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Abstract: In this thesis we introduce the notion of Elliptic Hochschild Homology
of derived stacks in characteristic zero. This notion is studied and some fundamental
properties are shown, and it is computed in simple cases. We then introduce its peri-
odic cyclic version and prove it recovers Grojnowski’s equivariant elliptic cohomology
of the analytification for quotient stacks.

In the second part of the thesis, we provide a notion of k-rationalized equivariant
elliptic cohomology for Q-algebras k, via adelic descent. We study the adelic decom-
position of equivariant cohomology and K-theory and prove comparison theorems
with periodic cyclic homology variants of the theories.

Finally, we collect partial results and ideas that will be explored in future work.
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Self-plagiarism: Chapter 2 of this thesis is based on a paper written by the
author in conjunction with his Ph.D. supervisor, Nicolò Sibilla. Some of the ideas
appearing in Chapter 4 are inspired by or came up in discussions with Nicolò Sibilla
and will be explored in future collaborations.
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CHAPTER 1

Introduction

1.1. An introduction to the thesis, but mostly rambling

Elliptic cohomology was constructed for the first time in the context of Chromatic
Homotopy Theory. Previously, it appeared in hidden form in work of Ochanine [53]
on elliptic genera, i.e. ring maps

Ωor Ñ R

from the oriented cobordism ring to a ring R vanishing on manifolds isomorphic to the
projectivization of an even-dimensional complex vector bundle over an oriented real
closed manifold. In particular, the logarithm of the genus could always be written
as an elliptic integral, which motivated the name.

In slightly more modern terms, elliptic cohomology arises in the context of Chro-
matic Homotopy Theory as the cohomology theory corresponding to a formal group
obtained by completing an elliptic curve at its origin. In particular, given a base ring
R and an elliptic curve E over R, we can define elliptic cohomology with coefficients
in R as the following data:

Definition 1.1.1. Elliptic cohomology with coefficients in a ring R is the data
of:

 an elliptic curve over R;
 a complex oriented even (weakly) periodic cohomology theory A;

subject to the relation that

 A0pptq � R;
 SpfA0pCP8q � Ep1

where 1 denotes the identity of E.

In the definition above, not all elliptic curves are acceptable, only the ones that
satisfy the criterion of Landweber exactness (see for example [44] for a brief expla-
nation), that specifies which kinds of formal groups can give rise to complex oriented
even periodic multiplicative cohomology theories. In the case of elliptic curves, Lurie
explains in his survey of elliptic cohomology [44] that is it sufficient that the curve
is represented by an étale map from SpecR to the (classical) moduli stack of elliptic
curves Mell.
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8 1. INTRODUCTION

1.1.1. Witten’s work. Interest in elliptic cohomology drastically increased af-
ter Witten realized a universal elliptic genus via Quantum Field Theory in his series
of two papers [81] and [82]. His constructions link various objects together: on one
hand, the partition function of a kind of string theory (as a 2D CFT), on the other
hand the S1-equivariant index of the Dirac-Ramond operator in the same context,
and a universal elliptic genus, now known as Witten genus, which is a formal power
series in a variable q that should be interpreted as the modulus of the elliptic curve
E. His work takes a powerful — but in some sense incomplete, as pointed out by
Lurie [44] — point of view: quantum mechanics on the loop space of a manifold
X has a lot of information on the string theory on X itself. This viewpoint can be
informally understood as forgetting the complex structure in the worldsheet E of
the string theory sigma model, magically retaining important information that even-
tually leads to the Witten genus. In this context, the Dirac-Ramond operator can
be interpreted as the S1-equivariant Dirac operator on the loop space LX, and its
S1-equivariant index as a character of the circle group can be analytically extended
to the punctured disc D�; the new variable q can then be interpreted as the modulus
of an elliptic curve. Giving the loop space LX the structure of a spin manifold is
equivalent to attaching a string structure to the manifold X. In this setting, Witten
proceeds to show that the Witten genus becomes a modular form (of mixed weight)
up to a Dedekind eta function factor. The same result was later obtained by Za-
gier, without reference to physical arguments [83]. At the same time, Taubes [72],
Brylinski [15] and Landweber [36] followed the point of view initiated by Witten in
[82] and worked on developing the formalism of Dirac operators on loop spaces, in
hopes to obtain the Witten genus via some generalization of the Atiyah–Singer index
theorem — finally making rigorous all Witten’s contructions.

It is Segal who makes this strong connection between elliptic cohomology and
field theories the center of a conjecture. In particular, he proposes that geometric
models for the cocycles in elliptic cohomology should come from two-dimensional
conformal field theories [63], of which he develops an axiomatic definition (see [65])
in the same spirit as the notion of TQFT described by Atiyah [5]. This idea was then
taken and refined by Stolz and Teichner. Their conjecture replaces conformal field
theories with supersymmetric Euclidean field theories [69] [70]. This line of research
has been extensively studied by Berwick-Evans and Berwick-Evans–Tripaty [10].

1.1.2. Equivariant elliptic cohomology following Grojnowski. It is folk-
lore that, given a cohomology theory A, this will have a (genuine rationalized) S1-
equivariant counterpart only if the associated formal group is the completion of an
algebraic group. Indeed, singular cohomology and topological K–theory have equi-
variant versions, as they are associated respectively to the formal affine line A1

p0 and
the formal multiplicative group Gm,p1. The reason behind this folklore statement is
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that equivariance is related to decompleting over this formal group, and this can only
be done in the presence of an actual algebraic group. This decompletion procedure
yields a quasicoherent sheaf on the algebraic group, encoding the equivariant coho-
mology theory. It is mostly an accident that for singular cohomology and K-theory
the associated groups are affine, hence the equivariant theories can also be embodied
by modules over rings.

This philosophy is strongly indebted to the work of Atiyah and Segal, and in par-
ticular to the celebrated Atiyah–Segal completion theorem[3], relating the completion
of the G-equivariant K-theory of a topological space X at its augmentation ideal with
the K-theory of the Borel quotient X{{G. The augmentation ideal in KGpXq, i.e.
the ideal generated by virtual G-equivariant vector bundles of virtual rank 0, can
also be thought of, for G � S1, as the ideal associated to the closed immersion of
the closed point 1 inside Gm. This is the core of the decompletion leading to the
equivariant theory: completing reduces the equivariant theory to its non-equivariant
version. The combination of this phenomenon with localization principles allows one
to obtain Atiyah–Segal completion statements over points different from the iden-
tity, by computing the Borel-equivariant K-theory of fixed loci in X associated to
the point over which we are completing. The multiplication law of the group links
all these completions together. A similar picture exists also for singular cohomology
and was described by Roşu [61].

It was Grojnowski who constructed a rationalized S1-equivariant elliptic coho-
mology theory in 1994 [30]. In the same year, Ginzburg, Kapranov and Vasserot
produced a list of axioms that would determine S1-equivariant elliptic cohomology
uniquely [25]. Following the folklore ideas, Grojnowski constructs a quasi-coherent
sheaf on E for any topological space X with an S1-action. His construction is ana-
lytic in nature, and yields a quasi-coherent algebraic sheaf via the GAGA theorems
of Serre. The original motivation for Grojnowski is representation theory and the
Langlands program. In particular, constructing elliptic counterparts to affine alge-
bras appearing in his previous work on Hilbert schemes in Algebraic Geometry [29].
His construction ended up having a strong resonating impact on homotopy theory, as
it does indeed recover the correct rationalization of equivariant elliptic cohomology,
whose general construction is still in development ([24],[42]).

Grojnowski’s construction implements the Atiyah–Segal completion theorem and
the localization principle in an analytic context, by assigning to a small analytic
neighbourhood of a point e in E the ring

H�
T pX

eq bHT pptq Ohol
E pU � eq

The key idea behind this assignment is that localization allows to interchange the
full space X with a sublocus of fixed points Xe canonically associated to e around
said point. At the same time, singular cohomology has to be twisted by holomorphic
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functions on the elliptic curve around the identity. Nevertheless, locally, rationalized
equivariant elliptic cohomology is controlled by Borel-equivariant singular cohomol-
ogy: this is a deep reflection of the Atiyah–Segal completion theorem.

1.1.3. Level l equivariant elliptic cohomology. In his seminal paper [30]
Grojnowski also proposes a notion of level l equivariant elliptic cohomology. For a
choice of compact Lie group G and an adjoint-invariant non-degenerate symmetric
bilinear form l on g � LiepGq, it is possible to construct a line bundle Ll on the
G-equivariant elliptic cohomology of the point having l as its first Chern class. This
construction is due to Looijenga. For G simple and simply connected, the space of
choices for l becomes Z, and the line bundle Ll becomes the lth tensor power of
a base line bundle L. In this setting, level l G-equivariant elliptic cohomology is
defined to be the global sections

E lllGpXq � ΓpEG, E llGpXq b Llq

where EG is the G-equivariant elliptic cohomology of the point.
Level l equivariant elliptic cohomology of the point has a very deep meaning.

Indeed, the global sections of Ll are the non abelian theta functions at level l, char-
acters of special representations of a canonical central extension of the loop group
LG of G (a good survey is in section 5 of [44], the original ideas date back to Ando’s
work [1]). Those representations are called level l positive energy, and are character-
ized by a finiteness condition which is akin to the condition of rationality of a vertex
operator algebra. Indeed, non abelian theta functions appear also in the context
of 2-dimensional Conformal Field Theory, as the conformal blocks of some models
known as Wess–Zumino–Witten models, sigma models associated to the propagation
of a string on a Lie group. Such models are canonically associated to a compact,
simple, connected and simply connected Lie group and to an integer number l, also
called the level. The symmetry algebra of the WZW model is an affine Lie algebra
obtained from the Lie algebra of G and the level l. Indeed, the positive energy level
l representations of the loop group of G are related to the representation theory of
this affine Lie algebra and of some quantum groups cooked up from g, at specific
roots of unity related to the level l. Similarly, there is a 3 dimensional Topological
Quantum Field Theory, called Chern–Simons theory, which contains information on
non-abelian theta functions. This model is also associated to such a Lie group G and
an integer level l, and concerns the study of fields which are connections on principal
G-bundles on a space. In particular, choosing the space to be an elliptic curve E
times the real line, the model will have as a phase space the moduli space of flat
principal G-connections on E, which also coincides with the G-equivariant elliptic
cohomology of the point. Axelrod–Della Pietra–Witten observe in [6] that the Looi-
jenga line bundles arise by geometric quantization in this context, and identify the
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non abelian theta functions with the space of states of G-Chern–Simons theory on
E � R. This is an instance of holography : a 3 dimensional TQFT contains infor-
mation about a 2 dimensional CFT sitting “at its boundary”, ad allows to compute
interesting quantities such as the conformal blocks, which in this specific example
arise as the space of states.

This is the type of information that level l equivariant elliptic cohomology of the
point contains. More recently, Distler–Sharpe proposed a physical model that relates
to level l equivariant elliptic cohomology of a space X: fibered Wess–Zumino–Witten
models [20]. Those are sigma models associated to the propagation of a string on
the total space of a principal G-bundle on X.

1.1.4. The trichotomy of cubics. The three formal groups associated to sin-
gular cohomology, K-theory and elliptic cohomology — respectively the formal ad-
ditive and multiplicative groups and the completion of an elliptic curve — all admit
a decompletion, and indeed all three of these theories admit an equivariant version.
This trichotomy is strongly related to a phenomenon in the theory of Lie groups.
Fundamentally, one observes that for a compact Lie group G, G-equivariant coho-
mology of the point satisfies

SpecH`,0
G p�q � gC{{GC

In the above expression,H`,0
G denotes the degree zero part of the sum-Z2-periodization

of equivariant singular cohomology, and gC � LiepGqbRC is the complexified Lie al-
gebra of G, i.e. the Lie algebra of the complexification GC of G. The quotient is with
respect to the adjoint action and taken in the GIT sense. Similarly, for K-theory, we
have

SpecK0
Gp�q � GC{{GC

In particular, if G � S1,
SpecH`,0

S1 p�q � Ga

SpecK0
S1p�q � Gm

and we recover the decompletions of the formal groups associated to singular co-
homology and K-theory. Elliptic cohomology is associated to the completion of an

elliptic curve pE at its identity. We should think of E itself, following the examples
of singular cohomology and K-theory, as being associated to S1. Following Ben-Zvi,
we call E the elliptic group associated to S1. Similarly, for any compact Lie group
G, we can construct the associated elliptic group

EG � ET {W � E llGp�q �MG

i.e. the coarse moduli space of semi-stable principal G-bundles on E. Analytically,
there are exponential maps

gC Ñ GC Ñ EG
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which can be thought of as geometric incarnations of equivariant Chern characters.
It is indeed possible to have a presentation of Lie algebras and Lie groups in terms

of semi-stable bundles on a complex curve, indeed a cubic. In particular, we could
define a notion of cuspidal group and nodal group associated to a compact Lie group
G as the coarse moduli spaces of semi-stable degree zero principal G-bundles on the
cusp and the nodal curve respectively. Calling C the cusp and N the nodal curve,
we reserve the notation CG and NG for the cuspidal and nodal groups associated to
G. It is a classical fact in algebraic geometry that there are isomorphisms

CG � gC{{GC

NG � GC{{GC

The notions of cuspidal and nodal group are redundant: they simply correspond to
the notions of Lie algebra and Lie group itself, up to complexification and conjuga-
tion. The trichotomy of cubic curves is mirrored in Lie theory by the trichotomy
Lie algebras–Lie groups–elliptic groups, and in homotopy theory by the trichotomy
equivariant cohomology–equivariant K-theory–equivariant elliptic cohomology.

This trichotomy of groups can be interpreted in terms of three dimensional G-
Chern–Simons theory: it amounts to extending it from the moduli stack of elliptic
curves to the moduli stack of all cubics. There, its phase space over a curve C would
correspond with the associated group CG, giving rise to the Lie theoretic trichotomy
from the trichotomy of cubics.

1.1.5. Hochschild homologies. Derived algebraic geometry offers yet another
trichotomy. Given a quotient stack rX{Gs of a scheme X by the action of a smooth
affine reductive algebraic group G, we can apply three different constructions:

(1) the shifted tangent stack TrX{Gsr�1s;
(2) the derived loop space LrX{Gs;
(3) the derived stack of quasi-constant maps Map0 pE, rX{Gsq from an elliptic

curve E.

The first two objects are quite classical, while the last one is introduced in Chap-
ter 2 of this thesis. These three objects produce Hochschild variants of the three
equivariant cohomology theories — they are their “partial” algebraic analogues.

The most classical of these correspondences is linked to the loop space. For a
scheme X, its derived loop space

LX � Map
�
S1, X

�
encodes the classical notion of Hochschild homology of X: the global sections of the
structure sheaf

OpLXq � HH�pXq
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compute the Hochschild homology of X (or more precisely the Hochschild chains).
On the other hand, the shifted tangent stack of X gives the de Rham complex of X:

OpTXr�1sq � DR��pXq

Ben-Zvi and Nadler, in their paper [8], obtain an equivalence

TXr�1s � LX
for schemes X over a field of characteristic zero, based on a Zariski codescent result.
Their equivalence recovers, after taking global sections, the HKR isomorphism. Un-
der this isomorphism, as already explained by Toën and Vezzosi [79], the S1-action
on HH�pXq induced by the loop rotation action on LX becomes a mixed structure
on the de Rham complex, giving rise to the de Rham differential. In particular, for
smooth schemes over C, the Tate construction with respect to this action produces
(up to Z2-periodization) the Betti cohomology of the analytification of X.

Replacing the target scheme with a quotient stack produces an unexpected phe-
nomenon. Indeed, if we consider the loop space of the classifying stack of a reductive
smooth affine group G,

LBG � rG{{Gs

we obtain the adjoint quotient of G rather then of its Lie algebra. This behaviour
is expected from K-theory rather than from equivariant cohomology. On the other
hand,

TBGr�1s � rg{{Gs

The Ben-Zvi–Nadler equivalence is indeed a reflection of the homotopy-theoretical
phenomenon of the existence of logarithms in characteristic zero, identifying all for-
mal group laws — and hence all complex oriented even periodic cohomology theories
— after a base change to characteristic zero. At the same time, the equivariant
theories are distinguishable even in characteristic zero, as their global behaviour is
linked to the trichotomy of Lie algebras–Lie groups–elliptic groups. In particular,
the simple observations above allow to infer a link between shifted tangent stacks of
quotients and equivariant cohomology, and loop spaces of quotients and equivariant
K-theory. Such ideas have been explored in the literature, mostly by Pantev–Toën–
Vaquié–Vezzosi [54] and Calaque–Pantev–Toën–Vaquié–Vezzosi [16] in the shifted
tangent setting and by Chen [17] and Halpern-Leistner–Pomerleano [31] in the loop
space case. The result of their investigation is a characterization of the equivari-
ant cohomology and equivariant K-theory in terms of Tate fixed points of the global
sections of structure sheaves of the shifted tangent and the derived loop space respec-
tively. Calaque–Pantev–Toën–Vaquié–Vezzosi can even prove their result for general
Artin stacks.

In Chapter 3 we prove very similar statements, directly at the level of sheaves,
using adelic descent. The goal of Chapter 2 is to prove an analogue of these theorems



14 1. INTRODUCTION

for equivariant elliptic cohomology, via the stack of quasi-constant maps

Map0 pE, rX{Gsq

One important feature of the algebraic constructions described above is that
they provide Hochschild homology models to the topological theories. Traditionally,
Hochschild homology plays a very relevant role as the recipient of the Dennis trace
map from algebraic K-theory, and has been used to access the information retained by
algebraic K-theory, which is notoriously hard to compute. Additionally, Hochschild
homology is naturally non-commutative, hence can arise as an invariant of rings
as much as an invariant of categories. In this sense, Hochschild homology is the
categorification of the notion of dimension of a vector space.

There is an interesting approach to the definition of the dimension of a vector
space via the notion of one-dimensional topological quantum field theory. Given a
finite dimensional, i.e. dualizable, vector space V , the cobordism hypothesis allows
us to conclude that there is a unique (essentially, at least) 1D (framed) TQFT, ZV ,
whose value on the point is V itself. Then, the partition function of this theory —
its evaluation on the circle S1 — is exactly the dimension of V . There is no reason
to consider the category of vector spaces as a target for our TQFT: in particular, we
can consider a category of categories as target. The associated notion of dimension
will reproduce Hochschild homology. In particular, for an associative algebra A, the
Hochschild homology of A is given by

HH�pAq � dimLModA

the dimension of the category of left A-modules.
At the beginning of this section we introduced the trichotomy of shifted tangent

stack–loop space–quasi-constant maps from an elliptic curve, and contemplated how
they gave rise to Hochschild homology counterparts of the respective topological
theory, obtained in rational coefficients via a Tate construction. We could ponder
the possibility of those Hochschild homology theories to extend to non-commutative
settings. The field-theoretic perspective is illuminating in this context.

We remarked that Hochschild homology is related to one-dimensional TQFT.
Morally, when looking at the Hochschild homology induced by the shifted tangent
bundle — that we will call linearized Hochschild homology — we should reduce by
one the dimension of the field theory, to account for the lower chromatic level of the
associated topological theory. This would produce a zero-dimensional TQFT, thus
a trivial invariant. The correct object to look at is indeed 0|1-dimensional TQFT,
where we introduce a dimension in the odd direction, i.e. we consider bordisms which
are supermanifolds of dimension 0|1 rather then manifolds of dimension zero1. Such

1I would like to thank Joost Nuiten for suggesting this, as I was stuck with zero-dimensional
theories trying to dig gold out of a coal mine.
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a Hochschild homology should be very interesting to study, but let us turn to elliptic
Hochschild homology. In this case, we need to increase the dimension by one, rather
than decrease it. Moreover, elliptic curves over C are topologically all homeomorphic
to S1 � S1, the only structure distinguishing them is their complex, i.e conformal,
structure: the correct object to look at is a two-dimensional conformal field theory.

The cobordism hypothesis links n-dimensional TQFTs with En-algebras; a similar
link should exist between 2-dimensional CFTs and vertex algebras. These objects,
very much like En-algebras in TQFTs, play the role of the “algebras of observables”,
the set of the relevant operators in the physical theory and the structure associated
to the most fundamental manifold in the relevant bordism category — the point in
(fully extended) TQFTs, the circle in 2d CFTs — in the mathematical formulation.

We honestly hope to be able to study these phenomena in the future. A math-
ematical theorem linking CFT and a formulation of elliptic Hochschild homology
would be a starting point to understand the very deep relationship between elliptic
cohomology itself and those physical theories, completing the picture initiated by
Witten in the 80’s.

1.2. Structure of the thesis, straight to the point, no bubbling

The thesis is structured in the following way. Chapter 1 is an introduction to the
main topics, of informal and speculative nature. Some of the aspects discussed in
this chapter will not be studied in the main chapters of the thesis, Chapter 2 and 3,
but some partial results and discussion will be collected in Chapter 4.

Chapter 2 is the main chapter of the thesis. It is a 1:1 copy of the paper [67].
This paper has been written in conjunction with, and is the result of joint work with,
my supervisor Nicolò Sibilla. In this paper we describe a notion of elliptic Hochschild
homology for derived stacks in characteristic 0 (Definition 2.2.32). This notion is tai-
lored to quotient stacks, our main application, but a more general definition appears
in Chapter 4 as Definition 4.1.1. We then study this notion in Section 2.3, obtaining
results of codescent with respect to the Zariski topology on target varieties, Corol-
lary 2.3.10, and an analogous codescent result with respect to the equivariant Zariski
topology on normal varieties, Theorem 2.3.14. In Section 2.4 we provide some com-
putations of elliptic Hochschild homology of simple quotient stacks. These allow,
together with the results in Section 2.3, to compute the elliptic Hochshild homology
of toric varieties modulo their standard toric action, Theorem 2.4.5. Section 2.5 we
provide some relevant properties of elliptic Hochschild homology that will be used
in the last section of the paper. Most relevantly, a localization formula for the stack
of quasi-constant maps, Theorem 2.5.2, and a formula for the completion of elliptic
Hochschild homology at closed points of the base scheme ET , Theorem 2.5.14. In
the last section, Section 2.6, we define a Tate construction that allows to recover
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complexified equivariant elliptic cohomology from our notion of elliptic Hochschild
homology. The relevant action is the natural E-action on

Map0 pE, rX{T sq

for an elliptic curve E and a smooth variety X acted on by a torus T . The final
theorem of the section and of the paper is Theorem 2.6.10, in which we show that
the Tate construction indeed recovers Grojnowski’s equivariant elliptic cohomology.

Chapter 3 is a 1:1 copy of the paper [78]. This paper is divided in two parts.
The first part, Section 3.3, provides a construction of k-rationalized equivariant el-
liptic cohomology in terms of adelic descent, for a Q-algebra k (Definition 3.3.8).
This definition recovers Grojnowski’s sheaf when k � C (Corollary 3.3.16). The
second part of the paper is devoted to a discussion of equivariant cohomology and
equivariant K-theory via Hochschild counterparts. Most of the results in this part
of the paper were previously known in some form, due to Pantev–Toën–Vaquié–
Vezzosi [54] and Calaque–Pantev–Toën–Vaquié–Vezzosi [16] for cohomology and to
Halpern-Leistner–Pomerleano [31] for equivariant K-theory. The results of Calaque–
Pantev–Toën–Vaquié–Vezzosi are much more general than what we can get with our
methods, while our Theorem 3.5.2 generalizes Halpern-Leistner and Pomerleano’s
work. Similar results regarding a description of equivariant K-theory of manifolds in
terms of periodic cyclc homology of their ring of C8 functions were known since the
90’s. Relevant references include [14] [13]. In the second part of this paper, we de-
scribe equivariant cohomology (Theorem 3.5.14) and equivariant K-theory (Theorem
3.5.2) via Tate constructions respectively on the shifted tangent stack and derived
loop space of quotients rX{T s of smooth varieties by tori.

The last Chapter is devoted to partial results. This chapter will be updated until
a few weeks before the defence of this thesis, most likely.



CHAPTER 2

Equivariant Elliptic Cohomology and Mapping Stacks I

Written by Nicolò Sibilla and Paolo Tomasini

2.1. Introduction

In this paper we give a new construction of equivariant elliptic cohomology via
derived algebraic geometry. The use of techniques from derived algebraic geome-
try has become pervasive in the study of elliptic cohomology, especially after the
groundbreaking work of Lurie. However our aims in this paper are more limited
and somewhat different in spirit from the developments originating from Lurie’s
work. For starters, we are only interested in rational phenomena, and therefore we
will work over a fixed ground field of characteristic zero. Our goal is providing a
geometric interpretation of the equivariant elliptic cohomology of complex algebraic
varieties equipped with the action of an algebraic group G. We will show that the G-
equivariant elliptic cohomology of a variety X can be described in terms of functions
over a certain substack of the mapping stack

Map pE, rX{Gsq

where E is an elliptic curve over k, and rX{Gs is the stacky quotient of X by G. Our
approach is closely related to earlier works by other authors including Gorbounov–
Malikov–Schechtman–Vaintrob [26] [49] [47] [48], Berwick-Evans [9] and Berwick-
Evans–Tripathy [10], Costello [18] [19] and others.

This is the first article in a series. In this article we shall focus on the case when
G � T is an algebraic torus. We will introduce the substack of Map pE, rX{T sq
parametrizing almost constant maps to rX{T s. We will show that functions over
the stack of almost constant maps define a cohomology theory of stacks, which we
call elliptic Hochschild homology. Under this assumption we will study the formal
properties of elliptic Hochschild homology, and compute it in important classes of
examples. In the final section of the paper we will prove that elliptic Hochschild
homology recovers Grojnowski’s rationalized equivariant elliptic cohomology. The
comparison requires an additional step, namely passing to the Tate fixed points
under a natural action. This is familiar from the theory of classical Hochschild
homology, which recovers periodized de Rham cohomology only after passing to

17
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the Tate fixed points for the natural S1-action. The relationship between elliptic
Hochschild homology and elliptic cohomology is entirely parallel to this.

An in depth treatment of elliptic Hochschild homology in the case of the action
of a general reductive group G is deferred to the follow-up paper [66].

Equivariant elliptic cohomology . Elliptic genera were first introduced by
Ochanine in the 80’s. Subsequently Witten introduced what is now called the Witten
genus, which is a kind of universal elliptic genus, as the index of a Dirac operator on
the loop space [82]. The work of Witten showed that elliptic genera had deep ties to
quantum field theory [81], and spurred a great deal of research in the area. Elliptic
cohomology was introduced in the late 80-s to provide a conceptual framework for the
study of elliptic genera. Elliptic cohomologies are even periodic cohomology theories
whose associated formal group law is isomorphic to the completion of an elliptic curve
at the identity. They have been the focus of great interest within homotopy theory
for the last thirty years. Giving a satisfactory construction of elliptic cohomology,
and its universal variant Tmf, is highly non-trivial. The state-of-the art is provided
by ongoing work of Lurie [39], [40], [41], which depends in a crucial way on the
comprehensive foundations for 8-categories and spectral geometry which he has
been developing in a series of books [46], [45], [43], and by independent work of
Gepner and Meier [24] in the equivariant case.

It was understood early on by Ginzburg–Kapranov–Vasserot and Grojnowski
that rationalized equivariant elliptic cohomology should give rise to coherent sheaves
over the elliptic curve itself [25] [30]. This fits into a well established paradigm, first
evinced in Atiyah-Segal’s work on equivariant K-theory, that turning on equivariance
is closely related to decompleting. In particular, as the formal group law of elliptic
cohomology theories is the completion of an elliptic curve E at the identity, the
equivariant elliptic cohomology of a space X with an S1-action should take values
in coherent sheaves over E. Further, the stalks of this coherent sheaf can also be
understood geometrically: they compute the Borel equivariant cohomology of various
fixed points loci of X. Equivariance with respect to general Lie groups can be also
understood in similar terms, and gives rise to coherent sheaves over the moduli space
of G-bundles over E. In the influential article [30], Grojnowski gives a beautiful
construction of rationalized equivariant elliptic cohomology which implements this
picture. Our work in this paper provides in particular a geometric explanation of
Grojnowski’s construction in terms of the defomation theory of (almost constant)
maps out of elliptic curves.

Elliptic cocycles and secondary Hochschild homology . One of the main
challenges in elliptic cohomology is providing a geometric description of elliptic co-
cycles. Several influential proposals have been put forward starting from Segal’s
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famous 1988 lecture at the Bourbaki seminar [64], and subsequent work of Stolz–
Teichner [69], [70]. An implementation of this circle of ideas based on the concept
of conformal nets has been pursued by Douglas, Bartels and Henriques in a series of
works: we refer the reader to [21] for an overview of this important perspective.

A different, but related, point of view is that elliptic cohomology should be in
some sense a categorification of K-theory. That fits with the heuristics that raising
the chromatic level should be related to categorification. This suggests in particular
that elliptic cocycles could be represented by appropriate categorified bundles. These
ideas have been explored in [7]. Within algebraic geometry, this perspective has
been taken up by Toën–Vezzosi, who introduced secondary Hochschild homology as
a model of elliptic cohomology [80]. We refer the reader to the introduction of [77]
for a beautiful discussion of these ideas. In this paper we do not attempt to provide
a geometric interpretation of elliptic cocycles, although this is one of the broader
goals of our project. However the definition of secondary Hochschild homology was
an important motivation for our work, and thus it is useful to review it here and
compare it with our construction.

Recall that the Hochschild homology of a scheme X is given by the global sections
of the structure sheaf of the derived loop space of X,

HH�pXq � OpLXq
Here the derived loop space LX � MappS1, Xq is the stack of maps from S1 to X.
Secondary Hochschild homology is defined as the global sections of the structure
sheaf of the double loop space of X

(1) HHp2q
� pXq � OpLLXq

As a model of elliptic cohomology, HHp2q
� pXq has several desirable features. First,

the double loop space
LLX � MappS1 � S1, Xq

is the moduli space of maps out of a topological torus, which captures the underlying
topology of an elliptic curve. Additionally categorified bundles yield cocycles in
HHp2q

� pXq, as the heuristics on elliptic cohomology would dictate. We refer the reader
to [33, 34] for additional information on secondary Hochschild homology and its
properties.

On the other hand secondary Hochschild homology is insensitive to the complex
moduli of elliptic curves, and therefore cannot be hoped to fully capture elliptic
cohomology. Our construction can be described as a variant of (1), where we promote
the topological torus S1 � S1 to an elliptic curve E over a field k. When the ground
field k is the field of complex numbers C, and X is a complex scheme with an action
of an algebraic group G, the resulting theory is closely related to the complexified
(equivariant) elliptic cohomology of the analytification of X; and recovers it after
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passing to Tate fixed points for an appropriate action. One key difference with (1)
is that the full mapping stack

Map pE,Xq

is too large, in general, as there might be topologically non-trivial maps between
E and X. From the perspective of elliptic cohomology, the only maps that con-
tribute are the almost constant ones. As we explain next, this concept can be easily
formalized.

Almost constant maps. We fix a ground field k of characteristic zero, and an
elliptic curve E over k. Let T be an algebraic torus and let X be a variety equipped
with a T -action. We denote by

(2) Map0 pE, rX{T sq � Map pE, rX{T sq

the smallest clopen substack containing the trivial maps, i.e. the maps factoring as

E Ñ Spec pkq Ñ rX{T s

We call Map0 pE, rX{T sq the stack of almost constant maps. In fact, the correct
notion of quasi-constant maps is slightly more involved, and we refer the reader to
Section 2.2.5 for a complete exposition of this point.

Working with maps that are close to being constant is familiar from many geo-
metric contexts. The product structure on Chen–Ruan orbifold cohomology, for
instance, is governed by almost constant maps out of marked rational curves. For
an example which is closely related to our story recall that, in defining the Witten
genus via Dirac operator on the loop space, Witten and Taubes actually work with
small loops : i.e. with the normal bundle to constant loops, rather than with the full
loop space. We regard almost constant maps out of E as an analogue, in our setting,
of Witten and Taubes’ small loops.

A key property of the stack of quasi-constant maps is that it satisfies a form of
Zariski codescent on the target.

Theorem A (Theorem 2.3.14). Let Ui Ñ X be a T -equivariant Zariski open
cover. Then the natural map

limÝÑ
i

Map0 pE, rUi{T sq Ñ Map0 pE, rX{T sq

is an equivalence.

Theorem A plays a crucial role in our construction. Codescent fails in general
for the full mapping stack, as topologically non-trivial maps will not factor through
any equivariant Zariski open cover of X. The fact that codescent holds for almost
constant maps should be viewed as a counterpart of the Mayer–Vietoris principle
in elliptic cohomology. It is an interesting question to what extent codescent is a
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general feature of stacks of almost constant maps from an arbitrary source; we refer
the reader to Remark 2.3.1.1 in the main text for additional comments on this point.

Elliptic Hochschild homology . The stack of almost constant maps carries a
structure morphism

Map0 pE, rX{T sq Ñ Map0 pE, rpt{T sq � Pic0pEq bZ Ť

where Ť is the cocharacter lattice of T . The stack Pic0pEq is the connected com-
ponent of the Picard stack of E which parametrizes degree 0 line bundles. We can
rewrite this as

Pic0pEq bZ Ť �
�
Pic0pEq bZ Ť

�
� rpt{T s �

�
E bZ Ť

�
� rpt{T s � En � rpt{T s

where Pic0pEq is the Picard scheme of E and n is the rank of T . In particular, we
have a natural map

p : Map0 pE, rX{T sq ÝÑ Pic0pEq bZ Ť

We set ET :� Pic0pEq bZ Ť .
The following is the most important definition of this article.

Definition B. The T -equivariant elliptic Hochschild homology of X is

HHEprX{T sq :� p�pOMap0pE,rX{T sqq P QCohpET q

We denote by HHEprX{T sq the global sections of HHEprX{T sq.

Note that, as a consequence of Theorem A, the sheaf HHEprX{T sq satisfies T -
equivariant Zariski descent on X. That is, if U � tUiu is a T -equivariant Zariski
open cover of X

HHEprX{T sq � limÐÝ
i

HHEprUi{T sq

Remark 2.1.1. The terminology elliptic Hochschild homology was already used
by Moulinos-Robalo-Toën in the beautiful recent paper [51] to refer to a seemingly dif-
ferent construction. There are differences between our setting and theirs. They work
over a p-adic ring of integers R; additionally they do not consider the equivariant
setting, which is of primary importance for us.

However the two notions are intimately related, and in fact equivalent when they
overlap. In this article we place ourselves over a field k of characteristic 0 because
we are interested in establishing properties of HHEprX{T sq which only hold in that
setting; and ultimately we want to set k � C and compare our theory with complexified
equivariant elliptic cohomology of the analytification of X. Note however that our
Definition B does not depend on the choice of ground ring, and therefore makes sense
also over a ring of p-adic integers. We claim that if X is a derived scheme over R
as considered in [51], and T is the trivial group, then Definition B is equivalent to
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the elliptic Hochschild homology of X as defined in [51]. This comparison result will
appear in forthcoming work. This justifies our usage of the term elliptic Hochschild
homology, as it is compatible with its earlier definition in [51].

In this article we establish several fundamental formal properties of elliptic Hochschild
homology. Some of our main results are a localization theorem for elliptic Hochschild
homology, and a calculation of its analytic stalks. These results, which we will explain
in the next section of this introduction, ought to be considered as direct analogues
of the local structure of rationalized equivariant elliptic cohomology that was first
described by Grojnowski in [30]. A more recent reference, which is more closely
related to our work from a methodological standpoint, is the description of the local
structure of Hochschild homology of global quotient stacks in [17]. Our results give
a complete description of the local behaviour of elliptic Hochschild homology of quo-
tient stacks, and are key to establish the comparison with Grojnowski’s rationalized
equivariant elliptic cohomology.

Before presenting these results however, let us explain two classes of examples
for which HHEpXq can be explicitly computed. The first observation is that, as
expected, in the absence of a group action elliptic Hochschild homology coincides
with ordinary Hochschild homology. This is an analogue of the fact that, in the
non-equivariant regime, rationalization collapses all cohomology theories to singular
cohomology.

Theorem C (Corollary 2.3.10). Let T be the trivial group. Then there is an
equivalence

HHEpXq � HH�pXq

Next, let us consider the case when X is a smooth toric variety equipped with
the action of the maximal torus. Toric actions on toric varieties are treated at length
in Section 2.4, for several reasons. First, calculations on affine spaces and projective
spaces equipped with a torus actions are the cornerstone of our general structure
results, as varieties equipped with a T -action admit an equivariant local embedding
in affine space. Second, toric varieties provide fully computable examples of our
theory owing to the codescent Theorem A. In particular, when X is a smooth toric
variety equipped with the action of a maximal torus T we have the following result.

Assume that k � C and let X be a smooth toric variety equipped with the action
of the maximal torus T . We denote by E ll0TanpXanq the degree zero complexified
T -equivariant elliptic cohomology of the analytification of X, viewed as a coherent
sheaf over ET

E ll0TanpXanq P CohpET q

Theorem D (Theorem 2.4.5). There is an equivalence in CohpET q

HHEprX{T sq � E ll0TanpXanq
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Theorem D follows from two ingredients. The first is the calculation of the elliptic
Hochschild homology of the affine space AN under an arbitrary torus action, which
plays a key role in the proof of Theorems E and F. The second is codescent for almost
constant maps, Theorem A.

Main theorems. Our main results are contained in the last two Sections of
the article, Section 2.5 and 2.6. In Section 2.5 we establish two structure theorems
that describe the local behaviour of elliptic Hochschild homology. They are exactly
parallel to features of ordinary equivariant elliptic cohomology. As explained by Gro-
jnowski, the local structure of elliptic cohomology is governed by information coming
from the cohomology of fixed point loci. Further, on sufficiently small neighbour-
hoods of points of ET , elliptic cohomology is equivalent to ordinary Borel equivariant
cohomology of fixed point loci. In our setting, these two claims translate into the
statements of Theorem E and Theorem F respectively. Analogous statements for
ordinary Hochschild homology were proved by Chen in [17], which was an important
inspiration for our work.

As pioneered by Grojnowski and explained by Roşu, we can associate to each
closed point x of ET a subgroup T pxq of T . When T is of rank one, T pxq is equal to
T if x is non-torsion and is equal to µn if x is torsion of (exact) order n. We denote
XT pxq the derived fixed locus of X under the induced T pxq-action. The classical fixed
locus is given by the truncation t0pX

T pxqq.

Theorem E (Theorem 2.5.2). Let X be a smooth variety over k. Then for any
closed point x P ET there exists a Zariski open neighborhood U of x such that the
natural map

(3) Map0
�
E, rt0X

T pxq{T s
�
�ET

U Ñ Map0 pE, rX{T sq �ET
U

induced by the inclusion t0X
T pxq Ñ X, is an equivalence.

Recall that T � SpecHH�pr�{T sq. If Y is a stack with a T -action, the Hochschild
homology HH�prY {T sq carries an action of HH�pr�{T sq.

Theorem F (Theorem 2.5.14). The étale stalk of HHEprX{T sq at a point x of
ET is equivalent to the completion of HH�prt0X

T pxq{T sq at 1 P T � SpecHH�pr�{T sq

Theorem E and F are key ingredients in the proof of the comparison between
HHEprX{T sq and equivariant elliptic cohomology. As we already discussed, the first
step is to introduce a periodic cyclic variant of HHEprX{T sq, which we call elliptic
periodic cyclic homology and denote HPEprX{T sq. Elliptic Hochschild homology,
just as classical Hochschild homology, is not homotopy invariant. Thus it cannot be
hoped to coincide with elliptic cohomology on the nose. The fact that this discrep-
ancy can be obviated by keeping track of an extra piece of data, in the form of a
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differential or of a cyclic action, is familiar from the classical story. However what
exactly the cyclic action might be in the elliptic setting is a somewhat subtle issue.

In the ordinary setting periodic cyclic homology is calculated by passing to the
Tate fixed points under the natural action of S1 on Hochschild homology. Via the
identification

HH�pXq � OpLXq
this action comes from the action of S1 on LX via loop rotation. However elliptic
Hochschild homology HHEprX{T sq does not carry in a natural way an action of S1.
It is defined instead in terms of functions on a stack parametrizing maps out of the
elliptic curve E

HHEprX{T sq :� p�pOMap0pE,rX{T sqq P QCohpET q.

Thus it is endowed with a natural E-action. It is not difficult to see however that
this action is non-trivial only along the fibers of the structure map

Map0 pE, rX{T sq Ñ ET

This simple observation allows us to reinterpret the E-action as a hidden S1-action,
relative to the base scheme ET . The possibility to interpolate between a (cohomologi-
cal) E-action and an action of the circle depends in a crucial way on the characteristic
0 assumption. Indeed it leverages the formality of the coherent cohomology of E,
which is thus equivalent to the coalgebra of cochains on S1 (since the latter is also
formal). We stress that both of these formality statements fail away from character-
istic zero. These identifications allow us to make sense of the Tate fixed points of
elliptic Hochschild homology and we set

HPEprX{T sq :� HHEprX{T sq
Tate

If X is a variety with a T -action, its elliptic periodic cyclic homology becomes an
object in the Tate fixed points of the trivial S1-action on PerfpET q. The latter
coincides with the Z2-folding of PerfpET q, i.e. the category obtained by collapsing
the natural Z-grading on PerfpET q to a Z2-grading

HPEprX{T sq P PerfpET q
Tate � PerfpET q bk kru, u

�1s

where u is in degree 2.

Theorem G (Theorem 2.6.10). Let k � C. Let T be an algebraic torus of rank
n acting on a smooth variety X. We have an isomorphism of Z2-periodic perfect
complexes on E

HPEprX{T sq � E llT anpXanq

where E llT anpXanq is the complexified T an-equivariant elliptic cohomology of the an-
alytification of X.
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An analogue of Theorem G for classical Hochschild homology is due to Halpern-
Leistner–Pomerleano. Their Theorem 2.17 in [31] shows that the periodic cyclic
homology of suitable quotient stacks rX{Gs over the complex numbers is equivalent
to the Gan-equivariant K-theory of the analytification Xan of X.

Let us comment briefly on the proof of Theorem G. It follows from Theorem
F that the completions of HPEprX{T sq and E llT anpXanq at points of ET match.
The formal completions at points of a smooth variety X can be thought of as al-
gebraic analogues of small complex balls covering X. This might suggest that this
information is sufficient to establish a global equivalence between HPEprX{T sq and
E llT anpXanq. This is roughly correct, but the notion of completion has to be substan-
tially enhanced. Completions at points are by themselves insufficient. The correct
notion is provided by the adeles of a coherent sheaf, which are kinds of completed
stalks labelled by flags of subvarieties. The adeles come with natural “restriction
maps” which relate them, and give the adeles of a sheaf the structure of a cosimpli-
cial complex. We review the theory of adelic descent in Section 3.2.2. The theory of
adelic descent goes back to classic results of Weil for curves, while its generalization
to higher dimensions is due to Parshin and Beilinson. We will mostly follow the
modern formulation of Groechening [28], which is particularly convenient for our
purposes.

Adelic methods are not quite sufficient to prove Theorem G. The reason is that,
in general, the adeles of HPEprX{T sq and E llT anpXanq are hard to compute owing
to the fact that ET is not affine. We work around this issue, by combining adelic
descent with an induction on the rank of the torus T acting on X. This uses in a
crucial way our second structure result on the local behaviour of elliptic Hochschild
homology, i.e. Theorem E.

It is a natural question, see Roşu [61], whether equivariant cohomology theories
can be defined via adelic methods. Grojnowski’s original approach involves a careful
choice of analytic open cover, and this limits its applicability to the complex setting.
A fully adelic treatment would have several benefits, and in particular would work
over an arbitrary characteristic zero base. This is the subject of work in progress of
the second author [78].

Future work . As we explained this paper is the first in a series. In the forth-
coming follow-up [66] we will complete the picture initiated in this article to account
for equivariance under the action of an arbitrary reductive group G. In fact the
techniques developed in this article are sufficient to tackle the general case, as it is
possible to reduce the question of G-equivariance to T -equivariance for a maximal
torus T � G, on condition of keeping track of the action of the Weyl group. The
details will be spelled out in [66]. The project initiated in this article is part of a
broader goal to obtain geometric descriptions of elliptic cohomology and Tmf, and
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their cocycles. One of the next objectives in this program will be giving a geometric
description of rationalized Tmf, by working with stacks of almost constant maps out
of the universal cubic curve. Along the way, we will obtain in particular new geo-
metric descriptions of equivariant singular cohomology and equivariant K-theory in
terms of almost constant maps out of cuspidal, and respectively nodal, cubic curves.
All these questions will be pursued in future work.
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2.2. Preliminaries

Throughout the paper, k is a fixed field of characteristic zero. We use the term
variety to mean a k-scheme which is integral, separated and of finite type. Unless
we explicitly state otherwise, all geometric objects in the following are implicitly
assumed to be defined over k.

In this paper we use the language of 8-categories and derived algebraic geometry
as developed by Jacob Lurie in [46] and [43]. We will mostly work over a field of
characteristic zero, where derived rings can be modelled equivalently by simplicial
commutative algebras or by commutative differential-graded algebras. In the setting
of commutative cdga-s, foundations for derived algebraic geometry were developed
by Toën and Vezzosi in [75] and [76].

2.2.1. Derived stacks. Let CAlg be the 8-category of simplicial commutative
rings, and dAff � CAlgop be the 8-category of derived affine schemes. We also
use the name derived rings for simplicial commutative rings. Constant simplicial
commutative rings embed fully faithfully in simplicial commutative rings, and the
embedding has a left adjoint corresponding to the connected components functor,
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which is denoted π0. We will refer to constant simplicial commutative rings as
underived, classical, or discrete rings interchangeably.

The 8-category of derived prestacks is the 8-category of functors

PpdAffq :� FunpdAffop,Sq
from simplicial commutative rings to the 8-category of spaces. The 8-category of
derived stacks is the 8-category of (hypercomplete) sheaves on dAff with respect to
the étale topology, dSt. The category of derived stacks is naturally an 8-topos. We
denote by Spec the Yoneda embedding

Spec : CAlgop Ñ PpCAlgopq.
Analogously, let PpAffq :� FunpCRing,Sq be 8-category of presheaves over clas-

sical commutative rings. The 8-category of hypercomplete sheaves on CRing with
respect to the étale topology is the category of higher stacks, St. These embed fully
faithfully in derived stacks; the embedding has a right adjoint called the truncation
functor and denoted by t0. We refer to derived stacks which are equivalent to their
truncation as underived, classical or discrete.

In a relative setting, given a simplicial commutative ring R, we define CAlgR to
be the 8-category of commutative simplicial R-algebras. We denote the 8-category
of derived prestacks over R, PpCAlgopR q, and the 8-category of stacks over R, dStR.
If R � k is a field of characteristic zero, the 8-category CAlgk is equivalent to the
8-category dg � cAlg¤0

k of connective commutative dg algebras, i.e. concentrated in
nonpositive degrees in cohomological indexing convention. In this paper we mostly
work in this setting.

2.2.2. Effective epimorphisms, geometricity, connected components.
Effective epimorphisms are the natural notion of surjective maps in an 8-topos.
Effective epimorphisms can be characterized as follows

Definition 2.2.1 ([46], Corollary 6.2.3.5). A morphism f : X Ñ Y in an 8-
topos is an effective epimorphism if one of the following two equivalent conditions is
satisfied:

(1) f is a p�1q-truncated object in the 8-topos dSt{Y of derived stacks over Y

(2) The Čech nerve Čpfq is a simplicial resolution of Y .

This definition, in the special case of the 8-topos of derived stacks, becomes
equivalent to the following property:

Property 1. A map of derived stacks f : X Ñ Y is an effective epimorphism
if for any representable SpecS and any map SpecS Ñ Y , there exists an etale cover
of S, tSiu, such that for all i the composition SpecSi Ñ SpecS Ñ Y admits a lift
SpecSi Ñ X.
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In other words, an effective epimorphism of derived stacks is an étale locally
surjective map, just as in the classical theory of sheaves a surjective map of sheaves
is a locally surjective map.

There is an important class of derived stacks called geometric (derived) stacks.
This notion is a generalization to the setting of derived algebraic geometry of the
more classical notion of Artin stack. Geometric stacks are characterized by an integer
number called the geometric level. The definition is stated inductively on the level.
We will state the definition in the context of smooth maps, for a discussion in full
generality see for example [57].

Definition 2.2.2. Let X be a derived stack.

 X is p�1q-geometric if it is an affine derived scheme. A map f : X Ñ Y of
derived stacks is p�1q-representable if for every map

SpecAÑ Y

from a p�1q-geometric stack SpecA, the fiber product SpecA�Y X is p�1q-
geometric. A map is p�1q-smooth if it is p�1q-representable, and the induced
map

SpecA�Y X Ñ SpecA

is a smooth map of affine derived schemes.
 X is n-geometric if the diagonal map X Ñ X �X is pn � 1q-representable
and there exists an effective epimorphism

²
SpecAi Ñ X, called an n-atlas

for X, such that each map SpecAi Ñ X is pn� 1q-smooth. We say that X
is geometric if it is n-geometric for some n.

 A map of derived stacks X Ñ Y is n-representable if for every p�1q-
geometric SpecA and any map SpecAÑ Y , the fiber product SpecA�Y X
is n-geometric.

 A map X Ñ Y is n-smooth if it is n-representable, and for any SpecAÑ Y
there exists a n-atlas

²
SpecBi of SpecA �Y X such that for all i the

composition

SpecBi Ñ SpecA�Y X Ñ SpecA

is smooth.

There is a notion of open and closed immersion of geometric stacks.

Definition 2.2.3. Let f : X Ñ Y be a morphism of derived geometric stacks.
We say that f is an open (resp. closed) immersion if for any map g : SpecS Ñ Y the
fiber product SpecS�Y X is a derived scheme, and the induced map SpecS�Y X Ñ
SpecS is an open (resp. closed) immersion of derived schemes.
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In the context of derived schemes, the above definition is equivalent to the defi-
nitions below.

Definition 2.2.4 ([55], Definition 4.2). A map of derived schemes f : X Ñ
SpecS with affine target is an open immersion if there exist affine derived schemes
SpecAi Ñ X over X such that the composite map

²
i SpecAi Ñ X Ñ SpecS is an

effective epimorphism, and each composite SpecAi Ñ X Ñ SpecS exhibits Ai as a
localization of S.

Let f : X Ñ Y be a morphism of derived schemes. f is an open immersion if for
any affine derived scheme SpecS, the induced map fS : SpecS�Y X Ñ SpecS is an
open immersion of derived schemes with affine target.

Definition 2.2.5. Let f : X Ñ Y be a morphism of derived schemes. f is a
closed immersion if the map on the underlying classical schemes t0f : t0X Ñ t0Y is
a closed immersion of classical schemes.

We will also need the notion of connected component of a point in a derived
geometric stack X. Let K be a field, and let x : SpecK Ñ X be a K-point.
Consider the full subcategory of dSt{X of open and closed maps to X whose image
contains the K-point x:

ClopenxX � ta : GÑ X clopen map in dSt such that x factors through au

Definition 2.2.6. The connected component of the point x in X, Xpxq, is an
initial object in the 8-category ClopenxX (which always exists).

It will be important to consider quasi-coherent sheaves on derived (pre)stacks.

Definition 2.2.7. Let X be a prestack. The 8-category of quasi-coherent sheaves
on X, QCohpXq, is defined as the limit

QCohpXq :� limtSpecAÑXuModA

over the 8-category of derived affine schemes with a map to X. Here ModA denotes
the 8-category of A-modules.

2.2.2.1. Z2-folding of quasi-coherent sheaves. We will be interested in dealing
with a Z2-periodic version of the 8-category of quasi-coherent sheaves. We review
this object following Preygel [59]. There, he introduces a Tate construction on 8-
categories with an action of S1 and this formalism recovers in particular Z2-folding,
which is what we are interested in.

Definition 2.2.8 (Definition 1.2.3 in [59]). Let C be a small stable k-linear idem-
potent complete 8-category with an action of S1, where k is a field of characteristic
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zero. Then the Tate construction of C with respect to this S1-action is the tensor
product of small stable 8-categories

CTate :� CS
1

bPerfpkrrussq Perfpkppuqqq

where u is a variable of homological degree �2.

In the following, we adopt Preygel’s notation and omit Perf:

CTate � CS
1

bkrruss kppuqq

If C is not small but is equipped with a coherent t-structure (see Definition 4.2.7
in [59]), Preygel defines its Tate fixed points via a regularization procedure. The
regularization of C, RpC), is defined as the ind-completion of the full subcategory of
coherent objects, i.e. bounded above objects C whose r-truncation, τ¤rC, is compact
for all r (see Definition 4.2.2 in [59]). Then Preygel defines (see Definition 1.3.4 in
[59])

CtTate :� RpCS
1

q bkrruss kppuqq

Following Preygel, we refer to kppuqq-linear 8-categories as Z2-periodic.
If X is a Noetherian geometric stack, the standard t-structure on QCohpXq is

coherent (see Proposition 4.4.1 in [59]). In particular, we can consider the Tate
construction with respect to a trivial S1-action on QCohpXq.

Definition 2.2.9. The Z2-folding of PerfpXq is the category

PerfpXqZ2 :� PerfpXqTate

The Z2-folding of QCohpXq is the category

QCohpXqZ2 :� QCohpXqtTate

2.2.3. Betti stacks and affinization. We define an important class of derived
stacks, called Betti stacks, which correspond to spaces.

Definition 2.2.10. Let X P S be a space. The Betti stack associated to the
space X is the sheafification of the constant presheaf X : dAffop Ñ S sending any
derived affine SpecA to X. We abuse notation by denoting the Betti stack associated
to a space X again by X.

A particularly important example is the derived Betti stack S1 associated to the
circle. This stack plays a key role in this paper and in derived algebraic geometry
more broadly. For instance, it will appear in a construction that we will describe in
Section 2.2.4. This stack will also play a role through its affinization, which we now
describe as a general construction in derived algebraic geometry.

The affinization of a derived stack is a fundamental notion, and is strictly related
to the concept of affine stack which we review below. The construction has been
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introduced in the nonderived setting by Toën in [73], and studied in the derived
context by Ben-Zvi and Nadler. A review is in [51]. We recall the construction here
for the reader’s convenience.

Let k be a discrete commutative ring. We denote by coCAlgk the 8-category of
cosimplicial commutative algebras over k, and Stk � dStk the 8-category of classical
higher stacks.

Definition 2.2.11. Denote by

Spec∆ : coCAlg Ñ Stk

the functor that sends a coconnective commutative k-algebra A to the functor it corep-
resents, i.e. the functor sending a simplicial commutative ring B to the space of maps
MapcoCAlgpA,Bq. Stacks of the form Spec∆A for some cosimplicial commutative k-

algebra A will be called affine stacks.1

The functor Spec∆ has a left adjoint O : Stk Ñ coCAlg. The composition

Spec∆O : Stk Ñ Stk

is called the affinization functor.
We will consider the affinization of an elliptic curve E over a field k of charac-

teristic zero, i.e. the affine stack Spec∆OpEq. Over k the cdga OpEq is formal, and
thus isomorphic to its cohomology, which is given by

H ipE;OEq �

#
k if i � 0 or i � 1

0 else

The cdga OpS1q � C�pS1; kq is also formal, which implies

AffpEq � AffpS1q

Since the algebra of derived global functions on S1 is isomorphic to the commutative
dg-algebra krϵs with the variable ϵ in (cohomological) degree 1, the affine stack
AffpS1q is sometimes denoted also by A1r1s and referred to as the shifted affine line.

Remark 2.2.12. Working over a field k of characteristic zero we can model sim-
plicial commutative algebras over k via connective commutative dg-algebras. In this
setting, Ben-Zvi and Nadler develop in [8] a similar construction. They consider the
functor

Spec : dg � cAlgk Ñ dStk

sending A to the functor mapping B P dg � cAlg¤0
k to Mapdg�cAlgk

pA,Bq. This
functor is right adjoint to O, and the affinization functor is SpecO : dStk Ñ dStk.

1The same notion is referred to as coaffine stacks by Lurie in [38].
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2.2.4. Tangents and loops. The 8-category of derived stacks dSt is Cartesian
closed, hence it admits internal mapping objects, also known as mapping stacks.

Remark 2.2.13. The notation we use for mapping spaces in 8-categories is Map,
in contrast with the notation for the mapping stack introduced below.

Given two derived stacks X and Y , we denote their mapping stack as Map pX, Y q.
As a presheaf on CAlgop, the mapping stack is characterized by

Map pX, Y q pSq � MappX � SpecS, Y q

The mapping stack can also be defined relative to some base derived stack B: for X
and Y over B, the mapping stack Map pX, Y qB relative to B is given by

Map pX, Y qB pSq � Map{BpX �B SpecS, Y q

Given a derived geometric stack X, we can build new derived stacks via universal
constructions. In this paper we will consider the shifted tangent TXr�1s, the unipo-
tent loop space LuX, the loop space LX and the derived stack of quasi-constant
maps Map0 pE,Xq from an elliptic curve E. The first three constructions are well
documented in the literature, and we will recall them in this section, while the latter
is new and the main object of study of this paper.

If X is a derived geometric stack its cotangent complex is the quasi-coherent sheaf

LX P QcohpXq

corepresenting the functor of derivations.

Definition 2.2.14. The shifted tangent bundle of X, TXr�1s, is the relative
spectrum over X

TXr�1s :� SpecOX
SymLXr1s

The unipotent loop space of X, LuX, is the mapping stack

LuX :� Map
�
AffpS1q, X

�
The loop space of X, LX, is the mapping stack

LX :� Map
�
S1, X

�
When X is a derived scheme, the shifted tangent bundle, the loop space and the

unipotent loop space are all equivalent. This follows from the fact that these three
objects are cosheaves over the Zariski site of a derived scheme, as explained in [8],
and they coincide when the target X is affine. As an example, we recall the relevant
codescent statement for the loop space:
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Lemma 2.2.15 (Lemma 4.2, [8]). Let X be a derived scheme. The functor

|X|Zar Ñ dStk

U ÞÑ LU
is a cosheaf.

All these constructions have formal counterparts, where one formally completes
the stacks at a trivial locus corresponding to X. We start by recalling the notion
of formal completion in derived algebraic geometry. A summary of this and related
notions can be found for example in [17].

Definition 2.2.16. Let X and Y be derived stacks, and let f : X Ñ Y be a

map. We define the formal completion of Y at X, pYX , as the derived stack whose

functor of points is the following: for every ring S, the space pYXpSq is the space of
commutative diagrams

Spec π0pSq
red //

��

X

f

��
SpecS // Y

where π0pSq
red is the reduction of the discrete ring π0pSq considered as a constant

simplicial commutative ring.

We can describe formal completions alternatively using the de Rham stack of a
derived stack Y . Let CRingred be the category of reduced classical commutative rings,
which embeds in the 8-category of simplicial commutative rings CAlg as constant
simplicial rings. In particular, we get a restriction functor

i� : PpdAffq Ñ PpCRingredopq
from derived prestacks to presheaves on CRingred

op
. We can construct a right adjoint

to this functor by sending a presheaf on CRingred
op

to its right Kan extension along
i. We call this functor i�.

Definition 2.2.17. Let Y be a derived prestack. Its de Rham prestack is the
derived prestack YdR � i�i

�Y .

By definition, given a derived ring S, an S-point of YdR is a π0pSq
red-point of Y .

Observe that the unit of the adjunction IdÑ i�i
� gives us a map Y Ñ YdR. Via the

de Rham stack we can describe the formal completion of Y at X as the pullbackpYX //

��

XdR

��
Y // YdR
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Now we can define the formal completions at X of the objects we described
earlier.

Definition 2.2.18. The formal shifted tangent bundle of X is the formal com-
pletion of the shifted tangent bundle of X at the zero section, and is denoted bypTXr�1s. The formal loop space of X is the formal completion of the loop space of

X at the constant loops, and is denoted by pLX.

2.2.5. Quasi-constant maps. We can now introduce one of the main objects
of the paper, the derived stack of quasi-constant maps Map0 pY,Xq between two
derived stacks Y and X.

Let A be a finite abelian group isomorphic to a product of groups of roots of
unity

(4) A �
¹

i�1,...,r

µni

For each map
α : Y Ñ rSpec k{As Ñ X

let pMap pY,Xqqpαq be the connected component of Map pY,Xq containing α.

Definition 2.2.19. The derived stack of quasi-constant maps is the union

Map0 pY,Xq :�
¤
α

Map pY,Xqpαq

Remark 2.2.20. The structure map Y Ñ Spec k gives a closed embedding

X � Map pSpec k,Xq Ñ Map pY,Xq

which factors through Map0 pY,Xq.

Remark 2.2.21. Definition 2.2.19 is designed to work in the setting where the
target is the quotient rX{T s of a variety by the action of a torus, which is the frame-
work we place ourselves in in this paper. Though adequate for what we plan to do
in this article, Definition 2.2.19 is somewhat ad hoc. A more conceptual definition
can be obtained by considering maps which are in a precise sense of degree zero.
Consider the map

(5) Map pYdR, Xq Ñ Map pY,Xq

induced by the unit Y Ñ YdR. We believe that in general quasi-constant maps should
be definable as the image of this map, i.e. the smallest clopen subset of Map pY,Xq
such that the map (5) factors through it. As a reality check, consider the case when
X is a classifying stack rSpec k{Gs, where G is a reductive algebraic group. The
image of (5) is the stack classifying underlying G-bundles to flat G-bundles. These
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are precisely degree 0 G-bundles, which is what we intend to model via quasi-constant
maps.

We will mostly use Definition 2.2.19 in the situation where the source Y is an
elliptic curve E over a field k of characteristic zero.

Remark 2.2.22. The bundles classified by Bun0
T pEq are exactly the degree zero

T–bundles on E, as those are the ones in the connected components of the T–bundles
whose structure group can be reduced to A, for A as in (4).

Remark 2.2.23. The variant of Definition 2.2.19 involving only connected com-
ponents of constants maps is in general insufficient for our purposes. The issue
arises from quotients rX{T s that have points with finite non-trivial stabilizers. Con-
sider X � Gm with an action of T � Gm with weight w � 1. The quotient rX{T s
is isomorphic to rSpec k{µ|w|s. In this case, a simple equivariant elliptic cohomology
computation dictates that there should be an isomorphism

Map0 pE, rGm{Gmsq � Er|w|s � rSpec k{µ|w|s

where Er|w|s denotes the |w|-torsion points in E. In particular, this stack has |w|-
many connected components. Definition 2.2.19 is designed precisely so as to repro-
duce this expected behaviour.

In the following Propositions we give sufficient conditions under which it is enough
to look at connected components of constant maps.

Proposition 2.2.24. Let Y and X be derived schemes. Then the stack of quasi-
constant maps Map0 pY,Xq coincides with the union of the connected components of

the constant maps. In particular, if X is connected, Map0 pY,Xq is connected.

Proof. This is a direct consequence of the full embedding of derived schemes in
derived stacks. □

Proposition 2.2.25. Let X be a variety with an action of an algebraic torus
T , and let E be an elliptic curve over k. Assume the T -action on X is such that
the T -orbits in X have connected stabilizers. Then the stack of quasi-constant maps
Map0 pE, rX{T sq coincides with the union of the connected components of the con-

stant maps. In particular, if X is connected, Map0 pE, rX{T sq is connected.

Proof. We will assume for simplicity that T is rank one. The general argument
is a simple extension of the rank one case. This proof requires the codescent property,
which will be proved in Section 2.3 as Theorem 2.3.14. It follows from that codescent
result that points in Map0 pE, rX{T sq correspond to maps whose image is contained
in a single T -orbit in X, which under our assumptions is either free or a fixed point.
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Let x P X be a fixed point for the T -action. We need to consider maps from E to
rx{T s factoring through rSpec k{µns for all positive integers n. These maps classify
T -bundles on E admitting a reduction of their structure group to µn. But these all
lie in the connected component of PicpEq classifying degree zero bundles.

Now consider a free orbit O. Since T acts freely on O, we have that rO{T s �
Spec k. So any map to rO{T s factors necessarily through the point. This concludes
the proof. □

An important class of examples satisfying the assumptions of Proposition 2.2.25
is given by toric varieties with the standard torus action.

Corollary 2.2.26. Let X be a smooth toric variety equipped with standard ac-
tion by the torus T and let E be an elliptic curve. Then the stack of quasi-constant
maps Map0 pE, rX{T sq coincides with the connected component of the constant maps.

Just as in the case of the shifted tangent bundle and of the loop space, we can
consider a formal completion of the derived stack of quasi-constant maps.

Definition 2.2.27. The derived stack of formal maps, denoted byzMap
0
pY,Xq,

is the formal completion of Map0 pY,Xq at the constant maps

X Ñ Map0 pY,Xq

We conclude this subsection by studying the geometricity of the stack of quasi–
constant maps.

Proposition 2.2.28. Let E be an elliptic curve over k. Then, if the target stack
X is a finitely presented variety X or a quotient stack rX{T s with X a variety, the
stack of quasi-constant maps Map0 pE,X q is 1-geometric.

Proof. Note that X is in particular finitely presented over k, thus this is a direct
application of Theorem 5.1.1 in [32]. □

2.2.6. Equivariant elliptic Hochschild homology. In this section we define
equivariant elliptic Hochschild homology, which is our main object of study in this
article.

Definition 2.2.29. Let G be a smooth reductive algebraic group and Y be a
scheme.

 The derived stack of principal G-bundles on Y is the mapping stack

BunGpY q :� Map pY, rSpec k{Gsq

The derived stack of principal G-bundles of degree zero on Y is

Bun0
GpY q :� Map0 pY, rSpec k{Gsq



2.2. PRELIMINARIES 37

 Let G � T be an algebraic torus of rank n. We set

PicpY qT :� BunT pY q

Pic0pY qT :� Bun0
T pY q

Remark 2.2.30. When Y is connected, Pic0pY qT is the connected component of
the trivial rank n bundle over Y .

Remark 2.2.31. When T is of rank 1, we write PicpY q in place of PicT pY q and
similarly for Pic0.

We will apply these definitions in the case when Y is an elliptic curve E over
a field k of characteristic zero. Let Ť be the cocharacter lattice of T . We have
decompositions

PicpEqT � pPicpEq bZ Ť q � rSpec k{T s, PicpEq0T � E bZ Ť � rSpec k{T s

where PicpEq denotes the Picard scheme of E. In particular, these stacks are under-
ived. In the rank 1 case,

PicpEq � PicpEq � rSpec k{Gms

Pic0pEq � Pic0pEq � rSpec k{Gms � E � rSpec k{Gms

Although we are interested in torus actions, a few steps of our argument will
depend on considering more general actions where T is the product of a torus T 1 and
of a finite abelian group A isomorphic to a product of groups of roots of unity

A �
¹

i�1,...,r

µni

Note that there is an equivalence

BunApEq � Bun0
ApEq �

¹
i�1,...,r

�
Ernis � rSpec k{µni

s
�

where Ernis denotes the ni-torsion points in E. This induces

Bun0
T pEq �

�
E bZ Ť 1 � rSpec k{T 1s

�
�
� ¹
i�1,...,r

Ernis � rSpec k{µni
s
�

This stack carries a map towards its coarse moduli space

Bun0
T pEq Ñ E bZ Ť 1 �

� ¹
i�1,...,r

Ernis
�

which we denote ET . When T is a torus, fixing an isomorphism T � pGmq
n identifies

this scheme with a product of rkpT q copies of E.
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Consider a variety X over k with the action of an abelian group T which de-
composes as the product of a torus T 1 and a finite abelian group A as above. The
structure map X Ñ Spec k induces

p1 : Map0 pE, rX{T sq Ñ Map0 pE, rSpec k{T sq

We denote p the composition of p1 with the projection Bun0
T pEq Ñ ET .

Definition 2.2.32. The T -equivariant elliptic Hochschild homology of X is

HHEprX{T sq :� p�OMap0pE,rX{T sq P QcohpET q

We denote by HHEprX{T sq the global sections of the sheaf HHEprX{T sq.

We refer to HHEprX{T sq also as the elliptic Hochschild homology of rX{T s. We
remark that HHEprX{T sq defines a cohomology theory for quotient stacks, at least
in the weak sense that a T -equivariant map Y Ñ X induces algebra maps

HHEprX{T sq Ñ HHEprY {T sq

and

HHEprX{T sq Ñ HHEprY {T sq

AdditionallyHHEp�q satisfies a form of Mayer–Vietoris, Theorem 2.3.14. We remark
that Definition 2.2.32 makes sense for general reductive algebraic groups.

2.2.7. Complexified Equivariant Elliptic Cohomology. Here we present
a short review of rationalized equivariant elliptic cohomology. This object was ax-
iomatically defined by Ginzburg–Kapranov–Vasserot in [25] and constructed by Gro-
jnowski in [30]. We review Grojnowski’s construction following mostly the more
recent exposition found in [23] and [62]. Other reviews closer in style to the original
can be found in [2], [61] and [27]. We remark that Grojnowski’s paper only sketches
the construction, and that the details were carried out by Roşu in [60].

Let X be a finite T -CW-complex, where T is a torus of rank n. We construct
complex T -equivariant elliptic cohomology of X as an object in the Z2-periodic
8-category of complex analytic coherent sheaves over the complex analytic variety
ET :� E bZ Ť , which is then viewed as an algebraic coherent complex via standard
GAGA arguments, yielding

E llT pXq P PerfpET qZ2

Remark 2.2.33. As ET is a smooth Noetherian underived scheme, PerfpET qZ2 �
CohpET qZ2. CohpET q is the 8-category of coherent sheaves, i.e. the full subcategory
of QCohpET q spanned by bounded complexes having coherent homotopy sheaves.
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First, we set up some notation. Let C�
T pXq be the T -equivariant singular cochains

on X, i.e. the singular cochains of the Borel construction C�pX{{T q. The sum-Z2-
periodization of the T -equivariant singular cochains, denoted by C`,�

T pXq, is defined
as

C`,�
T pXq :�

à
iPZ

C��2i
T pX;Cq

Analogously, we introduce the product-Z2-periodization as

C
±
,�

T pXq :�
¹
iPZ

C��2i
T pX;Cq

Grojnowski’s insight is that complexified equivariant elliptic cohomology is locally
controlled by the singular equivariant cohomology of loci in X fixed by subgroups of
T .

Definition 2.2.34. Let e be a closed point of ET . Let Speq be the set of subtori
T 1 � T such that e belongs to ET 1 � ET . Then set

T peq :�
£

T 1PSpeq

T 1

Remark 2.2.35. In Section 2.6 we will need an extension of this notion to points
of ET which are not necessarily closed. Let x P ET be any point. The subgroup T pxq
of T associated to x is the smallest subgroup of T such that ET pxq contains the closure

of x, txu, i.e.

T pxq �
£

K�T |txu�EK

K

Moreover, we also set

T 1pxq � T {T pxq

Remark 2.2.36. If x is a non-closed point, rkpT 1pxqq ¤ rkpT q � 1. This will be
relevant in our inductive proof of the comparison theorem 2.6.10.

Remark 2.2.37. Fixing an isomorphism T � Gn
m induces an isomorphism ET �

En. Under this identification, we can characterize the subgroup T peq for a closed
point e as follows. Let e � pe1, . . . , enq P E

n and assume that

 ei1 , . . . , eil P E are torsion with order |eij | � nj
 For all k R ti1, . . . , ilu, ek P E is not torsion

Then, up to shuffling the factors,

T peq �
� il¹
i�i1

µni

�
� pGmq

n�l � T
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We are now ready to construct complexified equivariant elliptic cohomology. First
of all, recall that C`,�

T pXq is a module over C`,0
T p�q. This is a formal commutative

dg-algebra concentrated in degree zero, and in particular we have an equivalence

C`,0
T p�q � H`,0

T p�q � Cru1, . . . , urkpT qs

Equivalently, we can regard the module C`,�
T pXq as an object in PerfpET qZ2 (as X

is a finite T -CW-complex). Let us call HT pXq this object. By definition HT pXq is
a sheaf of algebras over SpecC`,�

T p�q � tC, which is the complexified Lie algebra of
the torus T . Denote by Han

T pXq its analytification, i.e. the coherent analytic sheaf

Han
T pXq :� HT pXq bOtC

Oan
tC

There is a quotient map

exp2 : An
C Ñ ET

which is an isomorphism if restricted to sufficiently small analytic disks U in ET . Let
us call log2 its local inverse. Moreover, the group structure on ET induces translation
maps

τe :ET Ñ ET

f ÞÑ fe

for all closed points e in ET (we use multiplicative notation for the group operation on
ET ). Then, for a closed point e P ET and a sufficiently small analytic neighbourhood
Ue of e, so that U1 � τe�1pUeq, we set

E llanT pXq|Ue :� pτe � exp
2q�Han

T pX
T peqq|log2pe�1Ueq

As summarized in [23], these open sets cover ET and transition isomorphisms be-
tween E llanT pXq|Ue and E llanT pXq|U 1

e
can be defined for all closed points e and e1 in

terms of the localization theorem in equivariant cohomology. These isomorphisms
satisfy the cocycle identities and thus give rise to a complex-analytic sheaf denoted
by E llanT pXq.

We reserve the name E llT pXq for the algebraic sheaf obtained from E llanT pXq via
GAGA.

Remark 2.2.38. Grojnowski’s original construction involves singular cohomology
rather than singular cochains. His construction can be obtained from ours by taking
the cohomology sheaves of E llT pXq.

The completions of the periodic version of Grojnowski’s sheaf over closed points x
of ET are given by a product-Z2-periodization of T -equivariant singular cohomology:

E llT pXqpx � C
±
,�

T pXT pxqq � C`,�
T pXT pxqq bC`,0

T p�q OET ,px
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where OET ,px is a module over C`,0
T p�q � OptCq via the completed multiplication mappµx : ET,p1 � ET,px

and the identification ET,p1 � tC,p0.

2.2.8. Adelic descent. In the last section of this paper we make extensive use
of adelic descent theory for n-dimensional schemes. This theory was first introduced
by Parshin [56] and Beilinson [11]. A review of the fundamentals of this theory can
be found in [35] and [50]. Modern developments of the theory include Groechenig’s
[28], which is also the main reference for the short reminder that follows.

Let X be a Noetherian scheme. For two points x and y we say x ¥ y if y P txu.
We let |X|k denote the set of k-chains on X, i.e. sequences of k � 1 ordered points
px0 ¥ � � � ¥ xkq in X. If k � 0, we equivalently write |X| � |X|0. Finally, given a
subset T � |X|k, we denote by

xT :� t∆ P |X|k�1|px ¥ ∆q P T u

This notation allows us to define sheaves of adèles on X for a subset T � |X|k.
The adèles are the unique family of exact functors

AXpT,�q : QCohpXq Ñ ModOX

satisfying the following properties:

 AXpT,�q commutes with directed colimits;
 if F is coherent and k � 0, AXpT,Fq �

±
xPT limr¥0 j̃rxF ;

 if F is coherent and k ¡ 0, AXpT,Fq �
±

xP|X| limr¥0 AXpxT, j̃rxFq.
In the above, j̃rx denotes the functor jrx�j

�
rx, where

jrx : SpecOX,x{m
r
x Ñ X

is the canonical immersion of an r-thickening of the point x. Here OX,x is the local
ring at x and mx is its maximal ideal.

The global sections ΓpX,AXpT,Fqq are denoted by AXpT,Fq and are the groups
of adèles.

The sets |X|k can be assembled into a simplicial set: face and degeneracy maps
are defined, respectively, by removing or repeating a point in a chain. We denote this
simplicial set by |X|. In particular, the sheaves of adèles assemble into a cosimplicial
sheaf of OX–modules AXpT,Fq, for some T � |X|. If T � |X|, we denote this
cosimplicial sheaf by AXpFq and its global sections by A

XpFq. If F � OX , we denote
the cosimplicial sheaves and groups of adèles by AX and A

X respectively.
Similarly, there is a cosimplicial sheaf given by products of “local” adèles

rns ÞÑ
¹

∆P|X|n

AXp∆,Fq
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Theorem 2.4.1 in [35] tells us that the natural inclusion of the full adèles into the
product of local adèles respects the cosimplicial structures.

We conclude this section with two theorems that allow to reconstruct sheaves
from their adelic decomposition.

Theorem 2.2.39 (Theorem 3.1 in [28]). Let X be a Noetherian scheme. Then
there is an equivalence of symmetric monoidal 8-categories

PerfbpXq � TotPerfbpAXq

The following theorem due to Beilinson appears as Theorem 1.16 in [28].

Theorem 2.2.40 (Beilinson [11]). Let F be a quasi-coherent sheaf on X. The
augmentation F Ñ AXpFq is a resolution of F by flasque OX-modules. In particular,
the totalization of the adèles TotA

XpFq computes the cohomology of F .

The objects we will consider in Section 2.6 belong rather to the Z2-periodic cat-
egories of perfect complexes. The arguments made by Groechenig in [28] also hold
in this context, leading to completely parallel statements involving the Z2-periodic
categories.

Remark 2.2.41. Let us remark that in Section 2.6 we will use a variant of Beilin-
son’s theorem for perfect complexes, i.e. that the adelic descent data of a perfect com-
plex, computed as in Beilinson’s definition where we interpret the operations in the
derived sense, recovers the original perfect complex after totalization. This follows
from Theorem 3.1 in [28].

2.3. Codescent for quasi-constant maps

In this section we prove that the stack of quasi-constant maps is Zariski local
on the target. This behaviour is in sharp contrast with the full mapping stack,
where locality on the target is essentially never satisfied. We will give a proof of this
statement in the case when the source is an elliptic curve, which is the case that is
most relevant for our applications, but we will also comment on extensions of our
results to more general settings (see Section 2.3.1.1). One of the ingredients in our
argument is a simple criterion that allows us to detect when an open immersions of
geometric stacks is an equivalence, Proposition 2.3.3 below.

We start by proving a few simple general properties of the stack of quasi-constant
maps.

Let S be a derived stack. Consider the functor

Map0 pS,�q : dStk Ñ dStk

If f : X Ñ Y is a map in dStk, we denote by rf the induced map

rf : Map0 pS,Xq Ñ Map0 pS, Y q
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Lemma 2.3.1. The functor

Map0 pS,�q : dStk Ñ dStk

preserves limits. In particular, if f : X Ñ Y is a map in dStk, there is an equivalence
of simplicial objects in dStk

Map0
�
S, Čpfq

�
� Čprf q

Proof. The functor from pointed stacks to stacks sending a pair pF, xq to the
connected component of x preserves limits. Thus the statement follows from the
analogous statement for Map pS,�q, which is obvious. The second part of the claim
is a formal consequence of the first one. □

Lemma 2.3.2. The functor

Map0 pS,�q : dStk Ñ dStk

preserves both open and closed immersions of derived stacks. That is, if i : Y Ñ X
is an open (resp. closed) immersion of derived stacks, then

ri : Map0 pS, Y q Ñ Map0 pS,Xq

is an open (resp. closed) immersion of derived stacks.

Proof. We prove the statement for open immersions, as the proof for closed
immersions is the same. We need to show that for every affine scheme SpecA and
for every map

SpecAÑ Map0 pS,Xq

the pullback map Map0 pS, Y q �Map0pS,Xq SpecA Ñ SpecA is an open immersion of

derived schemes.
Set Z :� Map0 pS, Y q �Map0pS,Xq SpecA. Then by the universal property of the

mapping stack, we obtain a pullback diagram

Z � S

��

// Y

��
SpecA� S // X

Since the map Y Ñ X is an open immersion, the map Z � S Ñ SpecA� S must be
an open immersion. This map is the identity on S, so we conclude that Z Ñ SpecA
is an open immersion; in particular Z is necessarily a derived scheme. □

Proposition 2.3.3 (Point-wise criterion). Let X be an n-geometric derived stack
and let

ϕ :
º
αPI

Uα Ñ X
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be a coproduct of open immersions of derived stacks. Assume that for every field
extension K of k and any map f : SpecK Ñ X there exists a lift²

αPI Uα

ϕ
��

SpecK
f //

99

X

Then the map ϕ is an effective epimorphism.

Proof. Since X is n-geometric, the map f factors through one of the affine
schemes

SpecAÑ X

which compose the chosen atlas of X (up to trading K for a field extension). Open
immersions of derived stacks are stable under base change, and thus the base change
of ϕ along SpecAÑ X�º

αPI

Uα

	
�X SpecA �

º
αPI

�
Uα �X SpecA

	
Ñ SpecA

is also a coproduct of open immersions. The equivalence above is a consequence of
the universality of colimits in 8-topoi. Each summand Vα :� Uα �X SpecA is an
open substack of SpecA, and is therefore a derived scheme. Thus we can reduce to
proving the claim when X � SpecA is an affine derived scheme andº

αPI

Vα Ñ X � SpecA

is a disjoint union of open subschemes. Up to refining the cover tVαuαPI , by taking
affine open covers of each scheme Vα, we can also assume that the Vα-s are affine.
Set Vα � SpecAα.

The existence of lifts in the affine situation is equivalent to the statement that
the collection of maps of simplicial k-algebras

tAÑ AαuαPI

is a Zariski cover of the simplicial k-algebra A, i.e.

 all the k-algebras Aα are localizations of the algebra A at some elements
aα P π0A;

 the collection of the elements taαuαPI generates π0A.

But this implies that the map
²

αPI SpecAα Ñ SpecA is an effective epimor-
phism. □
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2.3.1. Quasi-constant maps to varieties. Let X be a variety and E an el-
liptic curve over k. In this section we prove the following statement:

Proposition 2.3.4. The morphism

Map0 pAffpEq, Xq Ñ Map0 pE,Xq

induced by the unit E Ñ AffpEq of the affinization is an equivalence of derived stacks.

The codescent property for Map0 pE,Xq will follow immediately from Proposition
2.3.4.

Lemma 2.3.5. Let S � E be an affine open subset. Let U be an affine variety,
and fix a locally closed embedding U � Pn. Denote by U the closure of U . Then there
are natural monomorphisms of stacks

Map pS, Uq
α
ÝÑ Map

�
E,U

� β
ÝÑ Map pE,Pnq

that is, for every affine scheme Y the induced maps of sets

π0MappS � Y, Uq
π0αÑ π0MappE � Y, Uq

π0βÑ π0MappE � Y,Pnq
are injective. Restricting to quasi-constant maps yields monomorphisms

Map0 pS, Uq
α
ÝÑ Map0

�
E,U

� β
ÝÑ Map0 pE,Pnq

Remark 2.3.6. The notion of monomorphism we refer to in Lemma 2.3.5 is the
notion of monomorphism in an 8-category appearing in [46, p. 575].

Proof of Lemma 2.3.5. The inclusion U � Pn determines a map Map
�
E,U

� β
ÝÑ

Map pE,Pnq which has the desired properties. Let us define the map α. Let T
be a proper and separated derived scheme. As E is a discrete one-dimensional
scheme, the valuative criterion of properness2 implies that there is an equivalence
MappE, T q

�
Ñ MappS, T q. Defining α requires defining maps

αY : MappS � Y, Uq Ñ MappE � Y, Uq

for every Y P dAff, that are natural in Y . We define αY as the composition

MappS�Y, Uq
paq
Ñ MapdSt{Y pS�Y, U�Y q

pbq
Ñ MapdSt{Y pE�Y, U�Y q

pcq
Ñ MappE�Y, Uq

where

 MapdSt{Y p�,�q denotes the mapping space in the over-category dSt{Y
 on connected components, the map (a) is the assignment

pS � Y
f
Ñ Uq ÞÑ pS � Y

f�prYÑ U � Y q

2For a reference on the valuative criterion of properness in the derived setting, see for instance
https://www.preschema.com/lecture-notes/kdescent/lect6.pdf.
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 the map (b) is the morphism on mapping spaces given by the valuative
criterion of properness, relative to the base scheme Y , as E � Y Ñ Y is a
discrete curve over Y , and U � Y Ñ Y is proper

 the map (c) is induced by the projection U � Y Ñ U

The fact that α is natural in Y is clear. Also, it is easy to see that α induces section-
wise injections on connected components. As for the last statement, it follows from
the fact that α and β preserve constant maps. Indeed, as the image of a connected
stack under any map is connected, the maps α and β restrict to maps between the
connected components of the constant maps, and by Proposition 2.2.24 the stack
of quasi-constant maps with target a variety is the connected component of the
constants. □

Remark 2.3.7. Let us make some more comments on the map α defined in
Lemma 2.3.5. The map α can be factored as

Map
�
S, U
�

�

''

Map0
�
S, U
�

�

''

Map pS, Uq
α //

OO

Map
�
E,U

�
Map0 pS, Uq

α //

OO

Map0
�
E,U

�
Let us focus on then diagram on the left, as the one on the right is just obtained by re-
stricting to quasi-constant maps. The vertical arrow is induced by the inclusion U Ñ
U , and thus is an open embedding as explained in Lemma 2.3.2. The diagonal arrow
is an equivalence. It is the inverse of the natural map Map

�
E,U

�
Ñ Map

�
S, U
�

given by restriction to S. As explained in the proof of Lemma 2.3.5, the fact that
this map is an equivalence follows from the valuative criterion for properness.

Lemma 2.3.8. Let AffpEq be the affinization of E. Then the map

Map0 pAffpEq, Xq Ñ Map0 pE,Xq

is an open embedding.

Proof. Recall from Section 3.2, that there is an equivalence

AffpEq � AffpS1q

This implies that Map pAffpEq, Xq is equivalent to the derived loop space LX; in
particular, the stack Map pAffpEq, Xq is connected, and thus there is an identification

Map pAffpEq, Xq � Map0 pAffpEq, Xq

Now this also implies that Map0 pAffpEq, Xq satisfies Zariski codescent onX. Indeed,
this is easily proved for the loop space LX; a reference is, for instance, Lemma 4.2
of [8].
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Consider an affine open cover tUiuiPI of X. By Lemma 2.3.2, for every i P I the
vertical arrows in the commutative diagram below are open inclusions

Map0 pAffpEq, Xq // Map0 pE,Xq

Map0 pAffpEq, Uiq

�
66

� //

OO

Map0 pE,Uiq

OO

Further, the bottom arrow is an equivalence, by the universal property of the affiniza-
tion. It follows that we have an open embedding Map0 pAffpEq, Uiq Ñ Map0 pE,Xq.

Thus the map from the realization of the Čech nerve of the open substacks Map0 pAffpEq, Uiq

Map0 pAffpEq, Xq � |Map0 pAffpEq, Uiq | ÝÑ Map0 pE,Xq

is also an open embedding. □

Next we show Proposition 2.3.4 in the case when X is the projective space, as a
stepping stone to the proof in the general case.

Lemma 2.3.9. The morphism

Map0 pAffpEq,Pnq Ñ Map0 pE,Pnq
induced by the unit map E Ñ AffpEq, is an equivalence of derived stacks.

Proof. Let ϕOp1q : Pn Ñ rSpec k{Gms be the classifying map of the bundle Op1q
over Pn. By evaluating the composition

Map0 pE,Pnq �Map pPn, rSpec k{Gmsq ÝÑ Map pE, rSpec k{Gmsq � PicpEq

at the point ϕOp1q in the second factor, we obtain a map of stacks

Map0 pE,Pnq Ñ PicpEq

As connected stacks map to connected stacks, this map must factor through the inclu-
sion Pic0pEq � PicpEq. This implies that for every map f : EK Ñ Pn parametrized
by a point of Map0 pE,Pnq, the bundle f�Op1q has degree 0. Further f�Op1q must
have non-trivial global sections (as it is the pull-back of a very ample bundle). These
two properties imply that f�Op1q � OE.

By Lemma 2.3.8, the statement we need to prove can be checked via Proposition
2.3.3. That is, we need to show that every map f : EK Ñ Pn factors through some
affine open subset U � Pn. To show this, it is enough to check the set-theoretic
condition that f induces a constant map between the set of geometric points of E
and the set of geometric points of Pn. Then it will be enough to choose as U an affine
open neighbourhood of fppq, where p P E is any geometric point. The fact that f is
constant on geometric points follows immediately from the fact that f�Op1q � OE.
Indeed, the sections of OE are constants, and therefore do not distinguish points. □
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Proof of Proposition 2.3.4. As in the case of Pn, we start by observing that
by Lemma 2.3.8 the natural map

Map0 pAffpEq, Xq Ñ Map0 pE,Xq

is an open embedding. Thus to prove that it is an equivalence we can use the
point-wise criterion. Consider a map f : EK Ñ X corresponding to a closed point
SpecK Ñ Map0 pE,Xq. We need to show that f factors as

AffpEqK
g

##
EK

OO

f // X

for some g : AffpEqK Ñ X. Let U � X be an affine open subset such that S �
EK �U X is non-empty. Note S � EK is an affine open subset. Now fix a locally
closed embedding U � Pn, and let U be the closure of U . As Pn is proper there is a
unique map h : EK Ñ Pn which makes the following diagram commute

(6)

U // Pn

S //

f |S

OO

EK

h

OO

In fact more is true, namely S is the truncation of the fiber product: S � t0pU �Pn

EKq. By Lemma 2.3.5, the map h is parametrized by a closed point in Map0 pE,Pnq.
Thus, by Lemma 2.3.9, h factors through the affinization of EK . We can complete
diagram (6) to the following commutative diagram

U

  
U //

OO

Pn

S //

f |S

OO

EK

h

OO

// AffpEqK

dd

h1

nn

The commutativity of the external triangle with edge h1 follows from the fact that the
image of h must be contained in the closure of the image of f . In order to conclude
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we need to show that h1 factors through U

U

U

OO

AffpEqK

h1
cc

goo

This is easy to check. Indeed as U and U are schemes, we can replace AffpEqK
with S1

K and think in terms of loop spaces. It is a consequence of Zariski codescent
for the loop space that if γ : S1

K Ñ U is a loop, and U � U is an affine open subset,
then the following two facts are equivalent

(1) The fiber product S1
K �U U is non-empty

(2) The loop γ factors through U

By construction, the first condition is satisfied in our case. Thus h1 factors through
U , and this implies that h also factors through U . As a consequence f factors also
through U , and this concludes the proof. □

Proposition 2.3.4 has the following useful consequence.

Corollary 2.3.10. Let X be a variety, and let |X|Zar denote its small Zariski
site.

(1) The assignment mapping an open subset U P |X|Zar to the stack of quasi-
constant maps Map0 pE,Uq P dStk defines a cosheaf on |X|Zar

Map0 pE,�q : |X|Zar Ñ dStk

(2) The natural map LU Ñ Map0 pE,Uq defines an equivalence of dStk-valued
cosheaves on |X|Zar

Lp�q � Map0 pE,�q : |X|Zar Ñ dStk

Proof. This an immediate consequence of Proposition 2.3.4. Indeed by Propo-
sition 2.3.4 for every U P |X|Zar there is an equivalence

LpUq � Map0 pE,Uq

which is natural for maps in |X|Zar. This implies that Map0 pE,�q is equivalent to
Lp�q as dStk-valued precosheaves on |X|Zar. As Lp�q is a cosheaf, it follows that
Map0 pE,�q is also a cosheaf. □
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2.3.1.1. Some generalizations of Proposition 2.3.4. We formulated Proposition
2.3.4 for an elliptic curve E, as this is the case we will be interested in the remainder
of the paper. However the statement holds more generally for any smooth and proper
curve C over k, namely the unit map C Ñ AffpCq induces an equivalence

Map0 pAffpCq, Xq Ñ Map0 pC,Xq

The proof we have given for the case C � E extends without variations to this more
general setting.

Corollary 2.3.10 also generalizes to the case of a general smooth and proper curve
C. In characteristic 0, there is an equivalence between AffpCq and the affinization
of the Betti stack of a wedge of g circles Sg, where g is the genus of C

AffpCq � AffpSgq � krε1, . . . , εgs

where

 krε1, . . . , εgs denotes the square-zero extension of k by g generators with
degpεiq � 1

 the last equivalence follows from the fact that, in characteristic zero, the
cdga-s

HompOC ,OCq and C�
singpSgq

are both formal and therefore quasi-equivalent to their cohomology.

This implies in particular that there are equivalences

Map0 pC,Xq � Map0 pSg, Xq � LX �X . . .�X LX
where the last one follows from the presentation of Sg as an iterated push-out

Sg � S1
º
pt

S1
º
pt

. . .
º
pt

S1

A simple observation which we have used repeatedly is that LX is local with respect
to the Zariski topology on X. The argument in Lemma 4.2 of [8] immediately
extends to show that Map0 pSg, Xq also defines a cosheaf on |X|Zar. It follows that
the conclusions of Corollary 2.3.10 apply to the case of a general smooth and proper
curve, and in particular Map0 pC,Xq defines a cosheaf on |X|Zar.

It is natural to ask whether Proposition 2.3.4 and Corollary 2.3.10 are in fact
general features of quasi-constant maps, beyond the curve case. As this will not play
any role in the sequel, we leave these as open questions without attempting to answer
them in this article.

Question 2.3.11. Let X be a scheme.

(1) Under what assumptions on T does Map0 pT,Xq define a cosheaf of stacks
on |X|Zar?
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(2) Under what assumptions on T is there an equivalence of stacks

Map0 pAffpT q, Xq � Map0 pT,Xq ?

Remark 2.3.12. It should be possible to extend Proposition 2.3.4 to the setting
where the target X is an algebraic space satisfying suitable properties. The key ob-
servation should be that, although in general loops are not local for the étale topology,
they are when the target is a scheme or an algebraic space. As this extra generality
is not essential for our intended applications, we will not pursue this any further.

2.3.2. Quasi-constant maps to global quotient stacks. Let X be a variety
over k, and assume that X carries an action of an algebraic torus T .

Definition 2.3.13. The small T -equivariant Zariski site of X, which we denote
by |X|TZar, is the site having

(1) as objects, schemes U equipped with an action of T , and a T -equivariant
open immersion U Ñ X;

(2) as morphisms, T -equivariant open immersions V Ñ U over X;
(3) as covering families, jointly surjective families of T -equivariant immersions.

The main result of this Section is Theorem 2.3.14 below, which generalizes the
first part of Corollary 2.3.10 to the setting of stacks that are global quotients of
varieties by a T -action. We remark that the second part of Corollary 2.3.10 fails in
the presence of a T -action, and this is a key feature differentiating elliptic Hochschild
homology from ordinary Hochschild homology. Another important difference with
Corollary 2.3.10 is that in the statement of Theorem 2.3.14 we require X to be
normal. The reason is that the argument we will give relies on Sumihiro’s Theorem
[71], which does not hold in general without the normality assumption.

Theorem 2.3.14. Assume that X is normal. Then the assignment mapping
U P |X|TZar to the stack of quasi-constant maps

Map0 pE, rU{T sq P dStk

defines a cosheaf on |X|TZar ,

Map0 pE, r�{T sq : |X|TZar Ñ dStk

If X satisfies the conclusion of Theorem 2.3.14, we say that Map0 pE, rX{T sq
satisfies T -equivariant Zariski codescent on rX{T s. In its main lines the proof of
Theorem 2.3.14 closely parallels the argument given in the Section 2.3.1 in non-
equivariant case. However there are a few minor subtleties that arise when taking
into account the T -action.
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Remark 2.3.15. Let us stress that Theorem 2.3.14 fails if we consider finer
topologies such as the étale or smooth topology on rX{T s. Consider for instance
the case when T � Gm and X � Spec k. Then Spec k Ñ rSpec k{Gms is a smooth
cover, but

Map0 pE, Spec kq � Spec k Ñ Map0 pE, rSpec k{Gmsq � Pic0pEq

clearly is not.

We start by proving Theorem 2.3.14 in two important special cases, namely
when X is isomorphic to an affine space or to a projective space. Up to fixing
an isomorphism

T � pGmq
n

and applying a change of basis to AN , we can diagonalize the action of T , which can
then be written in standard form as follows. For every λ � pλ1, . . . , λnq P pGmq

n � T ,
and pz1 . . . zNq P AN

pλ1, . . . , λnq � pz1 . . . zNq � p
n¹
i�1

λ
w1

i
i z1, . . . ,

n¹
i�1

λ
wN

i
i zNq

for an appropriate collection of integers twji u, called weights.

Lemma 2.3.16. The stack of quasi-constant maps Map0
�
E, rAN{T s

�
satisfies T -

equivariant Zariski codescent on rAN{T s.

Proof. We fix an isomorphism T � pGmq
n and a diagonalization of the T -action.

Maps to rAN{pGmq
ns classify the datum of

(1) n line bundles Li, i P t1, . . . , nu
(2) and N sections sj P H

0pbi�n
i�1L

wj
i

i q, j P t1, . . . , Nu

There is a natural map

Map0
�
E, rAN{T s

�
Ñ Map0 pE, rSpec k{T sq � Pic0pEqN

which forgets the information on sections.
By Proposition 2.3.3, it is sufficient to show that given a T -equivariant open cover

tUiuiPI of AN and a map

f : E �Spec k SpecK � EK Ñ rAN{T s

corresponding to a closed point of Map0
�
E, rAN{T s

�
, there is an open subset Ui such

that f factors as

rUi{T s

��
EK

;;

f // rAN{T s
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We will prove this by showing the stronger claim that f has to factor through
the image of a T -orbit in rAN{T s. As we discussed, giving the map f is the same as
giving n line bundles Li on EK and N sections sj of appropriate tensor powers of the
Li-s. As f is parametrized by a point in Map0

�
E, rAN{T s

�
all the Li-s have degree

zero. Thus the sections sj are all constant. This immediately implies that the image
of f is a single orbit of the T -action. □

Next, let us consider a T -action on the projective space PN . Up to fixing an
isomorphism T � pGmq

n and applying an automorphism of PN , we can put the T -
action in the following standard form. For every λ � pλ1, . . . , λnq P pGmq

n � T , and
rz0, . . . , zN s P PN

(7) λ � rz0, z1 . . . zN s � rz0,
n¹
i�1

λ
w1

i
i z1, . . . ,

n¹
i�1

λ
wN

i
i zN s P PN

for an appropriate collection of integers twji u. In particular, we can assume that the
standard toric affine open cover of PN is T -equivariant.

Lemma 2.3.17. The stack of quasi-constant maps Map0
�
E, rPN{T s

�
satisfies T -

equivariant Zariski codescent on rPN{T s.

Proof. The proof strategy is the same as for Lemma 2.3.16. Namely, consider
a map

f : EK Ñ rPN{T s
classified by a point of Map0

�
E, rPN{T s

�
. We need to show that f factors through

the image of a T -orbit in rPN{T s. Now we make the following observations:

(1) all line bundles on PN admit a T -equivariant structure;
(2) there exists a r ¡ 0 such that there exists a non-vanishing T -equivariant

section σ of OPN prq;
(3) we can further assume that, in point p2q, r � 1 on condition of replacing,

if needed, PN with a larger projective space PM equipped with a T -action
and such that there is a T -equivariant Veronese embedding

PN Ñ PM

Although these are all standard facts, let us sketch a proof. We start with p1q. We
identify PN with the projectivization PpV q of the vector space V which is dual to
H0pPN ,OPN p1qq. Note that we can lift the T -action on PN to a linear action on
V . This turns V into a T -representation. Taking the dual representation gives a T -
action on H0pPN ,OPN p1qq. This induces a T -equivariant structure on the line bundle
OPN p1q. Taking tensor powers and duals generates T -equivariant structures on all
the bundles OPN pmq, for all integers m.
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Let us consider p2q next. The existence of such a section σ for some r is equivalent
to fact that the GIT quotient PN{{T is non-empty, i.e. it is equivalent to the existence
of a semistable point of PN with respect to the T -action. A semistable point in PN
with respect to a linear action is by definition a semistable point of the lift of the
action to the vector space V � kN�1 such that PN � PpV q, i.e. a point in V such
that the closure of its orbit under the T -action does not contain 0. The existence of
a semistable point is clear after we write the action in standard form (see equation
(7) above). Indeed, the point p1, 0, 0, . . . , 0q in kN�1 is fixed by the lift of the action,
and hence it is in particular semistable, as the closure of its orbit does not contain
the point 0. This implies that the point r1 : 0 : 0 : � � � : 0s in PN is also semistable,
hence the GIT quotient PN{{T is nonempty.

As for point p3q, i.e. the reduction to the case r � 1, it is sufficient to linearize
the action of T on PN by choosing an equivariant structure on OPN prq which makes
σ into an equivariant section. As familiar from GIT, the choice of linearization yields
a T -equivariant embedding

PN Ñ PpH0pOPN prqq_q � PM

In particular, we obtain an isomorphism of T -modules

H0pPM ,OPM p1qq � H0pPN ,OPN prqq

which restricts to the spaces of equivariant sections

H0pPM ,OPM p1qqT � H0pPN ,OPN prqqT

hence a bijective correspondence between the T -equivariant sections of the two bun-
dles. Note that f factors through the image of a T -orbit if and only the composite
map

EK Ñ rPN{T s Ñ rPM{T s
factors through the image of a T -orbit. Thus, from the perspective of the argument
we are carrying out, we can harmlessly replace PN with PM . We do this implicitly
in the sequel, and in particular assume that r � 1 and σ is linear, but we will not
rename either PN or σ.

Consider the map ϕ classifying the line bundleOrPN {T sprq, ϕ : rPN{T s Ñ rSpec k{Gms.

If the map f is classified by a geometric point of Map0
�
E, rPN{T s

�
, the pull-back

line bundle f�pOrPN {T sprqq is classified by the composition

Spec pKq
f
Ñ Map0

�
E, rPN{T s

� ϕ
Ñ Map0 pE, rSpec k{Gmsq � Pic0pEq

In particular, f�pOrPN {T sprqq is a degree-zero line bundle on E.

Let H � PN be the zero locus of σ, and consider its complement U . As σ is
linear H is a hyperplane and U is a T -equivariant open subset of PN isomorphic to
AN . We claim that the image of f is entirely contained either in H or in U . Indeed,
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assume to the contrary that the image of f intersects both H and U . The pull-back
section f�σ P H0pE, f�OrPN {T sprqq is not constant, as the image of f intersects both
the zero-locus of σ and its complement. However the line bundle f�OrPN {T sprq must
be of degree zero, and therefore its sections are necessarily constant. Thus as we
claimed f factors either through

rAN{T s � rU{T s � rPN{T s or through rH{T s � rPN{T s

In the first case, we are done by Lemma 2.3.16. In the second case, f factors through
the lower dimensional space rH{T s � rPN�1{T s, and we can conclude by induction
on the dimension N : note indeed that the base case of the statement N � 1 is clear,
as the complement of a T -invariant open subset A1 � U � P1 is a fixed point, which
is a T -orbit. □

We are now ready to prove Theorem 2.3.14.

Proof of Theorem 2.3.14. This proof is very similar to that of Proposition
2.3.4. By Sumihiro’s Theorem [71] there exist a T -equivariant open cover tUiuiPI of
X such that each Ui is affine. Further any T -equivariant open cover of X can be
refined to such a affine T -equivariant open cover. Thus we can restrict, without loss
of generality, to covers in |X|TZar given by disjoint unions of affines equipped with a
T -action.

Let tUi Ñ XuiPI be such a cover. By the pointwise criterion, it is enough to show
that for every quasi-constant map f : EK Ñ rX{T s there exists an i P I such that
there is a factorization

rUi{T s

��
EK

;;

f // rX{T s

Let Ui be such that the fiber product

S :� rUi{T s �rX{T s EK

is non-empty, and fix a T -equivariant embedding

Ui Ñ AN � PN

where AN are PN equipped with a suitable T -action; the existence of such an embed-
ding is an application of Lemma 5.2 in [22]. Note that rPN{T s satisfies the valuative
criterion for properness: as a consequence, there always exists a (non unique) arrow
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h making the diagram

rUi{T s // rPn{T s

S //

f |S

OO

EK

h

OOee

commute. Thus, by Lemma 2.3.17, h admits a lift represented by the dashed arrow
in the diagram. □

Remark 2.3.18. rPN{T s satisfies the valuative criterion of properness as T -
torsors are locally trivial in the Zariski topology, and thus every T -torsor on the
fraction field of a DVR has a section. Indeed, let R be a DVR and consider a map
m : Spec FracRÑ rPN{T s. Let us show that it admits a lift

m̄ : Spec pRq Ñ rPN{T s
The map m classifies a diagram of the form

P //

��

PN

��
Spec pFracpRqq

m //

n

7788

rPN{T s

where P is a T -torsor; as P is trivial we can pick a section (represented by a dashed
arrow) and this induces a lift n. Applying the ordinary valuative criterion for proper-
ness to Pn, we obtain a map n̄ which makes the following diagram commute

Spec pRq
n̄ // PN

��
Spec pFracpRqq

OO

n // PN

Then the composite map

m̄ : Spec pRq
n̄
Ñ PN Ñ rPN{T s

is the desired lift of m.

2.4. The local model, and toric varieties.

In this section we compute the elliptic Hochschild homology of quotient stacks of
the form

(8) rAl �Gk
m{T s

where T is an algebraic torus. This calculation is relatively straightforward, but
important. It is obtained by combining the results of propositions 2.4.1, 2.4.3 and
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2.4.4. It will also play a role in the next section as, via Luna slice theorem, we will
often be able to reduce our arguments to this local case. Then, using codescent,
we compute the elliptic Hochschild homology of smooth toric varieties with their
standard torus action. This will give us a broad supply of geometrically interesting
examples for which elliptic Hochschild homology can be explicitly described. Finally,
in Theorem 2.4.5 we show that when k � C this coincides with the complexified
equivariant cohomology of the analytification of X.

We begin this section with the following simple observation, which is an analogue
of the Künneth isomorphism for mapping stacks.

Proposition 2.4.1 (Künneth formula). Let G be an algebraic group and let X
and Y be G-varieties. Then

Map0 pE, rX � Y {Gsq � Map0 pE, rX{Gsq �Map0pE,rSpec k{Gsq Map0 pE, rY {Gsq

where G acts on X � Y diagonally. Similarly, if we equip the product X � Y with
the product action, we have that

Map0 pE, rX � Y {G�Gsq � Map0 pE, rX{Gsq �Map0 pE, rY {Gsq

Proof. Note that if X and Y are two G-varieties, then

rX � Y {Gs � rX{Gs �rSpec k{Gs rY {Gs

for the diagonal G-action, and

rX � Y {G�Gs � rX{Gs � rY {Gs

for the product G-action. The formulas follow from the fact that Map0 pE,�q pre-
serves limits. □

2.4.1. The local model. In this section we consider quotient stacks of the form
rAl �Gk

m{T s. Iterated applications of the Künneth formula allow us to break down
the computations for product Al �Gk

m to the cases of A1 and Gm, and thus we will
limit ourselves to describe these explicitly. This will be achieved in a sequence of
Propositions. Let us consider trivial actions first.

Proposition 2.4.2. Let X be a variety over k and let T be an algebraic torus
acting trivially on X. Then

HHEprX{T sq � HH�pXq bk OET

Proof. Since the action is trivial, we have that rX{T s � X � BT . The propo-
sition follows because Map0 pE,�q preserves products. □

Proposition 2.4.3. Let T be an algebraic torus of rank r acting on A1. Assume
that the T -action is non-trivial. Then there is an equivalence

HHEprA1{T sq � OET
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Proof. Choosing an isomorphism T � Gr
m, the action in coordinates becomes

λ � z �
r¹
i�1

λwi
i z

Recall that the stack Map0 pE, rA1{Gr
msq classifies r-tuples tLiuri�1 of degree zero line

bundles on E together with a section s P H0pbr
i�1L

wi
i q. In particular, we obtain the

following description of Map0 pE, rA1{T sq, when the action is non-trivial. Let Z be
the closed subscheme of ET cut out by the equation

(9)
r¹
i�1

ewi
i � 1

Then we have a push-out diagram

rZ � Spec k{T s

0
��

// Pic0pEqT

��

rZ � A1{T s // Map0 pE, rA1{T sq

where the left vertical map is the zero section of the projection rZ�A1{T s Ñ rZ{T s,
and T acts trivially on ET and in particular on Z. Note that if T is rank 1, Z is a
finite subset of the torsion points in ET . In particular, the coarse moduli space of
the stack Map0 pE, rA1{T sq is given by ET , which implies that

p�OMap0pE,rA1{T sq � OET

which ends the proof. □

Proposition 2.4.4. Let T be an algebraic torus of rank r acting on Gm. Let

p : Map0 pE, rGm{T sq Ñ ET

be the structure map. Let Z � ET be the closed susbscheme of ET cut out by equation
(9). Then, as soon as the action is nontrivial, we have an equivalence

HHEprGm{T sq � OZ

as quasi-coherent sheaves on ET .

Proof. The proof of this proposition is the same as the proof of proposition
2.4.3, and in fact the geometry is simpler. The stack Map0 pE, rGm{T sq classifies
r-tuples tLiuri�1 of degree zero line bundles on E, and trivializations of the tensor
product

(10)
râ
i�1

Lwi
i � OE
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where the wi-s are the weights of the action. Thus the stack Map0 pE, rGm{T sq sits
over the locus Z � ET of those bundles satisfying (10). □

2.4.2. The case of maximal tori. In this subsection we compute the equivari-
ant elliptic Hochschild homology of smooth toric varieties equipped with the toric
action of their maximal torus. In particular, we prove the following theorem:

Theorem 2.4.5. Let X be a smooth (normal) toric variety over C, and let the
maximal torus T act on X either with the standard toric action or with weights
tw1, . . . , wnu all non-zero. Then there is an isomorphism of coherent sheaves on ET

HHEprX{T sq � E ll0T pXanq

where Xan denotes the analytification of X, and E ll0T pXanq � π0E llT pXanq is 0-th
homotopy sheaf of the complexified T -equivariant elliptic cohomology of Xan.

Proof of theorem 2.4.5. As X is a toric variety, we can find a T -equivariant
open cover U by products An � Gk

m. Let us assume for simplicity that k � 0, as
the case k � 0 is basically the same due to the Künneth formula. By the codescent
property we know that the natural mapº

UiPU
Map0 pE, rUi{T sq Ñ Map0 pE, rX{T sq

induced by the cover U is an effective epimorphism, and that the functor

Map0 pE, r�{T sq : |X|TZar Ñ dStk

is a cosheaf, as explained in theorem 2.3.14. This implies that the functor

HHEpr�{T sq : |X|
T
Zar Ñ QcohpET q

is a sheaf, and in particular HHEprX{T sq is obtained as the totalization of the cosim-
plicial object HHEprU{T sq, where U is the Cech nerve of the cover U . Similarly,
T -equivariant elliptic cohomology satisfies Mayer-Vietoris which implies that we can
compute the quasi-coherent sheaf E ll0T pXq as the totalization of the cosimplicial ob-
ject E ll0T pUq. Propositions 2.4.3 and 2.4.4 imply that this two cosimplicial objects
coincide, hence they have the same totalization. □

2.5. Equivariant Elliptic Hochschild Homology

In this section we study the local behaviour of equivariant elliptic Hochschild
homology HHEprX{T sq when X is a smooth variety over k equipped with an action
of T . We relate this to Hochschild homology and equivariant elliptic cohomology. In
particular, this involves completing the quasi-constant maps at the constant maps
and comparing this with the completion of the loop space at the constant loops. A
localization phenomenon, combined with the group structure on the elliptic curve
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E, allows for the computation of the completions over all closed points of ET . Our
main results in this section are direct analogues of theorems established by Chen in
[17] in the setting of ordinary Hochschild homology.

First, we need the following definition.

Definition 2.5.1. Let G be a derived group scheme acting on a derived stack
X. The derived fixed locus of the G-action is the following fiber product of derived
stacks

XG //

��

X �G

pπ,aq
��

X
∆ // X �X

where π is the projection and a is the action map.

From now on all fixed loci are assumed to be derived.

2.5.1. The localization formula for quasi-constant maps. In this section
we establish a localization theorem for quasi-constant maps. This is an analogue of
Theorem 3.1.12 in [17].

Theorem 2.5.2 (Localization formula). Let X be a smooth variety over k equipped
with an action of an algebraic torus T . Then for any closed point e P ET there exists
a Zariski open set U � ET containing e such that the natural map

(11) Map0
�
E, rt0X

T peq{T s
�
�ET

U Ñ Map0 pE, rX{T sq �ET
U

induced by the inclusion of the classical fixed locus t0X
T peq Ñ X, is an equivalence.

In the above, T peq is the subgroup of T as in Definition 3.2.1. To prove this
theorem we need to establish some preliminary results first.

Lemma 2.5.3 (Localization for the affine space). Consider the n-dimensional
affine space An, equipped with an action of a torus T of rank k. Fix a closed point e
in ET . Then there exists a Zariski open Upeq in ET such that the natural map

ϕ : Map0
�
E, rt0pAnqT peq{T s

�
�ET

Upeq Ñ Map0 pE, rAn{T sq �ET
Upeq

induced by the inclusion of the classical fixed locus t0pAnqT peq Ñ An is an equivalence.

Proof. In the case of rAn{T s we can describe explicitly the open Upeq. First of
all, observe that, since the action of T on An is linear, the fixed loci will be a linear
subspace, in particular there exists a natural number p such that t0pAnqT peq � Ap.
We distinguish two situations:

(1) e � 1 in ET . In this case, the statement is true for any Upeq;
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(2) e � 1. In this case, the open set Upeq can be described in terms of the
weights twji u of the action.

Let us focus on the second case. Recall that the stack rSpec k{T s classifies principal
T -bundles or equivalently k-tuples of line bundles tLiuki�1, while rAn{T s classifies

such k-tuples tLiuki�1 together with an n-tuple of sections sj P H
0pbk

i�1L
wj

i
i q for all

values of j in t1, . . . , nu. Since degree zero bundles on elliptic curves have sections if
and only if they are trivial, the stacks Map0 pE, rAn{T sq and Map0 pE, rAp{T sq will

differ only over the locus of those points f � pf1, . . . , fnq in ET such that Σk
i�1f

wj
i

i � 0
for more than p values of j in t1, . . . , nu. This is because, for points f of this kind,

there will be more then p line bundles of the form bk
i�1L

wj
i

i (indexed by j) that
admit non-vanishing sections, hence n-tuples of sections may differ from p-tuples of
sections. Then, the open Upeq is defined by removing from ET the locus of the points
f having this property. □

Remark 2.5.4. The lemma above can be viewed as a statement about deformation
theory of bundles with sections on elliptic curves. In particular, it is possible to
compute the relative cotangent complex of the map

Map0
�
E, rt0pAnqT peq{T s

�
Ñ Map0 pE, rAn{T sq

Its vanishing on closed points lying over the Zariski open Upeq depends on the fact
that nontrivial degree zero line bundles on E have no non-zero sections.

2.5.1.1. The localization theorem on closed points. Before proceeding with the
proof of Theorem 2.5.2, we will explain why the statement is true on closed points.
This will clarify the geometry underlying Theorem 2.5.2. Further the partial results
we will obtain in this section will actually be needed in the course of the proof of
Theorem 2.5.2, which we will present in the next section.

In section 2.3 we have shown that the derived stack of quasi-constant maps from
E satisfies a codescent property with respect to equivariant Zariski open covers. We
proved this by showing that the images of the total spaces of principal T -bundles
are always contained inside T -orbits in the target space X. This property of quasi-
constant maps allows us to show that the map (12) is a homotopy equivalence on
geometric points, as the type of T -orbit selects which bundles are allowed to map to
it.

Proposition 2.5.5 (Localization formula on geometric points). Let X be a
smooth variety over k equipped with an action of an algebraic torus T . Then for
any closed point e P ET there exists a Zariski open set U � ET containing e such
that the natural map

(12) Map0
�
E, rt0X

T peq{T s
�
�ET

U Ñ Map0 pE, rX{T sq �ET
U
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is a homotopy equivalence on geometric points.

Proof. Let us choose a T -orbit in X, O, generated by a closed point x with
stabilizer Tx. Then considering the mapping stack to O � T {Tx we obtain

Map0 pE, rO{T sq � Map0 pE, rSpec k{Txsq

which is the classifying stack of degree zero Tx-bundles on E. Hence, we conclude
that only the principal T -bundles that admit a reduction of the structure group from
T to Tx are allowed to map to the orbit O. In particular, as the subscheme t0X

T peq

is a union of orbits of the form T {S, where S is a subgroup of T containing T peq, the
bundles that admit a reduction of the structure group to T peq are allowed to map
to the complement of t0pX

T peqq. In order to have that the map (12) is a homotopy
equivalence on K-points for an algebraically closed field K, we need to remove maps
from those bundles. To do so, it is sufficient to remove the bundles that admit a
reduction of the structure group to a subgroup of T peq, and this is implemented by
restricting the mapping stack to a Zariski open U of ET . □

2.5.1.2. The proof. We are now ready to prove Theorem 2.5.2. The key ingredient
in the proof is Luna’s slice theorem [22], which allows us to reduce to the case of a
linear action on affine space, which was treated in Lemma 2.5.3.

Proof of Theorem 2.5.2. By codescent we can assume X is affine. Our goal
is to prove that the map

(13) ϕ : Map0
�
E, rt0X

T peq{T s
�
�ET

U Ñ Map0 pE, rX{T sq �ET
U

is an equivalence, for a Zariski open subset U of ET . We choose a U that makes
Proposition 2.5.5 hold.

First we prove that this map is étale. Choose a point x of t0pX
T peqq such that

the orbit Tx is closed. The Luna slice theorem applied to x gives us a locally closed
smooth subvariety V of X closed under the action of the stabilizer Tx of x such that
the natural T -equivariant map ψ : T �Tx V Ñ X is étale and has image given by a
Zariski open Z of X. We have an induced commutative diagram

Map0
�
E, rt0pT �Tx V qT peq{T s

�
�ET

U
ϕV //

ie
��

Map0
�
E, rT �Tx V {T s

�
�ET

U

i
��

Map0
�
E, rt0pXq

T peq{T s
�
�ET

U
ϕ // Map0 pE, rX{T sq �ET

U

for the mapping stacks. First note that the map (13) is locally finitely presented
(see Remark 2.5.6), hence we only need to show it is formally étale, i.e. its relative
cotangent complex vanishes. To do so, we first observe that the vertical maps have
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vanishing relative cotangent complex. The argument is the same for the left and the
right one. As for the right vertical composition, choose an S-point

x : SpecS Ñ Map0
�
E, rT �Tx V {T s

�
We need to show that the relative cotangent vanishes at any such S-point. We apply
Halpern-Leistner and Preygel’s Proposition 5.1.10 in [32]:

LMappX,Y q,f � π�f
�LY

where the S-point f : SpecS Ñ Map pX, Y q is viewed as a map f : SpecS �X Ñ Y
and π� is a left adjoint to the pullback along the projection π : SpecS�X Ñ SpecS.

The pullback x�Li is
x�Li � π�x

�Lψ � 0

as Luna’s slice theorem guarantees that the map ψ is étale. In particular, we obtain
that the map i (and similarly ie) is formally étale. One consequence of this fact is
that we have an equivalence

(14) i�eLϕ
�
ÝÑ LϕV

To see this, recall that for a commutative triangle

X
f //

h

  

Y

g
��
Z

of derived stacks, there is an induced cofiber (and fiber) sequence of the relative
cotangent complexes:

f�Lg Ñ Lh Ñ Lf
(see for example Corollary 1.44 in [37]).

We get two cofiber sequences:

ϕ�VLi Ñ Li�ϕV Ñ LϕV
i�eLϕ Ñ Lϕ�ie Ñ Lie

Since we know that the two relative contangent complexes Li and Lie vanish, we get
equivalences

Li�ϕV
�
ÝÑ LϕV

i�eLϕ
�
ÝÑ Lϕ�ie

Since there is an equivalence ϕ � ie � i � ϕV , we conclude that the equivalence (14)
holds.

We now show ϕV is formally étale. Recall that, for smooth closed points x P X,
the Luna étale slice theorem gives us an additional map V Ñ TV,x from V to its
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tangent space at x which is Tx-equivariant and étale onto its image, which is an open
subscheme of TV,x. We have a further commutative diagram

Map0
�
E, rt0pT �Tx V qT peq{T s

�
�ET

U
ϕV //

je
��

Map0
�
E, rT �Tx V {T s

�
�ET

U

j

��

Map0
�
E, rt0pT �Tx TV,xq

T peq{T s
�
�ET

U
ϕx // Map0

�
E, rT �Tx TV,x{T s

�
�ET

U

and, reasoning as in the previous case, we obtain an equivalence

j�eLϕx
�
ÝÑ LϕV

But the map

Map0
�
E, rt0pT �Tx TV,xq

T peq{T s
�
�ET

U Ñ Map0
�
E, rT �Tx TV,x{T s

�
�ET

U

is an equivalence by an application of lemma 2.5.3. In particular, we conclude that
the map ϕV is formally étale and deduce that i�eLϕ � 0 from (14).

Let us observe that, in the case of algebraic actions of tori on affine varieties,
there is a sufficient supply of points with closed orbit, i.e. there is a collection of
closed points in X such that the orbit they span is closed, and the images of the Luna
slice maps ψ at each of these points form an open cover of X. Indeed, recall that in
an affine variety with an action of an algebraic group G, for every orbit O there is a
unique closed orbit in the complement O�O, where O is the closure of O. Moreover,
the Zariski open sets Z given by images of the étale slice maps ψ : T �Tx V Ñ X
are saturated, that means that given a point z P Z and any other point x P X, if
the intersection Tz

�
Tx of the closure of the orbits is non-empty, then x P Z. In

particular, given an orbit O in X, there always exists a point x P X whose orbit is
closed, and such that the image Z of the Luna slice at the point x contain the orbit
O. As a consequence, it is always possible to cover X with images of Luna slices.

Now we can conclude: for each induced map ie relative to each of these points we
know that i�eLϕ vanishes, and the coproduct of all the maps ie is an étale effective
epimorphism by equivariant Zariski codescent. This is enough to prove that Lϕ � 0,
and since ϕ is locally finitely presented we obtain that it is étale, as we desired to
show.

We now argue that (13) is an equivalence. Since it is étale and a closed immersion,
it is also an open immersion; in particular it exhibits Map0

�
E, rt0X

T peq{T s
�
as a

union of connected components of Map0 pE, rX{T sq. Since Map0 pE, rX{T sq is a
union of connected components of Map pE, rX{T sq by definition, checking that the
map (13) is an equivalence amounts only to understanding if its image contains
all such connected components, which can be checked on geometric points. But
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Proposition 2.5.5 tells us that such map is a homotopy equivalence on the spaces of
closed points, and this concludes the proof. □

Remark 2.5.6. We make the following observation. Let f : X Ñ Y is a lo-
cally finitely presented map of derived stacks. The induced map Map0 pE,Xq Ñ

Map0 pE, Y q is locally finitely presented (the proof goes like that of Lemma 2.3.2).

In the sitiuation of the proof of Theorem 2.5.2, the map rt0X
T peq{T s Ñ rX{T s is

locally finitely presented, as the map t0X
T peq Ñ X is a locally finitely presented map

of (classical) schemes. Recall indeed that, as t0X
T peq and X are varieties over a

characteristic zero field k, the map t0X
T peq Ñ X is locally finitely presented (see for

example Lemma 29.21.11 in [68, Tag 01TO]).

A consequence of the localization formula is the following description of the fibers
of the structure map p1 : Map0 pE, rX{T sq Ñ Pic0pEqT .

Corollary 2.5.7. Let X be a smooth variety over k. Then given a closed point

ē : SpecK Ñ Pic0pEqT

the fiber of the structure map p1 : Map0 pE, rX{T sq Ñ Pic0pEqT over the point ē is

given by the derived fixed locus XT peq, where e is the closed point in ET corresponding

to the composition SpecK
ē
ÝÑ Pic0pEq Ñ ET .

Proof. Since the closed immersion ē : SpecK Ñ Pic0pEqT factors through
Ue � Ue �BT , where Ue is the Zariski open determined by Proposition 2.5.2 for the
point e, we can apply the same proposition to reduce the computation to the fiber�
Map0 pE, rX{T sq �Pic0pEqT

Ue
�
�Ue ē �

�
Map0

�
E, rt0X

T peq{T s
�
�Pic0pEqT

Ue
�
�Ue ē

which in turn is the fiber of the structure map p1 : Map0
�
E, rt0X

T peq{T s
�
Ñ Pic0pEqT

over the point ē.
Let T peq be the subgroup associated to the point e in ET . The map ē : SpecK Ñ

Pic0pEqT will factor through the stack Bun0
T peqpEq, hence we can compute the fiber

using the following pasting of pullback diagrams:

Fe //

��

Map0
�
E, rt0X

T peq{T peqs
�

//

��

Map0
�
E, rt0X

T peq{T s
�

��

SpecK
ē // Bun0

T peqpEq // Pic0pEqT

https://stacks.math.columbia.edu/tag/01TO
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where we called Fe the fiber we are interested in computing. The square on the right
is a pullback since Map0 pE,�q commutes with limits, and the diagram

rt0X
T peq{T peqs //

pe

��

rt0X
T peq{T s

��
rSpec k{T peqs // rSpec k{T s

is a pullback. The calculation of Fe follows easily from the observation that, by
definition, T peq acts trivially on t0X

T peq, and in particular we have that

Map0
�
E, rt0X

T peq{T peqs
�
� Map0

�
E, t0X

T peq �BT peq
�
� Map0

�
E, t0X

T peq
�
�Bun0

T peqpEq

hence the map pe necessarily has fiber over ē given by Map0
�
E, t0X

T peq
�
, as pe is

isomorphic to the projection to Bun0
T peqpEq. Then, by Corollary 1.0.1 in [17]

Map0
�
E, t0X

T peq
�
� L t0XT peq � XT peq

□

Remark 2.5.8. We established Theorem 2.5.2 for closed points e P ET , but it
holds also for non-closed points x P ET with the notion of subgroup T pxq associated
to one such point introduced in Remark 2.2.35. Indeed, if x is any point in ET , its
closure txu contains at least one closed point e such that the two subgroups T peq
and T pxq coincide. We can then declare the Zariski open subset Ux of ET realizing
localization for the point x to be the open subset Ue associated to the closed point e,
as x P Ue. If we do so, the statement of Theorem 2.5.2 extends to closed points.

2.5.2. The local structure of the quasi-constant maps. We now compute
the completions of elliptic Hochschild homology at closed points of ET .

Recall that for a derived stack X , there is a natural map

X �
ÝÑ Map pSpec k,X q Ñ Map0 pE,X q

induced by the structure morphism E Ñ Spec k. We call the completion of this
map the completion of Map0 pE,X q at the constant maps or formal maps from E to
X . There is an analogous map for the loop space LX , and its formal completion is
usually called the formal loop space.

Remark 2.5.9. The formal completion ofMap0 pE,X q at the constant maps is the

same as that of Map pE,X q, as Map0 pE,X q is a collection of connected components
of Map pE,X q containing the constant maps.
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Proposition 2.5.10. Let X be a derived stack with affine diagonal over a field
k of characteristic zero, and E be an elliptic curve over k. There is a natural map
between formal completions at the constant maps

ψ : pLX ÑzMap
0
pE,X q

Further, ψ is an equivalence.

Proposition 2.5.10 is closely related to results that have already appeared in
the literature in slightly different settings, and in particular to Theorem 6.9 of [8].
The point is that the deformation theory of quasi-constant maps out of E near the
constant maps is controlled by the affinization of E. As the latter is equivalent to
the affinization of S1 the completion of Map0 pE,X q is equivalent to the completion
of LX.

Proof. We will show that the map

ψ : pLX �zMap
0
pAffpEq,X q ÑzMap

0
pE,X q

induces an equivalence of the pullback of the cotangent complexes to the constant
maps.

Define the maps

u : Map pAffpEq,X q Ñ Map pE,X q
c1 : X � Map pSpec k,X q Ñ Map pAffpEq,X q
c : X � Map pSpec k,X q Ñ Map pE,X q � u � c1

given by composition with the unit of the affinization E Ñ AffpEq and with the
structure maps AffpEq Ñ Spec k and E Ñ Spec k respectively. The map u induces
a fiber-cofiber sequence

u�LMappE,X q Ñ LMappAffpEq,X q Ñ Lu
of quasi-coherent sheaves on Map pAffpEq,X q. Here, Lu denotes the relative cotan-
gent complex of the map u. Pulling this back along the map c1 we get a fiber-cofiber
sequence

c�LMappE,X q Ñ c1�LMappAffpEq,X q Ñ c1�Lu
of quasi–coherent sheaves on X . Our goal is to show that c1�Lu vanishes.

To do so, we show the stronger fact that for any constant map x : SpecS Ñ X
the map of the based loop spaces

Ωxpuq : ΩxMap pAffpEq,X q Ñ ΩxMap pE,X q
is an equivalence. Indeed, the cotangent complex of a based loop space is a shift of the
original cotangent complex: let F : dAffop Ñ S be a prestack, and let x : SpecS Ñ F
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be a S-point of F . The point x canonically induces a point δx : SpecS Ñ ΩxF , and
the following relation holds:

LF,x � LΩxF,δxr�1s

To show that Ωxpuq is an equivalence, observe that the based loop spaces have a
presentation as mapping stacks: in particular we have equivalences

ΩxMap pAffpEq,X q � Map pAffpEq,ΩxX q
ΩxMap pE,X q � Map pE,ΩxX q

obtained by applying the tensor-hom adjunction twice on different factors. Since X
has affine diagonal the based loop space ΩxX is an affine scheme, hence we have an
identification Map pAffpEq,ΩxX q � Map pE,ΩxX q. This completes the proof. □

Remark 2.5.11. Similar arguments appear also in Ben-Zvi and Nadler’s paper
[8].

Remark 2.5.12. The equivalence in Proposition 2.5.10 is clearly natural in the
second variable. Note also that the fact that the map Map pAffpEq,X q Ñ Map pE,X q
has vanishing cotangent complex over the constant maps holds in considerable gen-
erality, as the only restriction is that the mapping stacks have to admit a cotangent
complex over the loci of constant maps. For instance, it remains true if E replaced
with any smooth variety.

We will now apply Proposition 2.5.10 to compute the completion of HHEprX{T sq
at the identity of ET . Denote by

i : t1ET
u Ñ ET j : t1T u Ñ T

the inclusion of the identity elements. Let xET be the completion of ET at i and
denote by pi : xET Ñ ET

the natural map. Similarly, let pT be the completion of T at j and denote bypj : pT Ñ T

the natural map.
Following Remark 2.4.9 in [17], we define the derived completion of a quasi-

coherent sheaf F on ET at the identity element as the pull-pushpi�pi�F
Corollary 2.5.13. The derived completion of HHEprX{T sq at the identity of

ET pi�pi�HHEprX{T sq
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is the push-forward along pi of the completion of HH�prX{T sq at the prime ideal
corresponding to the point 1 P T � SpecHH�prSpec k{T sq.

Proof. Consider the following pullback diagram:

zMap
0
pE, rX{T sq

piX //

pp
��

Map0 pE, rX{T sq

p

��xET pi //// ET

Base-changing along this diagram, we can substitutepi�p� with pp�pi�X inpi�pi�HHEprX{T sq.
There is an analogous pullback square for the loop space

pLrX{T s pjX //

pq
��

LrX{T s
q

��pT pj //// T

We may consider similar completions for the loop space, namely pj�pj�q�OLrX{T s. Base-
changing along the pullback square for the loop space we may rewrite this completion
as

(15) pj�pj�q�OLrX{T s � pj�pq�pj�XOLrX{T s � pj�pq�O pLrX{T s
Now, pj�pq�O pLrX{T s is a quasi-coherent sheaf on T , which is affine, hence it is com-
pletely determined by its global sections, which are given by the completion of the
Hochschild homology module of rX{T s at the maximal ideal corresponding to the
identity element of the torus T .

Proposition 2.5.10 provides an identification of the maps pp and pq. In particular,
when evaluating the expression pi�pi�HHEprX{T sq we obtainpi�pi�HHEprX{T sq � pi�pp�OzMap

0
pE,rX{T sq

� pi�pq�O pLrX{T s
□

The completions over other closed points e of ET can be computed from the
completion at the identity using the localization formula explained in 2.5.1 and the
group structure on ET .

For a closed point e of ET , let pie : pET,e Ñ ET be the natural map from the
derived formal completion of ET at the closed point e to ET . Moreover, call pµe :pET Ñ pET,e the completion of the map of multiplication by e, which is an equivalence
of formal derived schemes. In particular, the group structure on ET gives canonical
identifications between completions at different closed points.
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Theorem 2.5.14. The (derived) completion of HHEprX{T sq at the closed point

e of ET , ppieq�pi�eHHEprX{T sq, is the completion of HH�prt0X
T peq{T sq at the prime

ideal corresponding to the point 1 P T � SpecHH�prSpec k{T sq.

Proof. Using a similar base change procedure as in the proof of Corollary 2.5.13
we can rewrite the derived completion of HHEprX{T sq at e as

ppieq�pi�eHHEprX{T sq � ppieq�pppeq�OMap0pE,rX{T sq

where ppe :zMap
0
pE, rX{T sqe Ñ

pET,e is the completion at e of the structure map p.
Proposition 2.5.2 gives us a Zariski open U of ET containing e such that

Map0
�
E, rt0X

T peq{T s
�
�ET

U Ñ Map0 pE, rX{T sq �ET
U

is an equivalence, which implies that the completion at e ofHHEprX{T sq is equivalent
to the completion at the same point of the sheaf given by HHEprt0X

T peq{T sq.
Consider the following pullback diagram:

zMap
0 �
E, rt0X

T peq{T s
� pµe,X //

pp
��

zMap
0 �
E, rt0X

T peq{T s
�
e

ppe
��pET pµe //// pET,e

Since pµe is an equivalence, we have the following relation:

pppeq�OzMap
0
pE,rt0XT peq{T sq

e

� ppµeq�pp�OzMap
0
pE,rt0XT peq{T sq

Corollary 2.5.13 implies that we can identify pp�OzMap
0
pE,rt0XT peq{T sq

with pq�O pLrt0XT peq{T s.

By plugging in this equivalence in the previous expression we obtain

pppeq�OzMap
0
pE,rt0XT peq{T sq

e

� ppµeq�pq�O pLrt0XT peq{T s

as quasi-coherent sheaves on the formal completion pET,e. In order to obtain the

desired quasi-coherent sheaf on ET we need to take the pushforward along pie:
ppieq�pi�eHHEprX{T sq � ppieq�ppµeq�pq�O pLrt0XT peq{T s

Since the map pi : pET Ñ ET factors as pµe : pET Ñ pET,e followed by pie : pET,e Ñ ET , we
can rewrite the previous formula as

ppieq�pi�eHHEprX{T sq � ppieq�ppµeq�pq�O pLrt0XT peq{T s �
pi�pq�O pLrt0XT peq{T s

and this completes the proof. □
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Theorem 2.5.14 will play a major role in the proof of a general comparison theorem
between a periodic cyclic version of elliptic Hochschild homology and equivariant
elliptic cohomology in the sense of Grojnowski. This is the content of Section 2.6.

Remark 2.5.15. Using equation (15) we can write

ppieq�pi�eHHEprX{T sq � pi�pq�O pLrt0XT peq{T s �
pi�pj�q�OLrt0XT peq{T s

where q : LrX{T s Ñ T is the natural map.

We denote q�OLrt0XT peq{T s as HHprX{T sq. The global sections of this sheaf (over

T � SpecHHprSpec k{T sq) are given by HHprX{T sq. Call pk :ptÑ t the map from the
completion at 0 of the Lie algebra of T to the Lie algebra of T , and by HprX{T sq the
quasi-coherent sheaf on t � SpecHT p�q having as global sections the Z2-periodized
T -equivariant cohomology of Xan, H`,�

T pXanq. Then we have

ppieq�pi�eHHEprX{T sq � pi�pq�O pLrt0XT peq{T s �
pi�pj�HHprt0XT peq{T sq

ppieq�pi�eE llT pXanq � pi�pk�Hprt0pXanqT peq{T sq

as the completions of equivariant elliptic cohomology over ET compute Borel equi-
variant cohomology. If we replace Hochschild homology by periodic cyclic homology
by taking Tate fixed points with respect to the canonical S1-action, the two comple-
tions become equivalent by means of Chen’s Theorem 4.3.2 in [17].

In the next section we explain how the natural E-action on Map0 pE, rX{T sq

induces S1-actions on the adelic descent data of elliptic Hochschild homology, and
use this action to define the elliptic periodic cyclic homology of rX{T s. We will
show that this object recovers Grojnowski’s equivariant elliptic cohomology of the
analytification.

2.6. The adelic Tate construction

2.6.1. The action of the elliptic curve E. Let X be a derived stack over k.
The multiplication map µ : E � E Ñ E induces a global E-action on Map0 pE,X q.

Remark 2.6.1. Let X be a variety over a field k of characteristic zero. As
explained in [8] the unit map

E Ñ AffpEq

is a group homomorphism. This implies that the canonical equivalence

LX � Map0 pAffpEq, Xq Ñ Map0 pE,Xq

intertwines the E-action on the mapping stack on the right with the AffpEq �
AffpS1q � BGa-action on the mapping stack on the left, i.e. the HKR isomorphism
is equivariant with respect to the relevant actions.
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In the following lemma we characterize the E-action on the stack of quasi-constant
maps from E to BT .

Lemma 2.6.2. The E-action on Map0 pE,BT q induces a trivial action on the
coarse moduli space ET .

Proof. Without loss of generality, let us restrict to the case when T has rank 1.
The triviality of the action on the coarse moduli space is a consequence of the fact
that degree zero line bundles on elliptic curves can be presented as maps of abelian
groups from E to BGm. In particular, consider the following maps:

 the action map

E � Pic0pEq Ñ Pic0pEq

that is adjoint to the map

Map0 pE,BGmq Ñ Map0 pE � E,BGmq

induced by composition with the multiplication map µ : E � E Ñ E;
 the map that classifies the box product of line bundles

E � Pic0pEq Ñ Pic0pEq

The latter is constructed by adjunction from the map

Map0 pE,BGmq Ñ Map0 pE � E,BGmq

which is obtained from the following composition:

E �Map0 pE,BGmq � E �Map0 pE,BGmq
ev�ev
ÝÝÝÑ BGm �BGm

m
ÝÑ BGm

In the above, ev is the evaluation map, and m : BGm � BGm Ñ BGm is the
multiplication on BGm. Adjoining this map, we obtain

Map0 pE,BGmq �Map0 pE,BGmq Ñ Map0 pE � E,BGmq

We further compose the above map with the diagonal ∆:

Map0 pE,BGmq
∆
ÝÑ Map0 pE,BGmq �Map0 pE,BGmq Ñ Map0 pE � E,BGmq

to obtain the map classifying the box product. This map is equivalent to the pro-
jection to Pic0pEq

E � Pic0pEq Ñ Pic0pEq

which corresponds to the trivial action map.
The condition that degree zero line bundles on elliptic curves correspond to maps

of abelian groups from E to BGm implies that the maps on the coarse moduli spaces
induced by the action map and the map classifying the box product are isomorphic.

□
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Remark 2.6.3. Since the E-action on Map0 pE,X q is induced by the group struc-
ture on E, for any map of derived stacks

f : X Ñ Y
the map induced by composition

Map0 pE,X q Ñ Map0 pE,Yq
is E-equivariant. In particular, the structure map

p : Map0 pE, rX{T sq Ñ ET

is E-equivariant. In the above, E acts trivially on ET as this is the coarse moduli
space of Pic0pEqT , on which the action is trivial by Lemma 2.6.2.

2.6.2. Adelic Tate construction for elliptic cohomology. We now describe
how the global E-action allows us to perform a Tate construction on the sheaf
HHEprX{T sq.

Consider π : E � ET Ñ ET as a group scheme over ET ; this object acts on
Map0 pE, rX{T sq in the category of derived stacks over ET .

Remark 2.6.4. The pushforward π�OE�ET
is a sheaf of Hopf algebras on ET .

The action relative to ET gives to p�OMap0pE,rX{T sq � HHEprX{T sq the structure of

a comodule over this sheaf of Hopf algebras in QCohpET q.

Over a field k of characteristic zero, the equivalence AffpEq � AffpS1q induces an
equivalence

π�OE�ET
� π�OS1�ET

where π : S1 � ET Ñ ET is viewed as a group scheme over ET . In particular,
HHEprX{T sq receives a comodule structure over π�OS1�ET

.
The elliptic curve E acts trivially on ET itself according to lemma 2.6.2. This

action induces an S1-action on the category QCohpET q, by letting S1 act trivially on
ET . In particular, by the discussion above, the E-action on Map0 pE, rX{T sq induces

a lift of HHEprX{T sq to the S1-invariant category QCohpET q
S1
.

Definition 2.6.5. The elliptic periodic cyclic homology of rX{T s

HPEprX{T sq

is the image of the pair given by HHEprX{T sq and its S1-action in the category
QCohpET qZ2.

Remark 2.6.6. The E-action on ET restricts to each term of its adelic decopo-
sition SpecA

ET
, and moreover the adelic descent data A

EpHHEprX{T sqq obtain an

action of S1 by similar arguments to those above. Let A
EpHHEprX{T sqq

tS1
be the
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cosimplicial object obtained by applying level-wise the Tate construction with respect
to this S1-action. In particular, we have the following equivalence:

A
EpHPEprX{T sqq � A

EpHHEprX{T sqq
tS1

This behaviour justifies the name adelic Tate constuction.

Remark 2.6.7. Under the assumption that X is a smooth variety over a field k,
the elliptic periodic cyclic homology of rX{T s is a Z2-periodic perfect complex on ET .
Indeed, by the discussion in section 2.5, the coherence of this complex is controlled by
finite generation of HT anpXanq as a HT anp�q-module. As explained in the discussion
in the proof of Corollary 4.3.21 in [17], X being a quasi-compact algebraic space is
sufficient for this finite generation requirement, as the T an-equivariant cohomology
can be computed by a double complex whose E1-page is given by HpXq b HT anp�q.
Moreover, as soon as k � C the analytification of X has the same homotopy type of
a finite CW-complex, ensuring that Grojnowski’s equivariant elliptic cohomology is
also an object in the Z2-periodic category PerfpET qZ2.

Remark 2.6.8. On the other hand, by the same arguments as in Remark 2.6.7,
the coherence of the complex HHEprX{T sq is controlled by finite generation of the
Hochschild homology of X. In particular, a sufficient condition for the coherence of
HHEprX{T sq is X be proper.

2.6.2.1. The rank one case. Since the proof of the comparison theorem is an
induction on the rank of the torus, we start by proving it for tori of rank 1.

Proposition 2.6.9 (Comparison theorem, rank one case). Let k � C. Let T be
an algebraic torus of rank 1 acting on a smooth variety X. We have an isomorphism
of Z2-periodic coherent sheaves on E

HPEprX{T sq � E llT anpXanq

where E llT anpXanq denotes complexified equivariant elliptic cohomology of the ana-
lytification of X. Moreover, this equivalence is natural with respect to X.

Proof. The proof of this theorem is based on adelic descent in dimension one.
Let us start with the adèles with respect to closed points e of E. In this case,

the adèles are given by completion at such points. In particular, Theorem 2.5.14
gives us the desired equivalence. The adèle given by completion at the generic point
corresponds to the generic fiber. The equivalence of such adèles comes from observing
that the generic fiber can be computed via the localization theorem. Let c : E Ñ
Spec k be the structure morphism. Then we have a canonical isomorphism

j̃ηHPEprX{T sq � j̃ηc
�HPpt0X

T q
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for elliptic Hochschild homology, and similarly

j̃ηE llT anpXanq � j̃ηc
�C`,�

dR ppt0X
T qanq

for equivariant elliptic cohomology. Indeed, the localization theorem gives us a canon-
ical equivalence

j̃ηHPprX{T sq � j̃ηHPprt0XT pηq{T sq

and since T pηq � T , T acts trivially on t0X
T and we have canonical equivalences

j̃ηHPprt0XT pηq{T sq � j̃ηc
�HPprt0XT pηq{T 1pηqsq � j̃ηc

�HPpt0X
T q

The HKR theorem, as in Proposition 4.4 of [8] induces an equivalence

c�HPpt0X
T q � c�C`,�

dR ppt0X
T qanq

which in turn gives an equivalence of the adèles with respect to the generic point.
Similarly, for a chain ∆ � pη, xq where η is the generic point and x is a closed

point, note that
AEp∆,Fq � AEpx, j̃ηFq

for a perfect complex F . The same HKR theorem induces a canonical equivalence

j̃ηHPprX{T sq � j̃ηE llT anpXanq

and thus we have that

AEp∆,HPEprX{T sqq � AE p∆, E llT anpXanqq

Since this equivalence is induced by a canonical isomorphism of perfect complexes,
it is compatible with the coface map corresponding to removing the point x from the
chain ∆. Compatibility with the coface map induced by removing the point η has
to be tested separately. In particular, we need to check that the following diagram
commutes:

AE ppxq,HPEprX{T sqq //

��

AEppxq, E llT anpXanqq

��
AEp∆,HPEprX{T sqq // AEp∆, E llT anpXanqq

We can rewrite the above diagram as

HPEprX{T sqpx //

��

E llT anpXanqpx

��

HPpt0pX
T qq bk FracOE,px // C`,�

dR pt0pX
T qanq bk FracOE,px

since the adèles with respect to the chain ∆ correspond to�
j̃ηHPEprX{T sq

�
px �
�
HPpt0pX

T qq bk kpEq
�
bOE,x

OE,px � HPpt0pX
T qq bk FracOE,px
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Commutativity of this diagram then follows from the compatibility of the HKR
isomorphisms as in Proposition 4.4 of [8] and Theorem 4.3.2 of [17] with pullbacks
and with the base change to kpEq. Indeed, we can rewrite HPpt0pX

T qq bk FracOE,px
as

HPpt0pX
T qq bk FracOE,px � HPprt0pX

T q{T sqp1 bOE,x
kpEq

and C`,�
dR pt0pX

T qanq bk FracOE,px as

C`,�
dR pt0pX

T qanq bk FracOE,px � C
±
,�

dR pt0pX
T qanq bOE,x

kpEq

We now show the naturality of the equivalence with respect to X. We need to
show that if f : Y Ñ X is a map, the following diagram commutes

HPEprX{T sq //

��

E llT anpXanq

��
HPEprY {T sq // E llT anpY anq

The corresponding diagram of adèles commutes as the vertical maps are given by
pullback in periodic cyclic homology (for the left arrow) and de Rham cohomology
(for the right arrow); commutativity follows specifically from the compatibility of
the HKR theorem with pullbacks, both in its form as Proposition 4.4 in [8] and as
Theorem 4.3.2 in [17]. □

2.6.2.2. The general case. We proceed with the proof of the main result of this
Section. As already anticipated, the general case follows inductively from the rank
1 case.

Theorem 2.6.10 (Comparison theorem). Let k � C. Let T be an algebraic torus
of rank n acting on a smooth variety X. There is an isomorphism of Z2-periodic
coherent sheaves on E

HPEprX{T sq � E llT anpXanq

where E llT anpXanq denotes the complexified equivariant elliptic cohomology of the
analytification of X. Moreover, this equivalence is natural with respect to X.

Proof. We reason by induction, as anticipated.
Our inductive hypothesis gives us an equivalence

HPEprX{Ksq � E llKanpXanq

for any torus K of rank strictly smaller than n. Further, this equivalence is natural
with respect to X. The base case when rkpT q � 1 was proved as Proposition 2.6.9.
Now let T be an algebraic torus of tank n. We will produce an equivalence

HPEprX{T sq � E llT anpXanq
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natural with respect to X. As in the rank one case, we use adelic descent. In the
case of closed points e P ET , the equivalence

AET
ppeq,HPEprX{T sqq � AET

ppeq, E llT anpXanqq

is Theorem 2.5.14 together with Theorem 4.3.2 in [17]. Now let ∆ � px ¡ x1 ¡
� � � ¡ xkq P |ET |k be a chain of length k ¡ 1 on ET , and let ∆1 � px1 ¡ � � � ¡ xkq.
By definition we have

AET
p∆,HPEprX{T sqq � lim

r¥0
AET

�
∆1, j̃rxHPEprX{T sq

�
The localization theorem provides an equivalence

j̃rxHPEprX{T sq � j̃rxc
�
xHPEprtoX

T pxq{T 1pxqsq

By the inductive hypothesis there is an equivalence

HPEprtoX
T pxq{T 1pxqsq � E llT 1pxqanpt0pX

T pxqqanq

Indeed x is not a closed point, hence the rank of T 1pxq is necessarily smaller than n.
Finally, this equivalence of quasi-coherent complexes induces an equivalence

lim
r¥0

AET

�
∆1, j̃rxc

�
xHPEprX{T sq

�
� lim

r¥0
AET

�
∆1, j̃rxc

�
xE llT 1pxqanpt0pX

T pxqqanq
�

which, by the computation carried out above, means that we obtain by composition
a canonical isomorphism

ϕ∆ : AET
p∆,HPEprX{T sqq � AET

p∆, E llT anpXanqq

All the equivalences between adelic groups produced by the above argument come
from equivalences of objects in PerfpET qZ2 , thus they are all compatible with the
coface maps induced by the operation of removing a point xi from the chain ∆, for
i P t1, . . . , ku. The coface map induced by removing x has to be treated separately:
in this case we cannot reduce to the sheaves j̃rxHPEprX{T sq for one of the two adelic
groups involved. Indeed, by definition, the adèle AET

p∆1,HPEprX{T sqq is a limit of
adèles of the sheaves j̃rx1HPEprX{T sq rather than j̃rxHPEprX{T sq.

Let us consider now the case of the coface map induced by removing the point
x from the chain ∆. For this specific case, we switch to the complexes of adèles
as opposed to their global sections. We need to check the commutativity of the
following diagram:

AET
p∆1,HPEprX{T sqq //

��

AET
p∆1, E llT anpXanqq

��
AET

p∆,HPEprX{T sqq // AET
p∆, E llT anpXanqq

where
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 ∆1 is obtained from ∆ by removing x
 the horizontal arrows are the isomorphisms obtained above via the inductive
hypothesis

 the vertical arrows are the coface maps

For the sheaves of adèles we have a decomposition

AXp∆,Fq � F bOX
AXp∆,OXq

which allows us to write the above diagram as

AET
p∆1,HPEprX{T sqq

� //

�
��

AET
p∆1, E llT anpXanqq

�
��

c�x1HPEprt0pX
T px1qq{T 1px1qsq bOX

AXp∆
1,OXq

� //

��

c�x1E llT 1px1qanpt0pX
T px1qqanq bOX

AXp∆
1,OXq

��

c�xHPEprt0pX
T pxqq{T 1pxqsq bOX

AXp∆,OXq
� //

��

c�xE llT 1pxqanpt0pX
T pxqqanq bOX

AXp∆,OXq

��
AET

p∆,HPEprX{T sqq
� // AET

p∆, E llT anpXanqq

Since x ¡ x1, cx factors as the composition

cx : ET
cx1ÝÝÑ ET 1px1q

cx1,xÝÝÝÑ ET 1pxq

In particular, the two middle vertical maps in the diagram factor as the tensor
product of a pullback map along the inclusion t0pX

T pxqq Ñ t0pX
T px1qq and the coface

map for the adèles of the structure sheaf. If k ¡ 1 or k � 1 and x1 is not closed,
the bottom and top squares commute. By inductive hypothesis on naturality, the
middle square also commutes, and thus we obtain the desired equivalence.

If k � 1 and x1 is closed, T
1px1q might have the same rank as T . In this situation,

we apply Proposition 3.2.1 in [35]:

AET
ppx0, x1q,HPEprX{T sqq � Cx0S

�1
x0
Cx1S

�1
x1

HPEprX{T sq

where S�1
p is localization at p and Cp is the functor that sends a quasi-coherent

complex M � colimiNi, with Ni perfect complex, to colimiNi,pp. The coface map is
the natural map

Cx1S
�1
x1

HPEprX{T sq Ñ Cx0S
�1
x0
Cx1S

�1
x1

HPEprX{T sq

and similarly for elliptic cohomology. The inductive hypothesis and localization
identify the isomorphism Cx1S

�1
x1

HPEprX{T sq � Cx1S
�1
x1

E llT anpXanq with the HKR
isomorphism (together with Theorem 2.5.14), which implies that the relevant dia-
gram commutes.
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To finish the argument, we need to prove naturality. This follows from the induc-
tive hypothesis in the following way: choose f : Y Ñ X and consider the diagram of
adèles associated to naturality, for a chain ∆ P |ET |k:

AET
p∆,HPEprX{T sqq //

��

AET
p∆, E llT anpXanqq

��
AET

p∆,HPEprY {T sqq // AET
p∆, E llT anpY anqq

By localization, the above diagram is obtained by applying the functor AET
p∆,�q

to the diagram

c�xHPEprt0X
T pxq{T 1pxqsq //

��

c�xE llT 1pxqanppt0X
T pxqqanq

��

c�xHPEprt0Y
T pxq{T 1pxqsq // c�xE llT 1pxqanppt0Y

T pxqqanq

which commutes by the inductive hypothesis. □

From Theorem 2.6.10 we deduce the following corollary:

Corollary 2.6.11. Let k � C. Let T be an algebraic torus of rank n acting on
a smooth variety X. We have an isomorphism of Z2-periodic coherent sheaves on E

π�HPEprX{T sq � E ll�T anpXanq

where E ll�T anpXanq denotes the collection of homotopy sheaves of complexified equi-
variant elliptic cohomology of the analytification of X, i.e. the classical version of
equivariant elliptic cohomology due to Grojnowski. Moreover, this equivalence is nat-
ural with respect to X.

Remark 2.6.12. We expect elliptic Hochschild homology to encode 2-categorical
information on the stack rX{T s. This is the most exciting future direction of our
work, as it could shed light on the much studied problem of constructing geometric
representatives of elliptic cocycles. As a reality check we remark that, in contrast
with ordinary Hochschild homology, HHEprX{T sq and HPEprX{T sq are not invari-
ants of PerfprX{T sq. This follows immediately from Theorem 2.6.10 and the main
result of [62]. The category PerfprX{T sq can be viewed as the universal recipient
of 1-categorical information on rX{T s. This confirms the expectation that elliptic
Hochschild homology detects information which is not 1-categorical in nature.





CHAPTER 3

Adelic decomposition for Equivariant Elliptic Cohomology

3.1. Introduction

A powerful method to study complexified equivariant cohomology theories is to
regard them as quasi-coherent sheaves of algebras on the decompletion of the formal
group associated to their non-equivariant incarnation. Based on this principle, Gro-
jnowski proposed a first construction of complexified equivariant elliptic cohomology
in [30]. At around the same time Ginzburg–Kapranov–Vasserot gave an axiomatic
description of equivariant elliptic cohomology in [25]. The details of Grojnowski’s
construction were worked out by Roşu in [60]. Roşu applies similar methods in [61]
to build complexified equivariant K-theory. The upshot is that elliptic cohomology
and K-theory can be constructed complex-analytically from the singular cohomology
of fixed point loci. In this same paper, Roşu states that such a description of com-
plexified equivariant K-theory can also be obtained algebraically, via completions.
Clearly, a byproduct of this construction would be a lift from the complexification to
rationalization with respect to a general field of characteristic zero. Unfortunately,
Roşu never completed this program. This is one of our main contributions in this
paper.

Our goal in this paper is to obtain a purely algebraic description of equivariant
K-theory and of Grojnowski’s equivariant elliptic cohomology via adelic methods. In
the last forty years elliptic cohomology has been intensely studied for its importance
in homotopy theory — for example Greenlees’ approach via his algebraic model
for rational G-spectra [27] and Ganter’s [23] — and its relevance in mathematical
physics and the theory of representations of loop groups (see Witten’s [81, 82] for
the relationship with string theory and Dirac operators on loop spaces, or Ando’s [1]
that highlights the relationship with loop groups). Nevertheless, the original question
by Roşu of a purely algebraic construction remains unanswered.

We will achieve this description via adelic descent. Adelic descent has its origins
in algebraic number theory and algebraic geometry, as a tool to study curves. One of
the earliest applications of adelic methods is a celebrated theorem of André Weil, that
describes principal G-bundles on curves in terms of the adelic ring of the curve. This
theory was generalized to n-dimensional Noetherian schemes by Parshin [56] and
Beilinson [11]. Roughly, adelic descent yields a description of coherent sheaves on

81
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Noetherian schemes in terms of their completion at chains of points on the scheme.
A recent formulation is due to Groechenig [28], who proved an adelic reconstruc-
tion theorem in terms of an equivalence of 8-categories of perfect complexes on a
Noetherian scheme X and perfect complexes on the adelic decomposition of X.

Rationalized equivariant elliptic cohomology. In Section 3.3 we apply adelic
descent to study G-equivariant elliptic cohomology for compact Lie groups G. Our
approach is encoded in Definition 3.3.8 and Definition 3.3.17. The key case is when
G � T is a torus. Here the construction proceeds by induction on the rank of T .
If k � C is the field of the complex numbers, our definition recovers Grojnowski’s:
this is the content of Corollary 3.3.16. Finally, we provide a chain-level presentation
of Grojnowski’s sheaf: this is the content of the remarks in Subsection 3.3.4. This
presentation uses the same inductive construction of Definition 3.3.8 and rests on
the formality of the algebra C�pBT q of cochains on the classifying space of T .

Adelic descent for equivariant cohomology and K-theory. In Section 3.4
we complete Roşu’s program by giving a description of rationalized equivariant K-
theory in terms of adelic descent data. This shows that rationalized equivariant
K-theory can be constructed in a purely algebraic manner out of the singular co-
homology of fixed loci, thus implementing Roşu’s proposal. Our construction has
several advantages, with respect to Roşu’s original paper [61]. First, it works over
all fields of characteristic zero, rather then just over the complex numbers, and it
recovers equivariant K-theory directly, rather than its extension by the holomorphic
functions over the complexification of the torus.

We perform similar computations also for equivariant cohomology. In partic-
ular, this shows that elliptic cohomology, K-theory and singular cohomology can
ultimately be built out of some basic local data — always expressed in terms of
Borel-equivariant singular cohomology of fixed loci — and an induction based on
localization theorems. This implements a principle that first appears in celebrated
work of Atiyah–Segal on equivariant K-theory.

Comparisons with periodic cyclic counterparts. In Section 3.5 we compare
rationalized equivariant cohomology and K-theory with periodic cyclic homology the-
ories constructed respectively from the shifted tangent bundle and the derived loop
space of a quotient stack. The case of rationalized equivariant K-theory was consid-
ered by Halpern-Leistner–Pomerleano in [31]. There, they establish an equivalence
between the periodic cyclic homology of well-behaved quotient stacks rX{Gs over C
and the the G-equivariant topological K-theory of the analytification of X. Here we
use adelic descent to prove the following theorem:
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Theorem A (Theorem 3.5.2). Let X be a smooth variety over C acted on by an
algebraic torus T . There is an equivalence of Z2-periodic coherent sheaves on T

π�HPprX{T sq � KT anpXanq

which is natural in X with respect to T -equivariant maps.

Our approach differs in several respects from the one of [31]. First, we obtain a
more general theorem, as we drop technical assumptions such as quasi-projectivity
and the existence of a semi-complete KN stratification. It is true that in the present
iteration we treat only torus actions, whereas actions by general algebraic groups
are considered in [31]. Our Theorem A however can be extended to all reductive
groups without difficulty, by keeping track of the action of the Weyl group, this
extension will appear in a future version of this paper. Secondly, our methods are
much more elementary, as they only depend on localization in topological K-theory.
We hope that our result might be used to provide more examples in which the
lattice conjecture holds, i.e. the equivalence between the complexification of Blanc’s
topological K-theory of a dg category and its periodic cyclic homology. We will
return to this in future work.

Halpern-Leistner and Pomerleano remark that their theorem follows from an
identification at the level of cochains. Theorem A has a similar lift, Theorem 3.5.7,
which requires a cochain model for equivariant K-theory. Such a model can be
constructed again using adelic descent with the same arguments made in the elliptic
setting in Section 3.3.

We remark that similar comparison results are known in differential geometry
since the 90’s. In this context, the equivariant K-theory of a smooth manifold can be
recovered from the periodic cyclic homology of the algebra of C8-functions on the
manifold itself. Relevant references include [14] and [13].

A similar picture holds in the case of equivariant cohomology, where the shifted
tangent stack takes on the role played by the loop space in the case of K-theory. This
story is well-known, and follows immediately from work of Calaque–Pantev–Toën–
Vaquié–Vezzosi [16]. We include it in the paper, as we give a different argument
based on adelic methods. This allows to treat on the same footing equivariant elliptic
cohomology, K-theory and singular cohomology.

Theorem B (Theorem 3.5.14). Let X be a smooth variety acted on by an alge-
braic torus T . There is an isomorphism of Z2-periodic perfect complexes on t

HP linprX{T sq � HT anpXanq

where the left-hand is linearized periodic cyclic homology, and the right-hand are the
equivariant singular cochains C`,�

T anpXanq viewed as a sheaf on t � SpecH`,0
T anp�q �

SpecC`,0
T anp�q.
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We call linearized periodic cyclic homology the Tate fixed points of the mixed
structure on the de Rham complex of rX{T s. A necessary requirement for the proof
via adelic descent is a localization formula for the shifted tangent stack, Proposition
3.5.13. To the best of the author’s knowledge, this localization phenomenon is new
and might be of independent interest. Localization for the loop space has been
extensively studied in [17].

The case of equivariant elliptic cohomology has been investigated in [67], where
the geometric object taking the role of the loop space and the shifted tangent stack
is an appropriate derived stack of quasi-constant maps from an elliptic curve E over
a Q-algebra k. The appropriate notion of elliptic periodic cyclic homology is intro-
duced, and proved to be equivalent to Grojnowski’s equivariant elliptic cohomology
when k � C. Thus our results in this paper, together with [67], provide a uni-
fied treatement of elliptic cohomology, K-theory and singular cohomology and their
comparisons with corresponding invariants defined via derived algebraic geometry.

Acknowledgements: I would like to thank Nicolò Sibilla for numerous discus-
sions we had on the topic of this paper, and for reading a preliminary draft. I deeply
thank Pavel Safronov for pointing out some issues with a previous version of Section

3.5.2 and Lemma 3.5.11 and for clarifying the role of BpGa. I thank Emanuele Pavia
and Bertrand Toën for important discussions on shifted tangent stacks, and Joost
Nuiten for discussions on exponential maps in analytic settings.

3.2. Preliminaries

For the preliminary section of this paper we refer to the Preliminaries section in
the paper [67]. For the reader’s convenience, we review some basic material.

3.2.1. Complexified Equivariant Elliptic Cohomology. Complexified equi-
variant elliptic cohomology was axiomatically defined by Ginzburg–Kapranov–Vasserot
in [25] and constructed by Grojnowski in [30]. We follow mostly the more recent
exposition found in [23] and [62]. Other reviews closer in style to the original can
be found in [2], [60] and [27]. We remark that Grojnowski’s paper only sketches the
construction, but the details were carried out by Roşu in [60].

Let X be a finite T -CW-complex, where T is real torus of rank n. Complex
T -equivariant elliptic cohomology of X is defined by first constructing a coherent
sheaf of Z2-graded algebras E llanT pXq over the complex manifold

ET :� E bZ Ť

and then viewing it as an algebraic coherent sheaf via standard GAGA arguments,
yielding

E llT pXq P QcohpET q
Z2
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The construction we review is as a Z2-periodic rather than Z2-graded coherent sheaf.
The two constructions are completely equivalent.

Grojnowski’s main insight is that, rationally, equivariant elliptic cohomology is
locally given by equivariant cohomology of loci in X which are fixed by some sub-
groups of T indexed by points of ET .

Definition 3.2.1. Let e be a point of ET . Let Speq be the set of subtori T 1 � T

such that the closure of e, teu, belongs to ET 1 � ET . Then we define

T peq :�
£

T 1PSpeq

T 1

Let

H`,�
T pXq �

à
iPZ

H��2i
T pX;Cq

be the sum-Z2-periodization of T -equivariant singular cohomology of X, with com-
plex coefficients. This is a module over the even T -equivariant cohomology of the
point

H`,0
T p�q � Cru1, . . . , uns

or equivalently a quasi-coherent sheaf over SpecH`,0
T p�q � tC � An

C, where tC is the
complexified Lie algebra of T . Let us call HT pXq this quasi-coherent sheaf.

Remark 3.2.2. Under our assumptions, HT pXq is a coherent sheaf on tC.

We denote by Han
T pXq the analytification, i.e. the coherent sheaf

Han
T pXq � HT pXq bOtC

Oan
tC

There is a quotient map

exp2 : tC Ñ ET

which is an isomorphism if restricted to sufficiently small analytic disks U in ET . Let
us call log2 the local inverse. Moreover, the group structure (we use multiplicative
notation) on ET induces translation maps

τe :ET Ñ ET

f ÞÑ fe

for all closed points e in ET . Then, for a closed point e P ET and a sufficiently small
analytic neighbourhood Ue of e, we set

E llanT pXq|Ue � pτe � exp
2q�Han

T pX
T peqq|log2pe�1Ueq

The algebraic coherent sheaf obtained from E llanT pXq via GAGA is denoted E llT pXq.
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The completions of Grojnowski’s sheaf over closed points e of ET can be expressed
in terms of the product-Z2-periodization of T -equivariant singular cohomology:

E llT pXqpe � H
±
,�

T pXT peqq � H`,�
T pXT peqq bOptCq OET ,pe

whereOET ,pe is a module overOptCq via the completed multiplication map pµe : ET,p1 Ñ
ET,pe and the identification ET,p1 � tC,p0.

3.2.2. Adelic descent. We now review adelic descent theory for n-dimensional
schemes. This theory was first introduced by Parshin [56] and Beilinson [11]. A
review of this theory can be found in [35] and [50]. Recently, Groechenig [28] made
a very relevant contribution to the theory. His paper is the main reference for the
short reminder that follows.

Let X be a Noetherian scheme. For two points x and y we say x ¥ y if y P txu.
We let |X|k denote the set of k-chains on X, i.e. sequences of k � 1 ordered points
px0 ¥ � � � ¥ xkq in X. If k � 0, we equivalently write |X| � |X|0. Finally, for a
subset T � |X|k, we call

xT :� t∆ P |X|k�1|px ¥ ∆q P T u

We are now ready to define sheaves of adèles on X for a choice of T � |X|k. The
adèles are the unique family of exact functors

AXpT,�q : QCohpXq Ñ ModOX

such that:

 AXpT,�q commutes with directed colimits;
 if F is coherent and k � 0, AXpT,Fq �

±
xPT limr¥0 j̃rxF ;

 if F is coherent and k ¡ 0, AXpT,Fq �
±

xP|X| limr¥0 AXpxT, j̃rxFq.
The notation we use is borrowed from [50]. j̃rx denotes the functor jrx�j

�
rx, where

jrx : SpecOX,x{m
r
x Ñ X

is the canonical immersion of an r-thickening of the point x. OX,x is the local ring
at x and mx its maximal ideal.

We denote by AXpT,Fq the global sections ΓpX,AXpT,Fqq, and call them the
groups of adèles.

The sets |X|k admit the structure of a simplicial set by defining face and de-
generacy maps by the operations of removing a point from a chain or doubling one
up respectively. Let this simplicial set be denoted by |X|. This implies that the
sheaves of adèles assemble into a cosimplicial sheaf of OX-modules AXpT,Fq, for
some T � |X|. In the case T � |X|, this cosimplicial sheaf is denoted by AXpFq,
and its global sections by A

XpFq. If F � OX , the notation we reserve is AX and A
X

respectively.



3.2. PRELIMINARIES 87

It is possible to consider the cosimplicial sheaf of “products of local adèles”

rns ÞÑ
¹

∆P|X|n

AXp∆,Fq

i.e. we choose T � t∆u and then take the product over all chains ∆. The content
of Theorem 2.4.1 in [35] is that the natural inclusion of the adèles into this product
respects the cosimplicial structures.

Adelic descent theory allows to reconstruct sheaves from their adelic descent data,
i.e. the data of the sheaves of adèles or their global sections. We state two theorems
on adelic descent for Noetherian n-dimensional schemes. The first one is due to
Groechenig and holds for perfect complexes in the context of small 8-categories.

Theorem 3.2.3 (Theorem 3.1 in [28]). Let X be a Noetherian scheme. Then
adelic reconstruction is an equivalence of symmetric monoidal 8-categories

PerfbpXq � TotPerfbpAXq

The following theorem due to Beilinson appears as Theorem 1.16 in [28]. This is
a classical theorem for the abelian category of quasi-coherent sheaves.

Theorem 3.2.4 (Beilinson [11]). Let F be a quasi-coherent sheaf on X. The
augmentation F Ñ AXpFq is a resolution of F by flasque OX-modules. In particular,
the totalization of the adèles TotA

XpFq computes the cohomology of F .

Remark 3.2.5. The arguments made by Groechenig in [28] hold without varia-
tions in the context of Z2-periodic sheaves. This is the context we are interested in,
as we are dealing with Z2-periodic cohomology theories.

3.2.3. Shifted tangent bundles and loop spaces. In this subsection we re-
call two fundamental objects in derived algebraic geometry that will be used in the
second part of this paper. For general references on derived algebraic geometry in the
context of E8-rings, see Lurie’s work [46], [45] and [43]. In the context of simplicial
commutative rings/cdgas the theory has been developed by Toën and Vezzosi in [75]
and [76]. For a short review, see the preliminaries section of [67].

Let X be a derived stack, and LX be its cotangent complex.

Definition 3.2.6. The shifted tangent stack of X is the derived stack

TXr�1s :� SpecOX
SymLXr1s

Definition 3.2.7. The derived loop space of X is the stack

LX :� Map
�
S1, X

�
In the above, Map p�,�q denotes the mapping stack as derived stacks.
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Remark 3.2.8. Since there is an equivalence S1 � �
²

�
²
� �, we have that

LX � X �X�X X

The algebra of (derived) global sections of the structure sheaf of S1 is formal over a
field of characteristic zero k. In particular, over k this algebra is isomorphic to krϵs,
where ϵ is a variable in cohomological degree one. In particular, the cosimplicial
spectrum in the sense of [73], Spec krϵs � SpecOpS1q, is the affinization of the
circle S1 (see also [51] for more on affinization and affine stacks). This allows us to
introduce a third object:

Definition 3.2.9. The unipotent loop space of X is the stack

LuX :� Map pSpec krϵs, Xq

If X is a scheme over k, Ben-Zvi and Nadler establish a Zariski codescent result
for the loop space, Lemma 4.2 in [8], which has the consequence that for schemes the
three objects described above coincide (Proposition 4.4 in [8]), as they do for affine
schemes. In particular, taking global sections gives a form of the HKR theorem, as
the global sections of the loop space compute Hochschild homology and the global
sections of the shifted tangent bundle compute the de Rham complex of X.

We will be interested in the shifted tangent bundle and in the derived loop space
of quotient stacks. In the following few lines, we review the case of classifying stacks.

Example 3.2.10. Let G be a smooth affine reductive algebraic group over k. The
shifted tangent bundle of BG, TBGr�1s, is given by

TBGr�1s � rg{Gs

where g is the Lie algebra of G and G acts on g via the adjoint representation. In
particular, the affinization of the shifted tangent is given by the GIT quotient, g{{G.
This example can be found in [8]. It depends on the fact that the cotangent complex
of BG, pulled back along a : Spec k Ñ BG, is given by:

a�LrSpec k{Gs � g_r�1s

where g_ is the dual to the Lie algebra g. The shift places g_ in degree zero, so that
in the end

SymLBGr1s � Sympg_qG

Example 3.2.11. Let G be a smooth affine reductive algebraic group over k. The
derived loop space of BG, LBG, is given by

LBG � rG{Gs

where G acts on itself via the adjoint action. In particular, the affinization of the
derived loop space is given by the GIT quotient, G{{G. This follows because the
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derived loop space of BG classifies G-local systems on the circle, which are given
exactly by rG{Gs. For more details, see [8].

Remark 3.2.12. Let G be a compact Lie group. By work of Atiyah–Bott [4] we
have:

SpecH`,0
G p�;Cq � gC{{GC

where gC and GC denote the complexifications of the Lie algebra of G and of G itself
respectively. Similarly, we have

SpecK0
Gp�q bZ C � GC{{GC

In particular, over the complex numbers,

AffpTBGr�1sq � SpecH`,0
Gc p�q

AffpLBGq � SpecK0
Gcp�q

Here, Gc is the maximal compact subgroup of G (G is the complexification of Gc).

3.3. The Adelic Decomposition of Equivariant Elliptic Cohomology

In this section we define k-rationalized T -equivariant elliptic cohomology, where k
is a Q-algebra, for finite T -CW complexes. The main point in the construction is the
localization theorem, which allows us to describe this object inductively via its adelic
descent data. When the torus is S1, the adelic descent data for k-rationalized equi-
variant elliptic cohomology can be described in terms of Borel equivariant singular
cohomology with coefficients in k.

3.3.1. The rank one case. We begin with a definition of k-rationalized S1-
equivariant elliptic cohomology of finite T -CW-complexes.

Definition 3.3.1. Let k be a Q-algebra and E be an elliptic curve over k, and let
X be a finite T � S1-CW-complex. We define k-rationalized T -equivariant elliptic
cohomology as the coherent sheaf E llT pXq on E such that:

 For a closed point e P E, E llT pX; kqpe � H`,�
T pXT peq; kq bOptq OE,pe;

 E llT pX; kqpη � H`,�pXT ; kq bk OE,η;
 E llT pX; kq{pη¡eq � H`,�pXT ; kq bk FracOE,pe.

The (reduced) cosimplicial structure is induced by the cosimplicial structure on the
adèles for E and pullback and change of group maps in equivariant singular coho-
mology:

 the map E llT pX; kqpη Ñ
±

eP|E|cl
E llT pX; kq{pη¡eq is given by the identity ten-

sored with the coface map OE,η Ñ FracOE,pe of the adèles of OE;
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 the map
±

eP|E|cl
E llT pX; kqpe Ñ

±
eP|E|cl

E llT pX; kq{pη¡eq is given by the prod-

uct of tensor products of pullback maps in cohomology along inclusions XT
ãÑ

XT peq and coface maps OE,pe Ñ FracOE,pe of the adèles of OE.

In the above definition, |E|cl denotes the set of closed points of E.

Remark 3.3.2. In the above definition we only describe the reduced cosimplicial
structure of the adèles, and not the full cosimplicial structure. This is enough. See
for example [50] for a description of the reduced adèles in the one dimensional case,
and of the relevant (reduced) cosimplicial structure.

Proposition 3.3.3. Let X be a finite T � S1-CW-complex. Let E llT pXq be
Grojnowski’s T -equivariant elliptic cohomology. The adelic descent data for E llT pXq
is

 For a closed point e P E, E llT pXqpe � H`,�
T pXT peq;Cq bOptq OE,pe;

 E llT pXqpη � H`,�pXT ;Cq bk OE,η;
 E llT pXq{pη¡eq � H`,�pXT ;Cq bk FracOE,pe.

The reduced cosimplicial structure is given by the coface maps for the adèles of OE

and pullback maps in singular cohomology.

Proof. The case of closed points is explained in [23]. For the generic point, the
localization theorem yields

E llT pXqpη �
�
c�ηH

`,�pXT pηq;Cq
�
pη � H`,�pXT ;Cq bk OE,η

For the chain pη ¡ eq, by definition we have

E llT pXq{pη¡eq � AEppeq, j̃ηE llT pXqq

hence by localization

AEppeq, j̃ηE llT pXqq � H`,�pXT ;Cq bk FracOE,pe

We now describe the cosimplicial structure. The map

AEppηq, E llS1pXqq Ñ AEppη ¡ eq, E llS1pXqq

is given by the identity on H`,�pXT q tensored with the coface map relative to the
adèles for the structure sheaf of E. The map

AEppeq, E llS1pXqq Ñ AEppη ¡ eq, E llS1pXqq

is given by the pullback along the inclusion XT peq
ãÑ X in singular cohomology

tensored with the coface map as in the case above. □

The above proposition shows that, if k � C, Definition 3.3.1 recovers S1-equivariant
elliptic cohomology in the sense of Grojnowski:
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Corollary 3.3.4. Let X be a finite S1-CW-complex. Then

E llS1pX;Cq � E llS1pXq

We now construct pullback and change of group maps in S1-equivariant elliptic
cohomology with coefficients in k.

Lemma 3.3.5. A T -equivariant map f : X Ñ Y induces a pullback map

f� : E llS1pY ; kq Ñ E llS1pX; kq

Proof. We can give the adelic decomposition of f� as follows. For a reduced
chain ∆ on E, we declare

AEp∆, f
�q : H`,�

T pY T p∆q; kq bk OE,η Ñ H`,�
T pXT p∆q; kq bk OE,η

to be the tensor product of the pullback map H`,�
T pY T p∆q; kq Ñ H`,�

T pXT p∆q; kq in
equivariant cohomology relative to the map fT p∆q : XT p∆q Ñ Y T p∆q. Here we denote
by T p∆q the subgroup T pxq, where x is the maximal point in ∆.

The coface maps in Definition 3.3.1 are defined to be the tensor product of pull-
back maps in singular cohomology and the coface maps for the adèles for E. In
particular, the maps AEp∆, f

�q assemble into a cosimplicial map

A
Epf

�q : A
EpE llS1pY ; kqq Ñ A

EpE llS1pX; kqq

as pullbacks commute with pullbacks. □

Lemma 3.3.6. Let X be a finite S1-CW-complex, and 1 : � Ñ S1 be the identity
of S1. The map 1 induces a map of sheaves on E

E llS1pX; kq Ñ p1Eq�H
`,�pX; kq

where 1E : E1 � Spec k Ñ E � ES1 is the identity section of E.

Proof. By adjunction, we are allowed to describe the map

p1Eq
�E llS1pX; kq Ñ H`,�pX; kq

instead. The left hand side is the fiber of k-rationalized equivariant elliptic cohomol-
ogy over the identity section of E, and is given exactly by H`,�pX; kq. Hence, the
map is an isomorphism. □

Lemma 3.3.7. Let S1 Ñ S1{S1 � � be the quotient map, and X be a finite
CW-complex. This map induces a map of sheaves on E

H`,�pX; kq Ñ c�E llS1pX; kq

where c : E Ñ Spec k is the structure map of E. In the above, S1 acts on X through
the homomorphism S1 Ñ S1{S1, i.e. trivially.
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Proof. By adjunction, we can equivalently describe the map

c�H`,�pX; kq Ñ E llS1pX; kq

This map is actually an isomorphism. Indeed, as S1 acts onX via the homomorphism
S1 Ñ S1{S1, the equivariant elliptic cohomology E llS1pX; kq is the tensor product

H`,�pX; kq bk OE

which is exactly the pullback of H`,�pX; kq along the structure map c : E Ñ Spec k.
□

3.3.2. The higher rank case. We define E llT pX; kq for higher rank tori via
induction on the rank of the torus T . This allows us to avoid describing the adèles
with respect to a chain ∆ � px, x1, . . . , xpq in terms of singular cohomology whenever
xp is not closed. If xp is closed it is possible to give such a description.

Definition 3.3.8. Let k be a Q-algebra and E be an elliptic curve over k, T
be a real torus of rank n and X be a finite T -CW-complex. The k-rationalized T -
equivariant elliptic cohomology of X is the coherent sheaf E llT pX; kq on ET induc-
tively defined by the following adelic descent data:

 given a reduced chain ∆ � px, x1, . . . , xpq,
AET

p∆, E llT pX; kqq � c�xE llT 1pxqpX
T pxq; kq bOET

OET ,p∆;
 given a reduced chain ∆ � px, x1, . . . , xpq, if xp is closed,
AET

p∆, E llT pX; kqq � H`,�
T pXT pxq; kq bOptq OET ,p∆.

Here E llT 1pxqpX
T pxq; kq is k-rationalized T 1pxq-equivariant elliptic cohomology of XT pxq.

The cosimplicial structure is the following:

 if the chain ∆ � px, x1, . . . , xpq is such that xp is closed we use Proposition
3.2.2 in [35], so that the relevant coface maps for removing a point of the
chain are given by tensor products of the corresponding coface maps for
the adèles for the structure sheaf of ET and pullback maps in equivariant
cohomology;

 If xp is not closed, the coface maps are tensor products of the corresponding
maps of the adèles of OET

and pullback and change of group maps in equi-
variant elliptic cohomology with respect to tori of rank strictly smaller than
rkpT q.

Remark 3.3.9. As in Definition 3.3.1, we give only the reduced cosimplicial
structure and deal with reduced chains. Moreover, as x is not a closed point, the
torus T 1pxq is of rank strictly smaller than the rank of T .

Remark 3.3.10. If we remove a point xi, i P t1, . . . , p� 1u, the pullback map in
equivariant cohomology is the identity, since the point x is not removed. This map
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differs from the identity only when we remove x from ∆. Similarly, if we remove xp
from ∆, we need to use the presentation in terms of equivariant elliptic cohomology
for smaller rank tori when describing the associated coface map, as xp�1 is not closed.

To ensure that Definition 3.3.8 is well posed, we need to produce pullback and
restriction maps inductively.

Lemma 3.3.11. Let f : X Ñ Y be a T -equivariant map, where T is a torus of
rank n. Assume that k-rationalized equivariant elliptic cohomology has pullbacks with
respect to T̃ -equivariant maps, where T̃ is any torus of rank strictly smaller than n.
Moreover, assume that change of group maps with respect to maps of tori exist in
k-rationalized T̃ -equivariant elliptic cohomology. Then f induces a pullback map

f� : E llT pY ; kq Ñ E llT pX; kq

in k-rationalized T -equivariant elliptic cohomology.

Proof. We construct these maps using the adelic decomposition described in
Definition 3.3.8. In the case xp is not closed, we use pullback maps for equivari-
ant elliptic cohomology relative to smaller rank tori, which exist by the inductive
hypothesis. Indeed, the maps we need to construct is

AET
p∆, E llT pY ; kqq Ñ AET

p∆, E llT pX; kqq

for all reduced chains ∆ � px, x1, . . . , xpq, respecting the reduced cosimplicial struc-
ture. The map above is constructed then as the tensor product

c�xE llT 1pxqpX
T pxq; kq bOET

OET ,p∆ Ñ c�xE llT 1pxqpY
T pxq; kq bOET

OET ,p∆

of the pullback along fT pxq : XT pxq Ñ Y T pxq with the identity of OET ,p∆. If xp is
closed, we equivalently use the presentation of the adèles in terms of equivariant
cohomology. In this case, the map between the adèles becomes the tensor product

H`,�
T pXT pxq; kq bOptq OET ,p∆ Ñ H`,�

T pY T pxq; kq bOptq OET ,p∆

of the pullback in equivariant cohomology along fT pxq : XT pxq Ñ Y T pxq with the
identity of OET ,p∆. The commutativity with the cosimplicial structure is clear, as
pullbacks commute with pullbacks. □

The proof of the next lemma works very similarly to that of the previous lemma.

Lemma 3.3.12. Let T1 Ñ T2 be a group homomorphism, and T1 and T2 be tori of
rank smaller or equal to n. Assume that k-rationalized equivariant elliptic cohomology
has pullbacks with respect to T̃ -equivariant maps, where T̃ is any torus of rank strictly
smaller than n. Moreover, assume that change of group maps with respect to maps of
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tori exist in k-rationalized T̃ -equivariant elliptic cohomology. Then we have a change
of group map

E llT2pY ; kq Ñ c1,2�E llT1pX; kq

In the above, c1,2 is the projection map

ET1 Ñ ET2

Proof. As in the proof of Lemma 3.3.11, the relevant map between the adèles
relative to the reeduced chain ∆ is given by a tensor product of the identity of
the adèle OET ,p∆ with the change of group map in either k-rationalized equivariant
elliptic cohomology with respect to tori of smaller rank if xp is not closed or in
singular cohomology for xp closed. □

As a consequence of the two lemmas 3.3.11 and 3.3.12, we obtain that k-rationalized
T -equivariant elliptic cohomology has pullbacks with respect to T -equivariant maps
and change of group maps with respect to homomorphisms of tori.

Corollary 3.3.13. Let f : X Ñ Y be a T -equivariant map. Then f induces a
pullback map

f� : E llT pY ; kq Ñ E llT pX; kq

Let T1 Ñ T2 be a group homomorphism, and T1 and T2 be tori. We have an induced
change of group map

E llT2pY ; kq Ñ c1,2�E llT1pX; kq

where c1,2 is the projection map
ET1 Ñ ET2

We now observe that, if k � C, our definition recovers Grojnowski’s. To do so,
we need to compute the adèles of Grojnowski’s sheaf first.

Lemma 3.3.14. Given a chain ∆ � px, x1, . . . , xpq we have that

AET
p∆, E llT pXqq � c�xE llT 1pxqpX

T pxqq bOET
OET ,p∆

Proof. By definition,

AET
p∆, E llT pXqq � lim

r¥0
AET

px∆, j̃rxE llT pXqq

The localization theorem dictates that

j̃rxE llT pXq � j̃rxE llT pXT pxqq � j̃rxc
�
xE llT 1pxqpX

T pxqq

hence
AET

p∆, E llT pXqq � lim
r¥0

AET
px∆, j̃rxc

�
xE llT 1pxqpX

T pxqqq

� AET
p∆, c�xE llT 1pxqpX

T pxqqq

□
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Whenever the chain ∆ � px, x1, . . . , xpq is such that xp is closed, it is easy to
obtain a description of the adèles in terms of singular cohomology:

Lemma 3.3.15. Given a chain ∆ � px, x1, . . . , xpq with xp closed, we have that

AET
p∆, E llT pXqq � H`,�

T pXT pxqq bOptq OET ,p∆

Proof. This is a simple application of Proposition 3.2.1 from [35], together with
the description of the adèles at closed points. The Cxi operations do not affect the
singular cohomology modules as they are finitely presented over H`

T , since this ring
is Noetherian and X is a finite T -CW-complex. We can replace the equivariant
cohomology of the locus fixed by T pxq with the equivariant cohomology of the locus
fixed by T pxpq by applying the localization formula. □

The two Lemmas 3.3.14 and 3.3.15 allow us to deduce immediately the following
Corollary:

Corollary 3.3.16. Let X be a finite T -CW-complex. Then

E llT pX;Cq � E llT pXq

Proof. Lemmas 3.3.14 and 3.3.15 give us a description of the adèles of Gro-
jnowski’s equivariant elliptic cohomology relative to reduced chains ∆. The cosim-
plicial structure corresponds exactly to the one described in Definition 3.3.8, hence
we obtain an isomorphism of the “product of local adèles”¹

∆P|ET |

AET
p∆, E llT pX;Cqq �

¹
∆P|ET |

AET
p∆, E llT pXqq

As the adèles embed in the product of local adèles as a cosimplicial subcomplex, we
obtain the isomorphism

E llT pX;Cq � E llT pXq
□

3.3.3. Extension to compact Lie groups. In this subsection we extend the
construction from tori to compact Lie groups. There is a canonical way to do so, and
is explained in [23]. Let G be a compact Lie group, and call T its maximal torus
and W the Weyl group. Then call

EG � ET {W

Definition 3.3.17. The k-rationalized G-equivariant elliptic cohomology of a
finite G-CW-complex X is the coherent sheaf of W -invariants on EG:

E llGpX; kq :� E llT pX; kqW
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3.3.4. Cochain-level variant. The same construction we developed in this sec-
tion can be adapted to a cochain-level variant. The key to this construction is the
formality of the algebra of cochains on the Borel quotient �{{T . Let

C`,�
T pXq :� C`,�pX{{T q

denote the sum-Z2-periodization of the cochains on the Borel construction X{{T .
The algebra C`,0

T p�q is formal, in particular C`,0
T p�q � Optq. Hence we can redefine

the adelic descent data given in Definition 3.3.8 by replacing the cohomology of
XT pxq{{T with its cochains. The same inductive procedure yields, by an application
of Groechenig’s Theorem 3.1 in [28], an object in PerfpET q (as X is a finite T -CW-
complex), that we denote by

CE llT pXq
If the base field k is taken to be the field of the complex numbers, this object can be
equivalently constructed following Grojnowski’s methodology. See the Preliminaries
in [67] for the details.

3.4. The Adelic Decomposition for Equivariant Cohomology and
K-theory

In this section we study the adelic description of equivariant singular cohomology
and equivariant K-theory, summarized in the following two lemmas. These lemmas
will play a role in section 3.5, where we construct a periodic cyclic homology model
for these two cohomology theories.

3.4.1. Equivariant cohomology. We work over a field k of characteristic zero.
Throughout this section, we denote by

HT pXq

the quasi-coherent sheaf on

talg � A1
k bZ Ť

whose global sections are

Γptalg,H`,�
T pXqq � HT pX; kq

The adelic decomposition of singular cohomology is obtained as a simple application
of the localization formula and the observation stated in Groechenig’s [28] after
Remark 1.9: if X is an affine Noetherian scheme and F a quasi-coherent sheaf,
An
XpFq � FpXq bOXpXq An

X .
First we need to introduce the notion of subgroup of T associated to an element

of the Lie algebra t.
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Definition 3.4.1. Let ξ P talg be a point of talg. We define

T pξq ¤ T

to be the smallest subgroup of T such that the closure of the point ξ, tξu, is contained
in

talgT pξq :� A1
k bZ Ť pξq

where Ť pξq is the cocharacter lattice of T pξq.

Lemma 3.4.2. Let X be a finite T -CW-complex and let ∆ � pξ ¡ ξ1 ¡ � � � ¡ ξkq
be a chain of length k on tC. Then

Atalg p∆,HT pXqq � H`
T pX

T pξqq bOptalgq Atalg p∆,Otalgq

Proof. Groechenig’s observation yields

Atalg p∆,HT pXqq � H`
T pXq bOptalgq Atalg p∆,Otalgq

and the localization theorem implies that the pullback along the inclusionXT pξq
ãÑ X

becomes an isomorphism after tensoring with the adèles Atalgp∆,Otalgq over the base
ring Optalgq. □

3.4.2. Equivariant K-theory. The adelic decomposition of equivariant K-theory
can be proved as in the singular cohomology case, as long as the chain starts from a
closed point. We work over a field k of characteristic zero. In particular, we denote
by

KT pXq

the quasi-coherent sheaf on

T alg :� Gm,k bZ Ť

with global sections given by

ΓpT alg,KT pXqq � K�
T pXq bZ k

Similarly to the equivariant cohomology case, we need to introduce the notion of
subgroup of T associated to an element of T .

Definition 3.4.3. Let x P T alg be a point of T alg. We define

T pxq ¤ T

to be the smallest subgroup of T such that the closure txu of the point x is contained
in

T pxqalg � Gm bZ Ť pxq

where Ť pxq is the cocharacter lattice of T pxq.
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Lemma 3.4.4. Let X be a finite T -CW-complex and let ∆ � px ¡ x1 ¡ � � � ¡ xkq
be a chain of length k on TC, such that xk is a closed point. Then

ATC p∆,KT pXqq � H`
T pX

T pxqq bOptq ATC p∆,OTCq

Proof. We apply Proposition 3.2.1 in [35] to the formula computing the com-
pletion of equivariant K-theory at a closed point:

KT pXqxxk � H
±
,�

T pXT pxkqq � H`,�
T pXT pxkqq bOptq OT,xxk

where we identified the completions Ot,p0 � OT,p1 � OT,xxk (the former isomorphism
is the exponential while the latter follows from the group structure on T ). The
cohomology groups HT pX

T pxqq are finitely presented over HpBT q since X is a finite
T -CW-complex. The final statement follows from the localization formula. □

We observe at this point that Lemma 3.4.4 can be used as input data for an
inductive construction akin to the one explained in Section 3.3 in the elliptic case.
All the proofs of Lemmas 3.3.5, 3.3.6, 3.3.7, 3.3.11, 3.3.12 and Corollary 3.3.13
go through almost unchanged — the role of E is now played by Gm — thus the
same exact construction produces k-rationalized equivariant K-theory out of singular
cohomology and induction. Indeed, we could propose the following

Definition 3.4.5. Let k be a Q-algebra and E be an elliptic curve over k, T be
a real torus of rank n and X be a finite T -CW-complex. The adelic k-rationalized
T -equivariant K-theory of X

Kad
T pX; kq

is the coherent sheaf KT pX; kq on T alg inductively defined by the following adelic
descent data:

 given a reduced chain ∆ � px, x1, . . . , xpq,
ATalgp∆,Kad

T pX; kqq � c�xKad
T 1pxqpX

T pxq; kq bO
Talg

OTalg ,p∆;
 given a reduced chain ∆ � px, x1, . . . , xpq, if xp is closed,
ATalgp∆,Kad

T pX; kqq � H`,�
T pXT pxq; kq bOptq OTalg ,p∆.

The cosimplicial structure is the following:

 if the chain ∆ � px, x1, . . . , xpq is such that xp is closed, the relevant coface
maps for removing a point of the chain are given by tensor products of the
corresponding coface maps for the adèles for the structure sheaf of T alg and
pullback maps in equivariant cohomology;

 If xp is not closed, the coface maps are tensor products of the correspond-
ing maps of the adèles of OTalg and pullback and change of group maps in
adelic k-rationalized equivariant K-theory with respect to tori of rank strictly
smaller than rkpT q.
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This definition is well-posed, as the rank one case can be treated as in the case
of elliptic cohomology and all the lemmas needed hold, as discussed above. Then
Lemma 3.4.4 proves the following

Theorem 3.4.6. Let X be a finite T -CW-complex, for T a real torus. Then

Kad
T pX; kq � KT pXq

as Z2-periodic sheaves on T alg.

Proof. This proof goes the same as the proof of Corollary 3.3.16. Lemma 3.4.4
gives an equivalence¹

∆P|Talg |

ATalgp∆, E llT pX;Cqq �
¹

∆P|Talg |

ATalgp∆, E llT pXqq

which gives the desired isomorphism. □

Theorem 3.4.6 is an algebraic incarnation of Roşu’s theorem [61]. Indeed, Roşu
proves that it is possible to construct the analytic extension of complexified equivari-
ant K-theory only in terms of singular cohomology of fixed loci in X. Our Theorem
3.4.6 proves his result without the need to extend scalars by holomorphic functions,
and moreover holds over all fields k of characteristic zero. In particular, it answers
the question posed by Roşu himself of the existence of such an algebraic construction.

Remark 3.4.7. In particular, if G is a compact Lie group, we could define adelic
G-equivariant K-theory, Kad

G pX; kq, as the Weyl invariants of the adelic T -equivariant
K-theory, for a maximal torus T . Then it would follow immediately that Kad

G pX; kq �
KGpXq.

3.5. Geometric presentations for Equivariant Cohomology and K-theory

In this section we provide a presentation of equivariant K-theory and equivari-
ant singular cohomology of the analytification of a smooth algebraic variety via
Hochschild homology counterparts, in terms of objects in derived algebraic geome-
try. This will be a byproduct of the adelic decomposition for equivariant cohomology
and K-theory. A similar presentation appears in [67] in the context of rationalized
equivariant elliptic cohomology. The K-theory case has been analysed by Halpern-
Leistner–Pomerleano in [31]; their proof does not make use of adelic descent tech-
niques but rather of Blanc’s topological K-theory of a dg-category over C [12]. They
prove the equivalence for smooth quasi-projective schemes acted on by a reductive
group so that the quotient admits a semi-complete KN stratification, Definition 1.1
of [31]. Our proof is for tori, rather than general reductive groups, but we do not
require quasi-projectivity and the existence of a semi-complete KN stratification.
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Moreover, our proof is sufficiently compact, and uses more elementary mathematics
compared to Halpern-Leistner and Pomerleano’s.

To the best of the author’s knowledge, the analogous statement for equivariant
cohomology — Theorem 3.5.14 — does not appear in the literature in this form, but
is well-known. In particular, a version of the theorem for general Artin stacks follows
immediately from work of Calaque–Pantev–Toën–Vaquié–Vezzosi [16].

Remark 3.5.1. The construction appearing in [67] for rationalized equivariant
elliptic cohomology can be compared, over any field k of characteristic zero, with a de
Rham variant of the adelic construction of equivariant elliptic cohomology in Section
3.3. In particular, the main result in [67], Theorem 6.10, would extend over a general
field k of characteristic zero to an isomorphism with such a de Rham variant.

Throughout this section we work over a fixed base field k of characteristic 0.

3.5.1. Equivariant K-theory. In this subsection we prove a small variation
of Halpern-Leistner–Pomerleano’s Theorem 2.17 in [31]. They prove that, if X is
a smooth quasi-projective scheme acted on by an algebraic group G so that rX{Gs
admits a semi-complete KN stratification (see Definition 1.1 in [31]) there is an
equivalence

HPpPerfrX{Gsq � KtopprX{Gsq b C
between the periodic cyclic homology of rX{Gs and Blanc’s topological K-theory of
the dg-category PerfprX{Gsq.

The theorem we prove in this section is the following:

Theorem 3.5.2. Let X be a smooth variety over C acted on by an algebraic torus
T . There is an equivalence of Z2-periodic coherent sheaves on T

π�HPprX{T sq � KT anpXanq

which is natural in X with respect to T -equivariant maps.

In the statement above, HPprX{T sq denotes the Z2-periodic quasi-coherent com-
plex on

T � SpecHP0prSpecC{T sq
associated to periodic cyclic homology, viewed as a module over HP0prSpecC{T sq.
Similarly, KT anpXanq is the Z2-periodic quasi-coherent sheaf on

T � SpecK0
T anp�q bZ C

associated to the C-rationalized topological K-theory KT anpXanq viewed as a module
over K0

T anp�q bZ C.
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Remark 3.5.3. Theorem 3.5.2 does not require any assumption on quasi-projectivity
and the existence of a semi-complete KN stratification. Moreover, the proof is stream-
lined and elementary compared to that of Theorem 2.17 in [31]. One consequence of
Theorem 3.5.2 is that it provides more examples in which the lattice conjecture holds.
To extend to Theorem 3.5.2 to reductive groups, we need to keep track of the Weyl
group action. This will appear in a future version of this paper.

Remark 3.5.4. The assumption that X is a variety is enough to ensure that
HPprX{T sq belongs to CohpT q. Indeed, it is enough that X is a quasi-compact
algebraic space (see the discussion in [17] in the proof of Corollary 4.3.21).

Remark 3.5.5. Let X be a variety acted on by an algebraic torus T . Let

q : LrX{T s Ñ T

be the structure map. We define:

HHprX{T s :� q�OLrX{T s

The S1-action on the loop space equips this quasi-coherent sheaf with a lift from
QCohpT q to QCohpT qS

1
(where S1 acts trivially on T ). HPprX{T sq is equivalently

the image of HHprX{T sq with its S1-action in the Z2-periodic category of quasi-
coherent sheaves

QCohpT qZ2

defined as the Tate construction of QCohpT q with respect to a trivial action of S1 on
T . Such procedure has been defined by Preygel in [59]. For small k-linear categories
with an action of S1, it amounts to a base change of the S1-fixed locus from krruss to
kppuqq. For presentable categories there is an additional regularization step involving
t-structures, as explained in [59].

The arguments we produce to prove Theorem 3.5.2 are parallel to the ones ap-
pearing in the proof of Proposition 6.8 and Theorem 6.9 in [67].

Lemma 3.5.6. Let X be a smooth variety over C acted on by an algebraic torus
T of rank 1. There is an equivalence of Z2-periodic coherent sheaves

π�HPprX{T sq � KT anpXanq

which is natural in X with respect to T -equivariant maps.

Proof. The adelic decomposition for the sheaf of rationalized equivariant K-
theory has been computed in Section 3.4. In the case of periodic cyclic homology,
the adelic decomposition follows from Chen’s Theorem 4.3.2 in [17]:

π�HPprX{T sqpz � H`,�
T an pt0X

T pzq,anq bOptq OT,pz
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and Chen’s localization theorem for the loop space, Theorem 3.2.12 in [17]:

π�HPprX{T sqpη � H`,�pt0X
T,anq bOptq OT,η

The isomorphisms satisfy the compatibility conditions necessary to promote them to
isomorphisms of cosimplicial groups. Indeed, the diagram

π�HPprX{T sqpz //

��

H`,�
dR,T pt0pX

T pzqqanq bOptq OT,pz

��

π�HPpt0pX
T qq bk FracOT,pz // H`,�

dR pt0pX
T qanq bk FracOT,pz

commutes as a consequence of the compatibility of Chen and Ben-Zvi–Nadler’s HKR
theorems 4.3.2 in[17] and Proposition 4.4 in [8] with pullbacks, and the diagram

π�HPprX{T sqη //

��

H`,�
dR pt0pX

T qanq bOptq OT,η

��

π�HPpt0pX
T qq bk FracOT,pz // H`,�

dR pt0pX
T qanq bk FracOT,pz

commutes as the bottom isomorphism is the tensor product of the top one with OT,pz.
Naturality of the isomorphism is a consequence of the compatibility with T -

equivariant maps of the HKR isomorphisms provided by Theorem 4.3.2 in [17] and
Proposition 4.4 in [8]. □

Theorem 3.5.2 follows from Lemma 3.5.6 applying induction on the rank of T .

Proof of Theorem 3.5.2. We first focus on the analysis of chains ∆ � px ¡
x1 ¡ � � � ¡ xpq where xp is a closed point of T . In this case, we have an explicit
description of the adelic groups in terms of singular cohomology for both HP and K.
An application of Huber’s Proposition 3.2.1 in [35] to Theorem 4.3.2 from Chen’s
[17] yields

AT p∆,HPprX{T sqq � H`,�
T an pt0pX

T pxqqanq bOptq OT,∆

In the above, the subgroup T pxq is determined according to Definition 3.5.9. We
also applied the localization theorem (Theorem 3.2.12 in [17]) to further restrict
from t0X

T pxpq to t0X
T pxq. Since X is a variety over C, the equivariant cohomology of

the fixed loci is always finitely generated as a module over the equivariant cohomology
of the point.

For K-theory, Lemma 3.4.4 gives the same formula:

AT p∆,KT anpXanqq � H`,�
T an pt0pX

T pxqqanq bOptq OT,∆
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The cosimplicial structure is induced by pullback maps in equivariant cohomology
and the coface/codegeneracy maps for the cosimplicial adelic group of OT , in both
cases.

We now assume xp is not a closed point. In this situation, we apply induction on
the rank of the torus T . Since T is affine, we have decompositions

AT p∆,HPprX{T sqq � HPprt0X
T pxq{T sq bOpT q OT,∆

AT p∆,KT anpXanqq � KT anpt0pX
T pxqqanqq bOpT q OT,∆

where we are allowed to restrict to the locus fixed by T pxq by the localization theorem
respectively for the loop space (Theorem 3.1.12 in [17]) and in equivariant K-theory.

Observing that T pxq acts trivially on t0X
T pxq, we can reduce the equivariance

group to T 1pxq:

HPprt0X
T pxq{T sq � HPprt0X

T pxq{T 1pxqsq bOpT 1pxqq OpT q

KT anpt0pX
T pxqqanqq � KT 1pxqanpt0pX

T pxqqanqq bOpT 1pxqq OpT q
Then the inductive hypothesis produces an equivalence of the adelic groups relative
to the chain ∆. The cosimplicial structure is controlled by the coface/codegeneracy
maps of the adelic group relative to OT , hence the isomorphism produced above is
compatible with the cosimplicial maps induced by removing points xi, i P t1, . . . , pu,
from the chain ∆. The only coface map that needs to be analysed separately is the
one relative to removing the point x from the chain ∆. In this case, naturality with
respect to X of the equivalence (which is assumed inductively) allows us to conclude
the compatibility. □

In their paper [31], Halpern-Leistner and Pomerleano remark that their theorem
2.17 follows from a chain level identification. The same is true in our case. Indeed, we
can produce a cochain-level version of rationalized equivariant K-theory via adelic
descent, using the same techniques that we use to define rationalized equivariant
elliptic cohomology in Section 3.3. Let us call this object CKT pXq. We impose its
adèles at a chain ∆ � px, x1, . . . , xpq with xp closed to be given by

AT p∆, CKT pXqq � C`,�
T pXT pxqq bOptq AT p∆,OT q

where C`,�
T pXT pxqq are the Z2-periodized T -equivariant cochains on XT pxq with co-

efficients in k, i.e. the Z2-periodization of the cochains on the Borel construction
XT pxq{{T . The cochains C`,�

T pXT pxqq are a module over C`,0
T p�q, which is formal,

hence C`,0
T p�q � Optq. The perfect complex CKT pXq is then constructed following

the same inductive techniques in Section 3.3.
The same proof of Theorem 3.5.2 then proves a cochain-level variant:
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Theorem 3.5.7. Let X be a smooth variety over C acted on by an algebraic torus
T . There is an equivalence of objects in PerfpT q

HPprX{T sq � CKT anpXanq

which is natural in X with respect to T -equivariant maps.

Remark 3.5.8. The hypothesis that X is a variety is sufficient to have that
CKT pX

anq is in PerfpT q. Indeed, it belongs to CohpT q as the analytification of a
variety has the same homotopy type of a finite CW-complex, and T is smooth and
Noetherian.

3.5.2. Equivariant cohomology. In this subsection we prove an analogue of
Theorem 3.5.2 for equivariant singular cohomology, using the same technique as in
the K-theory case. The equivalence at the level of global sections is a consequence of
work of Calaque–Pantev–Toën–Vaquié–Vezzosi [16]. Their work indeed proves the
statement in far grater generality, for any Artin stack in characteristic zero. Our
proof is tailored to quotient stacks, and for the statement at the level of sheaves.
Nevertheless, since the base space g{{G is an affine scheme, we do not get a more
general theorem with our techniques. We include these results here for completeness.
In particular, this allows us to observe that our techniques — based on adelic descent
and induction — adapt to treat equivariant cohomology as well as equivariant K-
theory and equivariant elliptic cohomology, that is discussed in the paper [67].

First we define the relevant notion of Hochschild homology in this context.

Definition 3.5.9. Let X be a derived stack. We define the linearized Hochschild
homology of X as the global sections

HHlinpX q :� OpTX r�1sq
as an object of Modk. Let X be a scheme acted on by a reductive algebraic group G.
Let

r : TrX{Gsr�1s Ñ g{{G

be the structure map. We define:

HHlinprX{Gsq :� r�OTrX{Gsr�1s

Remark 3.5.10. The de Rham complex of X , DRpX q, is a canonical structure of
graded mixed complex on the linearized Hochschild homology of X . This is explained
in [54].

The next step is defining a periodic cyclic version of linearized Hochschild ho-

mology. The first ingredient we need is a global BpGa-action on the shifted tangent
stack

TrX{Gsr�1s
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This action will be used to perform a Tate construction similar to the procedure
used in [67] in the context of equivariant elliptic cohomology, where the relevant

action is that of the elliptic curve E. In our setting, the BpGa-action comes from the
identification

TX r�1s � Map
�
BpGa,X

	
for any derived stack X over k. This equivalence is explained in [52].

Lemma 3.5.11. Let G be a smooth reductive algebraic group over k. The BpGa-
action on

TBGr�1s

induces a trivial action of BpGa on the affinization g{{G.

Proof. This is a consequence of the fact that any differential p-form on BG over
a field of characteristic zero is canonically closed, which implies that the de Rham

differential acts trivially. This fact is explained in Section 5 of [74]. The BpGa-action
on TBGr�1s induces a mixed structure on the global sections

OpTBGr�1sq
as there is an identification

QCohpBBpGaq � QCohpBBGaq � QCohpBS1q

which can be found in [58]. In particular, the triviality of the de Rham differential
implies that the mixed structure on OpTBGr�1sq is trivial, which in turn induces a

trivial BpGa-action on
SpecOpTBGr�1sq � g{{G

□

We follow the same steps as in [67]: Lemma 3.5.11 allows us to promote the

action of BpGa on the shifted tangent stack

TrX{Gsr�1s

to an action relative to the base AffpTBGr�1sq � g{{G of the group stack BpGa�g{{G
as an object of the comma 8-category

pdStkq{g{{G

This action induces on the quasi-coherent complex

HHlinprX{Gsq

the structure of a comodule over the Hopf algebra object

π�OBpGa�g{{G
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internal to the 8-category QCohpg{{Gq, for π : BpGa � g{{G Ñ g{{G the canonical
projection. This corresponds to a lift

HHlinprX{Gsq P QCohpg{{GqS
1

Definition 3.5.12. Let X be a scheme acted on by a reductive smooth algebraic
group G. The linearized periodic cyclic homology of rX{Gs

HP linprX{Gsq

is the image of HHlinprX{Gsq, as an object of QCohpg{{GqS
1
, inside the Z2-periodic

8-category QCohpg{{GqZ2.

The Z2-periodic 8-category QCohpg{{GqZ2 is obtained following Preygel’s defi-
nition of Tate construction for 8-categories described in [59], equipping g{{G with
a trivial S1-action.

As a preliminary to the theorem, we need a localization formula for the shifted
tangent stack of a quotient. We give an analytic-topology version of the localization
theorem.

Proposition 3.5.13. Let X be a smooth variety over C acted on by an algebraic
torus T . For any closed point ξ of t there exists a analytic open neighbourhood Uξ of
ξ in t such that the map induced by the inclusion t0X

T pξq
ãÑ X

Trt0XT pξq{T sr�1s
an �t Uξ Ñ TrX{T sr�1s

an �t Uξ

is an equivalence of derived analytic stacks.

Proof. This fact is a simple consequence of the localization formula for the loop
space, Theorem 3.1.12 of [17], and the analytic non-equivariant Chern character.
Localization for the loop space LrX{T s implies that, for a closed point z P T , there
is an analytic neighbourhood Uz of z such that the map

Lrt0XT pzq{T san �T an Uz Ñ LrX{T san �T an Uz

induced by the inclusion t0X
T pzq

ãÑ X is an equivalence of analytic derived stacks.
We choose a closed point z of T such that T pzq � T pξq. Such a point always exists,
and in particular is contained in a small analytic neighbourhood of exppξq. By
localization for the loop space, there is an analytic neighbourhood Uz of z such that

Lrt0XT pzq{T san �T an Uz Ñ LrX{T san �T an Uz

is an equivalence. We can assume Uz small enough that the preimage via exp is a
disjoint union of analytic disks in t. Call Uξ the only such disk containing ξ. Then,
the exponential map restricted to Uξ

Trt0XT pξq{T sr�1s
an �t Uξ Ñ TrX{T sr�1s

an �t Uξ

is the equivalence we were seeking. □



3.5. GEOMETRIC PRESENTATIONS FOR EQUIVARIANT COHOMOLOGY AND K-THEORY107

We can finally prove the following theorem:

Theorem 3.5.14. Let X be a smooth variety over C acted on by an algebraic
torus T . There is an isomorphism of Z2-periodic perfect complexes on t

HP linprX{T sq � HT anpXanq

where on the left-hand side we have the homotopy sheaves of linear periodic cyclic
homology, and on the right-hand side the perfect complex on t � SpecH`,0

T anp�q �

SpecC`,0
T anp�q whose global sections are the equivariant singular cochains C`,�

T anpXanq.

Proof. The proof of this theorem is the same as for Theorem 3.5.2, so we give a
very short treatment. It is based on the localization formula for the shifted tangent
of a quotient, Proposition 3.5.13, and on the same inductive argument of the proof
of Theorem 3.5.2. In this situation, the localization theorem for the shifted tangent
stack of rX{T s gives an identification of the completionpTrX{T sr�1s
with the completion pTrt0XT pξq{T sr�1s

which is induced by the inclusion t0X
T pξq

ãÑ X. In particular, we obtain

Atp∆,HP linprX{T sqq � HPprt0X
T pξq{T sq bOptq Ot,p∆

for a chain ∆ � pξ ¡ ξ1 ¡ � � � ¡ ξ0q on t, where ξ0 is a closed point. In this context,
the group T pξq is the one appearing in Definition 3.4.1. On the other hand, for the
complex HT anpXanq we have

Atp∆,HT anpXanqq � C`,�
T anppt0X

T pξqqanq bOptq Ot,p∆
If ξ0 is not a closed point, and to deal with the cosimplicial structure, we use the

exact same inductive argument as in the proof of Theorem 3.5.2. Indeed, if rkpT q � 1
the conclusion is immediate. □





CHAPTER 4

Partial results and future perspectives

4.1. Partial results

In this section we collect some facts we proved which did not appear yet outside
of this thesis. First of all, we give a new definition of quasi-constant maps that
makes sense for all target stacks. Recall that any map in an 8-topos can be factored
essentially uniquely as an effective epimorphism followed by a monomorphism.

Definition 4.1.1. Let X and Y be derived stacks. The derived stack quasi-
constant maps from Y to X, Map0 pY,Xq, is the smallest clopen stack containing
the image of the map induced by the unit of the de Rham stack of Y , Map pYdR, Xq Ñ
Map pY,Xq:

Map pYdR, Xq

��

// Map pY,Xq

Map0 pY,Xq

77

Conjecture 4.1.2. Let E be an elliptic curve over a field k of characteristic
zero and X be either a variety over k or a quotient stack rY {T s of a variety Y by an
algebraic torus T over k. Then Definition 4.1.1 is equivalent to Definition 2.2.19.

4.2. Future perspectives

In this section we discuss potential future developments of the material con-
tained in the thesis. The main two aspects to be discussed are an extension of the
constructions carried out in the thesis to positive characteristic — and eventually
to the sphere spectrum — and non-commutative variants. Other small aspects are
discussed, such as the presence of 1-shifted symplectic structures on Map0 pE,BGq
depending on forms on g.

4.2.1. Extension to characteristic p. Let us consider the shifted tangent
stack of a quotient stack together with its canonical map

r : TrX{Gsr�1s Ñ g{{G

109
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Over the field C of the complex numbers, the Tate construction on the global sections

OpTrX{GsqtS
1

� H`,�
G pXanq

computes the Betti cohomology of the analytification of X. Similarly, for a field k of
characteristic zero, the same object computes the G-equivariant algebraic de Rham
cohomology of X.

One might ask what happens when k is of positive characteristics. I was sug-
gested by Bertrand Toën that the correct object would be “equivariant crystalline
cohomology”. The Tate construction might be much harder to perform, as there
would be no obvious reason for the action on the base to be trivial. Nevertheless,
one might assume that it is still possible to do a Tate construction, and this would
define three equivariant variations of crystalline cohomology: a “plain” version over
g{{G, a K-theoretic version over G{{G, and an elliptic version over EG. This the-
ory would deviate from the topological counterpart, and in particular we should not
expect there to be a Grojnowski picture for equivariant elliptic cohomology in the
positive characteristic setup.

4.2.2. Non-commutative analogue. Let us focus on classical Hochschild ho-
mology first. In this case, the non-commutative formulation amounts to extending
the notion of Hochschild homology from commutative algebras to non-commutative
algebras, and from schemes to non-commutative schemes, i.e. stable 8-categories.
This can be done by observing that the definition of Hochschild homology of a com-
mutative algebra A P CAlg

HH�pAq � AbAbA A

can be extended easily to non-commutative ones:

HH�pAq � AbAbAop A

More interesting is the approach via topological quantum field theory. The Hochschild
homology of A, HH�pAq, can indeed be constructed as the partition function of
(framed) a one-dimensional TQFT ZA canonically attached to the commutative al-
gebra A. By the Cobordism Hypothesis, we are allowed to construct such a TQFT
by assigning its algebra of observables. In the case of Hochschild homology of a
commutative algebra A, this is the 8-category of its modules, ModA. The partition
function of ZA, i.e. evaluation on the circle cobordism, gives

ZApS
1q � HHpAq � dimModA

the Hochschild homology of A, i.e. the dimension of its category of modules. This
picture generalizes obviously to give a notion of Hochschild homology of a fully
dualizable object in PrL,st, its dimension.
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In the case of elliptic Hochschild homology, we expect that the role of the one-
dimensional TQFT should be taken by a two-dimensional conformal field theory.
The correct non-commutative objects admitting such an invariant would be vertex
algebras as opposed to associative algebras — or E2-algebras, in the case of two-
dimensional topological theories. Similarly to the case of classical Hochschild homol-
ogy, this would extend to modular tensor categories (over the complex numbers), as
modules over a vertex algebra form such categorical structures.

Algebraically, such construction will mimic the topological case. The replacement
for the cobordism hypothesis would be a conjectured equivalence between mathemat-
ical theories of two-dimensional CFTs:

 vertex algebras and chiral algebras;
 conformal nets;
 Segal chiral CFTs.

We are mostly interested in the first and last items in the list above. A Segal chiral
CFT is a functorial axiomatization of a CFT, hence that would play the role of the
TQFT. The vertex algebra plays the role of the associative algebra. The procedure
is as follows:

(1) select a vertex algebra V , or a modular tensor category C;
(2) to this data, there is an associated Segal 2d CFT ZV or ZC;
(3) we evaluate this CFT on a chosen elliptic curve E to obtain an object

HHEpV q (or HHEpCq) in ModC.

We remark that, in order to get an object in ModC, we need to suitably categorify
the theory (which is trickier for Segal CFTs than for TQFTs: in particular we need
to deloop the vertex algebra twice, i.e. consider ModModV , as value on the circle).

4.2.2.1. CFT in positive characteristic. One might hope that the relationship
between elliptic cohomology and CFT could be pushed beyond the complexified
setting. This is probably not possible, unless we accept that the cohomology theory
arising in this context is some version of algebraic elliptic cohomology. The first step
is an extention of the notion of CFT to positive characteristics. There are many
potential approaches to such extension:

 one first (and most likely incomplete) formulation would be a variant of
Segal CFTs for rigid analytic geometry;

 one second approach would be to develop the correct notion of vertex alge-
bras in characteristic p — a notion akin to partition Lie algebras.

4.2.3. Shifted symplectic structures. Let l be a symmetric, bilinear, non-
degenerate, adjoint-invariant form on g, where g is the Lie algebra of a compact,
connected, simply connected, simple Lie group G. Such a form corresponds to an
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element l P H4pBG;Zq. Classically, this is the data necessary to construct the corre-
sponding Looijenga line bundle, that has relevance in the theory of representations
of loop groups — its global sections are nonabelian theta functions.

This data is also equivalent to a 2-shifted symplectic structure on the classi-
fying stack BG. In particular, this induces a 1-shifted symplectic structure on
Map0 pE,BGq. One could consider quantizations of this structure. Pavel Safronov
suggested that its deformation quantization is related to the theory of elliptic quan-
tum groups. We could also consider its geometric quantization, if it exists. In that
case, the resulting prequantum Gm-gerbe would be defined by the same set of data as
a Looijenga line bundle. This Looijenga gerbe might have interesting global sections,
i.e. the category of positive energy representations of the loop group of G.

The main question is the existence of the Looijenga gerbe. This would be the
main issue to solve.

4.2.4. Quantizations of quasi-coherent sheaves on E. Let G � Gm for
simplicity. We want to make sense of the following slogan:

level l elliptic cohomology of the point is a quantization of the elliptic cohomology of
the point.

This slogan is clear from the physical viewpoint. The G-equivariant elliptic coho-
mology of the point is (in degree zero) E itself. The choice of a level l P H4pBG;Zq
induces a symplectic structure on E whose prequantum line bundle is the Loojenga
line bundle at level l. The global sections of this bundle, the theta functions, are the
fiber over E in the moduli stack of elliptic curves of the bundle of conformal blocks
of Wess–Zumino–Witten theory, and in particular they give the level l equivariant
elliptic cohomology of the point.

What we expect is that the quantization could be carried out at the level of the
category QCohpEq, whose monoidal unit is the equivariant elliptic cohomology of
the point: the geometric quantization of E should correspond to some quantization
of the stable 8-category QCohpEq itself. I do not know if such theory exists already.
We would then observe that under this process the unit OE � E ll0Gp�q is mapped
exactly to this space of global sections, for some mysterious reason.
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68:175–186, 1988.

[6] Scott Axelrod, Steve Della Pietra, and Edward Witten. Geometric quantization of Chern-
Simons gauge theory. Journal of Differential Geometry, 33(3):787 – 902, 1991.

[7] N. A. Baas, B. I. Dundas, and J. Rognes. Two-vector bundles and forms of elliptic cohomology.
In Topology, Geometry and Quantum Field Theory: Proceedings of the 2002 Oxford Symposium
in Honour of the 60th Birthday of Graeme Segal, number 308, page 18. Cambridge University
Press, 2004.

[8] David Ben-Zvi and David Nadler. Loop spaces and connections. Journal of Topology, 5(2):377–
430, 03 2012.

[9] Daniel Berwick-Evans. Equivariant elliptic cohomology, gauged sigma models, and discrete
torsion. Transactions of the American Mathematical Society, (375):369–427, 2022.

[10] Daniel Berwick-Evans and Arnav Tripathy. A de Rham model for complex analytic equivariant
elliptic cohomology. Advances in Mathematics, 380:107575, 2021.
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