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Abstract

In this thesis we investigate the stochastic dynamics of particles in contact with
active environments or fluctuating correlated media at equilibrium, offering a
comprehensive analysis that encompasses both equilibrium and non-equilibrium
systems. In the first part, we focus on assemblies of active particles subject
to a spatially varying degree of activity. We demonstrate that the interplay
between the inter-particle interactions and a non-homogeneous activity leads to
unexpected migration properties. In particular, we show that interacting active
particles can be directed and localized within specific spatial regions, and we
highlight potential applications in the design of autonomous systems able to
migrate towards specific target zones. In the second part of the thesis we analyze
the equilibrium behavior of particles moving within a fluctuating medium that
acquires significant spatio-temporal correlations. Specifically, we first study
the extent to which the field-induced forces caused by a fluctuating correlated
medium affect the conformational and the dynamical properties of a polymer
chain. Secondly, we investigate the self-diffusion coefficient of an odd-diffusive
tracer, whose dynamics is characterized by probability fluxes perpendicular to
the density gradient, coupled to a Gaussian-core fluid, showing that it can be
enhanced by the interaction with the medium. By combining these studies, the
thesis advances our understanding of the behavior of particles in correlated and
active media, offering new insights into the transport properties and collective
behaviors of collodal systems.
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Chapter 1

Introduction

The presence of stochasticity (randomness) pervades the most diverse branches
of modern scientific fields, from natural to social sciences and economy. In
physics, the intent to formalize the motion of a body subject to random forces
were stimulated by experimental observations dating back to the nineteenth
century. In particular, in 1828, the botanist Robert Brown noticed the ten-
dency of granular particles present inside pollen grains to be in constant erratic
motion once dissolved in water [1, 2]. The nature of this motion, essentially
unpredictable and irregular, persisted even after the death of the plants, in-
dicating that it was not necessarily associated to animated or living entities.
Surprisingly, nearly 80 years passed before Brownian motion was rigorously
theorized. It was first Albert Einstein in 1905 [3], and Marian Smoluchowski
shortly after [4, 5], who placed it within a physical-mathematical framework, es-
tablishing a connection with the molecular-kinetic theory of heat and the theory
of diffusion. Equally important was the alternative theory of Brownian motion
proposed by the French physicist Paul Langevin [6]. His approach, which led to
the same results as Einstein’s theory but through a rather different method, was
described by the author himself as “une démonstration infiniment plus simple”.
Specifically, Langevin’s theory was the first to incorporate a stochastic element
in the equation of motion of a colloidal particle suspended in a fluid. This the-
ory spurred further experiments to verify Einstein’s theoretical predictions on
the mean squared displacement of a particle in a fluid. Once acquainted with
the theory, it was the French physicist Jean Baptiste Perrin to “apply to it the
test of experiment” [2, 7].

The problem of finding an effective description for the dynamics of a specific
tagged particle (commonly referred to as the tracer) in a fluid has attracted
significant interest within the statistical mechanics community. Indeed, this
requires modeling systems composed by a large number of variables (degrees of
freedom) describing interacting agents, in order to study phenomena emerging
from such interactions. However, in a complex system like a fluid, the idea of
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CHAPTER 1. INTRODUCTION 7

accurately tracking the evolution of each individual degree of freedom is unre-
alistic, and experimental constraints typically limit the analysis to a restricted
set of variables. For example, let us consider a colloidal particle, the typical
size of which is within the range 0.1−10µm, dispersed in a simple fluid such as
water. Its motion is strongly affected by repeated collisions with the surround-
ing fluid molecules in the bath, whose exact positions, momenta and internal
structures are generally inaccessible. Fortunately, this level of detail is often
not needed to accurately describe the dynamics of the colloid, and one can rely
on an effective mesoscopic description that ignores the microscopic details of
the underlying fluid medium. Such a coarse-graining procedure allows one to
replace all the microscopic forces acting on the colloid with a single random
variable, leading to an effective stochastic equation of motion for the particle.
Assuming that the solvent molecules are initially distributed according to a
certain statistical distribution, e.g., the canonical one if the fluid medium is at
equilibrium, it is intuitive to expect that this initial distribution will impact the
statistical properties of the resulting stochastic description [8]. In many cases,
the size difference between the tracer and the solvent molecules spans several
orders of magnitude, and their motions occur on very different time scales. This
separation of time and length scales often allows for a simplified description of
the tracer dynamics, in which the possible memory due to its interaction with
the fluid can be neglected. In this cases, the stochastic motion of the tracer is
described by a Markovian process, i.e., its evolution only depends on its cur-
rent state and it is not affected by its past history. Under this condition, the
random interaction of the colloid with the bath can be modeled by a Gaus-
sian (by virtue of the central limit theorem [9]) white noise. In other words, the
stochastic forces acting on the tracer are not correlated in time. For this reason,
the Langevin dynamics first proposed in Ref. [6], though minimal in the way
it describes the motion of a tracer in a fluid at equilibrium, has a widespread
application in the field of soft matter.

Based on the simplest stochastic description of Brownian motion, more so-
phisticated models have been subsequently developed in an attempt to overcome
its limitations and to relax some of its underlying assumptions. Notably, some
of these extensions use effective stochastic dynamics to describe non-equilibrium
situations. They include relaxation processes toward stationary states, systems
maintained out of equilibrium by fixed boundary conditions, and more recently,
systems within the realm of active matter [10]. Active matter refers to all those
physical systems driven out of equilibrium by local energy injections occurring
at the level of individual agents, which are able to convert the energy stored
in the environment into mechanical work and directed motion. Besides several
examples of living active systems, such as bacteria or molecular motors [11,
12], many artificial active systems can now be synthesized in the lab [13, 14],
with precise characteristics which are well-suited for specific applications. For
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example, considerable effort has been dedicated to artificially mimick the self-
propulsion capabilities of some biological systems such as bacteria, sperm, algae,
and fungi [15–18]. This has been achieved with the synthesis of the so-called
Janus particles, a type of colloidal particle characterized by the violation of ro-
tational symmetry, which they use to generate directed motion when subjected
to specific energy inputs. The propulsion methods are diverse and include, for
instance, self-diffusiophoresis via catalytic reactions [19–22] and light-induced
self-thermophoresis [23]. Due to their versatility, simplicity, and potential in
various fields such as healthcare and sustainability, phoretic active colloids are
considered a paradigmatic example of synthetic active matter.

Due to their typical time and length scales, the motion of synthetic self-
propelled particles can be analyzed with mesoscopic stochastic dynamics. From
a modeling perspective, the self-propulsion is introduced in the form of an ad-
ditional force along an orientation vector that evolves over time and represents
the particle polarity related to its anisotropy. Depending on the stochastic
process that regulates the evolution of this polarity, various models have been
introduced, among which the most famous are the active Brownian particle,
run-and-tumble particle, and active Ornstein-Uhlenbeck particle [24–28]. In all
these cases, the decorrelation of the active forces occurs on a typical time scale
known as the persistence time, as it denotes the characteristic time required for
the particle’s polarity to reorient. From the perspective of the particle motion,
this active force can be interpreted as an additional source of colored noise, as
it exhibits temporal correlations on a time scale given by the persistence time.
The energy input that comes from the active force violates the detailed balance
condition, thus driving the system out of equilibrium. In other words, com-
pared to the case of a Brownian particle in a thermal bath at equilibrium, the
dynamics of an active particle is characterized by a broken time-reversal sym-
metry, meaning that a particular stochastic trajectory and its time-reversed do
not have the same probability to occur. This concept can be quantified by
calculating the entropy production rate or other appropriate measures of time
irreversibility [29, 30]. A rich variety of fascinating phenomena and collective
behaviors, forbidden at thermodynamic equilibrium, can emerge when multiple
self-propelled particles interact with each other. For instance, an ensemble of
repulsively interacting active particles can undergo liquid-gas phase separation
through a mechanism now widely studied and known as motility-induced phase
separation (MIPS) [10, 31–33]. It should be noted that a liquid-gas phase sepa-
ration at equilibrium requires the presence of (real or effective) attractive forces,
and therefore the transition mentioned above has a purely non-equilibrium na-
ture. Moreover, it has been shown that self-phoretic active particles can exhibit
pronounced dynamic clustering in dilute conditions (see, e.g., Refs. [22, 34–36]).

Another extremely interesting aspect concerns the behavior of self-propelled
particles in a medium characterized by a spatially varying activity. For exam-
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ple, in living microswimmers such as bacteria, amoebae or sperm cells, this can
be due to a non-uniform concentration of chemoattractants dispersed in the
environment [37–39], or in the case of synthetic photokinetic Janus particles,
to a non-uniform distribution of light intensity [40, 41]. In living organisms
such as E. coli, the response to a non-uniform concentration of various chem-
icals is quite elaborate [42] and is due to the presence of chemoreceptors on
their body’s surface [43]. These receptors allow E. coli to make temporal com-
parisons of the local concentration of attractants in the environment and to
modulate their tumbling rate accordingly [44–46]. This modulation of the rate
of random reorientation in response to external stimuli, which in the case of
E. coli is based on a sophisticated ability to process information from the sur-
rounding environment, is known as klinokinesis [47], and it enables E. coli to
bias its motion towards regions with higher concentrations of attractants. This
phenomenon is called chemotaxis. An alternative mechanism present in biology,
which involves varying the speed of movement in response to external stimuli
rather than changing the reorientation rate, is known as orthokinesis [48, 49]. It
is natural to ask whether the observed migration of living microswimmers im-
mersed in spatially heterogeneous environments can be reproduced with simpler
inanimated objects, and whether these properties can be harnessed to create
functional synthetic colloidal structures the motion of which can be controlled
and directed using external stimuli.

A first careful theoretical investigation of run-and-tumble particles reported
that in presence of a spatially varying self-propulsion force, these particles ac-
cumulate in those regions of the surrounding fluid medium where their motion
is slower [50]. In the first part of this thesis, we show that this behavior can
change significantly when the active particles are put in interaction with each
other. Specifically, we examine the case in which the magnitude of the active
self-propulsion force, and thus the swim speed of the active particles, vary in
space. This setting is analogous to the aforementioned orthokinetic mechanism.
We explore various scenarios in which assemblies of colloidal particles turn out
to feature a variety of migration properties and of responses to the activity field,
depending on the parameters which define their characteristics. In particular,
it may happen that these colloidal complexes preferentially localize within spe-
cific spatial regions. After the introductory Chapter 2, which summarizes the
theoretical background and the tools extensively used in the rest of the thesis,
the first part of the presentation is organized as follows:

• In Chapter 3 we study the behavior of two interacting active particles
characterized by a certain chirality. This means that the evolution of
the polarities of the two colloids is determined by the combination of a
stochastic component, related to rotational diffusion, and a determinis-
tic component that models an active torque. The relative importance of
these two effects determines the response of the active dimer to a non-
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homogeneous activity field, establishing its preferential localization in re-
gions of high or low activity. The analysis is extended to the case in which
the circular dynamics of the two active particles is induced by the Lorentz
force resulting from the application of a magnetic field.

• In Chapter 4 we investigate the possibility of using a self-propelled colloid
as a carrier for a passive cargo. We show that the motion of this dimer
can be directed by external tactical signals in the form of travelling waves
of activity. In particular, the resulting transport significantly depends on
the relative size of the two particles and on the propagation velocity of the
external stimulus compared to the swim speed of the active colloid. The
emergent phenomenology suggests the use of active colloids as potential
micrometric vehicles within a fluid.

• In Chapter 5 we examine the behavior of a polymer chain immersed in
a non-uniform active bath, which contains self-propelled agents. These
agents exert temporally correlated active forces on the polymer, altering
its configurational and transport properties. We show that the preferential
spatial localization of the polymer within the active bath changes accord-
ing to its degree of polymerization (i.e., to the number of monomers) and
to its connectivity (the structure of its internal interactions). This implies
that non-uniform activity fields could be used in order to separate different
polymeric species on the basis of their length and/or architecture.

While in the first part of the thesis we characterize the migration properties of
interacting active particles in a non-uniform activity field that does not fluctu-
ate and is not affected by the active particles, in the second part we consider
the case where the particles are at equilibrium, but the fluctuating medium in
which they move is characterized by significant spatio-temporal correlations, as
in the case of real fluids. In this case, we relax some assumptions that usually
allow the description of the motion of a particle in terms of Brownian motion
and we include, from a modeling perspective, some features that characterize
more realistic solvents. Specifically, we consider a medium whose relaxation is
not instantaneous but potentially occurs on timescales comparable to or longer
than those typical of the colloid dynamics. This aspect has already been exten-
sively analyzed in the past and has led to the introduction of the generalized
Langevin equation (GLE) [51, 52], an extension of the Langevin dynamics in
which the coupling between the tracer and the surrounding fluid is described
by means of a friction memory kernel. This type of equation has been used, for
example, to characterize the viscoelastic properties of complex fluids such as
colloidal dispersions and polymer or self-assembled surfactant solutions [53], by
probing the motion of a tracer particle immersed in these fluids. As a second
requirement, we want our description to take into account the spatial structure
of the fluid, which is inevitably influenced by the presence of the tracer itself. In
other words, while ignoring hydrodynamic effects, we introduce spatio-temporal
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correlations of the fluid into our model. This aspect is essential whenever con-
sidering the dynamics of particles dispersed in near-critical fluids characterized
by fluctuations of the relevant order parameter over large length scales and by
the phenomenon of critical slowing down [54]. An example is given by col-
loidal particles in a near-critical binary liquid mixture [55, 56]. In this case, it
is known that such particles are subject to fluctuation-induced forces [57–59],
which can be considered as the thermodynamic analogue of the critical Casimir
forces in electrodynamics [60]. In order to describe the dynamics of a tracer
(whether a single particle or a collection of interacting sub-units forming a more
complex structure) in a correlated medium, we couple its equation of motion to
a thermally fluctuating order parameter, described by a scalar field. The latter
evolves stochastically and accounts for the spatio-temporal correlations of the
fluid. This approach has been frequently used in the last years to characterize
the transport properties and the stochastic thermodynamics of colloidal sys-
tems in complex fluids [61–71]. In the second part of this thesis, we apply this
field-theoretic approach to the following two problems:

• In Chapter 6 we examine the configurational and dynamical properties of
a polymer chain dispersed in a correlated medium described by a ther-
mally fluctuating scalar field. We specifically focus on the effect of the
field-mediated forces on the typical size of the polymer, and analyze how
this changes as a function of the distance of the field from the critical
point. Additionally, we investigate the extent to which the fluctuating
field affects the relaxation of the internal structure of the polymer and of
its center of mass when initially displaced from the resting position of a
confining potential. Lastly, we explore how the correlated medium alters
the response of a polymer to a stretching force.

• In Chapter 7 we analyze the self-diffusion coefficient of an odd-diffusive
tracer particle (which moves, e.g., under the action of the Lorentz force
generated by a magnetic field) immersed in a medium which is modeled
by a Gaussian core model fluid. Following Refs. [72, 73], we derive a field-
theoretic description of the fluid starting from the microscopic dynamics of
its constituents. Upon increasing the magnetic field, we reveal a transition
from a regime where the self-diffusion of the tracer is suppressed compared
to the interaction-free case (as expected in a crowded environment) to one
where it is enhanced, meaning the tracer uses the collisions with the fluid
particles to speed up its dynamics.

Each Chapter of the thesis is accompanied by an Appendix containing the
detailed derivations of the presented results. Some future perspectives and open
problems related to the content of this thesis are summarized in Chapter 8.



Chapter 2

Theoretical background

In this Chapter we present the mathematical tools and the stochastic models
that will be extensively used in the rest of the thesis.

2.1 Langevin equation

Let us consider the evolution in d spatial dimensions of a single particle coupled
to a thermal bath with temperature T . According to the Langevin theory
of Brownian motion [6] mentioned in the Introduction, the motion of such a
particle is governed by the following stochastic differential equation:

mẌ = −ν−1Ẋ(t) + F (X(t), t) + ν−1ξ(t) , (2.1)

where X(t) denotes the position of the particle at time t, m its mass and
ν the mobility coefficient (i.e., the inverse friction). This equation expresses
the variation of the particle momentum on the left hand side as the sum of
all the forces acting on the particle. In particular, the term −ν−1Ẋ is the
friction force proportional to the velocity of the particle, and it represents the
average effect of its interaction with the fluid. The force F (X(t), t) consists of a
contribution deriving from a potential U(x) and of an external non-conservative
force Fnc(x, t) that may drive the system out of equilibrium, namely:

F (X(t), t) = −∇U(X(t)) + Fnc(X(t), t) . (2.2)

Moreover, due to its coupling with the thermal bath, the particle experiences
a fluctuating stochastic force ν−1ξ(t) that describes its random collisions with
all the solvent molecules. In a first approximation, these random forces can
be considered as statistically uncorrelated, and by virtue of the central limit
theorem one can assume that they have a Gaussian distribution. Hence, to
completely characterize the Gaussian white noise ξ(t), it is sufficient to provide

12



2.2. STOCHASTIC CALCULUS 13

its first two moments:

⟨ξα(t)⟩ = 0 ,

⟨ξα(t)ξβ(s)⟩ = 2Tνδαβδ(t− s) ,
(2.3)

where the Greek letter α ∈ {1, ..., d} is used to denote the α-component of the
noise vector. The amplitude of the noise ξ is proportional to the temperature
T of the thermal bath and to the particle mobility ν, so that fluctuations and
dissipation are related by the Einstein relation [3]. Note that in Eq. (2.3) as in
the rest of this thesis, we work in units where the Boltzmann constant kB is set
equal to 1. In the vast majority of soft matter systems, viscous forces dominate
over inertial effects (such that the l.h.s. of Eq. (2.1) is negligible compared to
the r.h.s., which can be effectively set to zero), and the Langevin equation (2.1)
can be rewritten in its simpler overdamped form as:

Ẋ(t) = νF (X(t), t) + ξ(t) . (2.4)

This form of the Langevin dynamics is very useful when one is interested in
phenomena occurring at time scales much longer than the typical relaxation
time mν of the velocity, as in most cases considered in this thesis. Although
it does not directly affect the stochastic dynamics (2.4), there is another im-
portant aspect about stochastic differential equations that deserve a thorough
clarification. This concerns the formal definition of stochastic integration and
the stochastic calculus with which an evolution equation such as Eq. (2.4) has
to be interpreted.

2.2 Stochastic calculus

To explain the problem, let us focus on a 1-dimensional stochastic differential
equation (SDE) of the form:

Ẋ = a(X(t), t) + b(X(t), t)ξ(t) , (2.5)

where ξ(t) indicates a zero-mean white Gaussian noise with unit variance, and
the generic functions a(X(t), t) and b(X(t), t) control the deterministic and the
stochastic contribution to the evolution of the coordinate X, respectively. Note
that the main difference compared to Eq. (2.4) is that the amplitude of the noise
now depends on the random variable X(t) itself. This type of noise is known
as multiplicative noise, as opposed to the additive noise that characterizes, e.g.,
Eq. (2.4), where the noise amplitude does not depend on the position of the
particle. The formal solution of (2.5) can be easily obtained and reads:

X(t) = X(0) +

∫ t

0

ds a(X(s), s) +

∫ t

0

ds b(X(s), s)ξ(s) . (2.6)
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Upon introducing the quantity

W (t) =

∫ t

0

ds ξ(s) , (2.7)

the integral of the noise term, which we refer to as I, can be more conveniently
expressed as:

I ≡
∫ t

0

ds b(X(s), s)ξ(s) =

∫ t

0

b(X(s), s)dW (s) , (2.8)

which is a sort of stochastic Stieltjes integral with a sample function W (t) [9].
The formal definition of this type of integral represents the fundamental aspect
from which all the stochastic calculi originate, as briefly shown in the following.
As a first step, we note that W (t) is the so-called Wiener process. In particular
it is an almost surely continuous Markovian process for all times t > 0, charac-
terized by stationary and independent increments. In other words, the quantity
W (t+ ∆t) −W (t) is independent of all previous values W (s), with s < t. Fur-
thermore, the increments W (t+∆t)−W (t) are distributed according to a zero-
mean normal distribution with variance ∆t, i.e., W (t+∆t)−W (t) ∼ N (0,∆t).
We will now make use of the statistical properties of the Wiener process W (t)
to show the subtleties involved in the definition of the stochastic integral (2.8).
In particular, we can define (2.8) as a Riemann-Stieltjes integral. This implies
dividing the integration domain [0, t] into n sub-intervals delimited by the times
t0 = 0 < t1 < t2 < ... < tn = t, and considering the partial sums Sn defined as:

Sn =
n∑

i=1

b(X(τi), τi)[W (ti) −W (ti−1)] , (2.9)

where τi = αti + (1 − α)ti−1, with α ∈ [0, 1]. The integral in Eq. (2.8) is then
defined as the mean-square limit of the partial sums, i.e. I ≡ ms−limn→∞Sn [9].
However, it turns out that such definition is not invariant under a change of the
parameter α. This can be easily demonstrated by considering for example the
stochastic integral

∫ t

0
dsW (s)dW (s), for which the average of the associated

partial sums can be exactly computed and yields ⟨Sn⟩ = tα. This result is
strongly dependent on the choice of the intermediate points τi, namely on the
value of the parameters α. As a consequence, different choices of α lead to
distinct definitions of the stochastic integral, and thus to different stochastic
calculi. The most frequent prescriptions are those obtained with α = 1/2
(Stratonovich) and α = 0 (Itô) [9]. Although the latter involves using different
rules of calculus, it can nonetheless be useful in some derivations. Interpreting
a SDE of the type (2.5) according to different discretization rules (i.e., different
stochastic calculi) leads in general to different results, meaning that the average
observables assume different values. However, when the stochastic dynamics is
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characterized by additive noise, as in the case of Eq. (2.4), all stochastic calculi
are equivalent. Another scenario where the choice of the discretization rule
is irrelevant is when the noise, though multiplicative, is colored, i.e., it has
temporal correlations [74–76].

2.2.1 Itô Lemma

As anticipated, whenever the evolution of a stochastic variable is governed by
a SDE interpreted with the Itô convention, the rules of calculus need to be
modified accordingly. In particular, it is well known that the time derivative of
a generic function f of a stochastic process X(t) does not follow the standard
chain rule, but it acquires an additional term that we will now briefly justify.
Let us assume that the variable X(t) evolves according to Eq. (2.5), which can
be equivalently written as

dX = a(X(t), t)dt+ b(X(t), t)dW , (2.10)

by using the definition (2.7) of the Wiener process W (t). Let us now consider
a differentiable function f , and compute its infinitesimal variation

df(X(t)) = f ′(X(t))dX +
1

2
f ′′(X(t))(dX)2 + o(dt2) . (2.11)

Importantly, the second term of the expansion has not been neglected and it can
be shown to provide a contribution of order dt due to the Itô rules of calculus.
More precisely, one can prove the formal identity dW 2 = dt, which derives from
the more rigorous statement∫ t

0

[dW (s)]2g(s) = ms − lim
n→∞

n∑
i=1

g(ti−1)[W (ti) −W (ti−1)]
2 =

∫ t

0

dt g(s) (2.12)

with g(s) a generic non-anticipating function of s, in the sense that for all times
t and s such that s < t, one has that g(s) is statistically independent of the
increment W (t)−W (s) [9]. This leads to the so-called Itô lemma, which states
that the infinitesimal variation (and thus the chain rule) of the function f(X(t))
is corrected by a term that depends on the noise amplitude, namely:

df(X(t)) = f ′(X(t))dX +
1

2
b2(X(t))f ′′(X(t))dt+ o(dt2) . (2.13)

The Itô’s Lemma can be readily generalized to the case of a multivariate d-
dimensional stochastic process X(t) evolving according to

dX = a(X(t), t)dt+ b(X(t), t) · dW , (2.14)
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where the element of W are d statistically independent Wiener processes, a a
d-dimensional vector and b a d × d matrix. In this case, the multivariate Itô
Lemma yields:

df(X(t)) = ∇f(X(t)) · dX

+
1

2

∑
αβ

[b(X(t), t) · bT (X(t), t)]αβ∇α∇βf(X(t))dt+ o(dt2) . (2.15)

Further below, in Secs. 2.3 and 2.9, we will present some instances where the
choice Itô calculus turns out to be useful, leading to a simplification of some
derivations compared to using, e.g., Stratonovich calculus and the standard
chain rule.

2.3 Fokker-Planck Equation

Let us come back to the overdamped Langevin dynamics in Eq. (2.4). This
equation models the stochastic evolution of the variable X(t), and for each
noise realization ξ(t) it provides one of its possible random trajectories. A
useful tool to study the statistical properties of a stochastic process is the so-
called Master equation, which describes the deterministic time evolution of the
one-time probability density

P1(x, t) = ⟨δd(X(t) − x)⟩ , (2.16)

where the ensemble average is taken over all the possible realizations of the noise
ξ. In the case of a Markovian process, as the one described by Eq. (2.4), the
evolution equation of P1(x, t) is given by the Fokker-Planck equation (FPE) [9,
74, 77–79], the derivation of which is straightforward and is reported in what
follows. Among the various ways to derive the FPE, we choose the one that
relies on the application of the Itô lemma. We remind that the Langevin equa-
tion (2.4) is characterized by additive noise, implying that all discretization
rules are equivalent and should lead to the same FPE. For this reason we have
the freedom to choose the stochastic calculus which is more suitable for our
derivation. If one is faced with an SDE with multiplicative noise and a speci-
fied stochastic calculus other than Itô’s, such SDE should be converted into its
equivalent Itô’s form in order to use the following proof. Let us consider the
quantity δd(X(t) − x): this is a function of the stochastic process X(t) which
follows the equation of motion (2.4). This means that, according to the Itô
Lemma, its time derivative reads:

d

dt
δd(X(t) − x) = ∇δd(X(t) − x) · Ẋ(t) + Tν∇2δd(X(t) − x) . (2.17)

Both sides of the above equation are still random variables in that they depend
on the stochastic process X(t). Therefore, they can be averaged over all the
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noise realizations ξ(t). For a generic observable O(X(t)) which only depend on
the stochastic process X(t) at a single time t, the ensemble average over the
noise realizations can be rewritten as:

⟨O(X(t))⟩ =

∫
ddyO(y)P1(y, t) . (2.18)

Thus, taking the average of Eq. (2.17) leads to:

∂tP1(x, t) = ν

∫
ddy∇δd(y−x)·F (y, t)P1(y, t)+Tν

∫
ddy∇2δd(y−x)P1(y, t) ,

(2.19)
where we used ⟨∇δd(X(t) − x)ξ(t)⟩ = 0 due to the fact that all Itô processes
are non-anticipating. This property is one of the main reasons for which Itô
calculus might be advantageous in specific circumstances, as it implies that the
noise term ξ(t) and a generic function f(X(t)) of the stochastic process X(t)
are uncorrelated random variables at the same time t. Integrating by parts
Eq. (2.19) finally yields the FPE:

∂tP1(x, t) = −∇ · [νF (x, t)P1(x, t) − Tν∇P1(x, t)] . (2.20)

As expected, this equation takes the form of a continuity equation

∂tP1(x, t) = −∇ · J(x, t)

J(x, t) = νF (x, t)P1(x, t) − Tν∇P1(x, t) ,
(2.21)

with a probability flux given by J(x, t). This ensures that, in the domain of
definition of x, the probability density is a conserved quantity. The probabil-
ity flux J(x, t) consists of two contributions of distinct origin. The first one,
νF (x, t)P1(x, t), is the drift term generated by the deterministic force F (x, t)
and it is associated to the advective transport. The second one, −Tν∇P1(x, t),
is a diffusive flux of the form predicted by the first Fick’s law, i.e., it is pro-
portional to the gradient of the probability density. More precisely, whenever
the probability density P1(x, t) is non-homogeneous around the position x, the
diffusion produces a net flux against the gradient in the attempt to compensate
for such unbalance and make the distribution spatially homogeneous. The co-
efficient in front of the probability gradient is the so-called diffusion coefficient
and it is denoted by D. In this case, as anticipated in Sec. 2.1, the diffusion
coefficient is related to the mobility ν and the temperature T by the Einstein
relation

D = νT . (2.22)

In the absence of non-conservative forces and external drivings, the advective
component of the flux is purely determined by the potential energy U(x). In
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this case, the stochastic dynamics (2.4) satisfies the detailed balance condition
and the time reversal symmetry is preserved. At long times, the one-time
probability density associated to this equilibrium dynamics converges to the
Boltzmann distribution

P
(eq)
1 (x) ∝ e−βU(x) , (2.23)

with β = 1/T the inverse temperature. This can be easily verified by checking
that the Boltzmann distribution solves the FPE at steady state, i.e., when
∂tP1(x, t) = 0. An analogous derivation can be carried out for a generic Itô
process with multiplicative noise as the one reported in Eq. (2.14). In this case,
the corresponding FPE is given by:

∂tP1(x, t) = −
∑
α

∇α[aα(x, t)P1(x, t)]

+
1

2

∑
αβ

∇α∇β[[b(x, t) · bT (x, t)]αβP1(x, t)] .
(2.24)

Finally, note that the FPE reported in Eqs. (2.20) and (2.24) are local in time.
This property ultimately comes from the Markovian nature of their underlying
stochastic dynamics. For a non-Markovian stochastic process, deriving the as-
sociated Master equation can be more involved, and in general it does not lead
to a close equation for P1(x, t).

2.4 Brownian motion

The overdamped Langevin equation (2.4) can be specialized to the case of a
single and unconfined colloidal particle diffusing in a simple fluid. In the absence
of any deterministic force, the motion of the particle is entirely governed by the
collisions with the solvent molecules. Assuming that at the initial time t0 = 0
the particle is located at X(0), its position at a later time t is given by:

X(t) = X(0) +

∫ t

0

ds ξ(s) = X(0) +
√

2νTW (t) . (2.25)

This means that the stochastic evolution of a freely diffusing particle is sta-
tistically equivalent to a Wiener process. In particular, the averaged position
⟨X(t)⟩ = X(0) equals its initial value because the Wiener process has zero mean
at all times. However the typical distance travelled by the colloidal particle can
be computed from the two-point connected correlations

⟨(Xα(t) −Xα(0))(Xβ(s) −Xβ(0))⟩ = 2νTδαβ min(t, s) , (2.26)

from which one can derive the mean-squared-displacement:

⟨[X(t) −X(0)]2⟩ = 2dνT t . (2.27)
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This implies that the typical distance travelled by the particle at time t grows
as ∼

√
t, which is an important characteristic of diffusive motion. Note that

the mean-squared-displacement in Eq. (2.27) only features a linear growth with
time and does not display an initial ballistic regime ∼ t2. Although this should
be present as a consequence of inertia, the overdamped Langevin dynamics is
unable to capture this effect in that it assumes that the velocity relaxation time
νm is vanishingly small. To give an estimate of the typical values assumed by
the diffusion coefficient D (see Eq. (2.22)) of a colloidal particle, we first apply
the Stoke’s law to relate its mobility ν to its radius R and to the dynamic
viscosity µ of the fluid it is immersed in. Thus, the diffusion coefficient is given
by:

D = T/(6πµR) . (2.28)

According to this formula, at room temperature, a colloidal particle with a
radius R ≈ 1µm immersed in water (dynamical friction µ ≈ 8.9 · 10−4 Pa · s),
is characterized by a diffusion coefficient D ≈ 2 · 10−13m2/s. This means that
during a time interval of 1 second, the colloidal particle travels a typical distance
of the order of 1µm, i.e., it moves about its own size in a second.

2.5 Rotational diffusion

In the previous Section, we have seen that as a result of its interaction with
the fluid, the position of a colloidal particle evolves according to a diffusive
motion. However, it is natural to expect that the fluid will also affect the
rotational dynamics of the particle, leading to the so-called rotational diffusion.
Let us take an arbitrary point on the surface of the colloidal particle (which
we assume to be of spherical shape for simplicity), and consider the line that
joins that point to the center of the particle. This line identifies a unit vector n
directed from the center of the particle to its surface. In d = 3, the overdamped
stochastic dynamics of n is given by:

ṅ =
√

2Drn ∧ ξ , (2.29)

with Dr the rotational diffusion coefficient and ξ a zero-mean Gaussian white
noise with unit variance. Importantly, the stochastic rotational dynamics (2.29)
is characterized by a multiplicative noise and needs to be interpreted accord-
ing to the Stratonovich convention. Indeed, this ensures the invariance of the
modulus ∥n∥ = 1 along the dynamics, as it can be immediately verified by
computing:

d∥n∥2

dt
= 2
√

2Drn · n ∧ ξ = 0 , (2.30)

where we used the (standard) Stratonovich chain rule and the fact that the noise
vector n∧ ξ lies on a plane perpendicular to the unit vector n. By introducing
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the Levi-Civita symbol εαβγ in three dimensions, defined as

εαβγ =


+1 if (α, β, γ) is an even permutation of (0, 1, 2),

−1 if (α, β, γ) is an odd permutation of (0, 1, 2),

0 otherwise,

(2.31)

the noise term in Eq. (2.29) can be rewritten in the equivalent form:

ṅ = b(n) · ξ ,

bαβ(n) ≡
√

2Dr

∑
γ

εαγβnγ .
(2.32)

In order to characterize this diffusive motion on a sphere of unit radius, one
important quantity to investigate is the orientational autocorrelation function
⟨n(t) ·n(0)⟩, which will provide a typical time scale after which the orientation
vector n(t) is statistically independent from its initial value n(0). To this aim,
it is convenient to map the stochastic dynamics (2.32) to its equivalent Itô form.
In particular, we want to derive a stochastic dynamics of the form

ṅ = aI(n(t)) + bI(n(t)) ◦ ξ , (2.33)

where we denoted by ◦ the Itô product, which renders the same average observ-
ables as Eq. (2.32). Following Ref. [9], this mapping does not affect the noise
amplitude b(n(t)), but it introduces a finite drift term of the form given below:

aIα(n) = aα(n) +
1

2

∑
βγ

bγβ(n)∇γbαβ(n) ,

bIαβ(n) = bαβ(n) ,

(2.34)

where aα(n) denotes the drift term in the Stratonovich equation (2.32), which
is identically zero in the case of rotational diffusion. By using the definition of
bαβ(n) in Eq. (2.32), the drift term aIα(n) which appears in the Itô dynamics
can be readily computed as:

aIα(n) = Dr

∑
βγσω

εγσβnσ∇γεαωβnω = Dr

∑
βγσ

εσβγεαγβnσ

= −Dr

∑
σ

2δσαnσ = −2Drnα ,
(2.35)

where we used the following property of the Levi-Civita symbol∑
βγ

εαβγεσβγ = 2δαβ . (2.36)
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Thus the equivalent Itô dynamics reads:

ṅ = −2Drn + b(n(t)) ◦ ξ . (2.37)

Although the presence of the drift term −2Drn in the Itô dynamics might
appear as counter-intuitive as it is aligned with the orientation vector n, it
is actually necessary to preserve its norm throughout the dynamics. Indeed,
in computing the time derivative of ∥n∥2, one should now carefully apply the
multivariate Itô Lemma (2.15), obtaining:

d∥n∥2

dt
= 2n · aI(n) +Dr

∑
αβγσω

εασγεβωγnσnω∇α∇βn · n

= −4Dr∥n∥2 + 2Dr

∑
αγσω

εασγεαωγnσnω

= −4Dr∥n∥2 + 4Dr

∑
σω

δσωnσnω = 0 ,

(2.38)

which confirms that the modulus of the vector n is fixed also with the stochastic
dynamics in Eq. (2.37). As anticipated, the Itô formalism is more convenient
to compute the orientational autocorrelation function [80]. To this purpose, let
us denote by n(0) the initial orientation vector. The stochastic dynamics in
Eq. (2.37) can be formally solved leading to

n(t) = e−t/τn(0) +

∫ t

0

dse−(t−s)/τb(n(s)) ◦ ξ(s) , (2.39)

where we introduced the characteristic time scale τ = 1/[(d − 1)Dr]. We can
now multiply the formal solution by the initial vector n(0) and then compute
the average of the resulting quantity. In this way we obtain:

⟨n(t) · n(0)⟩ = e−t/τ + n(0) ·
∫ t

0

e−(t−s)/τ ⟨b(n(s)) ◦ dW (s)⟩ = e−t/τ . (2.40)

Importantly, the second average vanishes for all times s because the integrand is
a non-anticipating function of s and we are using Itô calculus, thus the noise at
a certain time s is not correlated with the value assumed by the random variable
n(s) at the same time. By using the orientation autocorrelation function we
can also compute the mean-squared-chord, namely the typical length of the
segment that joins the points on the sphere identified by n(t) and n(0). This
is given by:

⟨(n(t) − n(0))2⟩ = 2 − 2⟨n(t) · n(0)⟩ = 2(1 − e−t/τ ) . (2.41)

Interestingly, at short times, when the chord is approximately equal to the
travelled arc length, the previous expression becomes:

⟨(n(t) − n(0))2⟩ t≪τ∼ 2(d− 1)Drt , (2.42)
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which grows linearly in time, as expected for a diffusive dynamics, and is for-
mally equivalent to the mean-squared-displacement of the Brownian motion (see
Eq. (2.27)), but in a lower dimensionality because, at short times, the effects of
the sphere curvature play a minor role.

By using Eq. (2.24), which provides the expression of the Fokker-Planck equa-
tion associated to a given Itô process with multiplicative noise, one can obtain
the evolution equation of the one-time probability density P1(n, t) of the orien-
tation vector undergoing rotational diffusion. This reads:

∂tP1(n, t) = DrR2P1(n, t) , (2.43)

where the operator R = (1−n⊗n) · ∇ represents the projection of the nabla
operator onto the direction perpendicular to the orientation vector n, and ⊗
denotes the outer product. In d = 3, the unit vector n can be parametrized by
the polar angle θ and the azimuthal angle ϕ. Accordingly, the operator R2 can
be rewritten in spherical coordinates as

R2 =
1

sin θ
∂θ[sin θ∂θ] +

1

sin2 θ
∂2ϕ , (2.44)

and it is diagonalized by spherical harmonics Y m
l (θ, ϕ). This implies that the

orientation vector n is itself an eigenfunction of R2, with eigenvalue (1 − d).
Much simpler is the FPE associated to the rotational diffusion in d = 2, i.e.,
the diffusion on a circle, which in polar coordinates reads:

∂tP1(θ, t) = Dr∂
2
θP1(θ, t) . (2.45)

Indeed, in this case, the underlying stochastic dynamics is expressed in terms
of the polar angle θ, and it is characterized by additive noise:

θ̇ =
√

2Drξ(t) . (2.46)

An analogous equation of motion with the addition of an external deterministic
torque will be employed in Chapter 3 to describe the rotational dynamics of the
polarity of a self-propelled particle.

2.6 The Ornstein-Uhlenbeck process

The behavior of a freely diffusing particle on time scales shorter than the velocity
relaxation time mν has been first analyzed by Ornstein and Uhlenbeck [81]. In
this regime, the role of inertia cannot be neglected, and the stochastic dynamics
of the velocity is given by

mνv̇ = −v +
√

2νTξ . (2.47)
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This stochastic equation of motion is formally equivalent to the overdamped
Langevin dynamics of a Brownian particle confined by a harmonic potential
U(x) = κx2/2 with stiffness κ. The latter reads:

Ẋ = −ν∇U(X(t)) +
√

2νTξ = −γX(t) +
√

2νTξ , (2.48)

with ξ a zero-mean Gaussian white noise and where we introduced the inverse
characteristic time

γ ≡ τ−1
X = κν . (2.49)

A linear SDE of the type shown in Eqs. (2.47) and (2.48) is called the Ornstein-
Uhlenbeck (OU) process, which we briefly discuss here. Due to its linearity,
Eq. (2.48) can be solved exactly, giving:

X(t) = e−γtX0 +
√

2νT

∫ t

t0

ds e−γ(t−s)ξ(s) , (2.50)

where we assumed that the particle is initially located at the position X0. From
this solution we can readily compute the average position of the particle

µ(t) ≡ ⟨X(t)⟩ = e−γtX0 , (2.51)

which decays exponentially to the rest position of the confining potential with
the characteristic time scale τX . Moreover, we can compute the two-point con-
nected correlation function Cαβ(t, s) given by:

Cαβ(t, s) ≡ ⟨[Xα(t) − µα(t)] · [Xβ(s) − µβ(s)]⟩

= 2νT

∫ t

t0

dt′
∫ s

t0

ds′e−γ(t+s−t′−s′)⟨ξα(t′)ξβ(s′)⟩

= δαβ
T

κ

[
e−γ|t−s| − e−γ(t+s−2t0)

]
.

(2.52)

In the long-time regime, which can be obtained by considering the limit t0 →
−∞, the system reaches a stationary state and the two-point connected correla-
tion function becomes time-translation invariant, i.e., a function of the difference
t − s. In particular, from Eq. (2.52) in the long-time limit we can extract the
variance of the position at steady state, which is given by

⟨[Xα(t) − µα(t)]2⟩ t→∞→ dT/κ , (2.53)

and, as expected, it is controlled by the entity of the thermal fluctuations and
the stiffness of the confining potential. Naturally, this result is in agreement
with the fact that stationary density of the position is given by the Boltzmann
distribution

P (eq)(x) ∝ exp
(
− κ

2T
x2
)

(2.54)
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which, in this case, is Gaussian as a consequence of the harmonic confinement.
Equation (2.54) is indeed the long-time solution of the Fokker-Planck equation
associated to the OU process, namely:

∂tP1(x, t) = −∇ · [−γxP1 − νT∇P1] . (2.55)

2.7 Rouse polymer

The overdamped Langevin dynamics (2.4) can be generalized to model the
stochastic equation of motion of many particles interacting with each other to
form a polymer chain. In particular, let us consider N particles with position
Xi, where i ∈ {0, 1, ..., N − 1}, which we will call monomers. Every pair of
interacting monomers is subject to a harmonic attractive potential with a fixed
stiffness κ. Hence, the Hamiltonian of the chain is quadratic and is given by:

H =
κ

2

N−1∑
i=0

N−1∑
j=0

MijXi ·Xj , (2.56)

with Mij denoting the connectivity matrix, which establishes which pairs of
monomers are interacting. The matrix M is built as follows: each diagonal ele-
ment Mii contains the degree of connectivity of the monomer i, i.e., the number
of monomers to which the latter is connected; the off-diagonal elements Mij are
−1 when the monomers i and j are connected, and equal to 0 otherwise. The
connectivity matrix defines the architecture of the polymer, namely it deter-
mines whether it is a linear chain, a ring, or a more complicate structure. A
polymer chain described with a quadratic Hamiltonian as (2.56) is sometimes
called a generalized Gaussian structure [82]. The evolution of the polymer in a
thermal bath is governed by the following stochastic dynamics:

Ẋi = −ν∇iH({Xi(t)}) + ξi(t) = −γ
N−1∑
j=0

MijXj(t) + ξi(t) , (2.57)

where we introduced the relaxation rate γ = κν as in Eq. (2.49), and where {ξi}
is a set of N independent zero-mean white Gaussian noises with correlations

⟨ξαi (t)ξβj (s)⟩ = 2νTδijδαβδ(t− s) . (2.58)

This model goes under the name of Rouse model [83, 84]. Clearly, this is only
the simplest possible polymer model because it neglects many features of a real
chain, e.g., bending rigidity, torsional stress and excluded volume interaction.
Moreover, when a portion of the chain moves, it induces a change in the velocity
field of the solvent, which is in principle felt by the neighboring monomers. This
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kind of hydrodynamic interactions is neglected in the Rouse model, and it is
assumed that the only effect of the coupling with the thermal bath is encoded in
the friction and in the noise term. Despite this apparently strong simplification,
the Rouse model has proved to be useful to describe the dynamics of unentangled
dense polymer solutions and melts. In other cases, like in unentangled dilute
polymer solutions, the lack of hydrodynamic interactions might represent a
serious limitation, and the polymer dynamics is better described by the more
elaborate Zimm model [84, 85].

The most common approach to analyze the Rouse model is to perform a
change of variable from the position of the monomers {Xi} to the so-called
Rouse modes {χi}. These can be obtained through the application of a linear
transformation φ, i.e.,

χi =
N−1∑
j=0

φijXj . (2.59)

The transformation φ is chosen such that it diagonalizes the connectivity matrix
M , namely it satisfies: ∑

jk

φijMjkφ
−1
kl = λiδil , (2.60)

with {λi} the N eigenvalues of M . This implies that the rows of φ are the
eigenvectors of M , and we choose them to be normalized to unity. Importantly,
since the connectivity matrix is symmetric, we have that φ is an orthogonal
matrix, i.e. φ−1 = φT . This property will be extensively used in the Chapters 5
and 6, as well as in their corresponding Appendices. Furthermore, we know by
construction of M that the sum of the elements of each row (and of each
column) is equal to 0. This implies that for a generic connectivity matrix M ,
the vector (1, 1, ..., 1)/

√
N is always an eigenvector, with associated eigenvalue

λ0 = 0. By applying the transformation φ to the stochastic dynamics (2.57),
we get:

χ̇i = −γiχi + ξ̃i(t) , (2.61)

where {ξ̃i} is a set of zero-mean Gaussian white noises with the same statistical
properties as {ξi}. This can be easily proved as follows:

⟨ξ̃αi (t)ξ̃βj (s)⟩ =
∑
mn

φimφjn⟨ξαm(t)ξβn(s)⟩ = 2νTδαβδ(t− s)
∑
n

φinφjn

= 2νTδαβδijδ(t− s) ,

(2.62)

where we used φjn = φT
nj = φ−1

nj . Moreover, we introduced in Eq. (2.61) the
relaxation rate

γi = γλi (2.63)

of the i-th Rouse mode, which is proportional to the i-th eigenvalue of the
connectivity matrix. Let us focus first on the 0-th order Rouse mode, which
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can be easily shown to be proportional to the coordinate Xcom of the center
of mass of the chain, namely χ0 =

√
NXcom. As anticipated, for an arbitrary

connectivity matrix one has λ0 = 0, implying that the dynamics of the center-
of-mass is characterized by an infinite typical time scale because of γ0 = 0. In
particular, one can see that Xcom evolves according to a simple Brownian motion
with diffusion coefficient D/N . Conversely, all other modes are characterized by
a typical relaxation rate γi and their stochastic evolution follows an OU process.
The advantage of the transformation φ is that it provides a set of variables, the
Rouse modes, which are decoupled from each other, as can be seen from (2.61).
We will show in Chapters 5 and 6 two problems where the last property does not
hold any longer, and the internal structure of the polymer is coupled to its center
of mass. Following the solution of the OU process presented in Section 2.6, we
can immediately write down the expression of the steady state amplitude of the
Rouse modes, also known as power spectrum, i.e.,

⟨χ2
i ⟩ =

dνT

γi
. (2.64)

This quantity diverges for the center of mass in absence of confinement, as the
latter keeps diffusing in space and the variance of its position monotonically
increases as ∼ t without ever reaching a stationary state. From the power spec-
trum, we can evaluate what the typical size of the polymer is in the stationary
state. One way to quantify this in the case of a linear chain is via the end-to-end
distance Ree = XN−1 −X0. From symmetry arguments, it is easy to see that
on average ⟨Ree⟩ = 0, because for each configuration {Xi} there exist another
one that can be obtained by sending Xi → −Xi, which is characterized by the
opposite end-to-end distance and has the same statistical weight. Thus one can
compute the mean-squared end-to-end distance

⟨R2
ee⟩ = ⟨(XN−1 −X0)

2⟩ =
∑
ij

(φ−1
N−1,i − φ−1

0,i )(φ
−1
N−1,j − φ−1

0,j)⟨χi · χj⟩

=
N−1∑
i=1

(φi,N−1 − φi,0)
2⟨χ2

i ⟩
(2.65)

and express it as a function of the stationary power spectrum. The typical size
of the polymer can then be obtained by taking the square root of the previous
quantity. Note that, as expected, the typical size of the polymer does not
depend on the position of the center of mass. In the case of a linear chain the
transformation φ reads

φkj =

√
2 − δk0
N

cos

(
kπ

N

(
j +

1

2

))
, (2.66)

and the relaxation rates are given by

γj = 2γ

(
1 − cos

(
jπ

N

))
= 4γ sin2

(
jπ

2N

)
. (2.67)
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However,
√
⟨R2

ee⟩ can be used as a proxy for the typical polymer size only in
the case of a linear chain. A more appropriate observable that can be used for
a generic polymer structure is given by the gyration radius Rg, which is defined
as:

R2
g =

1

N

N−1∑
i=0

(Xi −Xcom)2 . (2.68)

Analogously to the end-to-end distance, also the average gyration radius can be
expressed in terms of the power spectrum:

⟨R2
g⟩ =

1

N

N−1∑
i=0

〈(
N−1∑
j=0

φjiχj −
χ0√
N

)2〉
=

1

N

N−1∑
i=0

〈(
N−1∑
j=1

φjiχj

)2〉

=
1

N

N−1∑
j=1

N−1∑
k=1

(
N−1∑
i=0

φjiφki

)
⟨χj · χk⟩ =

1

N

N−1∑
j=1

⟨χ2
j⟩ .

(2.69)

This expression will be used later on in Chapter 6 to describe the effect of a
correlated medium on the structure of a polymer chain.

2.8 The Gaussian field

All stochastic dynamics discussed in the previous Sections are given by d-
dimensional stochastic processes, or in the case of the Rouse model by a set
of N interacting d-dimensional stochastic processes. In this Section we de-
scribe the stochastic evolution of a thermally fluctuating scalar field ϕ(x, t),
with x ∈ Rd. In this case, for each of the infinitely many spatial labels x, the
value taken by the field in that point is a fluctuating degree of freedom. For
simplicity, we assume that the field ϕ(x, t) is Gaussian, i.e., it is characterized
by the quadratic Hamiltonian

H =

∫
ddx

[
1

2
(∇ϕ)2 +

r

2
ϕ2

]
, (2.70)

where the parameter r = 1/ξ2ϕ is related to the correlation length ξϕ of the
field, and therefore it determines its distance from the critical point r = 0. The
stochastic evolution of the field is assumed to be given by [54]:

∂tϕ(x, t) = −Dϕ(i∇)a
δH

δϕ(x, t)
+ζ(x, t) = −Dϕ(i∇)a

[
(r −∇2)ϕ(x, t)

]
+ζ(x, t) ,

(2.71)
where δ/δϕ denotes the functional derivative and Dϕ is the field mobility. The
exponent a can assume two distinct values: with a = 0 we get what is called
model A dynamics, whereas with a = 2 we obtain model B dynamics. This
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nomenclature was first given in [86]. Model A describes the stochastic evolution
of a non-conserved order parameter, while in model B the scalar field ϕ(x, t)
is locally conserved throughout the dynamics. This implies that in the latter
case, the equation of motion (2.71) can be rewritten as a continuity equation
∂tϕ = −∇ · J(x, t), with a suitable fluctuating flux J(x, t). The noise term
ζ(x, t) is a zero-mean Gaussian white noise field, with correlations:

⟨ζ(x, t)ζ(y, s)⟩ = 2DϕT (i∇)aδd(x− y)δ(t− s) . (2.72)

To ensure that the system reaches the equilibrium Boltzmann distribution
P (eq)[ϕ] ∝ exp(−βH[ϕ]) at steady state, the noise amplitude in the previous
equation is actually determined by the field mobility Dϕ and by the tempera-
ture T according to a continuum version of the Einstein relation. Analytical
progresses can be made by rewriting the field dynamics (2.71) in the Fourier
domain. Precisely, for the Fourier mode ϕq, we obtain the following dynamics:

ϕ̇q = −αqϕq + ζq(t) , (2.73)

where
αq = Dqa(r + q2) (2.74)

denotes the inverse relaxation time of ϕq. This means that all Fourier com-
ponents are decoupled and evolve according to Ornstein-Uhlenbeck processes.
Note that, here as in the rest of the thesis, we use the convention for that the
Fourier transform of a function f(x) is given by

fq =

∫
ddx f(x) exp(−iq · x) . (2.75)

The quantity ζq(t) denotes the Fourier transform of the noise, and its correla-
tions read:

⟨ζq(t)ζq′(t′)⟩ = 2DT (2π)dqaδd(q + q′)δ(t− s) . (2.76)

As expected, large-wavelength modes (i.e., those characterized by small |q|)
always exhibit a longer relaxation time. In particular, when the field is poised
at the critical point r = 0, the relaxation time grows arbitrarily large as |q| → 0,
as a consequence of the critical slowing down [54]. The last property holds even
off-criticality in the case of model B dynamics, as implied by the underlying
conservation law that regulates the evolution of ϕ(x, t). Since (2.73) is an OU
process, we know from Section 2.6 that it is solved by:

ϕq(t) = Gq(t− t0)ϕq(t0) +

∫ t

t0

dsGq(t− s)ζq(s) , (2.77)

where Gq(t) = Θ(t) exp(−αqt) is the dynamic free field propagator and Θ(t)
the Heaviside step function. Here, we denoted the initial configuration assumed



2.9. DEAN-KAWASAKI EQUATION 29

by the field with ϕq(t0). According to Eq. (2.52) it is immediate to show that
the two-point connected correlation function reads:

⟨ϕq(t)ϕq′(s)⟩c = (2π)dδd(q + q′)
T

q2 + r

[
e−αq |t−s| − e−αq(t+s−2t0)

]
. (2.78)

In the long time limit t0 → −∞, the previous formula becomes ⟨ϕq(t)ϕq′(s)⟩c =
(2π)dδd(q + q′)Cq(t− s), with Cq(t− s) the time-translation invariant free field
correlator given by

Cq(t− s) =
T

q2 + r
e−αq |t−s| . (2.79)

This expression shows that at criticality the large-wavelength modes are sub-
jected to large fluctuations. Finally, for both model A and B, we can compute
the stationary dynamic susceptibility χq(t), which provides information on the
response of ϕ(x, t) to an external field h(x). To this aim, we can add to the
Hamiltonian (2.70) the linear term −

∫
ddxh(x)ϕ(x) and derive a new stochas-

tic dynamics which now depends on the external field. In this way, we can verify
that the dynamic susceptibility χq(t) is related to the free field propagator Gq(t)
by the very simple formula:

χq(t− s) =
δ⟨ϕq(t)⟩
δhq(s)

∣∣∣∣
h=0

= DqaGq(t− s) . (2.80)

Following Ref. [54], we can Fourier transform Eq. (2.80) also with respect to
the time variable and compute the inverse dynamic susceptibility

χ−1
q,ω = q2

[
r/q2 + 1 + iω/Dqa+2

]
. (2.81)

This can be compared with the general scaling form

χ−1
q,ω = q2−ηχ̂+(r/q1/ν , w/Dqz)−1 , (2.82)

to extract the static critical exponent ν = 1/2 related to the divergence of
the correlation length ξϕ at the critical point, the anomalous scaling dimension
η = 0 for the algebraic decay of the correlations at r = 0, and the dynamic
critical exponent

z = 2 + a =

{
2 model A,

4 model B.
(2.83)

2.9 Dean-Kawasaki Equation

In this Section, we report a brief derivation of the stochastic dynamics of the
global density field ρ(x, t) related to an ensemble of N interacting particles.
The resulting SDE has been first derived by Dean [72] and Kawasaki [73], and
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therefore goes under the name of Dean-Kawasaki equation. In the following, we
will take the route presented by Dean. Let us consider a collection of N particles
with positions {Xi}, interacting via a pairwise potential V (Xi − Xj). These
particles are coupled to a thermal bath with temperature T , and their stochastic
evolution in the overdamped regime is ruled by the Langevin dynamics

Ẋi = −ν
N−1∑
j=0

∇V (Xi(t) −Xj(t)) + ξi(t) , (2.84)

with ν the mobility coefficient and {ξi} a set of N independent zero-mean white
Gaussian noises with variance 2νT . For simplicity, we assume that the potential
V (Xi −Xj) is such that two particles do not experience any interaction force
when they overlap, i.e., ∇V (0) = 0. Importantly, note that Eq. (2.84) is
characterized by additive noise, and thus all stochastic calculi would produce
the same results. In particular, for convenience in the forthcoming derivation,
we will adopt the Itô interpretation. As anticipated, the aim of this Section
is to derive a SDE that describes the hydrodynamic fluctuations of the global
density ρ(x, t), which is defined as:

ρ(x, t) =
N−1∑
i=0

ρi(x, t) =
N−1∑
i=0

δd(Xi(t) − x) , (2.85)

with ρi(x, t) = δd(Xi(t)−x) the density of a single particle i. The evolution of
ρi(x, t) can be obtained by considering a generic function f(Xi) of the position
Xi, which can be rewritten as

f(Xi(t)) =

∫
ddx ρi(x, t)f(x) (2.86)

due to the definition of the particle density ρi(x, t), and by computing its time
derivative. Using the multivariate Itô lemma (2.15) and integrating by parts, it
is straightforward to get:

∂tρi(x, t) = −∇ ·

[
−ρi(x, t)

N−1∑
j=0

∇V (x−Xj(t)) − T∇ρi(x, t) + ρi(x, t)ξi(t)

]
,

(2.87)
which shows that each particle density ρi evolves according to a continuity
equation with a fluctuating flux. Moreover, by using again the definition of ρi,
we can rewrite the drift term as

−ρi(x, t)
N−1∑
j=0

∇V (x−Xj(t)) = −ρi(x, t)
∫

ddy V (x− y)ρ(y, t) . (2.88)
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By summing Eq. (2.87) over the index i, we get the fluctuating dynamics of the
global density

∂tρ(x, t) = −∇ ·
[
−ρ(x, t)

∫
ddy V (x− y)ρ(y, t) − T∇ρ(x, t)

]
+

N−1∑
i=0

ξi(t) · ∇ρi(x, t) .
(2.89)

However, differently from the deterministic part of this continuity equation,
which only depends on the global density ρ, the noise term in the second line is
still a function of the particle densities {ρi}. For later convenience, we call this
noise

ζ(x, t) =
N−1∑
i=0

ξi(t) · ∇ρi(x, t) . (2.90)

Let us analyze the statistical properties of ζ(x, t). It is easy to verify that its
average vanishes at all times, i.e.,

⟨ζ(x, t)⟩ =
N−1∑
i=0

⟨ξi(t)⟩ · ⟨∇ρi(x, t)⟩ = 0 , (2.91)

where the average factorizes by virtue of the Itô calculus. Analogously, the
two-point correlations are given by:

⟨ζ(x, t)ζ(y, s)⟩ =
∑
ij

∑
αβ

∇α
x∇β

y⟨ξαi (t)ξβj (s)ρi(x, t)ρj(y, s)⟩ . (2.92)

When t > s, the average above can be split into ⟨ξαi (t)⟩⟨ξβj (s)ρi(x, t)ρj(y, s)⟩ =
0 because of Itô calculus, which makes the noise at time t independent also
of the density at the same time. Similarly, the correlation vanishes also when
s > t. This implies that the noise ζ(x, t) is actually white, namely:

⟨ζ(x, t)ζ(y, s)⟩ =
∑
ij

∑
αβ

∇α
x∇β

y⟨ξαi (t)ξβj (s)⟩⟨ρi(x, t)ρj(y, s)⟩

= 2νT
N−1∑
i=0

d−1∑
α=0

∇α
x∇α

yδ(t− s)⟨ρi(x, t)ρi(y, t)⟩

= 2νT
d−1∑
α=0

∇α
x∇α

yδ(t− s)δd(y − x)⟨ρ(x, t)⟩ .

(2.93)

Note that ⟨ρi(x, t)⟩ = ⟨δd(Xi(t) − x)⟩ is actually equal to the deterministic
one-body and one-time probability density as defined in Eq. (2.16). By an
analogous argument as the one reported for the two-point correlations, one can
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derive the n-point correlations with the help of Itô calculus and verify that the
noise ζ(x, t) is Gaussian. Interestingly, this implies that ζ(x, t) is statistically
equivalent to the noise ζ ′(x, t) defined as:

ζ ′(x, t) = ∇ ·
(√

2νTρ(x, t)Λ(x, t)
)
, (2.94)

with Λ(x, t) a zero-mean Gaussian white noise field with correlations

⟨Λα(x, t)Λβ(y, s)⟩ = δαβδ(t− s)δd(y − x) . (2.95)

Hence, we can replace ζ(x, t) with ζ ′(x, t) in Eq. (2.89) and finally obtain the
Dean-Kawasaki equation

∂tρ(x, t) = −∇ ·
[
−ρ(x, t)

∫
ddy V (x− y)ρ(y, t) − T∇ρ(x, t)

]
+ ∇ ·

(√
2νTρ(x, t)Λ(x, t)

)
,

(2.96)

which has to be interpreted according to the Itô convention. This stochastic
differential equation is non-linear and features a multiplicative noise, in that the
amplitude of the global density fluctuations depends on the density itself, as
evident from Eq. (2.94). This is expected, as the intuition suggests that in those
regions where the number of particles is very small, the density fluctuations
should also be moderate. Furthermore, being a continuity equation, (2.96)
models the evolution of a locally conserved density field. In Chapter 7 we will
comment on the relation between the Dean-Kawasaki equation and the model
B dynamics described in the Section 2.8.

2.10 Odd diffusion

In the last Section of this Chapter, we discuss the stochastic dynamics of a
single colloidal particle with electric charge q under the action of Lorentz force
induced by a magnetic field B = Bẑ oriented along the z-axis. From this
paradigmatic example we shall introduce the concept of odd diffusion, showing
that the derivation of the overdamped regime requires a more careful analysis
than what previously done in Section 2.1, in that the small mass limit m → 0
hides some subtleties. The colloid motion occurs in the two-dimensional plane
perpendicular to the magnetic field B, and it is modeled by the underdamped
dynamics {

Ẋ = v,

mv̇ = −Γv +
√

2T/νξ,
(2.97)

where ξ is a zero-mean Gaussian white noise with unit variance and the effect
of the magnetic field is captured by the friction tensor Γ = ν−1[1− κε]. Here,
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κ = νB is the dimensionless oddness parameter and ε the two-dimensional Levi-
Civita symbol. Note that we work for simplicity in units such that the electric
charge is q = 1. The equation for the velocity v is linear and thus can be solved
exactly ( more details can be found in Appendix E) leading to the following
dynamics for the position

Ẋ = G(t− t0)v(t0) + η(t) , (2.98)

with v(t0) the initial velocity of the colloid and the matrix G(t) defined as:

G(u) = Θ(u)e−u/τνM(u),

M(u) =

(
cos(u/τB) sin(u/τB)
− sin(u/τB) cos(u/τB)

)
,

(2.99)

where we introduced the time scales τγ = νm and τB = m/B. The resulting
Gaussian noise term

η(t) =
√

2T/τνm

∫ t

t0

dsG(t− s)ξ(s) (2.100)

is colored and characterized by the correlations

Cαβ(t, s) = ⟨ηα(t)ηβ(s)⟩ =
T

m

[
e
− |t−s|

τγ − e
− t+s−2t0

τγ

]
Mαβ(t− s) . (2.101)

In other words, the correlations of the noise η decay after a typical time scale
τν , which is indeed the characteristic velocity relaxation time, and exhibit oscil-
lations with a period τB/2π. Starting from the equation of motion in Eq. (2.98)
for the position X, we want to derive the evolution of the one-time probability
density P1(x, t) as defined in Eq. (2.16), i.e., the Master equation. Note that in
this case, the latter does not correspond to the Fokker-Planck equation (2.24)
because the underlying stochastic dynamics in Eq. (2.98) is non-Markovian,
and therefore we shall use a different route to derive it. For simplicity, we as-
sume that v(t0) = 0. Moreover, we interpret the SDE (2.98) according to the
Stratonovich convention, so that the standard rules of calculus apply, and we
get:

∂tP1(x, t) = −
d∑

α=1

∇α
x⟨δd(x−X(t))ηα(t)⟩

= −
d∑

α=1

∇α
x

∫
D[η]δd(x−X(t))ηα(t)e−S[η] .

(2.102)

In the second equality, we used the definition of the average over the noise
realizations by introducing the statistical weight e−S[η] (the normalization is
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absorbed in the measure D[η]), with the action S defined as:

S[η] =
1

2

d∑
γ,β=1

∫ ∞

t0

du

∫ ∞

t0

ds ηγ(u)C−1
γβ (u, s)ηβ(s) . (2.103)

For the coming derivation it is useful to compute the following functional deriva-
tive of the action S:

δS[η]

δηα(t)
=

1

2

d∑
β=1

∫ ∞

t0

ds ηβ(s)
[
C−1

αβ (t, s) + C−1
βα (s, t)

]
, (2.104)

with t > t0, which implies

d∑
γ=1

∫ ∞

t0

dsCαγ(t, s)
δe−S[η]

δηγ(s)
= −ηα(t)e−S[η] . (2.105)

The previous identity can substituted into (2.102), leading to:

∂tP1(x, t) =
d∑

α,β=1

∇α
x

∫
D[η]δd(x−X(t))

∫ ∞

t0

dsCαβ(t, s)
δe−S[η]

δηβ(s)

= −
d∑

α,β=1

∇α
x

∫ ∞

t0

dsCαβ(t, s)

∫
D[η]e−S[η] δ

δηβ(s)
δd(x−X(t))

=
d∑

α,β,γ=1

∇α
x

∫ ∞

t0

dsCαβ(t, s)∇γ
x

〈
δd(x−X(t))

δXγ(t)

δηβ(s)

〉
(2.106)

where in the second line we used integration by parts and in the third one
the standard chain rule. The average in the last line can be exactly computed
due to the linearity of Eq. (2.98), which admits the simple solution Xα(t) =
Xα(t0) +

∫ t

t0
ds ηα(s). Therefore, the functional derivative of the position with

respect to the noise at a previous time is given by δXγ(t)/δηβ(s) = δαβΘ(t− s).
Thus, the Master equation becomes:

∂tP1(x, t) =
d∑

α,β=1

∇α
x∇β

x[Dαβ(t)P1(x, t)] , (2.107)

with the diffusion tensor Dαβ(t) defined as:

Dαβ(t) =

∫ t

t0

dsCαβ(t, s) . (2.108)
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From the solution of the integral above, one can work out the small-mass limit
m → 0, and verify that it produces a diffusion tensor characterized by the
presence of finite antisymmetric elements proportional to the oddness parameter
κ, i.e.,

D(t)
τν≪t∼ νT

1 + κ2

(
1 −κ
κ 1

)
, (2.109)

and thus the Master equation:

∂tP1(x, t) =
νT

1 + κ2
∇x ·

[(
1 −κ
κ 1

)
· ∇xP1(x, t)

]
. (2.110)

This implies that the diffusive flux J = D(t) · ∇P1 is generically not aligned
with the gradient of the probability density, but it has a non-zero component
also in the direction perpendicular to it, caused by the magnetic field. Note that
the effect of the oddness is two-fold: not only it produces fluxes perpendicular to
∇P1, but also it reduces the scalar diffusion coefficient νT by a factor (1 + κ2).
In the derivation above, the evolution of P1 in the overdamped regime has
been obtained by first computing the Master equation from the non-Markovian
dynamics in Eq. (2.98) and subsequently by taking the small-mass limit. In
what follows, we show that the alternative route that consists in deriving the
overdamped dynamics by naively substituting m = 0 in Eq. (2.97), actually
produces a different and incorrect result. Indeed, in this case, one would get
the following stochastic dynamics for the position:

Ẋ =
√

2T/νΓ−1 · ξ(t) , (2.111)

which, on the basis of Eq. (2.24), would give a Fokker-Planck equation of the
form:

∂tP1(x, t) =
T

ν

∑
αβγ

∇α
x∇β

x[Γ−1
αγΓ−1

βγP1(x, t)] =
νT

1 + κ2
∇2

xP1(x, t) . (2.112)

One can immediately see that this FPE correctly captures the reduction of the
scalar diffusion coefficient νT/(1 + κ2), but it misses the off-diagonal terms of
the diffusion tensor. From the point of view of the one-time probability density,
this is not necessarily a problem. Indeed, Eqs. (2.112) and (2.110) are solved by
the same P1(x, t) at all times t. However, if one is interested in any observable
that depends on the fluxes, the correct equation to look at is Eq. (2.110). The
subtlety about the overdamped limit of odd diffusive systems discussed here
will turn out to be useful later on in Chapter 7.



Chapter 3

Active chiral molecules in
activity gradients

Living matter at the micron scale is able to perform a wide variety of complex
motions and behaviors, see, e.g., Refs. [87, 88]. This requires sensing chemical
and structural properties of the environment, processing this information by
complex biochemical networks, and adapting the behavior accordingly [89–91].
For example, the bacterium E. coli measures the local nutrient concentration
while it swims, and compares that with the concentration in the past. If the
current concentration is getting lower (higher), it increases (decreases) its tum-
ble rate. This strategy results in chemotaxis, i.e., in a preferential accumulation
in spatial regions where the nutrient concentration is larger [92, 93].

Active particles are regarded as the simplest models for motility in living
systems. While they share the essential features with the bacteria, namely self-
propulsion and persistence, their response to local fuel concentration is rather
simple: they merely adjust their speed in proportion to the local fuel concen-
tration [94–98], a mechanism known as orthokinesis [49]. As a consequence,
active particles subjected to fuel gradients, preferentially accumulate in regions
where the fuel concentration is low [50, 99], i.e., where they are less agitated.
Nevertheless, the ability to steer active particles towards specific and predeter-
mined target zones – artificial chemotaxis – remains a highly sought property of
synthetic active matter. While this has been demonstrated experimentally via
elaborate feedback mechanisms [100–102], where an external stimulus is applied
to the particle as a function of its state (position and/or orientation), the contin-
uous monitoring of the particle state might not always be possible. Therefore,
an autonomous approach where some form of feedback emerges spontaneously
is much more desirable, and can correctly steer the active particle towards the
target without requiring external stimuli. Recently, it has been shown that a
chemotactic-like behavior can emerge in a system of cargo-carrying active par-
ticles [103]. While active particles with a light cargo accumulate in regions

36
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of low activity, a crossover occurs upon increasing the cargo such that the
active-passive complex accumulates in regions of high activity. In the case of
a heavy cargo, which moves much more slowly than the active particle, the
latter performs a local integration of the activity profile in the neighborhood
of the attached cargo, resulting in a net force towards the regions of higher ac-
tivity and thus giving rise to chemotactic behavior. Active particles connected
in a chain to form polymers, have also recently attracted significant attention
[104–109]. In particular, the interaction of the active sub-units might lead to
fascinating behaviors when the chain is dispersed in a non-uniform active bath
(see Chapter 5 for a detailed description).

In this Chapter, we extend the idea of emergent chemotaxis to colloidal
molecules made of active chiral particles (ACPs). Specifically, we consider a
dimer composed by two interacting self-propelled particles, whose rotational
dynamics is driven by opposite active torques (see the left sketch in Figure 3.1).
This dimeric complex evolves in a medium characterized by an activity gradi-
ent. We show that upon increasing the torque, the active chiral dimer switches
its behavior from antichemotactic to chemotactic and it accumulates in regions
of high activity. While the behaviour of active colloidal molecules is well under-
stood for a constant activity [110, 111], the effect of activity gradients is much
less explored. Recent studies showed how a rigid dimer composed by two active
particles with orientations fixed with respect to the connecting bond behaves
in activity gradients [112]. By contrast, in the case of interacting active chiral
particles analyzed in this Chapter, the orientation of the two particles evolves
freely due to thermal fluctuations and active torques.

Active chiral particles exhibit odd-diffusive motion on time scales longer than
the persistence time [113–115]. The diffusion tensor that characterizes their
overdamped motion contains both a symmetric and an antisymmetric part.
Both passive and self-propelled charged Brownian particles also perform odd-
diffusive motion under the effect of the Lorentz force, see, e.g., [116–119] and
the derivation presented in Sec. 2.10. While active chiral particles rotate due to
the microscopic active torque, in the case of charged particles under magnetic
field a certain handedness is introduced by the Lorentz force. On a coarse
grained level, where one integrates out the orientational degree of freedom, the
two systems present many similarities. The two model systems can even be
mapped into one another for homogeneous magnetic field, activity and torque.
However, the mapping does not hold in general. We show this explicitly by
analyzing their chemotactic behavior: a dimer composed of oppositely charged
active particles always accumulates in the regions of low activity independently
of the applied magnetic field. Note that in the derivation presented here, we
neglect the electrostatic interaction between the two monomers.

The present Chapter is organized as follows. In Sec. 3.1, we present our model
of a dimer composed of two active chiral particles, the polarity of which is driven
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Figure 3.1: Schematic representation of the dimeric molecules analyzed in this
Chapter. Left panel: interacting self-propelled particles (depicted as Janus
particles) the polarity of which is subjected to an active torque (green circular
arrows). The two monomers experience opposite torques ±w. Central panel:
interacting, self-propelled particles with opposite electric charges subjected to a
magnetic field B along the z-direction. The effect of the Lorentz force induces
the odd-diffusive behavior of the two particles. Right panel: sketch of the
polarity vector n for a Janus-like particle, which sets the direction of the self-
propulsion force.

by opposite active torques with the same magnitude. In Sec. 3.2, with the help
of a multipole expansion and of the small-gradient approximation, we derive
an effective coarse-grained Fokker-Planck equation for the one-time probability
density of the center of mass of the dimer. Its analytical solution at steady state
is then given and discussed in Sec. 3.3. In Secs. 3.4 and 3.5, inspired by the
similarity between an ACP and a charged self-propelled particle subject to the
Lorentz force in terms of their odd-diffusive behaviour, we construct a dimer of
active charged particles under the action of a magnetic field, as sketched in the
central panel of Figure 3.1, showing that its chemotactic-like behavior, contrary
to ACPs, does not change. Finally, in Sec. 3.6, we discuss possible experimental
realizations and present a brief outlook for future works.

The analysis presented in this Chapter has been published in Ref. [120].

3.1 Interacting Active Chiral Particles

We consider two active chiral particles interacting via an attractive potential
U(x) (e.g., an harmonic potential with zero rest length or a rigid rod) and
evolving in a 2-dimensional medium. Their positions at time t are denoted
with the vectors X0(t) and X1(t). The two particles are coupled to a thermal
bath with temperature T and are subject to additional self-propulsion forces
along their orientation vectors ni = (cos θi, sin θi), with i ∈ {0, 1}, which are
parametrized by their polar angles {θi}. These active forces introduce a vi-
olation of the fluctuation-dissipation relation, thus driving the system out of
equilibrium. We neglect the effects of inertia compared to the viscous forces
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and describe the stochastic evolution of the dimer by means of the following
overdamped Langevin dynamics:{

Ẋi = −ν∇iU(X0 −X1) + νfa(Xi)ni +
√

2DTξi(t) ,

θ̇i = ωi +
√

2DRηi(t) ,
(3.1)

where {ξi} and {ηi} are independent zero-mean Gaussian white noises with the
following statistical properties:

⟨ξαi (t)ξβj (s)⟩ = δijδαβδ(t− s) ,

⟨ηi(t)ηj(s)⟩ = δijδ(t− s) .
(3.2)

The two ACPs have the same mobility coefficient ν, translational diffusion coef-
ficient DT = νT and rotational diffusion coefficient DR. Note that the transla-
tional diffusion coefficient DT is related to the temperature T and the mobility
ν by the Einstein relation, so that, in the absence of activity, the stochastic
dynamics in Eq. (3.1) satisfies the detailed balance condition. As anticipated,
the two ACPs are self-propelled along the direction given by their orientation
vectors {ni}. Importantly, the modulus of the active forces is non-uniform
in space and modulated by the function fa(x), which we assume to be deter-
mined by some local fuel concentration. In the following, we will denote with
va(x) = νfa(x) the typical swim speed of the particles due to activity, which
we will sometimes call activity field. In addition to (thermal) rotational diffu-
sion, both particles experience homogeneous torques {wi} along the direction
perpendicular to the plane of motion, which produce a systematic rotation of
their polarity around the fixed z-axis. In this Chapter, we restrict our analysis
to the case in which the two active particles are subject to opposite torques of
the same magnitude, i.e., ω0 = −ω1 = ω. Note that in the rotational dynam-
ics (3.1) we do not consider any explicit alignment of the polarities with the
activity gradient [40, 121]. In fact, their possible interaction with ∇va(x) would
introduce an explicit bias for the particles to move along or against the activity
gradient, depending on the sign of their coupling. However it would depend on
the specific self-propulsion mechanism which we would like to keep unspecified
in our model. As a consequence, we neglect this possible mesoscopic coupling.
We also ignore the hydrodynamic interaction between the two particles, and
its effect on the self-propulsion [122–125]. In spite of these simplifications, the
interplay between the rotational diffusion due to thermal fluctuations and the
active torque determines the behaviour of the dimer in a non-homogeneous
activity field, as shown in the following Sections.
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3.2 Multipole expansion and effective dynam-

ics

Our primary goal of this Section is to analyze the response to activity gradients
of two interacting active chiral particles forming a dimer. In particular, we
want to understand whether in the long-time limit this dimer preferentially
localizes in regions of high or low activity. To this aim, we derive an effective
dynamics for the probability density of the center of mass R = (X0 + X1)/2,
and integrate out the polarity variables {θi} as well as the relative distance
r = X0 − X1 between the active particles. Our starting point is the Fokker-
Planck equation that governs the evolution of the one-time joint probability
density P1(R, r, θ1, θ2, t). This is given by:

∂tP1(R, r, θ0, θ1, t) = [LR + Lr + Lw + R2]P1 (3.3)

where the operators LR and Lr are related to the stochastic dynamics of the
center of mass R and the relative distance r, respectively, and are defined as:

LR = −1

2
∇R ·

[
va

(
R + r/2

)
n0 + va

(
R− r/2

)
n1 −DT∇R

]
,

Lr = −∇r ·
[
− 2ν∇U(r) + va

(
R + r/2

)
n0 − va

(
R− r/2

)
n1 − 2DT∇r

]
,

(3.4)

whereas Lw and R2 derive from the rotational dynamics of the orientation
vectors and are given by:

Lw = ω

(
∂

∂θ1
− ∂

∂θ0

)
,

R2 = DR

(
∂2

∂θ21
+

∂2

∂θ20

)
.

(3.5)

In particular, Lw depends on the active torque that systematically rotates the
orientation vectors producing the circular motion of the two particles, while
R2 is the rotational diffusion operator in 2-dimensions, analogous to the one
introduced in Eq. (2.45) for a single particle. To eliminate the orientational
degrees of freedom, we expand the joint probability density P (R, r, θ0, θ1, t)
in eigenfunctions of the operator R2. The first eigenfunctions are given by 1,
{ni}, n0⊗n1, {ni⊗ni−1/d}. This leads to the so-called Cartesian multipole
expansion (see, e.g., [24, 126]), which reads as follows:

P1(R, r, θ1, θ2, t) =
1

Ω2
2

[
ϕ+ σ0 · n0 + σ1 · n1 + Σ : n0n1

+ w1 :
(
n0n0 −

1

2

)
+ w2 :

(
n1n1 −

1

2

)
+ ...

]
,

(3.6)
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where the symbol : denotes the double contraction and Ωd the solid angle in
d spatial dimensions. In particular, in d = 2, one has Ω2 = 2π. In Eq. (3.6)
we introduced the dipole moments {σi} and the quadrupole moments {wi},
which are related to the local polar and nematic order parameters [127], respec-
tively. Moreover, we introduced, the rank-2 tensor Σ, which is the expansion
coefficient associated to the dyadic product n0n1. Note that all these expan-
sion coefficients depend on the position R of the center of mass, the relative
distance r, and the time t. Their evolution equation can be obtained by pro-
jecting the FPE onto their relative eigenfunctions, as detailed in Appendix A.1.
The resulting differential equations are highly coupled and arranged in a hi-
erarchical structure. Analytical progresses can be made by assuming that the
activity field is characterized by small spatial variations on a length scale given
by the persistence length ℓp ∼ vaτ , and using the time scale separation be-
tween ϕ(R, r, t) and the higher-order expansion coefficients. Indeed, while the
average polarizations {σi} and nematic parameters {wi} relax on typical time
scales proportional to the persistence time τ , the coefficient ϕ is actually related
to the coarse-grained probability density

ρ(R, t) =

∫
dr ϕ(R, r, t) (3.7)

of finding the dimer (i.e., its center of mass) at position R at time t, and thus
its evolution is governed by a continuity equation. This implies that large-
wavelength perturbations in the density relax very slowly compared to {σi}
and {wi}. Details about the coarse-graining procedure and the derivation of the
effective dynamics for ρ(R, t) are reported in Appendix A.1. In particular, when
the attractive interaction between the active particles is given by a harmonic
potential with zero rest length and stiffness κ, i.e., U(r) = κr2/2, the coarse-
grained density ρ(R), follows the following Fokker-Planck equation:

∂tρ(R) = −∇R ·
[
V (R)ρ(R) −∇R(D(R)ρ(R))

]
, (3.8)

where the effective diffusivity D(R) and the effective drift V (R) are given,
respectively, by

D(R) =
1

1 + Ω2

v2a(R)

4DR

+
DT

2
,

V (R) = (1 − ϵ/2)∇RD(R) .

(3.9)

Here, we introduced the dimensionless quantity

Ω = ω/DR (3.10)
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given by the ratio of the angular velocity ω induced by the active torque and
the inverse decorrelation time DR due to rotational diffusion (see Eq. (2.40)).
Moreover, we introduce the dimensionless parameter

τ = DR/(2κν) (3.11)

given by the ratio between the rotational diffusion DR and the relaxation rate
2κν of the relative distance r. In other words, Ω and τ express the active torque
and the relaxation time of the relative distance r in units of the rotational
diffusion time scale, D−1

R . In terms of the dimensionless quantities Ω and τ , the
coupling ϵ that appears in the effective drift in Eq. (3.9) reads

ϵ =
[1 + (1 − Ω2)τ ] (1 + Ω2)

[1 + (1 − Ω2)τ ]2 + [Ω (1 + 2τ)]2
. (3.12)

The important role played by the parameter ϵ is discussed in the Section below.

3.3 Stationary density

Due to the simple derivative relation between the effective drift and diffusion
terms in Eq. (3.9), it is straightforward to determine the steady-state density
ρ(R) without the need of specifying the form of the activity field va(R). By
imposing the zero-flux condition V ρ = ∇(Dρ) in Eq. (3.8), one obtains for the
density

ρ(R) ∝
[
1 +

1

DT

1

1 + Ω2

v2a(R)

2DR

]−ϵ/2

. (3.13)

In the absence of activity (i.e., va(R) = 0) the system reduces to a dimer of
passive Brownian particles, so we expect a standard diffusive process leading to
flat distribution in the long-time limit. Note that if va(R) = 0, the position of
the dimer is decoupled from the rotational degrees of freedom, and the polarities
{ni} do not play any role in the dynamics. In the case of spatially homoge-
neous activity, i.e., va(R) = v0 with a constant v0, the symmetry of the system
imposes again flat steady state distribution. Indeed, the spatial dependence of
ρ(R) in Eq. (3.13) is a consequence of the broken spatial translation invariance
introduced by the non-uniform activity field.

For a generic spatially varying va(R), the way the activity affects the steady-
state density depends on the sign of the coupling ϵ, which, in turn, is determined
by the relative importance of the following two terms: 1 + τ and Ω2τ . At fixed
relaxation time of the relative distance r, the competition between the rotational
diffusion and the deterministic active rotation of ni can lead to qualitatively
different scenarios. In particular if 1 + τ > Ω2τ , the exponent ϵ in Eq. (3.12) is
positive and the density peaks in regions with lower activity. Since the activity
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Figure 3.2: Steady-state density of dimers made of active chiral particles with
opposite torques, in d = 2 spatial dimensions. All lengths and times in the
plots are measured in units of l =

√
DT/DR and τR = 1/DR, respectively. The

numerical estimation of the spatial density ρ has been carried out by comput-
ing the histograms of the time series coming from Brownian dynamics simula-
tions of Eq. (3.1). Both analytical (solid line) and numerical (symbols) results
have been obtained by adopting periodic boundary conditions. The dashed red
curve represents the activity field, which we take as homogeneous along the
y-direction and varying according to va(x) = 10

√
10 sin

(
π
2L
x+ π

2

)
(in units of√

DTDR) along the x-direction, with 2L the elementary cell size. Since the
system is invariant under translations along the y-direction, we report here
the marginal distribution ρ(x) divided by the bulk density ρb. In each panel,
the transition from antichemotactic to chemotactic behavior is clearly observed
upon increasing the value of Ω. The two panles are characterized by differ-
ent spring relaxation times τ . In particular, for higher stiffness κ (i.e., smaller
value of τ , right panel), the density peak observed in the chemotactic regime is
broader and the dimer is less localized compared to the case of lower stiffness
(left panel). Simulations have been carried out with the following parameters:
Ω1 = 2 < Ωc, Ω2 = 4.58257 ≈ Ωc, Ω3 = 10 > Ωc, τ = 0.05 on the left panel,
and Ω1 = 2 < Ωc, Ω2 = 10.05 ≈ Ωc, Ω3 = 15 > Ωc, τ = 0.01 on the right panel.
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field might reflect some local fuel concentration, we refer to this behavior as
antichemotactic. On the contrary, if 1 + τ < Ω2τ , the dimer typically spends
more time in high-activity regions. We call this phenomenon chemotaxis. The
crossover between these two regimes as a function of Ω occurs at the critical
value:

Ωc =
ωc

DR

=

√
1 + τ

τ
, (3.14)

at which the steady state is characterized by a homogeneous density distribu-
tion. Figure 3.2 shows the stationary density distribution of active dimers for
three different values of ω obtained from Brownian dynamics simulations of
Eq. (3.1), denoted by the symbols in the various plots. The theoretical predic-
tions of Eq. (3.13), reported as solid lines, turn out to be in very good agreement
with the numerical simulations.

At this stage, the following question arises: what is the mechanism respon-
sible for the emergence of a chemotactic phase and why does it require torque
values above a certain threshold? To start addressing this point we focus on
the limiting case in which the time scale of rotational diffusion is much larger
than the relaxation time scale of the relative distance and that of the active
torque, i.e., τ ≪ 1 and Ω ≫ 1, respectively. We qualitatively describe the
emergence of the chemotactic behavior predicted by the model in this regime
(1 + τ ≪ Ω2τ) with the help of a schematic representation of the dynamics
shown in Figure 3.3. Let us consider a configuration of the dimer in which one
of the particles’ orientation is in the direction of increasing activity whereas
that of the other is in the opposite direction. In this configuration, the dimer is
typically stretched and it experiences a translation towards the higher activity
region. Accordingly, the dimer climbs up the activity gradient and the distance
between the two particles increases. As the dimer climbs up, the orientations
of the two particles evolve due to the active torque such that after some time
(∼ 1/(2ω)) they point towards each other. In this configuration, the dimer ex-
periences a drift towards the low-activity region. The dimer thus climbs down
the activity gradient, however, while the dimer descends the activity gradient,
the two particles approach each other such that the net downwards drift contin-
uously decreases before the two particles again point outwards as in the initial
configuration. Overall, while climbing up the dimer experiences larger transla-
tion due to the two particles getting distant from each other than during the
climb down when the two particles approach each other. In a cycle of period
1/ω, the dimer performs a forward and backward motion, with net drift towards
the region of higher activities. We based our reasoning on a particular initial
configuration. In general, if the rotational diffusion is negligible with respect
to the deterministic torque, the mechanism will be somewhat different depend-
ing on the initial configuration, but in no case it will bias the motion toward
region of lower activity. Note that for biased movement along the direction of
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Figure 3.3: Left panel: schematic representation of the mechanism leading to
chemotaxis in the case of a dimer made by two active chiral particles with op-
posite and homogeneous torques (red arrows). The cycle of four configurations
(numbered 1, 2, 3, and 4) depicted in the figure refers to the limiting case in
which the rotational diffusion time 1/DR is much longer than the time scales
characterizing the active torque and the spring relaxation, i.e., τ ≪ 1 and
Ω ≫ 1. The orientation vectors (green arrows) are typically opposite when the
dimer is stretched, as shown by the configuration in step 1. For this reason, the
dimer experiences a translation (yellow arrows) in the direction of the activity
gradient (black arrows). The evolution of the orientation vectors due to the ac-
tive torque (step 2) leads, after some time ∼ 1/(2ω), to the configuration in step
3, where the system translates towards the low-activity region. However, since
the spring in step 3 is typically less extended than in step 1, this drift against
the activity gradient is much smaller than the one experienced by the dimer in
step 1. Overall, this asymmetry results in a biased motion towards high-activity
regions. Right panel: stochastic trajectories obtained from Brownian dynamics
simulations of the equations of motion in Eq. (3.1). As in Figure 3.2, lengths
and times are measured in units of l =

√
DT/DR and τr = 1/DR, respectively.

In contrast to the blue trajectory (Ω = 3 < Ωc ≃ 4.58257), where the stochas-
ticity due to rotational diffusion prevails on the deterministic rotation produced
by the active torque, the green one (Ω = 20 > Ωc ≃ 4.58257) exhibits a directed
motion of the dimer toward the region where the activity profile (red curve) is
higher.
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Figure 3.4: Left panel: Value of the exponent ϵ for a dimer of ACPs as a function
of the dimensionless torque Ω (see Eq. (3.10)) for different values of τ . Upon
increasing the active torque, the dimer switches behavior from antichemotactic
(ϵ > 0) to chemotactic ϵ < 0. Right panel: state diagram in (Ω, τ) plane, which
shows the regions within which ϵ > 0, corresponding to anti-chemotaxis or ϵ < 0,
corresponding to chemotaxis. The blue critical curve separates the chemotactic
from the anti-chemotactic region. In particular, for small relaxation time τ of
the relative distance between the two particles, it is significantly harder for the
dimer to change its tactic behaviour as the threshold torque Ωc beyond which
this change occurs tends to diverge.

the activity gradient only a sufficiently large active torque is necessary. The
underlying mechanism does not require temporal integration of the fuel con-
centration [93], memory [128], or an explicit coupling between the orientation
of the particles and the activity gradients [40, 41, 129], which were previously
suggested as possible causes.

The mechanism presented here relies solely on the fact that the distance
between the two active particles changes during their dynamics. In fact, in
the case of a rigid dimer, in which the distance between the two particles is
fixed, there is no biased movement towards higher activity regions. We show
analytically in Appendix A.1.1 that the tactic coupling ϵ for a rigid dimer is
always positive and equal to ϵ = 1/2. Equation (3.14) defines the critical curve
in the (Ω, τ) plane separating the chemotactic phase from the anti-chemotactic
one, which is presented in the right panel of Figure 3.4. For a fixed DR, the
critical torque diverges in the limit of κ → ∞ (i.e., τ → 0) implying that the
dimer preferentially accumulates in the low activity regions. This is indeed
expected as, in this case, the two particles are tightly bound to each other
and therefore, the dimer is effectively reduced to a single active particle which
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shows antichemotactic behavior. Similarly, for a fixed κ, it is apparent that
upon increasing DR, increasingly large active torques are required to induce
chemotactic behavior. It is important to note that the collective coordinate
R can describe the location of the dimer only when the two particles stay
sufficiently close to each other. For small κ, the activity gradients may become
large on the length scale of the distance between the two particles. In this case,
our theory based on the small-gradients approximation does not apply.

3.4 Odd-diffusive active particles

In the previous Section we demonstrated how two interacting self-propelled par-
ticles driven by microscopic opposite torques can exhibit, for sufficiently large
torques, a chemotactic-like behavior. The single components of this molecule
belong to a class of systems defined as odd-diffusive. This kind of systems
are characterized by the presence of antisymmetric components in their diffu-
sion tensor and show fluxes perpendicular to the density gradient. Recently the
analysis of odd-diffusive systems has attracted a lot of attention for both equilib-
rium and out-of-equilibrium systems such as passive/active charged particles in
magnetic field, see, e.g., [116–119]. In the case of charged self-propelled (active)
particles immersed in a magnetic field, rather than a microscopic driving torque,
the chirality is induced by the Lorentz force. Despite the different physical ori-
gin underlying their odd-diffusive behavior, both kinds of self-propelled particles
(i.e., with torque-induced chirality or Lorentz-force induced chirality) are char-
acterized by very similar dynamics. This similarity can be better understood
from a comparison of their coarse-grained FPEs (derived in Appendices A.2
and A.3 ), where one integrates out the rotational degree of freedom. In par-
ticular, for a single active chiral particle with spatially homogeneous driving
torque ω and activity va(r) = vC in d = 2, we have

∂tρ(r, t) = ∇r ·
[( v2C

2DR

M−1 +DT1

)
∇rρ(r, t)

]
, (3.15)

with M = 1 + Ωε, ε the totally antisymmetric Levi-Civita tensor in two di-
mensions, and Ω defined in Eq. (3.10). For a charged self-propelled particle
immersed in homogeneous magnetic field B and activity vB we have, instead,

∂tρ(r, t) = ∇ ·
[(

v2B
2DR

1

1 + κ2
1 +DTΓ

−1

)
∇ρ(r, t)

]
, (3.16)

with Γ = (1−κε) the effective friction tensor and κ = qBν is the dimensionless
oddness parameter. The two equations present a similar structure, with the
corresponding diffusion tensors (given by the expressions in round brackets)
containing anti-symmetric components. These expressions can even coincide if



3.5. DIMER OF ACTIVE MAGNETIC PARTICLES 48

the following relations holdv
2
C = −2DTDR

1+Ω2

1+κ2
κ
Ω
,

v2B = 2DRDTκ (κ− 1/Ω) .
(3.17)

3.5 Dimer of active magnetic particles

Given the intriguing similarity between the two systems described above, it is
natural to wonder whether this extends to their chemotactic behavior. In par-
ticular, can two self-propelled oppositely charged interacting particles immersed
in a magnetic field B = Bẑ cooperate in such a way as to exhibit chemotaxis,
similarly to what has been demonstrated for a dimer composed of two active
particles driven by opposite microscopic torques?

We show below that, despite the suggestive similarity to dimers made of active
chiral particles, the charged dimers are always antichemotactic and they do not
show the transition towards chemotactic behavior featured by the former. To
prove that, we derive the steady-state density of the charged dimers and analyze
how this is affected by a non-uniform activity field. The derivation is similar
to the one outlined in Sec. 3.2 for a dimer composed of active particles driven
by opposite active torques (see Appendix A.4 for details) and starts from the
evolution of the one-time joint probability density:

∂tP1(X0,X1, θ0, θ1, t) =
(
L0 + L1 + R2

)
P1 (3.18)

where the Fokker-Planck operators L0 and L1 are defined as

L0 = −∇X0 ·
[
Γ−1

+ · (−ν(∇X0U(X0 −X1)) + va(X0)n0 +DT∇X0)
]
,

L1 = −∇X1 ·
[
Γ−1

− · (−ν(∇X1U(X0 −X1)) + va(X1)n1 +DT∇X1)
]
,

(3.19)

while the rotational operator R2 is given in Eq. (3.5). Here, X0 and X1 denote
the positions of the two particles, ν the scalar mobility coefficient and DT the
scalar thermal diffusivity. Moreover, U(x) = κsx

2/2 is the harmonic interaction
potential describing the attraction between the two monomers, where the stiff-
ness is denoted by κs to distinguish it from the oddness paramere κ, and va(x) is
the activity field. The tensors Γ± have the same definition as Γ given in the pre-
vious Section, with the additional subscript denoting the sign of the charge ±q.
Rewriting Eq. (3.18) in terms of the center of friction R = (Γ+ ·X0+Γ− ·X1)/2
and the relative distance r = X0 −X1, and following similar steps to the ones
presented in Sec. 3.1, we get an effective FPE for the coarse-grained density
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ρ(R, t), characterized by the following drift and diffusion terms

D(R) =
v2a(R)

4DR

+
DT

2
,

V (R) = (1 − ϵ/2)∇RD(R) .

(3.20)

In this case, the coupling ϵ is given by:

ϵ = 1 − 1 − κ2

1 + κ2

[
1 − 1

1 + τ(1 + κ2)

]
, (3.21)

with κ = qBν the dimensionless oddness parameter and τ = DR/2κsν the typ-
ical relaxation time of the relative distance r in units of the rotational diffusion
time scale 1/DR. By imposing again zero flux in the steady state, the following
density profile can be easily derived

ρ(R) ∝
[
1 +

1

DT

v2a(R)

2DR

]−ϵ/2

. (3.22)

We note that the expressions (3.13) and (3.22) are equivalent when both the
magnetic field B and the torque ω are zero. Indeed, in this case, both systems
reduce to a dimer of simple ABPs. However, for generic non-zero values of B
and ω, there is a striking difference between the two systems. In the dimer of
ACPs it is possible to change the sign of ϵ by varying the value of the torque ω.
This allows the system to explore both a chemotactic and an anti-chemotactic
phase. Conversely, for the active charged dimer immersed in a magnetic field,
the value of ϵ is strictly positive regardless the intensity of B. This constraint
prevents the system from exhibiting a chemotactic phase.

3.6 Conclusions

A single active chiral particle preferentially accumulates in low-activity regions,
i.e., it is effectively anti-chemotactic. However, when two such particles with
opposite chiralities are connected to each other, the resulting dimer can become
chemotactic upon increasing the active torque. Such an assembly of active chiral
particles might be possibly realized in experiments by using advanced fabrica-
tion techniques that have been used to assemble colloidal particles into desired
structures [130–135]. However, at the colloidal scale, it might be challenging
to fabricate such dimers without affecting the rotation of the individual chiral
particles.

At the millimetre scale, our predictions could be tested in vibrots which are
miniature robots that convert vibrations into rotational and translational mo-
tion [136–139]. Vibrots with chiral leg configurations can rotate in both direc-
tions and hence mimic active chiral particles of opposite polarities [140]. They
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can be connected to each other without affecting their rotation [141]. Activity
gradients could be realised in a vibrating plate via surface patterning which
modifies the effective friction experienced by a vibrot.

Active chiral particles belong to a class of systems referred to as odd-diffusive.
In these systems, probability fluxes are not only along the density gradients but
also perpendicular to them [113, 142, 143]. Odd-diffusive behavior is encoded
in the diffusion tensor that has an antisymmetric part (See Eqs. (3.15) and
(3.16)). We showed that despite sharing the property of odd-diffusion, the two
systems, namely active chiral particles and Brownian particles under Lorentz
force, exhibit distinct dynamics such that one cannot be mapped into the other
in general. We showed this explicitly in the context of the tactic behavior of
dimers.



Chapter 4

Taxis of cargo-carrying
microswimmers in travelling
activity waves

The ability to self-propel at the expense of fuel consumption is a fundamental
property of active matter [13, 144–146]. In the biological context, self-propelling
microscopic systems perform functions that require accurate directed transport,
for instance, white blood cells chase intruders [147], motor proteins transport
RNA inside cells [148] and microswimmers such as E. Coli [92] and sperm
cells [149] steer themselves towards sources of nutrients. Directed transport is
a highly desirable property, in particular for applications in drug delivery at
the nanoscale [100, 150–153]. For this purpose, bio-hybrid microswimmers have
been designed by integrating biological entities with synthetic constructs, e.g.,
bacteria capable to transport and drop off passive microscopic cargo to specific
target locations [154–157].

Bacteria and eukaryotic cells [158, 159] generally navigate in dynamic activat-
ing media and react in vivo to time-dependent tactic stimuli of various nature.
Such an interaction with travelling activity signals, e.g., chemical waves [160,
161], leads to fascinating collective behaviors [162] and sometimes to unex-
pected migration phenomena, as in the case of the so-called chemotactic wave
paradox [160, 163]. While synthetic active particles mimic the basic features
of self-propulsion and persistence of actual biological active matter, they lack
the information processing capacity and motoric control which is essential for
directed transport in biological and bio-hybrid systems. Despite their memory-
less response to tactic signals, artificial self-propelled particles exhibit directed
transport when immersed in travelling waves controlling locally their degree
of activity (e.g., their self propulsion velocity), as shown experimentally with
phototactic Janus particles exposed to propagating optical pulses [129]. Several
theoretical studies have focused on controlling and directing the motion of a sin-

51
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gle self-propelled particle in a fluctuating environment [99, 164–167]. However,
a fundamental understanding of the behavior of cargo-carrying microswimmers
in time-dependent activity is still lacking.

It has been already shown that chemically active colloidal particles can be
employed as carriers of catalytically-inert cargoes at the micro-scale[122, 168].
Cargo-carrying self-propelled particles have also been analyzed in stationary
and spatially inhomogeneous activity fields [103]. While a single self-propelled
particle always accumulates in spatial regions with low activity, attaching a
passive cargo reverses this tendency. In fact, beyond a certain threshold cargo,
the particle accumulates in regions with larger activity [103]. While preferential
accumulation could be regarded as a signature of the tactic behavior [103], in the
case of stationary activity, it causes no transport of the dimer. By contrast, for
a time-dependent activity, such as a source emitting activity pulses, the tactic
behavior of an active particle can result in the motion towards or away from the
source. With this motivation in mind, in this Chapter, we study active-passive
dimers subject to a time-dependent activity in the form of a travelling wave.
We analytically show that the dimer exhibits directed transport, characterized
by a wave-induced drift. The direction of this drift depends on the wave speed,
being always along its propagation direction for a fast wave. For a slow wave,
instead, the drift may be along or opposite to the propagation direction of the
wave, depending on the friction coefficient of the cargo being larger or smaller
than a certain threshold value. Interestingly, the net drift vanishes at that
threshold, at least for sufficiently small wave speeds. Our theoretical treatment
of the active-passive dimer is based on the active Ornstein-Uhlenbeck particle
(AOUP) model of activity [27, 169–171]. Furthermore, our analysis shows that
the tactic behavior of a cargo-carrying AOUPs is equivalent to that of a similar
active-passive dimeric complex where the active unit is modeled as an active
Brownian particle (ABP) [103].

The analysis presented in this Chapter has been published in Ref. [172].

4.1 The model

In this Section we introduce a minimal model for the dynamics of an active
microswimmer that drags a passive load in d spatial dimensions within an non-
homogeneous and time-dependent environment. The microswimmer at position
r and time t interacts with a tactic signal described by the activity field va(r−
vwt), which propagates with velocity vw = vwe0 along the direction of the unit
vector e0, as depicted in fig. 4.1. The shape of the traveling wave va(r−vwt) will
remain generic unless specified otherwise. As usually done for µm-sized colloidal
particles in a liquid, we assume that viscous forces dominate over inertial effects
and therefore we consider an overdamped dynamics for the active-passive dimer,
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Vw

High-friction cargo

Low-friction
cargo

e0

e1

Figure 4.1: Sketch of the stochastic model described by (4.1) in two spatial
dimensions. A self-propelled active microswimmer (blue ellipse) in a fluid drags
a passive cargo (gray circle) via a harmonic interaction (blue spring). The in-
stantaneous self-propulsion velocity of the microswimmer (blue arrow) is locally
controlled by a sinusoidal traveling wave of activity, which propagates through
the fluid with phase velocity vw along the unit vector e0. The value of the
activity field rescaled to its maximum is given in the colorbar on the right.
For illustration we sketch here two examples of active-passive dimers, one with
a low-friction cargo (q small, left) and the other with a high-friction cargo (q
large, right).

which is governed by the following Langevin equations:

ṙ1 = −ν∇r1U(r1 − r2) + va(r1 − vwt)η +
√

2Dξ1, (4.1a)

ṙ2 = −ν
q
∇r2U(r1 − r2) +

√
2D

q
ξ2, (4.1b)

τ η̇ = −η +

√
2τ

d
ξ3; (4.1c)

where r1 and r2 denote the positions of the active microswimmer and the passive
cargo, respectively. The interaction U(r1 − r2) between them is modeled by
an isotropic parabolic potential U(r) = κr2/2, with stiffness κ > 0 and zero
rest length. The stochastic terms ξ1, ξ2, ξ3 are three independent zero-mean
Gaussian white noises with correlations

⟨ξαi (t)ξβj (s)⟩ = δαβδijδ(t− s) , (4.2)

where i, j ∈ {1, 2, 3} and α, β ∈ 1, .., d, and they account for thermal fluctua-
tions. Moreover, the active carrier exploits local energy injections to self-propel
along the direction of the propulsion vector η, which evolves according to a set
of d independent Ornstein-Uhlenbeck processes with variance 1/d and charac-
teristic time τ , as reported in (4.1c). It follows that η is a zero-mean Gaussian
colored noise, whose correlations in the long time limit reads:

⟨ηα(t)ηβ(s)⟩ = (δα,β/d) exp (−|t− s|/τ) . (4.3)
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This normalization ensures that the average modulus squared of the propulsion
vector is ⟨∥η∥2⟩ = 1 for any dimensionality d. While the time scale τ sets the
persistence of the self-propulsion force, its strength is modulated in space by the
activity field va(x). Note that, in this minimal model, the rotational dynamics
of the active carrier is not affected by the interaction potential between the
two monomers and there is no coupling between the dimer main axis and the
polarity of the active particle. In order to recover an equilibrium dynamics in
the absence of activity va = 0, we connect the mobility ν and the diffusivity D
via the Einstein relation D = νT . Moreover, the cargo and the active carrier
are assumed to have different friction coefficients, the ratio of which is given by
the parameter q. In a Newtonian fluid and for spherical colloidal carrier and
cargo, q equals the ratio of the radius of the cargo to that of the carrier.

The Langevin dynamics in (4.1) can be more conveniently rewritten in terms
of the relative distance r and the dimer position in the comoving frame, which
we identify with the centre of friction χ, defined as:

χ =
r1 + qr2

1 + q
− vwt ,

r = r1 − r2 .
(4.4)

In this new coordinate system, we can derive the Fokker-Planck equation for
the 1-time probability density P (χ, r,η, t) associated to the stochastic dynam-
ics (4.1). This is given by:

∂tP (χ, r,η, t) = −∇χ ·
[
−vwP +

1

1 + q
va (χ′)ηP − D

1 + q
∇χP

]
−∇r ·

[
−1 + q

q
ν∇rUP + va (χ′)ηP − 1 + q

q
D∇rP

]
+ 1/(dτ)L̂ηP

(4.5)

where the vector χ′ = χ+qr/(1+q) denotes the position of the active carrier in
the comoving frame and has to be interpreted as a function of (χ, r). Moreover,
we introduced the Fokker-Planck operator L̂η related to the stochastic dynamics
of the propulsion vector η, which is defined as

L̂ηP = ∇2
ηP + d∇η · (ηP ) . (4.6)

4.2 Transport properties for slow activity waves

In order to estimate the extent to which the propagating tactic signal affects
the directed motion of the cargo-carrying microswimmer, we focus on transport
properties induced by the activity travelling wave. Starting from Eq. (4.5), we
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derive in the Appendix B.1 an effective mean-field dynamics which describes
the evolution of the system at time scales longer than τ and length scales larger
than the typical persistence length lp ∼ ⟨va⟩τ analogously to ref. [126]. This
provides a generalised hydrodynamics for the relevant fields such as particle
density, polarization, etc. In particular, the predictions deriving from it are
expected to be valid for an activity which varies slowly on the length scale lp
(large wavelength approximation). Importantly, we emphasize that our model
ignores the hydrodynamic contributions arising from the interaction of the dimer
with the surrounding solvent, thus falling into the class of dry active matter
models [146]. In order to identify the fields with a relaxation time which grows
indefinitely upon increasing the wavelength (i.e., the slow modes), we perform
a moment expansion analogous to, e.g., refs. [126, 173, 174]. The evolution of
the modes is described by a hierarchical structure, the detailed derivation of
which is reported in Appendix B.1. Importantly, we note that the zeroth order
mode φ(χ, r, t) =

∫
dη P (χ, r,η, t), which describes the density related to the

spatial marginal variables χ and r, is the only slow mode of the system. Indeed,
φ(χ, r, t) is associated with a conservation law and its dynamics has the form
of a continuity equation:

∂tφ(χ, r, t) = − ∂α

[
−vwδα,0φ+

va (χ′)σα
(1 + q)

− D

1 + q
∂αφ

]
− ∂′α

[
−(1 + q)

q
ν∂′αUφ+ va (χ′)σα − (1 + q)D

q
∂′αφ

]
,

(4.7)

where we introduced the shorthand notation ∂α ≡ ∂χα and ∂′α ≡ ∂rα , while
repeated indices imply summation. In the dynamics above, σα is the α-th
component of the first-order mode σ(χ, r, t) =

∫
dη ηP (χ, r,η, t), which is

related to the conditional average polarization of the active carrier at fixed
spatial variables. Its dynamics is governed by

∂tσα(χ, r, t) = − ∂α [va (χ′)φ]

(1 + q)d
− ∂′α [va (χ′)φ]

d

+
(1 + q)

q
ν∂′β

[
∂′βUσα

]
− τ−1σα + O(∂2) ,

(4.8)

where dependencies on higher-order modes are included in O(∂2). Notably, the
decay rate due to the sink term −τ−1σα implies that σα(χ, r, t) is a fast mode
that is not locally conserved throughout its dynamics. The separation of time
scales between φ and σ justify the use of the quasi-static approximation in
dealing with (4.8) (see Appendix B.2 for details). Moreover, the contribution
O(∂2) of higher-order gradients is negligible under the assumption that the
activity field is characterized by small spatial variations.
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Figure 4.2: Stationary density ρ(χ) of the dimer (red and blue lines and sym-
bols, left axis), in the comoving frame of the traveling activity wave va(χ) with
sinusoidal shape (green dashed line, Eq. (4.14), right axis), as obtained from
numerical simulations (symbols) and from analytical predictions (Eq. (4.15),
solid lines). The latter hold under the assumption of long wavelength and
slow traveling wave and they are reported for both a high-friction cargo with
q = qhigh > qth (blue) and a low-friction cargo with q = qlow < qth (red). See
the Appendix B.5 for further information on the numerical simulations.

4.2.1 Stationary density

The combination of large-wavelength approximation and quasi-stationarity of
σ(χ, r, t) at time scales longer than τ provides a closure scheme for the hierarchy
without needing information about higher-order modes. In particular, after
integrating out the relative coordinate r, we derive an effective drift-diffusion
equation for the marginal density ρ(χ, t) =

∫
drφ(χ, r, t) (see Appendix B.2

for the detailed derivation), which reads:

∂tρ(χ, t) = −∇χ · [Veff(χ)ρ(χ, t) −∇χ(Deff(χ)ρ(χ, t))] , (4.9)

where the effective drift and effective diffusivity are given, respectively, by

Veff(χ) = (1 − ϵ/2)∇χDeff(χ) − vw,

Deff(χ) =
D

1 + q
+

τv2a(χ)

d(1 + q)2
.

(4.10)

This expression of Deff reveals an enhancement of the diffusivity D/(1 + q) of
the center of friction induced by the activity via a term ∝ v2a(χ). Interestingly,
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the alignment of the effective drift with the activity gradient is controlled by
the tactic coupling

ϵ = 1 − q

1 + 1+q
q

τ
τr

, (4.11)

where τr = 1/νκ is the characteristic spring relaxation time. The role of ϵ can
be understood by considering the case of static activity field. In fact, for vw = 0,
the stationary density obtained from (4.9) is

ρ(χ) = N−1

[
1 +

τv2a (χ)

dD(1 + q)

]−ϵ/2

, (4.12)

with N a normalization constant. Accordingly, ϵ determines the preferential
accumulation of the dimer in the regions with high or low activity depending
on its sign. Equation (4.11) implies that for a fixed τ/τr, the tactic coupling
ϵ is entirely determined by the friction ratio q, because it changes sign at the
threshold value

qth =
1

2

[
1 + τ/τr +

√
(1 + τ/τr)

2 + 4τ/τr

]
≥ 1. (4.13)

For highly mobile cargoes with q < qth one has ϵ > 0 and thus the dimer
preferentially accumulates in low-activity regions. For slow cargoes with q > qth,
instead, ϵ < 0 and the dimer preferentially accumulates in high-activity regions.
Interestingly, as in the single-particle case (see, e.g., ref. [98]), the equivalence
with a cargo-carrying ABP [103] with rotational diffusivity Dr is fully recovered
by imposing τ−1 = (d− 1)Dr.

In order to analyze the general case of an activity travelling wave (vw ̸= 0), we
assume for simplicity that the activity field va varies only along e0. Accordingly,
we denote the effective drift and diffusivity with Deff(χ0) and Veff,α(χ0) as they
now depend only on χ0 = χ · e0. As an example, we hereafter consider a
sinusoidal activity wave

va(χ0) = v0 [1 + sin(χ0/λ)] , (4.14)

with wavelength λ, but the derivation can be easily extended to activity travel-
ing waves with different shapes. We determine the resulting stationary density
ρ(χ) in the comoving frame

ρ(χ)

ρb
=

LD−1
eff (χ0)

∫ L

0
dx exp

{
−
∫ χ0+x

χ0
dy

Veff,0(y)

Deff(y)

}
∫ L

0
du
∫ L

0
dxD−1

eff (u) exp
{
−
∫ u+x

u
dy

Veff,0(y)

Deff(y)

} , (4.15)

by considering a comoving box of size L with periodic boundary conditions.
Here, ρb = L−d is the value of the uniform distribution over the d−dimensional
comoving box. The stationary density ρ(χ) is shown in Figure 4.2 and it also
features the transition in the preferential accumulation illustrated above for
vw = 0.
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4.2.2 Drift velocity

The interaction with the propagating activity field induces a non-trivial tactic
response in the cargo-carrying complex, which is now able to sustain a non-
vanishing stationary flux J0 in the comoving frame, acquiring an average drift
velocity vd = (⟨ṙ1⟩+q⟨ṙ2⟩)/(1+q) = J0/ρb +vw along e0 in the lab frame. This
drift is given by [175, 176]

vd =
L
[
1 − exp

{
−
∫ L

0
dy

Veff,0(y)

Deff(y)

}]
∫ L

0
du
∫ L

0
dxD−1

eff (u) exp
{
−
∫ u+x

u
dy

Veff,0(y)

Deff(y)

} + vw, (4.16)

and it strongly depends on the tactic coupling ϵ and therefore on q. More
precisely, it can be shown analytically that vd vanishes at the static threshold
value q = qth reported in (4.13) (see Appendix B.3). Additionally, for suffi-
ciently small thermal diffusivity D, the threshold value q = qth also separates
two distinct tactic regimes with respect to the wave propagation: positive taxis
for q > qth, where the microswimmer navigates along the propagating tactic
signal with vd/vw > 0, and negative taxis for q < qth, where the microswimmer
navigates against it, with vd/vw < 0, see fig. 4.3(a). This predicted negative
taxis as well as the fact that its magnitude decreases upon increasing D are
consistent with what occurs for a single active particle [164, 165], which is re-
trieved as the limit q → 0 of our model. Conversely, as q increases, the response
of the dimeric microswimmer to the traveling tactic signal might become sub-
stantially different from that of a single active particle, depending on both q
and τ/τr. More precisely, at fixed τ/τr the cargo-carrying microswimmer trav-
els along the sinusoidal wave when q > qth, due to its tendency to localize
close to the propagating activity crests, performing the active surfing shown in
Figure 4.3(b). Interestingly, an analogous effect was observed experimentally
with single self-polarizing phototactic particles in traveling light pulses [129].
While in ref. [129] this behavior is caused by an aligning torque, in our model
it emerges as a cooperative effect between the active carrier and the passive
cargo. Note, however, that the ability of the microswimmer to catch up with
the travelling wave crests, i.e., vd ≃ vw is limited to the case of slowly prop-
agating activity wave, which explains the non-monotonicity of the blue curve
in fig. 4.3(a). In order to quantify the efficiency of this surfing, we determine
the slope c of the linear relation vd ≈ cvw, which holds at small wave veloci-
ties vw. Its dependence on q and the thermal diffusivity D is reported in the
inset of Figure 4.3, which shows, as expected, that c ≤ 1 and that the directed
transport is highly efficient (i.e., c ≃ 1) for D ≪ τv20. We recall here that the
predictions presented above follow from a coarse graining which assumes that
the activity field varies slowly on a length scale of the order of lp = v0τ . In the
static case vw = 0, this condition is met for λ ≫ lp. However, for a traveling
wave, the coarse graining additionally requires that the distance ∼ vwτ traveled
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(c)

Figure 4.3: (a) Average drift vd as a function of the phase velocity vw in the
slow-wave regime vw < v0 (Equation (4.16)). For low-friction cargoes with
q = qlow < qth (red line), the microswimmer exhibits a negative tactic behavior.
At the threshold value qth (black line), the average drift vanishes for all wave
velocities vw, whereas for q = qhigh > qth (blue solid line), the dimer is charac-
terized by positive taxis. Details on numerical results (symbols) can be found in
Appendix B.5. In the inset, we report the slope of the linear relation vd ≈ cvw
(blue dashed line) at small wave velocities as a function of q, and for thermal
diffusivity D ∈ {0.05, 0.03, 0.01, 0.001} (solid lines from bottom to top). (b)
and (c): Stochastic trajectory of a cargo-carrying microswimmer in the comov-
ing frame (χ0, χ1) in two spatial dimensions. For a high-friction cargo (q = 20)
and small thermal diffusivity D = 10−3 the dimer surfs the propagating activity
wave by localizing around its maximum while traveling with the same velocity,
i.e., vd = vw.
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by the active wave on a time scale ∼ τ does not exceed ∼ lp, which happens
for vw < v0. Accordingly, in order to investigate the transport properties in the
opposite case vw > v0, we pursue below an alternative analytical approach.

4.3 Transport properties for fast activity waves

For simplicity, and without loss of generality, we restrict the analysis of the
case vw > v0 to one-dimensional systems and to a sinusoidal traveling wave as
in Eq. (4.14). The main difference compared to the slow-wave approximation
discussed above lies in the closure scheme used to combine the mode equa-
tions (4.7) and (4.8). More precisely, as the small gradients approximation is
no longer applicable for vw > v0, we explore this regime by considering small
self-propulsion forces by keeping in the effective dynamics only contributions of
the lowest order in v0 [167, 177, 178]. To this aim, we rewrite (4.8) in the more
convenient form

L̂σσ(χ, r, t) = −∂χ [va(χ
′)φ]

(1 + q)
− ∂r [va(χ

′)φ] + Υ(χ, r, t), (4.17)

where χ′ = χ + qr/(1 + q) is the position of the active carrier in the comov-
ing frame, Υ(χ, r, t) includes all contributions of higher-order modes, and the
operator L̂σ is defined as

L̂σ = ∂t +
1

τ
− vw∂χ −

D

1 + q
∂2χ −

(1 + q)D

q

[
∂2r +

1

ℓ2
∂rr

]
, (4.18)

with the characteristic length ℓ =
√
Dτr.

To solve for σ(χ, r, t), we then determine the Green function of L̂σ and com-
pute the convolution with the right hand side of (4.17). In doing this, we assume
that the contribution Υ(χ, r, t) of higher-order modes is negligible in the limit
of small self-propulsion forces, thus closing the hierarchy. Analogously to the
previous approach, after integrating over the relative coordinate r, we obtain a
continuity equation for the marginal density ρ(χ, t), i.e.,

∂tρ(χ, t) = −∂χ
[
I(χ, t) − D

1 + q
∂χρ− vwρ

]
, (4.19)

where

I(χ, t) =

∫ ∞

−∞
dr

va (χ′)σ(χ, r, t)

(1 + q)
=

⟨va(χ′)η |χ⟩
1 + q

ρ(χ, t), (4.20)

and ⟨·|χ⟩ denotes the conditional average at fixed χ. We derive a close yet
cumbersome analytical expression for I(χ, t) which is related to the local av-
erage swim speed of the center of friction due to self-propulsion ( see (4.20)
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Figure 4.4: Average drift velocity vd as a function of the phase velocity vw of the
activity wave, in the case for vw > v0 (see the analytical expression in (4.21)).
The cargo-carrying microswimmer acquires a positive drift independently of the
value of the friction ratio q, which takes here the same values as those of the
corresponding curves in fig. 4.3. The numerical results (symbols) were obtained
as discussed in Appendix B.5.

and Appendix B.4). Similarly, we also derive in the Appendix B.4 analytical
expressions for the stationary density and the flux in the comoving frame, which
we use to analyze the directed transport in the regime of fast active traveling
waves. In particular, for Dτr ≪ λ2, the average drift velocity vd reads

vd
v0

=
lp

2λ(1 + q)2

[
sinψ0

|z0|
+ q

sinψ1

|z1|

]
, (4.21)

where we recall that lp = v0τ is the persistence length of the active carrier,
while ψn and |zn| are the phase and the modulus, respectively, of the complex
number

zn = 1 +
τD

λ2(1 + q)
+

(1 + q)τD

qℓ2
n+ i

τvw
λ
, (4.22)

where i is the imaginary unit. A general expression of the drift velocity for an
arbitrary thermal diffusivity D is given in Appendix B.4.
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Figure 4.4 shows the behavior of the average drift vd as a function of the
wave velocity vw in the regime vw > v0 of fast traveling waves. Unlike the
case of vw < v0 (see Figure 4.3), the tactic behavior of the microswimmer does
not exhibit a qualitative change as a function of the friction ratio q, with the
drift occurring always along the direction of the active wave. However, as q
increases, this drift decreases because of the reduced mobility of the dimer.
The drift velocity of the microswimmer attains its maximum value at a wave
speed which scales as vw/v0 ∼ λ/lp. This can be qualitatively understood as
following. Consider a single pulse of activity of spatial extent λ travelling with
a speed vw. A microswimmer with its polarization against the direction of the
travelling pulse will rapidly exit the pulse from the receding front. However,
when the polarization is along the direction of the pulse, the microswimmer will
be carried along with it until it switches its polarization which will cause it to
exit the pulse. The optimum scenario corresponds to the condition vwτ−v0τ ∼ λ
in which the microswimmer effectively traverses the whole pulse before switching
polarization. This results in a maximum of the drift speed at vw ∼ λ/τ . While
the drift velocity of the dimer in fig. 4.4 features a single peak, we find both
analytically and via numerical simulations that a second peak may appear at
larger vw, for large values of q and persistence time τ . The location of this
additional peak depends on the spring relaxation time scale τr but we defer a
thorough investigation of its features and microscopic origin to future works.

4.4 Discussion

In this Chapter we showed that self-propelled cargo-carrying microswimmers in-
teracting with a traveling wave of activity display a rich tactic behavior. Their
response to such a wave is actually independent of the details of the activity,
as evidenced by the proved equivalence of cargo-carrying AOUPs and ABPs in
terms of their coarse grained-dynamics. The tactic transition which emerges
in the presence of slowly propagating waves relies on the possibility to control
the preferential localization of the microswimmer in high/low activity regions,
by tuning the friction of its cargo. In particular, we find a surfing effect when
the directed migration along the activity wave is induced by an effective lo-
calization around the slowly propagating wave maxima. Considering, e.g., the
experimental realization of Janus microswimmers as in Ref. [129], Eq. (4.13)
implies qth ≃ κ/(0.02 pN/µm) for qth ≳ 1. Accordingly, assuming for the cargo-
carrier binding an elastic constant κ ≃ 0.1 pN/µm, typical for soft matter, the
tactic transition is predicted to occur at a cargo radius ≃ 8µm, which is within
experimental reach. By tuning the stiffness κ of the spring between the active
carrier and the passive cargo, one can shift the transition. A possible experi-
mental system could be envisaged in which the linker between carrier and cargo
is composed of colloidal chains. Recently, colloidal chains have been produced
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experimentally with tremendous control on length and stiffness, mimicking the
behavior of flexible and semiflexible polymers [179, 180]. We speculate that
a qualitatively similar tactic behavior may emerge spontaneously in a binary
mixture of mutually attractive active and passive particles, upon formation of
clusters of different sizes. It has been recently shown that also molecules com-
posed of two rigidly connected active particles [112] exhibit a transition in their
effective localization in high/low activity regions, as well as dimers made of
two active chiral particles (see Chapter 3). It will be interesting to study such
active-matter systems subject to active traveling waves, and in the presence of
external potentials [30, 181]. We expect the predictions presented in this Chap-
ter to have an impact on experimental studies on soft matter, biophysics, and
nanotechnology. Important examples include cases in which synthetic Janus
particles [182] and bacteria [183] have been used to efficiently transport and
deliver microscopic objects in specific target sites. Moreover, our investigation
could inspire future optimal design of existing biohybrid micromachines such as
spermbots formed by assembling synthetic materials with sperm cells [184, 185].
The taxis transition unveiled by our minimal stochastic model may also have
implications in biological processes at the microscale in which traveling waves
play a key role, e.g., signaling waves in cell development [186].



Chapter 5

Migration and separation of
polymers in non-uniform active
baths

Living systems continuously exchange information and energy with the sur-
rounding environment and their biological function unavoidably relies on mech-
anisms that are only allowed out of equilibrium [187]. This inherent nonequi-
librium state, exemplified by the hallmark feature of self-propulsion, gives rise
to a diversity of collective behaviors shared by biological systems across vari-
ous scales, ranging from molecular motor assemblies [12, 188, 189] to swarming
bacteria [190] and flocking birds [191–193]. While a comprehensive theory en-
compassing the diverse properties of living matter is still elusive due to the
astonishing complexity of the biological world, significant efforts have been di-
rected towards constructing a theoretical framework for active matter [146,
194–197]. Prominent examples from biology include flagellated bacteria [92],
algae [198, 199] and other motile microorganisms [200], molecular motors on
cytoskeletal filaments [201], active worms [202, 203] and many others. Ac-
tive colloidal molecules are also experimentally synthesized in the lab [13, 111,
200] using techniques such as self-diffusiophoresis via catalytic reactions [20–22],
light-induced self-thermophoresis [23], nonreciprocal deformation cycles [204,
205], and the integration of biological components with synthetic structures in
biohybrid systems [206].

Numerous active biological systems, including some of the examples men-
tioned above, appear as filamentous or polymer-like structures. It is well-
established that several polymeric molecules in the interior of a cell rely on
a variety of active reactions to regulate their biological functions. For example,
DNA is continuously processed by enzymes such as DNA-polymerase and heli-
case to ensure its successful replication [207], ribosomes slide along RNA strands
to synthesize proteins [207] and the chromosomal loci dynamics is strongly af-
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fected by ATP-dependent non-thermal fluctuations [208]. For this reason, the
field of active polymers [104, 106] has gained a growing level of attention in
recent years, yielding insights into the impact of non-equilibrium fluctuations
and activity on structural and dynamic properties of both isolated chains and
suspensions of polymers [104, 106, 209–225].

In this Chapter, we focus on the effect of a nonequilibrium bath featuring a
spatially non-uniform degree of activity on a polymeric molecule described as
an ideal Rouse chain. While recent attention has been devoted to the impact
of inhomogeneous activity [26, 40, 41, 50, 98, 99, 103, 120, 172, 226–229], there
exists a notable gap in our understanding regarding its influence on polymer-
like structures. Here, we reveal a previously unexplored effect in these systems:
nonhomogeneous active baths induce qualitatively different spatial distributions
in Rouse polymers depending on their contour length and connectivity. More
precisely, short polymers preferentially accumulate within spatial regions of low
bath activity, whereas long ones in regions of high bath activity. Furthermore,
we demonstrate that highly connected structures typically display a tendency
to localize where the activity is lower. Note that the model described in this
Chapter does not refer to a specific biological or synthetic system, rather it is
inspired by the ubiquity of polymeric structures in nature.

The results presented in this Chapter have been published in Ref. [230].

5.1 The model

We study a minimal stochastic d−dimensional model of an ideal Rouse polymer
composed by N units, subjected to exponentially-correlated noises, which ac-
count for the interaction with an active bath. The chain connectivity is encoded
in the matrix Mij [82], which determine all the pairs of interacting monomers
as introduced in Section 2.7. A sketch of a polymer with linear connectivity
dispersed in an active bath characterized by the presence of active agents is
shown in Figure 5.1. The polymer is characterized by a quadratic Hamiltonian

H =
κ

2

N−1∑
i=0

N−1∑
j=0

MijXi ·Xj, (5.1)

with Xi the position of the i−th monomer and κ the coupling strength of
interacting monomers. We neglect inertial effects compared to viscous forces and
assume that the polymer’s motion follows the overdamped Langevin dynamics

Ẋi(t) = −ν∇Xi
H + µfa(Xi)ηi + ξi(t) . (5.2)

Here, ν denotes the mobility of the monomers and {ξi(t)} are zero-mean Gaus-
sian white noises with correlation

⟨ξiα(t)ξjβ(s)⟩ = 2Dδijδαβδ(t− s) , (5.3)
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a)

b)

Figure 5.1: a) Sketch of a linear polymer immersed in an active bath. The
blue monomers, connected by orange bonds with stiffness κ, interact with the
red passive molecules (thermal bath) and are subjected to additional time-
correlated forces due to the collision with the green active agents suspended in
the surrounding fluid. These nonequilibrium interactions bring in nonequilib-
rium fluctuations that affect both the conformational and migration properties
the polymer. b) Spontaneous separation of polymer species with different length
dispersed in a medium characterized by a non-uniform activity field v(x).

describing thermal fluctuations. The thermal diffusivity is related to the mo-
bility via the Einstein’s relation D = νT , with the Boltzmann constant set to
kB = 1 as in the rest of the thesis. As a result of the collisions with the active
agents dispersed in the bath, the polymer experiences additional non-thermal
fluctuations which violate the detailed balance condition and drive it out of
equilibrium. This effect is modeled by the active forces fa(Xi)ηi in the stochas-
tic dynamics (5.2). Such active forces are characterized by a typical magnitude
which varies non-homogeneously in space according to the function fa(x) and
are aligned with the orientation vectors ηi, which evolve as the N independent
d-dimensional Ornstein-Uhlenbeck processes

τ η̇i = −ηi + ζi(t) . (5.4)

Here {ζi(t)} are N independent zero-mean Gaussian white noises with correla-
tions

⟨ζiα(t)ζjβ(s)⟩ = 2τd−1δijδαβδ(t− s) , (5.5)

and τ is the characteristic relaxation time of the OU processes which sets the
persistence time of the active forces. In the long time limit, the time-translation
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invariant correlation function of the orientation vectors reads

⟨ηiα(t)ηjβ(s)⟩ = δijδαβCη(t− s) ,

Cη(t− s) = d−1 exp (−|t− s|/τ) .
(5.6)

The variance of ζiα has been chosen such that ⟨∥ηi∥2⟩ = ⟨
∑

α η
2
iα⟩ = 1 for all

d and i. Note that the model can alternatively be used to describe a chain
of active particles, each endowed with its own polarity, which use energetic
resources distributed in the bath according to the activity fa(x) to self-propel.

5.2 Effective dynamics

The stochastic dynamics (5.2) can be rewritten within the Rouse domain [84]
in terms of the Rouse modes χi =

∑
j φijXj where the matrix φij is chosen in

such a way to diagonalize the symmetric connectivity matrix Mij and with the
rows normalized to unity, as presented in Sec. 2.7. The Rouse modes evolve
according to the following stochastic equation of motion

χ̇i = −γiχi +
∑
j

φijv(Xj)ηj + ξ̃i(t), (5.7)

where the Gaussian white noise ξ̃i(t) has the same statistics as ξi(t), and the
monomer position Xj can be rewritten in terms of the Rouse modes using the
inverse transformation φ−1. The typical swim speed of the monomers due to
activity is v(x) ≡ νfa(x), which we will refer to as the activity field. The relax-
ation rates {γi} of the Rouse modes in the absence of activity are proportional
to the eigenvalues {λi} of the connectivity matrix, i.e. γi = γλi where γ = νκ.
Unlike the case of a Rouse polymer in a thermal bath at equilibrium, the Rouse
modes are now coupled via the activity field v(Xi), which makes the analyti-
cal treatment of the problem more challenging. We denote with P({χ}, {η}, t)
the one-time joint probability density that the Rouse modes and the orientation
vectors assume the values {χ} and {η} at time t, respectively. Being the under-
lying dynamics of the system Markovian, the time evolution of P({χ}, {η}, t)
follows the Fokker-Planck (FP) equation [9, 74]:

∂tP = (L0 + La + Lη)P , (5.8)



5.2. EFFECTIVE DYNAMICS 68

with the set of operators {L0,La,Lη} defined as:

L0 ≡
N−1∑
i=0

∇i ·
[
γiχi +D∇i

]
,

La ≡
N−1∑
i=0

∇i ·
[
−
∑
j

φijv(Xj)ηj

]
,

Lη ≡
N−1∑
i=0

(dτ)−1
[
∇̃2

i + d∇̃i · ηi

]
.

(5.9)

Here, we used the shorthand notation ∇i ≡ ∇χi
and ∇̃i ≡ ∇ηi

. The operator
L0 corresponds to the FP-operator of a free Rouse chain in contact with an
equilibrium thermal bath, while the effect of the activity is brought in by La

and Lη.

To investigate how the spatial localization of the polymer correlates with
the bath activity, we look for a description that includes the center of mass
of the polymer Xcom = χ0/

√
N as the only relevant variable. Accordingly,

we perform a coarse-graining procedure based on a moment expansion and
a small-gradient approximation, as detailed in the Appendices C.1 and C.2.
In particular, we assume that the activity field v has small spatial variations
on the length scales of ℓb =

√
dT/k and ℓp = vτ , which correspond to the

bond length and the persistence length of an active particle, respectively. As
a consequence, the marginal density ρ0(χ0, t) of the 0-th Rouse mode and its
associated probability flux J 0 will also exhibit small gradients on the same
length scales. This simplifying assumption makes the gradient expansion (see,
e.g., Refs. [25, 26] or Chapter 4) a suitable approach to derive an effective
equation for ρ0. In particular, by neglecting contributions of order O(∇2

0) and
higher in J 0, thus truncating the expansion to the drift/diffusion order (see
Appendix C.2 for details), we obtain that ρ0(χ0, t) evolves according to

∂tρ0 = −∇0 · [Vρ0 −∇0(Dρ0)] , (5.10)

where we introduced the effective drift V(χ0) and diffusivity D(χ0) given by

D(χ0) = D +
τ

d
v2
( χ0√

N

)
, (5.11)

V(χ0) = (1 − ϵ/2)∇0D(χ0) . (5.12)

Equation (5.11) shows that the effective diffusivity D consists of the term D,
due to thermal fluctuations, and of the enhancement induced by non-equilibrium
fluctuations caused by the active forces. Moreover, the spatial variations of the
activity field induce the effective drift V in Eq. (5.12), which is always aligned
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with the activity gradient. The entity of this drift depends on the parameter
ϵ, which is related to the polymer architecture and to the persistence time τ of
the active forces by the following expression:

ϵ = 1 −
N−1∑
i=1

1

1 + τγi
. (5.13)

We recall here that the relaxation rates {γi} carry information on the poly-
mer connectivity, being proportional to the eigenvalues {λi} of the connectivity
matrix. In particular, for a linear chain

λj = 4 sin2(jπ/2N) . (5.14)

Furthermore, it should be noted that Eq. (5.13) gives ϵ < 1 for any choice of
the model parameters, implying that the effective drift V always points in the
direction of greatest increase of the activity field. This might lead to the wrong
conclusion that all polymeric structures tend to accumulate in regions of high
bath activity, driven by V . However, high activity regions are also characterized
by a larger effective diffusivity D, whose effect is to reduce the typical residence
time of the polymer in those areas, thus counteracting the effective drift. The
competition between these two effects is governed by ϵ: depending on their
degree of polymerization and connectivity, different chains will preferentially
localize in different regions of space.

5.3 Stationary distribution

The effective Fokker-Planck equation (5.10) can be easily solved at steady state
by imposing the zero-flux condition, due to the simple relation between the drift
V and the diffusion D. By introducing ρ(Xcom) ≡ ρ0(

√
NXcom), we get:

ρ(Xcom) = N

[
1 +

τv2(Xcom)

dD

]−ϵ/2

, (5.15)

with N a normalization constant. Equation (5.15) implies that all chains with
ϵ > 0 will typically spend more time in regions of low bath activity, whereas
those with ϵ < 0 will preferentially accumulate in high activity areas. At fixed
bath conditions, i.e., fixed time scale ratio α ≡ τγ = τκν, there are only two
ways to vary ϵ. The first one is to change the degree of polymerization N of the
chain by adding/removing monomeric units. The left panel of Figure 5.2 shows
the steady state density of the center of mass for the case of linear chains of
various lengths. Theoretical predictions (Eq. (5.15), solid lines) and numerical
simulations (symbols) are compared in d = 2, for polymers in a box with size
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Figure 5.2: Left panel: comparison between the analytical expression of the
steady state density ρ of the polymer’s center of mass (see Equation (5.15),
solid lines, left axis) and numerical simulations (symbols). The red dashed line
shows the activity profile (right axis) and ρ is reported in units of ρb = 1/L. The
parameters of the simulation are T = 0.1, κ = 1.0, µ = 1.0, τ = 1.0, v0 = 1.0,
L = 10, and the integration time step ∆t = 0.001. Right panel: region of
preferential accumulation (corresponding to the sign of ϵ) of linear chains as a
function of the time scale ratio α = γτ and the number of monomers N . For
the purpose of visualization, the boundaries between the different signs of ϵ are
drawn at half-integer values of N .

L endowed with periodic boundary conditions. The activity field is sinusoidal
and varies along the x-axis as

v(x) = (v0/2)[1 + cos(2πx/L)] , (5.16)

while it is uniform along the remaining, orthogonal axis. The plot shows that
short chains (e.g., dimers) preferentially localize in low-activity regions, whereas
the density of longer chains increasingly peaks around regions of high activity
as the number of monomers increases. The minimum number of monomers
above which linear chains localize in regions of high activity depends on the
persistence time τ of the active forces and on the stiffness κ of the interac-
tion between interconnected monomers. The separation between localization in
high/low activity regions is evident in the diagram of Figure 5.2 (right panel),
which identifies the domains of the parameter space (N,α) corresponding to
these two cases. An immediate conclusion drawn from the diagram is that for
single particles and dimers, the effective diffusivity always prevails over the drift
contribution, leading to localization in regions of low activity for any value of
α. In fact, for α → 0, the coefficient ϵ ≃ 2 − N , implying that only chains
with N > 2 localize in regions of high activity. For finite α, the dominant con-
tribution to the coefficient ϵ comes from Rouse modes which relax slower than
the correlation time τ of the active bath. This corresponds to the observation
that with increasing τ , linear chains require a higher degree of polymerization
to preferentially localize where the activity is larger (Figure 5.2).
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Figure 5.3: Stationary probability density ρ of the center of mass of polymers
with N = 6 monomers and different connectivity matrix: linear (blue), ring
(green), star (gray), and fully connected (light orange) polymer. We compare
analytical predictions (Eq. (5.15), solid lines) and simulations results in d = 2
dimensions (symbols). The activity field is represented by the red dashed line
(right axis). The parameters of the simulation are the same as in Fig. 5.2.

The second way to change the sign of ϵ is to vary the connectivity matrix
Mij of the chain by keeping fixed the number N of monomers. In order to
demonstrate this, we determined the stationary density ρ(Xcom) for different
structures, i.e. linear, ring, and star polymer as well as fully connected network.
Figure 5.3 shows the resulting ρ, obtained with the same activity field (5.16). It
turns out that, for a fixed degree N of polymerization (N = 6 in Figure 5.3), the
most constrained structure from the point of view of internal interactions, i.e.,
the fully connected network, is unable to localize in the region of high activity,
whereas the structures with a lower degree of connectivity typically spend more
time where the activity is higher. Moreover, as can be seen in Figure 5.3, the
localization is more effective for those chains characterized by the least number
of bonds. To understand heuristically the possible preferential localization of the
polymers in regions with high activity, we note from (5.13) that negative values
of ϵ primarily arise from modes k which are much slower than the correlation
time τ of the active forces, i.e., which have τγk ≪ 1. Accordingly, one can
estimate |ϵ− 1| ≳ K, where K denotes the number of these slow modes, which
do not relax during the persistence time τ of the active forces, thus pinning the
polymer motion. In turn, these slow modes effectively play the role of passive
cargoes for the remaining active modes, which turn out (see [103] and Chapter 4)
to drift preferentially towards the regions in space with higher activity.



5.4. POLYMER SEPARATION 72

5.4 Polymer separation

The fact that polymer chains localize in regions of high or low activity depending
on their degree of polymerization and connectivity can lead to the spontaneous
spatial separation of different polymer species, when these are immersed in a
non-uniform active bath. This can be observed, for example, in molecular dy-
namics simulations (see details in Appendix C.5) of a mixture of linear chains
of various lengths in a sinusoidal activity field, as shown in Figure 5.4. After an
initial phase in which all chains are prepared in a mixed phase localized around
the center of the box, different species begin to migrate to different regions of
space according to their length. In particular, the chains with N = 20 and
25 localize where the activity is higher, while the shorter chains spend more
time in the region of low activity. To better appreciate the separation along the
x-axis, where the activity is non-uniform, a harmonic confining potential along
the y-axis (see Figure 5.4) has been introduced. A similar spontaneous sepa-
ration, will occur even in the presence of steric hindrance (see Appendix C.3)
and inter-chain interactions (neglected here), at least for dilute polymer mix-
tures, and possibly with different time scales, as the initial mixed state will
take longer to untangle. Note that the spontaneous separation described above
occurs only in non-equilibrium conditions. In fact, it would be absent if the
equation of motion of the polymer obeys detailed balance, i.e., if the energy
injections introduced by the time-correlated forces are compensated by an ad-
ditional dissipation modeled by a friction with an appropriate memory kernel
(for more details see Appendix C.4).

5.5 Discussion

The ability to segregate and sort biomolecules or synthetic polymer-like struc-
tures at micro/nano-meter scale is of paramount importance in a variety of
applications, spanning from diagnostics and biomedicine to biological analyses
and chemical processing [231]. Nonequilibrium conditions have already proved
useful in length-selective accumulation of oligonucleotides subjected to thermal
gradients [232] and elasticity-based polymer sorting in active fluids [233]. The
mechanism investigated here has potential to be employed in active sorting
techniques to separate polymers based on both their length and structural con-
nectivity. In a more realistic setting, the relaxation time scales of the chain will
be influenced by additional interactions (e.g., bending rigidity, steric hindrance,
and hydrodynamics) and the active bath may also exhibit more than one time
scale. Our theoretical predictions might be experimentally tested with synthetic
chains assembled from magnetic colloidal beads [234, 235] immersed in a bath
with photokinetic bacteria, the swimming speed of which depends on the in-
cident light intensity [236, 237]. Moreover, our results could also be relevant
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Figure 5.4: Molecular dynamics simulations proving the spontaneous separa-
tion of linear polymer chains with various lengths in a sinusoidal activity field
v(x) = 0.2 + 0.5[1 + sin(2πx/L)] (bottom panel) and in d = 2. Polymers with
N ∈ {2, 3, 4, 5, 20, 25} are initially localized and mixed at the center of the
box (top snapshot). Over time, different species migrate to different regions
in space, based on their polymerization degree (middle snapshot). Simulation
parameters: T = 0.01, κ = 3.0, µ = 1.0, τ = 3.0, L = 20. Integration timestep:
∆t = 0.001.

in cells where naturally occurring activity gradients in the actin cytoskeleton
influence mechanics. For instance, in mouse oocytes, activity gradients facili-
tate the central positioning of the nucleus through active diffusion [238–240]. In
such cells, the transport behavior of polymer-like structures, whether externally
introduced or assembled locally, would depend on their length and topology as
predicted by our theory, rather than merely diffusing down the activity gradi-
ent. Whether such activity gradient-driven processes are at work in real cells,
contributing to the precise localization and transport of biomolecules remains
an intriguing possibility that warrants further investigation.



Chapter 6

Rouse polymer in a fluctuating
correlated medium

Understanding the behavior of polymeric macromolecules dispersed in a fluid
environment is of crucial importance for advancements in biomedical applica-
tions [241–243], the design and development of smart materials [244–247], and
for understanding several biological processes [248, 249]. In most situations,
polymeric molecules are in contact with complex heterogeneous and correlated
media, and their behavior is significantly affected by their mutual interaction.
For example, this is the case of polymers embedded in composite fluids [250],
porous media [251], biological tissues and cellular interiors [252, 253]. Over the
last decades, particular emphasis has been put on investigating structural prop-
erties of polymeric chains in binary liquid mixtures displaying spatio-temporal
correlations [254–261]. The typical length scale of such correlations depends
on the distance from the critical demixing point of the binary mixture, and
potentially diverges when the mixture is poised at the critical point.

A first theoretical study of this problem has been done by De Gennes and
Brochard [254, 255], who showed that a polymer dispersed in a binary liquid
mixture would first collapse into a globule-like configuration as the solvent ap-
proaches the demixing transition, to eventually re-expand at the critical point
itself. The polymer collapse has been physically rationalized by advancing the
hypothesis that the better solvent of the binary mixture would form a wetting
layer around the polymer, screening the excluded volume repulsion and thus
resulting in an effective attraction. The spatial range of these induced inter-
actions caused by the fluctuating medium is given by the correlation length of
the latter [254, 262]. In particular, the effective interactions experienced by the
polymer become long-range when the underlying medium is critical. When the
correlation length of the binary mixture exceeds the typical size of the polymer,
the latter is effectively immersed in a droplet enriched with the better solvent,
and thus it re-swells again to its size in a pure solvent. Further theoretical in-
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vestigations have been proposed later on, relying on self-consistent perturbative
schemes [263, 264] and field-theoretic methods [262, 265–267]. The analytical
predictions on the conformational features of a polymer in a near-critical sol-
vent have been verified by on-lattice Monte Carlo simulations [256, 268] and
multiscale simulation methods based on density functional theory [269]. From
an experimental perspective, the effect of a correlated environment on the struc-
ture of a tracer chain has been explored using dynamic light scattering [270,
271] and small-angle neutron scattering [272]. While many static properties of
a polymer in a correlated environment have been widely studied in the past,
the effect of the field-mediated forces on its dynamics is much less explored.

In this Chapter, we study conformational and dynamical properties of a poly-
mer chain interacting with a correlated medium, which is described by a ther-
mally fluctuating order parameter field ϕ(x, t). The latter evolves according to
a dissipative (model A) or conserved (model B) relaxational dynamics, analo-
gously to Refs. [62–64, 66–69, 71], and interacts with the polymer via a trans-
lationally invariant linear coupling. Due to this interaction, the polymer and
the field affect each other dynamically. To make contact with the case of a
polymer chain dispersed in a binary solvent mixture, the scalar field ϕ(x, t)
can be interpreted as the relative concentration of the two species in the mix-
ture. However, our derivation does not rely on any specific interpretation of
the order parameter ϕ(x, t). At the same time, the field dynamics presented
here neglects hydrodynamic effects, which are necessary to make contact with
real fluids. Using two distinct approaches based on the linear response the-
ory or the weak-coupling approximation, we make theoretical predictions on
conformational and relaxation properties of the chain.

For this reason, after describing the model in Sec. 6.1 and analyzing the field-
induced interaction in Sec. 6.2, we derive in Secs. 6.3.1 and 6.3.2 a linearized
effective equation of motion for the polymer, and study the dynamical relaxation
of its internal structure as well as the one of its center of mass toward the rest
position in a confining potential. In particular, we investigate the extent to
which the correlated medium affects such relaxation processes, especially close
to the critical point. In Sec. 6.4 we study the typical size of the polymer as
a function of its polymerization degree and of the correlation length of the
medium. Finally, in Sec. 6.4.3 we analyze the response of a linear polymer to
a tensile force acting on its extreme monomers. All analytical predictions are
tested using numerical simulations.

6.1 The model

The system consists of an ideal harmonic (Rouse) chain in d spatial dimensions,
composed by N monomers with positions {Xi(t)}N−1

i=0 , and a fluctuating order
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Xi

Figure 6.1: Schematic illustration of the model representing a (linear) poly-
mer chain coupled to a thermally fluctuating order parameter field ϕ(x, t), and
confined by a harmonic potential with stiffness κc.

parameter field ϕ(x, t). The structure of the internal interactions among the
monomers is encoded in the connectivity matrix Mij (see Sec. 2.7), so that the
Hamiltonian of the Rouse polymer is given by:

H0 =
κ

2

∑
ij

MijXi ·Xj +
κc
2

∑
i

X2
i , (6.1)

where κ denotes the stiffness of the pairwise attractions between the sub-units of
the chain, and κc sets the elastic constant of the external harmonic confinement,
in case this is present. Note that we neglect, in what follows, the possible
energetic contributions coming from the bending of the polymeric chain, as
well as excluded volume interactions leading to steric hindrance effects. In
fact, our aim here is to investigate the extent to which the spatio-temporal
correlations in the underlying medium affect the structural properties of the
simplest possible polymer model. For the fluctuating scalar field ϕ(x) we take
a Gaussian Hamiltonian

Hϕ =

∫
ddx

[
1

2
(∇ϕ)2 +

r

2
ϕ2

]
, (6.2)

where the parameter r ≥ 0 controls the distance of the field from criticality, and
determines its correlation length ξϕ = r−1/2. Analogously to Refs. [65–68], the
coupling between the polymer and the field is chosen to be linear and translation
invariant, and it is given by:

Hint = −λ
N−1∑
i=0

σi

∫
ddxϕ(x)V (x−Xi) , (6.3)

where λ > 0 denotes the coupling strength, V (x) > 0 the interaction poten-
tial and {σi}N−1

i=0 a set of N binary variables with σi ∈ {−1,+1}. This means
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that the energetically favoured configurations are those where the field assumes
larger (smaller) values in spatial proximity of the monomers with positive (neg-
ative) interaction coupling λσi. For simplicity, we focus on isotropic interaction
potentials characterized by a single length scale R, such as:

V (x) = (2πR2)−d/2 exp
(
−x2/(2R2)

)
. (6.4)

Here R represents the characteristic length scale of interaction between the
field ϕ(x, t) and each monomer in the chain, and it might be interpreted as the
typical monomer size. In the following, we will denote the total Hamiltonian as

H = H0 + Hϕ + Hint . (6.5)

As typically done for biomolecules in solution, we assume that viscous forces
dominate over inertial effects, and we model the equation of motion of the
polymer with the following set of overdamped Langevin equations:

Ẋi(t) = −ν∇Xi
H + ξi(t)

= −νκMijXj − νκcXi + νλσif(Xi) + ξi(t) ,
(6.6)

where ν is the monomer mobility, and the force f(Xi) exerted by the field on
the i-th monomer reads:

f(Xi, ϕ, t) ≡ −
∫

ddxϕ(x)∇xV (x−Xi) . (6.7)

Moreover, the polymer is in contact with a thermal bath at temperature T , the
effect of which is accounted for by the set of zero-mean independent Gaussian
white noises {ξi(t)}, with correlations

⟨ξαi (t)ξβj (s)⟩ = 2νTδijδαβδ(t− s) . (6.8)

Being the system at equilibrium, the amplitude of the noise is chosen such that
fluctuations and dissipations are related by Einstein’s relation. As explained in
Sec. 2.7, the stochastic dynamics of the polymer in Eq. (6.6) can be rewritten
within the Rouse domain [84] by introducing the Rouse modes {χi} and the
orthogonal transformation φ, see Eqs. (2.59) and (2.60). When the coupling to
the field is switched off, i.e., λ = 0, the Rouse modes are decoupled and their
time evolution is governed by independent Ornstein-Uhlenbeck processes with
inverse relaxation times

γ̃i ≡ τ−1
i ≡ γi + γc . (6.9)

Here γc = νκc is the inverse characteristic time scale introduced by the harmonic
confinement, while γi = νκmi denotes the inverse relaxation time of the ith

Rouse mode of an unconfined chain, which depends on the eigenvalue mi of the
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connectivity matrix M . However, when the polymer interacts with ϕ(x, t), the
field-induced forces couple the Rouse modes yielding to the following dynamics:

χ̇i = −γ̃iχi + νλ

N−1∑
j=0

φijσjf(Xj, ϕ) + ηi(t) , (6.10)

where the noise ηi has the same statistics as ξi, and the monomer position Xj

can be rewritten as a linear combination of Rouse modes by means of the inverse
transformation φ−1.

As in Sec. 2.8, the field ϕ(x, t) is assumed to evolve according to a purely
relaxational dynamics [54]

∂tϕ(x, t) = −D(i∇)a

[
(r −∇2)ϕ− λ

N−1∑
i=0

σiV (x−Xi)

]
+ ζ(x, t) , (6.11)

where D denotes the mobility of the field. As explained in Sec. 2.8, the param-
eter a takes the value a = 2 (model B, see Sec. 2.8) if the order parameter field
is locally conserved during its dynamics, whereas a = 0 (model A, see Sec. 2.8)
if it does not satisfy any conservation law. The zero-mean Gaussian white noise
field ζ(x, t) is characterized by the correlations reported in Eq. (2.72). The
amplitude of the noise field is proportional to the field mobility D and to the
temperature T , as the polymer and the field are assumed to be in contact with
the same thermal bath. The stochastic dynamics of the field in Eq. (6.11) can
be conveniently rewritten in Fourier space as

ϕ̇q = −αqϕq +DλVqq
a

N−1∑
j=0

σje
−iXj ·q + ζq(t) , (6.12)

where we introduced the relaxation rates

αq ≡ Dqa(r + q2) (6.13)

and ζq(t), from Eqs. (2.73) and (2.76). In the absence of the interaction
coupling, i.e. for λ = 0, the field modes ϕq evolve according to independent
Ornstein-Uhlenbeck processes with relaxation times τϕ(q) = α−1

q . In particular,
this implies that the q = 0 mode features a diverging relaxation time in the
case of critical model A dynamics, which is consistent with the phenomenon of
critical slowing-down [54]. The same effect is also present in the case of model B
dynamics, even off-criticality, as a consequence of the conservation law, whereby
large length-scale perturbations relax on arbitrarily large time scales. Note that
in the case of model A dynamics the zero-mode ϕq=0 diffuses and might become
arbitrarily large as the field approaches criticality. However, this fact is irrele-
vant for what concerns the equation of motion of the polymer, as can be easily
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Figure 6.2: Stationary distribution P (|X2 − X1|) of the distance |X2 − X1|
between the two sub-units of a dimer, interacting with a fluctuating field in
d = 1 and in the absence of confinement. Solid lines represent the theoretical
predictions in Eq.(6.16), whereas symbols are obtained with molecular dynamics
simulations (see Appendix D.4). Left panel: the monomers are characterized
by the same interaction coupling with the fluctuating field. This induces a
collapse of the dimer, which is increasingly more effective as the field approaches
criticality, i.e., as the value of r > 0 is reduced. Right panel: the monomers
are characterized by opposite interaction couplings with the field, and thus the
dimer is stretched. The results of the simulations (symbols) are obtained with
the following parameters: κ = 1, ν = 1, T = 1, D = 1, R = 1, λ = 10. The
non-vanishing value of the average distance (i.e., of the static equilibrium point)
in the right panel emerges from the competition between the inter-monomer
attraction and the effective repulsive force induced by the field.

realized by rewriting the field-induced force f in Eq. (6.7) as:

f(Xj, ϕ, t) =

∫
ddq

(2π)d
iqϕqV−qe

iq·Xj , (6.14)

to which the zero-mode ϕq=0 does not actually contribute. In a more realistic
system, however, one would need to counteract this growth by adding a suitable
chemical potential — e.g., Hϕ 7→ Hϕ + λN

∫
dxϕ(x).

To investigate the effect of the correlated medium on structural and migration
properties of the polymer, we analyze the behavior of its center of mass Xcom =
χ0/

√
N and of its internal structure described by the Rouse modes χj with

j > 1. By computing their amplitudes ⟨χ2
j⟩, we can determine the typical

size of the polymer given by its mean-squared gyration radius. Note that the
definition of the Rouse modes will depend in general on the polymer connectivity
M , which is kept generic in the analysis presented below.
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6.2 Field-induced interactions

Since the stochastic dynamics in Eqs. (6.10) and (6.11) satisfies the detailed
balance condition, the stationary joint probability distribution of the polymer
and the field follows the Boltzmann distribution

Peq[ϕ, {χj}] ∝ exp {−βH[ϕ, {χj}]} , (6.15)

with β = 1/T . Hence, the marginal distribution Peq({χj}) of the polymer can
be obtained by integrating out the field ϕ, and it is given by:

Peq({χj}) =

∫
D[ϕ]Peq[ϕ, {χj}] ∝ exp {−β(H0 + Heff)} . (6.16)

Importantly, the effect of the field now appears in the form of an effective
interaction Hamiltonian Heff among the monomers, whose expression reads:

Heff = −λ
2

2

∑
ij

σiσj

∫
ddq

(2π)d
|Vq|2Gq

[
eiq·(Xi−Xj) − 1

]
= −λ

2

2

∑
ij

σiσj

∫
ddq

(2π)d
|Vq|2Gq

[
eiq·

∑
k(φki−φkj)χk − 1

]
, (6.17)

where
Gq = 1/(r + q2) (6.18)

denotes the Fourier transform of the equal-time propagator within the Gaussian
model (see, e.g., Ref. [54]). Notice that in Eq. (6.17) we adopted the convention
for which the value of the effective interaction energy is measured with respect
to the case of perfectly overlapping monomers, such that H({χj = 0}) = 0.
Importantly, the effective Hamiltonian (6.17) is pairwise additive. The absence
of many-body interactions is due to the fact the coupling between the monomers
and the field is linear, in agreement with what was noted in Ref. [273]. This
fact is not merely an equilibrium feature, but it actually carries over to the
dynamics, as shown in Ref. [67] using dynamical path-integral methods.

Interesting conclusions on the effects of the field-induced forces can be drawn
by considering the limiting case of point-like monomers, i.e., R → 0. In this
case, the interaction potential is given by V (x) = δd(x), and in d = 3 the
effective Hamiltonian in Eq. (6.17) takes the form of a Yukawa potential

Heff = −
∑
i ̸=j

λ2σiσj
4π

e−|Xi−Xj |/ξϕ

|Xi −Xj|
, (6.19)

with a characteristic decay length which is given by the correlation length ξϕ of
the field. This result is consistent with what previously found in Refs. [254, 255,
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262] for polymeric molecules in binary fluids. In particular, this implies that the
internal structure of the polymer is strongly affected by the field, especially when
the latter approaches the critical point and the effective interaction is described
by a long-range Hamiltonian. Importantly, the attractive/repulsive nature of
the field-induced interaction between two monomers of the chain depends on
the sign of their couplings λσi with the fluctuating field ϕ. More precisely, when
the two couplings have the same sign, the monomers attract each other, whereas
in the case couplings with opposite signs, they repel. This effect is explicitly
shown in Fig. 6.2 for the simplest case of a dimeric molecule (N = 2) in d = 1
dimensions, and it is known to be a rather general feature of fluctuation-induced
forces (see, e.g., Ref. [274]). Here, we plot the stationary distribution of the
relative distance between the two monomers for various values of the parameter
r, i.e., for fluctuating fields ϕ with various correlation length. Specifically, we
show that as the critical point is approached, the typical distance between
the monomers decreases (increases) in the case of attractive (repulsive) field-
mediated interactions.

6.3 Relaxation toward equilibrium

In order to analyze the influence of the correlations of the medium on the
dynamical properties of the polymer, we derive the effective equation of motion
of the latter by integrating out the fluctuating order parameter ϕ, analogously
to what has been done, in a similar context, in Refs. [62, 65, 67, 68, 71, 275].
For simplicity, we shall focus on the case in which all monomers couple to the
field with couplings of the same sign σ, i.e. σ0 = σ1 = ... = σN−1 = σ, implying
that all field-mediated interactions are attractive.

6.3.1 Effective dynamics of the polymer

As a first step, we solve exactly the stochastic dynamics (6.12) of the fluctuating
field, obtaining:

ϕq(t) = Gq(t− t0)ϕq(t0) +

∫ t

t0

dsGq(t− s)ζq(s) (6.20)

+Dλσ

∫ t

t0

dsGq(t− s)Vqq
a

N−1∑
j=0

e−i
∑

k φ−1
jk q·χk(s) ,

where
Gq(t) = Θ(t)e−αqt (6.21)

denotes the dynamic field propagator and t0 the initial time, with t > t0. The
solution above is then substituted into the evolution equation (6.10) of the
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Rouse modes, yielding the following effective non-Markovian dynamics for the
polymer:

χ̇j =

∫ t

t0

dsFj(∆χ0(t, s), {χk(s)}k>0, {χk(t)}k>0)

− γ̃jχj + vic
j ({χk(t)}) + Ξj({χk(t)}, t) , (6.22)

where we denoted by ∆χ0(t, s) = χ0(t)−χ0(s) the displacement of the rescaled
center of mass. Let us discuss the various terms entering this dynamics. The
interaction of the polymer with the fluctuating field introduces a space- and
time-dependent memory kernel Fj given by:

Fj(∆χ0(t, s), {χk(s)}k>0, {χk(t)}k>0) = Dνλ2
∫

ddq

(2π)d
iqqa|V 2

q |Gq(t− s)

×
N−1∑
n,k=0

φjke
iq·∆χ0(t,s)√

N exp

{
−iq ·

N−1∑
m=1

[φ−1
nmχm(s) − φ−1

kmχm(t)]

}
. (6.23)

Note that the memory kernel depends in a non-linear way on the spatial coor-
dinates. Furthermore, its functional dependence on the various Rouse modes is
qualitatively different: while the center of mass only appears via its displace-
ment ∆χ0(t, s), the higher-order modes χj(s) and χj(t) at two different times
t and s contribute separately to the memory term. The relevance of this appar-
ently secondary fact and its effect on the dynamical properties of the polymer
will be clarified in Sec. 6.3.2.

Another interesting point to be noted is the fact that the memory kernel
does not depend on the sign of the interaction coupling, as it is proportional
to λ2σ2 = λ2. This property is a consequence of the fact that the origi-
nal dynamics in Eqs. (6.10) and (6.12) is invariant under the transformation
(λ, ϕ) ↔ (−λ,−ϕ) [66]. Importantly, the effective dynamics in Eq. (6.22) does
not hinge on any approximation, and it is therefore exact to any order in the
interaction coupling λ. The statistics of the noise Ξj of the effective dynamics
is also affected by the interaction of the polymer with the order parameter ϕ. In
particular, it consists of a white noise term ξj which describes the interaction
with the thermal bath, and a temporally correlated term resulting from the
coarse graining of the field. In fact:

Ξj(t) = ξj(t) + λσν

∫
ddq

(2π)d
iqV−q

∫ t

t0

dsGq(t− s)ζq(s)

×
N−1∑
j,k=0

φjk exp

[
iq ·

N−1∑
n=0

φ−1
knχn(t)

]
. (6.24)

For each wavevector q, the temporal convolution over the variable s between
the free-field propagator Gq and the noise ζq corresponds to an exponentially
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colored noise with correlation time 1/αq. Thus, as expected, each mode of
the field contributes to the stochastic part of Eq. (6.22) by introducing some
memory over its own typical relaxation time. For this reason, the correlation
of Ξj might extend for arbitrarily long times in the case of locally conserved
dynamics or critical fields. Moreover, the noise Ξj is multiplicative in that its
amplitude depends on the value assumed by the Rouse modes at time t.

Finally, at short times, the effective dynamics of the polymer is reminiscent
of the initial configuration of the field ϕq(t0) via the following term:

vic
j (t) = λσν

∫
ddq

(2π)d
iqV−qGq(t− t0)ϕq(t0)

N−1∑
k=0

φjk exp

[
iq ·

N−1∑
n=0

φ−1
knχn(t)

]
,

(6.25)

which decays to zero after the longest relaxation time of the field. Note that
for an initial spatially homogeneous field one has ϕq(t0) ∝ δd(q), so that vic

j (t)
vanishes at all times.

6.3.2 Linearized dynamics of the polymer

Unfortunately, the effective dynamics in Eq. (6.22) does not lend itself to an an-
alytical treatment, due to its non-linear nature and to the complicated statistics
of the multiplicative and colored noise Ξj(t). However, since in the following
we will be interested in the long-time behavior close to equilibrium, we now
focus on the linear response of the system. Besides, note that linearizing the
dynamics may provide an accurate approximation even moderately far from
equilibrium. For example, one can notice that the non-linear dependence on
the Rouse modes in the memory kernel in Eq. (6.23) is weighted by the fac-
tor qqa|V 2

q |Gq(t− s), which decays exponentially to zero for large wavevectors
(see Eq. (6.21)). This means that the momentum integral in Eq. (6.23) has
an effective cutoff which depends on the time lag t − s. For example, in the
case of model A, the weight factor is proportional to a Gaussian with standard
deviation σw = [2R2 + 2D(t − s)]−1. Therefore, all contributions to the mem-
ory kernel coming from momenta q > qcutoff ∼ 3σw are substantially negligible.
This implies that, whenever the displacement of the center of mass ∆χ0(t, s)
and higher-order Rouse modes at times t and s are much smaller than 1/qcutoff,
the memory kernel can be linearized around ∆χ0(t, s) = χj(s) = χj(t) = 0.
We then linearize the effective dynamics in Eq. (6.22), obtaining first of all the
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non-linear memory kernel Fj

Fj(∆χ0(t, s), {χk(s)}k>0, {χk(t)}k>0) ≃ Dνλ2
∫

ddq

(2π)d
qqa|V 2

q |Gq(t− s)

× q ·
N−1∑

m,n,k=0

φjk[φ−1
nmχm(s) − φ−1

kmχm(t)] . (6.26)

Furthermore, the last line can be simplified by using some properties of the
transformation φ introduced in Sec. 2.8. Specifically, we remind that it con-
tains along its rows the eigenvectors of the connectivity matrix M normalized
to unity. This implies that φ is orthogonal, i.e. φ−1 = φT , because M is
symmetric, and that φ0j = 1/

√
N for all j ∈ {0, ..., N − 1}. This can be used

to prove the following simple identity:∑
j

φ−1
ji =

∑
j

φij =
√
N
∑
j

φijφ0j =
√
Nδi0 , (6.27)

which can be used to rewrite Eq. (6.26) as

Fj(∆χ0(t, s), {χk(s)}k>0, {χk(t)}k>0) ≃ Γ̇(t− s)[χj(t) − δj0χ0(s)] , (6.28)

where we introduced the linear memory kernel

Γ(t) =
NDνλ2

d

∫
ddq

(2π)d
q2+a|Vq|2Gq(t)

αq

. (6.29)

Already from Eq. (6.28) one can anticipate that the center of mass and the
higher-order Rouse modes will behave differently. Indeed, by specializing Eq.
(6.28) to j = 0, one can see that the result of the linearization still depends on
the displacement ∆χ0(t, s), which involves the position of the center of mass at
two times t and s. Conversely, for j > 0, Eq. (6.28) only depends on the Rouse
mode χj(t) at the single time t. Integrating Eq. (6.28) over s we get:∫ t

t0

dsF0(∆χ0(t, s),{χk(s)}k>0, {χk(t)}k>0) ≃

−
∫ t

t0

dsΓ(t− s)χ̇0(s) + Γ(t− t0)∆χ0(t, t0) (6.30)

for the center of mass, and∫ t

t0

dsFj(∆χ0(t, s), {χk(s)}k>0, {χk(t)}k>0) ≃ −[Γ(0) − Γ(t− t0)]χj(t)

(6.31)
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for higher-order Rouse modes χj with j > 0. Equations (6.30) and (6.31)
suggest that the long-time relaxation of all Rouse modes will be affected by
how fast Γ(t) decays to zero upon increasing the time t. The behavior of Γ(t)
at long times turns out to be

Γ(t) ∼

{
t−d/2−1e−Drt if r > 0 ,

t−d/2 if r = 0 ,
(6.32)

in the case of model A and

Γ(t) ∼

{
t−d/2−1 if r > 0 ,

t−d/4 if r = 0 ,
(6.33)

in the case of model B, as detailed in Appendix D.1 by inspecting the analytic
structure of its Laplace transform (in particular, without assuming any specific
form of the interaction potential Vq). The algebraic decay of these kernels
appears as a manifestation of the slow modes that characterize the medium
in model A at criticality (r = 0), due to the phenomenon of critical slowing
down [54, 86], and in model B even off criticality, due to the underlying local
conservation of the order parameter ϕ [66].

Next, we consider a suitable linearization for the noise term Ξj(t). Keeping
only the lowest-order contribution in the Rouse modes in Eq. (6.24) leads to
the linearized noise Λj(t) defined as:

Λj(t) = ξj(t) + δj0
√
Nλσν

∫
ddq

(2π)d
iqV−q

∫ t

t0

dsGq(t− s)ζq(s) . (6.34)

The statistics of the linearized noise Λj is substantially different for the center
of mass (j = 0) and for the higher-order Rouse modes (j > 0). More precisely,
for the former, the memory effects persist at the level of the linearized dynamics
as prescribed by the last term of Eq. (6.34), whereas for the latter they vanish
and Λj actually reduces to the white noise ξj. Importantly, it is easy to verify

that the stationary time-correlations of Λ0(t), which we denote by Cαβ
Λ (t− s),

are related to the linear memory kernel Γ(t − s) by the fluctuation-dissipation
theorem:

Cαβ
Λ (t− s) ≡ ⟨Λα

0 (t)Λβ
0 (s)⟩ = νTδαβ[2δ(t− s) + Γ(t− s)] , (6.35)

with t > s. This is expected, as the system evolves according to an equilibrium
dynamics.

Finally, one can linearize the contribution vic
0 around {χj(t) = 0}, which

gives, for a generic initial configuration ϕq(t0) of the field,

v̄ic
j (t) = λσν

∫
ddq

(2π)d
iqV−qGq(t− t0)ϕq(t0)

[√
Nδj0 + iq · χj(t)

]
. (6.36)
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Combining together Eqs. (6.30), (6.34) and (6.36), the effective linearized dy-
namics of the center of mass takes the form of a generalized Langevin equation
(GLE), given by:

χ̇0(t) = −
∫ t

t0

dsΓ(t− s)χ̇0(s) − [γ̃0 − Γ(t− t0)]χ0(t)

− Γ(t− t0)χ0(t0) + Λ0(t) + v̄ic
0 (t) . (6.37)

In addition to the non-Markovian nature of the above dynamics, we can im-
mediately see that marginalizing the field introduces a correction to the typical
relaxation time γ̃0 associated to the harmonic confining potential, as well as a
further time-dependent force proportional to the initial position of the center of
mass χ0(t0), and decaying with increasing time in the same way as the linear
memory kernel Γ(t− t0). For the case of the higher-order Rouse modes χj with
j > 0, the effective linearized dynamics reads, instead,

χ̇j(t) = − [γ̃j + Γ(0) − Γ(t− t0)]χj(t) + ξj(t) + v̄ic
j (t) . (6.38)

As anticipated, this dynamics is Markovian, as the memory effects introduced
by the coarse graining of the fluctuating order parameter ϕ did not survive
the linearization procedure. Also in this case, integrating out the field from
the dynamics, introduces a time-dependent correction to the relaxation rate γ̃j.
However, in this case such correction will persists also at long times, asymptot-
ically reaching the value of Γ(0). Interestingly, all Rouse modes are affected by
the same correction.

6.3.3 Long-time relaxation of the center of mass

We first analyze the non-equilibrium relaxation of the center of mass towards
the bottom of the confining potential, after an initial displacement χ0(t0). An
analogous problem has been already investigated in Ref. [66] for a single particle
coupled to a fluctuating Gaussian field. In this case, after an initial rearrange-
ment around the neighborhood of the particle, the field lags behind it and
produces a slowing down of the relaxation process.

Without loss of generality, let us assume that t0 = 0 and that the cen-
ter of mass is initially displaced from the rest position of the trap by an
amount χ̄0 along the α-direction, i.e., χβ

0 (t0) = χ̄0δαβ. The problem can be
conveniently analyzed in the Laplace domain [276] by first solving for χ̂α

0 (z) =∫∞
0
dt ⟨χα

0 (t)⟩ e−zt, i.e., the Laplace transform of the average position of the cen-
ter of mass along the α-direction, and then by studying its analytic structure
in the complex z plane [68, 277]. Unfortunately, Eq. (6.37) cannot be imme-
diately diagonalized by taking its Laplace transform because of the presence
of the terms Γ(t − t0)χ0(t) and v̄ic

0 (t), which involve products of t-dependent



6.3. RELAXATION TOWARD EQUILIBRIUM 87

Figure 6.3: Nonequilibrium relaxation of the position χ0
0(t) of the center-of-

mass of a dimer initially displaced from the rest position of the trap by an
amount χ̄0 in d = 1 spatial dimensions, as a function of time t measured in
units of the relaxation time 1/γ̃0. The two monomers are characterized by the
same coupling with the field. The solid lines represent the result of molecular
dynamics simulations (see Appendix D.4 for details) with the field initialized in
the spatially homogeneous configuration ϕq = 0 for all momenta q. As specified
in the legend, different colors pertains to different correlation lengths ξϕ = r−1/2

of the field. Left and right panels report the relaxation curves obtained with
the field evolving according to model A and model B dynamics, respectively.
Moreover, the theoretically predicted algebraic behavior at long times, given in
Eqs. (6.42) and (6.43), is shown by black dashed-dotted lines. The plot shows
how the relaxation of the center of mass of the dimer toward the bottom of
the confining harmonic potential is slowed down by the field order parameter,
especially when the latter is critical. The asymptotic behaviors obtained with
numerical simulations are in very good agreement with the analytical predic-
tions. The values of the various parameters used in the simulations are: κ = 1,
ν = 1, T = 0, D = 1, R = 1, λ = 1, σ1 = σ2 = 1.

functions. However, in the following we consider the case where the field is
initialized in the configuration it would assume if the whole system were in its
minimum energy configuration. In Fourier space, this is given by:

ϕq(t0) =
NDλσVqq

a

αq

. (6.39)

With this initial condition, the linearization of Eq. (6.25) can be shown to give
vic
0 (t) = −Γ(t− t0)χ0(t), which simplifies the GLE in Eq. (6.37) as

χ̇0(t) = −
∫ t

t0

dsΓ(t− s)χ̇0(s) − γ̃0χ0(t) − Γ(t− t0)χ0(t0) + Λ0(t) . (6.40)

The potential impact of this seemingly arbitrary choice of initial condition in
Eq. (6.39) will be tested a posteriori using numerical simulations. The average
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solution ⟨χ0(t)⟩ of Eq. (6.40) can now be expressed in Laplace domain as

χ̂α
0 (z) =

χ̄0

γ̃0 + z + zΓ̂(z)
, (6.41)

where Γ̂(z) is the Laplace transform of Γ(t) in Eq. (6.29). This shows (as
expected) that the asymptotic behavior of the average position of the center
of mass is strictly related to that of the linear memory kernel Γ(t), which we
studied above in Eqs. (6.32) and (6.33). In particular, in Appendix D.2 we
derive the following asymptotic behaviors:

⟨χα
0 (t)⟩ ∼

{
t−(2+d/2) for r > 0,

t−(1+d/4) for r = 0,
(6.42)

for model B, while
⟨χα

0 (t)⟩ ∼ t−(1+d/2)e−Drt (6.43)

for model A with r ≪ γ̃0/D, whereas the decay becomes purely exponential
for r ≫ γ̃0/D (see Appendix D.2 for details). The results presented above
are shown in Fig. 6.3, where the non-equilibrium relaxation of the position of
the center of mass χ0(t) as a function of time is plotted for the simple case
of a dimer in d = 1 spatial dimensions. The solid lines in Fig. 6.3 denote
the results of numerical simulations, whereas the black dashed-dotted lines are
the theoretical predictions of the asymptotic behaviors reported in Eqs. (6.42)
and (6.43). The position of the center of mass exhibits an algebraic decay for
model B (right panel), with an exponent that depends on whether the medium
is critical (r = 0) or not (r > 0). As mentioned above, this originates from
the conservation law that underlies the medium in model B dynamics, thus
producing slow modes q ∼ 0 [54, 86]. By contrast, for model A (left panel),
an algebraic decay is only found when r = 0, since in this case the relevant
mechanism is the critical slowing down that affects the medium when r = 0 [54,
66, 86].

6.4 Typical polymer size

In this Section we study the average squared gyration radius ⟨R2
g⟩ and the

average end-to-end distance ⟨Ree⟩ of the polymer in the steady state, when its
internal structure has already relaxed to an equilibrium configuration. Both
quantities are a measure of the typical polymer size, and are defined as

R2
g =

1

N

N−1∑
n=0

(Xn −Xcom)2 =
1

N

∑
n̸=0

χ2
n , (6.44)

Ree = XN−1 −X0 =
∑
n̸=0

(φn,N−1 − φn,0)χn . (6.45)
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However, while the first one is appropriate for any topology of the chain, i.e.,
for any connectivity matrix M , the second one is only informative for a linear
chain, where the two ends are defined. Although the derivation of ⟨R2

g⟩ would
be analogous for a generic topology of the polymer, in the following we focus
on a linear chain with extreme monomers given by X0 and XN−1.

To make the derivation more general, we consider the potential presence of a
stretching force fs that acts on the end-to-end distance Ree. In particular, we
add the following stretching potential

Us = −fs ·Ree = −fs ·
∑
i

(φi,N−1 − φi,0)χi (6.46)

to the total Hamiltonian H0 + Heff reported in Eq. (6.16). The response of the
polymer to such a stretching force, described by the so-called force-extension
curve, is analyzed in the dedicated Sec. 6.4.3. In general, both ⟨R2

g⟩ and ⟨Ree⟩
are affected by the fluctuating order parameter ϕ of the medium. The effect
of the field-mediated forces on the typical size of the polymer is studied in
the following Section with the help of a perturbative expansion in the inter-
action coupling λ. Whenever this is possible, we compare the results of this
weak-coupling approximation with the theoretical predictions coming from the
linearized theory derived in Sec. 6.3.2.

6.4.1 Weak-coupling approximation

As in Sec. 6.3, we consider the case in which all monomers have the same
coupling with the field, i.e., σi = σ for all i, and thus they experience an effective
attraction. In the framework of the weak-coupling approach, we find convenient
to define the average ⟨· · · ⟩f,λ, where the modulus f of the stretching force and
the magnitude λ of the interaction coupling with the field are explicitly indicated
as subscripts. In particular, we want to obtain the first non-trivial correction
to ⟨R2

g⟩f,0 and ⟨Ree⟩f,0, which is induced by the coupling of the polymer with
the field. Using a standard perturbative expansion in λ, we get:

⟨O⟩f,λ − ⟨O⟩f,0 = − β [⟨OHeff⟩f,0 − ⟨O⟩f,0⟨Heff⟩f,0] + O(λ4) , (6.47)

where the observable O can be replaced by either R2
g or Ree. Note that the

correction on the r.h.s of this equation only depends on averages calculated
when the polymer is decoupled from the field (i.e., λ = 0), and it is of order
λ2. In fact, all corrections proportional to odd powers of λ vanish because the
original equations of motion in Eqs. (6.10) and (6.12) are invariant under the
transformation (λ, ϕ) ↔ (−λ,−ϕ).

All the averages needed to evaluate the r.h.s. of Eq. (6.47) can be computed
with the help of the generating functional Z[{ji}] of the free Rouse chain, which
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is defined as:

Z[{ji}] =
〈

exp
(N−1∑

i=0

ji · χi

)〉
f,0

(6.48)

= exp

[
1

2β

N−1∑
i=0

1

Mi

[j2i + 2β(φi,N−1 − φi,0)fs · ji]

]
,

where we introduced the quantity Mi = κmi + κc, with mi the eigenvalues
of the connectivity matrix, as discussed in Sec. 6.1. The expression of Z[{ji}]
given in Eq. (6.48) can be obtained by standard methods as outlined in Ap-
pendix D.3. In particular, the generating functional can be readily used to
derive the expressions of the unperturbed ⟨R2

g⟩f,0 and ⟨Ree⟩f,0. These are given
by

⟨R2
g⟩f,0 =

1

N

N−1∑
n=1

⟨χ2
n⟩f,0 =

1

N

N−1∑
n=1

d−1∑
α=0

∂2Z[{ji}]

∂jαn∂j
α
n

∣∣∣∣
ji=0

=
1

N

N−1∑
n=1

[
d

βMn

+

(
(φn,N−1 − φn,0)fs

Mn

)2
]
, (6.49)

and

⟨Rα
ee⟩f,0 =

N−1∑
n=0

(φn,N−1 − φn,0)
∂Z[{ji}]

∂jαn

∣∣∣∣
ji=0

=
N−1∑
n=0

(φn,N−1 − φn,0)
2

Mn

fδα0 ,

(6.50)

where we assumed, without loss of generality, that the stretching force is di-
rected along the x-axis (with unit vector e1), so that fs = fe1. The correction
of order λ2 to the unperturbed values in Eqs. (6.49) and (6.50) induced by
the coupling of the polymer with the field depends on averages of the type
⟨χp

j exp(iq · (Xk −Xn))⟩, with j, k, n generic indices in the set {0, 1, ..., N −1},
and the power p ∈ {0, 1, 2}. These averages can be computed again with the
help of the generating functional Z[{ji}] as detailed in Appendix D.3. In this
way we get:

〈
R2

g

〉
f,λ

−
〈
R2

g

〉
f,0

=
λ2β

2N

N−1∑
n=1

N−1∑
i,j=0

∫
ddq

(2π)d
|Vq|2Gq (6.51)

×

[
2iβ−1fs · q (φn,N−1 − φn,0) (φni − φnj) − q2β−2 (φni − φnj)

2

M2
n

]

× exp

{
− q2

2β

N−1∑
l=0

(φli − φlj)
2

Ml

+ ifs · q
N−1∑
l=0

(φli − φlj) (φl,N−1 − φl,0)

Ml

}
+ O(λ4),
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and

⟨Rα
ee⟩f,λ − ⟨Rα

ee⟩f,0 = (6.52)

λ2β

2

N−1∑
n=1

N−1∑
i,j=0

∫
ddq

(2π)d
|Vq|2Gq

Mn

[
iqαβ−1(φni − φnj)(φn,N−1 − φn,0)

]
× exp

{
− q2

2β

N−1∑
l=0

(φli − φlj)
2

Ml

+ ifs · q
N−1∑
l=0

(φli − φlj) (φl,N−1 − φl,0)

Ml

}
+ O

(
λ4
)
.

The correction to the typical polymer size induced by the fluctuating order
parameter ϕ, as described by Eqs. (6.51) and (6.52), is discussed in more details
in the coming Sections. Specifically, in Sec. 6.4.2 we analyze the magnitude of
such correction as a function of the correlation length of the field and of the
polymerization degree N . In Sec. 6.4.3, instead, we study the dependence of
Eqs. (6.51) and (6.52) on the stretching force fs.

6.4.2 Typical size in the absence of external forces

In the absence of external forces, i.e., for fs = 0, it is straightforward to verify
that the correction to the average end-to-end distance ⟨Ree⟩ due to the coupling
with the field actually vanishes, as expected from simple symmetry arguments.
In particular, for any given polymer configuration {Xi}, the one obtained by
the transformation {Xi} → {−Xi} has the same statistical weight but opposite
end-to-end distance. In this case, when no stretching force is applied to the
polymer, we focus on Eq. (6.51) for the gyration radius to study how the polymer
size is affected by the underlying correlated medium.

The analytical result in Eq. (6.51) is shown in Fig. 6.4. In particular, we
plot ⟨R2

g⟩0,λ as a function of r (left panel) and of N (right panel). In the first
case, we observe that the gyration radius of the polymer decreases when the
medium develops long-range spatial correlations, i.e., for r → 0. This has to do
with the fact that the forces induced by a near-critical field are significant over a
larger length scale. Importantly, as opposed to previous studies about polymeric
macromolecules dispersed in a near-critical binary liquid mixtures [254, 255,
262], our theoretical model does not predict a re-expansion of the polymer when
the field reaches the critical point. As pointed out in Ref. [262], the absence of
this effect has to do with the field ϕ being described by a Gaussian theory. In
the right panel of Fig. 6.4, instead, we show how the typical size of the polymer
scales with the polymerization degree N , for a fixed value of the correlation
length ξϕ of the field. The value of the gyration radius is measured in units
of the typical bond length l0 in the uncoupled case, which can be obtained by
specializing Eq. (6.49) to N = 2 and fs = 0, leading to

l20 = dT/(2γ̃1) . (6.53)
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Figure 6.4: Typical size of the polymer at equilibrium, described by the mean-
squared gyration radius ⟨R2

g⟩ in the absence of a stretching force. The results
of numerical simulations in d = 1 (symbols) are compared with the theoretical
predictions obtained with both the weak-coupling approximation (red lines, see
Eq. (6.51)) and the linearized theory (light blue lines, see Eq. (6.54)). Left
panel: ⟨R2

g⟩ of a linear chain with polymerization degree N = 20 as a function
of r = 1/ξ2ϕ. The value of ⟨R2

g⟩ is measured in units of R̄2
g, i.e. the gyration

radius of a free chain with the same parameters (green dashed line). The figure
shows that when the field approaches the critical point r = 0, the typical
polymer size is reduced as a consequence of the larger field-mediated forces.
The parameters used in the numerical simulations to obtain the data in the
main plot are: κ = 1, ν = 1, T = 1, D = 1, R = 1, λ = 0.3. In the inset: λ = 1
and T = 0.1. Right panel: ⟨R2

g⟩ of a linear chain as a function of N , measured in
units of the typical bond length l0 defined in Eq. (6.53). For a sufficiently large
N , the attractive field-mediated forces induce a collapse of the chain, as shown
by the non-monotonic behavior of the curves. The simulation parameters are
the same as in the left panel, with r = 1. The choice of parameters in the main
plots is such that the weak-coupling approximation produces better results than
the linearized theory. Viceversa, the two insets show that upon increasing the
coupling λ and decreasing the temperature T , the linearized theory is more
accurate.



6.4. TYPICAL POLYMER SIZE 93

In particular, in the main plot of Fig. 6.4 (right panel), we have ξϕ/l0 ≈ 2.5,
i.e., the field correlations live on a larger length scale than the typical bond
length. For correlations lengths ξϕ < l0, the effect of the field mediated forces
would be less strong and the theoretical predictions would be closer to the free
case. For sufficiently short chains, we observe that adding a monomer increases
⟨R2

g⟩0,λ. This expected behavior has an entropic origin and it is quantitatively
similar to the one observed for a free chain decoupled from the field (dashed
green line). However, beyond some threshold value for N , the pairwise-additive
field-mediated forces dominate over the entropic effect, producing a decrease of
⟨R2

g⟩0,λ as the number of monomers is increased. In the case of the ideal chain
considered here, namely in the absence of excluded volume interactions and
steric hindrance effects, the size of the polymer can actually become arbitrarily
small as N increases. In a more realistic model, instead, the polymer would
first collapse into a dense compact globule, and then its size would increase
as ∼ N1/3 — as in the case of a polymer chain in a poor solvent, where the
contacts with the solvent molecules are minimized [278, 279].

In both panels of Fig. 6.4, the theoretical predictions obtained with the weak-
coupling approximation (solid red lines) are compared to those coming from the
linearized theory (solid light blue lines). The latter can be readily obtained by
analogy with Eq. (6.49) and considering that the main long-time effect of the
field on the linearized dynamics of the higher order modes in Eq. (6.38) is the
correction Γ(0) to their relaxation rates γ̃j. This implies that

⟨R2
g⟩L0,λ =

1

N

∑
n̸=0

⟨χ2
n⟩L0,λ =

1

N

∑
n ̸=0

dνT

γ̃n + Γ(0)
, (6.54)

where we introduced the symbol ⟨· · · ⟩L0,λ to denote the average within the linear
response theory in the absence of any stretching force. We recall here that the
linearized theory is only based on the assumption that the Rouse modes are
small, and thus it is in principle valid to any order in the interaction coupling
λ. For this reason, it is more accurate than the weak-coupling theory upon
increasing λ, as shown in the two insets of Fig. 6.4.

6.4.3 Force-extension curve

In this Section we analyze the response of the polymer to the stretching force
fs, and show how the force-extension curve is modified by the coupling of the
polymer with the correlated medium. The theoretical predictions for Ree and
R2

g reported in Eqs. (6.52) and (6.51) obtained within the weak-coupling ap-
proximation are plotted as a function of the stretching force f in Fig. 6.5. In
particular, we observe that the correlations of the medium effectively increase
the stiffness of the polymer, therefore introducing an additional resistance to
the stretching. Indeed, for all values of f , the light blue lines corresponding
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Figure 6.5: Force-extension curve of a linear polymer with N = 20 monomers
coupled to a fluctuating field ϕ with correlation length ξϕ = 1, in d = 1 spatial
dimensions. The main figure shows the response of the end-to-end distance Ree

to a stretching force f , measured in units of f0 = κl0, with l0 the typical bond
length defined in Eq. (6.53). The results of numerical simulations (grey symbols)
are compared to the theoretical predictions of Eq. (6.52) (light blue solid lines).
Compared to the free case (dashed green line) described by Eq. (6.50), the
coupling with the correlated medium introduces an additional resistance to the
stretching force due to the attractive field-mediated forces. The Ree is measured
in units of l0. In the inset we show the behavior of the gyration radius Rg as a
function of the stretching force. Here, Rg is measured in units of R̄g, i.e., the
value it assumes in the free and unstretched case. The parameters used in the
numerical simulations are: κ = 1, ν = 1, T = 1, D = 1, R = 1, λ = 0.7.

to the theoretical predictions in Eqs. (6.52) and (6.51) and the data obtained
with numerical simulations (grey symbols), which are in very good agreement
with each other, always lie below the dashed green lines, which refer to the free
case. This actually happens because all monomers interact with the field with
the same coupling sign σi = σ, and thus all field-mediated forces are attractive.

The correction introduced by the coupling to the field vanishes for large
stretching forces f — compare with Eq. (6.52), where the integrand function
becomes rapidly oscillating for large f , so that the integral vanishes. This can
be physically rationalized by noting that, under an externally-imposed stretch-
ing, the typical monomer distance eventually exceeds the range of the field-
mediated forces, which thus play a minor role. Note that in Fig. 6.5, differently
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from Fig. 6.4, we do not report the predictions of the linearized theory, because
it relies on the assumption that the higher-order Rouse modes are sufficiently
small, which is certainly not the case when a stretching force is applied.

Although the typical size of a polymer in a correlated medium has already
been analyzed from a static point of view using more sophisticated models (see,
e.g., Ref. [262]), our minimal model allows for an easier extension of the analysis
to the dynamical properties, such as the relaxation of the internal structure of
the polymer in response to a quenched stretching force. This analysis in not
present in this Chapter and it will be done in the future.

6.5 Conclusions

In this Chapter we analyzed the behavior of a polymer molecule linearly coupled
to a correlated medium described by a fluctuating scalar Gaussian field ϕ(x, t).
The reciprocal interaction between the polymer and the field is taken into ac-
count in their joint stochastic dynamics, which is chosen to satisfy detailed
balance.

Working within the linear-response regime, we first studied the relaxation of
the center of mass of the polymer toward its rest position in a confining poten-
tial. This relaxation turns out to be algebraic at long times, if the fluctuating
order parameter ϕ(x, t) supports slow relaxational modes, due either to criti-
cality or to the presence of an underlying conservation law — see Sec. 6.3 and
Fig. 6.3. Conversely, the internal structure of the chain described by higher or-
der Rouse modes always displays an exponential relaxation, with a typical time
scale that is shorter compared to the free case (in the case of attractive field-
induced interactions), due to the effective attraction induced by the medium.
Note that in the case where the monomers are characterized by interaction cou-
plings λσi with different signs, the repulsive field-mediated forces can slow down
the relaxation of the internal structure of the polymer. This aspect, however,
is not analyzed in this Chapter.

The spatial range of these field-induced interactions depends on the cor-
relation length of the field. Using a weak-coupling approximation, we then
showed analytically that the gyration radius of the chain collapses as the field
approaches the critical point, where such correlation length diverges. The the-
oretical predictions are in very good agreement with the numerical simulations.
In addition, we studied how the typical polymer size depends on the polymeriza-
tion degree N , showing that after an initial increase for small N due to entropic
reasons, the dominant effect of the pairwise-additive field-induced interactions
drives the polymer into a compact globule-like state. Within the weak-coupling
approximation, in Sec.6.4.3 we analyzed the response of the polymer to a ten-
sile force, observing an enhanced resistance of the polymer against the external
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stretching, whose origin is again to be attributed to the effective attractions
between the monomers induced by the medium. Also in this case, this is due
to the fact that all monomers interact with the field with the same coupling.

Further extensions of the model presented in this Chapter may address the
steady state of the system in the presence of spatial confinement, where bound-
ary conditions are imposed on the fluctuations of the correlated medium [69,
280], which is the typical setting in experimental realizations. Even more impor-
tantly, the model presented here opens the possibility of studying more complex
dynamical settings where the field-induced forces may play a role in determining
the nonequilibrium dynamics of the polymer. For instance, it would be interest-
ing to characterize the dynamical response of the chain to a quenched stretching
force, i.e., a force that is suddenly switched on (or off) at time t = 0. We expect
that slow algebraic relaxations might emerge in the cases where the underlying
medium is critical or conserved, and the external force produces an average
displacement of the center of mass. What shown in Sec. 6.4 is the preliminary
result of a study which will include the analysis of the aforementioned dynami-
cal response. In addition, within the formulation of the model we adopted here,
the joint stochastic dynamics of the polymer and the field was chosen so as to
satisfy the detailed balance condition, so that the system is accordingly char-
acterized by an equilibrium dynamics. An interesting extension to this aspect
would thus be to consider a polymer chain in an active fluctuating correlated
medium, whose fluctuations break detailed balance [230], and characterizing its
behavior under non-equilibrium conditions.



Chapter 7

Odd tracer dynamics in soft-core
media

7.1 Introduction

The transport of tracer particles in highly crowded environments is of funda-
mental interest in biological applications, such as in the crowded cytoplasm [281]
or in the plasma membrane of cells [282]. Although at short distances molecular
interactions always manifest strong diverging repulsion due to steric hindrance
effects, effective soft interactions are known to emerge in numerous biophysical
and soft matter systems [283, 284]. Some examples include polymer assemblies
of various connectivity as star polymers [285], block-copolymer micelles [286]
and microgels [287, 288]. A prototypical soft-interaction model is the Gaussian-
core model (GCM), as pioneered by Stillinger and Weber [289–291] from 1976
onwards. This model found a widespread application when it was realized that
it accurately describes the effective interaction between polymer coils [292–296]
over a wide range of densities [297], and flexible dendrimers [298].

The GCM displays some interesting and seemingly counter-intuitive features
that are sometimes referred to as static and dynamic anomalies [299–303]. For
example, it has been shown that the single particle diffusivity can increase
and the viscosity can decrease upon isothermal compression. The unexpected
transport properties have been proved to be strongly correlated to an anoma-
lous behavior of the short-range translational structural order [302]. The phase
behavior of the GCM in the density-temperature space has been exhaustively
investigated in the last few decades [294, 304, 305]. Specifically, it has been
shown that there exist an upper freezing temperature above which the system
is always fluid. Below this temperature, upon increasing the density, the sys-
tem first freezes into a crystal structure and then exhibits a re-entrant melting
transition [294, 304].
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In equilibrium systems such as purely repulsive hard spheres [306–308], Yukawa-
like or Lennard-Jones-like interacting particles [309–313], but also in systems
with soft-core interactions like the GCM [302, 314], inter-particle interactions
are genuinely found to reduce the self-diffusion of tracer particles compared to
the interaction-free case. This generic qualitative reduction can only be turned
into an interaction-enhanced self-diffusion by considering non-equilibrium con-
ditions, such as those occurring in the case of tracer diffusion in non-reciprocal
mixtures [315] or multi-temperature environments [316]. Only recently, it has
been found that even in equilibrium systems, the self-diffusion of a tagged tracer
particle can be enhanced by purely repulsive interactions with the host particles
in the medium [142]. These systems go under the name of odd diffusive [113,
142] and are characterised by a broken time-reversal or spatial-inversion (par-
ity) symmetry [317]. Relevant systems include, for example, charged Brownian
particles subject to Lorentz force [318] at equilibrium or active chiral particles
[113]. For additional cases, see, e.g., Ref. [319] and references therein. The
microscopic cause of the enhanced self-diffusion was attributed to a mutual
rolling of particles induced by the odd diffusion instead of an ordinary reflec-
tion after the interaction [142, 319] and associated with the non-Hermitian
dynamics of the system [320]. Interaction-enhancement was later found also in
related non-reciprocal systems [315], systems with transverse forces [321, 322]
and skyrmionic systems [323].

In this Chapter, we study the transport properties of an odd-diffusive tracer
immersed in a GCM medium via analytical and simulation methods. In our
analysis, the host particles in the medium do not exhibit any oddness effect. In
order to model the interactions with the medium we employ the field-theoretic
approach developed by Dean and Kawasaki (see Sec. 2.9 and Refs. [72, 73]),
which allows us to make accurate analytical predictions even in highly dense
systems. By comparing our results with Brownian dynamics simulations we
find remarkable agreement for three distinct regimes; depending on the oddness
parameter κ, the interactions can either reduce the self-diffusion, enhance it
or render the host-medium invisible for the tracer. We recover the diffusivity
anomaly for the GCM (non-monotonicity of the self-diffusion coefficient upon
increasing density of the medium) and find that in an odd-diffusive system this
can be inverted in the enhancement region.

The remainder of this Chapter is organized as follows: in Sec. 7.2 we set
up the model and derive the governing time-evolution equations for the fluctu-
ating density field and for the tracer. In Sec. 7.3 we employ a weak-coupling
approximation (similar in spirit to that discussed in Chapter 6) and evaluate
the self-diffusion, presenting the results of both analytical and numerical ap-
proaches. In Sec. 7.4 we draw our conclusions and give an extended outlook
on further applications of the effect. This Chapter is supplemented by the Ap-
pendix E, where we present a detailed derivation of the analytical predictions
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Coarse-graining

host particles

a)

b)

Figure 7.1: (a) Sketch of an odd tracer (brown particle) in d = 2 spatial di-
mensions under the effect of the Lorentz force generated by a magnetic field B
oriented along the ẑ direction, coupled via soft-core interactions to a bath of
(blue) host particles. Both the odd tracer and the host particles are subjected
to thermal fluctuations. (b): Schematic of the mesoscopic description of the
system. In this case, the host particles are effectively represented by the ther-
mally fluctuating density field ρ.

reported here, as well as the details of the numerical simulations.

7.2 The model

We analyze the two−dimensional stochastic dynamics of an ensamble of N + 1
interacting particles whose position at time t is denoted by Xi(t) ∈ R2, with
i ∈ {0, . . . , N}. The particle labeled by X0 is thought as electrically charged
(see Sec. 2.10), and thus it experiences a Lorentz force generated by a magnetic
field B = Bẑ oriented along the z-axis, and it will be referred to as the odd
tracer (see Fig. 7.1 for a sketch of the system). Indeed, as explained in Sec. 2.10,
the effect of the magnetic field can be encoded in the friction tensor Γ = γ[1−
κε] characterized by antisymmetric elements proportional to the dimensionless
oddness parameter κ = B/γ, with γ the scalar friction coefficient and ε the Levi-
Civita symbol in d = 2 dimensions. Although in the case presented here the
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oddness is due to the presence of a magnetic field, the derivation can be applied
to more generic models characterized by a friction tensor Γ with anti-symmetric
components. The stochastic dynamics of the odd tracer can be written as:{

Ẋ0 = V0,

mV̇0 = −λt
∑N

j=1∇U(X0 −Xj) − ΓV0 +
√

2Tγ ξ0,
(7.1)

where V0(t) denotes the velocity of the odd tracer at time t, m its mass, λt
is the coupling strength between the odd tracer and the remaining particles
of the medium (host), and U is the inter-particle pair-wise potential. The
stochastic term ξ0 belongs to a set of N + 1 independent zero-mean Gaussian
white noises {ξi}Ni=0 with unit variance. Note that we work in units such that
the charge q of the odd particle and the Boltzmann constant kB are set to 1.
Moreover, we restrict our analysis to the case of bounded interaction potentials
between the odd tracer and the host particles, characterized by ∇U(0) = 0.
The bounded potential U(x) will be generic throughout the derivation until
otherwise specified. Although we are ultimately interested in investigating the
self-diffusion of the odd tracer in the overdamped regime, where inertial effects
can be neglected compared to viscous forces, we keep the time scale τγ = m/γ
finite throughout the derivation, and take the limit m → 0 at the end of the
calculation. As shown in Appendix E.1 the dynamics for the velocity V0 in
Eq. (7.1) can be formally solved and substituted in the equation for the position
X0, leading to the following equation of motion for the position of the odd tracer

Ẋ0 = − λt
m

∫ t

t0

dsG(t− s)
N∑
j=1

∇U(X0(s) −Xj(s))

+ G(t− t0)V0(t0) + η(t)

(7.2)

where the matrix G(u) is defined as:

G(u) = e−|u|/τγM(u),

M (u) =

(
cos(uκ/τγ) sin(uκ/τγ)
− sin(uκ/τγ) cos(uκ/τγ)

)
.

(7.3)

with M(u) a rotation matrix. These expressions show that the odd diffusion
introduces oscillations in the evolution of the particle position which decay on
a time-scale τγ and in the limit of a normal-diffusive system (κ→ 0, i.e., in the
absence of oddness) one retrieves G(u) → exp(−|u|/τγ)1 as M (u) → 1. The
memory introduced by the coarse-graining of the velocity variable appears in
the convolution of G(u) with the interaction forces, as well as in the zero-mean
Gaussian colored noise η(t)

η(t) =

√
2Tγ

m

∫ t

t0

dsG(t− s)ξ0(s), (7.4)
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with correlation

⟨η(t) ⊗ η(s)⟩ =
T

m

[
e
− |t−s|

τγ − e
− t+s−2t0

τγ

]
M (t− s). (7.5)

At long times, the effect of the initial conditions is forgotten and the two-point
correlation function becomes time-translation invariant, with:

⟨η(t) ⊗ η(s)⟩
t,s≫t0≃ T

m
G(t− s) , (7.6)

which corresponds to the one reported in Ref. [318]. In the same spirit of
Refs. [315, 316], we want to adopt a coarse-grained description for the density
of the host particles constituting the medium the odd tracer is coupled to.
To this aim, following Ref. [72] and as discussed in Sec. 2.9, we introduce the
fluctuating particle density ρ(x, t) of the host particles, defined in Eq. (2.85),
and we use it to move from a microscopic to a mesoscopic description of the
medium. It can be easily shown that the dynamics of the odd tracer couples to
the fluctuating density ρ(x, t) in the following way:

Ẋ0 = − λt
m

∫ t

t0

dsG(t− s)

∫
dx∇U(X0(s) − x) ρ(x, s)

+ G(t− t0)V0(t0) + η(t) .

(7.7)

In order to have a complete description of the system, one needs to derive
a stochastic evolution equation for the density ρ(x, t). This can be obtained
starting from the microscopic dynamics of the N host particles, which in the
overdamped regime reads:

Ẋi = − νλh

N∑
j=1

∇U(Xi −Xj) − νλt∇U(Xi −X0) +
√

2Tν ξi (7.8)

with i ∈ {1, ..., N} and ν = γ−1 the mobility coefficient. Note that, in this
case, the stochastic dynamics in the overdamped regime can be easily derived
as there is no ambiguity related to having an odd mobility. Furthermore, the
coupling strengths λh and λt are taken to be distinct in that the host-host and
host-tracer interactions can in principle be different. Analogously to Ref. [72]
and as explained in Sec. 2.9, the stochastic dynamics of ρ(x, t) can be derived
using the Itô Lemma, and is governed by the following continuity equation:

ρ̇(x, t) = −∇x ·J , (7.9)

with the fluctuating flux

J = − νλh

∫
dy ρ(y, t)∇U(x− y) ρ(x, t)

− νλt∇U(x−X0) ρ(x, t)

− Tν∇ρ(x, t) +
√

2Tν ρ(x, t)Λ(x, t).

(7.10)
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A few comments on the above equation are in order: the first line on the r.h.s.
corresponds to the drift flux due to the soft interactions between the host parti-
cles which constitute the medium, whereas the second line involves the interac-
tion between the density field of the host particles and the odd tracer at position
X0. The last line comes, instead, from the coupling between the density ρ(x, t)
and the equilibrium thermal bath at temperature T . This involves the standard
diffusive flux proportional to ∇ρ and a fluctuating contribution that depends on
the zero-mean Gaussian white noise field Λ(x, t), the correlations of which are
given in Eq. (2.95). Note that the noise

√
2Tν ρ(x, t)Λ(x, t) is multiplicative

as its amplitude depends on the fluctuating density itself. Moreover, Eq. (7.9)
is non linear in the density ρ, and thus it is very challenging to make any an-
alytical progress with it. To overcome this difficulty, it is rather common to
assume that the density fluctuations are much smaller than the homogeneous
bulk density (see, e.g., Refs. [275, 315, 316, 324]). In other words, after decom-
posing the fluctuating density as ρ(x, t) = ρ0+ϕ(x, t), with ρ0 the homogeneous
state and ϕ(x, t) the fluctuations around that, we assume that |ϕ(x, t)| ≪ ρ0.
By expanding Eq. (7.9) at the lowest order in ϕ(x, t)/ρ0, one gets the following
linearized dynamics for the field ϕ(x, t) [275]

ϕ̇(x, t) = λhνρ0

∫
dy ϕ(y, t)∇2

xU(x− y)

+ λtνρ0

∫
dy δ(y −X0)∇2

xU(x− y)

+ Tν∇2ϕ(x, t) + ζ(x, t) , (7.11)

where we introduce the scalar zero-mean Gaussian white noise field ζ(x, t) with
correlations:

⟨ζ(x, t)ζ(y, s)⟩ = −2Tνρ0∇2
xδ(t− s) δ(x− y) (7.12)

Note that, in this context, the field mobility coefficient is given by νρ0, . Inter-
estingly, the dynamics of the density field fluctuations ϕ(x, t) in Eq. (7.11) can
be cast into the standard form of a model-B like dynamics [54]

ϕ̇(x, t) = νρ0∇2 δF
δϕ(x, t)

+ ζ(x, t) (7.13)

by introducing the appropriate effective free energy:

F [ϕ] =
λh
2

∫
dx

∫
dy ϕ(x, t)U(x− y)ϕ(y, t)

+ λt

∫
dx

∫
dy δ(x−X0)U(x− y)ϕ(y, t)

+
T

2ρ0

∫
dxϕ2(x, t) .

(7.14)
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The first two lines of the effective free energy correspond to the energetic con-
tributions related to the host-host and host-tracer particle interactions, respec-
tively, whereas the last term has an entropic origin. Under the assumption of
small density fluctuations, the microscopic equation of motion of the odd tracer
can therefore be rewritten as:

Ẋ0 = −λt
m

∫ t

t0

dsG(t− s)

∫
dx∇U(X0(s) − x)ϕ(x, s)

+ G(t− t0)V0(t0) + η(t) .

(7.15)

The structure of this stochastic dynamics is analogous to the one derived, in
similar contexts, in Refs. [65–68, 325]. Note, however, that despite the lineariza-
tion of Dean’s equation, the theory remains non-linear in the position of the
odd tracer X0(t). Thus, in order to make analytical progress with Eq. (7.15),
we consider in Sec. 7.3.1 a perturbative expansion of the tracer position X0 and
the field ϕ in the interaction coupling λt. The analytical predictions obtained
within this weak-coupling approach are tested a posteriori with Brownian dy-
namics simulations.

7.3 Self-diffusion of the odd tracer

With the help of the model presented in the previous Section, we analyze the
self-diffusion coefficient of the odd tracer and investigate how this is affected
by the soft-core interactions with the host particles. Collisions with the host
particles have already proved to be useful for enhancing the self-diffusion coef-
ficient of an odd tracer in both single and multi-species systems with hardcore
repulsion [142]. As introduced at the end of Sec. 7.2, we use a perturbative ap-
proach in the coupling strength λt between the field ϕ(x, t) and the odd tracer
to compute the mean-squared displacement of the latter and extract, from its
long-time behavior, the self-diffusivity defined as:

Ds = lim
(t−t0)→∞

⟨|X0(t) −X0(t0)|2⟩
4(t− t0)

. (7.16)

To this purpose, it is convenient to rewrite the stochastic dynamics of the field
ϕ(x, t) in terms of its Fourier modes ϕq(t), which are defined as in Eq. (2.75).
The field dynamics of Eq. (7.11) become

ϕ̇q = −αqϕq − λt νρ0 q
2Uq e−iq·X0 + ζq(t) , (7.17)

where we introduced the inverse relaxation time

αq = νq2[λhρ0 Uq + T ] (7.18)
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of the q-mode of the field and the Fourier transform of the noise ζq(t) with
correlation

⟨ζq(t)ζp(s)⟩ = 2Tνρ0 q
2(2π)2δ(q + p) δ(t− s) . (7.19)

Notice that the relaxation time 1/αq of ϕq increases by approaching q2 → 0,
eventually diverging for the q = 0 mode. This is expected because Eq. (7.13) is
a continuity equation, due to the fact that the field ϕ(x, t) is a locally conserved
quantity. This conservation law implies that density fluctuations at large length
scales relax very slowly. The coupling between the odd tracer and the field in
Eq. (7.15) can also be rewritten in terms of the modes ϕq(t) as follows:

Ẋ0(t) = −λt
m

∫ t

t0

dsG(t− s)

∫
dq

(2π)2
iqUq ϕq(s) eiq·X0(s)

+ G(t− t0)V0(t0) + η(t) . (7.20)

In the coming Section, we use Eq. (7.20) as the starting point for the weak-
coupling approximation. In particular, we substitute the perturbative expan-
sions for the tracer position X0 and the field ϕ given in Eqs. (7.21) and (7.22)
into the dynamics in Eq. (7.20), and we collect together all terms of the same
order in the interaction coupling λt.

7.3.1 Weak-coupling approximation

To compute the mean-squared displacement (MSD), we formally expand the
tracer position and the density field in powers of the coupling strength λt of the
tracer particle to the host field

X0(t) =
∞∑
n=0

λntX
(n)
0 (t) , (7.21)

ϕq(t) =
∞∑
n=0

λnt ϕ
(n)
q (t). (7.22)

Within this perturbative approach and assuming that the initial position of the
tracer is X0(t0) = 0 without loss of generality, we have that the MSD of the
tracer is given by

⟨|X0(t)|2⟩ =
〈
X

(0)
0 (t) ·X(0)

0 (t)
〉

+ λ2t

(〈
X

(1)
0 (t) ·X(1)

0 (t)
〉

+ 2
〈
X

(0)
0 (t) ·X(2)

0 (t)
〉)

+ O(λ4t ) (7.23)

Importantly, all contributions related to odd powers of λt vanish as the equa-
tion of motions are invariant under the transformation (λt, ϕ) ↔ (−λt,−ϕ).
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Accordingly, in order to evaluate the MSD, we have to solve the set of cou-
pled stochastic dynamics of the tracer and the field, i.e., Eqs. (7.20) and (7.17),
respectively, at orders λ0t , λ

1
t and λ2t . At the lowest order O(λ0t ) we find

Ẋ
(0)
0 (t) = G(t− t0)V0(t0) + η(t) , (7.24)

which constitutes the time evolution of the interaction-free tracer particle and
it is solved in Appendix E.2. The tracer evolution at the linear order O(λt)
becomes

Ẋ
(1)
0 (t) = − 1

m

∫ t

t0

ds G(t− s)

∫
dq

(2π)2
iqUt,qϕ

(0)
q (s) eiq·X

(0)
0 (s) , (7.25)

which depends on the free field ϕ
(0)
q and on the position of the free tracer X

(0)
0 .

Similarly, at order O(λ2t ) we find

Ẋ
(2)
0 (t) = − 1

m

∫ t

t0

ds G(t− s)

∫
dq

(2π)2
iqUt,q (7.26)

×
[
ϕ(1)
q (s) + iq ·X(1)

0 (s)ϕ(0)
q (s)

]
eiq·X

(0)
0 (s),

which again is related to the tracer position and the field at lower orders in
the interaction coupling. Note that the weak-coupling approximation presented
here is closely related to the one used for similar problems in Refs. [65, 66,
316, 325]. The relevant correlations within the small coupling approximations,

⟨X(1)
0 (t) ·X(1)

0 (t)⟩ and ⟨X(0)
0 (t) ·X(2)

0 (t)⟩, are evaluated in Appendix E.3.

7.3.2 Gaussian-core model

In this Section we specialize the analytical expressions derived in the previous
Section to the case of the soft-core Gaussian interaction potential

U(x) =
1

2πσ2
exp

(
− x2

2σ2

)
, (7.27)

where in the particle-based picture x denotes the center-to-center distance be-
tween two interacting particles. The parameter σ, which corresponds to the
distance of the inflection point of the interaction potential from its maximum,
sets the length scale of the strongest interaction force between the two particles.
For this reason, we interpret σ as an effective particle radius, which, in turn,
defines a particle area of πσ2 and thus an effective area fraction

c = πσ2N/L2 , (7.28)

with L the system size. In the framework of the mesoscopic field-theoretic
description introduced in Sec. 7.2, σ determines the range of interaction between
the odd-tracer and the fluctuating density field ϕ(x, t).
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The first non-trivial perturbative correction to the MSD of the odd tracer, the
expression of which is given in Eq. (7.23), is analyzed in detail in Appendix E.3.

There, we derive the formal expression of the correlations ⟨X(1)
0 (t) · X(1)

0 (t)⟩
and ⟨X(0)

0 (t) ·X(2)
0 (t)⟩ with a generic interaction potential U(x). Note that the

derivation presented so far does not rely on any assumption about the mass of
the odd-tracer. The reason behind this choice is two-fold: on the one hand,
it is well-known that taking the small-mass limit m → 0 at the level of the
stochastic dynamics in Eq. (7.1) hides some subtleties due to the oddness of
the tracer, and can potentially lead to wrong predictions for the fluxes in the
systems (see e.g., Ref. [318]). For this reason, in order to study the overdamped
regime of the odd-diffusive tracer, we find convenient to take the m → 0 limit
a posteriori. On the other hand, even though this is beyond the scope this
Chapter, keeping a finite mass m for the tracer throughout the derivation paves
the way for a thorough investigation of the role of mass in the odd-diffusive
dynamics of interacting particles.

By specializing the field-induced correction to the MSD of the odd-tracer
to the case of soft-core Gaussian interactions given in Eq. (7.27) and by using
standard numerical integration schemes for its evaluation (see Appendix E.3 for
details), we can analyze the extent to which the self-diffusion of the odd tracer
is affected by the interactions with the host species. In Fig. 7.2 (left panel)
we show the behavior of the self-diffusion coefficient Ds as a function of the
oddness parameter κ. We represent with solid lines our theoretical predictions
obtained within the weak coupling approximation, and with symbols the results
of Brownian dynamics simulations (see Appendix E.4 for details). In particu-
lar, we observe that our weak-coupling theory (see Appendix E.3) predicts the
existence of a critical oddness parameter κc = 1 such that, when κ < κc = 1,
the self-diffusion of the odd tracer is suppressed compared to the value

D0 = Tν/(1 + κ2) (7.29)

that characterizes a single free odd particle in the absence of interactions with
the surrounding medium. This behavior is expected and reflects the intuition
that in a crowded environment the motion of a diffusive tracer is hindered by
the collisions with the other particles. Surprisingly, the combined effect of the
particle interactions and the odd-diffusive motion of the tracer may result in
an inversion of this tendency. Indeed, for sufficiently large κ, namely κ > κc,
we observe an enhancement of the self-diffusion Ds compared to D0. Notably,
this proves that the described phenomenology, initially discovered in a system
of interacting odd-diffusive hard-spheres in Ref. [142], does not rely on the
specific choice of the interaction potential U . At the same time, having soft-
core interactions shifts the value of the critical oddness parameter to κc = 1,
while this was κc = 1/

√
2 in the case of hard-spheres. This implies that a more

pronounced chirality is required in order to enhance the transport properties
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of the odd tracer, because the effect of the collisions between the tracer and
the host particles is milder with soft-interactions. Note that our weak-coupling
approach predicts a critical oddness parameter κc = 1 that does not depend on
the density c of the medium. While this appears to actually be the case for a
sufficiently small interaction coupling λt, as reported in Fig. 7.2, an appreciable
dependence on c of the critical oddness parameter emerges upon increasing λt
(see Fig. 7.3).

One of the main advantages of the field-theoretic description adopted here
compared to the geometric approach of Ref. [142], is that it carries over to the
case of dense systems. In fact, in the main plot of Fig. 7.2 (left panel), different
colors denote different area fractions c, from a very dilute case (c = 5%, dark
blue) to an intermediate density (c = 50%, grey) and a very dense system
(c = 100%, yellow). It appears that the behavior of the self-diffusion as a
function of c is far from being trivial. For example, if we focus on the region
κ < κc we realize that the self-diffusion Ds is larger when the tracer is dispersed
in a very dense system (c = 100%) than in the case of intermediate density
(c = 50%). This counter-intuitive phenomenon is actually well-known in the
literature about the GCM (see e.g., Refs. [299, 302, 314]) and it has been
associated to the structural anomaly that characterizes Gaussian-core fluids
at high density. Indeed, due to the bounded nature of the interaction potential,
different particles can possibly overlap, and when the density is sufficiently
high, they can form transient clusters that lead to an overall increase of their
mobility. In the inset of Fig. 7.2 (left panel), we confirm this picture by plotting
the self-diffusion Ds over a wide range of area fractions (up to c = 200%). For
a normal diffusive tracer (i.e., κ = 0, blue lines and symbols), we confirm the
non-monotonic anomalous behavior of Ds previously reported in Refs. [299,
302, 314]. Interestingly, when the oddness parameter κ exceeds the critical
value κc (yellow line in the inset), we observe a opposite trend showing an
initial increase in the self-diffusion for sufficiently dilute systems, followed by
a decrease for densities above a certain threshold. Notably, the theoretical
predictions are in excellent agreement with the results of Brownian dynamics
simulations, especially for very dense systems. This is coherent with the fact
that linearizing Dean’s equation is allowed when the density fluctuations ϕ
around the homogeneous bulk density ρ0 are much smaller than ρ0 itself.

In the right panel of Fig. 7.2 we plot the self-diffusion Ds as a function of
the area fraction up to c = 50% for various values of the oddness parameter κ.
Particularly interesting is the critical case κ = κc, for which the self-diffusion
appears as insensitive to any variation of the system density. This effect could be
rationalized by noting that the addition of host particles to the system has a two-
fold effect on the tracer: on the one hand, it makes the surrounding environment
more crowded, thus hindering the motion of the tracer. On the other, the
collisions with the host particles provide a potential mechanism for speeding-up
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Figure 7.2: Long-time self-diffusion coefficient Ds of an odd tracer coupled to
N = 199 normally diffusive host particles. In both panels, solid lines represent
the analytical predictions (see Appendix E.3 for a detailed derivation) obtained
within the weak-coupling approximation, whereas symbols denote the result
of Brownian dynamics simulations (see Appendix E.4 for details). The value
of Ds is measured in units of D0 defined in Eq. (7.29), i.e. the self-diffusion
coefficient of a single free odd particle. Left panel: Self-diffusion Ds as a function
of the oddness parameter κ. The main plot shows that for sufficiently small
values of κ, the self-diffusion is suppressed compared to the case of a free odd-
tracer as intuitively expected in a crowded environment. Upon increasing κ
beyond the critical value κc = 1, however, the interaction of the tracer with the
host particles enhances its self-diffusion. In this panel, different colors denote
different concentrations of particles, measured by the area fraction c defined
in Eq. (7.28). The inset shows the values of Ds/D0 for κ = 0 (blue line and
symbols) and κ = 2 (yellow line and symbols) — corresponding to the two
extremes of the range of values of κ considered in the main plot — as a function
of c. This inset demonstrates that the suppression/enhancement of the self-
diffusion persists over a remarkably wide range of system densities. Right panel:
Self-diffusion Ds as function of the area fraction c. In this case, different colors
stand for different values of the oddness parameter κ. Interestingly, at the
critical value κc = 1, the odd tracer behaves as in the absence of host particles,
independently of their density. The fact that at κ = κc we observe Ds ≈ D0 for
all densities c is related to the choice of a sufficiently small interaction coupling
λt. Upon increasing λt this property disappears, as shown in Fig. 7.3. More
details about the simulation parameters can be found in Appendix E.4.
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Figure 7.3: Self-diffusion coefficient Ds (measured in units of D0) as a function
of the area fraction c defined in Eq. (7.28) in the case of larger interaction cou-
pling λt = 4 · 2πσ2. Analogously to the inset of Fig. 7.2 (right panel), solid
lines represent the analytical predictions whereas symbols are obtained with
Brownian dynamics simulations. Different colors denote different values of the
oddness parameter κ. In particular, we observe that for larger interaction cou-
pling the enhancement of the self-diffusion for κ > κc is much more pronounced
(up to 20% of D0) than in Fig. 7.2. Moreover, the largest enhancement is
obtained with a lower density of host particles (c ≃ 0.15). Note that in this
case, at κ = κc, the value of the self-diffusion Ds depends on the density c of
the medium, as opposed to Fig. (7.2). Indeed, upon increasing the value of
the interaction coupling λt, the accuracy of the predictions obtained with the
weak-coupling approximation decreases.

the tracer’s dynamics when the latter exhibits odd-diffusivity. At the critical
value κ = κc these two effects balance each other and the tracer effectively
evolves as in the absence of interactions. As anticipated above, however, the
fact that κc does not depend on the medium density c holds only in the weak-
coupling regime, while it is not true anymore when the interaction coupling λt
is increased (see Fig. 7.3). Furthermore, note that due to the complicated form
of the analytical predictions reported in Appendix E.3, the value of κc = 1 does
not explicitly appear from the calculations and it emerged from their numerical
evaluation.

In Fig. 7.3 we show the extent to which a larger interaction coupling affects
the self-diffusion coefficient of the odd tracer. Specifically, we observe that
with a coupling λt that is 4 times lager than in Fig. 7.2, the self-diffusion can
reach an enhancement of approximately 20% of the free value D0. Since our
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theory is based on a weak-coupling approximation, it is expected to result into
less accurate predictions when the interaction strength λt is increased. For
this reason, we observe that the discrepancy between the analytical predictions
and the simulation data increases in the low density limit. Despite the poorer
agreement with the simulations in the very dilute regime, Fig. 7.3 shows that
our theory is still able to correctly capture another qualitative feature caused by
the larger interaction coupling, namely the shift of the onset of the diffusivity
anomaly toward lower densities (c ≈ 15%).

7.4 Conclusions

In this Chapter, we studied the self-diffusion coefficient of an odd diffusive
tracer interacting with an ensemble of normally diffusive host particles. The
pairwise interaction between the particles was modeled by a bounded soft-core
Gaussian potential, implying that different particles can potentially overlap.
From a particle-based picture of the Gaussian-core model fluid, we moved to
a field-theoretic description based on the Dean-Kawasaki equation [72, 73] (see
also Chapter 2), where the host species are coarse-grained into a thermally
fluctuating density field ρ(x, t), resulting in the stochastic evolution given in
Eq. (7.9). Under the assumption that the interaction coupling λt between the
density field and the odd tracer is sufficiently small, we obtained a perturbative
expansion for the mean-squared displacement of the latter, which we truncated
at the first non-trivial order O(λ2t ). From this expansion, we deduced the field-
induced correction to the self-diffusion of the odd tracer. In particular, we
showed that, upon increasing the oddness parameter κ, the collisions with the
host particles have a substantially different effect on the transport properties of
the odd tracer. Specifically, a critical value κc exists such that, for κ < κc, the
self-diffusion is reduced compared to the interaction-free case by the hindering
effect introduced by the host particles, whereas for κ > κc the interaction
with the host particles leads to an enhancement of the self-diffusion, causing a
speed-up of the tracer dynamics. Moreover, we showed that this enhancement is
maximized at a specific spatial density of the system (i.e., area fraction c in two
dimensions), the value of which depends on the interaction coupling λt. The
non-monotonic behavior of the self-diffusion as a function of the area fraction
c for κ > κc is opposite to that of normally diffusive Gaussian-core particles
(see Fig. 7.2), the mobility of which first decreases and then increases upon
isothermal compression (see, e.g., the self-diffusivity anomaly in Refs. [299–302,
314]). Finally, we showed that at the critical value κ = κc, the self-diffusion of
the odd tracer is not affected by the collisions with the crowding particles. In
particular, for sufficiently small interaction couplings λt, the value of κc does
not depend on the density of the medium. It is natural to wonder which values
of κ could be obtained for a real charged particle subject to a magnetic field
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B. Following Ref. [142], for a millimeter-sized granule with a surface charge
density σ = 1e nm−2, with e the electronic charge, a viscosity of η ≈ 10−4 Pa s
(Propylene at room temperature), and B = 1 T, one gets κ ≈ 1.

The model presented here can be extended to address a variety of related
problems. For example, the Dean equation has been already generalized to
the underdamped regime, by including in the description a momentum density
field [326, 327]. A potentially interesting direction is that of deriving the fluctu-
ating hydrodynamic equations for a system of interacting soft-core odd particles
in the underdamped regime and study the dynamic behavior of a tracer in such
an odd medium. Moreover, the derivation presented here can already be used for
a systematic analysis of the role of the tracer mass on the transport properties
of an odd tracer in a crowded environment.

The Gaussian-core model is known to exhibit numerous counter-intuitive
anomalous features such as the aforementioned self-diffusivity anomaly, but
also a density anomaly (consisting in an expansion upon isobaric cooling) and
a structural order anomaly (i.e., the reduction of short-range translational or-
der upon isothermal compression) [294, 299, 301–303]. It may be insightful
to thoroughly investigate the influence of oddness on structural, transport and
thermodynamics properties of Gaussian-core fluids.

A further extension of the model presented here can be used to describe
the coupling of odd-diffusive particles with a binary mixture of purely repul-
sive Gaussian-core fluids, which has proved to exhibit fluid-fluid phase sepa-
ration [328, 329]. Approaching the demixing point, the binary mixture would
develop spatial correlations on arbitrarily large length scales and thus it could
introduce fluctuation-induced forces between the odd-particles [55–57, 59]. The
behavior of odd-particles in such correlated media is a future direction that
might be worth exploring. Finally, in the formulation presented here, the odd
tracer and the host particles (and thus the density field ρ) evolve according
to an equilibrium dynamics. It may be interesting to analyze the transport
properties of an odd tracer coupled to an active fluid featuring nonequilibrium
fluctuations, where the detailed balance condition is violated.



Chapter 8

Conclusions and outlook

In the first part of this thesis (i.e., in Chapters 3, 4 and 5) we explored the com-
plex non-equilibrium behavior of interacting active particles, of cargo-carrying
self-propelled microswimmers and of polymeric systems when they are dispersed
in environments characterized by a non-uniform degree of activity, with broad
implications for experimental studies and applications in soft matter, biophysics
and nanotechnology. In particular, in Chapter 3, we showed that the interplay
between rotational diffusion and active chiral torques can lead to an emer-
gent chemotactic-like behavior in dimers of interacting active chiral particles
(see Fig. 3.2). By comparing the behavior of active chiral particles and ac-
tive charged particles under the action of Lorentz force, we demonstrate that,
despite they both belong to the same class of odd-diffusive systems, their re-
sponse to a non-homogenous activity is qualitatively different. These results
highlight the potential of active chiral particles in synthetic chemotaxis, pro-
viding insights into the design of autonomous systems that are able to steer
towards specific target zones without the help of external stimuli. In Chap-
ter 4 we showed that self-propelled cargo-carrying microswimmers interacting
with traveling activity waves display a rich tactic behavior. In particular, by
tuning the values of the parameters of the cargo, the active-passive complex
can migrate along or against the direction of the activity wave propagation, as
shown in Fig. 4.3. Due to the emerging possibility of controlling the directed
motion of self-propelled particles with travelling tactic stimuli, these findings
potentially suggest alternative strategies to innovate systems with targeted de-
livery at the microscale. In Chapter 5 we demonstrate that polymer chains
dispersed in a non-uniform active bath can spontaneously separate in space by
migrating into distinct regions with different level of activity (see Figs. 5.2, 5.3
and 5.4). This phenomenon, which relies on a nonequilibrium mechanism (and
therefore it cannot occur at equilibrium), could be exploited for length-selective
localization of polymer molecules or for their sorting based on their structural
connectivity. Experimental validation with synthetic colloidal chains immersed
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in bacterial bath or with biomolecules would further support the relevance of
these theoretical predictions. In all the aforementioned Chapters, the activity
field is not affected by the interaction with the particles, nor it exhibits any
sign of stochasticity due to thermal fluctuations. In modelling more realistic
systems, however, these assumptions have to be relaxed. It would be interesting
to analyse whether the phenomena described in Chapters 3, 4 and 5 would still
occur if the particles and the fluctuating activity field influenced each other
along their dynamical evolution.

In the second part of the thesis (Chapters 6 and 7) we investigated the dynam-
ics of polymer chains and odd diffusive tracers coupled to fluctuating correlated
media, and studied their structural, transport and relaxation properties. In par-
ticular, in Chapter 6 we examined the behavior of a polymer under harmonic
confinement, coupled to a correlated medium described by a scalar Gaussian
field. We proved that the relaxation of the center of mass of the polymer to-
wards its equilibrium position exhibits an algebraic decay at long times if the
field supports slow relaxation modes due to criticality or to underlying conser-
vation laws, as shown in Fig. 6.3. Conversely, in the case in which all monomers
interact with the field in the same way, the relaxation of the internal structure of
the chain remains exponential, with a characteristic time scale which is reduced
compared to the case with no interaction with the field, due to the attractive
field-induced interactions between the monomers. Moreover, we showed how
such field-mediated forces affect the typical size of the polymer and its response
to a tensile stretching force. Although the model proposed here is a good start-
ing point for understanding the influence of fluctuating correlated media on
conformational and dynamic properties of polymer chains, it is based on the
simplest possible polymer model. In particular, it neglects many interactions
that should be taken into account in order to describe a more realistic polymer
molecule. Specifically, it does not consider the excluded volume interaction be-
tween each pair of monomers, which account for steric hindrance effects, and
it neglects the finite extensibility of the bonds as well as the bending rigidity
of the chain. As a future perspective, it might be worth exploring the effect of
field mediated forces on a more realistic polymer model.

In Chapter 7 we studied the self-diffusion of an odd tracer in a crowded en-
vironment of normally diffusive host particles. The soft interaction potential
is chosen to be Gaussian, and thus particles are allowed to overlap. Within
a field-theoretic framework based on the Dean-Kawasaki equation, where the
host particles are coarse-grained into a fluctuating correlated density field, we
analysed the self-diffusion of the odd tracer. Depending on the oddness param-
eter, we showed that the interactions between the tracer and the medium can
either reduce or enhance the self-diffusion of the former (see Fig. 7.2). More-
over, we made contact with the existing literature on Gaussian-core model by
describing how oddness affect the self-diffusivity anomaly at high density. In



CHAPTER 8. CONCLUSIONS AND OUTLOOK 114

recent years, the study of chiral fluids has attracted a growing level of attention
(see, e.g., Refs. [330, 331]). As future perspectives, it could be interesting to
extend the analysis reported in Chapter 7 to the case of a medium composed
by odd-diffusive host particles, in order to investigate how this affect the trans-
port properties of a tracer. Moreover, one could study the effect of oddness
on the structural order and phase behavior of such an odd Gaussian-core fluid.
Another potentially interesting direction is to analyse to which extent the trans-
port properties of the odd tracer are modified upon variation of the correlation
length of the fluctuating density field.



Appendix A

Appendix of Chapter 3

This Appendix contains the detailed derivation of the results presented in Chap-
ter 3. In Sec. A.1 we show how to obtain the steady state-density of the center
of mass of a dimer made of two active chiral particles with opposite torques in
a medium characterized by an activity field with small gradients. The deriva-
tion is specialized to the cases of two distinct interaction potentials: harmonic
bond with zero rest length and rigid bond interaction. In Secs. A.2 and A.3 we
deal with single active chiral particles and single active particles under Lorentz
force, respectively. In particular, we show how to integrate out the orientational
degree of freedom to get an effective FPE for their density distribution, and we
point out under which conditions their effective dynamics are equivalent. Fi-
nally, in Sec. A.4 we show how to derive the steady state density of a dimer
made of two oppositely charged active particles subjected to a magnetic field.
Also in this case we work under the assumption that the non-uniform activity
field features small spatial variations on length scales given by the persistence
length and the typical size of the dimer.

A.1 Dimer of active chiral particles

In this Section we present a detailed derivation of the coarse graining procedure
outlined in Chapter 3 for the case of two interacting active chiral particles with
opposite torque. As a first step, we rewrite the stochastic equation of motion
given in Eq. (3.1) in terms of the center-of-mass R = (X0 + X1)/2 and the
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relative distance r = X0 −X1 between the two monomers. This reads:

Ṙ =
1

2
[va(R + r/2)n0 + va(R− r/2)n1] +

√
DTξ1(t) ,

ṙ = 2νF + [va(R + r/2)n0 − va(R− r/2)n1] +
√

4DTξ2(t) ,

θ̇i = ωi +
√

2DRηi(t) ,

(A.1)

where the force F = −∇U(r) will be later on specialized to the case of rigid
bond interaction or harmonic interaction with zero rest length. Here, as in
Chapter 3, the stochastic terms {ξi} and {ηi} are independent zero-mean Gaus-
sian white noises with unit variance. The evolution of the one-time joint prob-
ability density P (R, r, θ0, θ1, t) associated to the stochastic dynamics (A.1) is
given in Eqs. (3.3), (3.4) and (3.5) of Chapter 3. To marginalize out the ori-
entational degrees of freedom {ni}, we follows the standard procedure (see e.g.
Refs. [24, 103, 126]) of expanding the joint probability density in eigenfunc-
tions of the rotational operator R2. As reported in Chapter 3, this leads to the
following expansion:

P (R, r, θ1, θ2, t) =
1

Ω2
2

[
ϕ+ σ0 · n0 + σ1 · n1 + Σ : n0n1

+ w1 :
(
n0n0 −

1

2

)
+ w2 :

(
n1n1 −

1

2

)
+ Υ

]
,

(A.2)

with Υ denoting higher order terms. In particular, the first eigenfunction of
the rotational operator R2 are given by 1, {ni}, n0n1, {nini − 1/d}. In the
following we derive the evolution equation of the expansion coefficients ϕ, {σi},
Σ and {wi} by projecting the FPE (3.3) onto their relative eigenfunctions. To
this aim, we first introduce the scalar product

⟨fg⟩ =

∫ 2π

0

dθ0

∫ 2π

0

dθ1f(θ0, θ1)g(θ0, θ1) (A.3)

between two arbitrary functions f, g of the polar angles θ0 and θ1. Using the
cartesian multipole expansion (A.2), we can easily derive the following set of
identities

⟨P ⟩ = ϕ ,

⟨nα
i P ⟩ = σα

i /2 ,

⟨nα
i n

β
i P ⟩ = δαβϕ/2 ,

⟨nα
0n

β
1P ⟩ = Σαβ/4 ,

⟨R2P ⟩ = 0 ,

⟨nα
i R2P ⟩ = −σα

i /2 ,

⟨nα
0n

β
1R2P ⟩ = −Σαβ/2 ,

(A.4)
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that will be extensively used in the coming derivation. In the above expressions,
as in the rest of this Appendix, the particle labels are denoted by latin letters,
while greek letters correspond to the spatial components. We remind here that
all expansion coefficients ϕ, {σi}, Σ and {wi} are functions of the center-of-
mass position R, the relative distance r and the time t. In addition to the
identities in (A.4), it is useful to introduce some further relations. The first one
is the following scalar product:

⟨nα
i ∂θiP ⟩ =

∫
dθ0 dθ1 n

α
i ∂θiP = −

∫
dθ0 dθ1 (∂θin

α
i )P

= −
∑
β

∫
dθ0 dθ1 Uαβn

β
i P = −1

2

∑
β

Uαβσ
β
i ,

(A.5)

where in the first equality we used integration by parts, and in the second we
introduced the matrix

U =

(
0 −1
1 0

)
(A.6)

to rewrite the derivative of the vector ni with respect to the polar angle as
∂θini = U ·ni. In the last equality we used Eq. (A.4). The second relation that
we want to prove is:

⟨nα
0n

β
1∂θ0P ⟩ = −

∫
dθ0 dθ1 (∂θ0n

α
0 )nβ

1P = −
∑
γ

Uαγ

∫
dθ0 dθ1 n

γ
0n

β
1P

= −1

4

∑
γ

UαγΣγβ ,

(A.7)

where, again, we used integration by parts and Eq. (A.4). Analogously one can
derive

⟨nα
0n

β
1∂θ1P ⟩ = −1

4

∑
γ

ΣαγU
T
γβ . (A.8)

With the help of the equalities derived above, we are now in the position to ob-
tain the evolution equation of the expansion coefficients. In doing that, we will
introduce our first approximation. Since we are working under the assumption
that the activity field is a slowly varying function of space, i.e., it is character-
ized by small gradients, we can neglect the contribution to the effective coarse
grained dynamics coming from the quadrupole moments {wi}, namely the local
nematic order parameters. This approximation is common and well described
in, e.g., Refs. [24, 103, 126]. Analogously, we neglect all terms Υ in the mul-
tipole expansion (A.2) which are of higher order than {wi}. For the moment,
we keep in our multipole expansion the term proportional to Σ, and we show
explicitly that it also gives a negligible contribution in the framework of the
small gradient approximation. The first evolution equation we derive is the one
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for the coefficient ϕ(R, r, t). This can be obtained by projecting the FPE (3.3)
onto the trivial eigenfunction 1, namely by computing ∂t⟨P ⟩. This gives:

∂tϕ = −∇R ·
[

1

4
va

(
R + r/2

)
σ0 +

1

4
va

(
R− r/2

)
σ1 −

DT

2
∇Rϕ

]
−∇r ·

[
2νFϕ+ va

(
R + r/2

)σ0

2
− va

(
R− r/2

)σ1

2
− 2DT∇rϕ

]
,

(A.9)

where the dependence of ϕ and {σi} on (R, r, t) has been dropped for the sake
of space. Interestingly, ϕ(R, r, t) evolves according to a continuity equation and
it describes the probability density of finding the two active particles in the con-
figuration with center-of-mass R and relative distance r at time t. Accordingly,
if we integrate Eq. (A.9) over r, i.e., we marginalize out the relative distance
between the two active monomers, we get an effective continuity equation for
the coarse grained density ρ(R, t) defined in Eq. (3.7). This reads:

∂tρ(R, t) = −∇R ·
[
Jσ1 + Jσ2 + JD

]
(A.10)

where the fluxes Jσi
and JD are defined as:

Jσi
(R, t) =

1

4

∫
dr va

(
Xi(R, r)

)
σi ,

JD(R, t) = −DT

2
∇Rρ .

(A.11)

The fluxes Jσi
derive from the activity of the two monomers, and in particular

from their average polarization, whereas JD is the usual diffusive flux due to
thermal fluctuations. Being a probability density, the field ρ(R, t) is locally
conserved throughout its dynamics, and therefore it relaxes very slowly when
perturbed over large length scales. The dynamics of the average polarizations
{σi} can be derived by projecting the FPE (3.3) onto the polarity vectors {ni}.
In particular, for the particle with position X0, we get:

1

2
∂tσ

α
0 =

− ∂β

[1

2
va

(
R +

r

2

)
⟨nα

0n
β
0P ⟩ +

1

2
va

(
R− r

2

)
⟨nα

0n
β
1P ⟩ −

DT

2
∂β
σα
1

2

]
− ∂′β

[
2νFβ

σα
0

2
+ va

(
R +

r

2

)
⟨nα

0n
β
0P ⟩ − va

(
R− r

2

)
⟨nα

0n
β
1P ⟩ − 2DT∂

′
β

σα
0

2

]
− ω⟨nα

0∂θ0P ⟩ + ω⟨nα
0∂θ1P ⟩ +DR⟨nα

0R2P ⟩ ,
(A.12)

where we denoted with ∂α and ∂′α the α-component of ∇R and ∇r, respectively,
and summation over repeated indices is implied. By using the identities in (A.4),
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we obtain the following dynamics in vector notation:

∂tσ0 = −∇R ·
[1

2
va

(
R +

r

2

)
ϕ1 +

1

4
va

(
R− r

2

)
ΣT − DT

2
∇Rσ0

]
−∇r ·

[
2νFσ0 + va

(
R +

r

2

)
ϕ1− 1

2
va

(
R− r

2

)
ΣT − 2DT∇rσ0

]
− (DR1− ωU)σ0 .

(A.13)

Importantly, note that because of its evolution due to rotational diffusion and
active torque, the average polarization σ0 does not evolve according to a con-
tinuity equation, as can be evinced by the presence of the sink term in the last
line. This implies that the average polarity of the particles typically relax much
faster than the coarse grained density ρ(R, t). Due to this time scale separation,
we can approximate the polarization field σ0(R, r, t) with its quasi-stationary
expression:

σ0 =

− (DR1− ωU)−1 ·
{
∇R ·

[1

2
va

(
R +

r

2

)
ϕ1 +

1

4
va

(
R− r

2

)
ΣT − DT

2
∇Rσ0

]
+ ∇r ·

[
2νFσ0 + va

(
R +

r

2

)
ϕ1− 1

2
va

(
R− r

2

)
ΣT − 2DT∇rσ0

]}
.

(A.14)

Naturally, an analogous expression can be derived for the average polarization
of the particle with position X1, and it is given by:

σ1 =

− (DR1 + ωU )−1 ·
{
∇R ·

[1

2
va

(
R− r

2

)
ϕ1 +

1

4
va

(
R +

r

2

)
Σ− DT

2
∇Rσ1

]
+ ∇r ·

[
2νFσ1 − va

(
R− r

2

)
ϕ1 +

1

2
va

(
R +

r

2

)
Σ− 2DT∇rσ1

]}
.

(A.15)

Finally, we can obtain the evolution equation for the tensor Σ by projecting
the FPE (3.3) onto the dyadic product n0n1. The dynamics of its components
is given by:

1

4
∂tΣαβ = −∂γ

[1

2
va(X0)⟨nα

0n
β
1n

γ
0P ⟩ +

1

2
va(X1)⟨nα

0n
β
1n

γ
1P ⟩ −

DT

2
∂γ

Σαβ

4

]
− ∂′γ

[
2νFγ

Σαβ

4
+ va(X0)⟨nα

0n
β
1n

γ
0P ⟩ − va(X1)⟨nα

0n
β
1n

γ
1P ⟩ − 2DT∂

′
γ

Σα,β

4

]
− ω⟨nα

0n
β
1∂θ0P ⟩ + ω⟨nα

0n
β
1∂θ1P ⟩ +DR⟨nα

0n
β
1R2P ⟩

(A.16)
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where again the summation over repeated indices is implied, and the position
variables have to be interpreted as functions of R and r. In this case, to-
gether with the identities in Eqs. (A.4), (A.5), (A.7) and (A.8) we also need to
separately compute the scalar products

⟨nα
0n

β
1n

γ
0P ⟩ =

1

Ω2
2

∑
δ

σδ
1⟨nα

0n
β
1n

γ
0n

δ
1⟩ =

1

4
σβ
1 δαγ ,

⟨nα
0n

β
1n

γ
1P ⟩ =

1

Ω2
2

∑
δ

σδ
0⟨nα

0n
β
1n

γ
1n

δ
0⟩ =

1

4
σα
0 δβγ .

(A.17)

In this way, by substituting all the scalar products in Eq. (A.16) we obtain:

∂tΣαβ = − ∂γ

[1

2
va

(
R +

r

2

)
σβ
1 δαγ +

1

2
va

(
R− r

2

)
σα
0 δβγ −

DT

2
∂γΣαβ

]
− ∂′γ

[
2νFγΣαβ + va

(
R +

r

2

)
σβ
1 δαγ − va

(
R− r

2

)
σα
0 δβγ − 2DT∂

′
γΣαβ

]
+ ωUαγΣγβ − ωUβγΣαγ − 2DRΣαβ .

(A.18)

As in the case of the average polarizations {σi}, also the expansion coefficient
Σ does not obey any conservation law, and relaxes much faster compared to the
density ρ(R, t). Considering its quasi-stationary configuration and combining
with Eqs. (A.10), (A.14) and (A.15), it can be shown that it contributes to the
flux (A.11) as a term of order O(∇2

R), and thus can be neglected if we truncate
the effective dynamics (A.10) to the drift/diffusion order. For this reason, we
drop the Σ-dependent contributions to the quasi-stationary expressions of the
average polarizations (A.14) and (A.15). In this way, we close the hierarchy of
equations for the expansion coefficients and we reduce it to the three coupled
differential equations for the fields ρ(R, t) and {σi(R, t)}. These are solved in
the framework of the small gradient approximation. By combining Eqs. (A.11),
(A.14) and (A.15), we can derive the expression of the fluxes in the effective
dynamics (A.10). For example, for the flux Jσ0(R, t) we have:

Jσ0 =
1

4

∫
dr va(X0)σ0 = −1

4

∫
dr va(X0)

× (DR1− ωU )−1 ·
{
∇R ·

[1

2
va(X0)ϕ1

]
+ ∇r ·

[
2νFσ0 + va(X0)ϕ1

]}
,

(A.19)

where we neglected all terms leading to corrections of order O(∇2
R) or higher.

Integrating by parts and using the identity ∇r = 1
2
∇Rva(X0), we can separate
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the flux Jσ0 into the sum of three contributions:

Jσ0 = − (DR1− ωU)−1 ·
∫

dr
1

8
va(X0)∇R ·

[
va(X0)ϕ1

]
+ (DR1− ωU)−1 ·

∫
dr

1

8
[∇Rva(X0)] va(X0)ϕ

+ (DR1− ωU)−1 ·
∫

dr
ν

4
[∇Rva(X0)] · Fσ0 ,

(A.20)

where the last integral still depends on the polarization field σ0. We call such
integral I0, and we separately work it out in the following. In particular, by sub-
stituting again the quasi-static expression of σ0 into Eq. (A.20) and neglecting
contributions of order O(∇2

R) or higher, we get:

I0 =

∫
dr

ν

4
[∇Rva(X0) · F ]σ0

= −ν
4

(DR1− ωU)−1

∫
dr [∇Rva(X0) · F ]∇r ·

[
2νFσ0 + va(X0)ϕ1

]
= +

ν

4
(DR1− ωU)−1

∫
dr∇r [∇Rva(X0) · F ] ·

[
2νFσ0 + va(X0)ϕ1

]
= +

ν

4
(DR1− ωU)−1

∫
dr [(∇rF ) · ∇Rva(X0)] ·

[
2νFσ0 + va(X0)ϕ1

]
,

(A.21)

where we used integration by parts and in the last equality we neglected the
term ∇r∇Rva(X0) = O(∇2

R). In the following we consider the case of harmonic
interaction potential with zero rest length and stiffness κ (for the case of rigid
bond interaction see the Sec. A.1.1). In this case we have ∇rF = −κ1, implying:

I0 = −κν
4

(DR1− ωU)−1 ·
∫

dr [∇Rva(X0)] ·
[
2νFσ0 + va(X0)ϕ1

]
= −2κν (DR1− ωU)−1 ·

[
I0 +

1

8

∫
dr va(X0)ϕ∇Rva(X0)

]
.

(A.22)

Solving for I0 we get:

I0 = −1

8
[(1 + τ)1− ΩτU ]−1 ·

∫
dr va(X0)ϕ∇Rva(X0) , (A.23)

where we introduced the dimensionless quantities τ = DR/2κν and Ω = ω/DR

as in Chapter 3. The value of the integral I0 can then be substituted into
Eq. (A.20). To compute the remaining integrals in Eq. (A.20) we make use once
again of the small gradient approximation. Indeed, under this assumption, the
activity field does not vary much on a typical length scale given by the distance



A.1. DIMER OF ACTIVE CHIRAL PARTICLES 122

between the active monomers. For this reason, we approximate the joint density
as ϕ(R, r, t) ≈ ρ(R, t)δd(r) inside the integrals, thus obtaining:

Jσ0 = (DR1− ωU)−1

[
−v

2
a(R)

8
∇ρ(R) − ρ(R)

16
[(1 + τ)1− ΩτU ]−1∇v2a(R)

]
.

(A.24)

From the previous equation it appears that the activity field produces both an
advective and a diffusive flux in the effective dynamics for the coarse grained
density ρ. Following a similar derivation to the one presented for Jσ0 , we can
work out the expression of the other flux:

Jσ1 = (DR1 + ωU)−1

[
−v

2
a(R)

8
∇ρ(R) − ρ(R)

16
[(1 + τ)1 + ΩτU ]−1∇v2a(R)

]
.

(A.25)

From Eqs. (A.24) and (A.25) we see that the diffusive contribution to the fluxes
Jσ0 and Jσ1 is not aligned with the density gradient due to the presence of
the active torque ω. However, since the two polarities {ni} rotate in opposite
directions, the total flux is actually aligned with ∇ρ, and therefore the center-
of-mass does not feature a chiral motion. Indeed, with the help of the identities:∑

δ=±1

(DR1 + δωU)−1 =
2

DR

1

1 + Ω2
1 (A.26)

and ∑
δ=±1

(DR1 + δωU)−1 [(1 + τ)1 + δΩτU ]−1

=
2

DR
[(1 + τ) − Ω2τ ]1

[(1 + τ) − Ω2τ ]2 + [Ω (1 + τ) + Ωτ ]2
,

(A.27)

one can derive the total flux Jσ0 + Jσ1 + JD, obtaining the effective drift and
diffusion terms reported in Eq. (3.9) of Chapter 3.

A.1.1 Case of rigid bond

In Chapter 3 we commented on the fact that the chemotactic transition relies
on the soft interaction between the active monomers, allowing their typical dis-
tance to assume different values throughout the cycle described in Figure 3.1.
In particular, we have claimed that the transition would disappear if the two
monomers were connected by a rigid bond. We provide here a rigorous deriva-
tion of this statement by computing the chemotactic coupling ϵ in the case of
rigid bond interaction. To this aim, we specialized the derivation presented in
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Sec. A.1 to the interaction potential U(r) = κ(|r|− l0)
2/2, where l0 is the bond

length. We will then take a posteriori the limit κ→ ∞. With the new interac-
tion potential, we need to recompute the integral I0 defined in Eq. (A.21). To
this aim we introduce the symmetric matrix A = r̂r̂ + (1− r̂r̂) (1 − l0/|r|),
where r̂ denotes the unit vector in the direction of the relative distance r. The
matrix A satisfies the identity ∇F = −κA. In this way we obtain:

I0 =

∫
dr

ν

4
[∇Rva(X0) · F ]σ0

=
ν

4
(DR1− ωU)−1

∫
dr [∇Rva(X0) · (∇rF )] ·

[
2νFσ0 + va(X0)ϕ1

]
=

= (DR1− ωU)−1

[
−2κνI1 −

κν

4

∫
dr∇Rva(X0) ·A va(X0)ϕ

]
=

= −1

8
[(1 + τ)1− ΩτU ]−1

∫
dr va(X0)ϕ∇Rva(X0) ·A ,

(A.28)

where the dimensionless quantities τ = DR/2κν and Ω = ω/DR are defined as
in Sec. A.1 and Chapter 3. Substituting the integral I0 into Eq. (A.20) we get:

Jσ0 = − (DR1− ωU)−1

∫
dr

1

8
va (R)∇R ·

[
va (R)ϕ1

]
+ (DR1− ωU )−1

∫
dr

1

8
[∇Rva (R)] va (R)ϕ+

− (DR1− ωU)−1 [(1 + τ)1− ΩτU ]−1

∫
dr

1

8
va (R)ϕ∇Rva (R) ·A ,

(A.29)

where the argument of the activity field has been approximated with the center-
of-mass up to corrections of order O(∇2

R). In the spirit of the small gradient
assumption, we introduce another approximation in the integrals appearing in
Eq. (A.29): since the variations of the activity field are small on the length
scale given by the bond length l0, we use ϕ(R, r, t) ≈ ρ(R, t)δ (|r| − l0) 1/2πl0.
Furthermore, in the rigid bond limit κ→ ∞, we have that:

lim
κ→∞

[(1 + τ)1− ΩτU ]−1 = 1 . (A.30)

With the previous approximations, the flux Jσ0 reads:

Jσ0 = (DR1− ωU)−1
{
− 1

8
v2a (R)∇Rρ(R) − 1

32
ρ(R)∇Rv

2
a (R)

}
. (A.31)

An analogous expression can be obtained for Jσ1 , by simply sending ω → −ω.
Also in this case, we realize that the center-of-mass does not exhibit a chiral
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motion and its diffusive flux is aligned with the density gradient ∇ρ (this is
expected as the two active particles have opposite chiralities). This can be seen
by using Eq. (A.26) to compute the total flux Jσ0 + Jσ1 + JD. In this case,
we obtain that the effective dynamics (A.10) of the coarse grained density ρ is
characterized by the following drift and diffusion terms:

D(R) =
1

4DR

1

1 + Ω2
v2a(R) +

DT

2
,

V (R) = (1 − ϵ/2)∇RD(R) ,

(A.32)

with the chemotactic coupling ϵ = 1/2 that does not depend on the torque Ω as
in Sec. A.1 and it is always positive. This implies that no chemotactic regime
can be explored by a rigid dimer of this type.

A.2 Single active chiral particle

In this Section we derive the effective FPE of a single active chiral particle
by marginalizing out its orientational degree of freedom. We start from the
overdamped Langevin dynamics{

Ẋ = va(X)n(θ) +
√

2DTξ(t)

θ̇ = ω(X) +
√

2DRη(t)
(A.33)

in the general case where both the activity field vCa (X) and the active torque
ω(X) are non-homogeneous functions of space. The self propulsion force is
directed along the orientation vector n(θ) = (cos θ, sin θ), and ξ(t), η(t) are
independent zero-mean Gaussian white noises with unit variance. Since the
dynamics (A.33) is Markovian, the 1-time joint probability density P (x, θ, t)
evolves according to the following FPE:

∂tP (x, θ, t) = −∇ · [va(x)n(θ)P −DT∇P ] − ∂θ [ω(x)P ] +DR∂
2
θP . (A.34)

To integrate out the rotational degree of freedom we expand the probability
density in eigenfunctions of the operator ∂2θ (as detailed in Sec. A.1). This leads
to the cartesian multipole expansion:

P (x, θ, t) =
1

Ω2

[ρ(x, t) + σ(x, t) · n + w(x, t) : (nn− 1/2) + Υ] , (A.35)

with Υ denoting higher order terms. Then we project Eq. (A.34) onto the
eigenfunctions of ∂2θ . This procedure leads to a hierarchy of equations for the
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coefficients of the multipole expansion. The first two reads:

∂tρ(x, t) = −∇ ·
[

1

2
va(x)σ −DT∇ρ

]
,

∂tσ(x, t) = −∇ [va(x)ρ] − 1

2
∇ · [va(x)w] +DT∇2σ − (DR1− ω(x)U)σ ,

(A.36)

with the anti-symmetric matrix U already defined in (A.6). Considering that
σ(r, t) relaxes on a much smaller time scale than ρ(r, t) and neglecting all terms
proportional to O(∇2) or higher order derivatives (small gradient approxima-
tion), we get:

∂tρ(x, t) = −∇ ·
[

1

2
va(x)σ −DT∇ρ

]
σ(x, t) = − (DR1− ω(x)U)−1∇ [va(x)ρ]

(A.37)

After defining the dimensionless parameter Ω(x) = ω(x)/DR, the matrix M =
(1− Ω(x)U) and substituting the quasi-static expression of σ in the equation
for the density ρ, we obtain the effective FPE

∂tρ(x) = −∇ ·
[
V C(x)ρ(x) −DC(x) · ∇ρ(x)

]
(A.38)

characterized by the following drift and diffusion terms:

V C(x) = −va(x)

2DR

M−1∇va(x) ,

DC(x) =
v2a(x)

2DR

M−1 +DT1 .

(A.39)

The odd-diffusive behavior of the active chiral particle is evident from the struc-
ture of its diffusion tensor, which contains off-diagonal elements with opposite
sign.

A.3 Active particle under Lorentz force

An analogous derivation can be done for a single active charged particle sub-
jected to a magnetic field. In d = 2 dimensions, its stochastic equation of
motion reads: 

Ẋ = v ,

mv̇ = −ν−1Γv + va(X)n(θ) +
√

2T/νξ ,

θ̇ =
√

2DRη(t) ,

(A.40)
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where m is the mass of the particle, v its velocity, and the effect of the magnetic
field (which in full generality we take as possibly non-homogeneous in space) is
included in the friction tensor

Γ =

(
1 −κ(r)

κ(r) 1

)
(A.41)

characterized by anti-symmetric components proportional to the dimensionless
oddness parameter κ(r) = qB(x)ν. As in the previous Section, we start our
analysis from the FPE in the small mass limit (see, e.g., Refs. [116, 332] and
the introductory Sec. 2.10):

∂tP (x, θ, t) = −∇ ·
[
Γ−1(x)va(x)nP −DTΓ

−1(x)∇P
]

+DR∂
2
θP, (A.42)

and we derive the effective evolution equation for the density ρ(x, t) under
the assumption of slowly varying activity field. Using again the decomposition
in (A.35) and projecting (A.42) onto the eigenfunctions of ∂2θ analogously to
the previous Section, we obtain the following equations for the density ρ and
the average polarization σ:

∂tρ(x, t) = −∇ ·
[
va(x)

2
Γ−1σ(x) −DTΓ

−1∇ρ(x)

]

∂tσ(x, t) = −∇ ·
[
va(x)ρ(x)Γ−1 −DTΓ

−1∇σ(x)
]
−DRσ(x)

(A.43)

where all terms proportional to the quadrupole moment w have already been
neglected. The equation for the average polarization can be further simplified
considering that σ(r) relaxes on a much smaller time scale than ρ(r) and that
spatial gradients in the system are small. In particular, this leads to the quasi-
stationary polarization

σ(x) = −∇ ·
[

1

DR

va(x)ρ(x)Γ−1

]
(A.44)

and the evolution of ρ(r, t) reads:

∂tρ(r) = −∇ ·
[
− va(x)

2DR

Γ−1∇ ·
(
Γ−1va(x)

)
ρ(x)

−
( 1

2DR

v2a(x)Γ−1 ·
(
Γ−1

)T
+DTΓ

−1
)
∇ρ(x)

]
.

(A.45)

Being Γ−1 · (Γ−1)
T

= (1 + κ2(r))
−1

1, the drift and diffusion terms can be
identified with

V B(x) = −va(x)

2DR

Γ−1∇ ·
(
va(x)Γ−1

)
,

DB(x) =
1

1 + κ2(x)

(
v2a(x)
2DR

+DT DTκ(x)

−DTκ(x) v2a(x)
2DR

+DT

)
.

(A.46)
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Interestingly, we see that the activity field enhances the diagonal elements of the
diffusion tensor, but not its anti-symmetric components. It is straightforward
to show that in the case of uniform activity, magnetic field and active torque,
the effective dynamics (A.45) and (A.38) can be mapped into one another by
means of (3.17).

A.4 Active dimer under Lorentz force

In this Section we analyze the behavior of a dimer composed of two self-propelled
charged particles (with opposite charges ±q) subjected to a magnetic field B =
Bẑ oriented along the z-axis. The dynamics of the dimer takes place in a two-
dimensional medium perpendicular to the magnetic field, and characterized
by a non-uniform activity field va(x). The attractive interaction between the
two active particles is modeled by a harmonic potential U(x) = κsx

2/2 with
stiffness κs and zero rest length, but the derivation can be easily generalized
to the case of finite rest length and rigid bond interaction. Moreover, in the
present derivation we neglect the effect of the electrostatic interaction. The
stochastic equation of motion of the dimer is given by the Langevin dynamics:

Ẋi = vi ,

mv̇i = −∇iU(X0 −X1) − ν−1Γivi + va(X)ni(θi) +
√

2T/νξi ,

θ̇i =
√

2DRηi(t) ,

(A.47)

with m the mass of the two self-propelled particles, vi their velocities and Γi

their effective friction tensors containing the effect of the Lorentz force gener-
ated by the magnetic field. Since the two particles have opposite charges, the
tensors Γi are different and given by Γ0 = [1 − κε] and Γ1 = [1 + κε], with ε
the 2-dimensional Levi-Civita symbol and κ = qBν the dimensionless oddness
parameter. As in the rest of this Appendix and in Chapter 3, the orientation
vectors ni = (cos θi, sin θi) are expressed in terms of the polar angles θi. The
one-time joint probability density P (X0,X1, θ0, θ1, t) in the overdamped regime
evolves according to the following FPE:

∂tP (X0,X1, θ0, θ1, t) = −∇X0 ·
[
νΓ−1

0 FP + Γ−1
0 va(X0)n0P −DTΓ

−1
0 ∇X0P

]
−∇X1 ·

[
−νΓ−1

1 FP + Γ−1
1 va(X1)n1P −DTΓ

−1
1 ∇X1P

]
+DR

[
∂2θ0 + ∂2θ1

]
P

(A.48)

where the force F = −∇X0U(X0 − X1) is due to the attractive interaction
between the particles. Since the friction tensors Γi are different, we find conve-
nient to rewrite Eq. (A.48) in terms of the center-of-friction R and the relative
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distance r defined as:

R =
1

2
[Γ0X0 + Γ1X1] ,

r = X0 −X1 .
(A.49)

With this new set of variables, the Fokker-Planck equation (A.48) can be rewrit-
ten as

∂tP (R, r, θ0, θ1, t) =

−∇R ·
[

1

2
va(X0)n0P +

1

2
va(X1)n1P − DT

2
∇RP

]
+

−∇r ·
[

2ν

1 + κ2
FP + Γ−1

0 va(X0)n0P − Γ−1
1 va(X1)n1P − 2DT

1 + κ2
∇rP

]
+

+
DT

2

4κ

1 + κ2
(
∂rx∂Ry − ∂ry∂Rx

)
P +DR

[
∂2θ0 + ∂2θ1

]
P ,

(A.50)

where the positions X0 and X1 have to be interpreted as functions of the
center-of-friction and the relative distance, i.e. X0 = R + 1

2
Γ1r and X1 =

R − 1
2
Γ0r. The strategy to integrate out the orientational degrees of freedom

is analogous to the one presented in Sec. A.1. Specifically, we expand the joint
probability density in eigenfunctions of the rotational operator, obtaining the
same Cartesian multipole expansion as in Eq. (A.2). The expansion is then
truncated to the order of the dipole moments {σi}, in that the higher order
terms lead to corrections of order O(∇2

R) in the probability flux of the coarse
grained density ρ(R, t). Projecting the FPE (A.50) onto the eigenfunctions 1
and {ni}, we obtain the evolution equation for the expansion coefficients ϕ and
{σi}. The first one reads

∂tϕ(R, r, t) = −∇R ·
[

1

4
va(X0)σ0 +

1

4
va(X1)σ1 −

DT

2
∇Rϕ

]
−∇r ·

[
2νFϕ

1 + κ2
+ Γ−1

0 va(X0)
σ0

2
− Γ−1

1 va(X1)
σ1

2
− 2DT

1 + κ2
∇rϕ

]
+
DT

2

4κ

1 + κ2
(
∂rx∂Ry − ∂ry∂Rx

)
ϕ,

(A.51)

and can be integrated over the relative distance r to get a continuity equation
∂tρ = −∇RJ for the coarse grained density ρ(R, t). Similarly to Sec. A.1, the
total flux J can be decomposed as the summation of three contribution Jσ0 ,
Jσ1 and JD. The first two are related to the average polarizations {σi} of the
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active particles, while the last one to thermal fluctuations. They are defined as:

Jσi
=

1

4

∫
drva(Xi)σi ,

JD =
DT

2
∇Rρ .

(A.52)

To make analytical progresses with the fluxes Jσi
we need to analyze the dipole

moments σi. In the following, we will explicitly derive the expression of Jσ0 .
The flux Jσ1 can be obtained with an analogous procedure. Projecting the
FPE (A.50) onto n0 and using the truncated multipole expansion, we get the
following evolution equation for the polarization σ0:

∂tσ0 = −∇R ·
[

1

2
va(X0)ϕ1− DT

2
∇Rσ0

]
−∇r ·

[
2ν

1 + κ2
Fσ0 + va(X0)ϕΓ

−1
0 − 2DT

1 + κ2
∇rσ0

]
+
DT

2

4κ

1 + κ2
(
∂rx∂Ry − ∂ry∂Rx

)
σ0 −DRσ0 .

(A.53)

Similarly to Sec. A.1, the average polarization relaxes on a time scale ∼ 1/DR

much smaller compared to the density ρ, which is locally conserved throughout
the dynamics. Thanks to this time scale separation we can obtain a quasi-static
expression for σ0 by neglecting its time derivative ∂tσ0. This leads to:

σ0 = − 1

DR

∇R ·
[

1

2
va(X0)ϕ1− DT

2
∇Rσ0

]
− 1

DR

∇r ·
[

2ν

1 + κ2
Fσ0 + va(X0)ϕΓ

−1
0 − 2DT

1 + κ2
∇rσ0

]
+

1

DR

DT

2

4κ

1 + κ2
(
∂rx∂Ry − ∂ry∂Rx

)
σ0 .

(A.54)

This expression can be substituted in the definition of the flux Jσ0 . Moreover,
since we assume that the activity field is characterized by small gradients, we
neglect all terms in the flux that contribute as O(∇2

R). In this way we get:

Jσ0 = − 1

8DR

∫
dr va(X0)∇R [va(X0)ϕ]

+
1

8DR

∫
dr (∇R · Γ1va(X0)) ·

[
va(X0)ϕΓ

−1
0 +

2ν

1 + κ2
Fσ0

]
.

(A.55)

Analogously to Sec. A.1 we can define the integral I0 as:

I0 =

∫
dr [∇R · Γ1va(X0)] · [Fσ0] , (A.56)
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whose approximate solution can be obtained by substituting the quasi-static
expression of the dipole moment σ0 given in (A.54) and neglecting all contri-
butions of order O(∇2

R). In this way we find:

I0 =
1

DR

∫
dr [∇R · (Γ1va(X0)) · F ]

{
−∇r ·

[
va(X0)ϕΓ

−1
0 +

2ν

1 + κ2
Fσ0

]}

= − κs
DR

∫
dr
[
∇R · (Γ1va(X0)) ·AT

]
·
[
va(X0)ϕΓ

−1
0 +

2ν

1 + κ2
Fσ0

]
,

(A.57)

where in the last line we used integration by parts and the small gradient
assumption. Moreover, we introduced the matrix A defined as ∇rF = −κsA.
In the case of harmonic interaction potential with zero rest length, we have
A = 1. In this case we find:

I0 = − κs
DR

2ν

1 + κ2
I0 −

κs
DR

∫
dr va(X0)ϕ (∇Rva(X0)) · Γ1Γ

−1
0

= − κs
DR

1

1 + κs

DR

2ν
1+κ2

∫
dr va(X0)ϕ (∇Rva(X0)) · Γ1Γ

−1
0 .

(A.58)

Substituting the integral I0 into (A.55) yields:

Jσ0 = − 1

8DR

∫
dr va(X0)∇R [va(X0)ϕ]

+
1

8DR

[
1 − 1

τ(1 + κ2) + 1

] ∫
dr va(X0)ϕ (∇Rva(X0)) · Γ1Γ

−1
0 ,

(A.59)

where we introduced the dimensionless quantity τ = DR/2κsν that measures
the typical relaxation time of the relative distance r in units of the rotational
diffusion time scale 1/DR. A similar equation can be found for the flux Jσ1 and
reads:

Jσ1 = − 1

8DR

∫
dr va(X1)∇R [va(X1)ϕ]

+
1

8DR

[
1 − 1

τ(1 + κ2) + 1

] ∫
dr va(X1)ϕ (∇Rva(X1)) · Γ0Γ

−1
1 .

(A.60)

Finally, since we are working under the assumption that the activity field
has small variations on the length scale given by the typical distance between
the two particles, we can approximate the integrals above by using ϕ(R, t) ≈
ρ(R, t)δd(r). This approximation, together with the identity

Γ1Γ
−1
0 + Γ0Γ

−1
1 = 2

1 − κ2

1 + κ2
1 , (A.61)
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leads to the following expression for the total probability flux J = Jσ0+Jσ1+JD

of the coarse grained density ρ:

J = − ϵ

8DR

(
∇Rva(R)2

)
ρ(R) −

[
1

4DR

va(R)2 +
DT

2

]
∇Rρ(R) , (A.62)

where the chemotactic coupling ϵ is given by

ϵ = 1 − 1 − κ2

1 + κ2

[
1 − 1

τ(1 + κ2) + 1

]
(A.63)

as reported in Eq. (3.21) of Chapter 3. In particular, the coupling ϵ is positive
for any value of the magnetic field. This implies that is not possible to induce
the preferential localization of this system in regions of high activity by changing
the oddness parameter κ.



Appendix B

Appendix of Chapter 4

We provide here a detailed derivation of the analytical predictions reported in
Chapter 4. In particular, in Sec. B.1 we derive the mode equations [i.e., (4.7)
and (4.8) in Chapter 4] using the moment expansion technique. In Sec. B.2
we describe how a closure relation can be obtained within the small-gradient
approximation, which allows one to obtain an equation of motion for the coarse-
grained density of the microswimmer [Eq. (4.9) in Chapter 4]. In Sec. B.3
we prove analytically that the drift velocity of the microswimmer vanishes at
q = qth. In Sec. B.4 we derive an equation of motion for the coarse-grained
density of the microswimmer by using an alternative closure relation which
is applicable to fast activity waves. We derive analytical expressions for the
stationary density, stationary flux and average drift velocity. In Sec. B.5 we
report the details about the numerical simulations.

B.1 Mode equations

In this Section, we show how to derive the mode equations using a moment
expansion technique analogous to what is presented in Refs. [126, 173, 174].
We start the derivation from the Fokker-Planck equation (FPE) describing the
evolution of P (χ, r,η, t) (see Eq. (4.5)):

∂tP (χ, r,η, t) = −∇χ ·
[
−vwP +

1

1 + q
va (χ′)ηP − D

1 + q
∇χP

]
−∇r ·

[
−1 + q

q
ν∇rUP + va (χ′)ηP − 1 + q

q
D∇rP

]
+ 1/(dτ)L̂ηP

(B.1)

where we remind that
χ′ = χ + qr/(1 + q) (B.2)
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is the position of the active carrier in the comoving frame and the operator L̂η

is defined as
L̂ηf(η) = ∇2

ηf(η) + d∇η · [ηf(η)] . (B.3)

We now expand the joint probability density as

P (χ, r,η, t) =
∑
n

ϕn(χ, r, t)un(η) , (B.4)

where n = {n1, n2, . . . , nd} is a set of non-negative integers, while {un(η)} is
the corresponding set of eigenfunctions of the operator L̂η, given by

un(η) = exp

{
−dη

2

2

} d∏
i=1

Hni
(
√
d ηi) . (B.5)

Here, Hn(x) is the n-th Hermite polynomial in the probabilist convention [333].
They satisfy the following eigenvalue equation

L̂ηun(η) = λnun(η), (B.6)

where the eigenvalues λn are given by

λn = −d
d∑

i=1

ni. (B.7)

Moreover, it is convenient to introduce the family of auxiliary functions {ũn(η)}
as

ũn(η) = (2π)−d/2

d∏
i=1

Hni
(
√
d ηi)

ni!
, (B.8)

which are orthogonal to the eigenfunctions {un(η)}, i.e.,∫
dη un(η)ũm(η) = d−d/2δn,m, (B.9)

where δn,m =
∏d

i=1 δni,mi
. Multiplying Eq. (B.4) by ũ0(η) and integrating over

η, we get∫
dη ũ0(η)P (χ, r,η, t) =

∑
n

ϕn(χ, r, t)

∫
dη ũ0(η)un(η) = d−d/2ϕ0(χ, r, t) ,

(B.10)
and after using the definition of ũ0(η) in the left hand side:

φ(χ, r, t) ≡
∫
dη P (χ, r,η, t) = (2π/d)d/2ϕ0(χ, r, t) . (B.11)
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Hence, the first coefficient ϕ0(χ, r, t) of the expansion in (B.4) is related to
the marginal density φ(χ, r, t). For later purposes, we recall that the Hermite
polynomials satisfy the recurrence relation [333]

Hn+1(x) = xHn(x) −H ′
n(x), (B.12)

and they form an Appell sequence, in that they can be obtained from one
another using the following iterative formula:

H ′
n(x) = nHn−1(x). (B.13)

In order to lighten the notation, below we will denote by nα± the vector
(n1, .., nα ± 1, ..., nd). Then, by using the properties of Hermite polynomi-
als (B.12) and (B.13) in equation (B.5), we obtain

ηαun(η) =
1√
d

exp

{
−dη

2

2

}√
dηαHnα

(√
dηα

)∏
β ̸=α

Hnβ

(√
dηβ

)
=

1√
d

exp

{
−dη

2

2

}[
Hnα+1

(√
dηα

)
+ nαHnα−1

(√
dηα

)]∏
β ̸=α

Hnβ

(√
dηβ

)
=

1√
d
unα+(η) +

nα√
d
unα−(η) .

(B.14)

At this point we can project the FPE onto the {ũn(η)} and obtain a set of
equations for the coefficients {ϕn(χ, r, t)}. In the following, summation over
repeated indices is implied. For convenience, we will split the Fokker-Planck
operator into the three contributions

∂tP (χ, r,η, t) =

(
L̂χ + L̂r +

1

dτ
L̂η

)
P, (B.15)

where L̂η is defined in (B.3), while

L̂χP = −∂α
[

1

1 + q
va

(
χ +

q

1 + q
r

)
ηαP − D

1 + q
∂αP − vwδα,0P

]
,

L̂rP = −∂′α
[
−1 + q

q
ν∂′αU(r)P + va

(
χ +

q

1 + q
r

)
ηαP − (1 + q)

q
D∂′αP

]
,

(B.16)

where we introduced the shorthand notation ∂α ≡ ∂χα and ∂′α ≡ ∂rα . We
separately project the various terms of the FPE onto ũm(η), starting from its
l.h.s.: ∫

dη ũm(η)∂tP (χ, r,η, t) = ∂tϕn(χ, r, t)

∫
dη ũm(η)un(η)

= d−d/2∂tϕm(χ, r, t) .

(B.17)
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For the first term on the r.h.s., i.e., L̂χP , we have (for simplicity, we do not
indicate below the dependence of ϕn on χ and r):∫

dη ũm(η)L̂χP =

= −∂α

[
va (χ

′)ϕn

1 + q

∫
dη ũm(η)ηαun(η)−

(
D∂αϕn

1 + q
+ vwδα,0ϕn

)
d−d/2δn,m

]
= −∂α

{
va (χ

′)ϕn√
d(1 + q)

∫
dη ũm(η)

[
unα+ + nαunα−

]
− Dd−d/2

1 + q
∂αϕm − vwδα,0

dd/2
ϕm

}

= −∂α

{
d−(d+1)/2

1 + q
va
(
χ′) [ϕnδm,nα+ + nαϕnδm,nα−

]
− Dd−d/2

1 + q
∂αϕm − vwδα,0

dd/2
ϕm

}

= −∂α

{
d−(d+1)/2

1 + q
va
(
χ′) [ϕmα− + (mα + 1)ϕmα+

]
− Dd−d/2

1 + q
∂αϕm − vwδα,0

dd/2
ϕm

}
,

(B.18)

where we used δm,nα− = δmα+,n and δm,nα+ = δmα−,n. Similarly, the projection

of the second term on the right hand side of Eq. (B.15), i.e., L̂rP , reads

dd/2
∫

dη ũm(η)L̂rP =
(1 + q)D

q
∂′2α ϕm

− ∂′α

{
−(1 + q)

q
ν∂′αU(r)ϕm +

va (χ)

d1/2
[
ϕmα− + (mα + 1)ϕmα+

]}
.

(B.19)

Finally, the last term 1
dτ
L̂ηP of Eq. (B.15), contributes as

1

dτ

∫
dη ũm(η)L̂ηP =

1

dτ
ϕn

∫
dη ũm(η)L̂ηun(η) =

d−d/2−1

τ
λmϕm. (B.20)

Collecting the contributions in Eqs. (B.18), (B.19), and (B.20), the FPE projec-
tion onto ũm(η) yields the following set of coupled equations for the coefficients

∂tϕm(χ, r, t) =

− ∂α

{
1√

d(1 + q)
va (χ′)

[
ϕmα− + (mα + 1)ϕmα+

]
− D

1 + q
∂αϕm − vwδα,0ϕm

}

− ∂′α

{
−(1 + q)

q
ν∂′αU(r)ϕm +

va (χ′)√
d

[
ϕmα− + (mα + 1)ϕmα+

]}
+
D(1 + q)

q
∂′2α ϕm +

λm
dτ

ϕm .

(B.21)

In particular, the dynamics of the first two modes φ(χ, r, t) and

σα(χ, r, t) ≡
∫

dη ηαP (χ, r,η, t) =

(
2π

d

)d/2 ϕ0α+(χ, r, t)√
d

, (B.22)



B.2. SLOW ACTIVE TRAVELING WAVES 136

can be obtained by specialising Eq. (B.21) to the cases m = 0 and m = 0α+,
finding

∂tφ(χ, r, t) = − ∂α

[
−vwδα,0φ+

va (χ′)σα
(1 + q)

− D

1 + q
∂αφ

]
− ∂′α

[
−(1 + q)

q
ν∂′αUφ+ va (χ′)σα − (1 + q)D

q
∂′αφ

]
,

(B.23)

and

∂tσα(χ, r, t) = − ∂β

[
va (χ′)φδα,β
d(1 + q)

− D

1 + q
∂βσα − vwδβ,0σα

]
− ∂′β

[
−(1 + q)

q
ν∂′βU(r)σα +

va (χ′)φδα,β
d

− (1 + q)D

q
∂′βσα

]
− τ−1σα + Υ(χ, r, t),

(B.24)

with Υ(χ, r, t) denoting the contributions due to higher-order modes. In order
to simplify the notation, in the previous expression and in those which follow,
the dependence on (χ, r, t) of φ and σα is understood if not explicitly indicated.
In order to treat this hierarchy of equations, we adopt below two different
approaches depending on the value of the phase velocity vw of the activity wave
compared to the activity field va itself.

B.2 Slow active traveling waves

In the case of slowly propagating waves vw ≪ v0, the hierarchy formed by (B.23),
(B.24) and the evolution equations for higher order modes, can be closed by
assuming that the activity field va varies on length scales much larger than the
persistence length lp = τv0 (small gradients approximation), and considering
quasi-stationary higher-order modes at time scales longer than τ [126, 173, 174].
Under these approximations, the equation (B.24) for the polarization field σα
can be rewritten as

σα(χ, r, t)

τ
= −∂α [va (χ′)φ]

(1 + q)d
− ∂′α [va (χ′)φ]

d
+

(1 + q)

q
ν∂′β

[
∂′βUσα

]
+ O(∂2) ,

(B.25)

where O(∂2) denotes the contributions coming from higher-order powers of the
gradient. The equation for σα(χ, r, t) can be substituted into the continuity
equation for the marginal density ρ(χ, t) =

∫
dr φ(χ, r, t), which can be ob-

tained by integrating (B.23) over the relative distance r, finding

∂tρ(χ, t) = −∂α
[∫

dr
va (χ′)

1 + q
σα(χ, r, t) − vwδα,0ρ(χ, t) − D

1 + q
∂αρ(χ, t)

]
.

(B.26)
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On the r.h.s. of this equation one recognizes the probability current Jα(χ, t),
corresponding to the expression in square brackets. In addition to the diffusive
term ∝ ∇ρ (with a renormalized diffusion coefficient D/(1 + q), as it refers
to the diffusion of the center of friction) and to the current ∝ vwρ due to the
change of reference system, the additional contribution

Iα(χ, t) ≡ 1

1 + q

∫
dr va (χ′)σα(χ, r, t) (B.27)

appears. By using the expression of the quasi-stationary polarization field (B.25),
Iα(χ, t) can be written as

Iα(χ, t) =

=

∫
dr

τva (χ′)

1 + q

{
−∂α [va (χ′)φ]

d(1 + q)
− ∂′α [va (χ′)φ]

d
− (1 + q)

q
ν∂′β [Fβ(r)σα]

}
,

(B.28)

where Fβ(r) = −∂rβU(r). Integrating by part and using ∂′αva(χ
′) = q

1+q
∂αva(χ

′),

which follows from (B.2) and the definitions of ∂′α and ∂α given after (B.16), we
can rewrite the previous expression as:

Iα(χ, t) =
τ

1 + q

∫
dr va (χ′)

[
−∂α [va (χ′)φ]

d(1 + q)

]
+

τ

1 + q

∫
dr

q

(1 + q)d
[va (χ′)φ] ∂αva (χ′)

+
τν

1 + q

∫
dr Fβ(r)σα∂βva (χ′) .

(B.29)

We define now the quantity Σ as

Σ(χ, t) ≡
∫

dr Fβ(r)σα(χ, r, t)∂βva (χ′) . (B.30)

By substituting (B.25) into the above expression for Σ and neglecting all terms
of order O(∂2), we obtain:

Σ =

∫
dr τFβ(r)∂βva (χ′)

[
−∂

′
α [va (χ′)φ]

d
− (1 + q)

q
ν∂′γ [Fγ(r)σα]

]
=

∫
drτ

[
va (χ′)φ

d
∂′α [Fβ(r)∂βva (χ′)] +

(1 + q)

q
νFγ(r)σα∂

′
γ [Fβ(r)∂βva (χ′)]

]
.

(B.31)

The last line can be further simplified by separately considering

∂′α [Fβ(r)∂βva (χ′)] = ∂′αFβ(r)∂βva (χ′) + Fβ(r)∂′α∂βva (χ′)

= ∂′αFβ(r)∂βva (χ′) +
q

1 + q
Fβ(r)∂α∂βva (χ′)

= ∂′αFβ(r)∂βva (χ′) + O(∂2) .

(B.32)



B.2. SLOW ACTIVE TRAVELING WAVES 138

Moreover, since the attractive interaction between the cargo and the active
particle is modeled by a harmonic potential with stiffness κ and zero rest length,
we have that

∂′αFβ(r) = −κδα,β = ∂′βFα(r). (B.33)

Accordingly, (B.32) can be written as

∂′α [Fβ(r)∂βva (χ′)] ≃ −κδα,β∂βva (χ′) = −κ∂αva (χ′) , (B.34)

and thus (B.31) becomes

Σ = −κτ
∫

dr

[
va (χ′)φ

d
∂αva (χ′) +

(1 + q)

q
νFγ(r)σα∂γva (χ′)

]
=

= −κτ
2d

∫
dr φ∂αv

2
a (χ′) − κτν

(1 + q)

q
Σ,

(B.35)

where, in the last line, we used the definition of Σ given in (B.30). Accordingly,
the previous equation can be solved for Σ yielding

Σ(χ, t) = − 1

2d

γτ/τr

1 + 1+q
q

τ
τr

∫
dr φ(χ, r, t)∂αv

2
a (χ′) , (B.36)

where, as in Chapter 4, we introduced the typical time scale τr = 1/κν. The
expression of Σ(χ, t) can then be substituted into (B.29), giving

Iα(χ, t) = − τ

d(1 + q)2

∫
dr v2a (χ′) ∂αφ− 1

2

τ

d(1 + q)2
ϵ

∫
dr φ∂αv

2
a (χ′) ,

(B.37)

where we introduced the tactic coupling

ϵ = 1 − q

1 + 1+q
q

τ
τr

, (B.38)

reported in equation (4.11) of Chapter 4. Moreover, if the typical distance
between the active carrier and the cargo is small compared to the persistence
length, we can approximate φ = φ(χ, r, t) in the integrands above as:

φ(χ, r, t) ≈ ρ(χ, t)δ(r) . (B.39)

Within this approximation, the total current Jα(χ, t) introduced after (B.26)
can be written as

Jα(χ, t) = Veff,α(χ)ρ(χ, t) − ∂α [Deffρ(χ, t)] , (B.40)
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where the effective drift and diffusivity are, respectively, given by

Veff,α(χ) = (1 − ϵ/2)∂αDeff(χ) − vwδα,0 and Deff(χ) =
D

1 + q
+

τv2a(χ)

d(1 + q)2
,

(B.41)
which are reported in (4.10) of Chapter4. The stationary solution of the effective
Fokker-Planck equation

∂tρ(χ, t) = −∇χ · [Veff(χ)ρ(χ, t) −∇χ(Deff(χ)ρ(χ, t))] (B.42)

can be easily proved to be [167, 175, 176]

ρ(χ)

ρb
=

LD−1
eff (χ0)

∫ L

0
dx exp

{
−
∫ χ0+x

χ0
dy

Veff,0(y)

Deff(y)

}
∫ L

0
du
∫ L

0
dxD−1

eff (u) exp
{
−
∫ u+x

u
dy

Veff,0(y)

Deff(y)

} (B.43)

in the case of periodic boundary conditions, as reported in Chapter 4. Moreover,
the system can sustain a finite stationary flux in the comoving frame

J0 =
ρbL

[
1 − exp

{
−
∫ L

0
dy

Veff,0(y)

Deff(y)

}]
∫ L

0
du
∫ L

0
dxD−1

eff (u) exp
{
−
∫ u+x

u
dy

Veff,0(y)

Deff(y)

} (B.44)

along the direction e0, which can be used to compute the average drift velocity
vd = J0/ρb + vw in the lab frame, as reported in (4.16) of Chapter 4.

B.3 Drift velocity with critical cargo

In this Section we show that the drift velocity vd (given by (4.16)), derived in
the limit of slowly propagating activity field vw ≪ v0, vanishes if q takes the
threshold value qth reported in (4.13) of Chapter 4. In particular, when q = qth,
the tactic coupling ϵ in (B.38) vanishes and the effective drift in (B.41) becomes

Veff,α(χ) = ∂αDeff(χ) − vwδα,0 . (B.45)

This expression can be substituted in (B.44) to calculate the stationary current
in the comoving frame. In particular, the denominator of that expression reads:∫ L

0

du

∫ L

0

dxD−1
eff (u) exp

{
−
∫ u+x

u

dy

[
∂α lnDeff(y) − vw

Deff(y)

]}
=

∫ L

0

du

∫ L

0

dxD−1
eff (u+ x) exp

{∫ u+x

u

dy
vw

Deff(y)

}
=

1

vw

∫ L

0

du

[
exp

{∫ u+L

u

dy
vw

Deff(y)

}
− 1

]
=

L

vw

[
exp

{∫ L

0

dy
vw

Deff(y)

}
− 1

]
,

(B.46)
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where in the last equality we used that the effective drift Deff(y) is a periodic
function with period L. Analogously the numerator of (B.44) is given by:

ρbL

[
1 − exp

{
−
∫ L

0

dy
∂αDeff(y) − vw

Deff(y)

}]
= ρbL

[
1 − exp

{∫ L

0

dy
vw

Deff(y)

}]
.

(B.47)

Combining (B.46) and (B.47), the average drift velocity vd reads:

vd =
J0
ρb

+ vw = vw
ρbL

[
1 − exp

{∫ L

0
dy vw

Deff(y)

}]
ρbL

[
exp

{∫ L

0
dy vw

Deff(y)

}
− 1
] + vw = 0 (B.48)

B.4 Fast active traveling waves

In this Section we derive analytical expressions for the stationary density, sta-
tionary current and average drift velocity in the regime of fast active traveling
waves, i.e., for vw ≫ v0. To this aim, we adopt a different strategy to close the
hierarchy of equations governing the dynamics of the modes given by (B.23)
and (B.24), which hinges on assuming a small activity v0 compared to the wave
velocity vw. For simplicity, we present the derivation for the one-dimensional
case d = 1 with the sinusoidal activity field reported in (4.14). The extension to
the case with d ̸= 1 is straightforward. To implement the new closure scheme,
we start from the dynamics of the polarization field given by (B.24), which can
be conveniently rewritten as:

L̂σσ(χ, r, t) = −∂χ [va(χ
′)φ]

(1 + q)
− ∂r [va(χ

′)φ] + Υ(χ, r, t) , (B.49)

where φ = φ(χ, r, t), the position χ′ of the active carrier in the comoving frame is
defined as in (B.2), specialized to d = 1, and Υ(χ, r, t) includes the contributions
of higher-order modes. In the previous equation, the operator L̂σ is defined as

L̂σ = ∂t +
1

τ
− vw∂χ −

D

1 + q
∂2χ −

(1 + q)D

q

[
∂2r +

1

ℓ2
∂rr

]
, (B.50)

with the characteristic length ℓ =
√
Dτr and τr = 1/νκ. We first determine the

Green function G(χ, r, t;χ0, r0, t0) of the operator L̂σ, defined as:

L̂σG(χ, r, t;χ0, r0, t0) = δ(χ− χ0)δ(r − r0)δ(t− t0) . (B.51)

Note that, due to the translational invariance of the operator L̂σ in the variables
χ and t, one expects G(χ, r, t;χ0, r0, t0) to be a function of χ−χ0 and t−t0. The
presence of the interparticle potential, instead, breaks the transaltional invari-
ance of L̂σ with respect to r and therefore G(χ, r, t;χ0, r0, t0) depends separately
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on r and r0. Accordingly, we can write G(χ, r, t;χ0, r0, t0) = G(χ − χ0, r, t −
t0; 0, r0, 0) ≡ G(χ − χ0, r, t − t0; r0) where in the last equality we introduce a
convenient shorthand notation. The function G(χ, r, t; r0) can be conveniently
determined by expanding it in the Fourier-Hermite basis

G(χ, r, t; r0) =
1

ℓ

∞∑
n=0

∫
dω

2π

∫
dq̃

2π
G̃n(q̃, ω; r0)e

iq̃χ+iωtun(r), (B.52)

where un(r) is given by

un(r) = e−r2/2ℓ2Hn(r/ℓ) , (B.53)

and Hn(x) is the n-th probabilist’s Hermite polynomial. With this expansion,
the l.h.s. of (B.51) becomes

1

ℓ

∞∑
n=0

∫
dω

2π

∫
dq̃

2π

[
iω + τ−1 +

D

1 + q
q̃2 + ivwq̃ +

(1 + q)D

q

n

ℓ2

]
× G̃n(q̃, ω; r0)e

iq̃χ+iωtun(r),

(B.54)

while its r.h.s. is

1

ℓ

∞∑
n=0

∫
dω

2π

∫
dq̃

2π
ũn(r0)e

iq̃χ+iωtun(r), (B.55)

where we used the fact that δ(r − r0) in (B.51) can be written as

1

ℓ

∞∑
n=0

ũn(r0)un(r) = δ(r − r0) , (B.56)

and the functions ũn(r) are defined as:

ũn(r) =
1√

2πn!
Hn(r/ℓ) . (B.57)

Therefore, by comparing (B.54) with (B.55), the Green function in reciprocal
space turns out to be given by

G̃n(q̃, ω; r0) =
ũn(r0)

iω + τ−1 + D
1+q

q̃2 + ivwq̃ + (1+q)D
q

n
ℓ2

. (B.58)

After inserting this expression of G̃n(q̃, ω; r0) into (B.52), one can readily cal-
culate the integral in ω via the residue theorem. The corresponding residue is
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a Gaussian function of q̃ and thus the corresponding integral is also straightfor-
ward, with the final result

G(χ, r, t; r0) =
Θ(t)

ℓ

exp

{
− t

τ
− (χ+vwt)2

4 D
1+q

t

}
√

4π D
1+q

t

∞∑
n=0

exp

{
−(1 + q)Dn

qℓ2
t

}
ũn(r0)un(r),

(B.59)
where the Heaviside function Θ is defined such that Θ(t > 0) = 1 and Θ(t ≤
0) = 0. Before considering the last summation, we introduce the quantity

s = exp

{
−(1 + q)

q

Dt

ℓ2

}
< 1 . (B.60)

In terms of s the remaining sum in (B.59) can be written as

1

ℓ

∞∑
n=0

snũn(r0)un(r) =
1

ℓ
√

2π
exp

{
− r2

2ℓ2

} ∞∑
n=0

sn

n!
Hn

(r0
ℓ

)
Hn

(r
ℓ

)
=

1√
2πℓ2(1 − s2)

exp

{
− (r − sr0)

2

2(1 − s2)ℓ2

} (B.61)

where we used the expression of un and ũn given in (B.53) and (B.57), respec-
tively, and in the second equality we used Mehler’s formula [333] for probabilist’s
Hermite polynomials, i.e.,

∞∑
n=0

sn

n!
Hn(x)Hn(y) =

1√
1 − s2

exp

{
−s

2(x2 + y2) − 2sxy

2(1 − s2)

}
for −1 < s < 1 .

(B.62)
Accordingly, by using the equations (B.59), (B.60), and (B.61), the Green func-
tion in (B.51) reads:

G(χ, r, t; r0) = Θ(t) exp {−t/τ}
exp

{
− (χ+vwt)2

4Dt/(1+q)

}
√

4πDt/(1 + q)

exp
{
− (r−sr0)2

2(1−s2)ℓ2

}
√

2πℓ2(1 − s2)
. (B.63)

Once the Green function is known, one can determine σ(χ, r, t) by computing
the convolution integral over χ0, t0, and r0 of the product between G(χ −
χ0, r, t− t0; r0) and the r.h.s. of (B.49) evaluated for χ = χ0, r = r0, and t = t0.
At this stage, we are ready to compute the contribution to the flux in (B.26)
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given by (B.27), specialized to the case d = 1. In particular, one has

I(χ, t) =

−
∫

dr va
(
χ′) ∫ ∞

−∞
dχ0dr0dt0G(χ− χ0, r, t− t0; r0)

∂χ0

[
va(χ0 +

qr0
1+q )φ(χ0, r0, t0)

]
(1 + q)2

−
∫

dr va
(
χ′) ∫ ∞

−∞
dχ0dr0dt0G(χ− χ0, r, t− t0; r0)

∂r0

[
va(χ0 +

qr0
1+q )φ(χ0, r0, t0)

]
(1 + q)

+

∫
dr va

(
χ′) ∫ ∞

−∞
dχ0dr0dt0G(χ− χ0, r, t− t0; r0)

Υ(χ0, r0, t0)

(1 + q)
.

(B.64)

The latter quantity can be computed under the approximation of small activity
field compared to vw, by keeping only terms of the lowest order in v0. For this
reason, we neglect the contribution coming from higher-order modes Υ(χ, r, t),
thus closing the hierarchy, and we evaluate the first two integrals by assuming
that the density field

φ(χ0, r0, t0) = ρb
e−r20/2ℓ

2

√
2πℓ2

+ O(v0/vw) (B.65)

is approximately equal to the one at equilibrium, i.e., for va ∝ v0 = 0, with ρb
the bulk density. In this way, all integrals appearing in the first two lines are
standard Gaussian integrals, and can be easily calculated. As a result, I(χ, t)
is actually independent of time (as φ in Eq. (B.65)) and is given by

I(χ) = −
ρbτv

2
0 exp

(
− q2ℓ2

2λ2(1+q)2

)
λ(1 + q)2

[
cos(χ/λ+ ψ0)

|z0|
− q

cos (χ/λ)(
1 + (1+q)τD

qℓ2

)
+ exp

(
− q2ℓ2

2λ2(1 + q)2

) ∞∑
n=0

1

n!

[
q2ℓ2

λ2(1 + q)2

]n
[fn(χ) + qfn+1(χ)]

]
,

(B.66)

with

fn(χ) =
(−1)n sin(2χ/λ+ ψn) − sinψn

2|zn|
, (B.67)

and where ψn and |zn| are the phase and the modulus, respectively, of the
complex number

zn = 1 +
τD

λ2(1 + q)
+

(1 + q)τD

qℓ2
n+ i

τvw
λ

. (B.68)

In order to compute the marginal probability density ρ(χ) in the steady state,
we impose that the probability current in (B.26) equals a constant J . Therefore,
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one has to solve the following differential equation,

D

1 + q
∂χρ(χ) + vwρ(χ) = I(χ) − J, (B.69)

with I(χ) given in (B.66). This can be done by first computing the Green
function G1, defined by(

D

1 + q
∂χ + vw

)
G1(χ− χ0) = δ(χ− χ0), (B.70)

which reads (in the case of vw > 0)

G1(χ− χ0) =
(1 + q)

D
Θ(χ− χ0) exp

{
−(1 + q)vw

D
(χ− χ0)

}
, (B.71)

and then the following convolution:

ρ(χ) =
(1 + q)

D

∫ χ

−∞
dχ′ exp

{
−(1 + q)vw

D
(χ− χ′)

}
I(χ′) − J

vw
. (B.72)

The contribution coming from the homogeneous solution of (B.69) vanishes
under periodic boundary conditions. Also in this case, the convolution involves
Gaussian integrals, the standard calculation of which is not reported here for
the sake of space. As a result, the stationary density ρ(χ) can be expressed as

ρ(χ) = − ρbτv
2
0

Dλ(1 + q)
e
− q2ℓ2

2λ2(1+q)2

[
cos(χ/λ+ ψ0 + φ(λ))

|ζ(λ)||z0|
− q cos (χ/λ+ φ(λ))

|ζ(λ)|
(

1 + (1+q)τD
qℓ2

)
+ exp

(
− q2ℓ2

2λ2(1 + q)2

) ∞∑
n=0

1

n!

(
q2ℓ2

λ2(1 + q)2

)n

[gn(χ) + qgn+1(χ)]

]
− J

vw
,

(B.73)

where the functions {gn(χ)} are defined as

gn(χ) =
(−1)n sin(2χ/λ+ ψn + φ(λ/2))

2|ζ(λ/2)||zn|
− sin(ψn)

2 (1+q)vw
D

|zn|
, (B.74)

and where φ(λ) and |ζ(λ)| are the phase and the modulus, respectively, of the
λ-dependent complex number

ζ(λ) =
(1 + q)vw

D
− iλ−1. (B.75)

Moreover, by imposing the normalization of the marginal density ρ(χ), we find
the expression of the stationary flux J in the comoving frame:

J = −vw
L

1 − τv20e
− q2ℓ2

λ2(1+q)2

2vwλ(1 + q)2

∞∑
n=0

(
q2ℓ2

λ2(1+q)2

)n
n!

(
sin(ψn)

|zn|
+
q sin(ψn+1)

|zn+1|

) ,

(B.76)
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and, as a consequence, the average drift velocity:

vd
v0

=
lp

2λ(1 + q)2
e
− q2ℓ2

λ2(1+q)2

∞∑
n=0

(
q2ℓ2

λ2(1+q)2

)n
n!

(
sin(ψn)

|zn|
+
q sin(ψn+1)

|zn+1|

)
. (B.77)

The previous equation is reported in Chapter 4 in the limit of small thermal
diffusivity Dτr ≪ λ2 (see equation (4.21)).

B.5 Simulation details

All numerical data presented in Chapter 4 have been obtained from Brownian-
dynamics simulations of the discretized version of the stochastic equation of
motion (4.1), using the Euler-Maruyama scheme with integration timestep ∆t =
0.01. In particular, the stationary density of the center-of-friction reported in
Figure 4.2 has been numerically estimated on a time series coming from a single
simulation of duration 108 steps, using periodic boundary conditions with a cell
size of L = 10. Other simulation parameters were: vw = 10−2, v0 = 1.0, τ = 0.1,
κ = 5, γ = 1.0, D = 10−3 (note that kBT = γD = 10−3), λ = 10/(4π), qhigh = 4
and qlow = 1. The numerical results about the drift velocity in both cases of slow
and fast propagating activity wave, shown in Figures 4.3 and 4.4, were obtained
by computing (χ(t) + vwt−χ(0))/t for each of N = 103 independent stochastic
trajectories of length t = 106∆t with open boundary conditions, and averaging
such a quantity over different realizations. In this case we used D = 10−2.



Appendix C

Appendix of Chapter 5

We provide here a detailed derivation of the analytical predictions reported in
Chapter 5. In particular, in Sec. C.1 we marginalize out the active degrees
of freedom by using a moment expansion and obtain a hierarchy of coupled
differential equations for the expansion coefficients. A closure scheme for this
hierarchy is presented in Sec C.2. This relies on the separation of time scales
between the evolution of the probability density of the polymer structure and
that of higher-order expansion coefficients, as well as on the assumption that
the activity field is characterized by small gradients. The effective evolution
equation for the density of the center-of-mass of the polymer (Equation (5.10)
of Chapter 5) is derived in Sec C.2. In Sec. C.3 we consider a more realistic
model of a polymer chain that includes excluded volume interaction (to account
for steric hindrance effects) and finite extensibility of the bonds. We show by
means of numerical simulations that the phenomenology presented in the case
of ideal chains is not altered by these additional interactions. In Sec. C.4 we
comment on the fact that the polymers’ separation described in Chapter 5 is a
pure nonequilibrium effect, which would disappear if the underlying stochastic
dynamics satisfied the detailed balance condition. Finally, in Sec. C.5 we re-
port the details of the numerical simulations carried out to obtain the results
presented in Chapter 5 as well as in this Appendix.

C.1 Moment expansion

In order to determine the spatial regions of the bath in which the chain tends to
localize, we apply a two-step coarse-graining procedure to the dynamics of the
system. First, we marginalize the 1-time joint probability density P({χ}, {η}, t)
over the orientation vectors {η} associated to the active forces and obtain an

146
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exact evolution equation for the marginal density

ϱ({χ}, t) ≡
∫ N−1∏

i=0

dηiP({χ}, {η}, t). (C.1)

As a second step, under some assumptions which will be introduced in the
following, we integrate out the information concerning the internal structure of
the chain (i.e., the Rouse modes {χi} with i > 0)[84], thus getting the marginal
density ρ0(χ0, t) of the rescaled center-of-mass χ0 which is defined as

ρ0(χ0, t) ≡
∫ N−1∏

i=1

dχi ϱ({χ}, t). (C.2)

To marginalize the active degrees of freedom {η}, we first expand the joint
probability density P({χ}, {η}, t) into the eigenfunctions of the operator Lη

which contributes to the dynamics of P according to Equation (5.8). It can be
shown that the latter is diagonalized by the following set of functions:

un({η}) =
exp

{
−d

∑
j η

2
j

2

}∏N−1
i=0

∏d
α=1Hniα

(√
dηiα

)
(2π/d)Nd/2

, (C.3)

where n denotes an N × d matrix of non-negative integers used to label the
eigenfunctions and Hn(x) is the n-th Hermite polynomial in the probabilist
convention [333]. The corresponding eigenvalues λn are proportional to the
inverse persistence time 1/τ :

λn = −τ−1

N−1∑
i=0

d∑
α=1

niα . (C.4)

Accordingly, the joint probability density P({χ}, {η}, t) can be rewritten as a
weighted combination of the basis elements {un({η})}:

P({χ}, {η}, t) =
∑

n∈NN×d
0

ϕn({χ} , t)un({η}) , (C.5)

where the dependence on the Rouse modes and time is now brought in by the ex-
pansion coefficients {ϕn({χ} , t)}. In order to derive their governing equations,
we find convenient to first introduce the set of auxiliary functions {ũn({η})}
defined as:

ũn({η}) =
N−1∏
i=0

d∏
α=1

Hniα

(√
d ηiα

)
niα!

, (C.6)



C.1. MOMENT EXPANSION 148

which satisfy the following orthonormality relation with the eigenfunctions (C.3):∫ N−1∏
i=0

dηi ũmun =
N−1∏
i=0

d∏
α=1

δniα,miα
= δn,m. (C.7)

With the help of Eqs. (C.5), (C.6), and (C.7), it can be easily shown that
the lowest-order coefficient ϕ0({χ} , t) is nothing but the marginal distribution
ϱ({χ}, t):

ϱ({χ} , t) =

∫ N−1∏
i=0

dηi ũ0P({χ} , {η} , t)

=
∑
n

ϕn({χ}, t)
∫ N−1∏

i=0

dηi ũ0un

= ϕ0({χ}, t) .

(C.8)

Accordingly, the information about the conformation of the polymer and its
preferential accumulation in specific regions of the non-homogeneous active bath
is encoded in ϕ0({χ}, t). In order to derive the evolution equations for the
coefficients {ϕn({χ}, t)}, we introduce the following inner product between two
generic functions f, g of the orientation vectors {η}:

⟨f({η}); g({η})⟩ ≡
∫ N−1∏

i=0

dηif({η})g({η}); (C.9)

then, we project the FP equation given by (5.8) onto the auxiliary functions
{ũn({η})}, finding

∂tϕn({η}) = ⟨ũn; ∂tP⟩ = ⟨ũn; (L0 + La + Lη)P⟩. (C.10)

The right hand side of (C.10) can be evaluated after recalling that all Her-
mite polynomials can be built by iteratively applying the following recurrence
relation, starting from H0(x) = 1 [333],

Hn+1(x) = xHn(x) −H ′
n(x), (C.11)

and that they form a so-called Appell sequence, as they satisfy

H ′
n(x) = nHn−1(x). (C.12)

These two identities can be combined to obtain useful relations between Her-
mite polynomials of different orders. To set the notation for the upcoming
derivation, we find convenient to extend the definition of un, ũn and ϕn to the
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case with n ∈ ZN×d, assuming that un = ũn = ϕn = 0 if the matrix n con-
tains at least one negative element. Moreover, we introduce the raising and
lowering operators b†iα, biα : ZN×d −→ ZN×d, which act on an N × d matrix
n by increasing/decreasing its (i, α)-component by a unit. With the help of
Eqs. (C.11) and (C.12), the following useful identity can be obtained:

ηiαHniα
(
√
dηiα) =

Hniα+1(
√
dηiα) + niαHniα−1(

√
dηiα)√

d
, (C.13)

which implies:
ηiαun = d−1/2

[
ub†iαn

+ niαubiαn
]
. (C.14)

Using the identities introduced above, we are now in the position of evaluating
the right hand side of (C.10). To avoid cumbersome expressions, we separately
determine the contributions due to the three operators L0, La, and Lη defined
in (5.9). As L0 does not explicitly depend on the orientation vectors {ηi}, it is
straightforward to show that:

⟨ũn;L0P⟩ =
∑
m

⟨ũn;um⟩L0ϕm = L0ϕn. (C.15)

The projection of LηP onto ũn can be easily computed by exploiting the fact
that Lη does not depend on the Rouse modes and it is diagonalized by the
eigenfunctions {un}:

⟨ũn;LηP⟩ =
∑
m

ϕm⟨ũn;Lηum⟩ = λnϕn. (C.16)

Deriving the contribution coming from the projection of LaP is slightly more
complicate, as it contains information about the coupling between the Rouse
modes and the orientation vectors. It reads

⟨ũn;LaP⟩ = −∂iαφijv(Xj)
∑
m

ϕm⟨ũn; ηjαum⟩

= −∂iαφijv(Xj)
1√
d

[ϕbjαn + (njα + 1)ϕb†jαn
],

(C.17)

where summation over repeated indices is implied and we used the identity (C.14)
in order to evaluate the inner product in the right hand side of the first line:

√
d ⟨ũn; ηjαum⟩ = ⟨ũm;ub†jαm

⟩ + njα⟨ũm;ubjαm⟩

= δn,b†jαm
+mjαδn,bjαm

= δbjαn,m + (njα + 1)δb†jαn,m.

(C.18)
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The projection in Eq. (C.10) generates a system of coupled partial differential
equations for {ϕn({χ}, t)} with a hierarchical structure

∂tϕn = L0ϕn + λnϕn − ∂iαφijv(Xj)
1√
d

[ϕbjαn + (njα + 1)ϕb†jαn
] , (C.19)

which bears similarities to hydrodynamic theories. For this reason, Eq. (C.19)
is sometimes referred to as a generalized hydrodynamic hierarchy [25, 146],
even though our model neglects any explicit hydrodynamic effect due to the
interaction of the polymer with the surrounding fluid.

It is possible to show that the expansion coefficients {ϕn({χ} , t)} are related
to the conditional moments of the orientation vectors given a fixed polymer
configuration {χ}. In fact, the following equalities hold:

ϱ = ϱ⟨1| {χ}⟩ = ϕ0 ,

σiα ≡ ϱ⟨ηiα| {χ}⟩ =
1√
d
ϕb†iα0

,

Qijαβ ≡ ϱ⟨ηiαηjβ −
δijδαβ
d

| {χ}⟩

= d−1[1 + δijδαβ]ϕb†iαb
†
jβ0

,

(C.20)

with 0 the N×d matrix with all entries equal to zero, and where we introduced
the rank-2 tensor σiα and rank-4 tensor Qijαβ. Analogous formulas which relate
higher-order conditional moments and expansion coefficients can be derived.
The vector field σi({χ}) represents the typical orientation of the active force
acting on the i-th monomer when the whole chain assumes the configuration
{χ}. Note that this average polarization does not trivially vanish in the steady
state due to the non-homogeneity which characterizes the active bath. Similarly,
when i = j, the field Qij({χ}) is proportional to the nematic tensor of the
orientation vector ηi at fixed polymer configuration {χ}, whereas for i ̸= j
it depends on the conditional correlation of the directions of the active forces
exerted on monomers i and j. Analogous definitions of local polar and nematic
order parameters are commonly employed in other contexts, see e.g. [115, 127,
146, 334]. The evolution of the zeroth- and first-order expansion coefficients
can be obtained by specializing Eq. (C.19) to n = 0 and n = b†iα0, respectively,
and is given by:

∂tϱ = −∂iα
[
− γiχiαϱ−D∂iαϱ+ φijv(Xj)σjα

]
,

∂tσiα = −∂lβ
[
φljv(Xj)

(δijδαβ
d

ϱ+Qjiαβ

)]
+ L0σiα − τ−1σiα .

(C.21)

where we recall that Xj =
∑

k φ
−1
jk χk. A few remarks on these equations

are needed. The marginal density ϱ is a locally conserved quantity, hence its
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evolution takes the form of a continuity equation ∂tϱ = −∂iαJiα, where

Jiα = −γiχiαϱ+ φijv(Xj)σjα −D∂iαϱ (C.22)

denotes the (i, α)-component of the probability flux in the N × d dimensional
Rouse space. The first two terms on the right hand side of Eq. (C.22) corre-
spond to the drift component of the flux Jiα. They originate from the internal
interactions along the polymer backbones and the average polarity of the active
forces, respectively. On the other hand, the last term on the right hand side of
Eq. (C.22) arises from fluctuations due to thermal diffusion. It can be readily
shown that the marginal densities ρi(χi, t) defined as

ρi(χi, t) ≡
∫ ∏

j ̸=i

dχj ϱ({χ}, t), (C.23)

also evolve according to continuity equations ∂tρi = −∂αJiα, with flux

Jiα ≡
∫ ∏

h̸=i

dχhJiα

= −γiχiαρi + φij

∫ ∏
h̸=i

dχhv(Xj)σjα −D∂iαρi .

(C.24)

Due to the fact that the probability density is locally conserved, both ϱ and {ρi}
can be seen as slow modes of the generalized hydrodynamic theory, i.e., they
exhibit a slow relaxation when subject to large-wavelength perturbations. On
the contrary, σiα does not obey any conservation law and its relaxation occurs
on a typical time scale given by the persistence time τ , even when perturbed
on very large length scales. For this reason, it is identified as a fast mode.
Analogously, all equations governing the evolution of the higher-order modes
associated to the expansion coefficients ϕn will be characterized by a damping
term ∝ λnϕn [see Eq. (C.19)], and thus by an inverse relaxation time |λn|. In
particular, the time scale separation between slow and fast modes can be used to
make analytical progresses with the aforementioned generalized hydrodynamic
theory. More precisely, for any given time t, one can assume that the fast modes
have relaxed to their quasi-stationary state at fixed density field ϱ({χ}, t). The
accuracy of this adiabatic approximation, which is used in the rest of the paper
to close the hierarchy of the equations governing the evolution of the generalized
hydrodynamic modes, is strongly dependent on the reorientational dynamics of
the active forces. In particular, if their persistence time increases, the accuracy
of the quasi-static approximation decreases.

C.2 Small gradient approximation

In this Section we derive the effective Fokker-Planck equation (5.10) for the
marginal probability density ρ0(χ0, t) by applying a gradient expansion ap-
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proach up to the drift/diffusion order (i.e., we neglect terms of order O(∇2
0)

or higher in the flux J0α). We start by considering the evolution of the tensor
Qijαβ obtained combining Eqs. (C.20) and (C.19):

∂tQijαβ = L0Qijαβ − (2/τ)Qijαβ

− ∂kγφkhv(Xh)d−1[δhiδγασjβ + δhjδγβσiα]

− ∂kγφkhv(Xh)Σijhαβγ ,

(C.25)

where we used λb†iαb
†
jβ0

= −2/τ , the identity

(1 + δijδαβ)ϕbhγb
†
iαb

†
jβ0

= d1/2[δhiδγασjβ + δhjδγβσiα] , (C.26)

and we introduced the tensor Σijhαβγ related to the third order expansion coeffi-
cient ϕb†hγb

†
iαb

†
jβ0

, the expression of which is actually not needed below. Imposing

∂tQijαβ = 0 due to the time-scale separation between slow and fast modes, we
get the following compact equation for Qijαβ:

Qijαβ = ∂kγΥijkαβγ, (C.27)

where Υijkαβγ = Υijkαβγ[σ,Q, ...] is a functional of all the fast modes and it
corresponds to the flux of the local nematic order parameter tensor Q. Its
exact expression, which can be obtained from (C.25), is actually irrelevant for
the rest of the derivation. What matters is that the tensor Qijαβ is a quantity
of order O({∇k}) or higher, where the notation O({∇k}) indicates dependence
on first-order gradients with respect to all Rouse modes {χk}. Note, however,
that our gradient expansion is based on the assumption that the probability
densities and fluxes (and thus the modes) exhibit small variations when the
center-of-mass of the polymer is displaced, but not when its internal structure is
changed. Combining Eqs. (C.27) and (C.21), and applying again the quasistatic
approximation ∂tσiα = 0, we obtain the following equation for σiα:

σiα = − τ/d ∂lαφliv(Xi)ϱ

+ τ∂jβγjχjβσiα

− τ∂lβφljv(Xj)∂kγΥijkαβγ

+ τD∂jβ∂jβσiα.

(C.28)

Let us now consider the probability flux J0α related to the marginal density
ρ0(χ0, t), the definition of which is given in Eq. (C.24). In particular, we focus on
the second contribution on the right hand side of that equation, which originates
from the interaction of the polymer with the active bath:

J act
0α ≡ φ0i

∫ ∏
h̸=0

dχhv(Xi)σiα, (C.29)
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and combine it with the expression of the quasistatic mode σiα in Eq. (C.28).
The last line of Eq. (C.28) contributes to the flux with a term proportional to:

φ0i

∫ ∏
h̸=0

dχhv(Xi)∂jβ∂jβσiα

= φ0i

∫ ∏
h̸=0

dχh[v(Xi)∇2
0σiα + σiα

∑
j ̸=0

∇2
jv(Xi)]

= O(∇2
0),

(C.30)

where we used integration by parts from first to second line, and the following
identity

∂jβv(Xi) = ∂jβv(φkiχk) =
∂v

∂φkiχkα

∂jβφliχlα =
√
Nφji∂0βv(Xi), (C.31)

to show that each Laplacian ∇2
jv(Xi) in Eq. (C.30) can be also rewritten as

a term of order O(∇2
0). Hence, the contribution to the flux J act

0α related to
Eq. (C.30) is negligible under the assumptions we made. Analogously, also the
third line of Eq. (C.28) can be shown to produce terms of order O(∇2

0) once
plugged into Eq. (C.29), due to∫ ∏

h̸=0

dχhv(Xi)∂lβv(Xj)∂kγΥijkαβγ

= O(∇2
0) −

∑
k ̸=0

∫ ∏
h̸=0

dχhΥijkαβγ∂kγv(Xi)∂lβv(Xj)

= O(∇2
0),

(C.32)

where we used again integration by parts and Eq. (C.31). This implies that the
information about higher-order modes is not relevant if we are only interested
in deriving an effective drift/diffusion equation for ρ0. We now focus on the
terms of Eq. (C.28) that lead to non-vanishing contributions to the flux J act

0α .
Substituting the first line of (C.28) into (C.29) we get:

J act,1
0α ≡ −τ/dφ0i

∫ ∏
h̸=0

dχhv(Xi)∂lαφliv(Xi)ϱ . (C.33)



C.2. SMALL GRADIENT APPROXIMATION 154

We find convenient to divide the implicit sum over the index l in this expression
into the terms with l = 0 and l ̸= 0. For l ̸= 0, we get:

− (τ/d)φ0i

∑
l ̸=0

∫ ∏
h̸=0

dχhv(Xi)∂lαφliv(Xi)ϱ

=
τ

2d
φ0i

∑
l ̸=0

∫ ∏
h̸=0

dχh

√
Nφliφliϱ ∂0αv2(Xi)

=
τ

2d
∂0αv2

( χ0√
N

)∑
l ̸=0

√
Nφ0iφliφliρ0 + O(∇2

0)

=
(N − 1)τ

2d
ρ0∂0αv2

( χ0√
N

)
+ O(∇2

0),

(C.34)

where the first equality follows from integration by parts and Eq. (C.31), the
second equality is obtained by Taylor expanding ∂0αv2(Xi) as

∂0αv2(Xi) = ∂0αv2(φjiχj) = ∂0αv2(φ0iχ0) + O(∇2
0), (C.35)

and by using the definition of ρ0 given in Eq. (C.2). The last line of Eq. (C.34),
instead, results from using the following identity∑

i

∑
l ̸=0

φ0iφliφli =
∑
l ̸=0

δll/
√
N = (N − 1)/

√
N, (C.36)

based on the fact that the matrix φij is orthogonal, i.e., φji = φ−1
ij , and the

entries of its first row are φ0i = N−1/2 for all values of i ∈ {0, 1, ..., N − 1}. For
l = 0, instead, Eq. (C.33) reads

− (τ/d)φ0i

∫ ∏
h̸=0

dχhv(Xi)∂0αφ0iv(Xi)ϱ

= − τ

2d
ρ0∂0αv2

( χ0√
N

)
− τ

d
v2
( χ0√

N

)
∂0αρ0 + O(∇2

0) .

(C.37)

Combining Eq. (C.34) and Eq. (C.37) one has:

J act,1
0α =

(N − 2)τ

2d
ρ0∂0αv2

( χ0√
N

)
− τ

d
v2
( χ0√

N

)
∂0αρ0 + O(∇2

0). (C.38)

Finally, the last contribution to the flux J act
0α comes from inserting the second

line of (C.28) into (C.29). We denote this contribution by J act,2
0α , the expression

of which is

J act,2
0α =

∑
j

Ijα ,

Ijα ≡ −τφ0i

∫ ∏
h̸=0

dχh[∂jβv(Xi)]γjχjβσiα,
(C.39)
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where the right hand side of the second line is not implicitly summed over j.
Using again (C.28) and neglecting all terms of order O(∇2

0), we can derive a
self-consistent equation for Ijα. As a first step we rewrite Ijα as:

Ijα =
τ 2

d
φ0i

∫ ∏
h̸=0

dχh[∂jβv(Xi)]γjχjβ∂lαφliv(Xi)ϱ

− τ 2φ0i

∫ ∏
h̸=0

dχh[∂jβv(Xi)]γjχjβ∂lγγlχlγσiα

+ O(∇2
0).

(C.40)

The first line can be simplified as follows:

τ 2

d
φ0i

∫ ∏
h̸=0

dχh[∂jβv(Xi)]γjχjβ∂lαφliv(Xi)ϱ

= −τ
2

d
φ0i

∫ ∏
h̸=0

dχh[∂jαv(Xi)]γjφjiv(Xi)ϱ+ O(∇2
0)

= − τ
2

2d

√
Nφ0iφjiφjiγjρ0∂0αv2

( χ0√
N

)
+ O(∇2

0)

= −τ
2γj
2d

ρ0∂0αv2
( χ0√

N

)
+ O(∇2

0),

(C.41)

where we used integration by parts and Eqs. (C.31), (C.35), and (C.36). The
second line of (C.40) can be rewritten as:

− τ 2φ0i

∫ ∏
h̸=0

dχh[∂jβv(Xi)]γjχjβ∂lγγlχlγσiα

= τ 2φ0i

∫ ∏
h̸=0

dχh[∂jβv(Xi)]γjγjχjβσiα + O(∇2
0)

= −τγjIjα + O(∇2
0) .

(C.42)

Equations (C.41), (C.42), (C.40), and (C.39) can eventually be combined to get

J act,2
0α =

∑
j

Ijα

= − τ

2d

[
N−1∑
j=0

τγj
1 + τγj

]
ρ∂0αv2

( χ0√
N

)
+ O(∇2

0)

= − τ

2d
[N − 2 + ϵ]ρ∂0αv2

( χ0√
N

)
+ O(∇2

0),

(C.43)
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where ϵ is defined in (5.13). Putting together the contributions derived in
Eqs. (C.33) and (C.43), we can finally write down the expression of the proba-
bility flux J0α related to the marginal density ρ0, given by

J0α = J act,1
0α + J act,2

0α −D∂0αρ0

= − τϵ
2d
ρ0∂0αv2

( χ0√
N

)
−
[
D +

τ

d
v2
( χ0√

N

)]
∂0αρ0 + O(∇2

0).
(C.44)

After applying the chain rule to the second line of Eq. (C.44), we can identify
the drift and diffusion component of the flux with:

J drift
0 =

τ(2 − ϵ)

2d
ρ0∇0v

2
( χ0√

N

)
,

J diff
0 = −∇0

([
D +

τ

d
v2
( χ0√

N

)]
ρ0

)
,

(C.45)

from which Eq. (5.10) of Chapter 5 follows.

C.3 Excluded volume and finite extensibility

The theoretical predictions derived so far are based on the simplest possible
polymer model, i.e., that of an ideal fully flexible harmonic chain. In the present
Section we consider a more realistic system characterized by excluded volume
interactions among the monomers and a finite extensibility of the bonds, and
we investigate the extent to which the predictions presented in Chapter 5 are
affected by these additional interactions. In particular, we run Brownian dy-
namics simulations of linear chains with polymerization degree N , with excluded
volume repulsion modeled by a truncated and shifted Lennard-Jones (or WCA
[335]) interaction potential VLJ(r) given by:

VLJ(r) =

{
4εLJ

[(
σ
r

)12 − (σ
r

)6]
+ εLJ if r < 21/6σ ,

0 else.
(C.46)

Moreover, we change the harmonic interaction potential between connected
monomers with the following Finitely Extensible Nonlinear Elastic (FENE) po-
tential [336]:

VFE(r) =

{
−κf∆

2

2
ln
[
1 −

(
r−r0
∆

)2]
if |r − r0| < ∆ ,

+∞ else,
(C.47)

where κf denotes the stiffness of the interaction, r0 the equilibrium bond length
and ∆ the maximal stretching length. To analyze the changes due to such in-
teractions, we compute the stationary distribution of the center of mass for
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Figure C.1: Stationary probability distribution of the center of mass of lin-
ear chains with N ∈ {2, 3, ..., 7} monomers, excluded volume interaction and
FENE bonds. The sinusoidal activity field (red dashed line) is the same as in
Figures 5.2 and 5.3. The dashed-dotted lines represent the theoretical predic-
tions obtained with ideal (phantom) harmonic chains. The parameters of the
FENE potential are: κf = 10, ∆ = 0.5, r0 = 1.5. The Lennard Jones param-
eters are: εLJ = 1.0, σ = 1.0. All the other parameters are the same as in
Figure 5.2.

all considered linear chains, with the same sinusoidal activity field as that
used in Figures 5.2 and 5.3. As a result, we obtain the histograms reported
in Figure C.1. Although we do not expect a quantitative matching between
these numerical data and the theoretical predictions derived for the ideal Rouse
model, it is instructive to compare them. For this reason, Figure C.1 shows
with dashed-dotted lines the steady state density of an ideal phantom chain,
reported in Eq. (5.15), and with symbols the results of the molecular dynam-
ics simulations with both excluded volume interaction and FENE potential. A
few comments on Figure C.1 are in order. Within the range of values of the
parameters chosen in all the simulations considered here, the transition from
localization in regions with low activity to that in regions with high activity
occurs at a fairly small polymerization degree N . Specifically, in Figure C.1,
a tetramer (N = 4) is already able to accumulate where the bath activity is
higher. Moreover, intuitively, one would expect the steric hindrance to play a
minor role for very short chains. Indeed, with the choice of parameters done
in Figure C.1, not only the transition is not affected by the additional interac-
tions, but also the difference between the simulation data and the theoretical
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predictions for ideal chains is quite small, at least up to N = 4. Above the
transition point, where the polymers localize in the region of high activity, the
steric hindrance is more relevant and the quantitative difference with the ideal
case increases. Specifically, one can see that the excluded volume interaction
reduces the efficiency of the localization in high activity regions. Notice that in
the simulations performed in order to obtain Figure C.1, the Lennard-Jones pa-
rameter σLJ is comparable with the typical bond length. Interestingly enough,
this shows that the localization properties of a polymer in a non-uniform active
bath are not qualitatively affected by the presence of steric hindrance effects and
thus that our results are robust even with more realistic interaction potentials.

C.4 Non-equilibrium separation

In this Section we argue that the chemotactic-like transition that leads to a
spontaneous separation of polymers with different length and/or connectivity
is a pure non-equilibrium effect. In other words, restoring the fluctuation-
dissipation relation by adding a suitable friction memory kernel to the stochas-
tic equation of motion would substantially alter the behavior of the polymer
compared to the case discussed in Chapter 5. In the following, we try to justify
this statement by considering the simpler scenario of a single particle in a non-
uniform activity field, where the rotational dynamics of the orientation vector
is modified so that the detailed balance condition is satisfied. More precisely,
let us consider the following underdamped dynamics of a tracer particle with
position X(t), velocity v(t) and orientation vector η(t):

Ẋ = v ,

mv̇ = −γv −∇U(X) + fa(X)η + ξ ,

η̇ = −τ−1η − σfa(X)v + ζ ,

(C.48)

where γ is a friction coefficient, U(x) an external potential, ξ and ζ zero-mean
Gaussian white noises with correlation

⟨ξα(t)ξβ(s)⟩ = 2Tγδαβδ(t− s) , (C.49)

⟨ζα(t)ζβ(s)⟩ = 2T/τδαβδ(t− s) , (C.50)

and where we introduced the binary variable σ ∈ {0, 1}. The stochastic variable
η is treated as an effective velocity variable with a unit mass-like coefficient.
Note that for σ = 0 the dynamics reduces to the underdamped regime of the
active Ornstein-Uhlenbeck particle. In this case, being σ = 0, the orientation
vector η is an enslaved variable that does not depend on the position and the
velocity of the particle, and the related active force fa(X)η is not balanced by
any additional dissipation in the system. Conversely, when σ = 1, the evolution
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of η depends on both X and v. Interestingly, the evolution of η can be formally
determined and substituted in the equation of motion for the velocity, yielding
the non-Markovian dynamics:

mv̇ = −γv −∇U(X) + fa(X(t))

∫ t

t0

ds e−(t−s)/τ [−σfa(X(s))v(s) + ζ(s)] + ξ

= −
∫ t

t0

dsΓ(X(t),X(s), t− s)v(s) −∇U(X(t)) + Ξ(X(t), t) ,

(C.51)

where we introduced the (in general non-linear) friction memory kernel Γ(x,y, t)
and the colored noise Ξ(x, t) defined as:

Γ(x,y, t) = 2γδ(t) + σfa(x)fa(y)e−t/τΘ(t) , (C.52)

Ξ(x, t) = ξ + fa(x)

∫ t

t0

ds e−(t−s)/τζ(s) , (C.53)

where Θ(t) is the Heaviside step function. As we are interested in the long-time
(stationary) properties of the dynamics, we assumed without loss of generality
that, at the initial time t = t0, the orientation vector assumes the value η(t0) =
0. It is easy to show that at every fixed positions x and y, the friction memory
kernel Γ(x,y, t) and the colored noise Ξ(x, t) satisfy a fluctuation-dissipation
relation, as the noise correlation and the memory kernel are proportional to each
other by the temperature T . Although related to a very different problem, a
similar derivation can be found for example in Section 3 of Ref. [65]. In order to
determine the stationary probability density of the particle position, however,
it is more convenient to consider the Markovian dynamics in Eq. (C.48). In
particular, when σ = 1, the associated Fokker-Planck equation for the one-time
probability density P(x,v,η, t) reads:

∂tP = −v · ∇xP −∇v ·
[
−γvP

m
− ∇xU(x)P

m
+
fa(x)ηP

m
− Tγ

m2
∇vP

]
−∇η ·

[
−τ−1ηP − fa(x)vP − T

τ
∇ηP

]
.

(C.54)

It is easy to verify that the above equation is solved, in the steady state, by the
Boltzmann-like probability density:

P (x,v,η) ∝ exp

[
−β
(
U(x) +

mv2

2
+

η2

2

)]
(C.55)

with β = 1/T the inverse temperature. This implies that the stationary
marginal density of the position P (x) ∝ exp(−βU(x)) only depends on the
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external potential U(x) and not on the field fa(x). In other words, the time-
correlated active forces do not alter the steady state distribution of the particle
as long as the associated energy injections are balanced by additional dissipa-
tion modeled by a suitable friction memory kernel in the stochastic dynamics.
An analogous reasoning extends to the case of a polymer chain in a non-uniform
active bath. In particular, if the fluctuation-dissipation relation is restored, the
chemotactic-like transition discussed in Chapter 5 disappears.

C.5 Numerical simulations

All numerical data reported in Chapter 5 as well as in this Appendix, have been
obtained by running Brownian dynamics simulations of the stochastic equation
of motion in Eq. (5.2), and of the Ornstein-Uhlenbeck processes (5.4) governing
the stochastic evolution of the orientation vectors {η}. For the discretization,
we used the standard Euler-Maruyama scheme with an integration time step
∆t = 0.001. In particular, the discretized equation of motion reads:

Xα
i (t+ ∆t) = Xα

i (t) + ∆t

[
−γ
∑
j

MijX
α
j (t) + v(Xi(t))η

α
i (t)

]
+
√

2∆tDξαi (t) ,

ηαi (t+ ∆t) = ηαi (t) − ∆t

τ
ηαi (t) +

√
2∆t

τd
ζαi (t),

(C.56)

where Xα
i (t) denotes the position of the α-component of the i-th monomer at

time t, ηαi (t) the α-component of its orientation vector and ξαi (t) and ζαi (t)
are uncorrelated Gaussian random variables with zero mean and unit variance.
Note that the stochastic dynamics has been interpreted according to the Itô
prescription for convenience, but there are no spurious effects associated to this
choice because the stochastic dynamics is characterized by additive noise. Each
numerical simulation has a duration of n = 2 · 109 steps and the error bars
are within the symbol size. In the Brownian dynamics simulation associated to
Figure 5.4, the first well separated state occurred after ∼ 104 integration steps.



Appendix D

Appendix of Chapter 6

In this Appendix we present a theoretical derivation of the predictions reported
in Chapter 6, as well as a detailed description of the numerical simulations. In
particular, in Sec. D.1 we derive the asymptotic behavior of the linear memory
kernel Γ(t) introduced in Chapter 6, by analyzing the analytic structure of its
Laplace transform. This analysis is useful to study the long-time behavior of
the center-of-mass of the polymer, which is done is Sec. D.2. Here, we derive
the algebraic decay that characterizes the relaxation of the center-of-mass when
the polymer is coupled to a critical or conserved field. In Sec. D.3 we derive
the first non-trivial perturbative correction of order λ2 to the mean-squared
gyration radius and to the end-to-end distance of the polymer at equilibrium.
In this derivation, we consider the potential presence of an external tensile force
applied to the terminal monomers of a linear chain. The results obtained here
are used in Chapter 6 to plot the typical size of the polymer as a function of its
polymerization degree and of the correlation length of the field, as well as the
force-extension curve. Finally, in Sec. D.4 we report the details of the numerical
simulations used to test our analytical predictions.

D.1 Asymptotic analysis of the memory kernel

In this Section we analyze the long-time behavior of the memory kernel Γ(t) in
Eq. (6.29), which can be easily deduced by inspecting the analytic structure of
the corresponding Laplace transform [68, 277]. The latter can be immediately
found using Eq. (6.21), and reads

Γ̂(z) =
NDνλ2

d

∫
ddq

(2π)d
q2+a|Vq|2

αq(z + αq)
. (D.1)

This function is non-analytic for all the points z ∈ C that render the denomi-
nator (z+αq) = 0. Since αq = Dqa(q2 + r), at the critical point (i.e. r = 0) the

161
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function Γ̂(z) exhibits a branch cut along the real negative semiaxis in the com-
plex z plane. As there are no other singularities, the behavior of Γ̂(z) around
the branching point z0 = 0 will generically determine the long-time behavior of
Γ(t) [68]. In particular, if

Γ̂(z) ∼
∑
j

aj(z − z0)
λj (D.2)

for some λj around the branching point z0, then

Γ(t) ∼ ez0t
∑
j

aj
ΓE(−λj) t1+λj

, (D.3)

as can be easily understood by taking the inverse Laplace transform term by
term. If z0 = 0, this generates an algebraic decay at long times. Note that the
very same scenario occurs for the off-critical model B, i.e. a = 2 and r > 0,
because the branching point is still z0 = 0. By contrast, for the off-critical
model A (i.e. a = 0 and r > 0) the function in Eq. (D.1) presents a branch
cut at the left of z0 = −Dr. Expanding around the new branching point as in
Eqs. (D.2) and (D.3) will thus generate an exponential prefactor ez0t = e−Drt

superimposed to the algebraic tail.

As we are about to show, expanding Γ̂(z) around the branching point z0 can
be easily achieved even by keeping the interaction potential V (x) generic, under
the mild simplifying assumptions that it is rotationally invariant, normalized to
unity, and depends on a single length scale R (such as in Eq. (6.4)). However,
for later convenience and to make contact with the notation of Ref. [68], in
the following we will not analyze Γ̂(z) directly, but rather introduce Γ(t) =∫∞
t

duK(u), so that

K(t) =
NDνλ2

d

∫
ddq

(2π)d
q2+a|Vq|2Gq(t)

7→ K̂(z) =
NDνλ2

d

∫
ddq

(2π)d
q2+a|Vq|2

z + αq

, (D.4)

and in particular

Γ̂(z) = −K̂(z) − K̂(0)

z
. (D.5)

Note that the function K̂(z) in Eq. (D.4) has the same analiticity properties as
Γ̂(z), apart from an additional factor 1/z.

Let us start from the critical case r = 0, and expand K̂(z) around z0 = 0.
Using polar coordinates and changing variables as y = Dqa+2/z, one finds from
Eq. (D.1)

K̂(z) = Nλ2νcd(zD)d/(2+a)

∫ ∞

0

dy yd/(2+a)

1 + y
|V

(zy/D)
1

2+a
|2 ∼ zd/(2+a). (D.6)
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In the last step we expanded the integrand for small z by using the normalization
condition Vq = 1 + O(q2) of the interaction potential, while

cd = 21−d/[dπd/2ΓE(d/2)] (D.7)

is a numerical constant, accounting for the integration over the angular vari-
ables, with ΓE the Euler gamma function. Using Eq. (D.5) we deduce that for
small z

Γ̂(z) ∼ zd/(2+a)−1, (D.8)

and comparing with (D.3) and (D.2) we can conclude that at long times

Γ(t) ∼ t−d/(2+a). (D.9)

This corresponds to the result reported in Eqs. (6.32) and (6.33), for a = 0, 2,
respectively.

Let us now analyze the off-critical case r > 0. For model B, i.e. a = 2,
the branching point is still z0 = 0, so that using again polar coordinates and
changing variables to y ≡ Dq2/z we find from Eq. (D.1)

K̂(z) = Nλ2νcd

∫ ∞

0

dy |V(zy/D)1/2 |2

1 + y(r + zy/D)

(zy
D

)1+ d
2 ∼ z1+

d
2 . (D.10)

Using Eqs. (D.3), (D.2) and (D.5) we thus get

Γ̂(z) ∼ z
d
2 −→ Γ(t) ∼ t−(1+ d

2
), (D.11)

as reported in Eq. (6.32).

Finally we address the off-critical case in model A. In this case the branching
point is z0 = −Dr, and expanding K̂(z) around it yields

K̂(z) = Nλ2νDcd

(
z +Dr

D

) d
2
∫ ∞

0

dy yd/2

1 + y
|V√

y(z/D+r)
|2

∼ (z +Dr)
d
2 , (D.12)

where we called y = Dq2/(z + Dr), and in the last step we expanded in small
powers of (z + Dr). By contrast, note that expanding the same expression
around z = 0 we would get K̂(z) = K̂(0) + O(z), meaning that the function
Γ̂(z) in Eq. (D.5) is not singular in z = 0. The singularity in z = z0 = −Dr thus
still dominates the long-time asymptotics of Γ(t), which follows from Eqs. (D.3),
(D.2) and (D.5) as

Γ̂(z) ∼ (z +Dr)
d
2 −→ Γ(t) ∼ e−Drtt−(1+ d

2
), (D.13)

as reported in Eq. (6.32).
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D.2 Asymptotic analysis of the center-of-mass

The evolution of the mean center-of-mass position of the polymer ⟨χα
0 (t)⟩, start-

ing from the initial condition χ̄0 at time t0 = 0, is given in the Laplace domain
by Eq. (6.41). The latter can be rephrased, in terms of the function K̂(z)
introduced in Eq.(D.4), as

χ̂α
0 (z) =

χ̄0

z + γ̃0 − [K̂(z) − K̂(0)]
. (D.14)

This function exhibits two types of singularities in the complex z plane: (i) a
branch cut starting from the branching point z0, where K̂(z) is non-analytic, as
discussed in the previous Section; and (ii) the zero(s) z = z∗ of the denominator,
implicitly defined by the condition

D(z∗) = z∗ + γ̃0 − [K̂(z∗) − K̂(0)] ≡ 0. (D.15)

Note that these are simple poles: to see this, it is enough to take the derivative

D′(z) = 1 − K̂′(z) = 1 +
NDνλ2

d

∫
ddq

(2π)d
q2+a|Vq|2

(z + αq)2
, (D.16)

where we used Eq. (D.4), and note that it can never be D′(z∗) = 0. Moreover,
note that it must be Re z∗,Re z0 < 0 in order for ⟨χα

0 (t)⟩ to decay to zero at
large times. The closest to the imaginary axis Re z = 0 among z0 and z∗ then
generically determines the long-time asymptotic behavior of ⟨χα

0 (t)⟩ [68, 277].

Again, it proves convenient to inspect first the critical case r = 0, for which
the branching point z0 = 0 necessarily dominates the long-time asymptotics of
χ̂α
0 (z) in Eq. (D.14). Expanding the latter around z0 = 0 gives

χ̂α
0 (z) = χ̄0

∞∑
n=0

[
K̂(z) − z

]n [
K̂(0) + γ̃0

]−(n+1)

∼ zd/(2+a), (D.17)

where in the last step we used Eq. (D.6). Comparing with Eqs. (D.3) and (D.2)
then yields

⟨χα
0 (t)⟩ ∼ t−1−d/(2+a), (D.18)

as reported in Eqs. (6.43) and (6.42).

The situation is analogous for the off-critical model B, i.e. a = 2 and r > 0,
as the branching point is still z0 = 0. Using the asymptotic behavior of K̂(z)
given in Eq. (D.10) in the second step of (D.17) this time gives

χ̂α
0 (z) ∼ z1+

d
2 −→ ⟨χα

0 (t)⟩ ∼ t−2−d/2, (D.19)

as stated in Eq.(6.42).
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Re(z)

Im(z)

×
z∗z0 = −Dr

Figure D.1: Sketch of the analytic structure in the complex z plane of the
function χ̂α

0 (z) in Eq. (D.14), for the off-critical case of model A, and for r ≫
γ̃0/D. This features a branch cut (red) terminating in z = z0, and a simple
real pole in z = z∗, which is a root of Eq. (D.15). The latter dominates the
long-time asymptotics of ⟨χα

0 (t)⟩, as described in Sec. D.2.

The off-critical case in model A (i.e. r > 0 and a = 0) is more delicate,
because the relative positions of the branching point z0 = −Dr and the pole(s)
z∗ may change depending on the value of r. For sufficiently small r ≪ γ̃0/D,
the branching point z0 will still lie closer to the imaginary axis than the pole(s)
z∗. The leading asymptotic behavior of χα

0 (t) can thus be found by expanding
χ̂α
0 (z) in Eq. (D.14) around z0 = −Dr. Using Eq. (D.12) gives

χ̂α
0 (z) ∼ (z +Dr)

d
2 , (D.20)

and comparing with Eqs. (D.3) and (D.2) then yields

⟨χα
0 (t)⟩ ∼ e−Drtt−(1+ d

2
), (D.21)

as reported in (6.43).

In the opposite limit r ≫ γ̃0/D, the analytic structure of the function χ̂α
0 (z)

in Eq. (D.14) can be inspected by plotting its real or imaginary part using
e.g. Mathematica, for selected choices of the interaction potential Vq. By choos-
ing a Gaussian Vq as in Eq. (6.4) and for d = 1, 2, 3 (but also for a Yukawa-like
potential Vq = 1/(1 + q2R2) [68]), the resulting analytic structure resembles the
one sketched in Figure D.1, with a single real pole z∗ at the right of the branch
cut. This simple pole dominates the long-time behavior of ⟨χα

0 (t)⟩, which thus
generically reads [68, 277]

⟨χα
0 (t)⟩ ∼ ez

∗t, (D.22)

with z∗ < 0 given implicitly from Eq. (D.15).

Finally, we note that the asymptotic behavior of the center of mass χα
0 (t)

studied here coincides with that of a single particle at position X(t) relaxing
towards the center of a harmonic potential of stiffness γ̃0, which was derived
in [66] within a weak-coupling approximation for small λ (see Eqs. (33) and
(34) therein, and the Erratum), and later in [68] within linear response (see
Appendix C therein). In particular, for the off-critical model A it was found
perturbatively in Ref. [66] that X(t) ∼ λ2te−γ̃0t + O(λ4), for Dr > γ̃0. In
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hindsight, this is compatible with the behavior found above in Eq. (D.22), as
can be checked by using that for small λ (see Eq. (D.15))

z∗ = −γ̃0 + λ2
[
K̂(−γ̃0) − K̂(0)

]
+ O

(
λ4
)
. (D.23)

D.3 Perturbative correction to the gyration ra-

dius

In this Section we derive the expression of the generating functional Z[{ji}]
reported in Eq. (6.48), and we use it to obtain the theoretical predictions on
the typical polymer size in Eqs. (6.51) and (6.52) in the framework of the
weak-coupling approximation. By taking appropriate derivatives of Z[{ji}] we
compute the covariance between the R2

g (or Ree) and the effective Hamiltonian
Heff, which constitute the first non-trivial corrections of order λ2 to the unper-
turbed values ⟨R2

g⟩f,0 and ⟨Ree⟩f,0. After rewriting the Hamiltonian H0 in terms
of the Rouse modes {χi} as

H0 =
κ

2

∑
ij

MijXi ·Xj +
κc
2

∑
i

X2
i =

1

2

∑
i

Miχ
2
i , (D.24)

we use the definition of the generating functional given in Eq. (6.48) to obtain:

Z[{ji}] =
〈

exp
(∑

i

ji · χi

)〉
f,0

(D.25)

=
1

N

N−1∏
j=0

∫
dχj exp

[
−β

2
Miχ

2
j − χj · [β(φj,N−1 − φj,0) − jj]

]

= exp

[
1

2β

∑
i

1

Mi

[j2i + 2β(φi,N−1 − φi,0)fs · ji]

]
,

where N denotes the normalization factor given by N = Z[{ji = 0}], and the
integral in the second line can be easily solved being a standard multivariate
Gaussian integral. In order to compute the covariance between R2

g and Heff, we
first of all need to evaluate ⟨Heff⟩f,0, which depends on the following averages:〈

exp
(
iq
∑
k

(φki − φkj)χk

)〉
= Z[{jk = iq(φki − φkj)}] , (D.26)

with generic indices i and j. Thus we have:

⟨Heff⟩f,0 = −λ
2

2

∑
ij

∫
ddq

(2π)d
|Vq|2Gq [Z[{jk = iq(φki − φkj)}] − 1] . (D.27)
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Secondly, we need the correlation between the gyration radius and the effective
Hamiltonian, i.e. ⟨R2

gHeff⟩f,0. Since the R2
g is a weighted combination of the

Rouse amplitudes χ2
j , such correlation requires the knowledge of the following

average:

⟨χ2
ne

iq·
∑

k(φki−φkj)χk⟩f,0 =
∑
α

∂2Z[{jk}]

∂jαn∂j
α
n

∣∣∣∣
jk=iq(φki−φkj)

=[
d

βMn

+

(
iq/β(φni − φnj) + fs(φn,N−1 − φn,0)

Mn

)2
]
Z[{jk = iq(φki − φkj)}] .

(D.28)

Combining Eqs. (6.47), (6.49), (D.27) and (D.28), we get the first non-trivial
perturbative correction to the gyration radius R2

g reported in Eq. (6.51). In
the case of the Ree, being the latter a linear combination of the Rouse modes
as shown in (6.45), its correlation ⟨ReeHeff⟩f,0 with the effective Hamiltonian
depends on the average:

⟨χα
ne

iq·
∑

k(φki−φkj)χk⟩f,0 =
∂Z[{jk}]

∂jαn

∣∣∣∣
jk=iq(φki−φkj)

=
jαn + βfα

s (φi,N−1 − φi,0)

βMn

Z[{jk = iq(φki − φkj)}] . (D.29)

The above equation can be combined with Eqs. (6.47), (6.50), (D.27) to obtain
the result reported in Eq. (6.52).

D.4 Details of the numerical simulation

All theoretical predictions derived in Chapter 6 are compared with numerical
simulations of the stochastic equations of motion given in Eqs. (6.6) and (6.12).
In particular, the stochastic dynamics of the polymer is simulated in real space,
whereas the evolution of the fluctuating order parameter ϕ is simulated in
Fourier space (see e.g. [62, 325]). This requires introducing a momentum cut-
off for the modes of the field, given by qc = 2πnc/L with L the box size, and
nc an integer cutoff that determines the number of simulated modes. Specifi-
cally, in d = 1 the number of modes is nc + 1, with wave vectors q = 2πn/L
and n ∈ {0, 1, 2, ..., nc}. In d = 2, instead, we simulate (nc + 1)(2nc + 1)
modes, namely those related to the wave vectors q = (2πnx/L, 2πny/L) with
nx ∈ {0, 1, 2, ..., nc} and ny ∈ {−nc,−nc+1, ..., nc−1, nc}. Note that the modes
ϕq with q living on the left half-plane of the momentum space can be automat-
ically obtained as ϕ−q = ϕ∗

q, being ϕ(x, t) a real scalar field. In particular,
we used nc = 40 with box size L = 50 in all figures but Figure 6.3, where we
used instead nc = 640 and L = 1600. Indeed, in the latter case, capturing the



D.4. DETAILS OF THE NUMERICAL SIMULATION 168

long-time power-law relaxation of the center of mass requires including in the
simulation Fourier modes with a wave vector sufficiently close to q = 0, i.e.
those modes characterized by a slower relaxation time. For this reason, a larger
system size is needed to observe the algebraic decay that appears in the vicinity
of the critical point.

The stochastic differential equations (6.6) and (6.12) are integrated with the
standard Euler-Maruyama scheme with integration timestep ∆t = 0.001. The
discretized dynamics of the polymer is given by:

Xi(t+ ∆t) −Xi(t) = −∆tγ
∑
j

MijXj(t) − ∆tγcXi(t) + ξi(t)

− ∆tνλσiL
d
∑
n∈S

V−n

(
2πn

L

)
ϕR
n(t) sin

(
2πn ·Xi(t)

L

)
− ∆tνλσiL

d
∑
n∈S

V−n

(
2πn

L

)
ϕI
n(t) cos

(
2πn ·Xi(t)

L

)
, (D.30)

where the set S is defined as S = {−nc,−nc + 1, ..., nc − 1, nc}2, the noises
{ξi(t)} are independent zero-mean Gaussian random variables with standard
deviation

√
2νT∆t and ϕR

n, and ϕI
n are the real and the imaginary part of the

mode ϕn, respectively. The potential Vn is given by

Vn =
(2πR2)−d/2

Ld

∫
D

ddx exp
(
−x2/2R2 − i2πn · x/L

)
≃ 1

Ld
exp

[
−1

2

(
2π

L

)2

n2R2

]
, (D.31)

with integration domain D = [−L,L]d, and where we assumed that the box size
L is much bigger than the range of interaction between each monomer and the
field, i.e. L≫ R. The discretized dynamics of the field is given by:

ϕR
n(t+ ∆t) − ϕR

n(t) = − ∆tαqϕ
R
n(t) + ζRn (t) (D.32)

+ ∆tDλVnq
a
∑
j

σj cos

(
2πn ·Xj(t)

L

)
,

and

ϕI
n(t+ ∆t) − ϕI

n(t) = − ∆tαqϕ
I
n(t) + ζIn(t) (D.33)

− ∆tDλVnq
a
∑
j

σj sin

(
2πn ·Xj(t)

L

)
,

with q = 2πn/L. The noises {ζRn (t)} and {ζIn(t)} are zero-mean Gaussian
random variables with correlations

⟨ζR,I
n (t)ζR,I

m (s)⟩ =
DT

Ld

(
2π|n|
L

)a

δ(t− s)[δn,m ± δn,−m] . (D.34)



Appendix E

Appendix of Chapter 7

E.1 Velocity marginalization

In this Appendix, we derive the equation of motion for the position of the odd
tracer in Eq. (7.2) by integrating out the velocity variable V0(t). Wherever they
appear, repeated indices imply summation according to Einstein notation. To
marginalize the velocity, we define the new variable U0(t) = S−1V0(t), which is
related to the velocity V0(t) by the linear transformation S. The latter has the
property to diagonalize the friction tensor Γ, and satisfies the following relation

S−1 ΓS = L , (E.1)

with L,S ∈ C2×2. In particular, L is diagonal and contains the eigenvalues of
the friction tensor L00 ≡ ℓ0 = γ(1 − iκ) and L11 ≡ ℓ1 = γ(1 + iκ), where i
denotes the imaginary unit, and

S =
1√
2

(
−i i
1 1

)
. (E.2)

Note that the emergence of complex eigenvalues is due to the oscillatory be-
havior introduced by the oddness κ. In the new variable, the velocity dynamics
can be formally solved yielding:

U0(t) = e−
(t−t0)

m
LU0(t0) (E.3)

− λt
m

∫ t

t0

ds e−
(t−s)
m

L

N∑
j=0

S−1∇U(X0(s) −Xj(s))

+
1

m

∫ t

t0

ds e−
(t−s)
m

L S−1 ξ0(s).

169
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The expression for U0(t) can be inverted back into the original variables to find
the stochastic dynamics of the position Ẋ0(t) = SU0(t). Using the identity

SαβS
−1
βσ fσ(s) exp

(
−ℓβ
m

(t− s)

)
= Gαβ(t− s) fβ(s) (E.4)

with f(s) a generic 2-dimensional vector, s < t and G(u) defined in Eq. (7.3),
Eq. (7.2) is finally obtained. As described in Eq. (7.4), the evolution of the
position of the odd tracer depends on the colored noise η(t), which is given by
the convolution of the function G(u) with the white noise ξ0. The correlation
of η(t) can be computed as

⟨η(t) ⊗ η(s)⟩ =
2Tγ

m2

∫ t

t0

dt′
∫ s

t0

ds′ G(t− t′)GT(s− s′) δ(t′ − s′)

=
2Tγ

m2

∫ min (t,s)

t0

dt′G(t− t′)GT(s− t′)

=
T

m

[
e
− |t−s|

τγ − e
− t+s−2t0

τγ

]
M(t− s),

which corresponds to the correlation reported in Eq. (7.5). For the matrix
product in the above calculation we used the relation

G(t− t′)GT (s− t′) = e−(t+s−2t′)/τγ M(t− s), (E.5)

which easily can be shown with the help of trigonometric identities.

E.2 The interaction-free case

For later purposes, it is convenient to first analyze the case where the coupling
between the odd tracer and the density field is switched off. We denote the
position of the free odd tracer as X

(0)
0 , and the free field as ϕ

(0)
q .

E.2.1 Free dynamics of the odd tracer

In the absence of the coupling to the density field, i.e. with λt = 0, the stochastic
dynamics of the odd tracer can be exactly solved, and gives

X
(0)
0 (t) =

∫ t

t0

dsG(s− t0)V0(t0) +

∫ t

t0

dsη(s), (E.6)

where we assumed that the odd tracer initially sits at the origin X
(0)
0 (t0) = 0

without loss of generality. Note that V0(t0) is a fixed value and therefore does
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not need a perturbative expansion. As the position variable of the tracer follows
a Gaussian process, we can characterize it by computing its mean µ0(t)

µ0(t) = mA(t− t0)V0(t0), (E.7)

and the two-point connected correlation C(t, s)

C(t, s) ≡
〈
X

(0)
0 (t) ⊗X

(0)
0 (s)

〉
−
〈
X

(0)
0 (t)

〉
⊗
〈
X

(0)
0 (s)

〉
=

2Tν

1 + κ2
[min(s, t) − t0] 1−mT

[
Γ−1A(s− t0) + Γ−1A(t− t0)

]
+mT

[
Θ(t− s)Γ−1A(t− s) + Θ(s− t) (Γ−1A(s− t))T

]
−mTA(t− t0)A

T(s− t0), (E.8)

where we introduced the abbreviation A(u) = Γ−1[1−G(u)] and denoted by a⊗
b = aαbβ the outer product between two vectors a, b. Note that the connected
correlation satisfies C(t, s) = CT(s, t). Once µ0(t) and C(t, s) are known, we
can compute the generating functional Z[j] of the n-point correlations for the
position of the odd tracer in the free case (λ = 0)

Z[j] =

〈
exp

{∫
dt j(t) ·X(0)

0 (t)

}〉
, (E.9)

where j(t) is an auxiliary field and the average is taken with respect to the
following Gaussian path probability

P0[x] ∝ exp

{
− 1

2

∫
dt

∫
ds [x(t) − µ0(t)] ·C(t, s) · [x(t) − µ0(t)]

}
. (E.10)

Solving the functional Gaussian integral in Eq. (E.9) leads to the following
expression for the generating functional

Z[j] = exp

{
1

2

∫
dt

∫
ds j(t) ·C(t, s) · j(s) +

∫
dt j(t) · µ0(t)

}
, (E.11)

which can be used to derive the full statistics of X
(0)
0 by taking appropriate

derivatives.

E.2.2 Free dynamics of the density field

In the absence of interaction with the tracer particle, the dynamics of the free
field in Fourier space ϕ

(0)
q follows an Ornstein-Uhlenbeck process and it is solved

by

ϕ(0)
q (t) = ϕ(0)

q (t0) e−αq(t−t0) +

∫ t

t0

ds e−αq(t−s) ζq(s). (E.12)
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Note that in our notation ϕq(t) =
∫

dx ϕ(x, t) exp(−ix · q) denotes the (two-
dimensional) Fourier transformation of a field ϕ(x, t) with respect to the wave
vector q. From Eq. (E.12) we can compute the two-point correlations of the
free field as〈

ϕ(0)
q (t)ϕ(0)

p (s)
〉

=
〈
ϕ(0)
q (t0)ϕ

(0)
p (t0)

〉
e−αq(t−t0) e−αp(s−t0)

+ T
(2π)2 δ(q + p)

λhUq + T/ρ0

[
e−αq |t−s| − e−αq(t+s−2t0)

]
, (E.13)

where we used that Uq = U−q which holds for any symmetric interaction poten-
tial. When t = s and the field had enough time to relax (formally t0 → −∞),
the two-point correlator yields〈

ϕ(0)
q (t)ϕ(0)

p (t)
〉

= T
(2π)2 δ(q + p)

λhUq + T/ρ0
. (E.14)

Thus, if we assume that the field is distributed according to its equilibrium
distribution before being put in contact with the odd tracer at time t = t0,
we have that ⟨ϕ(0)

q (t0)ϕ
(0)
p (t0)⟩ is given by (E.14). Under this equilibration

assumption, Eq. (E.13) can be written as〈
ϕ(0)
q (t)ϕ

(0)
q′ (s)

〉
= T

(2π)2δ(q + p)

λhUq + T/ρ0
e−αq |t−s|

≡ (2π)2δ(q + p)Cϕq(t− s), (E.15)

which defines the stationary time-translational invariant correlator Cϕq of the

free field ϕ
(0)
q .

E.3 Weak-coupling approximation

In this Appendix, we compute the first non-trivial perturbative correction to
the mean squared displacement, which due to symmetry arguments is of second
order in the interaction coupling λt. In the case where the tracer is initialized
at the origin, i.e. X0(t0) = 0, this is formally given by Eq. (7.23). To evaluate

such correction we need to separately compute the correlations ⟨X(1)
0 (t)·X(1)

0 (t)⟩
and ⟨X(0)

0 (t) ·X(2)
0 (t)⟩. To evaluate the first, we formally solve the stochastic

dynamics in Eq. (7.25) to get〈
X

(1)
0 (t) ·X(1)

0 (t)
〉

= − 1

m2

∫
dq

(2π)2

∫
dp

(2π)2
qβpγ Uq Up

×
∫ t

t0

ds

∫ s

t0

du

∫ t

t0

ds′
∫ t

t0

du′Gαβ(s− u)Gαγ(s′ − u′)

×
〈
ϕ(0)
q (u)ϕ(0)

p (u′) eiq·X
(0)
0 (u)+ip·X(0)

0 (u′)
〉
. (E.16)
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As the average in the last line only involves the position of the free tracer X
(0)
0

and the free field ϕ
(0)
q , it can be factorized as follows〈
ϕ(0)
q (u)ϕ(0)

p (u′) eiq·X
(0)
0 (u)+ip·X(0)

0 (u′)
〉

=
〈
ϕ(0)
q (u)ϕ(0)

p (u′)
〉 〈

eiq·X
(0)
0 (u)+ip·X(0)

0 (u′)
〉

= (2π)2δ(q + p)Cϕq(u− u′)Qq(u, u′) , (E.17)

where we used Eq. (E.15) and we introduced the two-time quantity Q, which
can be obtained from the generating functional as

Qq(u, u′) ≡ Z[j = iq(δ(t− u) − δ(t− u′))] (E.18)

= exp
{
− 1

2
q · [C(u, u) + C(u′, u′) −C(u′, u) −C(u, u′)] · q

+ iq · [µ0(u) − µ0(u
′)]
}
.

Therefore, the correlation ⟨X(1)
0 (t) ·X(1)

0 (t)⟩ can be rewritten as〈
X

(1)
0 (t) ·X(1)

0 (t)
〉

=
1

m2

∫
dq

(2π)2
qβqγ |Uq|2

×
∫ t

t0

ds

∫ s

t0

du

∫ t

t0

ds′
∫ s′

t0

du′Gαβ(s− u)Gαγ (s′ − u′)

× Cϕq(u− u′)Qq(u, u′). (E.19)

Before calculating ⟨X(0)
0 (t) ·X(2)

0 (t)⟩ it is convenient to solve the dynamics of

ϕ
(1)
q , obtaining

ϕ(1)
q (t) = −νρ0 q2Uq

∫ t

t0

ds e−αq(t−s) e−iq·X(0)
0 (s) , (E.20)

where we used ϕ
(n)
q (t0) = 0 for all n ≥ 1. This is justified as we already assumed

for Eq. (E.14) that the initial condition of the field is drawn from its equilibrium
distribution in absence of the coupling with the tracer. With the help of the
identity

〈
X

(0)
0 (t) e−iq·[X(0)

0 (u′)−X
(0)
0 (u)]

〉
=
δZ[{j}]

δjα(t)

∣∣∣∣∣
j(t)=−iq[δ(t−u′)−δ(t−u)]

= Qq(u, u′) [(C(t, u) −C(t, u′))iq + µ0(t)] ,
(E.21)
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the correlation ⟨X(0)
0 (t) ·X(2)

0 (t)⟩ can now be evaluated to be

⟨X(0)
0 (t) ·X(2)

0 (t)⟩ =
iνρ0
m

∫
dq

(2π)2
qβq

2|Uq|2
∫ t

t0

ds′
∫ s′

t0

du′
∫ u′

t0

dv′ Gαβ(s′ − u′)

× e−αq(u′−v′) [(Cαγ(t, u′) − Cαγ(t, v′)) iqγ + µα
0 (t)]Qq(u′, v′)

+
i

m2

∫
dq

(2π)2
qβqδqϵ|Uq|2

∫ t

t0

ds′
∫ s′

t0

du′
∫ u′

t0

dv′
∫ v′

t0

dw′ Gαβ(s′ − u′)

×Gδϵ(v
′ − w′) [(Cαγ(t, u′) − Cαγ(t, w′)) iqγ + µα

0 (t)] Cϕq(u′ − w′)Qq(u′, w′).

(E.22)

The expression for the correlations given in Eqs. (E.19) and (E.22) are very
lengthy and do not admit an efficient numerical evaluation due to the nested
time-integrals. However, these integrals can be analytically evaluated within the
small mass limit that characterizes the overdamped regime. We can simplify
the expression of Qq(t, s) given in Eq. (E.18) by neglecting all contributions
proportional to mass in its exponent and find

Qq(t, s)
m→0−→ e−q2D0|t−s|+iq·(µ0(t)−µ0(s)) , (E.23)

which renders Qq an exponential function of the two times t and s only. Here,
we used the bare diffusion of the odd tracer particle given by D0 = Tν/(1+κ2).
Since also the two-point correlator C(t, s) of Eq. (E.10), the function G(t) as
defined in Eq. (7.3) and the free field correlator Cϕq(t) of Eq. (E.15) can be
rewritten as (complex) exponentials upon using suitable trigonometric identi-
ties, the nested time-integrals in Eqs. (E.19) and (E.22) can thus be solved an-
alytically. Note that the validity of this seemingly uncontrolled approximation
is checked a posteriori by comparing the theoretical predictions with numeri-
cal simulations. By further specializing the calculation to the long-time limit
t0 → −∞, we can rewrite the correlation in Eq. (E.19) as〈

X
(1)
0 (t) ·X(1)

0 (t)
〉

=
2Tνρ0
m2

(t− t0)

∫
dq

(2π)2
q4|Uq|2

αq

Re[fq] , (E.24)

where Re[fq] denotes the real part of the momentum-dependent complex num-
ber fq defined as

fq =
τ 2γ

α̃q

[
1 − (iκ− τγα̃q)2

] − τ 4γ α̃q

(1 + iκ)
[
(1 + iκ)2 − (τγα̃q)2

] . (E.25)

To make the notation more compact, we further defined the new inverse time
scale as α̃q ≡ αq+Tνq2/(1+κ2). The correlation given in Eq. (E.22) analogously
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can be rewritten as〈
X

(0)
0 (t) ·X(2)

0 (t)
〉

= − 2D0ν
2ρ0

(1 + κ2)
(t− t0)

∫
dq

(2π)2
q4|Uq|2

α̃q

− 2νρ0
m

D2
0(t− t0)

∫
dq

(2π)2
q6|Uq|2

αq

Re[gq] , (E.26)

where we introduced the complex number gq defined as

gq =
τγ (2τγ α̃q + 1 − iκ)

α̃2
q (τγ α̃q + 1 − iκ)2

. (E.27)

The remaining momentum integrals of Eqs. (E.19) and (E.22) due to the inverse
Fourier transform can be finally performed numerically (e.g. using Mathematica).
For the numerical evaluation, we truncated the integration domain R2 of the
momentum-integral into [−qb, qb]2, by introducing the momentum cut-off qb =
300. This choice strongly depends on the specific interaction potential, as well
as on the other parameters of the model (see Appendix E.4 for more details).
Here, we use a Gaussian interaction potential that displays an exponential de-
cay on a momentum scale much smaller than qb. We approved the validity of
this approximation by testing the numerical integration for insensitivity against
a variation of qb around the chosen value. By combining the numerical evalua-
tion of Eqs. (E.19) and (E.22) with the formal expression of the first non-trivial
perturbative correction to the MSD given in Eq. (7.23), we obtain the results
shown in Figs. 7.2, 7.3 and E.1.

E.4 Simulation details

In this Section we report the details of the Brownian dynamics simulations and
of the numerical evaluation of the first non-trivial perturbative correction to the
MSD of the odd-tracer.

E.4.1 Brownian dynamics simulations

We simulate the stochastic dynamics of the i-th particle according to the un-
derdamped Langevin equation

dXi(t)

dt
= Vi(t), (E.28)

mi
dVi(t)

dt
= −γi(1− κiϵ)Vi(t) + Fi(t) +

√
2γikBT ξi(t), (E.29)

where Xi(t),Vi(t) are the ith particle position and velocity, respectively. In
total, we have N = 200 particles, where the i = 0 particle models the odd-
diffusive tracer (κ0 ̸= 0) and all other particles form the set of normal-diffusive



E.4. SIMULATION DETAILS 176

0 5 10 15 20 25 30
λ/kBT

1.0

1.1

1.2
D
s
/
D

0
c= 0.2

c= 1.0

c= 1.8

Figure E.1: Reduced self-diffusion Ds/D0 as a function of the dimensionless
coupling parameter λ/kBT . The area fractions c are reported in the legend and
the oddness parameter of the tracer is κ = 2. Despite our theory (solid lines) is
supposed to be valid within the weak-coupling approximation, we observe a very
good agreement with simulations data (symbols) also for fairly high interaction
couplings, especially at high density.

host particles (κi = 0, i = 1, . . . , 199). The coefficients γi, mi denote the
particles’ friction and mass, respectively, and are assumed to be equal for the
tracer and the host particles, i.e. γi = 1.0 and mi = 0.01. In units such that the
Boltzmann constant kB is set to unity, the temperature of the thermal bath is
taken to be T = 1.0. ξi(t) is a zero-mean Gaussian white noise with correlations
⟨ξi,α(t)ξj,β(t′)⟩ = δij δαβ δ(t− t′). Note that Latin indices i, j represent particle
labels, and Greek indices α, β represent spatial coordinates. The conservative
force Fi(t) exerted on particle i is given by the sum of pairwise interaction
forces Fi(t) =

∑N
j=0 fij(t), where fij derives from a (normalized) Gaussian

interaction potential fij = −λ∇U(Rij) if Rij < δc and is zero if Rij > δc. Here,
Rij = |Xi(t) − Xj(t)| is the inter-particle distance, and δc denotes a cut-off
length scale that we use to truncate the interaction potential U(Rij) to reduce
the computational time. In particular, if δc is sufficiently larger than typical
decay length of U(Rij), the error introduced by this approximation is negligible.
For the Gaussian interaction potential reported in Eq. (7.27), we choose the
parameter σ = 1.0. Note that σ is used as an effective particle radius, from
where we deduce the effective concentration of particles c = πσ2N/V , where
V is the volume of the simulation box. The cut-off distance of the interaction
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force is chosen as δc = 4σ.

The interaction energy scale in units of the thermal energy kBT is set by the
coupling λ, which is taken as a fit parameter. For a comparison of theoretical
predictions and simulation results, see Fig. E.1, where different coupling λ are
tested. Our analytical predictions are expected to be valid in a regime where the
coupling between the tracer and the host particle is sufficiently small. However,
from Fig. E.1 it can be seen that at high density (c = 1.0 and c = 1.8) the whole
range of coupling tested produces very accurate results. At low density c = 0.2,
indeed the mismatch between the theory and the numerical data increases with
λ. As a compromise between the accuracy of analytical predictions and the
magnitude of the effects shown in the figures of Chapter 7, we opted for λ =
2πσ2. Note that this value is such that the maximum of the interaction energy
λU(Rij) is equal to the thermal energy kBT .

To solve the first order stochastic differential equation (E.29) we use the
standard Euler-Maruyama scheme, where Xi(tn+1) and Vi(tn+1) are calculated
from Xi(tn) and Vi(tn) and tn+1 = tn + ∆t with ∆t = 10−3. The thermal
noise is accounted for by

√
2γiT∆tN (0,1), where N (0,1) is a two-dimensional

random vector drawn from a multivariate normal distribution with zero mean
and covariance matrix given by the identity matrix 1. Note that the discretized
stochastic equations of motion are interpreted according to the Itô prescription,
implying that the standard deviation of the noise is proportional to

√
∆t. To

simulate Eq. (E.29) we use a square box of length L with periodic boundary
conditions (V = L2), where the box length is determined so as to reproduce the
desired density of particles c, i.e., L =

√
πσ2N/c. As the interaction force is

non-divergent for Rij → 0 and particle overlaps are possible, we initialize the
position of the N = 200 particles according to a uniform distribution over the
finite box. After an initial equilibration process of neq = 107 time-steps, we
start recording the stochastic trajectory for a total duration of ntot = 4 × 108

time-steps, which corresponds to a trajectory length of T = 4 × 105 in real-
time units. For efficient computation, we used a neighbor-list implementation
for the evaluation of the interaction forces, with a buffer radius δbuff which has
been optimized so to minimize the computational time. Over the broad range
of densities simulated, a buffer-radius of δbuff ≈ 2δc turned out to be the most
efficient.

E.4.2 MSD numerical evaluation

To evaluate the diffusion coefficient we calculate the time-averaged mean-squared
displacement (TAMSD) [337] for each (independent) trajectory i according to

δ2i (∆, T ) =
1

T − ∆

∫ T−∆

0

dt |X0,i(t+ ∆) −X0,i(t)|2, (E.30)
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Figure E.2: Typical TAMSD δ2i (∆) curves as a function of lag-time ∆ related
to i = 1, . . . , 10 trajectories in the case of N = 200 interacting particles with
density c = 0.1 and κ = 0, 2. The extreme values ∆min = 1 and ∆max = 100
mark the interval of lag times ∆ (in real-time units) which are used for ensemble
averaging the TAMSDs.

where X0,i(t) is the the position of the tracer particle at time t in trajectory i.
As the system under consideration is ergodic, we can ensemble-average over the
i = 1, . . . , imax independent trajectories to obtain the estimate for the mean-
squared displacement (MSD) [338], which is formally defined as〈

|X0(t) −X0(0)|2
〉

= lim
T→∞

〈
δ2i (∆ = t, T )

〉
= lim

T→∞

1

imax

imax∑
i=1

δ2i (t = ∆, T ). (E.31)

By taking T big it is legit to assume that the initial conditions play no role
in the evaluation of the long-time MSD. Hence, for the sake of simplicity, we
impose X0(t0) = 0. We observe from Fig. E.2 that the most reliable ∆-range
from where to extract the MSD is 1 = ∆min ≤ ∆ ≤ ∆max = 100. The MSD
is then used to deduce the self-diffusion coefficient Ds by fitting a linear time-
dependence ⟨|X0(t)|2⟩ = 4Ds t

1, where we takeN∆ = 40 logarithmically equidis-
tant lag-times to fit the MSD and ensemble average over imax = 10 independent
trajectories.



Acknowledgements

First and foremost, I would like to express my gratitude to my two supervisors,
Andrea Gambassi and Edgar Roldan, for fostering my scientific growth and
for their invaluable guidance throughout this journey. I am deeply grateful to
Abhinav Sharma for maintaining our fruitful collaboration over the years, for
his constant support, and for our many stimulating discussions and interactions,
both scientific and philosophical. A special thank you goes to Davide Venturelli
and Erik Kalz for our collaborations and shared projects. It has been a privilege
to work alongside you, and I look forward to keep collaborating with you in the
future.

A sincere thank you to Jens-Uwe Sommer for our insightful scientific discus-
sions and for making my visit to the IPF Dresden possible. I am also thankful to
Pascal Martin and Achille Joliot—visiting your experimental lab at the Curie
Institute in Paris was a unique and enriching experience. I owe a huge debt
of gratitude to Ralf Metzler for hosting me in his group at the University of
Potsdam for three months; I will always remember the warm welcome from
the group and the wonderful working environment. I would also like to thank
Hartmut Löwen for our collaboration and for hosting me at the University of
Düsseldorf.

I am immensely grateful to all the amazing people at SISSA who have ac-
companied me on this journey: Mattia, Piero, Alex, Romina, Eddy, all the
members of the SBP group and the entire SISSA community. Thanks to my
friend and flatmate Fabrizio for our brief but intense experience in Via Giulia
48, full of memorable moments and challenges. Thank you to Andrea, Chiara
and Lorenzo for sharing in our daily sport activities, which truly helped me in
the last challenging months. A special thank you goes to Antonio Francesco,
Stefano, Maurizio, and Luigi—your sincere friendship means the world to me.

Finally, my deepest thanks go to Carolina and my family, my guiding lights,
without whom none of this would have been possible.

179



Bibliography

1R. Brown, “XXVII. A brief account of microscopical observations made in
the months of June, July and August 1827, on the particles contained in the
pollen of plants; and on the general existence of active molecules in organic
and inorganic bodies.”, Philos. Mag. 4, 161–173 (1828).

2S. G. Brush, “A history of random processes: i. Brownian movement from
brown to perrin”, Arch. Hist. Exact Sci. 5, 1–36 (1968).
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27D. Martin, J. O’Byrne, M. E. Cates, É. Fodor, C. Nardini, J. Tailleur, and F.
Van Wijland, “Statistical mechanics of active Ornstein-Uhlenbeck particles”,
Phys. Rev. E 103, 032607 (2021).



BIBLIOGRAPHY 182

28J. Elgeti and G. Gompper, “Run-and-tumble dynamics of self-propelled par-
ticles in confinement”, EPL 109, 58003 (2015).
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170L. Caprini, A. R. Sprenger, H. Löwen, and R. Wittmann, “The parental
active model: a unifying stochastic description of self-propulsion”, J. Chem.
Phys. 156, 071102 (2022).
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226B. Liebchen and H. Löwen, “Optimal navigation strategies for active parti-
cles”, EPL 127, 34003 (2019).

227L. Caprini, U. Marini Bettolo Marconi, R. Wittmann, and H. Löwen, “Ac-
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309H. Löwen and G. Szamel, “Long-time self-diffusion coefficient in colloidal
suspensions: theory versus simulation”, J. Phys. Condens. Matter 5, 2295
(1993).

310J. Kushick and B. J. Berne, “Role of attractive forces in self-diffusion in dense
Lennard-Jones fluids”, J. Chem. Phys. 59, 3732–3736 (1973).

311S. D. Bembenek and G. Szamel, “The role of attractive interactions in self-
diffusion”, J. Phys. Chem. B 104, 10647–10652 (2000).

312T. Yamaguchi, N. Matubayasi, and M. Nakahara, “A mode-coupling ap-
proach to the attractive interaction effect on the solute diffusion in liquids”,
J. Chem. Phys. 115, 422–432 (2001).

313K. F. Seefeldt and M. J. Solomon, “Self-diffusion in dilute colloidal suspen-
sions with attractive potential interactions”, Phys. Rev. E 67, 050402 (2003).
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