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Abstract
Recent research involving bats flying in long tunnels has confirmed that hippocampal place cells can be active atmultiple locations, with
considerable variability in place field size and peak rate. With self-organizing recurrent networks, variability implies inhomogeneity in
the synaptic weights, impeding the establishment of a continuous manifold of fixed points. Are continuous attractor neural networks
still valid models for understanding spatial memory in the hippocampus, given such variability? Here, we ask what are the noise
limits, in terms of an experimentally inspired parametrization of the irregularity of a single map, beyond which the notion of
continuous attractor is no longer relevant. Through numerical simulations we show that (i) a continuous attractor can be
approximated even when neural dynamics ultimately converge onto very few fixed points, since a quasi-attractive continuous
manifold supports dynamically localized activity; (ii) excess irregularity in field size however disrupts the continuity of the manifold,
while too little irregularity, with multiple fields, surprisingly prevents localized activity; and (iii) the boundaries in parameter space
among these three regimes, extracted from simulations, are well matched by analytical estimates. These results lead to predict that
there will be a maximum size of a 1D environment which can be retained in memory, and that the replay of spatial activity during
sleep or quiet wakefulness will be for short segments of the environment.
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Significance Statement

Remembering one’s position on a spatial continuum seemed to require a smooth orderly representation inside the brain, arising from
a continuous attractor neural network dynamics. Yet, place cells in the hippocampus have been shown to be quite disorderly, when
recorded in bats flying in a long tunnel. Does it mean they cannot remember where they were? No, disorder still enables a continuous
quasi-attractive line of dynamical states to emerge, but up to a limit. In fact, simulations show that there is a minimum degree of
disorder aswell as amaximumone enabling spatialmemory retrieval. These two values, whichwe can estimate analytically, coalesce
when the environment gets larger, implying a maximum size that can be stored in memory.

Introduction
The study of spatial representations in the hippocampus has been
extensively conductedby analyzing recordings of place cells in sim-
ple laboratory environments. This body of research has consoli-
dated the notion that a typical place cell exhibits activity within a
single defined place field (1). However, this perspective has been in-
creasingly questioned in recent years. Studies conducted in larger
environments (2–6) have demonstrated the presence of multiple
fields per place cell, while earliermultifield recordings, particularly
in the dentate gyrus, had already hinted at such complexity (7–9). A
pivotal contribution to this ongoing debate wasmade by Eliav et al.
(10). Their recent study quantified the distribution of the fields ex-
pressed by individual CA1 place cells in bats flying in a 200m long

tunnel. Place cells were shown to have up to >20 different fields,
withhugevariability in thepeakfiring rateand in thewidth.The lat-
terwas reported to bewell fit by a log normal distribution,which al-
lows for small fields from under a meter wide, up to large ones of
tens of meters. Further, experimental evidence both in bats (10)
and rats (5) indicates that the same place cell can exhibit a single
field in small environments and multiple fields in larger ones,
challenging the notion that some place cells are strictly uni-field
while others aremultifield. For years, associative memory network
models (11–13) have explored the hypothesis that the hippocampal
representation of space might be comprised of place cells express-
ingpredominantlysinglefieldsof standardsize.Theoretically,with-
in a recurrent neural network this assumption facilitates modeling
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place field storage as continuous attractors being established
throughunsupervisedHebbian learning. In thesemodels, eachpos-
ition in the spatial environment, whether in one, two, or three
dimensions—or, equivalently, in abstract continuous spaces of
anydimensionality—maps toafixedpoint onanattractive continu-
ousmanifold.Thefixedpoints, however, are onlymarginally stable,
susceptible to even minimal forces acting along the manifold, and
then true continuity only arises in mathematical limit conditions.
Consequently, since the introduction of such (approximately) con-
tinuous attractor neural networks (cANN) in a wider neuroscience
context (14), a significant effort has been dedicated to understand-
ing the factors thatmaydrive in practice their neural dynamics and
determine their stability. “Bumps”ofneural activitycanslidealong
the manifold due to various factors, such as fast neural noise
(14–24), firing rate adaptation (25, 26), or quencheddisorder,which
itself can be induced by the storage of multiple maps (27–30), by
random noise (24, 31–36), by the encoding of additional variables
(37–40), or by a consistent direction of motion in the synaptic
weights (24, 41). All these considerations stretch the notion of con-
tinuous attractor networks, as they are in practice endowed with
only a discrete number of true fixed points rather than a genuinely
continuous attractive manifold. Yet, the precise noise limits at
which such a notion ceases to be valid remain undefined. This
poses a significant challenge to considering cANNs as effective
models for cognitive maps with irregular place field statistics.
The presence of such irregularity, indeed, implies pronounced
quenched noise in synaptic weights within the network, leading
to a small residual number of fixed points.Motivated by the recent
experiments in bats, we have addressed this question through a
detailed numerical study grounded in the recorded place field sta-
tistics, followed by a first, heuristic mathematical analysis.
We examine three dimensions of variability for place fields:

their number per cell, their size, and their peak firing rate, follow-
ing the distributions reported in Ref. (10), each parameterized by a
single variable. Next, we encode this variability into the synaptic
weights of a recurrent neural network through Hebbian learning,
effectively introducing quenched noise. We then analyze net-
works dynamics at different locations in this 3D space, where
standard cANNs would correspond to the zero-variability point
(0,0,0), which exhibits a semi-continuous manifold of fixed points
that approaches continuity as the number of cells N→∞. Our
study reveals three distinct regions within this “phase diagram,”
characterized by specific dynamical properties. These regions
are delimited by abrupt transitions in dynamical behavior, akin
at least numerically to phase transitions. Importantly, we demon-
strate that the coordinates defining the experimental recordings
fall within the same dynamical region as standard cANNs, the
only one where memory retrieval can effectively take place.
While a multifield multiscale neural code has been suggested

to be advantageous in terms of decoding error (10), whether a dis-
orderly arrangement of place fields could be the basis for a stable
memory representation of an environment had remainedunclear.
Here, we show that highly irregular place fields can indeed be ef-
fectively stored and retrieved within a continuous quasi-attractor
(CQA) neural network. We identify, however, specific boundaries
of quenched disorder, for which we provide analytical heuristic
estimates, that delimit the region of existence for such a CQA re-
gime.We note the challenging nature of the analytical evaluation,
due in part to the out-of-equilibrium character of the dynamical
phenomena we find numerically. Conventional analysis methods
based on the study of fixed points are not sufficient, and thus we
hope to stimulate future endeavors aimed at achieving a more
rigorous analytical understanding of these boundaries.

Results
Model definition
We first introduce a neural network model incorporating the ac-
tivity statistics observed in bats by (10). The network includes N
pyramidal cells, labeled i = 1, . . . , N and modeled as threshold-
linear units (42). Recurrent connections among these N units are
taken to be dense (as they are known to be in CA3, not in CA1),
for simplicity all-to-all, and to be endowed with Hebbian plasti-
city, through which the network is assumed to have stored a re-
presentation of a tunnel of length L—and only of that tunnel.
With these assumptions, as a result of a learning phase not

explicitly modeled here, and discretizing the tunnel of length L
into spatial bins of width W = L/S centered in su = u × W, with
u = 1, . . . , S, the connectivity matrix between the neurons is given
by the Hebbian covariance rule:

Jij =
1
NS

S

u=1


ηi(su)
〈η〉

− 1


ηj(su)
〈η〉

− 1

 

, (1)

where ηi(s) is the reproduced recorded activity of cell i when the
bat is at position s in the tunnel. Here, 〈η〉 denotes the average ac-
tivity over all cells and all positions.
The distribution of activity {ηi(s)} is chosen to replicate the sta-

tistics observed in bats flying in a long tunnel. The recorded place
maps, of which we report two samples in Fig. 1A, were indeed
shown to have an overall high variability as reported in the ob-
served distributions, shown in Fig. 1B–F. We focus on reproducing
the variability in the number of fields, reported in Fig. 1B, the one
in the width, reported in Fig. 1C and D, the correlation between
width and peak firing rate, reported in Fig. 1E, and the one of the
maximal peak firing rate, reported in Fig. 1F. To model the ob-
served sources of variability, we assume that (1) Each unit is taken
to have, along the tunnel, a variable numberM ≥ 1 of place fields.
We consider, in agreementwith experimental data, that the distri-
bution ofM is exponential: P(M) ∝ exp ( − M/ζ ) where ζ > 0 controls
the average number of fields 〈M〉, see Fig. S1 for details. The case of
a single field per neuron, i.e. P(M) = δ(M, 1), is formally associated
with ζ = 0. (2) Each field k is centered at a random location uni-
formly distributed along the tunnel and has a Gaussian shape of
width dk = 2σ, truncated at ±σ, and peak rate pk; with both param-
eters drawn from log normal distributions, which fit quite well the
experimental data. In detail, for each k, we draw dk such that
ln (dk) is normally distributed with mean μd and variance σd and
then pk such that ln (pk) is normally distributed withmean μ̃p(dk) ≡
μp + γ ln (dk/〈dk〉) and variance σp. A factor γ > 0 introduces a correl-
ation between field widths and peak rates, with γ = 0.5 reprodu-
cing the observed correlation, as shown in Fig. 1E&M. We will
see at the end of the analytical section estimating the quasi-
circular boundary that taking into account this correlation is im-
portant. Furthermore, Burak and colleagues were recently able to
show that precisely this degree of correlationwould arise natural-
ly in a model in which the place fields result from random
Gaussian processes (43). This construction procedure for the fields
is summarized in Fig. S2 and leads to firing rate profiles and distri-
butions similar to those observed experimentally, as shown in
Fig. 1G–N; For additional details, see SI Section 1. The network
evolves under its recurrent connectivity in Eq. 1 only (no external
input after the initial cue, and learning is taken to have been con-
solidated). We call Vi(t) the activity of cell i at time t, during such
recurrent dynamics. The discrete time evolution equation for
neural activity reads

Vi(t + 1) = e−1/τVi(t) + (1 − e−1/τ)g[hi(t)]
+, (2)
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where [h]+ =max (0, h), g is a fixed gain parameter and τ is the time
scale for collective firing rate dynamics, in units of the discrete
simulation time steps. In recurrent networks of spiking units, τ
is, according to mean-field theory, related to the time needed for
synaptic conductances to close (44), and can be smaller close to
a discrete attractor state (45, 46). Although the case of continuous
attractors is less clear and likely depends on their smoothness, it
can be argued that τ should correspond to at most 10ms of real
time. In the simulations, we use τ ≥ 9.5 time steps, which implies
that a time step corresponds to at most 1ms of real time. Finally,

hi(t) =


j≠i

JijVj(t) − T
1
N



j

Vj(t)

⎛

⎝

⎞

⎠ (3)

is the input current to unit i at time t, relative to a threshold T in-
corporating fast activity-dependent inhibition. We choose

T(v) = 4ω(v − v0)
3, where v0 is the target mean activity, which we

keep constant, and ω the strength of this inhibitory feedback,
also a constant. See the Methods section for the setting of simula-
tion parameters. Note that these dynamics are associated with an
energy (Lyapunov) function, as described in SI Section 2.

Numerical results: three different regimes
To assess whether the network activity V(t) at time t, evolving
without external inputs, reinstates the population vector η(s) en-
coding during learning a specific position s, we initialize it at
some location s0, i.e. V(t = 0) = η(s0), acting as an initial cue, and
then measure the cosine similarity

O(η(s), V(t)) =
N

i ηi(s) · Vi(t)
����������������������������
N

i (ηi(s))
2
·
N

i (Vi(t))
2

 , (4)

for all positions along the tunnel.
The set of overlaps O(η(s), V(t)) for all s defines the overlap pro-

file at a given time t. If it is a bump-like profile peaked in s∗, we can
say that the network is reactivating or retrieving the code for this
position. Conversely, when the profile is not spatially tuned,

network activity is not representing any position along the
tunnel—it has left its attractive manifold. Monitoring this profile
over time, we therefore characterize the spatial memory ex-
pressed in high-dimensional neural dynamics.
Three scenarios are observed, depending on the parameters:

• Continuous quasi-attractor (CQA): the profile shows a bump-like
shape, with width small compared to the tunnel length, at all
times, Figs. 2A and B. The bump slides with time until a fixed
point is reached (Fig. 2A).

• Fragmented Manifold (FM): the bump deforms, gradually
spreads out, see Figs. 2C andD. After some time, the bump re-
localizes, as if teleported elsewhere, until it reaches a fixed
point (Fig. 2D). Informally speaking, the neural activity transi-
ently leaves the manifold.

• Nonlocalized (NL): the bump rapidly grows in width and
ceases to be localized (Fig. 2E) until a spatially noninformative
fixed point is reached, spread over the whole environment
(Fig. 2F).

By spanning wide ranges of values for the quenched parame-
ters ζ , σp, σd, as depicted in Fig. 3A (with a sample realization in
Fig. 3B), we locate the boundaries of regions associated to the
CQA, FM, and NL regimes. To do so, we consider four estimators
of the bump-like nature of the activity, see Methods:

• the percentage of vanished manifold, quantified as the per-
centage of initial positions from which the neural population
activity leaves the manifold;

• the tangent overlap 〈Otang〉, characterizing the alignment of

the direction of instability of the fixed points with the direc-
tion of the presumed 1D manifold;

• the bumpwidth at the fixed points, indicating whether the re-
trieved stable activity is localized on the manifold.

• the number of fixed points, indicating the number of different
positions on the manifold encoded as fixed points.

These estimators vary with the parameters ζ , σp, σd.

Fig. 1. Experimental andmodel place field profiles and distributions Top (A–E): Experimental results of (10), reproducedwith permission; F) was obtained
from the experimental data in E), kindly given to us by the authors. Bottom (G–N): analogous plots obtainedwith the field generating algorithmwe design,
introduced in themain text. A) Firing rate profiles of two neurons in CA1, different colors represent different flying directions (bottom: raster plots across
multiple back and forth flights). B) Distribution of the number of place fields in one direction. The bar at 20 includes all values above 20, and the average
number of fields is 〈M〉 = 4.9. C) Distribution of the smallest and largest field sizes per neuron (including thosewith at least 2 fields). D) Distribution of fields
sizes, the parameters of the log normal fit, in red, are eμd = 4.8m, σd = 0.575. E) Scatter plots of field size versus peak firing rate for each field. The Spearman
correlation coefficient is ρ = 0.29. F) Distribution of peak firing rates, the parameters of the log normal fit, in red, are eμp = 4.7Hz, σp = 0.884. G) Two sample
activity profiles of two different units, as obtained from our algorithm.Wemodel only one flying direction. H–N same as B–F but for the field distributions
sampled froma random realization of the field generating algorithm forN = 331 units (with parameters: ζ = 4.7, μd = 1.57, μp = 1.549, σd = 0.575, σp = 0.884,
γ = 0.5).
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In particular, we observe that when the dispersion σd of place
field widths increases, at some point, as shown in Fig. 3C–E, the
percentage of vanished manifold abruptly increases and the dir-
ection of instability of the fixed point also gets abruptly orthogonal

to the direction of the manifold, while the number of fixed points
decreases only smoothly. This large-σd effect is thus visible in the
dynamical behavior towards fixed points. Further, we observe that
when the dispersion σp of place field peak firing rates increases,

Fig. 2. The three dynamical regimes of the neural activity and their spatial correlates. Top row: overlap profilesO(η(s), V(t)) vs. position s at different steps
t of the dynamics; selected steps t are indicated by gray levels ranging from light gray (initial condition) to black (fixed point). Bottom row: bumpwidth (see
Methods) of the overlap profile as a function of the number t of steps; same gray level code as in the top row. A, B) Continuous Quasi-Attractor regime: A)
the bump slides on themanifold—the inset shows a zoom-in—B) maintaining a constant width at all times, and stops at a fixed point, which reflects the
initial condition. Dark gray in A) corresponds to the profile at the 200th time step. C, D) Fragmented Manifold regime: C) the activity “jumps” outside the
manifolds and re-enters at a different location elsewhere, accordingly D) the bumpwidth transiently increases. Dark gray in C) corresponds to the profile
at the 38th time step. E, F) Non Localized regime: E) the initial bump rapidly vanishes and the activity is not clearly related to any position in space, F) the
smeared overlap is reflected in a bumpwidth ≈ 1 . Dark gray in A) corresponds to the profile at the 30th time step. Parameters:N = 8000, g = 2.5, τ = 9.5; A,
B) ζ = 1, σd = σp = 0.4 ; C, D) ζ = 1, σd = σp = 0.9; E, F) ζ = 4.7, σd = σp = 0.2.

Fig. 3. Dynamical changes between regimes. A) The distribution of the fields is defined by three quenched order parameters, as described in the main
text. The vertical and horizontal dashed lines represent the values explored in the subplots C, D) and F–H) respectively. B) Place fields profiles of two
sample units (gray/black), as generated fromour procedure, for the labeled value of ζ , σp, σd. C) 〈Otang〉 profile, the curves indicate the 0.25 quantile (75% of
the overall data lie above the line). D) Percentage of vanishedmanifold and E) Average number of fixed points for increasing σd whenmaintaining ζ and σp
fixed at their experimental values, as labeled, for increasing N. F) Averaged bump width of the fixed points G) Percentage of vanished manifold and H)
Average number of fixed points for increasing σp maintain ζ and σd fixed. The vertical lines in C–E) and F–H) correspond to the analytical predictions, σd =���������
ln (3/2)


and σp extracted from the numerical solution of Eq. 10, respectively. For further comparison refer to Fig. S3; see Methods for details over the

measurements and model parameters. Each data point is averaged over 20–50 different quenched realizations of the network, each probed with 50
different runs initialized from equidistant η(s) along S.
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with ζ > 0 and σd fixed, at some point, as shown in Fig. 3F–H, the
stable states start to be localized on the manifold, the percentage
of vanished manifold abruptly decreases and the number of fixed
points abruptly increases. This effect of σp is thus visible in the
fixed points themselves. The simultaneity and the abruptness of
both these types of change are compatible with sharp changes
of regime, reminiscent of phase transitions in physical systems.
For more comparisons, refer to Fig. S3.
The results of an exhaustive exploration of parameter space

are summarized in Fig. 4 in the form of empirical phase diagrams,
locating the regions associatedwith the CQA, FM, andNL regimes.
We note some general features of this summary of the simulation
results, see also Fig. 3:

• The CQA regime is found in a central region of the (σd, σp)
plane, when ζ > 0.

• For σd above a critical value that appears to be almost inde-
pendent of σp and ζ, the network abruptly transitions to the
FM regime, becoming effectively unable to represent, based
on memory, almost any position along the tunnel (Fig. 4A–C).

• When units havemultiple fields, and both σd and σp are small,
approximately within a circular boundary (which depends on
ζ), population dynamics always delocalizes, and the network
can be said to have entered, again abruptly, the NL regime
(Fig. 4D–F).

The boundary between the CQA and FM regimes seems to be at
a value of σd above, but close to the experimental value from CA1
recordings, σd = 0.575. We emphasize that its exact location is not
sensitive to the precise form of the initial conditions, see Fig. S4,
nor to the parameters regulating, in our network model, its dy-
namical evolution, such as the gain or the global inhibition
term, nor to those related to the discretization of the tunnel
length, see Figs. S5 and S6. Note the contrast between the sharp
increase with σd in the proportion of starting positions fromwhich

activity is eventually teleported and the smooth decrease in the
number of fixed points (see Fig. 3D and E), which in itself would
not suggest that the network enters a distinct phase.

Analytical estimates
A rigorous analytical treatment of the model, estimating the dy-
namical evolution of the network, as a function of the connec-
tions, could provide solid explanations regarding the nature of
the transitions between the regimes we described numerically.
Yet, a rigorous approach is challenging, due to the nonindepend-
ent distribution of the interaction terms Jij and, for the CQA-FM
boundary, due to the nonstationarity of the phenomenon.
Nevertheless, we can derive precise estimates of the boundaries,
using signal-to-noise analyses, reported below.

Quasi-circular boundary of nonlocalization.
When units have multiple fields and limited variability in their
width and peak rate, the network activity gets “smeared” over the
entire length of the tunnel, as shown in Fig. 2E, Fig. 3F and in
Fig. 4D–F. This indicates that the competition among the fields fails
to produce awinning location. Intriguingly, adding variability in the
distribution of width and peak rate promotes localization, as if
noise allows the network to better differentiate among the different
fields, restricting the retrieved activity to a fraction of the units. To
derive the boundary we make three concatenated ansatzes:

1. that the “strength” of each field k of each unit is proportional
to the product of its width and peak rate

sk = dk · pk; (5)

2. that per each unit only one “strongest” field, say k∗ = 1, effect-
ively matters to create the signal while all others contribute
as noise

Fig. 4. Phase diagrams in the σp-σd plane. Both numerical and analytical results are shown for three σp − σd sections at increasing average number of fields
(ζ = 0, i.e. M ≡ 1 for A–D); ζ = 2.85, 〈M〉 ≈ 3.4 for B–E); ζ = 4.7, 〈M〉 ≈ 4.9 akin to the experimentally observed value for C–F)). A–C) show the percentage of
vanishedmanifold D–F) show the average bumpwidth of the fixed points (seeMethods for details about themeasures). Green crosses in C–F) indicate the
σp, σd values giving rise to distributions as the experimental results. White curves are derived analytically, as reported in the analytical estimates
subsection. Parameters: plots where obtained by interpolation (with 13 × 13 data points). A data point is averaged over 3–5 different quenched
realizations of the network, each probed with 50 different runs initialized from equidistant η(s) along S, N = 5,000.
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SNLignal ∝ 〈d1 · p1〉 , (6)

N
NL
oise ∝



k>1
dk · pk

 

. (7)

3. that localization can only occur when the overall signal is lar-
ger than the overall noise scaled by some quantity C(σp, σd),
i.e. that the boundary occurs when

SNLignal

N
NL
oise

= C(σp, σd). (8)

The analytical steps to evaluate SNLignal and N
NL
oise are reported in SI

Section 4, and they relate, in practice, to the statistics of the popu-
lation vectors η(s), leading to a closed set of equations for units
having the same number of M fields. We then perform the
weighted average 〈〉̇M for both quantities at each specific ζ. We
find heuristically that the quantity C(σd, σp) can be approximated
by

C(σd, σp) =
〈pk〉

A
���������
Var(pk)

 . (9)

The equation for the boundary, as derived in the SI Section 4
writes then as

〈SNLignal(M)〉M

〈N
NL
oise(M)〉M

=
1
A
〈pk〉
���������
Var(pk)

 =
1

A
����������������������
exp [γ2σ2d + σ2p] − 1

 , (10)

Whichever value one chooses for the factor A, it can be verified
numerically that this equation produces a quasi-circular bound-
ary for γ = 0.5, see Fig. S7; and its effective radius increases with
ζ, Fig. S8. The boundary, for A = 3, is reported as a white quasi-
circular line in the subplots of Fig. 4 and as dashed vertical lines
in Fig. 3F–H. Numerically, this solution is indeed close to the crit-
ical values estimated from the simulations.
As a validation of our analysis we performed simulations with

other correlation values, γ ≠ 0.5, between peaks and diameters.
This leads to a different shape of the region of nonlocalization,
whose boundary is still defined by Eq. 10, see e.g. Fig. S7 for γ = 0.

Vertical boundary of the Fragmented-Manifold regime
The location of the vertical boundary, as shown in Fig. 4A–C, ap-
pears to be independent of the value of ζ and nearly independent
of σp. Based on this observation, we introduce a simplified model:
each unit is characterized by a single field (Mi = 1, ∀i), the fields
have purely Gaussian shapes and the different fields are

uniformly distributed across the environment. As we consider
σp = 0, i.e. the same peak rate p = 1/

���
2π
√

for each field, the only
source of variability among the units lies in the widths of their
fields, which follow a log normal distribution as in the realistic
model reproducing experimental data. In Fig. 5A, we show a few
sample activity profile of different units for a given σd for this re-
duced model. As reported in Fig. 5B–D, to be compared with
Fig. 3C–E, simulations of this reducedmodel reveal a qualitatively
and also quantitatively similar dynamical behavior as that ex-
pressed by the realistic model, giving us the possibility to study
analytically the reduced version in order to get an understanding
of the realistic one.
What makes the network activity suddenly “jump elsewhere”

during the dynamics, for σd > σcd? The cause must be the disparity
in the width of the fields. When some of the widest fields happen
to be centered far away from the current position s, but still get ac-
tivated, they can start suppressing the narrower units centered
around s, and the self-reinforcing process can lead to a jump.
Critical to the self-reinforcing nature of the process is that the lar-
gest fields exert a disproportionate influence with respect to the
narrow ones; this is because in the Hebbian plasticity rule (Eq. 1)
the normalization of both pre- and post-synaptic factors is by
the average activity level across units, 〈η〉. To find the boundary
we make, again, a set of ansatzes:

1. given a unit, the average incoming signal from all other units,
as a function of the distance d of their fields, is proportional to
the average of the corresponding connectivityweight, and the
noise square to their variance, i.e.

SFMignal(d) ∝ 〈J(d)〉, (11)

[N FM
oise(d)]

2 ∝ 〈
(
J(d)

2
〉 −

(
〈J(d)〉

2
. (12)

2. the activity bump can remain localized only if the incoming
signal from the furthest unit is larger than the incoming noise
scaled by some quantity D(σd), namely assuming d→∞, the
boundary corresponds to the values at which

limd→∞ S
FM
ignal(d)

����������������������

limd→∞ [N
FM
oise(d)]

2
 = D(σd). (13)

The calculation of the above quantities is reported in SI Section 5,
and it reflects, in practice, only the statistics of the connections J.
We find, also in this case heuristically, that the quantity D(σd) is
actually a constant, namely

D(σd) ≡ D = 1. (14)

Fig. 5. Dynamical change between CQA and FM regimes, with M ≡ 1 and σp = 0. A) Single fields of 10 sample units obtained from the reduced model
introduced in the text, with σd = 0.87 (See SI Section 1.4 for details). B–D) Same as Fig. 3 B–D).
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Setting the equality in 13 the value corresponding to the estimate
for the boundary location is then:

σcd =
���������

ln (3/2)


≃ 0.637. (15)

This value is reported as a white vertical line in the subplots of
Fig. 4 and as dashed vertical lines in Fig. 3C–E and Fig. 5B–D.
Also in this case, numerically, this solution is indeed close to the
critical value estimated from the simulations.
As a validation of our analysis we show that its predictive

power extends beyond the standard Hebbian rule and is able to
locate the boundary along the σd-axis for a class of plasticity
rules. To do so we design an additional model, identical to the re-
ducedmodel introduced above except for the couplings, given in-
stead by

Jij =
1
NS

S

u=1


ηi(su)
〈ηi〉ϵ〈η〉1−ϵ − 1


ηj(su)
〈ηj〉ϵ〈η〉1−ϵ − 1

 

, (16)

where 0 ≤ ϵ ≤ 1. For ϵ = 0, the original Hebbian rule in Eq. 1 is re-
covered. For ϵ ≠ 0, instead, the normalization of the coupling Jij
depends on the neurons i and j through their average activities
〈ηi〉 and 〈ηj〉. We run numerical analysis using this model and,
as reported in Fig. 6A, we show that the critical level of noise
characterizing the passage between the QCA and FM regime in-
creases with ϵ. We consider small positive values for ϵ. The ana-
lytical calculation of the critical σcd(ϵ) is reported in SI Section 5
and the result is indicated by a black line in Fig. 6B. We consider
the agreement between this analytical estimate and the crosses
in Fig. 6B, corresponding to the numerically estimated level of
noise at which 50% of the manifold has disappeared, as a valid-
ation of our analysis.

Discussion
It has long been understood that storing multiple regular place
maps within a single connectivity matrix creates quenched dis-
order, which roughens each continuous attractor—i.e. each map
—without completely erasing it, up to a certain capacity limit
(11, 21, 27, 29, 30, 47). Instead, the impact of quenched noise ori-
ginating from irregularity, even within a single map, had never
been explored, leaving unclear the extent towhich the continuous
attractormodel is relevant for spatialmemory, now that significant

irregularity is reported, in particular in experiments conducted in
large, semi-ecological environments. Inspired by the bat hippocam-
pal recordings in a long tunnel, in Ref. (10), we have characterized
numerically the dynamical behavior of a recurrent neural network
in which connections self-organize, through Hebbian learning,
fromrealistically irregular place fields along the tunnel.We identify
three dynamical behaviors of the isolated network, not driven by
external inputs, depending on the level of irregularity. In two of
them, NL and FM, activity either delocalizes or dynamically viola-
tes, by jumping, the topology of the tunnel. Only in one, CQA, pre-
vailing in a region of parameters which includes the irregularity
reported in Ref. (10), the activity is localized at the fixed points as
well as throughout the dynamical evolution. We have derived nu-
merically a 3D phase diagram, sketched in Fig. 7, spanning the vari-
ability in the number, width and peak firing of the fields, which
shows the regions expressing each of the three behaviors.
Further, we have developed an initial analytical approximation of
the boundaries between these regions.
Assessing the implications of our study for spatial memory in

the hippocampus requires some qualifications. First, although in-
spired by recordings in CA1, the recurrent model we have consid-
ered is only, if at all, appropriate to the CA3 network, noted for its
extensive collateral connectivity. One critical assumption, then, is
that forthcoming recordings from CA3 will show qualitatively, if
not quantitatively similar irregularity to those from CA1, support-
ing the applicability of the samemodel.We are also assuming that
the details of the connectivity (which in the real CA3 is far from
the all-to-all scheme considered in themodel), the actual biophys-
ics, the operation of inhibitory circuits, etc., do not alter much the
scenario with the three dynamical regimes indicated by our sim-
plified model. In order to obtain general insights into the dynam-
ical properties expressed by the hippocampus, we also assume
that the recordings we took under consideration in the model
are representative of other mammalian species for which neural
data on place fields are not available.
Second, the three dynamical behaviors are expressed, in the

model, when the recurrent network is only initially driven by spa-
tially selective external inputs and then is isolated. One of them,
the CQA regime, implies effective spatial memory retrieval also
when external inputs are initially incomplete, conflicting or noisy,
and later subside or are suppressed relative to reverberations
along the recurrent connections, which structure attractor dy-
namics. Indeed, in the CQA regime, although only a limited

Fig. 6. Numerical and analytical results for the ϵ expansion of Jij. (Left) Percentage of vanishedmanifold for simulationswith J as in Eq. 16 and ϵ as labeled.
Horizontal dashed line indicates 50% of the curves, which we take as an estimate of σcd(ϵ). Right) Crosses represent σ

c
d(ϵ) calculated from the numerical

simulations on the left, black line corresponds to the analytical estimate introduced in the text (see SI Section 5). Parameters:N = 4,000. Each data point is
averaged over 20–50 different quenched realizations of the network, each probed with 20 different runs initialized from equidistant η(s) along S.
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number of fixed points are present, the entire trajectories that link
these fixed points exhibit quasi-attractive behavior, meaning they
are unstable solely along the direction of the trajectory itself.
Therefore, we can expect mild external inputs to suffice to keep

neural activity localized at many arbitrary locations along the
quasi-attractive trajectory; or at worst, if they are too mild, to
let it flow to a nearby fixed point, which would come to represent
a segment of the trajectory. In rodents, but not in bats, a partial

Fig. 7. Sketch of the 3D phase diagramand its insights intomemory. A) Rough sketch of the 3D phase diagram, with axes labels as in C), schematizing the
results reported in Fig. 4. Three regimes are separated by two boundaries. In the continuous quasi-attractor regime (red), the manifold of solutions,
representing different locations along the tunnel, is strongly attractive to all directions but one: following an external cue network states are attracted to
the manifold, and spatial memory is expressed as a bump of activity, perhaps sliding a bit along the nonattractive direction. In the teleportation or
Fragmented Manifold regime (purple), the manifold effectively vanishes: external cues can only drive the dynamics towards a few residual fixed points,
unable to represent space, as dynamics do not smoothly flow along the manifold. In the nonlocalized phase (yellow), the fixed points are not localized:
hence no cue can retrieve spatial memory. B) Sketch of the idealized continuous attractor (right) which can only emerge, in the continuous
quasi-attractive phase, at the origin, i.e. in the unrealistic condition of single, equal and regularly positioned fields. The parallel lines on the bottom right
of the cANN symbolize a 1D track: each fixed point in the continuous attractor neural network (dark red cross) represents amemory of one position in the
environment (matching dark red cross in the track). The presence of mild noise (its effects on the cANN are schematized in the two left sketches)
downgrades the precision of spatial memory. C) Sketch of the three regimes in a plane corresponding to the distribution in the number of fields observed
in the recording in bats (10). Memory retrieval is preserved as long as the dynamical flow is alignedwith themanifold. This occurs in the red region, which
includes also the firing rate and field width statistics observed in the recordings (green cross). Memory capability suddenly deteriorates beyond each
boundary (determining the inability to retrieve anything, or possibly only a few locations). In C) and B), the closed curves (red/yellow) are intended to
sketch the energy of the quasi-attractive continuous manifold. Gray–black bumps indicate the overlap profile which one can calculate with the {η(s)} at
each step of the dynamics. The yellow dashed manifold, instead, represent a phantom manifold which the dynamics cannot reach.
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alternation between externally driven and attractor-driven dy-
namics may be paced by the Theta rhythm (48). In the NL and
FM regimes, instead, either neural activity is not localized in the
isolated network, or the manifold is broken into fragments, with
jumps between them, which wash away positional information;
and thus we expect spatial memory to be poor. In this context,
the closeness of the parameter values corresponding to experi-
mental observations in bats (green cross in Fig. 7) to the boundary
separating the CQA and FM regimes seems to suggest that the op-
eration point of the network tries to be at a safe distance from the
NL boundary, which expands in large environments and would
imply a disabled spatial memory. Alternatively, one might specu-
late that the closeness of the operation point to the FM boundary
suggest that the network implements a trade-off between the
variability intrinsic to a randomprocess and the need for effective
spatial memories.
In addition, following this reasoning, we expect in the near total

absence of external inputs—during sleep or quiet wakefulness—
the actual network operating in the CQA regime to replay only
those fixed points that exist, and the close surrounding regions
in their basin of attraction—the segments. Only segments of the
tunnel adjacent to the fixed points—those more stably stored in
memory—might be reached during spontaneous, rambling dy-
namics. The phenomenon of a segmented replay of very large en-
vironments has in fact been reported in the analysis of CA1 resting
state recordings (49).
The analytical estimates presented here, althoughpreliminary,

yields some initial insights into the neural mechanisms under-
lying the storage of individual irregular maps and illustrate
some computational constraints. With respect to the NL-CQA
boundary, our analysis highlights the effect of a dominant field as-
sociated to each unit. Such a field always exist, givennonzero vari-
ability, but when the average dominance decreases below a
critical value—the quasi-circular boundary—suddenly it is unable
to lead to localized activity. Turning to the CQA-FM boundary, our
simulations and analysis indicate that the “teleportation” is a dy-
namical effect due to fluctuations beyond themean-field descrip-
tion.When, during the initial widening of the activity bump, a few
units are activatedwith verywide fields, as often occurswith large
values of the field width variability parameter σd, they can re-
inforce each other irrespective of the original position of the
bump, maintained by units with narrow fields that give now a di-
minishing contribution. The latter are eventually suppressed, and
the bump is repositioned at the location that best matches the
wide fields of the units winning the competition. Apparently,
such self-reinforcing amplification, with respect to the position
signal, of the noise due to the units with wide fields is guaranteed
to occur somewhere, in a system with many units, whenever σd
exceeds the critical level σcd. While this effect warrants further in-
vestigation through analyses of out-of-equilibriumdynamics, and
it remains to be examined whether it generalizes to maps in high-
er dimension, e.g. in 2D, it is remarkable that our analytical esti-
mate for σcd is a pure number, σ

c
d ≃ 0.637, independent of any

parameter. With all the necessary caveats, including those men-
tioned above, this implies that we can extrapolate a maximum
length of a tunnel, or of a general 1D environment, that can be
stored in memory by the recurrent network. The variability in
the number of fields (ζ) is in fact expected to scale linearly with
the length of the tunnel, or in general the size of the environment,
whether in CA1 or in CA3. As a result, the NL-CQA boundary ex-
pands away from the origin and for any given level of peak rate
variability σp (and correlation parameter γ) there is a value ζwhere
this boundary meets the CQA-FM boundary. This would imply, if

σp is set e.g. by biophysical constraints, the disappearance of the
viable CQA region and hence amaximum size of the environment
that can be stored in memory. Indeed, the relation

ln (3/2) + σ2p = (rcσ(ζ ))
2 (17)

defines when the two boundaries converge and the “acceptable”
range for σd diminishes to zero. Using parameters from CA1 re-
cordings in (10), this yields 〈M〉 ≃ 30, see SI Section 4.1 for details,
corresponding to L ≃ 1.4 km, indicating a surprisingly low limit for
the length of a memorable tunnel.
The validity of this result remains to be verified, particularly in

relation toapplying thenetworkmodel to infer conclusionsbeyond
the specific conditions in which it was developed. First and fore-
most whether the model is really relevant for the CA3 network
shouldbeassessedon thebasis ofmeasurements ofneural activity
and its variability in theCA3region, andalso in light ofquantitative
estimates of the connectivity in CA3, in this or that species (50),
which could be incorporated in an extended model. Second, the
analysis shouldbeapplied to thecaseof2Denvironments, andper-
haps tohigherdimensionsandnonstandardgeometries,whichare
relevant for different experimental settings than that of bats flying
in a long narrow tunnel; this should be straightforward, if main-
taining a simple mathematically clean structure, that ideally cor-
responds to the empty, featureless environmentwehave assumed
in our analysis. Experimental research is howevermoving towards
analyzing neural activity and memory behavior in more ecologic-
allyplausible environments, inwhichobjects, landmarks, andoth-
er features are known to “attract” place fields (51, 52), and the
effects of their presence on the different dynamical regimes we
have studied here, and whether there is still a capacity limit on
the size of the environment that can be stored in a recurrent net-
work, remain an avenue for future research.

Methods
Assessment of the quality of the attractor
We consider the following estimators:

Percentage of vanished manifold
For a given realization of the networkwe run≥ 50 neural dynamics,
each starting froma “position” s0, i.e. V(t = 0) = η(s0), spanning regu-
larly the tunnel. We locate, at each dynamical step t, the center stc
of the bump from the overlap profile (Eq. 4). If the bump hasmoved
between steps t and t + 1, say, to st+1c > stc, we focus on the overlap
profile O(η(s), V(t + 1)) for s ∈ [stc, st+1c ]. If this quantity varies mono-
tonicallywith sorundergoesnonmonotonic changes only ona short
sub-interval of less than 5L/S, we consider that the dynamics has
stayed within the neural manifold; otherwise, the dynamics is con-
sidered to have jumped outside the manifold. Note that choosing
the particular value 5L/S does not really affect the result, as shown
in Fig. S5C. We repeat this procedure for every time step t up to the
convergence to the fixed point. The “percentage of vanished mani-
fold” is definedas thepercentage of different runsacross various ini-
tial conditions and realizations undergoing at least one jump.

Tangent overlap 〈Otang〉

Consider a given realization of the network. For each fixed point of
the dynamics VFP = V(sc), we first estimate the center of the bump
sc maximizing the overlap profile. We then run new dynamics,
starting from an initial condition V(t = 0) = η(s̃) where s̃ is close
to, but distinct from sc. As the dynamics converge towards V(sc),
in order to obtain a good approximation of V(sc ± 1) we identify
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the intermediate step t at which the overlap between V(t) and
η(sc ± 1) is maximal and take an average (similar results are ob-
tained by taking the last value V(t) having maximal overlap with
η(sc ± 1) before the maximal overlap shifts to the position of the
fixed point sc). The direction of the neural manifold around the
fixed point is then defined as D = V(sc ± 1) − V(sc) or equally as
D = V(sc + 1) − V(sc − 1).
In addition, we calculate the eigenvector Emin corresponding to

the smallest eigenvalue of the Hessianmatrix (SI Eq. (6), restricted
to active neurons) at the fixed point. The overlap between Emin and
D (restricted to active neurons) gives a measure of the alignment
between the direction of instability of the fixed point and the pu-
tative manifold. This overlaps varies between 1 (the two vectors
are aligned) and 0 (they are orthogonal). This quantity is then
averaged over all fixed points and realizations of the network,
with the result denoted by 〈Otang〉.

Bump width
Given a configuration V(t) of sizeNwe define for all discretized po-
sitions s the overlap Os ≡ O(η(s), V(t)) as in 4. We thus obtain the
overlap profile: a vector O of entries between 0–1 of size S, describ-
ing how similar is V(t) to the different configurations of activity
along the tunnel during the learning phase. We compute the dis-
persion of the center of mass of the overlap profile, keeping in
mind periodic boundary conditions as follows: (a) we set all values
smaller than 0.2 to zero to remove noise; (b) we change variables
to polar coordinates and calculate the cosine

co =

S
s Od · cos

2πs
S

 

S
s=1 Os

(18)

and sine

si =

S
s=1 Os · sin

2πs
S

 

S
s=1 Os

(19)

coefficients of the overlap profile; (c) we calculate the angle that
represents the orientation of the center of mass using the com-
puted cosine and sine coefficients as

ϑ = arccos
co

����������
co2 + si2
√

 

(20)

and if the si is negative we take ϑ = 2π − ϑ; (d) we calculate the pos-
ition of the center of mass along the length of the profile based on

the angle as cm=Sϑ/2π; (e) we find the difference d between each
discretized position index and the one corresponding to the center
of mass, keeping in mind periodic boundary conditions; (f) we fi-
nally calculate the dispersion as this mean square difference
weighted by the corresponding overlap

Bump width =

������������
s Osd2s

S2

12


s Os







. (21)

Note that we normalize the dispersion by dividing by the sum of

the overlaps and scaling by an “angular momentum” factor of 112.

Bump widths close to 0 correspond to localized configurations of
activity, while widths close to 1 indicate that the activity is spread
over the manifold.

Number of fixed points
For a given realization of the network we run ≥50 neural dynam-
ics, each starting from a “position” s0, i.e. V(t = 0) = η(s0), with s0

spanning regularly the tunnel. We let each dynamics to conver-
gence to the fixed point, evaluate the overlap profile of the fixed
point with {η(s)} and estimate the location corresponding to the
maximum of the overlap profile. The number of fixed points is
the average across simulations of the number of different loca-
tions in the tunnel corresponding to a fixed point.

Simulations: parameters and implementation
Inall simulations,unlessotherwise specified,wehaveused thenu-
merical values μd = 1.570 and μp = 1.549 extracted from the experi-
mental distributions (10),which correspond to a typical fieldwidth
of exp (μd) = 4.7m along the L = 200m long tunnel, and to a typical
peak rate of exp (μp) = 4.8Hz. We then discretize the length of the
tunnel into S = 1,000 bins. The gain g is set to 17, the threshold con-
stant ω to 300, and the target mean activity v0 to be equal to the
average of the learned profiles 〈η〉; these three values were chosen
to be in a (rather broad) regime where neural activity does not di-
verge.We show in Fig. S5 that the particular choice (like the values
of L and S) does not influence the dynamical results we report. The
neural time scale τ > 9.5was sometimes “increased” (whichmeans
we used shorter time steps) to facilitate reaching fixed points (in
Fig. 2, τ ≡ 9.5). All simulations where left to run until they reached
the fixed points, i.e. when V(t + 1) − V(t) < 10−8.
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