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Abstract
We prove that the common Mie–Lennard-Jones (MLJ) molecular potentials, appropriately
normalized via an affine transformation, converge, in the limit of hard-core repulsion, to the
Toda exponential potential. Correspondingly, any Fermi–Pasta–Ulam (FPU)-like Hamilto-
nian, with MLJ-type interparticle potential, turns out to be 1/n-close to the Toda integrable
Hamiltonian, n being the exponent ruling repulsion in the MLJ potential. This means that
the dynamics of chains of particles interacting through typical molecular potentials, is close
to integrable in an unexpected sense. Theoretical results are accompanied by a numerical
illustration; numerics shows, in particular, that even the very standard 12–6 MLJ potential
is closer to integrability than the FPU potentials which are more commonly used in the
literature.

Keywords Fermi–Pasta–Ulam · Mie–Lennard-Jones · Toda model · Molecular dynamics ·
Pre-thermalization

1 Introduction

The study of both the dynamical and the statistical behavior of particle chains is a research
topic essentially started by the celebrated numerical experiment of Fermi, Pasta and Ulam
(FPU) [1], whose aim was to study in the simplest possible examples the time of approach
to equilibrium of weakly nonlinear systems. As is well known, on the available computation
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time they did not observe any trend to equilibrium, and this is commonly named, after the
authors, the FPU problem, or paradox.

The existing literature on the subject is huge, see e.g. the collection of papers [2, 3] or the
more recent and short reviews [4, 5]. The revival of physical interest in such an old problem
has been also stimulated, in recent years, by the experiments on arrays of cold atoms or ions,
i.e. arrays of trapped quantum particles cooled down to extremely low temperatures, where
the lack or the slow down of thermalization is also observed [6–8]. In the current literature,
the FPU phenomenology is referred to as pre-thermalization [9, 10].

Nowadays, it is quitewell understood that, at least on the classical side, no paradox exists at
all, the FPU problem being a manifestation of closeness to (nonlinear) integrability, when the
energy is low and the observation time is not long enough, whichmeans amatter of separation
of time-scales; see for example [11–17]. More precisely, denote by qi the displacement of
the i-th particle from its reference equilibrium position (the crystal configuration), and let
φ(ξ), ξ = qi+1 − qi , be the interaction potential between nearby particles. A common way
(started by FPU) to express φ for small ξ is

φ(ξ) = ξ2

2
+ α

ξ3

3
+ β

ξ4

4
+ γ

ξ5

5
+ · · · , (1)

with suitable constants α, β and so on. Now, as pointed out in [18], widely developed in [19],
and reconsidered in recent years for example in [12–15], the Toda exponential potential

T (ξ) = eλξ − λξ − 1

λ2
(2)

forλ = 2α has a contact of order threewithφ. But the Toda chain is an integrableHamiltonian
system [18–22], so it is interesting to rewrite

φ(ξ) = T (ξ) + (β − βT )ξ4 + · · · , βT = 1

6
λ2 = 2

3
α2 ,

and consider the particle chain at hand as a perturbation O(ξ4) of the integrable Toda chain
[12, 15, 23], rather than a perturbation O(ξ3) of the harmonic chain. Since in typical non-
localized states (equilibrium, or excitation of some bunch of modes) it is qi+1 − qi ∼ √

ε,
where ε = E/N is the specific energy of the system (the ratio of the total energy E to the
number of particles N ), the particle chain (1) is ε–close to Toda, and only

√
ε–close to the

harmonic chain.
Having inmindToda as the reference integrable system, the scenario is as follows.On short

terms, the dynamics of the nonlinear chain stays close to the Toda dynamics: trajectories run
on theToda torus corresponding to the same initial data, phases fill ergodically the torus,while
the motion transversal to tori is negligible. Normal modes apparently interact, producing in
particular the strange energy distribution originally observed by FPU, but this is in a sense
an illusion due to the difference between linear normal modes and conserved nonlinear Toda
actions, and has nothing to do with thermal equilibrium. On a much larger time scale the drift
transversal to tori gets important, and diffusion in the whole phase space, eventually leading
to thermalization, does occur. Time scales are inverse powers of ε, so are well separated
for small ε: for the standard FPU model, already on times O(ε−3/8) the nonuniform energy
distribution observed by FPU (the apparent paradox) starts to be evident [24, 25], while
times O(ε−5/2) look necessary to observe full diffusion [12]. An intermediate time scale
also exists, namely the Lyapunov time (the inverse of the maximal Lyapunov exponent), see
[13, 15, 26]; however, on such a time scale the diffusion of actions is not affected, since
chaos turns out to be tangent to tori. So, if the observation time is sufficiently large, the FPU
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paradox disappears, and in general, pre-thermalization scenarios turn out to be a matter of
interplay between observation time and dynamical time-scales of the given physical system.

The order of contact between the pair potential (1) and the Toda potential (2) can be
increased of course by choosing β = βT and possibly γ = γT = α3/3 and so on. Similar
exotic choices of the potential obviously lengthen the pre-thermal scenario and the thermal-
ization times [11, 27]. Another possibility to approachTodawould be considering coefficients
β, γ ... depending on a parameter, in such away that in a convenient limit they all suitably con-
verge to the corresponding Toda values. Similar potentials might appear even more artificial
and exotic: why should physical potentials share such a bizarre property?

In this paperwe address precisely this problem, and show that, somehowunexpectedly, this
latter possibility is not at all bizarre, but is the case of a class of molecular potentials among
themost used ones, namely theMie–Lennard-Jones potentials, and the limit in question is that
of hard-core repulsion. This means that the above outlined FPU scenario, with its quite long
pre-thermalization times and well separated time scales, is realistic and relevant to physics.

The Mie–Lennard-Jones (MLJ) potentials are known to model the short-range interaction
between neutral atoms or molecules [28, 29]. A possible expression is

	nm(r) = ε0

n − m

[
m

(a

r

)n − n
(a

r

)m]
, (3)

where r denotes the inter-particle distance, r = xi+1 − xi > 0 in dimension one, a is the
zero-pressure equilibrium distance, i.e. 	′

nm(a) = 0, and 	nm(a) = −ε0 is the depth of the
potential well, whereas m and n > m are positive integers. As is well known, the exponent
m rules the attractive part of the potential due to Van der Waals charge fluctuation forces,
its value ranging from 6 to 7 depending on whether electromagnetic retardation effects are
taken into account [30]. In the present paper we treat m as a not much relevant parameter (as
remarked below, we might also allow for more general attractive tails). On the other side, the
exponent n, which rules the repulsive part of potential (3) due to the Pauli exclusion principle,
cannot be determined from first principles, and should be just chosen large enough to fit the
experimental data on cohesion energies [31, 32]. It is then natural to explore the limit n → ∞
in order to see whether an asymptotic, universal form of the interaction somehow emerges.
Such a limit amounts to model the repulsion between nearby atoms with a hard-core barrier.

Results, in short. In the present paper we show that, if the potential	nm is rescaled around
the minimum (via an affine transformation) and put in a “normal form” Vnm such that the
minimum is in the origin, the second derivative (determining the time scale) is one, and the
third derivative (determining the energy scale)1 fits the chosen value λ entering (2), then
it is Vnm = T + O(1/n). Correspondingly, in the phase space there is an affine canonical
transformation depending on the free parameterλ, whichmaps theHamiltonian of the particle
chain with pairwise potential (3) into a new Hamiltonian which is 1/n-close to the integrable
Toda Hamiltonian.

Remark (Toda and hard spheres: Hénon’s view). Ref. [21], by M. Hénon, is one of the three
almost simultaneous papers proving integrability of the Toda chain. It is a short paper, in
which the author does not explain how he did guess the form of the integrals of motion. This
was explained by him during a lecture in Nice, which one of us attended. The idea waswriting

1 For a harmonic system, motions on any constant energy surface are similar to each other up to a trivial
length rescaling, so a natural energy scale does not exist. Similarity is instead broken if the third derivative
is different from zero. If λ is the third derivative at equilibrium, the dominant term at small ε is λ

√
ε; in this

sense we say the third derivative determines the energy scale. The parameter ε0 in MLJ is also a reference
energy, but has a different meaning (a binding energy), is not immediately connected to the dynamics in the
bottom of the potential well, and does not exist in general for potentials like (1) or (2).
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down the integrals of motion for the hard-sphere gas, which do not include potential energy
and can bewritten as convenient extensive combinations of velocities, and then understanding
how to compensate the lack of constancy of velocities, for the exponential potential, by
suitable mixed terms (containing products of exponentials and velocities). Details are not
relevant to our purposes, but it is remarkable that, in the Hénon thought, the Toda model was
considered to be a perturbation of the hard-sphere gas (see also [22], line 12). Having this in
mind, it is not as surprising that MLJ potentials, in the limit of hard-core repulsion, get close
to Toda, and a window opens to possible generalizations.

2 The Normal form of theMLJ Potentials

2.1 Rescaling Potentials

Putting a potential in normal form, as outlined above, is not specific of MLJ. Consider the
class of analytic functions f (r) which display a generic minimum, namely are such that, for
some a,

f (1)(a) = 0 , f (2)(a) > 0 , f (3)(a) �= 0 , (4)

where f ( j), j ≥ 1, denotes the j-th derivative of f . We say that two functions f and f̃ are
equivalent, if they differ just by the scale, more precisely, if they are brought one into the
other by an affine transformation:

f̃ (ξ) = A f (Cξ + D) + B ; A > 0 , C �= 0 . (5)

Such transformations form a group, and the class of functions defined above gets partitioned
into equivalence classes. The transformed function f̃ will be said to be the λ–normal form
of f (shortly normal form), if the minimum is carried to the origin and the second and third
derivatives are normalized:

f̃ (0) = 0 , f̃ (1)(0) = 0 , f̃ (2)(0) = 1 , f̃ (3)(0) = λ . (6)

The following Lemma is easily proved:

Lemma For any f as above there exists an affine transformation (5) which gives the
transformed function f̃ the normal form (6). Explicitly it is

f̃ (ξ) = f
(
a + λ f (2)(a)ξ/ f (3)(a)

) − f (a)

λ2[ f (2)(a)]3/[ f (3)(a)]2 = ξ2

2
+ λ

ξ3

6
+

∑
j≥4

k jλ
j−2 ξ j

j ! , (7)

with

k j = [ f (2)(a)] j−3

[ f (3)(a)] j−2
f ( j)(a) . (8)

If in addition f (r) = cg(r/a) with g(1) = −1, then (7) and (8) become

f̃ (ξ) = g
(
1 + g(2)(1)ξ/g(3)(1)

) + 1

[g(2)(1)]3/[g(3)(1)]2 (9)

and

k j = [g(2)(1)] j−3

[g(3)(1)] j−2
g( j)(1) . (10)
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The last statement is clearly adapted to MLJ, since 	nm(r) = ε0gnm(r/a) with

gnm(ρ) = 1

n − m

(
mρ−n − nρ−m)

. (11)

Proof The four constants A, B, C, D are promptly determined so as to fit the four require-
ments (6); expressions (7) and (8) are immediate as well. Expression (9) and (10) obviously
follow from (7) and (8), using f ( j)(r) = ca− j g( j)(r/a). 	

Remark (on the peculiarity of Toda potential). Each equivalence class is characterized by
the sequence {k j } j≥4; the class of the Toda potential (2) has k j = 1 for any j ≥ 4. The Toda
potential has another deep property, actually used in an essential way by Dubrovin [33] to
show that the Toda chain is the unique nonlinear integrable chain (with nearest neighbours
interaction). Let us extend the coefficient k4 to the function k4(r), just by replacing a with r
in (8). For Toda it is k4(r) = 1 identically in r , and this characterizes Toda, namely imposing
k4(r) = 1 gives a differential equation that picks up the exponential.

2.2 TheMain Result

The result we shall prove is the following:

Proposition Consider the MLJ potential 	nm, let Vnm be its normal form and let knm, j be
the coefficients entering the series expansion (7). For any fixed m and any fixed j ≥ 4 it is

knm, j = 1 + O(1/n) . (12)

For any fixed m and any fixed neighborhood I of the origin it is

Vnm(ξ) = T (ξ) + O(1/n) , (13)

uniformly for ξ ∈ I .

Proof It is just a computation. Using (10) with g = gnm as in (11), immediately gives

knm, j = (n + 1) · · · (n + j − 1) − (m + 1) · · · (m + j − 1)

(n − m)(n + m + 3) j−2 = n j−1(1 + O(1/n))

n j−1(1 + O(1/n))
(14)

and (12) follows. There is no uniformity in j , so this is not enough to get (13). From (9) and
(11), however, we promptly obtain

Vnm(ξ) =
(
1 − λξ

n+m+3

)−n − n
m

(
1 − λξ

n+m+3

)−m + n
m − 1

λ2
n(n−m)

(n+m+3)2

. (15)

The denominator is clearly λ2 + O(1/n). The first term at the numerator, profiting of the
very definition of the Euler number, gives eλξ (1+ O(1/n)), while the remaining part of the
numerator gives −λξ − 1 + O(ξ/n). The conclusion follows. 	

Remark (on the tail of MLJ potentials).By following the proof, it clearly appears that the first
term inside the square bracket entering the MLJ potential (3) produces, in the limit n → ∞,
the exponential eλξ entering Toda potential, while the second term provides the subtraction
−λξ − 1. The power form of the former looks indeed essential to work out the exponential,
while the detail of the latter looks not as relevant, and the subtraction −λξ − 1 is generally
expected, since the normal form (for each n and in the limit) must satisfy (6). This means that
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the precise expression of the attractive tail inMLJ is irrelevant, and in fact, it is a trivial matter
to check that the power (r/a)−m can be replaced by any function ϕm(r/a), independent of
n, provided 	nm has a critical point in a; for this it is enough ϕ(1) = 1, ϕ(1)(1) = −m (the
critical point is automatically a minimum for large n).

Remark (on the limit at constant m/n). As a curiosity, we can study the normal form Vnm

of the MLJ potential, as n → +∞, not at fixed m, but at fixed ratio δ = m/n < 1. It is not
difficult to see that

Vn,δn(ξ) −→ (1 + δ)2

λ2δ(1 − δ)

[
δe

λξ
1+δ − e

δλξ
1+δ + 1 − δ

]
. (16)

An interesting choice is δ = 1/2, which gives

Vn,n/2(ξ) −→ 9

2

(
eλξ/3 − 1

)2
, (17)

i.e. the Morse potential. For δ → 0, as is not surprising, the Toda potential is recovered.

2.3 Canonical Completion of the Normalization

The above normalization involves only the coordinates of the particles, but it naturally
extends to momenta, also in the limit n → ∞, so as to have a canonical transformation.
The Hamiltonian of a particle chain with nearest neighbours potential (3) is

H(x, p) =
N−1∑
i=0

[
p2i
2m

+ 	nm(xi+1 − xi )

]
; (18)

to fix the ideas let us think of fixed ends, i.e. x0 = 0 and xN = L , with L = Na so as to have
zero pressure, and correspondingly p0 = pN = 0.

The canonical transformation can be divided into two steps. First, a translation followed
by a rescaling of coordinates xi , pi and time variable t , namely

xi = a(i + Qi ) , pi = a
√

m	(2)(a) Pi ,

t =
√

m

	(2)(a)
τ , H = a2	(2)(a) K (Q, P) + N	nm(a) ,

which is canonical with valence a2
√

m	(2)(a); the new boundary conditions are Q0 =
QN = 0, P0 = PN = 0. The new Hamiltonian reads

K (Q, P) =
N−1∑
i=0

[
P2

i

2
+ 	nm(a(1 + Qi+1 − Qi )) − 	nm(a)

a2	
(2)
nm(a)

]
.

The second step consists in rescaling coordinates and momenta by a further factor w =
λa−1	

(2)
nm(a)/	

(3)
nm(a), namely

Qi = wζi , Pi = wηi , K = w2H(ζ, η);
this is canonical with valence w2, and the new Hamiltonian H is

H(ζ, η) =
N−1∑
i=0

[
η2i

2
+ Vnm(ζi+1 − ζi )

]
=

N−1∑
i=0

[
η2i

2
+ T (ζi+1 − ζi )

]
+ O(1/n) .
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Use has been made of (12) and (15). This proves that the Hamiltonian (18) is, up to a
canonical normalization, 1/n-close to the integrable Toda one. Starting with a generalized
MLJ potential, with a tail ϕm(r/a) as discussed above, leads to the same conclusion.

3 Numerical Illustration

The purpose of this numerical section is to show quantitatively, and visually, how quickly, by
increasing n at fixed m, the normalized MLJ potentials Vnm approach the Toda potential, and
correspondingly, the dynamics gets close to integrable. Comparison will be made with the
first polynomial approximations of Toda, denoted by T j , obtained by truncating the Taylor
series of T at order j . Concerning λ, we shall use λ = −2 (λ should be negative, if we
wish the steeper wall of the Toda potential to stay on the left, as in MLJ potentials; λ = −2
corresponds to the quite common choice α = −1 in FPU).

3.1 Some Coefficients

Preliminarily, let us give a glance at the values of the first few coefficients knm, j entering
the series expansion of Vnm . At small energy, the difference Vnm − T is dominated by the
fourth order term; correspondingly, the most relevant quantity to look at is the difference
�4 = knm,4 − 1. From (14), that we met in the proof of the Proposition, it follows

�4 = 2 − nm

(n + m + 3)2
.

Computation shows that already for the classical values m = 6 and n = 12, �4 is rather
small, namely �4 � −0.16, and raising n/m to 4 or 8 lowers �4 to −0.131 or −0.088. Such
values should be compared with the typical constants used in FPU studies. In the standard
FPU language, it is

�4 = β

βT
− 1 = 3β

2α2 − 1 ;
common values of�4, deduced from typical values of α and β used in the literature, aremuch
larger,2 namely �4 between 2 and 6 (�4 = −2/3 in the original FPU study, where β = 0).
Concerning the next coefficient knm,5, a similar computation shows that the difference to 1
is �5 � 0.30 already for n = 12, while in typical FPU papers the choice is γ = 0, that is
�5 = −1. We see that even for not much large n, MLJ potentials are closer to integrability
than typical FPU models. Figure 1shows the behavior of � j , j = 4, . . . , 7, for m = 6 and
n/m up to 32.

3.2 The Shape of the Normalized Potential

Figure 2 , left panel, shows how Vnm (colored curves) converges to T (black curve) by
increasing n at fixed m = 6; n grows there from 12 to 192 (2m to 32m), in geometric
progression. The right panel exhibits, on the same scale, Toda and its truncations T j , j =
3, . . . , 10. Thefigure shows that, for example, for potential energy around 1, even the common
12−6MLJ potential approximates Toda much better than very exotic high order truncations

2 This is not surprising, since larger�4 accelerates the thermalization process and decreases the computational
effort.
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Fig. 1 The differences
� j = knm, j − 1 vs. n/m, for
fixed m = 6; j = 4, . . . , 7

Fig. 2 Left panel: Toda potential T (black) and normalized MLJ potential Vnm , for fixed m = 6 and n =
12, 24, 48, 96, 192 (bottom to top, colored curves); λ = −2. Right panel: Toda potential and its Taylor
truncations T j , j = 3, . . . , 10

T j . The superiority becomes striking by growing energy. Let us stress that high energies can
localize in a single bond, even at small specific energy, if the number of particles is large.

3.3 Dynamics: Three particles on a Ring

We come now to dynamics, and consider the model of three particles on a ring:

H(ζ, η) =
2∑

i=0

[
η2i

2
+ V (ζi+1 − ζi )

]
,

with periodic boundary condition, baricenter at rest, two effective degrees of freedom. This
model was used in the celebrated paper [20], with V = T , to provide a strong numerical
indication that the Toda model is integrable. The method, as is typical after [34] for systems
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Fig. 3 The Poincaré section of the model of three particles on a ring, with Toda potential. Left panel E = 1,
right panel E = 100

with two degrees of freedom, consisted in analyzing the Poincaré section. We do not provide
details and refer to [20] for the choice of the Poincaré section and the coordinates on it;
everything is indeed absolutely standard.

Figure 3, left panel, concerns the Toda model (V = T ) and shows the Poincaré section for
total energy E = 1. The right panel shows the same section for much higher energy E = 100.
The absence of any chaotic region, no matter which is the value of E , convinced the scientific
community that the Toda model was integrable, and prompted for mathematical proofs that
soon arrived [18, 21, 22]. Figure 4 refers to Taylor truncations T j of Toda, j = 3, 4, 6, 8 (see
the labels inside panels), at energy E = 1. Let us recall that T3 coincides with the celebrated
Hénon-Heiles Hamiltonian, up to a trivial rescaling of energy by a factor 6 (the first panel
is indeed the celebrated figure of Ref. [34], at E = 1/6). Figure 5 refers instead to the
normalized MLJ potentials Vnm , for m = 6 and n = 12 (left), n = 48 (right; very similar),
at energy E = 1. Not only, at this energy, the chaotic region is absent, but the similarity
with Toda, already for n = 12, is striking. At high energy, even high order truncations of
Toda behave completely differently from Toda; see Fig. 6, left panel, which represents the
Poincaré section of T12 at E = 100. Instead, at the same energy, Vnm maintains an excellent
similarity with Toda even for m = 6 and n = 12; see the right panel of the figure.

3.4 Lyapunov Exponents for Large N

Finally, we come to the dynamics for large N , actually N = 1024. The purpose is to quickly
compare the dynamics ofMLJ potentials Vnm , and of Toda truncations T j , with the integrable
Toda dynamics, using as an easy tool the Lyapunov exponents (for a recent extensive study
of Lyapunov exponents in truncated Toda and other FPU models, see [13, 26]).

Consider any initial datum z in the phase space, let Ft (z) be its evolution at time t , and
for any tangent vector u in z, let DFt

z u be the evolved tangent vector. As is well known, the
Lyapunov exponent χ(z, u) is defined as

123



131 Page 10 of 13 G. Benettin et al.

Fig. 4 The Poincaré section of the model of three particles on a ring, with truncated Toda potential T j ,
j = 3, 4, 6, 8 (see the labels inside panels); energy E = 1

χ(z, u) = lim
t→∞ χ(t, z, u) , χ(t, z, u) = 1

t
log

‖DFt
z u‖

‖u‖ .

For given z, essentially all vectors u provide in the limit one and the same value of χ(z, u),
namely the maximal one. In fact, very quickly the finite time quantity χ(t, z, u) loses the
dependence on u, so we shall disregard it. Unless there is fully developed chaos, the depen-
dence on z is instead effective. Experience however shows [13] that taking an average even
on a limited sample of points in phase space, smooths significantly the z dependence, and
provides a reliable finite time indicator χ(t). We shall average on 24 randomly chosen points,
as in [13].

Our aim here is not to perform a complete study, but just to exemplify the theory, so we
shall limit ourselves only to one value of the specific energy, namely ε = 0.1. Figure 7
shows χ(t) vs. t for Toda (black), for FPU with β = 2 (blue) which has a contact of order
3 with Toda, for T4 (pink) and T6 (green); then for MLJ potentials Vnm with m = 6 and
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Fig. 5 The Poincaré section of the model of three particles on a ring, with normalized MLJ potential Vnm ;
m = 6 and n = 12 (left) and 48 (right). Energy E = 1

Fig. 6 The Poincaré section of the model of three particles on a ring, at high energy E = 100. Left: truncated
Toda T12. Right: MLJ potential Vnm with m = 6, n = 12

n = 12, 24, 48, 96 (red; n = 12, almost coinciding with T6, is not marked in the figure for
lack of space).

For Toda, like for all integrable systems, χ(t) goes to zero as log t/t . The other models
reach instead a nonzero limit. By increasing n, MLJ potentials Vnm follow Toda for a longer
while. At this value of energy, even the 12−6MLJ approaches Toda better than standard FPU,
and similarly to the rather exotic potential T6. For lower energies, however, the situation gets
complicated: the basic fact we aimed to illustrate, namely that by increasing n MLJ potentials
approach better and better Toda, is observed, and moreover, even for low n they are closer
to Toda than standard FPU. But higher order truncations T j , by lowering energy, become
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Fig. 7 The finite time Lyapunov
indicator χ(t) vs. t , for Toda
(black), FPU with α = −1 and
β = 2 (blue), truncations T4 and
T4 of Toda (pink and green,
respectively), then for MLJ
potentials Vnm with m = 6 and
n = 12, 24, 48, 96 (red) (Color
figure online)

competitive, with a sort of cross-over. We do not think it is worthwhile to further investigate
this point.
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