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Foreword

Gravitational theories with independent metric and affine connection, which are commonly
referred to as Metric-Affine gravity theories (MAGs), remain of interest as alternative formu-
lations or extensions of General Relativity (GR). In general, they may possess a nonvanishing
torsion, nonmetricity, curvature, or any combination thereof. Torsion, the antisymmetric part
of the affine connection, was first used by A. Einstein to formulate what is nowadays known
as the Teleparallel Equivalent of General Relativity (TEGR) [1–4]. In this theory curvature
and nonmetricity tensors are assumed to vanish a priori, and when one solves this constraint
for the connection the usual GR dynamics can be recovered. In GR on the other hand, torsion
and nonmetricity tensors are assumed to vanish a priori.

One can also construct a theory of gravity based entirely on nonmetricity, with vanish-
ing torsion and curvature (STEGR). Another possibility consists of having both torsion and
nonmetricity, with vanishing curvature (GTEGR). In all three cases we mentioned, Einstein
equations can be recovered, and the requirement of achieving that fixes the action uniquely.
These facts are appreciated as the Geometrical Trinity of Gravity [4].

Recently, a substantial amount of work has been done on phenomenological applications of
various versions of MAG and its subclasses (such as Einstein-Cartan and Teleparallel theories)
[5–15]. Indeed, when a specific form of classical action is chosen, one can study the dynamics
and deviations from GR. MAGs have a large potential to resolve multiple cosmological and
gravitational conundrums, such as black hole and Big Bang singularity problems [5, 16], de-
scribe Dark Energy and/or Dark Matter [5]. It is of interest to understand whether or not
it is possible to arrive at such a version of MAG that would remain viable when quantum
corrections are taken into account. In this thesis, we endeavour to pursue this direction.

Another motivation for studying MAGs is that, in many ways and more than GR, they
resemble the theories of the other fundamental interactions. When considered in this context
they are called “gauge theories of gravity”, where one tries to apply ideas and tools of Yang-
Mills theories to gravity. There exists a hope that this enhanced similarity is a step towards a
possible unification [17]. We refer to [18] for a useful collection of references, covering also the
history of the subject.

In this thesis, we adopt a modest approach to quantum gravity, in which we assume that
our models are unlikely to be valid above the Planck scale, and have to be replaced by a yet
unknown theory, different from those based on the conservative approach to quantisation.

In most cases existing in the literature, the lowest order Lagrangian is considered, which
leads to torsion and nonmetricity being non-dynamical. In order to conduct a systematic study
of MAGs with propagating torsion and nonmetricity, one needs to consider operators of order
four in mass dimension. In this thesis, we consider classical and quantum properties of a general
theory with propagating torsion and nonmetricity fields. In particular, we will perform several
computations of local one-loop counterterms. We will also discuss the spectrum of MAG and
the effect of field redefinitions.

Computing gravitational loop corrections is notoriously difficult. Furthermore, depending
on the choice of the action, metric gravity is either power-counting nonrenormalisable [19]
(for the lowest-order Hilbert–Einstein term) or yields an apparent violation of unitarity by
the presence of ghosts [20] (when higher-order curvature terms are considered). Nevertheless,
there remains a hope that a unitary renormalisable theory of gravity can be found within the
quantum field theory domain [21–24].
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A popular direction to explore is Asymptotic Safety, a conjecture that implies that when the
renormalisation group (RG) running of the couplings is under control even at arbitrarily high
energies (usually due to the existence of one or several fixed points) the theory can be renormal-
isable nonperturbatively [25–27] That means that conventional perturbative renormalisability
is abandoned, but theory remains predictive. Gravity with non-propagating torsion has been
also studied in this context and nonperturbative RG flow has been found [28, 29].

On the other side, one may ask whether renormalizability is necessary in the first place. In
the framework of Effective Field Theory (EFT), one can assume that there exists a physical
cutoff scale (for example, the Planck mass), above which the theory is not applicable. Effective
action (EA) is then seen as an expansion in mass dimensions, and higher-order contributions
are suppressed by powers of the cutoff. Despite being non-renormalisable, metric gravity as an
EFT is self-consistent and predictive, for quantum corrections affecting low-energy observables
can be unambiguously calculated [30]. Computation of one-loop EA is relevant regardless
of whether gravity will eventually be understood as an EFT or instead a local, unitary and
renormalisable theory will be found. We will assume that perturbation theory is applicable,
at least in some energy region.

Another issue worth mentioning is the unitarity problem. Metric-affine gravity, as well as
the usual metric gravity, is in general plagued with ghosts, which are solutions with negative
kinetic energy. At the classical level, they would render theory unstable. However, many
authors have claimed that at the quantum level the apparent violation of unitarity does not
actually occur [31–37]. Alternatively, one can impose additional symmetries, so that the ghosts
do not enter the spectrum [38]. Assuming certain relations between the couplings may also
solve the problem [39–42], however, one has to be careful and introduce them in such a way that
would not be spoiled by quantum corrections. On the other hand, from the EFT perspective,
ghosts do not represent an issue if the masses thereof are larger than the cutoff scale. In this
work, when computing the RG flow, we will ignore the ghost problem, assuming that we work
in a situation when they are absent or harmless for a reason which is yet to be understood.

A systematic study of gravity with propagating torsion dates back at least to [39, 43].
A comprehensive study of independent Lagrangian contributions has been performed in [44,
45]. Studies of particular cases and issues of unitarity can be found in [40, 46–51]. A first
computation of one-loop divergences in gravity with propagating torsion on the flat background
was performed in [52]. Non-perturbative beta functions for MAG with non-propagating torsion
and nonmetricity were found in [28, 29].

In this work, we will look at the case when kinetic terms for torsion and nonmetricity are
also added to the action. Since the connection has a dimension of mass, they naturally come
as operators of dimension four. A major difficulty with such operators is that they often have
nonminimal structure. We will call operator minimal if all its derivatives are contracted with
each other, and nonminimal otherwise. In general, at order 4 in mass dimension, MAG has
11 minimal and 27 nonminimal contributions of the type (∇T )2, (∇Q)2 and ∇T∇Q. Unless
prohibited by symmetry or can be reabsorbed into field redefinitions, all these terms must be
taken into consideration. Furthermore, additional terms of types RT 2, T 2∇T , T 4, etc. can be
considered as some kind of complicated potential, for they do not contribute to the flat space
2-point function. In this work, we will mostly disregard this potential.

This thesis is organised into three major directions. In the first direction, MAG is considered
from the Effective Field Theory (EFT) perspective. Independent even-parity contributions to
the Lagrangian of mass dimension up to 4 have been classified. The focus is given to those,
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which can contribute to the flat space 2-point function. The flat space kinetic operator was
decomposed into spin projectors. The particle content of MAG was discussed in detail. It is
shown that any metric theory of gravity has a teleparallel equivalent. This direction occupies
chapters 2,3 and 4.

The second direction is devoted to the covariant quantisation of Einstein gravity and Uni-
modular gravity. It is known that Einstein and Unimodular theories of gravity are equivalent
at the classical level. A quantisation procedure that keeps the divergences in these two for-
mulations equal is presented, thus proving a formal quantum equivalence between them. The
one-loop divergences have been computed. It is shown that any distinction between Unimodu-
lar and Einstein gravities can be merely attributed to different quantisation procedures. This
direction occupies chapter 6.

The third direction is devoted to the renormalisation of MAG. An important consistency
criterion of a quantum theory is our ability to keep the RG flow of its couplings under control.
The off-diagonal heat kernel technique was used to compute the logarithmically divergent
part of the one-loop effective action of a Poincare gauge theory. It is proven that off-shell
renormalisability requires adding to the usual Poincare gauge action terms of the form (∇T )2.
This direction occupies chapters 7 and 8.2

Chapter 1 does not contain original results. Chapters 2, 3, 4, 5, 6, 7, 8 do contain original
results.

IV



Acknowledgements

First of all, I would like to thank my supervisor Prof. Roberto Percacci for his guidance,
support and a multitude of helpful discussions during the last four years. I am grateful to
Kevin Falls and Alessio Baldazzi, with whom I have been collaborating the most and from
whom I have learnt a lot. I would also like to thank Gustavo Pazzini de Brito and Antonio
Duarte Pereira, collaboration with whom has been of great significance. I am thankful to
Christian Steinwachs, Yegor Zenkevich and Yannick Kluth for multiple helpful discussions of
the heat kernel technique and the renormalisation group.

I am indebted to all my friends who supported me on this journey: Alessandro Granelli,
Katya Kravtsova, Natalia Nazarova, Elena Lukzen, Maddalena Premuti Bonetta, Youness
Diouane, Dmitrii Rachenkov, Sara Folchini and others. A special thank goes to Pavel Novichkov,
who inspired me to learn computer algebra early on and without whom this journey would
have been very different. I thank Miguel Vanvlasselaer, Lotte ter Haar and José Guillermo
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Notation and conventions

We use standard GR notation for the Levi-Civita connection and standard Yang-Mills notation
for the dynamically independent connection, as in the following table

coefficients covariant derivative curvature
LC connection Γµ

ρ
σ ∇µ Rµν

ρ
σ

Independent connection Aµ
ρ
σ Dµ Fµν

ρ
σ

We will use same symbol for a given geometrical object in any frame, thus for example Aµ
ρ
σ

are the connection coefficients in a coordinate frame and Aµ
a
b are the connection coefficients

in a frame (1.1). The action of the covariant derivative on a tensor of rank (n,m) is

DµT
α1...αn

β1...βm
= ∂µT

α1...αn

β1...βm
+

n∑
i=1

Aµ
αi

σT
α1...σ...αn

β1...βm
−

m∑
j=1

Aµ
σ
βj
Tα1...αn

β1...σ...βm

The torsion tensor is antisymmetric in the first and the last indices:

Tµ
ρ
ν = T[µ

ρ
ν] ,

whereas the nonmetricity tensor is symmetric in the last two indices:

Qλµν = Qλ(µν) .

In order to identify more easily expressions involving the same tensors with indices con-
tracted in different ways, it proves convenient to use the following notation. Given a tensor
ϕabc, we define

tr(12)ϕc ≡ ϕ(12)
c = ϕa

a
c ,

tr(13)ϕ
b ≡ ϕ(13)b = ϕa

ba , etc.

div(1)ϕ
b
c = ∇aϕ

ab
c ,

div(2)ϕac = ∇bϕa
b
c , etc.

div(23)ϕc = ∇a∇bϕ
ab

c , etc.

trdiv(1)ϕ = div(1)ϕ
a
a ,

div tr(12)ϕ = ∇atr(12)ϕ
a , etc.

Note that with the LC connection div tr(12)ϕ = trdiv(3)ϕ, etc.
When the divergence is calculated with the independent dynamical connection A, it will

be written as “Div”. In this case, one has to be more careful about raising and lowering
indices, because the covariant derivative of the metric may not be zero. Then one has to make
conventions, for example, Div(1)ϕ

b
c = Da(g

adϕd
b
c) or Div(1)ϕ

b
c = gadDaϕd

b
c.

√
g =

√
|det(gµν)|
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List of abbreviations

EA - Effective action

MAG - Metric-Affine gravity

PGT - Poincaré gauge theorie

RG - renormalisation group

GR - General Relativity

EFT - Effective Field Theory

LC - Levi-Civita (connection or corresponding covariant derivative)

QFT - quantum field theory

4DG, HDG - Quadratic Four-Derivative gravity (High-Derivative gravity)

UV - ultraviolet

dof’s - degrees of freedom

FRG - Functional Renormalisation Group
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Abstract

We discuss theories of gravity with independent metric and affine connection. We count the
parity-even Lagrangian terms of dimension up to four and give explicit bases for the inde-
pendent terms that contribute to the two-point function. We then give the decomposition of
the linearised action on a complete basis of spin projectors and consider various subclasses of
MAGs. We show that teleparallel theories can be dynamically equivalent to any metric theory
of gravity and give the particle content of those whose Lagrangian contains only dimension-two
terms. We point out the existence of a class of MAGs whose EOMs do not admit propagating
degrees of freedom. Finally, we construct simple MAGs that contain only a massless graviton
and a state of spin/parity 2− or 3−. As a side result, we write the relativistic wave equation for
a spin/parity 2− state. Additionally, we perform an irreducible decomposition of torsion and
nonmetricity with respect to the group of permutations and show how the basis of independent
terms in the classical action can be rewritten via decomposed fields.

Poincaré gauge theories are a class of metric-affine theories with a metric-compatible (i.e.
Lorentz) connection and with an action quadratic in curvature and torsion. We show by an
explicit one-loop calculation that this class of theories is not closed under renormalisation off-
shell. This statement extends to more general classes of metric-affine theories. We, therefore,
generalise them to include other necessary terms. We discuss how their spectrum can be
affected by quantum corrections. We prove that at the perturbative level, all local counterterms
that may affect the flat-space propagator can be reabsorbed into appropriate invertible field
redefinitions.

We formally prove the existence of a quantisation procedure that makes the path integral
of a general diffeomorphism-invariant theory of gravity, with fixed total spacetime volume,
equivalent to that of its unimodular version. This is achieved by means of a partial gauge
fixing of diffeomorphisms together with a careful definition of the unimodular measure. The
statement holds also in the presence of matter. As an explicit example, we consider scalar-
tensor theories and compute the corresponding logarithmic divergences in both settings. In
spite of significant differences in the coupling of the scalar field to gravity, the results are
equivalent for all couplings, including non-minimal ones.
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Chapter 1

Introduction

1.1 Gauge group

Any consistent theory must give the same physical predictions independently of field redefini-
tions. Such redefinitions may or may not be local or linear. It is only required that they are
invertible. Geometrically speaking, physical theories are defined on a manifoldM and fields be-
long to a vector bundle E over M. Field redefinitions are then invertible maps between sections
of different vector bundles. Observables are always independent of such transformations.

When talking about (quantum) field theory, there exists an important class of local field
redefinitions that keep the Lagrangian unchanged. They are called gauge symmetries and
characterise the degeneracy of a Lagrangian system. For many modern physical theories gauge
symmetries are necessary to make the Lagrangian local. However, in certain situations, one
still has some sort of freedom to change the gauge group. In the context of gravity, the
group that is used normally is the group space-time diffeomorphisms, which we will refer to
as the diffeomorphisms (Diff ). At least at low energies, gravitational interaction must be
carried by a massless particle of spin 2 for it to always be an attractive force. It leads to the
diffeomorphism group being a necessity. However, there exists a possibility to shrink the gauge
algebra to only include transverse shifts, while still keeping the Lagrangian local. In this case,
the determinant of the metric is kept unchanged. This theory of gravity is called Unimodular
and the corresponding group is called the special diffeomorphism group (SDiff ).

On the other hand, one can also enlarge the gauge group. In fact, as we will argue in
the following, the way in which GR is defined already requires a larger local symmetry group
R1,3 ⋊ GL(4) [21]. The caveat here is that in the metric formulation (as opposed to the
vierbein formulation) the subgroup GL(4) is trivially realised. To see that, let us look at how
the gravitational field is defined. All fundamental interactions, such as the strong interactions
described by a Yang-Mills field, are defined on vector bundles over a four-dimensional manifold
M. A special characteristic of the gravitational field that distinguishes it from other interactions
is that it belongs to a vector bundle with fibres in R4 that is isomorphic to the tangent bundle
TM. This automatically implies that we can define the following:

• a metric on E which is called fibre metric γ,

• a linear connection in E, Aµ
a
b,

• a linear isomorphism between the fibre bundle and the tangent bundle, which is called a

2



soldering form or frame field θaµ.

Hereafter we adopt a distinction in the notation of indices so that the Greek ones always
enumerate coordinates on the tangent bundle and the Latin ones – on the fibre bundle. Metric
γ belongs to the coset space GL(4)/O(1, 3). The fibre connection can be seen as a Yang-Mills
field that however lies in an adjoint representation of a noncompact group GL(4). Alternatively
one can define soldering using arbitrary bases {ea} in the tangent spaces and {ea} in the
cotangent spaces. Given a coordinate system xµ, they are related to the coordinate bases by

ea = θa
µ∂µ , ea = dxµθ−1

µ
a . (1.1)

Then, we can construct a metric and connection on the tangent bundle TM as:

gµν = θaµ θ
b
ν γab , (1.2)

Aλ
µ
ν = θa

µAλ
a
bθ

b
ν + θa

µ∂λθ
a
ν . (1.3)

Hereafter we abbreviate the inverse of soldering (coframe field) as

θµa = θ−1µ
a = γabθ

a
νg

νµ . (1.4)

The existence of soldering as a direct consequence of isomorphic mapping between E and TM
is gravity’s biggest peculiarity and curse. To see that, let us move on to the definition of field
strength and have a first glimpse at the equations of motion. We define the curvature of the
fibre bundle as:

Fµν
a
b = ∂µAν

a
b − ∂νAµ

a
b + Aµ

a
cAν

c
b − Aν

a
cAµ

c
b , (1.5)

which represents the strength of the connection field. Then, the standard Yang-Mills action
will have the following form:

S =
1

4g2

∫
d4x Fµν

a
bFρλ

c
dg

µρgνλγacγ
bd . (1.6)

Such action leads to different degrees of freedom having the opposite signs before the kinetic
terms. We see that, in addition to (1.6), there are different ways to write the action by
contracting the indices in a different way. In fact, there are 16 such contributions (more on
counting independent terms later). Furthermore, owing to the existence of the soldering, the
term linear in curvature is also allowed:

S =

∫
d4x Fµν

a
bθa

µθbρg
ρν . (1.7)

It is called the Palatini action. We will discuss the difference between the dynamics that it
would lead to and the usual dynamics of GR later on.

Alongside with curvature, we introduce two other independent characteristics of the fibre
bundle. Torsion is defined as the exterior covariant derivative of the soldering:

Tµ
a
ν = ∂µθ

a
ν − ∂νθ

a
µ + Aµ

a
b θ

b
ν − Aν

a
b θ

b
µ . (1.8)

And nonmetricity is defined as

Qλab = −∇λγab = −∂λγab + Aλ
c
a γcb + Aλ

c
b γac . (1.9)
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Given the soldering, any tensorial index can be moved from the fibre bundle to the tangent
bundle and vice versa. For example,

Fµν
α
β = Fµν

a
bθa

αθbβ (1.10)

is the curvature of the tangent bundle.
Let us now come back to the discussion of the gauge group. An arbitrary non-degenerate

Λa
b(x) describes a local changes of frame e′a(x) = eb(x)Λ

a
b(x), which is independent of the

diffeomorphisms x′(x). The action of these transformations on the fields is given by

θaµ(x) 7→θ′
a
µ(x

′) = Λ−1a
b(x) θ

b
ν(x)

∂xν

∂x′µ
,

γab(x) 7→γ′ab(x
′) = Λc

a(x) Λ
d
b(x) γcd(x) ,

Aµ
a
b(x) 7→A′

µ
a
b(x

′) =
∂xν

∂x′µ
[
Λ−1a

c(x)Aν
c
d(x)Λ

d
b(x) + Λ−1a

c(x)∂νΛ
c
b(x)

]
.

(1.11)

There are two common ways to fix this gauge:

• Metric gauge, in which we demand

θa
µ = δµa . (1.12)

After that one can just stop making any distinction between tangent and fibre bundle
indices. This is the way in which gravity is normally described. Torsion then becomes a
purely algebraic object:

Tµ
ρ
ν = Aµ

ρ
ν − Aν

ρ
µ (1.13)

whereas nonmetricity involves a derivative of g.

• In vierbein gauge we instead demand

gab = ηab . (1.14)

Then (1.2) becomes the defining relation for the tetrad (vierbein) and the connection in
this case is called the “spin connection”. 1 In this gauge the nonmetricity is a purely
algebraic object:

Qcab = Acab + Acba (1.15)

whereas torsion still involves a derivative of θ.

In the following we will also adopt more elaborate gauges, however, in the majority of this
thesis we will stick to the metric gauge, which will be implicitly assumed when formulae are
written with Greek indices only, unless otherwise stated.

In GR one a priori assumes that torsion and nonmetricity vanish everywhere:

Qµνρ = Tµνρ = 0 . (1.16)

This implies that the theory propagates only metric degrees of freedom. In the following
sections, we will explain why such constraints are unnecessary from the conceptual point of
view, for they can be enforced automatically as a consequence of mass suppression of the
additional degrees of freedom, that happens everywhere except a measure zero subset of the
theory space. This implies that the correct dynamics describing gravity at high energies may
differ from the standard spin-2 dynamics of GR and may involve independent connection
degrees of freedom.

1We stick to the convention that the components of the same geometrical object in different bases should
not be given different names.
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1.2 Gravity in EFT perspective

According to conventional wisdom, general relativity does not make sense as a quantum theory.
This statement originates from futile attempts to treat gravity in a fully renormalisable way. If
one tries to “unify” gravity with other interactions within the QFT framework, demanding that
the resulting theory is applicable to arbitrarily high energies, renormalisability is a necessary
requirement for consistency. On the other hand, there exists a natural gravitational energy
scale - the Planck mass, demanding the applicability of a “quantum theory of gravity”, or quite
possibly quantum theory at all, above which may seem to be a somewhat näıve goal. Instead,
we will adopt the view in which we expect our theories to be applicable only up to some cutoff
scale Λ. It can be comparable to the Planck mass or be much higher. We demand though that
Λ does not enter in final expressions for any observable quantities. In other words, for any
physical quantity its change coming from variation of Λ within a certain finite range must be
zero.

The fundamental mathematical object in this perspective is the Wilsonian effective action.
Let us suppose that we can decompose quantum fields in “light” and “heavy” components, and
only the former ones can propagate below the cutoff scale and be described by our theory, while
the latter ones can only enter as residual quantum corrections to the couplings. They can be
seen as integrated out virtual heavy particles, if the conventional notion of a particle is appli-
cable above Λ, or some other corrections of unknown nature. The Wilsonian effective action is
defined as the part of the one-particle-irreducible quantum effective action that remains after
all “heavy” components are integrated out. The idea that such an operation should be attain-
able in principle stems from a simple philosophical conjecture that low-energy physics should
be tractable without any knowledge of higher-energy physics. It would be very surprising if
low-energy degrees of freedom of GR cannot at all be treated quantum mechanically.

Inside the Wilsonian EA, terms are usually arranged according to their mass dimension.
Given a heavy mass scale, both momenta and the values of fields within the applicability range
are expected to be small compared to it.2 This leads to terms of higher dimensions being
suppressed compared to the low dimensional ones. Even staying within classical framework,
dimensional considerations provide a systematic way to arrange action contributions. We write
down the terms up to mass dimension four as

SHDG =
1

2

∫
d4x

[
2Λ−m2

PR + αR2 + βRµνR
µν + θE

]
. (1.17)

Here E = R2 − 4RµνR
µν + RµνρλR

µνρλ is the Euler (Gauß–Bonnet) invariant that does not
contribute to the equations of motion, and mP is the Planck mass. Another convenient way
to represent the same action is

SHDG = −1

2

∫
d4x

[
2Λ−m2

0R +
1

ξ
R2 +

1

2λ
CµνρλC

µνρλ +
1

ρ
E

]
, (1.18)

where

Cµν
ρλ = Rµν

ρλ − 2δ[µ
[ρRν]

σ] +
1

3
Rδ[µ

ρδν]
σ (1.19)

2In principle, the values of the fields do not have to be small; but if the gradients are small everywhere it
should be possible to normalise the fields in such a way that makes them small.
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is the Weyl tensor. This form provides more clarity because different particles are contained
in terms. The R2 term propagates an additional scalar, whereas the Weyl tensor squared
term propagates a massive ghost. Graviton, however, is contained in all of them. This theory
admits perturbative treatment when λ ≪ 1. It is obvious that in the limit R ≪ mP gravity
is described by the Hilbert–Einstein action because additional contributions are strongly sup-
pressed. Similar logic applies to the Wilsonian EA. In that case, quantum corrections coming
from heavy modes can affect the behaviour of the couplings. If such effects were found to be
of the same order, that would mean that it is impossible to obtain any knowledge about the
quantum behaviour of gravity at energies below the Planck mass without a full understanding
of trans-Planckian physics. We instead adopt a more optimistic narrative that, in similarity
with all other known physical systems, the opposite is the case. It is possible that the field
theory still makes sense above this cutoff by some non-perturbative effect [27, 53], but in this
thesis, we will restrict our attention to sub-Planckian physics.

The theory of gravity with action (1.17) will be referred to as four-derivative gravity (4DG)
(a.k.a. quadratic gravity) and has been studied, independently of the EFT framework, for a
long time. It is known to be renormalisable [20] asymptotically free [54, 55] (for the right signs
of the couplings) and to contain ghosts, but the ghosts are massive and do not appear at sub-
Planckian energies. In fact, there exists a close analogy between 4DG and chiral perturbation
theory. The latter describes strong interactions at energies below the chiral symmetry breaking
scale. Chiral field, belonging to the coset space U ∈ (SU(2)L × SU(2)R)/SU(2)V , can be
expressed as

U = exp(π/fπ) , (1.20)

where π is the pion field and fπ is the pion decay constant. Then the chirar action is

S =

∫
dx

[
f 2
π

4
tr(U−1∂U)2 + ℓ1tr((U

−1∂U)2)2 + ℓ2tr((U
−1∂U)2)2 +O(∂6)

]
(1.21)

As we will discuss later on, the metric field in R4 belongs to the coset g ∈ GL(4)/O(1, 3), and
when the action (1.17) is very similar to the chiral action. The only difference is owing to the
cosmological constant, and when the unimodular version of the action (1.17) is considered, it
becomes exactly equivalent to (1.21). Chiral theory is in great agreement with experimental
data, telling us that gravity in the EFT framework can also be predictive.

GR has been regarded as an EFT with a range of validity that goes from macroscopic
scales to the Planck scale [56] (for review see [30, 57, 58]). Similar principles have been also
applied to various modified gravity theories [59–62]. Even though the theory based on covari-
ant quantisation of the Hilbert–Einstein action is not perturbatively renormalisable, quantum
corrections affecting low-energy observables can be unambiguously calculated [30, 56]. Indeed,
let us look at a simple process of gravitational scattering. At the tree level, we have a diagram
which gives rise to the Newtonian potential

∼ Gm1m2

q2

V (r) =

∫
d3q

(2π)3
Gm1m2

q2
eiqr = −Gm1m2

r
(1.22)
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When loop corrections are taken into account, one obtains the following correction [56]:

V (r) = −Gm1m2

r

[
1 + 3

G(m1 +m2)

rc2
+

41

10π

Gℏ
r2c3

+ . . .

]
. (1.23)

It is not affected by UV divergences, completely unambiguous. It also agrees with all experi-
mental data, just because of its tininess.

On the other hand, the potential can also receive additional corrections from the higher
order terms, such as (1.18). The result, obtained in [63], looks like

V (r) = −Gm1m2

r

[
1− 3

4
e−rmspin−2 +

1

3
e−rmspin−0

]
, (1.24)

where mspin−2 and mspin−0 are masses of the additional to graviton propagating particles.
Looking at the action (1.17) as a truncation of the effective action and comparing (1.23)
and (1.24) we see that quantum corrections, that decrease as a power law, are superior to
the classical corrections coming from using a better truncation, that decrease exponentially.
Moreover, when λ ∼ ξ ∼ 1 we have mspin−2 ∼ mspin−2 ∼ mP and these classical corrections
can be neglected at all reasonable scales.

Now let us look at a more general context of independent affine connection. When we relax
the condition (1.16) many more terms can appear in the action. In this section, we will only
discuss their effects at a qualitative level. Writing terms of mass dimension up to two allowed
by symmetries we get:

S =
1

2

∫
d4x [2Λ−m0F +m.T...T

... +m.Q...Q
... +m.T...Q

...] . (1.25)

This action leads to both torsion and nonmetricity being frozen, unless in a measure zero
subset of the theory space where some of the mass contributions cancel out. For example,
the Palatini action, which comprises the first two terms in (1.25), leaves the projective mode
of torsion unfixed. This means that it enters as a gauge degree of freedom and can be easily
removed or reabsorbed into a newly defined connection. However, when coupling with matter
is considered, it can lead to different physics that the one of GR.

On the other hand, if all mass contributions are included (as they should be in the framework
of EFT) torsion and nonmetricity degrees of freedom generically stop propagating. That means
that they can enter the equations of motion only as external fields. If there are no sources of
such fields, the resulting theory automatically becomes equivalent to GR. A more interesting
situation happens when one includes terms of higher mass dimension. Alongside with R2,
RµνR

µν we now have contributions of the following types:

∇.T...∇.T ... , ∇.Q...∇.Q... , ∇.T...∇.Q... , (1.26)

which represent themselves kinetic terms for torsion and nonmetricity fields, mixing contribu-
tions of the types

R....∇.T ... , R....∇.Q... , (1.27)

and various interaction terms such as

R....T.
..T.

.. , ∇.T....T.
..T.

.. , Q...Q...Q
...Q... , (1.28)

etc. Merely the construction of a basis for such contributions represents a formidable challenge
which we will address in chapter 3. We expect that torsion and nonmetricity will give correc-
tions to (1.23). Now, we shall build some more apparatus to deal with such complexity and
discuss the dynamics.

7



1.3 Low– and high–energy dynamics of MAG

Before discussing how the usual dynamics of GR can be recovered at low energies, let us intro-
duce an important notion of the distorsion tensor. We will argue that, excluding a measure zero
subspace of the it is at low energies helps to recover It is known, that on any Riemann-Cartan
manifold one can define a unique connection which is torsionless and metric compatible. It is
called the Levi-Civita connection, and its components in the coordinate basis are represented
by the Christoffel symbol:

Γabc =
1

2
(Eacb + Ecab − Ebac)−

1

2
(fabc + fcab − fbca) , (1.29)

where
Ecab =θc

λ ∂λgab ,

fbc
a =

(
θb

µ ∂µθc
λ − θc

µ ∂µθb
λ
)
θaλ .

(1.30)

Note that E and f are not tensors (f are the structure functions of the frame fields). The
curvature of the LC connection is the Riemann tensor:

Rρσ
µ
ν = ∂ρΓσ

µ
ν − ∂σΓρ

µ
ν + Γρ

µ
λΓσ

λ
ν − Γσ

µ
λΓρ

λ
ν . (1.31)

Note that our notation of curvature (1.5) is different from the one that is mostly used in
gravitational literature. The reason for our chose is to demonstrate in an explicit manner the
similarity between MAG and Yang-Mills theories. The last two indices in (1.5) correspond to
a single group index. We preserved the same spirit in (1.31), however, due to the symmetries
of the Riemann tensor, the Yang-Mills-inspired notation does not differ from the standard one.

A generic connection in the tangent bundle can be decomposed into

Aµ
a
b = Γµ

a
b + ϕµ

a
b , (1.32)

where ϕ is a proper tensor called distorsion (following [64]). In general, it has no symmetry
properties. Indices are raised and lowered with gµν . From (1.8) and (1.9) one finds

Tαβγ = ϕαβγ − ϕγβα , Qαβγ = ϕαβγ + ϕαγβ . (1.33)

These relations can be inverted, to give the distortion as a function of torsion and nonmetricity.
In fact we can write

ϕαβγ = Lαβγ +Kαβγ , (1.34)

where

Lαβγ =
1

2
(Qαβγ +Qγβα −Qβαγ) ,

Kαβγ =
1

2
(Tαβγ + Tβαγ − Tαγβ) .

(1.35)

Note that the tensor Kαβγ, called the contortion, is antisymmetric in the second and third
index (whereas T is antisymmetric in the first and third). The tensor Lαβγ, that does not seem
to have a commonly accepted name, is symmetric in the first and third index (whereas Q is
symmetric in the second and third index).

Notice that (1.33) can then also be written as

Tαβγ = Kαβγ −Kγβα , Qαβγ = Lαβγ + Lαγβ , (1.36)
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so L contains all the nonmetricity and K contains all the torsion. Another way of saying this
is that Γ +K is torsion-free and Γ+L is metric. We shall actually not use the tensors K and
L in the following and prefer to express everything either in terms of ϕ or of T and Q.

We denote Fµν
ρ
σ the curvature tensor of Aµ

ρ
σ, and Rµν

ρ
σ the curvature tensor of Γµ

ρ
σ.

They are related as follows:

Fµν
α
β = Rµν

α
β +∇µϕ

α
ν β −∇νϕ

α
µ β + ϕ α

µ γϕ
γ

ν β − ϕ α
ν γϕ

γ
µ β . (1.37)

In general, F is only antisymmetric in the first two indices. It has three independent contrac-
tions: the Ricci-like tensors

F (13)
µν = Fλµ

λ
ν , F (14)

µν = gαβFαµνβ

that do not have symmetry properties in general, and the antisymmetric tensor

F (34)
µν = Fµν

λ
λ .

The analog of the Ricci scalar for the connection Aµ
α
β is the unique contraction Fµν

µν ,
which, up to total derivatives, can be written as

Fµν
µν = R + ϕ µ

µ γϕ
γν

ν − ϕνµγϕ
µγν . (1.38)

This can be reexpressed in terms of non-metricity and torsion as

Fµν
µν = R +

1

4
TαβγT

αβγ +
1

2
TαβγT

αγβ − tr(12)Tαtr(12)T
α

+
1

4
QαβγQ

αβγ − 1

2
QαβγQ

βαγ − 1

4
tr(23)Qαtr(23)Q

α +
1

2
tr(12)Qαtr(23)Q

α

−QαβγT
αβγ − tr(23)Qαtr(12)T

α + tr(12)Qαtr(12)T
α .

(1.39)

1.4 Mass hierarchy

In the following, we shall assume that the cutoff is Planck mass. The main conclusions will
be valid if the cutoff differs from it by a few orders of magnitude. There are two possible
scenarios. The most natural one, from the EFT point of view, is that all the masses that arise
in the theory are comparable to the Planck mass. In this case the only physical particle in the
MAG would be the graviton, and the EFT would be very similar to the metric EFT of gravity
already discussed in the literature. All the massive states would already be “integrated out”
and would only contribute tiny effects through quantum loops. This scenario is somewhat dull,
however even in this case MAGs have a greater explanatory power than metric EFTs of gravity,
because the vanishing of torsion and nonmetricity can be shown to be generic consequences of
the dynamics at low energy, whereas in the metric theories, it has to be postulated.

A more interesting scenario would occur if some of the massive states are much lighter than
the Planck scale, so there would be an energy interval where these massive states could exist
as physical particles. There is no difficulty in arranging this at the level of the Lagrangian
parameters, but this scenario would give rise to various issues. The first is maintaining the
mass hierarchy in the presence of loop corrections would likely entail some degree of fine-tuning.
The second and more important issue is related to the fact that tree-level unitarity could be
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violated already at energies much below the Planck scale. This has been discussed for higher
spin fields in [65], and MAGs are generally higher-spin theories, because the connection is a
three-index field and generally contains a spin-3 degree of freedom. Third, it is in general
difficult to find Lagrangians for MAG that do not contain pathological features such as ghosts
or tachyons [38–43, 50, 66].

From this point of view, MAGs are similar to 4DG. There has been recently a revived
interest in possible mechanisms to avoid these issues in 4DG [31–37], and there have been
some first steps to carry them over also to MAGs [67, 68]. If these ideas are successful, one
potential consequence is that the spectrum of MAG may be very different from what a naive
tree-level analysis would indicate. 3 In this thesis we shall not venture so far, but it is important
to keep in mind that all our statements may be subject to important changes when quantum
corrections are taken into account.

Regardless of which of these two scenarios one considers, masses of torsion and nonmetricity
are naturally expected to be large compared to the energy scales that are currently accessible at
collider experiments. Therefore, MAG action leads to standard GR dynamics at low energies.
As energies grow, one expects corrections to become important. They will come of the following
types. First, there will be quantum corrections from graviton dynamics, analogous to (1.23).
Second, there will be classical corrections due to the dynamics of independent connection. And
third, there will be quantum corrections from the connection dynamics. As we saw in section
(1.2), quantum corrections in metric theories of gravity, though suppressed by Planck mass,
decrees slower with distance then higher order classical correction are therefore are of especial
interest.

1.5 Loop Divergences

In absence of experiments, a useful criterion for the validity of a given theory is, of course, its
mathematical self-consistency. For a quantum field theory, an important consistency criterion
is the finiteness of RG flow trajectories. If some RG trajectories go into a fixed point in the UV
limit (or into a closed circle etc.), a theory is called asymptotically safe. There exist indications
that Einstein gravity may have an interacting UV fixed point [70–72]. A particular case of
asymptotic safety occurs when a subset of the trajectories go into a free UV fixed point is
called asymptotic freedom. As we mentioned earlier, it has been proven that this scenario
is realised in Quadratic gravity [54, 55], alongside with the best-known example of Quantum
Chromodynamics. It may happen instead that all the trajectories go into high but finite
values of couplings within the applicability regime of the theory. Such behaviour indicates
that perturbative treatment is not applicable, but it is still possible that the theory would
still make sense nonperturbatively. Another case may happen when all the trajectories go
into infinitely high values of couplings. That would mean that the theory makes sense only at
much lower energies, with respect to those at which it happens. Such a scenario takes place,
for example, in quantum electrodynamics, which exhibits a Landau pole. However, since it
appears only at energies that are much higher than the Planck mass, it is generally agreed not
to be an issue.

3It is even possible that no bosonic field propagates above the Planck mass, a statement that has sometimes
been made in the context of noncommutative geometry [69].
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In the following, we endeavour to learn whether the presence of non-vanishing, propagat-
ing torsion and/or nonmetricity can improve or spoil the behaviour of the gravitational RG
trajectories. We shall perform perturbative computations of RG flow in certain subsets of the
MAG theory space and see what sort of counterterms are needed to cancel the logarithmic UV
divergences at one-loop order.

To that end, we employ the heat kernel technique [73, 74], for review see [75], which is a
formal way to treat functional traces and determinants of local pseudo-differential operators
(including but not necessarily Laplace-type). Consider a theory of a set of fields φ with
arbitrary whole spins with a kinetic operator

∆ = −□+ E, (1.40)

where □ = −gµν∇µ∇ν whereas E does not contain derivatives and is usually referred to as
the endomorphism. This represents the simplest kinetic operator of minimal type. The heat
kernel is defined as a solution to the heat equation(

d

ds
+∆x

)
H(x, x′; s) = 0 (1.41)

with the initial condition H(x, x′, 0) = δ(x, x′)1, or formally equivalently as

H(x, x′; s) = ⟨x′|H(s)|x⟩, (1.42)

where
H(s) = e−s∆ . (1.43)

This allows us to formally express the propagator

1

∆
=

∫ ∞

0

ds H(s). (1.44)

Trace of the heat kernel means taking the coincidence limit x′ → x, taking the trace on the
internal structure of fields and integration over the spacetime

Tr H(s) =

∫
ddx

√
g tr H(x, x; s) (1.45)

The one-loop EA relates to the trace of the heat kernel:

Γ1−loop = S +
1

2
Tr log∆ = S +

1

2

∫ ∞

0

ds

s
TrH(s). (1.46)

The integrand can be expressed as asymptotic series for the small values of s:

Tr H(s) =
1

(4πs)d/2

∑
n≥0

∫
ddx

√
gsn tr an , (1.47)

where an(x) are local functions of the curvatures, torsion and their covariant derivatives. The
dimension of an grows with n as [an] = 2n.

a0 (∆) = 1,

a1 (∆) =
1

6
R− E,

a2 (∆) =
1

180

(
RµνρλR

µνρλ −RµνR
µν +

5

2
R2 + 6□R

)
+

1

12
ΩµνΩ

µν +
1

2
E2 − 1

6
RE − 1

6
□E ,

(1.48)
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where Ω is the curvature of the field space:

[∇µ,∇ν ]φ = Ωµνφ . (1.49)

If one is interested in the divergent part it is sufficient to only look at the first three terms in
the expansion. Specifically, logarithmic divergence comes from the terms of dimension 4, and
therefore, in the case of minimal kinetic operator (1.40) the logarithmically divergent part of
the one-loop EA is

Γlog.div.
1−loop = −1

2

1

(4π)2
log

(
Λ2

µ2

)∫
d4x

√
g tr a2. (1.50)

An elegant way to extend this method for nonminimal operators was introduced in [76]
and is called the “generalised Schwinger-DeWitt technique” or the “Off-diagonal heat kernel
technique”. It is based on the early-time asymptotic expansion of the kernel of the heat
equation. Application of this procedure in the context of non-perturbative calculation with
Functional Renormalisation Group (FRG) is also called the Universal RG Machine [77, 78].
Let us consider a theory with kinetic operator F which contains derivatives which are non
contracted with each other. At one-loop level, the EA has the form

Γ1−loop = S +
1

2
Tr log F. (1.51)

Let us define a new kinetic operator Fλ:

Fλ = Fm + λN. (1.52)

Where λ is a newly introduced parameter. Let us assume the following:
1) Fm = F |λ=0 is minimal,
2) Fλ=1 = F ,
3) Fλ is invertible for all λ ∈ [0, 1].

Then, differentiating (1.51) by λ,

d

dλ
Γ1−loop =

1

2
Tr F−1

λ · dFλ

dλ
(1.53)

and then by integrating back we get

Γ1−loop[F ] =
1

2
Tr log F̃ +

1

2

∫ 1

0

dλ Tr
[
F−1
λ ·N

]
. (1.54)

The inverse of the kinetic operator can be found first in flat space, and then by working out
appropriate corrections, one can solve it for any given order in background quantities (more on
that in chapters 7 and 8.2 and Appendix B).Then, all derivatives that are contracted with each
other must be commuted to the very right (or very left) to form boxes. Furthermore, there
will be additional contributions from commutators. For an arbitrary operator X and function
f , using the Laplace transform, one can derive the following formula [79]:

[X, f(∆)] =
∞∑
n=1

1

n!
(−1)n−1

[
X , ∆

]
n
f (n)(∆) (1.55)
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After cumbersome algebraic manipulations, the second term will be expressed as the following
traces

Tr[∇µ1 . . .∇µnf(∆)], (1.56)

and then after taking the Laplace transform of this expression, one can relate it to the off-
diagonal heat kernel traces (see app C.1):

Hµ1...µn(x, s) = Tr[∇µ1 . . .∇µne
−s∆] , (1.57)

that allow us to compute the second term in (1.54).
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Chapter 2

Classical MAG

This chapter is devoted to study of Metric-Affine gravity, although motivated by quantum
theoretical considerations of section 1.2, but still classical in their nature. We will further
discuss structure of MAG, identify several subclasses, build bases of independent Lagrangian
contributions, describe their spectrum. We will also provide two examples of MAGs that
propagate only a massless graviton and a state of spin/parity 2− or 3−. Additionally, we will
show that any metric theory of gravity has a teleparallel equivalent.

2.1 Equivalent forms

It appears from the discussion in the previous sections that any MAG can be described in two
equivalent ways, depending on what connection is used to write covariant derivatives.

• if the connection Aµ
α
β is used to write the covariant derivatives, the Lagrangian will be

a combination of curvature tensors Fαβγδ, their covariant derivatives, the tensors T , Q
and their covariant derivatives DµTαβγ, DµQαβγ. In this form, the theory is very similar
to a Yang-Mills theory. We will call this “the Cartan form” of MAG.

• if the LC connection Γµ
α
β is used to write the covariant derivatives, the Lagrangian

will be a combination of the Riemann tensor Rαβγδ and its covariant derivatives, the
distortion ϕαβγ and its covariant derivatives ∇µϕαβγ, (or equivalently T , Q and their
covariant derivatives). In this form, MAG looks like ordinary metric gravity coupled to
a peculiar matter field. We will call this “the Einstein form” of MAG.

Using equation (1.32), any action for a MAG in Cartan form can be rewritten in Einstein
form

SC(g, A) = Sc(g,Γ + ϕ) = SE(g, ϕ) . (2.1)

We see that the transformation from Cartan to Einstein form is just a change of field variables.
1 The two forms of the theory are physically equivalent.

Because of this choice, and of the possibility of using different frames (either general or
natural or orthonormal), the same MAG can be presented in several ways, that may not be

1A choice of variables in field theory is sometimes called a “frame”. Thus we could also speak of “Cartan
frame” and “Einstein frame”. We prefer not to do so, in order to avoid confusion with the Einstein frame of
conformal geometry, and more importantly because we are already using the term “frame” in its more standard
meaning of linear basis in the tangent space.
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immediately recognisable. It is thus important to distinguish statements that depend upon
the gauge (i.e. the choice of frame) or on the choice of field variables and have no physical
content from physical statements that do not depend on these choices.

One such aspect is the number of derivatives, which in the EFT approach is often used
to assess the relative importance of different terms in the Lagrangian. In the Einstein form
of MAG, the independent fields are the metric gµν and the distortion ϕρ

µ
ν . The torsion and

non-metricity tensors are algebraic linear combinations of the distortion and can themselves be
taken as independent dynamical variables. Thus for example, a term like T 2 has no derivatives
and counts as a mass term, while a term like (∇T )2 has two derivatives and counts as an
ordinary kinetic term.

In the Cartan form of MAG, the status of torsion and non-metricity depends on the choice
of basis, i.e. on the gauge. In a general linear basis, they are the covariant derivatives of the
fundamental dynamical variables θ and g. Thus terms like T 2 or Q2 have two derivatives, while
(∇T )2 or (∇Q)2 have four derivatives. Things will look different if we use special frames. In
coordinate frames, a term like T 2 has no derivatives and (DT )2 has two derivatives but Q2

has two derivatives and (DQ)2 has four derivatives. Conversely, in an orthonormal frame Q2

has no derivatives and (DQ)2 has two derivatives but T 2 has two derivatives and (DT )2 has
four derivatives. Obviously the physics cannot change. In particular, the physical propagating
degrees of freedom must be the same in all these different versions of the theory. We see that
the number of derivatives depends on the choice of field variables, and on the choice of gauge.
This highlights that the derivative expansion is not a useful approach in MAG. When we regard
MAG as an EFT, we shall therefore classify the terms in the Lagrangian according to their
canonical dimension. 2

2.2 Basic classification of MAGs

Even in its simplest form (using coordinate bases), a general MAG contains 74 component
functions and, as we shall discuss later, its Lagrangian has hundreds of free parameters. There
are two ways in which one can reduce this complexity. One is to impose additional gauge
invariances, on top of diffeomorphisms. These gauge invariances have two effects: they make
some field components unphysical, and they constrain the form of the Lagrangian, reducing the
number of free parameters. We shall discuss in Section 4.3 some examples of gauge invariances.
It is important that such symmetries should be present at the full nonlinear level, because in
this case one could hope that they persist when quantum corrections are taken into account.
Accidental symmetries that may be present at linearised level but not in the full theory, will
generally be broken by quantum effects.

The other way is to impose kinematical constraints on the fields. There are very many ways
of doing this, but here we shall discuss only the most basic possibilities, which are suggested
by the discussion in the previous sections: we will say that a MAG is symmetric if ϕabc is
symmetric in a, c, antisymmetric if ϕabc is antisymmetric in b, c, or general if ϕabc has no
symmetry property. 3 Then, from (1.33) we see the following:

2It is worth emphasising that similar, though somewhat simpler, considerations apply also to EFT’s con-
taining Yang-Mills fields.

3A three-index tensor that is simultaneously symmetric in one pair of indices and antisymmetric in another
is zero. Thus a MAG that is simultaneously symmetric and antisymmetric is not a MAG - it does not have an
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Figure 2.1: The MAGic triangle. The interior of the triangle represents general MAGs, the sides
MAGs with one kinematical constraint, the vertices MAGs with two kinematical constraints.
This figure had been used in [80, 81] as a representation of the relation between GR and its
teleparallel equivalents.

• “Antisymmetric MAG”. In this case Q = 0, so the connection is metric-compatible.
These may also be called “metric MAGs”, but we will refrain from doing so in order not
to confuse them with metric theories of gravity (where the only variable is the metric).

• “Symmetric MAG”. In this case T = 0, so this type of theory can be equivalently
characterized as being torsion-free.

• “General MAG”. In this case both T and Q are generally nonzero.

More restrictive kinematical constraints could consist in assuming that torsion or nonmetric-
ity are of a special form, for example Tαβγ = vδϵαβγδ (this example arises in supergravity) or
Qλµν = bλgµν (as in Weyl’s theory). Another interesting class of MAGs are the teleparallel the-
ories, where one imposes Fαβγδ = 0. We emphasise that at this stage these are just kinematical
restrictions on the theory, without implications for the dynamics.

According to the presence or absence of kinematical constraints, MAGs can be arranged in
a triangle, as in Fig.2.1. The theories in the top vertex are formulated in terms of the metric
(and possibly a frame field, but this is just a different gauge choice) and the connection is the
LC one. The geometry they use is Riemannian geometry. These are the metric theories of
gravity. GR is the metric theory of gravity whose Lagrangian contains at most two derivatives
of the metric, but there are infinitely many more complicated ones, containing higher powers
of curvature.

independent connection.
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The base of the triangle contains the teleparallel theories. Historically the first and still best-
known example is the Weitzenböck theory, or antisymmetric teleparallel theory, that contains
only torsion and resides in the bottom left corner. Slightly less well-known are teleparallel
theories constructed only with nonmetricity, which occupy the right corner [80, 82–84] General
teleparallel theories, filling the base of the triangle, have only been discussed more recently
[81, 85]. We shall discuss them further in the next section.

For many purposes, it is enough to consider theories that contain only torsion or only
nonmetricity. These simplified models correspond to the sides of the triangle. They have
fewer fields (34 and 50, respectively, when one uses coordinate frames) and correspondingly
fewer terms in the action. In the following, we will discuss these cases separately and then
proceed with the general case. We will construct bases of independent terms, compute kinetic
coefficients and discuss particular cases. But prior to that, we digress to discuss teleparallel
theories, specifically, we raise and answer the question of whether for any metric theory of
gravity, there exists a teleparallel equivalent.

2.3 Universality of teleparallelism

At the dynamical level, it is known how to formulate actions for any teleparallel geometry that
yield equations that are equivalent to Einstein’s equations (“teleparallel equivalents of GR”).
Their Lagrangian is

T =
1

4
TαβγT

αβγ +
1

2
TαβγT

αγβ − tr(12)Tαtr(12)T
α (2.2)

for the antisymmetric case,

Q =
1

4
QαβγQ

αβγ − 1

2
QαβγQ

βαγ − 1

4
tr(23)Qαtr(23)Q

α +
1

2
tr(23)Qαtr(12)Q

α (2.3)

for the symmetric case and

G = T+Q−QαβγT
αβγ − tr(23)Qαtr(12)T

α + tr(12)Qαtr(12)T
α . (2.4)

for the general case. These combinations differ from the Hilbert term only by a total derivative,
as is seen from (1.39). More general teleparallel theories with actions of the form f(T) or f(Q)
have also been studied in some detail. They are in some sense analogous to the Lagrangians
for metric theories of the form f(R), but not equivalent to them.

It is an interesting question, whether any metric theory of gravity has a teleparallel equiv-
alent. We can answer this question in the affirmative. To begin with, let us consider a general
action for a metric theory of gravity that contains only powers of undifferentiated curvature
tensors:

SM(g) =

∫
d4x

√
−gL(gµν , Rµν

ρ
σ) . (2.5)

While ultimately everything only depends on the metric, we have separated the dependence of
the Lagrangian on the Riemann tensor and on the metric, which is used to contract all indices.

The EOM is obtained from the variation

δSM =

∫
d4x

√
−g
[
1

2
L gαβδgαβ −

∂L
∂gµν

gµαgνβδgαβ + Zµν
ρ
σδRµν

ρ
σ

]
(2.6)

17



where Zµν
ρ
σ = ∂L

∂Rµν
ρ
σ
. Thus the EOM is

1

2
L gαβ − ∂L

∂gµν
gµαgνβ +

(
δ(ασ δ

β)
[µ∇

ρ∇ν] − gρ(αδβ)σ ∇[µ∇ν] − gρ(α∇σδ
β)
[µ∇ν]

)
Zµν

ρ
σ = 0 . (2.7)

For a teleparallel theory, Fµν
ρ
σ = 0 so equation (1.37) implies that

Rµν
α
β = −Pµν

α
β (2.8)

where
Pµν

α
β = ∇µϕ

α
ν β −∇νϕ

α
µ β + ϕ α

µ γϕ
γ

ν β − ϕ α
ν γϕ

γ
µ β .

Now consider the following action for a teleparallel theory in Einstein form:

ST (g, ϕ) =

∫
d4x

√
−gL(gµν ,−Pµν

ρ
σ) . (2.9)

where L is the same as in SM .
The constraint Fµν

ρ
σ = 0 also implies that

Aν
ρ
σ =

(
Λ−1

)ρ
α∂νΛ

α
σ , (2.10)

which in turn implies
ϕν

ρ
σ =

(
Λ−1

)ρ
α∂νΛ

α
σ − Γν

ρ
σ . (2.11)

Inserting in (2.9) we obtain a new unconstrained action S ′
T (gµν ,Λ

α
β). Now Λ is a pure gauge

degree of freedom and its EOM is empty, as follows from the observation that due to (2.8), P
does not depend on Λ. The only nontrivial equation follows from the variation of the metric:

δST =

∫
d4x

√
−g
[
1

2
L gαβδgαβ −

∂L
∂gµν

gµαgνβδgαβ +W µν
ρ
σδPµν

ρ
σ

]
(2.12)

where W µν
ρ
σ = ∂L

∂Pµν
ρ
σ
. But

W µν
ρ
σ = −Zµν

ρ
σ
∣∣∣
R→−P

and
δPµν

ρ
σ = −δRµν

ρ
σ ,

so the EOM of this teleparallel theory is the same as the one of the original metric theory.
Let us now come to the more general case when the action contains also up to n-times

differentiated Riemann tensors:

SM(g) =

∫
d4x

√
−gL(gµν , Rµν

ρ
σ,∇αRµν

ρ
σ, . . . ,∇α1 · · · ∇αnRµν

ρ
σ) . (2.13)

In this case the variation will contain n additional terms:
n∑

i=1

Zα1...αiµν
i ρ

σδ(∇α1 · · · ∇αi
Rµν

ρ
σ) ,

where Zα1...αiµν
i ρ

σ = ∂L
∂(∇α1 ···∇αiRµν

ρ
σ)
. The teleparallel equivalent action is

ST (g, ϕ) =

∫
d4x

√
−gL(gµν ,−Pµν

ρ
σ,−∇αPµν

ρ
σ, . . . ,−∇α1 · · · ∇αnPµν

ρ
σ) . (2.14)

Following the same argument as above, based on the constraint (2.8), the EOMs of this theory
are the same as those of the original metric theory.
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Chapter 3

Lagrangians

3.1 General structure of the action

As discussed in Section 1.2, terms within the Wilsonian EA are ordered based on canonical
dimension, with the understanding that terms of lower dimension are generally more important
at low energy. We shall now discuss the possible Lagrangians for MAG containing terms of
dimension two and four. In the first overview, we will entirely omit all indices and only consider
the structures that can appear. This is useful to understand the relation between the Cartan
and Einstein forms of the Lagrangian, in an uncluttered environment. In the rest of this
section, we shall count, and in part enumerate, all the structures.

We start from the Cartan form of the theory. The covariant field strengths are the curvature
F , of mass dimension two, the torsion T and non-metricity Q, both of mass dimension one.
The scalars of dimension two that can be formed with these ingredients are either linear in F
or quadratic in T and Q. These terms will appear in the action with coefficients of dimension
two. The scalars of dimension four are of the forms F 2 or FDT/FDQ or quadratic in DT/DQ,
or cubic in T/Q with one derivative, or quartic in T/Q. All these terms appear in the action
with dimensionless coefficients.

In order not to introduce too many different symbols, we shall use a slightly cumbersome
but helpful notation, where all the dimension-two couplings are called a and all dimensionless
ones are called c, and the type of term they multiply is indicated by a superscript in brackets.
Once indices are reinstated, different couplings of the same type will be distinguished by a
subscript. Thus, ignoring all numerical factors and signs, we write the Lagrangian in the
schematic form

LC = aFF + aTTTT + aTQTQ+ aQQQQ

+ cFFFF + cFTFDT + cFQFDQ+ cTT (DT )2 + cTQDTDQ+ cQQ(DQ)2

+ cFTTFTT + cFTQFTQ+ cFQQFQQ

+ cTTTTTDT + . . .+ cQQQQQDQ

+ cTTTTTTTT + . . .+ cQQQQQQQQ ,

(3.1)

where the ellipses stand for cubic and quartic terms involving different powers of T and Q.
The action in Einstein form is related to the action in Cartan form by (2.1). In practice

the transformations achieved by using D = ∇ + ϕ and equations (1.37) and (1.33), that we
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can write schematically as

F ∼ R +∇ϕ+ ϕϕ , T ∼ ϕ , Q ∼ ϕ .

One then obtains the Lagrangian in Einstein form

LE = mRR +mϕϕϕϕ

+ bRRRR + bRϕR∇ϕ+ bϕϕ(∇ϕ)2

+ bRϕϕRϕϕ+ bϕϕϕϕϕ∇ϕ+ bϕϕϕϕϕϕϕϕ ,

(3.2)

where the dimension-two couplings are now called m and the dimensionless ones are called
b. This is the most general Lagrangian for the Einstein form of MAG, involving terms of
dimension two and four.

At this point one can use (1.34) and (1.35) to reexpress ϕ in terms of T and Q. The
Lagrangian then looks again more similar to (3.1), but there is a difference: in (3.1), T and
Q have to be thought of as depending on A and g, whereas here they have to be treated as
independent variables. To distinguish the two Lagrangians, in LE the coefficients will be called
bRT , bRQ, bTT etc.

In this thesis, we will be interested mainly in the linearisation of the theory around flat
space. We observe that in this approximation only the first two lines of (3.1) and (3.2) con-
tribute to the propagator, while all the other terms are interactions. Also, we note that whereas
the dependence on the metric is nonpolynomial, as usual, the dependence on distortion is at
most quartic.

Many terms in (3.1) and (3.2) are dependent. There are two types of relations between
different terms. Relations of the first type are obtained from Bianchi identities. For the
independent dynamical connection, they read

F[αβ
γ
δ] −D[αTβ

γ
δ] − T[α

ϵ
β|Tϵ

γ
|δ] = 0 , (3.3)

D[αFβγ]
δ
ϵ + T[α

η
β|Fη|γ]

δ
ϵ = 0 . (3.4)

The Bianchi identities of the LC connections are the same, except that the torsion terms are
missing. Relations of the second type come from a simple observation that although curvature,
torsion and nonmetricity are independent, their products are related as long as we are only
concerned with propagator contributions as explained above. Schematically, we represent this
relation as

F 2 = R2 +R∇ϕ+ (∇ϕ)2 , (3.5)

where terms not contributing to flat propagator are displayed. Such and similar relations for
FDT and FDQ allow us to express certain terms in Cartan formulation via other terms.

Counting independent terms turns out to be far easier in the Einstein point of view, where
we use the variables (g, ϕ) and only relations of the first type have to be considered. We,
therefore, start from this case. We will loosely refer to scalar monomials in the fields which
appear in the Lagrangian as “invariants”. In the Einstein form of the theory, they will be
denoted

HX,Y
i where X, Y ∈ {R, T,Q}

and i is an index labelling different monomials. We shall discuss first the antisymmetric MAG,
which is simplest, then the symmetric MAG and finally the general case.
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The count of the possible terms in the Lagrangian in the Cartan form of the theory is more
tricky. The invariants that can appear in the Lagrangian in Cartan form are denoted

LX,Y
i , where X, Y ∈ {F, T,Q} ,

to distinguish them from the HXY
i of the Einstein form of the theory. In what follows we ignore

the cosmological constant and start from dimension two terms of general MAG, moving then
to dimension four while discussing Antisymmetric and Symmetric MAG separately for clarity.

3.2 Dimension-two terms

Let us look more carefully at the dimension-two part of the Lagrangian. In the Cartan form,
it is

L(2)
C = −1

2

[
−aFF +

3∑
i=1

aTT
i MTT

i +
3∑

i=1

aTQ
i MTQ

i +
5∑

i=1

aQQ
i MQQ

i

]
, (3.6)

where F = Fµν
µν is the unique scalar that can be constructed from the curvature and aF = m2

P ,
where mP is the Planck mass. This will be referred to as the Palatini term. The other scalars
are

MTT
1 = T µρνTµρν , MTT

2 = T µρνTµνρ , MTT
3 = tr(12)T

µtr(12)Tµ ,

MQQ
1 = QρµνQρµν , MQQ

2 = QρµνQνµρ ,

MQQ
3 = tr(23)Q

µtr(23)Qµ , MQQ
4 = tr(12)Q

µtr(12)Qµ , MQQ
5 = tr(23)Q

µtr(12)Qµ ,

MTQ
1 = T µρνQµρν , MTQ

2 = tr(12)T
µtr(23)Qµ , MTQ

3 = tr(12)T
µtr(12)Qµ .

(3.7)
Going from the Cartan to the Einstein form, as discussed in the previous subsection, yields

L(2)
E = −1

2

[
−mRR +

11∑
i=1

mϕϕ
i Mϕϕ

i

]
, (3.8)

where

Mϕϕ
1 = ϕµνρϕ

µνρ , Mϕϕ
2 = ϕµνρϕ

µρν , Mϕϕ
3 = ϕµνρϕ

ρνµ , Mϕϕ
4 = ϕµνρϕ

νµρ , Mϕϕ
5 = ϕµνρϕ

νρµ ,

Mϕϕ
6 = tr(12)ϕµtr(12)ϕ

µ , Mϕϕ
7 = tr(13)ϕµtr(13)ϕ

µ , Mϕϕ
8 = tr(23)ϕµtr(23)ϕ

µ ,

Mϕϕ
9 = tr(12)ϕµtr(13)ϕ

µ , Mϕϕ
10 = tr(12)ϕµtr(23)ϕ

µ , Mϕϕ
11 = tr(13)ϕµtr(23)ϕ

µ .
(3.9)

The first term is now the Hilbert Lagrangian and the rest are mass terms for ϕ. The corre-
spondence between the parameters mi and ai is

mR = aF , mϕϕ
1 = 2aTT

1 + 2aQQ
1 + aTQ

1 , mϕϕ
2 = aTT

2 + 2aQQ
1 + aTQ

1 ,

mϕϕ
3 = −2aTT

1 + aQQ
2 − aTQ

1 , mϕϕ
4 = aTT

2 + aQQ
2 , mϕϕ

5 = aF − 2aTT
2 + 2aQQ

2 − aTQ
1 ,

mϕϕ
6 = aTT

3 + aQQ
4 + aTQ

3 , mϕϕ
7 = aQQ

4 , mϕϕ
8 = aTT

3 + 4aQQ
3 − 2aTQ

2 ,

mϕϕ
9 = −aF + 2aQQ

4 + aTQ
3 , mϕϕ

10 = −2aTT
3 + 2aQQ

5 + 2aTQ
2 − aTQ

3 , mϕϕ
11 = 2aQQ

5 − aTQ
3 .
(3.10)
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The inverse map is given in Appendix D.2.1, Equation (D.2.1). Reexpressing ϕ in terms of T
and Q we obtain

L(2)
E = −1

2

[
−mRR +

3∑
i=1

mTT
i MTT

i +
3∑

i=1

mTQ
i MTQ

i +
5∑

i=1

mQQ
i MQQ

i

]
, (3.11)

where T , Q are now independent variables and

mTT
1 = aTT

1 − 1

4
aF , mTT

2 = aTT
2 − 1

2
aF , mTT

3 = aTT
3 + aF ,

mQQ
1 = aQQ

1 − 1

4
aF , mQQ

2 = aQQ
2 +

1

2
aF , mQQ

3 = aQQ
3 +

1

4
aF ,

mQQ
4 = aQQ

4 , mQQ
5 = aQQ

5 − 1

2
aF ,

mTQ
1 = aTQ

1 + aF , mTQ
2 = aTQ

2 + aF , mTQ
3 = aTQ

3 − aF .

(3.12)

These formulae can be specialised to antisymmetric and symmetric MAG, simply setting Q = 0
and T = 0, respectively. In the following sections, we will move on to consider dimension four
terms.

3.3 Antisymmetric MAG

3.3.1 Einstein form

We start from the subclass of antisymmetric MAGs, taking g and T as basic variables. This
case has been considered in [44], where the potential terms of the types T 4 and others were
also thoroughly considered. The numbers of independent terms or each type are

R2 (∇T )2 R∇T RT 2 T 2∇T T 4 Total
3 9 2 14 31 33 92

Let us list explicitly the terms of the first three columns, that are relevant for the flat space
propagators. We have three RR terms

HRR
1 = RµνρσR

µνρσ , HRR
2 = RµνR

µν , HRR
3 = R2 , (3.13)

nine (∇T )2 terms

HTT
1 = ∇αT βγδ∇αTβγδ , HTT

2 = ∇αT βγδ∇αTβδγ ,
HTT

3 = ∇αtr(12)T
β∇αtr(12)Tβ ,

HTT
4 = div(1)T

αβdiv(1)Tαβ , HTT
5 = div(1)T

αβdiv(1)Tβα ,
HTT

6 = div(2)T
αβdiv(2)Tαβ , HTT

7 = div(1)T
αβdiv(2)Tαβ ,

HTT
8 = div(2)T

αβ∇αtr(12)Tβ , HTT
9 = (trdiv(1)T )

2 ,

(3.14)

and just considering the independent contractions one has five R∇T -type terms

HRT
1 = Rαβγδ∇αTβγδ , HRT

2 = Rαγβδ∇αTβγδ ,
HRT

3 = Rβγdiv(1)Tβγ , HRT
4 = Rαβ∇αtr(12)Tβ , HRT

5 = R trdiv(1)T .
(3.15)
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However, these invariants are not all independent. Indeed we note that contracting the first
(algebraic) Bianchi identity with ∇T we obtain the relation

HRT
2 = 2HRT

1 , (3.16)

while using the second Bianchi identity, contracted with T , and integrating by parts we obtain
the relations

HRT
3 = HRT

1 ,

HRT
5 = −2HRT

4 .
(3.17)

A possible choice consists of keeping

{HRT
3 , HRT

5 } (3.18)

as independent invariants of type R∇T . Thus, there are 3 + 9 + 2 = 14 independent terms
quadratic in the fields.

In the table, we also give the number of interaction terms. We have determined these
numbers using the function AllContractions of the xTras package for Mathematica. 1 For
the RTT terms, this gives 18 different contractions, but the first Bianchi identity, contracted
with TT , gives 4 relations between these terms, leading to 14. For TT∇T , AllContractions
gives 46 terms, but there are 15 total derivative terms of this type, so the number of independent
ones is 31. 2

3.3.2 Cartan form

We shall begin by listing all the terms that can appear in the first three terms of (3.1).
FF terms:

LFF
1 = F µνρσFµνρσ , LFF

2 = F µνρσFµνσρ , LFF
3 = F µνρσFρσµν ,

LFF
4 = F µνρσFµρνσ , LFF

5 = F µνρσFµσνρ , LFF
6 = F µνρσFµσρν ,

LFF
7 = F (13)µνF (13)

µν , LFF
8 = F (13)µνF (13)

νµ ,

LFF
9 = F (14)µνF (14)

µν , LFF
10 = F (14)µνF (14)

νµ ,

LFF
11 = F (13)µνF (14)

µν , LFF
12 = F (13)µνF (14)

νµ ,

LFF
13 = F (34)µνF (34)

µν , LFF
14 = F (34)µνF (13)

µν , LFF
15 = F (34)µνF (14)

µν ,

LFF
16 = F 2 .

(3.19)

1While this counting may still be possible by hand in this case, it becomes practically impossible for general
MAG.

2The number of total derivative terms can be determined by applying AllContractions to qTTT , where
qµ is any vector (it can be thought of as the momentum).
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FDT terms:

LFT
1 = F µνρσDµTνρσ , LFT

2 = F µνρσDµTνσρ , LFT
3 = F µνρσDµTρνσ ,

LFT
4 = F µνρσDρTµνσ , LFT

5 = F µνρσDρTµσν , LFT
6 = F µνρσDσTµνρ ,

LFT
7 = F µνρσDσTµρν ,

LFT
8 = F (13)µνDµtr(12)Tν , LFT

9 = F (13)µνDνtr(12)Tµ ,
LFT
10 = F (14)µνDµtr(12)Tν , LFT

11 = F (14)µνDνtr(12)Tµ , LFT
12 = F (34)µνDµtr(12)Tν ,

LFT
13 = F (13)µν Div(1)Tµν , LFT

14 = F (13)µν Div(1)Tνµ ,
LFT
15 = F (14)µν Div(1)Tµν , LFT

16 = F (14)µν Div(1)Tνµ ,
LFT
17 = F (13)µν Div(2)Tµν , LFT

18 = F (14)µν Div(2)Tµν ,
LFT
19 = F (34)µν Div(1)Tµν , LFT

20 = F (34)µν Div(2)Tµν , LFT
21 = F trDiv(1)T .

(3.20)
(DT )2 terms:

LTT
1 = DαT βγδDαTβγδ , LTT

2 = DαT βγδDαTβδγ ,
LTT
3 = Dαtr(12)T

βDαtr(12)Tβ ,
LTT
4 = Div(1)T

αβDiv(1)Tαβ , LTT
5 = Div(1)T

αβDiv(1)Tβα ,
LTT
6 = Div(2)T

αβDiv(2)Tαβ , LTT
7 = Div(1)T

αβDiv(2)Tαβ ,
LTT
8 = Div(2)T

αβDαtr(12)Tβ , LTT
9 = (trDiv(1)T )

2 .

(3.21)

We observe that whereas the 38 terms LTT , LQQ, LTQ in (3.21, 3.46, 3.74) are in one-
to-one correspondence with the terms HTT , HQQ, HTQ in (3.14, 3.41, 3.72), there are many
more terms of type FF , FDT , FDQ than RR, R∇T , R∇Q. This is due to the fact that the
curvature tensor F has less symmetries than the Riemann tensor. This also means that there
will also be many more relations. Our goal now will be to uncover these relations, exhibit a
basis of invariants and construct the map between the couplings in the Cartan basis and those
in the previously established Einstein basis.

Concerning the cubic and quartic interaction terms, we shall not attempt to count them
here, as this would be overly complicated. However, we know that ultimately they will be in
one-to-one correspondence with those of the Einstein formulation, that have been counted in
the previous sections.

Since in antisymmetric MAG F is antisymmetric in both pairs of indices, there are fewer
independent terms than in general MAG. We keep LFF

i with i = 1, 3, 4, 7, 8, 16, while

LFF
2 = −LFF

1 , LFF
5 = −LFF

4 , LFF
6 = LFF

4 ,

LFF
9 = LFF

7 , LFF
10 = LFF

8 , LFF
11 = −LFF

7 , LFF
12 = −LFF

8 ,

LFF
13 = LFF

14 = LFF
15 = 0 .

(3.22)

We keep all the terms LTT . They are the same as the invariants of type (∇T )2, except for the
replacement of ∇ by D. We keep LFT

i with i = 1, 3, 4, 5, 8, 9, 13, 14, 17, 21, while

LFT
2 = −LFT

1 , LFT
6 = −LFT

4 , LFT
7 = −LFT

5 ,

LFT
10 = −LFT

8 , LFT
11 = −LFT

9 , LFT
15 = −LFT

13 , LFT
16 = −LFT

14 ,

LFT
18 = −LFT

17 , LFT
12 = LFT

19 = LFT
20 = 0 .

(3.23)

We now have 25 quadratic terms, compared to the 14 quadratic terms in the Einstein form of
antisymmetric MAG.
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There are several additional relations. Multiplying (3.3) by F , we obtain, up to interaction
term of the form FTT ,

LFT
8 − LFT

9 − LFT
17 = −LFF

7 + LFF
8 ,

−2LFT
1 + LFT

5 = −LFF
1 + 2LFF

4 ,

LFT
3 − 2LFT

4 = −LFF
3 + 2LFF

4 ,

(3.24)

and multiplying (3.4) by T (and using integrations by parts) gives, again up to terms of the
form FTT ,

LFT
5 − 2LFT

14 = 0 ,

−LFT
4 + LFT

13 − LFT
17 = 0 ,

2LFT
9 + LFT

21 = 0 .

(3.25)

Furthermore, multiplying (3.3) by ∇T gives, up to terms cubic in T ,

LFT
17 = 1/2LTT

6 − LTT
8 ,

LFT
13 − LFT

14 = LTT
7 − LTT

8 ,

LFT
8 − LFT

9 = −LTT
3 + LTT

8 + LTT
9 ,

2LFT
4 − LFT

5 = −LTT
6 + 2LTT

7 ,

LFT
1 − LFT

3 + LFT
4 = −LTT

2 + LTT
5 + LTT

7 ,

2LFT
1 − LFT

5 = LTT
1 − 2LTT

4 .

(3.26)

Altogether we have obtained 12 relations, of which 11 turn out to be linearly independent.
Therefore we can eliminate 22 out of the 36 invariants listed in (3.19, 3.21, 3.20), and we
remain with 14 independent quadratic invariants, exactly as in the counting in the Einstein
form.

There are many ways of solving these relations, but we shall consider here only two. The
first is to retain all the nine LTT terms, plus

{LFF
1 , LFF

7 , LFF
16 } and {LFT

13 , LFT
21 } , (3.27)

which is in one-to-one correspondence with (3.13) and (3.18). Thus, the elements of this basis
are in one-to-one correspondence with the elements of the basis in the Einstein form, from
which they are obtained just by replacing R → F and ∇ → D. The remaining invariants are
given in Equation (D.1.1) in Appendix D.1.1.

Due to the geometrical meaning of the curvature, when we use the independent connection
A, it seems desirable to keep all terms that contain F , and instead remove others. We can
choose as a basis the six LFF invariants {LFF

1 , LFF
3 , LFF

4 , LFF
7 , LFF

8 , LFF
16 } , plus

{LTT
1 , LTT

2 , LTT
3 , LTT

5 } and {LFT
1 , LFT

8 , LFT
9 , LFT

13 } . (3.28)

The remaining invariants are given in Equation (D.1.1) in Appendix D.1.1. In the next section,
we will consider another form of the same theory, rewritten via decomposed variables.
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3.3.3 Decomposition of Torsion

The torsion field can be decomposed into representations of the Lorentz group

Tµ = Tµ
α
α,

Ťµ = ϵµνρλT
νρλ,

καβγ = Tαβγ − T[αβγ] −
1

6
g[αβTγ] =

2

3
Tαβγ +

1

3
Tαγβ +

1

3
Tβαγ +

1

3
gαγTβ −

1

3
gαβTγ,

(3.29)

where T is a vector, Ť is an axial vector and κ is the pure tensorial part of torsion that satisfies

κµ
α
α ≡ 0, ϵµνρλκνρλ ≡ 0 (3.30)

and ηµνρλ is the Levi-Civita tensor:

ηµνρλ =
√
g ϵµνρλ, (3.31)

where ϵ is the Levi-Civita symbol. It is sometimes convenient to use condensed notations:

TµT
µ ≡ T 2, ŤµŤ

µ ≡ Ť 2, καβγκ
αβγ ≡ κ2 . (3.32)

Then,

TαβγTαβγ =
2

3
T 2 − 1

6
Ť 2 + κ2

TαβγTαγβ =
1

3
T 2 +

1

6
Ť 2 +

1

2
κ2 .

(3.33)

Here we display some useful consequences of (3.30) which are straightforward to prove:

κλµνκ
λνµ =

1

2
κ2,

κλµνκµρν =
1

2
κµλνκµρν ,

κλµνκρµν − κλµνκρνµ − κµ
λ
νκµρν = 0,

ηαβδζ Ť
α(∇ζ∇γκ

βγδ)− 2ηαγδζ Ť
α(∇ζ∇βκ

βγδ) = 0.

(3.34)

These identities also hold through derivatives, for example,

κλµν□κ
λνµ =

1

2
κλµν□κ

λµν . (3.35)

From the second Bianchi identity for any vector T , we have

Rµν∇µTν =
1

2
R∇µT

µ. (3.36)

We rewrite the action in terms of the decomposed fields as

ST = SHDG − 1

2

∫
d4x

[
m1TµT

µ +m2ŤµŤ
µ +m3κµνρκ

µνρ + r1R ∇µT
µ + r2Rµν∇ακ

α
ρλ

+ d1Tµ□T
µ + d2Tµ∇µ∇νT ν + d3Ťµ□Ť

µ + d4Ťµ∇µ∇νŤ ν + d5κµνρ□κ
µνρ + d6κµρλ∇µ∇νκ

νρλ

+d7κµρλ∇µ∇νκ
νλρ + d8Tρ∇µ∇νκ

ρµν + d9ηµνρλT
µ∇λ∇σκ

σνρ + . . .
]
.

(3.37)
where SHDG is expressed in (1.17). and the dots, as usual, represent terms that do not con-
tribute to the flat space propagator.
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3.3.4 Field redefinitions

As was discussed in [86] there exists freedom to redefine torsion tensor as

Tαβγ → α1 Tαβγ + α2 Tαγβ + α3 gαβTγ (3.38)

This linear transformation is invertible if

α2
1 ̸= α2

2, α1 + α2 + α3 ̸= 0. (3.39)

We can use such redefinition to remove two terms from the Lagrangian, for example, HTT
5 and

HTT
9 . We achieve this with

α1 = 0,
α3

α2

=
b8

b7 − b8
. (3.40)

After that, there still remains freedom to perform an overall scaling of the torsion. Alterna-
tively, working in the decomposed variables (3.29) one can remove the terms proportional to
d8 and d9 from (3.37). This way the three components of torsion would be decoupled from
each other (at the linearised level). The reabsorbed terms will reappear as loop corrections. In
order to make them absent along the RG trajectory one can allow the coefficients α1, α2 and α3

to depend on the cutoff. Removing the term Rµν∇µTν requires redefining the curvature (and
therefore the metric). Later we will discuss a possibility to consider more general nonlinear
redefinitions and those involving derivatives [87].

3.4 Symmetric MAG

3.4.1 Einstein form

For symmetric (torsion-free) theories, one can take g and Q as fundamental variables. Then,
the counting of dimension-four terms is as follows:

R2 (∇Q)2 R∇Q RQ2 Q2∇Q Q4 Total
3 16 4 22 59 69 173

The quadratic invariants are the three R2 terms already listed in (3.13), plus the following
(∇Q)2 terms

HQQ
1 = ∇αQβγδ ∇αQβγδ , HQQ

2 = ∇αQβγδ ∇αQγβδ ,

HQQ
3 = ∇αtr(12)Q

β ∇αtr(12)Qβ , HQQ
4 = ∇αtr(23)Q

β ∇αtr(23)Qβ ,

HQQ
5 = ∇αtr(12)Q

β ∇αtr(23)Qβ ,

HQQ
6 = div(1)Q

αβ div(1)Qαβ , HQQ
7 = div(2)Q

αβ div(2)Qαβ ,

HQQ
8 = div(2)Q

αβ div(2)Qβα , HQQ
9 = div(1)Q

αβ div(2)Qαβ ,

HQQ
10 = div(2)Q

αβ∇αtr(12)Qβ , HQQ
11 = div(2)Q

αβ∇αtr(23)Qβ ,

HQQ
12 = div(2)Q

αβ∇βtr(12)Qα , HQQ
13 = div(2)Q

αβ∇βtr(23)Qα ,

HQQ
14 = (trdiv(1)Q)

2 , HQQ
15 = (trdiv(2)Q)

2 ,

HQQ
16 = trdiv(1)Q trdiv(2)Q ,

(3.41)
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and the R∇Q terms

HRQ
1 = Rαγβδ∇αQβγδ , HRQ

2 = Rαβ∇αtr(12)Qβ , HRQ
3 = Rαβ∇βtr(23)Qα ,

HRQ
4 = Rαβ div(1)Qαβ , HRQ

5 = Rαβ div(2)Qαβ ,

HRQ
6 = R trdiv(1)Q , HRQ

7 = R trdiv(2)Q .

(3.42)

Once again, not all these invariants are independent. We note that using the second Bianchi
identity contracted with Q, and allowing integrations by parts, we obtain three relations

HRQ
1 = HRQ

4 −HRQ
5 ,

2HRQ
2 = HRQ

7 ,

2HRQ
3 = HRQ

6 .

(3.43)

For example, we can solve for HRQ
1 , HRQ

2 , HRQ
3 and keep

{HRQ
4 , HRQ

5 , HRQ
6 , HRQ

7 } (3.44)

as independent invariants. There are therefore 3+16+4 = 23 independent invariants quadratic
in the fields.

The numbers of cubic and quartic interaction terms are determined as in the previous
subsection. AllContractions gives 23 terms of the type RQQ, and the first Bianchi identity
contracted with QQ gives one relation between them, bringing the number of independent
terms of this type to 22. For QQ∇Q terms, AllContractions gives 95 terms, but 36 of them
are total derivatives, so the number of independent ones is 59.

3.4.2 Cartan form

Now we proceed with our consideration of Symmetric MAG in geometrically motivated Cartan
form. In addition to (3.19), we have the following contributions of FDQ type:

LFQ
1 = F µνρσDµQνρσ , LFQ

2 = F µνρσDνQρσµ ,

LFQ
3 = F µνρσDνQσρµ , LFQ

4 = F µνρσDρQµνσ ,

LFQ
5 = F µνρσDσQµνρ , LFQ

6 = F (13)µνDµtr(12)Qν ,

LFQ
7 = F (13)µνDνtr(12)Qµ , LFQ

8 = F (13)µνDµtr(23)Qν ,

LFQ
9 = F (13)µνDνtr(23)Qµ , LFQ

10 = F (14)µνDµtr(12)Qν ,

LFQ
11 = F (14)µνDνtr(12)Qµ , LFQ

12 = F (14)µνDµtr(23)Qν ,

LFQ
13 = F (14)µνDνtr(23)Qµ , LFQ

14 = F (34)µνDµtr(12)Qν ,

LFQ
15 = F (34)µνDµtr(23)Qν , LFQ

16 = F (13)µν Div(1)Qµν ,

LFQ
17 = F (14)µν Div(1)Qµν , LFQ

18 = F (13)µν Div(2)Qµν ,

LFQ
19 = F (13)µν Div(2)Qνµ , LFQ

20 = F (14)µν Div(2)Qµν ,

LFQ
21 = F (14)µν Div(2)Qνµ , LFQ

22 = F (34)µν Div(2)Qµν ,

LFQ
23 = F trDiv(1)Q , LFQ

24 = F trDiv(2)Q .

(3.45)
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and of (DQ)2 type:

LQQ
1 = DαQβγδDαQβγδ , LQQ

2 = DαQβγδDαQγβδ ,

LQQ
3 = Dαtr(12)Q

β Dαtr(12)Qβ , LQQ
4 = Dαtr(23)Q

β Dαtr(23)Qβ ,

LQQ
5 = Dαtr(12)Q

β Dαtr(23)Qβ ,

LQQ
6 = Div(1)Q

αβ Div(1)Qαβ , LQQ
7 = Div(2)Q

αβ Div(2)Qαβ ,

LQQ
8 = Div(2)Q

αβ Div(2)Qβα , LQQ
9 = Div(1)Q

αβ Div(2)Qαβ ,

LQQ
10 = Div(2)Q

αβ Dαtr(12)Qβ , LQQ
11 = Div(2)Q

αβ Dαtr(23)Qβ ,

LQQ
12 = Div(2)Q

αβ Dβtr(12)Qα , LQQ
13 = Div(3)Q

αβ Dβtr(23)Qα ,

LQQ
14 = (trDiv(1)Q)

2 , LQQ
15 = (trDiv(2)Q)

2 ,

LQQ
16 = trDiv(1)Q trDiv(2)Q ,

(3.46)

In symmetric (torsion-free) MAG, the curvature tensor is only antisymmetric in the first pair
of indices, but the first Bianchi identity (3.3) leads to six independent relations

LFF
1 − 2LFF

6 = 0 ,

LFF
2 − 2LFF

5 = 0 ,

LFF
3 − LFF

4 + LFF
5 = 0 ,

LFF
13 + 2LFF

14 = 0 ,

LFF
7 − LFF

8 + LFF
14 = 0 ,

LFF
11 − LFF

12 + LFF
15 = 0 .

(3.47)

This reduces the number of independent curvature squared terms to 10. We keep the invariants
LFF
i with i = 1, 2, 3, 7, 8, 9, 10, 11, 12, 16 and solve for the others:

LFF
4 =1/2LFF

2 + LFF
3 , LFF

5 = 1/2LFF
2 ,

LFF
6 = 1/2LFF

1 , LFF
13 = 2(LFF

7 − LFF
8 ) ,

LFF
14 = −LFF

7 + LFF
8 , LFF

15 = −LFF
11 + LFF

12 .

(3.48)

Multiplying (3.3) by DQ we obtain, up to interaction terms, the relations

LFQ
18 − LFQ

19 + LFQ
22 = 0 ,

LFQ
6 − LFQ

7 + LFQ
14 = 0 ,

LFQ
8 − LFQ

9 + LFQ
15 = 0 ,

LFQ
1 + LFQ

3 + LFQ
5 = 0 ,

(3.49)

and multiplying (3.4) by Q we obtain, again up to interaction terms, the relations

LFQ
7 − LFQ

11 − LFQ
24 = 0 ,

LFQ
9 − LFQ

13 − LFQ
23 = 0 ,

LFQ
5 − LFQ

17 + LFQ
20 = 0 ,

LFQ
4 − LFQ

16 + LFQ
18 = 0 .

(3.50)

In this case, the Bianchi identities are not enough to uncover all the relations and we have
to resort to another method. We can use (1.37) in the FF terms; this will give among other
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things RR terms, R∇T and R∇Q. We can look for linear combinations of the FF terms such
that these terms involving R in the r.h.s. cancel out. In this way, up to cubic and quartic
terms, we will relate FF terms to (DT )2 terms etc. From the FF terms we obtain

LFF
1 + LFF

2 = LQQ
1 − LQQ

6 ,

2(LFF
1 − LFF

3 ) = 3LQQ
1 − 2LQQ

2 − 3LQQ
6 − 2LQQ

7 + 4LQQ
9 ,

4(LFF
7 − LFF

8 ) = LQQ
4 − LQQ

14 ,

4(LFF
9 − LFF

10 ) = 4LQQ
3 + LQQ

4 − 4LQQ
5 + 4LQQ

7 − 4LQQ
8 − 8LQQ

10

+ 4LQQ
11 + 8LQQ

12 − 4LQQ
13 − LQQ

14 − 4LQQ
15 + 4LQQ

16 ,

4(LFF
11 − LFF

12 ) = −LQQ
4 + 2LQQ

5 − 2LQQ
11 + 2LQQ

13 + LQQ
14 − 2LQQ

16 ,

LFF
7 +LFF

8 +LFF
9 +

LFF
10 +2LFF

11 +2LFF
12 = LQQ

3 +LQQ
7 +LQQ

8 −2LQQ
10 −2LQQ

12 +LQQ
15 .

(3.51)

Operating in a similar way on the FDQ terms we obtain

2LFQ
1 = LQQ

1 − LQQ
6 ,

LFQ
2 + LFQ

3 = −LQQ
2 + LQQ

9 ,

2(LFQ
2 + LFQ

4 ) = LQQ
1 − 2LQQ

2 − LQQ
6 − 2LQQ

7 + 4LQQ
9 ,

2(LFQ
2 − LFQ

5 ) = LQQ
1 − 2LQQ

2 − LQQ
6 + 2LQQ

9 ,

2(LFQ
6 − LFQ

7 ) = −LQQ
5 + LQQ

16 ,

LFQ
6 + LFQ

10 = −LQQ
3 + LQQ

10 ,

2(LFQ
10 − LFQ

11 ) = −2LQQ
3 + LQQ

5 + 2LQQ
10 − 2LQQ

12 + 2LQQ
15 − LQQ

16 ,

2(LFQ
8 − LFQ

9 ) = −LQQ
4 + LQQ

14 ,

LFQ
8 + LFQ

12 = −LQQ
5 + LQQ

11 ,

2(LFQ
12 − LFQ

13 ) = LQQ
4 − 2LQQ

5 + 2LQQ
11 − 2LQQ

13 − LQQ
14 + 2LQQ

16 ,

2LFQ
14 = LQQ

5 − LQQ
16 ,

2LFQ
15 = LQQ

4 − LQQ
14 ,

LFQ
16 + LFQ

17 = LQQ
9 − LQQ

10 ,

2(LFQ
18 − LFQ

19 ) = −LQQ
11 + LQQ

13 ,

LFQ
18 + LFQ

20 = LQQ
7 − LQQ

10 ,

2(LFQ
20 − LFQ

21 ) = 2LQQ
7 − 2LQQ

8 − 2LQQ
10 + LQQ

11 + 2LQQ
12 ,

2LFQ
22 = LQQ

11 − LQQ
13 .

(3.52)

We need one additional relation involving both FF and FDQ:

2(LFF
10 + LFF

12 − LFQ
6 + LFQ

18 ) = LQQ
5 + 2LQQ

8 − LQQ
11 − 4LQQ

12 + LQQ
13 + 2LQQ

15 − LQQ
16 . (3.53)

These 24 relations are all linearly independent, but they are not independent when one takes
them together with the 8 relations (3.49, 3.50) coming from the Bianchi identities. In fact,
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the system of all 32 relations has rank 27. This means that we have 50-27=23 independent
invariants, in agreement with the counting of the previous section.

We can choose as an independent set the relations (3.51, 3.52, 3.53), plus the first three
relations in (3.50). There are many ways of solving these relations, but we shall consider here
only two. The first is to retain all the 16 LQQ terms, plus

{LFF
1 , LFF

7 , LFF
16 } and {LFQ

16 , LFQ
18 , LFQ

23 , LFQ
24 } , (3.54)

which is in one-to-one correspondence with the sum of (3.13) and (3.44). The remaining
invariants are given in equation A.13 of [86].

As in the antisymmetric case, we can also keep in the basis the ten LFF invariants

{LFF
1 , LFF

2 , LFF
3 , LFF

7 , LFF
8 , LFF

9 , LFF
10 , LFF

11 , LFF
12 , LFF

16 }

plus

{LQQ
1 , LQQ

10 , LQQ
11 , LQQ

12 , LQQ
14 } and {LFQ

10 , LFQ
11 , LFQ

12 , LFQ
14 , LFQ

16 , LFQ
17 , LFQ

18 , LFQ
23 } .
(3.55)

The remaining invariants are given in Equation (D.1.2) in Appendix D.1.2.

3.4.3 Decomposition of nonmetricity

Primer Decomposition

In the nonmetricity sector, we first separate the two traces

Qµ ≡ Q(23)
µ = Qµ

α
α,

Q̂µ ≡ Q(12)
µ = Qα

αµ .
(3.56)

Then,

Qαβγ =
1

18

[
gβγ

(
5Qα − 2Q̂α

)
+ gαβ

(
4Q̂γ −Qγ

)
+ gαγ

(
4Q̂β −Qβ

)]
+ qαβγ , (3.57)

where the remaining part is denoted as q. We introduce again condensed notations

QµQ
µ ≡ Q2, Q̂µQ̂

µ ≡ Q̂2, qµνρq
µνρ ≡ q2. (3.58)

and we have, for example,

QλµνQ
λµν =

5

18
Q2 +

4

9
Q̂2 − 2

9
QλQ̂

λ + q2. (3.59)

One also has to consider relations that hold up to our non-interacting truncation such as

qαβγ∇δ∇γqδαβ − qαβγ∇α∇δqβγδ ≃ 0. (3.60)
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Finer Decomposition

We can further decompose q to the totally symmetric part and the rest:

qµνρ = sµνρ + uµνρ, sµνρ = q(µνρ). (3.61)

Then the field T , Ť , κ, Q, Q̂, s, u are irreducible representations of the Lorentz group. There
are multiple relations that follow from the conditions sµνρ = s(µνρ) and u(µνρ) = 0. We will
display a few most relevant ones:

uµν
ρ + uνµ

ρ + uρ
µν = 0 ,

sαβγuαβγ = 0 ,

sαγδ(uβαγ + 2uαβγ) = 0 ,

uαβγuβαγ = −1

2
u2

(3.62)

There are also some mystically appearing identities. Notice that

Q̂αuαβγ + 2Q̂αuβαγ ̸= 0 . (3.63)

However,
Q̂α∇γ∇βuαβγ + 2Q̂α∇γ∇βuβαγ ≃ 0 . (3.64)

After implementing these and a considerable number of other identities which are long to write
down but however relatively easy to obtain, we arrive at the following results for the action of
the Symmetric MAG:

SQ = SHDG − 1

2

∫
d4x

[
m4QαQ

α +m5Q̂αQ̂
α +m6Q̂

αQα +m7sµνρs
µνρ +m8uµνρu

µνρ

+ r3R∇αQ
α + r4R∇αQ̂

α + r5Rµν∇ρs
ρµν + r6Rµν∇ρu

ρµν

+ d10Qα□Q
α + d11Q

α∇α∇βQ
β + d12Q̂α□Q̂

α + d13Q̂
α∇α∇βQ̂

β + d14Q̂α□Q
α

+ d15Q̂
α∇α∇βQ

β + d16sµνρ□s
µνρ + d17s

µ
αβ∇µ∇νs

ναβ + d18uµνρ□u
µνρ

+ d19u
µ
αβ∇µ∇νu

ναβ + d20uαβ
µ∇µ∇νu

αβν + d21u
µ
αβ∇µ∇νs

ναβ + d22Qρ∇µ∇νs
ρµν

+d23Q̂ρ∇µ∇νs
ρµν + d24Qρ∇µ∇νu

ρµν + d25Q̂ρ∇µ∇νu
ρµν
]
,

(3.65)

where SHDG is expressed in (1.17).

3.5 General MAG

3.5.1 Einstein form

In the general case, the counting is simpler if we use ϕ as a variable, rather than T and Q.
Then we have

R2 (∇ϕ)2 R∇ϕ Rϕ2 ϕ2∇ϕ ϕ4 Total
3 38 6 56 315 504 922
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The list of the (∇ϕ)2 terms is 3

Hϕϕ
1 = ∇αϕβγδ∇αϕβγδ , Hϕϕ

2 = ∇αϕβγδ∇αϕβδγ , Hϕϕ
3 = ∇αϕβγδ∇αϕδγβ ,

Hϕϕ
4 = ∇αϕβγδ∇αϕγβδ , Hϕϕ

5 = ∇αϕβγδ∇αϕδβγ ,

Hϕϕ
6 = ∇αtr(12)ϕ

β∇αtr(12)ϕβ , Hϕϕ
7 = ∇αtr(13)ϕ

β∇αtr(13)ϕβ , Hϕϕ
8 = ∇αtr(23)ϕ

β∇αtr(23)ϕβ ,

Hϕϕ
9 = ∇αtr(12)ϕ

β∇αtr(13)ϕβ , Hϕϕ
10 = ∇αtr(12)ϕ

β∇αtr(23)ϕβ , Hϕϕ
11 = ∇αtr(13)ϕ

β∇αtr(23)ϕβ ,

Hϕϕ
12 = div(1)ϕ

αβdiv(1)ϕαβ , Hϕϕ
13 = div(1)ϕ

αβdiv(1)ϕβα ,

Hϕϕ
14 = div(2)ϕ

αβdiv(2)ϕαβ , Hϕϕ
15 = div(2)ϕ

αβdiv(2)ϕβα ,

Hϕϕ
16 = div(3)ϕ

αβdiv(3)ϕαβ , Hϕϕ
17 = div(3)ϕ

αβdiv(3)ϕβα ,

Hϕϕ
18 = div(1)ϕ

αβdiv(2)ϕαβ , Hϕϕ
19 = div(1)ϕ

αβdiv(2)ϕβα ,

Hϕϕ
20 = div(1)ϕ

αβdiv(3)ϕαβ , Hϕϕ
21 = div(1)ϕ

αβdiv(3)ϕβα ,

Hϕϕ
22 = div(2)ϕ

αβdiv(3)ϕαβ , Hϕϕ
23 = div(2)ϕ

αβdiv(3)ϕβα ,

Hϕϕ
24 = div(1)ϕ

αβ∇αtr(12)ϕβ , Hϕϕ
25 = div(1)ϕ

αβ∇αtr(13)ϕβ , Hϕϕ
26 = div(1)ϕ

αβ∇αtr(23)ϕβ ,

Hϕϕ
27 = div(3)ϕ

αβ∇αtr(12)ϕβ , Hϕϕ
28 = div(3)ϕ

αβ∇αtr(13)ϕβ , Hϕϕ
29 = div(3)ϕ

αβ∇αtr(23)ϕβ ,

Hϕϕ
30 = div(2)ϕ

αβ∇βtr(12)ϕα , Hϕϕ
31 = div(2)ϕ

αβ∇βtr(13)ϕα , Hϕϕ
32 = div(2)ϕ

αβ∇βtr(23)ϕα ,

Hϕϕ
33 = (trdiv(1)ϕ)

2 , Hϕϕ
34 = (trdiv(2)ϕ)

2 , Hϕϕ
35 = (trdiv(3)ϕ)

2 ,

Hϕϕ
36 = trdiv(1)ϕ trdiv(2)ϕ , Hϕϕ

37 = trdiv(1)ϕ trdiv(3)ϕ , Hϕϕ
38 = trdiv(2)ϕ trdiv(3)ϕ .

(3.66)
Note that the contraction of indices in the terms Hϕϕ

30 - Hϕϕ
32 is different from the order in the

preceding six terms. This is necessary to make them independent. In fact, another way of
writing those nine terms is

Hϕϕ
24 = −div(12)ϕ

αtr(12)ϕα , Hϕϕ
25 = −div(12)ϕ

αtr(13)ϕα , Hϕϕ
26 = −div(12)ϕ

αtr(23)ϕα ,

Hϕϕ
27 = −div(13)ϕ

αtr(12)ϕα , Hϕϕ
28 = −div(13)ϕ

αtr(13)ϕα , Hϕϕ
29 = −div(13)ϕ

αtr(23)ϕα ,

Hϕϕ
30 = −div(23)ϕ

αtr(12)ϕα , Hϕϕ
31 = −div(23)ϕ

αtr(13)ϕα , Hϕϕ
32 = −div(23)ϕ

αtr(23)ϕα .
(3.67)

The R∇ϕ terms are

HRϕ
1 = Rαβγδ∇αϕβγδ , HRϕ

2 = Rαβγδ∇δϕαγβ , HRϕ
3 = Rαβγδ∇δϕαβγ ,

HRϕ
4 = Rαβ∇αtr(12)ϕβ , HRϕ

5 = Rαβ∇αtr(13)ϕβ , HRϕ
6 = Rαβ∇αtr(23)ϕβ ,

HRϕ
7 = Rαβdiv(1)ϕαβ , HRϕ

8 = Rαβdiv(2)ϕαβ , HRϕ
9 = Rαβdiv(3)ϕαβ ,

HRϕ
10 = R trdiv(1)ϕ , HRϕ

11 = R trdiv(2)ϕ , HRϕ
12 = R trdiv(3)ϕ .

(3.68)

Using the first Bianchi identity for ∇ and contracting with ∇ϕ we obtain the relation

HRϕ
1 +HRϕ

2 −HRϕ
3 = 0 , (3.69)

Contracting the second Bianchi identity with ϕ and using integrations by parts, one finds:

HRϕ
1 −HRϕ

8 +HRϕ
9 = 0 ,

HRϕ
2 +HRϕ

7 −HRϕ
9 = 0 ,

HRϕ
3 +HRϕ

7 −HRϕ
8 = 0 ,

2HRϕ
4 −HRϕ

12 = 0 ,

2HRϕ
5 −HRϕ

11 = 0 ,

2HRϕ
6 −HRϕ

10 = 0 .

(3.70)

3note that up to terms of the form R∇ϕ, div(1)ϕ
αβ∇βtr(12)ϕα = div(3)ϕ

αβ∇αtr(12)ϕβ etc.
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A linear combination of the first three is equivalent to (3.69), so there are six independent
relations. Using these we can eliminate six invariants, bringing the number of R∇ϕ terms
from 12 to 6, as indicated in the table. For example, we can solve for HRϕ

1 , HRϕ
2 , HRϕ

3 , HRϕ
4 ,

HRϕ
5 , HRϕ

6 and keep
{HRϕ

7 , HRϕ
8 , HRϕ

9 , HRϕ
10 , HRϕ

11 , HRϕ
12 } (3.71)

as independent invariants. There are therefore 3+38+6 = 47 independent invariants quadratic
in the fields.

In the following, we will mostly use T and Q as independent fields instead of ϕ. Then the
kinetic terms for these fields would be given by (3.14, 3.41) and by the following ∇T∇Q terms:

HTQ
1 = ∇αT βγδ ∇αQβγδ , HTQ

2 = ∇αtr(12)T
β ∇αtr(12)Qβ ,

HTQ
3 = ∇αtr(12)T

β ∇αtr(23)Qβ ,

HTQ
4 = div(1)T

αβ div(1)Qαβ , HTQ
5 = div(2)T

αβ div(2)Qαβ ,

HTQ
6 = div(1)T

αβ div(2)Qαβ , HTQ
7 = div(1)T

αβ div(2)Qβα ,

HTQ
8 = div(2)T

αβ∇αtr(12)Qβ , HTQ
9 = div(2)T

αβ∇αtr(23)Qβ ,

HTQ
10 = div(2)Q

αβ∇αtr(12)Tβ , HTQ
11 = div(2)Q

αβ∇βtr(12)Tα ,

HTQ
12 = trdiv(1)T trdiv(1)Q , HTQ

13 = trdiv(1)T trdiv(2)Q .

(3.72)

We count 9 (∇T )2 terms, 16 (∇Q)2 terms and 13 ∇T∇Q terms. In total they amount to 38
terms, that can be used interchangeably with the 38 (∇ϕ)2 terms listed above. A basis for the
quadratic terms is given by these 38 terms, plus the three R2 terms, plus

{HRT
3 , HRT

5 , HRQ
4 , HRQ

5 , HRQ
6 , HRQ

7 } , (3.73)

(which is the union of (3.18) and (3.44)), for a total 47 terms.
For the cubic interactions, AllContractions gives 65 terms of the type Rϕϕ, but the first

Bianchi identity, contracted with ϕϕ, yields 9 relations between them, so that the number of
independent ones is 56. 4 AllContractions also gives 483 terms of the form ϕϕ∇ϕ, out of
which 168 are total derivatives, so the number of independent ones is 315. The numbers are
obviously the same if one uses T and Q as variables.

3.5.2 Cartan Form

DTDQ terms

LTQ
1 = DαT βγδDαQβγδ , LTQ

2 = Dαtr(12)T
β Dαtr(12)Qβ ,

LTQ
3 = Dαtr(12)T

β Dαtr(23)Qβ ,

LTQ
4 = Div(1)T

αβ Div(1)Qαβ , LTQ
5 = Div(2)T

αβ Div(2)Qαβ ,

LTQ
6 = Div(1)T

αβ Div(2)Qαβ , LTQ
7 = Div(1)T

αβ Div(2)Qβα ,

LTQ
8 = Div(2)T

αβDαtr(12)Qβ , LTQ
9 = Div(2)T

αβDαtr(23)Qβ ,

LTQ
10 = Div(2)Q

αβDαtr(12)Tβ , LTQ
11 = Div(2)Q

αβDβtr(12)Tα ,

LTQ
12 = trDiv(1)T trDiv(1)Q , LTQ

13 = trDiv(1)T trDiv(2)Q .

(3.74)

4The nine relations can be most easily counted in terms of Rϕϕ, but they are equivalent to the 4 relations
that we have already mentioned for the RTT terms, one relation already mentioned for the RQQ terms and
four additional ones for the RTQ terms.

34



We have listed in (3.19),(3.20), (3.21),(3.45), (3.46), (3.74), 16 terms of type FF , 38 terms
of type D(T/Q)2 and 45 terms of type FD(T/Q). We thus have 99 quadratic terms, compared
to the 47 ones of the Einstein form of the theory. We now look for linear relations between
these terms. As in the previous sections, these relations hold up to terms cubic and quartic in
F , T , Q.

Multiplying the first Bianchi identity by F we get

LFF
1 − 2LFF

6 = 2LFT
1 + LFT

7 ,

LFF
2 − 2LFF

5 = 2LFT
2 + LFT

5 ,

LFF
3 − LFF

4 + LFF
5 = −LFT

3 + LFT
4 − LFT

6 ,

LFF
7 − LFF

8 + LFF
14 = −LFT

8 + LFT
9 + LFT

17 ,

LFF
11 − LFF

12 + LFF
15 = −LFT

10 + LFT
11 + LFT

18 ,

LFF
13 + 2LFF

14 = −2LFT
12 + LFT

20 ,

(3.75)

while multiplying it by DT we get

2LFT
1 + LFT

7 = LTT
1 − 2LTT

4 ,

LFT
2 + LFT

3 + LFT
6 = LTT

2 − LTT
5 − LTT

7 ,

2LFT
4 − LFT

5 = −LTT
6 + 2LTT

7 ,

LFT
8 − LFT

9 + LFT
12 = −LTT

3 + LTT
8 + LTT

9 ,

LFT
13 − LFT

14 + LFT
19 = LTT

7 − LTT
8 ,

2LFT
17 + LFT

20 = LTT
6 − 2LTT

8 ,

(3.76)

and multiplying it by DQ we get

LFQ
1 + LFQ

3 + LFQ
5 = LTQ

1 − LTQ
4 + LTQ

7 ,

LFQ
6 − LFQ

7 + LFQ
14 = −LTQ

2 + LTQ
8 − LTQ

13 ,

LFQ
8 − LFQ

9 + LFQ
15 = −LTQ

3 + LTQ
9 − LTQ

12 ,

LFQ
18 − LFQ

19 + LFQ
22 = LTQ

5 − LTQ
10 + LTQ

11 .

(3.77)

Multiplying the second Bianchi identity by T we get

LFT
5 − 2LFT

14 = 0 ,

LFT
7 − 2LFT

16 = 0 ,

LFT
4 − LFT

13 + LFT
17 = 0 ,

LFT
6 − LFT

15 + LFT
18 = 0 ,

LFT
9 − LFT

11 + LFT
21 = 0 ,

2LFT
19 − LFT

20 = 0 ,

(3.78)

and multiplying it by Q we get

LFQ
4 − LFQ

16 + LFQ
18 = 0 ,

LFQ
5 − LFQ

17 + LFQ
20 = 0 ,

LFQ
7 − LFQ

11 − LFQ
24 = 0 ,

LFQ
9 − LFQ

13 − LFQ
23 = 0 .

(3.79)
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In total these are 26 relations, of which 25 are independent. 5 One can obtain an independent
set by eliminating for example the fifth relation in (3.78).

As in the case of symmetric MAG, the Bianchi identities do not exhaust the set of linear
relations between the invariants. The additional ones can be obtained by the same method
that we used for symmetric MAGs, namely using (1.37) and eliminating terms of the form
R2, R∇T and R∇Q from the right hand side. This gives many additional relations that are
listed in Appendix D.1. Considering also these, we have altogether a system of 70 relations
of which 52 are independent. Since the initial number of invariants is 99, we remain with 47
independent invariants, in agreement with the counting in the Einstein form of the theory.

We can now exhibit two bases. The first consists of all the 38 LTT , LQQ and LTQ terms,
plus

{LFF
1 , LFF

7 , LFF
16 } and {LFT

13 , LFT
21 } and {LFQ

16 , LFQ
18 , LFQ

23 , LFQ
24 } , (3.80)

which is the sum of (3.27) and (3.54), and thus is in one-to-one correspondence with the sum
of (3.13) and (3.73). The remaining invariants are given in Equations (D.1.3-D.1.3-D.1.3) of
Appendix D.1.3.

As before, we can also choose as a basis all the 16 LFF invariants in (3.19) plus

{LTT
1 , LTT

2 , LTT
3 , LTT

5 }
{LQQ

1 , LQQ
10 , LQQ

11 , LQQ
12 , LQQ

14 }
{LTQ

1 , LTQ
10 , L

TQ
11 , L

TQ
12 }

{LFT
1 , LFT

8 , LFT
9 , LFT

12 , LFT
13 , LFT

14 , LFT
15 , LFT

18 , LFT
21 }

{LFQ
10 , LFQ

11 , LFQ
12 , LFQ

14 , LFQ
16 , LFQ

17 , LFQ
18 , LFQ

19 , LFQ
23 } .

(3.81)

The remaining invariants can be expressed as linear combination of these. Explicit formulas
are given in Equations (D.1.3-D.1.3-D.1.3) in Appendix D.1.3.

We observe that the bases given for antisymmetric and symmetric MAGs can be obtained
from these by dropping the terms that contain Q and T respectively. In the case of the first
basis this is enough. In the case of the second basis, one has to further eliminate certain terms
of type FF , FDT or FDQ.

3.5.3 Decomposition of the mixed sector

We list some of the additional identities that we will need

καβγqαβδ − καβγqβαδ − καγβqαβδ = 0,

uαβγ
(
2∇γsαβ

δ +∇αsβγ
δ
)
= 0,(

uαβγ + 2uγαβ
)
∇γ∇βTα ≃ 0.

(3.82)

5Twice the first of (3.75), minus the second minus the fourth, minus the second of (3.78), minus twice the
third plus the fifth, is identically zero.
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Finally, the resulting decomposed action of general MAG becomes:

STQ = SHDG + ST + SQ − 1

2

∫
d4x

[
m9Q

αTα +m10Q̂
αTα +m11u

ρµνκρµν

+ d26Tα□Q
α + d27T

α∇α∇βQ
β + d28Tα□Q̂

α + d29T
α∇α∇βQ̂

β + d30Qα∇β∇γκ
αβγ

+ d31Q̂α∇β∇γκ
αβγ + d32Tα∇β∇γs

αβγ + d33Tα∇β∇γu
αβγ + d34ηαβγδŤ

α∇β∇ζu
γδζ

+d35κ
µ
αβ∇µ∇νs

ναβ + d36καβγ□u
αβγ + d37κ

µ
αβ∇µ∇νu

ναβ + d38καβ
µ∇µ∇νu

αβν
]

(3.83)

3.5.4 Linear field redefinitions in general MAG

Next, we consider redefinitions of the distortion. It is enough to consider redefinitions that are
linear in the distortion and either ultralocal (i.e. do not contain derivatives) or contain two
derivatives. The former map mass terms to mass terms and kinetic terms to kinetic terms; the
latter map mass terms to kinetic terms. More complicated redefinitions will only affect the
interaction terms. The linear ultralocal redefinitions of ϕ are

δϕαβγ = α1ϕαβγ + α2ϕβγα + α3ϕγαβ + α4ϕαγβ + α5ϕγβα + α6ϕβαγ

+ gαβ
(
α7tr(12)ϕγ + α8tr(13)ϕγ + α9tr(23)ϕγ

)
+ gαγ

(
α10tr(12)ϕβ + α11tr(13)ϕβ + α12tr(23)ϕβ

)
+ gβγ

(
α13tr(12)ϕα + α14tr(13)ϕα + α15tr(23)ϕα

)
.

(3.84)

Using such field redefinition, one can remove 14 terms from the Lagrangian.

3.6 Maps

For certain purposes it is useful to have the map between the coefficients of the Lagrangian
in the Cartan form and in the Einstein form. This has already been discussed in the case
of the terms of dimension two. For the terms of dimension four, we shall limit ourselves to
the transformation of the 47 quadratic terms. The procedure has already been described in
sect.3.1. Inserting (1.37) in (3.1), a straightforward calculation leads to a Lagrangian of the
form (3.2), whose b coefficients are functions of the original c coefficients. These linear relations
are given in Appendix D.2.2. We furthermore provide a map between Einstein and decomposed
forms therein.

3.7 Conclusions

Leaving aside the cosmological term, and the possibility that distortion may contain a massless
state, the dynamics of MAGs at very low energies (by which we mean energies below all the
masses that are present in the theory) is dominated by the 12 dimension-two terms. These
comprise the Palatini term and terms quadratic in distortion (or equivalently in torsion and
nonmetricity). In this regime the theory behaves like simple Palatini theory: the equations
of motion generically imply that the connection has to be equal to the LC connection. Thus,
unless the distortion contains some massless state, at sufficiently low energy the EFT of MAG
becomes indistinguishable form the EFT of the metric theory of gravity. If the masses of the
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distortion (or equivalently of torsion and nonmetricity) are much lower that the Planck mass,
which we assume to be the UV cutoff for this EFT, there will be a regime where distortion
could propagate. For this one has to consider also the dimension-four terms, of which, in a
general MAG, there are 934.

Already listing bases of independent terms requires considerable work. We have restricted
our attention mainly to the terms of dimension 4 that are quadratic in (R, T,Q) (in the
Einstein form) or (F, T,Q) (in the Cartan form). These are the only terms that contribute to
the propagator in flat space. We found that there are 47 independent invariants, that have
to be picked among 53 invariants in the Einstein form of the theory and 99 invariants in the
Cartan form. Listing the independent terms in the Lagrangian implies a choice of basis and
we have given two examples of such bases, one containing all terms quadratic in (T,Q), plus
more, and one containing all terms quadratic in F , plus more.
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Chapter 4

Propagators in flat space

4.1 Linearised action

We consider the linearisation of the action around Minkowski space

gµν = ηµν , Aρ
µ
ν = 0 , ϕρ

µ
ν = 0 . (4.1)

The terms in the Lagrangian that contribute at quadratic order in the fluctuation fields are
those that are quadratic in F , T and Q, including also covariant derivatives of T and Q. In
the Cartan form, these are

LC = −1

2

[
− aFF +

∑
i

aTT
i MTT

i +
∑
i

aTQ
i MTQ

i +
∑
i

aQQ
i MQQ

i

+
∑
i

cFF
i LFF

i +
∑
i

cFT
i LFT

i +
∑
i

cFQ
i LFQ

i +
∑
i

cTT
i LTT

i +
∑
i

cTQ
i LTQ

i +
∑
i

cQQ
i LQQ

i

]
,

(4.2)

where the first line contains all the dimension-two terms and the second contains the dimension-
four terms. We do not specify the ranges of the sums, because they depend upon the choice
of basis. In the Einstein form, the terms contributing to the two-point function are

LE = −1

2

[
−mRR +

∑
i

mTT
i MTT

i +
∑
i

mTQ
i MTQ

i +
∑
i

mQQ
i MQQ

i

+
∑
i

bRR
i HRR

i +
∑
i

bRT
i HRT

i +
∑
i

bRQ
i HRQ

i +
∑
i

bTT
i HTT

i +
∑
i

bTQ
i HTQ

i +
∑
i

bQQ
i HQQ

i

]
.
(4.3)

The metric fluctuation field is hµν = gµν−ηµν . Since the VEV of A (and ϕ) is zero, we shall
not use a different symbol for its fluctuation and identify it with A. By Poincare invariance,
the quadratic Lagrangian in the Cartan form of the theory, takes the form

S(2) =
1

2

∫
d4q

(2π)4

(
Aλµν O(AA) τρσ

(C) λµν Aτρσ + 2Aλµν O(Ah) ρσ
(C) λµν hρσ + hµν O(hh) ρσ

(C) µν hρσ

)
, (4.4)

where, after Fourier transforming, O is constructed only with the metric ηµν and with momen-
tum qµ. Similarly, in the Einstein form of the theory one obtains

S(2) =
1

2

∫
d4q

(2π)4

(
ϕλµν O(ϕϕ) τρσ

(E) λµν ϕτρσ + 2ϕλµν O(ϕh) ρσ
(E) λµν hρσ + hµν O(hh) ρσ

(E) µν hρσ

)
. (4.5)
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From (1.32) one finds that
Aλµν = ϕλµν + Jλµν

ρσhρσ , (4.6)

where

Jλµν
ρσ =

i

2

(
qλδ

ρ
µδ

σ
ν + qνδ

ρ
λδ

σ
µ − qµδ

ρ
λδ

σ
ν

)
.

Then we obtain the following relations between the linearised operators in the Cartan and
Einstein formulations:

O(ϕϕ) τρσ
(E) λµν = O(AA) τρσ

(C) λµν ,

O(ϕh) ρσ
(E) λµν = O(Ah) ρσ

(C) λµν +O(AA) ταβ
(C) λµν Jταβ

ρσ ,

O(hh) ρσ
(E) µν = O(hh) ρσ

(C) µν + 2Jλγδ
µνO(Ah) ρσ

(C) λγδ + Jλγδ
µνO(AA) ταβ

(C) λγδ Jταβ
ρσ .

(4.7)

4.2 Spin projectors

In the analysis of the spectrum of operators acting on multi-index fields in flat space, it is very
convenient to use spin-projection operators, which can be used to decompose the fields in their
irreducible components under the three-dimensional rotation group [88–90]. This is familiar
in the case of vectors and two-index tensors: a vector can be decomposed in its transverse
and longitudinal components; a two index tensor can be decomposed into its symmetric and
antisymmetric components, and each of these can be further decomposed in its transverse and
longitudinal parts in each index. This gives rise to representations of O(3) labelled by spin
and parity, and listed in the following table:

s a
TT 2+4 , 0

+
5 1+4

TL 1−7 1−8
LL 0+6 -

Table 4.1: SO(3) spin content of projection operators for a two-index tensor in d = 4
(s=symmetric, a=antisymmetric).

Here the subscript distinguishes different instances of the same representation. These rep-
resentations arise as perturbations of the tetrad. If one works only with the metric, the
antisymmetric parts can be dropped.

We will need the projectors of spin up to three, which were obtained in [41, 91]and have a
quite complicated form. We show them explicitly for tensors of rank up to two. The analogous
decomposition for a three-index tensor is given in the following table, that is explained in more
detail in [41] For a vector

Lµν =
qµqν
q2

, Tµν = ηµν −
qµqν
q2

. (4.8)
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For symmetric 2-rank tensors

Ps

(
2+
)
µν

ρσ=T
(ρ
(µT

ρ)
ν) −

1

d− 1
TµνT

ρσ ,

Ps

(
1−
)
µν

ρσ=2T
(ρ
(µL

ρ)
ν) ,

Ps

(
0+, ss

)
µν

ρσ=
1

d− 1
TµνT

ρσ ,

Ps

(
0+, ww

)
µν

ρσ=LµνL
ρσ ,

Ps

(
0+, sw

)
µν

ρσ=
1√
d− 1

TµνL
ρσ ,

Ps

(
0+, ws

)
µν

ρσ=
1√
d− 1

LµνT
ρσ ,

(4.9)

such that

Ps

(
2+
)
µν

ρσ + Ps

(
1−
)
µν

ρσ + Ps

(
0+, ss

)
µν

ρσ + Ps

(
0+, ww

)
µν

ρσ = δ
(ρ
(µδ

σ)
ν) . (4.10)

Diagonal terms of projectors between symmetric 2-rank tensors and vectors

Psv

(
1−
)
µν

ρ=

√
2

|q|
q(µT

ρ
ν) ,

Psv

(
0+, sv

)
µν

ρ=
1√
d− 1

qρ

|q|
Tµν ,

Psv

(
0+, wv

)
µν

ρ=
qρ

|q|
Lµν ,

(4.11)

For antisymmetric 2-rank tensors

Pa

(
1+
)
µν

ρσ=T
[ρ
[µT

ρ]
ν] ,

Pa

(
1−
)
µν

ρσ=2T
[ρ
[µL

ρ]
ν] ,

(4.12)

such that
Pa

(
1+
)
µν

ρσ + Pa

(
1−
)
µν

ρσ = δ
[ρ
[µδ

σ]
ν] . (4.13)

Diagonal terms of projectors between antisymmetric 2-rank tensors and symmetric 2-rank
tensors

Psa

(
1+
)
µν

ρσ=2T
[ρ
(µL

ρ]
ν) ,

Pas

(
1+
)
µν

ρσ=2T
(ρ
[µL

ρ)
ν] .

(4.14)

Diagonal terms of projectors between antisymmetric 2-rank tensors and vectors

Pav

(
1−
)
µν

ρ =

√
2

|q|
q[µT

ρ
ν] . (4.15)

The result for tensors of rank three is presented in the table 4.2. In antisymmetric or
symmetric MAG, only the last two or the first two columns appear, respectively. For anti-
symmetric tensors, the spin projectors were given in [39, 40, 43] and used to study ghost- and
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ts hs ha ta
TTT 3−, 1−1 2−1 , 1

−
2 2−2 , 1

−
3 0−

TTL+ TLT + LTT 2+1 , 0
+
1 - - 1+3

3
2
LTT - 2+2 , 0

+
2 1+2 , -

TTL+ TLT − 1
2
LTT - 1+1 2+3 , 0

+
3 -

TLL+ LTL+ LLT 1−4 1−5 1−6 -
LLL 0+4 - - -

Table 4.2: SO(3) spin content of projection operators for a three-index tensor in d = 4.
(ts/ta=totally (anti)symmetric; hs/ha=hook (anti)symmetric

tachyon-free theories that do not have accidental symmetries (i.e. symmetries that are present
at the linearised level but not in the full nonlinear theory). The general case where accidental
symmetries are present has been discussed in [42]. The spin projectors for general three-tensors
have been given in [41, 91].

For each representation JP
i there is a projector denoted Pii(J

P). In addition, for each pair
of representations with the same spin-parity, labelled by i, j, there is an intertwining operator
Pij(J

P). We collectively refer to all the projectors and intertwiners as the “spin-projectors”.
Using these spin projectors, the quadratic action can be rewritten in the form

S(2) =
1

2

∫
d4q

(2π)4

∑
JPij

Φ(−q) · aij(JP)Pij(J
P) · Φ(q) , (4.16)

where Φ = (A, h) in Cartan form and Φ = (ϕ, h) in Einstein form, the dot implies contraction
of all indices as appropriate and aij(J

P ) are matrices of coefficients. For example, the A − A
part of (4.4) is

1

2

∫
d4q

(2π)4

∑
JPij

aij(J
P)AλµνPij(J

P)λµν
τρσAτρσ ,

with the sums running over all the representations listed in the preceding table.

4.3 Gauge invariances

As mentioned in Section 2.2, one way of reducing the complexity of MAG is to introduce
additional gauge invariances. These will eliminate degrees of freedom and at the same time
constrain the form of the Lagrangian. One could try to analyze systematically all possible
such transformations, for example one could classify them as having a scalar, vector or tensor
parameter. As we shall note, such a general analysis would contain a large number of arbitrary
parameters. Here we shall content ourselves to only mention a few important examples.
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Diffeomorphisms

The action of MAG, when written in a coordinate basis, is in general invariant only under
diffeomorphisms

g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) ,

A′
µ
α
β(x

′) =
∂xν

∂x′µ
∂x′α

∂xγ
∂xδ

∂x′β
Aν

γ
δ(x) +

∂x′α

∂xγ
∂2xγ

∂x′µ∂x′β
.

(4.17)

For an infinitesimal transformation x′µ = xµ − ξµ(x) the transformation is given by the Lie
derivatives, plus an inhomogeneous term for the connection:

δgµν = Lξgµν , δAρ
µ
ν = LξAρ

µ
ν + ∂ρ∂νξ

µ , (4.18)

where LξAρ
µ
ν = ξλ∂λAρ

µ
ν + Aλ

µ
ν∂ρξ

λ − Aρ
λ
ν∂λξ

µ + Aρ
µ
λ∂ρξ

λ. On a flat background A = 0
and the Lie derivative term is absent.

Invariance under diffeomorphisms lowers by one the rank of the coefficient matrices a(1−)
and a(0+). (This is because the transformation parameter ξµ can be decomposed as a three-
scalar and a three-vector). This is particularly clear in the Einstein form of the theory, where
diffeomorphism invariance implies

a(1−)i7 = a(1−)7i = 0 , a(0+)i6 = a(0+)6i = 0 . (4.19)

Vector transformations of A

Certain classes of MAGs are invariant under additional transformations of the connection,
parametrised by a vector λµ(x):

δ1Aµ
ρ
ν = λµδ

ρ
ν , δ1gµν = 0 , (4.20)

δ2Aµ
ρ
ν = λρgµν , δ2gµν = 0 , (4.21)

δ3Aµ
ρ
ν = δρµλν , δ3gµν = 0 . (4.22)

The first of these is the projective transformation. In order to spell out the conditions for
invariance of the action, it is easier to work in the Einstein formulation. Since the metric (and
therefore the Christoffel coefficients) transforms trivially, the transformations of ϕµ

ρ
ν are the

same as those of Aµ
ρ
ν given above. The conditions on the kinetic coefficients for invariance of

the Lagrangian, are listed in Appendix B of [86] (see also [92] for earlier related work). We
note that these transformations could also be present in arbitrary linear combinations, each
yielding different conditions on the coefficients.

Each one of these invariances, when present, lowers by one the rank of the coefficient
matrices a(1−) and a(0+).

Weyl transformations

By definition, Weyl transformations are local rescalings of the metric:

δgµν = 2ωgµν . (4.23)

This implies that the LC connection transforms as:

δΓµ
ρ
ν = ∂µωδ

ρ
ν + ∂νωδ

ρ
µ − gρτ∂τωgµν . (4.24)
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If we now consider the decomposition (1.32), we see that there are infinitely many ways of
splitting this transformation between A and ϕ. We consider here only

δAµ
ρ
ν = 0 δϕµ

ρ
ν = −∂µωδρν − ∂νωδ

ρ
µ + gρτ∂τωgµν , (4.25)

which is the usual way in which Weyl transformations are realized on Yang-Mills fields.
The action (4.3) is invariant under this transformation if all the dimension 2 terms are

absent and, additionally, the following relations hold:

4bRR
1 + 2bRR

2 + bRQ
1 + bRQ

2 + 4bRQ
3 + bRQ

5 = 0 ,

6bRR
1 + 6bRR

2 + 18bRR
3 − bRQ

1 + 3bRQ
2 + 2bRQ

4 + 3bRQ
5 + 6bRQ

7 − 8bQQ
1 + 2bQQ

2 + 2bQQ
3

− 32bQQ
4 − 8bQQ

6 + 2bQQ
7 + 2bQQ

8 + 2bQQ
9 + 2bQQ

10 + 2bQQ
12 − 32bQQ

14 + 2bQQ
15 = 0 ,

bRR
2 + 6bRR

3 + bRQ
4 + 4bRQ

6 + bRQ
7 = 0 ,

bRT
1 + 2bRT

2 + bRT
3 − 3bRT

4 + 6bRT
5 + 2bTQ

1 − 2bTQ
2 − 8bTQ

3 + 2bTQ
4

− 2bTQ
10 − 2bTQ

11 + 8bTQ
12 + 2bTQ

13 = 0 ,

bRQ
1 − 3bRQ

2 − bRQ
5 − 6bRQ

7 − 4bQQ
2 − 4bQQ

3 − 8bQQ
5 − 2bQQ

9 − 2bQQ
10

− 2bQQ
12 − 4bQQ

15 − 8bQQ
16 = 0 ,

bRQ
4 + bRQ

5 + 2bQQ
7 + 2bQQ

8 + bQQ
9 + bQQ

10 + 4bQQ
11 + bQQ

12 + 4bQQ
13 = 0 .

(4.26)

As a check we observe that if all the coefficients of type bRT , bRQ, bQQ and bTQ are zero, the
remaining relations imply that the R2 terms appear in the combination

bRR
1

(
RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2

)
= bRR

1 CµνρσC
µνρσ ,

which is the square of the Weyl tensor. A much more thorough analysis of Weyl symmetry in
the context of MAG can be found in [93].

4.4 MAGs with dimension-two terms only

In this section we discuss, at linearised level, the case of theories without dimension-4 operators
in the Lagrangian. In an EFT, the dimension-two terms will be the dominant ones at very low
energy.

Consider again Fig.1. At the top vertex of the triangle (Q = T = 0) one has Riemannian
geometry, and the only invariant of dimension two is the Hilbert action. At linearised level we
get the Fierz-Pauli action

S(2) =
mR

2

∫
d4q

(2π)4

(
−1

4
q2hµνh

µν +
1

2
qµqλh

µνhλν −
1

2
qµqνh

µνh+
1

4
q2h2

)
. (4.27)

In the interior of the triangle we have the generalised Palatini action (3.6). The generali-
sation consists of the following. In the “standard” Palatini approach, the action is just aFF .
When varied, this is not enough to constrain the connection completely. One can either assume
T = 0 and obtain Q = 0 as an equation, or assume Q = 0 and obtain T = 0 as an equation.
Thus, the standard Palatini action works on the left and right sides of the triangle, but not in
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the interior. This is due to the fact that the Palatini action is invariant under the projective
transformations (4.20). The addition of the other terms in (3.6), which is only natural from the
point of view of EFT, generically breaks projective invariance and fixes this problem. In the
Einstein form, the action becomes (3.8) (or (3.11)), which consists just of the Hilbert action for
g and a mass term for the distortion (or equivalently torsion and nonmetricity). Generically,
this mass term will be non-degenerate and the EOM will imply that distortion vanishes. Thus
the theory is dynamically equivalent to GR, on shell. We note that the addition to the standard
Palatini action of torsion-squared terms in antisymmetric MAG or nonmetricity-squared terms
in symmetric MAG, will generically not change the EOMs. Still, these terms are expected to
be present when we think of MAG as an EFT.

We now turn to the bottom of the triangle, which does not follow the generic behaviour of
the interior. We first look at the left and right corners, then at the bottom edge. The following
analyses will be carried out in the Cartan version of the theory.

4.4.1 Antisymmetric teleparallel theory

This is also known as Weitzenböck theory. We have F = Q = 0, so the action must be
quadratic in torsion

S = −1

2

∫
d4x
√

|g|
[
aTT
1 TµρνT

µρν + aTT
2 TµρνT

µνρ + aTT
3 tr(12)Tµtr(12)T

µ
]
. (4.28)

The condition F = 0 implies (2.10). When the theory is linearised around flat space, this
becomes Aµ

ρ
ν = ∂µλ

ρ
ν , where Λρ

σ = δρσ + λρσ. The condition Q = 0 implies for the metric
fluctuation that Aµρν + Aµνρ = ∂µhρν . Putting these conditions together we have

Aµρν =
1

2
∂µhρν + ∂µΩρν , (4.29)

where Ω is the antisymmetric part of λ. So the action of the linearised theory becomes

S = −1

2

∫
d4q

(2π)4

[
− (2aTT

1 + aTT
2 )

4
q2hµνh

µν +
(2aTT

1 + aTT
2 − aTT

3 )

4
qµqλh

µνhλν

+
aTT
3

2
qµqνh

µνh− aTT
3

4
q2h2 − (2aTT

1 − aTT
2 )q2ΩµνΩµν

+ (2aTT
1 − 3aTT

2 − aTT
3 )qµqλΩ

µνΩλ
ν − (2aTT

1 + aTT
2 + aTT

3 )qµqλΩ
µνhλν

]
.

(4.30)

The linearised action can then be written in a form analogous to (4.16):

S =
1

2

∑
P,i,j

∫
d4q

(2π)4
(Ω(−q) h(−q)) ·

(
aΩΩ
ij P

ΩΩ
ij aΩh

ij P
Ωh
ij

ahΩij P
hΩ
ij ahhij P

hh
ij

)
·
(
Ω(q)
h(q)

)
+

∫
d4q

(2π)4
{σ(−q) · h(q) + τ(−q) · Ω(q)} ,

(4.31)
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where

a
(
2+
)
=

(2aTT
1 + aTT

2 )

4
q2 , (4.32a)

a
(
1+
)
=
(
2aTT

1 − aTT
2

)
q2 , (4.32b)

a
(
1−
)
=
aTT
4

8
q2
(

4 −2
−2 1

)
, (4.32c)

a
(
0+
)
=

(aTT
4 + 2aTT

3 )

4
q2
(
1 0
0 0

)
, (4.32d)

where
aTT
4 ≡ 2aTT

1 + aTT
2 + aTT

3 . (4.33)

In the 1− sector, the order of the rows and columns is (Ω, h). Note that the matrices a (1−) and
a (0+) have rank 1 because of the diffeomorphism invariance. We fix the gauge by removing
the second row and column. At the linearised level the diffeomorphism transformation reads

hµν → hµν + ∂µξν + ∂νξµ , (4.34a)

Ωµν → Ωµν −
1

2
∂µξν +

1

2
∂νξµ , (4.34b)

where the transformation of Ω follows from those of A and h and formula (4.29) So the sources
satisfy the following constraint

−2qµσµν + qµτµν = 0 . (4.35)

The saturated propagator is

Π=−1

2

∫
d4q

(2π)4

{
4

(2aTT
1 + aTT

2 )q2

[
σµνσ

µν − aTT
3

2aTT
1 + aTT

2 + 3aTT
3

(
σµ
µ

)2]
+

1

(2aTT
1 − aTT

2 )q2

[
τµντ

µν − 4(aTT 2
2 + 2aTT

1 aTT
2 + 2aTT

1 aTT
3 )

(2aTT
1 + aTT

2 )(2aTT
1 + aTT

2 + aTT
3 )

qµqν

q2
τµρτν

ρ

]}
.

(4.36)

Making the following redefinitions

σ̃µν ≡ σµν + C σρ
ρ ηµν , (4.37a)

τµν ≡ − i

q2
(qµχν − qνχµ) + τ̃µν with qµχµ = qµτ̃µν = 0 , (4.37b)

and adjusting the parameter C , we can reduce the saturated propagator to the following form

Π = −1

2

∫
d4q

(2π)4

[
4

(2aTT
1 + aTT

2 )q2

(
σ̃µν σ̃

µν − 1

2

(
σ̃µ
µ

)2)
+

1

(2aTT
1 − aTT

2 )q2
τ̃µν τ̃

µν − 2(2aTT
1 + aTT

2 − aTT
3 )

(2aTT
1 + aTT

2 )(2aTT
1 + aTT

2 + aTT
3 )q4

χµχ
µ

]
.

(4.38)

In the first term we recognize the usual graviton, in the second one we have a massless spin
1+ state and in the last a dipole ghost with spin 1−.

The latter is pathological and in order to eliminate it, we have to impose

aTT
4 = 0 . (4.39)
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With this constraint, we recover linearised GR together with a spin 1+ particle. If we impose
that 2aTT

1 −aTT
2 > 0 its propagator takes the proper form. In this theory there are two different

gauge invariances: the previously mentioned diffeomorphisms, and

Ωµν → Ωµν + ∂µχν − ∂νχµ . (4.40)

The additional degree of freedom can be removed by imposing

2aTT
1 − aTT

2 = 0 , (4.41)

in which case Ω disappears from the action (it is a pure gauge degree of freedom) and the rest
reduces to the antisymmetric teleparallel equivalent of the Hilbert action, (2.2).

4.4.2 Symmetric teleparallel theory

Now we have F = T = 0, so the action is a generic quadratic combination of non-metricity:

S = −1

2

∫
d4x
√

|g|
[
aQQ
1 QρµνQ

ρµν + aQQ
2 QρµνQ

µρν

+aQQ
3 tr(23)Qµtr(23)Q

µ + aQQ
4 tr(12)Qµtr(12)Q

µ + aQQ
5 tr(23)Qµtr(12)Q

µ
]
.

(4.42)

As in the antisymmetric case, in the linearised theory F = 0 implies Aµ
ρ
ν = ∂µλ

ρ
ν . The

condition T = 0 implies that Aµ
ρ
ν = Aν

ρ
µ. Putting these conditions together we have

Aµ
ρ
ν = ∂µ∂νu

ρ . (4.43)

Substituting Qρµν = −∂ρhµν + ∂ρ∂µuν + ∂ρ∂νuµ and linearizing, the action becomes

S = −1

2

∫
d4q

(2π)4

[
− aQQ

1 q2hµνh
µν − (aQQ

2 + aQQ
4 )qµqλh

µνhλν − aQQ
5 qµqνh

µνh− aQQ
3 q2h2

+ (2aQQ
1 + aQQ

2 + aQQ
4 )q4uλu

λ + (2aQQ
1 + 3aQQ

2 + 4aQQ
3 + 3aQQ

4 + 4aQQ
5 )q2qµqνu

µuν

− 2i(2aQQ
1 + aQQ

2 + aQQ
4 )q2qµuνh

µν − 2i(aQQ
2 + aQQ

4 + aQQ
5 )qλqµqνu

λhµν

− 2i(2aQQ
3 + aQQ

5 )q2qλu
λh
]
.

(4.44)

For a generic choice of coefficients the linearised action is

S =
1

2

∑
P,i,j

∫
d4q

(2π)4
(u(−q) h(−q)) ·

(
auuij P

uu
ij auhij P

uh
ij

ahuij P
hu
ij ahhij P

hh
ij

)
·
(
u(q)
h(q)

)
+

∫
d4q

(2π)4
{σ(−q) · h(q) + τ(−q) · u(q)} ,

(4.45)

where

a
(
2+
)
= aQQ

1 q2 , (4.46a)

a(1−) =
1

2

(
2aQQ

1 + aQQ
6

)
q2
(

−2 q2 i
√
2 |q|

i
√
2 |q| 1

)
, (4.46b)

a(0+) = q2

 −4 aQQ
7 q2 i

√
3(2aQQ

3 + aQQ
5 )|q| 2i aQQ

7 |q|
i
√
3(2aQQ

3 + aQQ
5 )|q| (aQQ

1 + 3aQQ
3 )

√
3(2aQQ

3 + aQQ
5 )/2

2i aQQ
7 |q|

√
3(2aQQ

3 + aQQ
5 )/2 aQQ

7

 , (4.46c)
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where the rows/columns of a(1−) refer to u, h, in this order, those of a(0+) to u, h, h. We
defined

aQQ
6 ≡ aQQ

2 + aQQ
4 , (4.47a)

aQQ
7 ≡ aQQ

1 + aQQ
2 + aQQ

3 + aQQ
4 + aQQ

5 . (4.47b)

Note that the matrix a (1−) has rank 1 and a (0+) has rank 2 because of the diffeomorphism
invariance.

At the linearised level the diffeomorphism transformation reads

hµν → hµν + ∂µξν + ∂νξµ , (4.48a)

uµ → uµ + ξµ , (4.48b)

so the sources satisfy the following constraint

−2iqµσµν + τν = 0 . (4.49)

The saturated propagator is

Π = −1

2

∫
d4q

(2π)4

{
1

aQQ
1 q2

[
σµνσ

µν + (. . .)
(
σµ
µ

)2]− i

2

(. . .)

q4
qµτµσ

ν
ν

+
aQQ
6

2a4(2a
QQ
1 + aQQ

6 )q4

(
τµτ

µ + (. . .)
qµqν

q2
τµτν

)}
,

(4.50)

where the ellipses stand for complicated combinations of couplings whose explicit form is not
very relevant. Making the redefinitions

σ̃µν ≡ σµν −
iA

q2
(qµτν + qντµ) + C σρ

ρ ηµν , (4.51a)

τµ ≡ − i

q2
qµj + τ̃µ with qµτ̃µ = 0 , (4.51b)

and adjusting the parameters (A,C) , we can reduce the saturated propagator to the form

Π = −1

2

∫
d4q

(2π)4

{
1

aQQ
1 q2

[
σ̃µν σ̃

µν − 1

2

(
σ̃µ
µ

)2]
+

(. . .)

q4
τµτ̃ ν +

(. . .)

q6
j2
}
. (4.52)

These dipole and tripole ghosts can be eliminated imposing the conditions

2aQQ
1 + aQQ

6 = 0 , (4.53a)

aQQ
6 + aQQ

5 = 0 , (4.53b)

2aQQ
3 + aQQ

5 = 0 , (4.53c)

leaving us just with the standard graviton saturated propagator. With these constraints, u
becomes a pure gauge and we recover the symmetric teleparallel equivalent of GR (2.3). This
is in agreement with the results of [83, 84].
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4.4.3 General teleparallel theory

We now only assume F = 0. The action is

S = −1

2

∫
d4x
√

|g|
[
aTT
1 TµρνT

µρν + aTT
2 TµρνT

µνρ + aTT
3 tr(12)Tµtr(12)T

µ

+ aQQ
1 QρµνQ

ρµν + aQQ
2 QρµνQ

µρν

+ aQQ
3 tr(23)Qµtr(23)Q

µ + aQQ
4 tr(12)Qµtr(12)Q

µ + aQQ
5 tr(23)Qµtr(12)Q

µ

+ aTQ
1 TµρνQ

µρν + aTQ
2 tr(12)Tµtr(23)Q

µ + aTQ
3 tr(12)Tµtr(12)Q

µ

]
.

(4.54)

As in the previous cases, in the linearised theory F = 0 implies Aµ
ρ
ν = ∂µλ

ρ
ν , but now both

the symmetric part H and the antisymmetric part Ω of λ have to be treated as dynamical
fields.

So the action becomes

S = −1

2

∫
d4q

(2π)4

(
−aQQ

1 q2hµνh
µν − (aQQ

2 + aQQ
4 )qµqλh

µνhλν − aQQ
5 qµqνh

µνh

−aQQ
3 q2h2 − (2aTT

1 + aTT
2 + 4aQQ

1 + 2aTQ
1 )q2HµνH

µν

+(2aTT
1 + aTT

2 − aTT
3 − 4aQQ

2 − 4aQQ
4 + 2aTQ

1 − 2aTQ
3 )qµqλH

µνHλ
ν

+2(aTT
3 − 2aQQ

5 − aTQ
2 + aTQ

3 )qµqνH
µνH − (aTT

3 + 4aQQ
3 − 2aTQ

2 )q2H2

−(2aTT
1 − aTT

2 )q2ΩµνΩ
µν + (2aTT

1 − 3aTT
2 − aTT

3 )qµqλΩ
µνΩλ

ν

+(4aQQ
1 + aTQ

1 )q2Hµνh
µν + (4aQQ

2 + 4aQQ
4 − aTQ

1 + aTQ
3 )qµqλH

µνhλν

+(2aQQ
5 + aTQ

2 )qµqνH
µνh+ (2aQQ

5 − aTQ
3 )qµqνHh

µν + (4aQQ
3 − aTQ

2 )q2Hh

+(aTQ
1 + aTQ

3 )qµqλΩ
µνhλν − 2(2aTT

1 + aTT
2 + aTT

3 + aTQ
1 + aTQ

3 )qµqλΩ
µνHλ

ν

)
.

(4.55)

For a generic choice, we write

S =
1

2

∑
P,i,j

∫
d4q

(2π)4
(Ω H h) ·

aΩΩ
ij P

ΩΩ
ij aΩH

ij PΩH
ij aΩh

ij P
Ωh
ij

aHΩ
ij PHΩ

ij aHH
ij PHH

ij aHh
ij P

Hh
ij

ahΩij P
hΩ
ij ahHij P

hH
ij ahhij P

hh
ij

 ·

Ω
H
h


+

∫
d4q

(2π)4
{σ · h+ Σ ·H + τ · Ω} ,

(4.56)
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where

a
(
2+
)
= q2

(
(2aTT

1 + aTT
2 + 4aQQ

1 + 2aTQ
1 ) −(4aQQ

1 + aTQ
1 )/2

−(4aQQ
1 + aTQ

1 )/2 aQQ
1

)
, (4.57a)

a
(
1+
)
=
(
2aTT

1 − aTT
2

)
q2 , (4.57b)

a
(
1−
)
= q2


aTT
4 /2 −(aTT

4 + aTQ
1 + aTQ

3 )/2 (aTQ
1 + aTQ

3 )/4

−(aTT
4 + aTQ

1 + aTQ
3 )/2

(
aTT
4 + aTQ

5 + aTQ
1 + aTQ

3

)
/2 −aTQ

5 /4

(aTQ
1 + aTQ

3 )/4 −aTQ
5 /4

(
2aQQ

1 + aQQ
6

)
/2

 ,

(4.57c)

a
(
0+
)
= q2


aTQ
4

√
3 aTQ

6 −aTQ
7 /2 −

√
3 aTQ

6 /2√
3 aTQ

6 4 aQQ
7 −

√
3(2aQQ

3 + aQQ
5 ) −2 aQQ

7

−aTQ
7 /2 −

√
3(2aQQ

3 + aQQ
5 ) (aQQ

1 + 3aQQ
3 )

√
3(2aQQ

3 + aQQ
5 )/2

−
√
3 aTQ

6 /2 −2 aQQ
7

√
3(2aQQ

3 + aQQ
5 )/2 aQQ

7

 ,

(4.57d)

where the rows/columns of a(2+) refer to H and h (in this order), those of a(1−) to Ω, H, h,
those of a(0+) to H, H, h, h, and we defined

aTQ
4 ≡ aTT

4 + 2aTT
3 + 4aQQ

1 + 12aQQ
3 + 2aTQ

1 − 6aTQ
2 , (4.58a)

aTQ
5 ≡ 8aQQ

1 + 4aQQ
6 + aTQ

1 + aTQ
3 , (4.58b)

aTQ
6 ≡ 4aQQ

3 + 2aQQ
5 − aTQ

2 − aTQ
3 , (4.58c)

aTQ
7 ≡ 4aQQ

1 + 12aQQ
3 + aTQ

1 − 3aTQ
2 . (4.58d)

As usual the matrix a (1−) has rank 2 and a (0+) has rank 3 because of diffeomorphism invari-
ance. At the linearised level, the diffeomorphism transformation reads

hµν → hµν + ∂µξν + ∂νξµ , (4.59a)

Hµ → Hµν +
1

2
∂µξν +

1

2
∂νξµ , (4.59b)

Ωµν → Ωµν −
1

2
∂µξν +

1

2
∂νξµ , (4.59c)

so the sources satisfy the following constraint

2qµσµν + qµΣµν − qµτµν = 0 . (4.60)

The saturated propagator is

Π = −1

2

∫
d4q

(2π)4

{
(. . .)

q2

[
σµνσ

µν + (. . .)
(
σµ
µ

)2]
+

(. . .)

q2

[
ΣµνΣ

µν + (. . .)
(
Σµ

µ

)2]
+
qµqν

q4

[
(. . .)ΣµνΣ

ρ
ρ + (. . .)ΣµρΣν

ρ + (. . .)
qρqλ

q2
ΣµνΣρλ

]
+
(. . .)

q2

[
τµντ

µν + (. . .)
qµqν

q2
τµρτ ν

ρ

]
+ (. . .)

qµqν

q2
Σµρτ ν

ρ

+
(. . .)

q2

[
Σµνσ

µν + (. . .)
qµqν

q2
Σµνσ

ρ
ρ + (. . .)Σµ

µ σ
ν
ν

]}
.

(4.61)
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Making the following redefinitions

σ̃µν ≡ σµν + AΣµν +
(
C σρ

ρ +DΣρ
ρ

)
ηµν , (4.62a)

Σ̃µν ≡ Σµν +B σµν +
(
E Σρ

ρ + F σρ
ρ

)
ηµν , (4.62b)

and adjusting the parameters (A,B,C,D,E) , we can reduce the saturated propagator to the
following form

Π = −1

2

∫
d4q

(2π)4

{
(. . .)

q2

[
σ̃µν σ̃

µν − 1

2

(
σ̃µ
µ

)2]
+

(. . .)

q2

[
Σ̃µνΣ̃

µν + (. . .)
(
Σ̃µ

µ

)2]
+
qµqν

q4

[
(. . .)Σ̃µνΣ̃

ρ
ρ + (. . .)Σ̃µρΣ̃ν

ρ + (. . .)
qρqλ

q2
Σ̃µνΣ̃ρλ

]
+
(. . .)

q2

[
τµντ

µν + (. . .)
qµqν

q2
τµρτ ν

ρ

]}
.

(4.63)

Now that we have decoupled the sources, we decompose

Σ̃µν ≡ Σ̃T
µν −

i

q2
(qµκν + qνκµ) +

1

q2
(Lµνj1 + Tµνj2) with qµκµ = qµΣ̃T

µν = 0 , (4.64a)

τµν ≡ − i

q2
(qµυν − qνυµ) + τ̃µν with qµυµ = qµτ̃µν = 0 , (4.64b)

and adjusting the parameter F , the saturated propagator becomes

Π = −1

2

∫
d4q

(2π)4

{
(. . .)

q2

[
σ̃µν σ̃

µν − 1

2

(
σ̃µ
µ

)2]
+

(. . .)

q2

[
Σ̃T

µνΣ̃
T µν − 1

2

(
Σ̃T µ

µ

)2]
+
(. . .)

q2
τ̃µν τ̃

µν +
(. . .)

q4
κµκ

µ +
(. . .)

q4
υµυ

µ +
(. . .)

q6
J ·M · J

}
,

(4.65)

where J = (j1, j2) . The first term gives the GR contribution, the second one another massless
spin 2+, the third is a massless 1+ state, the remaining ones are two spin 1− dipole ghosts and
two 0+ tripole ghosts. The last four are pathological and must be eliminated. This can be
achieved by adjusting the coefficients so that the various terms (. . .) diverge (this is equivalent
to setting to zero some terms in the a-matrices). In the process new gauge invariances appear.

The dipole ghost vµ coming from Ω, can be eliminated imposing (4.39) and

aTQ
1 + aTQ

3 = 0 . (4.66)

In this way the following gauge invariance appears

hµν → hµν , Hµν → Hµν , (4.67a)

Ωµν → Ωµν + ∂µχν − ∂νχµ . (4.67b)

Instead to eliminate κµ and J we impose the constraints (4.53), and

aTQ
1 − aTQ

2 = 0 . (4.68)
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This amounts to imposing separate “Diff-invariance” on h and H, i.e.

hµν → hµν + ∂µξν + ∂νξµ , (4.69a)

Hµν → Hµν + ∂µΞν + ∂νΞµ , (4.69b)

Ωµν → Ωµν . (4.69c)

Using these constraints, we find a well defined theory containing two massless particles with
spin 2+ and one with spin 1+ with three different gauge invariances. In such a theory the
graviton is a combination of h and H. Then if we want to decouple h from H, we have to
impose

4aQQ
1 + aTQ

1 = 0 . (4.70)

At this point if we want to have a single massless graviton we have to kill the (non-pathological)
degrees of freedom 1+ and 2+. From the coefficient matrices, this is achieved by imposing (4.41)
and

2aTT
1 + aTT

2 + 4aQQ
1 + 2aTQ

1 = 0 . (4.71)

Imposing relations (4.39,4.41, 4.53,4.68,4.70,4.71), the unique solution is the choice aTT
1 =

−1
4
mR, aTT

2 = −1
2
mR, aTT

3 = mR, aQQ
1 = −1

4
mR, aQQ

2 +aQQ
4 = 1

2
mR, aQQ

3 = 1
4
mR, aQQ

5 = −1
2
mR,

aTQ
1 = mR, aTQ

2 = mR, aTQ
3 = −mR, which reproduce the general teleparallel equivalent of GR

(2.4). This analysis agrees with the findings of [85].
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Chapter 5

Examples of MAG

As discussed in chapter 3, in general metric-affine gravity, even when including terms of dimen-
sion up to four, one encounters 934 independent terms, with 59 of them contributing to the
flat propagator. Such a theory, initially motivated by the absence of additional assumptions
and geometrical beauty, depends on a huge number of free parameters and hence suffers from
the lack of predictivity. In what follows we consider special cases of MAG, being motivated
mainly by the reasons of simplicity. First, we will consider two cases when states of spin/parity
2− or 3− are propagated in addition to the graviton, and then we will discuss a peculiar case
of a theory that appears to be MAG from Cartan point of view, but in fact, is just GR.

5.1 DIY MAGs

The spin-projector formalism has been used to look for MAGs that are free of ghosts and
tachyons [38–43, 66]. The general procedure has been to impose conditions on the kinetic
coefficients and see what kind of particles the theory describes. Here we would like to use a
different approach: to decide a priori what particles we want and then construct a MAG that
has the right propagator for those particles. This goes as follows: we know the correct forms
of the propagators for particles of any spin/parity. These are listed in Appendix D of [86]. At
the linearised level, one can write down a kinetic term that gives the correct propagators for
the desired states, and nothing else. Then one can turn this kinetic term into a full nonlinear
Lagrangian for a MAG in Einstein form by the simple procedure of minimal coupling. The
Lagrangian obtained in this way is highly non-unique: the order of the covariant derivatives
is arbitrary and all the cubic and quartic terms are absent. Nevertheless, this is a MAG that
has the desired propagators. As a subsequent step one can try to add the cubic and quartic
terms, and, if necessary, adjust the ordering of the derivatives at the cost of adding terms of
the form Rϕϕ. We note that this procedure will work if we remain in the context of the general
Lagrangians of the Chapter 3. This is because the general linearised kinetic term for MAG
has 47 free parameters, corresponding to the 47 independent terms of a general Lagrangian.
It would not work in general for the Lagrangians that only have dimension-four terms of the
form F 2, that depend altogether on 28 free parameters.

In this section we will give two examples of this construction. Being a three-index tensor,
distortion can carry any of the states listed in Table 4.2. From the point of view of particle
physics, it may seem redundant to use distortion to describe a particle of spin 0±, 1± or 2+,
because all these particles can be described by tensor fields of lower rank. The only states that
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do require a three index tensor have spin 2− and 3−. We will therefore analyze here these two
cases at the linearised level. We stress that the MAGs constructed in this way can only be
said to be consistent at the linearised level. We do not make any claim as to their consistency
when interactions are turned on.

5.1.1 Simple MAG with a 2− state

We start from a general MAG. A look at Table 4.2 shows that there are two possible d.o.f.’s with
spin 2−: 2−1 being hook-symmetric and 2−2 being hook-antisymmetric (recall that in this context
we refer here to symmetry or antisymmetry in the last two indices). The free Lagrangians for a
spin/parity 2− state carried by an antisymmetric or symmetric tensor, and the corresponding
propagators, are given in Appendix D of [86]. Here we show how to recover those linearised
Lagrangians from MAGs.

We will use the coefficient matrices for the theory in the Einstein form, for which the
last row and column are identically zero as a result of diffeomorphism invariance. In order
to remove the unwanted propagating dof’s we impose various conditions on the coefficient
matrices. Demanding that the matrices for spins 3−, 1+ and 0− have no terms proportional to
q2 leads to the constraints:

bTT
2 = bTT

1 , bTT
5 = bTT

1 + bTT
4 ,

bTT
6 = −bTT

1 , bTT
7 = −2bTT

1 ,

bQQ
2 = −bQQ

1 , bQQ
8 = 3bQQ

1 + bQQ
7 ,

bTQ
5 = −bTQ

1 , bTQ
7 = bTQ

1 + bTQ
6 .

(5.1)

Next, in the sectors 2+ and 0+ we demand that the mixed a-h terms vanish and that all
the other terms, except for those corresponding to the standard graviton, have no q2 terms.
This leads to

bTT
4 = −2bTT

1 + 2bTT
2 + bTT

7 + 2bQQ
1 + bQQ

7 + bTQ
1 + bTQ

5 ,

bTT
6 = −bTT

1 − bQQ
1 − 1/2bQQ

7 − 1/2bTQ
1 − 1/2bTQ

5 , bTT
9 = −bTT

3 ,

bQQ
6 = 3bTT

1 − 3/2bTT
2 + 1/2bTT

5 + 1/2bTT
7 − 2bQQ

1 − bQQ
2 ,

bQQ
12 = −bQQ

10 , bQQ
13 = −bQQ

11 , bQQ
14 = −bQQ

4 , bQQ
15 = −bQQ

3 , bQQ
16 = −bQQ

5 ,

bTQ
4 = −6bTT

1 + 2bTT
2 − 2bTT

5 − bTT
7 + 2bQQ

1 + 2bQQ
2 − bTQ

1 ,

bTQ
6 = −4bTT

1 + 2bTT
2 − bTT

7 + 4bQQ
1 + 2bQQ

2 − bQQ
9 ,

bTQ
7 = 2bTT

2 + bTT
7 + 4bQQ

1 + 2bQQ
7 + 2bTQ

1 + bTQ
5 ,

bTQ
11 = −bTQ

10 bTQ
12 = bTQ

3 , bTQ
13 = bTQ

2 ,

(5.2)

and further six relations for the R∇T and R∇Q that, together withe Bianchi identities, remove
all the terms of this type.

Then we impose that the spin 2− and 1− are properly related, as discussed in Appendix
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D.6 of [86]. This leads to

bTT
2 = 2bTT

1 + 1/3bTT
3 , bTT

8 = −2bTT
3 ,

bQQ
2 = −2bQQ

1 − bQQ
3 , bQQ

4 = bQQ
3 ,

bQQ
5 = bQQ

10 = −bQQ
11 = −2bQQ

3 ,

bTQ
3 = −bTQ

2 = bTQ
8 = −bTQ

9 = bTQ
10 = 2bTT

1 + 2/3bTT
3 + 2bQQ

1 + 2bQQ
3 + bTQ

1 .

(5.3)

The same requirement for the mass parameters implies

mTT
3 = −2mTT

1 −mTT
2 , mQQ

4 = 2mQQ
1 −mQQ

2 + 4mQQ
3 ,

mQQ
5 = 4mQQ

1 − 2mQQ
2 + 4mQQ

3 , mTQ
2 =−mTQ

3 = mTQ
1 .

(5.4)

The coefficient matrices now depend only on bTT
1 , bQQ

1 , bTQ
1 and on the mass parameters mTT

1 ,
mTT

2 , mQQ
1 , mQQ

2 , mQQ
3 , mTQ

1 . In particular the sectors 2+44 and 0+55 have the right form to
propagate a massless graviton. Similarly the matrix for the 2− and the submatrix 1−22, 1

−
23, 1

−
32,

1−33 describe two mixed spin 2− dof’s. All the remaining components are either zero on shell
(if the mass is nonzero) or a gauge dof (if the mass is zero). In particular the matrix a(2−) is

a11(2
−) =

1

2

(
3(3bTT

1 + 4bQQ
1 + 2bTQ

1 )(−q2)

+(−6mTT
1 − 3mTT

2 − 8mQQ
1 + 4mQQ

2 − 6mTQ
1 )
)
,

a12(2
−) =

√
3

2
((3bTT

1 + bTQ
1 )(−q2)− (2mTT

1 +mTT
2 +mTQ

1 )) ,

a22(2
−) =

1

2

(
3bTT

1 (−q2) + (−2mTT
1 −mTT

2 )
)
,

(5.5)

and the submatrix 1−22, 1
−
23, 1

−
32, 1

−
33 is the same up to the sign. Then, there is the graviton

contribution inside a(2+)44 and a(0
+)55, with the correct proportionality discussed in Appendix

D.5 of [86]. Finally, except for the entries constraint by the diffeomorphism invariance, i.e.
(4.19), all the other entries are just mass terms.

The two spin 2− dof’s are generically mixed. The mixing can be eliminated by assuming

bTQ
1 = −3bTT

1 and mTQ
1 = −2mTT

1 −mTT
2 .

To avoid ghosts we must assume that 4bQQ
1 > 3bTT

1 and bTT
1 > 0. In particular this condition

can be satisfied by both dofs.
In order to propagate only the hook-antisymmetric component 2−2 , discussed in Section

D.6.1 of [86], we have to set
bQQ
1 = 3/4bTT

1

and then we must assume bTT
1 > 0. The mass squared term is proportional to (2mTT

1 +mTT
2 ).

In such a theory, the kinetic term for the state 2− in the Lagrangian involves terms ∇T∇T ,
∇Q∇Q and ∇T∇Q. 1

In order to propagate only the hook-symmetric component 2−1 , discussed in Section D.6.2
of [86], we have to set

bTT
1 = 0

and assume bQQ
1 > 0. The mass squared term is proportional to (6mTT

1 +3mTT
2 −8mQQ

1 +4mQQ
2 ).

In such a theory, the kinetic term for the state 2− in the Lagrangian involves only terms∇Q∇Q.
1This complication could be avoided by adopting another definition of hook (anti)symmetry.
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5.1.2 Simple MAG with a 3− state

We can remove all the terms proportional to q2 in the coefficient matrices, except for those
that propagate the massless 3− and 2+ d.o.f.’s. This gives linear equations for the coefficients
that are solved by

bTT
i = 0 for i = 1, 2, 3, 4, 5, 6, 7, 8, 9

bTQ
i = 0 for i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

bQQ
2 = 2bQQ

1 , bQQ
3 = −4bQQ

1 , bQQ
4 = −bQQ

1 , bQQ
5 = −4bQQ

1 , bQQ
6 = −bQQ

1 ,

bQQ
7 = −2bQQ

1 , bQQ
8 = −2bQQ

1 , bQQ
9 = −4bQQ

1 , bQQ
10 = 8bQQ

1 ,

bQQ
11 = bQQ

12 = 4bQQ
1 , bQQ

13 = 2bQQ
1 , bQQ

15 = bQQ
16 = 4bQQ

14 ,

(5.6)

and further six relations for the R∇T and R∇Q that, together with the Bianchi identities,
remove all the terms of this type. This puts to zero the matrices a(2−), a(1+) and a(0−).
Further requiring that the ratio of the coefficients of q2 in a(3−) and a11(0

+) be equal to −9/2,
due to the requirements discussed in Section D.7 of [86], fixes bQQ

14 = −1/2bQQ
1 . Then, the

remaining coefficient matrices are

a(3−) = 12bQQ
1 (−q2) , (5.7a)

a(2+) = (−q2)


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 mR

4

 , (5.7b)

a(1−) = (−q2)



−48bQQ
1 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, (5.7c)

a(0+) = (−q2)


−54bQQ

1 0 0 −18bQQ
1 0 0

0 0 0 0 0 0
0 0 0 0 0 0

−18bQQ
1 0 0 −6bQQ

1 0 0
0 0 0 0 −1

2
mR 0

0 0 0 0 0 0

 . (5.7d)

Note that the first 4 × 4 block in a(0+) has rank one. All the degrees of freedom are pure
gauge, except for the desired 2+ and 3−. In such a theory, the kinetic term for the state 3−

in the Lagrangian involves only terms ∇Q∇Q. We have chosen bRR
1 = bRR

2 = bRR
3 = 0, so the

graviton propagator is as in GR.
Some comments are in order at this point. The subject of higher spin theories is a thorny

one. Normally it is approached in a bottom-up fashion, starting from a free theory in flat space
and then trying to construct interactions. In the process, one encounters numerous difficulties.
Here we have started from a ready-made nonlinear theory (MAG) and tried to arrange its
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parameters so that at the linearised level it reproduces the known free spin-3 Lagrangian.
With our choice of coefficients, the ϕϕ part of the linearised action (4.5) is

S(2) = −2bQQ
1

∫
d4q

(2π)4

[
q2
(1
4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ

− tr(12)Qαtr(12)Q
α − tr(12)Qαtr(23)Q

α − 1

4
tr(23)Qαtr(23)Q

α
)

− 1

4
div(1)Qαβdiv(1)Q

αβ − div(1)Qαβdiv(2)Q
αβ − div(2)Q(αβ)div(2)Q

(αβ)

− 1

8
trdiv(1)Qαβtrdiv(1)Q

αβ − 1

2
trdiv(1)Qαβtrdiv(2)Q

αβ − 1

2
trdiv(2)Qαβtrdiv(2)Q

αβ

+ div(12)Qαtr(23)Q
α +

1

2
div(23)Qαtr(23)Q

α + 2div(12)Qαtr(12)Q
α + div(23)Qαtr(12)Q

α

]
,

(5.8)
where now div(1)Qαβ = iqλQλαβ etc.. The standard description of the spin-3 particle is by a
totally symmetric 3-tensor. Thus in the formula above we replace Qαβγ by Sαβγ = Q(αβγ), and

set bQQ
1 = 1/3 to obtain

S(2) =
1

2

∫
d4q

(2π)4

[
− q2SαβγS

αβγ + 3q2tr(12)Sαtr(12)S
α

+ 3div(1)Sαβdiv(1)S
αβ +

3

2
(trdiv(1)S)

2 − 6div(12)Sαtr(12)S
α

]
.

(5.9)

This is indeed the Fronsdal Lagrangian that correctly describes a free massless spin-3 particle
[94]. However, this is only a very limited success. The “higher spin symmetry” δSαβγ = ∂(αΛβγ),
that is a necessary invariance of a higher spin theory, is only an accidental symmetry here. More
details on these issues, the relation of this approach to earlier attempts to embed higher-spin
theory in MAG [66, 95] and a discussion of the massive case will be given elsewhere.

5.2 MAGs without propagation

There are classes of MAGs that look perfectly normal when presented in the Cartan form,
but have no propagating degrees of freedom. 2 The initial step towards these theories is the
observation that known ghost- and tachyon-free MAGs, when presented in Einstein form, do
not contain terms quadratic in curvature [41]. This is reasonable, insofar as 4DG is known to
contain ghosts or tachyons.

However, we can now demand more: in the notation of equation (3.2), suppose thatmR = 0,
bRR = 0 and bRϕ = 0. This means that the Hilbert term is absent, as well as the terms quadratic
in curvature and mixed terms of the form R∇ϕ. The first two lines of the Lagrangian can
therefore be written in the form

ϕαβγ

(
Kαβγ|ρσ|λµν∇ρ∇σ +Mαβγ|λµν)ϕλµν , (5.10)

where K and M are tensors constructed exclusively with the metric. The remaining terms do
not contribute to the propagator in flat space, but only to interactions. For simplicity we shall

2This observation came up in discussions with E. Sezgin.
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ignore them in the subsequent discussion, but they do not change the conclusions. When the
Lagrangian is linearised, it gives a kinetic operator of the form (5.10), where all the metrics
are Minkowski metrics and all covariant derivatives are replaced by partial derivatives.

If we were just considering this as a theory of a field ϕ propagating in a fixed background
metric, it would have, in general, propagating degrees of freedom obeying the field equation(

Kαβγ|ρσ|λµν∇ρ∇σ +Mαβγ|λµν)ϕλµν . (5.11)

However, in a MAG we have to satisfy also the equation for the metric, which in the basence
of matter simply says that the energy-momentum tensor of ϕ has to vanish. Since plane
waves carry nonzero energy and momentum, it is already clear that this will forbid normal
propagation. To see this more explicitly, write the Lagrangian as

ϕαβγOαβγ|λµνϕλµν . (5.12)

In flat space one can Fourier transform and write

Oαβγ|λµν = −Kαβγ|ρσ|λµνqρqσ +Mαβγ|λµν .

The energy-momentum tensor is

T ρσ =
2√
−g

ϕαβγ
∂(
√
−gOαβγ|λµν)

∂gρσ
ϕλµν . (5.13)

The operator O has zero modes corresponding to infinitesimal coordinate transformations, but
generically there will be no others. When this is the case, demanding T ρσ = 0 implies that ϕ
can be at most a coordinate transform of zero.

Let us observe that while the absence of terms containing the curvature Rαβγδ (and its
contractions) is immediately conspicuous in the Einstein form, it is not in the Cartan form.
We can now ask, in the Cartan form of MAG, what choices of coefficients will produce a theory
of this type. From (D.21) we see that the vanishing of the R2 terms implies

cFF
1 − cFF

2 + cFF
3 + 1/2(cFF

4 − cFF
5 + cFF

6 ) = 0 ,

cFF
7 + cFF

8 + cFF
9 + cFF

10 − cFF
11 − cFF

12 = 0 ,

cFF
16 = 0 ,

(5.14)

and from (D.22), the vanishing of the terms R∇(T/Q) implies

2(4cFF
1 − 4cFF

2 + 4cFF
3 + 2cFF

4 − 2cFF
5 + 2cFF

6 + cFF
7 + cFF

8 + cFF
9 + cFF

10 − cFF
11 − cFF

12 ) = 0 ,

−cFF
7 − cFF

8 − cFF
9 − cFF

10 + cFF
11 + cFF

12 + 4cFF
16 = 0 ,

2(−2cFF
1 + 2cFF

2 − 2cFF
3 − cFF

4 + cFF
5 − cFF

6 + cFF
7 + cFF

8 )− cFF
11 − cFF

12 = 0 ,

−3cFF
7 − 3cFF

8 − cFF
9 − cFF

10 + 2cFF
11 + 2cFF

12 = 0 ,

cFF
9 + cFF

10 − cFF
11 /2− cFF

12 /2− 2cFF
16 = 0 ,

1/2(−cFF
7 − cFF

8 − cFF
9 − cFF

10 + cFF
11 + cFF

12 + 4cFF
16 ) = 0 .

(5.15)
Furthermore, it is also important to notice that this phenomenon will not be apparent

in the linearised form of the theory: the energy-momentum tensor is quadratic in ϕ and the
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linearised EOM for the metric on a flat background will just be 0 = 0. Instead, the linearised
theory will contain some accidental symmetry.

Probably the simplest and most illuminating example is the action where we retain only
cFF
13 = 2, all the others being zero:

L = −F (34)
µν F (34)µν .

Using (1.37),

F (34)
µν =

1

2

(
∇µtr(23)Qν −∇νtr(23)Qµ

)
.

Thus, in spite of appearances, this is just a free Maxwell field coupled to a metric that does
not have a kinetic term. There is an EOM stating that the electromagnetic energy-momentum
tensor is zero, which implies that Fµν = 0. On the other hand, if we study this theory with
the methods of Section 4, we find that all coefficient matrices are zero except for a(1−), that
has rank one. All the nonzero rows/columns are proportional to q2 and choosing a gauge
appropriately one would erroneously conclude that the theory contains a free massless spin
one particle.

A less trivial example is obtained by setting all coefficients to zero except cFF
2 = cFF

1 = 2:

L = −Fµν(ρσ)F
µν(ρσ) .

In this case the linearised analysis seems to indicate several propagating (and interacting)
particles, but this conclusion is false in the full nonlinear theory.
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Chapter 6

Quantum GR and Unimodular gravity

In this chapter, we build up our understanding of UV divergences appearing in metric theories
of gravity. But first, we digress to discuss path integrals in Einstein and Unimodular gravity
and address the question of classical quantum equivalence between these theories.

6.1 Classical dynamics of Unimodular gravity

We start this section by discussing one of the best-known problems of modern theoretical
physics, the cosmological constant problem. It arises when one attempts to reconcile two fol-
lowing assumptions: first, that the observed acceleration of the universe is due to the constant
term in gravitational Lagrangian and second, that the energy density generated by vacuum
fluctuations depends quartically on a cutoff. These assumptions lead to a huge apparent
discrepancy between the “predicted” and observed values of spacetime curvature. However,
neither of these assumptions is based on strong ground. Firstly, it may also be the case that
there is no cosmic acceleration, and the observed apparent “acceleration” is an artefact of the
homogeneous Friedmann–Lemâıtre–Robertson–Walker (FLRW) spacial metric which may not
be applicable to the current inhomogeneous state of the Universe [96, 97]. Secondly, assuming
that the acceleration is real, it may be due to some dynamical mechanism, possibly related to
the independent connection [98]. As we have mentioned earlier, the observed cosmic acceler-
ation can be explained by some hidden gravitational dynamics, for example, the dynamics of
independent connection. Thirdly, power divergences appear in some regularisation schemes,
such as momenta cutoff, but do not appear in others, such as dimensional regularisation.
Fourthly, observable quantities cannot depend on the cutoff.

If gravity is only “renormalisable” in the sense explained in section 1.2, meaning that all
quantum divergences can be removed by the addition of local counterterms with only a finite
number of them being not suppressed by the Planck mass, the cosmological constant, which
does affect the dynamics at low energies, must not receive cutoff-dependant corrections.

On the other hand, if gravity is understood as an EFT, the CC will receive finite contri-
butions from integrating out heavy degrees of freedom, and generally, one would expect the
Wilson coefficient before the dimension zero term to be of order one, which is in huge dis-
agreement with experimental data. In the following, we will discuss how this aspect of the CC
problem is related to the gauge group choice.

Unimodular gravity is defined as a metric theory with the following condition on the de-
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terminant of the metric being imposed:√
|g| = ω(x) , (6.1)

where ω is a scalar function. Here one immediately notices that due to the local diffeomorphic
symmetry, one can impose (6.1) locally everywhere as a gauge condition. The subtlety comes
from the fact that (6.1) can be integrated over the full space-time volume, with the result being
a genuine physical constraint:

V =

∫
ddx
√

|g| =
∫
ddx ω . (6.2)

Since the determinant of the metric is fixed, no fields couple to the constant vacuum energy,
which therefore does not gravitate or contribute to spacetime curvature. The unimodular
condition can also be imposed as a Lagrange multiplier by the addition of the following term:

Λ

8πG

(
V −

∫
d4x
√

|g|
)

(6.3)

where Λ has to be thought of as a Lagrange multiplier enforcing that the spacetime volume
is equal to V 1 Therefore, Unimodular gravity has exactly one degree of freedom less than
GR (not one per spacetime point). It is natural to expect that this distinction will affect the
infrared properties of the theory, but not its behaviour at short scales. In this thesis, we shall
not discuss the global, large-scale properties and when we say “GR” we shall implicitly mean
“GR with fixed total volume”.

Let us look at these theories from the point of view of gauge symmetry.
The transformation of the metric determinant under the general diffeomorphisms xµ →

xµ + ϵµ(x) is given by

δϵ
√

|g| = 1

2

√
|g|gµνδgµν =

√
|g|∇µϵ

µ (6.4)

Therefore, the Special diffeomorphism group (SDiff ), 2 the local gauge symmetry of Unimod-
ular gravity, is generated by transverse vectors:

∇µϵ
µ = 0 . (6.5)

The action of Unimodular gravity is much alike with (1.17) and its lowest energy term is the
Hilbert–Einstein one:

SUG(g) = ZN

∫
ddx ω R, ZN =

1

16πG
. (6.6)

In the rest of this section, we will show that this theory is equivalent to GR. Equations of
motion obtained by extremising the action (6.6) are

−Ẽµν +
1

d
gµνẼ =

1

2

(
T̃µν −

1

d
gµνT̃

)
(6.7)

1This point of view has been used by Hawking in Euclidean quantum gravity, where he interpreted the
resulting partition function as the “volume canonical ensemble”, see [99]

2In the recent literature, the group is often referred to as TDiff , where T stands for “transverse”.
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where

Ẽµν =
1

ω

δSg
UG

δgµν
(6.8)

is the analogue of the Einstein tensor and

T̃µν =
2

ω

δSm
UG

δgµν
, (6.9)

is the energy-momentum tensor, which is not however covariantly conserved. Instead,

∇µT̃
µν = ∇νΣ ̸= 0 , (6.10)

where § is some scalar. We can define another conserved energy-momentum tensor

Tµν = T̃µν + gµνLm . (6.11)

Then,

−Ẽµν +
1

d
gµνẼ =

1

2

(
Tµν −

1

d
gµνT

)
. (6.12)

The SDiff -invariance implies “generalised Bianchi identity”:

∇µẼ
µν +

1

2
∇νLg = 0 (6.13)

Acting with a derivative on both sides of (6.12) and using (6.13) we obtain the equation

∇ν

(
1

2
Lg +

1

d
Ẽ +

1

2d
T

)
= 0 , (6.14)

that can be integrated to get

1

2
Lg +

1

d
Ẽ +

1

2d
T = ZNΛ1 . (6.15)

Using (6.12) we finally obtain

Rµν −
1

2
gµνR + Λ1gµν =

1

2ZN

Tµν . (6.16)

This is exactly what we would have obtained by extremising the Diff -invariant Hilbert–Einstein
action. The difference however is that the cosmological constant enters (6.16) as an integra-
tion constant, rather than follows from the action. This confirms that Unimodular gravity is
equivalent to GR, except for one degree of freedom.

6.2 Path integrals in Einstein and Unimodular gravity

It is then natural to ask whether this “almost equivalence” holds also for the quantum versions
of the theories. In recent years, there appeared in the literature conflicting statements about
the equivalence, or lack thereof, between GR and UG at the quantum level, see, e.g., [100–
124]. We believe that some of these contradictions may be just due to different quantisation
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procedures. In this work, we prove in general, based on formal path integral arguments, that
there exists a quantisation procedure that preserves the “almost equivalence” between these
theories. The proof goes through for any Diff -invariant action and in this sense extends beyond
ordinary GR. Of course, there may be other definitions of the quantum theories that break
the equivalence, but in the absence of other independent arguments in their favour, we think
that the one we describe here is more natural. Our argument is in the same spirit as the one
presented in [103, 122] and extends the results of [106, 107, 125] beyond one-loop order. We
should remark that both GR and UG are not renormalisable in perturbation theory and the
formal path integrals should be ultraviolet (UV) regularised. Our formal proof relies on the
use of the background field method, but we leave the parameterisation of the metric, i.e., the
way that we split the full metric in the background and fluctuating parts, generic. Hence, this
also extends previous results [106, 107] which made explicit use of the so-called exponential
split of the metric to impose the unimodularity condition [123].

Our proof of equivalence is given initially for pure gravity and one may again worry that
as soon as matter degrees of freedom are introduced, the equivalence would fall apart. This is
due to the different vertex structures. In GR, the determinant of the metric produces infinitely
many vertices between gravitons and matter fields that are absent in UG. Hence, Feynman
rules are different in the two settings and one might expect that it is very unlikely that in the
computation of an observable, miraculous cancellations lead to equivalent results. Yet, there
are results in the literature explicitly showing that this happens, see, e.g., [108, 109, 126]. In
fact, we shall see that our formal proof of equivalence extends also to the case when matter is
present.

The starting point of our analysis is the (Euclidean)3 path integral defined by a gravitational
action SDiff(gµν), gµν = gµν(ḡ;h) being the metric, ḡµν a fixed background metric and hµν the
fluctuating field which is integrated over. The fluctuating field hµν does not need to be small,
i.e., a perturbation around ḡµν . Moreover, the split of the full metric gµν in background and
fluctuating parts is also general, not being restricted to the standard additive (linear) split.
The action is assumed to be invariant under diffeomorphisms (but it is not restricted to be the
Hilbert–Einstein action), and so is the functional measure Dhµν . Formally, the path integral
is expressed as

ZDiff =

∫
Dhµν
VDiff

e−SDiff [g(ḡ;h)] . (6.17)

The factor VDiff stands for the volume of the diffeomorphism group.
In most practical calculations within a continuum quantum-field theoretic setting, a gauge-

fixing term must be introduced in (6.17). This is typically achieved by the Faddeev-Popov
procedure. The redundancy is generated by vector fields ϵµ which can be decomposed as

ϵµ = ϵµT +∇µϕ , (6.18)

with ∇µϵ
µ
T = 0 and ∇µ the covariant derivative defined with respect to the metric gµν . The

transverse vectorfields ϵµT generate the group SDiff of special (volume-preserving) diffeomor-
phisms.

Instead of introducing a single gauge-fixing condition for the entire group of diffeomorphism,
we introduce two different conditions, first breaking Diff to SDiff, and then breaking SDiff.

3The Euclidean signature is not essential at this stage and the results could be equally deduced in the
Lorentzian case.
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This strategy has been discussed and worked out in a different way in [122], see also [103] and
[127] for a general discussion of partial gauge fixing. In the first step we choose a gauge-fixing
functional F(g) and insert the standard Faddeev-Popov identity given by

1 = ∆F(g)

∫
Dϕ δ(F(gϕ)) , (6.19)

where ∆F(g) denotes the Faddeev-Popov determinant. The notation gϕ denotes the transfor-
mation of the metric generated by the longitudinal vectorfield ∇µϕ:

δϕgµν = 2∇µ∇νϕ . (6.20)

We can now plug (6.19) in (6.17) leading to

ZDiff =

∫
Dhµν
VDiff

(
∆F(g)

∫
Dϕ δ(F(gϕ))

)
e−SDiff [g(ḡ;h)] . (6.21)

Following the standard steps we now use the gauge invariance of the measure, of the Faddeev-
Popov determinant and the action and redefine the integration variable, to get

ZDiff =

∫
DϕDhµν
VDiff

∆F(g)δ(F(g)) e−SDiff [g(ḡ;h)] . (6.22)

In [106, 107] it was shown that

VDiff = Det
(
−∇2

)
× VSDiff ×

∫
Dϕ , (6.23)

where VSDiff denotes the volume of the SDiff group. Hence,

ZDiff =

∫
Dhµν
VSDiff

1

Det (−∇2)
∆F(g)δ(F(g))e−SDiff [g(ḡ;h)] . (6.24)

An explicit example of this first stage of gauge fixing is the unimodular gauge defined by

F(g) = detgµν − ω2(x) , (6.25)

ω(x) being a fixed scalar density. The delta function in (6.24) enforces that the full dynamical
metric is unimodular. The corresponding Fadeev-Popov determinant is

∆F(g) = Det
(
ω2(x)(−∇2)

)
. (6.26)

The contribution due to ω2(x) in (6.26) can be absorbed in a normalisation factor of the path
integral and thereby it is harmless. Finally, by plugging (6.26) into (6.24), yields

ZDiff =

∫
Dhµν
VSDiff

δ(detgµν − ω2(x))e−SDiff [g(ḡ;h)] . (6.27)

Due to the presence of the delta functional in (6.27), the action in the Boltzmann factor
collapses to its unimodular counterpart, i.e., SDiff [g(ḡ;h)] → SSDiff [g(ḡ;h)] where factors of

√
g
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are replaced by ω(x) and when expanded in hµν , the constraint F(g) = 0 must be imposed.
Eq.(6.27) is the path integral of UG with the unimodular measure (Dhµν)UG defined by

(Dhµν)UG ≡ Dhµν δ(detgµν − ω2(x)) , (6.28)

i.e,

ZDiff =

∫
(Dhµν)UG

VSDiff

e−SSDiff [g(ḡ;h)] ≡ ZSDiff . (6.29)

One particular parameterisation which is well-suited for the implementation of the unimodu-
larity condition is the exponential split

gµν = ḡµκ(e
h)κν . (6.30)

Unimodularity of gµν is achieved by requiring the background to be unimodular (detḡ = ω2(x))
and that the flucuations hµν are traceless4.

In order to complete the gauge-fixing procedure, one applies again the Faddeev-Popov
method for a gauge condition which fixes the SDiff invariance. This is achieved, e.g., by taking
the standard linear covariant gauges in quantum gravity and applying the transverse projector
to it. We refer to [102, 106, 107, 116, 117, 123, 124, 129] for more details.

We remark that eq.(6.29) does not rely on the specific form of the gravitational action.
Morever, if matter interactions were included (also of arbitrary form), the equivalence would
still hold. In this case, the matter action SDiff

M (φ, ψ,A) is mapped to SSDiff
M (φ, ψ,A) with the

replacement
√
g → ω and fluctuations satisfying the constraint defined by the delta functional

in (6.28). Thus, we expect that gravity-matter systems in a full diffeomorphism-invariant
setting are equivalent, quantum-mechanically, to gravity-matter systems in the unimodular
framework.

6.3 Non-minimal comparisons in Scalar-tensor theories

As an explicit check, we shall consider gravity non-minimally coupled to a scalar field and
show that the one loop UV divergences are the same for GR and UG. This disagrees with
[115], who claimed that a particular dimensionless combination of couplings, called ∆, has
different beta functions in the two settings. In our calculation, the beta functions turn out
to be the same. What is perhaps more important, we find that the beta functions of ∆
are gauge-dependent, which may at least in part explain the discrepancy. Furthermore, the
implementation of the unimodularity condition adopted in [115] is different from the one we
use in this thesis. We therefore think that the question whether different formulations of
quantum UG can lead to different physical predictions than GR remains still open. Here we
perform an explicit calculation of one-loop divergences in gravity-matter systems, illustrating
the quantum equivalence between Diff – and SDiff – invariant theories. In particular, we focus
on scalar-tensor theories including non-minimal couplings between gravity and the scalar field.

4Another efficient method is the “densitized” parameterisation, see, e.g., [119, 128]. If one opts for less
efficient implementations, the unimodularity condition becomes difficult to implement in practical calcula-
tions. Nevertheless, for the partial gauge-fixing associated with the gauge freedom (6.20), there seem to be no
generation of quartic ghost terms [127] due to the fact that one just introduces a ghost-antighost pair.
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6.3.1 Action

The beta functions of GR coupled to a scalar have been derived previously in, e.g., [130] for
the general class of actions

S[ϕ, g] =

∫
ddx

√
g

(
V (ϕ)− F (ϕ)R +

1

2
∇µϕ∇µϕ

)
. (6.31)

This includes an arbitrary potential V and arbitrary non-minimal couplings parametrised by
the function F . If one expands V and F in Taylor series in ϕ, with the additional assumption
of invariance under ϕ→ −ϕ,

V (ϕ) = V +
1

2
m2ϕ2 + λϕ4 . . . , V =

Λ

8πGN

(6.32)

F (ϕ) = ZN +
1

2
ξϕ2 + . . . , ZN =

1

16πGN

(6.33)

We are especially interested in the dimensionless couplings ξ and λ, whose leading one-loop beta
functions are universal, and in dimensionless ratios of the dimensionful couplings, such as GNΛ,
GNm

2, Λ/m2, since their beta functions are also known to be less gauge- and parameterisation-
dependent. In [130], the beta functions were computed by the use of the functional renormal-
isation group (FRG) equation which is based on a cutoff-like regularisation. Thus, power-law
divergences are also taken into account. In [115], on the other hand, the authors employed di-
mensional regularisation which is blind to the power-law divergences. For a direct comparison,
we would have to extract from the FRG the “universal” contributions, i.e., those related to
logarithmic running. This is discussed in Appendix C.5. In the next section we directly extract
the beta functions from the logarithmic divergences, calculated with heat kernel methods.

6.3.2 Dynamical gravitons: UG or GR in exponential parametrisa-
tion

We start from GR in the exponential parametrisation (6.30) and follow the procedure of [131].
We decompose the metric fluctuation in its irreducible spin 2, 1 and 0 components:

hµν = hTT
µν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄µσ − 1

4
ḡµν∇̄2σ +

1

4
ḡµνh , (6.34)

with ∇̄µhTT
µν = 0, ∇̄µξµ = 0 and ḡµνhµν = h. A redefinition of the fields σ and ξµ is performed

in order to cancel the Jacobian generated by the York decomposition (6.34),

ξ′µ =

√
−∇̄2 − R̄

4
ξµ , and σ′ =

√
−∇̄2

√
−∇̄2 − R̄

3
σ . (6.35)

We take the background metric ḡµν to be a four-dimensional Euclidean maximally symmetric
space. Then we choose the “unimodular physical gauge”, which consists of setting to zero the
spin one field ξ′µ and the spin-0 field h. With these choices, the gauge fixed Hessian is

S̃(2)
grav =

∫
d4x

√
ḡ

[
1

4
F (ϕ̄)hTT

µν

(
−∇̄2 +

R̄

6

)
hTT µν − 3

32
F (ϕ̄)σ′(−∇̄2)σ′

− 3

4
F ′(ϕ̄)δϕ

√
(−∇̄2)

(
−∇̄2 − R̄

3

)
σ′ +

1

2
δϕ
(
−∇̄2 + V ′′(ϕ̄)− F ′′(ϕ̄)R̄

)
δϕ

]
.

(6.36)
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As a further simplification, we note that defining 5

σ′′ = σ′ + 4
F ′(ϕ̄)

F (ϕ̄)

√
−∇̄2 − R̄

3

−∇̄2
δϕ , (6.37)

the gauge fixed Hessian becomes diagonal,

S(2)
grav =

∫
d4x

√
ḡ

[
1

4
F (ϕ̄)hTT

µν

(
−∇̄2 +

R̄

6

)
hTT µν − 3

32
F (ϕ̄)σ′′(−∇̄2)σ′′

+
1

2
δϕ

(
− ∇̄2 + V ′′(ϕ̄)− F ′′(ϕ̄)R̄ + 3

F ′(ϕ̄)2

F (ϕ̄)

(
−∇̄2 − R̄

d− 1

))
δϕ

]
.

(6.38)

The unimodular physical gauge produces Faddeev-Popov ghost determinants

∆FP=

√
det0(−∇̄2)

√
det1

(
−∇̄2 − R̄

4

)
, (6.39)

with the subscripts 0 and 1 denoting the spin of the fields that the corresponding operators
act on. Thus the one-loop partition function reads

Z = e−Sgrav[ϕ̄,ḡ]

√
det∆1√

det∆2

√
det∆S

, (6.40)

where ∆1 = −∇̄2 − R̄
4
, ∆0 = −∇̄2 and

∆S = −∇̄2 + ES , ES =
FV ′′ − (F ′2 + FF ′′)R̄

F + 3F ′2 . (6.41)

This agrees with the standard result for GR with a cosmological constant, except for the
appearance of the additional scalar determinant.

Consider now the same calculation in UG. The trace fluctuation h is absent from the degrees
of freedom from the start and it is therefore not necessary to fix the corresponding gauge. The
SDiff gauge can be fixed again by setting ξ′ = 0. Altogether this produces the Faddeev-Popov
determinant

∆UG
FP =

√
det1

(
−∇̄2 − R̄

4

)
. (6.42)

On the other hand, as discussed in [106, 107], the factorization of the volume of SDiff produces

and additional determinant
√

det(−∇̄2) which cancels the determinant coming from the inte-
gration over σ′, so that the final result is again exactly (6.40). Notably, such an equivalence
holds irrespective of the choice of F (ϕ).

In a standard perturbative approach, the beta functions can be read off from the logarithmic
divergences. The one-loop effective action is

Γ = S +
1

2
Tr log∆2 −

1

2
Tr log∆1 +

1

2
Tr log∆S , (6.43)

5This change of variables has a trivial Jacobian.
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and its divergent parts can be obtained from

Γdiv = −1

2

1

16π2
log

(
Λ2

µ2

)∫
d4x

√
ḡ [b4(∆2)− b4(∆1) + b4(∆S)] , (6.44)

with Λ standing for an ultraviolet cutoff and µ being a reference scale. The first two contri-
butions in (6.44) only give terms of order R2 and are not relevant for the beta functions of
interest. For ∆S we have

−1

2

1

16π2
b4(∆S) = −1

2

1

16π2

(
1

2
E2

S − 1

6
R̄ ES +O(R̄2)

)
= − 1

64π2

V ′′2(
1 + 3F ′2

F

) + 1

192π2

1 + 6F ′′ + 9F ′2

F(
1 + 3F ′2

F

) V ′′R̄ +O(R̄2) .

(6.45)

Inserting (6.32) and (6.33) and expanding in powers of ϕ we obtain the beta functions

βV=
m4

32π2

βm2=
3λ

2π2
m2 − 6Gm4ξ2

π

βλ=
9λ2

2π2
− 72Gm2λξ2

π

βG=−
G2m2(1 + 6ξ)

6π

βξ=
λ(1 + 6ξ)

4π2
+
Gm2ξ2(1− 12ξ)

π

(6.46)

We note that the leading terms are the same as for the pure scalar theory, discussed in Appendix
C.5. Here we only kept correction terms linear in G. The explicit one-loop computation
reported above leads to the same results in GR and UG, since (6.44) is the same in both cases.
Moreover, we have kept only the contributions generated by the universal Q-functionals. The
remaining terms are associated with power divergences and are not universal. The conclusion
of this explicit calculation agrees with our statement in Sec. 6.2. In particular, the non-minimal
scalar-gravity coupling does not change this conclusion.

As is well-known, quantum-gravity contributions to matter beta functions can be gauge de-
pendent. The “unimodular physical gauge” can be obtained from the standard two-parameter
linear covariant gauge condition for Diff-invariant theories, namely

∇̄νhνµ −
1 + β

4
∇̄µh = αbµ , (6.47)

with bµ being a fixed function, by taking the limits α → 0 and β → −∞. For generic α, β,
the beta functions βV and βG are left unchanged, while the others become,

βm2 =
3m2λ

2π2
+

2Gm4(4α− 3(2 + (3− β)ξ)2)

(3− β)2π
,

βλ =
9λ2

2π2
− 8Gm2λ(12− 4α + 24(3− β)ξ + 9(3− β)2ξ2)

(3− β)2π
,

βξ =
λ(1 + 6ξ)

4π2
− Gm2

12π
F (α, β, ξ) .

(6.48)
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The contribution F (α, β, ξ) is lengthy and collected in the Appendix C.6. In the limit β → −∞,
the beta functions turn out to be α-independent. It is also worth mentioning that the first two
of these beta functions are also independent of another parameter that can be introduced in
the definition of the measure, namely the use of a densitised metric as a quantum field, see,
e.g., [128].

As a side comment, at one-loop order, the universal gravitational correction to the quartic
coupling λ at vanishing non-minimal coupling is negative, irrespective of the values of the
gauge parameter β, provided that6 α < 3,

βλ

∣∣∣
grav

= −λ32Gm
2

π

3− α

(3− β)2
. (6.49)

At α = 3 or β → ±∞, the contribution vanishes at one loop. In particular, in the unimodular
physical gauge, the gravitational contribution vanishes at vanishing ξ. However, in such a
gauge, if the non-minimal coupling is included, the contribution is always negative at leading
order in G. Hence, such a contribution can balance the non-gravitational contribution to the
one-loop running of λ - which is positive and leads to the well-known triviality problem. In
order to circumvent the issues due to the gauge dependence, and of the non-universal power-
law terms, one will have to to compute a gauge invariant physical observable possibly along
the lines of [132].

6.3.3 A universal beta function?

In [115], it was argued that the dimensionless combination of couplings

∆ =
(Gm2)2

λ
, (6.50)

has a universal beta function and carries a physical meaning. By quantizing UG in the presence
of non-minimally coupled scalar fields, the authors claim that the results differ in GR and UG.
More precisely, taking into account the differences in notation, their result for UG is

βUG
∆ = ∆

−9λ+ 2πGm2(−4− 24ξ + 180ξ2)

6π2
(6.51)

while their result for GR is

βGR
∆ = ∆

−9λ+ 2πGm2(−4 + 156ξ + 180ξ2)

6π2
. (6.52)

Hence, ∆ would be a physical quantity able to distinguish GR and UG if the scalar field is
non-minimally coupled to the gravitational field.

Using our previous calculations, we cannot distinguish UG and GR non-minimally coupled
to scalars at one-loop simply because the path integrals are the same. In particular, in the
unimodular physical gauge, we obtain

β∆ = ∆
−9λ+ 2Gm2π(−1− 6ξ + 180ξ2)

6π2
, (6.53)

6In an Euclidean setting, α has to be non-negative.

69



which differs from either of the results above. These discrepancies may be ascribed to the fact
that we are using a different parameterizarion of the metric and a different implementation of
the unimodularity condition.

What is perhaps more important is that, even if we stick to our computation scheme, the
quantity ∆ is gauge dependent. In fact, in the linear covariant gauge (6.47), the result is

β∆ =
∆(−9(3− β)2λ− 2Gm2π(48α + β2A1(ξ) + 6βA2(ξ)− 27A3(ξ)))

6π2(3− β)2
, (6.54)

with

A1(ξ) = 1 + 6ξ − 180ξ2 , A2(ξ) = −1 + 66ξ + 180ξ2 , A3(ξ) = 5 + 46ξ + 60ξ2 . (6.55)

Thus, even in the absence of ξ, the beta function of ∆ is gauge dependent and comparing
results for GR and UG would be problematic. We also remark that, in the limit β → ±∞,
eq.(6.54) reduces to (6.53) irrespective of α.

6.3.4 Dynamical gravitons: GR in linear parametrisation

So far, the explicit one-loop computations were performed using the exponential parameter-
isation of the metric. In this parameterisation, the unimodularity condition simply amounts
to removing the trace mode of the gravitational field fluctuation hµν . While field redefinitons,
properly done, should not affect the result of physical quantities, there are several subtleties
when changing from one parameterisation to another in quantum gravity. In this section, we
present the one-loop results for the scalar-gravity system with a non-minimal coupling in the
so-called linear parameterisation, i.e.,

gµν = ḡµν + hµν , (6.56)

in the linear covariant gauges (6.47). This system was studied, e.g., in [130], but the beta
functions were computed with the functional renormalisation group and contained also non-
universal terms. Here, we select just the universal contributions, that are related to logarithmic
divergences. In a general gauge (α, β), the result is completely equivalent to (6.48) apart from
the beta function of the non-minimal coupling βξ which reads

βξ =
λ(1 + 6ξ)

4π2
− Gm2

12π
G(α, β, ξ) , (6.57)

where the explicit expression for G(α, β, ξ) is reported in Appendix C.6. In particular, if we
take α → 0 and β → ±∞, we obtain

G(0,±∞, ξ) = 6(−13 + 10ξ2 + 24ξ3) , (6.58)

which differs from F (0,±∞, ξ). The beta function of ∆ in a general linear covariant gauge and
in linear parameterisation is the same as (6.54). Hence, although gauge-dependent, ∆ seems
to display some kind of universality as far as different choices of parameterisation is concerned.
This fact is not very surprising given that, the only beta function in the linear parameterizarion
that differs from the exponential parameterisation at one-loop is βξ and it does not enter the
definition of β∆.
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In [133], Kamenshchick and Steinwachs (see, also, [134]) investigated the one-loop diver-
gences of a more general theory than the one considered in this work. In particular, they have
considered a scalar-gravity action SKS[g,Φ] expressed as7

SKS[g,Φ] =

∫
d4x

√
g

(
V (Φ̃)− F (Φ̃)R +

1

2
gµνG(Φ̃)∇µΦ

a∇νΦa

)
, (6.59)

where a = 1, . . . , N and N is a positive integer. The functions V and F depend on Φ̃ =√
δabΦaΦb. The gauge condition used in [133] is

Fµ =

√
F (Φ̃)

(
∇̄αhαµ −

1

2
∇̄µh− F ′(Φ̃)

F (Φ̃)
na∇̄µφa

)
, (6.60)

with φa the scalar field fluctuations and na = Φa/Φ̃. Unfortunately, our gauge condition (6.47)
is not deformable to this, and therefore we cannot directly compare our results with theirs.
However, we can extract from their work the beta function of ∆ in the gauge (6.60). The
authors employed the linear parameterisation of the metric and the reduction to the a single-
scalar non-minimally coupled to gravity is achieved by taking N → 1, Φa = na = 1 and Φ̃ → ϕ.
Moreover, in order to have the same scalar-tensor action we discussed in this work, one has to
take G(Φ̃) → 1 and their quantity s has to be identified as

s = − F

F + 3F ′2 =
−1− 8πξGϕ2

1 + 8πξGϕ2(1 + 6ξ)
. (6.61)

The beta functionals of V and F are βV = 2α1, βF = 2α2, where α1 and α2 are given in their
equations (48) and (49). From there we read off

βm2=
3λ

2π2
m2 − 2Gm4(2 + 4ξ + 3ξ2)

π
,

βλ=
9λ2

2π2
− 8Gm2λ(2 + 8ξ + 9ξ2)

π
,

βG=−
G2m2(1 + 6ξ)

6π
,

βξ=
λ(1 + 6ξ)

4π2
− Gm2(13− 16ξ − 39ξ2 − 36ξ3)

3π
,

(6.62)

which gives

β∆ = ∆
−9λ+ 10πGm2(5 + 30ξ + 36ξ2)

6π2
. (6.63)

This confirms once more that the first and last term in the fraction are universal, but not the
other ones.

6.4 Conclusions

Disregarding the single global spacetime volume degree of freedom, we have shown at a formal
path integral level that the classical equivalence between general (Diff –invariant) and unimod-

7The functions U , G, V of [133] correspond to −F , −1, −V in our notation.
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ular (SDiff –invariant) versions of gravity theories, can be maintained at the quantum level8.
This is true independently of the choice of the action and also in the presence of matter.

We have then given an explicit one-loop example of this, by computing the universal parts
of the beta functions of scalars coupled to gravity. In spite of significant differences in the two
cases, the beta functions turn out to be the same. We have then compared these results to
those of [115], who also made the same comparison. Our beta function for the dimensionless
combination ∆ differs from theirs both for GR and UG. The differences can probably to be
ascribed at least in part to the different way they implement unimodularity. A more detailed
analysis has shown that the beta function of ∆ is actually gauge-dependent, so that it is not a
sufficiently good test. There are two terms in the beta function of ∆ that are the same in all
gauges and are the same across all calculations we could find in the literature, whereas other
terms have strong gauge dependence. For the future, it will be important to identify a genuinely
universal combination of couplings, or another observable that can act as a benchmark.

We conclude with some comments on the cosmological constant. In UG, a “cosmological
term” Λ

8πG

∫
d4xω in the Lagrangian is just an additive, field-independent term that does not

affect the equations of motion and can be absorbed in the overall normalisation of the functional
integral. Thus, it has no physical effect. GR is only (classically) equivalent to UG if we impose
that the total volume of spacetime is fixed. In this restricted theory the cosmological term
in (6.2) is a Lagrange multiplier, whose value is ultimately related to the volume through the
equations of motion.

Computations of the beta functions performed in the so-called unimodular gauge [131] show
that the cosmological constant decouples from the system of beta functions. This resembles
simpler calculations involving the functional renormalisation group, where a field-independent
contribution is generated by the flow and can be cancelled by a proper normalisation of the
vacuum energy, see [135]. This suggests that its quartic running is unphysical, This is in line
with other hints coming from different directions [136–139]. This and related issues deserve to
be investigated further.

8The equivalence of GR and UG in the presence of an independent connection, deserves a separate investi-
gation, which is ongoing.
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Chapter 7

Renormalisation of Poincaré gauge
theories

After gaining some understanding of quantum structure of metric theories of gravity, we move
on to consider some models that are subclasses of MAG. We will apply the off-diagonal heat
kernel technique, explained in the section 1.5 to compute the one-loop RG flow.

In the case of antisymmetric MAG,one can view the frame field (or vierbein or tetrad) as
a gauge field for translations, which can be combined with the Lorentz connection to form a
Poincaré connection. The natural Lagrangian for such a theory is quadratic in the curvature
of the Poincaré connection, i.e. quadratic in the curvature of the Lorentz connection and
quadratic in torsion. Theories of this type are called Poincaré gauge theories (PGT).

We will show that PGTs are not renormalisable in strict sense: one loop effects generate
terms that are not quadratic in curvature or torsion. This is a priori highly likely, since there
exist dimension-four terms that cannot be written as squares of curvature. An enumeration
and partial listing of such terms has been given in [86]. They are of the form (∇T )2, T 2∇T and
T 4, where ∇ is the Levi-Civita (LC) covariant derivative. The only thing to check is that such
terms are actually needed for the renormalisation of the theory, i.e. that there are divergences
proportional to these new terms. It will be enough to look at terms of the form (∇T )2.

The calculation of quantum effects in these theories is very cumbersome, for two reasons:
the fields have many components, and the Lagrangian contains many terms. One can reduce
the number of fields by working in coordinate rather than orthonormal frames, but this is a
relatively small advantage: the 16 components of the tetrad are reduced to the 10 components
of the metric, but the number of independent components of the connection remains 24. 1 We
shall see that for the calculation we want to perform here, it is actually convenient to work
with orthonormal frames. Regarding the Lagrangian, if we wanted to prove renormalizability,
we would have to work with the most general one, but we want to prove the opposite, and
for this purpose, it will be enough to consider a simple Lagrangian containing just two terms.
We will find by an explicit one-loop calculation, that one needs to introduce counterterms
proportional to other contractions of two curvatures, but also counterterms proportional to
the square of covariant derivatives of torsion, which do not appear in the Lagrangian of PGT.
This means that PGT is not renormalisable, or, in the more modern language of effective field
theory (EFT), that at a given order of the low energy expansion one has to consider a larger

1The choice of frames is a choice of gauge. The theory in coordinate frames can be recovered by imposing
that the tetrad is symmetric.
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set of invariants in the Lagrangian.
The standard action for PGT is quadratic in curvature and torsion:

S(g, A) = −1

2

∫
ddx

√
|g|
[
− a0F + T µρν

(
a1Tµρν + a2Tµνρ

)
+ a3T

µTµ

+ F µνρσ
(
c1Fµνρσ + c3Fρσµν + c4Fµρνσ

)
+ F µν

(
c7Fµν + c8Fνµ

)
+ c16F

2
]
,

(7.1)

where Tµ = Tλ
λ
µ. The non-consecutive numbering of coefficients is for compatibility with

the action of more general MAGs in section 3.5.2. In writing this action, we have made two
choices. We have chosen to work with coordinate bases, so as to have the lowest number of
field components compatible with locality. One can write the action in orthonormal bases,
simply changing the middle index of torsion and the last two indices of curvature from greek to
latin. This is a mere gauge choice and is completely inconsequential to the physical content of
the theory. We have also chosen to think of the action as a functional of the metric and of the
independent gauge field A. This is the choice of variables that makes MAG more similar to a
YM theory, and in [86] we called it the Cartan view of the theory. One can choose to present
the theory in what we called the Einstein view, where the action is regarded as a functional
of the metric and of the tortion (or equivalently of the contorsion). This change of dynamical
variables is performed by using (1.32). In the Einstein view, the action consists of the action
of higher derivative gravity (with the Hilbert term and three terms quadratic in R) plus terms
of the form R∇T and (∇T )2. 2

In the following we shall consider the case where the only nonzero couplings are c1 and a1.
The Lagrangian in orthonormal frames can then be written

L = −1
2

√
|g|gµρgνσηab

(
c1Fµν

a
cFρσ

b
dη

cd + a1Tµ
a
νTρ

b
σ

)
(7.2)

This writing clearly exposes the variables that have to be varied. Here the metric is to be
regarded as a composite of the tetrads, as in (1.2) and F depends on A but not on the tetrad.

It is a general fact that calculations tend to be easier when one works in the Einstein
formulation. In the following we will use mostly the Einstein formalism, in the sense that we
will write covariant derivatives in terms of the Levi-Civita connection. For tensorial quantities
such as curvatures F and R, they can coexist in formulas. In the end, to read off the beta
functions in the Cartan basis, we obviously have to convert everything back to Cartan form.

7.1 Perturbative Expansion

The basic variables are the tetrad and connection. Their variations will be called

δθaµ = Xa
µ , δAµ

a
b = Zµ

a
b . (7.3)

2Note that whereas in Cartan view torsion is a derived quantity, being constructed from the connection (in
coordinate frames) or from the connection and tetrad (in orthonormal frames), in the Einstein view it has to
be regarded as an independent field.
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Then we have
δ
√
g =

√
gXρ

ρ

δ2
√
g =

√
g (Xρ

ρX
σ
σ −XρσXσρ)

δgµν = −Xµν −Xνµ

δ2gµν = 2(XµρXν
ρ +XµρXρ

ν +XνρXρ
µ)

δFµν
a
c = DµZν

a
b −DνZµ

a
b + Tµ

ρ
νZρ

a
b

δ2Fµν
a
c = 2[Zµ, Zν ]

a
b

δTµ
a
ν = DµX

a
ν −DνX

a + Zµ
a
ν − Zν

a
µ + Tµ

ρ
νX

a
ρ

δ2Tµ
a
ν = 2(Zµ

a
bX

b
ν − Zν

a
bX

b
µ) .

(7.4)

Varying the action and using these relations one arrives at the Hessian, which is a quadratic
form in X and Z. It is convenient to rewrite all D derivatives as ∇ derivatives plus terms
linear in torsion. The terms with two derivatives are

a1Xµν(−∇̄2gνσ + ∇̄σ∇̄ν)Xµ
σ + c1Zµ

ρσ(−∇̄2gµν + ∇̄ν∇̄µ)Zνρσ , (7.5)

where the bar over the covariant derivatives indicates that they are computed with the back-
ground metric. The occurrence of the nonminimal terms would greatly complicate the calcu-
lation, but can be avoided by choosing a suitable gauge. We observe that this is only possible
using the vierbein formalism. Working in coordinate bases one only has the diffeomorphism
invariance (4 parameters) and one can fix this gauge in such a way as to remove the nonmini-
mal terms in the X-X sector. In order to remove the nonminimal terms in the Z-Z sector one
needs in addition a Lorentz gauge fixing. We shall see this in detail in Section 7.3.

7.2 Gauge algebra

Due to the structure of the gauge group, the gauge fixing conditions for gravity in tetrad
formulation (whether the connection is independent or not) is more complicated than imposing
separate gauge conditions for diffeomorphisms and local Lorentz transformations. This kind
of complication already occurs in the case of Yang-Mills fields coupled to gravity [140, 141]. In
the case of Einstein-Cartan theory it has been discussed in [142–146]. We will broadly follow
these references, but with some significant differences.

The fields of antisymmetric MAG are defined on OM , the bundle of orthonormal frames
of the base manifold M , and its associated bundles and the action is invariant under the
automorphisms of this bundle. One can parametrise locally this group by diffeomorphisms of
M and local Lorentz transformations, acting in the standard way on Latin and Greek indices,
respectively:

δLωθ
a
µ = −ωa

bθ
b
µ ,

δLωAµ
a
b = Dµω

b
c ,

δDv θ
a
µ = Lvθ

a
µ = vρ∂ρθ

a
µ + θaρ∂µv

ρ ,

δDv Aµ
a
b = LvAµ

a
b ,

(7.6)

where ωab = −ωba is an infinitesimal Lorentz gauge parameter and vµ is an infinitesimal
diffeomorphism (a vectorfield onM). Note that the latin indices are inert under this definition
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of diffeomorphism. The algebra of these transformations is[
δLω1
, δLω2

]
= δL[ω1,ω2][

δDv1 , δ
D
v2

]
= −δD[v1,v2][

δDv , δ
L
ω

]
= δLLvω

(7.7)

This shows that the local Lorentz transformations are a normal subgroup of the full gauge
group, and the diffeomorphisms are the quotient of the full group by this subgroup.

Now we see that whereas the general fluctuation Xa
µ transforms properly under local

Lorentz transformations, the gauge fluctuation δvθ
a
µ does not. This would become a serious

obstacle in the following, because δvθ
a
µ is used in the construction of the ghost operator,

and this definition would lead to a non-covariant ghost operator. 3 The solution consists in
defining a modified action of diffeomorphisms on the fields, which consists of the original action
defined above, plus an infinitesimal Lorentz transformation with a parameter ϵab = −vµAµ

a
b ≡

−(v · A)ab. 4

δ̃Dv = δDv − δLv·A . (7.8)

The action of these modified diffeomorphisms on the fields is

δ̃Dv θ
a
µ = θaρ∇µv

ρ + vρKρ
a
µ ,

δ̃Dv Aµ
a
b = vρFρµ

a
b ,

(7.9)

where K is defined in (1.35). Their algebra is[
δ̃Dv1 , δ̃

D
v2

]
= −δ̃D[v1,v2] − δLF (v1,v2)[

δ̃Dv , δ
L
ω

]
= 0 .

(7.10)

where F (v1, v2)
a
b = vµ1 v

ν
2Fµν

a
b. This is just a different way of parametrizing the full gauge

group of the theory, where the normal subgroup has remained untouched.
In background field calculations we have to define how to split the transformation of a

field into transformations of its background and fluctuation parts. In the so called “quantum”
transformations δQ the backgrounds are invariant and the whole transformation of the field is
attributed to the fluctuation:

δQL
v θ̄aµ = 0 ,

δQL
v Āµ

a
b = 0 ,

δQL
v Xa

µ = −ωa
b θ

b
µ ,

δQL
v Zµ

a
b = Dµω

a
b ,

(7.11)

δ̃QD
v θ̄aµ = 0 ,

δ̃QD
v Āµ

a
b = 0 ,

δ̃QD
v Xa

µ = θaρ∇̄µv
ρ + vρKρ

a
µ ,

δ̃QD
v Zµ

a
b = vρFρµ

a
b ,

(7.12)

3One can try to covariantize Lvθ
a
µ by adding and subtracting vρΓρ

ν
µθ

a
µ. However, the resulting covariant

derivatives are only covariant under diffeomorphisms: the derivative acting on θaµ is not Lorentz-covariant,
with the result that Lvθ

a
µ is not a Lorentz vector.

4Here we follow [142, 144, 145]. Alternatively one could also use ϵab = −vµΓµ
a
b ≡ −(v · A)ab, where Γµ

a
b

are the components of the Levi-Civita connection in the orthonormal frame. This would lead to a simpler
transformation for θ (the second term would be absent) but a more complicated one for A.
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The “background” transformations δB are defined in such a way that the backgrounds trans-
form as the original field (in particular, Ā transforms as a connection). In detail, the back-
ground Lorentz transformations are

δBL
ω θ̄aµ = −ωa

b θ̄
b
µ ,

δBL
ω Āµ

a
b = D̄µω

a
b ,

δBL
ω Xa

µ = −ωa
cX

c
ρ ,

δBL
ω Zµ

a
b = −ωa

c Zµ
c
b + Zµ

a
c ω

c
b ,

(7.13)

and the background diffeomorphisms are given by the Lie derivative on all fields. The back-
ground diffeomorphisms can be covariantized as above, in particular

δ̄BD
v θ̄aµ = θ̄aρ∇̄µv

ρ + vρK̄ρ
a
µ ,

δ̄BD
v Āµ

a
b = vρF̄ρµ

a
b ,

(7.14)

7.3 Gauge fixed Hessian

We gauge fix by choosing the Lorentz-like gauge conditions

χµ
D = ∇̄νXµ

ν

χL
a
b = ∇̄νZν

a
b .

(7.15)

In the latter expression it is understood that the covariant derivative is defined in terms of the
background Levi-Civita connection for both types of indices. Then, the gauge fixing action is

SGF =

∫
d4x
√

|g|
[
a1
αD

ḡρσχ
ρ
Dχ

σ
D +

c1
αL

ηacη
bdχL

a
bχL

c
d

]
. (7.16)

This breaks invariance under the “quantum” transformations while preserving invariance under
the “background” transformations. Since the total background covariant derivative of the
background tetrad is zero, in the second term we can harmlessly transform all the latin indices
to greek ones. Then we only have background diffeomorphism invariance, and we do not need
to worry about the covariantization that was discussed in the previous section. That discussion
will only play a role in the definition of the ghost action.

Setting the parameters αD = αL = 1 (Feynman gauge), integrating by parts and commuting
derivatives one gets

SGF =

∫
d4x
√

|g|
[
− a1Xµν∇̄σ∇̄νXµ

σ − c1Zµ
ρσ∇̄ν∇̄µZνρσ

+ a1XµνR̄
νσXµ

σ − a1XµνR̄
µρνσXρσ + c1ZµαβR̄

µσZσ
αβ − 2c1ZµαβR̄

µρασZρσ
β]
]
.

(7.17)

We see that the first line exactly cancels the unwanted nonminimal terms in the Hessian.
At this point, rescaling

Xa
µ → 1

√
a1
Xa

µ , Zµ
a
b →

1
√
c1
Zµ

a
b (7.18)

and performing some integrations by parts, one can write the gauge-fixed Hessian in the form
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H =
1

2

∫
d4x

√
g
(
X Z

)(−∇2 + V µ
XX∇µ +WXX V µ

XZ∇µ +WXZ

V µ
ZX∇µ +WZX −∇2 + V µ

ZZ∇µ +WZZ

)(
X
Z

)
(7.19)

where the V ’s andW ’s are matrices in the space of the fields, with the appropriate free indices.
More compactly

H =
1

2
(Ψ,OΨ). (7.20)

where Ψ =

(
X
Z

)
and

O = −∇2I+ Vσ∇σ +W , (7.21)

where

V =

(
V µ
XX V µ

XZ

V µ
ZX V µ

ZZ

)
V =

(
WXX V µ

XZ

V µ
ZX V µ

ZZ

)
(7.22)

The operator O must be self-adjoint, which implies the conditions

V
[µν]λ[αβ]
XX = −V [αβ]λ[µν]

XX

V
[µν]λ[αβγ]
XZ = −V [αβγ]λ[µν]

ZX

V
[µνρ]λ[αβγ]
ZZ = −V [αβγ]λ[µνρ]

XX

W
[µν][αβ]
XX = W

[αβ][µν]
XX −∇λV

[µν]λ[αβ]
XX

W
[µν][αβγ]
XZ = W

[αβγ][µν]
ZX −∇λV

[αβγ]λ[µν]
ZX

W
[µνρ][αβγ]
ZZ = W

[αβγ][µνρ]
ZZ −∇λV

[αβγ]λ[µνρ]
ZZ

(7.23)

With the rescaling (7.18) the quantum fields X and Z have canonical dimension one, V has
dimension 1 and W has dimension 2. We do not give the components of these tensors but just
indicate the general structures that they contain:

VXX ∼ T

VXZ ∼ VZX ∼
(√

a1
c1

,

√
c1
a1
F

)
VZZ ∼ T

WXX ∼
(
T 2 , ∇T ,

c1
a1
F 2

)
WXZ ∼ WZX ∼

(√
a1
c1
T ,

√
c1
a1
TF

)
WZZ ∼

(
a1
c1

, F , T 2 , ∇T
)
.

(7.24)

Here terms without tensors have to be understood as combinations of the metric.

7.4 Ghost action

The gauge fixing has to be supplemented by the ghost action. We define the ghost operators

δQL
Σ χL = ∆LLΣ , δ̃QD

C χL = ∆LDC , δQL
Σ χD = ∆DLΣ , δ̃QD

C χD = ∆DDC . (7.25)
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Here we have the infinitesimal “quantum” transformations applied to the gauge fixing condi-
tions, with the transformation parameters ωa

b and v
µ replaced by the ghost fields Σa

b and C
µ.

Then the ghost action is given by

Sgh =

∫
d4x

√
ḡ
[
Σ̄(δQL

Σ χL + δ̃QD
C χL) + C̄(δQL

Σ χD + δ̃QD
C χD)

]
=

∫
d4x

√
ḡ
(
Σ̄ C̄

)(∆LL ∆LD

∆DL ∆DD

)(
Σ
C

)
,

(7.26)

where Σ̄a
b and C̄µ are the antighost fields. All indices here have been suppressed for notational

clarity. When one evaluates explicitly the infinitesimal transformations in (7.25), one obtains
some operators of the form ∇̄∇, i.e. containing both the background and the full connection.
However, we are ultimately only interested in the effective action at zero fluctuation fields, so we
can identify the full and background fields. This means that the ghost operators are constructed
entirely with background fields. Since the total covariant derivative of the background vierbein
with the background LC connection is zero, we can write all formulas using only coordinate
(greek) indices, without producing new terms. The ghost operators are then:

(∆LLΣ)
α
β = ∇̄2Σα

β + ∇̄ν(K̄ν
α
γΣ

γ
β − Σα

γK̄ν
γ
β)

(∆LDC)
α
β = ∇̄ν(F̄ρν

α
βC

ρ)

(∆DLΣ)
α = ∇̄νΣα

ν

(∆DDC)
α = ∇̄2Cα + ∇̄ν(Kρ

α
νC

ρ)

(7.27)

7.5 One loop divergences and beta functions

The one-loop effective action is given by the classical action plus a quantum contribution

Γ = S +∆Γ(1) . (7.28)

The effective action could contain non-local terms, but these are related to infrared effects. We
are interested here in the UV behaviour of the theory and in particular in the logarithmically
divergent part, which is local. Thus we can write

Γ =
∑
i

gi

∫
d4x

√
gLi

where Li are dimension-four operators constructed with the fields and their covariant deriva-
tives, and gi are the corresponding (renormalized) dimensionless couplings. There is a similar
expansion for the classical action S, whose the coefficients gBi are the bare couplings. In the
presence of a momentum cutoff Λ, the logarithmically divergent part of Γ can be written

∆Γ
(1)
log = −B log

(
Λ

µ

)
, (7.29)

where µ is a reference scale that has to be introduced for dimensional reasons and can be
thought of as the renormalisation scale, and

B =
∑
i

∫
d4x

√
g βiLi , (7.30)
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where the coefficients βi are defined by this equation. Thus

gi(µ) = gBi(Λ)− βi log

(
Λ

µ

)
. (7.31)

Here we assume that the bare couplings depend on the UV cutoff in such a way that the
renormalized couplings are finite and as a consequence the renormalized couplings must depend
on µ. Then we find that

µ
∂gi
∂µ

= βi , (7.32)

so, as is well-known, we find that the coefficients of the logarithmic divergences are just the
beta functions. Note that we can also think of B as

B = −Λ
∂∆Γ

(1)
log

∂Λ
. (7.33)

For our theory,

∆Γ(1) =
1

2
Tr logO − Tr log∆gh . (7.34)

where both O and ∆gh are operators of the form −∇̄2 + V µ∇̄µ +W . For such an operator,
the logarithmically divergent part of the kinetic operator is

1

2
Tr log∆ = −1

2

1

(4π)2
log

(
Λ2

µ2

)∫
d4x

√
gb (∆) , (7.35)

where

b (∆) = 1
180

(
R̄µνρσR̄

µνρσ − R̄µνR̄
µν + 5

2
R̄2
)
trI

+ 1
2
trW 2 − 1

2
trW ∇̄µV

µ + 1
4
trWVµV

µ

− 1
6
R̄ trW + 1

12
R̄ tr∇̄µV

µ − 1
24
R̄ trVµV

µ

+ 1
12
trΩµνΩ

µν − 1
6
tr Ωµν∇̄µV ν + 1

24
tr Ωµν [V

µ, V ν ]

+ 1
8
tr∇̄µV

µ∇̄ρV
ρ − 1

8
tr∇̄µV

µVρV
ρ + 1

32
trVµV

µVρV
ρ

+ 1
24
tr(∇̄µVν − ∇̄νVµ)∇̄µV ν − 1

24
tr ∇̄µVν [V

µ, V ν ] + 1
192

tr [Vµ, Vν ][V
µ, V ν ] .

(7.36)

The application of this formula was performed by computer algebra software. The obtained
result for kinetic operator in X,Z sector (7.21) is

b (∆) =
67

12
LFF
1 − 71

72
LFF
3 − 43

24
LFF
4 +

2

3
LFF
7 +

179

72
LFF
8 − 55

36
LFF
16 − 25

2
LFT
1 +

5

2
LFT
8

− 29

6
LFT
9 − 8

3
LFT
13 +

25

48
LTT
1 − 21

8
LTT
2 +

3

2
LTT
3 +

29

6
LTT
5 +

3a1
4c1

MTT
1 − 7a1

4c1
MTT

2 +
2a1
c1
MTT

3 ,

(7.37)
and for and for the ghost operator (7.27) we get

b (∆gh.) =
31

120
LFF
1 − 997

720
LFF
3 +

473

240
LFF
4 − 39

20
LFF
7 +

1303

720
LFF
8 +

1

9
LFF
16 − 17

10
LFT
1 − 11

12
LFT
8

+
67

30
LFT
9 +

77

30
LFT
13 − 9

160
LTT
1 − 97

80
LTT
2 +

13

15
LTT
3 +

27

20
LTT
5 ,

(7.38)
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Adding up these contributions as indicated in (7.34) we finally obtain

∆Γ
(1)
log.div. = −1

2

1

16π2
log

(
Λ2

µ2

)∫
d4x

√
g

[
76

15
LFF
1 +

107

60
LFF
3 − 86

15
LFF
4 +

137

30
LFF
7

− 17

15
LFF
8 − 7

4
LFF
16 − 91

10
LFT
1 +

13

3
LFT
8 − 93

10
LFT
9 − 39

5
LFT
13 +

19

30
LTT
1

−1

5
LTT
2 − 7

30
LTT
3 +

32

15
LTT
5 +

3a1
4c1

MTT
1 − 7a1

4c1
MTT

2 +
2a1
c1
MTT

3

]
.

(7.39)

In these formulae, the dimension four contributions have been disregarded. As expected, every
term of the basis 3.28 is generated by quantum fluctuations.
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Chapter 8

Field redefinitions

As we have already mentioned in sections 3.3.4 and 3.5.4, there exists a possibility to perform
field redefinitions that may not just remove technically challenging nonminimal terms from
the original action, but also remove local quantum corrections from the effective action. In
this chapter, we will address this issue more thoroughly. First, we will study a combined
effort of linear field redefinitions and a particular gauge choice, designed to cancel nonminimal
terms. After, we will consider also nonlinear redefinitions and their connection with on-shell
renormalisation.

8.1 Gauge-fixing and linear field redefinitions

In this section, we address the question of whether it is possible to cancel all the nonminimal
terms that appear in MAG. Although the complete analysis is yet to be done, we show that
the answer to this question is most likely negative.

8.1.1 Antisymmetric MAG

We note that the first three terms of type TT give contributions to the kinetic operator pro-
portional to the Laplacian, whereas the others give non–minimal terms. Since these are unde-
sirable, we will look for ways to get rid of them. First let us consider whether the nonminimal
terms could be eliminated by a gauge choice.

For the GL(4) gauge fixing we have

LGL(4) =
(
ζ0ḡλµḡ

ρν + ζ1δ̄
ν
λδ̄

ρ
µ + ζ2δ̄

ρ
λδ̄

ν
µ

)
χλ

ρχ
µ
ν (8.1)

where

χµ
ν = ξ1∇σTσ

µ
ν + ξ2∇σTσν

µ + ξ3∇σT
µσ

ν + ξ4∇µT σ
σν + ξ5∇νTσ

σµ (8.2)

Thus altogether there are eight gauge fixing parameters. The gauge fixing Lagrangian can be
written in the form

LGL(4) =
9∑

i=1

∆bTT
i HTT

i (8.3)
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where
∆bTT

1 = 0 ,

∆bTT
2 = 0 ,

∆bTT
3 = ζ0(ξ

2
4 + ξ25) + 2ζ1ξ4ξ5 ,

∆bTT
4 = ζ0(ξ

2
1 + ξ22) + 2ζ1ξ1ξ2 ,

∆bTT
5 = 2ζ0ξ1ξ2 + ζ1(ξ

2
1 + ξ22) ,

∆bTT
6 = (ζ0 − ζ1)ξ

2
3 ,

∆bTT
7 = (ζ0 − ζ1)(ξ1 − ξ2)ξ3 ,

∆bTT
8 = 2ζ0((ξ1 + ξ3)ξ4 + (ξ2 − ξ3)ξ5) + 2ζ1((ξ2 − ξ3)ξ4 + (ξ1 + ξ3)ξ5) ,

∆bTT
9 = 2ζ0ξ4ξ5 + ζ1(ξ

2
4 + ξ25) + ζ2(ξ1 + ξ2 − ξ4 − ξ5)

2 .

(8.4)

One could now ask whether it is possible to choose the gauge parameters in such a way that

∆bTT
i = −bTT

i for i = 4 . . . 9 (8.5)

so as to eliminate non–minimal terms from the kinetic operator.
A priori this may seem possible, because we have to fix 6 parameters in the full (gauge–fixed)

Lagrangian, and we have at our disposal 8 gauge fixing parameters. However, the equations
above are cubic in the variables and it is difficult to solve them. In fact, even though there are 8
gauge–fixing parameters, it is not even granted that the submanifold defined by the preceding
equations has dimension 8. To find the dimension of this manifold we fix generic values of the
gauge-fixing parameters and vary them

ζi → ζi + δζi , ξi → ξi + δξi .

This leads to a change in the parameters ∆bTT
i . At linear order these changes are given by

δbTT
1 =0 ,

δbTT
2 =0 ,

δbTT
3 =δζ0(ξ

2
4 + ξ25) + 2δζ1ξ4ξ5 + 2δξ4(ζ0ξ4 + ζ1ξ5) + 2δξ5(ζ1ξ4 + ζ0ξ5) ,

δbTT
4 =δζ0(ξ

2
1 + ξ22) + 2δζ1ξ1ξ2 + 2δξ1(ζ0ξ1 + ζ1ξ2) + 2δξ2(ζ1ξ1 + ζ0ξ2) ,

δbTT
5 =δζ1(ξ

2
1 + ξ22) + 2δζ0ξ1ξ2 + 2δξ1(ζ1ξ1 + ζ0ξ2) + 2δξ2(ζ0ξ1 + ζ1ξ2) ,

δbTT
6 =(δζ0 − δζ1)ξ

2
3 + 2δξ3(ζ0 − ζ1)ξ3 ,

δbTT
7 =2δζ0(ξ1 − ξ2)ξ3 − 2δζ1(ξ1 − ξ2)ξ3

+ 2δξ1(ζ0 − ζ1)ξ3 − 2δξ2(ζ0 − ζ1)ξ3 + 2δξ3(ζ0 − ζ1)(ξ1 − ξ2) ,

δbTT
8 =2δζ0((ξ1 + ξ3)ξ4 + (ξ2 − ξ3)ξ5) + 2δζ1((ξ2 − ξ3)ξ4 + (ξ1 + ξ3)ξ5)

+ 2δξ1(ζ0ξ4 + ζ1ξ5) + 2δξ2(ζ1ξ4 + ζ0ξ5) + 2δξ3(ζ0 − ζ1)(ξ4 − ξ5)

+ 2δξ4(ζ1(ξ2 − ξ3) + ζ0(ξ1 + ξ3)) + 2δξ5(ζ0(ξ2 − ξ3) + ζ1(ξ1 + ξ3)) ,

δbTT
9 =2δζ0ξ4ξ5 + δζ1(ξ

2
4 + ξ25) + δζ2(ξ1 + ξ2 − ξ4 − ξ5)

2

+ 2(δξ1 + δξ2)ζ2(ξ1 + ξ2 − ξ4 − ξ5)

+ 2δξ4(ζ1ξ4 + ζ0ξ5 − ζ2(ξ1 + ξ2 − ξ4 − ξ5)) + 2δξ5(ζ0ξ4 + ζ1ξ5 − ζ2(ξ1 + ξ2 − ξ4 − ξ5)) .
(8.6)
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The matrix of coefficients of this linear system has rank six. The null directions are the two
obvious ones (δbTT

1 and δbTT
2 ) and

− ξ3
ξ1 − ξ2

δbTT
4 +

ξ3
ξ1 − ξ2

δbTT
5 − ξ1 − ξ2

ξ3
δbTT

6 + δbTT
7 .

We can construct a non-degenerate submatrix by choosing the rows and columns labelled by

bTT
3 , bTT

5 , bTT
6 , bTT

7 , bTT
8 , bTT

9

and
ζ2, ξ1, ξ2, ξ3, ξ4, ξ5 .

It has determinant

32(ζ0 − ζ1)
3(ζ0 + ζ1)

2(ξ1 + ξ2) ξ
2
3(ξ1 + ξ2 − ξ4 − ξ5)

2(−ξ2ξ4 + ξ1ξ5 + ξ3(ξ4 + ξ5)) .

For a generic point in this parameters space the determinant will be nonzero and then locally
the manifold is six-dimensional. Now it seems that we have enough freedom to get rid of
non–minimal terms. However we note that in order to find a non–degenerate minor it was
necessary to include the direction bTT

3 , that we are not interested in. Thus we have one less
parameter in the remaining subspace, and we conclude that it is not possible to satisfy (8.5)
just by using the gauge fixing parameters.

Next we consider the effect of linear field redefinitions:

δTabc = α1Tabc + α2Tacb + α3gabT
d
dc . (8.7)

At linear order this leads to the following changes in the Lagrangian coefficients:

δbTT
1 =2bTT

1 α1 + 2bTT
2 α2 ,

δbTT
2 =2bTT

2 α1 + 2bTT
1 α2 ,

δbTT
3 =2bTT

3 α1 + (2bTT
1 + 8bTT

3 − bTT
8 )α3 ,

δbTT
4 =2bTT

4 α1 + 2bTT
5 α2 ,

δbTT
5 =2bTT

5 α1 + (2bTT
4 + bTT

7 )α2,

δbTT
6 =2bTT

6 α1 ,

δbTT
7 =2bTT

7 α1 + (2bTT
6 − bTT

7 )α2 ,

δbTT
8 =2bTT

8 α1 + 2(bTT
4 + bTT

6 + bTT
7 + 2bTT

8 )α3 ,

δbTT
9 =2bTT

9 (α1 + α2 − α3) .

(8.8)

One can try to fix some of the bTT
i in this way. When viewed as a system of equations for the αi

there is an apparent solution α1 = −1/2, α2 = α3 = 0. For such value, the Lagrangian becomes
identically zero. In fact, this is not an infinitesimal transformation and has to be discarded.
However, since the system has rank 3, one can solve three of the preceding equations and fix
αi as functions of the corresponding δbTT

i . In this way one can remove three of the δbTT
i .

One can then consider the simultaneous effect of changing the gauge parameters and re-
defining the field. To this end one has to consider the system of 9 linear equations where each
of the δTT

i is equated to the sum of variations due to the change in the gauge parameters and
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to the field redefinition. It is just the system where the r.h.s. is the sum of the r.h.s. of the
two systems considered above. The unknowns are the 11 parameters δζi, δξi and αi.

Unlike the case when we only considered changes in the gauge condition, now it is possible to
find a nondegenerate subsystem that does not involve bTT

3 . In fact, since we are not interested in
what happens to bTT

i , i = 1, 2, 3, we consider the subsystem of the equations with i = 4, . . . , 9.
The matrix of coefficients of this system is a 6 × 11 matrix and it still has rank 6. Thus we
can remove any infinitesimal change of the coefficients bTT

i , i = 4, . . . , 9, by fixing six of the
parameters δζi, δξi and αi. It turns out that a suitable choice is δζ0, δζ1, δζ2, α1, α2, α3.

In summary, we have shown the following. For a given initial Lagrangian, suppose we are
able to choose the gauge condition in such a way that conditions (8.5) are satisfied. Then
the operator acting on the field ϕ is minimal. Then, assume that we vary infinitesimally the
parameters bTT

i in the initial Lagrangian. Generically, this will produce infinitesimal non–
minimal terms in the operator. By means of a field redefinition and an infinitesimal change in
the gauge parameters we can return to the condition of having a minimal operator. Note that
we have not taken into account the R∇T terms.

8.1.2 Symmetric MAG

We note that the first five terms of type QQ give contributions to the kinetic operator propor-
tional to the Laplacian, whereas the others give non–minimal terms.

For the GL(4) gauge fixing we have

LGL(4) =
(
ζ0ḡλµḡ

ρν + ζ1δ̄
ν
λδ̄

ρ
µ + ζ2δ̄

ρ
λδ̄

ν
µ

)
χλ

ρχ
µ
ν (8.9)

where
χµν = ξ1∇σQ

σ
µν + ξ2∇σQµ

σ
ν + ξ3∇σQν

σ
µ + ξ4∇σQµν

σ + ξ5∇σQνµ
σ

+ ξ6∇µQ
σ
σν + ξ7∇µQνσ

σ + ξ8∇νQ
σ
σµ + ξ9∇νQµσ

σ .
(8.10)

Thus altogether there are 12 gauge fixing parameters. The gauge fixing Lagrangian can be
written in the form

LGL(4) =
9∑

i=1

∆bQQ
i HQQ

i (8.11)

where the quantities ∆bQQ
i are presented in D.3. As in the antisymmetric case, this cubic

equation is too complicated to solve, so we limit ourselves to an analysis of its linearisation.
The coefficients of this linear system form a 16× 12 matrix of rank 8. Removing the rows

that correspond to bTT
i , i = 1, 2, 3, 4, 5 does not reduce the rank. Thus one can keep fixed 8 of

the 11 parameters that produce nonminimal terms by readjusting the gauge fixing condition.
We can then consider the effect of field redefinitions. These are given by

δQabc = α1Qabc + α2Qbca + α3Qcab + α4gabQ
d
dc + α5gabQcd

d

+ α6gacQ
d
db + α7gacQbd

d + α8gbcQ
d
da + α9gbcQad

d
(8.12)
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and produce a variation of the Lagrangian parameters

δbQQ
1 = 2bQQ

1 α1 + 2bQQ
2 α2 ,

δbQQ
2 = 2bQQ

2 α1 + 2bQQ
1 α2 + 2(bQQ

1 + bQQ
2 )α3 ,

δbQQ
3 = 2bQQ

3 α1 + (2bQQ
3 + bQQ

5 )α2 + bQQ
5 α3 + (2bQQ

1 + bQQ
10 + 2bQQ

2 + 8bQQ
3 + bQQ

5 )α4

+ (2bQQ
1 + 2bQQ

3 + bQQ
5 )α6 + (bQQ

12 + 2(bQQ
2 + bQQ

3 + 2bQQ
5 ))α8 ,

δbQQ
4 = 2bQQ

4 α1 + bQQ
5 α3 + (bQQ

11 + 2bQQ
4 + 4bQQ

5 )α5 + (2bQQ
2 + 2bQQ

4 + bQQ
5 )α7

+ (2bQQ
1 + bQQ

13 + 8bQQ
4 + bQQ

5 )α9 ,

δbQQ
5 = 2bQQ

5 α1 + (2bQQ
4 + bQQ

5 )α2 + 2(bQQ
3 + bQQ

4 )α3 + (bQQ
11 + 2bQQ

4 + 4bQQ
5 )α4

+ (2bQQ
1 + bQQ

10 + 2bQQ
2 + 8bQQ

3 + bQQ
5 )α5 + (2bQQ

2 + 2bQQ
4 + bQQ

5 )α6

+ (2bQQ
1 + 2bQQ

3 + bQQ
5 )α7 + (2bQQ

1 + bQQ
13 + 8bQQ

4 + bQQ
5 )α8 + (bQQ

12 + 2(bQQ
2 + bQQ

3 + 2bQQ
5 ))α9 ,

δbQQ
6 = 2bQQ

6 α1 + bQQ
9 α2 ,

δbQQ
7 = 2bQQ

7 α1 + bQQ
9 α2 + 2bQQ

8 α3 ,

δbQQ
8 = 2bQQ

8 α1 + (2bQQ
7 + bQQ

9 )α3 ,

δbQQ
9 = 2bQQ

9 α1 + 2(bQQ
6 + bQQ

7 + bQQ
8 )α2 + (2bQQ

6 + bQQ
9 )α3 ,

δbQQ
10 = 2bQQ

10 α1 + (2bQQ
10 + bQQ

11 + bQQ
12 )α2 + (bQQ

11 + bQQ
12 )α3

+ (4bQQ
10 + bQQ

11 + 2(bQQ
6 + bQQ

7 + bQQ
9 ))α4 + (bQQ

10 + bQQ
11 + 2bQQ

6 )α6

+ (bQQ
10 + 4bQQ

11 + 2bQQ
8 + bQQ

9 )α8 ,
(8.13)

δbQQ
11 = 2bQQ

11 α1 + (bQQ
11 + bQQ

13 )α2 + (bQQ
10 + bQQ

13 )α3

+ (4bQQ
10 + bQQ

11 + 2(bQQ
6 + bQQ

7 + bQQ
9 ))α5 + (bQQ

10 + bQQ
11 + 2bQQ

6 )α7

+ (bQQ
10 + 4bQQ

11 + 2bQQ
8 + bQQ

9 )α9 ,

δbQQ
12 = 2bQQ

12 α1 + (bQQ
12 + bQQ

13 )α2 + (bQQ
10 + bQQ

13 )α3 + (4bQQ
12 + bQQ

13 + 2bQQ
8 )α4

+ (bQQ
12 + bQQ

13 + bQQ
9 )α6 + (bQQ

12 + 4bQQ
13 + 2bQQ

7 )α8 ,

δbQQ
13 = 2bQQ

13 α1 + (bQQ
11 + bQQ

12 )α3 + (4bQQ
12 + bQQ

13 + 2bQQ
8 )α5 + (bQQ

12 + bQQ
13 + bQQ

9 )α7

+ (bQQ
12 + 4bQQ

13 + 2bQQ
7 )α9 ,

δbQQ
14 = 2bQQ

14 α1 + bQQ
16 α2 + (bQQ

13 + 2bQQ
14 + bQQ

16 )α5

+ (bQQ
11 + bQQ

13 + 2bQQ
14 + 4bQQ

16 + bQQ
9 )α7 + (bQQ

11 + 8bQQ
14 + bQQ

16 + 2bQQ
6 )α9)

δbQQ
15 = 2bQQ

15 α1 + bQQ
16 α2 + (2bQQ

15 + bQQ
16 )α3 + (bQQ

12 + 2bQQ
15 + bQQ

16 )α4

+ (bQQ
10 + bQQ

12 + 8bQQ
15 + bQQ

16 + 2bQQ
7 + 2bQQ

8 )α6 + (bQQ
10 + 2bQQ

15 + 4bQQ
16 + bQQ

9 )α8

δbQQ
16 = 2bQQ

16 α1 + 2(bQQ
14 + bQQ

15 )α2 + (2bQQ
14 + bQQ

16 )α3 + (bQQ
13 + 2bQQ

14 + bQQ
16 )α4

+ (bQQ
12 + 2bQQ

15 + bQQ
16 )α5 + (bQQ

11 + bQQ
13 + 2bQQ

14 + 4bQQ
16 + bQQ

9 )α6

+ (bQQ
10 + bQQ

12 + 8bQQ
15 + bQQ

16 + 2bQQ
7 + 2bQQ

8 )α7

+ (bQQ
11 + 8bQQ

14 + bQQ
16 + 2bQQ

6 )α8 + (bQQ
10 + 2bQQ

15 + 4bQQ
16 + bQQ

9 )α9 .

This system has rank 9, so each parameter αi can be used to modify one Lagrangian coefficient.
This however falls short of the 11 parameters that contribute nonminimal terms.
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When we put together the variations produced by the field redefinitions and the changes
in the gauge parameters, we find a linear system of size 16 × 21 of rank 16. It is therefore
possible to readjust all the coefficients in such a way as to maintain the minimality condition.

8.2 Nonlinear field redefinitions and on-shell reduction

of the effective action

Let us denote all the dynamical fields of a theory as φ and consider the following infinitesimal
redefinitions thereof:

φ→ φ+Ψ[φ], (8.14)

where φ≫ Ψ[φ]. The corresponding change of the effective action is

Γ[φ] → Γ[φ] +
δΓ

δφ
Ψ[φ]. (8.15)

Therefore, terms proportional to the equations of motion can be (infinitesimally) eliminated
from the effective action. We assume that the perturbation theory is applicable, which means
that the quantum effective action can be expanded in powers of ℏ:

Γ = S +
∞∑
k=1

ℏkΓ(k) (8.16)

where Γ(k) is colloquially referred to as “k-loop” effective action and

S ≫ ℏΓ(1), Γ(k) ≫ ℏΓ(k+1) ∀k > 0. (8.17)

Then, at one-loop level, we can separate terms of the effective action that are proportional to
the equations of motion:

Γ(1) ≈ Γ
(1)
on−shell +

δS

δφ
Ψ[φ]. (8.18)

Here the quantum action is replaced with the classical one because their difference would give
contributions of the second order in ℏ. We conclude from (8.15) that the second terms can
be removed. We call inessential those terms whose quantum corrections can be removed by
field redefinitions and which therefore do not enter the observables. The other, essential terms,
comprise what we will refer to as the on-shell effective action. Generalizing the same logic to
higher orders we obtain:

Γ(k) ≈ Γ
(k)
on−shell +

δ

δφ

(
S +

k−1∑
l=1

Γ(l)

)
Ψ[φ]. (8.19)

This means that higher-order terms proportional to the equations of motion obtained from the
lower-order terms can be eliminated from the effective action by appropriate field redefinitions.
Note that by higher order we mean those related to the expansion in ℏ. This may or may not
correspond to expansion in mass dimension. We stress here that the assumption about the
perturbative character of the theory is important for our considerations.
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There exists, of course, some ambiguity when it comes to choosing a basis of on-shell
independent terms. Since in this note we are interested in the behaviour of the propagator,
we will focus on reducing the number of independent contributions to it. In the following,
we will write down equations neglecting any contributions to the potential and terms of mass
dimension higher than 4. We will denote the corresponding “equality at the level of the flat
space propagator” as ≃.

In the following, we apply this recipe to Antisymmetric MAG. The general Lagrangian,
including the terms of order up to four that contribute to the flat propagator, is given by
(3.37), or (4.3) with Q = 0. We consider all possible contractions of the equations of motion
with arbitrarily chosen functions of the fields, according to a recipe discussed above. In the
formulae below integration over space-time is omitted and in their derivation integration by
parts was used.

2
δS

δgµν
gµν ≃ mTT

1 M1
TT +mTT

2 M2
TT +mTT

3 M3
TT −m2

0R (8.20)

2
δS

δgµν
Rµν ≃ m2

0H
2
RR − 1

2
m2

0H
3
RR (8.21)

2
δS

δgµν
gµνR ≃ −m2

0H
3
RR (8.22)

These three equations show that one-loop divergences of the types m2
0R, R

2 and R2 can be
reabsorbed into appropriate field redefinitions. This is well known in the case of metric gravity.
However, in the case of gravity with torsion one can choose the function Ψ in (8.18) and get
two additional equations

2
δS

δgµν
∇γTµν

γ ≃ m2
0H

5
RT ,

2
δS

δgµν
gµν∇αT

α ≃ −m2
0H

3
RT +

1

2
m2

0H
5
RT ,

(8.23)

which show that the divergences in the mixing sector be reabsorbed in a similar manner.

2
δS

δTµ
∇µR ≃ −

(
2mTT

1 +mTT
2 + 3mTT

3

)
H2

RT

2
δS

δTαβγ
∇γRβα ≃

(
2mTT

1 +mTT
2

)
H3

RT +
1

2
mTT

3 H5
RT

(8.24)

δS

δTαβγ
Tαβγ ≃ 1

2
bRT
3 H3

RT +
1

2
bRT
5 H5

RT + bTT
1 H1

TT + bTT
2 H2

TT + bTT
3 H3

TT + bTT
4 H4

TT + bTT
5 H5

TT

+ bTT
6 H6

TT + bTT
7 H7

TT + bTT
8 H8

TT + bTT
9 H9

TT +mTT
1 M1

TT +mTT
2 M2

TT +mTT
3 M3

TT

(8.25)

δS

δTαγβ
Tαβγ ≃ 1

2
bRT
3 H3

RT +
1

2
bRT
5 H5

RT + bTT
2 H1

TT + (2bTT
1 − bTT

2 )H2
TT + bTT

3 H3
TT + (bTT

5 +
1

2
bTT
7 )H4

TT

+ (bTT
4 − 1

2
bTT
7 )H5

TT +
1

2
bTT
7 H6

TT + (bTT
4 − bTT

5 + 2bTT
6 − 1

2
bTT
7 )H7

TT + bTT
8 H8

TT

+ bTT
9 H9

TT +mTT
2 M1

TT + (2mTT
1 −mTT

2 )M2
TT +mTT

3 M3
TT

(8.26)
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δS

δTα
Tα ≃ 1

4
(bRT

3 + 6bRT
5 )H5

RT + (2bTT
1 + bTT

2 + 3bTT
3 +

1

2
bTT
8 )H3

TT + (bTT
4 + 2bTT

6 + bTT
7 +

3

2
bTT
8 )H8

TT

+ (bTT
4 + bTT

5 − 1

2
bTT
8 + 3bTT

9 )H9
TT + (2mTT

1 +mTT
2 + 3mTT

3 )M3
TT

(8.27)
After considering all such combinations we conclude that all terms of the dimension up to

four that contribute to the flat propagator can be rewritten in such a way that their small
quantum corrections can be reabsorbed into field redefinitions. This means that at order four
in mass dimension our one-loop EA is

Γ(1) ≈ δS

δφ
Ψ[φ] + interaction terms. (8.28)

In our terminology, that means that all operators that contribute to the flat propagator are
inessential at one-loop level.
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Other projects

Whilst pursuing PhD degree, I have been involved in two other research projects, one of which
was published and another is in progress. They have not been included in this thesis for their
topic is somewhat different from the main line thereof. The main objectives and results will
be briefly explained here.

Primordial Horndeski Cosmology

Horndeski theory is defined as the most general scalar-tensor theory with second-order field
equations and incorporates several other well-studied theories. It is of especial interest for
it admits a stable violation of the Null Energy Condition (NEC), and at that time there
existed a hope that it could allow one to describe non-standard gravitational solutions such
as Lorenzian wormholes and semiclosed worlds [147]. Another class of solutions of Horndeski
theory concerns the cosmological domain. The stable violation of the NEC opens a plethora
of possibilities for considering cosmological solutions such as bouncing Universe and genesis
[148, 149]. In the latter scenario, Universe starts from an asymptotically flat space with an
asymptotically small effective Planck mass, and then expands transiting into a hot epoch later
on. As pointed out in [150] the effective Planck mass then goes to zero in the asymptotic past,
which may signalise a potential strong coupling problem. It was of interest to see whether
one can present a model that would describe the evolution of the Universe from the earliest
times that is governed completely by the laws of classical field theory. We proved that in a
wide range of parameters, the inverse time scale of classical evolution is much smaller than
the strong coupling energy scale, thus showing the classical analysis of time evolution to be
legitimate [151, 152]. The analysis was done at tree level and the strongest bound comes from
the scalar sector of perturbations. It was recently proven that, surprisingly, the same bound
from the scalar is the strongest one when also compared to all loop orders.

Essential Renormalisation Group

The Functional Renormalisation Group (FRG) is a non-perturbative approach to renormalisa-
tion that deals with a scale-dependent effective action called Effective Average Action (EAA).
The Essential Renormalisation Group is a modern approach within FRG in which only essen-
tial couplings — the ones that cannot be changed by field redefinitions — are allowed to flow,
whereas the inessential ones are kept fixed. An important notion is that of a theory space,
which is defined as a space of all couplings of EAA. A physical theory can be represented as
an RG trajectory in that space. By performing invertible field redefinitions one can alter a
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given trajectory, however any observables must obviously remain unchanged. All trajectories
then fall into equivalence classes, with each member of a class describing the same physics.
This approach was initially developed in [153] and applied to Quantum Einstein Gravity in
[87], where the usefulness of nonlinear field redefinitions was advocated. The independent
terms of the EAA in the fourth order of derivative expansion are the cosmological constant,
the Hilbert–Einstein term, the Gauß–Bonnet (GB) invariant and the two terms quadratic in
curvature. We identify the Einstein equivalence class which describes classical GR at large dis-
tances within the vicinity of the the Gaußian fixed point. Quantum Einstein Gravity is based
on the existence of the ultraviolet (UV) Reuter fixed point which provides the UV completion
of Einstein’s theory. Within this class the only essential couplings are the Newton coupling and
the one in front of the GB term, which however does not contribute to the dynamics. All the
other couplings are inessential, including the cosmological constant, meaning that they can re-
main fixed along the flow. In an ongoing project, we study the gauge dependence of the critical
exponent. Due to the approximations made, such as the derivative expansion, some degree of
gauge dependence may appear, and the smaller it is, the better the applied approximations are.
The main technical difficulty in studying gauge dependence in gravity are, again, nonminimal
kinetic operators, which are usually cancelled by a gauge choice (de Donder gauge). Using the
same code for tackling nonminimal operators mentioned in the previous section I computed
the nonperturbative beta functions at order 4 in derivative expansion and used them to find
the position of the Reuter fixed point. The gauge dependence of the critical exponent turned
out to be reasonably small in a certain parameter range. At the moment we are investigating
whether it is possible to further eliminate the dependence with another type of cutoff.
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Outlook

Toward more general computation of divergences

As we have understood so far, in order to compute loop divergences in MAG one needs to
develop a computational algorithm that can deal with nonminimal operators of the general
form. Here we discuss a project in progress, in which such an algorithm was realised by means
of computer algebra techniques and applied to the Antisymmetric MAG. The starting point
in it is equation (1.54). The first task in it is to find the curved space propagator, which is the
solution to the equation

FλGλ = 1 . (8.29)

This can be done in the following way. First, we find the solution of the corresponding equation
in flat space:

F0 G0 = 1, G0 = Gλ|pµ→∇µ, R→0, T→0 (8.30)

where the operator F0 is obtained from Fλ by replacing the covariant derivatives with vectors
(or performing a Fourier transform) and putting background curvatures and torsion tensors
to zero. One can use an ansatz for G0 with arbitrary coefficients and then find a solution for
them. Then we replace momenta vectors back with covariant derivatives in G0, ordering can
be arbitrary. After plugging it back to (8.35) instead of the full G we get

F G0|∇µ→pµ = 1 +M(∇̄, R̄, T̄ ) (8.31)

Now the full G can be expressed as a geometric series in −M :

G = G0
1

1 +M
= G0

[
1−M +M2 −M3 +M4 − . . .

]
(8.32)

And important notion at this stage is the one of the background dimensionality of a differential
operator, which is defined as the mass dimension of the background quantities that enter in it.
If derivatives act on the background quantity, they add 1 to the background dimensionality. If
the operator contains several terms, the background dimensionality is the least one of them.
As long as (8.30) is satisfied, M will contain terms of background dimensionality of at least
one. We are looking for the one-loop contributions to the EA that are of the same form as the
terms in (7.1), they will correspond to logarithmic divergences. Therefore, calculation can be
seen as an expansion in terms of the background dimensionality, and we only need to keep the
terms up to order 4. The geometric series in (8.32) is needed to be considered only up to order
4.

Let us look at the case when mass parameters are present in F . If the aforementioned
procedure is applied directly, the inversion coefficients will come out momenta-dependant.
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However, this complication is unnecessary due to the following 1. Let us assign background
dimensionality for masses. This by itself is harmless, since background dimensionality solely
controls the expansion and tells us terms of what type we are looking for. Then F0 will be the
principal part of the operator and a solution for the inversion coefficients as rational functions
of dimensionless couplings can be found relatively easily. Geometric series (8.32) will now be
infinite, because when mass parameters are not small (in our case they can be of the order
of Planck mass) and terms that are higher order in M will also be large. However, the same
argument as before applies and such terms will contribute only to the convergent part of the
EA 2.

Let us split the kinetic operator as

F (λ) = X(λ) + Y, (8.33)

whereX contains all terms with background dimension zero and lambda multiplies nonminimal
terms and

X(λ) = Fmin. + λN. (8.34)

We assume that F and X are invertable and positive definite, the latter means that all their
eigenvalues are positive. Then we can define the “propagator” as the full (including curvature
corrections) inverse of X

X(λ)G(λ) = 1. (8.35)

and the unique positive definite square root of X. Introducing identity operators on the left
and on the right we have

1

2
Tr log [X + Y ]

=
1

2
Tr log

[√
X

1√
X
(X + Y )

1√
X

√
X

]
=
1

2
Tr log X +

1

2
Tr log

[
1 +

1√
X
Y

1√
X

]
=
1

2
Tr log Fmin. +

1

2

∫ 1

0

dλ Tr [NG(λ)] +
1

2
Tr

[
Y G− 1

2
Y GY G

]
(8.36)

In the third row we used the identity

tr log(AB) = tr logA+ tr logB, (8.37)

which is valid for any (non-commuting) positive definite operators, while in the last row we
used (1.54) and the trace cyclic identity. Since Y contains terms proportional to at least one
power of torsion or curvature we can replace G with its flat-space version G0 in the last term:

Tr

[
Y G− 1

2
Y GY G

]
= Tr

[
Y G0(1−M)− 1

2
Y G0Y G0

]
(8.38)

1I owe this trick to Christian Steinwachs.
2The only situation when things could go wrong is if operators G0 or N contained inverse dimensions of

mass, that could happen if we chose the field space metric to be dimensionfull. Then inside the traces of the
second term in (1.54) ratios of dimensionfull couplings could appear. This explains the advantages of the simple
form of the metric (A.4).
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Then, using the definition of G (8.35) and the fact that the trace of unity does not contribute
to logarithmic divergence we have:

Tr [G(λ)X(λ)]log.div. = Tr [G|λ=0 Fmin.]log.div. = Tr1|log.div. = 0 (8.39)

Which allows us to rewrite the term under the integral as

Tr [N G(λ)] =
1

λ
Tr [(X(λ)− Fmin.)G(λ)] =

1

λ
Tr [1− Fmin.G(λ)]

=
1

λ
Tr [G(λ)Fmin.] =

1

λ
Tr [(G(λ)− G|λ=0)Fmin.] .

(8.40)

Notice that these identities hold even when integrated over λ, because we first take the traces
and then integrate. Therefore, within our approximations we obtain for the logarithmically
divergent part of the effective action:

Γ1−loop
log.div. =

1

2
Tr log Fmin. +

∫ 1

0

dλ

λ
Tr

[
1

2
(G(λ)− G|λ=0)Fmin.

]
+ Tr

[
1

2
Y G0

(
1−M − 1

2
Y G0

)]
λ=1

− Tr log ∆gh. −
1

2
Tr log (Ygh.)

(8.41)

By means of computer algebra, in principle, one can compute one-loop divergences in any
theory of fields defined on curved space-time, that may dynamically mix with gravity. At this
moment, such calculation for the general Poincaré gauge theory is in progress.
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Appendix A

Background field method and kinetic
operators

When the background field method is applied dynamical variables are split into their classical
background value and quantum perturbations. Consider linear perturbations of the metric and
torsion field about a generic background:

gµν = ḡµν + hµν

Tρ
λ
η = T̄ρ

λ
η + tρ

λ
η,

(A.1)

where the bar stands for background values. Using the condensed DeWitt notations the latter
can be represented as a column φa, where index a carries both all the internal structure and
the space-time dependence. We will call the linear space of all φa the configuration or field
space V . Therefore, in the case at consideration we have:

φa =

(
hµν
tρ

λ
η

)
(x). (A.2)

On the configuration space one can define metric, torsion and nonmetricity, which can be
arbitrary in general. Since we have chosen to work with the Levi-Civita derivative the latter
two vanish. The kinetic operator is defined as a linear differential operator acting on the
space of linear perturbations of fields, F : V → V . For operators of this type one can define
determinant, trace and logarithm which are basis-independent, meaning give the same result if
a linear transformation of fields φa with a unite Jacobian is applied. If the Jacobian is not unity
the value of traces may differ, but such a change will be compensated by the corresponding
change of the functional measure. The Hessian on the other hand is a bilinear form, acting
from a Cartesian product of field spaces to real numbers, H : V × V → R. One cannot define
a trace of a Hessian. We must instead transform it into a proper operator first, by multiplying
it with an inverse field space metric:

F a
b = GacHcb. (A.3)

The metric G is a bilinear form itself which in general can be quite arbitrary. The results for
divergences will contain a nontrivial dependence on the choice of this metric. Let us focus on
the simplest case of ultralocal metric, meaning not containing derivatives:

Gab =

(
1 αβ, µν
s − A gαβgµν 0

0 1as
γ
δ
ζ, ρ

λ
η −B gγρgδλg

ζη − C δζδδ
η
λg

γρ

)
δ(x− x′). (A.4)
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It is nondegenerate if A ̸= 1/4 and b ̸= 1 and B ̸= −2 and C ̸= −(2 + B)/3(in 4 dimensions).
Here 1s and 1as are identities in the spaces of symmetric 2-rank and antisymmetric 3-rank
tensors correspondingly. For A = 1/2 the metric part of it represents the DeWitt metric which
is usually used in metric theories of gravity. In principle, there could be two additional overall
factors in (A.4) which will however drop out from the final result.
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Appendix B

Multiplication of pseudo-differential
operators

The main sources of difficulty in such computations are the large number of terms in interme-
diate computations, the large number of derivatives in each term and the complicated tensor
structure of each term. Operators under consideration contain background structures (such as
curvatures, torsion tensors and derivatives acting on them) and several derivatives acting on
perturbation fields.1 When trying to calculate the product of two such operators, it is easy to
get overwhelmed by the complexity. This is mainly the reason why there has not been much
progress in the field since the late ’90s (see however [78, 154–160]). In what follows we try to
shed some light on how to manipulate such structures, aiming to accelerate the work in this
direction.

From the technical point of view, the challenge is about writing an efficient computer
code that can perform three following operations. The first one is multiplication of pseudo-
differential operators, containing derivatives and rational functions of □’s. The second one is
sorting the covariant derivatives, in such a way that all the contracted derivatives stand on
the very right (or very left). The third one is the replacement of terms of mass dimension
4 with contracted terms from the Lagrangian (explained below). After such replacement,
some previously uncontracted derivatives will become contracted, and one can try and sort
the derivatives again. It is technically advantageous to perform the second and the third
operations after each multiplication several times in order to reduce the number of derivatives
in the expressions as much as possible before going to the next step.

It is more efficient to sort the derivatives so that they contract each other rather than trying
to bring different terms to the same form.

Sometimes further simplification is possible due to the symmetries of the tensors involved.
For example, a term of the following from:

Rµνρλ∇ . . .∇µ . . .∇ν . . . ĥαβ (B.1)

can be replaced with several terms each of them having two derivatives less than the original
one however proportional to two Riemann tensors, after which the third operation can be

1In the case of dimension 4 truncation of Antisymmetric MAG we deal with 8-index background structures.
Therefore, an operator acting in the space of perturbations of the torsion can have up to 8 + 3 × 2 = 14
uncontracted derivatives. The matrix M , which is what we expand in, cannot have more than 3 derivatives,
however, it has around 1000 terms.
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applied again, etc.

Contributions from commutators

For an arbitrary operator X and function f , using the Laplace transform, one can derive the
following formula [79]:

[X, f(□)] =
∞∑
n=1

1

n!
(−1)n−1

[
X , □

]
n
f (n)(□) (B.2)

We define the special product ⊗ of two pseudo-differential operators as the product com-
puted in the usual way except that all (functions of) boxes are assumed to commute with
derivatives:

O1(∇)f1(□)⊗O2(∇)f2(□) ≡ O1(∇)⊗O2(∇)f1(□)f2(□). (B.3)

Technically this means that while computing it with a computer program boxes can be treated
as mere constants. Then it is easy to see using (B.2) that for the usual product × of arbitrary
operators L and R we have

L×R = L⊗R + L′ ⊗ [□, R] +
1

2
L′′ ⊗ [□, R]2 +

1

3!
L′′′ ⊗ [□, R]3 + . . . , (B.4)

where primes stand for derivatives with respect to □ and the dots denote terms with higher
background dimensionality. This way instead of computing all the corrections due to the
commutators separately, one can put everything into one expression. For example, we have

M2 =M ⊗M +M ′ ⊗ [□,M ] +
1

2
M ′′ ⊗ [□,M ]2 + . . . ,

M3 =M2 ⊗M + (M2)′ ⊗ [□,M ] + . . . ,

M4 =M3 ⊗M + . . . ,

(B.5)

and for the curved space propagator we get from (8.32):

G =G0 ⊗
(
1−M +M2 −M3 +M4

)
+G′

0 ⊗
[
□,−M +M2 −M3

]
+

1

2
G′′

0 ⊗
[
□,−M +M2

]
2
+

1

3!
G′′′

0 ⊗ [□,−M ]3 + . . .
(B.6)

Replacement of dimension four terms inside traces

The third operation was discussed in [78], section 6, and concerns only the terms of the max-
imal background dimesionality that we allow in our truncation of the EA - in our case, four.
Eventually, all we want to compute are traces, and such terms can be traces with metric only.
This means we can replace them with scalar structures multiplied by tensors T (g) which are
constructed with metric tensors only. Therefore, at any intermediate stage of the calculation
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we are allowed to make the following replacements:2

R̄αβγδR̄µνρλ → T RR1
αβγδµνρλH

RR
1 + T RR2

αβγδµνρλH
RR
2 + T RR3

αβγδµνρλH
RR
3 ,

∇̄αT̄βγδ∇̄µT̄νρλ →
9∑

i=1

T TTi
αβγδµνρλH

TT
i ,

T̄βγδ∇̄α∇̄µT̄νρλ → −
9∑

i=1

T TTi
αβγδµνρλH

TT
i ,

R̄µνρλ∇̄µT̄νρλ → T RT3
αβγδµνρλH

RT
3 + T RT5

αβγδµνρλH
RT
5 ,

T̄νρλ∇̄µR̄µνρλ → −T RT3
αβγδµνρλH

RT
3 − T RT5

αβγδµνρλH
RT
5 ,

(B.7)

The structures T are complicated, but we only need to compute them once.

Computing terms of Γ separately

In principle, one can compute all contributions to the EA up to a certain order in background
dimensionality at once. In this way one has to keep the background arbitrary in order to
distinguish the counterterms from each other. However, in practice it is easier to perform
several separate computations, each of them aiming to a specific term (group of terms), while
considering the backgrounds that are only necessary to distinguish such term(s) from the others.
This way we compute the same EA, but piece by piece. Indeed, let us say we want to compute
the counterterms proportional to the kinetic terms for torsion, (∇T )2. This means that one
can assume that the background metric is flat at any intermediate stage of computation.
Furthermore,

[G0,□]
(∇T )2

≃ 0. (B.8)

However,

[M,□]
(∇T )2

̸= 0. (B.9)

The relevant contributions to the propagator can be then computed as

G
(∇T )2

≃ G0

[
1 +M +M ⊗M −M ′ ⊗ [M,□] +

1

2
M ′′ ⊗ [M,□]2

]
, (B.10)

where

M
(∇T )2

≃ F ⊗G− 1. (B.11)

When computing the running of m0, α, β we set T̄ = 0. In the last computation we only
keep the five contributions of the type R....∇.T....

2In [78] it was correctly stated that after performing the Ricci decomposition (expressing the Riemann
tensors in terms of Weyl tensor, traceless Ricci tensor and Ricci scalar) the number of invariants will be the
lowest. However, the commutation of covariant derivatives produces Riemann tensors, and in this case one has
to constantly jump from one basis to another.
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Further remarks

To perform the calculation computer algebra packages xTensor [161], Invar [162, 163], Sym-
Manipulator [164], and xTras [165] were used. It was found to be necessary to introduce some
small modifications of certain functions of xTras to make them efficient for such involved com-
putations. In short, one has to make sure that the Expand function is not applied whenever it
is not needed. It remains to investigate whether the usage of other computer algebra systems
such as Cadabra [166, 167] can give a significant gain in computational efficiency.
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Appendix C

Trace technology

C.1 Universal Functional Traces

Here we discuss the procedure of calculating the traces of type

Tr[∇µ1 . . .∇µN
f(∆)] (C.1)

with f being a smooth function, ∆ = −∇µ∇µ+E is a minimal Laplace-type operator, ∇ is the
Levi-Civita derivative and E contains no derivatives. They are commonly referred to as the
Universal Functional Traces. The first step is to rewrite the expression in terms of symmetrised
derivatives. Then for the function f we introduce its Laplace transform

f(∆) =

∫ ∞

0

ds e−s∆f̃(s) , (C.2)

which allows us to write them in terms of the generalised heat kernel traces:

tr[∇(µ1 . . .∇µN )f(∆)] =

∫
ddx

√
g

∫ ∞

0

ds ⟨x| ∇(µ1 . . .∇µN )e
−s∆ |x⟩ f̃(s) =

= Tr

∫
ddx

√
g

∫ ∞

0

ds H(µ1...µN )(x, s)f̃(s).

(C.3)

Expressions of H via off-diagonal heat kernel can be found in [79]. Dependence on s can be
factorised as

H(µ1...µN )(x, s) =
1

(4πs)d/2

∑
n≥0

sn−⌊N/2⌋K
(n)

(µ1...µN )(x) , (C.4)

with ⌊x⌋ being the floor function and

K(n)(x) =an

K(n)
µ (x) =∇µan

K
(n)
(µν)(x) =− 1

2
gµνan +∇(µ∇ν)an−1

K
(n)
(µνρ)(x) =− 3

2
g(ρν∇µ)an +∇(ρ∇ν∇µ)an−1

K
(n)
(µνρλ)(s) =

3

4
g(λρgνµ)an − 3g(λρ∇ν∇µ)an−1 +∇(λ∇ρ∇ν∇µ)an−2

(C.5)
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K
(n)
(µνρλα)(x) =

15

4
g(αλgρν∇µ)an − 5g(αλ∇ρ∇ν∇µ)an−1 +∇(α∇λ∇ρ∇ν∇µ)an−2

K
(n)
(µνρλαβ)(x) =− 15

8
g(βαgλρgνµ)an +

45

4
g(βαgλρ∇ν∇µ)an−1 −

15

2
g(βα∇λ∇ρ∇ν∇µ)an−2

+∇(β∇α∇λ∇ρ∇ν∇µ)an−3

The bar stands for the coincidence limit of the off-diagonal heat kernel coefficients [76, 79]:

a0 = 1 ,

∇µa0 = 0 ,

∇(ν∇µ)a0 =
1

6
Rνµ ,

∇(α∇ν∇µ)a0 =
1

4
R(νµ;α) ,

∇(β∇α∇ν∇µ)a0 =
3

10
R(νµ;αβ) +

1

12
R(βαRνµ) +

1

15
Rγ(β|δ|αR

γ
ν
δ
µ) ,

a1 = −E +
1

6
R ,

∇µa1 = −1

2
E;µ −

1

6
Ωνµ;

ν +
1

12
R;µ ,

∇(ν∇µ)a1 = −1

3
E;(µν) −

1

6
RµνE − 1

6
Ωα(µ;

α
ν) +

1

6
Ωα(νΩ

α
µ) +

1

20
R;(µν) −

1

60
∆Rνµ

+
1

36
RRνµ −

1

45
RναR

α
µ +

1

90
RαβR

α
ν
β
µ +

1

90
Rαβγ

νRαβγµ ,

a2 =
1

6
∆E +

1

2
E2 − 1

6
RE +

1

12
ΩµνΩ

µν − 1

30
∆R +

1

72
R2 − 1

180
R 2

µν +
1

180
R 2

µναβ ,

(C.6)
where Ω is defined in (1.49). Then after substituting (C.4) in (C.3) and introducing Q-
functionals as

Qm[f ] :=

∫ ∞

0

ds s−mf̃(s) , (C.7)

we obtain a master formula:

Tr
[
∇(µ1 . . .∇µN )f(∆)

]
=

1

(4π)d/2

∑
n≥0

Q−n+ d
2
+⌊N/2⌋[f ] · tr

∫
ddx

√
gK

(n)
(µ1...µN )(x). (C.8)

The Q-functionals here can be reexpressed as integrals over momenta, see [27]. For m positive
integer we have

Qr[f ] =
1

Γ(r)

∫ ∞

0

d∆ ∆r−1f(∆), (C.9)

whereas for non-positive integer we can choose k such that m+ k > 0 and then

Qr[f ] =
(−1)k

Γ(r + k)

∫ ∞

0

d∆ ∆r+k−1f (k)(∆), (C.10)

For r nonnegative integer:
Q−r[f ] = (−1)rf r(0), (C.11)

and for r = 0
Q0[f ] = f(0). (C.12)

This way all integrals over s are transformed into the integrals over the momenta.
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C.2 Extracting logarithmic divergences

In order to regularise the momenta integrals let us introduce a momenta cutoff Λ. In the traces
(C.8) the functions of our interest are:

f(∆) =
1

∆m
(C.13)

with positive integer m. Let us consider first the case when r > 0, m ̸= r. Then from (C.9)
we have

Qr

[
1

∆m

]
=

1

Γ(r)

∫ Λ2

µ2

d∆ ·∆r−1−m =
1

Γ(r)

∆r−m

r −m

∣∣∣∣Λ2

µ2

. (C.14)

This expression is UV convergent for r < m and power-law divergent for r > m. For r = m > 0
we get the logarithmically divergent contribution:

Qm

[
1

∆m

]
=

1

Γ(m)
log∆|Λ2

µ2 =
1

Γ(m)
log

(
Λ2

µ2

)
(C.15)

We will compute the traces with up to four uncontracted derivatives for further convenience
and then give the general expression for any number of derivatives. First, we consider the case
without uncontracted derivatives. The formula (C.8) gives

Tr

[
1

∆m

]
=

1

(4π)d/2

∑
n≥0

Q d
2
−n

[
1

∆m

]
· tr
∫
ddx

√
gK(n)(x). (C.16)

This expression is logarithmically divergent if n = d/2−m, m > 0.
From here on we set d = 4. Using the first line of (C.5) we get:

Tr

[
1

∆m

]
log.div.

=
1

(4π)2
1

Γ(m)
log

(
Λ2

µ2

)
· tr
∫
d4x

√
g a2−m (C.17)

This formula is inapplicable when m = 0 and the expression on the lhs is in fact finite, see
below. It is convergent for m ≥ 3.

For the case of a single uncontracted derivative, in four space-time dimensions,

Tr

[
∇µ

1

∆m

]
=

1

16π2

∑
n≥0

Q2−n

[
1

∆m

]
· tr
∫
d4x

√
gK(n)

µ (x) (C.18)

which gives logarithmic divergence if n = 2 −m. Then the two nontrivial contributions that
we obtain from (C.5) are

Tr

[
∇µ

1

∆

]
=

1

16π2
log

(
Λ2

µ2

)
· tr
∫
d4x

√
g ∇µa1,

T r

[
∇µ

1

∆2

]
=

1

16π2
log

(
Λ2

µ2

)
· tr
∫
d4x

√
g ∇µa0,

T r

[
∇µ

1

∆m

]
= 0 for m ≥ 3.

(C.19)
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For traces with two uncontracted derivatives, in four space-time dimensions,

Tr

[
∇(µ∇ν)

1

∆m

]
=

1

16π2

∑
n≥0

Q3−n

[
1

∆m

]
· tr
∫
d4x

√
gK

(n)
(µν)(x) (C.20)

gives logarithmic divergence if n = 3−m. Therefore,

Tr

[
∇(µ∇ν)

1

∆

]
=

1

16π2
log

(
Λ2

µ2

)
· tr
∫
d4x

√
g

(
−1

2
gµνa2 +∇(µ∇ν)a1

)
,

T r

[
∇(µ∇ν)

1

∆2

]
=

1

16π2
log

(
Λ2

µ2

)
· tr
∫
d4x

√
g

(
−1

2
gµνa1 +∇(µ∇ν)a0

)
Tr

[
∇(µ∇ν)

1

∆3

]
=

1

16π2

1

2
log

(
Λ2

µ2

)
· tr
∫
d4x

√
g

(
−1

2
gµνa0

)
Tr

[
∇(µ∇ν)

1

∆m

]
= 0 for m ≥ 4

(C.21)

For traces with three uncontracted derivatives, again in four space-time dimensions,

Tr

[
∇(µ∇ν∇ρ)

1

∆m

]
=

1

16π2

∑
n≥0

Q3−n

[
1

∆m

]
· tr
∫
d4x

√
gK

(n)
(µνρ)(x) (C.22)

again gives logarithmic divergence if n = 3−m. We have

Tr

[
∇(µ∇ν∇ρ)

1

∆

]
=

1

16π2
log

(
Λ2

µ2

)
· tr
∫
d4x

√
g

(
−3

2
g(ρν∇µ)a2 +∇(ρ∇ν∇µ)a1

)
,

T r

[
∇(µ∇ν∇ρ)

1

∆2

]
=

1

16π2
log

(
Λ2

µ2

)
· tr
∫
d4x

√
g

(
−3

2
g(ρν∇µ)a1 +∇(ρ∇ν∇µ)a0

)
Tr

[
∇(µ∇ν∇ρ)

1

∆3

]
=

1

16π2

1

2
log

(
Λ2

µ2

)
· tr
∫
d4x

√
g

(
−3

2
g(ρν∇µ)a0

)
Tr

[
∇(µ∇ν∇ρ)

1

∆m

]
= 0 for m ≥ 4

(C.23)

And finally, traces with four uncontracted derivatives are

Tr

[
∇(µ∇ν∇ρ∇λ)

1

∆m

]
=

1

16π2

∑
n≥0

Q4−n

[
1

∆m

]
· tr
∫
d4x

√
gK

(n)
(µνρλ)(x) (C.24)

again give logarithmic divergence if n = 4−m. We have

Tr

[
∇(µ∇ν∇ρ∇λ)

1

∆

]
=

1

16π2
log

(
Λ2

µ2

)
tr

∫
d4x

√
g

(
3

4
g(λρgνµ)a3 − 3g(λρ∇ν∇µ)a2 +∇(λ∇ρ∇ν∇µ)a1

)
,

T r

[
∇(µ∇ν∇ρ∇λ)

1

∆2

]
=

1

16π2
log

(
Λ2

µ2

)
tr

∫
d4x

√
g

(
3

4
g(λρgνµ)a2 − 3g(λρ∇ν∇µ)a1 +∇(λ∇ρ∇ν∇µ)a0

)
Tr

[
∇(µ∇ν∇ρ∇λ)

1

∆3

]
=

1

16π2

1

2
log

(
Λ2

µ2

)
tr

∫
d4x

√
g

(
3

4
g(λρgνµ)a1 − 3g(λρ∇ν∇µ)a0

)
Tr

[
∇(µ∇ν∇ρ∇λ)

1

∆4

]
=

1

16π2

1

6
log

(
Λ2

µ2

)
tr

∫
d4x

√
g
3

4
g(λρgνµ)a0

Tr

[
∇(µ∇ν∇ρ∇λ)

1

∆m

]
= 0 for m ≥ 5

(C.25)
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In general, for traces of the type (C.8) with (C.13), the logarithmic divergence comes from
the n-th term of the expansion for which the following equation is satisfied:

−n+
d

2
+ ⌊N/2⌋ = m (C.26)

or

n =
d

2
+ ⌊N/2⌋ −m. (C.27)

Therefore, for any positive integer m:

Tr

[
∇(µ1 . . .∇µN )

1

∆m

]
log.div.

=
1

(4π)d/2
1

Γ(m)
log

(
Λ2

µ2

)
· tr
∫
ddx

√
gK

( d
2
+⌊N/2⌋−m)

(µ1...µN ) (x) (C.28)

The case of m = 0 should be considered separately. For r > 0 gives power divergences

Qr[1] =
1

Γ(r)

∫ Λ2

µ2

d∆ ·∆r−1 =
1

Γ(r)

∆r

r

∣∣∣∣Λ2

µ2

, (C.29)

whilst for r = m = 0 it is convergent
Q0[1] = 1. (C.30)

Therefore we conclude that
Tr
[
∇(µ1 . . .∇µN )

]
log.div.

= 0. (C.31)

C.3 Second order minimal operator

Let us now consider a minimal Laplace-type operator of the form

∆ + E , (C.32)

acting on fields that may carry either spacetime or internal indices, where

∆ = ∇2

and E is an endomorphism (a linear map acting on the fields, without derivatives). The
covariant derivative ∇ is constructed with the Levi-Civita connection on spacetime indices,
plus any other connection may be present that acts on the internal indices.

First, we perform a simple consistency check and derive a formula for the logarithmically
divergent contribution of this operator using (C.17). Since we are looking at high momenta
divergences we can assume that ∆ ≫ E when E contains no or one derivative. Then, using
the relation

tr log(AB) = tr logA+ tr logB, (C.33)

which is valid for any positive definite operators A and B, and expanding the logarithm we
have:

1

2
Tr log (∆ + E) =

1

2
Tr log

[(
1 + E

1

∆

)
∆

]
=

=
1

2
Tr log∆+

1

2
Tr

[
E

1

∆
− 1

2
E

1

∆
E

1

∆
+

1

3
E

1

∆
E

1

∆
E

1

∆
− . . .

]
.

(C.34)
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For the divergent part, the expansion is finite because E possesses a positive background
dimensionality. Then in four space-time dimensions we have

1

2
Tr log∆|log.div. = − 1

32π2

∫
d4x

√
g log

(
Λ2

µ2

)
a2 (∆) (C.35)

Focusing on the case when E does not contain derivatives and commutes with ∆ we get from
(C.17):

Tr

[
E

1

∆

]
log.div.

=
1

16π2
log

(
Λ2

µ2

)
· tr
∫
d4x

√
g a1 (∆)E, (C.36)

Tr

[
E2 1

∆2

]
log.div.

=
1

16π2
log

(
Λ2

µ2

)
· tr
∫
d4x

√
g a0 (∆)E2, (C.37)

Tr

[
Em 1

∆m

]
log.div.

= 0 for m ≥ 3. (C.38)

When ∆ = −gµν∇µ∇ν we have a0 = 1 and a1 = R/6, and we get

1

2
Tr

[
log∆+ E

1

∆
− 1

2
E

1

∆
E

1

∆
+ . . .

]
log.div.

=

− 1

32π2

∫
d4x

√
g log

(
Λ2

µ2

)[
a2 (∆)− a1 (∆)E +

1

2
a0 (∆)E2 − . . .

] (C.39)

using (1.48) for E = 0 we obtain

1

2
Tr log (∆ + E) = − 1

32π2

∫
d4x

√
g log

(
Λ2

µ2

)
a2 (∆ + E), (C.40)

which is exactly what was expected.
Now let us consider an operator of the form

∆ + V +W , (C.41)

where V = V µ∇µ and W is an endomorphism.
Now we find

1

2
Tr log (∆ + V +W ) =

1

2
Tr log∆ +

1

2
Tr log

(
1 + V

1

∆
+W

1

∆

)
=
1

2
Tr log∆ +

1

2
Tr
[
V

1

∆
+W

1

∆
− 1

2
V

1

∆
V

1

∆
− V

1

∆
W

1

∆
− 1

2
W

1

∆
W

1

∆
+ . . .

]
.

(C.42)
We stop the expansion at this order since we are not interested in terms with three or more
powers of V or W . The leading term is

1

2
Tr log∆ = − 1

32π2
log

(
Λ2

µ2

)∫
d4x

√
g tr

[
1

180

(
RµνρλR

µνρλ −RµνR
µν +

5

2
R2 + 6□R

)
+

1

12
Ω 2

µν

]
(C.43)

The term linear in W is

1

2
Tr log

[
W

1

∆

]
=

1

2

1

(4π)2
log

(
Λ2

µ2

)∫
d4x

√
g
1

6
R trW . (C.44)
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and the term linear in V is

1

2
Tr log

[
V µ∇µ

1

∆

]
=

1

2

1

(4π)2
log

(
Λ2

µ2

)∫
d4x

√
g

(
− 1

12

)
R tr∇µV

µ . (C.45)

In order to evaluate the remaining terms with the universal functional traces computed in the
preceding section, we have to bring all inverse powers of ∆ together in the extreme right. This
involves commutators of V and W with the inverse of ∆. Such commutators can be computed
from (B.2), leading to the expansion[

X,
1

∆

]
= − [X,∆]

1

∆2
− [X,∆]2

1

∆2
+ . . . (C.46)

for an arbitrary operator X. The remaining multiple commutators in the r.h.s. have to be
computed separately in each case.

We start from the term with two W ’s, that is easier. We find that

[W,∆] = (∇2W ) + 2(∇µW )∇µ . (C.47)

Since this multiplies 1/∆3, the first trace is finite. Similarly, the double commutator [W,∆]2
contains at most two ∇ on the right, and since this multiplies 1/∆4, the second trace is also
finite. This means that

1

2

(
−1

2

)
Tr

[
W

1

∆
W

1

∆

]
≈ −1

4
Tr

[
W 2 1

∆2

]
= −1

4

1

(4π)2
log

(
Λ2

µ2

)∫
d4x

√
g trW 2 . (C.48)

It is a bit more complicated to evaluate the mixed V -W term. First of all, we can write

1

2
(−1)Tr

[
V µ∇µ

1

∆
W

1

∆

]
= −1

2
Tr

[
V µ∇µ

(
W

1

∆
−
[
W,

1

∆

])
1

∆

]
= −1

2
Tr

[
V µ(∇µW )

1

∆2

]
− 1

2
Tr

[
V µW∇µ

1

∆2

]
+

1

2
Tr

[
V µ∇µ

[
W,

1

∆

]
1

∆

]
(C.49)

The first term is equal to

−1

2

1

(4π)2
log

(
Λ2

µ2

)∫
d4x

√
g trV µ∇µW .

The second vanishes because it contains ∇µa0. For the third we use (C.47) to write it as

−1

2
Tr

[
2(V ρ∇µW )∇ρ∇µ

1

∆3

]
=

1

4

1

(4π)2
log

(
Λ2

µ2

)∫
d4x

√
g trV µ∇µW ,

plus terms that contain fewer free ∇’s and are therefore convergent. Adding these two contri-
butions we find

−1

2
Tr

[
V µ∇µ

1

∆
W

1

∆

]
=

1

4

1

(4π)2
log

(
Λ2

µ2

)∫
d4x

√
g trW∇µV

µ . (C.50)
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Finally, we come to the term with two V ’s, which are the most complicated ones. Using
the commutation rules,

−1

4
Tr

[
V µ∇µ

1

∆
V ν∇ν

1

∆

]
= −1

4
Tr

[
V µ∇µV

ν∇ν
1

∆2
+ V µ∇µ

[
V ν∇ν ,

1

∆

]
1

∆

]
= −1

4
Tr

[
(V µ∇µV

ν)∇ν
1

∆2
+ V µV ν∇(µ∇ν)

1

∆2
+

1

2
V µV ν [∇µ,∇ν ]

1

∆2

+V µ∇µ[V
ν∇ν ,∆]

1

∆3
+ V µ∇µ[V

ν∇ν ,∆]2
1

∆4
+ . . .

]
(C.51)

The first term vanishes because it contains ∇µa0. The second evaluates to

−1

4

1

(4π)2
log

(
Λ2

µ2

)∫
d4x

√
g

(
− 1

12
R trVµV

µ +
1

6
RµνtrV

µV ν

)
. (C.52)

The third term is equal to

−1

8
Tr

[
V µV νΩµν

1

∆2

]
= − 1

16

1

(4π)2
log

(
Λ2

µ2

)∫
d4x

√
g tr Ωµν [V

µ, V ν ] . (C.53)

In the fourth term, we need the single commutator

[V µ∇µ,∆] = V µ (∇ρΩρµ) + V µ (Rµρ − 2Ωµρ)∇ρ + (□V µ)∇µ + 2 (∇ρV µ)∇ρ∇µ . (C.54)

There is an additional ∇ on the left that needs to be brought to the right. When this is done,
there are terms with zero, one, two or three free ∇’s. Because of the presence of 1/∆3, only
the ones with two or three ∇’s are logarithmically divergent. The term with three ∇’s gives
zero because it contains ∇µa0. The remaining terms with two ∇’s give finally

− 1

4
Tr

[
V µ∇µ [V

ν∇ν ,∆]
1

∆3

]
|log.div.

=
1

16

1

(4π)2
log

(
Λ2

µ2

)∫
d4x

√
g
(
trVρ∇2V ρ + 2trV µ∇µ∇ρV

ρ +RµνtrV
µV ν + trΩµν [V

µ, V ν ]
)
.

(C.55)
For the last term, one needs to evaluate the double commutator. It gives

[V µ∇µ,∆]2 = −4(∇ρ∇µV ν)∇ρ∇µ∇ν + . . .

where the ellipses stand for terms with fewer free ∇’s. When we further act with V λ∇λ from
the left and bring ∇λ to the right, because of the presence of 1/∆4, the only term that gives
a log divergence is

V λ∇λ[V
µ∇µ,∆]2 ≈ −4V λ(∇ρ∇µV ν)∇λ∇ρ∇µ∇ν .

We can assume that the covariant derivatives are totally symmetrised, because all the com-
mutators will decrease the number of ∇’s and produce convergent terms of higher dimension.
The result for the fifth term is then

− 1

4
Tr

[
V µ∇µ [V

ν∇ν ,∆]2
1

∆4

]
|log.div.

= − 1

24

1

(4π)2
log

(
Λ2

µ2

)∫
d4x

√
g
(
trVρ∇2V ρ + trV µ∇µ∇ρV

ρ + trV µ∇ν∇µV
ν
)
.

(C.56)
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We can now sum up all the contributions. There is some freedom in the presentation of
the result, and we choose the following way. The terms of the form V∇∇V sum up to

1

48
tr
(
Vρ∇2V ρ + 4V ρ∇ρ∇σV

σ − 2V ρ∇σ∇ρV
σ
)
.

Half of the third term is left alone, and in the other half, we commute the covariant derivatives,
using

[∇µ,∇ν ]V
ρ = Rµν

ρ
σV

σ + [Ωµν , V
ρ]

In this way, we generate a term cancelling the Ricci term, while the other adds to the ΩV V
term. All the remaining terms of the form V∇∇V are then integrated by parts. In this way,
we arrive at our final result

1

2
Tr log (∆ + V µ∇µ +W )|log.div. =

− 1

2

1

(4π)2
log

(
Λ2

µ2

)∫
d4x

√
g tr

[
1

180

(
RµνρλR

µνρλ −RµνR
µν +

5

2
R2

)
+
1

2
W 2 − 1

6
R W − 1

2
W∇µV

µ +
1

12
R ∇µV

µ − 1

24
R V µVµ

+
1

12
ΩµνΩ

µν − 1

6
Ωµν∇µV ν +

1

24
Ωµν [V

µ, V ν ]

+
1

8
∇µV

µ∇νV
ν +

1

24
(∇µVν∇µV ν −∇µVν∇νV µ)

]
(C.57)

We emphasise that there are further log divergences containing higher powers of V and W ,
that we are not interested in here.

C.4 Other trace formulae

We have fields with values in a vectorbundle V with connection and covariant derivative Dµ.
The “gravitational” part of the connection is assumed to be Levi-Civita. We denote ∆ = −D2.
Tr stands for functional trace and tr for the finite dimensional trace in the vectorbundle.

Let F (∆) be some function of the Laplacian. From [79] we can derive formulae for traces
of a function of ∆ with insertions of covariant derivatives.

We define the Q-functionals

Qm(F ) =

∫ ∞

0

dss−mF̃ (s)

=
1

Γ[m]

∫ ∞

0

dzzm−1F (z).

(C.58)

F̃ being the Laplace transform of F . In this section all Q-functionals will always be evaluated
on the same function F , therefore we shall often omit the argument for notational compactness:

Qm = QM [F ] .

The trace of F (∆) can be computed with the usual formula

TrF =
1

(4π)2

∫
d4x

√
g {Q2[F ]b0 +Q1[F ]b2 +Q0[F ]b4 + . . .} . (C.59)
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where bn are the usual heat kernel coefficients of the operator ∆. Since the operator will always
be the same, we shall not need to write bn(∆).

The untraced heat kernel coefficients are bilocal: bn(x, x
′). The overbar denotes evaluation

at coincident points: bn(x) ≡ bn(x, x) is an endomorphisms in the fibre of the vectorbundle
over x. Its trace is bn(x) ≡ trbn(x). Below we will need the covariant derivative of the
coefficients. The quantity Dµ1 . . . Dµmbn is the coincidence limit of the covariant derivative of
bn and is not to be confused with Dµ1 . . . Dµmbn, the covariant derivative of the coincidence
limit of bn. Our notation is related to that of [79] by

b2n = An .

Now let E be an endomorphism in the vectorbundle. We have

TrEF =
1

(4π)2

∫
d4x

√
g {Q2[F ]trEb0 +Q1[F ]trEb2 +Q0[F ]trEb4 + . . .} . (C.60)

Now let V = VµDµ where Vµ are endomorphisms of the vectorbundle.

TrVF =

∫
dsF̃ (s)Tr

(
VµDµe

−s∆
)

=

∫
dsF̃ (s)

1

(4πs)2

∫
d4x

√
g tr

{
VµDµb0 + sVµDµb2 + s2VµDµb4 + . . .

}
=

1

(4π)2

∫
d4x

√
g {Q2trV

µDµb0 +Q1trV
µDµb2 +Q0trV

µDµb4 + . . .} .

(C.61)

Now let W = WµνDµDν where Wµν are endomorphisms of the vectorbundle, symmetric
in µ, ν.

Tr (WF ) =

∫
dsF̃ (s)Tr

(
WµνDµDνe

−s∆
)

=

∫
dsF̃ (s)

1

(4πs)2

∫
d4x

√
g tr

{
1

s
Wµν

(
−1

2
gµνb0

)

+Wµν

(
−1

2
gµνb2 +D(µDν)b0

)
+ sWµν

(
−1

2
gµνb4 +D(µDν)b2

)
+ . . .

}

=
1

(4π)2

∫
d4x

√
g

{
− 1

2
Q3trW

µ
µb0 +Q2

(
−1

2
trWµ

µb2 + trWµνD(µDν)b0

)

+Q1

(
−1

2
trWµ

µb4 + trWµνD(µDν)b2

)
+ . . .

}
.

(C.62)
Now let Y = YµνρDµDνDρ where Yµνρ are endomorphisms of the vectorbundle, totally
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symmetric in µ, ν, ρ.

Tr (YF ) =

∫
dsF̃ (s)Tr

(
YµνρDµDνDρe

−s∆
)

=

∫
dsF̃ (s)

1

(4πs)2

∫
d4x

√
g tr

{
1

s
Yµνρ

(
−3

2
g(µνDρ)b0

)

+Yµνρ

(
−3

2
g(µνDρ)b2 +D(µDνDρ)b0

)
+ . . .

}

=
1

(4π)2

∫
d4x

√
g

{
− 3

2
Q3trYµ

µρDρb0

+Q2

(
−3

2
trYµ

µρDρb2 + trYµνρD(µDνDρ)b0

)
+ . . .

}
.

(C.63)

Finally, let X = XµνρσDµDνDρDσ where Xµνρσ are endomorphisms of the vectorbundle,
totally symmetric in µ, ν, ρ, σ.

Tr (XF ) =

∫
dsF̃ (s)Tr

(
XµνρσDµDνDρDσe

−s∆
)

=

∫
dsF̃ (s)

1

(4πs)2

∫
d4x

√
g tr

{
1

s2
Xµνρσ

(
−3

4
g(µνgρσ)b0

)
+ . . .

}

=
1

(4π)2

∫
d4x

√
g

{
3

4
Q4trXµν

µνb0 + . . .

}
.

(C.64)

C.5 Derivation of beta functions from the Functional

Renormalisation Group

In the literature, the beta functions of gravity, with or without matter, have been often calcu-
lated in the Functional Renormalisation Group (FRG) framework, see, e.g., [27, 168–170] for
reviews on the subject). Since the FRG is based on a momentum cutoff, the beta functions
contain terms proportional to powers of the cutoff, that are not seen with other techniques.
In this appendix, we discuss the way in which one can recover from the FRG the standard
one-loop beta functions that one would see, e.g. in dimensional regularisation. For a more
detailed discussion of the relation between the FRG and dimensional regularisation we refer
to [171].

In the FRG, a cutoff function Rk is introduced by hand in the quadratic part of the action,
in order to suppress the contribution to the functional integral of modes with (Euclidean)
momenta smaller than a cutoff scale k. This leads to a coarse-grained effective action Γk which
coincides with the full effective action at k = 0. The flowing action Γk obeys the flow equation

k
d

dk
Γk ≡ ∂tΓk =

1

2
Tr
[
(Γ

(2)
k +Rk)

−1∂tRk

]
, (C.65)

where Γ
(2)
k is the Hessian constructed from Γk. For our present purposes, it will be enough

to consider a simple case of scalar fields in a background metric, with a Hessian of the form
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Γ
(2)
k = ∆ where ∆ is a Laplace-type operator:

∆ = −∇2 + E ; E = m2 + 12λϕ2 − ξR . (C.66)

This derives from a scalar action containing a potential and a non-minimal coupling to gravity.
Then the r.h.s. of the flow equation is a function W (∆) that, for constant ϕ, can be evaluated
as

TrW (∆) =
1

(4π)d/2

[
Qd/2(W )B0(∆) +Qd/2−1(W )B2(∆) + . . .+Q0(W )Bd(∆) + . . .

]
,(C.67)

with the Q-functionals defined as

Qn(W ) =
(−1)k

Γ(n+ k)

∫ ∞

0

dz zn+k−1W (k)(z) . (C.68)

In eq.(C.68), n ∈ R, W (k)(z) stands for the k-th derivative of W with respect to z. If n > 0,
then k = 0. Otherwise, k is a positive integer such that n+ k > 0. The heat kernel coefficients
are Bn(∆) =

∫
ddx

√
g Tr bn(∆), where

b0 = 1 , b2 =
R

6
− E ,

b4 =
1

180

(
RµναβRµναβ −RµνRµν +

5

2
R2

)
− 1

6
RE +

1

2
E2 . (C.69)

In the flow equation, we are interested in computing Q-functionals of the form

W (z) =
∂tRk(z)

(Pk(z))m
, (C.70)

where Pk(z) = z +Rk(z). If, m = n+ 1, then one can show that

Qn

(
∂tRk

P n+1
k

)
=

2

Γ(n+ 1)
, (C.71)

is “universal”, i.e. independent of the shape of Rk. For certain cutoff schemes the denominator
in the function W is Pk + E, and

Qn (W ) = Qn

(
∂tRk

(Pk + E)m

)
, (C.72)

are, in general, non-universal quantities. Nevertheless, one can extract universal parts of each
Q-functional defined in eq.(C.72) by expanding in E:

Qn

(
∂tRk

(Pk + E)m

)
= Qn

(
∂tRk

Pm
k

(
1−m

E

Pk

+
m(m+ 1)

2

E2

P 2
k

− m(m+ 1)(m+ 2)

3!

E3

P 3
k

+ . . .

))
,

(C.73)
and exploiting the linearity of the Q-functionals to pick up the contribution which satisfies
n = m+ 1.
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Consider first a “type III” cutoff, see, e.g., [27, 172]. The beta functional is

Γ̇k =
1

32π2

[
Q2

(
Ṙk

Pk

)
B0(∆) +Q1

(
Ṙk

Pk

)
B2(∆) +Q0

(
Ṙk

Pk

)
B4(∆) + . . .

]
. (C.74)

Only the last term is universal. Thus

Γ̇k

∣∣∣
univ

=
2

32π2

∫
d4x

√
g b4(∆) . (C.75)

The relevant terms (up to linear order in R which are not total derivatives) are

b4 ∼
1

2
E2 − 1

6
RE

∼ 1

2
m4 + 72λ2ϕ4 + 12λm2ϕ2 +

(
ξ +

1

6

)
m2R + 2λ(6ξ + 1)ϕ2R .

From here one reads off the beta functions

βV=
m4

32π2
,

βm2=
3λm2

2π2
,

βλ=
9λ2

2π2
,

βZN
=
1 + 6ξ

96π2
m2 ,

βξ=
λ(1 + 6ξ)

4π2
.

(C.76)

The same result can be obtained in a more laborious way using a “type I” cutoff. In this
case

Γ̇k=
1

32π2

[
Q2

(
Ṙk

Pk + E

)
B0(−∇2)+Q1

(
Ṙk

Pk + E

)
B2(−∇2)+Q0

(
Ṙk

Pk + E

)
B4(−∇2)+. . .

]
.

(C.77)
The universal terms come from all three pieces in this expression when one expands in E: the
third term in the expansion for Q2, the second for Q1 and the leading term for Q0. In the
latter term, B4(−∇2) is of order R2 and does not concern us. The rest is

Γ̇k∼
1

32π2

[
Q2

(
Ṙk

P 3
k

)
E2B0(−∇2) +Q1

(
Ṙk

P 2
k

)
(−E)B2(−∇2) + . . .

]
,

=
1

32π2

∫
d4x

√
g

[
E2 − 2E

1

6
R + . . .

]
,

which is clearly the same as before, and therefore leads to the same beta functions. Note
that the universal parts of the beta functions are those that come from the dimensionless
Q-functionals and therefore are independent of k, see eq.C.71.
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C.6 Some General Expressions

In this appendix, we collect some long expressions that were omitted in the main text. In
particular, the beta function of the non-minimal coupling ξ depends on the choice of metric
parameterisation. Hence, in the exponential parameterisation in a general linear covariant
gauge (6.47), the factor F in eq.(6.48) is

F (α, β, ξ) = −4
F1(α, β, ξ)− 3 (F2(β, ξ) + F3(β, ξ) + F4(β, ξ) + F5(β, ξ) + F6(β, ξ))

(3− β)4
, (C.78)

with
F1(α, β, ξ) = 24α2 + 2α(β2(24ξ + 1)− 18β(4ξ + 1)− 27) ,

F2(β, ξ) = β4ξ2(12ξ − 1) ,

F3(β, ξ) = −4β3ξ
(
36ξ2 + 9ξ − 1

)
,

F4(β, ξ) = β2
(
648ξ3 + 342ξ2 + 36ξ − 2

)
,

F5(β, ξ) = −12β
(
108ξ3 + 81ξ2 + 15ξ + 1

)
,

F6(β, ξ) = 9
(
108ξ3 + 99ξ2 + 12ξ − 2

)
.

As for the linear parameterisation, the expression for G(α, β, ξ) in (6.57) is

G(α, β, ξ) = 2
G1(α, β) +G2(α, β, ξ) + 3G4(β, ξ)

(3− β)4
(C.79)

with

G1(α, β) = −3α2(3(β − 6)β((β − 6)β + 18) + 259) ,

G2(α, β, ξ) = α(2β(β(3(β − 12)β + 24ξ + 194)− 396)− 432ξ + 630) ,

G3(β, ξ) = −13β4 + 112β3 − 458β2 + 24(β − 3)4ξ3 ,

G4(β, ξ) =
(
2(β(5β − 42) + 117)(β − 3)2ξ2 − 8(β(5β − 12) + 27)(β − 3)ξ + 888β − 657

)
.

(C.80)
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Appendix D

Other useful MAG formulae

D.1 Lagrangian bases

D.1.1 Antisymmetric MAG in Cartan form: the leftover terms

At the end of Section 3.3.2 we give two bases for the dimension-four terms of the type. Here
we give the formulas for the remaining invariants as linear combinations of the basis elements.
Using the first basis (3.27)

LFF
3 = LFF

1 − 3/2LTT
1 − LTT

2 + 3LTT
4 + LTT

5 − 1/2LTT
6 + 2LTT

7 ,

LFF
4 = 1/2(LFF

1 − LTT
1 ) + LTT

4 ,

LFF
8 = LFF

7 − LTT
3 − 1/2LTT

6 + 2LTT
8 + LTT

9 ,

LFT
1 = LFT

13 + 1/2LTT
1 − LTT

4 − LTT
7 + LTT

8 ,

LFT
3 = 2LFT

13 + 1/2LTT
1 + LTT

2 − LTT
4 − LTT

5 − 1/2LTT
6 − 2LFF

7 + 2LFF
8 ,

LFT
4 = LFT

13 − 1/2LTT
6 + LTT

8 ,

LFT
5 = 2LFT

13 − 2LTT
7 + 2LTT

8 ,

LFT
8 = −1/2LFT

21 − LTT
3 + LTT

8 + LTT
9 ,

LFT
9 = −1/2LFT

21 ,

LFT
14 = LFT

13 − LTT
7 + LTT

8 ,

LFT
17 = 1/2LTT

6 − LTT
8 .

(D.1)
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Using the second basis (3.28)

LFT
3 = −LFF

3 + 2LFF
4 − 2LFF

7 + 2LFF
8 − 2LFT

8 + 2LFT
9 + 2LFT

13 ,

LFT
4 = −LFF

7 + LFF
8 − LFT

8 + LFT
9 + LFT

13 ,

LFT
5 = −LFF

1 + 2LFF
4 + 2LFT

1 ,

LFT
14 = 1/2(−LFF

1 + 2LFF
4 + 2LFT

1 ) ,

LFT
17 = LFF

7 − LFF
8 + LFT

8 − LFT
9 ,

LFT
21 = −2LFT

9 ,

LTT
4 = 1/2(−LFF

1 + 2LFF
4 + LTT

1 ) ,

LTT
6 = −LFF

1 + 2LFF
3 − 2LFF

4 + 4LFF
7 − 4LFF

8 + 4LFT
1 + 4LFT

8 − 4LFT
9 − 4LFT

13 + 2LTT
2 − 2LTT

5 ,

LTT
7 = LFF

3 − 2LFF
4 + LFF

7 − LFF
8 + LFT

1 + LFT
8 − LFT

9 − LFT
13 + LTT

2 − LTT
5 ,

LTT
8 = −1/2LFF

1 + LFF
3 − LFF

4 + LFF
7 − LFF

8 + 2LFT
1 + LFT

8 − LFT
9 − 2LFT

13 + LTT
2 − LTT

5 ,

LTT
9 = 1/2LFF

1 − LFF
3 + LFF

4 − LFF
7 + LFF

8 − 2LFT
1 + 2LFT

13 − LTT
2 + LTT

3 + LTT
5 .

(D.2)

D.1.2 Symmetric MAG in Cartan form: the leftover terms

At the end of Section 3.4.2 we give two bases for the dimension-four terms of the type. Here
we give the formulas for the remaining invariants as linear combinations of the basis elements.

Using the first basis (3.54)

LFF
2 = −LFF

1 + LQQ
1 − LQQ

6 ,

LFF
3 = 1/2(2LFF

1 − 3LQQ
1 + 2LQQ

2 + 3LQQ
6 + 2LQQ

7 − 4LQQ
9 ) ,

LFF
8 = 1/4(4LFF

7 − LQQ
4 + LQQ

14 ) ,

LFF
9 = LFF

7 − 2LFQ
18 + LFQ

24 + LQQ
3 − LQQ

5 + LQQ
7 − 2LQQ

10 + LQQ
12 − LQQ

15 + LQQ
16 ,

LFF
10 = 1/4(4LFF

7 − 8LFQ
18 + 4LFQ

24 − LQQ
4 + 4LQQ

8 − 4LQQ
11 − 4LQQ

12 + 4LQQ
13 + LQQ

14 ) ,

LFF
11 = 1/2(−2LFF

7 + 2LFQ
18 − LFQ

24 + LQQ
5 − LQQ

12 + LQQ
15 − LQQ

16 ) ,

LFF
12 = 1/4(−4LFF

7 + 4LFQ
18 − 2LFQ

24 + LQQ
4 + 2LQQ

11 − 2LQQ
12 − 2LQQ

13 − LQQ
14 + 2LQQ

15 ) ,

LFQ
1 = 1/2(LQQ

1 − LQQ
6 ) ,

LFQ
2 = −LFQ

16 + LFQ
18 + 1/2LQQ

1 − LQQ
2 − 1/2LQQ

6 − LQQ
7 + 2LQQ

9 ,

LFQ
3 = 1/2(2LFQ

16 − 2LFQ
18 − LQQ

1 + LQQ
6 + 2LQQ

7 − 2LQQ
9 ) ,

LFQ
4 = LFQ

16 − LFQ
18 ,

LFQ
5 = −LFQ

16 + LFQ
18 − LQQ

7 + LQQ
9 ,

LFQ
6 = 1/2(LFQ

24 − LQQ
5 + LQQ

12 − LQQ
15 + LQQ

16 ) ,

LFQ
7 = 1/2(LFQ

24 + LQQ
12 − LQQ

15 ) ,

LFQ
8 = 1/2(LFQ

23 − LQQ
4 + LQQ

13 + LQQ
14 − LQQ

16 ) ,

LFQ
9 = 1/2(LFQ

23 + LQQ
13 − LQQ

16 ) ,

LFQ
10 = 1/2(−LFQ

24 − 2LQQ
3 + LQQ

5 + 2LQQ
10 − LQQ

12 + LQQ
15 − LQQ

16 ) ,

(D.3)
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LFQ
11 = 1/2(−LFQ

24 + LQQ
12 − LQQ

15 ) ,

LFQ
12 = 1/2(−LFQ

23 + LQQ
4 − 2LQQ

5 + 2LQQ
11 − LQQ

13 − LQQ
14 + LQQ

16 ) ,

LFQ
13 = 1/2(−LFQ

23 + LQQ
13 − LQQ

16 ) ,

LFQ
14 = 1/2(LQQ

5 − LQQ
16 ) ,

LFQ
15 = 1/2(LQQ

4 − LQQ
14 ) ,

LFQ
17 = −LFQ

16 + LQQ
9 − LQQ

10 ,

LFQ
19 = 1/2(2LFQ

18 + LQQ
11 − LQQ

13 ) ,

LFQ
20 = −LFQ

18 + LQQ
7 − LQQ

10 ,

LFQ
21 = 1/2(−2LFQ

18 + 2LQQ
8 − LQQ

11 − 2LQQ
12 + LQQ

13 ) ,

LFQ
22 = 1/2(LQQ

11 − LQQ
13 ) .

(D.4)

Using the second basis (3.55)

LFQ
1 = 1/2(LFF

1 + LFF
2 ) ,

LFQ
2 = −LFF

2 − LFF
3 − LFQ

16 + LFQ
18 ,

LFQ
3 = 1/2(−LFF

1 − LFF
2 + 2LFF

9 + 2LFF
11 + 2LFQ

10 − 2LFQ
17 ) ,

LFQ
4 = LFQ

16 − LFQ
18 ,

LFQ
5 = −LFF

9 − LFF
11 − LFQ

10 + LFQ
17 ,

LFQ
6 = −LFF

7 − LFF
11 + LFQ

18 ,

LFQ
7 = −LFF

7 − LFF
11 + LFQ

14 + LFQ
18 ,

LFQ
8 = −2LFF

7 + 2LFF
8 + 2LFF

11 − 2LFF
12 + LFQ

12 + LFQ
23 ,

LFQ
9 = 2LFF

11 − 2LFF
12 + LFQ

12 + LFQ
23 ,

LFQ
13 = 2LFF

11 − 2LFF
12 + LFQ

12 ,

LFQ
15 = 2(LFF

7 − LFF
8 ) ,

LFQ
19 = −LFF

7 + LFF
8 − LFF

11 + LFF
12 + LFQ

14 + LFQ
18 ,

LFQ
20 = LFF

9 + LFF
11 + LFQ

10 ,

LFQ
21 = LFF

10 + LFF
12 + LFQ

11 ,

LFQ
22 = −LFF

7 + LFF
8 − LFF

11 + LFF
12 + LFQ

14 ,

LFQ
24 = −LFF

7 − LFF
11 − LFQ

11 + LFQ
14 + LFQ

18 ,

(D.5)
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LQQ
2 = 1/2LFF

1 + 3/2LFF
2 + LFF

3 − LFF
9 − LFF

11 − LFQ
10 + 2LFQ

16 + 2LFQ
17 − LFQ

18 + LQQ
10 ,

LQQ
3 = LFF

7 + LFF
11 − LFQ

10 − LFQ
18 + LQQ

10 ,

LQQ
4 = 4LFF

7 − 4LFF
8 + LQQ

14 ,

LQQ
5 = 2LFF

7 − 2LFF
8 − 2LFF

11 + 2LFF
12 − 2LFQ

12 − LFQ
23 + LQQ

11 ,

LQQ
6 = −LFF

1 − LFF
2 + LQQ

1 ,

LQQ
7 = LFF

9 + LFF
11 + LFQ

10 + LFQ
18 + LQQ

10 ,

LQQ
8 = −LFF

7 + LFF
8 + LFF

10 − LFF
11 + 2LFF

12 + LFQ
11 + LFQ

14 + LFQ
18 + LQQ

12 ,

LQQ
9 = LFQ

16 + LFQ
17 + LQQ

10 ,

LQQ
13 = 2LFF

7 − 2LFF
8 + 2LFF

11 − 2LFF
12 − 2LFQ

14 + LQQ
11 ,

LQQ
15 = LFF

7 + LFF
11 − LFQ

11 − LFQ
14 − LFQ

18 + LQQ
12 ,

LQQ
16 = 2LFF

7 − 2LFF
8 − 2LFF

11 + 2LFF
12 − 2LFQ

12 − 2LFQ
14 − LFQ

23 + LQQ
11 .

(D.6)

D.1.3 General MAG in Cartan form: the leftover terms

We give the formulas mentioned at the end of Section 3.5.2. Using the first basis (3.80)

LFF
2 =−LFF

1 + LQQ
1 − LQQ

6 ,

LFF
3 =LFF

1 − 3/2LQQ
1 + LQQ

2 + 3/2LQQ
6 + LQQ

7 − 2LQQ
9 − 3/2LTT

1 − LTT
2 + 3LTT

4 + LTT
5

− 1/2LTT
6 + 2LTT

7 + 4LTQ
1 − 4LTQ

4 + 4LTQ
7 ,

LFF
4 =1/2LFF

1 − LQQ
1 + LQQ

2 + LQQ
6 + LQQ

7 − 2LQQ
9 − 1/2LTT

1 + LTT
4 + 2LTQ

1 − 2LTQ
4 + 2LTQ

7 ,

LFF
5 =−1/2LFF

1 + 1/2LQQ
1 − 1/2LQQ

6 + 1/2LTT
1 − LTT

4 − LTQ
1 + LTQ

4 − LTQ
7 ,

LFF
6 =1/2LFF

1 − 1/2LTT
1 + LTT

4 ,

LFF
8 =LFF

7 − 1/4LQQ
4 + 1/4LQQ

14 − LTT
3 − 1/2LTT

6 + 2LTT
8 + LTT

9 − LTQ
3 + LTQ

9 − LTQ
12 ,

LFF
9 =LFF

7 − 2LFQ
18 + LFQ

24 + LQQ
3 − LQQ

5 + LQQ
7 − 2LQQ

10 + LQQ
12 − LQQ

15 + LQQ
16

− 2LTQ
2 + 2LTQ

8 − 2LTQ
13 ,

(D.7)

LFF
10 =LFF

7 − 2LFQ
18 + LFQ

24 − 1/4LQQ
4 + LQQ

8 − LQQ
11 − LQQ

12 + LQQ
13 + 1/4LQQ

14

− LTQ
3 + 2LTQ

5 + LTQ
9 − 2LTQ

10 + 2LTQ
11 − LTQ

12 − LTT
3 − 1/2LTT

6 + 2LTT
8 + LTT

9 ,

LFF
11 =−LFF

7 + LFQ
18 − 1/2LFQ

24 + 1/2LQQ
5 − 1/2LQQ

12 + 1/2LQQ
15 − 1/2LQQ

16 + LTQ
2 − LTQ

8 + LTQ
13 ,

LFF
12 =−LFF

7 + LFQ
18 − 1/2LFQ

24 + 1/4LQQ
4 + 1/2LQQ

11 − 1/2LQQ
12 − 1/2LQQ

13 − 1/4LQQ
14 + 1/2LQQ

15

+ LTT
3 + 1/2LTT

6 − 2LTT
8 − LTT

9 + LTQ
3 − LTQ

5 − LTQ
9 + LTQ

10 − LTQ
11 + LTQ

12 ,

LFF
13 =1/2(LQQ

4 − LQQ
14 ) ,

LFF
14 =1/4(−LQQ

4 + LQQ
14 − 2LTQ

3 + 2LTQ
9 − 2LTQ

12 ) ,

LFF
15 =1/4(LQQ

4 − 2LQQ
5 + 2LQQ

11 − 2LQQ
13 − LQQ

14 + 2LQQ
16 + 2LTQ

3 − 2LTQ
9 + 2LTQ

12 ) ,
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(D.8)

LFT
1 =LFT

13 + 1/2LTT
1 − LTT

4 − LTT
7 + LTT

8 − LTQ
7 + 1/2LTQ

9 ,

LFT
2 =−LFT

13 − 1/2LTT
1 + LTT

4 + LTT
7 − LTT

8 + LTQ
1 − LTQ

4 + LTQ
7 − 1/2LTQ

9 ,

LFT
3 =2LFT

13 + 1/2LTT
1 + LTT

2 − LTT
4 − LTT

5 − 1/2LTT
6 − 2LTT

7 + 2LTT
8

− LTQ
1 + LTQ

4 + LTQ
5 − LTQ

6 − LTQ
7 + LTQ

9 ,

LFT
4 =LFT

13 − 1/2LTT
6 + LTT

8 + 1/2LTQ
9 ,

LFT
5 =2LFT

13 − 2LTT
7 + 2LTT

8 + LTQ
9 ,

LFT
6 =−LFT

13 + 1/2LTT
6 − LTT

8 − LTQ
5 + LTQ

6 − 1/2LTQ
9 ,

LFT
7 =−2LFT

13 + 2LTT
7 − 2LTT

8 + 2LTQ
7 − LTQ

9 ,

LFT
8 =1/2(−LFT

21 − 2LTT
3 + 2LTT

8 + 2LTT
9 − LTQ

3 + LTQ
11 − LTQ

12 + LTQ
13 ) ,

LFT
9 =1/2(−LFT

21 + LTQ
11 + LTQ

13 ) ,

LFT
10 =1/2L

FT
21 + LTT

3 − LTT
8 − LTT

9 − LTQ
2 + 1/2LTQ

3 + LTQ
10 − 1/2LTQ

11 + 1/2LTQ
12 − 1/2LTQ

13 ,

(D.9)

LFT
11 =1/2(L

FT
21 + LTQ

11 + LTQ
13 ) ,

LFT
12 =1/2(L

TQ
3 + LTQ

12 ) ,

LFT
14 =L

FT
13 − LTT

7 + LTT
8 + 1/2LTQ

9 ,

LFT
15 =−LFT

13 + LTQ
6 − LTQ

8 ,

LFT
16 =−LFT

13 + LTT
7 − LTT

8 + LTQ
7 − 1/2LTQ

9 ,

LFT
17 =1/2L

TT
6 − LTT

8 − 1/2LTQ
9 ,

LFT
18 =−1/2LTT

6 + LTT
8 + LTQ

5 − LTQ
8 + 1/2LTQ

9 ,

LFT
19 =1/2L

TQ
9 ,

LFT
20 =L

TQ
9 ,

(D.10)
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LFQ
1 =1/2(LQQ

1 − LQQ
6 ) ,

LFQ
2 =−LFQ

16 + LFQ
18 + 1/2LQQ

1 − LQQ
2 − 1/2LQQ

6 − LQQ
7 + 2LQQ

9 − LTQ
1 + LTQ

4 − LTQ
7 ,

LFQ
3 =LFQ

16 − LFQ
18 − 1/2LQQ

1 + 1/2LQQ
6 + LQQ

7 − LQQ
9 + LTQ

1 − LTQ
4 + LTQ

7 ,

LFQ
4 =LFQ

16 − LFQ
18 ,

LFQ
5 =−LFQ

16 + LFQ
18 − LQQ

7 + LQQ
9 ,

LFQ
6 =1/2(LFQ

24 − LQQ
5 + LQQ

12 − LQQ
15 + LQQ

16 − 2LTQ
2 + 2LTQ

8 − 2LTQ
13 ) ,

LFQ
7 =1/2(LFQ

24 + LQQ
12 − LQQ

15 ) ,

LFQ
8 =1/2(LFQ

23 − LQQ
4 + LQQ

13 + LQQ
14 − LQQ

16 − 2LTQ
3 + 2LTQ

9 − 2LTQ
12 ) ,

LFQ
9 =1/2(LFQ

23 + LQQ
13 − LQQ

16 ) ,

LFQ
10 =−1/2LFQ

24 − LQQ
3 + 1/2LQQ

5 + LQQ
10 − 1/2LQQ

12 + 1/2LQQ
15 − 1/2LQQ

16 + LTQ
2 − LTQ

8 + LTQ
13 ,

LFQ
11 =1/2(−LFQ

24 + LQQ
12 − LQQ

15 ) ,

LFQ
12 =−1/2LFQ

23 + 1/2LQQ
4 − LQQ

5 + LQQ
11 − 1/2LQQ

13 − 1/2LQQ
14 + 1/2LQQ

16 + LTQ
3 − LTQ

9 + LTQ
12 ,

LFQ
13 =1/2(−LFQ

23 + LQQ
13 − LQQ

16 ) ,

LFQ
14 =1/2(LQQ

5 − LQQ
16 ) ,

(D.11)

LFQ
15 =1/2(LQQ

4 − LQQ
14 ) ,

LFQ
17 =−LFQ

16 + LQQ
9 − LQQ

10 ,

LFQ
19 =LFQ

18 + 1/2LQQ
11 − 1/2LQQ

13 − LTQ
5 + LTQ

10 − LTQ
11 ,

LFQ
20 =−LFQ

18 + LQQ
7 − LQQ

10 ,

LFQ
21 =−LFQ

18 + LQQ
8 − 1/2LQQ

11 − LQQ
12 + 1/2LQQ

13 + LTQ
5 − LTQ

10 + LTQ
11 ,

LFQ
22 =1/2(LQQ

11 − LQQ
13 ) .

(D.12)

Using the second basis (3.81)

LFT
2 =1/2LFF

2 − LFF
5 − LFT

14 ,

LFT
3 =−LFF

3 + LFF
4 − LFF

5 − LFF
7 + LFF

8 − LFF
14 − LFT

8 + LFT
9 + LFT

13 − LFT
15 + LFT

18 ,

LFT
4 =−LFF

7 + LFF
8 − LFF

14 − LFT
8 + LFT

9 + LFT
13 ,

LFT
5 =2LFT

14 ,

LFT
6 =LFT

15 − LFT
18 ,

LFT
7 =LFF

1 − 2LFF
6 − 2LFT

1 ,

LFT
10 =−LFF

11 + LFF
12 − LFF

15 + LFT
9 + LFT

18 + LFT
21 ,

LFT
11 =L

FT
9 + LFT

21 ,

LFT
16 =1/2L

FF
1 − LFF

6 − LFT
1 ,

LFT
17 =L

FF
7 − LFF

8 + LFF
14 + LFT

8 − LFT
9 ,

LFT
19 =1/2L

FF
13 + LFF

14 + LFT
12 ,

LFT
20 =L

FF
13 + 2LFF

14 + 2LFT
12 ,

(D.13)
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LFQ
1 =1/2

(
LFF
1 + LFF

2

)
,

LFQ
2 =−LFF

4 − LFF
5 − LFQ

16 + LFQ
18 ,

LFQ
3 =−LFF

5 − LFF
6 + LFF

9 + LFF
11 + LFQ

10 − LFQ
17 ,

LFQ
4 =LFQ

16 − LFQ
18 ,

LFQ
5 =−LFF

9 − LFF
11 − LFQ

10 + LFQ
17 ,

LFQ
6 =−LFF

7 − LFF
11 + LFQ

18 ,

LFQ
7 =−LFF

8 − LFF
12 + LFQ

19 ,

LFQ
8 =2LFF

14 − 2LFF
15 + LFQ

12 + LFQ
23 ,

LFQ
9 =−2LFF

15 + LFQ
12 + LFQ

23 ,

LFQ
13 =−2LFF

15 + LFQ
12 ,

LFQ
15 =LFF

13 ,

LFQ
20 =LFF

9 + LFF
11 + LFQ

10 ,

LFQ
21 =LFF

10 + LFF
12 + LFQ

11 ,

LFQ
22 =LFF

14 + LFF
15 + LFQ

14 ,

LFQ
24 =−LFF

8 − LFF
12 − LFQ

11 + LFQ
19 ,

(D.14)
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LTT
4 =−1/2LFF

1 + LFF
6 + 1/2LTT

1 ,

LTT
6 =−LFF

2 + 2LFF
3 − 2LFF

4 + 4LFF
5 + 4LFF

7 − 4LFF
8 + 4LFF

14 + 4LFT
8 − 4LFT

9 − 4LFT
13

+ 4LFT
14 + 2LTT

2 − 2LTT
5 ,

LTT
7 =−1/2LFF

2 + LFF
3 − LFF

4 + 2LFF
5 + LFF

7 − LFF
8 + LFF

14 + LFT
8 − LFT

9 − LFT
13 + LFT

14

+ LTT
2 − LTT

5 ,

LTT
8 =−1/2LFF

2 + LFF
3 − LFF

4 + 2LFF
5 + LFF

7 − LFF
8 − 1/2LFF

13 + LFT
8 − LFT

9 − LFT
12

− 2LFT
13 + 2LFT

14 + LTT
2 − LTT

5 ,

LTT
9 =1/2LFF

2 − LFF
3 + LFF

4 − 2LFF
5 − LFF

7 + LFF
8 + 1/2LFF

13 + 2LFT
12 + 2LFT

13 − 2LFT
14

− LTT
2 + LTT

3 + LTT
5 ,

LQQ
2 =LFF

4 + 2LFF
5 + LFF

6 − LFF
9 − LFF

11 − LFQ
10 + 2LFQ

16 + 2LFQ
17 − LFQ

18 + LQQ
10 ,

LQQ
3 =LFF

7 + LFF
11 − LFQ

10 − LFQ
18 + LQQ

10 ,

LQQ
4 =2LFF

13 + LQQ
14 ,

LQQ
5 =−2LFF

14 + 2LFF
15 − 2LFQ

12 − LFQ
23 + LQQ

11 ,

LQQ
6 =−LFF

1 − LFF
2 + LQQ

1 ,

LQQ
7 =LFF

9 + LFF
11 + LFQ

10 + LFQ
18 + LQQ

10 ,

LQQ
8 =LFF

10 + LFF
12 + LFQ

11 + LFQ
19 + LQQ

12 ,

LQQ
9 =LFQ

16 + LFQ
17 + LQQ

10 ,

LQQ
13 =−2LFF

14 − 2LFF
15 − 2LFQ

14 + LQQ
11 ,

LQQ
15 =LFF

8 + LFF
12 − LFQ

11 − LFQ
19 + LQQ

12 ,

LQQ
16 =−2LFF

14 + 2LFF
15 − 2LFQ

12 − 2LFQ
14 − LFQ

23 + LQQ
11 ,

LTQ
2 =LFF

11 − LFF
12 + LFF

15 − LFT
8 − LFT

9 − LFT
18 − LFT

21 + LTQ
10 ,

LTQ
3 =2LFT

12 − LTQ
12 ,

LTQ
4 =−1/2LFF

2 + LFF
5 − LFT

1 + LFT
14 + LTQ

1 ,

LTQ
5 =LFF

14 + LFF
15 + LFQ

14 + LFQ
18 − LFQ

19 + LTQ
10 − LTQ

11 ,

LTQ
6 =−LFF

7 + LFF
8 + LFF

15 + LFQ
14 + LFQ

18 − LFQ
19 − LFT

8 + LFT
9 + LFT

13 + LFT
15 − LFT

18

+ LTQ
10 − LTQ

11 ,

LTQ
7 =1/2LFF

1 − LFF
6 − LFT

1 + LFT
14 ,

LTQ
8 =−LFF

7 + LFF
8 + LFF

15 + LFQ
14 + LFQ

18 − LFQ
19 − LFT

8 + LFT
9 − LFT

18 + LTQ
10 − LTQ

11 ,

LTQ
9 =LFF

13 + 2LFF
14 + 2LFT

12 ,

LTQ
13 =2L

FT
9 + LFT

21 − LTQ
11 .

(D.15)

122



D.2 Maps

D.2.1 General MAG in Einstein form: ϕ↔ TQ map

Concerning the dimension-two terms, the relation between the couplings in the Einstein form
and those in the Cartan form has already been given in (3.10). Given the Lagrangian in the
form (3.8), it can be rewritten in the form (3.11), where the couplings are related as follows:

mTT
1 = 1/4(3mϕϕ

1 − 3mϕϕ
2 +mϕϕ

3 +mϕϕ
4 −mϕϕ

5 ) ,

mTT
2 = 1/2(mϕϕ

1 −mϕϕ
2 +mϕϕ

3 +mϕϕ
4 −mϕϕ

5 ) ,

mTT
3 = mϕϕ

6 +mϕϕ
7 −mϕϕ

9 ,

mQQ
1 = 1/4(3mϕϕ

1 −mϕϕ
2 + 3mϕϕ

3 −mϕϕ
4 −mϕϕ

5 ) ,

mQQ
2 = 1/2(−mϕϕ

1 +mϕϕ
2 −mϕϕ

3 +mϕϕ
4 +mϕϕ

5 ) ,

mQQ
3 = 1/4(mϕϕ

6 +mϕϕ
7 +mϕϕ

8 −mϕϕ
9 +mϕϕ

10 −mϕϕ
11 ) ,

mQQ
4 = mϕϕ

7 ,

mQQ
5 = 1/2(−2mϕϕ

7 +mϕϕ
9 +mϕϕ

11 ) ,

mTQ
1 = −2mϕϕ

1 + 2mϕϕ
2 − 2mϕϕ

3 +mϕϕ
5 ,

mTQ
2 = 1/2(2mϕϕ

6 + 2mϕϕ
7 − 2mϕϕ

9 +mϕϕ
10 −mϕϕ

11 ) ,

mTQ
3 = −2mϕϕ

7 +mϕϕ
9 .

(D.16)

Similarly, the dimension-four terms are related as follows: 1:

bRT
3 = bRϕ

8 − bRϕ
9 , bRT

5 = bRϕ
11 − bRϕ

12 ,

bRQ
4 = 1/2(bRϕ

7 − bRϕ
8 + bRϕ

9 ) , bRQ
5 = bRϕ

8 ,

bRQ
6 = 1/2(bRϕ

10 − bRϕ
11 + bRϕ

12 ) , bRQ
7 = bRϕ

11 ,

(D.17)

bTT
1 = 1/4(3bϕϕ1 − 3bϕϕ2 + bϕϕ3 + bϕϕ4 − bϕϕ5 ) ,

bTT
2 = 1/2(bϕϕ1 − bϕϕ2 + bϕϕ3 + bϕϕ4 − bϕϕ5 ) ,

bTT
3 = bϕϕ6 + bϕϕ7 − bϕϕ9 ,

bTT
4 = 1/2(bϕϕ12 − bϕϕ13 + bϕϕ14 + bϕϕ15 + bϕϕ16 + bϕϕ17 − bϕϕ22 − bϕϕ23 ) ,

bTT
5 = 1/2(−bϕϕ12 + bϕϕ13 + bϕϕ14 + bϕϕ15 + bϕϕ16 + bϕϕ17 − bϕϕ22 − bϕϕ23 ) ,

bTT
6 = 1/4(bϕϕ12 − bϕϕ13 + bϕϕ14 − bϕϕ15 + bϕϕ16 − bϕϕ17 + bϕϕ18 − bϕϕ19 − bϕϕ20 + bϕϕ21 − bϕϕ22 + bϕϕ23 ) ,

bTT
7 = 1/2(2bϕϕ12 − 2bϕϕ13 + bϕϕ18 − bϕϕ19 − bϕϕ20 + bϕϕ21 ) ,

bTT
8 = bϕϕ24 − bϕϕ25 − bϕϕ27 + bϕϕ28 ,

bTT
9 = bϕϕ34 + bϕϕ35 − bϕϕ38 ,

(D.18)

1We are choosing the basis (3.71) and basis (3.73)
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bQQ
1 = 1/4(3bϕϕ1 − bϕϕ2 + 3bϕϕ3 − bϕϕ4 − bϕϕ5 ) ,

bQQ
2 = 1/2(−bϕϕ1 + bϕϕ2 − bϕϕ3 + bϕϕ4 + bϕϕ5 ) , bQQ

3 = bϕϕ7 ,

bQQ
4 = 1/4(bϕϕ6 + bϕϕ7 + bϕϕ8 − bϕϕ9 + bϕϕ10 − bϕϕ11 ) , bQQ

5 = 1/2(−2bϕϕ7 + bϕϕ9 + bϕϕ11 ) ,

bQQ
6 = 1/4(bϕϕ12 + bϕϕ13 + bϕϕ14 + bϕϕ15 + bϕϕ16 + bϕϕ17 − bϕϕ18 − bϕϕ19 + bϕϕ20 + bϕϕ21 − bϕϕ22 − bϕϕ23 ) ,

bQQ
7 = 1/2(bϕϕ12 − bϕϕ13 + bϕϕ14 + bϕϕ15 + bϕϕ16 − bϕϕ17 − bϕϕ20 + bϕϕ21 ) ,

bQQ
8 = 1/2(−bϕϕ12 + bϕϕ13 + bϕϕ14 + bϕϕ15 − bϕϕ16 + bϕϕ17 + bϕϕ20 − bϕϕ21 ) ,

bQQ
9 = 1/2(−2bϕϕ14 − 2bϕϕ15 + bϕϕ18 + bϕϕ19 + bϕϕ22 + bϕϕ23 ) ,

bQQ
10 = bϕϕ28 , bQQ

11 = 1/2(bϕϕ27 − bϕϕ28 + bϕϕ29 ) , bQQ
12 = 1/2(bϕϕ25 − bϕϕ28 + bϕϕ31 ) ,

bQQ
13 = 1/4(bϕϕ24 − bϕϕ25 + bϕϕ26 − bϕϕ27 + bϕϕ28 − bϕϕ29 + bϕϕ30 − bϕϕ31 + bϕϕ32 ) ,

bQQ
14 = 1/4(bϕϕ33 + bϕϕ34 + bϕϕ35 − bϕϕ36 + bϕϕ37 − bϕϕ38 ) ,

bQQ
15 = bϕϕ34 , bQQ

16 = 1/2(−2bϕϕ34 + bϕϕ36 + bϕϕ38 ) ,

(D.19)

bTQ
1 = −2bϕϕ1 + 2bϕϕ2 − 2bϕϕ3 + bϕϕ5 , bTQ

2 = −2bϕϕ7 + bϕϕ9 ,

bTQ
3 = bϕϕ6 + bϕϕ7 − bϕϕ9 + (bϕϕ10 − bϕϕ11 )/2 ,

bTQ
4 = 1/2(−2bϕϕ14 − 2bϕϕ15 − 2bϕϕ16 − 2bϕϕ17 + bϕϕ18 + bϕϕ19 − bϕϕ20 − bϕϕ21 + 2bϕϕ22 + 2bϕϕ23 ) ,

bTQ
5 = 1/2(−2bϕϕ12 + 2bϕϕ13 − 2bϕϕ16 + 2bϕϕ17 − bϕϕ18 + bϕϕ19 + 2bϕϕ20 − 2bϕϕ21 + bϕϕ22 − bϕϕ23 ) ,

bTQ
6 = 1/2(−2bϕϕ12 + 2bϕϕ13 + 2bϕϕ14 + 2bϕϕ15 + bϕϕ20 − bϕϕ21 − bϕϕ22 − bϕϕ23 ) ,

bTQ
7 = 1/2(2bϕϕ12 − 2bϕϕ13 + 2bϕϕ14 + 2bϕϕ15 − bϕϕ20 + bϕϕ21 − bϕϕ22 − bϕϕ23 ) ,

bTQ
8 = bϕϕ25 − bϕϕ28 , bTQ

9 = 1/2(bϕϕ24 − bϕϕ25 + bϕϕ26 − bϕϕ27 + bϕϕ28 − bϕϕ29 ) ,

bTQ
10 = bϕϕ27 − bϕϕ28 , bTQ

11 = 1/2(bϕϕ24 − bϕϕ25 − bϕϕ27 + bϕϕ28 + bϕϕ30 − bϕϕ31 ) ,

bTQ
12 = 1/2(−2bϕϕ34 − 2bϕϕ35 + bϕϕ36 − bϕϕ37 + 2bϕϕ38 ) , bTQ

13 = 2bϕϕ34 − bϕϕ38 .

(D.20)

D.2.2 Einstein ↔ Cartan map

Here we report the linear map between the coefficients of the general MAG Lagrangian in the
Cartan form and in the Einstein form. In order not to rely on a particular basis, we give the
general relation between the linearly dependent terms, namely the map from the 99 c-type
coefficients to the 53 b-type coefficients. In order to derive the map between coefficients in
fixed bases, one has to remove from the r.h.s. all the c-coefficients that are not part of the
Cartan basis and from the l.h.s. all the b-coefficients that are not part of the Einstein basis
(this happens only in the bRT and bRQ sectors).

bRR
1 = cFF

1 − cFF
2 + cFF

3 + (cFF
4 − cFF

5 + cFF
6 )/2 ,

bRR
2 = cFF

7 + cFF
8 + cFF

9 + cFF
10 − cFF

11 − cFF
12 ,

bRR
3 = cFF

16 ,

(D.21)
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bRT
1 + 2bRT

2 + bRT
3 = 8cFF

1 − 8cFF
2 + 8cFF

3 + 4cFF
4 − 4cFF

5 + 4cFF
6 + 2cFF

7 + 2cFF
8 + 2cFF

9 + 2cFF
10

− 2cFF
11 − 2cFF

12 + cFT
1 − cFT

2 + 2cFT
3 + cFT

4 + 2cFT
5

− cFT
6 − 2cFT

7 + cFT
13 + cFT

14 − cFT
15 − cFT

16 ,

−1/2bRT
4 + bRT

5 = cFF
7 + cFF

8 + cFF
9 + cFF

10 − cFF
11 − cFF

12 + 4cFF
16

− 1/2(cFT
8 + cFT

9 ) + 1/2(cFT
10 + cFT

11 ) + cFT
21 ,

bRQ
1 + bRQ

4 = −4cFF
1 + 4cFF

2 − 4cFF
3 − 2cFF

4 + 2cFF
5 − 2cFF

6 − cFF
7 − cFF

8 − cFF
9 − cFF

10

+ cFF
11 + cFF

12 − cFQ
2 + cFQ

3 + cFQ
4 − cFQ

5 + cFQ
16 − cFQ

17 ,

−bRQ
1 + bRQ

5 = 4cFF
1 − 4cFF

2 + 4cFF
3 + 2cFF

4 − 2cFF
5 + 2cFF

6 + 2cFF
7 + 2cFF

8 − cFF
11 − cFF

12

+ cFQ
2 − cFQ

3 − cFQ
4 + cFQ

5 + cFQ
18 + cFQ

19 − cFQ
20 − cFQ

21 ,

bRQ
3 + 2bRQ

6 = −cFF
7 − cFF

8 − cFF
9 − cFF

10 + cFF
11 + cFF

12 − 4cFF
16

+ cFQ
8 + cFQ

9 − cFQ
12 − cFQ

13 + 2cFQ
23 ,

bRQ
2 + 2bRQ

7 = 2cFF
9 + 2cFF

10 − cFF
11 − cFF

12 + 4cFF
16 + cFQ

6 + cFQ
7 − cFQ

10 − cFQ
11 + 2cFQ

24 ,
(D.22)

bTT
1 = cTT

1 + (6cFF
1 − 6cFF

2 + cFF
4 − cFF

5 + cFF
6 + 2cFT

1 − 2cFT
2 + 2cFT

3 )/4 ,

bTT
2 = cTT

2 + (2cFF
1 − 2cFF

2 + cFF
4 − cFF

5 + cFF
6 + 2cFT

3 )/2 ,

bTT
3 = cTT

3 + cFF
7 + cFF

9 − cFF
11 − cFT

8 + cFT
10 ,

bTT
4 = cTT

4 + (−2cFF
1 + 2cFF

2 + 4cFF
3 + cFF

4 − cFF
5 + cFF

6 + cFF
7 + cFF

8 + cFF
9 + cFF

10

− cFF
11 − cFF

12 − cFT
1 + cFT

2 + cFT
4 + 2cFT

5 − cFT
6 − 2cFT

7 + cFT
13 + cFT

14 − cFT
15 − cFT

16 )/2 ,

bTT
5 = cTT

5 + (2cFF
1 − 2cFF

2 + 4cFF
3 + cFF

4 − cFF
5 + cFF

6 + cFF
7 + cFF

8 + cFF
9 + cFF

10 − cFF
11

− cFF
12 + cFT

1 − cFT
2 + cFT

4 + 2cFT
5 − cFT

6 − 2cFT
7 + cFT

13 + cFT
14 − cFT

15 − cFT
16 )/2 ,

bTT
6 = cTT

6 + (−2cFF
1 + 2cFF

2 − 4cFF
3 − cFF

4 + cFF
5 − cFF

6 + cFF
7 − cFF

8 + cFF
9 − cFF

10

− cFF
11 + cFF

12 − 2cFT
3 − 2cFT

4 + 2cFT
6 + 2cFT

17 − 2cFT
18 )/4 ,

bTT
7 = cTT

7 − 2cFF
1 + 2cFF

2 − cFF
4 + cFF

5 − cFF
6

+ (−cFT
1 + cFT

2 − 2cFT
3 + cFT

4 − 2cFT
5 − cFT

6 + 2cFT
7 + cFT

13 − cFT
14 − cFT

15 + cFT
16 )/2 ,

bTT
8 = cTT

8 − 2cFF
7 − 2cFF

9 + 2cFF
11 + cFT

8 − cFT
10 − cFT

13 + cFT
15 − cFT

17 + cFT
18 ,

bTT
9 = cTT

9 + cFF
8 + cFF

10 − cFF
12 + 4cFF

16 − cFT
9 + cFT

11 + 2cFT
21 ,
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bQQ
1 = cQQ

1 + (6cFF
1 − 2cFF

2 − cFF
4 − cFF

5 + 3cFF
6 )/4 + (cFQ

1 + cFQ
2 − cFQ

3 )/2 ,

bQQ
2 = cQQ

2 + (−2cFF
1 + 2cFF

2 + cFF
4 + cFF

5 − cFF
6 )/2− cFQ

2 ,

bQQ
3 = cQQ

3 + cFF
9 − cFQ

10 ,

bQQ
4 = cQQ

4 + (cFF
7 + cFF

9 − cFF
11 + 2cFF

13 − cFF
14 + cFF

15 )/4 + (−cFQ
8 + cFQ

12 + cFQ
15 )/2 ,

bQQ
5 = cQQ

5 + (−2cFF
9 + cFF

11 − cFF
15 − cFQ

6 + cFQ
10 − 2cFQ

12 + cFQ
14 )/2 ,

bQQ
6 = cQQ

6 + (−2cFF
1 − 2cFF

2 + 4cFF
3 + 3cFF

4 − cFF
5 − cFF

6 + cFF
7 + cFF

8 + cFF
9 + cFF

10

− cFF
11 − cFF

12 )/4 + (−cFQ
1 − cFQ

4 + cFQ
5 − cFQ

16 + cFQ
17 )/2 ,

bQQ
7 = cQQ

7 + (−2cFF
1 + 2cFF

2 + cFF
4 + cFF

5 − cFF
6 + cFF

7 + cFF
8 + cFF

9 − cFF
10

− cFQ
2 + cFQ

3 − cFQ
4 − cFQ

5 + cFQ
18 + cFQ

19 + cFQ
20 − cFQ

21 )/2 ,

bQQ
8 = cQQ

8 + (2cFF
1 − 2cFF

2 + 2cFF
3 + cFF

4 − cFF
5 + cFF

6 + cFF
7 + cFF

8 − cFF
9 + cFF

10

+ cFQ
2 − cFQ

3 − cFQ
4 + cFQ

5 + cFQ
18 + cFQ

19 − cFQ
20 + cFQ

21 )/2 ,

bQQ
9 = cQQ

9 − 2cFF
3 − 2cFF

4 − cFF
7 − cFF

8 + (cFF
11 + cFF

12 )/2

+ (cFQ
2 + cFQ

3 + 3cFQ
4 − cFQ

5 + 2cFQ
16 − cFQ

18 − cFQ
19 + cFQ

20 + cFQ
21 )/2 ,

bQQ
10 = cQQ

10 − 2cFF
9 + cFQ

10 − cFQ
17 − cFQ

20 ,

bQQ
11 = cQQ

11 + (2cFF
9 − cFF

11 + cFF
15 + 2cFQ

12 − cFQ
16 + cFQ

17 − cFQ
18 + cFQ

20 + cFQ
22 )/2 ,

bQQ
12 = cQQ

12 + (2cFF
9 − 2cFF

10 − cFF
11 − cFF

12 + cFQ
6 + cFQ

7 − cFQ
10 + cFQ

11 − 2cFQ
21 )/2 ,

bQQ
13 = cQQ

13 + (−cFF
7 − cFF

8 − cFF
9 + cFF

10 + cFF
11 − cFF

15

+ cFQ
8 + cFQ

9 − cFQ
12 + cFQ

13 − cFQ
19 + cFQ

21 − cFQ
22 )/2 ,

bQQ
14 = cQQ

14 + (cFF
8 + cFF

10 − cFF
12 − 2cFF

13 + cFF
14 − cFF

15 )/4 + cFF
16

+ (−cFQ
9 + cFQ

13 − cFQ
15 − 2cFQ

23 )/2 ,

bQQ
15 = cQQ

15 + cFF
10 + cFF

16 − cFQ
11 + cFQ

24 ,

bQQ
16 = cQQ

16 + (−2cFF
10 + cFF

12 + cFF
15 − 4cFF

16 − cFQ
7 + cFQ

11 − 2cFQ
13 − cFQ

14 + 2cFQ
23 − 2cFQ

24 )/2 ,
(D.24)

bTQ
1 = cTQ

1 − 4cFF
1 + 4cFF

2 + cFF
5 − 2cFF

6 + cFT
2 − cFT

3 − cFQ
2 + cFQ

3 ,

bTQ
2 = cTQ

2 − 2cFF
9 + cFF

11 − cFT
10 − cFQ

6 + cFQ
10 ,

bTQ
3 = cTQ

3 + cFF
7 + cFF

9 − cFF
11 − cFF

14 /2 + cFF
15 /2 + (−cFT

8 + cFT
10 + cFT

12 )/2− cFQ
8 + cFQ

12 ,

bTQ
4 = cTQ

4 − 4cFF
3 − 2cFF

4 + cFF
5 − cFF

7 − cFF
8 − cFF

9 − cFF
10 + cFF

11 + cFF
12

+ (−cFT
1 − cFT

2 − cFT
4 − 2cFT

5 + cFT
6 + 2cFT

7 − cFT
13 − cFT

14 + cFT
15 + cFT

16 )/2

+ cFQ
4 − cFQ

5 + cFQ
16 − cFQ

17 ,

bTQ
5 = cTQ

5 + 2cFF
1 − 2cFF

2 + 2cFF
3 + cFF

4 − cFF
5 + cFF

6 − cFF
9 + cFF

10 + (cFF
11 − cFF

12 )/2

+ cFT
3 − cFT

6 + cFT
18 + (cFQ

2 − cFQ
3 − cFQ

4 + cFQ
5 + cFQ

18 − cFQ
19 − cFQ

20 + cFQ
21 )/2 ,

bTQ
6 = cTQ

6 + 2cFF
1 − 2cFF

2 + 2cFF
3 + cFF

4 − cFF
5 + cFF

6 + cFF
7 + cFF

8 − (cFF
11 + cFF

12 )/2

+ (cFT
1 − cFT

2 + cFT
4 + 2cFT

5 + cFT
6 − 2cFT

7 + cFT
13 + cFT

14 + cFT
15 − cFT

16

+ cFQ
2 − cFQ

3 − cFQ
4 + cFQ

5 + cFQ
18 + cFQ

19 − cFQ
20 − cFQ

21 )/2 ,
(D.25)
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bTQ
7 = cTQ

7 − 2cFF
1 + 2cFF

2 + 2cFF
3 + cFF

4 − cFF
6 + cFF

7 + cFF
8 − (cFF

11 + cFF
12 )/2

+ (−cFT
1 + cFT

2 + cFT
4 + 2cFT

5 − cFT
6 + 2cFT

7 + cFT
13 + cFT

14 − cFT
15 + cFT

16 )/2

+ (−cFQ
2 + cFQ

3 − cFQ
4 + cFQ

5 + cFQ
18 + cFQ

19 − cFQ
20 − cFQ

21 )/2 ,

bTQ
8 = cTQ

8 + 2cFF
9 − cFF

11 − cFT
15 − cFT

18 + cFQ
6 − cFQ

10 ,

bTQ
9 = cTQ

9 + (−2cFF
7 − 2cFF

9 + 2cFF
11 + cFF

14 − cFF
15

− cFT
13 + cFT

15 − cFT
17 + cFT

18 + cFT
19 + 2cFT

20 + 2cFQ
8 − 2cFQ

12 )/2 ,

bTQ
10 = cTQ

10 + 2cFF
9 − cFF

11 + cFT
10 − cFQ

16 + cFQ
17 − cFQ

18 + cFQ
20 ,

bTQ
11 = cTQ

11 − cFF
7 − cFF

8 − cFF
9 + cFF

10 + cFF
11 + (cFT

8 + cFT
9 − cFT

10 + cFT
11 )/2− cFQ

19 + cFQ
21 ,

bTQ
12 = cTQ

12 + (−2cFF
8 − 2cFF

10 + 2cFF
12 − cFF

14 + cFF
15 − 8cFF

16

+ cFT
9 − cFT

11 + cFT
12 − 2cFT

21 + 2cFQ
9 − 2cFQ

13 + 4cFQ
23 )/2 ,

bTQ
13 = cTQ

13 + 2cFF
10 − cFF

12 + 4cFF
16 + cFT

11 + cFT
21 + cFQ

7 − cFQ
11 + 2cFQ

24 .
(D.26)

D.2.3 Map with decomposed variables

m1 =
2

3
mTT

1 +
1

3
mTT

2 +mTT
3 ,

m2 =
(
−mTT

1 +mTT
2

)
/6,

m3 = mTT
1 +

1

2
mTT

2 ,

m4 =
5

18
mQQ

1 − 1

18
mQQ

2 +mQQ
3 ,

m5 =
4

9
mQQ

1 +
1

9
mQQ

2 +mQQ
4 ,

m6 = −2

9
mQQ

1 +
4

9
mQQ

2 +mQQ
5

m7 = mQQ
1 +mQQ

2 ,

m8 = mQQ
1 − 1

2
mQQ

2 ,

m9 =
1

3
mTQ

1 −mTQ
2 ,

m10 = −1

3
mTQ

1 −mTQ
3 ,

m11 = mTQ
1 ,

(D.27)
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r1 =
1

6
bRT
3 + bRT

5 ,

r2 = bRT
3 ,

r3 =
2

9
bRQ
4 +

1

18
bRQ
5 + bRQ

6 ,

r4 =
1

9
bRQ
4 +

5

18
bRQ
5 + bRQ

7 ,

r5 = bRQ
4 + bRQ

5 ,

r6 = bRQ
4 − 1

2
bRQ
5 ,

(D.28)

d1 = −2

3
bTT
1 − 1

3
bTT
2 − bTT

3 − 1

9
bTT
4 − 2

9
bTT
6 − 1

9
bTT
7 − 1

3
bTT
8 ,

d2 = −2

9
bTT
4 − 1

3
bTT
5 +

2

9
bTT
6 +

1

9
bTT
7 +

1

3
bTT
8 − bTT

9 ,

d3 =
(
3bTT

1 − 3bTT
2 + bTT

4 − bTT
5 + bTT

6 − bTT
7

)
/18,

d4 =
(
−bTT

4 + bTT
5 − bTT

6 + bTT
7

)
/18,

d5 = −bTT
1 − 1

2
bTT
2 ,

(D.29)

d6 = −bTT
4 − 2bTT

6 − bTT
7 ,

d7 = −bTT
5 + 2bTT

6 + bTT
7 ,

d8 = −2

3
bTT
4 − 4

3
bTT
6 − 2

3
bTT
7 − bTT

8 ,

d9 =
1

3
bTT
4 − 1

3
bTT
5 − 2

3
bTT
6 +

1

6
bTT
7 ,

d10 = − 5

18
bQQ
1 +

1

18
bQQ
2 − bQQ

4 − 1

162
bQQ
6 − 13

162
bQQ
7 +

5

162
bQQ
8 +

1

81
bQQ
9 +

1

18
bQQ
11 − 5

18
bQQ
13 ,

(D.30)

d11 = − 41

162
bQQ
6 +

7

162
bQQ
7 − 11

162
bQQ
8 +

1

162
bQQ
9 − 2

9
bQQ
11 +

1

9
bQQ
13 − bQQ

14 ,

d12 = −4

9
bQQ
1 − 1

9
bQQ
2 − bQQ

3 − 8

81
bQQ
6 − 5

81
bQQ
7 +

4

81
bQQ
8 − 2

81
bQQ
9 − 2

9
bQQ
10 +

1

9
bQQ
12 ,

d13 = − 4

81
bQQ
6 − 16

81
bQQ
7 − 25

81
bQQ
8 − 1

81
bQQ
9 − 1

9
bQQ
10 − 4

9
bQQ
12 − bQQ

15 ,

d14 =
2

9
bQQ
1 − 4

9
bQQ
2 − bQQ

5 +
4

81
bQQ
6 +

7

81
bQQ
7 − 11

81
bQQ
8 − 7

162
bQQ
9 +

1

18
bQQ
10 − 2

9
bQQ
11 − 5

18
bQQ
12 +

1

9
bQQ
13 ,

d15 =
2

81
bQQ
6 − 10

81
bQQ
7 +

8

81
bQQ
8 − 22

81
bQQ
9 − 2

9
bQQ
10 − 1

9
bQQ
11 +

1

9
bQQ
12 − 4

9
bQQ
13 − bQQ

16 ,
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d16 = −bQQ
1 − bQQ

2 ,

d17 = −bQQ
6 − bQQ

7 − bQQ
8 − bQQ

9 ,

d18 = −bQQ
1 +

1

2
bQQ
2 ,

d19 = −bQQ
6 − 1

2
bQQ
8 + bQQ

9 ,

d20 = −bQQ
7 + bQQ

8 ,

d21 = −2bQQ
6 + bQQ

7 + bQQ
8 − 1

2
bQQ
9 ,

d22 =
2

9
bQQ
6 − 4

9
bQQ
7 − 4

9
bQQ
8 − 1

9
bQQ
9 − bQQ

11 − bQQ
13 ,

d23 = −8

9
bQQ
6 − 2

9
bQQ
7 − 2

9
bQQ
8 − 5

9
bQQ
9 − bQQ

10 − bQQ
12 ,

d24 = −1

9
bQQ
6 − 11

18
bQQ
7 +

7

18
bQQ
8 +

5

36
bQQ
9 +

1

2
bQQ
11 − bQQ

13 ,

d25 =
4

9
bQQ
6 +

4

9
bQQ
7 − 5

9
bQQ
8 − 1

18
bQQ
9 +

1

2
bQQ
10 − bQQ

12 ,

(D.32)

d26 = −1

3
bTQ
1 + bTQ

3 − 1

54
bTQ
4 − 1

9
bTQ
5 − 1

54
bTQ
6 +

5

54
bTQ
7 +

1

3
bTQ
9 − 1

18
bTQ
10 +

5

18
bTQ
11 ,

d27 = − 7

27
bTQ
4 +

1

9
bTQ
5 +

2

27
bTQ
6 − 1

27
bTQ
7 − 1

3
bTQ
9 +

2

9
bTQ
10 − 1

9
bTQ
11 − bTQ

12 ,

d28 =
1

3
bTQ
1 + bTQ

2 +
2

27
bTQ
4 +

1

9
bTQ
5 +

2

27
bTQ
6 − 1

27
bTQ
7 +

1

3
bTQ
8 +

2

9
bTQ
10 − 1

9
bTQ
11 ,

d29 =
1

27
bTQ
4 − 1

9
bTQ
5 − 8

27
bTQ
6 − 5

27
bTQ
7 − 1

3
bTQ
8 +

1

9
bTQ
10 +

4

9
bTQ
11 − bTQ

13 ,

(D.33)

d30 = − 1

18
bTQ
4 − 1

3
bTQ
5 − 1

18
bTQ
6 +

5

18
bTQ
7 + bTQ

9 ,

d31 =
2

9
bTQ
4 +

1

3
bTQ
5 +

2

9
bTQ
6 − 1

9
bTQ
7 + bTQ

8 ,

d32 =
1

3
(bTQ

4 + bTQ
6 + bTQ

7 ) + bTQ
10 + bTQ

11 ,

d33 = −1

6
bTQ
4 − 1

2
bTQ
5 − 1

6
bTQ
6 +

1

3
bTQ
7 − 1

2
bTQ
10 + bTQ

11 ,

d34 =
(
−bTQ

5 + bTQ
6 − bTQ

7

)
/6,

d35 = −bTQ
4 − bTQ

6 − bTQ
7 ,

d36 = −bTQ
1 ,

d37 = −bTQ
4 + bTQ

5 + bTQ
6 ,

d38 = −2bTQ
5 − bTQ

6 + bTQ
7 ,

(D.34)
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D.3 Some variational expressions

∆bQQ
1 = 0 ,

∆bQQ
2 = 0 ,

∆bQQ
3 = ζ0(ξ

2
6 + ξ28) + 2ζ1ξ6ξ8 ,

∆bQQ
4 = ζ0(ξ

2
7 + ξ29) + 2ζ1ξ7ξ9 ,

∆bQQ
5 = 2ζ0(ξ6ξ7 + ξ8ξ9) + 2ζ1(ξ6ξ9 + ξ7ξ8) ,

∆bQQ
6 = (ζ0 + ζ1)ξ

2
1 ,

∆bQQ
7 = ζ0(ξ

3
2 + ξ23 + ξ24 + ξ25 + 2ξ2ξ4 + 2ξ3ξ5) + 2ζ1(ξ2 + ξ4)(ξ3 + ξ5) ,

∆bQQ
8 = 2ζ0(ξ2 + ξ5)(ξ3 + ξ4) + ζ1((ξ2 + ξ4)

2 + (ξ3 + ξ5)
2) ,

∆bQQ
9 = 2(ζ0 + ζ1)ξ1(ξ2 + ξ3 + ξ4 + ξ5) ,

∆bQQ
10 = 2ζ0((ξ1 + ξ2 + ξ4)ξ6 + (ξ1 + ξ3 + ξ5)ξ8)

+ 2ζ1((ξ1 + ξ3 + ξ5)ξ6 + (ξ1 + ξ2 + ξ4)ξ8) ,

∆bQQ
11 = 2ζ0((ξ1 + ξ2 + ξ4)ξ7 + (ξ1 + ξ3 + ξ5)ξ9)

+ 2ζ1((ξ1 + ξ3 + ξ5)ξ7 + (ξ1 + ξ2 + ξ4)ξ9) ,

∆bQQ
12 = 2ζ0((ξ3 + ξ5)ξ6 + (ξ2 + ξ4)ξ8) + 2ζ1((ξ2 + ξ4)ξ6 + (ξ3 + ξ5)ξ8)

∆bQQ
13 = 2ζ0((ξ3 + ξ5)ξ7 + (ξ2 + ξ4)ξ9) + 2ζ1((ξ2 + ξ4)ξ7 + (ξ3 + ξ5)ξ9)

∆bQQ
14 = 2ζ0ξ7ξ9 + 2ζ1(ξ

2
7 + ξ29) + 2ζ2(ξ1 + ξ7 + ξ9)

2

∆bQQ
15 = 2ζ0ξ6ξ8 + 2ζ1(ξ

2
6 + ξ28) + 2ζ2(ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ8)

2

∆bQQ
16 = 2ζ0(ξ6ξ9 + ξ7ξ8) + 2ζ1(ξ6ξ7 + ξ8ξ9) + 2ζ2(ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ8)(ξ1 + ξ7 + ξ9) .

(D.35)

And the linearised version of the same relations is

δbQQ
1 = 0 ,

δbQQ
2 = 0 ,

δbQQ
3 = δζ0(ξ

2
6 + ξ28) + 2δζ1ξ6ξ8 + 2δξ6(ζ0ξ6 + ζ1ξ8) + 2δξ8(ζ0ξ8 + ζ1ξ6) ,

δbQQ
4 = δζ0(ξ

2
7 + ξ29) + 2δζ1ξ7ξ9 + 2δξ7(ζ0ξ7 + ζ1ξ9) + 2δξ9(ζ0ξ9 + ζ1ξ7) ,

(D.36)

δbQQ
5 = 2δζ0(ξ6ξ7 + ξ8ξ9) + 2δζ1(ξ6ξ9 + ξ7ξ8)

+ 2δξ6(ζ0ξ7 + ζ1ξ9) + 2δξ7(ζ0ξ6 + ζ1ξ8) + 2δξ8(ζ0ξ9 + ζ1ξ7) + 2δξ9(ζ0ξ8 + ζ1ξ6) ,

δbQQ
6 = (δζ0 + δζ1)ξ

2
1 + 2δξ1(ζ0 + ζ1)ξ1 ,

δbQQ
7 = δζ0((ξ2 + ξ4)

2 + (ξ3 + ξ5)
2) + 2δζ1(ξ2 + ξ4)(ξ3 + ξ5)

+ 2δξ2(ζ0(ξ2 + ξ4) + ζ1(ξ3 + ξ5)) + 2δξ3(ζ1(ξ2 + ξ4) + ζ0(ξ3 + ξ5))

+ 2δξ4(ζ0(ξ2 + ξ4) + ζ1(ξ3 + ξ5)) + 2δξ5(ζ1(ξ2 + ξ4) + ζ0(ξ3 + ξ5)) ,

(D.37)
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δbQQ
8 = 2δζ0(ξ2 + ξ4)(ξ3 + ξ5) + δζ1((ξ2 + ξ4)

2 + (ξ3 + ξ5)
2)

+ 2δξ2(ζ1(ξ2 + ξ4) + ζ0(ξ3 + ξ5)) + 2δξ3(ζ0(ξ2 + ξ4) + ζ1(ξ3 + ξ5))

+ 2δξ4(ζ1(ξ2 + ξ4) + ζ0(ξ3 + ξ5)) + 2δξ5(ζ0(ξ2 + ξ4) + ζ1(ξ3 + ξ5)) ,

δbQQ
9 = 2δζ0ξ1(ξ2 + ξ3 + ξ4 + ξ5)− 2δζ1ξ1(ξ2 + ξ3 + ξ4 + ξ5) + 2δξ1(ζ0 + ζ1)(ξ2 + ξ3 + ξ4 + ξ5)

+ 2δξ2(ζ0 + ζ1)ξ1 + 2δξ3(ζ0 + ζ1)ξ1 + 2δξ4(ζ0 + ζ1)ξ1 + 2δξ5(ζ0 + ζ1)ξ1 ,

(D.38)

δbQQ
10 = 2δζ0((ξ1 + ξ2 + ξ4)ξ6 + (ξ1 + ξ3 + ξ5)ξ8) + 2δζ1((ξ1 + ξ3 + ξ5)ξ6 + (ξ1 + ξ2 + ξ4)ξ8)

+ 2δξ1(ζ0 + ζ1)(ξ6 + ξ8) + 2δξ2(ζ0ξ6 + ζ1ξ8) + 2δξ3(ζ1ξ6 + ζ0ξ8)

+ 2δξ4(ζ0ξ6 + ζ1ξ8) + 2δξ5(ζ1ξ6 + ζ0ξ8)

+ 2δξ6(ζ0(ξ1 + ξ2 + ξ4) + ζ1(ξ1 + ξ3 + ξ5)) + 2δξ8(ζ1(ξ1 + ξ2 + ξ4) + ζ0(ξ1 + ξ3 + ξ5)) ,

δbQQ
11 = 2δζ0((ξ1 + ξ2 + ξ4)ξ7 + (ξ1 + ξ3 + ξ5)ξ9) + 2δζ1((ξ1 + ξ3 + ξ5)ξ7 + (ξ1 + ξ2 + ξ4)ξ9)

+ 2δξ1(ζ0 + ζ1)(ξ7 + ξ9) + 2δξ2(ζ0ξ7 + ζ1ξ9) + 2δξ3(ζ1ξ7 + ζ0ξ9) + 2δξ4(ζ0ξ7 + ζ1ξ9)

+ 2δξ5(ζ1ξ7 + ζ0ξ9) + 2δξ7(ζ0(ξ1 + ξ2 + ξ4) + ζ1(ξ1 + ξ3 + ξ5))

+ 2δξ9(ζ1(ξ1 + ξ2 + ξ4) + ζ0(ξ1 + ξ3 + ξ5)) ,

(D.39)

δbQQ
12 = 2δζ0((ξ3 + ξ5)ξ6 + (ξ2 + ξ4)ξ8) + 2δζ1((ξ2 + ξ4)ξ6 + (ξ3 + ξ5)ξ8)

+ 2δξ2(ζ1ξ6 + ζ0ξ8) + 2δξ3(ζ0ξ6 + ζ1ξ8) + 2δξ4(ζ1ξ6 + ζ0ξ8) + 2δξ5(ζ0ξ6 + ζ1ξ8)

+ 2δξ6(ζ1(ξ2 + ξ4) + ζ0(ξ3 + ξ5)) + 2δξ8(ζ0(ξ2 + ξ4) + ζ1(ξ3 + ξ5)) ,

δbQQ
13 = 2δζ0((ξ3 + ξ5)ξ7 + (ξ2 + ξ4)ξ9) + 2δζ1((ξ2 + ξ4)ξ7 + (ξ3 + ξ5)ξ9)

+ 2δξ2(ζ1ξ7 + ζ0ξ9) + 2δξ3(ζ0ξ7 + ζ1ξ9) + 2δξ4(ζ1ξ7 + ζ0ξ9) + 2δξ5(ζ0ξ7 + ζ1ξ9)

+ 2δξ7(ζ1(ξ2 + ξ4) + ζ0(ξ3 + ξ5)) + 2δξ9(ζ0(ξ2 + ξ4) + ζ1(ξ3 + ξ5)) ,

(D.40)

δbQQ
14 = 2δζ0ξ7ξ9 + δζ1(ξ

2
7 + ξ29) + δζ2(ξ1 + ξ7 + ξ9)

2

+ 2δξ1ζ2(ξ1 + ξ7 + ξ9)

+ 2δξ7(ζ1ξ7 + ζ0ξ9 + ζ2(ξ1 + ξ7 + ξ9))

+ 2δξ9(ζ0ξ7 + ζ1ξ9 + ζ2(ξ1 + ξ7 + ξ9))

δbQQ
15 = 2δζ0ξ6ξ8 + δζ1(ξ

2
6 + ξ28) + δζ2(ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ8)

2

+ 2(δξ2 + δξ3 + δξ4 + δξ5)ζ2(ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ8)

+ 2δξ6(ζ1ξ6 + ζ0ξ8 + ζ2(ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ8))

+ 2δξ8(ζ0ξ6 + ζ1ξ8 + ζ2(ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ8))

δbQQ
16 = 2δζ0(ξ7ξ8 + ξ6ξ9) + 2δζ1(ξ6ξ7 + ξ8ξ9) + 2δζ2(ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ8)( ξ1 + ξ7 + ξ9)

+ 2δξ1ζ2(ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ8) + 2(δξ2 + δξ3 + δξ4 + δξ5)ζ2(ξ1 + ξ7 + ξ9)

+ 2δξ6(ζ1ξ7 + ζ0ξ9 + ζ2(ξ1 + ξ7 + ξ9)) + 2δξ7(ζ1ξ6 + ζ0ξ8 + ζ2(ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ8))

+ 2δξ8(ζ0ξ7 + ζ1ξ9 + ζ2(ξ1 + ξ7 + ξ9)) + 2δξ9(ζ0ξ6 + ζ1ξ8 + ζ2(ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ8)) .

(D.41)
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