-

ing relation

exp

(
2πi

∫
X4

B∗(ν ◦ σ)) = exp

(
−2πi

∫
X4

B∗ν

)
. (4.1.185)

Assuming that X4 is simply connected (and thus H2(X4,Z) has no torsion classes) and spin,

one can show that the Gauss sum Gν is equal to 1 [78]. In a similar way we can verify that

S2 · Zinv

[
ϕ(B)

]
= Zinv

[
−ϕ(B)

]
= C · Zinv

[
ϕ(B)

]
. (4.1.186)

Eqn. (4.1.184) implies that the Z4 symmetry generated by S acts on the 1-form symmetry of the

theory through σ, i.e., the symmetry is a split 2-group with nontrivial action ρ : G → Aut(A)
[178,356,357] given by ρ1(a) = σ a. Furthermore, the overall phase exp

(
2πi
∫
X
B∗ν

)
should be

thought of as encoding a mixed anomaly

µ ∈ H1
ρ

(
Z4, H

4
(
B2A, U(1)

))
where µ(1) = ν (4.1.187)

and 1 is the generator of G = Z4, much as in the 2d case.

Triality. For Φ = CST and so G = Z3 we have the same expression (4.1.181) for Zinv

[
ϕ(B)

]
,

but with the class ν now satisfying (4.1.173) in terms of a τ such that τ 2+ τ +1 = 0. T-duality

acts on the electric boundary as

T · Ze[B] ≡ exp

(
−2πi

∫
X4

B∗γ

)
Ze[B] . (4.1.188)

53For simplicity we omit the normalization factors due to gauging.
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Then

(CST ) · Ze[B] = exp

(
2πi

∫
X4

B∗γ

) ∑
a∈H2(X,A)

exp

(
2πi

∫
X4

ϕ(B) ∪ a
)
Ze[a] (4.1.189)

with B∗γ any class stemming from a quadratic refinement of γ, i.e. the Pontryagin square

induced by γ, and we find

(CST ) · Zinv

[
ϕ(B)

]
= Gγ+ν exp

(
2πi

∫
X4

B∗ν

)
Zinv

[
ϕ(τB)

]
(4.1.190)

Here we used that, on spin manifolds, exp
[
2πi
∫
B∗(ν + ν ◦ τ + ν ◦ τ 2

)]
= 1. It also holds that

(CST )3 · Zinv

[
ϕ(B)

]
= Zinv

[
ϕ(B)

]
. (4.1.191)

As before, the result is interpreted by saying that the split 2-group is twisted by the Z3 symmetry

and the overall phase comes from a mixed anomaly

µ ∈ H1
ρ

(
Z3, H

4
(
B2A, U(1)

))
where µ(1) = ν . (4.1.192)

We thus conclude that, similarly to the 3d case, the 5d mixed anomaly is determined by a

class

µ ∈ H1
ρ

(
G, H4

(
B2A, U(1)

)) ∼= H1
ρ(G,Γ(A)∨) (4.1.193)

namely a function from G to the group of quadratic functions over A satisfying

ρg µ(h) + µ(g) = µ(g + h) (4.1.194)

and subject to the the identification

µ(g) ∼= µ(g) + ρg ξ − ξ for any ξ ∈ H4
(
B2A, U(1)

)
. (4.1.195)

The full detailed derivation of the anomaly inflow is given in Appendix B.4.2 and we find

Sµ = 2πi

∫
X5

µ(A) ∪Pρ(B) . (4.1.196)

To reproduce the anomalous phase arising in the boundary theory we have to compare this

phase with the boundary term arising in Sµ from A + dλ when we set the pull-back of A to

the boundary to zero, as well as the boundary value of λ equal to the element of the group G

for which we compute the variation. This determines all the values of µ(g) for g ∈ G. We can

check that the consistency (4.1.194) of these values is satisfied. In the case of duality G = Z4,

since ν satisfies ν
(
σ(a), σ(b)

)
= −ν(a, b), we deduce that

µ(1) = µ(3) = ν , µ(0) = µ(2) = 0 . (4.1.197)

It is obvious that (4.1.194) is satisfied.

For triality G = Z3 the crucial relation is

γ(a, b) + γ
(
τ(a), τ(b)

)
+ γ

(
τ 2(a), τ 2(b)

)
= 0 . (4.1.198)
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By looking at the anomalous phases that we got this implies that

µ(0) = 0 , µ(1)(a, b) = γ
(
τ(a), τ(b)

)
, µ(2)(a, b) = γ

(
τ(a), τ(b)

)
+ γ(a, b) .

(4.1.199)

Among the consistency relations (4.1.194), the only non-trivial (and independent) ones to check

are: τµ(1)+µ(1) = µ(2), τµ(2)+µ(1) = 0 and τ 2µ(2)+µ(2) = µ(1), which are indeed satisfied

thanks to (4.1.198).

Given such a mixed anomaly, we are now able to discuss the pureG anomaly. The philosophy

is the same as in the 2d/3d case: combining the choice of symmetry fractionalization with the

mixed anomaly we can induce an extra contribution to the pure anomaly for the invertible

duality symmetry. The details are however slightly different.

In 4d symmetry fractionalization is classified by η ∈ H2
ρ(G,A), which, as opposed to the

2d case where it corresponds to the choice of a G subgroup of the full symmetry, here it

corresponds to the choice of a 1-form symmetry defect η(g, h) ∈ A inserted along the junction

of the intersection of g, h and gh defects. This amounts to redefine the coupling of the 0-form

symmetry to a background, prescribing that B is shifted to

B′ = B + A∗η ∈ H2
ρ(X,A) . (4.1.200)

By plugging this expression into the mixed anomaly (4.1.196) we shift the pure G anomaly by

an extra piece

Spure = 2πi

∫
X5

µ(A) ∪Pρ(A
∗η) ≡ 2πi

∫
X5

A∗y (4.1.201)

that can be written in terms of a class y ∈ H5
(
G,U(1)

)
. In order to work out an explicit

expression for this class we rely on a working assumption. We note that the Pontryagin square

operation, when the homology groupH2(X5,Z) is torsion-free, can be written as a cup product54

[356]:

Pρ(A
∗η) = A∗η ∪ A∗η . (4.1.202)

On the other hand the pure G anomaly is non-trivial when the homology group H1(X5,Z)
contains torsion [240]. Therefore, in order to do the computation, we pick a bulk spin manifold

X∗
5 with torsion 1-cycles but with torsion-free 2-cycles so as to write (4.1.201) as

Spure = 2πi

∫
X∗

5

µ(A) ∪ A∗η ∪ A∗η . (4.1.203)

Then it is easy to conclude that

y
(
g1, g2, g3, g4, g5

)
= ⟨−µ(−g1) , η(g2, g3) ρg2+g3 η(g4, g5)⟩ . (4.1.204)

where the product in the second entry should be interpreted as in footnote 54. When the

second entry is the image of a quadratic function γ : A → Γ(A) the above expression can

54The expression (4.1.202) should be interpreted as follows. One writes A = ⊕iZni
and lift A∗η to ⊕iZ, which

is always possible for finite Abelian groups. In ⊕iZ we can take the product among the various components

of the lift, then (4.1.202) is obtained restricting the result to Γ (⊕iZni) =
⊕

i Γ (Zni)⊕
⊕

i<j Zni ⊗ Znj . If X5

has torsion 1-cycles the Pontryagin square is not a cup product and in order to write it in components we need

Steenrod’s cup products (see e.g. [178]).
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be rewritten in a simpler form using the universal property defining Γ(A) (see the discussion

around (4.1.163)). In particular if we can find a representative for η that is invariant under the

ρ action, setting g2 = g4 and g3 = g5, we have

y
(
g1, g2, g3, g2, g3

)
= ⟨−µ(−g1) , η(g2, g3) η(g2, g3)⟩ = −µ(−g1)(η(g2, g3)) . (4.1.205)

Examples

We now discuss how this general story applies to examples where A = Zn and G is either Z4

or Z3, namely duality and triality respectively. This has some consequence for the anomaly

structure of N = 4 SYM theories with gauge group SU(n) at τ = i, e
2πi
3 respectively.

Several technical details on the computations of the twisted cohomology groups are based

on the following known result (see e.g. [187]). If G ∼= Zk, denoting f = ρ1 ∈ Aut(A) (note that
fk = 1), then

Hn
ρ (G,A) ∼=


Ker(1− f)

Im(1 + f + f 2 + ...+ fk−1)
if n is even

Ker(1 + f + f 2 + ...+ fk−1)

Im(1− f)
if n is odd

(4.1.206)

The symmetry fractionalization classes are classified by H2
ρ(G,A), and we notice that in both

the duality and triality examples we have

1 + f + f 2 + ...+ fk−1 = 0 (4.1.207)

by virtue of the relations σ2 = −1, τ 2 + τ + τ = 1. Hence for us

H2
ρ(G,A) = Ker(1− f) = {a ∈ A | ρ1(a) = a} = Fixρ1(A) . (4.1.208)

This also gives a hint for the form of the explicit representatives of the non-trivial twisted

cocycles as

ηx(1, 1) = x , x ∈ Fixρ1(A) (4.1.209)

Duality. For the case of duality G ∼= Z4 we have

ρ1(a) = ta , t2 = −1 mod(n) . (4.1.210)

Using (4.1.208) we get

H2
ρ(Z4,Zn) ∼=

{
Z2 if n is even

0 if n is odd
(4.1.211)

and in the even case the cocycles can be represented

ηs(1, 1) = ηs(3, 3) = ηs(1, 3) = ηs(3, 1) =
n

2
s , s = 0, 1 (4.1.212)

with all the other values vanishing. By setting n = 2m, the pure anomaly is determined by the

value of the 5-cocycle Y ∈ H5(Z4, U(1)) in g1 = ... = g5 = 1 and we get

Y = qν(ηs(1, 1)) = e2πits
2 m

4 . (4.1.213)
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We conclude that for n odd the pure duality anomaly on the invertible boundary is the bare

one, given by ϵ ∈ H5(Z4, U(1)) ∼= Z4, while for n even the cancellation depends on the possible

values of Y . Recall that the first obstruction never vanishes when m is even. Therefore the

possible values of Y are

Y = exp

(
πi

2
t(2k + 1)

)
for n = 2(2k + 1) . (4.1.214)

In the N = 4 theory with gauge group SU(n) at τ = i the non-invertible duality symmetry

is anomalous whenever it is intrinsically non-invertible, on spin manifolds we have given the

relevant condition for A = Zn around equation (4.1.177). If the defect is non-intrinsically

non-invertible the anomaly automatically vanishes provided we combine the duality with an

appropriate R-symmetry rotation in order to have a Z4 operation (see e.g. [341, 358]). Indeed

following [359] and using that Ωspin
5 (BZ4) ∼= Z4 one gets [80]

ϵ = 60(n− 1)− 24(n2 − 1) mod(4) = 0 , (4.1.215)

therefore one should choose the trivial fractionalization class to cancel the second obstruction.

One could also consider other definitions of S-duality which do not involve the R-symmetry,

in such cases the relevant bordism group Ωspin−Z8(pt) = Z32 ⊕ Z2 is larger and our techniques

would need to be refined in order to appropriately account for the cubic anomaly.

A similar conclusion applies to Maxwell theory, for which S4 = 1 and the anomaly 56 mod(4) =

0 also identically vanishes.

Triality. In the triality case G ∼= Z3,

ρ1(a) = ta , t2 + t+ 1 = 0 (4.1.216)

for which we get

H2
ρ(Z3,Zn) ∼=

{
Z3 if n = 0 mod(3)

0 otherwise
(4.1.217)

and the (non)trivial cocycles are

ηs(1, 1) = ηs(2, 2) = ηs(1, 2) = ηs(2, 1) =
n

3
s , s = 0, 1, 2 (4.1.218)

with all the other values vanishing. Setting n = 3m, the class Y ∈ H5(Z3, U(1)) ∼= Z3 is

determined by55

Y =
[
µ(2)

(
ηs(1, 1), ρ2 ηs(1, 1)

)]−1

= qγ (ηs(1, 1)) =


exp

(
2πi

k

3

)
if m = 2k

exp

(
2πi

4k + 2

3

)
if m = 2k + 1

.

(4.1.219)

55One can easily check that, when n = 3m is also even, so m = 0 mod (2), the choice of quadratic refinement

for qγ is immaterial.
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Again we can apply these results to the case of triality symmetry appearing in N = 4 SYM at

τ = e2iπ/3. The triality defect is non-intrinsic when there exist t ∈ Zn such that 1 + t + t2 =

0 mod(n). When this is the case we can ask about the second obstruction. To apply our

methods we are not forced to combine the naive CST operation with an R-symmetry rotation

to eliminate fermion parity, since (CST )3 = 1. Then, by the same token as the duality case

and knowning that Ωspin
5 (BZ3) ∼= Z9, we have

ϵ = 60(n− 1) mod(9) = −3(n− 1) mod(9) . (4.1.220)

Notice that Y is valued in the Z3 subgroup of the Z9 anomaly group, then to compare Y to

the ϵ above we need to multiply by 3. When n = 1 mod(3) then ϵ = 0 and there is no choice

of fractionalization, therefore the second obstruction vanishes. For n = 2 mod(3) we find ϵ = 6

and the triality defect is always anomalous. Finally when n = 0 mod 3 we have ϵ = 3 and

a simple computation shows that the second obstruction can be cancelled only when n = 3m

with m = 1 mod (3).

In Maxwell theory instead the anomaly is 56 mod(9) = 2 and cannot be cancelled by any

choice of symmetry fractionalization. We conclude that the triality symmetry in Maxwell theory

is always anomalous due to the second obstruction.

4.1.4 A check from dimensional reduction

As a check of our results, we show that the obstruction theory of Section 4.1.3 is consistent

with the one for Tambara-Yamagami categories upon dimensional reduction on an orientable

2-manifold W . We treat explicitly the case that W is a torus T 2, but the generalization to any

Riemann surface Σg is straightforward. Physically this should be expected, indeed the simplest

example of a 4d theory enjoying self-duality is Maxwell theory, which upon compactification

on T 2 reduces to the theory of two compact bosons.56 In this example the complexified gauge

coupling τ is mapped to the position of the 2d CFT on the Narain moduli space. Such a theory

is well known to enjoy Tambara-Yamagami-type symmetries if the point on the conformal

manifold is chosen appropriately [31].

Compactifying the 5d Dijkgraaf-Witten theory for A on the torus is a simple exercise. The

resulting 3d TQFT has a 1-form symmetry Ã× Ã∨ where

Ã = A× A , (4.1.221)

together with a 0-form and a 2-form symmetry, both being A × A∨, which we neglect in the

following discussion. Given a choice ϕ for the isomorphism that enters into the 5d duality

symmetry, the defect Φ also implements a Z4 symmetry in 3d:

Φ(a1, a2; α1, α2) =
(
−ϕ−1(α2), ϕ

−1(α1); −ϕ(a2), ϕ(a1)
)
, (4.1.222)

56Plus a decoupled 2d Maxwell sector that we ignore. Such a sector has a 1-form and a (−1)-form symmetry

(associated to a 2π shift of the theta angle), associated to the 0-form and 2-form symmetries of the Symmetry

TFT.
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where (a1, a2) ∈ Ã and (α1, α2) ∈ Ã∨. To get a Z2 symmetry we compose this transformation

with the internal S-duality of the torus, which also squares to charge conjugation and sends

(a1, a2; α1, α2) → (a2, −a1; α2, −α1). The resulting Z2 symmetry, which we dub Φ̃ acts as:

Φ̃(a1, a2; α1, α2) = (ϕ−1(α1), ϕ
−1(α2); ϕ(a1), ϕ(a2)) , (4.1.223)

or, using the Ã
Φ̃ : Ã× Ã∨ −→ Ã× Ã∨

(ã, α̃) −→ (ϕ̃−1(α̃), ϕ̃(ã))
(4.1.224)

with ϕ̃ : A× A → A∨ × A∨ given by ϕ̃(a1, a2) = (ϕ(a1), ϕ(a2)).

First and second obstruction upon dimensional reduction

We now discuss how the first obstruction in 5d is mapped to the first obstruction in 3d language

after compactification. Clearly not all Lagrangian algebras L in the 3d description can descend

from a 5d description, so we must first characterize them. Recall that, in 5d, algebras where

described by a choice of subgroup B of A together with a discrete torsion [ν] ∈ H4
(
B2B, U(1)

)
.

Upon reduction on T 2 this should map to a specific class [ν̃] ∈ H2
(
BB̃, U(1)

)
, where B̃ = B×B.

Expanding the 5d background B = B1θ1 + B2θ2 with θi a basis of H1(T 2,Z) (we neglect the

0-form and 2-form symmetries), we find:∫
T 2

B∗ν = B1 ∪ν B2 −B2 ∪ν B1 , (4.1.225)

where ∪ν is the cup product induced by the symmetric bilinear form χν . The bicharacter

corresponding to ν̃ is then, in matrix and additive notation,

χν̃ =

(
0 χν

−χν 0

)
. (4.1.226)

A 3d Lagrangian algebra L̃ induced from 5d then is of the form

L̃ =
{(
b̃, β̃ψν̃(b̃)

) ∣∣∣ b̃ ∈ B̃ , β̃ ∈ N(B̃)
}
, (4.1.227)

where ψν̃ : B̃ → B̃∨ is the homomorphism associated with the antisymmetric bicharacter

(4.1.226). Since Rad(ν̃) = Rad(ν) × Rad(ν) the 5d condition ϕ(N(B)) = Rad(ν) implies

ϕ(N(B̃)) = Rad(ν̃) in 3d. On the other hand, the map σ̃ = ϕ̃−1ψν̃ is given by:

σ̃ =

(
0 σ

−σ 0

)
, (4.1.228)

which is an involution σ̃2 = 1. We have thus shown that solutions to the first obstruction in 5d

always descend to solutions to the first obstruction in 3d.

Let us now discuss the second obstruction. We notice that the 5d discrete torsion ϵ, when

reduced on T 2, trivializes. This is because the torus (as well as any Riemann surface) does

not have torsion 1-cycles. Thus it is not possible to detect the 5d second obstruction in 3d

176



after compactification on a Riemann surface. Indeed, from the point of view of symmetry

fractionalization, we have G ∼= Zn and for any Abelian group A we get

H1
ρ(Zn, A) = Ker(1 + f)/Im(1− f) , (4.1.229)

with f = ρ1. Applying this to the case A = B̃/N(B̃) and f = σ̃ it is simple to prove that the

twisted cohomology group is trivial for any choice of B.57 Thus there are no fractionalization

classes and therefore the second obstruction always trivializes.

4.1.5 Conclusions and applications

Let us conclude by mentioning some immediate applications of our results, as well as some

interesting open problems.

4d N = 3 theories. It has been appreciated in the past that a class of 4d N = 3 theories

may be obtained from a discrete gauging of the N = 4 duality symmetry for special values of

τ [341, 358]. More precisely, given a Zk subgroup of SL(2, Z) and a fixed coupling τk, where

k = 2, 3, 4, 6,58 we can combine this transformation with a Zk R-symmetry rotation in the

Cartan of SU(4) so that the combined action preserves N = 3 supersymmetry. As the gauge

coupling τ = τk must be fixed to its self-dual value, these theories have no exactly marginal

deformation and are inherently strongly coupled. The case of k = 2 is special, as the symmetry

is charge conjugation, hence it preserves the full N = 4 supersymmetry, and is invertible. We

will thus concentrate on the cases k = 4 (corresponding to the S transformation) and k = 3

(corresponding to the CST transformation) and gauge group SU(n). As the duality symmetry

is non-invertible, it must be gauged together with (a subgroup of) the Zn 1-form symmetry

and our results imply that this is only consistent if the first obstruction vanishes. Thus there

is a severe constraint on the possible N = 3 theories which can be obtained in this way. For

example our results show that there is no such theory for n = 3 and k = 4. We must also

check the vanshing of the second obstruction. The joint duality/R-symmetry anomaly is given

by [80]:

60(n− 1)− 24(n2 − 1)

 mod 4 , if k = 4

mod 9 , if k = 3
. (4.1.230)

For the duality case the cubic anomaly is identically trivial, thus the vanishing of the first

obstruction is a sufficient condition for the gauging to be consistent. For triality instead it is

given by 6 mod 9 when n = 3m + 2 and is zero otherwise. It has been checked in [80] that

this anomaly identically trivializes when the first obstruction vanishes. Therefore also in the

triality case the gauging is consistent if the first obstruction vanishes. This also implies that,

when n = 3m, we must choose the trivial fractionalization class η ∈ H2
ρ(Z3, Z3m).

57Using that σ2 = −1 we find that Ker(1+ σ̃) is spanned by elements (b1, b2) ∈ B̃/N(B̃) such that b2 = σ(b1).

An element of Im(1 − σ̃) instead is of the form (b1, b2) =
(
x − σ(y), σ(x) + y

)
. A simple manipulation shows

that this is equivalent to b2 = σ(b1).
58To be precise, since the duality group is Mp(2, Z) the discrete groups are actually Z3, Z4, Z8, Z12 as charge

conjugation squares to fermion number C2 = (−)F . The combined duality - R symmetry transformation

however lies is Zk with k as in the main text.
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In some special cases the S-fold construction of [360] gives rise to discrete gaugings of

N = 4 SYM [361]. These are engineered by 2 D3-branes probing a k = 3, 4, 6 S-fold and

lead to a discrete gauging of SU(3), SO(5) and G2 N = 4 SYM respectively. Our analysis can

be applied to the first two cases which, following the discussed examples, indeed are free of

anomalies for triality and duality respectively. It would certainly be interesting to understand

whether our methods can give some insight also on N = 3 theories which cannot be obtained

by a discrete gauging procedure from N = 4 and, in particular, if they enlarge the list of

generalized symmetries of S-folds described recently in [362,363].

A mixed anomaly. We have mentioned in Section 4.1.2 that the space of duality-invariant

Lagrangian algebras is larger on spin manifolds. Similarly one can argue, for example following

[78], that the first obstruction in the 4d case has less solutions if the spacetime X is not

spin. This should be rephrased as the presence of a mixed ’t Hooft anomaly between the non-

invertible symmetry N and gravity, sourced by a nontrivial second Stiefel-Whitney class w2(X).

A well known example is the symmetry TY(Z2)1,1 of the Ising CFT. As a bosonic symmetry

this is anomalous as the first obstruction cannot be cancelled. However, if we consider it on

spin manifolds X only, the obstruction is absent since the bulk algebra LD = {(0, 0), (1, 1)}
is manifestly duality invariant. Such an algebra can only be condensed on spin manifolds as

θ(1,1) = −1. On the field theory side it is well known [12, 31, 364] that fermionizing the Ising

CFT into a Majorana fermion the duality symmetry N becomes the invertible (−1)FL which

is anomaly free. A similar example in 4d, as already stated before, if the N = 4 SU(2) SYM

theory, whose duality symmetry is anomaly-free on spin manifolds (after combining it with an

R-symmetry rotation) it is anomalous by the first obstruction when X is non-spin. It would

be nice to make this idea more precise.

Duality-invariant RG flows. In both 2d and 4d, duality-symmetric theories allow for a

plethora of interesting RG flows which preserve the non-invertible symmetry. In the former case

they have been studied in [31], while in the latter an initial study has appeared recently [80].

As in the 2d case, the anomalies for the duality symmetry can lead to strong constraints on

the possible low energy phases. A simple example is the N = 1∗ [365–369] deformation of

N = 4 SYM at τ = i, which, in the presence of the first obstruction, necessarily leads in the

IR either to spontaneous symmetry breaking of the non-invertible symmetry, or to a self-dual

Coulomb phase [80]. A related problem deserving further study in the light of our results is

the deformation of the SU(2), SU(3), SU(4) N = 4 theory by the Konishi operator. This

must lead in the IR either to an N = 0 CFT or to chiral symmetry breaking in order to

match the cubic SU(4) anomaly. Consistency of these scenarios with the intricate pattern of

non-invertible symmetries and their anomalies might allow to put stringent constraints on the

possible IR phases. This problem is currently under investigation.

Intrinsic versus anomalous. In our work we have seen that, in the context of duality

symmetries, the concept of “instrinsic” [133] implies that the duality symmetry is anomalous.

Such concept is not unique to duality symmetries, and can be rephrased as the statement that
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the symmetry category C is not Morita equivalent to any category of the form nVecG for some

(higher) group G. It would be interesting to understand how far the relationship between ’t

Hooft anomalies and intrinsic defects extends.

Duality-invariant boundary conditions. It is known [332,333] that the presence of an ’t

Hooft anomaly for a symmetry C forbids the existence of a C-invariant boundary condition.59

Our results can in principle be used to constrain the existence of duality-invariant conformal

boundary conditions, building on the results of [370–372]60 for N = 4 SYM and free Maxwell

theory, respectively.

4.2 Holographic duals of symmetry broken phases

A profound insight by E. Witten is that Topological Quantum Field Theories (TQFTs), due to

their general covariance, can be seen as theories of quantum gravity [373]. Unlike in more con-

ventional examples, general covariance is not achieved by integrating over metrics but rather

by not introducing them at all. Consequently, these theories lack any semiclassical descrip-

tion involving weakly interacting gravitons. In traditional gravitational theories, one selects a

background metric and expands around it, thereby breaking general covariance spontaneously.

Therefore, TQFTs can be viewed as theories of quantum gravity with unbroken general covari-

ance — where gravitons are, in a certain sense, confined.

This old story requires some important refinements. A full quantum-gravity theory should

not depend on the background topology. TQFTs, on the other hand, are sensitive to space-

time topology through their global symmetries, broadly defined in terms of their topological

operators [9], which are expected to form some higher category [6, 10–14, 57, 65, 88, 118]. One

way to achieve such an independence is to sum over all topologies, which can be done in low

dimensions [285, 286, 374–376]. Alternatively, one can use TQFTs that do not even depend on

topology [34], hence that are free of global symmetries and then trivial (or invertible) [330,377].

These can be obtained by gauging a maximal non-anomalous set of topological defects, called

a Lagrangian algebra, in a nontrivial TQFT. Not all TQFTs have Lagrangian algebras (the

typical example is 3d Chern–Simons theory), but those that have them admit topological (or

gapped) boundary conditions. In fact, given a Lagrangian algebra L, one can construct such

a boundary condition as an interface between the TQFT and the gauged TQFT [26,220–222].

Equivalently, the boundary condition is defined by allowing the defects inside L to end on the

boundary.

TQFTs with topological boundary conditions have recently gained attention for their role

as Symmetry Topological Field Theories (SymTFTs) in the context of generalized symmetries

(see [104–107] for reviews). SymTFTs are (d + 1)-dimensional TQFTs Z(C) associated with

59Strictly speaking the argument of [333] only applies to 2d. However, given a representation of the higher

dimensional ’t Hooft anomalies in terms of defect configurations, it should be possible to extend it to general

symmetry categories.
60See also [84] for more details on the action of the non-invertible duality symmetry on boundary conditions

in Maxwell theory.
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symmetry structures C in d dimensions, capturing all properties of the symmetries regardless

of the specific QFTd realizing them [9, 116–118]. The TQFT Z(C) is placed on a slab with

two boundaries. The left one supports the physical QFTd of interest, coupled with the bulk.

The right one is the topological boundary condition that one is free to choose, determined

by a Lagrangian algebra L. Defects inside L become trivial on the topological boundary,

while all other ones (modulo those inside L) give rise to topological operators of the symmetry

C, after the slab is squeezed. The endpoints of defects inside L inherit a braiding with the

generators of C from the bulk braiding, hence they become the charges of the symmetry [52,53].

SymTFT has been shown to be a very powerful tool for studying global symmetries, also of non-

invertible type [7,8,67,69,133] and their anomalies [2,98,99,195,196], as well as to characterize

phases [109–112,197,198].

Although originally restricted to finite symmetries, the framework has been recently ex-

tended to continuous symmetries [206,210,211].61 The prize to pay is to introduce a new type

of TQFTs with gauge fields valued in both U(1) and R, and to have a continuous and/or

non-compact spectrum of operators, thus going beyond the standard TQFTs well studied by

mathematicians (we provide a more precise mathematical definition in Appendix B.8). This

idea has been shown to be applicable to all possible non-finite and continuous symmetries, with

or without anomalies, possibly with higher-group structures, and even including non-invertible

and non-Abelian symmetries. By now the picture is that to any possible symmetry structure

C in d dimensions one can canonically associate a (d+ 1)-dimensional TQFT Z(C).
Our aim here is to give a different interpretation to these TQFTs Z(C), not as SymTFTs

but as theories of gravity. More precisely, we want to establish holographic dualities in which

the bulk theory is a SymTFT. The main proposal of this paper is the following:

• Thought of as a theory of gravity, the SymTFT Z(C) for a symmetry C is the holographic

dual to the universal effective field theory (EFT) that describes the spontaneous breaking

of C.

It is a general principle of quantum field theory that any theory with a certain continuous global

symmetry that is spontaneously broken, in the far infrared (IR) flows to the same universal

theory of Goldstone bosons [378,379]. This is roughly speaking always a sigma model, although

the target space can be infinite dimensional (e.g., it is the classifying space BpG in the case of

higher-form symmetries).62 As for the SymTFT, this EFT is also canonically determined by

the symmetry C without any further information. For this reason, it is natural to expect that,

even though they appear to be completely different objects — a (d + 1)-dimensional TQFT

and a d-dimensional EFT — the two can be somehow related as they both have the same input

datum. We will prove by means of many examples that this correspondence is holography.

A crucial part of the story is the proper choice of boundary conditions. These will be non-

topological and of the Dirichlet type for some combination of the bulk fields. Since bulk fields

are gauge fields A, these boundary conditions break some gauge invariance, making it a global

61See [212] for a different proposal involving non-topological theories.
62It is not clear to us how to make this precise for non-invertible symmetries, for instance for the Q/Z chiral

symmetry discovered in [61,64].
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symmetry of the boundary theory. This agrees with the general principle in holography that

boundary global symmetries correspond to bulk gauge fields. The non-triviality of the system

really comes from the boundary conditions that, being non-topological, generate dynamics

on the boundary. The boundary theory can be thought of as a theory of edge modes. Our

setup has several similarities with, and may be understood as a generalization of, the Chern–

Simons/WZW correspondence [124, 125] and its reinterpretation as a full-flagged holographic

duality by means of bulk anyon condensation [34].

We find that for the simple Abelian TQFTs introduced in [206, 210] as the SymTFTs for

U(1), the dual boundary theory is a free theory of S1 Goldstone bosons, or generalized Maxwell

fields when the symmetry is of higher form. More precisely, these boundary theories have

topological sectors (e.g., winding for a compact scalar, or magnetic fluxes for a photon), and

the nontrivial TQFT without gauging the Lagrangian algebra is only dual to a fixed topological

sector. The latter is not a physical theory and is the non-chiral analog of the conformal

blocks in the CS/WZW correspondence. The physical theory is obtained by summing over

various topological sectors, and we will show that this sum is reproduced by the gauging of the

Lagrangian algebra. These Abelian TQFTs have various interesting modifications describing

chiral anomalies, higher groups, and non-invertible Q/Z symmetries [206]. We include all of

them in our analysis, showing that their holographic duals are the theories describing the

spontaneous breaking of the corresponding symmetries. In particular the SymTFT for the

non-invertible chiral symmetry is the gravity dual to axion-Maxwell theory.

For non-Abelian continuous symmetries G, the SymTFT was also conjectured in [206, 210]

and further analyzed in [211]. In the simplest case, it is a TQFT introduced many years ago

by Horowitz [380] and is written in terms of a G connection and a Lie-algebra-valued higher-

form field in the adjoint of G. When employing this theory in our story, it proves to be the

dual to a non-linear sigma model with target space G at the boundary. For d = 4 this in the

pion Lagrangian describing the low-energy dynamics of massless QCD in the chiral symmetry

breaking phase. We also show that including a term that describes an ’t Hooft anomaly we

obtain a WZW term in the sigma model [381].

A particularly interesting example is that of a non-Abelian 2-group in 4d, mixing a non-

Abelian continuous symmetry G and a U(1) 1-form symmetry [179]. The Goldstone theory

for this symmetry structure was not determined before, and we use our holographic conjecture

to derive it. It consists of a non-linear sigma model and a photon, coupled through a parity-

violating interaction whose leading term is proportional to kfabcϵ
µνρσAµ ∂νπa ∂ρπb ∂σπc, where

πa are the pions, fabc are the structure constants of G, while k ∈ Z is a quantized coefficient

that governs the 2-group structure. This term encodes the coupling of the photon to the

current for a topological 0-form symmetry of the sigma model. This result has a concrete

application to the low-energy dynamics of 4d U(N) QCD. For low enough number of flavors,

the chiral symmetry is spontaneously broken and quarks form pion bound states as in SU(N)

QCD. However, here the theory also contains an Abelian gauge field A for the baryon number

symmetry with quarks charged under it, hence in the IR this photon cannot be decoupled.

The photon-pion term encodes the coupling of A to the baryon number current in the IR. We

argue that the theory has a spontaneously-broken 2-group symmetry, implying that the leading
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photon-pion interaction coincides with the one we determined from our conjecture.

Since our work utilizes TQFTs with an infinite number of (simple) topological operators, as

an aside in Appendix B.8 we explore some of their properties and show (in a simple example)

that while their path integrals on closed Euclidean manifolds are divergent, the path integrals

on open manifolds can be made finite.

The rest of the section is organized as follows. In Section 4.2.1 we explain the general setup

and clarify some issues about holography with TQFTs in the bulk. In the rest of the sections

we present several interesting examples. Section 4.2.2 concerns the vanilla example of Abelian

symmetries without additional structures. In Section 4.2.3 we include chiral anomalies and

higher group structures, showing that the Goldstone theory is the same as in the vanilla case

but it couples differently to background fields, a fact that is interpreted in terms of symmetry

fractionalization. The non-invertible example is discussed in Section 4.2.4 after we warm up

with a similar but simpler example in 3d that produces Maxwell–Chern–Simons theory. The

non-Abelian cases (including higher groups) are finally studied in Section 4.2.5.

4.2.1 Topological field theories as holographic duals

The bulk theories we use in this paper are TQFTs of the type introduced in [206, 210, 211] to

describe SymTFTs for continuous symmetries. In the simplest cases, they have a Lagrangian

formulation as63

S =
i

2π

∫
Xd+1

bd−p−1 ∧ dAp+1 (4.2.1)

where Ap+1 is a U(1) (p+1)-form gauge field, while bd−p−1 is an R (d− p− 1)-form gauge field.

In the whole paper, we adopt this convention in which uppercase letters indicate U(1) gauge

fields, while lowercase letters indicate R gauge fields. Understood as a SymTFT, this describes

a p-form U(1) symmetry in d dimensions. The topological operators of the theory are [206]:

Vn(γp+1) = e
in

∫
γp+1

Ap+1
, Uβ(γd−p−1) = e

iβ
∫
γd−p−1

bd−p−1
, n ∈ Z , β ∈ R/Z ∼= U(1) .

(4.2.2)

The partition function of (4.2.1) on a generic closed manifold diverges, but infinities are avoided

on certain classes of manifolds with boundaries (see Appendix B.8). These are the relevant ones

for both the SymTFT and the holographic setup considered in this paper. Moreover, normalized

correlators are always finite, and capture the braiding of topological defects:〈
Vn(γp+1)Uβ(γ

′
d−p−1)

〉
= exp

[
2πi n β Link

(
γp+1, γ

′
d−p−1

)]
. (4.2.3)

In the following we will consider several modifications of the vanilla case (4.2.1) that take

into account anomalies, higher groups, non-invertible symmetries, as well as extensions to non-

Abelian groups. However let us focus here on this simplest case as an illustration of the basic

ideas and setup.

In SymTFT, (4.2.1) is placed on a slab with two boundaries, one of which is topological and

determines the symmetry after the slab is squeezed. This topological boundary is characterized

63We only consider Euclidean manifolds and normalize our actions so that the weight in the path integral is

e−S .
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Figure 4.3: Left: the SymTFT setup. The TQFT is placed on a slab, whose right boundary

is topological and determined by a Lagrangian algebra L. Right: the holographic setup con-

sidered here. There is only one boundary with non-topological boundary conditions, while the

Lagrangian algebra L is gauged to make the bulk invertible.

by a maximal set of mutually transparent objects, which we generically refer to as a Lagrangian

algebra L. In this example a natural Lagrangian algebra consists of all Vn(γp+1), while the

Uβ(γd−p−1) become the generators of the U(1) p-form symmetry of the boundary theory.

In this paper, instead, we consider a different setting in which (4.2.1) is placed on a manifold

Xd+1 with a unique connected boundary Md = ∂Xd+1, which we endow with a Riemannian

structure. On Md we fix non-topological boundary conditions

Ap+1 + iC ⋆ bd−p−1 = Ap+1 . (4.2.4)

Here ⋆ is the Hodge star operator of the boundary, Ap+1 is a fixed (p+1)-form on the boundary,

and C is a generically dimensionful constant with mass dimension [C] = 2p+2−d.64 Moreover,

the Lagrangian algebra L that was used to define the topological boundary in the SymTFT

setup must now be gauged in the bulk Xd+1, and the final bulk theory Z(C)/L is an invertible

TQFT. See Fig. 4.3 for a comparison of the two setups.

In this second setup we want to establish a precise holographic duality with a certain local

QFTd living on the boundary, which we need to determine. More precisely, the equality we

need to show is the standard one [274–276]:

ZTQFTd+1

[
φ
∣∣
∂
= A

]
= ZQFTd

[Md,A] . (4.2.5)

Here TQFTd+1 is the result of gauging L in Z(C), φ denotes generically some bulk fields (for

instance φ = Ap+1 + iC ⋆ bd−p−1 in the example (4.2.1)), while A is introduced as a bound-

ary value from the bulk viewpoint and plays the role of a background field for the boundary

QFT. Although SymTFT superficially resembles holography, the two are fundamentally differ-

ent. SymTFT only captures symmetries and disregards dynamics, allowing any QFT with the

64The introduction of such a scale is necessary since the components of Ap+1 have dimension p+1 while those

of bd−p−1 have dimension d − p − 1. In this way the forms Ap+1 and bd−p−1 are dimensionless, the action in

(4.2.1) is dimensionless, but ⋆ bd−p−1 has dimension d− 2p− 2.
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specified symmetry. In contrast, in holography the dual QFTd is uniquely determined by the

bulk theory and its boundary conditions, encoding both symmetries and dynamics as in (4.2.5).

We will determine the dual QFTd explicitly in the many examples considered below, provid-

ing strong evidence for the conjecture that the dual theory to Z(C)/L is always the symmetry-

breaking EFT for C. Some of these checks are quite subtle and highly nontrivial. For instance,

the Goldstone theory for a U(1) symmetry with a cubic ’t Hooft anomaly in 4d is still a com-

pact boson with no additional terms as in the non-anomalous case,65 but the background field

for the symmetry is coupled non-minimally to the theory. We discuss this in Section 4.2.3 (in

particular (4.2.62) is the additional coupling) to which we refer for more details. The SymTFT

for a 4d anomalous U(1) is [206]

S =
i

2π

∫
X5

b3 ∧ dA1 +
ik

24π2

∫
X5

A1 ∧ dA1 ∧ dA1 . (4.2.6)

Forgetting about the boundary value A1 appearing in the boundary condition (4.2.4), the

additional cubic term does not affect the dual boundary QFT4. However we will show in

Section 4.2.3 that keeping track of A1 we reproduce exactly the non-minimal coupling expected

for an anomalous U(1).

Before moving to the various examples, let us clarify a conceptual point. The assertion

that certain dynamical QFTs have a TQFT as holographic dual might be perplexing at first.

The origin of the confusion is that, even though TQFTs are good theories of gravity, the non-

appearance of a metric tensor gµν is puzzling for holography: the metric should be dual to the

stress-energy tensor Tµν of the boundary QFT. While this observation is in general correct, in

a few special cases it might have a loophole: the stress tensor might not be an independent

operator. For instance, this is the case in the CS/WZW correspondence [124,125]. In 2d WZW

models the stress tensor of the CFT, using the Sugawara construction, is made out of the

currents which are dual to the gauge fields of the 3d Chern–Simons bulk theory. Something

very similar happens in our examples. Indeed, the EFTs for symmetry breaking are very special

QFTs in which everything, including the stress-energy tensor, is determined by the currents

and their correlation functions. This is at the core of the universality of those EFTs. For

instance, in the theory of a U(1) Goldstone boson with action

S =
R2

4π

∫
Md

dΦ ∧ ⋆ dΦ , (4.2.7)

the U(1) current is Jµ = iR2

2π
∂µΦ and the stress tensor is a composite operator of Jµ:

Tµν =
R2

4π

(
∂µΦ ∂νΦ− 1

2
δµν (∂Φ)

2

)
=

π

R2

(
1

2
δµν J

2 − JµJν

)
. (4.2.8)

Through the boundary conditions, the bulk SymTFT provides background fields for the global

symmetries of the boundary theory, which are sources for the boundary currents. Hence the

TQFT can compute correlation functions of the currents, and by universality correlation func-

tions of all operators, including those of the stress tensor, even without an explicit source gµν .

65This is different from the non-Abelian case, in which an anomaly implies a WZW term in the sigma model.
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This is a general statement: in the EFTs for spontaneous breaking the currents completely

determine all operators and the holographic duals do not need a graviton field.

It is expected, however, that embedding our models into RG flows and taking into account

non-universal features would require to reintroduce dynamical gravity into the game. Indeed, a

related observation is that the boundary theories we obtain are either free or non-renormalizable.

The reason why a TQFT, which is expected to be UV complete and finite, can be dual to a non-

renormalizable theory is the choice of non-topological boundary conditions, which introduce an

energy scale in the theory. This scale sets a limit below which both the bulk and boundary

theories are well defined. Above this threshold, the boundary theory requires the inclusion of

more and more operators to tame UV divergencies. This issue has to carry over to the bulk

TQFT as well — albeit in a way unclear to us — making the TQFT description incomplete. The

expectation is that, to make sense of the bulk theory above the scale of the boundary condition,

one has to allow for dynamical gravity in the bulk in a way that is similar to the embedding

of an EFT for spontaneous breaking into a UV complete theory. It would be interesting to

understand this point better.

4.2.2 U(1) Goldstone bosons

The simplest cases to test our conjecture are those of U(1) symmetries of generic degree. We

warm up with the textbook example of a spontaneously broken U(1) 0-form symmetry in generic

dimension and then move on to the case of higher-form symmetries, whose Goldstone bosons

are (free) U(1) higher-form gauge fields [9].

0-form symmetries

Consider the following TQFT in d+ 1 dimensions:

S =
i

2π

∫
Xd+1

bd−1 ∧ dA1 , (4.2.9)

where A1 is a U(1) gauge field while bd−1 is an R (d − 1)-form gauge field. We endow the

boundary Md = ∂Xd+1 with a Riemmanian metric and impose the boundary condition

⋆A1 = − i

R2
bd−1 + ⋆A1 . (4.2.10)

Here R is a parameter of mass dimension (d− 2)/2, while A1 is a fixed background 1-form on

Md. Notice that only in d = 2 this boundary condition is conformally invariant. In order to

get a consistent variational principle with this boundary condition we must add a boundary

term S∂ to (4.2.9). Indeed, the variation of the action produces a boundary piece

δS
∣∣
Md

= (−1)d−1 i

2π

∫
Md

bd−1 ∧ δA1 =
1

2πR2

∫
Md

bd−1 ∧ ⋆ δbd−1 , (4.2.11)

which requires a boundary term

S∂ = − 1

4πR2

∫
Md

bd−1 ∧ ⋆ bd−1 . (4.2.12)
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Since the boundary condition (4.2.10) breaks gauge invariance on the boundary, we have to

be careful in specifying the group of transformations we quotient by in the bulk: we choose

to allow only gauge transformations that are trivial on the boundary. This implies that the

bulk gauge symmetries become global on the boundary. For any global symmetry we should

be able to turn on a background. In our setup this operation has a very natural realization:

instead of freezing gauge transformations on the boundary, we allow them but transform the

boundary data so as to render the boundary condition invariant. For instance, we can make

(4.2.10) gauge invariant under gauge transformations of A1 by demanding that A1 7→ A1 + dλ0

is accompanied by a transformation of the fixed background A1:

A1 7→ A1 + dλ0 . (4.2.13)

With this choice, A1 is interpreted as a background gauge field for the global U(1) symmetry

on the boundary. Notice that with our choice of boundary term the whole system is gauge

invariant.

We can also restore the gauge transformations bd−1 7→ bd−1 + dνd−2 by transforming

A1 7→ A1 − (−1)d
i

R2
⋆ dνd−2 , (4.2.14)

which however are not proper background gauge transformations. A clearer and equivalent

possibility is to parametrize the boundary condition as

⋆A1 = − i

R2

(
bd−1 − Bd−1

)
, (4.2.15)

where Bd−1 is another fixed background on the boundary that transforms as Bd−1 7→ Bd−1 +

dνd−2. It can be understood as a background field for the global (d − 2)-form symmetry on

the boundary. Yet another possibility is to restore both gauge transformations, for instance

through the parametrization

⋆
(
A1 −A1

)
= − i

R2

(
bd−1 − Bd−1

)
. (4.2.16)

We can use it to discover information about the boundary theory. Indeed, with the choice of

boundary term in (4.2.12), the system is not gauge invariant, rather under a gauge transfor-

mation we find

δ(S+S∂) = (−1)d−1 i

2π

∫
Md

dνd−2∧A1−
1

4πR2

∫
Md

(
2 dνd−2∧⋆Bd−1+dνd−2∧⋆ dνd−2

)
. (4.2.17)

The second piece can be cancelled by modifying the boundary term with the addition of

1

4πR2

∫
Md

Bd−1 ∧ ⋆Bd−1 , (4.2.18)

that can be understood as a local counterterm. However the first piece in (4.2.17) cannot be

removed while preserving background gauge invariance for the U(1) 0-form symmetry. This is

a sign that the two symmetries have a mixed ’t Hooft anomaly. Indeed, as we are going to

see, the theory we are describing is the holographic dual to a d-dimensional compact boson. In
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what follows we will turn on only the background for the U(1) 0-form symmetry, i.e., we will

use the boundary condition (4.2.10).

In order to rewrite the path integral of this TQFT as that of the compact boson we proceed

in analogy with [125, 382, 383] (see also [384]). We assume that Xd+1 contains an S1 factor

parametrized by t ∼ t+ β, interpreted as Euclidean time, hence Xd+1 = Xd× S1 and ∂Xd+1 ≡
Md = Md−1 × S1. For simplicity, we also choose the metric of ∂Xd+1 to be diagonal in Md−1

and S1 so that

⋆ dt = (−1)d−1VolMd−1
∈ Ωd−1(Md−1) (4.2.19)

with VolMd−1
the volume form of Md−1. We decompose the bulk fields as

A1 = At0 dt+ Ã1 , bd−1 = btd−2 ∧ dt+ b̃d−1 , (4.2.20)

where forms with a tilde live on the spatial manifold Xd. The time components At0 and btd−2

appear linearly and can be treated as Lagrange multipliers. Integrating them out enforces

d̃Ã1 = 0 , d̃ b̃d−1 = 0 . (4.2.21)

We now make a choice for Xd and take it to be a d-dimensional ball so that Md = Sd−1 × S1.

Then (4.2.21) are solved by introducing a compact scalar Φ0 and a (d− 2)-form R gauge field

ωd−2 as

Ã1 = d̃Φ0 , b̃d−1 = d̃ωd−2 . (4.2.22)

Rewriting both the bulk action and the boundary term using Φ0 and ωd−2, the system reduces

to the boundary action

S =
i

2π

∫
Md

[
(−1)d d̃ωd−2 ∧

(
∂tΦ0 −At

0

)
dt+

− i

2

(
R2
(
d̃Φ0 − Ã1

)
∧ ⋆
(
d̃Φ0 − Ã1

)
+

1

R2
d̃ωd−2 ∧ ⋆ d̃ωd−2

)]
.

(4.2.23)

This action is not covariant, and time derivatives appear linearly. For d = 2, the action

contains two scalars and is a manifestly self-dual formulation of the compact boson known in

the condensed matter literature as the Luttinger liquid Lagrangian (see, e.g., [385] for a recent

discussion). It has the advantage of making both U(1) symmetries explicit, at the expense of

hiding Lorentz invariance. The action (4.2.23) is a d-dimensional generalization of it and it

makes both the 0-form and the (d− 2)-form U(1) symmetries manifest.

Path integrals with an action linear in time derivatives are interpreted as phase-space path

integrals. One can typically obtain a configuration-space path integral by integrating out the

momenta that appear quadratically. Indeed, here d̃ωd−2 is the conjugate momentum to Φ0 and

we can recast the theory in a Lorentz-invariant form by integrating out ωd−2. An important

observation is that the action has zero modes that need to be eliminated. One way to see this

is via the equations of motion for ωd−2. These are

d̃

[(
∂tΦ0 −At

0

)
dt + (−1)d

i

R2
⋆ d̃ωd−2

]
= 0 (4.2.24)
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with solution

d̃ωd−2 = iR2
(
∂tΦ0 −At

0

)
⋆ dt− iR2 ⋆ d̃γ0 . (4.2.25)

Notice that, since
(
∂tΦ0−At

0

)
⋆dt is a (d−1)-form supported only on space, we have d̃⋆d̃γ0 = 0.

The scalar γ0 is integrated over but its path integral is naively divergent because γ0 has vanishing

action, i.e., it is a zero-mode. Therefore in order to get a consistent theory we have to gauge

fix γ0 = 0. Plugging d̃ωd−2 in (4.2.23) we get the final action

S =
R2

4π

∫
Md

(
dΦ0 −A1

)
∧ ⋆
(
dΦ0 −A1

)
, (4.2.26)

corresponding to a d-dimensional compact boson with radius R. Had we integrated out Φ0

from (4.2.23), we would have found the dual formulation in terms of the (d−2)-form ωd−2. The

background field A1 corresponds to the U(1) shift symmetry of the boson and the anomalous

shift we discussed above corresponds to the mixed ’t Hooft anomaly with the winding symmetry.

One might be puzzled by the fact that we have one bulk gauge symmetry U(1), but we

still obtain two global symmetries on the boundary, which might seem to clash with the usual

holographic expectations. However, for the compact boson this is not really a contradiction:

all correlation functions of one current can be obtained from those of the other. Indeed, the

backgrounds of the two symmetries are obtained one from the other using the ⋆ operator

(modulo counterterms, which correspond to contact terms in correlators); thus, functional

derivatives of the partition function with respect to a single background already contain the

information of all correlators of both currents (see [386] for a related discussion).

Before going on, let us mention an alternative, quicker way to arrive at the final result

that does not pass through the Luttinger-liquid-like formulation (4.2.23). It requires Xd+1 to

be a ball, and hence Md = Sd. After determining the boundary conditions (4.2.10) and the

boundary term (4.2.12), we just integrate the entire bd−1 out, imposing dA1 = 0. Since the bulk

is now topologically trivial, this is solved by A1 = dΦ0. Using the boundary condition to express

the boundary term (4.2.12) in terms of A1, and plugging back A1 = dΦ0, we immediately get

(4.2.26).

Higher-form symmetries

The higher-form case is very similar and we only flash the 1-form symmetry example, just to

highlight one small subtlety. The TQFT we start with has action

S =
i

2π

∫
Xd+1

fd−2 ∧ dG2 , (4.2.27)

with fd−2 and G2 being an R and U(1) gauge field, respectively. On Xd+1 with boundary Md,

that we endow with a Riemannian metric (if d = 4 a conformal structure is enough) we set the

boundary condition

⋆G2 = (−1)d+1 ie
2

π
fd−2 + ⋆G2 , (4.2.28)

where [e2] = 4− d. We must also add a boundary term

S∂ = − e2

4π2

∫
∂Xd+1

fd−2 ∧ ⋆fd−2 . (4.2.29)
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When solving the constraints imposed by the integral over time components as

f̃d−2 = d̃ωd−3 , G̃2 = d̃A1 , (4.2.30)

we introduce (time-dependent) forms ωd−3 and A1 only on the spatial manifold Xd, namely

without time components. The boundary action one obtains is

S =
i

2π

∫
Md

[
(−1)d d̃ωd−3 ∧

(
∂tA1 + Gt1

)
∧ dt+

− i

2

(
e2

π
d̃ωd−3 ∧ ⋆ d̃ωd−3 +

π

e2
(
d̃A1 − G̃2

)
∧ ⋆
(
d̃A1 − G̃2

))]
.

(4.2.31)

This is a higher-form generalization of (4.2.23) and integrating out ωd−3 we obtain

S =
1

4e2

∫
Md

(
dA1 − B2

)
∧ ⋆
(
dA1 − B2

)
, (4.2.32)

where B2 = −Gt1∧dt+ G̃2 is a 2-form background field. This is a Maxwell action in d dimensions

coupled to a background field B2 for its electric 1-form symmetry.

The subtlety we want to point out is that A1 does not have the time component, hence

this is a gauge-fixed Maxwell action.66 There is a gauge choice that arises naturally in this

reduction procedure, that is, the temporal gauge. The same story goes through for any higher-

form gauge field: the boundary action is always a generalized Maxwell theory in the temporal

gauge (see [384] for a discussion on this point). It is important to keep this small subtlety in

mind when looking at more complicated TQFTs that produce further interactions involving

the photon. For instance, in Section 4.2.4 we will obtain Chern–Simons terms on the boundary,

and we will have to keep in mind that they always arise in the temporal gauge.

Lagrangian algebras and topological sectors

There is one very important caveat in the discussion of the previous two sections. Let us focus

on the 0-form symmetry case for definiteness. We have shown that with the boundary condition

we chose, the path integral of the TQFT can be rewritten as a path integral with the action

of a compact boson (4.2.26). However, the domain is not the one of the physical theory. The

reason is that when we solve (4.2.21) introducing Φ0 and ωd−2 as in (4.2.22), these fields cannot

wind around the time circle S1. Hence what we established in Section 4.2.2 is that the TQFT

partition function is equal to the zero-winding sector of a compact boson.67

However, it turns out that we can produce the path integral in any fixed winding sector,

simply by inserting a Wilson line ein
∫
S1A1 along the time circle in the bulk. The line pierces the

spatial manifold Xd at a point P , creating a nontrivial (d−1)-cycle Σd−1 ⊂ Xd and introducing

a monodromy for b̃d−1 around it: ∫
Σd−1

b̃d−1 = 2πn . (4.2.33)

66This subtlety does not arise in the quicker procedure described at the end of the last section.
67For d = 2 the boundary spatial manifold is S1, and since Φ0 is compact the path integral includes a sum

over all windings around that spatial circle, but not around the time circle.
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To get the TQFT partition function with this insertion, consider a generator ηd−1

2π
of Hd−1(Xd∖

P ;Z), namely
∫
Σd−1

ηd−1 = 2π. The second equation in (4.2.21) is now solved by

b̃d−1 = n ηd−1 + d̃ωd−2 . (4.2.34)

With the same steps as before we obtain a path integral on boundary fields Φ0 and ωd−2, again

over configurations of Φ0 with zero winding around the time circle, but with a modified action

with respect to (4.2.23):

Sn =
i

2π

∫
Md

[
(−1)d d̃ωd−2 ∧

(
∂tΦ0 −At

0

)
dt+

− i

2

(
R2
(
d̃Φ0 − Ã1

)
∧ ⋆
(
d̃Φ0 − Ã1

)
+

1

R2
d̃ωd−2 ∧ ⋆ d̃ωd−2

)]
+

− (−1)d
in

2π

∫
Md

At
0 η̂d−1 ∧ dt+

n2

4πR2

∫
Md

η̂d−1 ∧ ⋆ η̂d−1 .

(4.2.35)

Here η̂d−1 is the pull-back of ηd−1 on Md. It is a top form on ∂Xd ≡ Md−1 and one can

make a choice for the representative ηd−1 in (4.2.34) such that η̂d−1 = 2π
v
VolMd−1

with v =∫
Md−1

VolMd−1
the volume of the boundary spatial slice. In particular ⋆ η̂d−1 =

2π
v
dt. Plugging

this back into (4.2.35) we obtain

Sn = S0 − inθ +
πβn2

vR2
where θ = (−1)d

∫
S1

At
0 dt . (4.2.36)

Here S0 is the action (4.2.23) written in terms of the periodic scalar in the Luttinger liquid

form, which could be rewritten in the Lorentz covariant form (4.2.26) that makes manifest its

nature as a boson of radius R. Notice that θ ∼ θ + 2π has the interpretation of a chemical

potential for the U(1) 0-form symmetry. The partition function with the line inserted is then

Zn = Zpert exp

(
inθ − πβ

vR2
n2

)
(4.2.37)

where Zpert is the perturbative contribution due to a periodic boson.

We want to show our claim that, after we condense a Lagrangian algebra in the bulk, the

partition function includes the sum over all topological sectors of the compact scalar, hence

reproducing the physical partition function. The simplest Lagrangian algebra contains all the

lines Wn = ein
∫
A1 and no surfaces Vα = eiα

∫
bd−1 . Due to our choice of geometry, gauging this

algebra is the same as summing over all lines inserted along the time circle, hence summing over

all n in (4.2.37). The bulk interpretation of this sum is that we are computing the partition

function of the SPT phase obtained by gauging the algebra, which we are taking as our theory

of gravity. Hence using Poisson’s summation formula we find68

Zgravity =
∑
n∈Z

Zn = Zpert

∑
w∈Z

exp

[
−πvR

2

β

(
w +

θ

2π

)2]
. (4.2.38)

The right hand side is precisely the partition function of a compact boson of radius R (with

chemical potential θ).

68Here we are neglecting an extra factor
√
β/vR2, since normalizations of the path integrals do not play a

role in this paper. A similar factor is neglected in (4.2.39).
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More generally, the bulk TQFT has other Lagrangian algebras consisting of the lines Wkm

and the surfaces Vm′/k for an integer number k ∈ Z. Condensing one of them produces a

different SPT phase in the bulk, hence a different theory of gravity. In the SymTFT story

this corresponds to gauging the Zk subgroups of the U(1) symmetry at the boundary [206].

Because of the chosen geometry, there are no (d− 1)-cycles in the bulk and hence condensing

this algebra simply means summing over all Wilson lines of charge multiple of k. The result is

Z ′
gravity =

∑
m∈Z

Zkm = Zpert

∑
w∈Z

exp

[
−πv
β

(R
k

)2(
w +

kθ

2π

)2]
(4.2.39)

and the right-hand side can be interpreted as the partition function of a compact boson of

radius R′ = R/k. This is an orbifold of the previous boundary theory, which could be thought

of as a different global form of the same theory.

We want to comment on a slightly different way to obtain a holographic dual to compact

bosons, which also fits our proposal. We could have started with the TQFT of two R gauge

fields described by the action

S =
i

2π

∫
Xd+1

bd−1 ∧ da1 . (4.2.40)

In this TQFT the charges of the Wilson lines Wα = eiα
∫
a1 are not quantized, and since there

is no sum over fluxes,69 there is no identification among the charges of Vβ = eiβ
∫
bd−1 . The

spectrum of bulk operators is then larger, labelled by R × R, and the corresponding braiding

is the phase e2πiαβ. Lagrangian algebras are classified by the choice of a real number Q ∈ R+

and are given by [34]

LQ =
{
WQn, VQ−1m

∣∣ n,m ∈ Z
}
. (4.2.41)

It was shown in [206] that this TQFT is the SymTFT for two U(1) symmetries, namely a

0-form and a (d− 2)-form, with a mixed anomaly. While this is a different symmetry structure

from just a single U(1), the second higher-form symmetry arises universally in the IR whenever

the 0-form symmetry is spontaneously broken. Hence the two symmetry structures share the

same EFT that describes the broken phase and, according to our proposal, they should both

be the holographic dual to a compact boson. Indeed there is no much difference between the

two theories: the non-topological boundary conditions can be chosen to be the same, and the

computations of Section 4.2.2 give the same result.

The considerations explained in this section can be repeated for any higher-form symme-

try. However, in order to detect the various global structures of a boundary p-form Maxwell

theory, one needs to properly choose the geometry. Indeed the fluxes are supported on (p+1)-

dimensional cycles, and thus a natural choice is to take Xd+1 = Bd−p × T p+1 with Bd−p a ball.

One of the S1 factors of the torus plays the role of a time circle, and Xd = Bd−p × T p. The

bulk TQFT has action

S =
i

2π

∫
Xd+1

bd−p−1 ∧ dAp+1 (4.2.42)

where bd−p−1 is an R gauge field whilst Ap+1 is a U(1) gauge field. One can obtain an SPT phase

by gauging the Lagrangian algebra given by Wn = ein
∫
Ap+1 , and this is realized by inserting

69An R gauge field admits a gauge in which the connection is globally defined, therefore the field strength is

an exact form and its integrals on compact submanifolds vanish.
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these defects along the T p+1 factor in the bulk. This sum indeed reproduces the sum over

fluxes of the p-form Maxwell theory on the boundary. The choice of other Lagrangian algebras

modifies the value of the electric charge and corresponds to discrete gaugings of the 1-form

symmetry.

4.2.3 Abelian anomalies and higher groups

We can enrich the analysis of U(1) symmetries by including anomalies (Sections 4.2.3 and 4.2.3)

or a 2-group structure (Section 4.2.3). We show here that, when doing it, the dual boundary

theory gets coupled to background fields in a non-minimal way. In Sections 4.2.3 and 4.2.3 we

provide a field-theoretic interpretation of our results in terms of symmetry fractionalization.

Chiral anomaly in 2d

The SymTFT for an anomalous U(1) symmetry in 2d has action [206]:

S =
i

2π

∫
X3

b1 ∧ dA1 +
ik

4π

∫
X3

A1 ∧ dA1 . (4.2.43)

The additional bulk Chern–Simons term significantly affects the consistent boundary condi-

tions. To establish a proper variational principle with a non-topological boundary condition, it

is essential to include the boundary term

S∂ = − 1

4πR2

∫
∂X3

(
b1 +

k

2
A1

)
∧ ⋆
(
b1 +

k

2
A1

)
(4.2.44)

together with the following Dirichlet boundary condition:70

⋆ δA1 = − i

R2
δ

(
b1 +

k

2
A1

)
. (4.2.45)

In order to properly turn on a background for the boundary U(1) symmetry we have to render

the boundary condition invariant under gauge transformations of A1. This is most naturally

done by introducing a 1-form A1 as

⋆ (A1 −A1) = − i

R2

(
b1 +

k

2
(A1 −A1)

)
. (4.2.46)

This boundary condition is invariant under δA1 = δA1 = dλ0, allowing us to interpret A1 as

a background field for the U(1) symmetry on the boundary. Notice that our choice does not

modify (4.2.45) and is thus just a particularly convenient parametrization.

Before deriving the dual boundary theory, we can already establish that it has an ’t Hooft

anomaly. Indeed, under a gauge transformation δA1 = δA1 = dλ0 the total action S + S∂

transforms as

δ(S + S∂) = − ik

4π

∫
M2

dλ0 ∧ A1 −
k2

16πR2

∫
M2

(
2 dλ0 ∧ ⋆A1 + dλ0 ∧ ⋆ dλ0

)
(4.2.47)

70One can check, by writing all possible boundary terms and imposing consistency of the variational principle,

that these boundary data are the only possible choice.
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where M2 = ∂X3. The second term can be cancelled by adding the following counterterm to

the boundary action:

Sc.t. =
k2

16πR2

∫
M2

A1 ∧ ⋆A1 . (4.2.48)

However the remaining total gauge variation

δ
(
S + S∂ + Sc.t.

)
= − ik

4π

∫
M2

dλ0 ∧ A1 (4.2.49)

cannot be cancelled by any local boundary counterterm: it is precisely the anomalous variation

corresponding to a perturbative U(1) anomaly.

To derive the boundary theory we follow the steps outlined in Section 4.2.2. The constraints

imposed by the path integral over time components again allow us to write Ã1 = d̃Φ0 and

b̃1 = d̃ω0. The boundary action expressed in terms of these variables, after introducing F =

A1 − ik
2R2 ⋆A1 for convenience, reads:

S =
i

2π

∫
M2

[(
d̃ω0 +

k
2
d̃Φ0

)(
∂tΦ0 −F t

0

)
∧ dt+ (4.2.50)

− i

2

(
R2
(
d̃Φ0 − F̃1

)
∧ ⋆
(
d̃Φ0 − F̃1

)
+

1

R2

(
d̃ω0 +

k
2
d̃Φ0

)
∧ ⋆
(
d̃ω0 +

k
2
d̃Φ0

))]
+ Sc.t .

This is the same action as in (4.2.23) for d = 2 but with ω0 7→ ω0 +
k
2
Φ0. Integrating ω0 out

we find

S =
R2

4π

∫
M2

(
dΦ0 −A1

)
∧ ⋆
(
dΦ0 −A1

)
+
ik

4π

∫
M2

Φ0 dA1 . (4.2.51)

This action describes a compact boson of radius R, but with an unusual coupling to a back-

ground for the momentum symmetry. Such a coupling reproduces the anomalous shift (4.2.49)

that is indeed cancelled by the inflow action

Sinflow = − ik

4π

∫
3d

A1 ∧ dA1 . (4.2.52)

Notice that the extra coupling Φ0 dA1 in (4.2.51) has a form similar to the coupling with

the winding symmetry. In a sense, we are prescribing that a background A1 for the momentum

symmetry also activates a background B1 = kA1 for the winding symmetry. In other words,

A1 is not coupled with the momentum symmetry but rather with a diagonal combination of

momentum and winding.71 Since the two symmetries have a mixed anomaly, this diagonal U(1)

inherits a pure anomaly.

Chiral anomaly in 4d

The treatment of anomalies in higher dimensions presents a further conceptual difference. As

a representative case, we consider d = 4 and the TQFT with action

S =
i

2π

∫
X5

b3 ∧ dA1 +
ik

24π2

∫
X5

A1 ∧ dA1 ∧ dA1 . (4.2.53)

71More precisely, it is the diagonal combination between momentum and a Zk extension of the winding

symmetry.
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To get a good variational principle we need to impose

⋆ δA1 = − i

R2
δ

(
b3 +

k

6π
A1 ∧ dA1

)
(4.2.54)

and add a boundary term

S∂ = − 1

4πR2

∫
∂X5

(
b3 +

k

6π
A1 ∧ dA1

)
∧ ⋆
(
b3 +

k

6π
A1 ∧ dA1

)
. (4.2.55)

These choices however do not allow us to turn on a background by simply changing the

parametrization of the boundary condition, as we did in 2d. Indeed, if we try to restore

the gauge transformations of A1, the boundary condition shifts by terms that depend on the

field A1 itself and cannot be cancelled by adding counterterms in the background only. Turning

on a background in d > 2 requires us to change the boundary data in a nontrivial way. In

Appendix B.7 we explain an iterative procedure that, starting from the data above, produces a

consistent variational principle together with a gauge-invariant boundary condition. The result

for d = 4 is

⋆
(
A1 −A1

)
= − i

R2

(
b3 +

k

6π

(
A1 −A1

)
∧ dA1 +

k

12π

(
A1 −A1

)
∧ dA1

)
(4.2.56)

with boundary term

S∂ = − 1

4πR2

∫
∂X5

(
b3+

k

6π

(
A1−A1

)
∧dA1+

k

12π
A1∧dA1

)2
+

ik

24π2

∫
∂X5

A1∧A1∧dA1 . (4.2.57)

When setting A1 = 0 we recover the previous boundary data, but in general there are new

terms that mix background and dynamical fields. As in 2d, one can show that the system has

an anomaly performing a gauge transformation δA1 = δA1 = dλ0: up to a counterterm the

gauge variation is

δ
(
S + S∂ + Sc.t.

)
=

ik

24π2

∫
∂X5

λ0 dA1 ∧ dA1 . (4.2.58)

The procedure to determine the dual boundary theory is completely analogous to the exam-

ples we have already presented. Integrating the time components out, we introduce Ã1 = d̃Φ0

and b̃3 = d̃ω2. To simplify our expressions, we denote F1 = A1 − ik
12πR2 ⋆ (A1 ∧ dA1). Then the

boundary action, in its non-covariant presentation, is

S =
i

2π

∫
M4

[(
d̃ω2 +

k
12π

d̃Φ0 ∧ d̃Ã1

)(
∂tΦ0 −F t

0

)
dt− i

2

(
R2
(
d̃Φ0 − F̃1

)
∧ ⋆
(
d̃Φ0 − F̃1

)
+

+
1

R2

(
d̃ω2 +

k
12π

d̃Φ0 ∧ d̃Ã1

)
∧ ⋆
(
d̃ω2 +

k
12π

d̃Φ0 ∧ d̃Ã1

))]
+ Sc.t. (4.2.59)

where M4 = ∂X5. As before we can integrate out ω2 and the final action reads

S =
R2

4π

∫
M4

(
dΦ0 −A1

)
∧ ⋆
(
dΦ0 −A1

)
+

ik

24π2

∫
M4

Φ0 dA1 ∧ dA1 . (4.2.60)

This represents a compact scalar with a non-standard coupling to a background associated with

the shift symmetry, akin to the situation in 2d. The additional interaction accounts for the

anomalous variation described by (4.2.58). Nevertheless, unlike in the 2d scenario, we cannot

view this altered interaction as a combination of the shift and winding symmetries since the

two have different degree.
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Anomaly matching in the broken phase

Let us provide a purely field-theoretic interpretation of the result in the previous section. For

any Lie-group symmetry G, the Goldstone theory describing the symmetry breaking phase is a

non-linear sigma model with target space G. In even spacetime dimensions d, the symmetry G

can suffer from perturbative anomalies and the question is how these are matched in the sigma

model.

For non-Abelian G it is well known that the anomaly is reproduced by a WZW term

[381]. This is an additional interaction with important dynamical consequences. Perturbative

anomalies are classified by Hd+2(BG;Z), which determines a (d+1)-dimensional Chern–Simons

action that cancels the anomaly by inflow. On the other hand, WZW terms in d dimensions

are classified by Hd+1(G;Z). Anomaly matching is mathematically represented by a map

τ : Hd+2(BG;Z) → Hd+1(G;Z) (4.2.61)

called transgression [387]. For d = 2 this map also underlines the map of levels in the CS/WZW

correspondence [188]. For the simple Lie group G = SU(n), the transgression map τ is injective

[188], meaning that any perturbative anomaly is matched by a WZW term.72 However this is

not the general case, and if τ has a nontrivial kernel, the corresponding anomalies require some

new ingredient to be matched in the sigma model.

Here we focus on the extreme case G = U(1) for which Hd+1
(
U(1);Z

)
= 0, namely there

is no WZW term at all, and any anomaly must be matched in a different way. From our

holographic analysis we know the answer to this question: the dynamics of the sigma model is

unchanged with respect to the non-anomalous case, but the symmetry is coupled non-minimally

to the background A1 through the extra topological term

ik

(2π)d/2
(
d
2
+ 1
)
!

∫
Md

Φ0

(
dA1

)d/2
. (4.2.62)

This term reproduces the anomaly, but at this level it seems a bit ad hoc. We want to clarify

why it arises from a UV viewpoint and how we understand it in the IR. This is important

to understand why there is a difference in how anomaly matching works in the Abelian and

non-Abelian cases.

We can show in a simple model that when the background field is turned on in the UV, the

additional coupling (4.2.62) is generated along the RG flow by integrating out massive fields.

Consider a 4d theory with a massless Dirac fermion ψ and a complex scalar ϕ, coupled via a

Yukawa interaction:

L ⊃ ϕψψ . (4.2.63)

The theory has an axial symmetry U(1)A under which both Weyl components of ψ have charge

1, while ϕ has charge −2. U(1)A has a cubic anomaly with k = 2. Choosing a potential V (ϕ)

that induces condensation of ϕ, the axial symmetry gets spontaneously broken to Z2 = (−1)F .

By decomposing ϕ = ρ eiΘ into its radial and angular parts, the VEV ⟨ρ⟩ = v gives mass to

both ρ and ψ. The angular part Θ remains massless and is the only degree of freedom at low

72The transgression map is expected to be injective for all simple Lie groups.
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energy: it is the Goldstone boson. The faithful symmetry in the IR is U(1) = U(1)A/Z2 that

shifts Θ. In order to reproduce the anomaly, the coupling to a background A must include the

term
i

24π2
Θ(dA)2 . (4.2.64)

Indeed this term arises when integrating out the fermion. To see this notice that, for fixed

ϕ and A, if ϕ is real and positive then the fermion path integral can be regularized in a way

such that the measure is positive [388–390]. Clearly this is not true on a generic configuration,

but we can make it true by performing an axial rotation of parameter eiα, with α = −1
2
Θ. A

textbook computation [317, 391] shows that the path integral measure of the fermion changes

by a phase

D[ψ] 7→ D[ψ] exp

(
ik

24π2

∫
α (dA)2

)
. (4.2.65)

Setting α = −1
2
Θ this precisely reproduces the coupling (4.2.64). Now the Yukawa coupling be-

comes ρψψ, that for fixed ρ is essentially a positive mass term for the fermion, hence integrating

out the fermion becomes a safe operation that does not introduce extra phases.

Returning to the general case, we want to interpret the extra coupling (4.2.62) as specifying

a (higher) symmetry fractionalization class for the U(1) symmetry. This reinterpretation will be

crucial to understand the analogous story for higher groups in the following sections. A 0-form

symmetry G can fractionalize in the presence of a discrete 1-form symmetry Γ. This means that

when two topological defects g, h ∈ G fuse to produce gh ∈ G, their codimension-two junction

gets covered by a topological defect ω(g, h) ∈ Γ of the 1-form symmetry [178, 338, 348], where

ω ∈ H2(BG; Γ). Equivalently, a background A1 for G turns on a background B2 = A∗
1 ω for the

1-form symmetry. In this formula, we think of A1 as a map Md → BG and of B2 as an element

of H2(Md,Γ) so that we can use A1 to pull back ω. With this interpretation it becomes clear

that, if G and Γ have a mixed anomaly, a non-trivial fractionalization class modifies the pure

anomaly for G, possibly making it nontrivial even when it vanished originally [338, 348]. This

has a natural generalization to the case that Γ is a discrete p-form symmetry: when p + 1

topological defects g1, . . . , gp+1 ∈ G fuse in generic position, they create a codimension-(p+ 1)

junction that can be dressed by a defect ω(g1, . . . , gp+1) of the p-form symmetry Γ, where ω is

a class in Hp+1(BG; Γ). Equivalently, a background A1 turns on a background Bp+1 = A∗
1 ω

for Γ.

The compact boson theory that describes the breaking of a U(1) 0-form symmetry also

possesses a U(1) (d − 2)-form winding symmetry, and the two have a mixed anomaly. For

this reason, a pure anomaly for the 0-form symmetry can be induced by fractionalizing it with

the (d− 2)-form symmetry. One minor modification with respect to what we described above

is necessary because the p-form symmetry (here p = d − 2) is continuous. Its most natural

description is not in terms of a background potential Bp+1, which is not a cohomology class

in general, but in terms of its field strength 1
2π
dBp+1 ∈ Hp+2(Md;Z). As a consequence the

fractionalization class, instead of being an element of Hp+1
(
BU(1);U(1)

)
, is more naturally

an element of Hp+2(BU(1);Z) ∼= Z. This is the datum that determines a (p + 1)-dimensional

Chern–Simons level, or equivalently the corresponding Chern class in (p+2) dimensions. Hence,

in analogy with the discrete case, we prescribe that a background A1 for the 0-form symmetry
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activates a background Bd−1 for the (d− 2)-form symmetry whose field strength is

1

2π
dBd−1 =

k

(2π)d/2
(
d
2
+ 1
)
!

(
dA1

)d/2
. (4.2.66)

Recalling that the (d− 2)-form symmetry is coupled to its background field through the action

term i
2π

∫
Md

Φ0 dBd−1, this reproduces the coupling (4.2.62) in agreement with our holographic

result.

Abelian 2-groups

We consider a 2-group symmetry in four dimensions formed by a U(1) 0-form symmetry and a

U(1) 1-form symmetry. This can be obtained by starting from a theory with two U(1) 0-form

symmetries with a cubic mixed anomaly and gauging the U(1) that appears linearly in the

anomaly polynomial [179, 346]. The 1-form symmetry participating in the 2-group structure

is the magnetic symmetry of the photon. The SymTFT for such a 2-group symmetry has

action [206]:

S =
i

2π

∫
X5

(
b3 ∧ dA1 + h2 ∧ dC2 +

k

2π
h2 ∧ A1 ∧ dA1

)
. (4.2.67)

Here A1 and C2 are U(1) gauge fields, while b3 and h2 are R gauge fields. The topological

operators that implement the symmetry are the Wilson surfaces of b3 and h2. On the other

hand, the endpoints of ei
∫
A1 are local operators charged under the 0-form symmetry, and the

endlines of ei
∫
C2 are ’t Hooft lines charged under the magnetic 1-form symmetry. The gauge

transformations are:73

δA1 = dλ0 , δh2 = dξ1 , δb3 = dγ2−
k

2π
dξ1∧A1 , δC2 = dη1+

k

2π
dλ0∧A1 . (4.2.68)

We place this TQFT on a manifold with boundary, X5 = B4 × S1 for simplicity, and we

interpret it as a theory of gravity, holographically dual to some 4d quantum field theory on

the boundary. The last term in (4.2.67) contains a derivative, therefore it affects the boundary

contribution to the variational principle, similarly to the case of chiral anomalies. To fix the

boundary terms S∂ and the boundary conditions on the fields, we use the same logic as in that

case. We find the boundary conditions

⋆
(
A1 −A1

)
= − i

R2

[
b3 +

k

2π
h2 ∧

(
A1 −A1

)]
, ⋆ h2 =

ie2

π

(
C2 − C2 −

k

2π
A1 ∧A1

)
(4.2.69)

and a corresponding boundary term

S∂ = − i

2π

∫
∂X5

h2 ∧
(
C2 − k

2π
A1 ∧ A1

)
− e2

4π2

∫
∂X5

(
C2 − k

2π
A1 ∧ A1

)
∧ ⋆
(
C2 − k

2π
A1 ∧ A1

)
− 1

4πR2

∫
∂X5

[
b3 +

k

2π
h2 ∧

(
A1 −A1

)]
∧ ⋆
[
b3 +

k

2π
h2 ∧

(
A1 −A1

)]
. (4.2.70)

73There is some freedom in the choice of transformations that leave (4.2.67) invariant. In particular, the

transformation δA1 = dλ0 could be accompanied by an action on both b3 and C2 as δb3 = −ϵ k
2πdλ0 ∧ h2 and

δC2 = (1 − ϵ) k
2πdλ0 ∧ A1 for any choice of ϵ. Here we chose ϵ = 0 which matches the transformations in the

boundary theory.
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Here A1, C2 are fixed gauge fields on the boundary that transform as a proper 2-group back-

ground:

δA1 = dλ0 , δC2 = dη1 +
k

2π
dλ0 ∧ A1 . (4.2.71)

This makes the boundary conditions gauge invariant, provided we add a counterterm e2

4π2

∫
∂X5

C2∧
⋆ C2.

With the usual procedure, we obtain that the dual boundary theory has action:

S =
R2

4π

∫
∂X5

(
dΦ0 −A1

)
∧ ⋆
(
dΦ0 −A1

)
+

1

4e2

∫
∂X5

da1 ∧ ⋆ da1

+
i

2π

∫
∂X5

C2 ∧ da1 +
ik

4π2

∫
∂X5

Φ0 da1 ∧ dA1 .

(4.2.72)

Naively one may think that a1 is an R gauge field, because it comes from the trivialization

of h2. However, we have to take into account the condensation of the appropriate Lagrangian

algebra in the bulk, necessary to trivialize the TQFT and making it independent of the topology.

Specifically, here the relevant Lagrangian algebra is

L =
{
ein

∫
A1 , eim

∫
C2

∣∣∣ n,m ∈ Z
}
. (4.2.73)

Following the same logic as in Section 4.2.2, this introduces a sum over the fluxes of da1 that

effectively makes a1 into a U(1) gauge field.

Turning off the background A1 we obtain a free compact scalar and a free photon (coupled

to a background field C2 for its magnetic symmetry), enjoying a U(1) 0-form symmetry with

conserved current J1 = iR2

2π
dΦ0, and a U(1) 1-form symmetry with conserved current J2 =

1
2π
⋆da1, respectively. However, as soon as we turn on a background A1 for the 0-form symmetry,

the 2-group structure manifests itself through the nonstandard coupling between the photon

and the scalar, which modifies the currents and the background gauge transformations [179].

This is very similar to what happened in the case of the chiral anomaly, and we will provide a

similar interpretation in terms of symmetry fractionalization in the next section.

Let us show that the theory in (4.2.72) reproduces the 2-group symmetry [179]. First, notice

that the gauge transformation

δΦ0 = λ0 , δA1 = dλ0 , δC2 = dη1 +
k

2π
dλ0 ∧ A1 (4.2.74)

leaves the action invariant. This is indeed the background gauge transformation for a 2-group.

Second, in the presence of a background the currents get modified to:74

J1 =
iR2

2π

(
dΦ0 −A1

)
+

k

4π
⋆
(
dΦ0 ∧ da1

)
, J2 =

1

2π
⋆ da1 , (4.2.75)

and these satisfy modified conservation equations

d ⋆ J1 +
k

2π
dA1 ∧ ⋆ J2 = 0 , d ⋆ J2 = 0 , (4.2.76)

that are the correct conservation equations for a 2-group symmetry.

74For a U(1) p-form symmetry we use the convention that the current Jp+1 is defined by ⋆ Jp+1 = −i δS
δAp+1

where Ap+1 is the background field.
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Abelian 2-groups in the broken phase

The unusual coupling to the background A1 in (4.2.72), responsible for the 2-group structure

of the symmetry, is quite similar to the coupling (4.2.62) responsible for a chiral anomaly,

that we interpreted in terms of symmetry fractionalization. Indeed we can give a similar

interpretation here too. While it is intuitively clear why symmetry fractionalization can induce

a pure anomaly, and this fact has been studied extensively [338,348], the necessity of symmetry

fractionalization to match higher-group structures has not been much appreciated. There is

indeed one important difference, namely the nature of the symmetry used to fractionalize the

U(1) 0-form symmetry in question: it is a composite symmetry [392].

In general, if we have two U(1) symmetries of degrees p and q with currents Jp+1 and Jq+1

respectively, if p+q ≥ d−1 we can construct a third U(1) symmetry simply because the current

Jp+q−d+2 = ⋆
(
(⋆ Jp+1) ∧ (⋆ Jq+1)

)
(4.2.77)

is automatically conserved. This symmetry is of degree p + q − d + 1. In general, it is not

a particularly interesting symmetry because its consequences are already implied by the con-

stituent symmetries. However, it plays a role in our discussion. The IR theory of a 4d compact

boson has an emergent 2-form symmetry: the winding symmetry of the scalar with current

J3 = − 1
2π
⋆ dΦ0. This is the symmetry we used to fractionalize the 0-form symmetry in the

case of the chiral anomaly. In this case, since we also have the magnetic 1-form symmetry of

the photon with current J2 =
1
2π
⋆ da1, we can construct

Ĵ1 = ⋆
(
(⋆ J3) ∧ (⋆ J2)

)
=

1

4π2
⋆
(
dΦ0 ∧ da1

)
(4.2.78)

that generates a 0-form symmetry. Using this symmetry to fractionalize the shift symmetry of

the compact boson, as described in Section 4.2.3, we obtain precisely the non-canonical coupling

in (4.2.72).

4.2.4 Boundary Chern–Simons-like terms

In this section we study bulk models obtained by adding terms without derivatives. These

do not affect the boundary terms in the variational principle and hence do not modify the

boundary conditions. Thus the dual theory couples minimally to the background fields, but it

contains extra interactions, typically Chern–Simons-like terms. Our main motivation here is to

verify our conjecture in a case with a non-invertible symmetry, the Q/Z chiral symmetry in four

dimensions [61,64],75 and to provide a framework to study aspects of its spontaneous breaking.

We also consider in Section 4.2.4 a bulk 4d TQFT introduced in [206], which was argued to be

related to 3d gauge theories with Chern–Simons interactions. We use our formalism to establish

a precise holographic duality confirming the expectation of [206].

75See [213] for a recent proposal to recover the full U(1) chiral symmetry.
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Holographic dual to Maxwell–Chern–Simons theory

We consider the 4d TQFT with action

S =
i

2π

∫
X4

(
A1 ∧ db2 +

ϕ

4π
b2 ∧ b2

)
, (4.2.79)

where b2 is an R 2-from gauge field, A1 is a standard U(1) gauge field, and ϕ is a parameter.

On closed manifolds the theory is invariant under the following gauge transformations:

δA1 = dρ0 −
ϕ

2π
λ1 , δb2 = dλ1 . (4.2.80)

The gauge-invariant operators include surfaces Uα(γ2) = e
iα

∫
γ2
b2 and the generically non-

genuine lines Wn(γ1, D2) = e
in

∫
γ1
A1+

inϕ
2π

∫
D2

b2 that need an attached two-disk D2 bounded by

γ1. The label α ∼ α + 1 is circle valued, while n ∈ Z. The coupling ϕ is 2π periodic. We will

be mostly interested in the case

ϕ =
2π

k
with k ∈ Z . (4.2.81)

In this case the lines Wmk become genuine, and an interesting Lagrangian algebra is obtained

by taking all the genuine lines together with the surfaces Ul/k with l ∈ Zk.
We place the theory on a manifold with boundary, where we impose the boundary condition

⋆
(
A1 −A1

)
= − iπ

k2e2
b2 . (4.2.82)

In order to have a good variational principle we must add the boundary term

S∂ = −k
2e2

4π2

∫
∂X4

A1 ∧ ⋆A1 =
1

4k2e2

∫
∂X4

(
b2 +

ik2e2

π
⋆A1

)
∧ ⋆
(
b2 +

ik2e2

π
⋆A1

)
. (4.2.83)

The gauge transformation δA1 = dρ0 is restored by δA1 = dρ0 that makes (4.2.82) invariant.

The full system is gauge invariant, provided that we also add a counterterm Sc.t. =
k2e2

4π2

∫
∂X4

A1∧
⋆A1.

We take the bulk to be the product of a three-dimensional ball B3 and the time circle S1, so

that ∂X4 ≡ M3 = S2 × S1. Integrating out the time components At0, b
t
1 we get delta functions

imposing

d̃ b̃2 = 0 , d̃Ã1 +
1
k
b̃2 = 0 , (4.2.84)

that are solved introducing Φ0 and â1 through

b̃2 = d̃ â1 , Ã1 = d̃Φ0 − 1
k
â1 . (4.2.85)

With this, the bulk path integral reduces to a boundary path integral with action

S + S∂ + Sc.t. =
i

2π

∫
M3

[
∂tâ1 ∧

(
d̃Φ0 − 1

k
â1

)
∧ dt+ 1

2k
â1 ∧ dâ1 + d̃ â1 ∧ At

0 dt+ (4.2.86)

− i

2

(
π

k2e2
d̃ â1 ∧ d̃ â1 +

k2e2

π

(
d̃Φ0 − Ã1 − 1

k
â1

)
∧ ⋆
(
d̃Φ0 − Ã1 − 1

k
â1

))]
.
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Attempting to integrate out â1 to derive a covariant action for the scalar field, as we did in

Section 4.2.2, results in a non-local action.76 However, there is no problem in integrating out

Φ0 from (4.2.86) and we obtain a local and covariant boundary theory with action

S =
1

4k2e2

∫
M3

dâ1 ∧ ⋆ dâ1 +
i

4πk

∫
M3

â1 ∧ dâ1 +
i

2π

∫
M3

dâ1 ∧ A1 . (4.2.87)

This might seem like a U(1) gauge theory with an improperly quantized Chern–Simons

level. However we must be careful in identifying the correct U(1) gauge field, by considering

the condensation of the Lagrangian algebra that trivializes the bulk. This includes all genuine

lines as well as k surfaces:

L =
{
Wkm = eikm

∫
A1 , Ul/k = e

il
k

∫
b2
∣∣∣ m ∈ Z , l ∈ Zk

}
. (4.2.88)

On the geometry that we are considering, condensing L amounts to inserting the lines Wkm

along the time circle and summing over m, while the surfaces have no effect. The insertion

of Wkm modifies the path integral so as to impose that
∫
S2 b2 = 2πkm for any two-sphere in

B3 that surrounds the Wilson line. This in particular includes the boundary spatial manifold.

From the boundary theory viewpoint, this is a topological sector of the path integral with flux∫
S2

dâ1
2π

= km . (4.2.89)

Hence the canonically normalized U(1) gauge field is a1 = â1/k, in terms of which the boundary

theory has action

S =
1

4e2

∫
M3

da1 ∧ ⋆ da1 +
ik

4π

∫
M3

a1 ∧ da1 +
ik

2π

∫
M3

da1 ∧ A1 . (4.2.90)

This is Maxwell–Chern–Simons theory at level k, coupled to a background field for the topo-

logical U(1) symmetry acting on monopoles. Precisely, the background field for this symmetry

is A′
1 = kA1, while A1 is the background for a larger non-faithful U(1) symmetry obtained by

extending the topological symmetry with a trivially-acting Zk.77

Spontaneously broken non-invertible chiral symmetry

In 4d theories of massless Dirac fermions coupled with dynamical U(1) gauge fields (QED-like

theories) the classically conserved axial symmetry U(1)A suffers from an ABJ anomaly that

spoils the conservation of the current: d ⋆ J
(A)
1 = k

8π2 F2 ∧ F2 [393, 394]. Traditionally, this

was interpreted as the absence of U(1)A in the quantum theory. Recently [61, 64] showed that

axial transformations labelled by rational numbers survive at the quantum level, but they obey

76A similar (even though less transparent) problem would have raised if we tried to obtain the boundary

theory using the second method described at the end of Section 4.2.2, i.e., by integrating out directly the whole

b2: it does not appear linearly in the bulk action.
77The reason why we got this coupling is that the TQFT we started with describes this larger symmetry,

implemented by the operators eiα
∫
b2 , but the subgroup Zk has been condensed in the bulk, and acts trivially

in the boundary theory.
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non-invertible fusion rules. The SymTFT for this non-invertible chiral symmetry was derived

in [206]:

S =
i

2π

∫
X5

(
b3 ∧ dA1 + f2 ∧ dG2 +

k

4π
A1 ∧ f2 ∧ f2

)
. (4.2.91)

Here A1, G2 are U(1) gauge fields, while b3, f2 are R gauge fields. The gauge transformations

are

δA1 = dρ0 , δb3 = dξ2 −
k

4π
λ1 ∧ dλ1 −

k

2π
λ1 ∧ f2 ,

δf2 = dλ1 , δG2 = dη1 −
k

2π
ρ0
(
f2 + dλ1

)
− k

2π
λ1 ∧ A1 .

(4.2.92)

As shown in [206], the gauge-invariant genuine topological defects are:

Wn(γ1) = e
in

∫
γ1
A1 , U p

kq
(γ3) = e

i p
kq

∫
γ3
b3 Aq,p(γ3; f2) ,

Vα(γ2) = e
iα

∫
γ2
f2 , Tm(γ2) = e

im
∫
γ2
G2 Zkm(γ2;A1, f2) .

(4.2.93)

Here n,m ∈ Z and α ∈ R/Z, while p/q ∈ Q with gcd(p, q) = 1 and p ∼ p + kq so that the

label p/kq ∈ Q/Z. Then Zkm(γ2;A1, f2) denotes a pure 2d Zkm gauge theory on γ2, whose

0-form and 1-form symmetries are coupled, respectively, to A1 and f2. Similarly, Aq,p(γ3; f2)

is the minimal Abelian TQFT with Zq 1-form symmetry and anomaly labeled by p introduced

in [353], whose 1-form symmetry is coupled to f2. Stacking these TQFTs is necessary in order

to make the operators gauge invariant and topological. The theories Aq,p are nontrivial for

any q ̸= 1, so that only a Zk subgroup of the operators U p
kq

(those with q = 1) are invertible,

while the other ones obey non-invertible fusion rules. Similarly, Tm are non-invertible. In the

SymTFT approach it is natural to choose topological boundary conditions associated with the

Lagrangian algebra

L =
{
Wn , Tm

∣∣∣ n,m ∈ Z
}
. (4.2.94)

The remaining operators U p
kq
(γ3) and Vα(γ2) implement the non-invertible symmetry and the

magnetic 1-form symmetry, respectively.

Continuing with the approach we have followed so far, we want to consider a theory of

gravity based on (4.2.91) with the condensation of L in the bulk. We place this theory on a

manifold X5 with a boundary and impose the non-topological boundary conditions

⋆A1 = − i

R2
b3 + ⋆A1 , ⋆G2 = −iπ

e2
f2 + ⋆G2 . (4.2.95)

We need to add a boundary term:

S∂ = − 1

4πR2

∫
∂X5

b3 ∧ ⋆ b3 −
1

4e2

∫
∂X5

f2 ∧ ⋆ f2 . (4.2.96)

As before we would like to assign gauge transformation rules to the boundary fields A1, G2

in order to restore some of the gauge transformations on the boundary, corresponding to the

symmetries that become global there. However, while we can restore δG2 = dη1 by transforming

δG2 = dη1, the gauge transformation δA1 = dρ0 cannot be restored. Indeed, while the first eqn.

in (4.2.95) could be made gauge invariant by prescribing that δA1 = dρ0, the second one would

not be invariant because G2 transforms as δG2 = − k
2π
ρ0f2. This term cannot be reabsorbed by
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modifying the gauge transformations of G2, since f2 is a dynamical field. Thus the only way to

make the boundary conditions gauge invariant is to freeze the boundary value of ρ0, as those

of λ1 and ξ2.

To get the boundary theory, as before, we integrate out the time components imposing

d̃Ã1 = 0 , d̃f̃2 = 0 , d̃ b̃3 +
k

4π
f̃2 ∧ f̃2 = 0 , d̃ G̃2 +

k

2π
Ã1 ∧ f̃2 = 0 , (4.2.97)

that are solved by

Ã1 = d̃Φ0 , f̃2 = d̃a1 , b̃3 = d̃ω2 −
k

4π
a1 ∧ d̃a1 , G̃2 = d̃C1 −

k

2π
Φ0 d̃a1 . (4.2.98)

The total action reduces to a boundary theory with action:

S =
i

2π

∫
M4

[(
d̃ω2 − k

4π
a1 ∧ d̃a1

)
∧
(
∂tΦ0 −At

0

)
dt−

(
d̃C1 − k

2π
Φ0 d̃a1

)
∧ ∂ta1 ∧ dt

− i

2

(
R2
(
d̃Φ0 − Ã1

)
∧ ⋆
(
d̃Φ0 − Ã1

)
+

1

R2

(
d̃ω2 − k

4π
a1 ∧ d̃a1

)
∧ ⋆
(
d̃ω2 − k

4π
a1 ∧ d̃a1

))
− i

2

(
π

e2
d̃a1 ∧ ⋆ d̃a1 +

e2

π

(
d̃C1 − k

2π
Φ0 d̃a1 − G̃2

)
∧ ⋆
(
d̃C1 − k

2π
Φ0 d̃a1 − G̃2

))
+ d̃a1 ∧ Gt1 ∧ dt+

ik

4π
Φ0 da1 ∧ da1

]
(4.2.99)

where M4 = ∂X5. We can then integrate out both ω2 and C2 obtaining

S =

∫
M4

[
R2

4π

(
dΦ0 −A1

)
∧ ⋆
(
dΦ0 −A1

)
+

1

4e2
da1 ∧ ⋆ da1 +

ik

8π2
Φ0 da1 ∧ da1 +

i

2π
da1 ∧G2

]
.

(4.2.100)

As in the cases of the Abelian 2-group and of Maxwell–Chern–Simons theory, gauging the

Lagrangian algebra introduces fluxes for a1 turning it into a standard U(1) gauge field. The

theory in (4.2.100) describes a compact boson Φ0 and a photon a1 interacting via an axion

coupling. This is called axion-Maxwell theory, and the full structure of its symmetries (including

some emergent ones) has been studied in great detail in [60]. From the discovery of the non-

invertible chiral symmetry it was suspected that this theory universally describes its symmetry

breaking. Our result confirms that. Notably, this is the first interacting boundary theory among

the examples considered so far.

Some comments on the coupling to the background fields are in order. As we already

noticed after (4.2.96), there is no sensible gauge transformation rules that we could assign to

A1 and G2 to make the boundary condition invariant under δA1 = dρ0, hence we needed to

freeze it. In the action (4.2.100), A1 should not be thought of as the background field for the

0-form non-invertible symmetry, but rather just as an external source that couples with the

operator J
(A)
1 . This is enough for holography, but it might seem a bit unsatisfactory from a

symmetry viewpoint. However, this is really the hallmark of the non-invertible nature of the

symmetry: ordinary background gauge fields seem not to exist, and they are effectively replaced

by boundary values of dynamical fields in one dimension higher [7]. The underlying reason

is that non-invertible symmetries map untwisted sectors to twisted sectors, hence the gauge

transformations of a background gauge field necessarily involve an interplay among backgrounds
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that do not exist simultaneously in the theory, but only in the SymTFT (or in holography)

where all global variants are on the same footing. This is the reason why SymTFT is the main

tool for discussing anomalies [2, 98,99,195].

4.2.5 Non-Abelian Goldstone bosons

A very interesting class of examples are those of spontaneously broken non-Abelian symme-

tries. In these cases the boundary EFTs that we derive are interacting and generically non-

renormalizable. In the 2d/3d case we will be able to recover and somewhat generalize the

CS/WZW correspondence outside of the conformal point, while in higher dimensions we will

obtain the pion Lagrangian on the boundary. We start with the non-Abelian generalization of

the theories considered in Section 4.2.2 and then add an anomaly term, which corresponds to

WZW terms in various dimensions. Finally we show how our setup is able to produce an EFT

for spontaneously broken non-Abelian 2-group symmetries.

Holographic dual to the pion Lagrangian

Let G be a connected and compact Lie group (with Lie algebra g). The SymTFT for a non-

Abelian 0-form symmetry G in d dimensions is the TQFT with action [206,210,211]:78

S =
i

2π

∫
Xd+1

Tr
(
bd−1 ∧ F2

)
, (4.2.101)

where F2 = dA1 + iA1 ∧ A1 is the field strength of a G connection A1 while bd−1 is a g-valued

(d− 1)-form. The gauge transformations are

A1 7→ ΛA1 Λ
−1 + i dΛΛ−1 , bd−1 7→ Λ bd−1 Λ

−1 (4.2.102)

as well as

bd−1 7→ bd−1 +DAλd−2 . (4.2.103)

Here DA = d + i[A1, · ]± is the covariant derivative that acts on p-forms valued in the Lie

algebra as

DAηp = dηp + i
(
A1 ∧ ηp − (−1)p ηp ∧ A1

)
. (4.2.104)

The topological defects of this TQFT include the Wilson lines

WR(γ1) = TrR Pexp

(
i

∫
γ1

A1

)
(4.2.105)

labelled by the irreducible representations R of G, as well as (d−1)-dimensional Gukov-Witten

operators U[g](γd−1) labelled by conjugacy classes [g] of G and defined by prescribing that the

holonomy of A1 around U[g] be in [g] [395]. The two classes of operators have a canonical linking

given by the character χR([g]). A natural Lagrangian algebra that we will condense consists of

the Wilson lines in all representations of G.

78For d = 3 this theory was first considered by Horowitz [380]. Curiously, the motivation was to view it as

an exactly solvable theory of gravity.
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We use the following non-topological boundary condition and boundary term on Md =

∂Xd+1:

⋆
(
A1 −A1

)
= − i

f 2
π

bd−1 , S∂ = − 1

4πf 2
π

∫
Md

Tr
(
bd−1 ∧ ⋆ bd−1

)
. (4.2.106)

We can recover the gauge transformations on the boundary by assigning the transformation rule

A1 7→ ΛA1Λ
−1 + idΛΛ−1 so that A1 is interpreted as a background field for a global symmetry

G.79 We can proceed with the usual steps to derive the dual boundary theory. Taking the

spacetime to be Xd+1 = Bd × S1, the path integral over time components imposes

F̃2 = 0 , DÃ1
b̃d−1 = 0 . (4.2.107)

The first equation can be solved in terms of a G-valued scalar field U as

Ã1 = i d̃U U−1 . (4.2.108)

To solve the second one, since the covariant derivative with respect to a flat connection squares

to zero (i.e., it becomes a differential), we set

b̃d−1 = D̃ωd−2 (4.2.109)

where ωd−2 is a g-valued (d− 2)-form, and D̃ denotes the covariant derivative with respect to

i d̃U U−1. By plugging these back, the theory reduces to a boundary action:

S = (−1)d
i

2π

∫
Md

Tr

[
D̃ωd−2 ∧

(
i ∂tUU−1 −At

0

)
dt

]
(4.2.110)

+
1

4π

∫
Md

Tr

[
1

f2π
D̃ωd−2 ∧ ⋆ D̃ωd−2 + f2π

(
i d̃UU−1 − Ã1

)
∧ ⋆
(
i d̃UU−1 − Ã1

)]
.

One important difference with respect to the Abelian case is that U and ωd−2 do not appear

symmetrically. While U appears in a complicated way, the action is still quadratic in ωd−2 that

can thus be integrated out using its equation of motion

D̃
(
∂tU U

−1 + iAt
0

)
∧ dt+ (−1)d−1

f 2
π

D̃ ⋆ D̃ωd−2 = 0 . (4.2.111)

Eliminating a zero-mode as in the Abelian case, we can use this equation to determine D̃ωd−2,

and we find the manifestly covariant form of the boundary theory:

S =
f 2
π

4π

∫
Md

Tr

[(
i dUU−1 −A1

)
∧ ⋆
(
i dUU−1 −A1

)]
. (4.2.112)

This describes a sigma model with target G, coupled to a background field A1 for the symmetry

G that acts as U 7→ gU with g ∈ G. The sigma model is a non-renormalizable theory that

provides the leading universal term in an expansion in number of derivatives (in 4d this is chiral

perturbation theory), describing the EFT of any theory with spontaneously broken symmetry

G [378,379].

79Differently from the Abelian case, here we cannot turn on another background to rescue the other gauge

symmetry as well. The reason is that the gauge transformation (4.2.103) of bd−1 cannot be reabsorbed in the

boundary condition by replacing bd−1 with bd−1 − Bd−1 and assigning a transformation rule to Bd−1. Indeed,

this transformation would necessarily involve the dynamical field A1, instead of the background A1.
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Non-Abelian chiral anomaly

For any even d we can add a Chern–Simons term to the bulk theory (4.2.101):80

SCS =
iκd
2π

∫
Xd+1

Tr
(
CSd+1(A1)

)
, κd =

k

(2π)
d
2
−1
(
d
2
+ 1
)
!
, k ∈ Z , (4.2.113)

that describes the presence of a perturbative anomaly for G. In this case, differently from the

Abelian one, anomaly matching requires a WZW term in the spontaneously broken phase [381].

We want to show that this fact is implied by our conjecture. We also consider the case of d = 2

where, strictly speaking, our conjecture does not apply because there is no spontaneous breaking

of a continuous symmetry in two dimensions.

Two dimensions

In the case of d = 2, we use the boundary condition

⋆
(
A1 −A1

)
= − i

f 2
π

(
b1 +

k

2

(
A1 −A1

))
(4.2.114)

that is gauge invariant under A1 7→ ΛA1Λ
−1 + idΛΛ−1, A1 7→ ΛA1Λ

−1 + idΛΛ−1, and add the

boundary term

S∂ = − 1

4πf 2
π

∫
∂X3

Tr

[(
b1 +

k
2
A1

)
∧ ⋆
(
b1 +

k
2
A1

)]
(4.2.115)

to make the variational principle well defined.

As a preliminary consistency check, we compute the gauge variation. The total gauge-

transformed action differs by

∆
(
S + S∂ + Sc.t.

)
=
ik

4π

∫
∂X3

Tr
(
A1 ∧ iΛ−1dΛ

)
+

k

24π

∫
X3

Tr
(
(iΛ−1dΛ)3

)
(4.2.116)

from the original one.81 Upon expanding Λ = 1+ λ0 and retaining only the linear order in λ0,

this reduces to the usual form of the consistent anomaly:

δ
(
S + S∂ + Sc.t.

)
=
ik

4π

∫
∂X3

Tr
(
A1 ∧ idλ0

)
. (4.2.117)

One can proceed in determining the dual boundary theory similarly to the non-anomalous

case. Since the boundary condition is essentially the same (simply written in a different

parametrization), the only difference is the bulk Chern–Simons term which gives rise to a

WZW term in the boundary theory:

S =
f 2
π

4π

∫
M2

Tr
[(
i dUU−1 −A1

)
∧ ⋆
(
i dUU−1 −A1

)]
+

k

12π

∫
X3

Tr
[(
iU−1dU

)3]
− ik

4π

∫
M2

Tr
[
A1 ∧ i dUU−1

]
. (4.2.118)

80Here we assume G to be simple and simply connected.

81Here Sc.t. =
k2

8πf2π

∫
∂X3

Tr
(
A1 ∧ ⋆A1

)
is a counterterm we add to simplify the final result.
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We notice that there is also a non-standard coupling to the background field, that in our

approach arises because of the boundary conditions, similarly to the Abelian case. Differently

from that case, however, in a purely field theoretic analysis this is not interpreted as a coupling

to a diagonal symmetry (since a winding symmetry is absent here), but rather it arises from the

standard trial-and-error procedure to couple the G symmetry to a background in the presence

of the WZW term, similarly to the 4d analysis in [381].

For generic values of f 2
π the theory is not conformally invariant at the quantum level. How-

ever choosing f 2
π = k

2
the theory has a conserved holomorphic current which generates a Kac–

Moody symmetry algebra, and it displays conformal invariance [396]. In this case we recover

a form of the CS/WZW correspondence, which is more general on one side, being valid even

outside of the conformal point, but less general on the other side, since in the conformal case

it automatically produces the full physical WZW model instead of its chiral halves.

Four dimensions

In the case of d = 4, the 5d Chern–Simons term is

Tr
(
CS5(A1)

)
= Tr

(
A1 ∧ (dA1)

2 +
3i

2
A3

1 ∧ dA1 −
3

5
A5

1

)
. (4.2.119)

As one might suspect already from the Abelian case, in order to obtain a gauge-invariant

boundary condition with a consistent variational principle we need to introduce extra terms in

the boundary condition that mix background and dynamical fields. We use the same iterative

procedure discussed in Appendix B.7 for the Abelian anomaly, even though the computations

are clearly more tedious here. We find the following solution. The boundary condition is

⋆
(
A1 −A1

)
− iκ4
f 2
π

(
1

2

(
A1F2 + F2A1

)
− i

2
A3

1

)
= − i

f 2
π

Ω3 (4.2.120)

where F2 is the field strength of A1 while

Ω3 = b3+κ4

(
F2

(
A1−A1

)
+
(
A1−A1

)
F2−

i

2

((
A1−A1

)3
+A1

)3
+
1

2

(
A1F2+F2A1

))
(4.2.121)

and the boundary term is

S∂ = − 1

4πf 2
π

∫
∂X5

Tr
(
Ω3 ∧ ⋆Ω3

)
+ Stop + Sc.t. ,

Stop =
iκ4
2π

∫
∂X5

Tr

[
1

2
F2A1A1 +

1

2
A1 F2A1 −

i

4
A1A1A1A1 +

i

2
A3

1A1

]
.

(4.2.122)

The counterterm Sc.t. is used to simplify the final expression, and it is convenient to choose it

as

Sc.t. =
κ24

4πf 2
π

∫
∂X5

Tr
[
ϕ(A1)∧⋆ ϕ(A1)

]
, ϕ(A1) =

1

2

(
A1∧dA1+dA1∧A1+iA3

1

)
. (4.2.123)

The boundary condition is gauge invariant under the transformation A1 7→ ΛA1Λ
−1 +

idΛΛ−1, A1 7→ ΛA1Λ
−1 + idΛΛ−1 and one can compute the total gauge variation

∆
(
S + S∂

)
= −iκ4

2π

∫
∂X5

Tr

[(
iΛ−1dΛ

)
∧ ϕ(A1) +

i

4

(
A1 ∧ iΛ−1dΛ

)2 − i

2

(
iΛ−1dΛ

)3 ∧ A1

]
− iκ4

20π

∫
X5

Tr
[(
iΛ−1dΛ

)5]
. (4.2.124)

207



Expanding U = 1+ λ0 to linear order, we recover the usual form of the consistent anomaly in

four dimensions:

δ
(
S + S∂

)
= − ik

48π2

∫
∂X5

Tr
[
idλ0 ∧

(
A1 ∧ dA1 + dA1 ∧ A1 + iA3

1

)]
. (4.2.125)

We can then proceed, as before, with the reduction of the action on the boundary. We find

S =
f 2
π

4π

∫
M4

Tr

[(
idUU−1 −A1

)
∧ ⋆
(
idUU−1 −A1

)]
− ik

240π2

∫
X5

Tr

[(
iU−1dU

)5]
+

ik

48π2

∫
M4

Tr

[
idUU−1 ∧

(
A1 ∧ F2 + F2 ∧ A1 −A3

1

)]
(4.2.126)

+
k

48π2

∫
M4

Tr

[
1

2
idUU−1 ∧ A1 ∧ idUU−1 ∧ A1 −

(
idUU−1

)3 ∧ A1

]
.

Turning off the background gauge field A1 we recognize a non-linear sigma model with target

space G with a properly normalized WZW term, that describes the dynamics of Goldstone

bosons. The coupling to the background A1 is completely fixed by the requirement of a gauge-

invariant boundary condition, and correctly captures the anomaly of the non-linearly realized

G symmetry.

Non-Abelian 2-group symmetries

In 4d one can have 2-group symmetries whose 0-form part is a non-Abelian group G, while the

1-form part is U(1). These symmetry structures arise, e.g., if one starts from a theory with a

0-form symmetry group U(1)×G with an ’t Hooft anomaly that is linear in U(1) and quadratic

in G:

Sinflow =
ik

8π2

∫
X5

dV1 ∧ Tr

(
A1 ∧ dA1 +

2i

3
A3

1

)
, (4.2.127)

and then gauges the U(1) symmetry [179]. The 1-form symmetry involved in the 2-group is the

magnetic symmetry of the gauged U(1). The SymTFT for this non-Abelian 2-group symmetry

can be derived using the dynamical gauging procedure described in [206]. Indeed one starts

from the SymTFT for the U(1)×G 0-form symmetry:

S ′ =
i

2π

∫
X5

[
g3 ∧ dV1 + Tr

(
b3 ∧ F2

)
+

k

4π
dV1 ∧ Tr

(
A1 ∧ dA1 +

2i

3
A3

1

)]
(4.2.128)

where g3 and V1 are an R and a U(1) gauge field, respectively, b3 is g-valued and A1 is a

G connection (F2 is its field strength). Then one applies the map introduced in [206] that

implements the dynamical gauging of U(1) on the boundary from the viewpoint of the SymTFT.

The net effect is the replacement dV1 7→ h2, g3 7→ dC2, thus the resulting SymTFT has action

S =
i

2π

∫
X5

[
h2 ∧ dC2 + Tr

(
b3 ∧ F2

)
+

k

4π
h2 ∧ Tr

(
A1 ∧ dA1 +

2i

3
A3

1

)]
. (4.2.129)

208



The gauge transformations are:82

h2 7→ h2 + dξ1 , A1 7→ ΛA1Λ
−1 + idΛΛ−1 ,

b3 7→ b3 −
k

4π
ξ1 ∧ F2 , C2 7→ C2 + dη1 −

k

4π
Tr
(
A1 ∧ iΛ−1dΛ

)
+

ik

6π
TrΩ2 ,

(4.2.131)

where Ω2 is a locally defined real 2-form with the property that Tr
(
(iΛ−1dΛ)3

)
= dTrΩ2.

Again, we can use an iterative procedure to determine a set of gauge-invariant boundary

conditions together with a boundary term that provide a good variation principle. The bound-

ary conditions are

⋆
(
A1−A1

)
= − i

R2

(
b3+

k

4π

(
A1−A1

))
, ⋆ h2 =

ie2

π

(
C2−C2−

k

4π
Tr
(
A1 ∧A1

))
(4.2.132)

while the boundary term is

S∂ = − i

2π

∫
∂X5

h2 ∧
(
C2 −

k

4π
Tr
(
A1 ∧ A1

))
− e2

4π2

∫
∂X5

(
C2 −

k

4π
Tr
(
A1 ∧ A1

))
∧ ⋆
(
C2 −

k

4π
Tr
(
A1 ∧ A1

))
− 1

4πR2

∫
∂X5

Tr

[(
b3 +

k

4π

(
A1 −A1

))
∧ ⋆
(
b3 +

k

4π

(
A1 −A1

))]
.

(4.2.133)

The boundary condition becomes gauge invariant by assigning the following transformations to

the backgrounds A1 and C2:

A1 7→ ΛA1Λ
−1 + idΛΛ−1 , C2 7→ C2 + dη1 −

ik

4π
Tr
(
A1 ∧ Λ−1dΛ

)
+

ik

12π
TrΩ2 . (4.2.134)

These reproduce the background gauge transformation of [179] for a non-Abelian 2-group sym-

metry upon expanding U = 1+ λ0 at first order:

δA1 = iDA1λ0 , δC2 = dη1 −
ik

4π
Tr
(
A1 ∧ dλ0

)
. (4.2.135)

It is also easy to see that the whole bulk-boundary system is gauge invariant under transfor-

mations of A1 and C2 provided we add a counterterm Sc.t. =
e2

4π2

∫
∂X5

C2 ∧ ⋆ C2.
We can apply our usual machinery to get the dual boundary theory. We obtain a G-valued

scalar field U from A1, and a Maxwell field a1 from h2, with the following boundary action:

S =
f 2
π

4π

∫
M4

Tr

[(
idUU−1 −A1

)
∧ ⋆
(
idUU−1 −A1

)]
+

1

4e2

∫
M4

da1 ∧ ⋆ da1

+
k

24π2

∫
M4

a1 ∧ Tr
[(
iU−1dU

)3]
+

i

2π

∫
M4

da1 ∧ Tr
[
A1 ∧ iU−1dU

]
+

i

2π

∫
M4

C2 ∧ da1 .

(4.2.136)

82Recall that the variation of the three-dimensional Chern–Simons term is:

Tr
(
CS3(A1)

)
7→ Tr

(
CS3(A1)

)
+ dTr

(
A1 ∧ iΛ−1dΛ

)
− i

3
Tr
((

iΛ−1dΛ
)3)

. (4.2.130)
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Definition xi a1Tr
[(
iU−1dU

)3]
Tr
[(
iU−1dU

)5]
P0 xi 7→ −xi −1 −1 −1

C1 a1 7→ −a1 1 −1 1

C2 U 7→ UT 1 −1 1

(−1)Nπ U 7→ U−1 1 −1 −1

Table 4.2: The four Z2 symmetries, and the corresponding phases acquired by the coordinates,

the photon-pion coupling term, and the standard WZW term, respectively. Notice that while

Tr
[
(iU−1dU)5

]
is invariant under U 7→ UT, the term Tr

[
(iU−1dU)3

]
changes sign.

In the first line we recognize a non-linear sigma model with target space G and a Maxwell

theory. The last line describes the coupling to the background field C2 for the magnetic U(1)

1-form symmetry, as well as a nonstandard coupling to the background A1 for the symmetry G,

similar to the one arising in the Abelian case in Section 4.2.3. The most interesting new thing

here is the term in the second line that describes a coupling between the photon and the pions.

This is a linear coupling of the photon to the current of a topological symmetry that exists

in any sigma model with target G. According to our conjecture, this model is the universal

EFT that describes the IR of any theory with a spontaneously broken non-Abelian 2-group

symmetry. To the best of our knowledge, this universal EFT was not derived elsewhere.

Some comments on the extra Wess-Zumino-like coupling are in order. First, in any RG

flow that breaks the 2-group spontaneously, this coupling must be generated as a consequence

of the 2-group matching. In a sense, it is similar to the presence of the WZW term in the

EFT of a spontaneously broken anomalous non-Abelian symmetry. Quite like that term, it

breaks a symmetry of the EFT that would be there if k = 0. Indeed, for k = 0 the theory

is separately invariant under four Z2 symmetries: parity P0 : xi 7→ −xi for i = 1, 2, 3; photon

charge conjugation C1 : a1 7→ −a1; non-Abelian charge conjugation83 C2 : U 7→ UT; pion number

mod-2 (−1)Nπ : U 7→ U−1. All these four symmetries are violated by the photon-pion coupling,

but the product of any two of them is preserved. Therefore the discrete symmetry for k ̸= 0 is

(Z2)
3 generated by

P = P0 (−1)Nπ , C = C1C2 , C̃ = C1 (−1)Nπ . (4.2.137)

The photon-pion coupling allows, for instance, a process involving three pions and one photon,

which would have been forbidden otherwise. We summarize the various symmetry actions and

charges in Table 4.2.

Second, the 2-group symmetry we started with could suffer from a perturbative cubic chiral

anomaly for G as well. This would be described by the addition of a 5d Chern–Simons term

83The reason for this name will be clear in the upcoming discussion of U(N) QCD.
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(4.2.119) to the bulk action in (4.2.129), and would result in an extra WZW term SWZW =

− ik
240π2

∫
X5
Tr
[
(iU−1dU)5

]
in the 4d boundary action (4.2.136).84 This term would further break

the discrete symmetry of the EFT to (Z2)
2 generated by P and C, as it is clear from Table 4.2.

An application: U(N) QCD. Let us present a concrete application of the effective action

(4.2.136). Consider a 4d gauge theory with U(N) gauge group and Nf flavors of massless Dirac

fermions, so that there is a chiral symmetry SU(Nf )L×SU(Nf )R. It can be obtained by gauging

the baryon number symmetry U(1)B in ordinary SU(N) QCD, hence it contains an Abelian

gauge field Aµ on top of the non-Abelian gauge fields. Being weakly coupled at low energy, Aµ

is not expected to drastically modify the strong coupling dynamics of the non-Abelian sector.

Hence for Nf small enough, the quark bilinear takes VEV and spontaneously breaks the chiral

symmetry:85

SU(Nf )L × SU(Nf )R → SU(Nf )V (4.2.138)

producing at low energy massless pions that interact as a non-linear sigma model with target

space SU(Nf ). The pions are neutral under the non-Abelian gauge symmetry SU(N), whose

gluons are confined. However the Abelian gauge field Aµ remains even in the deep IR and there

is no reason why it should be decoupled from the non-linear sigma model. Indeed, while the

pion fields themselves are neutral under U(1), being bound states of quarks it is a priori unclear

whether there is a low-energy remnant of the quark-photon interaction.

We can answer this question using our result, and showing that the photon is not decoupled.

Indeed there is a U(1) magnetic 1-form symmetry from the Abelian gauge field (that is its

Goldstone boson), which forms a non-trivial 2-group with SU(Nf )L (and also with SU(Nf )R,

but we can just focus on one of the two). To see this, we notice that there is a triangle anomaly

U(1) -SU(Nf )
2
L whose anomaly polynomial is

PU(1) -SU(Nf )
2
L
=

N

8π2
dA ∧ Tr

(
F ∧ F

)
, (4.2.139)

where F = dG + iG ∧ G is the field strength of the background field G for SU(Nf )L. The

coefficient N comes because all left-moving fermions have charge 1 under U(1) and are in the

fundamental representation of the non-Abelian gauge symmetry SU(N). By comparison with

(4.2.127) we read off that the U(1) 1-form symmetry and SU(Nf )L form a 2-group with k = N .

Because of chiral symmetry breaking and spontaneous breaking of the 1-form symmetry, the

2-groups is fully broken and, from our result above, the low-energy EFT describing pions and

photon is (4.2.136), plus the standard WZW term (also with coefficient N) for the pions due

84We did not work out the detailed form of the coupling to the background fields.
85Notice that the usual argument [397] based on ’t Hooft anomaly matching in SU(N) QCD is also valid here,

hence we do not really need to make the assumption that the photon does not affect chiral symmetry breaking.
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to the cubic SU(Nf )L anomaly:86

SIR =
f 2
π

4π

∫
M4

Tr
[(
idUU−1

)
∧ ⋆
(
idUU−1

)]
+

1

4e2

∫
M4

dA ∧ ⋆ dA

+
N

24π2

∫
M4

A ∧ Tr
[(
iU−1dU

)3]− iN

240π2

∫
X5

Tr
[(
iU−1dU

)5]
.

(4.2.140)

Thus, while the pions themselves are uncharged under the U(1) gauge group, the photon A is

coupled with an effective current

JB = − N

24π2
⋆ Tr

[(
iU−1dU

)3]
. (4.2.141)

This current is conserved, and in the absence of the pion-photon interaction it generate a global

U(1) symmetry of the sigma model: the topological symmetry due to the non-trivial homotopy

group π3
(
SU(Nf )

)
= Z. The integral of ⋆ JB gives indeed the winding number:

w(M3) = − i

24π2

∫
M3

Tr
[(
iU−1dU

)3] ∈ Z . (4.2.142)

In the U(N) theory, configurations with nontrivial winding have a U(1) gauge charge. These

configurations are Skyrmions: solitonic objects which, in the SU(N) theory, are identified with

the baryons [381, 399]. This is confirmed by our finding: the U(N) theory is obtained from

ordinary SU(N) QCD by gauging the baryon number symmetry, hence the baryons are no

longer gauge invariant, but rather are coupled with A.

We can make this more precise as follows. In the absence of the photon-pion coupling, the

operators charged under the topological U(1) symmetry are local operators Bq(x) defined as

disorder operators which impose that

w(S3) = q ∈ Z (4.2.143)

on a 3-sphere S3 that links with x. Similarly to the monopole operator in Chern–Simons theory,

Bq(x) gets a gauge charge Nq due to the coupling with the photon.

Also, in the absence of the 2-group structure, the low-energy effective theory would have

an emergent electric U(1) 1-form symmetry shifting A → A + λ (with the periods of λ in the

interval [0, 2π]) and acting on the Wilson lines Wn(γ) = ein
∫
γ A. Because of the photon-pion

coupling, however, only a ZN ⊂ U(1) subgroup of this 1-form symmetry emerges. Indeed using

the quantization (4.2.142), shifting A→ A+λ leaves the exponentiated action invariant only if

the periods of λ are multiples of 2π
N
. An equivalent way to see this is that the Wilson lineWn=N

can terminate on the Baryon operator B1(x). Notice that the microscopic theory does not have

this ZN 1-form symmetry, because the quarks have unit charge under the gauged U(1)B. The

emergence of ZN has a clear interpretation: the quarks are confined and the only dynamical

particles charged under U(1)B at low energy are baryons, with charges multiple of N .

862-group structures in sigma models arising in the IR of QCD-like theories have been recently considered also

in [398]. The IR there, however, is purely scalar, and the 2-group is not fully spontaneously broken (the 1-form

symmetry is preserved). The interaction responsible for the 2-group is not a photon-pion coupling, but rather

a coupling between pions parametrizing two different target spaces. Indeed the UV model studied in [398] can

be obtained from U(N) QCD by adding scalars charged under U(1)B that Higgs the Abelian gauge field.
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As a final comment, notice that among the three Z2 symmetries P,C, C̃ defined in (4.2.137)

that are preserved by the photon-pion coupling, only P and C are preserved also by the standard

WZW term, while C̃ is explicitly broken (see Table 4.2). This has to do with the fact that in

U(N) QCD, C2 : U 7→ UT is the low-energy remnant of the non-Abelian charge conjugation

that, in the UV, also acts on the SU(N) gauge bosons, confined in the IR. In the U(N) theory

this charge conjugation is not independent from the Abelian charge conjugation C1 acting on

the photon, since the fermions are in the fundamental representation of both. Hence, only the

product C = C1C2 is a symmetry of the theory.
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Appendix A

Appendices for Chapter 3

A.1 Superconformal Symmetry

In this Appendix we collect several facts on the N = 2 superconformal algebra and summarize

our conventions. The N = 2 multiplet containing the stress energy tensor TB(z) also includes

two fermionic supercurrents T±
F (z) as well as a U(1)R current J(z). The non zero OPEs are

(equality below is up to regular terms)

TB(z)TB(0) =
c

2z4
+

2

z2
TB(0) +

1

z
∂TB(0)

TB(z)T
±
F (0) =

3

2z2
T±
F (0) +

1

z
∂T±

F (0)

TB(z)J(0) =
1

z2
J(0) +

1

z
∂J(0)

T+
F (z)T

−
F (0) =

2c

3z2
+

2

z2
J(0) +

2

z
∂TB(0) +

1

z
∂J(0)

J(z)T±
F (0) = ±1

z
T±
F (0)

J(z)J(0) =
c

3z2

(A.1.1)

Besides the regular TB OPE these tell us that T±
F are (Virasoro) primary fields with weight 3/2

and U(1)R charge ±1. As usual the conserved R-current J(z) is a primary of weight 1. On the

cylinder we can decompose these fields in Fourier modes, then mapping back to the punctured

plane we have

TB(z) =
∑
n∈Z

Ln
zn+2

, J(z) =
∑
n∈Z

jn
zn+1

, T±
F (z) =

∑
r∈Z±ν

G±
r

zr+3/2
. (A.1.2)

where ν depends on the spin structure chosen: ν = 0 corresponds to antiperiodic boundary

conditions for the fermions (Ramond sector) while ν = 1/2 gives periodic fermions (NS sector).

The algebra of modes is[
Lm, G

±
r

]
=
(m
2
− r
)
G±
m+r , [Lm, Ln] = (m− n)Lm+n +

c

12
(m3 −m)δm+n,0

[Lm, jn] = −njm+n , [jm, jn] =
c

3
mδm+n,0 ,

[
jm, G

±
r

]
= ±G±

m+r ,{
G+
r , G

−
s

}
= 2Lr+s + (r − s)jr+s +

c

3

(
r2 − 1

4

)
δr+s,0 .

(A.1.3)
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A convenient choice for the Cartan subalgebra is the pair L0, j0 so that states in representation

spaces are labelled by both their conformal weight h and the U(1)R charge q

L0|h, q⟩ = h|h, q⟩ j0|h, q⟩ = q|h, q⟩ . (A.1.4)

Irreducible representations of this algebra are lowest weight representations (LWR) built on

top of a superconformal primary state |h, q⟩ such that

Ln|h, q⟩ = jn|h, q⟩ = G±
r |h, q⟩ = 0 ∀n, r > 0 . (A.1.5)

A unitary representation is one in which we have an hermitian conjugation operation with

respect to which (Lm)
† = L−m, (G

+
r )

† = G−
−r and (jn)

† = j−n. Unitarity puts strong constraints

on the spectrum of allowed weights and U(1)R charges for a given central charge. A simple

unitarity bound in the NS sector is obtained imposing

0 ≤ ⟨h, q|
{
G+

∓1/2, G
−
±1/2

}
|h, q⟩ = ⟨h, q| (2L0 ∓ j0) |h, q⟩ = 2h∓ q (A.1.6)

that is states in a unitary representation in the NS sector obey h ≥ |q|/2. For more details see

e.g. [255,400,401]. Since the superconformal algebra includes Virasoro as a subaglebra we can

split its representations in Virasoro irreps. This basically amounts to find states annihilated

only by the positive Virasoro modes. Let’s consider a superconformal primary |h, q⟩ and its

fermionic descendants G±
−r|h, q⟩ with r > 0. We have

LmG
±
−r|h, q⟩ = [Lm, G

±
−r]|h, q⟩+G±

−rLm|h, q⟩ =
(m
2
+ r
)
G±
m−r|h, q⟩ (A.1.7)

which vanishes only for m > r. Therefore these states are not Virasoro primaries. We can

obtain further Virasoro primaries considering states obtained acting on |h, q⟩ with products of

fermionic generators G±
−r with different values of r. For instance in the NS sector one easily

sees that G±
−1/2|h, q⟩ are Virasoro primaries while G±

−3/2|h, q⟩ are not. The next lowest weight

Virasoro primary are instead G±
−1/2G

±
−3/2|h, q⟩, indeed

LmG
±
−1/2G

±
−3/2|h, q⟩ = [Lm, G

±
−1/2]G

±
−3/2|h, q⟩+G±

−1/2[Lm, G
±
−3/2]|h, q⟩

=
m+ 1

2
G+
m−1/2G

+
−3/2|h, q⟩+

m+ 3

2
G+

−1/2G
+
m−3/2|h, q⟩

(A.1.8)

which vanishes for all m > 1 due to |h, q⟩ being a primary while for m = 1 because the state

G+
−1/2G

+
−1/2|h, q⟩ is actually null (as one would expect). Thus in general a superconformal family

includes an infinite number of conformal ones, with all possible values of the U(1)R charge.

A.1.1 Chiral Ring and Spectral Flow

There are two useful features of the N = 2 superconformal symmetry, the first is the existence

of shortened representations whose lowest weight state is called chiral primary, the second is

the presence of an external automorphism of the algebra, the spectral flow. Chiral primaries

and their ring are associated to the NS sector, here one defines chiral states as those such that

G+
−1/2|h, q⟩ = 0 . (A.1.9)
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In a N = (2, 2) SCFT we have left and right chirals. If |h, q⟩ is also a superconformal primary

(A.1.6) shows that chiral primaries saturate the unitarity bound and have h = q/2. Interstingly

one can also show the converse, thus for a state |h, q⟩ being a chiral primary is equivalent to

having h = q/2. Now consider the OPE of two chiral primaries ϕa and ϕb, this has the general

form

ϕa(z)ϕb(w) =
∑
c

∑
n∈N0

∂nϕc
(z − w)ha+hb−hc−n

. (A.1.10)

Since the R charge has to be conserved any operator appearing in the OPE must have qc = qa+qb

and thus the unitarity bound implies

ha + hb − hc =
qa + qb

2
− hc =

qc
2
− hc ≤ 0 (A.1.11)

hence the OPE of two chiral primaries is free of singular terms. We can then define a product

as the limit of coincident points of the OPE

(ϕa · ϕb) (z) = lim
w→z

ϕa(z)ϕb(w) =
∑
c

Cc
abϕc(z) . (A.1.12)

The rhs of the product cannot contain terms with derivatives, indeed it can only involve oper-

ators with qc/2 = hc, i.e. other chiral primaries. This product the closes on chiral primaries

and endows them with a ring structure. In an N = (2, 2) theory we have four of these rings

depending on wheter we take a chiral or antichiral state on the left or on the right.

The other interesting feature of the N = 2 algebra is the spectral flow. This is the following

one parameter deformation of the generators

L′
n = Ln + ηjn +

η2

6
cδn,0

j′n = jn +
c

3
ηδn,0

G± ′

r = G±
r±η ,

(A.1.13)

one easily checks that the primed generators satisfy the same algebra of the unprimed ones.

Notice also that the flow changes the moding of the fermionic generators, so, for η ∈ Z/2 it

interpolates between NS and R sectors. Since this is an automorphism of the algebra it maps

representations one into the other. Introducing a unitary operator Uη that implements the flow

as

L′
n = UηLnU

†
η

j′n = UηjnU
†
η

G± ′

r = UηG
±
r U

†
η ,

(A.1.14)

we can spectrally flow a representation acting with Uη on the various states. In particular a

state |h, q⟩ is mapped to Uη|h, q⟩, combining the relations above it is easy to show that

L0Uη|h, q⟩ =
(
h− ηq +

η2c

6

)
Uη|h, q⟩

j0Uη|h, q⟩ =
(
q − ηc

3

)
Uη|h, q⟩

(A.1.15)
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thus states in the spectrally flowed representations are still eigenstates of L0 and j0. Given a

superconformal primary |h, q⟩ we see that

LmUη|h, q⟩ = jmUη|h, q⟩ = 0 ∀m > 0 (A.1.16)

while

G±
r Uη|h, q⟩ = UηG

±
r∓η|h, q⟩ (A.1.17)

which vanishes only for r∓η > 0. Thus a LWR representation will be mapped to another LWR

as long as we allows various moding of the fermionic generators. As an example let’s consider

the spectral flow with η = 1/2 of a chiral primary representation. The chiral primary |q/2, q⟩
flows to a state with weight c/24 and charge q − c/6 annihilated by all positive modes of TB

and J as well as the G±
r with r ∈ N, i.e. a superconformal primary in the Ramond sector.

As we choose different chiral primaries to flow we obtain degenerate states that differ for their

R-charge. It is also easy to show that these are ground states in the R sector, we compute

0 ≤ |G+
0 |h, q⟩|2 + |G−

0 |h, q⟩|2 = ⟨h, q|{G+
0 , G

−
0 }|h, q⟩ = 2

(
h− c

24

)
||h, q⟩|2 (A.1.18)

so unitarity implies h ≥ c/24 and the ground states above saturate the bound. We can also

define a spectral flow operator looking at the image under Uη of the NS vacuum |0, 0⟩, this then
has weight η2c/6 and charge −ηc/3.

A.2 Verlinde Formulas, and Modularity for Supercon-

formal Primaries

In this Appendix we write down the modular transformations of the characters of the full

superconformal representations and derive Verlinde like formulas for their fusion. From the

modular S-matrix of the half-character is easy to derive the modular transformations of the

full characters

S · ch(NS)
l,m =

∑
l′,m′

SNSNS
lm;l′m′ch

(NS)
l′,m′ S · ch(R)

l,m =
∑
l′,m′

SRÑS
lm;l′m′ c̃h

(NS)

l′,m′

S · c̃h
(NS)

l,m =
∑
l′,m′

SÑSR
lm;l′m′ch

(R)
l′,m′ S · c̃h

(R)

l,m =
∑
l′,m′

SR̃R̃
lm;l′m′ c̃h

(R)

l′,m′

(A.2.1)

where

SNSNS
lm;l′m′ =

2

k + 2
sin

(
π(l + 1)(l′ + 1)

k + 2

)
eiπ

mm′
k+2

SRÑS
lm;l′m′ =

2

k + 2
sin

(
π(l + 1)(l′ + 1)

k + 2

)
eiπ

(m+1)m′
k+2

SÑSR
lm;l′m′ =

2

k + 2
sin

(
π(l + 1)(l′ + 1)

k + 2

)
eiπ

m(m′+1)
k+2

SR̃R̃
lm;l′m′ = − 2i

k + 2
sin

(
π(l + 1)(l′ + 1)

k + 2

)
eiπ

(m+1)(m′+1)
k+2 .

(A.2.2)
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which correctly mimic the action of SL(2,Z) on spin structures. One can verify that those S

matrices are unitary and furnish a representation of SL(2,Z), i.e. S4 = 1. In verifying this last

property one should be careful in taking into account the action on spin structures. In particular

it makes no sense to square SRÑS or SÑSR, rather the charge conjugation matrices in the R and

ÑS sectors are, respectively, CR = SRÑSSÑSR and CÑS = SÑSRSRÑS, while CNS = SNSNSSNSNS

and CR̃ = SR̃R̃SR̃R̃. Neither of these matrices is the identity, but they all square to it, thus at

least one representations in each sector is not self-conjugate.

Knowing the fusion coefficients Na′′c′′

ac;a′c′ of the half-families we can extract the fusion coeffi-

cients for the full superconformal families as simply

N̂α,γ
ac;a′c′ = Nαγ

ac;a′c′ +Nk−αγ+k+2
ac;a′c′ (A.2.3)

where now (a, c), (a′, c′), (α, γ) ∈ P ′
k label a superconformal primary rather than an half-family.

We now want to separate out the NS and R sectors explicitly and write down Verlinde formulas

in the various sectors. We first notice that

Nαγ
ac;a′c′ =

∑
(d,f)∈P ′

k

Sac;dfSa′c′;dfS
∗
αγ;df

S00;df

(1 + (−1)a+c+a
′+c′+α+γ) (A.2.4)

and

Nk−αγ+k+2
ac;a′c′ =

∑
(d,f)∈P ′

k

Sac;dfSa′c′;dfS
∗
αγ;df

S00;df

(1 + (−1)a+c+a
′+c′+α+γ)(−1)d+f (A.2.5)

so the fusion coefficients are non-zero only when a+c+a′+c′+α+γ = 0 mod 2. Now switching

to the (l,m, λ) parametrization we find

N̂ l′′,m′′,λ′′

lmλ;l′m′λ′ =
(
1 + (−1)2(λ+λ

′+λ′′)
) ∑

(r,s)∈Pk;x=0,−1/2

Slmλ;rsxSl′m′λ′;rsxS
∗
l′′m′′λ′′;rsx

S000;rsx

(1 + (−1)2x)

=
(
1 + (−1)2(λ+λ

′+λ′′)
) ∑

(r,s)∈Pk

Slmλ;rs0Sl′m′λ′;rs0S
∗
l′′m′′λ′′;rs0

S000;rs0

.

(A.2.6)

Notice that the modular matrix SR̃R̃ can never appear in these expressions. Recalling that

λ = 0 is NS and λ = −1/2 is R we see that there are four fusion channels

NS× NS = NS R× R = NS

R× NS = R NS× R = R ,
(A.2.7)

for each of those we have a Verlinde formula

• NS× NS = NS

N̂ l′′m′′, NSNS
lm;l′m′ =

∑
(r,s)∈Pk

SNSNS
lm;rs S

NSNS
l′m′;rs

(
SNSNS
l′′m′′;rs

)∗
SNSNS
00;rs

(A.2.8)

• R× NS = R

N̂ l′′m′′, RNS
lm;l′m′ =

∑
(r,s)∈Pk

SRÑS
lm;rsS

NSNS
l′m′;rs

(
SRÑS
l′′m′′;rs

)∗
SNSNS
00;rs

(A.2.9)
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• NS× R = R

N̂ l′′m′′, NSR
lm;l′m′ =

∑
(r,s)∈Pk

SNSNS
lm;rs S

RÑS
l′m′;rs

(
SRÑS
l′′m′′;rs

)∗
SNSNS
00;rs

(A.2.10)

• R× R = NS

N̂ l′′m′′, RR
lm;l′m′ =

∑
(r,s)∈Pk

SRÑS
lm;rsS

RÑS
l′m′;rs

(
SNSNS
l′′m′′;rs

)∗
SNSNS
00;rs

. (A.2.11)

from the explicit formulas of the S-matrices we see that SRÑS
lm;rs = eiπ

s
k+2SNSNS

lm,rs then

N̂ l′′m′′, NSNS
lm;l′m′ = N̂ l′′m′′, RNS

lm;l′m′ = N̂ l′′m′′, NSR
lm;l′m′ . (A.2.12)

The positive integers N̂ l′′m′′, RR
lm;l′m′ can also be related to N̂ l′′m′′, NSNS

lm;l′m′ albeit in a less trivial way. In

examples we have checked that there exist a permutation of the labels of primaries σ : Pk → Pk

such that

N̂ l′′m′′, RR
lm;l′m′ = N̂

σ(l′′m′′), NSNS
σ(lm);σ(l′m′) . (A.2.13)

These integers have the interpretation of fusion coefficients for superconformal primaries. There

are however other integers we can construct out of the S matrices by considering

M̂αγ
ac;a′c′ = Nαγ

ac;a′c′ −Nk−αγ+k+2
ac;a′c′ (A.2.14)

those are manifestly integers although not necessarily positive. However they obey Verlinde-like

formulas:

• NS× NS = NS

M̂ l′′m′′,NSNS
lm;l′m′ =

∑
(r,s)∈Pk

S ÑSR
lm;rsS

ÑSR
l′m′;rs

(
S ÑSR
l′′m′′;rs

)∗
SÑSR
00;rs

(A.2.15)

• R× NS = R

M̂ l′′m′′, RNS
lm;l′m′ =

∑
(r,s)∈Pk

SR̃R̃
lm;rsS

ÑSR
l′m′;rs

(
SR̃R̃
l′′m′′;rs

)∗
SÑSR
00;rs

(A.2.16)

• NS× R = R

M̂ l′′m′′, NSR
lm;l′m′ =

∑
(r,s)∈Pk

SÑSR
lm;rsS

R̃R̃
l′m′;rs

(
SR̃R̃
l′′m′′;rs

)∗
SÑSR
00;rs

(A.2.17)

• R× R = NS

M̂ l′′m′′, RR
lm;l′m′ =

∑
(r,s)∈Pk

SR̃R̃
lm;rsS

R̃R̃
l′m′;rs

(
SÑSR
l′′m′′;rs

)∗
SÑSR
00;rs

(A.2.18)

.

Again, noticing that SR̃R̃
lm;rs = eiπ

s+1
k+2SÑSR

lm;rs one checks that

M̂ l′′m′′, NSNS
lm;l′m′ = M̂ l′′m′′, RNS

lm;l′m′ = M̂ l′′m′′, NSR
lm;l′m′ . (A.2.19)

Also in this case there exist a permutation relating M̂ l′′m′′, RR
lm;l′m′ to M̂ l′′m′′, NSNS

lm;l′m′ .
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A.3 Supersymmetric Boundaries in Minimal Models and

Folding Trick

In this Appendix we derive the supersymmetric Verlinde lines of a single minimal model using

the folding trick [191]. The first step is to determine the supersymmetric boundary condition,

see [214–218] for more details on boundary conditions in CFT. Supersymmetric boundaries in

N = 1 minimal models have been worked out in [402]. The N = 2 superconformal algebra has

an outer automorphism called mirror map

ΩM :

jn → −jn
G±
r → G∓

r

(A.3.1)

thus there are two types of boundary states, the untwisted ones, or B-type

(Ln − L̄−n)|Bi⟩⟩B = (jn + j̄−n)|Bi⟩⟩B = 0

(G+
r + iηḠ+

−r|Bi⟩⟩B = (G−
r + iηḠ−

−r)|Bi⟩⟩B = 0
(A.3.2)

and the twisted ones, or A-type

(Ln − L̄−n)|Bi⟩⟩A = (jn − j̄−n)|Bi⟩⟩A = 0

(G+
r + iηḠ−

−r|Bi⟩⟩A = (G−
r + iηḠ+

−r)|Bi⟩⟩A = 0 .
(A.3.3)

In the S-dual channel the boundary conditions are

A-type: J(z) = −J̄(z̄) G±(z) = ηḠ∓(z̄)

B-type: J(z) = +J̄(z̄) G±(z) = ηḠ±(z̄) .
(A.3.4)

Here η can be any phase in general, choosing η = ±1 one can see that both types of boundary

conditions preserve an N = 1 subalgebra. As usual these boundary conditions preserve only

one copy of the N = 2 algebra. For the B-type boundary conditions the preserved copy is the

diagonal of the holomorphic and antiholomorphic algebras. The parameter η labels a continuous

family of boundary conditions, let’s be more precise about it. Consider an N = 2 SCFT on

the upper half-plane and impose the boundary conditions

G±(z) = Ḡ±(z̄) z = z̄ > 0

G±(z) = ηḠ±(z̄) z = z̄ < 0 .
(A.3.5)

As in the doubling trick we can construct an holomorphic field on the whole complex plane by

G±(z) =

G±(z) Im(z) > 0

Ḡ±(z̄) Im(z) < 0
(A.3.6)

which is not single valued in the complex plane as it obeys

G±(e2iπz) = ηG±(z) . (A.3.7)

This can be interpreted as the insertion at the origin of a twist defect for the U(1)R symmetry,

which comes with an attached topological defect line Lη implementing η ∈ U(1). Since having
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different boundary conditions on the positive and negative real axes is interpreted as the inser-

tion of a boundary changing operator at the origin, we see that, for the boundary conditions

above, the boundary changing operator corresponds to a twist defect for the U(1)R symmetry.

With more general boundary conditions

G±(z) = η′Ḡ±(z̄) z = z̄ > 0

G(z)± = ηḠ±(z̄) z = z̄ < 0 .
(A.3.8)

the extended field obeys

G̃(e2iπz) =
η

η′
G̃(z) . (A.3.9)

Thus the boundary changing operator is a twist defect attached to the line Lη/η′ . Since the

boundary conditions preserve the U(1)R symmetry, there exist well defined topological junctions

between the U(1)R lines and the boundary. Therefore we can have, in the upper-half plane,

TDLs homotopic to semi-circles stretching across the positive and negative real axes (eventually

with trivalent junctions involving the boundary changing operator twist line). On the strip this

configuration corresponds to a network of U(1)R lines, with a U(1)R line connecting the two

boundaries and one running along the non-compact direction.

By the equations above we see that the boundary parameter η determines the mode expan-

sion of the extended fermionic fields. Since those modes are used to construct the Hilbert space

of the theory we see that having different values of η on the positive and negative axis leads

to twisted interval Hilbert spaces. In particular when η = −1 the associated topological defect

line implements (−1)F , which is a Z2 subgroup of U(1)R, and hence the theory with boundary

conditions η = 1 and η′ = −1 has a Ramond sector Hilbert space on the interval. The line Lγ

stretching between the two boundaries instead acts on this Hilbert space.

The general case in the upper-half plane is to consider two boundary conditions Bη and

Bη′ , related by the twist defect of Lη/η′ , as well as another TDL Lγ stretching between the

boundaries. We map this configuration on the strip and compactify the extended direction,

resulting in a finite cylinder. If we interpretet the compact direction as time (open sector) we

have a trace over the Hilbert space with boundary conditions Bη and Bη′ , i.e. a twisted Hilbert

space, with an insertion of Lγ. In the S-dual channel (closed sector), with a periodic space

direction, Lη/η′ acts on the boundary states while Lγ twists the Hilbert space, meaning that

the boundary states will have components not in the vanilla circle Hilbert space H but in the

twisted one H(γ). In formulas

⟨B(γ)
η |q̃L0− c

24Lη/η′|B(γ)
η′ ⟩ = TrH(η,η′)Lγq

L0− c
24 . (A.3.10)

Therefore choosing boundary conditions with η ̸= η′ inevitably lead to a closed sector overlap

involving a Lη/η′ insertion, or, equivalently, to an open sector tracing over a twisted Hilbert

space. Similarly enriching the trace in the open sector with a fugacity for U(1)R can only cor-

respond to an overlap of boundary states with components in a twisted Hilbert space. Another

important fact is that boundary conditions preserving the superconformal algebra are invariant

under U(1)R, i.e. Lη′|B(γ)
η ⟩ = |B(γ)

η ⟩, therefore we can forget about the insertion of Lη/η′ in the

closed sector and simply write

⟨B(γ)
η |q̃L0− c

24 |B(γ)
η′ ⟩ = TrH(η,η′)Lγq

L0− c
24 (A.3.11)
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Now recall that (−1)F is actually a subgroup of U(1)R, so that the associated twist defect is

the boundary changing operator between the boundary conditions with η and η′ = −η. For

simplicity let’s stick to η, η′, γ = ±1, then invariance under the S transformation requires

⟨B(NS)
± |q̃L0− c

24 |B(NS)
∓ ⟩ = TrH(R,±)qL0− c

24

⟨B(R)
± |q̃L0− c

24 |B(R)
± ⟩ = TrH(NS,±)(−1)F qL0− c

24

⟨B(NS)
± |q̃L0− c

24 |B(NS)
± ⟩ = TrH(NS,±)qL0− c

24

⟨B(R)
± |q̃L0− c

24 |B(R)
∓ ⟩ = TrH(R,±)(−1)F qL0− c

24

(A.3.12)

which generalise Cardy’s equations in an N = 2 supersymmetric setting. To solve this condi-

tions we need to introduce Ishibashi states. We can construct a unique Ishibashi state |B(X)
i,± ⟩⟩

solving a given boundary constraint with η = ±1 for any irrep H(X)
i . The components of the

states are elements of H(X)
i ⊗H(X)

ω(i+). Here we are using a single label i to denote representations

of the susy algebra and ω is the action of the automorphism defining the boundary conditions

on the representations of the chiral algebra. Thus ω = 1 for the B-type and ω = C for A-

type. As usual we use Ishibashi states to construct physical boundary states that solve Cardy’s

condition. We set

|B(X)
a,± ⟩ =

∑
i∈I(X)

Ω

B
i,(X)
a,± |B(X)

i,± ⟩⟩ (A.3.13)

where X =NS, R and I
(X)
Ω labels the representations in the X sector that can be used to

construct the Ishibashi states, namely it contains only those i for which Hi⊗Hω(i+) appears in

the circle Hilbert space. The overlaps of Ishibashi states are

⟨⟨B(X)
i,± |q̃L0− c

24 |B(X)
j,± ⟩⟩ = δijch

(X)
i (q̃)

⟨⟨B(X)
i,± |q̃L0− c

24 |B(X)
j,∓ ⟩⟩ = δij c̃h

(X)

i (q̃)
(A.3.14)

as one can check from their explicit definition. The interval Hilbert spaces with supersymmetric

boundary conditions labeled by a, b are representations of the superconformal algebra, thus

TrH(NS,±)
ab

qL0− c
24 =

∑
i∈I(NS)

niab;±ch
(NS)
i (q)

TrH(R,±)
ab

qL0− c
24 =

∑
i∈I(R)

mi
ab;±ch

(R)
i (q)

TrH(NS,±)
ab

(−1)F qL0− c
24 =

∑
i∈I(NS)

ñiab;±c̃h
(NS)

i (q)

TrH(R,±)
ab

(−1)F qL0− c
24 =

∑
i∈I(R)

m̃i
ab;±c̃h

(R)

i (q) .

(A.3.15)

223



Imposing (A.3.12) on the physical boundary states (A.3.13) we then obtain∑
i∈I(NS)

Ω

B
i, (NS)
a,± B

i, (NS)
b,± SNSNS

ij = njab;±

∑
i∈I(R)

Ω

B
i, (R)
a,± B

i, (R)
b,± SRÑS

ij = ñjab;±

∑
i∈I(NS)

Ω

B
i, (NS)
a,± B

i, (NS)
b,∓ SÑSR

ij = mj
ab;±

∑
i∈I(R)

Ω

B
i, (R)
a,± B

i, (R)
b,∓ SR̃R̃

ij = m̃j
ab;± .

(A.3.16)

We now want to find solutions to these constraints for some special modular invariant, in

particular one that guarantees that we have as many Ishibashi states as there are primaries in

the theory, so that the sums over i in the above equations run over all primaries. Notice also

that the numbers ñjab, m̃
j
ab are not multiplicities of some primary representation and therefore

are not restricted to be positive, this allows us to use the Verlinde formulas for the M̂ coefficients

derived in Appendix A.2. Using the properties1

SNSNS
lm;rs =

(
SNSNS
r+s+;lm

)∗
SÑSR
lm;rs =

(
SÑSR
lm;r+s+

)∗
=
(
SRÑS
r+s+;lm

)∗
SRÑS
lm;rs =

(
SRÑS
lm;r+s+

)∗
=
(
SÑSR
r+s+;lm

)∗ (A.3.17)

we can write down the solutions

B
lm, (NS)
a1a2,+ =

SNSNS
a1a2;lm√
SNSNS
00;lm

B
lm, (NS)
a1a2,− =

SRÑS
a1a2;lm√
SNSNS
00;lm

B
lm, (R)
a1a2,+ =

SÑSR
a1a2;lm√
SÑSR
00;lm

B
lm, (R)
a1a2,− =

SR̃R̃
a1a2;lm√
SÑSR
00;lm

.

(A.3.18)

The corresponding multiplicities are

nrsa1a2;b1b2;+ = N̂ r+s+, NSNS
a1a2;b1b2

nrsa1a2;b1b2;− = N̂ r+s+, RR
a1a2;b1b2

ñrsa1a2;b1b2;+ = M̂ r+s+, NSNS
a1a2;b1b2

ñrsa1a2;b1b2;− = M̂ r+s+, RR
a1a2;b1b2

mrs
a1a2;b1b2;+

= N̂ r+s+, NSR
a1a2;b1b2

mrs
a1a2;b1b2;− = N̂ r+s+, RNS

a1a2;b1b2

m̃rs
a1a2;b1b2;+

= M̂ r+s+, NSR
a1a2;b1b2;

m̃rs
a1a2;b1b2;− = M̂ r+s+, RNS

a1a2;b1b2;
.

(A.3.19)

There is also another family of solutions that we can obtain reversing the signs of the R sector

coefficients, since those affect only ñjab, m̃
j
ab it is still a consistent family of solutions both within

itself and with the family of solutions described above. All in all we found the physical boundary

1These derive from SÑSRSRÑS = SNSNSSNSNS = CNSNS and
(
SÑSR

)T
= SRÑS.
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states

|Ba1,a2;f,+⟩ =
∑

(l,m)∈Pk

 SNSNS
a1a2;lm√
SNSNS
00;lm

|B(NS)
lm,+⟩⟩+ f

SÑSR
a1a2;lm√
SÑSR
00;lm

|B(R)
lm,+⟩⟩


|Ba1,a2;f,−⟩ =

∑
(l,m)∈Pk

 SRÑS
a1a2;lm√
SNSNS
00;lm

|B(NS)
lm,−⟩⟩+ f

SR̃R̃
a1a2;lm√
SÑSR
00;lm

|B(R)
lm,−⟩⟩

 (A.3.20)

with f = ±1. Thus for pair (a1, a2) ∈ Pk we can construct four boundary states, this means that

we have two for each superconformal primary. For the untwisted B-type boundary conditions

these solutions exist upon choosing the charge conjugation invariant partition function, while

for the A-type boundary conditions, since the mirror map maps a representation in its charge

conjugate, we need to pick the diagonal modular invariant.

A.3.1 Minimal Model Boundary States, Another Perspective

Perhaps a simpler way to study superconformal boundary states directly in the minimal model

case is to employ the separation in half-families that proved useful for modular invariance.

These half-families are labelled by (a, c) ∈ Qk and can be thought of as representations of the

bosonic subalgebra. This subalgebra is really a subalgebra of the universal enveloping algebra

and is obtained keeping all generators with even fermion number. This also includes products

of an even number of fermion generators. In this set-up the study of conformal boundaries goes

as in the bosonic case. To each of the subrepresentations Hac we associate an Ishibashi state

|B(a,c)⟩⟩ with components in H(a,c) ⊕Hω((a+,c+)) such that

⟨⟨B(a′,c′)|qL0− c
24 |B(a,c)⟩⟩ = δa,a′δc,c′χac(q) . (A.3.21)

Then we expand the annulus partition function as

Zαβ(q) =
∑

(a,c)∈Qk

nacαβχac(q) (A.3.22)

while the boundary states as

|Bα⟩ =
∑

(a,c)∈QΩ
k

Bac
α |B(a,c)⟩⟩ . (A.3.23)

The Cardy condition now simply reads

na
′c′

αβ =
∑

(a,c)∈QΩ
k

Bac
α B

ac
β Sac,a′c′ (A.3.24)

and, if QΩ
k = Qk, is solved by the Cardy states

|Bα1α2⟩ =
∑

(a,c)∈Qk

Sα1α2;ac√
S00;ac

|Bac⟩⟩ (A.3.25)

with multiplicities

nacα1α2;β1β2
= Na+c+

α1α2;β1β2
. (A.3.26)
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We can check that those boundary states are the same ones we found in the previous subsection,

just written in another basis. First notice that, consistently, there is a boundary state for each

half-family, since there are two of these for each superconformal primary the total number of

boundary states agrees with what we found above. To match with the previous notation we

have to divide Qk in P ′
k and the set of images under P ′

k ∋ (a, c) 7→ (k − a, c + k + 2), we then

define two families of boundary states

|Xα1α2⟩ =
∑

(a,c)∈P ′
k

Bac
α1α2

(
|Bac⟩⟩+ (−1)a+c|Bk−a,c+k+2⟩⟩

)
|Yα1α2⟩ =

∑
(a,c)∈P ′

k

(−1)a+cBac
α1α2

(
|Bac⟩⟩+ (−1)α1+α2|Bk−a,c+k+2⟩⟩

) (A.3.27)

where now (α1, α2) ∈ P ′
k. Passing to the (l,m, λ) labeling it is now straightforward to verify

that

|Xlm0⟩ = |Blm;1,+⟩ |Xlm−1/2⟩ = |Blm;1,−⟩
|Ylm0⟩ = |Blm;−1,+⟩ |Ylm−1/2⟩ = |Blm;−1,−⟩ .

(A.3.28)

A.3.2 Folding Trick and Topological Lines

From a conformal boundary condition we can construct a topological defect line via the folding

trick. A TDL is a topological interface between the CFT and itself, the topologicity condition

being encoded in the vanishing commutator with both the holomorphic and anti-holomorphic

energy momentum tensors

[T (z), L] = [T̄ (z̄), L] = 0 (A.3.29)

the operator L is supported on a closed curve and depends only on its homotopy class (which

accounts also for other operator insertions). Locally a topological defect can always be in-

terpreted as a topological interface separating two copies of the same CFT. Of course among

the possible interfaces there’s also the trivial one, for which the theories on the two sides are

completely decoupled. The folding trick consists in folding the theory along the interface de-

termined by the TDL, so that the defect is mapped to a boundary condition for the doubled

theory CFT × CFT. The bar in CFT represents the fact that folding acts by parity on the

CFT and exchanges the holomorphic and anti-holomorphic sectors. Among the boundaries of

the doubled CFT there are also those that are a direct product of a boundary for CFT and one

for CFT, these do not glue the stress energy tensor of CFT with that of CFT and hence, upon

unfolding, the theories on the two sides of the interface are decoupled. Therefore non-trivial

topological defect lines correspond to boundary conditions for the doubled theory that mix the

two stress energy tensors, these are called permutation boundaries. In a generic CFT classifying

TDL’s is then as hard as classifying boundary conditions, the problem becomes tractable only

in RCFTs requiring the boundary conditions to preserve the full chiral algebra. In this part of

the appendix we shall consider a generic bosonic RCFT, and only later specify to the bosonic

subalgebra of the N = 2 superconformal symmetry.
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TDLs from Untwisted Boundary Conditions

The TDLs we study will commute not only with Virasoro but also with all the other generators

of the chiral algebra W i

[W i(z), L] = [W
i
(z̄), L] = 0 . (A.3.30)

In the doubled theory these commutation relations become equations defining the permutation

boundary states, indeed(
W i 1
n − (−1)hiW

i 2

−n

)
|B⟩ =

(
W i 2
n − (−1)hiW

i 1

−n

)
|B⟩ = 0 (A.3.31)

where 1, 2 refer to the two copies of the CFT and the overline for the anti-holomorphic sector.

For instance the modes of the two stress energy tensors satisfy(
L1
n − L

2

−n

)
|B⟩ =

(
L2
n − L

1

−n

)
|B⟩ = 0 (A.3.32)

or, in the open channel,

T 1(z) = T
2
(z̄) T 2(z) = T

1
(z̄) at z = z̄ . (A.3.33)

For concreteness we work on the upper half plane, then unfolding the theory we identify T 1 and

T
1
with the holomorphic and anti-holomorphic tensors in the upper half plane while T 2 and

T
2
with the anti-holomorphic and holomorphic components of the energy momentum tensor on

the lower half plane. In formulas

T 1(z) = T (z) T
1
(z̄) = T (z̄) Im(z) > 0

T 2(z) = T (z̄) T
2
(z̄) = T (z) Im(z) < 0

(A.3.34)

then the gluing conditions ensure that both T (z) and T (z̄) are continuous across the defect.

Now, suppose we have chosen a certain modular invariant Hilbert space for the CFT

H =
⊕
i,j

MijHi ⊗Hj (A.3.35)

in the doubled theory the total Hilbert space is then

H(tot) =
⊕
i,j,k,l

MijMk,lHi ⊗Hj ⊗Hl ⊗Hk . (A.3.36)

Again we use Ishibashi states |Bij⟩⟩ to express physical boundary states, these are now labelled

by pairs of representations of the Chiral algebra A and have components in Hi⊗Hi+⊗Hj⊗Hj+ .

Notice that the equations defining permutation boundary states require the representation

content of the states to be equal for CFT1 and CFT2. We can see this from the fact that a

generic physical boundary state

|Bαβ⟩ =
∑
ij

Bij
αβ|Bij⟩⟩ (A.3.37)

can satisfy both (A.3.31) only if

Bij
αβ = δijBi

αβ . (A.3.38)
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That is permutation boundary states are expanded only using the (available) diagonal Ishibashi

states

|Bα⟩ =
∑
i

Bi
α|Bii⟩⟩ . (A.3.39)

The overlap in the doubled theory is not difficult to compute. On the cylinder we have, for any

boundary state satisfying (A.3.31)

⟨B|e−
2π
t

(
L1
0+L

2
0+L

1
0+L

2
0− c

6

)
|B⟩ = ⟨B|e−

4π
t (L0+L0− c

12)|B⟩ = ⟨B|qL0− c
24 q̄L0− c

24 |B⟩ (A.3.40)

where we noticed that the central charge doubles in the folded theory and we used the boundary

conditions. Then

⟨⟨Bii|qL0− c
24 q̄L0− c

24 |Bjj⟩⟩ = δijχi(q)χi+(q̄) . (A.3.41)

In the open channel, since the boundary conditions preserve the A×A symmetry, we expand

the partition function as

TrHαβ
q̃L0− c

24 ¯̃q
L0− c

24 =
∑
i,j

nijαβχi(q̃)χj(
¯̃q) . (A.3.42)

Then Cardy’s condition reads ∑
i

Bi
αB

i
βSijSjk = njkαβ . (A.3.43)

Since the sum over i runs over the available diagonal Ishibashi states it is difficult to provide a

general solution. However when all Ishibashi states can be used we can set

Bi
α =

Siα
S0i

(A.3.44)

using that the ratios Sai/S0i furnish a 1-dimensional representation of the fusion algebra

togheter with the Verlinde formula it is not difficult to show that the resulting multiplici-

ties in the open channel are integers. Another way of getting to this formula directly in the

unfolded theory with a charge conjugation invariant HIlbert space is to notice that, since L

commutes with all generators of A it must be proportional to the identity in every subspace

Hi ⊗Hi+ of the Hilbert space [191]. Therefore it can be written as a sum of projectors

Lα =
∑
i

Bi
α

∑
m,n

|i,m; i+,n⟩ ⊗ ⟨i,m; i+,n| (A.3.45)

where the sums overm and n run over descendants. Requiring that the Hilbert space twisted by

L has a consistent Hilbert space interpretation one again gets (A.3.44). Clearly the coefficients

Bi
α tell us how the TDL acts on local operators. We also see that the number of independent

TDLs matches that of physical permutation boundaries in the doubled theory.

Untwisted case: minimal models .

This analysis carries over directly to the minimal model case with charge conjugation in-

variant partition function using the half-family basis. With this choice of partition function we

have a physical B-type boundary state for each half-family. In the doubled theory we have a
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permutation Ishibashi state for each half-family from which we construct a TDL for each half

family. On the circle Hilbert space of the unfolded theory this acts as the sum of projectors

La1a2 =
∑

(a,c)∈Qk

Sa1,a2;ac
S00;ac

∑
m,n

|(a, c),m; (a+, c+),n⟩ ⊗ ⟨(a, c),m; (a+, c+),n|

=
∑

(a,c)∈Qk

Sa1,a2;ac
S00;ac

Pac .

(A.3.46)

The primary states (of the bosonic subalgebra) appearing in the torus partition function can

be labelled by a single half-family |(a, c)⟩ ⊗ |(a+, c+)⟩ = |Φac⟩ on which the TDLs act as

La1,a2|Φac⟩ =
Sa1,a2;ac
S00;ac

|Φac⟩ . (A.3.47)

We can work out the action on the full superconformal families simply changing basis. We have

La1a2 =
∑

(a,c)∈P ′
k

Sa1,a2;ac
S00;ac

(
Pac + (−1)a1+a2Pk−a;c+k+2

)
(A.3.48)

notice that the sum Pac+(−1)a1+a2Pk−a;c+k+2 projects on the full superconformal family labelled

by (a, c) ∈ P ′
k if [a1 + a2] = 0, while if [a1 + a2] = 1 it still projects on the same superconformal

family but with a minus sign for the states with odd fermion number. Reintroducing the

(l,m, λ) parametrization we find the four types of TDLs

Llm;+,f =
∑

(l′,m′)∈Pk

(
SNSNS
lm;l′m′

SNSNS
00;l′m′

P
(NS)
lm + f

SÑSR
lm;l′m′

SNSNS
00;l′m′

P
(R)
lm

)

Llm;−,f =
∑

(l′,m′)∈Pk

(
SRÑS
lm;l′m′

SRÑS
00;l′m′

P̃
(NS)
lm + f

SR̃R̃
lm;l′m′

SRÑS
00;l′m′

P̃
(R)
lm

) (A.3.49)

where f = ±1 and P
(X)
lm and P̃

(X)
lm project on the (l,m) superconformal family in the X sector

without or with signs for the odd fermion number states.

TDLs from Twisted Boundary Conditions

In general we have also twisted boundary conditions for the CFT which also induce permutation

boundary states for the doubled theory(
W i 1
n − (−1)hiΩ

(
W

i 2

−n

))
|B⟩ =

(
W i 2
n − (−1)hiΩ

(
W

i 1

−n

))
|B⟩ = 0 . (A.3.50)

These corresponding TDLs in the unfolded theory commute with the generators of the chiral

algebra only up to the automorphism Ω

LΩW (z) = Ω(W (z))LΩ (A.3.51)

and similarly for the anti-holomorphic side. The Ishibashi states |Bij⟩Ω now have components in

Hi⊗Hω(i+)⊗Hj⊗Hω(j+), and again only the diagonal ones with i = j contribute to permutation
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boundaries. The analysis of the physical boundary states parallels that of the untwisted case

as long as we use the twisted Ishibashi states and the solution

Bi
α =

Siα
S0i

(A.3.52)

is available as long as we are allowed to use all Ishibashi states, that is Mij = δj,ω(i+). The

expression for the TDL as an operator on the Hilbert space of the unfolded theory is now

LΩ,α =
∑
i

Siα
S0i

∑
m,n

|i,m;ω(i+),n⟩ ⊗ ⟨i,m;ω(i+),n| (A.3.53)

Twisted case: minimal models We now pick a diagonal modular invariant partition func-

tion so that we have a physical A-type boundary state for each half-family, the corresponding

topological lines are

La1a2 =
∑

(a,c)∈Qk

Sa1,a2;ac
S00;ac

∑
m,n

|(a, c),m; (a, c),n⟩ ⊗ ⟨(a, c),m; (a, c),n|

=
∑

(a,c)∈Qk

Sa1,a2;ac
S00;ac

Pac .

(A.3.54)

In terms of the superconformal families we find again the expressions (A.3.49) where all pro-

jectors are now diagonal rather than charge conjugation invariant.

A.4 Toy model examples

In this appendix we test some formulas of the main text in simple solvable examples. We

first discuss linear random couplings in free scalar theories and establish the validity of the

generalized Ward identity (3.2.41) for 2-point functions both for the case of h(x) (quenched

disorder) and constant h (ensemble average). Subsequently we test the ’t Hooft anomaly

matching condition discussed in section 3.2.1 by working out a specific example.

A.4.1 Free scalar theories

We consider the toy example of a complex free scalar perturbed by a linear random coupling.

The action is

S =

∫
ddx
(
|∂ϕ|2 +m2|ϕ|2 + hϕ(x) + h̄ϕ̄(x)

)
. (A.4.1)

The coupling to h explicitly breaks the U(1) symmetry rotating ϕ. Here h can have or not a

space dependence. In both cases we can write

Z[K, K̄, h] = exp
(∫

ddxddy(h̄+ K̄(x))G(x− y)(h+K(y))
)
, (A.4.2)

where G(x−y) is the massive scalar propagator in flat space and K, K̄ are the external sources

for ϕ and ϕ̄, respectively. We consider a Gaussian distribution with variance v and zero mean

in order to simplify the expressions. In what follows we shall be sloppy with normalizations

and overall constants which do not affect the main points we want to show.
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Quenched disorder

It is convenient to introduce a compact notation

(hG)x :=

∫
ddw h(w)G(w − x) , (Gh̄)y :=

∫
ddwG(y − w)h̄(w) ,

Gxy :=G(x− y) , (GG)xy :=

∫
ddwG(x− w)G(w − y) ,

(A.4.3)

so that, from (A.4.2), we get the one-point function

⟨ϕ(x)⟩ = Z−1 δZ

δK(x)

∣∣∣∣
K=0

= (Gh̄)x . (A.4.4)

Since translation invariance is broken, this is not a constant. Similarly, for two point functions,

⟨ϕ(x)ϕ(y)⟩ = Z−1 δ2Z

δK(x)δK(y)

∣∣∣∣
K=0

= (Gh̄)x(Gh̄)y ,

⟨ϕ̄(x)ϕ(y)⟩ = Z−1 δ2Z

δK̄(x)δK(y)

∣∣∣∣
K=0

= Gxy + (hG)x(Gh̄)y .

(A.4.5)

To take the average we simply Wick contract h and h̄ with

h(x)h̄(y) = vδ(d)(x− y) . (A.4.6)

Then

⟨ϕ(x)⟩ = ⟨ϕ(x)ϕ(y)⟩ = 0 , (A.4.7)

consistently with the U(1) symmetry being recovered on average. The non vanishing two-point

function is

⟨ϕ̄(x)ϕ(y)⟩ = Gxy + v(GG)xy . (A.4.8)

The explicitly broken Ward identities for a U(1) transformation read

⟨∂µJµ(x)ϕ(y)ϕ̄(z)⟩ =δ(d)(x− y)⟨ϕ(y)ϕ̄(z)⟩ − δ(d)(x− z)⟨ϕ(y)ϕ̄(z)⟩
− h(x)⟨ϕ(x)ϕ(y)ϕ̄(z)⟩+ h̄(x)⟨ϕ̄(x)ϕ(y)ϕ̄(z)⟩ .

(A.4.9)

The last two correlators equal

⟨ϕ(x)ϕ(y)ϕ̄(z)⟩ = Gxz(Gh̄)y +Gyz(Gh̄)x + (hG)z(Gh̄)y(Gh̄)x ,

⟨ϕ̄(x)ϕ(y)ϕ̄(z)⟩ = Gxy(hG)z +Gyz(hG)x + (hG)z(Gh̄)y(hG)x ,
(A.4.10)

so that

h(x)⟨ϕ(x)ϕ(y)ϕ̄(z)⟩⟩ = vGxyGxz + vGyzG(0) + v2(GG)yzG(0) + v2(GG)xzGxy ,

h̄(x)⟨ϕ̄(x)ϕ(y)ϕ̄(z)⟩⟩ = vGxyGxz + vGyzG(0) + v2(GG)yzG(0) + v2(GG)xyGxz .
(A.4.11)

The average of (A.4.9) reads then

⟨∂µJµ(x)ϕ(y)ϕ̄(z)⟩ = δ(d)(x− y)⟨ϕ(y)ϕ̄(z)⟩ − δ(d)(x− z)⟨ϕ(y)ϕ̄(z)⟩
− v2((GG)xzGxy − (GG)xyGxz) .

(A.4.12)
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It is straightforward to check (A.4.12) by using the explicit form of Jµ = ϕ̄∂µϕ − ϕ∂µϕ̄ and

performing the Wick contractions. We can now explicitly check the disordered Ward identity

(3.2.41). Using the equations of motion we have ∂µJ
µ =

(
h̄(x)ϕ̄(x)− h(x)ϕ(x)

)
, so that

⟨∂µJµ(x)⟩ =
∫
ddz
(
h(z)h̄(x)− h(x)h̄(z)

)
Gxz . (A.4.13)

Equivalently we can directly compute

⟨Jµ(x)⟩ =
∫
ddwddzh(z)h̄(w)

(
∂(x)µ GxzGxw −Gxz∂

(x)
µ Gxw

)
(A.4.14)

and take a derivative. As expected from the recovery of translation invariance after the average

we find ⟨∂µJµ⟩ = 0. However, due to the presence of h, inserting ⟨∂µJµ⟩ under the average

modifies the correlators, in particular

⟨∂µJµ(x)⟩⟨ϕ(y)ϕ̄(z)⟩ =
∫
ddwGxw

(
h(w)h̄(x)− h(x)h̄(w)

)
⟨ϕ(y)ϕ̄(z)⟩

= −v2 ((GG)xzGxy − (GG)xyGxz) .

(A.4.15)

This precisely corresponds to the last term in the right hand side of (A.4.12). Therefore, using

the improved current J̃µ := Jµ − ⟨Jµ⟩, the Ward identity (A.4.12) becomes

⟨∂µJ̃µ(x)ϕ(y)ϕ̄(z)⟩ = δ(d)(x− y)⟨ϕ(y)ϕ̄(z)⟩ − δ(d)(x− z)⟨ϕ(y)ϕ̄(z)⟩ , (A.4.16)

in agreement with (3.2.41) with k = 2 operators. From here one can reproduce the expo-

nentiation procedure and determine the presence of a topological operator in the disordered

theory.

Ensemble Average

When h is a constant every member of the ensemble is translation invariant. Indeed the one

point function of the scalar field is now a constant:

⟨ϕ(x)⟩ = h̄

∫
ddy Gxy =

h̄

m2
. (A.4.17)

Note that the mass acts as a IR regulator. The two point functions are

⟨ϕ(x)ϕ(y)⟩ = h̄2
∫
ddzddwGxzGyw =

h̄2

m4
,

⟨ϕ̄(x)ϕ(y)⟩ = Gxy + |h|2
∫
ddzddwGxzGyw = Gxy +

|h|2

m4
.

(A.4.18)

In agreement with the U(1) average symmetry, the only non-vanishing average two point func-

tion is

⟨ϕ̄(x)ϕ(y)⟩ = Gxy +
v

m4
. (A.4.19)

The explicitly broken Ward identities are

⟨∂µJµ(x)ϕ(y)ϕ̄(z)⟩ =δ(d)(x− y)⟨ϕ(y)ϕ̄(z)⟩ − δ(d)(x− z)⟨ϕ(y)ϕ̄(z)⟩
− h⟨ϕ(x)ϕ(y)ϕ̄(z)⟩+ h̄⟨ϕ̄(x)ϕ(y)ϕ̄(z)⟩ .

(A.4.20)
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The operator

∂µJµ(x) + hϕ(x)− h̄ϕ̄(x) (A.4.21)

generates the Ward identities, and we can now explicitly check that it integrates to zero on the

whole space. The left hand side of (A.4.20) vanishes when integrating x over the whole space.

For the last two terms in the right hand side we get

⟨ϕ(x)ϕ(y)ϕ̄(z)⟩ = h̄

m2
(Gxz +Gyz) +

hh̄2

m6
,

⟨ϕ̄(x)ϕ(y)ϕ̄(z)⟩ = h

m2
(Gxy +Gyz) +

h̄h2

m6
,

(A.4.22)

so that

h⟨ϕ(x)ϕ(y)ϕ̄(z)⟩ − h̄⟨ϕ̄(x)ϕ(y)ϕ̄(z)⟩ = v

m2
(Gxz −Gxy) . (A.4.23)

Then, by translation invariance, we have∫
ddx

(
h⟨ϕ(x)ϕ(y)ϕ̄(z)⟩ − h̄⟨ϕ̄(x)ϕ(y)ϕ̄(z)⟩

)
=

v

m2

∫
ddx (Gxz −Gxy) = 0 , (A.4.24)

where the support of the integral needs to be the entire space. In this simple example we have

chosen a scalar deformation so that Poincaré invariance remains always unbroken, no tensor

operator can get a vev, and all complications arising from non-vanishing vevs disappear. For

example, specifying (A.4.13) to the case of constant h immediately gives ⟨∂µJµ⟩ = 0.

We can also compute ⟨ϕ̄(x1)ϕ(x2)⟩ when X is a disconnected space. For example, if X(d) =

X
(d)
1 ⊔X(d)

2 , x1 ∈ X
(d)
1 an x2 ∈ X

(d)
2 , (A.4.2) reads

Z[K1,2, K̄1,2, h] = exp
(∑
i=1,2

∫
X

(d)
i

ddxid
dyi(h̄+ K̄i(xi))G(xi − yi)(h+Ki(yi))

)
, (A.4.25)

and we get

⟨ϕ̄(x1)ϕ(x2)⟩X = Z−1 δ2Z

δK̄1(x1)δK2(x2)

∣∣∣∣
K=0

= ⟨ϕ̄(x1)⟩X1⟨ϕ(x2)⟩X2 =
|h|2

m4
, (A.4.26)

namely only the disconnected part of the correlator contributes. Averaging on h we have

⟨ϕ̄(x1)ϕ(x2)⟩X = ⟨ϕ̄(x1)⟩X1⟨ϕ(x2)⟩X2
=

v

m4
. (A.4.27)

We explicitly see that in both X1 and X2 the U(1) symmetry is explicitly broken and conserved

only globally over the entire space X.

A.4.2 ’t Hooft anomalies from replicas

We check the matching of t’Hooft anomalies between the pure and disordered theory in the

simple example of the U(1) chiral anomaly in 4d. As well-known, a free massless Weyl fermion

ψ in 4d suffers from a cubic ’t Hooft anomaly, which in momentum space reads

pµ1⟨Jµ(p1)Jν(p2)Jρ(p3)⟩ = i
k

16π3
ϵνραβ p

α
2 p

β
3 , (A.4.28)
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where k = 1. We deform the theory with a space dependent complex mass term m(x), which

explicitly breaks the U(1) symmetry down to fermion parity. However, if we sample m(x) from

a Gaussian distribution proportional to m̄(x)m(x), then the disordered theory recovers the

U(1) symmetry via the conserved current J̃µ. Since ⟨J̃µ⟩ = 0 before averaging, we have

⟨J̃µ(p1)J̃ν(p2)J̃ρ(p3)⟩ = ⟨J̃µ(p1)J̃ν(p2)J̃ρ(p3)⟩c = ⟨Jµ(p1)Jν(p2)Jρ(p3)⟩c . (A.4.29)

The last three-point function is most easily evaluated using the replica trick. The replicated

theory has n Weyl fermions with a quartic deformation (spinor indices omitted)

Srep =
n∑
a=1

S0,a + v2
∑
a,b

ψaψaψbψb , (A.4.30)

which is invariant under the diagonal U(1)D symmetry, with conserved current

JµD =
∑
a

Jµa . (A.4.31)

According to (3.2.79), we have

⟨Jµ(p1)Jν(p2)Jρ(p3)⟩c = lim
n→0

∂

∂n
⟨JD,µ(p1)JD,ν(p2)JD,ρ(p3)⟩rep . (A.4.32)

The U(1)D in the replica theory also suffers from a a cubic ’t Hooft anomaly

pµ1⟨JD,µ(p1)JD,ν(p2)JD,ρ(p3)⟩rep =
ik

16π3
ϵνραβp

α
2p

β
3 , (A.4.33)

where k = n, since all n fermions rotate (with the same charge) under U(1)D. We then get

pµ1⟨J̃µ(p1)J̃ν(p2)J̃ρ(p3)⟩ = lim
n→0

∂

∂n

(
in

16π3
ϵνραβp

α
2p

β
3

)
=

i

16π3
ϵνραβp

α
2p

β
3 , (A.4.34)

which shows that the anomaly of the pure theory persists after the quenched average and also

affects the disordered symmetry, in agreement with the results in the main text.

A.5 Symmetry operators for averaged symmetries

In this appendix we prove the existence, and explicitly construct, an operator Ûg which im-

plements the action of the group rather than the action of the corresponding Lie algebra for

average symmetries. To this purpose we need to find an infinite set of operators Q̂n which have

the same properties of Q̂ defined in (3.2.134) and which satisfy the identities

⟨Q̂nO1 · · · Ok⟩ = χn(Σ(d−1))⟨O1 · · · Ok⟩ , ∀n ∈ N , (A.5.1)

where we recall that χ(Σ(d−1)) denotes the sum of the charges of the local operators which

are inside the surface Σ(d−1). Note that (A.5.1) applies before ensemble averaging. We define

Q̂0 = 1 and Q̂1 = Q̂. We find Q̂n[Σ
(d−1), D(d)] for n > 1 iteratively. Suppose that there exists

an operator Q̂n−1 such that

⟨Q̂n−1Φ⟩ = χn−1(Σ(d−1))⟨Φ⟩ (A.5.2)
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for any product of local operators Φ. We then compute

⟨Q̂n−1Q̂1Φ⟩ = χn−1⟨QΦ⟩+ q0 (χ+ q0)
n−1 ⟨h

∫
D(d)

O0(x)Φ⟩ − q0 (χ− q0)
n−1 ⟨h

∫
D(d)

O0(x)Φ⟩

= χn⟨Φ⟩+ q0

n−2∑
k=0

(
n− 1

k

)
χkqn−1−k

0

(
⟨h
∫
D(d)

O0(x)Φ⟩ − (−1)n−k−1⟨h
∫
D(d)

O0(x)Φ⟩
)
.

(A.5.3)

Next we introduce operators Γl defined in such a way that

⟨Γl
∫
D(d)

O0(x)Φ⟩ = χl⟨
∫
D(d)

O0(x)Φ⟩ . (A.5.4)

Their existence follows from the (by now assumed) existence of the operators Q̂n. In fact, it is

easy to see that the Γl’s satisfy the relation

Q̂l =
l∑

s=0

(
l

s

)
ql−s0 Γs , (A.5.5)

valid when inserted in (vacuum to vacuum) correlators of the form ⟨
∫
D(d) O0(x)Φ⟩. Now consider

the vectors Q̂ = (Q̂0, Q̂1, · · · , Q̂N) and Γ = (Γ0,Γ1, · · · ,ΓN), with Γ0 = 1. These are related

as Q̂ = A · Γ where A = 1 + T and T is a strictly lower triangular matrix with non-vanishing

entries

Tl,s =

(
l

s

)
ql−s0 . (A.5.6)

We can invert (A.5.5) as

Γl =
l∑

s=0

A−1
l,s Q̂s , (A.5.7)

where we used that

A−1 = 1+
N∑
i=1

(−1)iT i (A.5.8)

is again a lower triangular matrix. An analogous analysis can be carried out for the operators

Γl defined by

⟨Γlh
∫
D(d)

O0(x)Φ⟩ = χl⟨h
∫
D(d)

O0(x)Φ⟩ , (A.5.9)

235



by simply replacing q0 with −q0, and we define A as Q̂ = A · Γ. We rewrite (A.5.3) as

⟨Q̂n−1Q̂1Φ⟩ = ⟨Q̂nΦ⟩

+ q0

n−2∑
k=0

(
n− 1

k

)
qn−1−k
0

(
⟨Γkh

∫
D(d)

O0(x)Φ⟩ − (−1)n−1−k⟨Γkh
∫
D(d)

O0(x)Φ⟩
)

= ⟨Q̂nΦ⟩+ q0

[
⟨Q̂n−1

(
h

∫
D(d)

O0(x)− h

∫
D(d)

O0(x)

)
Φ⟩+

+ ⟨Γn−1h

∫
D(d)

O0(x)Φ⟩ − ⟨Γn−1h

∫
D(d)

O0(x)Φ⟩

]

= ⟨Q̂nΦ⟩+ q0

[
⟨Q̂n−1

(
h

∫
D(d)

O0(x)− h

∫
D(d)

O0(x)

)
Φ⟩+

+
n−1∑
k=0

Q̂k

(
⟨A−1

n−1,kh

∫
D(d)

O0(x)Φ⟩ − ⟨A−1

n−1,kh

∫
D(d)

O0(x)Φ⟩

)]

= ⟨Q̂nΦ⟩+ q0

n−2∑
k=0

Q̂k

[
⟨A−1

n−1,kh

∫
D(d)

O0(x)Φ⟩ − ⟨A−1

n−1,kh

∫
D(d)

O0(x)Φ⟩

]
,

(A.5.10)

where we used that A−1
k,k = A

−1

k,k = 1. We then find the recursion relation

Q̂n = Q̂n−1Q̂1 − q0

n−2∑
k=0

Q̂k

(
A−1
n−1,kh

∫
D(d)

O0(x)− A
−1

n−1,kh

∫
D(d)

O0

)
, (A.5.11)

which proves the existence of Q̂n for every values of n ∈ N.
As an example consider N = 3. We have

A =


1 0 0 0

q0 1 0 0

q20 2q0 1 0

q30 3q20 3q0 1

 , A−1 =


1 0 0 0

−q0 1 0 0

q20 −2q0 1 0

−q30 3q20 −3q0 1

 , (A.5.12)

and

Q̂2 = Q̂2
1 + q20

(
h

∫
D(d)

O0(x) + h

∫
D(d)

O0

)
,

Q̂3 = Q̂2Q̂1 − q30

∫
D(d)

D(x)− 2q20Q̂1

(
h

∫
D(d)

O0 + h

∫
D(d)

O0

)
.

(A.5.13)

We now crucially verify that the charges Q̂n vanish when D(d) = X(d) after ensemble average

in arbitrary local correlators. For this purpose we derive a further constraint on correlators

involving arbitrary functions of h and h. Consider∫
dhdh̄ P [h̄h]f(h, h)

∫
Dµe−S0−(h

∫
O0+c.c.)+

∫
KiOi∫

Dµe−S0−(h
∫
O0+c.c.)

, (A.5.14)

where f is an arbitrary smooth function of h and h̄. We shift h→ h+ ϵδh, where δh = −iq0h.
Using that δhO0 = −hδO0 and expanding to linear order in ϵ we get2

iq0f(h, h)⟨
∫
X(d)

D(x)O1 · · · On⟩ = −δf(h, h)⟨O1 · · · On⟩ , (A.5.15)

2An extra term coming from the denominator of (A.5.14) vanishes because of (3.2.131).
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where

δf(h, h) = ∂fδh+ ∂fδh . (A.5.16)

Thanks to (A.5.15) we can now show that

⟨Q̂n[∅, X(d)]Φ⟩ = 0 , n > 0 . (A.5.17)

Let us explicitly work out the n = 2, 3 cases. For n = 2 it is enough to use (A.5.15) with f = h

and f = h̄ to get the identity

⟨
(∫

X(d)

D(x)

)2

Φ⟩+ ⟨
(
h

∫
X(d)

O0(x) + h

∫
X(d)

O0

)
Φ⟩ = 0 . (A.5.18)

We can plug this relation into Q̂2 in (A.5.13) to immediately get (A.5.17) for n = 2. For n = 3

we use (A.5.15) with the functions h2, h
2
and hh. In this way we get the relations

⟨
(∫

X(d)

D(x)

)3

Φ⟩ = 2⟨
(∫

X(d)

D(x)

)(
h

∫
X(d)

O0 + h

∫
X(d)

O0

)
Φ⟩ = 0 , (A.5.19)

which, pluggged in Q̂3 in (A.5.13) allows us to get (A.5.17) for n = 3. We can then construct

the non-genuine symmetry operator

Ûg[Σ
(d−1), D(d)] =

∞∑
n=0

(iα)n

n!
Q̂n[Σ

(d−1), D(d)] , g = eiα , (A.5.20)

which, similarly to Q̂[Σ(d−1), D(d)], becomes quasi-genuine when D(d) = X(d).

We have then shown the existence, and explicitly constructed, the operator Ûg which im-

plements the selection rules imposed by the emergent symmetries.
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Appendix B

Appendices for Chapter 4

B.1 Gauging in fusion categories

In this appendix we briefly review well known material about gauging in fusion categories and

modular tensor categories (possibly extended by a 0-form symmetry). A complete review of

the underlying formalism can be found for instance in [17] and [28], respectively.

Gauging and algebras. Gauging a generalized symmetry in two dimensions corresponds to

the definition of a special symmetric Frobenius algebra A ⊂ C. This is described by a triplet:

A ≡ (A, m , η) , m ∈ Hom(A×A,A) , η ∈ Hom(1,A) , (B.1.1)

where A =
⊕

xi
Zi(A)xi is an object in C, and we define Zi(A) = dim

(
Hom(A, xi)

)
. We use

xi to denote the simple objects in C. The maps πi are projectors πi : A → xi onto the simple

components of A and can be used to recast the commuting diagrams below as tensor-valued

expressions. The algebra morphism m trivializes the associator: m◦ (m× idA) = m◦ (idA×m).

Furthermore m ◦ η = idA. We will henceforth suppress η for simplicity. The algebra also has a

dual structure

(∆, η̄) , ∆ ∈ Hom(A,A×A) , η̄ ∈ Hom(A,1) (B.1.2)

satisfying m◦∆ = η̄◦∆ = idA. Furthermore ∆ and m satisfy the so-called Frobenius condition,

namely that the following diagram commutes, ensuring that crossing moves from any direction

can be performed safely:

A×A A×A×A

A

A×A×A A×A

m

idA×∆

∆×idA

idA×m
∆

m×idA

(B.1.3)

In three dimensions an algebra must satisfy an additional condition which ensures that it is

compatible with the braided structure:

A×A A×A

A

b

m m (B.1.4)
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Such an algebra is called commutative. The gauging of a symmetry A is implemented by

inserting a network of A defects with morphisms m and ∆ at three-valent junctions, along a

graph that is dual to a triangulation of the spacetime manifold.

To understand the symmetry of the theory after gauging we must introduce the concept

of modules. First, let us introduce the category of (left) A-modules ModA. Its elements are

doublets (M, rL) with M an object an rL ∈ Hom(A×M,M) a morphism allowing the algebra

object to end on M . The morphism rL must satisfy a natural compatibility condition:

A×A×M A×M

A×M M

rL

m rL

rL

(B.1.5)

This equation allows us to interpret rL as a sort of representation of the algebra A on M .

Physically the category ModA describes an A-invariant boundary condition. In two dimensions

the category describing the symmetry after gauging A is the bimodule category BimodA−A of

A-bimodules. A bimodule (B, rL, rR) is both a left and a right module for A, such that the left

and right actions commute:

A×B ×A B ×A

A×B B

rL

rR rR

rL

(B.1.6)

In three dimensions, instead, the category describing the symmetry after gauging A is that of

local modules Modloc
A of the commutative algebra A. These are modules which are compatible

with braiding with A. In particular, given a left-module morphism rL, we define the right

morphism rR as

rR = rL ◦ b (B.1.7)

with the consistency condition:

A×M A×M

M

b ◦ b

rL rL (B.1.8)

This implements the intuition that the objects remaining after gauging A must braid trivially

with A. It is known that the dimension of the category of local modules is

dim
(
Modloc

A
)
=

dim(C)
dim(A)

, dim(A) ≡
∑

xi simple

Zi(A) dim(xi) . (B.1.9)

Since the dimension of a fusion category must be ≥ 1, there is a notion of maximality in gauging

commutative algebras, which implies that

dim(A) ≤ dim(C) . (B.1.10)

When the inequality is saturated the algebra A is called Lagrangian and is denoted by the

letter L.

There exist standard techniques to construct the category of modules, which employ the

fact that the formal tensor product IndA(xi) = A× xi gives a (reducible) left A-module. Such

modules are called “induced” and the construction of ModA boils down to the decomposition

of induced modules. The interested reader can consult [17,20] for a review of these techniques.
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Theories with a 0-form symmetry. Let us also recall some facts about 3d theories enriched

with a 0-form symmetry G. These are the so-called G-crossed extensions and we refer to [28]

for a complete review. A G-crossed extension is described by a graded tensor category

C =
⊕
g ∈G

Cg (B.1.11)

with Cg the g-twisted sector of the 0-form symmetry. This can be thought of as a 2-category

ΣC with a single connected component,
∣∣π0(ΣC)∣∣ = 1, in which the twist defects provide a basis

for the homomorphisms σg ∈ Hom(Ug,1). We use xi to denote simple objects in the untwisted

sector, σg,i to denote simple twist defects, and Xg to denote generic twist defects. The fusion

product on twist defects is graded:

Cg × Ch ⊂ Cgh . (B.1.12)

The 0-form symmetry naturally acts on the defects in C via an automorphism U of the fusion

algebra: we write Ug[Xh] = g(X)ghg−1 ∈ Cghg−1 . In the following we will restrict to Abelian

0-form symmetries G. The symmetry then acts on the junction spaces V
(gh,k)
(g,i),(h,j) by (unitary)

isomorphisms

Ug : V (g1g2,k)
(g1,i),(g2,j)

→ V
(g1g2,g(k))
(g1,g(i)),(g2,g(j))

, (B.1.13)

while the G composition law is encoded in a morphism

λxi(g, h) : g
(
h(xi)

)
→ gh(xi) . (B.1.14)

The category comes with graded associator α and braiding isomorphism b : Xg×Yh → g(Y )h×
Xg, satisfying G-crossed versions of the pentagon and hexagon equations. The number of simple

objects σg,i in the g-twisted sector is equal to the number of g-invariant local lines xi ∈ C0, such
that g(xi) = xi. This follows from modularity of the Hilbert space on T 2 with G backgrounds.

The dimension of each graded category Cg is the same, thus:

dim(Cg) = dim(C0) , dim(C) = |G| dim(C0) . (B.1.15)

Gauging and equivariantization. There are two natural operations that can be introduced

in this setting. The first one is gauging the 0-form symmetry G (or a subgroup thereof). This

leads to a larger modular tensor category C/G which has dimension:

dim(C/G) = |G| dim(C) . (B.1.16)

The category C/G has an anomaly-free 1-form symmetry Rep(G) = G∨ that assigns charges

∈ G to the liberated g-twisted sectors. The category after gauging is thus still graded by this

charge:

C/G =
⊕

g ∈G
Dg . (B.1.17)

The way in which simple objects of C/G are constructed is familiar from the theory of orbifolds.

A simple object σg,i before gauging is equivariantized into an orbit Σg,i after gauging:

Σg,i =
⊕

h∈G/Stab(σg,i)

h(σg,i) , (B.1.18)
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Mg

g

A

g(A)

Mg

g

xi

= η̃g(xi)

Mg

g

xi

g(xi)

Figure B.1: Action of G on A, both abstractly (left) and in components (right).

where Stab(X) = {g ∈ G : g(X) = X} is the stabilizer group of X. The object Σg,i can

furthermore be dressed by symmetry lines carrying a representation π of Stab(σg,i). We thus

get the lines Σπ
g,i, whose number is

∣∣Stab(σg,i)∣∣.
The second operation is gauging an algebra A ⊂ C0. Let H ⊂ G be the stabilizer of A,

namely H = {g ∈ G : g(A) = A}. We say that A preserves a subgroup H of the 0-form

symmetry. In order to fully specify an H-invariant algebra, we must also associate a consistent

H-action to the data (m, η). This constitutes an equivariantization of A and it is generally not

unique nor it is guaranteed to exist. The required conditions are simple to summarize. First,

we require the stabilizer H to leave the algebra morphism fixed:

m
g(z)
g(x), g(y) = mz

x,y [Ug]zx,y
η̃g(z)

η̃g(x) η̃g(y)
for all g ∈ H. (B.1.19)

In order to write this equation in components, one needs to define the projectors πx : A → x

and the maps η̃g(x) that represent the action of H on the projectors:

πxi → η̃g(xi) πg(xi) . (B.1.20)

Furthermore, the maps η̃g(x) must compose nicely under the H action:

η̃g(xi) η̃h
(
g(xi)

)
= η̃gh(xi) λxi(g, h) , (B.1.21)

where the morphisms λx(g, h) are the ones we defined in (B.1.14).

A solution to the equations (B.1.19)–(B.1.21) is not guaranteed to exist, and its existence

is tied to the splitting of a certain short exact sequence [337]. Even if a solution exists, it must

be modded out by the appropriate gauge transformations. Suppose that Hom(A, xi) is at most

one-dimensional, then η̃g is a 1-cochain and we can redefine

πxi → µ(xi) πxi , η̃g(xi) → η̃g(xi)
µ
(
g(xi)

)
µ(xi)

. (B.1.22)

Once this is settled, gauging A preserves the subgroup H of the 0-form symmetry. The resulting

category is: C/A =
⊕

h∈H Ch/A, and each entry has dimension dim(Ch/A) = dim(C0)/ dim(A).

Lastly, let us describe the objects of the twisted category C/A. Since A has trivial grading,

it is possible to define twisted module categories ModgA in terms of doublets (Mg, rL) where

Mg ∈ Cg and rL is a left map rL : A ×Mg → Mg. The interesting part of the construction

involves making these modules local. In particular, the braiding map b : Mg × A → A ×Mg

induces a nontrivial action of g on the module morphism rL that in components maps

rL(xi) → η̃g(xi) rL
(
g(xi)

)
, (B.1.23)
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as in the pictures of Figure B.1. The local bimodule condition is encoded in the following

commutative diagram:

A×Mg Mg ×A g(A)×Mg

Mg

b

rL

b

g(rL) (B.1.24)

or, in components,

rL(xi) = η̃g(xi) Rxi,Mg ·RMg , xi · rL
(
g(xi)

)
. (B.1.25)

Thus the specification of η̃ influences the structure of the H-twisted sectors after gauging A.

B.2 Lagrangian algebras for DW theories

In this appendix we prove that any Lagrangian algebra of DW(A) is of the form

LB,[ν] =
{(
b, βψν(b)

) ∣∣∣ b ∈ B , β ∈ N(B)
}

(B.2.1)

for some subgroup B ⊂ A and a class [ν] ∈ H2
(
B, U(1)

)
, and that the associated boundary

condition corresponds to a theory obtained from the electric boundary by gauging B with

discrete torsion [ν].

We denote by πA : A×A∨ → A and πA∨ : A×A∨ → A∨ the projections on the two factors.

Let L ⊂ A× A∨ be Lagrangian. We define a subgroup of A

B = πA(L) ⊂ A . (B.2.2)

Notice that (B, 0) is not necessarily a subgroup of L. On the other hand, any element of the

form (0, β) with β ∈ N(B) has trivial braiding with any element of L, and since L is maximal,

it follows that
(
0, N(B)

)
is a subgroup of L and thus N(B) ⊂ πA∨(L). Using the short exact

sequence

1 −→ N(B) −→ A∨ −→ B∨ −→ 1 (B.2.3)

we realize any element of A∨, and in particular of πA∨(L), as a pair βω with β ∈ N(B) and

ω ∈ B∨. All elements of L are then of the form (b, βω) with b ∈ B, β ∈ N(B) and ω ∈ B∨, but

since |L| = |A| = |B|
∣∣N(B)

∣∣ there must exist a homomorphism ψ : B → B∨ such that

ω = ψ(b) . (B.2.4)

The fact that L is Lagrangian and so all its elements have vanishing spin implies a constraint

on ψ. Defining a bicharacter χ : B× B → U(1) as χ(b1, b2) = ψ(b1) b2, and then imposing that(
b, βψ(b)

)
has trivial spin, we obtain

1 = θ(b, βψ(b)) = χ(b, b) . (B.2.5)

Thus χ is alternating and it defines a class [ν] ∈ H2
(
B, U(1)

)
, hence L = LB,[ν].

Now we aim to prove that the boundary defined by LB,[ν], where the symmetry is

S =
(
A× A∨)/LB,[ν] ∼= L∨

B,[ν] , (B.2.6)
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is obtained from the electric boundary by gauging B with discrete torsion [ν]. First we notice

that LB,[ν] is an extension of B by N(B) determined as follows. Let c̃ ∈ H2
(
B∨, N(B)

)
be the

class associated with the short exact sequence (B.2.3). This class is determined by Pontryagin

duality from 1 → B → A → A/B → 1, which is associated with a class c ∈ H2(A/B,B).1 The

class c̃ enters in the composition rule of elements of A∨ when they are represented as pairs βη,

β ∈ N(B), η ∈ B∨:

β1η1 + β2η2 =
(
β1 + β2 − c̃(η1, η2)

)
(η1 + η2) . (B.2.8)

The inverse is −βη =
(
−β + c̃(η,−η)

)
(−η). The elements of LB,[ν] can be realized as pairs of

b ∈ B and β ∈ N(B) with [b, β] ≡
(
b, βψν(b)

)
, and their composition law is

[b1, β1] + [b2, β2] =
[
b1 + b2 , β1 + β2 − c̃

(
ψν(b1), ψν(b2)

)]
. (B.2.9)

We conclude that LB,[ν] is an extension

1 −→ N(B) −→ LB,[ν] −→ B −→ 1 (B.2.10)

determined by the class ψ∗
ν(c̃) ∈ H2

(
B, N(B)

)
. Taking the Pontryagin dual of (B.2.10) we get

1 −→ B∨ ι−→ S π−→ A/B −→ 1 , (B.2.11)

whose associated class is ĉ ≡ ψν ◦ c ∈ H2(A/B,B∨).

To show that this is the correct symmetry structure of the boundary theory obtained by

gauging B with discrete torsion [ν], we consider its partition function coupled to a background

B = ι(B1) + s(B2) ∈ H1(X2,S) , (B.2.12)

where s : A/B → S is a section of π and B1, B2 are gauge fields valued in B∨ and A/B,
respectively. Closure dB = 0 implies that dB2 = 0, whilst the differential of B1 is equal to the

pull-back through B2 of the extension class ĉ ∈ H2(A/B,B∨), namely (dB1)ijk = ĉ (B2ij, B2jk) ≡
(B∗

2 ĉ )ijk. On the other hand, the dynamical gauge field B′ valued in B must satisfy dB′ = B∗
2 c

in the presence of a background B2, and the partition function is thus

ZB,[ν] =
∑

B′ s.t. dB′=B∗
2c

exp

[∫
X2

(
B′∗ν +B1 ∪B′

)]
Ze[B

′, B2] . (B.2.13)

The exponent is not gauge invariant under B′ → B′ + dρ unless B1 satisfies

ψν(dB
′)− dB1 = 0 . (B.2.14)

1Given an Abelian extension 1 → A i→ B π→ C → 1 with section s : C → B, the class [ϵ] ∈ H2(C,A) has

representative i
(
ϵ(c1, c2)

)
= s(c1 + c2)− s(c1)− s(c2) which is symmetric. For each α ∈ A∨, αϵ : C×C → U(1)

is a symmetric 2-cocycle and is thus exact (see Sec. 4.1.2), therefore there exists β : C× A∨ → U(1) such that

(in additive notation):

αϵ(c1, c2) = β(c1 + c2, α)− β(c1, α)− β(c2, α) ∀ c1, c2 ∈ C, α ∈ A∨ . (B.2.7)

Construct Ω(c, α1, α2) = β(c, α1 + α2) − β(c, α1) − β(c, α2) ∈ U(1). One checks that this is linear in the first

entry in C, and thus it defines a map ϵ∨ : A∨ ×A∨ → C∨. This is the class of the Abelian extension 1 → C∨ →
B∨ → A∨ → 1, that reproduces the sum in (B.2.8) if we use the pairing (γ, α)(a, c) = γ(c) + α(a) + β(c, α).
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This determines the modified cocycle condition for B1 as

dB1 = B∗
2(ψν ◦ c) , (B.2.15)

hence proving that S is the correct symmetry after gauging B with discrete torsion [ν].

B.3 General duality-invariant Lagrangian algebras

In this appendix we report technical details regarding Lagrangian algebras LB,[ν] for general

B. In particular, we give the conditions for their duality invariance and compute the mixed

’t Hooft anomaly with the invertible duality symmetry in those cases, extending the discussion

for B = A given in the main text. For concreteness we look at the 2d/3d case, but the 4d/5d

one is analogous.

B.3.1 Proof of duality invariance

In Section 4.1.2 after (4.1.64) we claimed that a Lagrangian algebra LB,[ν] as in (4.1.56) is

duality invariant, namely the isomorphism Φ in (4.1.40) acts as Φ
(
LB,[ν]

)
= LB,[ν], if and only

if

1. ϕ
(
Rad(ν)

)
= N(B);

2. the isomorphism σ = ϕ−1 ◦ ψν acting on B/Rad(ν) satisfies σ2 = 1.

Let us prove the claim. To prove it, we first notice that since LB,[ν] and Φ
(
LB,[ν]

)
are both

Lagrangian, they are equal if and only if all their lines are mutually transparent. In other

words, if and only if

ϕ(b′) b · β
[
ϕ−1
(
β′ψν(b

′)
)]

· ψν(b)
[
ϕ−1
(
β′ψν(b

′)
)]

= 1 (B.3.1)

for all b, b′ ∈ B and β, β′ ∈ N(B).
First we prove that the two conditions above are necessary. Recall that Rad(ν) = Ker(ψν),

and notice that ϕ(b) b′ = ϕ(b′) b while ψν(b) b
′ =

[
ψν(b

′) b
]−1

. Specializing (B.3.1) to β = 1 (in

multiplicative notation) and b ∈ ker(ψν) we get ϕ(b) ∈ N(B) and thus ϕ
(
Ker(ψν)

)
⊂ N(B).

Specializing (B.3.1) to β = 1 and b′ = 1 we get

1 = ψν(b)
(
ϕ−1(β′)

)
=
[
ψν
(
ϕ−1(β′)

)
b
]−1

, (B.3.2)

thus ϕ−1
(
N(B)

)
⊂ Ker(ψν). We conclude that ϕ

(
Ker(ψν)

)
= N(B) which is condition 1. Spe-

cializing (B.3.1) to β = β′ = 1 we get γ(b′, b) = χν
(
ϕ−1◦ψν(b′), b

)
for all b, b′ ∈ B. Assuming con-

dition 1., both sides project consistently to B/Rad(ν), and thus ϕ(b′) = ψν
(
σ(b′)

)
∈ B/Rad(ν)

for all b′ ∈ B/Rad(ν). We conclude that σ2 = 1, which is condition 2.

Conversely, we prove that the two conditions are also sufficient. From condition 1. it

follows that ϕ−1(β′) ∈ Ker(ψν) ⊂ B, therefore β
(
ϕ−1(β′)

)
= ψν

(
ϕ−1(β′)

)
= 1. Similarly

β
(
ϕ−1 ◦ ψν(b′)

)
= 1. Eqn. (B.3.1) then reduces to

ϕ(b′) b · ψν(b)
(
ϕ−1 ◦ ψν(b′)

)
= 1 , (B.3.3)

245



that can be rewritten as γ(b′, b) = χν
(
σ(b′), b

)
= γ

(
σ2(b′), b

)
using the definition of σ. Both

sides project consistently to B/Rad(ν), and the equation is satisfied using condition 2. This

completes the proof.

It will be useful to discuss a few consequence of the theorem. Each of the commuting

diagrams below expresses the fact that ϕ is a group isomorphism between the respective Abelian

groups.

• Since ϕ
(
Rad(ν)

)
= N(B), then the short exact sequence 1 → Rad(ν) → A → A/Rad(ν) →

1 is the image under ϕ−1 of 1 → N(B) → A∨ → B∨ → 1. In other words there is a com-

mutative diagram:

S1 : 1 N(B) A∨ B∨ 1

S2 : 1 Rad(ν) A A/Rad(ν) 1

ϕ ϕ ϕ (B.3.4)

• Taking the Pontryagin dual of the diagram (B.3.4) and using the symmetry of ϕ, namely

that ϕ∨ = ϕ, we obtain an other commutative diagram:

S3 = S∨
1 : 1 B A A/B 1

S4 = S∨
2 : 1 N

(
Rad(ν)

)
A∨ Rad(ν)∨ 1

ϕ ϕ ϕ (B.3.5)

• It is simple to prove that there is a canonical isomorphismN
(
Rad(ν)

)
/N(B) ∼=

(
B/Rad(ν)

)∨.
Then using that ϕ(B) = N

(
Rad(ν)

)
and ϕ

(
Rad(ν)

)
= N(B), we find a commutative di-

agram:

S5 : 1 Rad(ν) B B/Rad(ν) 1

S6 : 1 N(B) N
(
Rad(ν)

) (
B/Rad(ν)

)∨ 1

ϕ ϕ ϕ (B.3.6)

as well as its Pontryagin dual:

S7 = S∨
5 : 1

(
B/Rad(ν)

)∨ B∨ Rad(ν)∨ 1

S8 = S∨
6 : 1 B/Rad(ν) A/Rad(ν) A/B 1

ϕ ϕ ϕ (B.3.7)

B.3.2 Mixed anomaly in the general case

The discussion in this appendix is technical and it involves some notation. We will use several

short exact sequences which we denote uniformly as

Sm : 1 −→ Bm
ιm−→ Am

πm−→ Am/Bm −→ 1 , (B.3.8)

where ιm, πm, sm denote respectively the inclusion, the projection, and a section of πm. Each

sequence Sm induces an extension class cm ∈ H2(Am/Bm,Bm). The sequences that will be used
are the S1, . . . , S8 introduced in Appendix B.3.1 above.
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Moreover, we will systematically decompose gauge fields valued in Am in terms of gauge

fields values in the subgroup and the quotient according to

am = ιm(bm) + sm(b
′
m) . (B.3.9)

As discussed after (B.2.12), closure dam = 0 of the gauge field implies that

db′m = 0 , dbm = b′ ∗m(cm) . (B.3.10)

All fields have a subscript labelling the corresponding short exact sequence, and both the field

valued in the subgroup Bm and in the quotient are denoted by the same letter, but the one

in the quotient is always primed. An important remark is in order. The relations (B.3.10)

mean that in the presence of a non-trivial extension, the background bm for the subgroup is the

sum of an ordinary cohomology class and a particular co-chain solving the constraint (B.3.10),

which depends on the background for the quotient. Hence all path integrals are intended to be

done in order: one first integrates the cohomology part of the background bm for the subgroup,

and then the background b′m for the quotient.

Let LD be a duality-invariant algebra associated with (B, [ν]). We want to compute the

mixed anomaly between S = Z(A)/LD and the duality G ∼= Z2 on the invertible boundary.

This is obtained from the electric boundary by gauging B with discrete torsion [ν]. A gauge

field A ∈ H1(X,A) can be decomposed according to the sequence S3 in (B.3.5) as

A = ι3(b3) + s3(b
′
3) . (B.3.11)

After gauging B with torsion, the dual symmetry S is an extension of A/B by B∨ with extension

class ĉ = ψν ◦ c ∈ H2(A/B,B∨) (see Appendix B.2), and a background field for S is described

by a pair B, b′3 valued in B∨ and A/B, respectively, with dB = b′ ∗3 ( ĉ ). The partition function

on the invertible boundary is

Zinv[B, b
′
3] =

∑
b3

exp

[
2πi

∫ (
b∗3(ν) +B ∪ b3

)]
Ze[b3, b

′
3] . (B.3.12)

By acting with the duality on the electric boundary we get the magnetic one, corresponding to

the gauging of A with trivial torsion:

Φ · Ze[b3, b
′
3] =

∑
a∈H1(X,A)

exp

[
2πi

∫
ϕ(a) ∪

(
ι3(b3) + s3(b

′
3)
)]

Ze[a] . (B.3.13)

We decompose the A-valued field a according to the sequence S3: a = ι3(a3) + s3(a
′
3). Because

of the commutative diagram (B.3.5), ϕ(a) ∈ H1(X,A∨) has a decomposition using S4:

ϕ(a) = ι4(x4) + s4(x
′
4) with x4 = ϕ(a3) , x′4 = ϕ(a′3) . (B.3.14)

Furthermore, it is useful to decompose b3 using S5: b3 = ι5(y5) + s5(y
′
5). Hence, using that ν

vanishes on Rad(ν), we have

Φ · Zinv[B, b
′
3] =

∑
y5, y′5, x4, x

′
4

exp

[
2πi

∫ (
y′ ∗5 ν +B ∪

(
ι5(y5) + s5(y

′
5)
)
+

+ ϕ(a) ∪
(
ι3ι5(y5) + ι3s5(y

′
5) + s3(b

′
3)
))]

Ze[a3, a
′
3] . (B.3.15)
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We can perform the sum over y5 and y′5, in this order. Since y5 appears linearly, the sum

over it gives a delta function imposing

π7

(
B + π1

(
ϕ(a)

))
= 0 ⇔ B + π1

(
ϕ(a)

)
∈ ι7

((
B/Rad(ν)

)∨)
. (B.3.16)

We notice that π7π1 = π4, and since ϕ(a) = ι4(x4) + s4(x
′
4), it follows that (B.3.16) can be

rewritten as π7(B) + x′4 = 0. This delta function will be resolved by the sum over x′4, which

however must be performed only after the sum over x4. We can then integrate out y′5. Since it

appears quadratically, the sum over it can be performed by solving its equation of motion

ι7
(
ψν(y

′
5)
)
+B + π1

(
ϕ(a)

)
= 0 . (B.3.17)

This equation makes sense in virtue of (B.3.16). This equation can be inverted in virtue of

(B.3.16) and using that ψν : B/Rad(ν) →
(
B/Rad(ν)

)∨
is invertible. Plugging the result back

we get

Φ · Zinv[B, b
′
3] =

∑
a3, a′3

exp

[
2πi

∫ (
ϕ(a) ∪ s3(b′3)−

(
ψ−1
ν

(
B + π1 ϕ(a)

))∗
ν

)]
δ
(
π7B + x′4

)
Ze[a] .

(B.3.18)

We decompose B using S7 as

B = ι7(B7) + s7(B
′
7) , (B.3.19)

and the duality maps

Φ(B7, B
′
7, b

′
3) =

(
σ∨(B7), ϕ(b

′
3), ϕ

−1(B′
7)
)
. (B.3.20)

The sum over a′3 resolves the delta function, while the one over a3 reconstructs Zinv up to a

multiplicative factor which gives the anomaly:

Φ · Zinv[B7, B
′
7, b

′
3] = exp

[
−
∫ (

ϕ−1(σ∨B7)
)∗
ν

]
Zinv

[
σ∨(B7), ϕ(b

′
3), ϕ

−1(B′
7)
]
. (B.3.21)

B.4 Twisted cohomology and anomalies

Here we provide details on the topological actions that we use in 3d and 5d to cancel the

mixed anomaly between the self-duality symmetry and the 0-form (in 2d) or the 1-form (in

4d) symmetry, when we go to the invariant boundary. In the 2d case this is an anomaly for

a semi-direct product, while in 4d it is an anomaly for a split 2-group. In both cases we do

not discuss the full anomaly, but only the piece linear in the gauge field A ∈ Hd(X,G) for the

self-duality symmetry.

B.4.1 Anomaly for a semi-direct product in 2d

We consider a semi-direct product A⋊ρG (A and G being both Abelian) with homomorphism

ρ : G→ Aut(A). This is associated with a short exact sequence

1 −→ A ι−→ A⋊ρ G
π−→ G −→ 1 (B.4.1)
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which splits, namely it admits a section s : G→ A⋊ρG which is a group homomorphism. Any

element can be written uniquely as ι(a) s(g), a ∈ A, g ∈ G, with product rule

ι(a1) s(g1) · ι(a2) s(g2) = ι
(
a1 + ρg1(a2)

)
s(g1 + g2) . (B.4.2)

In particular

s(g) ι(a) s(g−1) = ι
(
ρg(a)

)
. (B.4.3)

Semi-direct products are generically non-Abelian, and accordingly we only consider standard

1-form gauge fields. These are classes A ∈ H1(X,A⋊ρ G), namely

(dA)ijk = AjkA−1
ik Aij = 1 , Aij ∼ Λ−1

i AijΛj , (B.4.4)

where the order of multiplication matters. Since Aij ∈ A⋊ρ G, we can write

Aij = ι(Bij) s(Aij) (B.4.5)

where B ∈ C1(X,A) and A ∈ C1(X,G). Using the commutation relation (B.4.3), the cocycle

condition (dA)ijk = 1 is equivalent to(
dρ(A)B

)
ijk

= ρAij
Bjk −Bik +Bij = 0 , (dA)ijk = Ajk − Aik + Aij = 0 . (B.4.6)

The identification Aij ∼ Λ−1
i AijΛj, upon decomposing Λi = ι(θi) s(λi), becomes

Bij ∼ ρ−1
λi

(
Bij+ρAij

θj−θi
)
= ρ−1

λi

(
B+dρ(A)θ

)
ij
, Aij ∼ Aij+λj−λi = (A+dλ)ij . (B.4.7)

Hence A defines a class in the cohomology group H1(X,G), while B a class in the twisted

cohomology group H1
ρ(X,A) — also called cohomology with local coefficients.

We are interested in the anomaly for A⋊ρ G whose 3d inflow action is quadratic in B and

“linear” in A. The word linear is in quotes since B is a twisted class, and thus A will appear

not only linearly, but also in the twisting. This anomaly is identified by a characteristic class

of A ⋊ρ G bundles, which lives in H1
ρ

(
G, H2(A, U(1))

)
[177]. Such a class can be thought of

as a function µ on G with values in the group of alternating bicharacters over A, satisfying (in

additive notation):

ρg µ(h) + µ(g) = µ(g + h) . (B.4.8)

The G-action on bicharacters is given in (4.1.70). Besides, the function µ is subject to the

identification

µ( · ) ∼ µ( · ) + ρ(·)ξ − ξ for any ξ ∈ H2
(
A, U(1)

)
. (B.4.9)

Notice that µ(0) = 0, so that µ(−g) = −ρ−1
g µ(g).

Given A ∈ H1(X,G), we construct µ(A) ∈ C1
(
X, H2(A, U(1))

)
(both notations µ(A) and

A∗µ could be used). This is a cochain µ(Aij) : A × A → U(1) satisfying the twisted cocycle

condition: (
dρ(A)µ(A)

)
ijk

≡ ρAij
µ(Ajk)− µ(Aik) + µ(Aij) = 0 . (B.4.10)
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Moreover, under a gauge transformation A→ A+ dλ, it changes by

µ(Aij) → µ
(
Aij + λj − λi

)
= ρ−1

λi
µ
(
Aij + λj

)
+ µ(−λi)

= ρ−1
λi

(
ρAij

µ(λj) + µ(Aij)− µ(λi)
)
= ρ−1

λi

(
µ(Aij) +

(
dρ(A) µ(λ)

)
ij

)
, (B.4.11)

hence µ(A) ∈ H1
ρ

(
X, H2(A, U(1))

)
.

Given B ∈ H1
ρ(X,A), we can form the cup product µ(A) ∪B ∪B ∈ H3

(
X,U(1)

)
as:(

µ(A) ∪B ∪B
)
ijkl

= µ(Aij)
(
ρAij

Bjk , ρAik
Bkl

)
, (B.4.12)

see App. A of [178]. Under a gauge variation A→ A+ dλ, B → ρ(λ)−1B as in (B.4.7) we find:(
µ(A) ∪B ∪B

)
ijkl

→ ρ−1
λi

(
µ(Aij) +

(
dρ(A) µ(λ)

)
ij

)(
ρ−1
λi
ρAij

Bjk , ρ
−1
λi
ρAik

Bkl

)
=
(
µ(A) ∪B ∪B

)
ijkl

+
(
dρ(A) µ(λ)

)
ij

(
ρAij

Bjk , ρAik
Bkl

)
. (B.4.13)

This means that we get a linear variation

δ
(
µ(A) ∪B ∪B

)
=
(
dρ(A) µ(λ)

)
∪B ∪B = d

(
µ(λ) ∪B ∪B

)
. (B.4.14)

We write the inflow action as

Sµ = 2πi

∫
X3

µ(A) ∪B ∪B . (B.4.15)

When X3 is closed this is gauge invariant, however if ∂X3 = X2 we get a boundary term:

Sµ → Sµ + 2πi

∫
X2

µ(λ) ∪B ∪B . (B.4.16)

B.4.2 Anomaly for a split 2-group in 4d

In 4d we have an analog story, where A is now a 1-form symmetry. The full symmetry structure

is a split 2-group, which is a higher categorical version of a semi-direct product. The definitions

can be found in [357] and a more physical discussion is in [178, 356]. Here we simply use two

facts which from our viewpoint can be motivated as being the straightforward generalization

of the discussion on semi-direct products.

First, a background field for a split 2-group is made of an ordinary cohomology class A ∈
H1(X,G) and a twisted cohomology class B ∈ H2

ρ(X,A). The latter means that(
dρ(A)B

)
ijkl

= ρAij
Bjkl −Bikl +Bijl −Bijk = 0 , (B.4.17)

and there is an identification (or gauge transformation)

Bijk ∼ ρ−1
λi

(
Bijk + ρAij

θjk − θik + θij
)
, Aij ∼ Aij + λj − λi , (B.4.18)

which are the obvious generalizations of (B.4.7).

Second, the piece of the anomaly for a split 2-group which is “linear” in A and quadratic

in B is labelled by a characteristic class of 2-group gauge bundles:

µ ∈ H1
ρ

(
G, H4

(
B2A, U(1)

))
. (B.4.19)
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One can show [356] that H4
(
B2A, U(1)

)
is isomorphic to Γ(A)∨, the Pontryagin dual of the

universal quadratic group of A, which can be identified with the group of quadratic functions

q : A → U(1) (see [178,356] for precise definitions and details, as well as the discussion around

(4.1.164)). The G-action on them is naturally given by

(ρgq)(a) = q
(
ρ−1
g a
)
. (B.4.20)

The construction of the 5d anomaly inflow is very similar to the semi-direct product

case, thus we skip many details. Given A ∈ H1(X,G), we construct µ(A) which satisfies

(B.4.10) and (B.4.11), thus defining a class in H1
ρ

(
X,Γ(A)∨

)
. Recall that H4

(
B2A,Γ(A)

) ∼=
Hom

(
Γ(A),Γ(A)

)
has a distinguished element P (the identity map) called the universal Pon-

tryagin class, such that

B ∈ H2
ρ(X,A) ; Pρ(B) ≡ B∗P ∈ H4

ρ

(
X,Γ(A)

)
. (B.4.21)

The action of G on Γ(A) is induced by the one on Γ(A)∨ in such a way to make the natural

pairing ⟨ , ⟩ : Γ(A)× Γ(A)∨ → U(1) invariant. Under A→ A+ dλ the latter transforms as

Pρ(B)i0,...,i4 → ρ−1
λi0

Pρ(B)i0,...,i4 . (B.4.22)

Using the pairing between Γ(A) and Γ(A)∨ we construct µ(A) ∪Pρ(B) ∈ H5
(
X,U(1)

)
as:(

µ(A) ∪Pρ(B)
)
i0,...,i5

=
〈
µ(A)i0i1 , ρAi0i1

Pρ(B)i1,...,i4

〉
. (B.4.23)

Under A→ A+ dλ we have

µ(A) ∪Pρ(B) → µ(A) ∪Pρ(B) + d
(
µ(λ) ∪Pρ(B)

)
. (B.4.24)

We conclude that the 5d inflow action is

Sµ = 2πi

∫
X5

µ(A) ∪Pρ(B) , (B.4.25)

and its gauge variation on a manifold X5 with boundary X4 = ∂X5 is

Sµ → Sµ + 2πi

∫
X4

µ(λ) ∪Pρ(B) . (B.4.26)

B.5 Equivariantization for 2-algebras

In this appendix we briefly review how the symmetry fractionalization datum η appears in

the equivariantization of symmetric 2-algebras [43,44]. We refer to those works for a complete

introduction to the formalism, and here we limit ourselves to highlighting the main steps for

our purposes. We assume that all objects are invertible for simplicity. We stress that a full

definition of the equivariantization procedure is still an open problem.

In five dimensions, 2-categories are sylleptic [403], meaning that there exists a 2-morphism

σ such that the braiding 1-morphism b : X × Y → Y × X satisfies the following commuting

diagram:

X × Y X × Y

Y ×X

id

b
σ

b
(B.5.1)
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Physically σ(X, Y ) encodes the braiding data between 2d surfaces: BX,Y = σ(X, Y )/σ(Y,X). A

symmetric 2-algebra A[2] describes the gauging of a 2-categorical symmetry in five dimensions,

and it is described by:2

• An object A =
⊕

x simple Zx x ∈ C. We assume that Zx ∈ {0, 1}.

• A 1-morphism m : A×A → A.

• Two 2-isomorphisms µ, β which uplift the associativity and commutativity relations for

m to:

A×A×A A×A

A×A A

m×id

id×m m
µ

m

A×A

A×A A

m
β

m

b (B.5.2)

Besides, µ and β are subject to various higher algebraic identities that we do not report. Now,

suppose that a 0-form symmetry G acts on the algebra A, more specifically:

• To an object x ∈ A we associate a 1-isomorphism (an invertible line) φg(x) : x → g(x)

localized on the surface Ug.

• To the algebra morphism m we associate a 2-morphism µg(x, y) : φg(x) × φg(y) →
φg(x× y), and similarly for the 2-morphism β.

• To an algebra 2-isomorphism we associate an identity for the equivariantization data.

All this data must be compatible with the natural multiplicative structure for G defects. In

particular, we can consider the action of ghk ≃ (gh)k ≃ g(hk) ∈ G on the algebra A. Each

three-valent junction g×h→ gh defines a 2-isomorphism ηg,h(x) : φg(x)×φh
(
g(x)

)
→ φgh(x).

Clearly η is best though of as a 2-cochain η(g, h) with values in the Pontryagin dual of A.

Consistency of η with the associativity of the G-defects implies (we draw below an horizontal

section of the configuration):

ρgη(h, k) η(g, hk) = η(g, h) η(gh, k) where ρgη(h, k)[x] = ηh,k
(
g(x)

)
, (B.5.3)

g

ηg,hk(x)

ghk

ηh,k(g · x)

h k

φg(x)
φh(g · x)

φk(gh · x)

φghk(x)

≃

g

ηg,h(x)

ηgh,k(x)

ghk

kh

φg(x)
φh(g · x)

φk(gh · x)

φghk(x)

(B.5.4)

This means that η ∈ H2
ρ(G,A∨). This datum matches the one in the symmetry fractionalization

that we described in Section 4.1.2 for the 2d case.

2We omit the unit morphism and its higher morphisms, since they will not play a role in our presentation.
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B.6 First obstruction and invariant TQFTs

In this last appendix we review the relationship between the first obstruction and the existence

of duality-invariant TQFTs with symmetry A. This was explained in [29] for the case of the

Tambara-Yamagami category TY(A)γ,ϵ and in [78] for 4d theories with Zn 1-form symmetry.

Self-dual TQFTs in 2d. A two-dimensional TQFT with symmetry A can be characterized

by its unbroken subgroup B (in the sense of spontaneous symmetry breaking) and an SPT

phase for B described by ν ∈ H2
(
BB, U(1)

)
. The partition function is as in (4.1.32):

Z[B] =

exp
(
2πi
∫
B∗ν

)
if π(B) = 0 ,

0 otherwise ,
(B.6.1)

where π is the projection in the short exact sequence 1 → B i−→ A π−→ A/B → 1. The duality

action on the TQFT is defined as

N · Z[B] =
1√

|H1(X,A)|

∑
a∈H1(X,A)

exp

(
2πi

∫
X

a ∪γ B
)
Z[a] . (B.6.2)

Let us assume that ν satisfies (4.1.26)–(4.1.28). We evaluate the above equation on the torus

T 2, however this can equivalently be done on any Riemann surface by choosing a decomposition

of H1(Σg) in A- and B-cycles. We find:

N · Z[B1, B2] =
1

|A|
∑

a1,a2 ∈B

χν(a1, a2) γ(a1, B2) γ(a2, B1)
−1 , (B.6.3)

where we used that Z[a] = 0 if π(a) ̸= 0 to restrict the sum. We first perform the sum over the

subgroup Rad(ν) of B. This is zero unless:

B ∈ ϕ−1 (N(Rad(ν))) , (B.6.4)

this group coincides with B (and thus would give to correct delta function) if and only if

ϕ(Rad(ν)) = N(B).3 Thus (4.1.26) ensures that preserved subgroup is the same after the

action of N . Finally we perform the sum over (say) a1 restricted to B/Rad(ν) which fixes

a2 = σB2 thus:

N · Z[B1, B2] = γ
(
σB2, B1)

−1 δ
(
π(B1)

)
δ
(
π(B2)

)
= Z[B1, B2] , (B.6.5)

where (4.1.27) and (4.1.28) ensure that the SPT phase for B remains the same.

Self-dual TQFTs in 4d. A similar reasoning is valid in 4d. Without assuming whether the

four manifold X is spin we can defined a 4d A(1) TQFT by specifying the preserved subgroup

B and an B SPT:

ν ∈ H2(B2B, U(1)) , (B.6.6)

3One uses the fact that, for any subgroup B, ϕ−1N(ϕ−1N(B)) = B.
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and define

Z[B] =

exp
(
2πi
∫
B∗ν

)
, if π(B) = 0

0 , otherwise .
(B.6.7)

We then have4

N · Z[B] =
1√

H2(X,B)

∑
a∈H1(X,A)

exp

(
2πi

∫
X

a ∪γ B
)

exp

(
2πi

∫
qν(a)

)
. (B.6.8)

First we perform the sum over Rad(ν). Since the bicharacter vanishes identically when evalu-

ated on such elements it can be argued that its refinement q also does, independently on the

choice of characteristic element. The sum then becomes linear and sets the result to zero unless

B ∈ ϕ−1N(Rad(ν)) = B . (B.6.9)

The sum over the quotient B/Rad(ν) is quadratic and we solve it by shifting a → a + σ(B),

which decouples the two fields owning to

χν(σ(a), b) = γ(a, b)−1 . (B.6.10)

We are left with:

N · Z[B] =

Gν exp
(
2πi
∫
B∗ [2ν + ν ◦ σ]

)
, if π(B) = 0 ,

0 , otherwise
,

Gν =
1√

H2(X, B/Rad(ν))

∑
a∈H2(X,B/Rad(ν))

exp

(
2πi

∫
a∗ν

)
.

(B.6.11)

If X is spin the quadratic refinement does not depend on the choice of characteristic element

and we can lift identities for χν to identities for q. Since

χν(σa, σb) = χν(a, b)
−1 , (B.6.12)

on spin manifolds ν ◦σ = −ν as classes. Furthermore, it is possible [78] to prove that the Gauss

sum Gν is unity. We find that the TQFT Z[B] is duality-invariant on spin manifolds. On the

other hand, on non-spin manifolds, we need to impose the stronger condition:

qν(σB) = qν(B)−1 , B ∈ B/Rad(ν) (B.6.13)

on the quadratic refinement of χν . A similar story applies to triality defects with minimal

modifications.

B.7 Anomalous boundary conditions

In this appendix we present an iterative procedure to consistently turn on a background for

boundary theories with a U(1) anomalous symmetry in generic even dimension. For the sake of

4This normalization makes sense on manifolds without torsion 2-cycles, on which we can trade it for the

common one [57] by an Euler number counterterm.
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concreteness we present this procedure in the simplest case of a U(1) symmetry with anomaly,

but the same idea can be used for higher groups and in the non-Abelian cases discussed in the

main text. In general, the method presented here is necessary to determine consistent boundary

conditions whenever the simple BF theory is modified by some non-Gaussian term containing

derivatives.

Consider the TQFT with action

S =
i

2π

∫
Xd+1

(
bd−1 ∧ dA1 + κdA1 ∧ (dA1)

d
2

)
, κd =

k

(2π)
d
2
−1
(
d
2
+ 1
)
!
, (B.7.1)

and k ∈ Z. In the presence of a boundary, the variation of the action produces a term

− i

2π

∫
∂Xd+1

(
bd−1 +

d

2
κdA1 ∧ (dA1)

d
2
−1

)
δA1 . (B.7.2)

This can be cancelled by imposing the boundary condition

⋆A1 = − i

R2

(
bd−1 +

d

2
κdA1 ∧ (dA1)

d
2
−1

)
︸ ︷︷ ︸

T0

+ ⋆A1 (B.7.3)

and adding the boundary term

S
(0)
∂ = − 1

4πR2

∫
∂Xd+1

(
bd−1 +

d

2
κdA1 ∧ (dA1)

d
2
−1

)
∧ ⋆
(
bd−1 +

d

2
κdA1 ∧ (dA1)

d
2
−1

)
. (B.7.4)

However, there is no gauge transformation of A1 that makes the boundary condition gauge

invariant. The only way to have a gauge-invariant boundary condition is to add terms that mix

A1 with the dynamical fields. The simplest such modification is to replace T0 in (B.7.3) with

T ′
0 = T0 −

d

2
κdA1 ∧ (dA1)

d
2
−1 . (B.7.5)

Consequently we must modify the boundary term into

− 1

4πR2

∫
∂Xd+1

T ′
0 ∧ ⋆ T ′

0 . (B.7.6)

However, since the boundary condition now imposes δT ′
0 = iR2⋆δA1, we get an extra unwanted

term in the variational principle:

− i

2π

∫
∂Xd+1

d

2
κdA1 ∧ (dA1)

d
2
−1 ∧ δA1 . (B.7.7)

This can be cancelled by adding a topological term proportional to A1 ∧A1 ∧ (dA1)
d
2
−1 to the

boundary term. Indeed∫
∂Xd+1

δ
(
A1A1 (dA1)

d
2
−1
)
=

∫
∂Xd+1

(
d
2
A1 (dA1)

d
2
−1 δA1 −

(
d
2
− 1
)
dA1A1 (dA1)

d
2
−2 δA1

)
.

(B.7.8)
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However, this also produces an extra term that must be cancelled. This is easily achieved by

modifying both the boundary condition and the boundary term by the addition of this extra

term to T ′
0 . This produces

T1 = T ′
0 + κd

(
d
2
− 1
)
dA1A1 (dA1)

d
2
−2 . (B.7.9)

At the same time we modify the boundary term that, including the new topological term,

becomes

S
(1)
∂ = − 1

4πR2

∫
∂Xd+1

T1 ∧ ⋆ T1 +
i

2π

∫
∂Xd+1

κdA1 ∧ A1 ∧ (dA1)
d
2
−1 . (B.7.10)

These new boundary condition and boundary term give a consistent variational principle. How-

ever, the boundary condition is again non gauge invariant because of the last term we added

to T1, and we have to repeat the procedure above.

At each step, the non-gauge-invariant piece in the boundary condition becomes of one lower

degree in A1 (and one higher in A1). Hence, the procedure stops when we reach a term linear

in A1: we can make the boundary condition gauge invariant by adding a term purely in A1,

which does not modify the variational principle. The procedure stops after (d/2 − 1) steps,

yielding the boundary condition

⋆
(
A1 −A1

)
= − i

R2

(
Ωd−1 − κdA1 (A1)

d
2
−1
)

(B.7.11)

where

Ωd−1 = bd−1 + κd

d
2
−2∑
r=0

(
d
2
− r
)
(dA1)

r
(
A1 −A1

)
(dA1)

d
2
−1−r + κd (dA1)

d
2
−1A1 . (B.7.12)

The corresponding boundary term is

S∂ = − 1

4πR2

∫
∂Xd+1

Ωd−1 ∧ ⋆Ωd−1 +
iκd
2π

d
2
−2∑
r=0

∫
∂Xd+1

A1 (dA1)
r A1 (dA1)

d
2
−r−1 . (B.7.13)

As a sanity check, we can verify that the boundary theory is anomalous under U(1) gauge

transformations. Under δA1 = δA1 = dλ0 the topological terms on the boundary produce

iκd
2π

d
2
−2∑
r=0

∫
∂Xd+1

(
dλ0 (dA1)

r A1 (dA1)
d
2
−r−1 +A1 (dA1)

r dλ0 (dA1)
d
2
−r−1

)

=
iκd
2π

d
2
−2∑
r=0

∫
∂Xd+1

λ0

(
(dA1)

r+1(dA1)
d
2
−r−1 − (dA1)

r(dA1)
d
2
−r
)

=
iκd
2π

∫
∂Xd+1

(
λ0 (dA1)

d
2
−1 (dA1)− λ0 (dA1)

d
2

)
.

(B.7.14)

Then, using the boundary condition,

δS∂ =
iκd
2π

∫
∂Xd+1

dλ0 (dA1)
d
2
−1
(
A1 −A1

)
− κ2d

2πR2

∫
∂Xd+1

dλ0 (dA1)
d
2
−1 ∧ ⋆

(
(dA1)

d
2
−1A1

)
(B.7.15)

− κ2d
4πR2

∫
∂Xd+1

dλ0 (dA1)
d
2
−1 ∧ ⋆

(
dλ0 (dA1)

d
2
−1
)
+
iκd
2π

∫
∂Xd+1

(
λ0 (dA1)

d
2
−1(dA1)− λ0 (dA1)

d
2

)
.

256



The bulk contributes with a term

δS = −iκd
2π

∫
∂Xd+1

dλ0A1 (dA1)
d
2
−1 (B.7.16)

which, together with the last term in (B.7.14), combines to a total derivative (on the boundary)

and can be neglected. We remain with

δStot = −iκd
2π

∫
∂Xd+1

dλ0 (dA1)
d
2
−1A1 − δ

[
κ2d

4πR2

∫
∂Xd+1

(
A1 (dA1)

d
2
−1
)
∧ ⋆
(
A1 (dA1)

d
2
−1
)]

.

(B.7.17)

We can isolate the anomalous variation adding a final counterterm

Sc.t. =
κ2d

4πR2

∫
∂Xd+1

(
A1 (dA1)

d
2
−1
)
∧ ⋆
(
A1 (dA1)

d
2
−1
)
. (B.7.18)

B.8 Non-compact TQFTs

In this appendix we provide a mathematical definition and details on the TQFTs with infinitely

many operators introduced in [206, 210] and used as holographic duals. The main issue is

defining the theory with cutting and gluing while avoiding infinities from inserting a complete

basis of states. We argue that this is possible if all manifolds have at least one non-empty

boundary component. On the other hand, the partition functions on closed manifolds will be

generically infinite.

Review of standard TQFTs. Recall that standard TQFTs in d dimensions are defined

by a symmetric monoidal functor Z : BordSO
d → VecC from the category of oriented bordisms

to the category of complex vector spaces [203] (see e.g. [204] for a detailed review). A vector

space HXd−1
= Z(Xd−1) is assigned to any closed codimension-one manifold and a linear map

Z(Yd) :HXd−1
→ HX′

d−1
to any bordism Yd : Xd−1 → X ′

d−1, namely an oriented manifold with

boundary ∂Yd = Xd−1⊔X
′
d−1 (here bar means orientation reversal) with in and out components

given by Xd−1 and X
′
d−1 respectively.

5 Functoriality implies that the vector space for a disjoint

union is the tensor product, and gluing Yd with Y ′
d along a common boundary corresponds to

composing linear maps.

In practice, it is convenient to work with an explicit basis. Hence, to concretely construct

a TQFT we need the following ingredients:

• Vector spaces HXd−1
with a basis |a⟩. We also denote by |ā⟩ a basis of HXd−1

.

• For any d-dimensional manifold Yd with incoming and outgoing connected boundary com-

ponents, respectively, X i
d−1,in, i = 1, 2, . . . and Xj

d−1,out, j = 1, 2, . . . we assign a tensor

Z(Yd){ai},{bj}. This specifies the linear map
⊗

iHin,i →
⊗

j Hout,j

Z(Yd)

(
|a1⟩ ⊗ |a2⟩ ⊗ · · ·

)
=
∑
bj

Z(Yd){ai},{bj}

(
|b1⟩ ⊗ |b2⟩ ⊗ · · ·

)
. (B.8.1)

5The same manifold, with the same orientation, can be viewed as a bordism X
′
d−1 → Xd−1.
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Notice that the vector spaces HXd−1
are not endowed with a scalar product as an extra datum:

this simply arises from the composition of bordisms. To see this notice that, for any Xd−1,

we can construct the cylinder Xd−1 × [0, 1] that can be viewed both as the straight cylinder,

namely a bordism Xd−1 → Xd−1, or as the horseshoe, namely a bordism Xd−1 ⊗ Xd−1 → ∅.6

In the first case the functor Z associates the identity map IdHXd−1
:HXd−1

→ HXd−1
, while in

the second case it gives a bilinear pairing η(Xd−1) :HXd−1
⊗HXd−1

→ C. In components these

read:

δa,b =

a b

η(Xd−1)ab̄ =

a b̄

One can show that η(Xd−1) is a non-degenerate pairing that defines an isomorphismHXd−1

∼= H∨
Xd−1

.

This allows us to identify the basis |ā⟩ of HXd−1
with the dual basis ⟨a| of H∨

Xd−1
defined by

⟨a|b⟩ = δa,b:

|b̄⟩ =
∑
a

ηa,b̄ ⟨a| . (B.8.2)

With these pieces of data, it is clear how to glue various bordisms along common boundaries

to generate others. The common boundaries must have opposite orientations. When one

boundary is incoming and the other one is outgoing, the gluing is just the composition. On

the other hand, if both are incoming (or both outgoing), we use η(Xd−1)a,b̄. More concretely,

let Yd be a (possibly disconnected) bordism
⊔
iX

i
d−1,in →

⊔
j X

j
d−1,out. If X

1
d−1,in = X1

d−1,out we

can generate Ỹd by gluing the two, and the associated tensor is

Z
(
Ỹd
)
{a2,...},{b2,...}

=
∑

a1
Z(Yd){a1,a2,...},{a1,b2,...} . (B.8.3)

If instead X1
d−1,in = X2

d−1,in the tensor associated with the manifold obtained by gluing along

these boundary components is

Z
(
Ỹd
)
{a3,...},{b1}

=
∑

a1,a2
Z(Yd){a1,a2,a3,...},{b1,...} η

(
X1
d−1,in

)
a1,a2

. (B.8.4)

Clearly, these pieces of data cannot be arbitrary: if the same manifold Yd can be constructed

in different ways by gluing smaller pieces, the results must coincide. Once these consistency

conditions are satisfied, we can compute the tensor associated with any manifold starting from

those associated with the more elementary pieces. By performing enough gluings to get a closed

manifold, the result is a number: the partition function. For instance, gluing the outgoing and

the incoming boundary of a cylinder Xd−1 × [0, 1] we get Xd−1 × S1, hence

Z
(
Xd−1 × S1

)
=
∑

a
δa,a = dim

(
HXd−1

)
. (B.8.5)

6The vector space associated with the empty (d− 1)-dimensional manifold is H∅ = C.
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The non-compact case. Already the fact (B.8.5) suggests that in the non-compact case

closed bordisms should not be included in the definition. We want to argue that, avoiding

closed manifolds, there are classes of manifolds in which we can give a precise definition of the

U(1)/R BF-like theories

S =
i

2π

∫
Md

bd−p−1 ∧ dAp . (B.8.6)

As an illustration, we consider the case of d = 2 with p = 1. Hence b0 = ϕ is a non-compact

scalar, and A is a U(1) gauge field. The Hilbert space HS1 can be constructed by canonical

quantization. We set M2 = S1 ×R, with R parametrized by t, and split A = Ã+At0 dt. Then

S = − i

2π

∫
S1×R

(
At0 d̃ϕ ∧ dt+ ϕ ∂tÃ ∧ dt

)
. (B.8.7)

We choose the temporal gauge At0 = 0, and we need to impose the Gauss law d̃ϕ = 0, namely

ϕ = ϕ(t) is independent of the spatial coordinate. Introducing

q(t) =

∫
S1

Ã , p(t) =
1

2π
ϕ(t) , (B.8.8)

we see that q(t) ∼ q(t) + 2π is a periodic variable, and the action becomes

S = −i
∫
R
p ∂tq dt . (B.8.9)

This is a free infinitely-massive particle on a circle of radius 2π. The quantization is straight-

forward. We have the commutation relations

[q̂, p̂] = i ⇒ eiαp̂ · einq̂ = eiαn einq̂ · eiαp̂ . (B.8.10)

Here n ∈ Z because of the periodicity of q̂, while α is a generic real number. However the

operator e2πip̂ commutes with the whole operator algebra, hence it is a number that we can set

to 1. Therefore the operators acting on the Hilbert space are

Ôα = eiαp̂ with α ∈ [0, 2π) , Ŵn = einq̂ with n ∈ Z , (B.8.11)

with algebra

Ôα Ôβ = Ôα+β (mod 2π) , Ŵn Ŵm = Ŵn+m , Ôα Ŵn = eiαn Ŵn Ôα . (B.8.12)

Starting from a simultaneous eigenstate of the Ŵn’s such that

Ŵn |θ⟩ = einθ |θ⟩ , (B.8.13)

using the algebra we find

Ôα |θ⟩ = |θ − α⟩ . (B.8.14)

Hence we get a basis labelled by a compact continuous variable θ ∈ U(1). We can also use a

non-compact but countable basis, starting with an eigenstate of Ôα:

Ôα |k⟩ = eiαk |k⟩ . (B.8.15)
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It must be k ∈ Z to respect the periodicity α ∼ α + 2π. Then using the algebra we infer

Ŵn |k⟩ = |k + n⟩ . (B.8.16)

The relation between the two basis is

|k⟩ = 1√
2π

∫ 2π

0

dθ eikθ |θ⟩ , |θ⟩ = 1√
2π

∑
k∈Z

e−ikθ |k⟩ . (B.8.17)

Since the Hilbert space is infinite dimensional, the partition function on T 2 is infinite. Let

us show that, on the other hand, we can consistently define a functor on the category of open

oriented bordisms. In 2d the huge computational simplifications are that the only Hilbert space

is HS1 , and that every 2d manifold has a pair of pants decomposition. Eventually, one also

needs to fill holes by attaching a disk. Hence, on top of the horseshoe ηab, the only other data

one needs to assign are the disk and the pair of pants:

ha =

a

µcab =

a b

c

The numbers ha define a distinguished state |HH⟩ =
∑

a ha|a⟩, called the Hartle–Hawking

state. These two data must satisfy the obvious condition that if we fill one of the two incoming

holes of the pair of pants with the Hartle–Hawking state we get the cylinder:∑
b
µcab hb = δa,c . (B.8.18)

The only other consistency condition is the independence from the chosen pair of pants decom-

position, that reduces to the Froboenius condition [205]:∑
c
µca,b µ

e
c,d =

∑
c
µea,c µ

c
b,d . (B.8.19)

Let us use the continuous basis |θ⟩. The cylinder (identity) becomes a delta function δ(θ1−
θ2). Moreover, we define

hθ = δ(θ) , ηθ1,θ2 = δ(θ1 + θ2) , µθ3θ1,θ2 = δ(θ1 + θ2 − θ3) . (B.8.20)

Also, all sums are replaced by integrals on [0, 2π) in this basis. The condition (B.8.18) is

obviously satisfied, while the Froboenius condition (B.8.19) reads∫ 2π

0

dθ δ(θ1 + θ2 − θ) δ(θ + θ3 − θ4) =

∫ 2π

0

dθ δ(θ1 + θ − θ4) δ(θ2 + θ3 − θ) (B.8.21)

which is satisfied since both sides are equal to δ(θ1 + θ2 + θ3 − θ4). The choice of these

data is motivated by the fact that the continuous basis |θ⟩ is related, by the state/operator

correspondence, with the local operators Oα(x) = ei
α
2π
ϕ(x), and the pair of pants must reproduce

their OPE OαOβ = Oα+β. Then the Hartle–Hawking state is fixed by (B.8.18).
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With these pieces of data, we can compute the value of the functor for arbitrary bordisms

with a non-empty boundary. The simplest nontrivial such manifold is the torus with a puncture.

This can be obtained from the pair of pants by gluing one of the two incoming boundaries with

the outgoing one. Denoting by θ the label of the puncture, namely the non-glued circle, the

result is7

Z
(
Σ1 ∖ Pθ

)
=

∫ 2π

0

dθ′ δ(θ) = 2π δ(θ) . (B.8.22)

This is a projector on the Hartle–Hawking state. Another simple example is the torus with two

punctures that can be obtained from the previous result by gluing the remaining boundary to

the outgoing boundary of another pair of pants. Hence, the result is

Z
(
Σ1 ∖

{
Pθ1 , Pθ2

})
=

∫ 2π

0

dθ′ δ(θ1 + θ2 − θ′) 2πδ(θ′) = 2π δ(θ1 + θ2) . (B.8.23)

We can now put these two examples together, gluing the boundary of a torus with one puncture

to one of the two boundaries of the torus with two punctures, resulting in a genus-two surface

with a puncture:

Z
(
Σ2 ∖ Pθ

)
=

∫ 2π

0

dθ′ 2πδ(θ + θ′) 2πδ(θ′) = (2π)2 δ(θ) . (B.8.24)

Proceeding in this way it is not hard to prove the general result. The value of the functor an a

genus g surface with n incoming boundaries labelled by θ1, . . . , θn and m outgoing boundaries

labelled by θ′1, . . . , θ
′
m is given by

Z
(
Σg ∖

{
Pθ1 , . . . , Pθn , Pθ′1 , . . . , Pθ′m

})
= (2π)g δ

(
θ1 + . . .+ θn − θ′1 − . . .− θ′m

)
. (B.8.25)

The important observation is that the partition function on compact Riemann surfaces is

infinite. Indeed, a compact Riemann surface of genus g is obtained by closing the hole of a

one-punctured Riemann surface Σg ∖ Pθ by means of gluing the Hartle–Hawking state. The

result is clearly infinite:

Z(Σg) =

∫ 2π

0

dθ (2π)g δ(θ) δ(θ) = (2π)g δ(0) . (B.8.26)

We conclude that the TQFT is well defined on the category of open oriented bordisms.

Let us remark that, given the Hilbert space we constructed, there is another set of data that

can be formulated, which is essentially the same as the one we discussed but in the discrete

basis |k⟩:

h′k = δk,0 , η′k1,k2 = δk1,−k2 , (µ′)k3k1,k2 = δk1+k2,k3 . (B.8.27)

With these data one gets infinite answers even on open manifolds, as soon as they have a

non-trivial topology. It must be noticed that, indeed, these are not merely the data (B.8.20)

written in a different basis: translating (B.8.20) in the discrete basis using (B.8.17) we get

hk =
1√
2π

, ηk1,k2 = δk1,k2 , µk3k1,k2 =
√
2π δk1,k2 δk1,k3 . (B.8.28)

7We denote a genus g Riemann surface as Σg.
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We conclude that (B.8.20) and (B.8.27) really define two different TQFTs.

How did we choose one instead of the other? As we already pointed out, in 2d TQFT

the choice is really dictated by the fact that the pair of pants is related with the OPE of

local operators. The data (B.8.27) would then be relevant for the TQFT with Lagrangian

formulation

S ′ =
i

2π

∫
M2

Φ da1 , (B.8.29)

where Φ ∼ Φ + 2π is a compact scalar, while a1 an R gauge field. Canonical quantization

produces the same Hilbert space as the theory with non-compact scalar and U(1) gauge field;

however, here the local operatorsOn(x) = einΦ(x) are labeled by an integer, and hence are related

with the discrete basis by the state/operator correspondence. For this reason, in contrast to

the previous case, the quantization of this theory produces the data (B.8.27) in which the pair

of pants gives the Abelian fusion algebra in the discrete basis.
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[137] I. n. Garćıa Etxebarria, B. Heidenreich, and D. Regalado, “IIB flux non-commutativity
and the global structure of field theories,” JHEP 10 (2019) 169, arXiv:1908.08027
[hep-th].

[138] J. Eckhard, H. Kim, S. Schafer-Nameki, and B. Willett, “Higher-Form Symmetries,
Bethe Vacua, and the 3d-3d Correspondence,” JHEP 01 (2020) 101, arXiv:1910.14086
[hep-th].

[139] D. R. Morrison, S. Schafer-Nameki, and B. Willett, “Higher-Form Symmetries in 5d,”
JHEP 09 (2020) 024, arXiv:2005.12296 [hep-th].
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[179] C. Córdova, T. T. Dumitrescu, and K. Intriligator, “Exploring 2-Group Global
Symmetries,” JHEP 02 (2019) 184, arXiv:1802.04790 [hep-th].

[180] E. Sharpe, “An introduction to decomposition,” arXiv:2204.09117 [hep-th].

[181] P. Etingof, D. Nikshych, and V. Ostrik, “On fusion categories,” Annals of Mathematics
(2005) 581–642.

[182] P. Etingof, D. Nikshych, and V. Ostrik, “Fusion categories and homotopy theory,”
Quantum topology 1 no. 3, (2010) 209–273.

[183] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor categories, vol. 205. American
Mathematical Soc., 2016.

[184] L. Bhardwaj, D. Gaiotto, and A. Kapustin, “State sum constructions of spin-TFTs and
string net constructions of fermionic phases of matter,” JHEP 04 (2017) 096,
arXiv:1605.01640 [cond-mat.str-el].

[185] A. Ocneanu, “Chirality for operator algebras,” Subfactors (Kyuzeso, 1993) 39 (1994) .

273

http://arxiv.org/abs/2204.06495
http://arxiv.org/abs/2304.03300
http://dx.doi.org/10.1007/JHEP07(2023)135
http://arxiv.org/abs/2303.16216
http://arxiv.org/abs/2303.16216
http://arxiv.org/abs/2305.05689
http://dx.doi.org/10.1007/JHEP10(2023)185
http://arxiv.org/abs/2305.08185
http://dx.doi.org/10.1007/JHEP11(2023)208
http://arxiv.org/abs/2305.09734
http://arxiv.org/abs/2404.17639
http://arxiv.org/abs/2407.00773
http://dx.doi.org/10.1103/PhysRevD.110.046007
http://arxiv.org/abs/2401.09538
http://arxiv.org/abs/2401.09538
http://arxiv.org/abs/1309.4721
http://dx.doi.org/10.1007/JHEP03(2019)118
http://arxiv.org/abs/1803.09336
http://dx.doi.org/10.1007/JHEP02(2019)184
http://arxiv.org/abs/1802.04790
http://arxiv.org/abs/2204.09117
http://dx.doi.org/10.1007/JHEP04(2017)096
http://arxiv.org/abs/1605.01640


[186] A. Ocneanu, “Chirality for operator algebras,” 2016.
https://api.semanticscholar.org/CorpusID:85464522.

[187] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf.

[188] R. Dijkgraaf and E. Witten, “Topological Gauge Theories and Group Cohomology,”
Commun. Math. Phys. 129 (1990) 393.

[189] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry protected topological orders
and the group cohomology of their symmetry group,” Phys. Rev. B 87 no. 15, (2013)
155114, arXiv:1106.4772 [cond-mat.str-el].

[190] S. Collier, D. Mazac, and Y. Wang, “Bootstrapping boundaries and branes,” JHEP 02
(2023) 019, arXiv:2112.00750 [hep-th].

[191] N. Drukker, D. Gaiotto, and J. Gomis, “The Virtue of Defects in 4D Gauge Theories
and 2D CFTs,” JHEP 06 (2011) 025, arXiv:1003.1112 [hep-th].

[192] G. W. Moore and N. Seiberg, “Classical and Quantum Conformal Field Theory,”
Commun. Math. Phys. 123 (1989) 177.

[193] W. Ji and X.-G. Wen, “Categorical symmetry and noninvertible anomaly in
symmetry-breaking and topological phase transitions,” Phys. Rev. Res. 2 no. 3, (2020)
033417, arXiv:1912.13492 [cond-mat.str-el].

[194] L. Kong, T. Lan, X.-G. Wen, Z.-H. Zhang, and H. Zheng, “Algebraic higher symmetry
and categorical symmetry: A holographic and entanglement view of symmetry,”
Physical Review Research 2 no. 4, (2020) 043086.

[195] J. Kaidi, E. Nardoni, G. Zafrir, and Y. Zheng, “Symmetry TFTs and Anomalies of
Non-Invertible Symmetries,” arXiv:2301.07112 [hep-th].

[196] P. Putrov and R. Radhakrishnan, “Non-anomalous non-invertible symmetries in 1+1D
from gapped boundaries of SymTFTs,” arXiv:2405.04619 [hep-th].

[197] R. Wen and A. C. Potter, “Bulk-boundary correspondence for intrinsically gapless
symmetry-protected topological phases from group cohomology,” Phys. Rev. B 107
no. 24, (2023) 245127, arXiv:2208.09001 [cond-mat.str-el].

[198] R. Wen and A. C. Potter, “Classification of 1+1D gapless symmetry protected phases
via topological holography,” arXiv:2311.00050 [cond-mat.str-el].

[199] J. Wess and B. Zumino, “Consequences of anomalous Ward identities,” Phys. Lett. B
37 (1971) 95–97.

[200] C. G. Callan, Jr. and J. A. Harvey, “Anomalies and Fermion Zero Modes on Strings and
Domain Walls,” Nucl. Phys. B 250 (1985) 427–436.

[201] D. S. Freed, “Anomalies and Invertible Field Theories,” Proc. Symp. Pure Math. 88
(2014) 25–46, arXiv:1404.7224 [hep-th].

[202] D. S. Freed and C. Teleman, “Relative quantum field theory,” Commun. Math. Phys.
326 (2014) 459–476, arXiv:1212.1692 [hep-th].

274

https://api.semanticscholar.org/CorpusID:85464522
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
http://dx.doi.org/10.1007/BF02096988
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://arxiv.org/abs/1106.4772
http://dx.doi.org/10.1007/JHEP02(2023)019
http://dx.doi.org/10.1007/JHEP02(2023)019
http://arxiv.org/abs/2112.00750
http://dx.doi.org/10.1007/JHEP06(2011)025
http://arxiv.org/abs/1003.1112
http://dx.doi.org/10.1007/BF01238857
http://dx.doi.org/10.1103/PhysRevResearch.2.033417
http://dx.doi.org/10.1103/PhysRevResearch.2.033417
http://arxiv.org/abs/1912.13492
http://arxiv.org/abs/2301.07112
http://arxiv.org/abs/2405.04619
http://dx.doi.org/10.1103/PhysRevB.107.245127
http://dx.doi.org/10.1103/PhysRevB.107.245127
http://arxiv.org/abs/2208.09001
http://arxiv.org/abs/2311.00050
http://dx.doi.org/10.1016/0370-2693(71)90582-X
http://dx.doi.org/10.1016/0370-2693(71)90582-X
http://dx.doi.org/10.1016/0550-3213(85)90489-4
http://dx.doi.org/10.1090/pspum/088/01462
http://dx.doi.org/10.1090/pspum/088/01462
http://arxiv.org/abs/1404.7224
http://dx.doi.org/10.1007/s00220-013-1880-1
http://dx.doi.org/10.1007/s00220-013-1880-1
http://arxiv.org/abs/1212.1692


[203] M. Atiyah, “Topological quantum field theories,” Inst. Hautes Etudes Sci. Publ. Math.
68 (1989) 175–186.

[204] N. Carqueville and I. Runkel, “Introductory lectures on topological quantum field
theory,” Banach Center Publ. 114 (2018) 9–47, arXiv:1705.05734 [math.QA].

[205] L. Abrams, “Two-dimensional topological quantum field theories and Frobenius
algebras,” J. Knot Theory and its Ramifications 5 (1996) 569—-587.

[206] A. Antinucci and F. Benini, “Anomalies and gauging of U(1) symmetries,”
arXiv:2401.10165 [hep-th].

[207] A. Kapustin and N. Seiberg, “Coupling a QFT to a TQFT and Duality,” JHEP 04
(2014) 001, arXiv:1401.0740 [hep-th].

[208] G. W. Moore and N. Seiberg, “Polynomial Equations for Rational Conformal Field
Theories,” Phys. Lett. B 212 (1988) 451–460.

[209] A. Kitaev, “Anyons in an exactly solved model and beyond,” Annals Phys. 321 no. 1,
(2006) 2–111, arXiv:cond-mat/0506438.

[210] T. D. Brennan and Z. Sun, “A SymTFT for continuous symmetries,”
arXiv:2401.06128 [hep-th].

[211] F. Bonetti, M. Del Zotto, and R. Minasian, “SymTFTs for Continuous non-Abelian
Symmetries,” arXiv:2402.12347 [hep-th].

[212] F. Apruzzi, F. Bedogna, and N. Dondi, “SymTh for non-finite symmetries,”
arXiv:2402.14813 [hep-th].

[213] A. Arbalestrier, R. Argurio, and L. Tizzano, “The Non-Invertible Axial Symmetry in
QED Comes Full Circle,” arXiv:2405.06596 [hep-th].

[214] J. L. Cardy, “Boundary conformal field theory,” arXiv:hep-th/0411189.

[215] N. Ishibashi, “The Boundary and Crosscap States in Conformal Field Theories,” Mod.
Phys. Lett. A 4 (1989) 251.

[216] A. Recknagel and V. Schomerus, “D-branes in Gepner models,” Nucl. Phys. B 531
(1998) 185–225, arXiv:hep-th/9712186.

[217] R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory: with
applications to String theory, vol. 779. 2009.

[218] A. Recknagel and V. Schomerus, Boundary Conformal Field Theory and the Worldsheet
Approach to D-Branes. Cambridge Monographs on Mathematical Physics. Cambridge
University Press, 11, 2013.

[219] L. Kong, “Anyon condensation and tensor categories,” Nucl. Phys. B 886 (2014)
436–482, arXiv:1307.8244 [cond-mat.str-el].
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[319] M. Mézard, G. Parisi, and M. A. Virasoro, Spin glass theory and beyond: An
Introduction to the Replica Method and Its Applications, vol. 9. World Scientific
Publishing Company, 1987.

[320] V. Gurarie, “Logarithmic operators and logarithmic conformal field theories,” J. Phys.
A 46 (2013) 494003, arXiv:1303.1113 [cond-mat.stat-mech].

[321] O. Aharony, N. Seiberg, and Y. Tachikawa, “Reading between the lines of
four-dimensional gauge theories,” JHEP 08 (2013) 115, arXiv:1305.0318 [hep-th].

[322] T. Banks and N. Seiberg, “Symmetries and Strings in Field Theory and Gravity,” Phys.
Rev. D 83 (2011) 084019, arXiv:1011.5120 [hep-th].

281

http://dx.doi.org/10.1088/1751-8113/46/49/494001
http://arxiv.org/abs/1302.4279
http://arxiv.org/abs/1302.4279
http://dx.doi.org/10.1088/1361-6382/ac2134
http://arxiv.org/abs/2011.09444
http://dx.doi.org/10.21468/SciPostPhys.12.2.059
http://dx.doi.org/10.21468/SciPostPhys.12.2.059
http://arxiv.org/abs/2012.07875
http://dx.doi.org/10.1007/JHEP03(2021)040
http://arxiv.org/abs/2011.06005
http://dx.doi.org/10.1007/JHEP04(2016)013
http://arxiv.org/abs/1509.02547
http://dx.doi.org/10.1103/PhysRevD.98.045012
http://arxiv.org/abs/1803.08534
http://arxiv.org/abs/1803.08534
http://dx.doi.org/10.1088/0022-3719/7/9/009
http://dx.doi.org/10.21468/SciPostPhys.8.1.001
http://dx.doi.org/10.21468/SciPostPhys.8.1.001
http://arxiv.org/abs/1905.09315
http://dx.doi.org/10.1016/0003-4916(85)90087-9
http://arxiv.org/abs/1404.3230
http://dx.doi.org/10.1103/PhysRevLett.42.1195
http://dx.doi.org/10.1103/PhysRevLett.42.1195
http://arxiv.org/abs/1403.1467
http://dx.doi.org/10.1088/1751-8113/46/49/494003
http://dx.doi.org/10.1088/1751-8113/46/49/494003
http://arxiv.org/abs/1303.1113
http://dx.doi.org/10.1007/JHEP08(2013)115
http://arxiv.org/abs/1305.0318
http://dx.doi.org/10.1103/PhysRevD.83.084019
http://dx.doi.org/10.1103/PhysRevD.83.084019
http://arxiv.org/abs/1011.5120


[323] T. Banks and L. J. Dixon, “Constraints on String Vacua with Space-Time
Supersymmetry,” Nucl. Phys. B 307 (1988) 93–108.

[324] D. Harlow and H. Ooguri, “Symmetries in quantum field theory and quantum gravity,”
Commun. Math. Phys. 383 (2021) 1669–1804, arXiv:1810.05338 [hep-th].

[325] D. Harlow and H. Ooguri, “Constraints on Symmetries from Holography,” Phys. Rev.
Lett. 122 (2019) 191601, arXiv:1810.05337 [hep-th].

[326] J. Polchinski, “Monopoles, duality, and string theory,” Int. J. Mod. Phys. A 19S1
(2004) 145–156, arXiv:hep-th/0304042.

[327] T. Rudelius and S.-H. Shao, “Topological Operators and Completeness of Spectrum in
Discrete Gauge Theories,” JHEP 12 (2020) 172, arXiv:2006.10052 [hep-th].

[328] B. Heidenreich, J. McNamara, M. Montero, M. Reece, T. Rudelius, and I. Valenzuela,
“Non-invertible global symmetries and completeness of the spectrum,” JHEP 09 (2021)
203, arXiv:2104.07036 [hep-th].

[329] A. Kapustin, R. Thorngren, A. Turzillo, and Z. Wang, “Fermionic Symmetry Protected
Topological Phases and Cobordisms,” JHEP 12 (2015) 052, arXiv:1406.7329
[cond-mat.str-el].

[330] D. S. Freed and M. J. Hopkins, “Reflection positivity and invertible topological phases,”
Geom. Topol. 25 (2021) 1165–1330, arXiv:1604.06527 [hep-th].

[331] K. Yonekura, “On the cobordism classification of symmetry protected topological
phases,” Commun. Math. Phys. 368 (2019) 1121–1173, arXiv:1803.10796 [hep-th].

[332] K. Jensen, E. Shaverin, and A. Yarom, “’t Hooft anomalies and boundaries,” JHEP 01
(2018) 085, arXiv:1710.07299 [hep-th].

[333] R. Thorngren and Y. Wang, “Anomalous symmetries end at the boundary,” JHEP 09
(2021) 017, arXiv:2012.15861 [hep-th].

[334] T. Johnson-Freyd and D. Reutter, “Minimal nondegenerate extensions,” J. Amer.
Math. Soc. (2023) , arXiv:2105.15167 [math.QA].

[335] D. Gaiotto, “N=2 dualities,” JHEP 08 (2012) 034, arXiv:0904.2715 [hep-th].

[336] C. Lawrie, X. Yu, and H. Y. Zhang, “Intermediate Defect Groups, Polarization Pairs,
and Non-invertible Duality Defects,” arXiv:2306.11783 [hep-th].

[337] M. Bischoff, C. Jones, Y.-M. Lu, and D. Penneys, “Spontaneous symmetry breaking
from anyon condensation,” JHEP 02 (2019) 062, arXiv:1811.00434 [math.QA].

[338] D. Delmastro, J. Gomis, P.-S. Hsin, and Z. Komargodski, “Anomalies and Symmetry
Fractionalization,” arXiv:2206.15118 [hep-th].

[339] S. Gelaki, D. Naidu, and D. Nikshych, “Centers of graded fusion categories,” Algebra
and Number Th. 3 (2009) 959–990, arXiv:0905.3117 [math.QA].

[340] E. Meir and E. Musicantov, “Module categories over graded fusion categories,” J. Pure
Appl. Alg. 216 (2012) 2449–2466, arXiv:1010.4333 [math.QA].

282

http://dx.doi.org/10.1016/0550-3213(88)90523-8
http://dx.doi.org/10.1007/s00220-021-04040-y
http://arxiv.org/abs/1810.05338
http://dx.doi.org/10.1103/PhysRevLett.122.191601
http://dx.doi.org/10.1103/PhysRevLett.122.191601
http://arxiv.org/abs/1810.05337
http://dx.doi.org/10.1142/S0217751X0401866X
http://dx.doi.org/10.1142/S0217751X0401866X
http://arxiv.org/abs/hep-th/0304042
http://dx.doi.org/10.1007/JHEP12(2020)172
http://arxiv.org/abs/2006.10052
http://dx.doi.org/10.1007/JHEP09(2021)203
http://dx.doi.org/10.1007/JHEP09(2021)203
http://arxiv.org/abs/2104.07036
http://dx.doi.org/10.1007/JHEP12(2015)052
http://arxiv.org/abs/1406.7329
http://arxiv.org/abs/1406.7329
http://dx.doi.org/10.2140/gt.2021.25.1165
http://arxiv.org/abs/1604.06527
http://dx.doi.org/10.1007/s00220-019-03439-y
http://arxiv.org/abs/1803.10796
http://dx.doi.org/10.1007/JHEP01(2018)085
http://dx.doi.org/10.1007/JHEP01(2018)085
http://arxiv.org/abs/1710.07299
http://dx.doi.org/10.1007/JHEP09(2021)017
http://dx.doi.org/10.1007/JHEP09(2021)017
http://arxiv.org/abs/2012.15861
http://dx.doi.org/10.1090/jams/1023
http://dx.doi.org/10.1090/jams/1023
http://arxiv.org/abs/2105.15167
http://dx.doi.org/10.1007/JHEP08(2012)034
http://arxiv.org/abs/0904.2715
http://arxiv.org/abs/2306.11783
http://dx.doi.org/10.1007/JHEP02(2019)062
http://arxiv.org/abs/1811.00434
http://arxiv.org/abs/2206.15118
http://dx.doi.org/10.2140/ant.2009.3.959
http://dx.doi.org/10.2140/ant.2009.3.959
http://arxiv.org/abs/0905.3117
http://dx.doi.org/10.1016/j.jpaa.2012.03.014
http://dx.doi.org/10.1016/j.jpaa.2012.03.014
http://arxiv.org/abs/1010.4333


[341] T. Bourton, A. Pini, and E. Pomoni, “4d N=3 indices via discrete gauging,” JHEP 10
(2018) 131, arXiv:1804.05396 [hep-th].

[342] A. Kapustin and N. Saulina, “Topological boundary conditions in abelian Chern-Simons
theory,” Nucl. Phys. B 845 (2011) 393–435, arXiv:1008.0654 [hep-th].

[343] G. Moore, “Abstract Group Theory.” https://www.physics.rutgers.edu/~gmoore/

618Spring2023/GTLect1-AbstractGroupTheory-2023.pdf. [Online].

[344] A. Karch, D. Tong, and C. Turner, “A Web of 2d Dualities: Z2 Gauge Fields and Arf
Invariants,” SciPost Phys. 7 (2019) 007, arXiv:1902.05550 [hep-th].

[345] A. Davydov, “Twisted automorphisms of group algebras,” in Noncommutative
structures in mathematics and physics, pp. 131–150. K. Vlaam. Acad. Belgie Wet.
Kunsten (KVAB), Brussels, 2010. arXiv:0708.2758 [math.RT].

[346] Y. Tachikawa, “On gauging finite subgroups,” SciPost Phys. 8 no. 1, (2020) 015,
arXiv:1712.09542 [hep-th].

[347] V. Ostrik, “Module categories over the Drinfeld double of a finite group,” Int. Math.
Res. Notices 2003 (2003) 1507–1520, arXiv:math/0202130 [math.QA].

[348] T. D. Brennan, C. Cordova, and T. T. Dumitrescu, “Line Defect Quantum Numbers &
Anomalies,” arXiv:2206.15401 [hep-th].

[349] T. Senthil and M. P. A. Fisher, “Z2 gauge theory of electron fractionalization in
strongly correlated systems,” Phys. Rev. B 62 (2000) 7850, arXiv:cond-mat/9910224.

[350] X. Chen, F. J. Burnell, A. Vishwanath, and L. Fidkowski, “Anomalous Symmetry
Fractionalization and Surface Topological Order,” Phys. Rev. X 5 (2015) 041013,
arXiv:1403.6491 [cond-mat.str-el].

[351] N. Tarantino, N. H. Lindner, and L. Fidkowski, “Symmetry fractionalization and twist
defects,” New J. Phys. 18 (2016) 035006, arXiv:1506.06754 [cond-mat.str-el].

[352] D. Bulmash and M. Barkeshli, “Fermionic symmetry fractionalization in (2+1)
dimensions,” Phys. Rev. B 105 (2022) 125114, arXiv:2109.10913
[cond-mat.str-el].

[353] P.-S. Hsin, H. T. Lam, and N. Seiberg, “Comments on One-Form Global Symmetries
and Their Gauging in 3d and 4d,” SciPost Phys. 6 (2019) 039, arXiv:1812.04716
[hep-th].

[354] J. P. Ang, K. Roumpedakis, and S. Seifnashri, “Line Operators of Gauge Theories on
Non-Spin Manifolds,” JHEP 04 (2020) 087, arXiv:1911.00589 [hep-th].

[355] C.-T. Hsieh, Y. Tachikawa, and K. Yonekura, “Anomaly inflow and p-form gauge
theories,” Commun. Math. Phys. 391 (2022) 495–608, arXiv:2003.11550 [hep-th].

[356] A. Kapustin and R. Thorngren, “Topological Field Theory on a Lattice, Discrete
Theta-Angles and Confinement,” Adv. Theor. Math. Phys. 18 (2014) 1233–1247,
arXiv:1308.2926 [hep-th].

[357] J. C. Baez and A. D. Lauda, “Higher-dimensional algebra. V: 2-Groups.,” Theory Appl.
Categ. 12 (2004) 423–491, arXiv:math/0307200 [math.QA].

283

http://dx.doi.org/10.1007/JHEP10(2018)131
http://dx.doi.org/10.1007/JHEP10(2018)131
http://arxiv.org/abs/1804.05396
http://dx.doi.org/10.1016/j.nuclphysb.2010.12.017
http://arxiv.org/abs/1008.0654
https://www.physics.rutgers.edu/~gmoore/618Spring2023/GTLect1-AbstractGroupTheory-2023.pdf
https://www.physics.rutgers.edu/~gmoore/618Spring2023/GTLect1-AbstractGroupTheory-2023.pdf
http://dx.doi.org/10.21468/SciPostPhys.7.1.007
http://arxiv.org/abs/1902.05550
http://arxiv.org/abs/0708.2758
http://dx.doi.org/10.21468/SciPostPhys.8.1.015
http://arxiv.org/abs/1712.09542
http://dx.doi.org/10.1155/S1073792803205079
http://dx.doi.org/10.1155/S1073792803205079
http://arxiv.org/abs/math/0202130
http://arxiv.org/abs/2206.15401
http://dx.doi.org/10.1103/PhysRevB.62.7850
http://arxiv.org/abs/cond-mat/9910224
http://dx.doi.org/10.1103/PhysRevX.5.041013
http://arxiv.org/abs/1403.6491
http://dx.doi.org/10.1088/1367-2630/18/3/035006
http://arxiv.org/abs/1506.06754
http://dx.doi.org/10.1103/PhysRevB.105.125114
http://arxiv.org/abs/2109.10913
http://arxiv.org/abs/2109.10913
http://dx.doi.org/10.21468/SciPostPhys.6.3.039
http://arxiv.org/abs/1812.04716
http://arxiv.org/abs/1812.04716
http://dx.doi.org/10.1007/JHEP04(2020)087
http://arxiv.org/abs/1911.00589
http://dx.doi.org/10.1007/s00220-022-04333-w
http://arxiv.org/abs/2003.11550
http://dx.doi.org/10.4310/ATMP.2014.v18.n5.a4
http://arxiv.org/abs/1308.2926
http://www.tac.mta.ca/tac/volumes/12/14/12-14abs.html
http://www.tac.mta.ca/tac/volumes/12/14/12-14abs.html
http://arxiv.org/abs/math/0307200


[358] P. C. Argyres and M. Martone, “4d N=2 theories with disconnected gauge groups,”
JHEP 03 (2017) 145, arXiv:1611.08602 [hep-th].

[359] C.-T. Hsieh, Y. Tachikawa, and K. Yonekura, “Anomaly of the Electromagnetic Duality
of Maxwell Theory,” Phys. Rev. Lett. 123 (2019) 161601, arXiv:1905.08943 [hep-th].
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