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Abstract
We consider the Vlasov–Poisson system both in the repulsive (electrostatic
potential) and in the attractive (gravitational potential) cases. Our first main
theorem yields the analog for the Vlasov–Poisson system of Yudovich’s celeb-
rated well-posedness theorem for the Euler equations: we prove the uniqueness
and the quantitative stability of Lagrangian solutions f = f(t,x,v) whose asso-
ciated spatial density ρf = ρf(t,x) is potentially unbounded but belongs to
suitable uniformly-localised Yudovich spaces. This requirement imposes a
condition of slow growth on the function p 7→ ‖ρf(t, ·)‖Lp uniformly in time.
Previous works by Loeper, Miot and Holding–Miot have addressed the cases
of bounded spatial density, i.e. ‖ρf(t, ·)‖Lp ≲ 1, and spatial density such that
‖ρf(t, ·)‖Lp ∼ p1/α for α ∈ [1,+∞). Our approach is Lagrangian and relies
on an explicit estimate of the modulus of continuity of the electric field and
on a second-order Osgood lemma. It also allows for iterated-logarithmic per-
turbations of the linear growth condition. In our second main theorem, we
complement the aforementioned result by constructing solutions whose spatial
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density sharply satisfies such iterated-logarithmic growth. Our approach relies
on real-variable techniques and extends the strategy developed for the Euler
equations by the first and fourth-named authors. It also allows for the treatment
of more general equations that share the same structure as the Vlasov–Poisson
system. Notably, the uniqueness result and the stability estimates hold for both
the classical and the relativistic Vlasov–Poisson systems.

Keywords: Vlasov–Poisson equations, Yudovich spaces, Osgood condition,
Lagrangian stability, Cauchy problem

Mathematics subject classification: Primary 35Q83, Secondary 82D10,
34A12

1. Introduction

1.1. Framework

For some fixed T ∈ (0,+∞), we consider the Vlasov–Poisson system

∂tf + v ·∇xf +Ef ·∇vf = 0 in (0,T)×R2d,

Ef (t,x) = κ

ˆ
Rd

K(x− y) ρf (t,y) dy in (0,T)×Rd,

ρf (t,x) =
ˆ
Rd

f(t,x,v) dv in (0,T)×Rd,

f(0,x,v) = f0 (x,v) in R2d,

(1.1)

where f0 ∈ L1(R2d) is the initial datum, f ∈ L∞([0,T];L1(R2d)) is the unknown, ρf ∈
L∞([0,T];L1(Rd)) is the spatial density associated with f, κ ∈ {−1,+1} and K : Rd → Rd is
the Riesz kernel, given by

K(x) =
x
|x|d

, x ∈ Rd \ {0} . (1.2)

In particular, the vector field Ef ∈ L∞([0,T];L1loc(Rd;Rd)) is well defined. For d= 3, the
Vlasov–Poisson system (1.1) describes the time evolution of the density f of plasma consisting
of charged particles with long-range interaction; e.g. a repulsive Coulomb potential for κ= 1
or an attracting gravitational potential for κ=−1.

The Vlasov–Poisson system (1.1) has been extensively investigated. Existence and unique-
ness of classical solutions of the system (1.1) under some regularity assumptions on the initial
data go back to Iordanski [16] for d= 1 and to Okabe–Ukai [30] for d= 2. In any dimension,
global existence of weak solutions with finite energy

sup
t∈[0,T]

ˆ
R2d

|v|2 f(t,x,v) dxdv+ κ

2

ˆ
Rd

|Ef (t,x) |2 dx<+∞

is due to Arsen’ev [2]. For d= 3, global existence and uniqueness have been addressed by
Bardos–Degond [3] for classical solutionswith small initial data, and then by Pfaffelmoser [25]
and Lions–Perthame [19] using different methods. The main idea of [25] is to exploit
Lagrangian techniques to prove global existence and uniqueness of classical solutions with
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compactly supported initial data. The approach of [19], instead, relies on an Eulerian point
of view, yielding existence of global weak solutions with finite velocity moments. More pre-
cisely, for d= 3, if f0 ∈ L1(Rd)∩L∞(Rd) is such thatˆ

R2d

|v|mf0 (x,v) dxdv<+∞ for some m> 3, (1.3)

then there exists a corresponding weak solution f ∈ L∞([0,+∞);L1(R2d)) such that

sup
t∈[0,T]

ˆ
R2d

|v|mf(t,x,v) dxdv<+∞ for any T> 0.

For further developments concerning the propagation ofmoments and global existence of weak
solutions of the Vlasov–Poisson system (1.1), we refer the reader to [5, 7, 9, 23, 24, 27].

Sufficient conditions for uniqueness of weak solutions of the Vlasov–Poisson system (1.1)
have been first obtained in [19], provided that (1.3) holds with m> 6 and a technical assump-
tion on the support of the initial data is satisfied. A simpler criterion has been then proposed
by Robert [26] for compactly supported weak solutions, and later extended by Loeper [20] to
measure-valued solutions f with spatial density such that

ρf ∈ L∞
(
[0,T] ;L∞

(
Rd
))
. (1.4)

Recently, Miot [22] generalised the uniqueness criterion of [19] to measure-valued solutions f
with spatial density such that, for some T > 0,

sup
t∈[0,T]

sup
p⩾1

‖ρf (t, ·)‖Lp
p

<+∞. (1.5)

The uniqueness condition (1.5) is satisfied by some non-trivial weak solutions with initial data
having unbounded macroscopic density, see theorems 1.2 and 1.3 in [22]. Later, Holding–
Miot [13] provided a uniqueness criterion interpolating between the conditions (1.4) and (1.5)
by considering measure-valued solutions f with spatial density such that, for some T > 0 and
α ∈ [1,+∞),

sup
t∈[0,T]

sup
p⩾α

‖ρf (t, ·)‖Lp
p1/α

<+∞. (1.6)

The case α= 1 corresponds to (1.5), while the limiting case α=+∞ corresponds to (1.4).
Condition (1.6) implies that ρf belongs to an exponential Orlicz space, see section 1.1.1 [13].
Conditions (1.5) and (1.6) allow to consider initial data with compact support in velocity as
well as Maxwell–Boltzmann distributions with exponential decay as |v| →+∞, see the com-
ments theorem 1.2 in [22] and propositon 1.14 in [13].

1.2. Yudovich spaces and modulus of continuity

The main aim of the present paper is to establish existence and stability properties of weak
solutions of the Vlasov–Poisson system (1.1), extending the results obtained in [13, 20, 22]
to measure-valued solutions with spatial density belonging to uniformly-localised Yudovich
spaces. Our main result yields the analog for the Vlasov–Poisson system (1.1) of Yudovich’s
celebrated well-posedness theorem [32] for Euler’s equations.

We consider solutions f of the system (1.1) whose spatial density ρf satisfies

sup
t∈[0,T]

sup
p⩾1

‖ρf (t, ·)‖Lp
Θ(p)

<+∞ (1.7)
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for some fixed increasing function Θ: [0,+∞)→ (0,+∞), called growth function. Note
that (1.4) corresponds to Θ constant, (1.5) to Θ(p) = p and (1.6) to Θ(p) = p

1
α . Also notice

that the behavior of Θ(p) as p→+∞ only matters. We call such densities admissible for the
system (1.1), and we let

AΘ ([0,T]) =
{
f ∈ L∞

(
[0,T] ;L1

(
R2d
))

: ρf ∈ L∞
(
[0,T] ;YΘul

(
Rd
))}

. (1.8)

Here and in the following, we let

YΘul (Rd) =

f ∈ ⋂
p∈[1,+∞)

Lpul(R
d) : ‖f‖YΘul = sup

p∈[1,+∞)

‖f‖Lpul
Θ(p)

<+∞

 (1.9)

be the uniformly-localised Yudovich space, where, for p ∈ [1,+∞),

Lpul
(
Rd
)
=

{
f ∈ Lploc

(
Rd
)
: ‖f‖Lpul = sup

x∈Rd

‖f‖Lp(B1(x)) <+∞
}
,

is the uniformly-localised Lp space onRd.We also define the Yudovich space YΘ(Rd) as in (1.9)
by dropping the subscript ‘ul’ everywhere. These spaceswere first introduced byYudovich [32]
to provide uniqueness of unbounded weak solutions of incompressible inviscid 2-dimensional
Euler’s equations. We also refer to the recent works [4, 6, 28, 29].

Following [13, 20, 22], our starting point is the relation between the Lp growth condi-
tion (1.7) and the continuity of the vector field Ef, see Lemma 1.1 below. Our result encodes
the log-Lipschitz regularity obtained in Lemma 3.1 in [20] following from (1.4), as well as its
more general version proved in Lemma 2.1 in [13] concerning (1.5) and (1.6). As for Euler’s
equations [6], the main novelty here is that, once the spatial density ρf satisfies (1.7), then we
can explicitly express the (generalised) modulus of continuity of Ef depending on the chosen
growth function Θ, namely, φΘ : [0,+∞)→ [0,+∞) defined as

φΘ(r) =


0 for r= 0,

r | logr|Θ(|logr|) for r ∈ (0,e−d−1),

e−d−1 (d+ 1)Θ(d+ 1) for r ∈ [e−d−1,+∞)

(1.10)

(the choice of the constant e−d−1 is irrelevant and is made for convenience only, see below).
With a slight abuse of notation, we set

C0,φΘ

b

(
Rd;Rd

)
=

{
E ∈ L∞

(
Rd;Rd

)
: sup
x̸=y

|E(x)−E(y) |
φΘ (|x− y|)

<+∞

}
.

Lemma 1.1 (Modulus of continuity). If f ∈ AΘ([0,T]), then

Ef ∈ L∞
(
[0,T] ;C0,φΘ

b

(
Rd;Rd

))
.

The proof of Lemma 1.1 revisits a classical strategy for proving Morrey’s estimates for
Riesz-type potential operators, see Chapter 8 of [21] and Lemma 2.2 in [22] (for strictly
related results see theorems A and B in [8]). Here we adopt the elementary approach pro-
posed in section 2 of [6], generalizing the computations done in the 2-dimensional case to any
dimension.
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1.3. Weak solutions and transport equation

A simple but quite crucial byproduct of Lemma 1.1 is that fEf ∈ L∞([0,T];L1(R2d;Rd))
whenever f ∈ AΘ([0,T]). This allows us to define weak solutions of the system (1.1) among
admissible densities, as follows.

Definition 1.2 (Admissible weak solution). We say that f ∈ AΘ([0,T]) is an admissible weak
solution of the system (1.1) starting from the initial datum f0 ∈ L1(R2d) if

ˆ T

0

ˆ
R2d

(∂tψ+ v ·∇xψ+Ef ·∇vψ) fdxdvdt=−
ˆ
R2d

ψ (0, ·) f0 dxdv

for any ψ ∈ C∞
c ([0,T)×R2d).

Due to the structure of the system (1.1), one is tempted to look for weak solutions f ∈
AΘ([0,T]) transported along the flow of the vector field bf : [0,T]×R2d → R2d,

bf (t,x,v) = (v,Ef (t,x)) for t ∈ [0,T] , x,v ∈ Rd. (1.11)

The Cauchy problem corresponding to the vector field bf in (1.11) is in fact a second-order
ODE that can be rewritten in the form

Ẋ= V, for t ∈ (0,T) ,

V̇= Ef (t,X) , for t ∈ (0,T) ,

X(0) = x, V(0) = v,

(1.12)

where t 7→ (X(t),V(t)) is any flow line starting from the initial datum (x,v) ∈ R2d. Since the
modulus of continuity of bf in (1.11) uniquely depends on φΘ in (1.10), which, in turn, only
depends on the choice of Θ, here and in the rest of the paper we make the following

Assumption 1.3 The growth function Θ is such that φΘ is continuous on [0,+∞).

Consequently, given a weak solution f ∈ AΘ([0,T]), in virtue of Lemma 1.1 and Peano’s
Theorem, the Cauchy problem (1.12) is well posed and admits a (classical) globally-defined,
possibly non-unique, flow Γf : [0,T]×R2d → R2d.

Definition 1.4 (Admissible Lagrangian weak solution). We say that f ∈ AΘ([0,T]) is an
admissible Lagrangian weak solution of the system (1.1) starting from the initial datum
f0 ∈ L1(R2d) if f is as in definition 1.2 and, moreover,

f(t, ·) = (Γf (t, ·))# f0 for all t⩾ 0, (1.13)

where Γf is any flow solving the Cauchy problem (1.12).

A natural way to ensure the well-posedness of the ODE in (1.12) is to impose the Osgood
condition on the modulus of (spatial) continuity of bf in (1.11). However, due to the special
second-order structure of (1.12), such condition can be considerably relaxed.

Theorem 1.5 (ODE well-posedness). Under assumption 1.3, problem (1.12) admits a
globally-defined classical solution. Moreover, if ΦΘ : [0,+∞)→ [0,+∞), given by

ΦΘ (r) =
ˆ r

0
φΘ (s) ds for all r⩾ 0, (1.14)

satisfies ˆ
0+

dr√
ΦΘ (r)

= +∞, (1.15)
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then the solution of problem (2.8) is unique and the induced flow is a measure-preserving
homeomorphism on R2d at each time.

Assumption (1.15) imposes the Osgood condition on
√
ΦΘ and can be seen as a second-

order-type Osgood condition on φΘ. Indeed, taking d= 1, X(0) = V(0) = 0 and Ef(t,x) =
φΘ(x) in (1.12) for simplicity, we observe that

d
dt
Ẋ2

2
= φΘ (X) Ẋ for t ∈ (0,T) ,

so that, by integrating and changing variables, we get

Ẋ2 (t) = 2
ˆ t

0
φΘ (X(s)) Ẋ(s) ds= 2ΦΘ (X(t)) for all t ∈ (0,T) . (1.16)

Hence uniqueness of solutions of the ODE (1.12) should follow as soon as
ˆ
0+

Ẋ(t) dt√
ΦΘ (X(t))

=

ˆ
0+

dr√
ΦΘ (r)

= +∞,

leading to (1.15). Note that (1.16) involves the (square of the) velocity V= Ẋ of the trajectory,
besides its position X, since in fact X solves a second-order ODE, namely, Ẍ= Ef(t,X). This
explains why (1.15) should be seen as a second-order Osgood condition on the modulus of
continuity of the vector field Ef.

1.4. Lagrangian stability

Our first main result exploits the ODE well-posedness in theorem 1.5 to provide stability of
admissible Lagrangian weak solutions of the Vlasov–Poisson system (1.1), see theorem 1.6
below, generalizing theorem 1.1 in [22] and theorem 1.9 in [13].

Due to the physical meaning of the problem (1.1) when d= 3, we restrict our attention
to non-negative densities f⩾ 0 and, up to (non-linearly) rescaling all estimates, we shall work
with probability densities. More precisely, we operate within the space of probability measures
with finite 1-moment on R2d,

P1
(
R2d
)
=

{
µ ∈ P

(
R2d
)
:

ˆ
R2d

|p|dµ(p)<+∞
}
.

Such space can be naturally endowed with the 1-Wasserstein distance, given by

W1 (µ1,µ2) = inf

{ˆ
R2d×R2d

|p− q|dπ (p,q) : π ∈ Plan(µ1,µ2)

}
(1.17)

for µ1,µ2 ∈ P1(R2d). Here

Plan(µ1,µ2) =
{
π ∈ P

(
R2d×R2d

)
: (pi)#π = µi, i = 1,2

}
denotes the set of plans (or couplings) between µ1 and µ2, where pi : R2d×R2d → R2d

is the projection on the ith component. As well-known [1], there exist optimal plans π ∈
Plan(µ1,µ2); i.e., plans attaining the infimum in (1.17). Moreover, the resulting 1-Wasserstein
space (P1(R2d),W1) is a complete and separable metric space.

Theorem 1.6 (Lagrangian stability). Assume that φΘ is concave on [0,+∞) and ΦΘ satis-
fies (1.15). There is ΩΘ,T : [0,+∞)→ [0,+∞) continuous, with ΩΘ,T(0) = 0, satisfying the
following property. Let i = 1,2 and let fi ∈ AΘ([0,T]) be a Lagrangian weak solution of the

6
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Vlasov–Poisson system (1.1) starting from the initial datum fi0 ∈ L1(R2d). If µi0 = f i0L 2d ∈
P1(R2d), then also µi(t, ·) = fi(t, ·)L 2d ∈ P1(R2d) for all t ∈ [0,T] and

sup
t∈[0,T]

W1 (µ1 (t, ·) ,µ2 (t, ·))⩽ ΩΘ,T
(
W1
(
µ1
0,µ

2
0

))
.

In particular, if f10 = f20, then also f1(t, ·) = f2(t, ·) for all t ∈ [0,T].

The function ΩΘ,T appearing in theorem 1.6 can be actually made more explicit and, basic-
ally, it depends on the inverse of the function ΨΘ,δ,c : [0,+∞)→ [0,+∞),

ΨΘ,δ,c (t) =
ˆ t

0

ds

δ+
√
2cΦΘ (s)

for all t⩾ 0,

for suitably chosen parameters δ,c> 0.
The proof of theorem 1.6 follows the elementary strategy introduced in [6] for the

well-posedness of two-dimensional Euler’s equations (we also refer to recent applications
of this method to transport–Stokes equations [14] and to systems of non-local continuity
equations [15]). Basically, to control the distance between two Lagrangian weak solutions
of the system (1.1) in AΘ([0,T]), in view of (1.13), we just need to control the time evolution
of the distance between the initial data along the flows of the corresponding Cauchy prob-
lem (1.12) via a Grönwall-type argument, exploiting both the stability of trajectories solving
the associated ODE (1.12) given by theorem 1.5 and the modulus of continuity of the vector
field provided by Lemma 1.1.

Actually, our approach is more general and in fact provides stability of admissible
Lagrangian weak solutions for a large family of system like (1.1). More precisely, we can
deal with generalised Vlasov–Poisson equations of the form

∂tf +F ·∇xf +Ef ·∇vf = 0 in (0,T)×R2d,

Ef (t,x) =
ˆ
Rd

K(x,y) ρf (t,y) dy for t ∈ [0,T] , x ∈ Rd,

ρf (t,x) =
ˆ
Rd

f(t,x,v) dv for t ∈ [0,T] , x ∈ Rd,

f(0, ·) = f0 on R2d,

(1.18)

where F ∈ L∞([0,T];C(R2d;Rd)) satisfies

ess sup
t∈[0,T]

|F(t,x,v)−F(t,y,w)|⩽ L [|x− y|+ |v−w|] for all x,y,v,w ∈ Rd

for some L⩾ 0, and K : R2d → Rd is any sufficiently well-behaved antisymmetric kernel.
The choice F(t,x,v) = v√

1+|v|2
for t ∈ [0,T] and x,v ∈ Rd in (1.18) corresponds to the

relativistic Vlasov–Poisson equations. The well-posedness theory in the relativistic frame-
work is less understood. For d= 3 and only in the attractive case, global existence of solu-
tions has been established in [10–12, 17, 31] for radially symmetric initial data. For both the
attractive and the repulsive case, well-posedness—global for d= 2 and only local for d= 3—
and propagation of regularity for general initial data have been recently obtained in [18] via
propagation of velocity moments.

1.5. Existence of Lagrangian solutions

Our second main result provides existence of admissible Lagrangian weak solutions of the
Vlasov–Poisson system (1.1), generalizing the constructions in theorems 1.2 and 1.3 in [22]
and proposition 1.14 in [13].

7
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Theorem 1.7 (Existence). Let d= 2,3. Let θ ∈ YΘ(Rd) be such that

θ 6≡ 0, θ ⩾ 0 and
ˆ
Rd

(1∨ |x|) θ (x) dx<+∞. (1.19)

There exists a Lagrangian weak solution f ∈ AΘ([0,T]) of the Vlasov–Poisson system (1.1),
starting from the initial datum

f0(x,v) =
1(−∞,0]

(
|v|2 − θ(x)

2
d

)
|B1|‖θ‖L1

, for x,v ∈ Rd,

such that f(t, ·)L 2d ∈ P1(R2d) for all t ∈ [0,T] and

C‖θ‖Lp ⩽ ‖ρf‖L∞([0,T];Lp) ⩽ CT‖θ‖Lp for all p ∈ [1,+∞) ,

for some constants C,CT > 0, where CT depends on T.

The construction behind theorem 1.7 builds upon the proofs of theorems 1.2 and 1.3 in [22]
and essentially applies the existence result proved in theorem 1 in [19] to a suitable initial
datum depending on the chosen function θ ∈ YΘ(Rd).

Note that any (non-zero) non-negative bounded and compactly supported function satis-
fies (1.19). Hence theorem 1.7 becomes truly interesting if θ also satisfies

inf
p⩾1

‖θ‖Lp
Θ(p)

> 0, (1.20)

that is, the Lp norm of θ grows as fast asΘ. In view of theorem 1.6, wemay restrict our attention
only to growth functions Θ for which φΘ is concave and condition (1.15) is met. This is in
fact the case for a countable family of growth functions of iterated-logarithmic type defined as
follows. For each m ∈ N, we let Θm : [0,+∞)→ [0,+∞) be given by

Θm (p) =

{
p | log1 (p) |2 | log2 (p) |2 · · · | logm (p) |2 for p⩾ expm (1) ,

Θm (expm (1)) for p ∈ [0,expm (1)] ,

where exp0(1) = 1 and expm+1(1) = eexpm(1) recursively, and

logm =


id for m= 0

loglog · · · log︸ ︷︷ ︸
(m−1) times

| log | for m⩾ 1. (1.21)

Proposition 1.8 (Saturation of Θm). For each m ∈ N0, φΘm is concave, ΦΘm satisfies (1.15)
and there is θm ∈ YΘm(Rd) with compact support satisfying (1.19) and (1.20).

Theorem 1.7 and proposition 1.8 yield that the class of admissible Lagrangian weak solu-
tions considered in theorem 1.6 is non-empty for d ∈ {2,3} and Θ=Θm for some m ∈ N0.
Whenm= 0, our results embed the example given in the proof of theorem 1.3 in [22]. Actually,
the functions θm in proposition 1.8 are modelled on a well-known example due to Yudovich
(see equation (3.7) in [32], Remark 1(i) in [28] and the discussion around equation (1.12) in
[6]) concerning 2-dimensional Euler equations in vorticity form.

1.6. Organisation of the paper

In section 2 we provide an abstract approach to achieve the well-posedness of the Cauchy
problem (1.12) and the stability of admissible Lagrangian weak solutions of the system (1.1),

8
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considering the generalised Vlasov–Poisson equation (1.18). We refer the reader to theorems
2.2 and 2.8, respectively. In section 3, we detail the proofs of the results presented above.

2. Lagrangian stability for a generalised Vlasov–Poisson system

In this section, we provide an abstract approach to obtain stability properties for Lagrangian
solutions of (a generalised version of) the Vlasov–Poisson system (1.1). Our stability result
is stated in theorem 2.8 and exploits the well-posedness of the corresponding second-order
Cauchy problem provided by theorem 2.2.

2.1. Notation

Throughout this section, we consider

φ ∈ C([0,+∞); [0,+∞)), with φ(t)> 0 for t> 0. (2.1)

We also let Φ: [0,+∞)→ [0,+∞) be given by

Φ(t) =
ˆ t

0
φ(s) ds for all t⩾ 0. (2.2)

Note that Φ is a non-negative and non-decreasing C1 function. For certain results we will also
assume that Φ satisfies the additional conditionˆ

0+

dt√
Φ(t)

= +∞; (2.3)

i.e. the function
√
Φ satisfies the Osgood condition. Clearly, condition (2.3) implies that

φ(0) = 0. Given δ,c> 0, we also define the function Ψδ,c : [0,+∞)→ [0,+∞) by letting

Ψδ,c (t) =
ˆ t

0

ds

δ+
√
2cΦ(s)

for all t⩾ 0.

To keep the notation short, we set Ψδ =Ψδ,1. Note that Ψδ,c is a non-negative and strictly
increasing C1 function with bounded derivative. In particular, Ψδ,c is invertible, with continu-
ous and strictly-increasing inverse. Note that, if (2.3) is assumed, then

lim
δ→0+

Ψδ,c (t) = +∞ and lim
δ→0+

Ψ−1
δ,c (t) = 0 for all t,c> 0.

2.2. Second-order Grönwall’s inequality

We begin with the following result, which may be considered as a Grönwall-type lemma for a
second-order differential inequality.

Lemma 2.1 (Grönwall). Let u ∈W2,∞([0,T]) be such that u,u ′ ⩾ 0. If

u ′ ′ ⩽ cu ′ +φ(u) a.e. in [0,T] (2.4)

for some c> 0 and u ′(0)⩽ δ for some δ > 0, then

u ′ (t)⩽ ect
(
δ+

√
2Φ(u(t))

)
and u(t)⩽Ψ−1

δ (Ψδ (u(0))+ ect− 1)

for all t ∈ [0,T].

9
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Proof. Multiplying (2.4) by u ′ ⩾ 0, we get

d
dt

[
(u ′)

2
]
⩽ 2c(u ′)

2
+ 2φ(u)u ′ a.e. in [0,T] .

Integrating and changing variables, we can estimate

(u ′ (t))
2 ⩽ (u ′ (0))2 + 2Φ(u(t))− 2Φ(u(0))+ 2c

ˆ t

0
(u ′ (s))

2 ds

⩽ δ2 + 2Φ(u(t))+ 2c
ˆ t

0
(u ′ (s))

2 ds

for all t ∈ [0,T]. Since t 7→ Φ(u(t)) is non-decreasing, by Grönwall’s inequality we get

(u ′ (t))
2 ⩽ e2ct

(
δ2 + 2Φ(u(t))

)
for all t ∈ [0,T] ,

so that

u ′ (t)

δ+
√
2Φ(u(t))

⩽ ect for all t ∈ [0,T] .

Integrating the above inequality, we conclude that

Ψδ (u(t))−Ψδ (u(0))⩽ ect− 1 for all t ∈ [0,T] ,

from which the conclusion follows immediately.

2.3. Second-order Cauchy problem

We let b : [0,T]×R2d → R2d be given by

b(t,x,v) = (F(t,x,v) ,E(t,x)) for t ∈ [0,T] , x,v ∈ Rd, (2.5)

where E ∈ L∞([0,T];Cb(Rd;Rd)) satisfies

ess sup
t∈[0,T]

|E(t,x)−E(t,y)|⩽ φ(|x− y|) for all x,y ∈ Rd, (2.6)

with φ as in (2.1), and F ∈ L∞([0,T];C(R2d;Rd)) satisfies

ess sup
t∈[0,T]

|F(t,x,v)−F(t,y,w)|⩽ L [|x− y|+ |v−w|] for all x,y,v,w ∈ Rd, (2.7)

for some fixed L ∈ [0,+∞). For any given x,v ∈ Rd, we consider the Cauchy problem{
γ̇x,v = b(t,γx,v) , for t ∈ (0,T) ,

γ (0) = (x,v) .
(2.8)

10
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Note that (2.8) is in fact a second-order Cauchy problem and can be rewritten as
Ẋ= F(t,X,V) , for t ∈ (0,T) ,

V̇= E(t,X) , for t ∈ (0,T) ,

X(0) = x, V(0) = v,

(2.9)

denoting γx,v(t) = (X(t,x,v),V(t,x,v)) for t ∈ [0,T], x,v ∈ Rd.

Theorem 2.2 (ODEwell-posedness). Problem (2.8) admits a globally-defined classical solu-
tion γx,v ∈W1,∞([0,T];R2d) for all x,v ∈ Rd. Moreover, if Φ in (2.2) satisfies condition (2.3),
then the solution of (2.8) is unique for all x,v ∈ Rd. Finally, letting

Γ: [0,T]×R2d → R2d, Γ(t,x,v) = γx,v (t) , for t ∈ [0,T] and x,v ∈ Rd,

be the associated flow map, if divxF= 0, then Γ(t, ·) is a measure-preserving homeomorphism
on R2d for all t ∈ [0,T].

Since b ∈ L∞([0,T];C(R2d;R2d)) has at most linear growth, the first part of theorem 2.2
concerning the global existence of at least one solution of (2.8) follows by standardODE theory
(namely, by Peano’s Theorem and Grönwall’s inequality). The validity of the second part of
theorem 2.2 concerning the uniqueness of the solution of (2.8) and the measure-preserving
property of the associated flow map follows from the following result.

Proposition 2.3 (ODE stability). Let i = 1,2, let bi = (Fi,Ei) be as in (2.5), with Ei ∈
L∞([0,T];Cb(Rd;Rd)) satisfying (2.6) and Fi ∈ L∞([0,T];C(R2d;Rd)) satisfying (2.7), and
let γi = (Xi,Vi) ∈W1,∞([0,T];R2d) be a solution of (2.8) with initial condition (xi,vi) ∈ R2d.
If

L|x1 − x2|+L|v1 − v2|+L‖E1 −E2‖L∞(C) + ‖F1 −F2‖L∞(C) ⩽ δ

for some δ > 0, then

||γ1 − γ2||L∞ ⩽ |v1 − v2|+ ‖E1 −E2‖L∞ +Ψ−1
δ,L

(
Ψδ,L (|x1 − x2|)+ eLT− 1

)
+Tφ

(
Ψ−1

δ,L

(
Ψδ,L (|x1 − x2|)+ eLT− 1

))
.

Proof. In the following, we drop the spatial variables to keep the notation short. In virtue
of (2.7) and (2.9), we can estimate

|X1 (t)−X2 (t) |⩽ |x1 − x2|+
ˆ t

0
|F1 (s,X1 (s) ,V1 (s))−F2 (s,X2 (s) ,V2 (s)) |ds

⩽ |x1 − x2|+
ˆ t

0
|F1 (s,X1 (s) ,V1 (s))−F1 (s,X2 (s) ,V2 (s)) |ds

+

ˆ t

0
|F1 (s,X2 (s) ,V2 (s))−F2 (s,X2 (s) ,V2 (s)) |ds

⩽ |x1 − x2|+L
ˆ t

0
|X1 (s)−X2 (s) |ds+L

ˆ t

0
|V1 (s)−V2 (s) |ds+ t∥F1 −F2∥L∞

(2.10)

11



Nonlinearity 37 (2024) 095015 G Crippa et al

for all t ∈ [0,T]. Because of (2.6) and again of (2.9), we can also estimate

|V1 (s)−V2 (s) |⩽ |v1 − v2|+
ˆ s

0
|E1 (r,X1 (r))−E2 (r,X2 (r)) |dr

⩽ |v1 − v2|+
ˆ s

0
|E1 (r,X1 (r))−E1 (r,X2 (r)) |dr

+

ˆ s

0
|E1 (r,X2 (r))−E2 (r,X2 (r)) |dr

⩽ |v1 − v2|+ ‖E1 −E2‖L∞ +

ˆ s

0
φ (|X1 (r)−X2 (r) |) dr

(2.11)

for all s ∈ [0,T]. Therefore, we obtain that

|X1 (t)−X2 (t) |⩽ |x1 − x2|+ t [L|v1 − v2|+L‖E1 −E2‖L∞ + ‖F1 −F2‖L∞ ]

+L
ˆ t

0
|X1 (s)−X2 (s) |ds+L

ˆ t

0

ˆ s

0
φ(|X1 (r)−X2 (r) |) drds

(2.12)

for all t ∈ [0,T]. Letting u ∈W2,∞([0,T]) be the function in the right-hand side of (2.12), we
observe that u⩾ 0, u(0) = |x1 − x2|,

u ′ (t) = L|v1 − v2|+L‖E1 −E2‖L∞ + ‖F1 −F2‖L∞ +L|X1 (t)−X2 (t) |

+L
ˆ t

0
φ(|X1 (s)−X2 (s) |) ds,

(2.13)

for all t ∈ [0,T] and so, in particular,

u ′ (0) = L|x1 − x2|+L|v1 − v2|+L‖E1 −E2‖L∞ + ‖F1 −F2‖L∞ ⩽ δ.

We also observe that

u ′ ′ (t)⩽ L|Ẋ1 (t)− Ẋ2 (t) |+Lφ(|X1 (t)−X2 (t) |) for a.e. t ∈ [0,T] . (2.14)

We now estimate the right-hand side of (2.14) in terms of u. Exploiting (2.7), (2.9) and the
estimate in (2.11), we have

|Ẋ1 (t)− Ẋ2 (t) |= |F1 (t,X1 (t) ,V1 (t))−F2 (t,X2 (t) ,V2 (t)) |
⩽ ‖F1 (t)−F2 (t)‖L∞ +L|X1 (t)−X2 (t) |+L|V1 (t)−V2 (t) |
⩽ ‖F1 −F2‖L∞ +L|X1 (t)−X2 (t) |+L|v1 − v2|

+L‖E1 −E2‖L∞ +L
ˆ t

0
φ(|X1 (s)−X2 (s) |) ds

= u ′ (t)

for all t ∈ [0,T] in virtue of (2.13). We thus get that u satisfies

u ′ ′ ⩽ Lu ′ +Lφ(u) a.e. in [0,T] ,

as in (2.4) in Lemma 2.1, from which we immediately get that

|X1 (t)−X2 (t) |⩽Ψ−1
δ,L

(
Ψδ,L (|x1 − x2|)+ eLt− 1

)
12
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for all t ∈ [0,T]. Consequently, by (2.11), we also find that

|V1 (t)−V2 (t) |⩽ |v1 − v2|+ ‖E1 −E2‖L∞ + tφ
(
Ψ−1

δ,L

(
Ψδ,L (|x1 − x2|)+ eLT− 1

))
for all t ∈ [0,T], from which the conclusion immediately follows.

From proposition 2.3, we plainly deduce the following approximation result.

Corollary 2.4 (ODE convergence). Let n ∈ N, let b= (F,E),bn = (Fn,En) be as in (2.5),
with E,En ∈ L∞([0,T];Cb(Rd;Rd)) satisfying (2.6) and F,Fn ∈ L∞([0,T];C(R2d;Rd)) satisfy-
ing (2.7), and let γn = (Xn,Vn) ∈W1,∞([0,T];R2d) be a solution of (2.8) with initial condition
(x,v) ∈ R2d. If Φ in (2.2) satisfies (2.3) and

lim
n→+∞

||bn− b||L∞ = 0, (2.15)

then (γn)n∈N is a Cauchy sequence in C([0,T]×R2d), and each of its limit points γ = (X,V)
is a solution of (2.8) relative to b= (F,E) with initial condition (x, v).

Proof. By proposition 2.3, we immediately infer that

||γm− γn||L∞ ⩽ δm,n+Ψ−1
δm,n,L

(
eLT− 1

)
+Tφ

(
Ψ−1

δm,n,L

(
eLT− 1

))
.

for all m,n ∈ N, where

δm,n = ‖Em−En‖L∞ + ‖Fm−Fn‖L∞ + 1
m + 1

n .

Since δm,n → 0+ as m,n→+∞, by (2.3) we infer thatΨ−1
δm,n,L

(eLT− 1)→ 0+ as m,n→+∞,
easily yielding the conclusion.

We are now ready to prove theorem 2.2.

Proof of theorem 2.2. We just need to deal with the second part of the statement concerning
the uniqueness of the solution of (2.8) and the measure-preserving property of the associated
flow map. The uniqueness part is an immediate consequence of proposition 2.3. Indeed, if γ1
and γ2 are two solutions of (2.8) relative to b starting from the same initial datum (x, v), with
x,v ∈ Rn, then proposition 2.3 implies that

||γ1 − γ2||L∞ ⩽Ψ−1
δ,L

(
eLT− 1

)
+Tφ

(
Ψ−1

δ,L

(
eLT− 1

))
for all δ > 0. Since Ψ−1

δ,L(e
LT− 1)→ 0+ as δ→ 0+, we get γ1 = γ2. The measure-preserving

property of the associated flow map, instead, follows from an approximation argument and
corollary 2.4. We leave the simple details to the reader.

13
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2.4. Generalised Vlasov–Poisson system

From now on, we fix a measurable function K : R2d → Rd, that we call kernel, which is
assumed to be antisymmetric, i.e. K(y,x) =−K(x,y) for a.e. x,y ∈ Rd. We thus consider the
associated Vlasov–Poisson-type system

∂tf +F ·∇xf +Ef ·∇vf = 0 in (0,T)×R2d,

Ef (t,x) =
ˆ
Rd

K(x,y) ρf (t,y) dy for t ∈ [0,T] , x ∈ Rd,

ρf (t,x) =
ˆ
Rd

f(t,x,v) dv for t ∈ [0,T] , x ∈ Rd,

f(0, ·) = f0 on R2d,

(2.16)

where the unknown density is f ∈ L∞([0,T];L1(R2d)) and the initial datum is f0 ∈ L1(R2d). The
function F ∈ L∞([0,T];C(R2d;Rd)) in the first line of (2.16) always satisfies (2.7), and may
be additionally assumed to satisfy divxF= 0. If F(t,x,v) = v, then (2.16) reduces to the clas-
sical Vlasov–Poisson system, while, if F(t,x,v) = v√

1+|v|2
, then (2.16) becomes the relativistic

Vlasov–Poisson system.

Definition 2.5 (Weak φ-solution). We say that f ∈ L∞([0,T];L1(R2d)) is a weak φ-solution
of (2.16) with initial datum f0 ∈ L1(R2d) if

(t,x) 7→
ˆ
Rd

|K(x,z) | |ρf (t,z) |dz ∈ L∞
(
[0,T]×Rd

)
, (2.17)

ess sup
t∈[0,T]

ˆ
Rd

|K(x,z)−K(y,z) | |ρf (t,z) |dz⩽ φ(|x− y|) for all x,y ∈ Rd (2.18)

and ˆ T

0

ˆ
R2d

(∂tψ+F ·∇xψ+Ef ·∇vψ) fdxdvdt=−
ˆ
R2d

ψ (0, ·) f0 dxdv (2.19)

for all ψ ∈ C∞
c ([0,T)×R2d), where Ef,ρf are as in (2.16).

Note that, if f is a weak φ-solution of (2.16) as in definition 2.5, then (2.17) and (2.18)
lead to Ef ∈ L∞([0,T];Cb(Rd;Rd)) satisfying (2.6). In particular, the equation (2.19) is well
defined, since fEf ∈ L∞([0,T];L1(R2d;Rd)) thanks to (2.17).

Definition 2.6 (Lagrangian weak φ-solution). We say that f ∈ L∞([0,T];L1(R2d)) is a
Lagrangian weak φ-solution of (2.16) with initial datum f0 ∈ L1(R2d) if f is a weak φ-solution
of (2.16) as in definition 2.5 and, moreover,

f(t, ·) = Γ(t, ·)# f0 for all t ∈ [0,T] , (2.20)

where Γ is any flow map associated to the Cauchy problem (2.8) with b= (F,E).

The following result collects two basic features of Lagrangian weak φ-solutions of (2.16)
that will be useful in the sequel.

Lemma 2.7 (Sign and moment preservation). Assume divxF= 0 and Φ in (2.2) satis-
fies (2.3). Let f ∈ L∞([0,T];L1(R2d)) be a Lagrangian weak φ-solution of (2.16) with initial
datum f0 ∈ L1(R2d). If f0 ⩾ 0, then also f(t, ·)⩾ 0 for all t ∈ [0,T]. Moreover, if µ0 = f0L 2d ∈
P1(R2d), then also µ(t, ·) = f(t, ·)L 2d ∈ P1(R2d) for all t ∈ [0,T].

14



Nonlinearity 37 (2024) 095015 G Crippa et al

Proof. Fix t ∈ [0,T]. SinceΓ(t, ·) is a measure-preserving homeomorphism by proposition 2.3,
then from (2.20) we easily deduce that

L 2d
({
z ∈ R2d : f(t,z)< 0

})
= L 2d

({
z ∈ R2d : f(t,Γ(t,z))< 0

})
= L 2d

({
z ∈ R2d : f0 (z)< 0

})
= 0,

so that f(t, ·)⩾ 0. In addition, if
ˆ
R2d

|z|dµ0 (z) =
ˆ
R2d

|z| f0 (z) dz<+∞,

then again by (2.20) we get
ˆ
R2d

|z|dµ(t,z) =
ˆ
R2d

|z| f(t,z) dz=
ˆ
R2d

|Γ(t,z) | f0 (z) dz<+∞,

since |Γ(t,z)|⩽ C|z|eCT for all t ∈ [0,T] and z ∈ R2d, for some C> 0 depending on ‖Ef‖L∞
and ‖F‖L∞(Lip) only, by standard ODE Theory, in virtue of (2.7) and (2.17).

We can now state and prove the main result of this section, providing a stability property for
Lagrangian weakφ-solutions of the Vlasov–Poisson-type system (2.16). The proof of theorem
2.8 adopts the elementary point of view of [6] and extends the approaches exploited in the
proofs of theorem 1.1 in [22] and theorem 1.9 in [13].

Theorem 2.8 (Lagrangian stability). Let i = 1,2, let µi ∈ L∞([0,T];P1(R2d)) be such that
µi = fiL 2d, where fi ∈ L∞([0,T];L1(R2d)) is a Lagrangian weakφ-solution of (2.16), relative
to (Fi,Ei), Ei = Efi , with Fi ∈ L∞([0,T];C(Rd;Rd)) satisfying (2.7) for some L ∈ [1,+∞) and
divxFi = 0, with initial datum fi0 ∈ L1(R2d). Assume that φ in (2.1) is concave and Φ in (2.2)
satisfies (2.3). If

2LW1
(
µ1
0,µ

2
0

)
+ ‖F1 −F2‖L∞ < δ

for some δ > 0, then

W1 (µ1 (t, ·) ,µ2 (t, ·))⩽Ψ−1
δ,2L

(
Ψδ,2L

(
W1
(
µ1
0,µ

2
0

))
+ eLt− 1

)
+ eLt

(
δ+

√
4LΦ

(
Ψ−1

δ,2L

(
Ψδ,2L

(
W1
(
µ1
0,µ

2
0

))
+ eLt− 1

)))
for all t ∈ [0,T]. In particular, if f10 = f20 and F1 = F2, then f1 = f2.

Proof. Let π0 ∈ Plan(µ1
0,µ

2
0) be an optimal plan. By definition 2.6, we can write µi(t, ·) =

Γi(t, ·)#µi0 for t ∈ [0,T] and i = 1,2, so that

π (t, ·) = (Γ1 (t,p1) ,Γ2 (t,p2))#π0 ∈ Plan(µ1 (t, ·) ,µ2 (t, ·)) (2.21)

for all t ∈ [0,T]. Since Γi = (Xi,Vi), i = 1,2, we define

X (t) =
ˆ
R2d×R2d

|X1 (t,p)−X2 (t,q) |dπ0 (p,q)

V (t) =
ˆ
R2d×R2d

|V1 (t,p)−V2 (t,q) |dπ0 (p,q) (2.22)

15
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for all t ∈ [0,T], where p= (x,v) and q= (y,w). Arguing as in (2.10), we can estimate

|X1 (t,p)−X2 (t,q) |⩽ |x− y|+L
ˆ t

0
|X1 (s,p)−X2 (s,q) |ds+L

ˆ t

0
|V1 (s,p)−V2 (s,q) |ds

+ t‖F1 −F2‖L∞

for all t ∈ [0,T], so that

X (t)⩽
ˆ
R2d×R2d

|x− y|dπ0 (p,q)+ t‖F1 −F2‖L∞ +L
ˆ t

0
X (s) ds+L

ˆ t

0
V (s) ds

⩽W1
(
µ1
0,µ

2
0

)
+ t‖F1 −F2‖L∞ +L

ˆ t

0
X (s) ds+L

ˆ t

0
V (s) ds

Similarly arguing as in (2.11), we also get that

|V1(t,p)−V2(t,q)|⩽ |v−w|+
ˆ t

0
|E1(s,X1(s,p))−E2(s,X2(s,q))|ds

for all t ∈ [0,T], so that

V (t)⩽
ˆ
R2d×R2d

|v−w|dπ0 (p,q)

+

ˆ t

0

ˆ
R2d×R2d

|E1 (s,X1 (s,p))−E2 (s,X2 (s,q)) |dπ0 (p,q) ds

⩽W1
(
µ1
0,µ

2
0

)
+

ˆ t

0

ˆ
R2d×R2d

|E1 (s,X1 (s,p))−E2 (s,X2 (s,q)) |dπ0 (p,q) ds

(2.23)

for all t ∈ [0,T] and so, in particular,

X (t)⩽ (1+Lt)W1(µ
1
0,µ

2
0)+ t‖F1 −F2‖L∞ +L

ˆ t

0
X (s)ds

+L
ˆ t

0

ˆ s

0

ˆ
R2d×R2d

|E1(r,X1(r,p))−E2(r,X2(r,q))|dπ0(p,q)drds

for all t ∈ [0,T]. Now we have

|E1 (r,X1 (r,p))−E2 (r,X2 (r,q)) |⩽ |E1 (r,X1 (r,p))−E1 (r,X2 (r,q)) |
+ |E1 (r,X2 (r,q))−E2 (r,X2 (r,q)) |.

On the one side, since f 1 is a weak φ-solution of (2.16) with respect to (F1,E1), by (2.18) E1

satisfies (2.6), and thus we can estimate

|E1 (r,X1 (r,p))−E1 (r,X2 (r,q)) |⩽ φ(|X1 (r,p)−X2 (r,q) |) .

On the other side, again since f 1 and f 2 are weak φ-solutions of (2.16), we can write

|E1(r,X2(r,q))−E2(r,X2(r,q))|

=

∣∣∣∣ˆ
Rd

K(X2(r,q),z)ρ1(r,z)dz−
ˆ
Rd

K(X2(r,q),z
′)ρ2(r,z

′)dz ′
∣∣∣∣

=

∣∣∣∣ˆ
R2d

K(X2(r,q),z) f1(r,z,u)dzdu−
ˆ
Rd

K(X2(r,q),z
′) f2(r,z

′,u ′)dz ′ du ′
∣∣∣∣

=

∣∣∣∣ˆ
R2d

K(X2(r,q),X1(r,o)) f
1
0(o)do−

ˆ
Rd

K(X2(r,q),X2(r,o
′)) f20(o

′)do ′
∣∣∣∣
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where in the last equality we changed variables, in virtue of (2.20), letting o= (z,u) and o ′ =
(z ′,u ′) for brevity. Since π0 ∈ Plan(µ1

0,µ
2
0), we can thus write∣∣∣∣ˆ

R2d

K(X2(r,q),X1(r,o)) f
1
0(o)do−

ˆ
Rd

K(X2(r,q),X2(r,o)) f
2
0(o

′)do ′
∣∣∣∣

=

∣∣∣∣ˆ
R2d

K(X2(r,q),X1(r,o))dµ
1
0(o)−

ˆ
Rd

K(X2(r,q),X2(r,o))dµ
2
0(o

′)

∣∣∣∣
=

∣∣∣∣ˆ
R2d×R2d

(K(X2(r,q),X1(r,o))−K(X2(r,q),X2(r,o
′)))dπ0(o,o

′)

∣∣∣∣
⩽
ˆ
R2d×R2d

∣∣K(X2(r,q),X1(r,o))−K(X2(r,q),X2(r,o
′))
∣∣dπ0(o,o ′).

Therefore, again changing variables in virtue of (2.20), we getˆ
R2d×R2d

|E1 (r,X2 (r,q))−E2 (r,X2 (r,q)) |dπ0 (p,q)

⩽
ˆ
R2d×R2d

ˆ
R2d×R2d

∣∣K(X2 (r,q) ,X1 (r,o))−K(X2 (r,q) ,X2 (r,o
′))
∣∣dπ0 (p,q) dπ0 (o,o ′)

=

ˆ
R2d×R2d

ˆ
R2d

∣∣K(h,X1 (r,o))−K(h,X2 (r,o
′))
∣∣ρ2 (t,h) dhdπ0 (o,o ′)

⩽
ˆ
R2d×R2d

φ(|X1 (r,o)−X2 (r,o
′) |) dπ0 (o,o ′) .

Recalling that φ is concave, by Jensen’s inequality we conclude thatˆ
R2d×R2d

|E1(r,X1(r,p))−E2(r,X2(r,q))|dπ0(p,q)

⩽ 2
ˆ
R2d×R2d

φ(|X1(r,p)−X2(r,q)|)dπ0(p,q)⩽ 2φ(X (r)),

so that

X (t)⩽ (1+Lt)W1
(
µ1
0,µ

2
0

)
+ t‖F1 −F2‖L∞ +L

ˆ t

0
X (s) ds

+ 2L
ˆ t

0

ˆ s

0
φ(X (r)) drds (2.24)

for all t ∈ [0,T]. In addition, recalling (2.23), we also get that

V (t)⩽W1
(
µ1
0,µ

2
0

)
+ 2
ˆ t

0
φ(X (s)) ds (2.25)

for all t ∈ [0,T]. Now, letting u ∈W2,∞([0,T]) be the function on the right-hand side of (2.24),
we immediately get that u,u ′ ⩾ 0 with u(0) =W1(µ

1
0,µ

2
0) and

u ′ (t) = LW1
(
µ1
0,µ

2
0

)
+ ‖F1 −F2‖L∞ +LX (t)+ 2L

ˆ t

0
φ(X (s)) ds (2.26)

for all t ∈ [0,T], so that u ′(0)⩽ 2LW1(µ
1
0,µ

2
0)+ ‖F1 −F2‖L∞ . Furthermore, we have

u ′ ′ (t) = LẊ (t)+ 2Lφ(X (t))

17



Nonlinearity 37 (2024) 095015 G Crippa et al

for a.e. t ∈ (0,T). Note that, in virtue of the definition in (2.22) and of problem (2.9),

Ẋ (t)⩽
ˆ
R2d×R2d

|Ẋ1 (t,p)− Ẋ2 (t,q) |dπ0 (p,q)

=

ˆ
R2d×R2d

|F1 (t,X1 (t,p) ,V1 (t,p))−F2 (t,X2 (t,q) ,V2 (t,q)) |dπ0 (p,q)

⩽ ||F1 −F2||L∞ ,

so that, recalling (2.24) and (2.26), and since φ is non-decreasing,

u ′ ′ (t)⩽ L||F1 −F2||L∞ + 2Lφ(X (t))⩽ Lu ′ (t)+ 2Lφ(u(t))

for a.e. t ∈ (0,T). Thanks to Lemma 2.1, we thus conclude that, if

2LW1
(
µ1
0,µ

2
0

)
+ ‖F1 −F2‖L∞ < δ

for some δ > 0, then

X (t)⩽Ψ−1
δ,2L

(
Ψδ,2L

(
W1
(
µ1
0,µ

2
0

))
+ eLt− 1

)
for all t ∈ [0,T]. Moreover, from (2.25) and (2.26), we also get that V(t)⩽ u ′(t), so that

V (t)⩽ eLt
(
δ+

√
4LΦ(X (t))

)
⩽ eLt

(
δ+

√
4LΦ

(
Ψ−1

δ,2L

(
Ψδ,2L

(
W1
(
µ1
0,µ

2
0

))
+ eLt− 1

)))

for all t ∈ [0,T], in virtue of Lemma 2.1. To conclude, we simply note that, by (2.21),

W1 (µ1 (t, ·) ,µ2 (t, ·))⩽
ˆ
R2d×R2d

|p− q|dπ (t,p,q)

=

ˆ
R2d×R2d

|Γ1 (t,p)−Γ2 (t,q) |dπ0 (p,q)⩽ X (t)+V (t)

for all t ∈ [0,T], readily ending the proof.

3. Proofs of the main results

3.1. Proof of Lemma 1.1

We begin with the proof of Lemma 1.1. Actually, we achieve the following slightly stronger
result. Here and in the following, the kernel K is as in (1.2).

Proposition 3.1 (Mapping properties of K). There is a dimensional constant Cd > 0 with the
following property. If ρ ∈ L1(Rd)∩YΘul (Rd), then K ∗ ρ ∈ C0,φΘ

b (Rd), with

‖K ∗ ρ‖L∞ ⩽ Cd
(
‖ρ‖L1 + ‖ρ‖YΘul

)
, (3.1)ˆ

Rd

|K(x− z)−K(y− z) |ρ(z)dz⩽ Cd
(
‖ρ‖L1 + ‖ρ‖YΘul

)
φΘ (|x− y|) ∀x,y ∈ Rd. (3.2)

To prove proposition 3.1, we need the following simple estimate, which general-
ises equation (2.2) in [6] to any dimension d⩾ 2.
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Lemma 3.2 (Oscillation). There exists a dimensional constant Cd > 0 such that

|K(x− z)−K(y− z) |⩽ Cd

(
1

|x− z||y− z|d−1
+

1
|y− z||x− z|d−1

)
|x− y| (3.3)

for all x,y,z ∈ Rd with x,y 6= z.

Proof. We can assume z= 0 without loss of generality. For x,y ∈ Rd \ {0}, we have∣∣∣∣ x|x|d − y
|y|d

∣∣∣∣2 = 1
|x|2(d−1)

+
1

|y|2(d−1)
− 2(x · y)

|x|d|y|d
=

[
|x|x|d−2 − y|y|d−2|

|x|d−1|y|d−1

]2
,

so that ∣∣∣∣ x|x|d − y
|y|d

∣∣∣∣= |x|x|d−2 − y|y|d−2|
|x|d−1|y|d−1

for all x,y ∈ Rd \ {0}. Letting Fd(ξ) = ξ |ξ |d−2 for all ξ ∈ Rd, we have |∇Fd(ξ)|⩽ Cd|ξ |d−2

for all ξ ∈ Rd, where Cd > 0 is a dimensional constant. Hence

|x|x|d−2 − y|y|d−2|⩽ |x− y| sup
t∈[0,1]

|∇Fd (x+ t(x− y)) |⩽ Cd |x− y| sup
t∈[0,1]

|x+ t(x− y) |d−2

for all x,y ∈ Rd. Since d⩾ 2, the function ξ 7→ |ξ |d−2 is convex, and thus we can estimate

|x+ t(x− y) |d−2 ⩽ (1− t) |x|d−2 + t|y|d−2 ⩽ |x|d−2 + |y|d−2

for all x,y ∈ Rd. Therefore, we get that∣∣∣∣ x|x|d − y
|y|d

∣∣∣∣= |x|x|d−2 − y|y|d−2|
|x|2(d−1)|y|d−1

⩽ Cd |x− y|
[
|x|d−2 + |y|d−2

|x|d−1|y|d−1

]
for all x,y ∈ Rd \ {0}, yielding (3.3) for z= 0.

We can now prove proposition 3.1. We follow the strategy of the proofs of theorem 2.2 and
corollary 2.4 in [6]. We also refer to the proofs of Lemma 2.1 in [13] and theorems A and B
in [8].

Proof of proposition 3.1. We write K= K1 +K∞, with K1 = K1B1 ∈ L
d+1
d (Rd) and K∞ =

K1Bc1 ∈ L
∞(Rd). Since ρ ∈ L1 ∩Ld+1

ul (Rd), we can estimate

|K| ∗ ρ(x)⩽ |K1| ∗ ρ(x)+ |K∞| ∗ ρ(x)⩽ ‖K1‖
L
d+1
d
‖ρ‖Ld+1(B1(x)) + ‖K∞‖L∞‖ρ‖L1

⩽max
{
‖K1‖

L
d+1
d
,‖K∞‖L∞

}(
‖ρ‖Ld+1

ul
+ ‖ρ‖L1

)
⩽ Cd

(
‖ρ‖Ld+1

ul
+ ‖ρ‖L1

)
⩽ Cd

(
Θ(d+ 1) ‖ρ‖YΘul + ‖ρ‖L1

)
⩽ Cd

(
‖ρ‖YΘul + ‖ρ‖L1

)
for all x ∈ Rd, yielding (3.1). To prove (3.2), fix x,y ∈ Rd and set ε= |x− y|. Due to (3.1), we
can assume ε < e−d−1 without loss of generality. We write

ˆ
Rd

|K(x− z)−K(y− z) |ρ(z)dz

=

(ˆ
B2(x)c

+

ˆ
B2(x)\B2ε(x)

+

ˆ
B2ε(x)

)
|K(x− z)−K(y− z) |ρ(z)dz.
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By Lemma 3.2, we can estimate the first integral as

ˆ
B2(x)c

|K(x− z)−K(y− z) |ρ(z)dz

⩽ Cd |x− y|
ˆ
B2(x)c

(
1

|x− z||y− z|d−1
+

1
|y− z||x− z|d−1

)
ρ(z)dz

⩽ Cd |x− y|‖ρ‖L1 .

Concerning the second integral, since

|y− z|⩾ 1
2
|x− z| for all z ∈ B2 (x) \B2ε (x) ,

again by Lemma 3.2 we can estimate

ˆ
B2(x)\B2ε(x)

|K(x− z)−K(y− z) |ρ(z)dz

⩽ Cd |x− y|
ˆ
B2(x)\B2ε(x)

(
1

|x− z||y− z|d−1 +
1

|y− z||x− z|d−1

)
ρ(z)dz

⩽ Cd |x− y|
ˆ
B2(x)\B2ε(x)

ρ(z)
|x− z|d

dz⩽ Cd |x− y|∥ρ∥Lp(B2(x))

(ˆ 2

2ε
r−dp ′+d−1dr

) 1
p ′

⩽ Cd |x− y|∥ρ∥Lpul

2−dp ′+d
(
1− ε−dp ′+d

)
−dp ′ + d


1
p ′

⩽ Cd |x− y|∥ρ∥Lpul 2
− d

p

(
ε−

d
p−1 − 1

) p−1
p
(
p−1
d

) p−1
p

⩽ Cd |x− y|∥ρ∥Lpul pε
− d

p ⩽ Cd pΘ(p) ∥ρ∥YΘul |x− y|1−
d
p

for any p> d+ 1, with p′ the conjugate of p. Finally, regarding the third and last integral, since
B2ε(x)⊂ B3ε(y), we can estimate

ˆ
B2ε(x)

|K(x− z)−K(y− z) |ρ(z)dz⩽
ˆ
B2ε(x)

ρ(z)
|x− z|d−1

dz+
ˆ
B3ε(z)

ρ(z)
|y− z|d−1

dz

⩽ Cd ‖ρ‖Lpul

(ˆ 3ε

0
r(−d+1)p ′+d−1 dr

) 1
p ′

⩽ Cd ‖ρ‖Lpul

(
(3ε)(−d+1)p ′+d

(−d+ 1)p ′ + d

) 1
p ′

⩽ Cd ‖ρ‖Lpul (3ε)
1− d

p

(
p−1
p−d

) p−1
p ⩽ Cd pΘ(p) ‖ρ‖YΘul |x− y|1−

d
p

again for p> d+ 1. Combining the above estimates, we conclude that

ˆ
Rd

|K(x− z)−K(y− z) |ρ(z)dz⩽ Cd
(
‖ρ‖L1(Rd) + ‖ρ‖YΘul

)
pΘ(p) |x− y|1−

d
p

for x,y ∈ Rd with |x− y|< e−d−1 and p> d+ 1. In particular, choosing p=− log |x− y|,
since r

d
log(r) = ed for r ∈ (0,1), we obtain that
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ˆ
Rd

|K(x− z)−K(y− z) |ρ(z)dz

⩽ Cd
(
‖ρ‖L1 + ‖ρ‖YΘul

)
|x− y| | log |x− y||Θ(| log |x− y||) |x− y|

d
log |x−y|

⩽ Cd
(
‖ρ‖L1 + ‖ρ‖YΘul

)
φΘ (|x− y|)

for x,y ∈ Rd with |x− y|< e−d−1, completing the proof of (3.2).

3.2. Proof of theorem 1.6

In view of theorem 2.8, we just have to check that, if f ∈ AΘ([0,T]) is a Lagrangian weak
solution of (1.1) in the sense of definition 1.4, then f is a LagrangianweakφΘ-solution of (2.16)
with F(t,x,v) = v, for t ∈ [0,T] and x,v ∈ Rd, and Ef = K ∗ ρf, where K is as in (1.2). Indeed,
we just need to check the validity of (2.17) and (2.18), but these respectively follow from (3.1)
and (3.2) in proposition 3.1.

Remark 3.3 (Relativistic case). Note that the above argument verbatim applies to the relativ-
istic setting, that is, choosing F(t,x,v) = v√

1+|v|2
for t ∈ [0,T] and x,v ∈ Rd.

3.3. Proof of theorem 1.7

From now on, we assume d ∈ {2,3}. We begin with the following result, providing a suitable
initial datum for the construction of the weak solution in theorem 1.7.

Lemma 3.4 (Datum). If θ : Rd → R satisfies (1.19), then f0 : R2d → [0,+∞) given by

f0(x,v) =
1(−∞,0]

(
|v|2 − θ(x)

2
d

)
|B1|‖θ‖L1

, for x,v ∈ Rd, (3.4)

satisfies f0 ∈ L1(R2d)∩L∞(R2d), f0L 2d ∈ P1(R2d) and, for some constant C> 0,

ˆ
R2d

|v|p f0(x,v)dxdv⩽
‖θ‖

p
d+1

L
p
d+1

‖θ‖L1
for all p ∈ [1,+∞). (3.5)

Proof. Note that |v|⩽ θ(x)
1
d for all (x,v) ∈ supp f0. We thus have

ρ0 (x) =
ˆ
Rd

f0 (x,v) dv=
L d
({

v ∈ Rd : |v|⩽ θ (x)
1
d

})
|B1|‖θ‖L1

=
θ (x)
‖θ‖L1

(3.6)

for all x ∈ Rd. Consequently, we can estimate

ˆ
R2d

|v|p f0 (x,v) dxdv⩽
ˆ
R2d

|θ (x) |
p
d f0 (x,v) dxdv=

ˆ
R2d

|θ (x) |
p
d ρ0 (x) dx=

‖θ‖
p
d+1

L
p
d+1

‖θ‖L1
,

readily yielding the conclusion.

We can now prove theorem 1.7. Actually, we prove the following more precise result.

Proposition 3.5 (Existence). Assume that θ ∈ YΘ(Rd) satisfies (1.19). There exists a
Lagrangian weak solution

f ∈ C([0,T];Lp(R2d))∩L∞([0,T]×R2d)∩AΘ([0,T]), for all p ∈ [1,+∞),
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of the system (1.1) starting from f0 in (3.4) of Lemma 3.4 such that f(t, ·)L 2d ∈ P1(R2d),

ρf ∈ C([0,T];Lp(Rd)), for all p ∈ [1,+∞), (3.7)

and, for some constant CT > 0 depending on T,

‖θ‖Lq
‖θ‖L1

⩽ ‖ρf‖L∞([0,T];Lq) ⩽ CT‖θ‖Lq , for all q ∈ [1,+∞) . (3.8)

Proof. By theorem 1 in [19] (for d= 3, the case d= 2 being similar, see [13, 22]), there exists

f ∈ C([0,+∞);Lp(R2d))∩L∞([0,+∞)×R2d), for all p ∈ [1,+∞),

a weak solution of the system (1.1) starting from f 0 in (3.4) of Lemma 3.4 and such that

sup
t∈[0,T]

ˆ
R2d

|v|p f(t,x,v)dxdv<+∞, for all p ∈ [1,+∞). (3.9)

Note that the notion of weak solution here is well-posed in the sense of definition 1.2, since
Ef ∈ L∞([0,T]×Rd) in virtue of (3.9) and equation (16) in [19]. Moreover, f is constant along
characteristic curves of (1.12) which are defined almost everywhere. Finally, by equation (8)
in [19] and (3.5), we get (3.7). Thus, we just need to show (3.8), so that f ∈ AΘ([0,T]) in
particular. For the first inequality in (3.8), we observe that

‖ρf‖L∞(Lq) ⩾ ‖ρf (0, ·)‖Lq = ‖ρ0‖Lq =
‖θ‖Lq
‖θ‖L1

because of (3.6) and (3.7). For the second inequality in (3.8), we argue as in section 3 of [22].
By equation (14) in [19], we can estimate

‖ρf (t, ·)‖L p
d+1 ⩽ CMp (t)

d
p+d for t ∈ [0,T] ,

for some constant CT > 0 independent of p and t ∈ [0,T], but dependent on T > 0, which may
vary from line to line in what follows, where

Mp (t) =
ˆ
R2d

|v|p f(t,x,v) dxdv.

Exploiting (1.12) and the fact that f is constant along characteristics, we can estimate

Mp (t)⩽Mp (0)+CT p
ˆ t

0
Mp (s)

1− 1
p ds.

By a simple Grönwall-type argument, we infer that

sup
t∈[0,T]

Mp (t)⩽Mp (0)+CpT for all t ∈ [0,T] .

Since f(0, ·) = f0, by (3.5) we get

Mp (t)
d

p+d ⩽

‖θ‖
p
d+1

L
p
d+1

‖θ‖L1
+CpT


d

p+d

⩽ CT ‖θ‖L p
d+1 ,

proving the second inequality in (3.8) and ending the proof.
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3.4. Proof of proposition 1.8

We need some notation and the preliminary Lemma 3.6 below. For each m ∈ N, we define
ℓm : [0,+∞)→ [0,+∞) by letting

ℓm (r) = 1(0,εm) (r) logm (r) for all r⩾ 0, (3.10)

where εm ∈ (0,1) is such that logm(εm) =−1 (recall the notation in (1.21)).

Lemma 3.6. For m ∈ N, there are pm ∈ [1,+∞) and 0< am < bm <+∞ such that

am logm−1 (p)⩽ ||ℓm (| · |)||Lp ⩽ bm logm−1 (p) for all p⩾ pm. (3.11)

Proof. Given p⩾ log(1/εm), we can easily estimate

||ℓm (| · |)||pLp =
ˆ
Bεm

| logm (|x|) |p dx⩾
ˆ
Be−p

| logm (|x|) |p dx⩾ Cd e
−dp| logm−1 (p) |p (3.12)

for all m ∈ N, proving the lower bound in (3.11). For the upper bound in (3.11), we argue by
induction. If m= 1, then by direct computation we have

||ℓ1 (| · |)||pLp =
ˆ
B1

| log(|x|) |p dx= Cd

ˆ 1

0
(− logr)p rd−1 dr= Cd d

−(p+1)Γ(p+ 1)

and the desired upper bound readily follows by Stirling’s formula. If m⩾ 2, then

||ℓm (| · |)||Lp =

(ˆ
Bεm

| logm (|x|) |p dx

)1/p

=
|Bεm |1/p

p

(
1

|Bεm |

ˆ
Bεm

∣∣∣ log(logm−1 (|x|)
)p ∣∣∣p dx)1/p

.

Now r 7→ (logr)p is concave on
[
ep−1,+∞

)
. Since logm−1(εm) =−e, for p⩾ 2 we have

1
|Bεm |

ˆ
Bεm

∣∣∣ log(logm−1 (|x|)
)p ∣∣∣p dx⩽(log( 1

|Bεm |

ˆ
Bεm

∣∣ logm−1 (|x|)
∣∣p dx))p

⩽ pp
(
log
(
|Bεm |−1/p ||ℓm−1 (| · |)||Lp

))p
by Jensen’s inequality, so that

||ℓm (| · |)||Lp ⩽ |Bεm |1/p log
(
|Bεm |−1/p ||ℓm−1 (| · |)||Lp

)
,

readily yielding the conclusion.

Proof of proposition 1.8. For each m ∈ N, there exists δm > 0 such that

φΘm (r) = r | logr|Θm (|logr|) = Θm+1 (r) for all r ∈ [0, δm] .

Hence φΘm is concave on [0, δm] with φΘm(0) = 0. Therefore, we can estimate

ΦΘm (t) =
ˆ t

0
φΘm (s) ds⩽ tφΘm (t) = tΘm+1 (t) for all t ∈ [0, δm] .
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In particular, we readily infer that

lim
ε→0+

ˆ δm

ε

dt√
ΦΘm (t)

⩾ lim
ε→0+

ˆ δm

ε

dt√
tΘm+1 (t)

= lim
ε→0+

ˆ δm

ε

dt
t | log t| | log2 (t) | · · · | logm+1 (t) |

=+∞,

so that ΦΘm satisfies (1.15). To conclude, we define θm : Rd → [0,+∞) as

θm (x) = ℓ1 (|x|) ℓ2 (|x|)2 . . . ℓm+1 (|x|)2 for x ∈ Rd.

On the one side, arguing as in (3.12), we easily see that

||θm||pLp ⩾
ˆ
Be−p

| log1 (|x|) |p | log2 (|x|) |2p . . . | logm+1 (|x|) |2p dx

⩾ Cd e
−dp pp | log1 (p) |2p . . . | logm (p) |2p = Cd e

−dpΘm (p)
p

for all p ∈ [1,+∞). On the other side, by Lemma 3.6 and Hölder’s inequality, we get

‖θm‖Lp ⩽ ‖ℓ1 (| · |)‖L(m+1)p ‖ℓ2 (| · |)2 ‖L(m+1)p . . .‖ℓm+1 (| · |)2 ‖L(m+1)p

= ‖ℓ1 (| · |)‖L(m+1)p ‖ℓ2 (| · |)‖2L2(m+1)p . . .‖ℓm+1 (| · |)‖2L2(m+1)p

⩽ Cm p log1 (p)
2
. . . logm (p)

2
= CmΘm (p)

for all p⩾ pm for some constant Cm > 0 depending on m only, yielding the conclusion.

Remark 3.7 (Saturation of Θα(p) = p1/α). Fix α ∈ [1,∞). Arguing as above, one can eas-
ily see that θα(x) = ℓ1(|x|)1/α, for x ∈ Rd, saturates the growth function Θα(p) = p1/α in the
sense of proposition 1.8, giving an alternative proof of proposition 1.14 in [13].
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