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Abstract

A novel method combining the ensemble refinement by maximum entropy principle and

the force field fitting approach is presented. Its formulation allows to continuously interpo-

late in between these two methods, which can thus be interpreted as two limiting cases. A

cross-validation procedure enables to correctly assess the relative weight of both of them, dis-

tinguishing scenarios where the combined approach is meaningful from those in which either

ensemble refinement or force field fitting separately prevails. The efficacy of their combination
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is examined for a realistic case study of RNA oligomers. Within the new scheme, molecular

dynamics simulations are integrated with experimental data provided by nuclear-magnetic-

resonance measures. We show that force field corrections are in general superior when applied

to the appropriate force field terms, but are automatically discarded by the method when ap-

plied to inappropriate force field terms.

Molecular dynamics (MD) simulations play a crucial role in resolving the underlying con-

formational dynamics of molecular systems.1 However, their capability to reproduce and predict

dynamics in agreement with experiments is limited by the statistical significance of the sampled

trajectory and the accuracy of the force field model. While the first issue can be addressed by

using enhanced sampling techniques,2 the second one can be faced by suitable integration of MD

simulations and experimental data.3 To this aim, two main philosophies for experiment-based re-

finement were proposed in the literature.4 The first one is the so-called ensemble refinement (ER)

approach.5–13 Developed from the maximum entropy principle, this technique selects the ensem-

ble which best describes the experimental measures and is, at the same time, as close as possible

to the initially hypothesized one. In doing so, ER is agnostic with respect to the knowledge of the

force field parametrization: the functional form of the corrections carried to the initial ensemble

only depends on the selected observables5,14 and thus the corrections are not transferable to differ-

ent systems. The second philosophy is force field refinement (FFR).15–24 Based on a reasonable

guess of the force-field correction terms, their optimal coefficients are determined by minimizing

a loss function that includes the discrepancy from experimental data and, in modern implementa-

tions, a regularization term that penalizes moving away from the initial force field, in a Bayesian

line of thought. This approach enables one to encode prior information about the reliability of a

given force field term, by choosing which specific term should be refined, and makes the resulting

corrections transferable to other systems.25 However, adding the same force-field correction terms

to all the copies of a given residue could be over-limiting and not able to capture further relevant

differences among them. Indeed, the functional form of the force-field is limited and might be

intrinsically unable to reproduce experimental data. These two categories of methods have been
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traditionally derived in a different manner. Only recently, a formulation of the FFR approach that

formally relates to the maximum entropy principle has been proposed.21 Importantly, methods of

the two classes have been so far used in a disjoint fashion. The user is thus expected to decide

based on experience if transferable or non-transferable corrections are performing best for a given

system.

In this Letter, we introduce a procedure to seamlessly combine the ER method with FFR. This

allows to preserve the flexibility of ER while at the same time ensuring the transferability of the

resulting force-field corrections to different molecules as in FFR. The procedure is here applied

to the refinement of conformational ensembles of RNA oligomers, for which nuclear-magnetic-

resonance (NMR) experimental data are available, but can be applied to reweight conformational

ensembles of arbitrary systems for which solution data are available. In a nutshell, the method

works as follows. In traditional FFR approaches, the original ensemble P0 is reweighted to include

force-field corrections resulting in a new ensemble Pφ , which is then compared with experiment

(for example through the χ2). Corrections are chosen so as to maximise the agreement. Here, be-

fore comparing with experiment, we perform an additional ER step, which fine tunes the resulting

weights in a new ensemble P. The former step is expected to take into account any transferable con-

tribution, and to leverage on the knowledge of which force-field terms might benefit a refinement.

The latter step makes sure the final ensemble averages agrees with experiment. The combination

of the ER and FFR approaches is controlled by two hyperparameters (α and β ), as prescribed by

the loss function that we adopt here:

L [P,Pφ ] =
1
2

χ
2[P]+αDKL[P|Pφ ]+βDKL[Pφ |P0], (1)

with DKL the Kullback-Leibler divergence. While the first term quantifies the agreement of P with

experiments, the following two regulate the closeness of P from Pφ and of Pφ from the original

ensemble P0, respectively (see Supporting Information for more details). We first show the be-

havior of this approach on a toy model. Then, we use the method to derive ensembles and force
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field corrections for RNA oligomers. For the latter case, we show how a carefully performed

cross-validation procedure is necessary to tune the hyperparameters. In our tests, we intentionally

investigate the case where inappropriate force-field corrections are attempted, showing that our

cross-validation procedure can detect this issue and automatically switch off the FFR step.

Proof of concept. To check the validity of the combined refinement, we set up a simple toy

model which consists of a two-dimensional probability distribution with four peaks (see Fig. 1).

The initial hypothesis sets most probability in the top-left peak (x < 0 and y > 0), while the ground

truth probability is distributed also on the top-right peak (x > 0 and y > 0). So, the average value

of the x observable is underestimated by the initial hypothesis, whereas the average value of the

y observable is approximately correct. We then correct the initial hypothesis purely based on the

value of the observed averages of x and y. Ensemble refinement shifts the probability from the

two peaks at x < 0 to those at x > 0, perfectly matching the observed averages. According to the

maximum entropy principle, this is the minimal correction to the prior ensemble that allows match-

ing the observed averages. The resulting ensemble is guaranteed to be closer to the ground truth

one,26 but still not necessarily identical. We then assume that a physical knowledge of the system

suggests the top-right and bottom-left peaks to be coupled, leading to a specific functional form for

the force-field correction. By performing a force-field refinement with this additional information,

the observed averages are not exactly matched, but the obtained ensemble is also getting closer to

the ground truth. Including further flexibility through the combined approach introduced in this

work allows to optimally combine the information used in the force field refinement approach with

the maximum entropy principle, resulting in better agreement with the ground truth ensemble than

the one obtained applying any of the two methods separately. Fig. 1b reports the distance from

ground truth for the ensembles obtained using different possible values of α and β . The method

interpolates between no correction to ensemble refinement, force-field refinement, and any combi-

nation of the two, as indicated in the figure. A similar figure reporting the discrepancy between the

predicted and experimental observables (χ2) is reported in Fig. S1. A suitable choice of the two

hyperparameters α, β is required to avoid overfitting. This is particularly relevant considering that
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experimental data are only known with a given uncertainty. As this effect is not present in this toy

model, hyperparameters tuning can be better illustrated using a more realistic example.

Figure 1: Results on a toy model. (a) Ground truth distribution. Populations are also reported for each
peak. (c) Initially assumed distribution. (d) Ensemble refinement leads to an ensemble closer, but still not
identical, to the ground truth. (e) An attentive choice of the force field correction term could result in a
different refinement (FFR), as good as the previous one (compare the Kullback-Leibler divergences from
the ground truth, indicated as DKL), with the benefit to be transferable. If this correction is not sufficient, (f)
further flexibility can be included through the combined approach. In panels a,c,d,e,f, black dashed lines
report the averages computed using the ground truth, whereas blue dashed lines report the averages
computed using the refined ensemble. (b) Hyperparameters scan. The hyperparameters values prove to be
crucial for a proper balancing of the ER and FFR contributions. In panel (b), the values of the
hyperparameters used to generate the ensembles in panels (c,d,e,f) are indicated with a star of a matching
color.

Application to real systems, including cross validation. We then test the method on a set of

RNA oligomers for which simulations were previously reported,27 using the same experimental

data set that was used in Ref. 27 Experimental data, corresponding to torsion angles β ,ε,γ , are

taken from Refs.28–32 We perform the minimization of the loss function obtained combining all

the oligomers in the training set (AAAA, CCCC, GACC, UUUU, UCAAUC – Fig. 2a) with a scan

in the space of the hyperparameters α and β . The limiting cases of ensemble refinement (scan on

the hyperparameter α at β = ∞) and force field fitting (scan on the hyperparameter β at α = ∞) are
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(a) RNA oligomers (b) χ angles correction

(c) α angles correction
(d) α, ζ angles
correction

Figure 2: (a) Case study: RNA oligomers (4 tetramers and 1 hexamer). (b,c,d) Reduced χ2 on validating
observables using three different functional forms for the force field refinement step (cross validation
averages). In particular: (b) the correction on χ angles is fruitless and the contribution of (non-transferable)
ensemble refinement is essential; (c) the correction on α angles is profitable, however adding more
flexibility results in a better agreement with experimental values; (d) the correction on α, ζ angles alone is
enough and the inclusion of further flexibility is not necessary.
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included, as well as the initially assumed ensemble, corresponding to α = β = ∞ (i.e., no refine-

ment). For each considered value of the hyperparameters α, β , we take 20 random choices (seeds)

of 70% frames (of "demuxed" – continuous – trajectories, from replica exchange simulations in

temperature range 275− 400 K, with the exception of UCAAUC for which a corrupted trajec-

tory made it impossible to generate the continuous trajectories) and 70% observables to be used

as a training set (same choices for all the sampled hyperparameters), implementing a bootstrap

strategy.33 The remaining observables are used to evaluate the reduced χ2 on the full trajectory,

i.e., including also frames which were employed in training (validating step). The achievement of

the minimizations is reflected by an increase in the minimum value of the loss function at given

seeds when α or β are increased. Given the way trajectories are bootstrapped, the reduced χ2 on

training observables and the one on validating observables coincide within their statistical error at

α = β = ∞, since it corresponds to the original ensemble.

The two hyperparameters (α and β ) control the flexibility of the fitting. By decreasing one or

both, the reliability given to the original assumptions on the force field is reduced in favour of the

confidence on experimental measures. In other words, low values of the hyperparameters corre-

spond to high flexibility in the correction to the ensemble, which means strong ability to fit the

(training) experimental values. This is particularly true for the hyperparameter α , corresponding

to the ensemble refinement direction. For β (force field refinement direction), the flexibility is in-

stead intrinsically limited by the constrained functional form of the force field correction. Whereas

a limited flexibility can provide a (physically meaningful) improvement in the description of the

molecules, an uncontrolled flexibility may lead to overfit the data, disregarding their intrinsic ex-

perimental error. Cross validation is all about assessing the appropriate importance of this flexi-

bility, which in the method here proposed plays on two different directions: the non-transferable

ensemble refinement and the force field fitting ones. This task is performed by evaluating the error

(the reduced χ2) on left-out observables, namely those which are not used in this training step to

determine the optimal ensemble.

Whereas the χ2
red computed on training data is decreasing when decreasing the values of the
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Figure 3: Sample RNA backbone structure, with standard atom names and dihedral angles indicated. The
nucleobase is truncated so that only two carbon atoms from the cycle are shown.

two hyperparameters, the χ2
red computed on validating observables (Fig. 2 b,c,d) does so only

over a certain range of the hyperparameters, signaling when under/over-fitting occurs. Firstly, we

consider the case of traditional ensemble refinement, which in the combined method corresponds

to β = ∞ (first row in the plots, independent on the selected force field correction; Fig. S2a). One

can notice how, starting from the prior ensemble P0 at α = ∞, the error χ2
red decreases with α , up to

a certain point, where it starts to increase. Such point of minimum (approximately at α ≃ 5, with

χ2
red ≃ 10) marks the transition from the under-fitting to over-fitting scenarios, respectively. We

then move forward to transferable corrections. It is instructive to consider three different functional

forms for the force field refinement approach. All of them are given by linear combinations of sine

and cosine of selected dihedral angle, respectively: χ , O4′–C1′–N1′–C2′ for pyrimidines and O4′–

C1′–N9′–C4′ for purines; α , O3′i−1–P–O5′–C5′; and combined α, ζ , C3′–O3′–Pi+1–O5′i+1 (see

Fig. 3 for a representative representation of RNA backbone dihedral angles); in this last case we

restricted to equal coefficients for sine terms and equal ones for cosine terms. Such force field

corrections exhibit the three different behaviours which are expected when applying the combined

ER+FFR method. The first attempted correction (χ angles, Fig. 2b and Fig. S2b) applied alone is

fruitless, since the χ2
red at α = ∞, i.e. in the FFR regime, is larger than in the original ensemble

P0 for any choice of β < ∞. The contribution of (non-transferable) ensemble refinement is thus

essential. Including both contributions, the minimum χ2
red results at α = 5,β = ∞. Hence, this

case corresponds to the extreme in which adding the contribution of the force field refinement does
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not improve the description with respect to ensemble refinement alone. Even in this particularly

difficult case, the ensemble refinement step is able to report reasonable cross-validation observables

(see Table 1). The second attempted correction (on α angles) is profitable, as shown at α =∞ (FFR

only, Fig. 2c; see also Fig. S2c). However adding more flexibility with the combination of ER and

FFR proves to be profitable with respect to the separate application of either the two methods since

it results in a lower cross-validation error. Finally, the correction on α, ζ angles alone is sufficient

and the inclusion of further flexibility is leading to a minor improvement in the agreement with

experiment (Fig. 2d and Fig. S2d). This is close to the other extreme, in which FFR alone shows

to be optimal.

Table 1: Results of cross validation on training molecules (see also Fig. 2). We compare ER, FFR and their
combination ER+FFR, with three different force field corrections. For each case, we report the optimal
α, β hyperparameters and the minimum value of χ2

red on validating observables (cross validation averages).
In the first line we report the χ2

red before any corrections on the ensembles.

force field correction method optimal α,β χ2
red

- no reweighting α = ∞, β = ∞ 28.32
- ER (β = ∞) α = 5 10.10

χ angles FFR (α = ∞) β = ∞ 28.32
χ angles ER+FFR α = 5, β = ∞ 10.10
α angles FFR (α = ∞) β = 100 9.33
α angles ER+FFR α = 20, β = 0.01 5.70

α,ζ angles FFR (α = ∞) β = 5 9.81
α,ζ angles ER+FFR α = 105, β = 2 8.02

Optimal force field corrections. Once the optimal values of the α,β hyperparameters have

been determined through cross validation, we estimate the coefficients of the force field correc-

tions by minimizing the loss function with such hyperparameters on the whole data set (without

distinguishing between training and test set). The associated uncertainty is quantified by the stan-

dard deviation of the coefficients resulting from cross validation, as it is conventionally done in

bootstrap analysis.33 The average values on the bootstrap samples are compatible with the values

from whole minimization within the obtained uncertainties. The results are reported in Table 2.

The correction on the χ dihedral angles is null, since the optimal hyperparameters correspond to

ensemble refinement only. This implies that relevant force field corrections are not in the χ bond,
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Figure 4: (a) Summarizing histograms of α,ζ angles before/after corrections on α dihedral angles,
averaged over all the oligomers; (b) free energy difference for the (α,ζ ) ∈ (−π,0)× (−π,0) region, for
each molecule and phosphate (bars corresponding to minimization on the whole set of observables, dots
corresponding to minimizations in cross validation).
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rather in the backbone structure. Indeed, for the other two cases (correction on α or α,ζ ) the

force field correction coefficients are significantly different from zero, with the general effect of

disfavouring gauche+ conformations for both angles.

We then study how the force-field corrections on the α angles modify the distribution of α,ζ

dihedral angles, comparing the three different refinement methods described above. In these con-

structs, the phosphate group of the first nucleotide is absent (in agreement with experiments) so

the αi ζi−1 dihedral angles encompass the i-th phosphate group, with i = 2, . . . ,N. In Fig. 4a)

we show the overall histogram of the αi,ζi−1 distributions, averaged over molecules and posi-

tions, which highlights two dominant peaks in the original ensembles, corresponding to gauche+

(g+) and gauche− (g−). The population in these two peaks is modified when introducing en-

semble and/or force field corrections, with a general increase in the αi(g−),ζi−1(g−) region, to

the disadvantage of the αi(g+),ζi−1(g+) area. This is in agreement with previous studies.34–36

To better visualize these variations, Fig. 4b reports the free energy differences ∆F associated to

the αi(g−),ζi−1(g−) region, separately for each oligomer and phosphate group. We notice how,

for AAAA, CCCC, and GACC tetramers, the refinements have a significant impact only on the

αi,ζi−1 angles corresponding to the first and last phosphate, while the population for the middle

phosphate is almost unchanged. This can be explained on the basis that the employed force-field

is well-suited for long RNA molecules, for which the first and last phosphate constitute a small

fraction of the whole molecule, so that ad hoc correction at the termini might be convenient.37

In particular, both the FFR and ER+FFR corrections go in the same direction as ER, favouring

α(g−),ζ (g−) angles as expected above. Results for the UUUU tetramer instead show significant

free energy differences also for the intermediate phosphate. Here, ER and FFR suggest opposite

corrections, with the former disfavouring α3(g−), ζ2(g−). Also for the UCAAUC hexamer, the

αi,ζi−1 dihedral angles corresponding to i = 4,5 tend to be modified by both the ER and ER+FFR

methods, and left unchanged by FFR correction. Given the better performance of the ER+FFR

approach in cross validation tests (see χ2
red in Table 1), we argue that the ensembles obtained with

the ER+FFR approach are more reliable than those obtained using the ER or the FFR approach
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alone.

It is also instructive to monitor the effect of the corrections to the least visited region in the

α ,ζ domain (see Fig. S4). This test highlights the difficulty of performing cross-validation tests

for poorly populated region, for which modified weights might have a minor impact in both the

discrepancy with respect to experiment (χred) and the distance from the prior distribution (DKL).

Table 2: Force-field correction coefficients (measure unit: kBT = 2.49kJ/mol). We report the coefficients
resulting from the minimization on the whole data set together with their uncertainty. For the correction on
χ angles, as shown in Fig. 2, FFR provides no correction and optimal ER+FFR corresponds to ER only,
hence no transferable corrections. The functional form for the force field corrections is
V (χ) = φ1 sin χ +φ2 cos χ , V (α) = φ1 sinα +φ2 cosα and V (α,ζ ) = φ1(sinα + sinζ )+φ2(cosα + cosζ )
respectively; sum over all the specified dihedral angles present in the molecule is implicit.

ff correction / method φ1 φ2
χ angles φ1 (sin χ) φ2 (cos χ)

FFR (α = ∞,β = ∞) 0 0
ER+FFR (α = 5,β = ∞) 0 0

α angles φ1 (sinα) φ2 (cosα)
FFR (α = ∞,β = 100) 0.91± 0.16 1.67± 0.85

ER+FFR (α = 20,β = 0.01) 0.51± 0.08 1.65± 0.36
α,ζ angles φ1 (sin) φ2 (cos)

FFR (α = ∞,β = 5) 3.0± 1.5 4.0± 2.0
ER+FFR (α = 105,β = 2) 3.0± 1.6 4.0± 1.8

Testing the force field corrections on left-out molecules. Finally, we compare the performance

of the two force fields that we obtained with the FFR and ER+FFR procedure when transferred to

new molecules, not considered in training, namely the CAAU and UCUCGU oligomers. To this

aim, we employ the optimal coefficients of the force field corrections that were reported in Table

2 to reweight the CAAU and UCUCGU ensembles. We do so without performing a new ensemble

refinement procedure. The corresponding χ2
red is then evaluated on the whole set of observables

(see Table 3). These two molecules are quite different and respond differently to the correction

fitted on the training set. Specifically, the original ensemble of CAAU has a very large χ2 which is

dramatically decreased by the force field corrections. The larger the penalty on the gauche+ (g+)

rotamers, the better the agreement with experiment. As a consequence, the correction applied on

the α,ζ angles results in the best agreement with experiment. This result is partly unexpected,
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because the FFR correction on α,ζ angles was performing worse than the FFR+ER approach

in our cross-validation tests. We speculate that the inclusion in the original training set of the

UCAAUC oligomer, which contains the CAAU sequence, makes the inferred FFR well suitable

for CAAU, even though this system is not present in the training set. Conversely, the UCUCGU

hexamer has a moderate χ2. Interestingly, the force field corrections obtained on the training set

are not capable on improving the agreement of the corresponding ensemble with experiment. In

this case, all corrections lead to some degree of overfitting. The mixed FFR+ER approach on the

α angle, which leads to more conservative force field corrections, results in smaller overfitting and

in a χ2 comparable to the one obtained with the original force field.

Table 3: Reduced χ2 on validating molecules, based on the force-field corrections introduced above (coef-
ficients resulting from minimization of the training molecules on the whole data set).

CAAU UCUCGU both
no reweighting 243.8 14.1 211.3

α angles correction
FFR 24.8 16.4 23.6

ER+FFR 57.5 14.3 51.4
α,ζ angles correction

FFR 11.7 23.8 13.4
ER+FFR 11.6 23.7 13.3

In summary, this study reports a strategy to boost the efficiency of ensemble refinement meth-

ods by preceding them with a knowledge-based force field refinement step. This combined method

allows also to obtain force-field corrections which can then be transferred to different systems,

and can outperform normal ensemble refinement in cross validation tests. Differently from force

field refinement by itself, these corrections are derived taking explicitly into account the fact that

transferable corrections might not be able to match experiments simultaneously in multiple sys-

tems. This specificity on the system is guaranteed by the ensemble refinement step. Whereas the

force field refinement and ensemble refinement methods have been separately applied in several

works, we are not aware of any attempt made to combine their strengths in a single approach.

We apply the proposed method to a realistic case study of RNA oligomers. Despite the appar-
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ent simplicity of these small RNA molecules, current force-fields are still limited in correctly

generating structural ensembles, which therefore can be used to improve molecular potentials.

We use a robust cross validation protocol to select the suitable values of the two hyperparam-

eters α,β and then analyze the predictions about both training and validation oligomers. The

scripts used to perform the refinements discussed in this work can be found at https://github.

com/bussilab/force-field-ensemble-refinement. The analyzed time series can be found

at https://doi.org/10.5281/zenodo.10185005.

In this work we designed force field corrections to be partly independent from the measured

observables, by correcting dihedral angles that were not directly measured. However, correlations

indirectly appear through other interactions. Correlated observables used in ensemble refinement

act cooperatively and are known not to be a problem, since corrections on the different observables

lead to equivalent ensembles.19 However, correlated corrections in force-field refinement or in the

combined method introduced here might lead to multiple inequivalent solutions. In the extreme

case of identical force-field corrections and observables, we can expect that the cross-validation

procedure used here will make sure that a fraction of the correction that can be safely transferred

to other copies of the same residue is included in the force-field correction, whereas the remaining

part is included in the ensemble refinement part.

The introduced method interpolates between ER and FFR, reducing to either of the two when-

ever the other approach does not provide significant improvement of the χ2 on computed on a

validating set of observables. This happens with the force-field correction on glycosidic bond an-

gles, which does not exhibit any improvement in cross validation, therefore the combined approach

selects ER alone, resulting in better agreement with experiments than FFR alone. On the opposite,

the correction on α, ζ dihedral angles, with identical coefficients, has enough flexibility so that

the inclusion of system-specific refinement turns out to be irrelevant, and FFR alone is the opti-

mal solution. However, as shown by comparison of Figs. 2 b, c, and d, the best agreement with

experimental data is obtained through the flexible correction on α dihedral angles only using the

combined method.
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In order to minimize the loss function we employ a reweighting of the ensembles approach.

This might be a weakness of the proposed approach, common to all reweighting methods, due to

its potentially low statistical efficiency.38,39 This concept can be quantified as the effective number

of frames, computed through the Kish sample size or analogously the relative entropy. While for

the examined oligomers the effective number of frames still remains a significant fraction of the

whole amount (see Fig. S3), for more complex systems, it might not be the case. Performing new

MD simulations during the minimization, for instance whenever the resulting ensembles move too

far from the initial ones, would lead to greater statistical robustness. Also, on-the-fly restraining

could be performed.7,19,40–42 A second, related issue arises from regions of the conformational

space with limited or no sampling. Due to the way our cross validation procedure is performed,

left-out portions of the initial trajectory are used to test for overfitting. However, if samples from

a region are never observed in the initial trajectory, it is impossible to use reweighting to predict

which will be the effect of the correction on samples from that region. If the region has a very

large energy, e.g. because it is sterically forbidden, any change to the potential energy function

is irrelevant. But if the region can be sampled in a new simulation for the same or for a different

system, overfitting issues will arise.25 This is a well-known issue in force-field fitting strategies,

where it is common to perform new simulations using the refined force-field parameters to test for

these artifacts. It might also be an issue in ensemble refinement maximum entropy strategies, if

consecutive simulations are performed including linear corrections to the energy function. This

issue is instead not expected to be visible if no new simulations are performed and the resulting

ensemble is reported as is.

Finally, the discrepancy may be due not only to incorrect structural ensembles but also to

inaccurate forward models used to compute experimental observables from MD simulations. In the

most extreme cases, the ensembles might be in perfect agreement with the ground truth, still having

high χ2
red due to wrong forward models (like, for example, the empirical coefficients of Karplus

equations). In a recent work, we have shown how to simultaneously optimize ensembles and

forward models.27 This idea could be pushed further and, in combination with the ideas presented
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here, lead to a simultaneous optimization of force fields, ensembles, and forward models.

Supporting Information

Supplementary Methods: Combining ensemble and force field refinements; Interpretation of the

hyperparameters; Calculations using reweighting; Generalization to multiple systems; Minimiza-

tion strategy; Cross validation; Simulation details; Experimental data. Supplementary Results:

Toy model; RNA oligomers.

Data Availability

The scripts used to perform the refinements discussed in this work can be found at https://

github.com/bussilab/force-field-ensemble-refinement. The analyzed time series can

be found at https://doi.org/10.5281/zenodo.10185005.
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