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1 Introduction

The question of whether information about a bulk state can be extracted using boundary
operators in a theory of gravity is an important one [1–4]. In this light, our motivation for
this work is two-fold. Since a theory of gravity is a constrained system, it is only natural to
ask whether such statements can be understood using the Dirac bracket formalism [5–7].
The second goal is to use this formalism and apply it to Fierz Pauli massive gravity [8],
which is an interesting modification to gravity and has been a subject of recent interest
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(see [9–26] for a sampling of works and references therein). Our chief motivation lies in
the recent discussions of massive gravity in the context of islands for evaporating black
holes [3, 27–34].

Whether information is holographically stored at the boundary is addressed by the
following question: given access to asymptotic boundary operators, can we precisely deter-
mine the bulk state? This version of holography of information exists in massless gravity
and is an essential consequence of the Gauss constraint. The crucial ingredient involved
here is the boundary Hamiltonian, using which one can construct boundary operators that
probe bulk physics [1–4, 35–38]. Related works discussing the localization of information
in massless gravity are [39–45].

In massless gravity, the principle of holography of information implies that specifying
a bulk state |ψ〉 outside a bounded region B uniquely fixes it inside B [2, 4]. As a result,
it is convenient to introduce split states, i.e., states which can be arbitrary inside B but
are fixed on the complement of B. Generally, all field theories apart from massless gravity
obey a split property that the set of such states is non-empty [46]. However, the holography
of information in massless gravity implies that the set of split states is empty. Keeping this
in mind, in our work, we investigate the following objectives:

1. To understand holography of information and split property using Dirac brackets by
verifying known cases of linearized massless gravity and electrodynamics.

2. To determine whether the property holds in massive gravity at a linearized level.

Brief description of results

In our work, we account for constraints using Dirac brackets and use them to demonstrate
the information stored at a linearized level for different constrained theories. Some related
works on the phase space structure and the computation of Dirac brackets in massive
gravity are given in [18, 47–50].

In section 2, we discuss physical observables in constrained theories and briefly review
the Dirac bracket formalism for considering the constraints. Based on our discussion of
physical observables, we develop a schematic argument for why we may be able to create
local bulk operators in massive gravity. However, the presence of second-class constraints
can render this picture wrong, and we need to verify the same by computing the Dirac
bracket between the boundary Hamiltonian and an arbitrary bulk operator. We also ar-
gue that flat space massive gravity does not have asymptotic symmetries such as BMS
supertranslations.

We argue that coupling linearized gravity (both massless and Fierz-Pauli massive grav-
ity) to matter fields introduces inconsistencies in the structure of the constraints, including
failure to close. As a demonstration, see appendix B.1 for the case of massless gravity and
appendix B.2 for massive gravity, where in both cases, the constraints fail to close. Thus
in principle, a complete calculation involves taking the full Einstein Hilbert action coupled
to matter in the massless case. Similarly, we should couple matter covariantly to the full
non-linear action for massive gravity [19–22].
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In our work, we argue that the issues regarding split states can be understood even
using a linearized analysis. We show that the Dirac matrix involving only the graviton
phase space is sufficient to understand split states, while the remaining Poisson brackets
are defined over the phase space of the complete gravity-matter theory. In other words,
we demand that the brackets between constraints are computed only over the gravity
phase space, which allows the constraints to close correctly. However, we do not put
this restriction while computing the rest of the brackets, where the matter insertions are
addressed adequately. Following this restriction, we also comment upon the vacua structure
of massive gravity.

Intuitively this restriction is in line with our general expectation that the addition
of matter should not drastically change the nature of the gravity constraint structure.
Analogously in electrodynamics, the constraint analysis with or without including charged
matter gives rise to the same Dirac matrix shown in appendix A.

In section 3 and section 4, we compute the Dirac matrix necessary to compute the
brackets for massless and massive gravity, respectively. Using this, we address the ex-
traction of bulk information using boundary operators for electrodynamics and massless/
massive gravity at leading order in perturbation theory. In section 5, we define relevant
boundary observables for massless and massive gravity and calculate the Dirac brackets.
We also perform an alternate derivation of the Dirac brackets in appendix C.

For electrodynamics, using the Dirac matrix obtained in appendix A, we find in sec-
tion 6.1 that one cannot use boundary operators to determine the bulk state, hence obeying
the expected split property. For massless gravity, building upon the computation of the
Dirac brackets in section 3 and section 5, we obtain the necessary conditions for the lack of
split states upon taking the Dirac bracket of boundary Hamiltonian with a bulk operator
insertion in section 6.3.

For massive gravity, following section 4 and section 5, we argue in section 5.2 that
the computation of the Dirac bracket between the boundary operator with bulk operators
vanishes. Upon quantization, lifting the Dirac bracket to the commutator between relevant
operators acting on the Hilbert space implies that the commutator is zero. Due to this,
in section 7, we argue that in contrast to the principle of holography of information in
massless gravity, we do not have an analogous statement in massive gravity. We argue this
in two different ways: with and without an explicit reference to the Hilbert space of massive
gravity. In section 8, we discuss the potential limitations of our work, the implications of
our results for evaporating black holes, and list some interesting directions.

2 Physical observables and Dirac brackets

In gauge theory, there are different ways to address gauge redundancy. The general method
to fix the redundancy is by defining gauge invariant observables. A useful subclass is to
work with gauge invariant observables, which we can construct by fixing a good gauge
choice, hence removing the redundancy (up to residual gauge, if any).
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In massless gravity, there is a gauge redundancy, i.e., small diffeomorphisms, which die
off at the asymptotic boundary of the spacetime. In flat space linearized gravity, these are

δhµν = ∂µζν + ∂νζµ + O
(√

GN
)
, (2.1)

where ζ parametrizes the diffeomorphisms at the linearized order. Hence the construction
of physical observables in gravity is accomplished by demanding invariance under small
diffeomorphisms characterized by (2.1), either by gauge fixing or by defining observables
that commute with constraints. More generally, one cannot define local diffeomorphism
invariant observables about simple enough points in the phase space of massless gravity
such as the one corresponding to the Minkowski vacuum, which corresponds to a maximally
symmetric solution.1

We can use gravitational dressing to construct observables invariant under small dif-
feomorphisms, where we dress bulk observables to the boundary.2 In gauge theories, one
can similarly construct similar gauge invariant observables, either by gauge fixing or by
defining manifestly gauge invariant observables like Wilson loops.3

The Fierz Pauli interaction term in massive gravity explicitly breaks the diffeomor-
phism invariance given in equation (2.1). Since small diffeomorphisms are no longer a
symmetry of massive gravity, we need not define physical observables by methods such as
dressing them using the boundary.

In flat space massive gravity, since diffeomorphisms are no longer a symmetry, the sub-
group of diffeomorphism group generating asymptotic symmetries such as supertranslations
are absent.

From the phase space perspective, the fact that there is no gauge symmetry of the
form (2.1) for massive gravity is because the constraints of massive gravity are second-class
and hence do not have any redundancy in the phase space. This feature contrasts the
first-class constraints of massless gravity, which necessitate gauge fixing. Thus it naively
seems that there can be local bulk observables in massive gravity, which can completely
hide from the boundary.

Despite the intuition from the gauge-fixing picture, we still need to consider the other
second-class constraints for a consistent description. Due to these constraints, bulk ob-
servables may not be completely independent of the observables at the boundary. In this
light, our work aims to understand whether these second-class constraints are sufficient for
a boundary observer to fix the bulk state completely.

1However one may be able to define diffeomorphism invariant observables for a complicated enough
backgrounds by labelling the spacetime points using the values of curvature invariants [43, 51–53] as follows:

φ(Za
0 ) =

∫
dDxφ(x)δ(Za − Za

0 )det∂Z
∂x

where Za’s are curvature invariants. But this procedure fails to work for spacetimes which have a lot of
symmetries e.g. Minkowski space.

2See [54] for a detailed construction of gauge invariant operators using dressing in massless gravity and
gauge theories.

3Note that Wilson loops are not good observables in gravity beyond leading order, since the loops possess
stress energy and hence backreact. However, they can undergo further gravitational dressing at subleading
order and become good observables up to that order.
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2.1 Constraints and Dirac brackets

We will follow [5] in our discussion. Here we will denote our set of constraints as {Φi}.
Given a Lagrangian L for a constrained system, we have a set of primary constraints {ΦP

i },
which are independent relations between the fields h and their canonical momenta Π. Let
H0 denote the Hamiltonian obtained by taking the Legendre transform of the Lagrangian
L. We define the Dirac Hamiltonian to be

H = H0 + viΦP
i (2.2)

Recall that the Poisson bracket between two observables F (x) and G(y) is given by

{F (x), G(y)} =
∫
dD−1z

(
δF (x)
δh(z)

δG(y)
δΠ(z) −

δG(y)
δh(z)

δF (x)
δΠ(z)

)
(2.3)

We first need to ensure whether the primary constraints are stable and use the stability
to determine the parameters vi from (2.2). We check the stability by taking the Poisson
brackets of primary constraints with the constrained Hamiltonian, i.e. {ΦP

i , H}, which
either vanishes or gives us secondary constraints. Next, we need to check the stability of
the secondary constraints, which may give us tertiary constraints. The process should be
repeated for consistency of the constrained system until we have determined all possible
constraints {Φi} and fixed the parameters vi.

We can further classify the set of constraints {Φi} into two subsets: first-class and
second-class. Second-class constraints are defined as constraints that do not commute
among themselves i.e.

{Φs
i ,Φs

j} 6= 0

on the constrained surface, while first-class constraints are defined as constraints that
commute among themselves i.e.

{Φf
i ,Φ

f
j } = 0

where we denote the first class constraints by Φf , and the second class constraints by Φs.
The presence of first-class constraints in the system indicates the presence of gauge

symmetry. Hence we need to fix a gauge corresponding to each of the first-class constraints.
The set of first-class constraints {Φf

i } and the gauge conditions {Gi} together form a system
of second-class constraints. Once we obtain a system of second-class constraints, we can
define the Dirac matrix as follows:

C (Φi,Φj) ≡ {Φi,Φj}. (2.4)

This matrix is now invertible since any constraint Φi gives a non-zero Poisson bracket with
at least one other constraint.4 We then invert this matrix (not always), thereby obtaining
the inverse C−1 (Φi,Φj)

C (Φi,Φk) C−1 (Φk,Φj) = δij (2.5)

4The first class constraints give non-zero Poisson brackets with the gauge constraints.
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With C−1
ij ≡ C−1 (Φi,Φj), the Dirac bracket between two observables F (x1) and G(x2)

defined on the phase space is given by

{F (x1), G(x2)}D.B. = {F (x1), G(x2)}−
∫
y1

∫
y2
{F (x1),Φi(y1)}C−1

ij (y1, y2) {Φj(y2), G(x2)}.

(2.6)
where we have used the notation

∫
y1

∫
y2
≡
∫
dD−1y1

∫
dD−1y2. Note that in (2.6), apart

from the first term (i.e., the standard Poisson bracket), we also have the second term,
which is the contribution due to the constraints.

3 Linearized massless gravity: Dirac matrix

Before addressing massive gravity, we will warm up with the Dirac matrix calculation for
linearized massless gravity without matter, which will also help contrast results with the
massive gravity calculation.

Let us begin with a convenient form for the action of the massless graviton:

Lg = 1
κ2

(
−1

2∂λhµν∂
λhµν + ∂µhνλ∂

νhµλ − ∂µhµν∂νh+ 1
2∂λh∂

λh

)
+ boundary terms

(3.1)
where the coefficient κ2 is given by κ2 = 32πGN , where GN is Newton’s constant. The
boundary terms in the Lagrangian (3.1) are chosen to simplify the momenta and the con-
straints, thereby giving us Π00 = Π0i = 0.5 Using (3.1), we compute the canonical momenta
corresponding to hµν :

Π00 = 0, Π0i = 0

Πij = ∂L

∂ḣij
= 1
κ2

(
ḣij − ḣkkδij − 2∂(ihj)0 + 2∂kh0kδij

) (3.2)

The first line gives us D primary constraints. Then the Hamiltonian for massless gravity
is given by taking the Legendre transform of (3.1):

H0 = κ2
(

Π2
ij

2 −
Π2
ii

2(D − 2)

)
+ 1
κ2

(1
2∂khij∂

khij − ∂ihjk∂jhik + ∂ihij∂
jhkk −

1
2∂ih

j
j∂
ihkk

)
− 2h0i∂jΠij − h00

(
∇2hii − ∂i∂jhij

)
(3.3)

The constraints with Hamiltonian (3.3) are given by

Π00 = 0 (3.4)
Π0i = 0 (3.5)

χ0 = {Π00, Htot} = ∇2hii − ∂i∂jhij (3.6)
χi = {Π0i, Htot} = 2∂jΠij , (3.7)

5Since we are working in asymptotically flat space, we can ignore possible boundary contributions to
the pointwise constraints.
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Since we have two primary constraints, the Dirac Hamiltonian is given by

Htot = H0 + v0Π00 + viΠ0i (3.8)

where v0 and vi are undetermined constants that will be fixed. We can check that this
system of constraints is first class since their Poisson brackets with themselves and the
Hamiltonian vanish.

Gauge choice

Given the above first-class constraints, we need to fix the redundancy in phase space. We do
that by implementing constraints arising from fixing the gauge (i.e. small diffeomorphisms)
and the undetermined constants v0 and vi in the Hamiltonian.

A good gauge choice is fixing them so that the gauge constraints are orthogonal to the
set of first-class constraints. Thus a natural guess for gauge conditions is the following:6

G0 : h00 = 0, Gi : h0i = 0, K0 : Πk
k

D − 2 = 0, and Kj : ∂ihij = 0. (3.9)

In the rest of this section, we will use this choice to implement the Dirac procedure.

Dirac brackets

Given the set of gauge conditions in (3.9), we need to ensure their stability under time evo-
lution, i.e., whether the above constraints give rise to new constraints after time evolution.

{G0, Htot} = v0

{Gi, Htot} = vi

{K0, Htot} = −h00 ≈ 0

{Kj , Htot} = ∂iΠij −
∂jΠk

k

D − 2 + 2∂j∂ih0i ≈ 0

(3.10)

where ≈ denotes that the equation is valid on the constraint surface. From (3.10), we see
that a consistent choice of implementing the Dirac procedure is by setting v0 = vi = 0
since, in this case, we do not get any new constraints. From the perspective of counting
degrees of freedom, we now have 4D second class constraints on an originally D(D + 1)
dimensional phase space, thereby reducing the phase space dimensionality to D(D − 3).
This reduction is consistent with the fact that the graviton has D(D−3)

2 degrees of freedom.7

In hindsight, we will find that the above choice of gauge conditions is designed such
that each gauge condition gives a non-zero commutator with exactly one of the first-class
constraints, thereby helping us obtain a simpler yet non-singular Dirac matrix. Specifically,

6The numerical multiplicative factor in K0 is chosen for later convenience.
7The degrees of freedom in massless gravity in D-dimensions can be found out by counting the symmetric

traceless representations of the little group SO(D − 2), giving rise to D(D−3)
2 polarizations of the standard

graviton. Note here that D ≥ 3.
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the non-zero elements of the constraint matrix are given by:
{Π00(x), G0(y)} = −δD−1(x− y)
{Π0i(x), Gj(y)} = −δijδD−1(x− y)
{χ0(x),K0(y)} = ∇2δD−1(x− y)

{χi(x),Kj(y)} =
(
δij∇2 + ∂i∂j

)
δD−1(x− y)

{K0(x),Ki(y)} = 1
D − 2∂iδ

D−1(x− y)

(3.11)

For later convenience, we will rename the constraints as follows:
C0 : χ0, Ci : χi, CD : Π00 CD+i : Π0i,

C2D : K0, C2D+i : Ki, C3D : G0, C3D+i : Gi.
(3.12)

In this new notation, we label the constraint matrix as

Cab = {Ca, Cb}

where a and b run from 0 · · · 4D − 1. Writing the matrix using the representation in the
momentum space, we obtain the following:

C(p) =



0 0j 0 0j −p2 0j 0 0j
0i 0ij 0i 0ij 0i −(pipj + p2δij ) 0i 0ij
0 0j 0 0j 0 0j −1 0j
0i 0ij 0i 0ij 0i 0ij 0i −δij
p2 0j 0 0j 0 ipj

D−2 0 0j
0i (pipj + p2δij ) 0i 0ij

ipj

D−2 0ij 0i 0ij
0 0j 1 0j 0 0j 0 0j
0i 0ij 0i δij 0i 0ij 0i 0ij


, (3.13)

where we have used raised (lowered) indices on the matrix elements to abbreviate entries
worth a column (row) array. Since the matrix given in (3.13) is non-singular, we can use
it to compute the inverse matrix

C−1(p) = 1
2p2



0 1
D−2

ipj

p2 0 0j 2 0j 0 0j
1

D−2
ipi

p2 0ij 0i 0ij 0i 2δij −
pipj

p2 0i 0ij
0 0j 0 0j 0 0j 2p2 0j
0i 0ij 0i 0ij 0i 0ij 0i 2p2δij
−2 0j 0 0j 0 0j 0 0j
0i −2δij + pipj

p2 0i 0ij 0j 0ij 0i 0ij
0 0j −2p2 0j 0 0j 0 0j
0i 0ij 0i −2p2δij 0i 0ij 0i 0ij


. (3.14)

Notice that the inverse of the constraint matrix is non-local. Such non-localities are
essential ingredients of a gauge invariant theory and encodes the structure of its Gauss
law. We will later find that this feature gives rise to the property that the energy of field
excitations within a spatial region is detectable from the boundary of the region.

This concludes our analysis of the Dirac matrix for linearised gravity without matter.
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4 Linearized massive gravity: Dirac matrix

We will now move on to computing the Dirac matrix for massive gravity without matter.
The Fierz-Pauli action for a massive graviton is given by:

Lg = 1
κ2

(
−1

2∂λhµν∂
λhµν + ∂µhνλ∂

νhµλ − ∂µhµν∂νh+ 1
2∂λh∂

λh− 1
2m

2(hµνhµν − h2)
)

+ boundary terms. (4.1)

Again, as in the massless case, we have chosen boundary terms such that Π00 = Π0i = 0
and κ2 = 32πGN . In addition to the massless gravity Lagrangian, we now have the Fierz
Pauli coupling term, with m denoting the mass of the graviton.

We can easily extend our analysis from the massless case to the massive case and
similarly determine the remaining canonical momenta and the Hamiltonian. Since the
kinetic part of the Lagrangian remains the same, the canonical momenta of the massive
case are the same as for the massless case and are given by (3.2). The massive gravity
Hamiltonian is given by:

Hg = κ2
(

Π2
ij

2 −
Π2
ii

2(D − 2)

)
+ 1
κ2

(1
2∂khij∂

khij − ∂ihjk∂jhik + ∂ihij∂
jhkk −

1
2∂ih

j
j∂
ihkk

+1
2m

2(hijhij − hiih
j
j)−m2h2

0i − h00
(
∇2hii − ∂i∂jhij −m2hkk

))
− 2h0i∂jΠij

(4.2)

As before, we again have two primary constraints, i.e. Π00 = Π0i = 0. Using these primary
constraints, the Dirac Hamiltonian is given by

Htot = Hg + v0Π00 + viΠ0i. (4.3)

Constraints and Dirac matrix

As for the massless case, we systematically determine the constraints and repeat the Dirac
procedure. Demanding stability of primary constraints under the action of the Hamiltonian,
we find the following secondary constraints:

C0 = {Π00, Htot} = (∇2 −m2)hjj − ∂i∂jh
ij

Ci = {Π0i, Htot} = ∂jΠji + m2h0i
(4.4)

Next, we demand the stability of these secondary constraints under the Hamiltonian and
thereby obtain the following:

C−1 = {C0, Htot} ≈ m2
(

Πk
k

D − 2 − ∂
ihi0

)
C−2 = {C−1, Htot} ≈ m4h

(4.5)

where ≈ denotes that the corresponding equation is valid on the constraint surface. The
Poisson brackets of Ci and C−1 with the Hamiltonian can be set to zero by fixing the
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Lagrange multipliers vi and v0, respectively. Thus, we have no tertiary constraints, and
the system is consistent.

The above procedure leads us to a system of 2(D+1) second class constraints provided
we fix the Lagrange multipliers (v0 and vi) accompanying the primary constraints as follows

Htot = Hg + ∂ihi0Π00 +
(
∂jhji − ∂ih

)
Πi0. (4.6)

In the limit m → 0, (4.5) trivially vanishes and the constraints (4.4) (Ca≥0 ) reduce to
the massless gravity constraints (3.4). Therefore the massive theory has two additional
second-class constraints than the massless theory. As a cross-check, the above analysis
leads to a correct determination of the degrees of freedom.8

Next, we define the constraint matrix

Cab(x, y) ≡ {Ca(x), Cb(y)} (4.7)

where a, b now spans −2,−1, . . . , 2D − 1. We have defined {CD, CD+i} = {Π00,Π0i} and
together with the constraints (4.4) and (4.5) they generate the constraint matrix

C(x− y) = m2



0 d
d−1m

4 0 −m2∂j −m2 0j
− d
d−1m

4 0 −∇2 + dm2

d−1 0j 0 −∂j
0 ∇2 − dm2

d−1 0 ∂j 0 0j
−m2∂i 0i ∂i 0ij 0i δij
m2 0 0 0j 0 0j
0i −∂i 0i −δij 0i 0ij


δd(x− y) , (4.8)

where derivatives are taken with respect to the coordinate x and d = D − 1 denotes the
dimension of the Cauchy slice. Here the raised and lowered indices denote rows and columns
respectively.

In the limit m → 0, the above constraint matrix vanishes showing that the 2D con-
straints Ca≥0 are first class in the massless limit. The remaining two constraints in (4.5)
identically vanish. Note that the procedure to find the Dirac matrix in theory with first-
class constraints requires gauge fixing as explained in section 3. Hence the constraint
matrix (3.13) for massless gravity cannot be directly obtained in the m → 0 limit of the
above matrix.

Fourier transforming C(x− y), we get the momentum space constraint matrix

C(p) = m2



0 d
d−1m

4 0 −m2ipj −m2 0j
− d
d−1m

4 0 p2 + dm2

d−1 0j 0 −ipj
0 −p2 − dm2

d−1 0 ipj 0 0j
−m2ipi 0i ipi 0ij 0i δij
m2 0 0 0j 0 0j
0i −ipi 0i −δij 0i 0ij


, (4.9)

8For theories with massive graviton, one needs to look at the symmetric traceless representation of the
group SO(D− 1), which gives us D2−D−2

2 polarizations. This is valid for D ≥ 2, and in particular, massive
gravity in three dimensions has a propagating degree of freedom, whereas, in four dimensions, we have five
polarizations.
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where we have used the momentum space representation of the delta function, (2π)dδd(x−
y) =

∫
p e

ip.(x−y). The matrix C(p) can be easily inverted to obtain the Dirac constraint
matrix

C−1(p) = 1
m4

d− 1
d



0 0 0 0j d
d−1 0j

0 0 −1 0j 0 −ipj
0 1 0 ipj −p2 + dm2

d−1 0j
0i 0i ipi 0ij 0i −pipj − dm2

d−1δ
i
j

− d
d−1 0 p2 − dm2

d−1 0j 0 ipjp2

0i −ipi 0i pipj + dm2

d−1δ
i
j ipip2 0ij


.

(4.10)
The main takeaway from the above analysis is that, unlike in the case of massless grav-
ity, the Dirac matrix of a massive gravity theory has a local expression. This observation
has important implications for the statement of holography of information. In particular,
in section 5.2 we demonstrate that in contrast to the situation in massless gravity, mas-
sive gravity theories can hide information about bulk operator insertions from boundary
operators.

5 Boundary observables and Dirac brackets

We will now utilize the Dirac matrices obtained for various theories, i.e. electrodynamics,
massless gravity, and massive gravity, to calculate the Dirac brackets.

5.1 Boundary observables and Dirac brackets for massless gravity

As in electrodynamics, the relevant boundary operator for massless gravity can be obtained
from the Gauss constraint. The constraints for linearized massless gravity with matter are
given in appendix B.1, and from (B.13), the Gauss constraint χm0 for massless gravity with
matter insertion is given by

∇2hkk − ∂i∂jhij = −16πGNT00. (5.1)

Given any bounded spatial region V , the Gauss constraint makes it possible to encode
the energy of matter fields supported on it

∫
V T00 via an equivalent boundary operator

given by:

H∂ = 1
16πGN

∫
V
dD−1x ∂i.(∂jhij − ∂ihkk) = 1

16πGN

∫
∂V
dD−2xni.(∂jhij − ∂ihkk) , (5.2)

where n denotes the unit normal to the boundary ∂V of V (we review the analogous
construction for electrodynamics in appendix A). The Hamiltonian of the full theory can be
obtained fromH∂ by taking the limit where V includes the entire Cauchy slice containing it.

Let us compute the Dirac bracket for the boundary operator H∂ with some bulk matter
insertion O(z). Using the gravity constraints (3.12), since H∂ only depends on hij , we see
that H∂ has nonzero commutators only with the constraint C2D = K0 given in (3.9). The
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relevant commutator is given by:

{H∂ , C2D(y)} =
∫
ddz

∂H∂

∂hij(z)
∂C2D(y)
∂Πij(z)

= − 1
16πGN

∫
V
ddx ∇2δd(x− y) = 1

16πGN

∫
V
ddx

∫
ddp

(2π)d p2eip.(x−y) ,

(5.3)

where we have set d = D− 1. The Dirac bracket of the boundary operator H∂ with a bulk
matter operator insertion O(z) is given by:

{H∂ ,O(z)}D.B. =−
∫
ddy ddz′ {H∂ ,Ca(y)} C−1

ab (y,z′) {Cb(z′),O(z)}

= 1
16πGN

∫
V
ddx

∫
ddp

(2π)d
ddq

(2π)d d
dy ddz′ eip.(x−y)eiq.(y−z′) p2

q2 {χ
m
0 (z′),O(z)}

= 1
16πGN

∫
V
ddx {χm0 (x),O(z)}=

∫
V
ddx {T00(x),O(z)} ,

(5.4)

where χm0 is the Hamiltonian constraint in the presence of matter, given in (B.13). In
the second step of (5.4), we have used the fact that only the component C−1

2D 0 of the
inverse constraint matrix contributes. Notice that in the limit where V approaches the full
spatial slice containing it, the right-hand side of (5.3) vanishes. However, the non-local
factor arising from the inverse constraint matrix provides a measured counter-effect which
makes (5.4) valid even for the full spatial slice. Thus the Dirac bracket of the boundary
Hamiltonian with the observable O(z) is equal to the Poisson bracket of the observable with
the integrated Gauss constraint. This in turn, as expected, is equivalent to the Poisson
bracket of O(z) with the matter Hamiltonian.

5.2 Boundary observables and Dirac brackets for massive gravity

Like massless gravity, the relevant boundary Hamiltonian for massive gravity can be ob-
tained from the Gauss constraint. From (B.20) and (B.21), the Gauss constraint χ0 for
massive gravity with matter insertion is given by

∇2hkk − ∂i∂jhij = m2hkk − 16πGNT00. (5.5)

As in massless gravity, we can integrate the l.h.s. of the Gauss constraint within a spacelike
region V and obtain the boundary operator H∂ , which is given by

H∂ = 1
16πGN

∫
V
dD−1x ∂i.(∂jhij − ∂ihkk) = 1

16πGN

∫
∂V
dD−2xni.(∂jhij − ∂ihkk). (5.6)

From the massive gravity constraints, we see that the boundary Hamiltonian fails to com-
mute only with the constraint C−1 (see Eqn (4.5)). The relevant commutator is given by:

{H∂ , C−1(y)} =
∫
ddz

∂H∂

∂hij(z)
∂C−1(y)
∂Πij(z)

= − m2

16πGN

∫
V
ddx∇2δd(x− y) = m2

16πGN

∫
V
ddx

∫
ddp

(2π)d p2eip.(x−y) ,

(5.7)
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which is identical to (5.3) up to a factor of m2. The Dirac bracket of the boundary operator
with a bulk matter operator O(z) is given by:

{H∂ , O(z)}D.B. = −
∫
ddy ddz′ {H∂ , Ca(y)} C−1

ab (y, z′) {Cb(z′), O(z)}

= d− 1
m2d

1
16πGN

∫
V
ddx

∫
ddp

(2π)d
ddq

(2π)dd
dy ddz′ eip.(x−y)eiq.(y−z′)

p2({C0(z′), O(z)}+ iqi{CD+i(z′), O(z)}
)

= −d− 1
m2d

1
16πGN

∫
V
ddx ∇2({C0(x), O(z)}+ ∂i{Π0i(x), O(z)}

)
= −d− 1

m2d

1
16πGN

∫
∂V
dd−1x ni∂i

(
{C0(x), O(z)}

)
.

(5.8)

In the second equation above, we have identified the only contributing terms to be from
C−1
−1 0 and C−1

−1D+i. In the final step, we have neglected the contribution from the C−1
−1D+i

terms as O(z) is assumed to be a pure matter operator with trivial Poisson brackets
with Π0i.

The result (5.8) differs from that of (5.4) fundamentally because, unlike in the case of
massless gravity, the inverse constraint matrix contributing to (5.8) is local, thus allowing
us to reduce the Dirac bracket to a pure boundary term. Therefore, when O(z) is taken
to be an operator insertion strictly in the bulk, we find that its Dirac bracket with the
boundary operator H∂ vanishes.

In appendix C, we treat the constraints of the free theory but substitute the equation
of motion of h0i back into the action. We argue that at the classical level, the substitution
makes sense. We use this to alternatively demonstrate that {H∂ , O(z)}D.B. = 0.

6 Vacua structure and split states

We will now utilize the Dirac brackets obtained for various theories, i.e. electrodynamics,
massless gravity, and massive gravity, to investigate the existence of split states. In order to
set up the stage for further discussions of constraints using Dirac brackets and their relation
with split states, let us first begin with the case of electrodynamics. Readers familiar with
split states in electrodynamics can directly skip ahead to section 6.2.

6.1 Split states in electrodynamics

We minimally couple a charged scalar φ to the electrodynamic field. The Hamiltonian for
this system is given by

HJ =
∫
dd−1x

(
−1

2ΠiΠi+
1
4FijF

ij−∂iΠiA0+ΠφΠφ∗−ieA0 (φΠφ−Πφ∗φ
∗)+(Diφ)∗Diφ

)
(6.1)

where Diφ ≡ ∂iφ + ieAiφ is the covariant derivative with respect to the gauge field, and
Πi denotes the momentum conjugate to the electrodynamic field, while Πφ denotes the
momentum conjugate to the scalar field and is given by

Πφ = φ̇∗ − ieA0φ
∗ (6.2)
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In terms of the gauge invariant fields, Πi = Ei. Using (6.1), one can compute the Gauss
constraint, which is given by:

∂iΠi − J0 = 0

where
J0 = −ie (φΠφ −Πφ∗φ

∗)

is the matter current. As a consequence, the Gauss constraint implies that given a codimen-
sion one spacelike slicing Σ, measuring the integral of the electric field over the boundary
gives us the total charge Q =

∫
Σ J

0, i.e.∫
Σ
∂iΠi =

∫
∂Σ
niΠi = Q. (6.3)

where ni is the outward pointing normal vector.
The boundary operator in (6.3) is unique to electrodynamics due to the Gauss con-

straint and gives us the total charge. Now consider some matter insertion in bulk, denoted
by the action of an operator O(x). We want to determine whether the information content
of the insertion can be obtained using a relevant boundary observable, i.e., the boundary
operator defined in (6.3).

The computation of the Dirac matrix for electrodynamics, both with and without
matter, is performed in appendix A. Using our analysis there, we are in a position to
investigate the Dirac bracket of

∫
Σ ∂iΠi with O(x), which gives us{ ∫

Σ
∂iΠi(x), O(z)

}
D.B.

=
{ ∫

Σ
∂iΠi(x), O(z)

}
−
∫
y1

∫
y2

∫
Σ
∂2δ(x− y1) 1

∂2 δ(y1 − y2)
{
∂iΠi(y2)− J0(y2), O(z)

}
(6.4)

We will work with purely matter insertions O(z) in the following discussion. Then the first
Poisson bracket on the r.h.s. of (6.4) is zero, while the second bracket, upon integration by
parts and using the Gauss law, takes the form{ ∫

Σ
∂iΠi(x), O(z)

}
D.B.

= −
∫

Σ

{
∂iΠi(x)− J0(x), O(z)

}
= {Q,O(z)} (6.5)

where we have used {∂iΠi(x), O(z)} = 0. Thus we obtain an order one contribution due to
the matter insertion. If we have a chargeless state, the Dirac bracket expectedly vanishes,
whereas we obtain a finite contribution for the charged state.

Lifting the Dirac brackets to operators acting on the Hilbert space, equation (6.5)
takes the following form9 ∫

Σ

[
∂iΠi(x), O(z)

]
= [Q,O(z)] (6.6)

9The lifting from phase space observables to operators acting on the Hilbert space is subject to the
assumption that a suitable operator ordering prescription exists which removes any anomalous terms. This
issue arises not only in electrodynamics but also in our later analysis of gravity, and we discuss more about
this in section 8.
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Equation (6.6) leads to the existence of split states in electrodynamics. To see this, note
that the order one contribution on r.h.s. is insufficient to specify the state of the bulk on
the spacelike slicing. This is because the boundary operator

∫
Σ ∂iΠi(x) can only measure

the charge of the state.
Consequently, there is an infinite degeneracy of states with a given electromagnetic

charge, which all evaluate to the same value on the r.h.s. of (6.5). In this way, the Gauss
constraint in electrodynamics cannot specify the state in question. Hence the split property
holds since one cannot distinguish bulk states using the relevant boundary operator.

6.2 Hilbert space and vacua structure in flat space gravity

In this subsection, we will revisit the canonical Hilbert space of asymptotically flat massless
gravity and use it to construct the massive gravity Hilbert space analogously. The Hilbert
space will be important in understanding the split property of flat space gravity in the
later subsections.

Massless gravity

We begin by studying the vacua and boundary operators for flat space massless gravity [55–
57]. The asymptotic symmetries are implemented by subgroups of the diffeomorphism
group, such as the BMS group, which generates supertranslations [58–63].

Supertranslations (in D = 4) are generated using supertranslation charges Qlm con-
structed by spherically smearing the Bondi mass aspect mB(u,Ω) at I+

− :

Qlm = 1
4πGN

∫ √
γ d2ΩmB(u = −∞,Ω)Yl,m(Ω). (6.7)

We can separate Qlm into hard and soft components. Thus a specification of vacuum in-
volves annihilation under positive modes of matter and gravity together with the eigenvalue
under soft mode:

Qlm |0, {s}〉 = sl,m |0, {s}〉 (6.8)

Here in |0, {s}〉, the first label denotes the energy, while the second label specifies the
supertranslation sector, i.e. the eigenvalue under the soft mode. Supertranslation sectors
serve as different superselection sectors for the theory, and hence the flat space massless
gravity Hilbert space is given by

H =
⊕
{s}
H{s} (6.9)

The ADM Hamiltonian H∂ defined in (5.2) is simply Q00 charge defined in (6.7) [64, 65].

Massive gravity

In order to construct the state space of linearized massive gravity, we note the following
points:

1. From our calculation in (5.8), the Dirac bracket of H∂ with a bulk matter insertion
O(z) is zero. Upon lifting operators to the phase space, we replace the Dirac bracket
with commutators, thereby giving us

[H∂ , O(z)] = 0, (6.10)
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where H∂ is given by

H∂ = 1
16πGN

∫
dD−2xni.(∂jhij − ∂ihkk). (6.11)

2. Since asymptotic symmetries are absent in massive gravity, in contrast to the massless
theory, the vacua subspace of the flat space massive theory is labelled by a single
sector rather than a direct sum over infinite supertranslation sectors as in (6.9).

Using these above points and from equations (6.10) and (6.11), we can use the boundary
operator H∂ to label the states in the Hilbert space as |E,M〉 such that

H∂ |E,M〉 = E |E,M〉 . (6.12)

Here the label E denotes the eigenvalue under H∂ , and M is a quantum number that
labels the bulk matter and gravity insertions. In contrast to the massless case, the second
label in (6.12) does not denote the supertranslation sector but is closely related to the
longitudinal mode of the massive graviton.

Due to the absence of asymptotic symmetries, we expect that the S-matrix defined over
the state space {|E,M〉} is infrared finite, i.e. as expected, there are no infrared divergences
in pure massive gravity.

6.3 Split states in massless gravity

Equation (5.4) states that the boundary Hamiltonian H∂ knows about bulk insertions since
the Poisson bracket of the matter insertion with the integrated stress energy component T00
is the same as the commutator of the H∂ with the matter insertion. This is in line with the
Hamiltonian constraint analysis in equations (4.57) and (4.58) of [2], where expanding the
constraint at the second order in perturbation theory, H∂ is related to the bulk energy. The
bulk energy has a contribution from both gravity and matter, with the matter contribution
being T00. In our case, on the r.h.s. of (5.4), O(z) clicks only with T00 in the Poisson bracket.
Thus the commutator of H∂ with matter insertion gives us the same result as expected
from the order-by-order expansion of the Hamiltonian constraint.

Given this consistency check, the statements about holography of information and split
states follow as in [1], which we briefly summarize. Using a Reeh Schlieder type argument,
one can construct operators QB supported near the boundary, which can act on a super-
translation vacuum |0, {s}〉 to create any arbitrary state |B, {s}〉 in the supertranslation
sector {s}

QB |0, {s}〉 = |B, {s}〉+ O
(√

GN
)
. (6.13)

Henceforth we will ignore O
(√
GN

)
corrections. Thus using (6.13) any hard bulk operator10

O(z) can be written as

O(z) =
∑
mn

cmn |m, {s}〉 〈n, {s}| =
∑
mn

cmnQm |0, {s}〉 〈0, {s}|Q†n. (6.14)

10We only consider hard bulk operators here whose action does not change the superselection sector {s}.
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From equation (5.4), we see that the matter insertion O(z) leaves an imprint on the ADM
energy since it does not commute with H∂ . Hence H∂ can be labelled using the bulk
matter-energy, which is positive definite in well-behaved theories.

Then away from our linearized case, in the full theory, one can use H∂ to construct a
boundary projector onto the vacuum of the theory on the lines of [1]. Using the Fock space
representation of the projector we can write the operator representation in (6.14) as

O(z) =
∑
mn

cmnQmP0Q
†
n. (6.15)

which is completely expressed in boundary operators Qm and the projector P0. Using
the arguments of [3, 4], various statements regarding the holography of information follow
from the above representation. Since bulk operators can be written as combinations of
boundary operators, there cannot be split states since one can always utilize the boundary
expression for the bulk operators to probe bulk physics. Thus the decomposition of the
massless gravity Hilbert space H into

H = HA ⊗HĀ (6.16)

is not allowed,11 and correspondingly, the notion of split states in massless gravity does
not exist [4].

One can also use the more physical boundary projector Pδ defined in [38] to express
O(z) in terms of boundary operators. However, this is a slightly more difficult task since
this involves delicately tuning smearing functions on the complement of the bulk region we
are interested in.

7 Split states in massive gravity

Since the Dirac bracket of H∂ with bulk operator O(z) is zero in massive gravity from equa-
tion (5.8), we can hide any bulk matter insertion O(z) from detection using the boundary
operators. In this section, we will demonstrate the existence of split states in massive
gravity in two ways: firstly by making an explicit reference to the Hilbert space outlined
in section 6.2, and secondly by not making an explicit reference to the Hilbert space.

7.1 Split states from the vacuum structure

Following our notation introduced in section 6.2, from equation (5.8) we have

[H∂ , O(z)] = 0. (7.1)

which implies that the we have simultaneous eigenstates |E,M〉. Thus there are arbitrarily
many states with bulk matter insertions in the zero eigenvalue subspace of H∂ .

This leads to split states since from equation (7.1), H∂ or operators constructed using
it can never detect matter eigenvalue M in the bulk. In other words, one can shield bulk
excitations from any possible detection at the boundary. Hence, at our linearized analysis,

11The precise sense in which we refer to the factorization of Hilbert space is explained in section 7.
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there is no holography of bulk information at the boundary, which could be detected using
boundary operators. Let us now precisely define what we mean by factorization of the
Hilbert space.

Approximate factorization of Hilbert space

The notion of Hilbert space factorization in eqn (6.16) is approximate. Even if we ignore
any constraints, such a factorization is not allowed in a quantum field theory since the
energy of such product states lies outside effective field theory. To work with such states
within effective field theory, we should imagine some spatial separation between the regions
A and Ā larger than the UV length scale of effective field theory.

Formally, introducing the spatial separation and momentarily ignoring the constraints,
we can approximately factorize the Hilbert space H upon spatially partitioning flat space
into a bounded region A and its complement Ā as follows

H = HA ⊗HĀ. (7.2)

Then the factorization in (7.2) implies that spatially partitioned split states of the following
form exist in the Hilbert space H:

|ψ〉 = |ψA〉 ⊗ |ψĀ〉 . (7.3)

In our present case, region A should be thought of as most of the bulk region while the
complement region Ā is a small enough region sufficient to include the boundary. Then in
massive gravity, states in the Hilbert space spanned by |ψ〉 = |E,M〉 can be thought of as
split states living in the above approximately factorised Hilbert space.

This is roughly because we can modify the bulk state |ψA〉 in the region A thereby
changing the matter quantum number M , while preserving the boundary eigenvalue E in
the region Ā at the same time. Since there are no other relevant boundary operators that
probe the bulk physics in the region A, changing |ψA〉 does not affect the state |ψĀ〉 in
region Ā. Consequently, states of the form (7.3) are allowed in the Hilbert space of massive
gravity taking into account the constraints using Dirac brackets.

7.2 Split states without the vacuum structure

More generally, we do not need to reconstruct the Hilbert space in order to understand the
split property. To see this, let us work with a non-gravitational theory first, and outline
the split property.

Consider a density matrix ρ defined on the spatially partitioned system acting on H.
We will be working with the algebra of observables A and Ā acting on the previously-
defined regions A and Ā respectively. The algebras A and Ā consist of products of bulk
operators supported on A and Ā respectively.

We now look at operators OA ∈ A and OĀ ∈ Ā, where elements from the algebras
mutually commute, i.e., [OA, OĀ] = 0. Let us consider a bulk observable of the form
O = OAOĀ. The split property [66, 67] implies that the expectation value of operator O
can be written as:

〈O〉 ≡ Tr (ρO) = Tr (ρAOA)Tr (ρĀOĀ) (7.4)
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where ρA and ρĀ are density matrices such that they are unconstrained in the traced out
regions Ā and A respectively. Effectively the density matrix ρ takes the following form

ρ = TrĀ (ρA)⊗ TrA (ρĀ) , (7.5)

which can be seen by substituting (7.5) into (7.4).

Support of boundary operator H∂

In massless gravity, there are a couple of issues regarding the above construction. Firstly,
from equation (5.4), we have

[H∂ , OA] 6= 0. (7.6)

Hence the decomposition in (7.4) does not work, since there always exists an operator H∂

living in the region Ā which can be used to detect observables in A.12 Correspondingly, the
Hilbert space does not factorize, and the density matrix cannot be written in the form (7.5)
for massless gravity.

The second issue arises since only small diffeomorphism invariant observables make
sense. For instance, diffeomorphism invariant dressed operators obey [OA, OĀ] 6= 0, and
hence (7.4) and (7.5) do not hold. A more precise version involves defining the algebra of
observables asymptotically. We refer the reader to [1, 4] for a detailed treatment of this
issue.

In massive gravity, we do not need to work with asymptotic observables since diffeo-
morphism invariance is absent, and hence we can work with the previously defined algebra
of observables. Since we do not need to dress the observables, we have [OA, OĀ] = 0.
Also for an observable OA, the boundary operator H∂ simply commutes with the spatially
partitioned observables

[H∂ , OA] = 0. (7.7)

As a consequence, equations (7.4) and (7.5) follow since we cannot use H∂ which is sup-
ported in the region Ā, to detect the state supported in the region A any more. Thus
from (7.4) and (7.5), specifying information in the region Ā does not fix the state in the
region A. Consequently, the existence of split states in massive gravity can be understood
from lifting the Dirac brackets onto operator commutators acting on the Hilbert space.

The appearance of split states is a significant departure from the case of massless
gravity, where any matter insertion has a specific signature in correlators involving bound-
ary operators. Massive gravity is not constrained enough to detect bulk insertions using
boundary observables and their correlators. From our analysis in this subsection, it is clear
that massive gravity resembles a non-gravitational QFT than massless gravity.

8 Conclusion and discussion

In our work, we have computed Dirac brackets in different settings and used them to in-
vestigate the issue of split states. More generally, we have addressed the following question

12From (5.4) since the commutator is non-zero, the ADM Hamiltonian H∂ , though supported in the
region Ā, does not belong solely to the algebra Ā.
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regarding the principle of holography of information: given access to boundary operators,
can one use them to identify a generic bulk state? In linearized massive gravity, using our
analysis of the Dirac brackets, it appears that such information is hidden from boundary
operators, thereby allowing for split states.

We find that the Dirac bracket between the relevant boundary operator from the Gauss
constraint and a generic bulk matter insertion is zero for massive gravity. This is consistent
with our intuitively expected picture resulting from the lack of small diffeomorphisms in
massive gravity. Thus one can create local bulk operators which can never be detected
using the boundary operator H∂ since the commutator is simply zero. This is a significant
departure from massless gravity. We show that this leads to split states, and hence there
is no holography of information in linearized massive gravity.

Potential limitations of our analysis

Let us now discuss some potential limitations of our analysis:

1. Regarding the closure of constraints: as discussed in appendix B, from the
perspective of constraints, one cannot consistently couple matter to the linearized
gravity action since the constraint algebra does not close. The failure of linearised
gravity-matter constraints to close introduces further constraints on the phase space.
Introducing these additional constraints is inconsistent with the degree of freedom
counting. In contrast, the case of electrodynamics is much simpler, where the Dirac
matrix, upon the inclusion of charged matter, is the same as for the uncharged
case (see appendix A). The issues with consistently coupling matter with linearized
gravity are an important feature contrary to our naive expectations. This issue is
also demonstrated from the failure to impose ∂µTµν = 0 in [24].13

Motivated by electrodynamics, we circumvent this issue by taking the Dirac matrix
of linearised gravity without matter to evaluate the Dirac brackets. This ensures
that the algebra closes, and we use this matrix to compute Dirac brackets between
observables, with subsequent Poisson brackets defined over the entire matter-gravity
phase space. In other words, we restrict ourselves to the gravity phase space whenever
we take the Poisson bracket between two different constraints but otherwise work in
the entire matter-gravity phase space. A more satisfactory procedure would be to
consider the full non-linear action coupled to matter [19–22] and study the Dirac
brackets, which is an open question.

2. Holography of information: in massless gravity, the principle of holography of in-
formation is a non-perturbative statement. Perturbatively we can demonstrate holog-
raphy of information about low energy states. However, for heavy time-dependent
states, as studied in [42, 43], within perturbation theory, it may be possible to con-
struct operators which can commute with the Hamiltonian. We expect that there

13Very loosely, we can also argue that there should not be any corrections to the linearised Dirac matrix
upon including matter since naively coupling matter order by order in perturbation theory is problematic,
and as a consequence, the constraints fail to close properly.
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exist complicated observables using which we can probe the bulk, which incorporate
non-perturbative effects.

In our work, we restrict our analysis to linearized gravity over the empty flat back-
ground and restrict our statements to low energy states about the vacuum. At
our present level of analysis, we have only checked in perturbation theory that the
commutator [H∂ , O(x)] = 0. This statement might receive non-zero corrections of
O(e−G

−1
N ) but our present framework does not suffice to calculate such corrections.

In particular, it is unclear whether the canonical vacuum in massive gravity satis-
fies necessary properties such as boundedness and whether one can define projectors
onto the vacuum. Thus we are unable to concretely establish whether holography of
information in massive gravity is a non-perturbative statement or not.

3. Quantization ambiguities: generally, lifting constraints from the phase space to
operator equations on the Hilbert space may introduce some corrections to the con-
straint algebra. For instance, we may have ambiguities proportional to δ(0) for first-
class constraints. If such ambiguities arise, we need to implement a suitable choice
of normal ordering that allows us to circumvent them.

In our analysis of massive gravity, some simple operator-ordering ambiguities, such
as ones resulting from the multiplication of canonical field with momenta, are absent
since the constraints are all linear. There are seemingly no such obstructions to
quantization at the level of our linearized analysis.

4. Higgs-type mechanism and localization of information: a straightforward
implication regarding the localization of information is as follows: the localization of
information on the whole AdS5 boundary is different from the Karch Randall type
setups [14], which have a massive graviton. In such setups, the massive graviton
arises from a higher dimension. However, the crucial feature is that the boundary of
the complete theory is not the same as the boundary of the dimensionally reduced
theory, hence the difference in the localization of information.

Another question that may arise is how a possible Higgs mechanism which gives the
graviton mass may change the localization of information. The naive picture is that
breaking the diffeomorphism invariance by such a mechanism changes the localization
of information, and consequently, even at the non-perturbative level, one may not be
able to recover bulk information using just the boundary operators. Such issues still
need to be better understood.

Black hole evaporation

We now briefly discuss some other implications of our work regarding black hole evapo-
ration. Our analysis here indicates consistency with the arguments of [68] that massive
gravity at a linearized level allows for black hole evaporation using the islands formalism.
This is because the Dirac bracket of operator insertions inside the disconnected entan-
glement wedge with the boundary Hamiltonian is zero, indicating consistency with the
subregion duality.
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However, since the Dirac bracket in massless gravity between the boundary Hamil-
tonian and the bulk Hamiltonian is not zero, operator insertions inside the entanglement
wedge can potentially be detected using the boundary Hamiltonian. Whether our formal-
ism sheds some light to circumvent this obstruction in massless gravity is an interesting
question.

Other open questions

We conclude our work with some other open questions. For massless gravity, we observe
that the form of the constraint algebra of the linearised theory without matter and the
complete non-linear theory with matter look similar, provided we fix the gauge appropri-
ately. It would be interesting to investigate whether this observation also holds for the
case of massive gravity. Stated differently, the question is whether we expect the form of
the constraint algebra of non-linear massive gravity coupled to matter to be similar to the
Fierz-Pauli case. Our analysis is plausibly valid for the full non-linear theory coupled to
matter in such a case. A related point is whether our described vacua structure, which
depends on our restrictive linearized analysis, generalizes to the non-linear case.

Given the constraint algebra of the non-linear action, an interesting question is whether
a systematic procedure exists to truncate it to the constraint algebra from the quadratic
action, i.e. to the linearized case. As we argued, to include matter, we need to consider
the full non-linear Einstein action. However, is there any consistent truncation of the full
non-linear constraint algebra, which gives us the Dirac matrix of linearized gravity?

A slightly distant avenue is to understand whether there is any natural obstruction to
lifting massive gravity phase space observables to state-independent operators [69, 70] and
their subsequent dependence on late time effects [3, 71–73]. We hope to address some of
these issues in future work.
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A Dirac brackets for electrodynamics

We will first look at Dirac brackets for electrodynamics without matter and then derive
the Dirac brackets after adding in the matter.

Electrodynamics without charges

We will work with the Lagrangian given by

L = −1
4FµνF

µν , (A.1)

where Fµν denotes the field strength. Using this Lagrangian, we arrive at the primary
constraint

Π0 = 0, (A.2)

where Π0 denotes the standard canonical momentum. Then the Hamiltonian H0 obtained
from the Legendre transformation of (A.1) is given by

H0 =
∫
ddx

(
−1

2ΠiΠi + 1
4FijF

ij − ∂iΠiA0

)
. (A.3)

To implement the Dirac bracket procedure, we will first add in the contribution from the
primary constraint, i.e.

H = H0 + v0Π0, (A.4)

where our goal now is to fix v0. The condition for the stability of the primary constraint
gives us the Gauss constraint, which is a secondary constraint,

{Π0, H} = ∂iΠi. (A.5)

We find that there are no further tertiary constraints because

{∂iΠi, H} = 0 (A.6)

due to cancellations among terms resulting from integration by parts. Consequently, we
have v0 = 0 in (A.4), i.e. the constrained Hamiltonian is the same as obtained from Legendre
transformation of the electrodynamics Lagrangian. Thus we have a system of first-class
constraints characterized by the Hamiltonian H, and constraints (A.2) and (A.5).

Gauge fixing

Since we have a first-class system, we fix the gauge by putting in gauge conditions. A
convenient choice is to choose a gauge that is orthogonal to the first-class constraints. In
our case, this amounts to

A0 = 0 and ∂iA
i = 0. (A.7)

We rewrite the system of constraints given by (A.2), (A.5) and (A.7) in the following
ordered form

C0 = Π0(x)
C1 = ∂iΠi(x)
C2 = A0(x)
C3 = ∂iA

i(x)

(A.8)
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Using the above constraints, we have the following non-zero Dirac brackets

{Π0(x), A0(y)} = −δd(x− y)
{∂iΠi(x), ∂jAj(y)} = ∇2δd(x− y).

(A.9)

Note that the plus sign in the expression for the second commutator in (A.9) arises due
to the shifting of derivatives while performing integration by parts. Then the constraint
matrix with the ordering in (A.8) is given by

M(x− y) =


0 0 −1 0
0 0 0 ∇2

1 0 0 0
0 −∇2 0 0

 δd(x− y) (A.10)

The inverse matrix of M(x, y) from (A.10) is given by

M−1(x− y) =


0 0 1 0
0 0 0 − 1

∇2

−1 0 0 0
0 1
∇2 0 0

 δd(x− y) (A.11)

Electrodynamics with charges

Recall from (6.1) that the Hamiltonian for a charged scalar coupled to electrodynamics is
given by

HJ =
∫
ddx

(
−1

2ΠiΠi + 1
4FijF

ij − ∂iΠiA0 + ΠφΠφ∗ − ieA0 (φΠφ −Πφ∗φ
∗) + (Diφ)∗Diφ

)
(A.12)

Here we again have the primary constraint Π0 = 0. As previously done, we write the
constrained Hamiltonian as

H = HJ + v0Π0 (A.13)

The stability of the primary constraint gives us the secondary Gauss constraint, which is
given by

∂iΠi − ie (φΠφ + φ∗Πφ∗) ≡ ∂iΠi − J0 = 0.14 (A.14)

Recall that now the Poisson bracket involves taking derivatives with respect to the scalar
field and its conjugate momentum as well since a complete specification of the phase space
involves accounting for the scalar field as well. We find that the secondary Gauss constraint
is stable, i.e.

{∂iΠi − J0, H} = 0 (A.15)

due to cancellations among various terms, and use this to set v0 = 0, similar to the case of
free electrodynamics.

14As a comparison, for fermions, there is no electrodynamic contribution to the matter current.
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Gauge fixing and Dirac brackets

Since the primary constraint remains unchanged and the secondary Gauss constraint re-
ceives an additive scalar contribution plus the contribution from A0, a good orthogonal
choice is to choose the same gauge conditions as previously chosen. This is because the
extra charged contribution to the Gauss constraint commutes with the choice of gauge,
which by construction gives a non-zero commutator with the free part. As a consequence,
we have the constraints

C0 = Π0(x)
C1 = ∂iΠi(x)− J0

C2 = A0(x)
C3 = ∂iA

i(x)

(A.16)

which gives us the exact same Dirac matrix as in (A.10) and its inverse in (A.11).

B Constraints in linearized gravity with matter

In this appendix, we covariantly couple matter to linearized massless and massive gravity.
We show that the constraints do not close i.e., they become inconsistent with our expected
counting of the degrees of freedom.

B.1 Massless Gravity with minimally coupled matter

We will now minimally couple a scalar field to massless gravity using the stress-energy
tensor. Using this, we will compute the constraints of this theory and calculate the Dirac
bracket in this subsection. The action of minimally coupled matter to gravity is given by:

Sφ = −1
2

∫
dDx
√
−g(gµν∂µφ∂νφ+m2φ2) (B.1)

where g is the determinant of the space-time metric and indices µ, ν run from 0 to D − 1.
Expanding the metric about the flat background (i.e. gµν = ηµν + hµν and hence gµν =
ηµν − hµν), at leading order, we obtain:

Sφ =
∫
dDx

(
1 + h

2

)(
−η

µν

2 ∂µφ∂νφ−
m2

2 φ2
)

+ hµν

2 ∂µφ∂νφ (B.2)

where h = Tr(hµν). In terms of the energy-momentum tensor Tµν , above action can be
re-written as:

Sφ =
∫
dDx

(
−
√
−gb
2 hµνT

µν(φ, φ̇) +
√
−gbLm(φ, φ̇)

)
(B.3)

where Lm(φ, φ̇) is the free-scalar Lagrangian, gb is the determinant of background metric
(which is ηµν in present case) and Tµν is given by:

Tµν = ∂µφ∂νφ− ηµν

2 (∂ρφ∂ρφ+m2φ2) (B.4)
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The massless graviton Lagrangian Lg is given in (3.1). Hence the total action is given by:

S = Sφ + Sg (B.5)

where Sg denotes the integral of Lg, with the GN dependence restored using an overall
multiplicative factor κ2.

Sg = 1
κ2

∫
dDx
√
−gLg

Momenta and Hamiltonian

Using the combined action in (B.5), we will now determine the canonical momenta and the
Hamiltonian for our scalar-gravity theory. From the gravity part, we obtain the following
expression for the momenta:

Π00 = 0, Π0i = 0

Πij = ∂L

∂ḣij
= 1
κ2

(
ḣij − ḣkkδij − 2∂(ihj)0 + 2∂kh0kδij

) (B.6)

From (B.6), we find that we have two primary constraints Π00 and Π0i. The gravity
Hamiltonian from (3.3) is given by:

Hg =κ2
(

Π2
ij

2 −
Π2
ii

2(D − 2)

)
+ 1
κ2

(1
2∂khij∂

khij − ∂ihjk∂jhik + ∂ihij∂
jhkk −

1
2∂ih

j
j∂
ihkk

)
− h00

κ2

(
∂2
kh

i
i − ∂i∂jhij

)
− 2h0i∂jΠij

(B.7)

Next, we determine the canonical momenta of scalar field theory from the scalar Lagrangian
given in (B.2),

πφ = ∂Lφ

∂φ̇
= φ̇

(
1 + h

2

)
+ h00φ̇+ h0i∂iφ = φ̇

(
1 + h00 + hii

2

)
+ h0i∂iφ. (B.8)

We can invert (B.8) to determine φ̇ in terms of canonical variables, which will be useful to
obtain the scalar Hamiltonian

φ̇ = πφ − h0i∂iφ(
1 + h00+hii

2

) (B.9)

We can now obtain the Hamiltonian for the scalar field by Legendre transforming the scalar
Lagrangian, i.e. Hφ = πφφ̇ − Lφ. Substituting equations (B.9) and (B.2) in the Legendre
transform, we obtain:

Hφ = E − h00
2 E + h0iπφ∂

iφ− hkk
2

(
π2
φ

2 −
(∇φ)2

2 − m2φ2

2

)
− 1

2hij∂
iφ∂jφ+O(h2)(B.10)

where the energy E is given by

E =
π2
φ

2 + (∇φ)2

2 + m2φ2

2 . (B.11)

Consequently, from equations (B.7) and (B.10), and taking into account the primary
constraints (B.6), the full Hamiltonian is given by:

Htot = Hg +Hφ + voΠ00 + viΠ0i (B.12)
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Closure of constraints and the Dirac matrix

Let us now find the secondary constraints:

χm0 =
{

Π00,

∫
ddxHtot

}
= χ0 + 1

2E

χmi =
{

Π0i,

∫
ddxHtot

}
= χi + πφ∂iφ

(B.13)

where χ0 and χi are the secondary constraints without matter. They are given by:

χ0 = 1
κ2

(
∂2
i h

k
k − ∂i∂jhij

)
χi = −2∂jΠij (B.14)

Next, we compute the tertiary constraints:

ξm0 =
{
χm0 ,

∫
ddxHtot

}
=
{
χ0,

∫
ddxHtot

}
+ 1

2

{
E ,
∫
ddxHtot

}
= ξ0 + 1

2

{
E ,
∫
ddxHφ

}
= −∂i∂jΠij + 1

2∂i(πφ∂
iφ) = −∂iχmi ≈ 0

(B.15)

Next, we compute the commutator of χmi with the Hamiltonian.

ξmi =
{
χmi ,

∫
ddxHtot

}
=
{
χi,

∫
ddxHtot

}
+
{
πφ∂iφ,

∫
ddxHtot

}
=
{
πφ∂iφ,

∫
ddxHφ

}
= πφ∂iπφ + ∂iφ(∂2

kφ−m2φ)
(B.16)

At the perturbative level, it seems that the constraint algebra does not close. This can
be seen from the fact that since ξmi is non-zero, its Poisson bracket with Hamiltonian we
obtain a non-zero answer. Further it also seems that the constraints (χm0 and χmi ) are no
longer first class as well since {χm0 (x), χmi (y)} = {T00(x), T0i(y)} 6= 0.

However, this is a consequence of doing perturbation theory incorrectly. As an example,
for the commutator {χm0 (x), χmi (y)} without matter, the gravity part of the constraints
commute. However, if we keep the full non-linear correction in the gravity part of the
Lagrangian, then the gravity part of the constraints does receive corrections, which then
makes the constraints first class.

B.2 Minimally coupled matter to massive graviton

We again minimally couple the scalar field to gravity but with the Fierz Pauli action (4.1).
As a consequence, the total action is given by:

S = Sφ + Sg (B.17)

where Sg now denotes the Fierz Pauli massive gravity action.

Momenta and Hamiltonian

In presence of matter, the full Hamiltonian is given by:

Htot = Hg +Hφ + voΠ00 + viΠ0i (B.18)
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whereHφ is given in (B.10). The addition of matter does not affect the primary constraints,
and consequently, they are still given by (3.2). The stability of primary constraints leads
to secondary constraints, which are given by

χm0 =
{

Π00,

∫
ddxHtot

}
= χ0 + 1

2E

χmi =
{

Π0i,

∫
ddxHtot

}
= χi + πφ∂iφ

(B.19)

where χ0 and χi denote secondary constraints without matter and are given by

χ0 = 1
κ2

(
(∂2
i −m2)hkk − ∂i∂jhij

)
, χi = −2

(
∂jΠij + m2

κ2 h0i

)
(B.20)

Next, we demand the stability of secondary constraints, which give rise to the tertiary
constraints:

ξm0 =
{
χm0 ,

∫
ddxHtot

}
=
{
χ0,

∫
ddxHtot

}
+ 1

2

{
E ,
∫
ddxHtot

}
= ξ0 + 1

2

{
E ,
∫
ddxHφ

}
= ξ0 + 1

2∂i(πφ∂
iφ)

(B.21)

where ξ0 is again the constraint without matter and it is given by:

ξ0 = −∂i∂jΠij + m2

D − 2Πk
k −

2m2

κ2 ∂ihi0. (B.22)

Hence the constraint ξm0 , is given by:

ξm0 ≡ ξ′ = −∂i∂jΠij + m2

D − 2Πk
k −

2m2

κ2 ∂ihi0 + 1
2∂i(πφ∂

iφ)

= 1
2∂iχ

m
i + m2

κ2

(
κ2 Πk

k

D − 2 − ∂ih0i

)
≈ m2

(
Πk
k

D − 2 −
∂ih0i
κ2

) (B.23)

Next, we compute the commutator of χmi with the Hamiltonian (B.18).

ξmi =
{
χmi ,

∫
ddxHtot

}
=
{
χi,

∫
ddxHtot

}
+
{
πφ∂iφ,

∫
ddxHtot

}
= 2m2

κ2 (∂jhji − ∂ih− vi) +
{
πφ∂iφ,

∫
ddxHφ

}
= 2m2

κ2 (∂jhji − ∂ih− vi) + Bi
(B.24)

where Bi =
{
πφ∂iφ,

∫
ddxHφ

}
. We can solve for vi by demanding ξmi equals zero, which

gives us

vi = ∂jhji − ∂ih+ κ2

2m2Bi, (B.25)

and where upto the quadratic order in matter fields, Bi is given by:

Bi = πφ∂iπφ + ∂iφ(∂2
kφ−m2φ) (B.26)
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Next, we compute the quartic constraints by computing the commutator of ξm0 with Hamil-
tonian (B.18).

ξ̃m0 =
{
ξm0 ,

∫
ddxHtot

}
= m2

D − 2χ0 + m4

κ2
D − 1
D − 2h−

1
2∂iBi

≈ ξ̃0 −
m2

2(D − 2)E −
1
2∂iBi

(B.27)

where ξ̃0 is given by

ξ̃0 = m4

κ2
D − 1
D − 2h

Using the continuity equation, we have

∂iBi = ∂0∂iT0i = ∂2
t T00, (B.28)

Next, we find the Poisson bracket of the above constraints with total Hamiltonian:{
ξ̃m0 ,

∫
ddxHtot

}
=
{
ξ̃0,

∫
ddxHtot

}
− 1

2∂i
{
Bi,
∫
ddxHtot

}
+ m2

2(D − 2)

{
E ,
∫
ddxHtot

}
(B.29)

Again we can solve for v0 by demanding the above equation to be zero. Various non-zero
elements of the constraint matrix are given below:

{Π00(x), ξ̃m0 (y)} = m4

κ2
D − 1
D − 2 δ(x− y), {Π0i(x), χmj (y)} = 2m2

κ2 δij δ(x− y)

{Π0i(x), ξ′(y)} = −m2

κ2 ∂iδ(x− y), {χm0 (x), χmi (y)} = 2m2

κ2 ∂iδ(x− y) + 1
2Qi

{χm0 (x), ξ′0(y)} = m2

κ2

[
∂2
i −

D − 1
D − 2m

2
]
δ(x− y)

{χmi (x), ξ̃m0 (y)} = 2m4

κ2
D − 1
D − 2∂iδ(x− y) + 1

2

[
∂2
t + m2

D − 2

]
Qi

{ξ′0(x), ξ̃m0 (y)} = −m6

κ2

(
D − 1
D − 2

)2
δ(x− y), {χm0 (x), χm0 (y)} = 1

4P

{χmi (x), χmj (y)} = Rij , {ξ̃m0 (x), ξ̃m0 (y)} = −1
4

[
∂2
t + m2

D − 2

]2

P

{χm0 (x), ξ̃m0 (y)} = −1
4

[
∂2
t + m2

D − 2

]
P

(B.30)
where

P = {T00(x), T00(y)} =
(

Πφ(y)∂φ(x)
∂xi

−Πφ(x)∂φ(y)
∂yi

)
∂

∂xi
δ(x− y)

Qi = {T00(x), T0i(y)} =
(
∂iφ∂

kφ
∂

∂xk
− π2

φ

∂

∂xi
+m2φ∂iφ

)
δ(x− y)

Rij = {T0i(x), T0j(y)} =
(

Πφ(x)∂φ(y)
∂yj

∂

∂xi
−Πφ(y)∂φ(x)

∂xi
∂

∂yj

)
δ(x− y)

(B.31)
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By computing the inverse of the constraint matrix, we notice that we obtain the following
type of inverse derivative dependence in Dirac brackets:

1
m2 − ∂i∂j(RijP +QiQj)

(B.32)

The above constraint algebra fails to close due to the presence of matter energy-momentum
tensor on the r.h.s. of the algebra. This can be seen by computing the Poisson bracket of
r.h.s. of any of the constraints above with the Hamiltonian. Since {P,Qi} (and other such
combinations) is non-zero, the above algebra is not stable under Hamiltonian evolution.

This extra term in the denominator of (B.32) is seemingly an artefact of perturbation
theory. Since the constraints do not close now, they pose an inconsistency in the counting
of the degrees of freedom. Consequently, we expect the extra term ∂i∂j(RijP +QiQj) to
go away as for the massless case upon the inclusion of higher order corrections [19–22].

C Massive gravity constraints by substitution

Let us look at a different way to compute Dirac brackets, where we substitute for some of
the constraints. This procedure was used in [18]. Notice that the metric component h0i
appears quadratically in the Fierz-Pauli lagrangian given in equation (4.1). Hence we can
just solve for h0i using its equation of motion and substitute it back in the Lagrangian. This
is the key difference from our previous treatment of constraints.The h0i EOM is given by:

h0i = − 1
m2∂

jΠji (C.1)

This equation can also be obtained by setting the constraints Ci (given in (4.4)) to zero.
Now we can substitute h0i in the massive gravity lagrangian and then solve for constraints
of the corresponding system. The Hamiltonian of this system is given by:

Hg = κ2
(

Π2
ij

2 −
Π2
ii

2(D − 2)

)
+ 1
κ2

(1
2∂khij∂

khij − ∂ihjk∂jhik + ∂ihij∂
jhkk −

1
2∂ih

j
j∂
ihkk

+1
2m

2(hijhij − h2
kk)−m2h2

0i − h00
(
∂2
kh

i
i − ∂i∂jhij −m2hkk

))
+ 1

m2 (∂jΠij)2

(C.2)

Since Π00 = 0,15 this system has one secondary constraint given by:

Φg
1 ≡ (∂i∂i −m2)hjj − ∂i∂jh

ij (C.3)

One can readily compute the tertiary constraint:

Φg
2 ≡ {Hg,Φg

1} = m2

D − 2Πii + ∂i∂jΠij . (C.4)

The stability of the above constraint under time evolution gives us the following further
constraint:

Φg
3 ≡ {Hg,Φg

2} ≈ −
D − 1
D − 2m

2h (C.5)

15Since h0i is no longer a degree of freedom of the system, the corresponding momenta Π0i does not exist.
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where h = −h00 + hkk. These set of constraints form a closed algebra. The constraint
matrix is now a 4 ∗ 4 matrix whose various non-zero elements are given by

{Π00(p),Φg
3(q)}P.B. = −m2D − 1

D − 2δ
D−1(p− q),

{Φg
2(p),Φg

1(q)}P.B. = −m4D − 1
D − 2δ

D−1(p− q),

{Φg
1(p),Φg

3(q)}P.B. = 0,

{Φg
2(p),Φg

3(q)}P.B. = m4
(
D − 1
D − 2

)(
m2D − 1

D − 2 − p
2
)
δD−1(p− q).

(C.6)

Hence the inverse of Dirac Matrix C−1(p) is given by:

C−1(p) = 1
m4

d− 1
d


0 dm4

d−1 − p
2m2 0 m2

p2m2 − dm4

d−1 0 −1 0
0 1 0 0
−m2 0 0 0

 δd(p− q) (C.7)

where d = D − 1 is the dimension of the Cauchy slice. As expected, the above matrix is
just a sub-matrix of (4.10) (up to a factor of m216).

We can now use this matrix to define the Dirac bracket. Since the inverse constraint
matrix does not contain any derivatives in the denominator, using the analysis similar to
the one discussed in section 5.2, one can readily see that the Poisson bracket of boundary
operator H∂ with any bulk insertion O(x) is zero.

Why substitution works classically?

Roughly our action is of the form

L = L0(xi, ẋi) + m2h2
0i +Xh0i (C.8)

such that X is a function of xi, ẋi. In the case of standard gravity with m = 0, we have the
constraint X = 0, with h0i acting as a Lagrange multiplier. When m2 6= 0, we can rewrite
the action as

L = L0(xi, ẋi) +m2
(
h0i + X

2m2

)2
− X2

4m2 . (C.9)

Note that action is decomposed into a separate part for the h0i field, and a part containing
L0(xi, ẋi). Setting the positive definite second term in the above equation to zero gives us
the equation of motion for h0i. One can now always redefine the h0i field independently of
xi, ẋi

H0i = h0i + X

2 (C.10)

such that there are no terms coupling the fields xi and H0i. Thus we can independently
minimize H0i without interfering with the variations of L0(xi, ẋi) − X2

4m2 . Hence this sub-
stitution of the equation of motion is allowed. This is also confirmed by the counting of
degrees of freedom.

16This factor is different because of the difference in the definition of tertiary constraint.
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Note: this substitution is correct at a classical level but may pose some difficulties in
quantum mechanics when we vary over the whole space of paths with weightage.
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