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ABSTRACT

What we see in the present is affected by what we saw in the recent past. Serial dependence — a bias
making a current stimulus to appear more similar to a previous one — has been indeed shown to be
ubiquitous in vision. At the neural level, serial dependence is accompanied by a signature of stimulus
history (i.e., past stimulus information) emerging from early visual-evoked activity. However, whether
this neural signature effectively reflects the behavioural bias is unclear. Here we address this question by
assessing the neural (electrophysiological) and behavioural signature of stimulus history in human
subjects (both male and female), in the context of numerosity, duration, and size perception. First, our
results show that while the behavioural effect is task-dependent, its neural signature also reflects task-
irrelevant dimensions of a past stimulus, suggesting a partial dissociation between the mechanisms
mediating the encoding of stimulus history and the behavioural bias itself. Second, we show that
performing a task is not a necessary condition to observe the neural signature of stimulus history, but that
in the presence of an active task such a signature is significantly amplified. Finally, and more importantly,
we show that the pattern of brain activity in a relatively early latency window (starting at ~35-65 ms after
stimulus onset) significantly predicts the behavioural effect. Overall, our results thus demonstrate that the
encoding of past stimulus information in neural signals does indeed reflect serial dependence, and that

serial dependence occurs at a relatively early level of visual processing.

SIGNIFICANCE STATEMENT

What we perceive is determined not only by the information reaching our sensory organs, but also by the
context in which the information is embedded in. What we saw in the recent past (perceptual history) can
indeed modulate the perception of a current stimulus in an attractive way — a bias that is ubiquitous in
vision. Here we show that this bias can be predicted by the pattern of brain activity reflecting the
encoding of past stimulus information, very early after the onset of a stimulus. This in turn suggests that
the integration of past and present sensory information mediating the attractive bias occurs early in the

visual processing stream, and likely involves early visual cortices.
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INTRODUCTION

Visual perception is not uniquely based on the sensory input received at any given moment, but also
reflects the influence of the recent history of stimulation, or perceptual history. An increasing amount of
evidence indeed shows that the perception and judgement of a current stimulus is modulated by the
stimuli seen in the recent past. Namely, a current stimulus is perceived to be more similar to its preceding
one than it actually is — an “attractive” bias that has been named serial dependence (e.g., Fischer &
Whitney, 2014). This bias is thought to originate from the integration of past and present sensory
evidence (e.g., Burr & Cicchini, 2014; Fischer & Whitney, 2014), and has been shown to be ubiquitous in
vision (Alais, Leung, & Van der Burg, 2017; Cicchini, Anobile, & Burr, 2014; Fritsche, Mostert, & de
Lange, 2017; Liberman, Fischer, & Whitney, 2014; Manassi, Liberman, Kosovicheva, Zhang, &

Whitney, 2018).

However, the nature of serial dependence and its neural mechanisms are still unclear. This attractive
effect has been indeed proposed to engage different putative mechanisms, spanning from sensory or
perceptual processing (e.g., Fischer & Whitney, 2014; Fornaciai & Park, 2018a, 2020) to a completely
post-perceptual mechanism based on memory or decision (e.g., Fritsche et al., 2017; Wehrman, Wearden,
& Sowman, 2020). Overall, although serial dependence seems to operate at the perceptual level (Cicchini,
Mikellidou, & Burr, 2017; Fritsche & de Lange, 2019), it also shows the hallmarks of high-level visual
processes (e.g., Fornaciai & Park, 2018, 2021, 2022; Pascucci et al., 2019; Samaha et al., 2019), making

indeed difficult to understand its nature.

At the neural level, previous studies mostly provide evidence supporting the idea that serial dependence is
perceptual in nature. For instance, St John-Saaltink et al., 2016, using functional magnetic resonance
imaging (fMRI), showed that the recent history of stimulation biases orientation representations directly
in the primary visual cortex. Additionally, electroencephalography (EEG) results further support the idea
of an early signature of serial dependence (Fornaciai & Park, 2018a; Fornaciai & Park, 2019b), showing

that stimulus history is decodable from visual-evoked potentials early on after the onset of a stimulus,
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compatibly with the timing of activity in early visual areas (e.g., Di Russo et al., 2005; Fornaciai,
Brannon, Woldorff, & Park, 2017). However, whether such early signature of stimulus history actually

represents a genuine correlate of the behavioural serial dependence effect is unclear.

In the present study, we address the link between the behavioural attractive effect entailed by serial
dependence and the neural signature of stimulus history, aiming to pinpoint the brain processing stages
involved with the behavioural bias. In Exp. 1, we used EEG in conjunction with different magnitude
discrimination tasks (i.e., numerosity, duration, and size discrimination task, in three different conditions).
Namely, participants had to discriminate either the numerosity, the duration, or the dot size of a constant
reference dot-array stimulus in comparison to a variable probe array. To induce serial dependence effects,
we presented a task-irrelevant “inducer” stimulus (always modulated in numerosity, duration, and dot size
in all task conditions) before the task-relevant ones, and assessed (1) how the inducer affects the
perceived magnitude of the reference, and (2) how the inducer magnitude information is carried over to
the reference processing at the neural level. Following previous studies, we computed the extent to which
the past (inducer) stimulus information is encoded in brain signals using a multivariate “decoding”
analysis (e.g., King & Dehaene, 2014). In Exp. 2, we instead used a passive-viewing paradigm, to address
the potential role of task-relevance of the stimuli in driving the neural signature of stimulus history. In
this experiment, the participants simply watched a sequence of dot-array stimuli modulated in numerosity,
duration, and size, while responding to occasional odd-ball stimuli defined by contrast (i.e., to avoid
making the magnitude dimensions task relevant as in Exp. 1 while ensuring that the subjects attended the

stimuli).
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MATERIALS AND METHODS

Subjects

A total of 63 subjects took part in the study (42 females; mean age = 23.9, SD = 3.8; including the author
1T), 32 of them were tested in Exp. 1, and 31 were tested in Exp. 2. Two subjects in Exp. 1 were excluded
due to noisy EEG recordings (see below Electrophysiological recording and analysis). Two subjects were
instead excluded from Exp. 2 due to equipment failure (missing EEG data). The final samples included in
data analysis were thus 30 and 29 subjects, in Exp. 1 and Exp. 2 respectively. All participants had normal
or corrected-to-normal vision, were naive to the purpose of the study (with the exception of one of the
authors who participated in Exp. 1), and signed a written informed consent form before taking part in the
study. All experimental procedures were approved by the ethics committee of the International School for

Advanced Studies (SISSA), and were in line with the declaration of Helsinki.

The sample size of the experiments was based on a previous behavioural study from our group examining
the serial dependence effect in duration and numerosity perception (Togoli et al., 2021). More
specifically, we estimated an average effect size (Cohen’s d) from the numerosity and duration
discrimination tasks tested in Togoli et al., 2021 equal to 0.55. Assuming a one-tailed distribution (based
on our hypothesis concerning the direction of the effect), and a desired power of 0.9, a power analysis
indicated a minimum sample size of 30 participants. Besides the power analysis based on the behavioural
effects, we also considered the effect size obtained in previous EEG studies (Fornaciai & Park, 2019b).
The effect size (Cohen’s d) in this case was estimated to be 0.6. We thus decided to base the sample sizes

on the more conservative estimate based on previous behavioural results.

Apparatus and stimuli

The experiments were performed in a quiet and dimly lit boot, equipped with a Faraday cage. Stimuli

were presented on a 1920 x 1080 monitor screen running at 120 Hz, positioned about 80 cm from the
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participant. All the stimuli were generated using the Psychophysics Toolbox (Kleiner et al., 2007; Pelli,
1997) on MatLab (version r2019b; The Mathworks, Inc.). In all the experimental conditions, stimuli were
arrays of black and white dots (50%/50% proportion) presented on a grey background, randomly
positioned within a circular area (i.e., field area). In Exp. 1, a sequence of three dot-array stimuli was
presented on the screen in each trial. The first stimulus in the sequence was a task-irrelevant “inducer”
stimulus used to induce serial dependence. The inducer stimulus could contain either 12 or 24 dots
(numerosity), could be presented for either 140 or 280 ms (duration), and contained dots with radius equal
to 4 or 8 pixels (dot size). The levels of the different magnitude dimensions of the inducer were identical
in all the task conditions of Exp. 1. The second stimulus was a reference stimulus that was kept constant
across all the trials and task conditions. The reference always contained 16 dots, was presented for 200
ms, and each dot had a radius equal to 6 pixels. The last stimulus in the sequence was a probe stimulus
that varied according to the specific task condition. Namely, in the numerosity task, the probe contained
either 8, 12, 16, 24, or 32 dots, had a duration of 200 ms, and dot size of 6 pixels. In the duration task, the
probe had constant numerosity (16 dots) and dot size (6 pixels), and varied in duration (100, 140, 200,
280, or 400 ms). In the size task, the probe had constant numerosity (16 dots) and duration (200 ms), and
was varied in dot size (3, 4, 6, 8, or 12 pixels). In Exp. 2, a single stimulus was presented in each trial. All
the stimuli were thus modulated in numerosity, duration, and dot size, according to three levels for each
dimension. Namely, each dot array could contain either 12, 16, or 24 dots, could be presented for 140,
200, or 280 ms, and had dot size of either 4, 6, or 8 pixels. Occasionally (10 trials in each block of 270
trials; 3.7% of the trials), a “catch” stimulus was presented, which was characterized by a reduced
contrast (30% less compared to standard stimuli). In each experiment and condition, the field area of the

dot-array stimuli was randomly modulated spanning from 200 to 400 pixel in radius.

--- FIGURE 1 HERE ---
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Experimental design

In Exp. 1, participants performed three different discrimination tasks in separate conditions and in a
random order (i.e., numerosity, duration, or size discrimination task, involving a 2-alternative forced-
choice procedure, 2AFC). The stimulation sequence was largely identical across conditions. Namely, a
sequence of three stimuli was presented in each trial: an inducer stimulus, followed by a reference
(inducer-reference interstimulus interval, ISI = 650-850 ms), and finally a probe (reference-probe ISI =
600-650 ms). While the inducer and reference stimuli were identical in all the tasks (see Apparatus and
stimulf), the probe was modulated according to the task — i.e., it varied in numerosity in the numerosity
task, in duration in the duration task, and in dot size in the size task. At the end of the stimulus sequence,
participants had to report which stimulus between the reference and the probe contained more dots, lasted
longer in time, or contained larger dots. Participants were instructed to respond as fast and accurately as
possible, and although the inducer was irrelevant for the task, to pay anyway attention to the entire
sequence of the stimuli, in line with previous studies (e.g., Fornaciai & Park, 2018b). The available time
to provide a response was limited to 1,250 ms. Once a participant provided a response, the next trial
started automatically after 800-1,200 ms. If no response was provided within 1,250 ms from the offset of
the last stimulus in the sequence, the next trial started automatically. Responses were collected by means
of a standard keyboard. On average, participants missed the response in 11 (SD = 15.7) trials, out of a
total of 400 trials performed in each condition. Trials in which no response was provided were excluded

from behavioural data analysis, but included in the EEG analysis.

In Exp. 2, instead, participants were asked to watch a continuous stream of dot-array stimuli modulated in
numerosity, duration, and dot size. The ISI between consecutive stimuli was 800 ms. To encourage
participants to pay attention to the stimulus sequence, we asked them to perform a simple oddball
detection task. More specifically, an occasional oddball (“catch”) stimulus was presented (3.7% of the
trials), with a reduced contrast compared to the majority of other (“standard”) stimuli. Participants were

instructed to press a button on a keyboard as fast as they could once they detected the lower-contrast



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

oddball stimulus. The detection rates in this task were on average (+ SD) 93% =+ 1.3%. The average

reaction time in correctly detected catch trials was 313 + 11 ms.

In Exp. 1, participants completed 10 blocks of 40 trials in each task condition, including 20 repetitions of
each combination of inducer and probe magnitude. In Exp. 2, participants completed 8 blocks of 270
trials, for a total of 80 repetitions of each combination of stimulus magnitudes. Participants were free to
take breaks between different blocks. The Experiment took about 1 hour in the case of Exp. 1, and about

50 minutes in the case of Exp. 2.

Behavioural data analysis

In Exp. 1, participants’ performance in the three different tasks was analysed to assess to what extent the
perceived magnitude of the reference stimulus was affected by the inducer. First, the proportion of
responses in the task obtained from each participant and condition was fitted with a cumulative Gaussian
function according to the maximum likelihood method (Watson, 1979). The point of subjective equality
(PSE), representing the perceived magnitude of the reference stimulus (i.e., accuracy), was defined as the
median of the cumulative Gaussian function. As a measure of precision in the task, we computed the just
noticeable difference (JND) as the difference in probe magnitude between chance level response (50%)
and 75% “probe more numerous/longer/bigger” responses. As an additional measure of precision, we
computed the Weber fraction as JND/PSE. Finally, during the fitting procedure, we applied a finger error
rate correction (5%) to account for random errors and lapses of attention (Wichmann & Hill, 2001). Note
that the PSE and the JND were computed as a function of the different levels of the inducer magnitudes,
separately for each dimension (i.e., the numerosity, duration, and size of the inducer). As a final estimate
of the precision, we considered the average WF across the different levels of the inducer magnitudes in
each task. The difference in PSE obtained with different inducer magnitudes within each task (shown in

Fig. 2A) was assessed with a series of paired t-tests. To control for multiple comparisons, we employed a
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false discovery rate (FDR) procedure, with q = 0.05. When reporting series of t-tests, we thus report the
p-value adjusted by the FDR procedure ("adj-p”). The difference in WF across the tasks was assessed

with a one-way repeated measures ANOVA, with factor “task.”

Moreover, to better compare the serial dependence effects obtained in different tasks, we computed a

serial dependence effect index according to the following formula:

Serial dependence effect = (PSEhigh — PSEiow)/PSEiow) x 100; (1)

Where PSE,,, refers to the PSE obtained when the inducer magnitude was low (i.e., 12 dots in the
numerosity task, 140 ms in the duration task, 4 pixels in the size task), while PSE;,, refers to PSEs
obtained with a high inducer magnitude (24 dots, 280 ms, or 8§ pixels, according to the task). This index
was calculated separately for each participant and condition, and the average is shown in the Fig. 2B.
Additional analyses (data not shown) were performed to assess whether the influence of the inducer is
limited to the immediately following reference stimulus, or whether it extends across trials. To do so, we
computed the PSE and the serial dependence effect as a function of the magnitudes of the inducer in the
preceding trial or two trials back in the past. These analyses did not show any influence of the inducer
across trials, most likely due to the presence of several intervening stimuli. Previous results concerning
serial dependence in magnitude perception (although limited to numerosity perception) indeed showed
that the effect is mostly limited to the immediately preceding stimulus (Cicchini et al., 2014; Fornaciai &
Park, 2020, 2022). As a sanity check, we also assessed whether the reference stimulus could be affected

by the inducer in the successive (future) trial. No effect was observed also in this case.

To obtain a better measure of the influence of each inducer magnitude on behavioural performance, we
further performed a non-linear regression analysis. In this analysis, performed separately for each
participant and condition, we used the individual responses across trials (i.e., coded as 0 or 1, as obtained
in the 2AFC task) as dependent variable, and included the probe magnitude (defined according to the

task), inducer numerosity, inducer duration, and inducer dot size as predictors. This allowed us to directly
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assess the influence of each inducer magnitude level on the response in each trial. To perform this
regression analysis, the levels of inducer magnitudes were coded as the ratio with the corresponding
reference magnitude. Regarding the effects computed with this analysis, positive beta values indicate an
attractive effect (i.e., increased probability of judging the reference as “bigger” than the probe with higher
inducer magnitude), while negative beta values indicate a repulsive effect. The resulting beta values
obtained for each participant and magnitude (see Fig. 2C; note that beta values corresponding to the effect
of the probe are not shown in the figure) were then tested with a one-sample t-test to assess whether the
corresponding predictor provided an effect significantly higher than zero. All statistical tests were

performed in Matlab (version R2018b).

Electrophysiological recoding and analysis

In both Exp. 1 and Exp. 2, the electroencephalogram (EEG) was recorded throughout the experimental
procedure, using the Biosemi ActiveTwo system (at a sampling rate of 2048 Hz), and a 32-channel cap
based on the 10-20 system layout. In Exp. 2, an electro-oculogram (EOG) channel was also added below
the left eye. Electrode offsets across channels were usually kept below 15 puV, but occasionally offsets up

to 30 uV were tolerated.

EEG data analysis was performed offline in Matlab (version R2018b), using the EEGLAB software
package (Delorme & Makeig, 2004). EEG signals were first high-pass filtered (0.1 Hz) and re-referenced
to the average of all the channels used. Continuous EEG data were then segmented into epochs spanning
from -200 ms to 700 ms after stimulus onset, with epochs time locked to the reference stimulus in Exp. 1,
or time-locked to each stimulus in Exp. 2. In order to test the influence of the inducer stimulus (Exp. 1) or
the stimulus in the preceding trial (Exp. 2), epochs were also sorted as a function of the magnitudes of the
preceding stimulus. For instance, in Exp. 1, the reference epochs were sorted according to the different

levels of the inducer magnitudes — i.e., separately for cases were the inducer had 12 or 24 dots, was

10
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presented for 140 or 280 ms, or had dot-size of either 4 or 8 pixels. In Exp. 2, we considered as
“reference” of one magnitude dimension all the stimuli presenting the intermediate magnitude level (i.e.,
16 dots, 200 ms, 6 pixels, which corresponded to the reference stimulus in Exp. 1). We thus sorted epochs
according to whether such intermediate stimuli (i.e., the “current” magnitude) were preceded by a
stimulus having either a lower or higher magnitude, separately for each dimension (i.e., the “past”
magnitude). Data from both experiments were cleaned by means of an independent component analysis
(ICA), aimed to remove artefacts related to eye movements, blinks, or other sources of noise. After ICA,
we used a step-like artefact rejection procedure to remove any remaining large artefact, leading to an
average rejection rate of 9.8% (SD = 13.5%) in Exp. 1, and 0.6% (SD = 1.2%) in Exp. 2. Rejection rate
was used as a criterion for inclusion in data analysis, with a cut-off rejection rate of 35%. Two
participants in Exp. 1 were excluded from data analysis based on this criterion. Due to equipment failure,
one participant in Exp. 1 had one missing block of trials but was nevertheless included in data analysis as
the number of available trials was sufficient to perform the multivariate analysis. Finally, we applied a

low-pass filter with a cut-off of 30 Hz.

Multivariate pattern analysis in the time domain

In order to characterize the neural signature of stimulus history during the processing of the current
stimulus, we employed a multivariate pattern analysis in the time domain (or “decoding” analysis), using
the Neural Decoding Toolbox (Meyers, 2013). This analysis has indeed proven to be very sensitive in
decoding stimulus history in previous studies (Fornaciai & Park, 2018; Fornaciai & Park, 2019b). In
general, the multivariate analysis involves the training of a pattern classifier (support vector machine,
SVM) on EEG data coming from multiple channels, corresponding to two specific classes of stimuli.
Then, the classifier is tested on an independent subset of un-labelled data to assess whether it could
discriminate the class of stimuli the test data belong to. The classification accuracy yielded by the
classifier in correctly discriminating the two classes of stimuli indicates the extent to which they generate

11
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unique patterns of activity, and, by repeating this procedure across several time windows it hence

provides an index of when the stimulus information is encoded in brain activity.

To assess the neural signature of stimulus history, in Exp. 1 we used epoched EEG data time-locked to
reference stimulus onset, with epochs sorted as a function of different inducer magnitudes. To assess the
effect of inducer numerosity on the reference, we entered in the analysis epochs corresponding to the
reference stimulus preceded by either a 12 or 24-dot inducer (irrespective of the other magnitudes).
Similarly, in the case of duration and size, we used epochs corresponding to the reference preceded by a
140 or 280-ms inducer, or 4 or 8-pixels inducer. The classifier was thus tested in discriminating activity
evoked by an identical reference stimulus as a function of the magnitude of the preceding inducer. This
analysis was performed separately for each participant, task, and inducer magnitude dimension. In Exp. 2,
we used epochs corresponding to the stimuli with intermediate magnitude levels (i.e., 16 dots, 200 ms, 6
pixel) preceded by either a lower or higher magnitude across the three dimensions. For instance, we used
epochs corresponding to a 16-dot stimulus preceded by either 12 or 24 dots, 140 or 280 ms, or 4 or 8
pixels, to assess the effect of different magnitudes on numerosity. The same was done for the duration and

size of the stimuli.

In both experiments, we implemented a series of practices to optimize the analysis and reduce noise. First,
instead of using subsets of single trials to train and test the classifier, we averaged together random sets of
trials (Grootswagers et al., 2016) to create averaged “pseudo-trials.” The trials used to generate pseudo-
trials were randomly drawn from the data set, and hence were not groups of subsequent trials. The
number of individual trials averaged into pseudo-trials varied between 10 and 20 based on the number of
available trials after artifact rejection (on a subject-by-subject basis), with an average (+ SD) of 18.1 £ 1.8
trials in Exp. 1, and 19.1 £ 2.9 in Exp. 2. The training of the classifier was thus performed on a set of such
pseudo-trials, and testing was performed on a remaining pseudo-trial according to a leave-one-out
procedure. The specific number of pseudo-trials used in the cross-validation procedure was fixed to 10 in

Exp. 1 (i.e., nine trials for training and the remaining one for testing) and varied in Exp. 2 according to the

12
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available data (mean = SD = 11.5 + 2.1 pseudo-trials). To avoid overfitting (i.e., the classifier learning an
overly specific pattern that fails to generalise to the test set), we also performed a feature selection
procedure prior to the decoding analysis, restricting the decoding procedure to the five most informative
EEG channel as determined with a univariate ANOVA performed on the training set (Grootswagers et al.,
2016). Note that such feature selection procedure does not make the analysis circular. Indeed, the feature
selection was performed only on the training data set, leaving the test set independent. Since the selection
of specific channels during the analysis does not provide information about how they contribute to the
decoding performance, we chose not to explicitly assess the frequency of channel selection and the
topography of the most frequently selected channels. Moreover, instead of performing the analysis at
individual time points, we averaged activity across a series of 100-ms time windows, with a step size of
20 ms. Finally, the decoding procedure was repeated 30 times using different subsets of trials for training
and testing and for creating pseudo-trials, and the average of all the iterations of the analysis was taken as
the final estimate of classification performance. Classification accuracy measures obtained throughout the
epoch reflect to what extent the pattern classifier was able to classify stimuli according to the pattern of
activity, and hence, considering our comparisons, to what extent information from the previous stimulus

is encoded in the brain responses to a current one.

Decoding results were tested for significance by taking the average across two latency windows: an early
window spanning from 50 to 200 ms post-stimulus (based on previous studies; Fornaciai & Park, 2018a;
Fornaciai & Park, 2019b), and a late latency window spanning from 500 to 650 ms post-stimulus. This
second window was chosen to span late latencies capturing post-perceptual processes like working
memory encoding (e.g., see for instance Oh et al., 2020). Decoding results averaged in these two latency
windows were tested using a series of one-sample t-tests (against an empirical measure of chance level,
see below), followed by a three-way repeated measures ANOVA in both Exp. 1 and Exp. 2. In Exp. 1, we
entered as factors “task” (numerosity, duration, and size task), “inducer magnitude” (numerosity,

duration, and size), and “latency window” (early vs. late). In Exp. 2, we entered as factors “current
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magnitude” (i.e., representing stimuli with the intermediate level of either numerosity, duration, or size),
“past magnitude” (i.e., representing the stimuli in the immediately preceding trial with the extreme levels
of either numerosity, duration, or size), and “latency window.” To assess interaction effects in these two
ANOVAs, we further used simpler ANOVA models and paired t-tests. Finally, to directly compare the
decoding results obtained in the two experiments, we used a mixed model ANOVA with “current
magnitude” (i.e., either the task-relevant magnitude in Exp. 1, or the magnitude considered in the current
trial in Exp. 2), “past magnitude” (i.e., the different inducer magnitudes in Exp. 1, or the corresponding
different magnitudes of the preceding stimulus in Exp. 2), and “latency window” as within-subject

factors, and “experiment” (Exp. 1 vs. Exp. 2) as between-subject factor.

Besides our main decoding analysis, we also performed a control ("null”) decoding analysis. In this
analysis, we replicated our main procedure with the exception that we shuffled the labels of the trials in
the training set prior to the classification procedure. The results of this null decoding analysis were then
used to set the chance level empirically. One-sample t-tests against chance level were thus performed
against the corresponding average classification accuracy of the null analysis, rather than against the 50%

probability level.

Finally, to address the link between the behavioural serial dependence effect and the classification
accuracy obtained in the decoding procedure, we performed a series of tests based on a linear mixed-

effect regression model, defined as follows:

Eff ~ CA + (1 | Subj); )

Where “Eff” represents the index of the behavioural serial dependence effect computed according to
Equation 1, “CA” represents the classification accuracy of the decoding procedure, and (1 | Subj)
represents the random effect (subjects). First, we performed regression tests considering the average
classification accuracy in each of the two latency windows used in the analysis (50-200 ms and 500-650

ms after stimulus onset). For instance, we assessed the relation between the classification accuracy of the
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inducer numerosity and the behavioural effect caused by the inducer numerosity in each task, and so on
for all the other inducer dimensions. Additionally, we also applied this regression model in a more
comprehensive fashion, to more precisely assess the latencies at which a relationship between neural and
behavioural effect might emerge. Namely, the same regression model was applied at each time window
throughout the reference epoch (i.e., corresponding to the 100-ms time windows used in the decoding
analysis). In this procedure, we only considered significant clusters of at least two consecutive time
windows showing a significant relation between the behavioural effect and classification accuracy. To
ensure the robustness of these clusters of significant time windows, we used a cluster-based non-
parametric test. In this test, we examined each of the clusters identified in the main procedure separately.
Namely, we shuffled the distribution of classification accuracy at each time window within the cluster and
the distribution of behavioural effect across the group, and applied the same LME model on these
shuffled data, again separately for each time window within each cluster. The procedure was repeated
10,000 times, shuffling the datasets each time and collecting the results. To assess the robustness of the
actual clusters, we measured how many times the simulated cluster showed the same number of
contiguous significant time windows as the actual cluster, which represents the p-value of the test. As a
threshold for determining the significance of each test performed within a simulated cluster, we used the
minimum t-value obtained in each actual cluster. All the analyses were performed in Matlab (version

r2018b).

Data availability

The data generated during the experiments described in this manuscript is available on Open Science

Framework following this link: https://osf.io/ju78r/.
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RESULTS

Experiment 1

In Exp. 1, we addressed the link between serial dependence and the neural signature of stimulus history
across different magnitude dimensions and task conditions. The experiment (depicted in Fig. 1A) was
divided into three different conditions (numerosity, duration, size), performed by participants (N = 30) in
random order. In all the task conditions, participants discriminated the relevant magnitude (either
numerosity, stimulus duration, or dot size) of a reference dot-array (always 16 dots, lasting 200 ms, and
with dot size equal to 6 pixels) compared to a variable probe (ranging from 8 to 32 dots, from 100 to 400
ms, and from 3 to 12 pixel in the numerosity, duration, and size task, respectively). To induce serial
dependence, a task-irrelevant inducer stimulus was presented before the reference, and was modulated
across the three dimensions (with a numerosity of either 12 or 24 dots, a duration of 140 or 280 ms, and

dot size of 4 or 8 pixel) in all the conditions.

--- FIGURE 2 HERE ---

To assess the effect at the behavioural level, we first computed the point of subjective equality (PSE, a
measure of the perceived magnitude of the reference stimulus; Fig. 2A) within each task condition and
assessed how the perception of the reference stimulus is modulated by the corresponding inducer
magnitude (i.e., numerosity in the numerosity task, and so on). To do so, we performed a series of paired
t-tests within each condition, controlling for multiple comparisons using a false discovery rate (FDR)
procedure with q = 0.05. The p-values reported thus reflect the p-values adjusted by the FDR (adj-p). The

results show a significant difference in PSE as a function of inducer magnitude in the numerosity (t(29) =
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2.60, adj-p = 0.022, Cohen’s d = 0.48) and size (t(29) = 7.79, adj-p = 0.003, Cohen’s d = 1.45) task,
suggesting that the higher the inducer magnitude (more numerous, bigger dot size), the higher the
perceived magnitude of the reference. No effect was instead observed in the duration task (t(29) = 0.47,
adj-p = 0.64). To compare the effect across different conditions, we also computed a serial dependence
effect index based on the normalised difference in PSE (Fig. 2B). On average, the serial dependence
effect resulted to be of 3.42% + 1.26%, 0.92% = 1.53%, and 7.58% = 1.18%, for the numerosity,
duration, and size task respectively. The effect in the size task was significantly higher compared to the
other two conditions (t(29) = 2.56, adj-p = 0.016, d = 0.47, and t(29) = 3.37, adj-p = 0.004, d = 0.61,

respectively for size vs. numerosity and vs. duration).

To further assess the serial dependence effect both within and across different dimensions, we performed
a non-linear regression analysis aimed to quantify the contribution of different inducer magnitudes to the
discrimination judgment in each trial (Fig. 2C). The results showed a systematic influence of the inducer
on perceptual judgements, in a task-specific fashion. Namely, we observed a significant effect of inducer
numerosity in the numerosity task (beta = 0.030 = 0.060; one-sample t-test against zero, t(29) = 2.67, adj-
p=0.037,d=0.5), and inducer size in the size task (beta = 0.075 + 0.033; t(29) = 12.31, adj-p < 0.001, d
= 2.3). Interestingly, besides the attractive (positive) effects, we also observed a repulsive (negative)
effect provided by the inducer duration in the numerosity task (beta = -0.017 + 0.042), which however did
not reach significance after controlling for multiple comparisons (t(29) =-2.22, adj-p = 0.051, d = 0.4).
This effect however showed a medium effect size (d = 0.4) similar to the effect of numerosity (d = 0.5),
suggesting that it might reflect a genuine repulsive effect. No other significant contribution to behavioural

responses was observed (all t(29) < 1.87, all adj-p > 0.107).

Does the pattern of behavioural effects reflect differences in task difficulty? In terms of participants’
precision in the task (Weber’s fraction, WF), we actually observed an opposite pattern of results
compared to the effect. Indeed, the most difficult task resulted to be the duration task (i.e., highest

Weber’s fraction, WF [mean = SEM] = 0.17 + 0.017), followed by the numerosity task (WF =0.12 +
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0.009), and finally the size task where precision was the highest (WF = 0.07 = 0.003). A one-way
repeated measure ANOVA showed that there is indeed a significant difference between precision in the
different tasks (F(2,58) =34.03, p < 0.001, np2 =0.281). The different difficulty of the three tasks is also
reflected by different average response times (RTs), which were longest in the duration task (mean +
SEM = 498 + 21 ms), again followed by the numerosity (378 = 21 ms) and size task (358 = 19 ms). There
was a significant difference across RTs in different tasks (one-way repeated measures ANOVA, main
effect of condition; F(2,29) = 116.75, p < 0.001, npz =0.80), with the duration task showing significantly
slower responses compared to the other two conditions (paired t-test; duration vs. numerosity: t(29) =
12.15, adj-p = 0.001; duration vs. size, t(29) = 14.10, adj-p = 0.001). This suggests that serial dependence
in this context is unlikely to be associated with poorer performance, but it is instead strongest in the
easiest task. Nevertheless, serial dependence might still be associated with poorer perceptual precision
(Cicchini et al., 2018) within each task condition. A series of tests performed within each condition
however did not show a consistent association between the serial dependence effect and the WF, neither
in the numerosity (r = 0.09, p = 0.63) nor in the duration task (r = 0.31, p = 0.09). In the size task we did
observe a significant (negative) correlation, which was however driven by a single data point with
particularly low WF (difference > 2 SD from the average). When excluding such data point, no

significant correlation was observed (r = -0.04, p = 0.83).

--- FIGURE 3 HERE ---

To characterize the encoding of stimulus history (i.e., the magnitude information conveyed by the
inducer) during the reference processing, we performed a multivariate pattern analysis in the time domain

(e.g., King & Dehaene, 2014). The analysis involved the training and testing of a classifier (support

18



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

vector machine) on EEG epochs time-locked to the reference stimulus, sorted according to the magnitude
of the preceding inducer (i.e., low vs. high numerosity, duration, or size). The resulting classification
accuracy provides a measure of whether and to what extent the inducer magnitude is decodable from the
brain responses to the reference stimulus. Fig. 3A shows the average classification accuracy of the
different task conditions, relative to the numerosity, duration, and size of the inducer. As shown in the
figure, the decoding procedure yielded on average a good level of classification accuracy, showing both
similarities (especially at late latencies, around 600 ms post-stimulus) and difference (at earlier latencies)
across the different conditions. In addition to our main decoding analysis, we also performed a control,
“null” decoding analysis, in which the labels of the conditions being compared were shuftled before
training the classifier. The classification accuracies obtained with this analysis (see for instance Fig. 3B)

were used to set the chance level empirically, and to control for spurious results.

--- FIGURE 4 HERE ---

To assess the neural signature of stimulus history and its pattern across magnitude dimensions and tasks,
classification accuracies obtained throughout the reference epoch were averaged across two different time
windows, spanning 50-200 ms and 500-650 ms (marked with shaded grey areas in Fig. 3A), separately for
each inducer magnitude in each of the condition. Then, we checked for potential differences in the
signature of the different inducer magnitudes across the three tasks. Fig. 4A-B shows the average
classification accuracies of the different inducer magnitudes for the three tasks and the two latency
windows. First, to assess the pattern of results across the different conditions and dimensions, we
performed a series of one-sample t-tests against the corresponding average classification accuracy

obtained in the null decoding analysis (marked in Fig. 4A-B with dotted lines). To control for multiple
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comparisons, we applied a false discovery rate (FDR) procedure within each time window (q = 0.05). In
the early latency window, the effect of inducer numerosity was significantly higher than the (empirical)
chance level in the numerosity (one-sample t-test, t(29) = 2.82, adj-p = 0.025) and in the duration (t(29) =
4.83, adj-p < 0.001) task, but not in the size task (t(29) = 1.54, adj-p = 0.201). The effect of inducer
duration was significant only in the size task (t(29) = 4.29, adj-p < 0.001), and not in the numerosity and
duration task (t(29) = 1.38-1.98, adj-p = 0.129-0.228). Finally, the effect of stimulus size was not
significantly higher than chance level in any of the tasks (max t(29) = -0.138-1.686, min adjusted p =
0.184). In the late latency window, with the exception of duration in the numerosity task (t(29) = 1.38,
adj-p = 0.064) and size in the duration task (t(29) = 1.96, adj-p = 0.077), all the classification accuracies
were significantly above the respective chance level measured empirically (t(29) = 3.10-5.01, adj-p <
0.025). These results suggest that the stimulus history information encoded in brain responses does not
necessarily match the pattern of behavioural serial dependence effects, as for instance we observed a

significant decoding even for dimensions that did not significantly affect behaviour.

We then performed a three-way repeated measures ANOVA on the average classification accuracy
computed in the two latency windows and in the different tasks, with factors “task” (i.e., numerosity,
duration, and size task), “inducer magnitude” (i.e., inducer numerosity, duration, and size), and “latency
window” (i.e., early vs. late). This analysis showed no main effect of task (F(2,58) = 1.093, p = 0.342), no
main effect of inducer magnitude (F(2,58) = 1.739, p = 0.185), but a significant main effect of latency
window (F(1,29) =6.927, p=0.013, npz =0.193) and a significant interaction between inducer magnitude
and latency window (F(2,58) = 3.894, p = 0.026, n,> = 0.119). No other interaction effect was observed

(max F =1.577, min p = 0.185).

To better understand the nature of this interaction, we followed it up by focusing on the average effect of
different magnitudes at different time windows. Namely, as the task did not seem to significantly
modulate the pattern of classification accuracy or interact with the other factors, we collapsed (averaged)

the classification accuracies across the different tasks (Fig. 4C and 4D). Two separate one-way repeated
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measures ANOVAs (with factor “inducer magnitude”), showed a significant main effect of inducer
magnitude (F(2,58) = 5.654, p = 0.0006, np2 =0.163) in the early latency window (50-200 ms; Fig. 4C),
and no significant difference across the inducer magnitudes (F(2,58) = 0.168, p = 0.846) in the late
latency window (500-650 ms; Fig. 4D). This difference in the pattern of decoding across the two latency
windows thus explain the interaction observed in the previous test, and show that while the level of
classification accuracy is more variable across magnitudes at early latencies, it becomes very similar at

later latencies.

Finally, a paired t-test comparing the average decoding performance in the early vs. late latency window
(i.e., average of the three bars in Fig. 4C vs. the average of Fig. 4D) showed that classification accuracies
were overall significantly higher at the late window (0.542 + 0.005 vs. 0.585 + 0.016; t(29) =2.630, p =
0.0135, Cohen’s d = 0.56). This suggests that the initial pattern of activity encoding the inducer

magnitude information is amplified (i.e., stronger activity, or sharper representation) at later latencies.

--- FIGURE 5 HERE ---

In our interpretation, the results of the decoding analysis show a signature of stimulus history affecting
the processing of the reference. However, in the analysis we also observed relatively high classification
accuracies even before the onset of the reference stimulus, especially considering the duration condition
(Fig. 3A, Fig. 5B). This raises the possibility that what we are measuring may not be a signature of the
effect of stimulus history on the reference representation, but a lingering trace of the inducer stimulus

itself. To address this possibility, we checked the temporal generalization matrices of each inducer
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magnitude effect, averaging the different tasks together (Fig. 5). The temporal generalization matrices are
obtained by training and testing the classifier with brain activity at different latencies, to assess whether
specific patterns of activity generalise to different latencies. Borrowing from the interpretations provided
by King & Dehaene (2014), a lingering trace of the inducer stimulus is expected to emerge in the
temporal generalization matrices as a relatively stable signature encompassing the pre-stimulus interval
and extending to post-stimulus latencies. In the case of numerosity (Fig. SA) and size (Fig. 5C), we
observed relatively weak activity in the pre-stimulus interval, which instead starts to rise only after the
onset of the reference stimulus. In line with the plots shown in Fig. 3A, which represent the diagonals of
the temporal generalisation matrices, numerosity shows an early peak at around 150 ms post-stimulus
followed by a later peak at around 600 ms, while size only shows a main peak at late latencies. In these
two cases, there is no evidence of early decoding capturing a lingering trace of the inducer stimulus. In
the case of duration (Fig. 5B), pre-stimulus classification accuracies appeared to be stronger. However,
the decoding showed a pattern mostly unfolding along the diagonal, with little generalisation. This
suggests the presence of distinct patterns of brain activity evolving over time (see King & Dehaene,
2014), which are more in line with an active processing of stimulus history rather than with a passive
trace of the inducer stimulus. Additionally, in all three cases, the large peak observed towards the end of
the stimulus epoch is not consistent with a trace of the past stimulus, which would instead be expected to
decay over time. Overall, the temporal generalization plots provided little evidence for the presence of a
lingering trace of the inducer stimulus. More likely, the pre-stimulus decoding could represent an
anticipatory response to the reference due to the relatively narrow jittering of its onset, or a by-product of
the sliding window average used in our decoding analysis. Although we cannot conclusively exclude the
presence of a lingering trace of the inducer stimulus, the specific patterns of decoding observed in the
analysis suggest that, if present, such a trace would likely interact with the processing of the reference

stimulus.
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Besides the neural signature of stimulus history per se, an important question is whether such a signature
relates to the attractive effect observed behaviourally. Therefore, to establish a link between the
behavioural and neural effect, we addressed whether the strength of the serial dependence effect reflects
the extent to which past information is encoded in brain signals, as indicated by the classification
accuracy. To do so, we performed a series of linear mixed-effect (LME) model tests aimed at assessing
whether the behavioural effect (i.e., normalized difference between PSEs obtained as a function of
different inducer magnitudes; see Fig. 2B) could be predicted by the classification accuracy (CA)
obtained in the decoding analysis. In these tests, the behavioural effect thus represented the dependent
variable, the classification accuracy the fixed effect, and the subjects were added as the random effect (Eff
~ CA + (1]subj)). This analysis was performed separately in the different task conditions and the two
latency windows used in the previous analysis (50-200 ms, 500-650 ms). The results showed that the
strength of the behavioural effect can be successfully predicted by the classification accuracy in the early
latency window (50-200 ms) when considering the effect of numerosity in the numerosity task and the
decoding of inducer numerosity (R2 =0.68, t=2.69, p = 0.006), and the effect of size in the size task and
the decoding of inducer size (R* = 0.66, t = 2.64, p = 0.013). No other test reached significance in the
early latency window (t spanning from -1.08 to 0.60, min p = 0.29). In the late latency window, no
significant relationship between the behavioural effect and the classification accuracy was observed (t

spanning from -1.56 to 1.32, min p = 0.13).

--- FIGURE 6 HERE ---

In addition to these tests focused on the two large latency windows used in the previous analyses, we also

took a more comprehensive approach and performed a series of LME tests at different latencies
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throughout the reference epoch (-200:700 ms), to assess whether the strength of the behavioural effect
could be predicted by the classification accuracy. To limit the number of tests, we only considered the
classification accuracies and behavioural effects of the task-relevant magnitude in each task condition
(i.e., effect of numerosity in the numerosity task, duration in the duration task, size in the size task). The
pattern of classification accuracies corresponding to this subset of conditions is shown in Fig. 6. In this
analysis, we considered an effect significant only when showing at least two consecutive significant time
windows, and applied a cluster-based non-parametric test to control for multiple comparisons (see below).
In the numerosity task condition, the classification accuracy relative to the inducer numerosity
significantly predicted the behavioural effect provided by the inducer numerosity across two clusters: a
smaller one spanning from 65 to 85 ms after stimulus onset (2 consecutive time windows; average R* =
0.62, t-values = 2.15-2.17, p = 0.038-0.041), and a larger one from 145 to 245 ms (7 time windows;
average R” = 0.65, t-values = 2.10-2.86, p = 0.008-0.045). In the duration task, no significant effect was
observed (max t = 1.82, min p = 0.08). Finally, in the size task condition, we observed again two clusters
of significant effects showing a relationship between the behavioural effect and the classification
accuracy, one spanning from 35 to 85 ms (4 time windows; average R* = 0.63, t-values = 2.06-2.57, p =
0.015-0.048), and another one going from 115 to 180 ms (5 time windows; average R* = 0.65, t-values =
2.13-2.96, p = 0.006-0.042). The significant clusters are marked in Fig. 6A at the bottom of the plot, with
the same colour code as the main plots. To ensure the robustness of these clusters of significant effects,
we also performed a cluster-based non-parametric test, shuffling the data entered into the LME test and
assessing the proportion of times that a similar cluster could be observed by chance (10,000 repetitions
for each cluster). The cluster-level p-value obtained in this way was in all the cases < 0.001. Compared to
the broad latency windows used in the previous analysis, these tests allowed to identify with greater
temporal precision the early latencies at which a relationship between behavioural effect and neural

signature of stimulus history emerges.
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To show the direction of the relationship captured with the regression analysis, we also plotted the (log-
scaled) average classification accuracy observed across the significant time windows against the
behavioural effect (limited to numerosity and size; Fig. 6B and 6C). Both plots show that there is a
positive relationship between these two measures, with stronger behavioural effects associated with
higher classification accuracies. In both cases, we observed a significant correlation between the two

measures (r = 0.37, p=0.043 and r = 0.39, p = 0.035, respectively for numerosity and size).

Note that the significance of the regression analysis does not depend on the absolute value of the
classification accuracy, but on the pattern across the group as a function of the behavioural effect. In the
size condition, indeed, a significant relationship between CA and behavioural effect was observed at
latencies that show weak decoding, close to the 50% probability level. Despite the weak decoding,

differences across the group can still show a relationship with the strength of the behavioural effect.

Experiment 2

The results of Exp. 1 showed that (1) while the behavioural serial dependence effect shows different
patterns according to the task performed by participants, with task-specific effects, the decoding of
stimulus history shows a more generalised signature also reflecting inducer’s magnitudes that did not
yield a behavioural effect. (2) We nevertheless observed a link between the behavioural effect and its

neural signature, emerging at early latencies after stimulus onset.

In Exp. 2, we further asked whether the neural signature of stimulus history might be modulated by task-
related factors. Previous results show that stimulus history can be decoded from neural signals in a
passive-viewing paradigm (Fornaciai & Park, 2018), suggesting that the encoding of stimulus history
does not hinge upon the presence of an active task. However, it is unclear whether the signature of
stimulus history would be completely independent from what the participants are doing, or whether its

strength could be modulated by being engaged in a task. Our aim was thus to compare the strength and
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pattern of stimulus history decoding with the results of Exp. 1, to address the potential modulatory role of

the task as opposed to a passive viewing of a series of stimuli.

To address this question, we employed a passive-viewing paradigm, keeping the stimulation procedure as
similar as possible to Exp. 1. In this experiment, participants (N = 29) observed a sequence of dot-array
stimuli varying in numerosity, duration, and dot size (see Fig. 1B), and responded to occasional odd-ball
stimuli defined by a lower contrast (i.e., in order to ensure that participants kept watching and attending
the stimuli). We then employed again a multivariate decoding procedure to assess the encoding of past
stimulus information in visual-evoked activity. Since every stimulus in the sequence varied along the
three dimensions (i.e., instead of having a constant reference), the sorting of trials used to perform the
analysis differed from Exp. 1. Namely, in different iteration of the analysis, we took all the trials in which
the intermediate magnitude level of each dimension was presented (i.e., either 16 dots, 200 ms, or 6
pixels; henceforth called “current magnitude”) and assessed the effect of different magnitude dimensions
of the stimulus presented in the preceding trial. The decoding was thus performed on EEG activity time-
locked to an identical “current” stimulus with the intermediate magnitude level (equivalent to the
reference stimulus in Exp. 1), as a function of the magnitude of the preceding one. In different iterations
of the analysis, we thus compared cases where the past stimulus had 12 vs. 24 dots, a duration of 140 vs.
280 ms, or a dot size of 4 vs. 8 pixels (for numerosity, duration, and size respectively; henceforth called

“past magnitude”).

--- FIGURE 7 HERE ---

Fig. 7A shows the average classification accuracies relative to the decoding of different numerosities,
durations, or dot sizes of the preceding stimulus, while Fig. 7B shows the results of the null decoding
analysis performed with shuffled data. Overall, although generally weaker compared to Exp. 1, the

analysis was able to capture the signature of the past stimulus also in this case, while the null decoding
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analysis did not show any consistent decoding. To better assess the signatures of different magnitude
dimensions, we again computed the average classification accuracy in two separate latency windows
(early window: 50-200 ms; late window: 500-650 ms; marked with shaded areas in Fig. 7A). The
classification accuracies observed within these two latency windows, corresponding to the different
combinations of current and past magnitude, are shown in Fig. 8A-B. Each sub-panel in Fig. 8A-B refers
to the “current” magnitude, while each bar refers to the decoding accuracy of the “past” magnitude. For
example, the first sub-panel in Fig. 8A shows the effect of numerosity (12 vs. 24 dots; blue bar), duration
(140 vs. 280 ms; red bar) and dot size (4 vs. 8 pixels; yellow bar) on stimuli having a numerosity of 16
dots (i.e., the intermediate numerosity of the range). Fig. 8C-D shows instead the effect of the different
“past” magnitude irrespective of the “current” magnitude (the magnitude of the current stimulus). Panels

C and D are indeed the average of the three sub-panels of Fig. 8A and 8B, respectively.

--- FIGURE 8 HERE ---

To assess the pattern of decoding across different magnitudes, we first performed a series of one-sample
t-tests against the corresponding average classification accuracy observed in the null decoding analysis.
Additionally, we applied FDR to control for multiple comparisons (q = 0.05). In the early latency window
(Fig. 8A), the results showed that the decoding of numerosity was significantly above chance only when
assessing the effect on numerosity in the current trial (t(28) = 3.30, adj-p = 0.008; other tests: t(28) = -
0.20-0.003, min adj-p = 0.943). Duration was instead significant in all cases (t(28) = 2.47-3.92, adj-p <
0.036). Finally, the decoding of size showed a significantly above chance accuracy only when considering
the effect of size on duration (t(28) = 4.48, adj-p = 0.001; other tests: t(28) = 0.84-2.18, min adj-p =
0.057). In the late latency window (Fig. 8B), instead, we did not observe any significant classification

accuracy after correction for multiple comparisons (t(28) = -1.78-2.60, min p = 0.069).
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Similarly to Exp. 1, we then performed a three-way repeated measures ANOVA, with factors “current
magnitude” (i.e., numerosity, duration, size), “past magnitude,” and “latency window.” The results
showed no main effect of current magnitude (F(2,56) = 1.613, p = 0.208), no main effect of latency
window (F(1,28) = 0.950, p = 0.338), but a significant main effect of past magnitude (F(2,56) = 5.163, p
=0.000, npz =0.155). More importantly, we observed a significant three-way interaction (F(4,112) =

2.868, p=0.026, np2 =0.094) between the current magnitude, past magnitude, and latency window.

To further explore this three-way interaction, we assessed the pattern of effects across different
combinations of current and past stimulus magnitude separately at early (Fig. 8A) and late (Fig. 8B)
latencies, performing two independent two-way ANOV As with factor “current magnitude” and “past
magnitude.” In the early latency window, we observed no main effect of either current and past
magnitude, and no interaction between the two factors (max F = 2.533, min p = 0.089), suggesting that
although the decoding of numerosity (blue bars in Fig. 8A) appears to be weaker than the decoding of the
other magnitudes (especially when considering duration and size as current magnitudes; middle and
leftmost panel of Fig. 8A), the overall difference is not large enough to reach significance. In the late
latency window (Fig. 8B) instead, we observed a significant main effect of the “past” magnitude (F(2,56)
=3.611,p=10.030, np2 =0.113), no main effect of the “current” magnitude, and no interaction (max F =
2.245, min p = 0.069), suggesting a greater difference in the decoding accuracy between different past
magnitudes. Thus, differently from the results of Exp. 1 (where we found that classification accuracies
were more variable at early latencies), here there was a greater difference in the decoding accuracy

between magnitudes at later latencies.

--- FIGURE 9 HERE ---
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Since classification accuracies seemed again to increase above chance level before the stimulus onset, we
assessed the temporal generalization matrices (Fig. 9) to better understand the nature of this effect,
similarly to Exp. 1. In all three cases (concerning the different magnitude dimensions) the temporal
generalisation provided little evidence for the presence of a lingering trace of the previous stimulus.
Indeed, although the classification accuracies started increasing during the pre-stimulus interval, the
temporal generalisation did not show any relatively stable pattern independent from the onset of the
current stimulus. In all cases, the classification accuracy peaked after the onset of the current stimulus,
suggesting an interaction between stimulus history and the processing of the current stimulus. As in Exp.
1, the pattern of classification accuracies before the onset of the current stimulus might represent either an
anticipatory activation, or a by-product of the sliding window average used in the decoding analysis. If
present, any lingering trace of the past stimulus would most likely interact with the processing of the
current stimulus, showing an increase in classification accuracy at post-stimulus latencies rather than a

decay.

Comparison between Experiment 1 and Experiment 2

Finally, we directly compared the results of Exp. 1 and Exp. 2, in order to assess the influence of task
context on the neural signature of stimulus history. To do so, we used a mixed model ANOVA, with
“reference magnitude” (i.e., coding for the different task conditions in Exp. 1, and for the different
“current magnitudes” in Exp. 2), “past magnitude” (i.e., inducer magnitude in Exp. 1, and magnitudes of
the previous trial in Exp. 2), and “latency window” (early vs. late) as within-subject factors, and
“experiment” (Exp. 1 vs. Exp. 2) as between-subject factor. The results showed a main effect of past
magnitude (F(2,194) =4.192, p=0.018, np2 =0.068), a main effect of latency window (F(1,57) =4.530, p
=0.038, np2 =0.073), and a main effect of experiment (F(1,57) = 21.723, p < 0.001, np2 =0.276). We also
observed a significant interaction between latency window and experiment (F(1,57) = 7.665, p = 0.008,
npz =0.118), suggesting that the signature of stimulus history at different latencies depends on whether
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the experiment involves an engaging magnitude task, or a passive viewing of the visual stimuli. No other

main effect or interaction reached significance (max F =2.289, min p = 0.061).

--- FIGURE 10 HERE ---

We further performed a series of post-hoc tests assessing the average classification accuracy in the two
temporal windows separately for each experiment (Fig. 10). First, a series of one-sample t-tests against
chance level (i.e., average classification accuracy of the null decoding analysis), corrected with FDR,
showed that in all cases classification accuracy was significantly higher than chance level (all t-values >
3.15, all adj-p < 0.004). Then we performed a paired t-test (corrected with FDR) comparing the
classification accuracy at different temporal latencies within each experiment. The results showed that
while in Exp. 1 there was a significant difference between temporal windows, with higher classification
accuracy at later temporal latencies (t(29) = 2.63, adj-p = 0.026, d = 0.56), there was no significant
difference between latencies in Exp. 2 (t(28) = 0.953, adj-p = 0.35). Furthermore, we averaged together
classification accuracies corresponding to different latency windows within each experiment, and
compared the two experiments against each other. This test shows that classification accuracy are on
average significantly higher in Exp. 1 compared to Exp. 2 (0.56 + 0.009 vs 0.52 + 0.003, respectively;

independent-sample t-test, t(57) = 4.66, p < 0.001, d = 1.25).

DISCUSSION

In this study, we addressed the link between behavioural serial dependencies observed in perceptual tasks
(Fischer & Whitney, 2014), and the neural signature of stimulus history emerging from visual-evoked
potentials (Fornaciai & Park, 2018a). In doing so, we had two main goals: (1) understanding whether the

neural signature of stimulus history is a direct correlate of the behavioural effect, and (2) pinpoint the
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brain processing stages linked to the emergence of the behavioural bias. The nature of serial dependence
is indeed debated, and interpretations on the origin of this effect span from basic sensory/perceptual
processes (Burr & Cicchini, 2014; Fischer & Whitney, 2014; Michele Fornaciai & Park, 2018a) to high-
level processes related to memory or decision-making (Bliss et al., 2017; Fritsche et al., 2017; Pascucci et
al., 2019). Our study first demonstrates that while serial dependence is selective for the task at hand, the
neural signature of stimulus history encompasses multiple dimensions of the past stimulus, including
dimensions that do not yield a behavioural effect. Second, we observed a relationship between the
strength of the behavioural effect and the decoding accuracy of past stimulus information. Third, the
encoding of past information is weaker during passive-viewing, suggesting that attention or task-

relevance modulate the extent to which stimulus history is encoded in brain signals.

Regarding the behavioural results, our data highlight three main features of serial dependence in
magnitude perception. First, consistently with previous results (Togoli et al., 2021; Van der Burg et al.,
2019), the effect appears to be specific for the task. This in turn suggests that attention or other factors
like the task set likely play a role in determining the effect when different dimensions are simultaneously
manipulated, in line with the idea that serial dependence depends on attention (Collins, 2019; Fornaciai &
Park, 2018; Fritsche & de Lange, 2019; Manassi & Whitney, 2022). Second, we observed a repulsive
effect, akin to perceptual adaptation (Kohn, 2007), provided by the inducer duration in the numerosity
task. Although not statistically significant after correcting for multiple comparisons, this effect still
showed a medium effect size, and is in line with previous results (Togoli et al., 2021). Third, duration
perception seems in this context free from serial dependence, although previous results showed significant
effects in a similar task (Togoli et al., 2021). However, this is likely explained by the small range of

inducer durations, making the inducer too similar to the reference stimulus to yield robust effects.

At the neural level, EEG results show a clear signature of stimulus history, reflecting the encoding of past
information into the responses to a current stimulus. Strikingly, our results show a neural signature that is

more generalised compared to the behavioural effect. Brain responses to the reference stimulus indeed
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incorporate not only the “task-relevant” information yielding attractive effects (numerosity in the
numerosity task, size in the size task), but a more complete representation of the different inducer
dimensions. This suggests a partial dissociation between the neural encoding of stimulus history and the
behavioural effect. Alternatively, the generalised neural effect might reflect influences that are actually
occurring at the behavioural level, but are too small to measure reliably. However, similarly to previous
studies (Togoli et al., 2021; Tsouli et al., 2019), our paradigm was able to capture an opposite (repulsive)
effect of duration on numerosity, with a similar effect size compared to the effect of numerosity. This
suggests that a lack of sensitivity of the current paradigm to cross-dimensional biases is unlikely to

explain the absence of those effects.

How can we explain such dissociation between behavioural and neural effects? First, our decoding
procedure might capture a lingering trace of the past stimulus rather than the stimulus history information
that affects perception/behaviour. Although classification accuracies in some cases increase even before
the stimulus onset, the temporal generalisation pattern observed is not consistent with a lingering trace of
the past stimulus. Second, another possibility concerns the effect of central tendency (e.g., Jazayeri &
Shadlen, 2010), which is similarly based on stimulus history and has been recently linked to serial
dependence (Tong & Dubé, 2022). However, since our analyses compared stimuli embedded in very
similar temporal contexts, we believe that it is unlikely that central tendency contributed to the observed
results. Finally, another possibility is that serial dependence would reflect only a subset of the past
stimulus dimensions encoded in brain signals due to the involvement of an active gating mechanism.
Namely, while the encoding of stimulus history carries a more complete representation of the past
stimulus (similarly to the encoding of task-relevant and task-irrelevant stimulus features in working
memory; Bocincova & Johnson, 2019), the mechanisms involved in generating serial dependence effects
would select and implement only the relevant information according to which dimension is highlighted by

attention and/or task demands.

32



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

Although weaker, a consistent signature of stimulus history is also evident in the passive-viewing
paradigm of Exp. 2. This suggests that performing a specific task is not strictly necessary to observe such
an effect (in line with previous results; Fornaciai & Park, 2018a), but that attention and/or task-related
processes may play a role in modulating it. For instance, attention might explain a stronger effect at
earlier latencies (i.e., via top-down modulation on early visual activity; Grothe et al., 2018; Somers, Dale,
Seiffert, & Tootell, 1999). On the other hand, the later amplification of classification accuracy observed
in Exp. 1 is completely missing in the results of Exp. 2, suggesting that it is specifically related to
performing an active task. A possibility is that this later peak might reflect the memory storage of
information after decision-making, which could make the biased stimulus representation to be encoded in

a more stable form compared to earlier perceptual processing (Oh, Kim, & Kang, 2019).

Importantly, we observed a link between the serial dependence effect and the brain signals encoding past
stimulus information. Indeed, at least in the numerosity and size task, the strength of the effect could be
significantly predicted by the classification accuracy obtained in the decoding analysis. The timing of this
significant relationship is early after the onset of the reference stimulus, starting at around ~35-65 ms and
persisting until ~250 ms. This in turn suggests that serial dependence emerges from early perceptual
computations, potentially starting at the earliest levels of visual processing. Such an early correlate is
consistent with previous studies proposing that the effect operates at the perceptual rather than decision-
making level (Cicchini et al., 2017; Manassi et al., 2018; Manassi & Whitney, 2022; Collins, 2020). Our
results provide direct evidence that early visual-evoked activity is indeed effectively linked to the

behavioural effect.

If a link between the neural signature of stimulus history and the behavioural serial dependence effect
emerges so early in the visual processing stream, why does serial dependence often show the properties of
a high-level effect? Previous results indeed show that serial dependence is partially independent from the
low-level features of the stimuli (Fischer et al., 2020), and works even across completely different stimuli

(Fornaciai & Park, 2019¢). Additionally, it often relies on prior choices rather than prior stimuli (e.g.,
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Pascucci et al., 2019), and works according to the perceived rather than physical properties of a stimulus
(Fornaciai & Park, 2021). An interesting possibility explaining this aspect of the effect is a dissociation
between where the bias originates from, and where it operates. Indeed, the bias itself may originate from
high-level computations well before the onset of the current stimulus, and be transmitted back to earlier
sensory stages via re-entrant feedback signals (Fornaciai & Park, 2019a; Fornaciai & Park, 2021),
affecting perception directly. Our findings thus support the idea that while serial dependence likely
originates from high-level computations, it operates at an early processing stage biasing the
phenomenological appearance of a stimulus rather than just how we judge or remember it (see also

Collins, 2019; Manassi & Whitney, 2022).

Finally, it is interesting to note that serial dependence and its neural signature were measured in our
paradigms on a very short timescale, with sub-second intervals across successive stimuli. Previous studies
show serial dependence effects on a longer timescale spanning multiple seconds (e.g., Fischer & Whitney,
2014). Thus, an interesting question is whether a signature of serial dependence at early perceptual stages,
like the one here, would be present for serial effects measured at different timescales. In general, we
believe that the neural signature shown here should not depend on the timescale of the effect, but this

remains an open question that requires dedicated experiments.

To conclude, our findings highlight a set of important properties of serial dependence in magnitude
perception and its neural signature. First, our results suggest the existence of an active mechanism gating
past stimulus information according to its relevance. Second, we show that while an active task is not
necessary for the encoding of stimulus history in brain signals, performing a task amplifies this neural
signature. Finally, we show a link between behavioural serial dependence effects and brain activity at

very early latencies, suggesting that serial dependence emerges during early perceptual processing.
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FIGURE LEGENDS

Figure 1. Experimental procedure. (4) Stimulation procedure used in Exp. 1. In Exp. 1, participants
performed either a numerosity, a duration, or a size discrimination task, in separate sessions. In each
trial, we presented a sequence of three dot-array stimuli modulated in numerosity, duration, and dot size:
a task-irrelevant “inducer” (either 12 or 24 dots, 140 or 280 ms, 4 or 8 pixels), a constant reference
(always 16 dots/200 ms/6 pixels), and a variable probe (varying in either numerosity, duration, or dot
size according to the task). At the end of each trial, participants reported which stimulus between the
reference and the probe either contained more dots, lasted longer in time, or had bigger dots
(respectively for the numerosity, duration, and size task). (B) In Exp. 2, we employed a passive-viewing
paradigm. Participants watched a stream of dot-array stimuli modulated in numerosity, duration, and dot

size. Each stimulus comprised either 12, 16, or 24 dots, was presented for 140, 200, or 280 ms, and
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included items with size of 4, 6, or 8 pixels. Participants were instructed to attend the sequence and

respond to occasional oddball stimuli defined by a lower contrast.

Figure 2. Behavioural results of Experiment 1. (1) Behavioural results in terms of point of subjective
equality (PSE; i.e., representing accuracy in the task and the perceived magnitude of the reference) as a
function of different inducer magnitudes, limited to the task-relevant magnitude. (B) Average serial
dependence effect indexes computed as the normalized difference between PSEs in the two corresponding
inducer conditions, transformed into percentage. (C) Effect of the different inducer magnitudes on
behavioural performance, computed with a non-linear regression analysis (i.e., contribution of different
inducer magnitudes to the behavioural response in each trial). In this analysis, positive beta values
indicate an attractive effect (i.e., increased chance of responding “reference bigger” as the inducer

magnitude increases), and negative results indicate a repulsive (opposite) effect. Error bars are SEM.

Figure 3. Average classification accuracy in Experiment 1. Classification accuracy obtained in the
multivariate analysis, showing the signature of the three magnitude dimensions of the inducer decoded
from the EEG responses evoked by the reference, averaged across the three task conditions. The
classification accuracy shown here reflects the ability of a classifier (support vector machine) to
successfully classify the pattern of brain activity across multiple EEG channels evoked by the reference,
according to the inducer magnitude (i.e., low vs. high inducer numerosity, for example). Such procedure
was repeated across several 100-ms time windows throughout an epoch (-200:700 ms) time-locked to the
reference onset. (A) Classification accuracies obtained in the actual decoding analysis. The grey shaded
areas mark the two latency windows selected to perform further analyses (50-200 ms and 500-650 ms).
(B) Classification accuracies obtained in the “null” decoding analysis performed as a control and to

determine the chance level empirically. The vertical dashed line marks the onset of the reference stimulus,
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while the horizontal dashed line indicates the level of 50% accuracy. The coloured shaded areas

represent the SEM.

Figure 4. Decoding results of Experiment 1 at early and late latencies. (1) Average classification
accuracies at the early latency window (50-200 ms), corresponding to the effect of inducer numerosity,
duration, and size across the three task conditions (from the left to the right panel: numerosity, duration,
and size task). (B) Average classification accuracies in the three task conditions at the late latency
window (500-650 ms). The dotted line at each bar shows the empirical chance level computed from the
null decoding analysis. (C) Classification accuracy corresponding to the effect of numerosity, duration,
and size at the early latency window, averaged across the three tasks. (D) Classification accuracies at the

late latency window, averaged across the three tasks. Error bars are SEM.

Figure 5. Average temporal generalization matrices in Exp. 1. The temporal generalization matrices are
obtained by training and testing the classifier with brain activity at different latencies, to show the extent
to which a given pattern of brain activity generalizes to later latencies. (4) Temporal generalization
matrix concerning the effect of inducer numerosity, averaged across task conditions. (B) Temporal
generalization matrix concerning the effect of duration. (C) Temporal generalization matrix concerning
the effect of size. The horizontal and vertical dashed lines mark the off-diagonal generalization direction
corresponding to the reference onset. The diagonal dashed line corresponds to the training and testing of
the classifier at the same latency. The classification accuracies shown in Fig. 34 correspond to the

diagonal of the temporal generalization matrices.

Figure 6. Classification accuracies of the task-relevant dimensions in the three task conditions. Pattern

of classification accuracies obtained from the decoding of the magnitude dimension of the inducer
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consistent with the task performed, in the three task conditions. Lines at the bottom of the plot mark the
significant time windows observed in the regression analysis, showing the latency windows at which the
behavioural effect could be predicted from classification accuracy. The shaded areas represent the SEM.
(B) Log-scaled classification accuracy plotted against the serial dependence effect, in the numerosity task
condition. (C) Log-scaled classification accuracy plotted against the serial dependence effect, in the size

task condition. Black lines are linear fit to the data.

Figure 7. Average classification accuracy in Experiment 2. In Exp. 2, participants passively watched a
stream of dot-array stimuli that were concurrently modulated in numerosity, duration, and dot size in a
trial-by-trial fashion. In the multivariate decoding procedure, in different iterations of the analysis, we
pooled all the stimuli with the intermediate level of either numerosity, duration, or dot size (named
“current” magnitude in the description of the results), and decoded the signature of the preceding
stimulus by contrasting trials in which the previous stimulus had a lower magnitude (i.e., either 12 dots,
140 ms, or 4 pixels, to assess the effect of numerosity, duration, or dot size, respectively; named “past”
magnitude) against trials in which the previous stimulus had a larger magnitude (i.e., either 24 dots, 280
ms, or 8 pixels). The decoding was thus performed by considering the activity time-locked to an identical
stimulus with an intermediate magnitude level, differing only in the magnitude of the preceding stimulus —
similarly to the procedure used in Exp. 1. (4) Classification accuracies observed in the actual decoding
analysis, corresponding to the different magnitudes of the past stimulus. The two grey shaded areas mark
the latency windows selected to perform data analysis, as in Exp. 1. (B) Classification accuracies
obtained in the null decoding analysis, serving as a control and to determine the chance level empirically.
The vertical dashed line marks the onset of the reference stimulus, while the horizontal dashed line

indicates the level of 50% accuracy. Coloured shaded areas represent the SEM.
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Figure 8. Decoding results of Exp. 2 at early and late latencies. (A-B) For each magnitude dimension of
the current stimulus, i.e., “current magnitude” (different subplots) we plotted the decoding accuracy of
the “past” magnitude in the early (A, 50 to 200 ms) and late (B, 500 to 650 ms) latency window. Namely,
from left to right, the bars indicate the classification accuracy corresponding to the effect of numerosity
(blue), duration (red), and size (yellow) of the past stimulus on the numerosity (leftmost panel), duration
(middle panel), and size of the current stimulus (rightmost panel). The dotted lines shown at each bar
mark the empirical chance level computed from the null decoding analysis. (C) Average effect of the
magnitudes of the previous stimulus on the current one in the early latency window, collapsing together
the different magnitudes of the current stimulus. (D) Average effects of different magnitudes in the late

latency window. Error bars are SEM.

Figure 9. Temporal generalization matrices of Exp. 2. (A) Temporal generalization matrix concerning
the effect of the numerosity of the past stimulus. (B) Temporal generalization matrix concerning the effect
of duration. (C) Temporal generalization matrix concerning the effect of size. The horizontal and vertical
dashed lines mark the off-diagonal generalization direction corresponding to the current stimulus onset.
The diagonal dashed line corresponds to the training and testing of the classifier at the same latency. The
classification accuracies shown in Fig. 74 correspond to the diagonal of the temporal generalization

matrices.

Figure 10. Comparison between Exp. 1 and Exp. 2. (1) Average classification accuracy across all the
conditions and dimensions tested in Exp. 1. The results of Exp. 1 show that while a signature of the
inducer magnitude information is on average measurable from neural signals very early after the
reference stimulus onset (50-200 ms), such a signature is strongly amplified at later latencies (500-650

ms). (B) Average classification accuracies obtained in Exp. 2. Although significantly higher than chance
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level (0.5), in Exp. 2 the decoding performance shows an overall weaker encoding (lower classification

accuracy) of the inducer magnitudes during reference processing, compared to Exp. 1. At the late latency

window, no amplification of these signals was observed. Error bars are SEM.
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