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Abstract

The chiral Gross-Neveu model, in the large N limit and at finite temperature and density,
displays spontaneous symmetry breaking of its axial U(1) symmetry and of space transla-
tions to a diagonal subgroup, signalled by a complex condensate periodic in space - dubbed
chiral spiral. In this thesis we analytically investigate the possibility of remnants of such
condensate, both at zero and finite temperature, in the finite N setup. Using the tool of
non-Abelian bosonization, with a careful treatment of certain global aspects, we are able to
relate the model to a SU(N)× U(1) Wess-Zumino-Witten model with appropriate levels.
At T = 0, we are able to rigorously prove that the chiral spiral configuration seen at large
N persists at any finite N ≥ 2. At finite T , instead, we study the two-point function of
certain composite fermion operators and we are able to predict that at finite temperature
spatially modulated structures still exist, provided that one puts periodic boundary con-
ditions for fermions in the thermal cycle. This distinction is motivated by the existence of
an ’t Hooft anomaly for a DF

8 symmetry in the fermionic theory. In support of the finite
N results we also rederive the large N chiral Gross-Neveu model phase diagram, assuming
different boundary conditions for fermions, with a direct diagrammatic computation.
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Introduction

Strongly-coupled systems comprise some of the most interesting and fundamental physi-
cal phenomena, ranging from the behavior of quark-gluon plasma in high-energy particle
physics to the one of condensed matter systems like strongly-correlated electrons in ma-
terials. As most of their properties arise from the emergent collective behavior of their
constituents, the specific features of such systems can be quantitatively described in terms
of a small set of parameters, such as their temperature and the density of particles, or the
values of certain couplings, and summarized in phase diagrams. By varying those parame-
ters, one can encounter phase transitions, where the system undergoes a sudden qualitative
change in its macroscopic properties.

Different phases are characterized by different realizations of the symmetries of the
system. This perspective is neatly encoded in the Landau theory of conventional phases
of matter [3] which, combined with Renormalization Group (RG) methods [4, 5], allows
for a quantitive description of many phase transitions. However, only transitions between
a symmetry-broken and a symmetry-preserved phase are well-captured by the original
formulation of the Landau paradigm. More exotic scenarios, such as the confinement-
deconfinement transition in non-Abelian gauge theories [6], integer [7] and fractional quan-
tum Hall states [8] and other intrinsically topologically ordered phases [9, 10], topological
insulators/superconductors [11] and other symmetry-protected topological phases [12], and
Landau’s Fermi-liquid theory itself [13], to name a few, require at the very least an appro-
priate extension of the concept of symmetry [14, 15] in order to be understood within this
framework.

An essential ingredient for this extension is the incorporation of ’t Hooft anomalies
[16, 17] which, being preserved under RG flow, constrain how symmetries can act on the
low-energy degrees of freedom. In particular, the presence of an ’t Hooft anomaly for a
given symmetry tells us that the system will sit in a phase that is either (i) gapless, (ii)
symmetry-broken, or (iii) intrinsically topologically ordered [18–21]. In recent years, many
works from the condensed matter and the high-energy theory communities have been de-
ploying extensively this approach to rederive known results and infer new ones, see e.g.
[22] for a modern review.

An interesting class of phases is the ones whose symmetry breaking pattern involves
spacetime symmetries. This is indeed the normal situation in solid state physics, for
instance in the change of the crystalline structure that relates different allotropes of met-
als, or at the fusion point of a crystal. In particular, the existence of inhomogeneous
phases, where the ground state of the theory breaks a subset of the translational symme-
tries, has been found in dense systems. For example, certain Bardeen-Cooper-Schrieffer
superconductors [23] subject to strong external magnetic fields display a so-called Fulde-

ix



Ferrell-Larkin-Ovchinnikov phase, with a spatially non-uniform order parameter [24, 25].
In one-dimensional metals, the Peierls instability can induce a transition to a phase with
a periodic fluctuation in the electron density, i.e. to chiral density wave states [26, 27].
Similar modulated structures can also be found for the spin density, for instance in several
organic linear-chain compounds [28, 29].

Inhomogeneous phases have also been conjectured to form in a range of tempera-
tures and matter densities also in relativistic theories, such as Quantum Chromodynamics
(QCD). Before discussing them, let us review what is the current (at the time of writing)
scientific consensus on the QCD phase diagram, as a function of the temperature T and
of the chemical potential µB for the U(1)B baryon number symmetry (see e.g. [30] for a
recent review). The strongly-coupled nature of QCD at low energies prevents a fully ana-
lytical treatment because, neglecting quark masses, this theory has no small fundamental
parameters to be used for a perturbative expansion, the only independent intrinsic scale
being the dynamically generated confinement scale ΛQCD ∼ 332 MeV. Exact treatments
are possible only in extreme situations such as in the high-temperature or high-density limit
where the thermodynamics is dominated by the weakly-coupled short-distance physics, or
in artificial regimes such as in a large Nc expansion [31]. For most practical purposes,
one has to rely on a lattice approach, i.e. the idea of discretizing spacetime and com-
puting physical observables from first-principles Monte-Carlo simulations. The lattice is
particularly effective at probing the µB = 0 axis: at low temperatures, there is a phase of
massive neutral hadrons, separated from the high-temperature phase of deconfined quarks
and gluons by a crossover phase transition. For µB > 0, lattice computations suffer from
the sign problem, and a Monte-Carlo approach is not reliable in this case. Nevertheless,
it is predicted that the crossover phase transition becomes first order, with a second order
critical point in between, and it is believed that the transition line curves to intersect the
T = 0 axis at a finite µ∗B. An analytic treatment predicts that at very large µB QCD is in
a color-flavor-locked superconducting phase [32].

It is at intermediate values of the chemical potential (and at low temperatures) that
inhomogeneous phases can possibly appear. Evidence that cold dense quark matter at large
Nc might form standing chiral waves, i.e. configurations where only a linear combination
of chiral symmetry and translations is linearly realized, has been first provided in [33].
Such chiral waves have been subsequently shown to be disfavored in actual QCD [34], but
the possibility of other inhomogeneous phases in QCD has reemerged during the years, see
e.g. [35–37]. If they exist, it has been conjectured that their signature might be detected
by studying the properties of compact astrophysical objects such as neutron stars [38].
Modern evidence that neutron stars can have deconfined quark matter cores [39] leaves the
door for this possibility open.

Let us also mention that also for QCD one can constrain the possible infrared phases by
requiring ’t Hooft anomaly matching, see e.g. [40] for notable efforts in this direction. Still,
the anomaly matching condition provides only a consistency check, and it seems unlikely
that this argument alone will lead to a definitive answer.

Due to the limited availability of analytical and numerical tools, it is difficult to rig-
orously assess the phase diagram of QCD in full glory. For this reason, it is interesting
to understand the phase diagram of simpler theories that qualitatively resemble QCD,
such as four-Fermi theories. Originally introduced to describe the weak interaction [41],
four-Fermi theories in four spacetime dimensions have proven to be useful effective models
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for strongly-interacting matter at finite density [42, 43], despite their failure at describ-
ing features caused by gauge degrees of freedom, such as the confinement-deconfinement
transition.

Another renowned route comes from studying certain four-Fermi theories in two space-
time dimensions [44]. These theories, like QCD, are UV-free and undergo dynamical mass
generation in the IR. One version of these models, the Gross-Neveu model, has maximal
O(2N) vector symmetry, a mass gap, and features spontaneous breaking of a Z2 chiral
symmetry. Another version of the theory, the chiral Gross-Neveu model, possesses a U(N)
vector symmetry and a U(1) chiral symmetry instead. The latter theory is gapless in the
IR, having in its spectrum a massless compact boson. Studies of the phase diagrams of
both the ordinary and the chiral Gross-Neveu models at large N at finite temperature T
and in the presence of a U(1) baryon number chemical potential µ were initially conducted
assuming translational invariance in [45] and [46], respectively. However, subsequent re-
search has challenged this assumption, leading to revised large N phase diagrams that
incorporate inhomogeneous phases [47–50]. These include a crystal phase in the ordinary
Gross-Neveu model, with a spatially modulated order parameter at low T and sufficiently
large µ, and a phase reminiscent of chiral density waves, dubbed “chiral spiral”, in the
chiral Gross-Neveu model, with a spatially periodic phase with µ-dependent period at low
T for any µ > 0. In recent years, the emergence of inhomogeneous phases in these models
at finite N has started being investigated using numerical lattice methods, see e.g. [51, 52]
for the ordinary and [53] for the chiral Gross-Neveu model.

In two spacetime dimensions, arguments relying on symmetries for the determination
of phase diagrams are more powerful. The main reason is that the physics is much more
constrained. On the one hand, breaking of a continuous symmetry is impossible due to the
absence of massless Nambu-Goldstone bosons [54]. Correspondingly, there is no strictly
ordered symmetry-breaking phase, but possibly only a symmetry-preserving quasi-long-
range ordered phase, that is a phase in which the two-point function of the would-be
order parameter decays at large distances only with a power-like behavior, separated from
the usual disordered phase by a Berezinskii-Kosterlitz-Thouless transition [55–57]. More-
over, there are no bosonic phases with intrinsic topological order [58], the only non-trivial
fermionic topologically ordered phase being the p-wave state of the Kitaev chain [59], thus
diminishing the number of possible IR scenarios consistent with an ’t Hooft anomaly. On
the other hand, studying a 1 + 1d system at finite temperature is equivalent, via Wick
rotation to (periodic) Euclidean time, to studying the same system at zero temperature
and finite spatial length. Taking the temperature to be large, in this second picture the
spatial volume shrinks to a point, and one is studying an effective quantum mechanical
system. If there is an ’t Hooft anomaly that survives compactification, then this will reflect
on the nature of the vacuum in the quantum mechanics. For instance, this has been used
to constrain the IR behavior of adjoint QCD in 1 + 1d with a single Majorana flavor [60,
61], where an important role for the persistence of the anomalies is played by the boundary
conditions along the compactified direction.

In this thesis, we extend the analysis of the phase diagram of the chiral Gross-Neveu
model to a finite number of Dirac flavors N .

Using non-Abelian bosonization [62], we relate the chiral Gross-Neveu model to a
SU(N)1×U(1)N WZW model deformed by current-current interactions. In the bosonized
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language, it is surprisingly simple to show that the chiral spiral phase of the large-N chiral
Gross-Neveu model is present also at any finite N , at T = 0 for any µ > 0 [1]. The
chiral wave corresponds to a quasi long-range ordered gapless phase, in contrast to strict
long-range order appearing at large N , with a free massless relativistic excitation. In this
phase the would-be order parameter is neutral under IR spatial translations that are a
linear combination of the original translations and the axial U(1) symmetry.

In order to discuss phases at finite temperature [2], we are forced to review the non-
Abelian bosonization procedure while taking additional care of global aspects. This is
because global identifications by discrete symmetries have important effects when the the-
ory is placed on a non-trivial manifold, such as R× S1. In doing so we find that, in order
to keep manifest a unitary flavor symmetry SU(N) × U(1) in the bosonized theory, the
specification of the corresponding levels for the WZW models, as well as the precise set
of global identifications, has a dependence on the parity of the number of Dirac flavors N
which is not manifest on R2. Moreover, we are able to infer the existence of a certain ’t
Hooft anomaly for a DF

8 symmetry in the fermionic theory. This is a Z2-valued anomaly,
that we detect from an anomaly for a Z2×Z2×Z2 symmetry of the U(1) compact boson of
the bosonized theory. This anomaly is activated in the presence of a non-trivial background
for the fermion parity symmetry ZF2 , allowing us to predict the existence of persistent order
when fermions are constrained to be periodic under the compact (Euclidean time) direc-
tion. We are able to check this claim explicitly by computing two-point functions of certain
composite fermion operators in the interacting theory, both for thermal (antiperiodic) and
periodic boundary conditions for fermions. We find that for thermal fermions a remnant
of the spatial modulation is still present, but it has an exponentially decaying amplitude
due to thermal effects. The exponential decay is absent instead for periodic boundary
conditions, consistently with the anomaly argument, leading to persistent order.

As an additional byproduct, we have also developed a simple diagrammatic method
for rederiving the large-N phase diagram that allows for a certain class of spatial inho-
mogeneities. This method leads to results consistent with the ones of [47, 50], which are
based on finding ansätze that solve certain self-consistency equations. We also extend it
to the case of periodic fermions, where we find again persistent order of the chiral spiral
configuration, in agreement with the results at finite N .

Outline of the thesis. The work is organized as follows.
In Chapter 1 we review the known results about the large N phase diagrams of the ordinary
and the chiral Gross-Neveu models, while setting the notation.
In Chapter 2, instead, we review some of the notions about two-dimensional Quantum
Field Theory which we will use in the following Chapters. This concludes the review part.
In Chapter 3 we perform non-Abelian bosonization of the chiral Gross-Neveu model in full
detail. While this procedure is not conceptually novel, we will perform it employing the
full power of the modern tools we have presented in Chapter 2, and we will discover that
the correct bosonization procedure depends on the parity of the number of flavors N .
In Chapter 4 we present the results for the allowed phases of the chiral Gross-Neveu model
at finite N . At T = 0, we are able to rigorously prove that the chiral spiral configuration
seen at large N persists at any finite N ≥ 2. At finite T , instead, we study the two-point
function of certain composite fermion operators and we are able to predict that at finite
temperature spatially modulated structures still exist, provided that one puts periodic
boundary conditions for fermions in the thermal cycle.
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In Chapter 5 we rederive the phase diagram of the large N chiral Gross-Neveu model via a
direct diagrammatic computations, assuming different periodicity conditions for fermions
along the thermal cycle, finding agreement with previous results in the literature, as well
as with the results of Chapter 4.
In Appendix A we discuss the free-field realization of the JJ̄-deformed SU(N)1 model,
with a special attention to the case of N = 2. We are able to prove that the classical
potential has exactly N degenerate vacua, and for N = 2 we compute exactly ⟨Tr(U)⟩ in
the interacting theory, checking explicitly that it condenses.
In Appendix B we perform CFT computations that are useful in deriving the results of
Section 4.3, for which also the identities reported in Appendix C are useful.
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Chapter 1

Gross-Neveu Models

In this Chapter we review the physics of a special type of interacting theories of fermions
in d = 1+1, that is the models put forward by Gross and Neveu [44], over which this thesis
focuses. Being well-studied models, the literature that concerns them is quite vast. Here
we distill only the knowledge that is useful to understand better the physical framework
and motivation of this thesis work.

In order to simplify our understanding of such interacting theories, it will be convenient
to distinguish them by which subset of the symmetries of the free theory is preserved. For
this reason, and to introduce notation, we start by reviewing the global internal symmetries
of free fermions in two dimensions in Section 1.1. We then present the ordinary and the
chiral Gross-Neveu model in Sections 1.2 and 1.3, respectively. In both cases we also
discuss the salient features that appear in the limit where the number of flavors is large,
N → ∞, namely chiral symmetry breaking and dynamical mass generation. In Section 1.4
we review the literature results about the thermodynamics of these models, both at large
N and from the lattice.

1.1 Free fermions

Let us consider first a free theory of M massless Majorana fermions,

L0 =
i

2
ξ̄j /∂ξ

j , j = 1, . . . ,M . (1.1)

Here ξj are two-components Majorana spinors,

ξj =

Ç
ξj+
ξj−

å
, (1.2)

with ξj± being left- and right-moving Majorana-Weyl spinors, respectively. We work in a
Euclidean setting with the following γ-matrices convention,

γ1 = σ1 , γ2 = −iσ2 , γ∗ = γ1γ2 = σ3 , (1.3)

1



2 CHAPTER 1. GROSS-NEVEU MODELS

γ∗ being the chirality matrix. This theory has global symmetry group

G(M Majorana) = O(M)L ×O(M)R

=


(SO(M)L × SO(M)R)× (ZFL

2 × ZFR
2 ) , M odd ,

(SO(2N)L × SO(2N)R)⋊ (ZCL
2 × ZCR

2 ) , M = 2N , N odd ,
(SO(2N)L × SO(2N)R)⋊ (ZKL

2 × ZKR
2 ) , M = 2N , N even ,

(1.4)
where we have also broken downO(M)L,R into their connected and disconnected parts. The
action of O(M)L,R is linear on left- and right-moving Majorana-Weyl spinors, respectively,®

O(2N)L : ξj+ 7→ ξj+ , ξj− 7→ Ljkξ
k
− ,

O(2N)R : ξj+ 7→ Rjkξ
k
+ , ξj− 7→ ξj− .

(1.5)

For M odd, −1 ∈ O(M) \ SO(M), and global fermion parity ZF2 is the diagonal
subgroup of ZFL

2 ×ZFR
2 .1 The off-diagonal one, Zχ2 , forbids the presence of a mass term for

an odd number of Majorana fermions.
For M = 2N , the matrix −1 belongs to SO(2N), therefore fermion parity is connected

to the identity, ZF2 ⊂ Z(SO(2N)L × SO(2N)R). Note that there are further differences
between N even and odd. For N odd, we can define the matrix C =

Ä
1N 0
0 −1N

ä
, that

has determinant −1. C does not commute with SO(2N) rotations, hence the semidirect
product, leaving SO(2N) as a normal subgroup of O(2N). Its physical meaning is charge
conjugation, and this is made manifest upon defining Dirac spinors,

Ψa = ξa + iξa+N , a = 1, . . . , N . (1.6)

For N even, instead, C ∈ SO(2N). We can however define a reflection matrix K, for
instance as the unit matrix with the first entry replaced by −1, that generates the ZK2
factors in (1.4). For N odd, C is equivalent to K via an SO(2N) rotation, so we can
always use K to extend SO(2N) to O(2N).

1.2 Gross-Neveu Model

The Gross-Neveu model [44] is obtained from the free theory of N Dirac fermions by adding
a scalar-scalar quartic interaction,

LGN = iΨ̄a/∂Ψ
a − λs

2N
(Ψ̄aΨ

a)2 , a = 1, . . . , N . (1.7)

The interaction explicitly breaks the symmetry group (1.4) to

G(N -flavor GN) = O(2N)V × ZA2 , (1.8)

where O(2N)V is the diagonal subgroup of O(2N)L × O(2N)R, and ZA2 is a chiral Z2

reflection,
ZA2 : Ψa 7−→ γ∗Ψ

a . (1.9)
1In this work we will always include fermion parity ZF

2 among the global internal symmetries of the
theory, even though it is also a spacetime symmetry. The full global symmetry group of the theory will
consist of both internal and spacetime symmetries, with ZF

2 being identified.
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In our basis, a Dirac spinor Ψa splits into its Weyl components as

Ψa =

Å
ψa+
ψa−

ã
, (1.10)

so that the nontrivial ZA2 element acts as ψa± 7→ ±ψa±.

Let us consider the theory in the N → ∞ limit, obtained while keeping λs fixed. The
Euclidean partition function,

Z =

∫
DΨDΨ̄e−S[Ψ̄,Ψ] , (1.11)

can be rewritten using the Hubbard-Stratonovich trick to get rid of the 4-fermi term by
introducing an auxiliary scalar field σ. We write

1 =

∫
Dσ e−

N
2λs

∫
d2x[σ+λs

N
(Ψ̄Ψ)]

2

, (1.12)

In order to preserve the ZA2 symmetry, we ask that the auxiliary field σ is odd under ZA2 .
Plugging (1.12) in the partition function and integrating out the fermions one gets

Z =

∫
Dσe−NS[σ] , S[σ] =

∫
d2x

σ2

2λs
− tr log(i/∂ + σ) , (1.13)

where the trace is over Dirac indices only (flavor indices have already been traced over).
The expression (1.13) is formally valid at any N , but in the large N limit the integral

collapses to the contribution coming from the absolute minimum of S[σ]. Let us assume
that such minimum is attained for some homogeneous configuration σ∗. Then, one obtains
the so-called gap equation,

− δ

δσ
S[σ]

∣∣∣∣
σ∗

= V ′(σ∗) =
σ∗
λs

− tr(i/∂ + σ∗)
−1 = 0 . (1.14)

This equation needs a regularization in order to be solved for σ∗. Let us introduce a UV
cutoff Λ in the energy (but not in the spatial momenta). After the trace is performed, the
gap equation reads

σ∗
λs

= 2σ∗

∫ Λ d2p

(2π)2
1

p2 + σ2∗
. (1.15)

The integral is IR-divergent for fixed λs,Λ when σ∗ → 0, making V ′′(0) large and negative.
Therefore the trivial solution σ∗ = 0 is a maximum, and σ aquires a nonzero expectation
value, ⟨σ⟩ = σ∗ ̸= 0. Explicitly,

1

λs
= 2

∫ Λ

0

dp0
2π

1»
p20 + σ2∗

=
1

π
arsinh

Λ

|σ∗|
, (1.16)

from which we read off, at large values of the cutoff Λ,

σ∗ ≃ ±2Λe−π/λs ≡ ±M. (1.17)

Such solutions have to be minima since the potential grows at infinity. The theory is
UV-free and M plays the role of the dynamically generated scale. Notice that if one
reinstates fermions the latter acquire a non-zero mass equal to M . Since σ is ZA2 -odd, the
ZA2 symmetry gets spontaneously broken.
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1.3 Chiral Gross-Neveu model

The Gross-Neveu model admits a generalization with a full U(1)A chiral symmetry, also
called chiral Gross-Neveu model, where the scalar-scalar interaction is replaced as follows,

L = iΨ̄a/∂Ψ
a − λs

2N
[(Ψ̄aΨ

a)2 + (Ψ̄aiγ∗Ψ
a)2] . (1.18)

Its global symmetry group reads

G(N -flavor cGN) = U(N)V × U(1)A , (1.19)

where U(N)V is the U(N) subgroup of O(2N)V appearing in (1.8), and U(1)A acts as a
chiral rotation of angle α,

U(1)A : Ψa 7−→ eiαγ∗Ψa , α ∼ α+ 2π . (1.20)

The Lagrangian (1.18), however, is not the most complete one compatible with the sym-
metry (1.19), since the vector-vector interaction

λ̃v
2N

(Ψ̄aγµΨ
a)2 , (1.21)

also respects it. If not included, such quartic operator will be generated radiatively by
the coupling λs. On the other hand, in the vector-like large-N expansion, one finds that
the coupling associated to the quartic vector-vector operator has a vanishing β-function at
leading order, and as such one can consistently set λ̃v = λv/N [63]. Therefore, we define

LcGN = iΨ̄a/∂Ψ
a − λs

2N
[(Ψ̄aΨ

a)2 + (Ψ̄aiγ∗Ψ
a)2] +

λv
2N2

(Ψ̄aγµΨ
a)2 . (1.22)

We can repeat the large-N analysis for the chiral version of the model. We need to
introduce real auxiliary fields for each fermion bilinear appearing in the interaction,

1 =

∫
DσDπDvµ e

− N
2λs

∫
d2x

[
(σ+ λ

N
Ψ̄Ψ)

2
+(π+ λ

N
Ψ̄iγ∗Ψ)

2
]
e−

N2

2λv

∫
d2x(vµ+

λv
N2 iΨ̄γµΨ)2 , (1.23)

so that after integrating out the fermions one obtains

Z =

∫
DσDπDvµe

−N
[∫

d2xσ2+π2

2λs
+ N

2λv

∫
d2xv2µ−tr log(i/∂+i/v+σ+iπγ∗)

]
. (1.24)

At leading order in large N , the action is minimized for

vµ∗ = 0 ,
σ∗
λs

=

∫ Λ d2p

(2π)2
2σ∗

p2 + σ2∗ + π2∗
,

π∗
λs

=

∫ Λ d2p

(2π)2
2π∗

p2 + σ2∗ + π2∗
. (1.25)

Notice that we could pack the gap equations for σ, π into a single one for the complex
scalar field ∆ ≡ σ + iπ,

∆∗
λs

=

∫ Λ d2p

(2π)2
2∆∗

p2 + |∆∗|2
. (1.26)

The field ∆ is also charged under the chiral U(1)A symmetry, with charge 2,

U(1)A : ∆ 7−→ e2iα∆. (1.27)
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As before, the trivial vacuum is a local maximum, and therefore the true vacuum would
sit at |∆∗| = M ̸= 0. Any specific choice of the vacuum breaks the continuous U(1)
chiral symmetry. This would be in contrast with a theorem by Coleman-Mermin-Wagner
[54, 64], that states that continuous global symmetries cannot be broken in two spacetime
dimensions.

To understand what is happening, it is better to use a polar decomposition for the
auxiliary fields [65],

∆ = σ + iπ ≡ ρeiθ . (1.28)

Now we can expand around a solution of the gap equation, ρ∗ = |∆∗|, without breaking
the axial U(1) symmetry. However, one should not assume an expectation value for the
phase field θ, which under U(1)A transforms as

U(1)A : θ 7−→ θ + 2α , α ∼ α+ 2π . (1.29)

Nevertheless, the presence of a nonzero expectation value for ρ gives nonzero mass to
fermions.

Let us consider the effective action in terms of ρ, θ variables,

S[ρ, θ] =

∫
d2x

ρ2

2λs
− tr log(i/∂ + ρeiθγ∗) . (1.30)

Expanding the effective action in terms of θ on top of the constant ρ = M background,
one finds that, at leading order in derivatives,

Seff [θ] =
N

8π

∫
d2x (∂µθ)

2 (1.31)

We can then interpret the auxiliary field θ as a compact scalar with radius N . With these
variables, the breaking of U(1)A (or, the lack thereof) can be probed by computing the
correlation function

⟨Ψ̄(1 + γ5)Ψ(x)Ψ̄(1− γ5)Ψ(0)⟩ ∼ ⟨ρe−iθ(x)ρeiθ(0)⟩ , (1.32)

If we are interested in the long-distance behavior of this correlator, we can trust the above
effective action for θ and also treat ρ as a constant. Therefore the above is, up to constants,

⟨e−iθ(x)eiθ(0)⟩ ∼ |x|−2/N . (1.33)

This correlator vanishes at large distances, as it should to ensure that the symmetry is
preserved. But it goes to zero at a very slow rate at large N , and if one takes the large
N limit before the large distance limit, the symmetry would look indeed broken, but 1/N
corrections would then be IR-divergent, so we cannot trust the expansion away from the
N = ∞ point. For any large, finite N , we find then “quasi-long-range” order, that is a
phase in which the correlation length would look infinite, but the correlation function of
charged operators still decays, albeit with a power-like behavior.

1.4 Thermodynamics at large N and from the lattice

It is fairly easy to generalize the gap equations (1.15), (1.26) to include the presence of
an arbitrary temperature T and of a chemical potential µ for the U(1)V symmetry. The
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latter is dealt with by adding to the Lagrangian of the model the explicit coupling to the
charge density,

Lµ = µΨ†
aΨ

a , (1.34)

whereas the temperature is taken into account by replacing the integration over the energy
coming from the fermion determinant with a sum over Matsubara modes,∫

dp0
2π

f(p0) −→ T
∑
n∈Z

f
(
2π(n+ s

2)T
)
, (1.35)

where s = 1 for antiperiodic (i.e. thermal) boundary conditions for fermions around the
compact Euclidean time direction, and s = 0 for periodic boundary conditions. Since
literature focused mainly on the thermal case, in this section we work with s = 1.

With these modifications, (1.15) becomes

σ∗
λs

= T
∑

|p0|<Λ

∫
dp1
2π

2σ∗
(p0 + iµ)2 + p21 + σ2∗

. (1.36)

A trivial solution to the gap equation is σ∗ = 0. We look for nontrivial solutions. We can
readily integrate over p1,

1

λs
= T

∑
|p0|<Λ

1√
(p0 + iµ)2 + σ2∗

. (1.37)

The right hand side is divergent. On the other hand, λs is the bare ’t Hooft coupling, so it
is also a divergent quantity. We remove UV divergences by renormalizing. In particular,
we impose the T = µ = 0 gap equation to write

1

λs
≃ 1

2π
log

2Λ

M
. (1.38)

Using the above relation to remove the cutoff Λ, we are led to

log
πT

M
− γ =

∞∑
n=0

Ç
Re

1√
(n+ 1/2 + iµ/(2πT ))2 + (σ∗/(2πT ))2

− 1

n+ 1/2

å
, (1.39)

where γ is the Euler-Mascheroni constant. The right hand side is finite, and the above
gives a relation between physical quantities that does not renormalize. A formally identical
relation holds for the chiral Gross-Neveu model, upon replacing σ∗ with ρ∗.

By studying (1.39), a first proposal for the large-N phase diagram of the Gross-Neveu
model was put forward in [45] and [46], see Figure 1.1. It displays two phases: an ordered
phase at low T and low µ which features massive fermions, and a symmetric phase at high
T and/or µ in which fermions are massless. The two phases are separated by a line of
second-order phase transitions AB, which becomes a line of first-order phase transitions
BD at the multicritical point B. We stress that the exact values of the (T, µ) coordinates
of each point are renormalization scheme-dependent; the ones that appear in Figure 1.1
are derived using the renormalization condition (1.38).

However, in this derivation there has always been one tacit assumption, that is the
spatial homogeneity of the condensate, ⟨σ∗(x)⟩ ≡ ⟨σ∗⟩. There are good reasons to doubt
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Figure 1.1: Large-N phase diagram of both the ordinary and the chiral Gross-Neveu
models, derived assuming translational invariance. Adapted from [45, 66].

this assumption. At large N , the Gross-Neveu model possesses baryons, i.e. multi-fermion
bound states [67]. In the case of the ordinary Gross-Neveu model, the mass of the lightest
baryon is MB = 2NM/π, whereas the chiral version of the model also has a massless
baryon. Being baryons solitonic solutions of the field equations, they naturally break
translational invariance. Given that they carry U(1)V charge, they are expected to have
possibly non-zero density at finite chemical potential µ, and it is reasonable to expect that
this can imply a loss of translational invariance.

In light of these considerations, the large-N phase diagram was rederived for both the
ordinary Gross-Neveu model [48] and the chiral Gross-Neveu model [47, 50], this time
without assuming translational invariance. The novelty is the appearance of a so-called
“crystal” phase, that is a phase where the chiral condensate is periodic in space.

For the ordinary Gross-Neveu model, such phase appears at low temperatures and
high enough chemical potential, see Figure 1.2. In this phase, the spatial profile of the
condensate is determined from the following ansatz,

⟨σ∗(x)⟩ = Aκ2
sn(Ax, κ) cn(Ax, κ)

dn(Ax, κ)
(1.40)

where sn, cn,dn is the Jacobi elliptic functions, and A ≥ 0 and 0 ≤ κ ≤ 1 are parameters
over which one minimizes the effective potential. Most importantly, the condensate is
periodic, with period found to be ℓ = 2K(κ)/A, K(κ) being the quarter period, and it
satisfies

⟨σ∗(x+ ℓ/2)⟩ = −⟨σ∗(x)⟩ , (1.41)

that is, a shift by half-period ℓ/2 corresponds to a chiral ZA2 transformation. In other words,
ZA2 transformations combine with continuous spatial translations, which correspond to a
non-compact Rtrans group, in such a way that only a diagonal Z2 × Ztrans subgroup is
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Figure 1.2: Large-N phase diagram of the ordinary Gross-Neveu model, derived without
assuming translational invariance. In red we report the spatial profile of the condensate
⟨σ∗(x)⟩. Adapted from [66].

preserved, Ztrans being spatial translations by ℓ, x 7→ x+ ℓ.

For the chiral Gross-Neveu model, the difference between the large-N phase diagrams
derived with and without assuming translational invariance is even more remarkable, see
Figure 1.3. In the latter case, the phase with homogeneous condensate completely disap-
pears, and at low enough temperatures the system is always in a crystal phase, and the
condensate

⟨∆∗(x)⟩ =M(T )e2iµx , (1.42)

where M is a non-negative parameter that depends only on the temperature, and has the
interpretation of the thermal mass of the fermions. At µ ̸= 0, the condensate is manifestly
periodic with period ℓ = π/|µ|, and

⟨∆∗(x+ α/µ)⟩ = e2iα⟨∆∗(x)⟩ , (1.43)

signalling that chiral U(1)A transformations and spatial translations Rtrans get broken to
a diagonal U(1)× Ztrans subgroup.

On the one hand, the presence of such interesting structures at large N raises the
question about whether these structures persist at finite number of flavors, and if yes to
which extent. These models have been studied on the lattice, see e.g. [52] for a study of
the phase diagram for the ordinary Gross-Neveu model at N = 2, 8, 16, and [53] for the
phase diagram of the chiral Gross-Neveu model at N = 2, 8. In both cases, the numerics
is compatible with the persistence of structures with spatial modulation. In the ordinary
Gross-Neveu model, this feature is particularly robust and a phase diagram quite similar
to the one in Figure 1.2 has been put forward. In the chiral Gross-Neveu model, it has
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Figure 1.3: Large-N phase diagram of the chiral Gross-Neveu model, derived without
assuming translational invariance. In red we report the spatial profile of the condensate
⟨∆∗(x)⟩. Adapted from [50].

instead deemed more likely that, at finite temperature, spatial modulation is detectable
only at intermediate scales.

On the other hand, at finite N the lack of a small parameter has made most analytical
approaches, up to the work presented in this thesis, prohibitive.
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Chapter 2

Toolbox in 2d Field Theory

In the following Chapters, we will address the question of the fate of the inhomogeneous
structures once again from the analytical side, focusing on the chiral Gross-Neveu model.
To do so, we will need tools more refined than the large N expansion. The idea is to
rephrase the model and the problem at hand in a dual set of variables, in particular through
bosonization. At the free point, a set of M Majorana fermions is dual to a Spin(M)1 Wess-
Zumino-Witten (WZW) model [62]. The amount of information that is needed to make
this statement precise is reviewed, in a distilled way, in this Chapter.

We begin by reminding in Section 2.1 the modern viewpoint on symmetries in Quantum
Field theory, both for generic number of spacetime dimensions d and for the specific case
of d = 2. In Section 2.2 we review the construction of Rational Conformal Field Theories
(RCFTs) such as the WZW models and the compact scalar, as well as their relationship
with Chern-Simons theories in three dimensions. In Section 2.3 we discuss in detail the
set of well-known dualities that connect bosonic and fermionic Quantum Field Theories in
d = 2.

2.1 Symmetries and Anomalies

The notion of symmetry is a crucial one in Physics and in Quantum Field Theory. It is
also a notion whose definition has evolved considerably during the history of the field, and
(at the time of writing) the most comprehensive one is the one that defines them as the
set of topological operators of a given theory [14]. Historically, the relation went the other
way around: topological operators were the ones defined from symmetries. In Subsection
2.1.1 we shall condense the basic concepts, and we will move to specific discussion and
examples in 2d field theories in Subsection 2.1.2.

2.1.1 Symmetries ≡ Topological Operators

Topological operators from symmetries. The first notion of symmetry that is usually
encountered in textbooks is that of a continuous (zero-form) symmetry group G for a d-
dimensional field theory, for which one can define a Noether current J that is conserved,
d ∗ J = 0, and correspondingly a conserved charge Q(Σd−1) =

∫
Σd−1

∗J , by integrating
over a codimension one hypersurface Σd−1.1 Conservation of the current implies Ward

1We assume for simplicity to be in an Euclidean setting, so Σd−1 is always spacelike.

11
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identities, which means that when inserted in correlation functions of charged operators,
the charge Q(Σd−1) gives, schematically,

⟨Q(Σd−1)O1(x1) · · · On(xn)⟩ =
n∑
i=1

ΘΣd−1
(xi)⟨O1(x1) · · · δOi(xi) · · · On(xn)⟩ , (2.1)

where ΘΣd−1
(x) = 1 if the point x links with Σd−1, and 0 otherwise, and δO(x) is the

symmetry variation of O(x). Since the action of Q(Σd−1) inserted in the correlation func-
tion ⟨

∏
iOi(xi)⟩ does not depend on the specific shape or position of Σd−1, as long as in

doing so Σd−1 does not cross any of the insertion points xi, Q(Σd−1) defines a topological
operator.

Functions of Q(Σd−1) will also be topological. To fix ideas, let us consider the case of
G = U(1). Then g ∈ G can be parametrized as g = eiα, α ∼ α+ 2π. Let us define then

Ug=eiα(Σd−1) = exp (iαQ(Σd−1)) , (2.2)

By exponentiating (2.1), we see that Ug=eiα(Σd−1) implements the U(1) transformation of
parameter α, as δOi = iαqiOi, with qi being the U(1) charge of Oi.

More generally, one can define an unitary operator Ug(Σd−1) that implements the action
of a group element g ∈ G, i.e. such that upon replacing Q(Σd−1) by Ug(Σd−1) in (2.1),
one gets

⟨Ug(Σd−1)O1(x1) · · · On(xn)⟩ =
n∏
i=1

⟨O1(x1) · · ·Ri(g)[Oi(xi)] · · · On(xn)⟩ , (2.3)

if the operator Oi(x) transforms in the representation Ri of the symmetry group G, and for
simplicity we have assumed that ΘΣd−1

(xi) = 1 for all i. This definition does not require
the existence of a current and thus extends naturally also to discrete groups. By acting
with two such operators in sequence, the group law is automatically implemented: if we
define an ordering of the actions by saying that Σ+

d−1 is a slight deformation of Σd−1, such
that operators supported on the former act after ones of the latter, then

Ug(Σ
+
d−1)Uh(Σd−1) = Ugh(Σd−1) , Ug(Σ

+
d−1)Ug−1(Σd−1) = Ug−1(Σ+

d−1)Ug(Σd−1) = 1 ,
(2.4)

which must be read as an identity holding inside correlation functions.

Symmetries from topological operators. Anytime a theory has a symmetry, it is
possible to couple it to background fields. Again, let us consider for simplicity a U(1)
symmetry. This can be done via minimal coupling, i.e. by inserting a source term in
correlators,

⟨· · · ⟩ −→ ⟨e−
∫
A∧∗J · · · ⟩ , (2.5)

with A denoting the background field, and the integral is over the whole spacetime. A
background gauge transformation of parameter λ acts as A 7→ A+dλ. If A is flat, dA = 0,
then

[A] ∈ ker d

im d
≡ H1(Md, U(1)) , (2.6)

with H1(Md, U(1)) being the first singular cohomology group on spacetime Md with coeffi-
cients in U(1). By Poincaré duality, [A] ∈ H1(Md, U(1)) is dual to an element in homology,
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A ∈ H1
(
∆2, G

)Ug3(Σ3,1) Ug1(Σ1,1)

Ug−1
2
(Σ2,1)

∆2

Figure 2.1: Example of Poincaré duality between a 0-form gauge field A in d = 2 and
a network of topological operators. A is locally defined on simplices that triangulate the
manifold (blue), and topological operators are placed along the edges of the dual triangu-
lation (orange). The condition that the gauge field A is flat translates to the condition
g1g

−1
2 g3 = 1. Note that the support of topological operators is oriented accordingly.

PD(A) ∈ Hd−1(Md, U(1)), which can be interpreted as a (network of) codimension one
submanifold, Σd−1. Gauge invariance ensures that the corresponding operator∫

A ∧ ∗J =

∫
PD(A)

∗J ≡ Q(PD(A)) , (2.7)

is itself topological. Repeating the construction done above, one can see then that adding
flat background field A is equivalent to inserting a specific network of topological operators,
Ugi(Σi,d−1), inside correlation functions. The flatness condition enforces the group law at
the junction points of the network. This construction readily generalizes to any G Abelian.

p-form symmetries. The most immediate generalization is to higher-form symmetries
[14] (see also [68] for a pedagogical review of the state-of-the-art). If G(p) is a continuous
p-form symmetry group, i.e. such that its conserved current J (p+1) is a (p+ 1)-form, then
its conserved charge will be defined as Q(Σd−p−1) =

∫
Σd−p−1

∗J (p+1), with Σd−p−1 being
a codimension (p + 1) hypersurface. To generalize (2.1), we would need to work with
operators whose support can possibly link with Σd−p−1: typically, these are extended p-
dimensional objects, O(γp).2 Then also (2.3) is readily generalized and extends also to G
discrete. However, the topological nature of the action of the operators Ug(Σd−p−1) implies
that the group G is necessarily Abelian: since Σd−p−1 does not separate spacetime in two
disconnected components, one can always move and deform hypersurfaces as to swap the
role of Σ+

d−p−1 and Σd−p−1 in the analog of (2.4),

Ug(Σ
+
d−p−1)Uh(Σd−p−1) = Uh(Σ

+
d−p−1)Ug(Σd−p−1) ⇐⇒ gh = hg . (2.8)

2In general, a p-form symmetry can be defined to act on objects of dimension at least p. We will not
discuss the most general case here.
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Similarly to the p = 0 case, a background for a (flat) G(p) symmetry, A ∈ Hp+1(Md, G), is
dual to a network of topological operators, Ugi(Σd−p−1).

Gauging and anomalies. Let us now restrict to the case of a theory T with a finite,
abelian G(p) symmetry, which forces the gauge connection to be locally flat. Gauging G(p)

means summing over all possible flat backgrounds a ∈ Hp+1(Md, G),3

ZT /G(p) ∼
∑

a∈Hp+1(Md,G)

ZT [a] , (2.9)

(let us disregard the overall normalization for now). Given our discussion above, this is
equivalent to summing over all the networks of topological operators {Ugi(Σi,d−p−1)} which
correspond to elements PD(a) ∈ Hd−p−1(Md, G),

ZT /G(p) ∼
∑

PD(a)∈Hd−p−1(Md,G)

ZT [PD(a)] , (2.10)

As an example, let us consider Md = T 2 for a 0-form symmetry G. For any G Abelian,
H1(T 2, G) ≃ H1(T

2, G) = G ⊕ G: a G-gauge field assigns to the two non-contractible
cycles a, b elements ga, gb ∈ G, respectively. Thus gauging G can also be described as
summing over all possible insertions of Ug, g ∈ G, along the non-contractible cycles of T 2.

Until now we have always tacitly assumed that the symmetry G(p) is anomaly-free.
First we should define what does it mean that a discrete symmetry is anomalous. For
a continuous symmetry, an ’t Hooft anomaly is the lack of invariance under background
gauge transformations, signalled at the partition function level by the appearance of an
anomalous phase,

ZT [A+ dλ] = eiα(λ,A)ZT [A] . (2.11)

This can be used as a definition also in the case of discrete symmetries. Then, the back-
ground A is not defined anymore up to gauge redundancy, i.e. A does not define a class
in Hp+1(Md, G), but only an element of Cp+1(Md, G). The lack of gauge invariance im-
plies that the corresponding network of operators is not topological anymore, a change in
topology corresponding to a background gauge transformation.

We can characterize the anomaly of G(p) in T by means of a so-called anomaly theory
A, a (d+ 1)-dimensional theory which has the following properties [17, 69–72],

• A describes gapped phases with the same symmetry G(p) as T ,

• on any closed (d+1)-dimensional manifold, the partition function in the presence of
a background A for G(p) is well-defined and equal to a phase,

ZA[A] ∈ U(1) , (2.12)

3One can also add a discrete torsion coefficient, that is a weighting phase ϵ(a), ϵ ∈ Hd(Bp+1G,U(1)),
to each term of the sum. Here Bp+1G is the Eilenberg-Mac Lane space of G.
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• on the other hand, on a manifold with ∂Md+1 = Md, the partition function is not
invariant under background gauge transformations, with

ZA[A+ dλ] = e−iα(λ,A)ZA[A] , (2.13)

where α(λ,A) is localized at the boundary, and thus cancels the phase in (2.11),

ZT [A+ dλ]ZA[A+ dλ] = ZT [A]ZA[A] , (2.14)

• A depends on Md+1 only through its topology.

The gapness requirement implies that the Hilbert space of A on any closed d-dimensional
manifold is one-dimensional at large distances: in other words, A is a G(p)-symmetry
protected topological (SPT) phase [17]. For bosonic symmetries, these are classified by

[ω] ∈ Hd+1(Bp+1G,U(1)) . (2.15)

In passing, let us mention that we might also have situations where the background gauge
invariance for a symmetry G(p1)

1 is spoiled only in the presence of a nontrivial background
for another symmetry G(p2)

2 . In that case, we say that there is a mixed ’t Hooft anomaly
between G(p1)

1 and G(p2)
2 .

For discrete symmetries, gauging is an invertible operation. Any G(p) gauge theory
has (p + 1)-dimensional Wilson operators, parametrized by representations R of G(p). If
G(p) is discrete, then these Wilson operators are topological since the G(p) gauge field a is
flat in this case, and as such they generate a new symmetry in the gauged theory. If G is
Abelian, then the symmetry group of the gauged theory is “G(d−p−2), with“G = Hom(G,U(1)) , (2.16)

the Pontryagin dual of G, being an Abelian group itself. Then, one can couple T /G(p) to
backgrounds “B ∈ Hd−p−1(Md, “G) for the “G(d−p−2) symmetry,4

ZT /G(p) [“B] ∼
∑

a∈Hp+1(Md,G)

ZT [a]e
i⟨“B, a⟩ , (2.17)

⟨−,−⟩ being the intersection pairing. Since ““G = G and d− (d− p− 2)− 2 = p, by gauging
G(p) and “G(d−p−2) in sequence one reobtains a theory with a G(p) symmetry, which turns
out to be the original theory T [14, 73].

Note that if G is not Abelian, then in general the representations of G do not form a
group. However, gauging G is still an invertible procedure, but another generalization of
the concept of symmetry must be invoked, which we now introduce.

4We adopt here a notation often used in the literature of denoting respectively by small and capital
latin letters dynamical and non-dynamical gauge fields.
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2.1.2 Symmetries and Anomalies in 2d

Another direction in which we could have generalized the notion of symmetry is as follows.
Nothing forbids to formally define a set of topological operators Ua(Σd−p−1), with a some
arbitrary index, such that (2.4) generalizes to an expression of the kind

Ua(Σ
+
d−p−1)Ub(Σd−p−1) =

∑
c∈C

Uc(Σd−p−1) , (2.18)

which, we stress again, must be read as an equality inside correlation functions, and the
sum is over a given index range C. This is the structure of a non-invertible (p-form)
symmetry, namely a symmetry whose underlying structure is not necessarily group-like.
The language in which non-invertible symmetries are better understood is that of (higher)
categories. While these structures are extensively known in 2d literature since quite some
time (see e.g. [15, 61, 74–81]), in the last years they have been studied also in d ≥ 3, see
for instance the seminal works [82–85]. In the following, we review part of the construction
that applies to d = 2, with an emphasis on the implication for group-like symmetries and
their anomalies. But first, let us show that this definition is non-empty.

Example 1: Verlinde Lines in RCFTs. Let us start with a well-known example where
(2.18) appears. As we will see in Section 2.2, a RCFT is characterized by having a finite
number of primary fields. In the case of WZW models, these primary operators are classi-
fied according to integrable representations λ̂ ∈ P k+ of an extended Kač-Moody symmetry
algebra ĝk. One can take tensor product of two such representations and decompose it,

λ̂⊗ µ̂ =
⊕
ν̂∈Pk

+

N ν̂
λ̂µ̂
ν̂ , (2.19)

where N ν̂
λ̂µ̂

∈ Z≥0 are called fusion coefficients. The latter are related to the modular data
of the RCFT by the Verlinde formula [74],

N ν̂
λ̂µ̂

=
∑
σ̂∈Pk

+

Sλ̂σ̂Sµ̂σ̂S
∗
ν̂σ̂

S0̂σ̂

, (2.20)

where 0̂ denotes the trivial representation.
Let us assume for simplicity that the corresponding RCFT is diagonal. Then, the

Hilbert space of the RCFT is given by primary operators |λ̂, ˆ̃λ⟩ =: |λ̂⟩ and their affine
descendants. On the Hilbert space, we can define a set of abstract operators L̂µ̂ that acts
on primary operators as follows,

L̂µ̂|λ̂⟩ =
Sµ̂λ̂
S0̂λ̂

|λ̂⟩ , (2.21)

and such that its action commutes with the left- and right-moving chiral algebra, thus
making it a symmetry of the theory. To this symmetry, we can associate topological
operators Lµ̂ supported on codimension one surfaces, i.e. on lines. The lines Lµ̂ thus
inherit the fusion rules from the chiral algebra,

Lλ̂Lµ̂ =
∑
ν̂∈Pk

+

N ν̂
λ̂µ̂
Lν̂ , (2.22)
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where we have used the unitarity of S. The relation (2.22) is analog to (2.18) for a zero-form
symmetry in d = 2.

Example 2: Ising model and Kramers-Wannier duality. The Ising model at the
critical point is conformal, in particular it is a minimal model. As such, it has only finitely
many Virasoro primaries, the identity 1(0,0), the thermal operator ϵ(1/2,1/2), and the order
operator σ(1/16,1/16), whose OPEs with each other are given by

ϵ× ϵ = 1 , σ × ϵ = ϵ× σ = σ , σ × σ = 1 + ϵ . (2.23)

Let us now take a different perspective than in the previous example. Let us find all consis-
tency constraint that putative symmetries of the Ising model should satisfy. A symmetry
should correspond to a line operator that commutes with the Virasoro algebra,

L̂|1⟩ = ℓ0|1⟩ , L̂|ϵ⟩ = ℓ1/2|ϵ⟩ , L̂|σ⟩ = ℓ1/16|σ⟩ . (2.24)

On the torus, the insertion of the charge operator L̂ amounts to computing

trH(L̂q
L0−c/24q̄L̄0−c̄/24) = ℓ0|χ0|2 + ℓ1/2|χ1/2|2 + ℓ1/16|χ1/16|2 . (2.25)

Modular covariance requires that, up to a modular S transformation, we can reinterpret
the insertion of L in the trace as tracing over a twisted Hilbert space,

trHL
(qL0−c/24q̄L̄0−c̄/24) =

∑
i,j

nijχiχ̄j , nij ∈ Z≥0 . (2.26)

The integrality constraint is very stringent. We can use it to ‘bootstrap’ which are the
allowed values of ℓi. We find three independent sets of solutions,

(ℓ0, ℓ1/2, ℓ1/16) = (1, 1, 1) , (1, 1,−1) , (
√
2,−

√
2, 0) . (2.27)

The first solution is trivial. The second one corresponds to the Z2 symmetry of the Ising
model, whose corresponding line is often dubbed η in the literature,

η : |1⟩ 7→ |1⟩ , |ϵ⟩ 7→ |ϵ⟩ , |σ⟩ 7→ −|σ⟩ , (2.28)

and correspondingly in the twisted Hilbert space one finds as twisted primaries the disorder
operator µ(1/16,1/16), which is Z2-even, and Majorana fermions ψ(1/2,0), ψ̄(0,1/2), which are
Z2-odd.

The second solution is new. Let us call the corresponding line N . It cannot be an
invertible symmetry because the corresponding operator has a zero eigenvalue. The most
interesting thing is the fusion rules that η and N satisfy, which is readily deducible from
(2.27),

η × η = 1 , N × η = η ×N = N , N ×N = 1+ η . (2.29)

These are the fusion rules of the so-called Tambara-Yamagami category TY+(Z2).
By the fusion rules (2.29), we can understand what happens when a line N crosses the

operator σ. Closing the N line on itself around the operator σ leaves a η line attached to
it, and thus turns σ in the µ operator. For this reason, N is called the Kramers-Wannier
duality defect: it exchanges σ and µ.
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Symmetry Categories. While in the present thesis we will be concerned with group-
like symmetries, for finite zero-form symmetries in 2d there is a general construction that
encompasses both the invertible and the non-invertible cases. The notion is that of unitary
fusion categories [86], also called symmetry categories in physics [15].

In a symmetry category C, the objects are defined as the topological lines Li generating
the symmetry, and morphismsmij ∈ Hom(Li, Lj) are defined as topological local operators
that change the label of the topological line. The set of morphisms Hom(Li, Lj) is required
to be a vector space. To any line Li, we can associate the partition function computed
with the corresponding insertion of the operator L̂i,

⟨· · · “Li(γ) · · · ⟩ , (2.30)

γ being an oriented path. Then the operators associated to morphisms mij live at the
conjunction points of L̂i(γi) and L̂j(γj).

The category C should satisfy certain axioms. It should admit the existence of a tensor
product ⊗ : C × C → C, compatible the existence of a unit object 1,5

⊗ : (Li, Lj) 7→ Li ⊗ Lj , 1⊗ Li = Li ⊗ 1 = Li , (2.31)

and that sends morphisms to morphisms,

⊗ : (mik,mjk) 7→ mik ⊗mjk ∈ Hom(Li ⊗ Lj , Lk) . (2.32)

The space Hom(Li ⊗ Lj , Lk) is also called the space of trivalent junctions.
One must also require an associativity structure given by a set of morphisms

ωi,j,k ∈ Hom((Li ⊗ Lj)⊗ Lk, Li ⊗ (Lj ⊗ Lk)) , (2.33)

subject to the pentagon identity,

ωj,k,l ◦ ωi,j⊗k,l ◦ ωi,j,k = ωi,j,k⊗l ◦ ωi⊗j,k,l . (2.34)

The action of the morphism ωi,j,k, also called associator, is to change the order in which
three lines are tensored, see Figure 2.2.

A symmetry category C must also have an additive structure ⊕ : C×C → C. Physically,
the line Li ⊕ Lj corresponds to the correlator

⟨· · ·◊�Li ⊕ Lj(γ) · · · ⟩ = ⟨· · · L̂i(γ) · · · ⟩+ ⟨· · · L̂j(γ) · · · ⟩ . (2.35)

Among the objects of C, one can identify the set of indecomposable objects, i.e. those
objects La who cannot be expressed as sum of any other two objects Li ⊕ Lj . It is
usually assumed that all indecomposable objects La are also simple, that is they have
Hom(La, La) = C and Hom(La, Lb) = 0 for a ̸= b. In particular 1 is assumed to be
simple. One then typically asks that all objects Li can be decomposed as a finite sum Li =

5The line 1 does nothing when inserted in correlation functions, and as such is called ‘trivial’.
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Li Lj Lk

Li ⊗ Lj

(Li ⊗ Lj)⊗ Lk

ωi,j,k

Li ⊗ (Lj ⊗ Lk)

Li Lj Lk

Lj ⊗ Lk

Figure 2.2: The action of the associator ω is equivalent to a local rearrangement of the
network of lines.

⊕
aNaLa, with La’s simple, and Na ∈ Z≥0 denoting dim(Hom (Li, La)). In particular,

given three simple objects La, Lb, Lc,

La ⊗ Lb =
⊕
c

N c
a,bLc , (2.36)

with N c
a,b ∈ Z≥0 being the dimension of the vector space of trivalent junctions Hom(La ⊗

Lb, Lc).

Other structures are usually required. For every line Li, there is also a dual line L∨
i

such that
⟨· · · “Li(γ∗) · · · ⟩ = ⟨· · ·”L∨

i (γ) · · · ⟩ , (2.37)

where γ∗ denotes the orientation-reversal of γ. Additionally, one asks that there exist
a unitary structure on the junction spaces, with a notion of Hermitian conjugate m†

ij ∈
Hom(Lj , Li) of a morphism mij ∈ Hom(Li, Lj), such that m†

ij ◦ mij ∈ Hom(Li, Li) is a
positive semi-definite linear operator.

The case of groups: the symmetry category C(G,ω). Let us make contact with
the usual notion of finite group-like symmetries. Consider a theory T with a group-like
symmetry G. Each element g ∈ G is associated to a simple object Lg. The tensor product
structure is inherited by the group multiplication, Lg ⊗Lh = Lgh, and the dual line is just
the inverse, L∨

g = Lg−1 . The interesting object is the associator ωg,h,k. We can think of
the action of the associator as nucleating a closed loop Lh−1 from the vacuum. Physically,
ωg,h,k is a map ω : G × G × G → U(1) subject to the pentagon relation (2.34), which in
the case of a group reads

ωh,k,lωg,hk,lωg,h,k
ωg,h,klωgh,k,l

= 1 . (2.38)

Additionally, at each junction point we can perform a change of basis in the vector spaces
Hom(Lg ⊗ Lh, Lk) ≃ δgh,kC, i.e. associate to each junction a phase βg,h ∈ U(1). This
means that ωg,h,k is not uniquely determined: rather, there is a redundancy

ωg,h,k ∼ ωg,h,k
βg,hβgh,k
βg,hkβg,k

. (2.39)

It is not difficult to see that (2.38) and (2.39) combine to give [ω] ∈ H3(G,U(1)): the asso-
ciator ω has a natural interpretation as the anomaly cocycle of G. By Poincaré duality, the
configurations related by ωg,h,k correspond to two different background field configurations
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related by a background gauge transformation. If ω is not trivial, then the transformation
is anomalous. We label the symmetry category associated to the group symmetry G with
associator/anomaly ω as C(G,ω).

If ω is trivial this means that G can be gauged. The gauging operation is done by
summing over G gauge fields a ∈ H1(M2, G), or equivalently summing over the insertion
of topological lines labeled by G elements, c.f. (2.9). From the categorical viewpoint, the
latter sentence can be implemented as follows: we define the object

A =
⊕
g∈G

Lg , (2.40)

and we sum over insertions of a fine-enough network of lines A, where by fine-enough we
mean that it is dual to a triangulation of the manifold. The vanishing of the anomaly, i.e.
the triviality of the associator, ensures independence from the specific realization of the
network.

When gauging G, as discussed in Section 2.1.1, in the theory T /G local operators are
Wilson lines labeled by representations of G, R ∈ Rep(G). When G is finite Abelian,
representations are encoded by characters, i.e. elements of Hom(G,U(1)) which has a
group structure: Hom(G,U(1)) = “G ≃ G. When G is non-Abelian, in general Rep(G), is
not a group, as it can contain higher-dimensional representations, whose tensor product
decomposition has generically multiple factors. This signals that in this case the symmetry
of T /G is non-invertible. Indeed, C′ = Rep(G) is the symmetry category of T ′ = T /G.

Mixed anomalies and group extensions. Similarly to the discussion above, to gauge a
subgroupH ⊂ G one can simply restrict the sum in (2.40) to elements ofH, AH =

⊕
h∈H h.

In this case, it suffices to check that ω is trivial when restricted to elements of H, while
in general it can be non-trivial on G. Depending on how H embeds in G, or whether
H has a mixed ’t Hooft anomaly with the rest of the symmetry group, some interesting
features can arise. In the following we will convey the mathematical intuition, rather than
providing a full proof, which would necessitate more advanced tools. We refer to [15, 87]
for a full-fledged proof. We will assume that H is Abelian.

Let us assume that the anomaly is trivial for the whole G. The theory T /H has both
a dual symmetry “H = Hom(H,U(1)) and a residual symmetry K ≃ G/H. For H Abelian,
we can think of G as a central extension of K by H, i.e. there exists a short exact sequence

1 → H → G→ K = G/H → 1 , (2.41)

and an element κ ∈ H2(K,H), such that G can be obtained by equipping the set H ×K
with the following group operation,

(h1, k1)(h2, k2) = (h1 φk1(h2)κk1,k2 , k1k2) , (2.42)

where φk is an automorphism of H defined by conjugation by k in G.6 As a concrete
example, G = Z4 can be realized from H = K = Z2 in this way, by choosing κk1,k2 = 1,

6The notion of group extension should not be confused with the notion of semidirect product G =
H⋊φK, for which (2.42) is defined with a trivial κ. Moreover, note that for G Abelian any such semidirect
product is necessarily direct, as then φk(h) = k−1hk = h. Sometimes the notation H ⋊κ K is used in the
literature to denote the extension of K by H via (2.42).
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the trivial element of Z2, if k1 or k2 is trivial, and κ−1,−1 = −1: then, (h, k) = (1,−1) has
order 4.
When gauging H, an element of the residual symmetry k ∈ K can act on “H, by sending
the character χ ∈ “H to χ ◦ φk−1 .7 This defines a symmetry group which is a semidirect
product G′ = “H ⋊φ K, and combining κ ∈ H2(K,H) with χ ∈ Hom(H,U(1)) we obtain
the nontrivial associator

ω(χ1,k1),(χ2,k2),(χ3,k3) = (χ3 ◦ φ(k1k2)−1)(κk1,k2) . (2.43)

Viceversa, let us assume for simplicity that G is of the form G = H ×K, and that G
has an anomaly ω which trivializes when restricted to H, ω|H = 1, but is non-trivial when
two of its arguments are in K, i.e. [ω] ∈ H1(H,U(1))⊕H2(K,U(1)) ⊂ H3(H ×K,U(1)).
Now, let us gauge H. The theory T /H has both a dual symmetry “H = Hom(H,U(1))

and the symmetry K, of the form (2.41) with H replaced by “H, and with κ ∈ H2(K, “H)
defined by ω such that κk1,k2(h) = ωh,k1,k2 .

Altogether, this suggests that under gauging there is the following exchange: mixed
’t Hooft anomalies become group extensions, and nontrivial group extensions give rise to
mixed ’t Hooft anomalies. This is indeed the case [15, 87]. We will see this phenomenon
at work in Section 4.2.

2.2 Rational CFTs

A special class of 2d Conformal Field Theories is the one of Rational CFTs (RCFTs).
These are theories whose (possibly infinitely many) Virasoro primaries can be organized in
a finite number of blocks under an extended chiral symmetry algebra. The classic examples
of RCFTs, and the ones that we will deal with in thesis work, are the compact scalar and
more generally Gk WZW models.

2.2.1 Compact scalar

Consider the compact scalar with radius R,

S =
1

8π

∫
(∂µϕ)

2 d2x , ϕ ∼ ϕ+ 2πR . (2.44)

This can be equivalently described at the Lagrangian level by a compact scalar ϕ̃ of radius
R̃ = 2/R.

Let us also introduce the holomorphic and anti-holomorphic components of ϕ,

ϕ(z, z̄) = φ(z) + φ̄(z̄) , ϕ̃(z, z̄) = φ(z)− φ̄(z̄) . (2.45)

Let us discuss the symmetries of the theory for irrational values of R2. This theory has
global symmetry group

G(R) = (U(1)P × U(1)W )⋊ ZC2 , (2.46)

7This action is defined such that it leaves χ(h) invariant, χ(h) 7→ (χ ◦ φk−1)(φk(h)) = χ(h).
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defined as
U(1)P : ϕ 7→ ϕ+ αPR , ϕ̃ 7→ ϕ̃ , αP ∼ αP + 2π ,

U(1)W : ϕ 7→ ϕ , ϕ̃ 7→ ϕ̃+ 2αW /R , αW ∼ αW + 2π ,

ZC2 : ϕ 7→ −ϕ , ϕ̃ 7→ −ϕ̃ .
(2.47)

At generic radius R there is no holomorphic (or anti-holomorphic) U(1) symmetry. Rather,
the holomorphic current ∂ϕ = ∂φ generates a non-compact R symmetry.

The torus partition function of a compact scalar with generic radius R is given by

ZR(τ, τ̄) =
1

|η(τ)|2
∑
e,m

qhe,m q̄h̄e,m , (2.48)

where q = e2πiτ , and

he,m =
1

2

Å
e

R
+
mR

2

ã2

, h̄e,m =
1

2

Å
e

R
− mR

2

ã2

, (2.49)

are the conformal dimensions of the Virasoro primaries

Ve,m(z, z̄) = exp
[
ie
ϕ(z, z̄)

R
+ im

Rϕ̃(z, z̄)

2

]
= exp

[
i

Å
e

R
+
mR

2

ã
φ(z) + i

Å
e

R
− mR

2

ã
φ̄(z̄)

]
.

(2.50)

When R2 ∈ Q, the description of the theory greatly simplifies: in that case, the compact
boson is a rational theory, there are additional symmetries, and its partition function can
be rewritten in terms of a finite number of affine characters. Moreover, notice that ∂φ is
now a U(1) current. In particular, letting

R2 =
2p′

p
, gcd(p, p′) = 1 , (2.51)

we can recast the ‘naive’ symmetry of the theory as

G(R) = (U(1)L × U(1)R)⋊ ZC2 , (2.52)

where
U(1)L : φ 7→ φ+ αL

√
2pp′ , φ̄ 7→ φ̄ , αL ∼ αL + 2π ,

U(1)R : φ 7→ φ , φ̄ 7→ φ̄+ αR
√
2pp′ , αR ∼ αR + 2π ,

ZC2 : φ 7→ −φ , φ̄ 7→ −φ̄ .
(2.53)

We can also write the action of U(1)L, U(1)R on ϕ and ϕ̃,®
U(1)L : ϕ 7→ ϕ+ αLpR , ϕ̃ 7→ ϕ̃+ αLp

′ 2
R ,

U(1)R : ϕ 7→ ϕ+ αRpR , ϕ̃ 7→ ϕ̃− αRp
′ 2
R ,

R2 =
2p′

p
. (2.54)
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For generic values of R we cannot define chiral U(1) symmetries, but we can still define
chiral Zn actions on fields as follows,®

ZLn : ϕ 7→ ϕ+ 2πℓ
n pR , ϕ̃ 7→ ϕ̃+ 2πℓ

n p
′ 2
R ,

ZRn : ϕ 7→ ϕ+ 2πℓ
n pR , ϕ̃ 7→ ϕ̃− 2πℓ

n p
′ 2
R ,

ℓ = 0, 1, . . . n− 1 , (2.55)

where p, p′ are chosen such that at the rational point R2 = 2p′/p the actions in (2.55)
reduce to Zn subgroups of (2.54).

For rational R2, on top of this manifest symmetry, there is an extended symmetry gen-
erated by higher spin currents, whose realization depends on the specific value of R2. It is
convenient to reorganize the operator spectrum not just in terms of electromagnetic pri-
maries and descendants, but rather in terms of primaries and descendants of the extended
algebra, which includes also the conserved chiral currents. This means that rather than
considering the infinitely-many primaries labeled by two integers we only need to consider
a finite number of primary vertex operators, out of which all others can be obtained by
fusion with currents. This amounts to finding representatives of equivalence classes of ver-
tex operators Ve,m under the relations (e,m) ∼ (e± p′,m± p) ∼ (e± p′,m∓ p). It is not
difficult to see that there are 2pp′ such equivalence classes, and a choice of representatives
is given by restricting to e ∈ Z2p′ , m ∈ Zp if p ≤ p′, or e ∈ Zp′ , m ∈ Z2p if p > p′.
One can then rewrite the torus partition function as a sum over affine characters,

Z√
2p′/p

(τ, τ̄) =

2pp′−1∑
λ=0

χ
(2pp′)
λ (τ)χ̄

(2pp′)
ω0λ

(τ̄) , (2.56)

where
χ
(2pp′)
λ (τ) =

1

η(τ)

∑
t∈Z

q
pp′
Ä
t+ λ

2pp′
ä2
, (2.57)

and we have defined
ω0 = pr0 + p′s0 mod 2pp′ , (2.58)

with (r0, s0) being any Bézout pair for (p, p′), i.e. (positive) integer numbers such that

pr0 − p′s0 = 1 . (2.59)

A consequence of this is that ω2
0 = 1 mod 4pp′: in fact,

ω2
0 = (2pr0 − 1)2 = 1 mod 4p, ω2

0 = (2p′s0 + 1)2 = 1 mod 4p′ , (2.60)

from which the result follows using gcd(p, p′) = 1.

Let us analyze the modular properties of (2.57). First of all, under a T transformation

χ
(2pp′)
λ (τ + 1) = e

2πi
(

λ2

4pp′−
1
24

)
χ
(2pp′)
λ (τ) . (2.61)

Notice that the combination appearing in (2.56) is T -invariant because

hλ =
λ2

4pp′
, hω0λ =

ω2
0λ

2

4pp′
= hλ mod 1 . (2.62)
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Under an S transformation, instead,

χ
(2pp′)
λ (−1/τ) =

1√
2pp′

2pp′−1∑
µ=0

e
−2πi λµ

2pp′ χ(2pp′)
µ (τ), (2.63)

and similarly

χ
(2pp′)
ω0λ

(−1/τ) =
1√
2pp′

2pp′−1∑
µ=0

e
−2πi

(ω0λ)µ

2pp′ χ(2pp′)
µ (τ)

=
1√
2pp′

2pp′−1∑
ν=0

e
−2πi λν

2pp′ χ(2pp′)
ω0ν (τ) ,

(2.64)

where we have let ω0ν = µ and used ω2
0 = 1 mod 4pp′. Therefore the partition function

(2.56) is indeed modular invariant.
Note also that the theory (2.56) is not a diagonal RCFT unless ω0 = 1 mod 2pp′,

which can happen only if either p or p′ is equal to 1. Let us assume that it is the case,
without loss of generality we let p = 1 (the case p′ = 1 can be obtained by T-duality).
Then,

Z√
2p′(τ, τ̄) =

2p′−1∑
λ=0

|χ(2p′)
λ (τ)|2 . (2.65)

This is the partition function of the diagonal U(1)2p′ WZW model.8

When both p, p′ ̸= 1, the relation between the compact boson CFT and a U(1) WZW
model is more subtle. Let us see what happens with an example. Let us consider the
compact boson with R2 = N odd, which has p = 2 and p′ = N . There are 2pp′ = 4N
affine characters in this theory. A Bézout pair for (p, p′) = (2, N) is (r0, s0) = (N+1

2 , 1),
which leads to ω0 = 2N + 1. The partition function (2.56) reads

Z√
N (τ, τ̄) =

4N−1∑
λ=0

χ
(4N)
λ (τ)χ̄

(4N)
(2N+1)λmod4N (τ̄)

=
4N−1∑
λ=0
λ∈2Z

|χ(4N)
λ (τ)|2 +

4N−1∑
λ=0

λ∈2Z+1

χ
(4N)
λ (τ)χ̄

(4N)
λ+2N mod4N (τ̄) .

(2.66)

Let us compare this with another compact boson theory, with R2 = 4N , for which p = 1
and p′ = 2N . This theory also has the same 2pp′ = 4N extended characters, but it is
diagonal. Its partition function reads

Z2
√
N (τ, τ̄) =

4N−1∑
λ=0

|χ(4N−1)
λ (τ)|2 . (2.67)

It is immediate to realize that the theory with R2 = N , N odd, is the Z2 orbifold of the
theory with R2 = 4N , where Z2 = ZP2 ⊂ U(1)P (this is consistent: the ZPn quotient of the
compact boson with radius R is the theory with radius R/n).

8Since for U(1) there is no Wess-Zumino term, the level has to be read off from the commutation
relations of the affine symmetry currents, or equivalently from the properties of integrable representations.
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In general, if the theory R2 = 2p′/p is non diagonal, in particular if it has p ̸= 1, we
can realize it as a Zp orbifold of the diagonal theory R2 = 2q′/q with q′ = pp′ and q = 1.

Since we will be interested only in theories with R2 ∈ Z>0, it suffices to distinguish the
cases p = 1 and p = 2, i.e. R2 even or odd, respectively. In summary, the correspondence
is

R2 = 2n compact boson ⇐⇒ U(1)2n WZW ,

R2 = 2n+ 1 compact boson ⇐⇒
U(1)4(2n+1) WZW

ZP2
.

(2.68)

We refer to the latter as the U(1)2n+1 WZW model.

2.2.2 Wess-Zumino-Witten models

The two-dimensional Gk Wess-Zumino-Witten (WZW) model is a non-linear sigma model
with target space a connected (but not necessarily simply connected) group G, whose
action on a two-manifold M2 reads

SGk
[g] =

k

4π

∫
M2

d2x tr(g−1 ∂µgg
−1 ∂µg) +

ik

2π

∫
X3

d3y ϵαβγ tr(g̃−1 ∂αg̃g̃
−1 ∂β g̃g̃

−1 ∂γ g̃) ,

(2.69)
where g(x) ∈ G. Here X3 bounds M2, and g̃(y) is an extension of g(x) to X3. The
requirement that the action is independent from the choice of extension imposes k ∈ Z>0.
The coefficient of the kinetic term instead is fixed to give chiral and anti-chiral global
symmetry currents. In complex coordinates, z = x1 + ix2, z̄ = x1 − ix2,

J(z) = ∂gg−1 , J̄(z̄) = g−1∂̄g , (2.70)

which satisfy
∂̄J(z) = 0 , ∂J̄(z̄) = 0 . (2.71)

The chiral symmetry of the action is actually local, in the sense that the action is invariant
under

g(z, z̄) 7→ gL(z)g(z, z̄)g
−1
R (z̄) , (2.72)

for arbitrary (holomorphic and antiholomorphic) maps gL(z) and gR(z̄).

The Gk WZW model is conformal invariant at the quantum level. Global symmetry
currents J(z) and J̄(z̄) (or better, their mode expansions), satisfy a Kač-Moody algebra
ĝk ⊕ ̂̄gk.9 Through the Sugawara construction, this leads to an energy-momentum tensor
that satisfies the Virasoro algebra, with central charge

c = c̄ =
k dim g

k + h∨
, (2.73)

where h∨ is the dual Coxeter number of the Lie algebra g, that is (half) the quadratic
Casimir of the adjoint representation.

9We will use ̂̄gk and ĝ−k interchangeably to denote anti-holomorphic chiral algebras.
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The Gk WZW model is also a rational CFT, as its operator spectrum can be organized
in finitely many ĝk ⊕ ̂̄gk primaries and their descendants. Let us briefly recall the repre-
sentation theory of g and then of ĝk. A g highest weight representation Vλ is labeled by
its highest weight

λ =
r∑
i=1

λiωi ≡ (λ1, . . . , λr) , (2.74)

where r is the rank of g, ωi are the fundamental weights of g, and λi are Dynkin labels,
λi ∈ Z≥0.10 In a similar fashion, a ĝk highest weight representation Vλ̂ is labeled by

λ̂ =

r∑
i=0

λiω̂i ≡ (λ0;λ1, . . . , λr) , (2.75)

Here, ω̂i ≡ (ωi; a
∨
i ; 0) for i ̸= 0, and ω̂0 ≡ (0; 1; 0) is the fundamental affine weight associ-

ated with the trivial g representation (not to be confused with the trivial ĝk representa-
tion, which is associated to kω̂0), a∨i is the comark associated to the i-th simple coroot,
α∨
i = 2αi/|αi|2. The extra Dynkin label λ0 is defined as

λ0 = k −
r∑
i=1

λia
∨
i , (2.76)

and is thus an integer, since k, λi, a∨i ∈ Z≥0. An affine highest weight representation λ̂ is
said to be integrable if

λ0 ∈ Z≥0 . (2.77)

As a consequence, there are only finitely many affine integrable highest weight representa-
tions of ĝk at any given level k. Let us denote by P k+ the set of affine integrable weights.

The full heighest weight representation Vλ̂ is obtained from an highest weight state |λ̂⟩,
called affine primary, and its affine descendants, obtained by acting on them with negative
modes of the global G-symmetry currents. The conformal dimension hλ̂ is equal to

hλ̂ =
C2(λ)

2(k + h∨)
, (2.78)

where C2(λ) is the value of the quadratic Casimir C2 of g computed on the finite repre-
sentation λ, obtained from λ̂ by ignoring the Dynkin label λ0.

For highest weight representations with λ̂ ∈ P k+, the highest weight state generates
finite representations with respect to any finite su(2) subalgebra of ĝk. On the other hand,
non-integrable representations are made of null vectors, i.e. correlation functions involving
fields in non-integrable representations vanish. From now, we will always assume highest
weight representations to be integrable.

To affine primaries we can associate affine characters. For instance, on the torus of
modular parameter τ ,

χλ̂(τ) = trλ̂q
(L0−c/24), (2.79)

where as usual q = e2πiτ , and the trace is overe the representation Vλ̂. To distinguish
between conjugate representations it is useful to introduce a dependence on fugacities,

χλ̂(zi; τ) = trλ̂q
(L0−c/24)e−2πi

∑
j zjhj , (2.80)

10In the case g = su(N), we can associate to the weight λ the Young tableaux with λi columns of length
i.
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where hj , j = 1, . . . , r, are the Cartan generators of g in the Chevalley basis.

A strong constraint on any two-dimensional CFT is that of modular covariance. Setting
zi = 0 for simplicity, one can define the modular T and S matrices by

χλ̂(τ + 1) =
∑
µ̂∈Pk

+

Tλ̂µ̂χµ̂(τ) , χλ̂(−1/τ) =
∑
µ̂∈Pk

+

Sλ̂µ̂χµ̂(τ) . (2.81)

The general expression for T is particularly simple,

Tλ̂µ̂ = δλ̂µ̂ exp
[
2πi(hλ̂ − c/24)

]
. (2.82)

Both T ,S must be unitary,

T −1 = T †, S−1 = S† . (2.83)

Moreover,
S2 = C , S4 = C2 = 1 , (2.84)

where the charge conjugation matrix C acts on characters as Cχλ̂ = χλ̂∗ , λ̂
∗ being the

conjugate weight of λ̂.
One can build a candidate partition function by gluing holomorphic and anti-holomorphic

characters in order to respect modular covariance,

Z(τ, τ̄) =
∑

λ̂,µ̂∈Pk
+

χλ̂(τ)Mλ̂µ̂χ̄µ̂(τ̄) . (2.85)

The modular mass matrix Mλ̂µ̂ can be interpreted as the multiplicity of the primary
field which transforms in the Vλ̂ ⊗ V̄µ̂ representation. In order to get a modular-invariant
partition function, one needs

T †MT = M = S†MS . (2.86)

Moreover, M needs to be physically meaningful, i.e. that multiplicities are non-negative
integers and that the vacuum representation is unique,

Mλ̂µ̂ ∈ Z≥0 ∀ λ̂, µ̂ ∈ P k+ , M0̂0̂ = 1 , (2.87)

where 0̂ ≡ kω̂0 is the integrable weight associated to the trivial ĝk representation.11

2.2.3 Chern-Simons/Wess-Zumino-Witten correspondence

Let us consider the Gk Chern-Simons (CS) theory on a a three-manifold M3,

S[A] =
k

8π

∫
M3

d3x ϵµνρ tr
(
Aµ(∂νAρ − ∂ρAν) +

2
3Aµ[Aν , Aρ]

)
, (2.88)

where ‘tr’ is the trace over the fundamental representation of the gaupe group G (which
we assume to be compact, connected, and simply connected), and one must pick the level

11Such conditions are necessary, but in general are not sufficient. Another physical condition is that
fusion coefficients of three primary operators (2.20) are nonnegative integers.
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k ∈ Z for in order for the action to be gauge-invariant. A set of observables in this theory
is given by the expectation values of Wilson lines. The latter are also both the symmetry
operators and the charged objects for a one-form symmetry of the theory, whose extent
depends on both G and k.

There is an intimate correspondence between the Gk Chern-Simons theory and the ĝk
current algebra which, as we have seen, is used to define the Gk WZW model [88]. More
precisely, let M3 = R × D2, with D2 being the unit disk, and let us quantize the theory
on D2, with R regarded as time t. With complex coordinates z, z̄ on Σ, the action (2.88)
takes the form

S[A] =
k

4π

∫
dt

∫
D2

d2z tr

Å
Az
∂Az̄
∂t

+AtFzz̄

ã
, (2.89)

with F being the gauge curvature.
At acts as a Lagrange multiplier enforcing Fzz̄ = 0 identically. The quantization

of the theory on D2 is a quantization with a constraint. A way to deal with this is
to perform canonical quantization ignoring the constraint Fzz̄ = 0, and only imposing
the latter later on physical states. Az and Az̄ are conjugate variables. The canonical
commutation relations read

[Aaz(z, z̄), A
b
z̄(w, w̄)] =

π

k
δabδ(z − w)δ(z̄ − w̄) , (2.90)

with a, b = 1, . . . ,dimG. The Hilbert space HD2 can be identified with the space of
holomorphic wavefunctionals Ψ[Az̄], and thanks to the canonical commutation relations
we can interpret Az as a differential operator on this space,

Aaz =
π

k

δ

δAaz̄
. (2.91)

Then, the constraint Fzz̄Ψ[Az] = 0 readsÅ
∂z̄

δ

δAz̄
+

ï
Az̄,

δ

δAz̄

òã
Ψ[Az̄] =

k

π
∂zAz̄Ψ[Az̄] . (2.92)

It is not difficult to see that these correspond to the Ward identity for the ĝk algebra of a
Gk WZW model. Let us consider the latter coupled to a background G current,

ZJ [Az̄] = ⟨e
1
π

∫
D2

d2zAb
z̄J

b
z ⟩Gk WZW (2.93)

By taking a functional derivative with respect to Aaz̄ , one easily proves that ZJ [Az̄] satisfies
the same relation as Ψ[Az̄], i.e.Å

∂z̄
δ

δAz̄
+

ï
Az̄,

δ

δAz̄

òã
ZJ [Az̄] =

k

π
∂zAz̄ZJ [Az̄] . (2.94)

The solutions of these equations are the conformal blocks of the chiral algebra. Therefore
we conclude that states in the Hilbert space of the Gk CS theory on M3 = R×D2, canon-
ically quantized on D2, are in one-to-one correspondence with chiral ĝk conformal blocks
of the Gk WZW model. Additionally, if we insert a Wilson line in an integrable repre-
sentation λ̂ along R, this leads to a Hilbert space which is the integrable highest weight
representation Vλ̂ of the ĝk current algebra.
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Alternatively, we can take M3 to be a three-manifold with ∂M3 = Σ, with Σ being
a compact Riemann surface. The case Σ = T 2 is of particular interest. Upon imposing
holomorphic boundary conditions for the CS gauge field, the states of a basis of the Hilbert
space are in one-to-one correspondence with chiral affine characters of a Gk WZW model
[89, 90]. Affine characters in the representation Vλ̂ are obtained by inserting the corre-
sponding Wilson line in the complementary direction.

In order to obtain the full-fledged Gk WZW model, however, a single chiral half is not
enough. One needs to glue two chiral halves in such a way to obtain a modular invariant
partition function, i.e. a physical modular mass matrix M. This is done by considering the
Gk×G−k Chern-Simons theory onM3, respectively with holomorphic and anti-holomorphic
boundary conditions, and by gauging an appropriate one-form symmetry group in the bulk
[91]. Different (yet consistent) choices of gauging lead to different modular invariants M.

Example 1: the compact scalar at R2 even. Let us consider the case of G = U(1),
and let us also take k ∈ 2Z [91]. The starting point is the U(1)k × fiU(1)−k Chern-Simons
theory,

S =
ik

4π

∫
M3

(a da− ã dã) . (2.95)

The Wilson lines of the theory W(λ,λ̃)[γ] are labelled by integrable representations of the
û(1)k ⊕ û(1)−k chiral algebra, equivalently by (λ, λ̃) ∈ Zk × Zk. The Wilson lines inherit
the fusion rules of representations in the affine algebra, namely

W(λ1,λ̃1)
[γ]W(λ2,λ̃2)

[γ] =W(λ1+λ2,λ̃1+λ̃2)
[γ] . (2.96)

The Wilson lines are topological, in the sense that depend only on the homotopy class of
their support γ. Being topological extended objects, they generate a one-form symmetry
group G(1) = Zk×Z̃k, under which the lines themselves are the charged objects (see Section
2.1). For two Wilson lines whose supports are such that γ1 is a closed loop winding λ2
once,

W(λ1,λ̃1)
[γ1]W(λ2,λ̃2)

[γ2] = e2πi[B(λ1,λ2)−B(λ̃1,λ̃2)]W(λ2,λ̃2)
[γ2] , (2.97)

where B(λ, µ) is the topological braiding of the lines,

B(λ, µ) = hλ+µ − hλ − hµ =
λµ

k
. (2.98)

Here hλ = λ2/(2k) is the chiral dimension of the corresponding primary in a û(1)k inte-
grable representation λ.

On a manifold with boundary ∂M3 = Σ, the action needs to be augmented by a
boundary term in order to preserve gauge invariance,

S∂ =
k

4π

∫
Σ
d2z

√
ggzz̄(azaz̄ − ãzãz̄) . (2.99)

Again, let us consider the case Σ = T 2, that is M3 = S1 ×D2 is a solid torus. As argued
above, once we impose holomorphic (resp. anti-holomorphic) boundary conditions for the
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U(1)k gauge field a (resp. for the fiU(1)−k gauge field ã), the expectation value for the
W(λ,λ̃) Wilson line inserted along the non-contractible cycle of M3 evaluates to

⟨W(λ,λ̃)⟩ = χ
(k)
λ (τ)χ̄

(k)

λ̃
(τ̄) . (2.100)

Here, χ(k)
λ are the U(1)k characters defined in (2.57), with p′ = k/2 and p = 1, who are the

building blocks of the partition function of the compact scalar with radius R2 = k (and
its ZPn quotients). In order to obtain a physical CFT partition function we should ensure
modular invariance, but (2.100) is manifestly not modular invariant. When declaring
M3 = S1 × D2 we have chosen which cycle of T 2 is contractible: this breaks modular
invariance and leads to two inequivalent topologies. Since topology is detected by inserting
Wilson lines on non-contractible cycles, in order not to be sensitive to the choice of topology
we should get rid of Wilson lines in the bulk theory - and this can be achieved by gauging
an appropriate one-form symmetry A. In practice, the gauging procedure for an (Abelian)
discrete one-form symmetry A amounts to summing over different gauge bundles, which
are labelled by elements of H2(M3,A). By Poincaré duality, this can also be expressed
as a sum over elements over H1(M3,A), which have the interpretation of summing over
insertion of Wilson lines associated to A.

Not all of the Zk × Z̃k one-form symmetry group is gaugeable. For instance, both
Zk and Z̃k are anomalous [14]. A one-form symmetry group A can be gaugeable only if
the corresponding Wilson lines {W(λi,λ̃i)

} mutually transparent - that is, they have trivial
braiding B(λi, λj)−B(λ̃i, λ̃j) = 0 mod 1 - and they all have integer spin, s(λ,λ̃) ≡ hλ−hλ̃ =

0 mod 1. A consistent choice is to gauge a subgroup A = Z[ω0]
k , whose set of Wilson lines

are of the form {W(λi,λ̃i=ω0λi)
} for some ω0 ∈ Zk, provided that ω2

0 = 1 mod 2k. Then, in
the gauged theory,

k−1∑
λ=0

⟨W(λ,λ̃=ω0λ)
⟩ =

k−1∑
λ=0

χ
(k)
λ (τ)χ̄

(k)
ω0λ

(τ̄) . (2.101)

If ω0 = 1, we recognize the partition function of the compact scalar with R2 = k, cf. (2.65);
choosing an ω0 ̸= 1 one obtains the various orbifolds of the R2 = k compact boson, cf.
(2.56).

Example 2: from U(1)8 × U(1)−8 Chern-Simons to U(1)2 WZW model. Let us
consider U(1)8 × U(1)−8 Chern-Simons on the solid torus M3 = S1 ×D2, with boundary
conditions as above. It has a Z8 ×Z8 one-form symmetry, and we label the corresponding
lines as (λ, µ̄) , λ, µ ∈ Z8. We want to gauge the following set of lines,

A = (0, 0̄)⊕ (0, 4̄)⊕ (4, 0̄)⊕ (4, 4̄)⊕ (2, 2̄)⊕ (2, 6̄)⊕ (6, 2̄)⊕ (6, 6̄) . (2.102)

All lines in A have integer spin, so A is gaugeable. Moreover, A ≃ Z4×Z2 as a group. We
can identify the following subsets,

A1 = (0, 0̄)⊕ (2, 2̄)⊕ (4, 4̄)⊕ (6, 6̄) ≃ Z4 ,

A2 = (0, 0̄)⊕ (4, 0̄) ≃ Z2 ,

A3 = (0, 0̄)⊕ (4, 0̄)⊕ (0, 4̄)⊕ (4, 4̄) ≃ Z2 × Z2 .

(2.103)

Gauging A is equivalent to gauging first one of its subsets Ai and then the corresponding
coset A/Ai,

A/A1 ≃ A2 , A/A2 ≃ A1 , A/A3 = [(0, 0̄)]⊕ [(2, 2̄)] ≃ Z2 . (2.104)
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We can proceed in different ways, but the end result must be the same.

1. Let us gauge A1 first. The requirement of A1-invariance projects onto lines (λ, µ̄)
with λ = µ mod 4, and the 4 equivalence classes are given by the orbits [(0, 0̄)],
[(1, 1̄)], [(4, 0̄)], [(5, 1̄)]. The insertion of these lines in the solid torus leads to the
following combination of characters on the bounding torus,∑

(λ,µ̄)∈[(0,0̄)]

⟨W(λ,µ̄)⟩ = |χ0|2 + |χ2|2 + |χ4|2 + |χ6|2 =
1

2
(Z√

8[0, 0] + Z√
8[0, 4]) ,

∑
(λ,µ̄)∈[(1,1̄)]

⟨W(λ,µ̄)⟩ = |χ1|2 + |χ3|2 + |χ5|2 + |χ7|2 =
1

2
(Z√

8[0, 0]− Z√
8[0, 4]) ,

∑
(λ,µ̄)∈[(4,0̄)]

⟨W(λ,µ̄)⟩ = χ4χ̄0 + χ6χ̄2 + c.c. =
1

2
(Z√

8[4, 0] + Z√
8[4, 4]) ,

∑
(λ,µ̄)∈[(5,1̄)]

⟨W(λ,µ̄)⟩ = χ5χ̄1 + χ7χ̄3 + c.c. =
1

2
(Z√

8[4, 0]− Z√
8[4, 4]) .

(2.105)
We recognize here the combinations of characters that correspond to the twisted
partition functions of the compact scalar with R2 = 8 under a Z2 ⊂ ZP8 symmetry.
Now we gauge A/A1 ≃ A2. This projects onto lines with λ = 0 mod 2, and then
there is only a single surviving equivalence class, {(0, 0̄)} = [(0, 0̄)] ∪ [(4, 0̄)], and on
the torus one gets∑

(λ,µ̄)∈{(0,0̄)}

⟨W(λ,µ̄)⟩ =
∑

(λ,µ̄)∈[(0,0̄)]

⟨W(λ,µ̄)⟩+
∑

(λ,µ̄)∈[(4,0̄)]

⟨W(λ,µ̄)⟩

=
1

2
(Z√

8[0, 0] + Z√
8[0, 4] + Z√

8[4, 0] + Z√
8[4, 4])

= Z√
2 ,

(2.106)

i.e. the partition function of the compact scalar with R2 = 2.

2. Alternatively, let us gauge A3 first. This projects onto the lines (λ, µ̄) with λ = 0
mod 2 and µ = 0 mod 2. There are 4 equivalence classes, given by [(0, 0̄)], [(2, 0̄)],
[(0, 2̄)], and [(2, 2̄)]. On the torus,∑

(λ,µ̄)∈[(0,0̄)]

⟨W(λ,µ̄)⟩ = |χ0 + χ4|2 ,

∑
(λ,µ̄)∈[(2,0̄)]

⟨W(λ,µ̄)⟩ = χ2χ̄0 + χ6χ̄4 + c.c. ,

∑
(λ,µ̄)∈[(0,2̄)]

⟨W(λ,µ̄)⟩ = χ4χ̄0 + χ6χ̄2 + c.c. ,

∑
(λ,µ̄)∈[(2,2̄)]

⟨W(λ,µ̄)⟩ = |χ2 + χ6|2 .

(2.107)

Note that the combination of characters that appear in [(0, 0̄)] and [(2, 2̄)] is the
(modulus squared of) the characters of û(1)2, as can be checked explicitly using
(2.57). Then we gauge A/A3. This projects onto lines with λ = µ mod 4, and the
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surviving orbit is {(0, 0̄)} = [(0, 0̄)]∪ [(2, 2̄)]. This, consistently, leads to the partition
function of the diagonal U(1)2 WZW model,∑

(λ,µ̄)∈{(0,0̄)}

⟨W(λ,µ̄)⟩ =
∑

(λ,µ̄)∈[(0,0̄)]

⟨W(λ,µ̄)⟩+
∑

(λ,µ̄)∈[(2,2̄)]

⟨W(λ,µ̄)⟩

= |χ0 + χ4|2 + |χ2 + χ6|2

= ZU(1)2 .

(2.108)

2.3 Bose-Fermi duality in 2d

In this Section we review well-known relations among theories defined on a 2d closed man-
ifold M2 upon gauging a discrete symmetry G. We first review dualities among bosonic
theories and then consider those turning a bosonic theory to a fermionic one, and viceversa.
For simplicity, we restrict to Abelian cyclic groups, with G = Zn.

Let T be a bosonic theory on a 2-manifold M2 with a non-anomalous symmetry Zn.
As mentioned in section 2.1.1, the theory obtained by gauging Zn“T = T /Zn , (2.109)

is guaranteed to have a non-anomalous “dual” symmetry “G = Hom(Zn, U(1)) = Ẑn [73].
Since this is the case relevant for our discussion, let us now be more precise with normal-
izations. Its partition function in the presence of a background Ẑn gauge field reads

Z“T [T̂ ] = 1

ng

∑
t∈H1(M2,Zn)

ZT [t]e
2πi
n

∫
T̂ ∪ t , (2.110)

where T̂ denotes the Ẑn background insertion, ∪ is the cup product in H1(M2,Zn), g is
the genus of M2 and ng =

√
|H1(M2,Zn)|. Gauging the dual symmetry gives back the

original theory: “T /Ẑn = (T /Zn)/Ẑn = T . (2.111)

Explicitly,

1

ng

∑
t

ZT [t]
1

ng

∑
t̂

e
2πi
n

∫
t̂∪ te

2πi
n

∫
T ∪ t̂ =

1

ng

∑
t

ZT [t]n
gδt,T = ZT [T ] , (2.112)

where we have used that
1

ng

∑
v

e
2πi
n

∫
v ∪w = ngδw,0 . (2.113)

Let us consider now fermionic theories, namely those theories where observables do
depend on the choice of the spin structure ρ. These theories have a Z2 fermion parity
symmetry ZF2 for which we can think the spin structure ρ as a choice of background.12 If,
instead, the partition function of the theory is independent of the particular choice of spin

12It is tempting to take the correspondence literally, but one cannot identify a spin structure ρ with
a background gauge field S ∈ H1(M2,Z2) for ZF

2 in a natural way. Yet, we can add on top of ρ a ZF
2

connection S: this has the net effect of changing the spin structure from ρ to S · ρ, which is defined by
changing the periodicity of ρ around the cycles along which S has nontrivial holonomy, see (2.118).
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structure ρ on M2, we say that the theory is bosonic.

A standard way to get a bosonic theory out of a fermionic one F is to gauge ZF2 , which
is equivalent to sum over the spin structures on M2. In fact, we get two different bosonic
theories B and B′, depending on whether we consider F or we stack the Arf theory on top
of it [92],

B = (F ×Arf)/ZF2 ,
B′ = F/ZF2 .

(2.114)

The Arf theory is one of the simplest non-trivial topological theories, the IR limit of the
topologically non-trivial phase of the Kitaev chain [59]. Its partition function ZArf on M2

is the Arf invariant, which is the index of the Dirac operator /Dρ mod 2 [93]. We have

ZArf [ρ] = eiπArf[ρ] . (2.115)

It is +1 or −1 respectively on even or odd spin structures.13 For M2 = T 2, the only odd
spin structure is the one in which fermions are taken to be periodic in both cycles, i.e.

Arf[ρ] =

®
0 , ρ = [NS,NS], [NS,R], [R,NS],
1 , ρ = [R,R] .

(2.116)

Explicitly, we have

ZB[T, ρ] =
1

2g

∑
s

ZF [s · ρ]ZArf [s · ρ]eiπ
∫
s∪T ,

ZB′ [T, ρ] =
1

2g

∑
s

ZF [s · ρ]eiπ
∫
s∪T , (2.117)

where in the last step in both relations we have used the fact that having a non-trivial
background ZF2 gauge field s is equivalent to changing the spin structure from ρ to s · ρ,
where for any one-cycle γ on M2

(s · ρ)(γ) = ρ(γ) +

∫
γ
s mod 2 . (2.118)

In (2.117) T is the background gauge field for the Z2 symmetry dual to ZF2 . For any fixed
ρ the sum over s can be traded for a sum over spin structures ρ′ = s · ρ, hence the theories
B and B′ do not depend on the choice of the fiducial spin structure ρ and are bosonic.
Taking the fiducial spin structure ρ to be identically zero (that is, NS on all non-trivial
cycles), it can be shown (see e.g. [94, 95] for details) that we can trade the sum over s for
a sum over spin structures by∑

s

eiπ
∫
s∪wF [s · ρ] 7−→

∑
ρ′

eiπ(Arf[w·ρ′]−Arf[ρ′])F [ρ′] . (2.119)

13A spin structure ρ is called even (odd) when a Majorana fermion with spin structure ρ has an even
(odd) number of zero modes.
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Therefore,

ZB[T ] =
1

2g

∑
ρ

ZF [ρ]e
iπArf[T ·ρ] ,

ZB′ [T ] =
1

2g

∑
ρ

ZF [ρ]e
iπArf[T ·ρ]−iπArf[ρ] .

(2.120)

We denote the Z2 symmetry of B dual to ZF2 by Z∨
2 . It can be checked that the two bosonic

theories B and B′ are related by gauging, B′ = B/Z∨
2 , and hence the dual Z2 symmetry of

B′ is Ẑ∨
2 .

Conversely, to a given a bosonic theory B with a non-anomalous symmetry Z2 we can
associate a fermionic theory F [96]. The latter is not unique as it depends on the choice of
the specific Z2 symmetry of B. F is obtained by stacking B with Arf, as to obtain a spin
strucure dependence, and then gauging a diagonal Z2 symmetry between the two,

F = (B ×Arf)/Z2 . (2.121)

More precisely, we have

ZF [ρ] =
1

2g

∑
t∈H1(M2,Z2)

ZB[t]e
iπArf[t·ρ] , (2.122)

where t is the dynamical gauge field associated to the Z2 symmetry. It can be shown that
if we gauge ZF2 in the fermionic theory F we have

F/ZF2 = B′ = B/Z2 . (2.123)

We can also define the fermionic theory F ′ as in (2.121), replacing B with B′

F ′ = (B′ ×Arf)/Z′
2 , (2.124)

where Z′
2 = Ẑ2 is the symmetry of B′ dual to Z2 of B, see (2.123). A simple computation

shows that
ZF ′ [ρ] = ZF [ρ]e

iπArf[ρ] (2.125)

and hence
F ′ = F ×Arf . (2.126)

To close the circle, we can get the original bosonic theory B from F ′ by inverting the above
procedure,

B = ((F ′ ×Arf)×Arf)/ZF2 = F ′/ZF2 , (2.127)

that is,

ZB[T ] =
1

2g

∑
ρ

ZF ′ [ρ]eiπArf[T ·ρ]+iπArf[ρ] , (2.128)

which agrees with the expression in (2.120), given (2.125). We summarize all these results
in the diagram in Figure 2.3.

It is instructive also to understand how the various gaugings map different states in
the Hilbert space of the theory into each other, cf. Table 2.1. Since each gauging step is
invertible, no state is lost in the process: for example, states of B which are odd under the
gauged ZB

2 symmetry become states in the twisted sector under the dual ZB′
2 symmetry.
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B F

B′ = B/ZB
2 F ′ = F ×Arf

(·×Arf)/diag(ZB
2 ′ZF

2 )

·/ZB
2 ×Arf

(·×Arf)/ZF
2

(·×Arf)/diag(ZB′
2 ′ZF

2 )

·/ZB′
2

(·×Arf)/ZF
2

Figure 2.3: Diagram summarizing the relation through gaugings between the two bosonic
B, B′ and fermionc F , F ′ theories in two dimensions.

B ZB
2 = +1 ZB

2 = −1

H E O
Htw S T

F ZF2 = +1 ZF2 = −1

HNS E T
HR S O

B′ ZB′
2 = +1 ZB′

2 = −1

H′ E S
H′
tw O T

F ′ ZF2 = +1 ZF2 = −1

H′
NS E T

H′
R O S

Table 2.1: Rearrangement of sectors under gauging Z2 symmetries as in Figure 2.3.

Example: compact scalar at the free fermion radius.

Here we check explicitly the duality between F ′ = 1 Dirac and B = U(1)4,

1 Dirac =
U(1)4 ×Arf

ZP2
×Arf . (2.129)

Equivalently, using (2.124),

1 Dirac =
U(1)1 ×Arf

ZW ′
2

, (2.130)

where B′ = U(1)1 is defined as in (2.68), and we will find ZW ′
2 to be the Z2 subgroup of

the winding U(1)′W symmetry for U(1)1.

Let us start by discussing the U(1)4 theory. Its momentum and winding symmetry
are as in (2.47). Primary operators are of the form Ve,m defined in (2.50), their conformal
dimensions (he,m, h̄e,m) being as in (2.49), with R = 2. To orbifold by the ZP2 ⊂ U(1)P
symmetry, let us first classify the operator content of the theory according to it. This
symmetry acts on primaries as

ZP2 : Ve,m 7→ (−1)e Ve,m . (2.131)

We quantize the theory on the circle and we classify operators according to their ZP2
properties as in Table 2.2. To see this explicitly, let us consider the torus partition function.
At R = 2, this reads

Z2 =
1

|η(τ)|2
∑
e,m

q
1
2
(e/2+m)2 q̄

1
2
(e/2−m)2 . (2.132)

This is the partition function without any ZP2 background. Let us now add a ZP2 back-
ground, labelled by P = [pa, pb], pa, pb ∈ {0, 1} denoting the pa-twisted partition function



36 CHAPTER 2. TOOLBOX IN 2d FIELD THEORY

U(1)4 ZP2 = +1 ZP2 = −1

H V2p,q V2p+1,q

Htw V2p,q+1/2 V2p+1,q+1/2

1 Dirac ×Arf ZF2 = +1 ZF2 = −1

HNS V2p,q V2p+1,q+1/2

HR V2p,q+1/2 V2p+1,q

U(1)1 ZW ′
2 = +1 ZW ′

2 = −1

H′ V2p,q V2p,q+1/2

H′
tw V2p+1,q V2p+1,q+1/2

1 Dirac ZF2 = +1 ZF2 = −1

H′
NS V2p,q V2p+1,q+1/2

H′
R V2p+1,q V2p,q+1/2

Table 2.2: Primary spectrum of U(1)4, U(1)1, 1 Dirac, and 1 Dirac ×Arf, classified ac-
cording to ZP2 , ZW ′

2 , ZF2 symmetry properties, respectively. The primaries Ve,m are always
intended to be computed at R = 2, which makes it possible to follow how the operators
get mapped across the various sectors under the gaugings.

with pb insertions of the charge operator for ZP2 in the trace,

Z2[0, 0] = Z2 ,

Z2[0, 1] =
1

|η(τ)|2
∑
e,m

(−1)eq
1
2
(e/2+m)2 q̄

1
2
(e/2−m)2 ,

Z2[1, 0] =
1

|η(τ)|2
∑
e,m

q
1
2
(e/2+m+1/2)2 q̄

1
2
(e/2−m−1/2)2 ,

Z2[1, 1] =
1

|η(τ)|2
∑
e,m

(−1)eq
1
2
(e/2+m+1/2)2 q̄

1
2
(e/2−m−1/2)2 .

(2.133)

Now we perform the gauging of ZP2 , that is the sum over P , to get the U(1)1 theory.
Since we are orbifolding by a discrete symmetry, in the U(1)1 theory there is a symmetry
Ẑ2 dual to the gauged ZP2 . We claim that it is ZW ′

2 , that is the Z2 subset of the winding
symmetry U(1)′W of U(1)1, as anticipated at the beginning of the Appendix. One way to
see this is to compute the torus partition function of U(1)1 twisted with respect to Ẑ2, by
means of (2.110). One obtains

Z1[0, 0] =
1
2(Z2[0, 0] + Z2[0, 1] + Z2[1, 0] + Z2[1, 1]) =

1

|η(τ)|2
∑
e,m

q
1
2
(e+m

2
)2 q̄

1
2
(e−m

2
)2 ,

Z1[0, 1] =
1
2(Z2[0, 0] + Z2[0, 1]− Z2[1, 0]− Z2[1, 1]) =

1

|η(τ)|2
∑
e,m

(−1)mq
1
2
(e+m

2
)2 q̄

1
2
(e−m

2
)2 ,

Z1[1, 0] =
1
2(Z2[0, 0]− Z2[0, 1] + Z2[1, 0]− Z2[1, 1]) =

1

|η(τ)|2
∑
e,m

q
1
2
(e+m

2
+ 1

2
)2 q̄

1
2
(e−m

2
+ 1

2
)2 ,

Z1[1, 1] =
1
2(Z2[0, 0]− Z2[0, 1]− Z2[1, 0] + Z2[1, 1]) =

1

|η(τ)|2
∑
e,m

(−1)mq
1
2
(e+m

2
+ 1

2
)2 q̄

1
2
(e−m

2
+ 1

2
)2 ,

(2.134)
We can also use the twisted torus partition function to classify the operator content in the
gauged U(1)1 theory with respect to Ẑ2 = ZW ′

2 , cf. Table 2.2.

Moreover, recall that in U(1)4 there is a mixed anomaly between U(1)P and U(1)W ,
which is also there as a mixed anomaly between their Z2 subgroups. It is known that mixed
anomalies get mapped to possibly nontrivial extensions of groups (see the corresponding
discussion in section 2.1.2 for more details). In the orbifold theory, what used to be
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the winding symmetry in U(1)4 gets extended by Ẑ2. Indeed, a way to check this is to
compute the partition function of the gauged theory in the presence of a twist eiθQW along
the temporal cycle for the U(1)W symmetry of U(1)4. One finds

Z1[(0, 0)P̂ |(0, θ)W ] =
1

|η(τ)|2
∑
e,m

eiθ
m
2 q

1
2
(e+m

2
)2 q̄

1
2
(e−m

2
)2 . (2.135)

This confirms that the radius of U(1)′W of U(1)1, with respect to U(1)W of U(1)4, is
doubled upon gauging ZP2 , since the winding charges get halved. Hence the U(1)1 theory
has momentum and winding symmetry, in terms of the original scalar ϕ with R = 2,®

U(1)′P : ϕ 7→ ϕ+ 2α , α ∼ α+ π ,

U(1)′W : ϕ̃ 7→ ϕ̃+ α̃ , α̃ ∼ α̃+ 4π .
(2.136)

Note the different ranges of α, α̃ with respect to (2.47) with R = 2.
In order to fermionize the theory, we should choose a Z2 symmetry of U(1)1 to fermion-

ize, according to (2.121). We claim that the correct prescription is to choose it to be ZW ′
2 .

On the torus we can check it using the relation (2.122),

ZF ′ [NS,NS] = 1
2 (Z1[0, 0] + Z1[0, 1] + Z1[1, 0]− Z1[1, 1]) =

∣∣∣∣θ3(τ)η(τ)

∣∣∣∣2 ,
ZF ′ [NS,R] = 1

2 (Z1[0, 0] + Z1[0, 1]− Z1[1, 0] + Z1[1, 1]) =

∣∣∣∣θ4(τ)η(τ)

∣∣∣∣2 ,
ZF ′ [R,NS] = 1

2 (Z1[0, 0]− Z1[0, 1] + Z1[1, 0] + Z1[1, 1]) =

∣∣∣∣θ2(τ)η(τ)

∣∣∣∣2 ,
ZF ′ [R,R] = 1

2 (−Z1[0, 0] + Z1[0, 1] + Z1[1, 0] + Z1[1, 1]) = 0 .

(2.137)

We recognize the torus partition function for a single Dirac fermion in the different spin
structures. We can also use (2.134) to write, equivalently,

ZF ′ [NS,NS] = 1
2 (Z2[0, 0] + Z2[0, 1] + Z2[1, 0]− Z2[1, 1]) =

∣∣∣∣θ3(τ)η(τ)

∣∣∣∣2 ,
ZF ′ [NS,R] = 1

2 (Z2[0, 0] + Z2[0, 1]− Z2[1, 0] + Z2[1, 1]) =

∣∣∣∣θ4(τ)η(τ)

∣∣∣∣2 ,
ZF ′ [R,NS] = 1

2 (Z2[0, 0]− Z2[0, 1] + Z2[1, 0] + Z2[1, 1]) =

∣∣∣∣θ2(τ)η(τ)

∣∣∣∣2 ,
ZF ′ [R,R] = 1

2 (Z2[0, 0]− Z2[0, 1]− Z2[1, 0]− Z2[1, 1]) = 0 .

(2.138)

Indeed, this matches with (U(1)4 × Arf)/Z2 × Arf. This also matches with the analysis
done in [97]. We use this knowledge to classify the operator content in the theory with
respect to ZF2 , cf. Table 2.2.

Let us also mention that, for a free Dirac fermion, there is no difference in the value
of ZF ′ = 1 Dirac or ZF = 1 Dirac ×Arf on the torus. This is actually general: it is tricky to
distinguish F and F ′. To say whether a fermionic theory is of type F or F ′, with respect
to a given bosonic theory B, we should look at its edge modes on manifolds with boundary
[92].
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Chapter 3

Non-Abelian Bosonization, Globally

In this Chapter, we perform non-Abelian bosonization of the chiral Gross-Neveu model in
full detail. While this procedure is not conceptually novel, we will perform it employing the
full power of the modern tools we have presented in the previous Chapter. After identifying
in Section 3.1 that the chiral Gross-Neveu model, on a trivial manifold, is an appropriate
current-current deformation of a SU(N)1×U(1)N WZW model, we will discuss in Section
3.2 to which extent the mapping holds on a non-trivial manifold. This will force us to
rediscuss the global aspects of non-Abelian bosonization for a set of N free Dirac fermions.
In doing so we will discover that, if one wishes to keep manifest a unitary flavor symmetry,
there are certain differences in the levels and in global identifications to perform between
bosonic and fermionic theories, depending on the parity of the number of Dirac flavors N .
A main technical result of this Chapter is equation (3.17), for which we provide a proof in
Section 3.3.

3.1 The chiral Gross-Neveu model as JJ̄ deformations of
WZW models

Let us consider again the chiral Gross-Neveu model presented in Section 1.3. For a finite
N analysis, it is more convenient to express the Lagrangian of the theory as follows,

LcGN = iψ†
+a ∂−ψ

a
+ − iψ†

−a ∂+ψ
a
−+

λs
N

|ψ†
−aψ

a
+|2 −

λv
N2

(ψ†
+aψ

a
+)(ψ

†
−bψ

b
−), (3.1)

where x± = (x1 ∓ ix2)/2, a = 1, . . . , N are flavor indices, and ψa± are the two Weyl
components of the N Dirac fermions. With a Fierzing, (3.1) can also be rewritten as

LcGN = iψ†
+a ∂−ψ

a
+ − iψ†

−a ∂+ψ
a
− +

λ

N
JA+J

A
− +

λ′

N2
J+J− , (3.2)

where
JA± = ±ψ†

a±
Ä
TA
äa

bψ
b
± , J± = ±ψ†

a±ψ
a
± , (3.3)

are the SU(N) and U(1) chiral currents, respectively, with TA, A = 1, . . . , N2 − 1, being
the generators of SU(N) in the fundamental representation, chosen with the normalization
Tr(TATB) = 1

2δ
AB. The couplings λs, λv, λ, λ′ are related by

λ = 2λs , λ′ = λv + λs . (3.4)

39
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The last term in (3.1) can be neglected at leading order in a large N analysis, as
discussed in Section 1.3, but it should be kept at finite N . The O(2N)L ×O(2N)R global
symmetry of the N free Dirac fermions is broken by the interaction to

G(N -flavor cGN) =
U(N)V × U(1)A

Z2
⋊ ZC2 , (3.5)

whose action on the fields is
U(N)V : ψa± 7→ Uabψb± , U ∈ U(N) ,

U(1)A : ψa± 7→ e±iαψa± , α ∼ α+ 2π .

ZC2 : ψa± 7→ ψ†
±a ,

(3.6)

Note that there is a diagonal Z2 in U(N)V ×U(1)A, with U = −1 and α = π, whose action
is trivial on fields, hence the quotient. The corresponding “off-diagonal” Z2 is identified
with fermion parity ZF2 , ψa± 7→ −ψa±.

Using “naïve” non-Abelian bosonization [62], the chiral Gross-Neveu model (3.1) can
be (at least locally) expressed as a JJ̄ deformation of a U(N)1 WZW model. The latter
is described by an SU(N) matrix U and a free compact scalar ϕ of radius R0 =

√
N

parametrizing the U(1) factor,

L[U, ϕ] = L0[U, ϕ] +
λ

N
JA+J

A
− +

λ′

N2
J+J− , (3.7)

where

L0[U, ϕ] =
1

8π
∂+ϕ∂−ϕ+

1

8π
Tr(∂+U

†∂−U + ∂−U
†∂+U) + LSU(N)1

WZ , (3.8)

is the Lagrangian of the undeformed theory, with LSU(N)1
WZ being the level k = 1 SU(N)

Wess-Zumino term, and

JA+ =
i

2π
Tr
Ä
U †(∂+U)TA

ä
, JA− =

i

2π
Tr
Ä
(∂−U)U †TA

ä
, J± = −

√
N

4π
∂±ϕ ,

(3.9)
are the bosonized SU(N) and U(1) currents. As we can see, the JJ̄ deformation does not
mix the compact scalar ϕ with the SU(N)1 sector.

Under the continuous global symmetries in (3.5) the fields transform as

U(N)V :


U 7→ U†UU ,
ϕ 7→ ϕ ,

ϕ̃ 7→ ϕ̃+ 4√
N
arg det(U) ,

U(1)A :


U 7→ U ,

ϕ 7→ ϕ− 2
√
Nα ,

ϕ̃ 7→ ϕ̃ ,

(3.10)

while under charge conjugation we have

ZC2 :


U 7→ U∗ ,

ϕ 7→ −ϕ ,
ϕ̃ 7→ −ϕ̃ ,

(3.11)

where ϕ̃ is the scalar dual to ϕ.
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The JA+JA− deformation breaks the (SU(N)L×SU(N)R)/ZVN symmetry of the SU(N)1
WZW model,

SU(N)L × SU(N)R : U 7→ LUR†, L,R ∈ SU(N) , (3.12)

to (SU(N)V /ZVN ) × ZLN . Here ZVN denotes a transformation in the center of the diagonal
group SU(N)V which leaves U invariant, while ZLN denotes a transformation in the center
of SU(N)L and acts as a phase on U . Explicitly,®

SU(N)V /ZVN : U 7→ V UV †, V ∈ SU(N) ,

ZLN : U 7→ e2πik/NU, k ∈ ZN .
(3.13)

The operator J+J− is proportional to the kinetic term,

J+J− =
N

16π2
∂µϕ∂

µϕ , (3.14)

so the deformation rescales the radius of the compact scalar ϕ by a factor

R0 −→ R = R0

…
1 +

λ′

2πN
, (3.15)

where R0 =
√
N is the radius before the deformation.

Since U(N) ≃ [SU(N)×U(1)]/ZN , to obtain the deformed U(N)1 model from (3.7) we
further need to gauge the diagonal ZN symmetry between ZLN and a ZPN subgroup of the
shift symmetry of the compact boson. A similar subtlety arises in the identification of the
deformed U(N)1 model with the original fermionic theory (3.1). To get a full equivalence,
one needs to further gauge a Z2 symmetry.

The gauging of discrete symmetries does not affect the analysis on R2, where we do
not have twisted sectors. On a non-trivial manifold, however, this treatment is only par-
tial, as it does not take into account for certain subtle global aspects of the bosoniza-
tion/fermionization duality. In the next Section we rediscuss non-Abelian bosonization
from a modern point of view, paying more attention to such global aspects. These are
important when discussing the chiral Gross-Neveu model, like any QFT with a gauged
discrete symmetry or with a dependence on the spin structure, on non-trivial spaces. Most
of the considerations we will make are independent of the JJ̄ deformation so we focus in
what follows on the correspondence between free fermions and undeformed WZW models.

3.2 Non-Abelian Bosonization Revisited

It is well-known that 2N free massless Majorana fermions bosonize to the (diagonal)
Spin(2N)1 WZW model [62]. The precise correspondence, valid on arbitrary spin mani-
folds, requires some specifications. For example, a fermionic theory depends on the spin
structure on M2, while the Spin(2N)1 WZW model, being a bosonic theory, cannot. The
spin structure dependence of the fermionic theory is attached to the bosonic one by stack-
ing the latter with the topological theory given by the Arf invariant. We have reviewed
the basics of this construction in Section 2.3. In the notation of Section 2.3, if we denote



42 CHAPTER 3. NON-ABELIAN BOSONIZATION, GLOBALLY

by B the diagonal Spin(2N)1 WZW model, we take as the free fermion theory F ′ and the
two theories are related as [92]1

F ′ = (B ×Arf)/ZL2 ×Arf , (3.16)

which is a combination of (2.121) and (2.126). The ZL2 symmetry in (3.16) is the Z2 sub-
group of the center Z of the Spin(2N)L subgroup of the global symmetry group of the
Spin(2N)1 WZW model whose action assigns charge −1 to operators transforming in the
left-handed spinor representations, namely the diagonal of Z2 × Z2 for even N , and the
Z2 ⊂ Z4 for odd N . Its action on the Arf theory is given in (2.126). The inverse relation
between B and F ′ is given by (2.127).

It is also well-known that there are different ways to perform bosonization of free
fermions, according to the amount of global symmetry of the bosonized theory one wishes
to keep manifest. While the bosonized theory B is unique, it can be described using dif-
ferent variables. For instance, in Abelian bosonization one bosonizes each Dirac fermion
independently and keeps manifest only the Cartan subgroup U(1)N ⊂ Spin(2N). Alter-
natively, one can perform non-Abelian bosonization keeping manifest a U(N) ⊂ Spin(2N)
or the whole Spin(2N) symmetry. Given that we will eventually restrict to the unbro-
ken symmetries (3.5) left after the JJ̄ deformation, we focus on the U(N) description.
Nevertheless, the latter must be equivalent to the more general Spin(2N) one. We argue
that

B = Spin(2N)1 =


SU(N)1 × U(1)N

ZLN/2
N even ,

SU(N)1 × U(1)4N

ZLN
N odd ,

(3.17)

where U(1)k′ denotes the compact boson with squared radius R2 = k′.2 For both N even
and odd, the Zn quotients are the diagonal ones between the one contained in Z[SU(n)L]
and the Zn ⊂ U(1)L.3 The Z2 subgroup of Z[Spin(2N)L] that gets gauged according to
(3.16) is mapped via (3.17) to Z2 ⊂ U(1)L for N odd. For N even, it is given by the
diagonal ZN generator of Z[SU(N)L] and ZN ⊂ U(1)L, which in the ZLN/2-gauged theory
has order 2. The discrepancy in (3.17) between the even and odd case is due to the fact
that the R2 = k′ compact boson is not a diagonal RCFT when k′ is odd, see Section 2.2.1
for details and Section 3.3 for a proof of (3.17).

The appearance of U(1)4N in place of U(1)N for N odd might sound at odds with the
description on R2, but it is not. The relation (3.16) can also be written in a form where
only U(1)N factors are involved in the bosonic theory, for any N . Indeed, when N is odd,
we can gauge Z2 ⊂ U(1)L before ZLN . Since the action of ZLN is identical to that of ZPN in

1In general, there are two fermionizations of a bosonic theory B with respect to a given Z2 symmetry,
denoted by F and F ′ = F ×Arf in Section 2.3. To check which is the correct choice for a fixed B one can
look at boundary states, as done in [92]. In our setup we deal with local operators on manifolds without
boundary and there is no real distinction between F and F ′. However, certain Z2 anomalies distinguish
the two theories. This will be discussed in detail in Section 4.2.

2We follow the conventions of Section 2.2.1, that is the self-T-dual radius for the compact boson is
R =

√
2.

3One could alternatively use the action on the anti-holomorphic sector (R). The final result would be
the same.
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the U(1)4N theory, we can use (2.130) and (2.129) to get

F ′ =
B′ ×Arf

ẐW2
, B′ =

SU(N)1 × U(1)N

ẐN
, N odd , (3.18)

where ẐN is the diagonal between Z[SU(N)L] and ẐWN ⊂ U(1)W . For N even, the action
of ZLN/2 is identical to that of ZPN/2 in the U(1)N theory, so we can write

F ′ =

Ç
SU(N)1 × U(1)N

Z′
N/2

×Arf

å/
ZL2 ×Arf , N even , (3.19)

where Z′
N/2 is the diagonal between Z[SU(N)L] and ZPN/2 ⊂ U(1)P .

3.2.1 Global symmetries

The group-like symmetries of the Spin(2N)1 WZW theory are given by

G(Spin(2N)1) =
Spin(2N)L × Spin(2N)R

Z(Spin(2N)V )
⋊ ZK2 , (3.20)

where the subscript V denotes the diagonal Spin(2N)V ⊂ Spin(2N)L × Spin(2N)R. Ex-
plicitly, their action on the matrix field g is

Spin(2N)L : g 7→ Lg ,

Spin(2N)R : g 7→ gRt ,

Spin(2N)V : g 7→ V gV t .

(3.21)

The factor ZK2 is a Z2 outer automorphism of the algebra that exchanges the spinor and
the conjugate spinor representations. It does not act on the matrix field of the theory
because it sits in a real representation of the symmetry algebra. For odd N ZK2 can be
identified with complex conjugation.

The symmetry group of 2N free Majorana fermions ξj (j = 1, . . . , 2N) is, as discussed
in Section 1.1,

G(2N Majorana) = O(2N)L ×O(2N)R , (3.22)

with fermion parity ZF2 being the diagonal subgroup of ZFL
2 × ZFR

2 = Z(SO(2N)L ×
SO(2N)R). In order for the bosonization procedure to be consistent, upon gauging ZF2 in
the fermionic theory we should obtain the symmetry group (3.20). The symmetry Z∨

2 dual
of ZF2 is the factor that extends SO(2N)L to Spin(2N)L. This is easily seen by noting that
the spinorial characters of Spin(2N)1 are in the twisted sectors of the ZF2 gauged theory.
The symmetry group after the gauging is then

G

Å
2N Majorana × Arf

Z2
×Arf

ã
=
Spin(2N)L × Spin(2N)R

Z(Spin(2N)V )
⋊ ZK2 , (3.23)

where ZK2 is the diagonal between ZKL
2 and ZKR

2 ,4 and coincides with (3.20).

4The orthogonal combination becomes a non-invertible symmetry [61], which we neglect from now on.
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It is useful to also report the manifest global symmetries in the SU(N) description
and its explicit realization in the fields. The global symmetry group of the SU(N)1 WZW
model is

G(SU(N)1) =


SU(2)L × SU(2)R

ZV2
N = 2 ,

SU(N)L × SU(N)R

ZVN
⋊ ZC2 N > 2 ,

(3.24)

where ZVN = Z(SU(N)V ) is the center of the diagonal SU(N)V ⊂ SU(N)L×SU(N)R and
ZC2 is charge conjugation. Notice that for N = 2 there is no charge conjugation symmetry
acting on the matrix field U because the latter is in the bifundamental representation of
SU(2)L×SU(2)R, which is pseudo-real. The global symmetries of the U(1)k′ WZW model,
that is, the compact boson with squared radius R2 = k′ ≡ 2p′/p, gcd(p, p′) = 1, are given
by (cf. Section 2.2.1)

G(U(1)2p′/p) = (U(1)L × U(1)R)⋊ ZC2 . (3.25)

Their action on the SU(N) field U and on the compact scalar ϕ and its dual ϕ̃ are
SU(N)L : U 7→ LU ,

SU(N)R : U 7→ UR† ,

SU(N)V : U 7→ V UV † ,

®
U(1)L : ϕ 7→ αL pR , ϕ̃ 7→ ϕ̃+ αL p

′ 2
R ,

U(1)R : ϕ 7→ αR pR , ϕ̃ 7→ ϕ̃− αR p
′ 2
R ,

(3.26)

with αL,R ∼ αL,R + 2π. Charge conjugation acts as in (3.11).

3.3 Proof of eq. (3.17)

In this Section we prove the relation (3.17). In order to do that, we study both theories
on the torus. The torus partition functions of the three theories involved in the relation
(3.17), both in twisted or un-twisted sectors, can be written as a sum of products of
holomorphic/antiholomorphic affine characters of the corresponding affine algebras. It is
in principle straightforward to check that, upon performing the sum that corresponds to
gauging ZN , the sum of products of twisted/untwisted characters on the left-hand side
reproduces the sum of squares of characters on the right-hand side. However it is rather
cumbersome to perform this in practice, for generic N .

For this reason we follow a different route. We adopt a “holographic” viewpoint in which
the holomorphic/antiholomorphic affine characters on the torus are realized as partition
functions of Chern-Simons theory with positive/negative level on the solid torus, with lines
wrapping the non-contractible cycle, and holomorphic/antiholomorphic boundary condi-
tions [89, 90].

The strategy will be similar to the one adopted in the second example presented Section
2.2.3: we gauge a one-form symmetry in a Chern-Simons theory in two different ways,
making manifest either the left- or the right-hand side of (3.17).

Let us briefly recall the procedure to gauge a subgroup A of a one-form symmetry [98,
99] (see also [100]). It amounts to sum over insertions of Wilson lines generating A, which
can either fuse or link with the Wilson lines of the theory, see figure 3.1. We focus on the
case in which A = ZQ is an abelian subgroup of the one-form symmetry of a CS theory.
For simplicity we describe the gauging procedure when the gauge group G is given by a
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=

Oq

λ

Oq

e2πiλq/n =×

λ µ [λ+ µ]n

Figure 3.1: A Zn one-form symmetry in 3d has topological lines labelled by λ ∈ Zn. They
fuse according to the Zn group law (right), and act on charged operators, which are also
supported on lines, by linking (left). Here [x]n = x mod n and q is the Zn charge of the
operator Oq.

single factor, the generalizations to direct products of groups being straightforward. If Wµ̂

is the Wilson line generating ZQ, we have WQ
µ̂ = 1. The group A is gaugeable if and only

if Wµ̂ has integer spin hµ̂ and the lines in A are mutually transparent, i.e. they have trivial
mutual braiding.5 Given A, we then select the Wilson lines which have trivial linking with
lines in A, and the lines of the gauged theory are given in terms of orbits under fusion with
A. Let P be the total number of Wilson lines in the CS theory. The Wilson lines Wλ̂ with
trivial linking with Wn

µ̂ , n = 1, . . . , Q− 1 are those for which

B(λ̂, µ̂) = 1 . (3.28)

There are in general P/Q Wilson lines which satisfy (3.28). Such lines organize into P/Q2

gauge-invariant orbits of the form

OW = ⊕Q−1
q=0 Wλ̂+qµ̂ , (3.29)

which are the surviving lines in the gauged theory.6 Inserting a Wilson line orbit of the
gauged theory along the non-contractible cycle of M3 amounts, on the boundary, to sum
over the products of characters associated to the Wilson lines of the ungauged theory as
given in (3.29). When the gauge group is of the form Gk × G−k, to each orbit we can
associate a combination of left- and right-moving characters which we can interpret as a
partition function for the associated 2d WZW model, provided the combination has the
correct modular properties.

We prove (3.17) by showing that the left and right-hand side of this equation arise from
gauging the same subgroup of one-form symmetry, which leads to a single orbit. The CS
theories are

GCS = SU(N)1 × U(1)N × SU(N)−1 × U(1)−N , N even
GCS = SU(N)1 × U(1)4N × SU(N)−1 × U(1)−4N , N odd .

(3.30)

5Recall that, given two Wilson lines Wλ̂ and Wµ̂, their braiding B(λ̂, µ̂) is given by

B(λ̂, µ̂) = exp
(
2iπ
(
hλ̂+µ̂ − hλ̂ − hµ̂

))
, (3.27)

and the spin of a Wilson line Wλ̂ equals the chiral dimension h mod 1 of the corresponding 2d affine
character χλ̂. Trivial braiding means B = 1.

6If the line Wλ̂ is a fixed point under fusion with W s
µ̂ , s being a divisor of N , then there are N/s copies

of the line Ŵλ̂ [100]. In our case the action is always free and no degeneracies occur.
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We denote in the following by (j, λ; k̄, µ̄) a general Wilson line of the CS theories, where
j and k̄ are the ranks of the completely antisymmetric representations of “su(N)1 and“su(N)−1, while λ and ν̄ are the charges of û(1)Q and û(1)Q . For N even, Q = N and
λ, µ ∈ ZN , while for N odd Q = 4N and λ, µ ∈ Z4N . The spin of SU(N)1 and U(1)Q
Wilson lines is

hj =
j(N − j)

2N
, hλ =

λ2

2Q
. (3.31)

3.3.1 Even N

For N even, the total one-form symmetry is G(1) = Z4
N and we have a total of N4 Wilson

lines. We want to gauge a subgroup A ⊂ G(1), where A = ZN/2 × ZN × Z2 is generated
by the following set of lines7

A = ⟨(2, 2; 0̄, 0̄), (0, 0; 2̄, 2̄), (1, 1; 1̄, 1̄), (0, N/2; 0̄, N/2)⟩ ≃ ZN/2 × ZN × Z2 . (3.32)

We define the subgroups

A1 = ⟨(2, 2; 0̄, 0̄), (0, 0; 2̄, 2̄)⟩ ≃ Z2
N/2 ,

A2 = ⟨(0, N/2; 0̄, N/2), (1, 1; 1̄, 1̄)⟩ ≃ ZN × Z2 .
(3.33)

We also define the coset

Ac ≡
A
A1

= ⟨[(1, 1; 1̄, 1̄)], [(0, N/2; 0̄, N/2)]⟩ ≃ Z2
2 . (3.34)

We gauge A in steps, starting with A1. This acts independently on holomorphic and
anti-holomorphic sector by projecting into lines with

j = λ mod N/2 , k̄ = µ̄ mod N/2 . (3.35)

We are left with (2N)2 lines which forms 42 gauge-invariant orbits (each containing (N/2)2

simple lines). In terms of characters, they are given by χaχ̄b, where a = i,v, s, c, and

χi(τ) =

N/2−1∑
j,λ=0

χ2j(τ)χ2λ(τ)δj,λ , χv(τ) =

N/2−1∑
j,λ=0

χ2j+1(τ)χ2λ+1(τ)δj,λ , (3.36)

χs(τ) =

N/2−1∑
j,λ=0

χ2j(τ)χ2λ+N/2(τ)δj,λ , χc(τ) =

N/2−1∑
j,λ=0

χ2j+1(τ)χ2λ+1+N/2(τ)δj,λ ,

and similarly for the right-moving characters. Note that the left-hand sides of (3.36) coin-
cide with the four affine characters of the ‘spin(2N)1 chiral algebra, associated respectively
to the identity, the vector and the two spinor representations of Spin(2N), with highest
conformal weights

hi = 0 , hv =
1

2
, hs = hc =

N

8
. (3.37)

Their fusion rules can be computed using Verlinde’s formula (2.20) and the modular ma-
trices associated to the “su(N)1 and û(1)N algebras. We get as expected

v × v = s× s = c× c = i , s× c = v , v × s = c , v × c = s . (3.38)
7This set of generators is not minimal, as (1, 1; 1̄, 1̄) can be combined with either (0, 0; 2̄, 2̄) or (2, 2; 0̄, 0̄)

to give the other one.
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We now gauge the coset Ac. This leaves 4 orbits which gives rise to a single orbit of orbits
OW (containing in total N2 simple lines), the one obtained by summing the diagonal
combination of the above characters. We then have

⟨OW ⟩ = |χi|2 + |χv|2 + |χs|2 + |χc|2 = ZSpin(2N)1 . (3.39)

We now discuss how to obtain the partition function of the (SU(N)1 × U(1)N )/ZLN/2
orbifold theory. To this purpose we can gauge A as follows. We define the subgroup

A3 = ⟨(1, 1; 1̄, 1̄), (0, N/2; 0̄, N/2)⟩ ≃ ZN × Z2 . (3.40)

as well as the coset
A′
c =

A
A3

= ⟨[(0, 0; 2̄, 2̄)]⟩ ≃ ZN/2 . (3.41)

Gauging in succession A3 and A′
c, we end up again with a single orbit OW , which is

automatically arranged in terms of simple lines as

OW = ⊕N−2
k=0
k even

O
(k)
W , (3.42)

where

O
(k)
W =⊕N/2−1

j=0

ï
(j, j; j + k, j + k)⊕

(
j, j + N

2 ; j + k, j + k + N
2

)
⊕
(
j + N

2 , j; j + k + N
2 , j + k

)
⊕
(
j + N

2 , j +
N
2 ; j + k + N

2 , j + k + N
2

)ò
.

(3.43)

We show below that O(k)
W coincides with the k-twisted partition function of the orbifolded

theory. The full partition function reads

ZSU(N)1×U(1)N
ZL
N/2

=
2

N

N−2∑
k,ℓ=0
k,ℓ even

ZSU(N)1 [k, ℓ]ZU(1)N [k, ℓ] ≡
N−2∑
k=0
k even

Z
(k)
SU(N)1×U(1)N

ZL
N/2

, (3.44)

where [k, ℓ] denote the k-twisted sector with the insertion of ℓ ZLN/2 charges of the individual
SU(N) and U(1) sectors, while Z(k) is the partition function of the orbifolded theory
restricted to the states with charge k under the dual symmetry ẐLN/2. The functions
ZSU(N)1 [k, ℓ] and ZU(1)N [k, ℓ] can be computed starting from the unwtwisted sector

ZSU(N)1 [0, ℓ] =

N−1∑
j=0

e−2πi jℓ
N χjχ̄j , ZU(1)N [0, ℓ] =

N−1∑
λ=0

e2πi
λℓ
N χλχ̄λ , (3.45)

and applying S and T modular transformations. We have

S · ZSU(N)1 [k, ℓ] = ZSU(N)1 [N − ℓ, k] , S · ZU(1)N [k, ℓ] = ZU(1)N [N − ℓ, k] ,

T · ZSU(N)1 [k, ℓ] = ZSU(N)1 [k, k + ℓ] , T · ZU(1)N [k, ℓ] = ZU(1)N [k, k + ℓ] ,
(3.46)

where the action of S and T on the characters are given, e.g., in [101]. In particular, we
have

ZSU(N)1 [k, 0] =

N−1∑
j=0

χjχ̄j+k , ZU(1)N [k, 0] =

N−1∑
λ=0

χλχ̄λ+k . (3.47)
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Given the action of the ZLN/2 charges on the characters, the partition functions Z(k) defined
in the r.h.s. of (3.44) are obtained by projecting on the ZLN/2 neutral states:

Z
(k)
SU(N)1×U(1)N

ZL
N/2

=
2

N

N−2∑
ℓ=0
ℓ even

N−1∑
j,λ=0

e−2πi
(j−λ)ℓ

N χjχ̄j+kχλχ̄λ+k . (3.48)

It is now straightforward to see that the sum over ℓ in (3.48) gives rise to the combination
of characters entering O(k)

W , and hence

⟨O(k)
W ⟩ = Z

(k)
SU(N)1×U(1)N

ZL
N/2

, ∀k = 0, 2 . . . N − 2 . (3.49)

Suming over k and using (3.39), (3.42) and (3.49), we immediately get

ZSpin(2N)1 = ZSU(N)1×U(1)N
ZL
N/2

, (3.50)

proving (3.17) for N even.
To later make contact with the fermionic theory we consider, on the solid torus with

the OW orbit inserted on the non contractible cycle, the insertion a further Z∨
2 line with

spin 1/2,
ψ ≡ (1, 1; 0̄, 0̄) . (3.51)

The line ψ has non-trivial braiding with some of the lines inside the orbit OW , so if we
insert ψ on the cycle that links with OW it will result in a non-trivial action; ψ can also
fuse with the lines inside OW in the usual way. It is a genuine Z2 line because it squares
to a generator of A, which is gauged.

By looking for instance at the expressions (3.36), it is clear that under fusion it acts
on the ‘spin(2N)1 representations as fusion with the vector representation v, and that by
linking it weights the left-moving characters χs, χc with a −1 sign. Similarly, on (3.42)
fusion with ψ shifts O(k)

W to O
(k+1)
W , and linking weights a simple line (j, λ; k̄, µ̄) with a

(−1)j+λ sign: this amounts instead to shifting ℓ in the middle term of (3.44) by one. In
other words, we further identify

ZSpin(2N)1 [kψ, ℓψ] =
1

N/2

N−2∑
ℓ=0
ℓ even

ZSU(N)1 [k + kψ, ℓ+ ℓψ]

× ZU(1)N [k + kψ, ℓ+ ℓψ] , N even,

(3.52)

with kψ, ℓψ ∈ Z2 identifying, respectively, the insertion of a ψ line along the non-contractible
and the contractible cycle of the boundary torus. The left-hand side description matches
with the Spin(2N)1 partition function with a Z∨

2 background.

3.3.2 Odd N

For N odd, the total one-form symmetry is G(1) = Z2
N ×Z2

4N and we have a total of 16N4

Wilson lines. We want to gauge a subgroup A ⊂ G(1), where A = Z2
N ×Z4 is generated by

A = ⟨(1, 2N + 2; 0̄, 0̄), (0, 0; 1̄, 2N + 2), (0, N ; 0̄, N̄)⟩ ≃ Z2
N × Z4 . (3.53)
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We identify the subgroups

A1 = ⟨(1, 2N + 2; 0̄, 0̄), (0, 0; 1̄, 2N + 2)⟩ ≃ Z2
N ,

A2 = ⟨(0, N ; 0̄, N̄)⟩ ≃ Z4 ,
(3.54)

and gauge A1 first. As before, this acts independently on holomorphic and anti-holomorphic
sectors by projecting into lines with

2j = (N + 1)λ mod 2N , 2k̄ = (N + 1)µ̄ mod 2N . (3.55)

We are left with (4N)2 lines which forms 42 gauge-invariant orbits, with N2 elements. In
terms of characters, they are given by χaχ̄b, where a = i,v, s, c, and

χi(τ) =
N−1∑
j=0

4N−1∑
λ=0

χj(τ)χλ(τ)δ[j(2N+2),λ]4N ,

χv(τ) =
N−1∑
j=0

4N−1∑
λ=0

χj(τ)χλ+2N (τ)δ[j(2N+2),λ]4N ,

χs(τ) =

N−1∑
j=0

4N−1∑
λ=0

χj(τ)χλ+N (τ)δ[j(2N+2),λ]4N ,

χc(τ) =
N−1∑
j=0

4N−1∑
λ=0

χj(τ)χλ+3N (τ)δ[j(2N+2),λ]4N ,

(3.56)

where δ[a,b]4N stands for a = b mod 4N . A similar result applies for the right-moving
characters. The left hand sides of (3.56) again coincide with the four affine characters of
the Spin(2N)1 WZW model, associated respectively to the identity, the vector and the
two spinor representations of Spin(2N). Their highest conformal weights are as in the N
even case (3.37), while their fusion rules read instead

v × v = s× c = i , s× s = c× c = v , v × s = c , v × c = s . (3.57)

We now gauge A2. This leaves 4 orbits which gives rise to a single orbit of orbits OW (con-
taining in total 4N2 simple lines), the one obtained by summing the diagonal combination
of the above characters. We then have

⟨OW ⟩ = |χi|2 + |χv|2 + |χs|2 + |χc|2 = ZSpin(2N)1 . (3.58)

We now discuss how to obtain the partition function of the (SU(N)1 × U(1)4N )/ZLN
orbifold theory. Like for the case of N even, we can gauge the whole group A at once. The
form of the final orbit OW in terms of simple lines can be written as

OW = ⊕N−1
k=0 O

(k)
W , (3.59)

where

O
(k)
W = ⊕N−1

j=0 ⊕3
s=0

(
j, 2(N + 1)j + sN ; j + k, 2(N + 1)(j + k) + sN

)
. (3.60)
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We proceed as for the case of N even. The steps are almost identical, so we will be brief.
The full partition function reads

ZSU(N)1×U(1)4N
ZL
N

=
1

N

N−1∑
k,ℓ=0

ZSU(N)1 [k, ℓ]ZU(1)4N [2(N + 1)k, 2(N + 1)ℓ] ≡
N−1∑
k=0

Z
(k)
SU(N)1×U(1)4N

ZL
N

.

(3.61)
The functions ZSU(N)1 [k, ℓ] and ZU(1)4N [2(N + 1)k, 2(N + 1)ℓ] can be computed starting
from the unwtwisted sector

ZSU(N)1 [0, ℓ] =

N−1∑
j=0

e−2πi jℓ
N χjχ̄j , ZU(1)4N [0, 2(N + 1)ℓ] =

4N−1∑
λ=0

e2πi
2(N+1)λℓ

4N χλχ̄λ ,

(3.62)
and applying S and T modular transformations. We have

S · ZSU(N)1 [k, ℓ] = ZSU(N)1 [N − ℓ, k] , S · ZU(1)4N [k, ℓ] = ZU(1)4N [4N − ℓ, k] ,

T · ZSU(N)1 [k, ℓ] = ZSU(N)1 [k, k + ℓ] , T · ZU(1)4N [k, ℓ] = ZU(1)4N [k, k + ℓ] .
(3.63)

In particular, we get

ZSU(N)1 [k, 0] =

N−1∑
j=0

χjχ̄j+k , ZU(1)4N [2(N + 1)k, 0] =

4N−1∑
λ=0

χλχ̄λ+2(N+1)k , (3.64)

and Z(k) in (3.61) read

Z
(k)
SU(N)1×U(1)4N

ZL
N

=
1

N

N−1∑
ℓ=0

N−1∑
j=0

4N−1∑
λ=0

e−2πi
(4j−2(N+1)λ)ℓ

4N χjχ̄j+kχλχ̄λ+2(N+1)k . (3.65)

The sum over ℓ in (3.65) again gives rise to the combination of characters entering O(k)
W in

(3.60), and hence

⟨O(k)
W ⟩ = Z

(k)
SU(N)1×U(1)4N

ZL
N

, ∀k = 0, 1 . . . N − 1 . (3.66)

Summing over k and using (3.58), (3.59) and (3.66), we immediately get

ZSpin(2N)1 = ZSU(N)1×U(1)4N
ZL
N

, (3.67)

proving (3.17) for N odd.
As before, to later make contact with the fermionic theory we also consider the insertion

a further Z∨
2 line with spin 1/2, which this time reads

ψ ≡ (0, 2N ; 0̄, 0̄) . (3.68)

Comparing with (3.56), it is clear that also this time under fusion ψ acts on the‘spin(2N)1 representations as fusion with the vector representation v, and that by linking
it weights the left-moving characters χs, χc with a −1 sign. Similarly, on (3.59) fusion with
ψ shifts O(k)

W to O(k+2N)
W , and linking weights the line (j, λ; k̄, µ̄) with a (−1) if j = λ+N
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SU(4)1 × U(1)4 ZL2 even ZL2 odd

H

(0, 0; 0̄, 0̄), (2, 2; 2̄, 2̄) (0, 1; 0̄, 1̄), (2, 3; 2̄, 3̄)
(1, 1; 1̄, 1̄), (3, 3; 3̄, 3̄) (1, 0; 1̄, 0̄), (3, 2; 3̄, 2̄)
(0, 2; 0̄, 2̄), (2, 0; 2̄, 0̄) (0, 3; 0̄, 3̄), (2, 1; 2̄, 1̄)
(1, 3; 1̄, 3̄), (3, 1; 3̄, 1̄) (1, 2; 1̄, 2̄), (3, 0; 3̄, 0̄)

Htw

(0, 0; 2̄, 2̄), (2, 2; 0̄, 0̄) (0, 1; 2̄, 3̄), (2, 3; 0̄, 1̄)
(1, 1; 3̄, 3̄), (3, 3; 1̄, 1̄) (1, 2; 3̄, 0̄), (3, 0; 1̄, 2̄)
(0, 2; 2̄, 0̄), (2, 0; 0̄, 2̄) (0, 3; 2̄, 1̄), (2, 1; 0̄, 3̄)
(1, 3; 3̄, 1̄), (3, 1; 1̄, 3̄) (1, 0; 3̄, 2̄), (3, 2; 1̄, 0̄)

SU(4)1×U(1)4
Z2

Ẑ2 even Ẑ2 odd“H (0, 0; 0̄, 0̄), (2, 2; 2̄, 2̄) (0, 0; 2̄, 2̄), (2, 2; 0̄, 0̄)
(1, 1; 1̄, 1̄), (3, 3; 3̄, 3̄) (1, 1; 3̄, 3̄), (3, 3; 1̄, 1̄)
(0, 2; 0̄, 2̄), (2, 0; 2̄, 0̄) (0, 2; 2̄, 0̄), (2, 0; 0̄, 2̄)
(1, 3; 1̄, 3̄), (3, 1; 3̄, 1̄) (1, 3; 3̄, 1̄), (3, 1; 1̄, 3̄)“Htw

(0, 1; 0̄, 1̄), (2, 3; 2̄, 3̄) (0, 1; 2̄, 3̄), (2, 3; 0̄, 1̄)
(1, 0; 1̄, 0̄), (3, 2; 3̄, 2̄) (1, 2; 3̄, 0̄), (3, 0; 1̄, 2̄)
(0, 3; 0̄, 3̄), (2, 1; 2̄, 1̄) (0, 3; 2̄, 1̄), (2, 1; 0̄, 3̄)
(1, 2; 1̄, 2̄), (3, 0; 3̄, 0̄) (1, 0; 3̄, 2̄), (3, 2; 1̄, 0̄)

Table 3.1: Affine SU(4)1 × U(1)4 primaries spectrum and their symmetry properties un-
der the Z2 symmetry before gauging (left) and under its dual Ẑ2 symmetry after gauging
(right). We report in different colors the SU(4)1 × U(1)4 primaries (j, λ; k̄, µ̄) that com-
bine together to form Spin(8)1 primaries, namely identity, vector, spinor, conjugate spinor.
There are also twisted primaries living at the end of a Ẑ2 line defect, which do not corre-
spond to any ‘spin(8)1 representation.

Spin(8)1 Z∨
2 even Z∨

2 odd
H (i, i), (v, v) (s, s), (c, c)
Htw (s, c), (c, s) (i, v), (v, i)

4 Diracs ZF2 even ZF2 odd
HNS (i, i), (v, v) (i, v), (v, i)
HR (s, s), (c, c) (s, c), (c, s)

Table 3.2: Affine Spin(8)1 primaries spectrum and their symmetry properties under the
Z∨
2 symmetry before fermionization (left) and under ZF2 symmetry after fermionization

(right). We use the same color coding as in Table 3.1 for affine representations and as in
Table 2.1 for the mapping of sectors.

mod 2N . This amounts to shifting the twists 2(N + 1)k and/or 2(N + 1)ℓ for ZU(1)4N in
the middle term of (3.61) by 2N . This allows to further identify

ZSpin(2N)1 [kψ, ℓψ] =
1

N

∑
k,ℓ∈ZN

ZSU(N)1 [k, ℓ]

× ZU(1)4N [2(N + 1)k + 2Nkψ, 2(N + 1)ℓ+ 2Nℓψ] , N odd.
(3.69)

3.3.3 Example

It is useful to see in some more detail how the SU(N)1 and U(1)N (or U(1)4N for N
odd) primary operators combine in Spin(2N)1 ones. We consider N even and first we
classify the spectrum of affine primaries of SU(N)1 × U(1)N under the ZLN/2 symmetry.
Like Wilson lines in the corresponding Chern-Simons theory, affine primaries of SU(N)1×
U(1)N are labeled by their representations under left- and right-moving chiral algebras,
(j, λ; k̄, µ̄), j, k̄, λ, µ̄ = 0, . . . , N − 1. Operators with

λ ≡ j +Q mod N/2 , µ̄ ≡ k̄ +Q mod N/2 ,

k̄ ≡ j + 2ℓ mod N , µ̄ ≡ λ+ 2ℓ mod N ,
(3.70)

belong to the charge Q subsector of the ℓ-twisted Hilbert space under ZN/2.
In order to understand the Hilbert space structure of the gauged (SU(N)1×U(1)N )/ZLN/2

WZW theory, let us study first the one of the ungauged (SU(N)1 ×U(1)N ) WZW theory.
Upon gauging ZN/2, states in the Hilbert space get sorted according to the quantum

ẐN/2 symmetry: for instance, charge Q operators in the Hilbert space not twisted under
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ZN/2 get mapped to neutral operators in the Hilbert space twisted Q times under ZN/2, and
viceversa. Therefore all neutral states in the original theory are in the untwisted Hilbert
space for the gauged theory. These SU(N)1 × U(1)N primaries then can be rearranged
in such a way to give the diagonal modular invariant of the Spin(2N)1 WZW model,
as expressed in (3.36). On the other hand, operators in the gauged theory with ẐN/2
background twists cannot be described in terms of ‘spin(2N)1 affine primaries. Moreover,
the Z∨

2 symmetry that gets fermionized is defined only in the ẐN/2-untwisted sector.
It is useful to consider an explicit example, for instance N = 4. We report in Table

3.1 the symmetry properties of the affine primaries of SU(4)1 × U(1)4. With different
colors we highlight how they combine to form local ‘spin(8)1 primaries, in the absence
of Ẑ2 twists. There are also twisted primaries living at the end of a Ẑ2 line defect, but
these non-local operators are not ‘spin(8)1 affine primaries, and get projected out in the ZL2
orbifold. We consider also the Z∨

2 backgrounds for Spin(8)1 = (SU(4)1 × U(1)4)/ZL2 , and
its fermionization to 4 Dirac fermions classifying the operator content according to the ZF2
properties, in Table 3.2.



Chapter 4

Phases of the N-flavor chiral
Gross-Neveu Model

In this Chapter we present our analysis and proposals for the phase diagram of the N -
flavor chiral Gross-Neveu model, at finite N . While in the large N -limit one can evade the
usual no-go theorems that forbid ordered phases in two spacetime dimensions, this is not
the case at finite N . As we have discussed in Section 1.3 more complicated scenarios such
as quasi-long-range ordered phases (at T = 0) are still viable. On the other hand, unless
there is an ’t Hooft anomaly that survives compactification, at T > 0 one would still not
expect the persistence of any type of order.

In Section 4.1 we show that the chiral spiral configuration found at large N persists
at finite N and T = 0 for any µ > 0, using non-Abelian bosonization in its simplest
formulation: with this description, the appearance of the inhomogeneous phase is surpris-
ingly simple. To prepare the ground for the analysis of the T > 0 scenario, in Section
4.2 we discuss a set of ’t Hooft anomalies for the model. In particular, via the bosoniza-
tion/fermionization duality discussed in Section 3.2, we are able to argue for the existence
of an ’t Hooft anomaly for a discrete DF

8 symmetry subgroup of the fermionic theory, which
is activated in the presence of a non-trivial ZF2 background. Finally, in Section 4.3 we ex-
plicitly compute two-point functions of certain composite fermion operators in the chiral
Gross-Neveu model at finite temperature, both for thermal (antiperiodic) and periodic
fermions around the thermal cycle. We find that for thermal fermions the spatial modu-
lation is still present, but has an exponentially decaying amplitude due to a finite thermal
correlation length. This exponential decay is absent instead for periodic conditions. We
interpret this as the effect of the DF

8 anomaly, that forbids tunneling effects.

4.1 Inhomogeneities at T = 0

In the simpler case T = 0 we can work on Euclidean R2, where global considerations do
not matter, and we can work in the setting outlined in Section 3.1. Let us introduce a
chemical potential for the U(1)V charge by adding to the Lagrangian (3.1) the term

Lµ = µ(ψ†
+aψ

a
+ + ψ†

−aψ
a
−) . (4.1)

Upon bosonization, this maps simply to

Lµ = −µ
√
N

2π
∂1ϕ . (4.2)

53
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The term (4.2), which does not depend on the SU(N) degrees of freedom, provides an
expectation value for ∂1ϕ. By adding (4.2) to the Lagrangian (3.7) we get that the effective
action for ϕ is minimized on configurations with

⟨∂1ϕ⟩ = 2µ
√
N

Å
1 +

λ′

2πN

ã−1

≡ 2µ′
√
N . (4.3)

The difference of the zero-temperature free energy density per flavour between the config-
uration with and without the expectation value for ∂1ϕ is

δF = −µ
2

2π

Å
1 +

λ′

2πN

ã−1

, (4.4)

showing that the former is favored on R2.

Using the bosonization identity ψ†
−aψ

b
+ = Ua

beiϕ/
√
N [62, 102, 103] (omitting a scheme-

dependent renormalization mass scale), the two-point function of the fermion bilinear in
terms of the SU(N) and free scalar degrees of freedom is

⟨ψ†
−aψ

a
+(x)ψ

†
+bψ

b
−(0)⟩ = ⟨TrU(x) TrU †(0)⟩e2iµ′x1⟨ei

δϕ(x)√
N e

−i δϕ(0)√
N ⟩ , (4.5)

where δϕ denotes excitations of ϕ around (4.3) and we have used the decoupling of the two
sectors to factorize the correlator.

Let us now assume that the operator TrU has a non-vanishing expectation value (at
zero temperature) in the SU(N)1 theory deformed by the current-current interaction.
Then, in the limit |x| → ∞, (4.5) approaches

|⟨TrU⟩|2e2iµ′x1 |x|−
2

N(1+λ′/2πN) , (4.6)

that is, it decays with power-like behavior times an oscillating factor. The latter is con-
sequence of the chiral spiral configuration, whereas the former is the hallmark of quasi
long-range order. Only a diagonal subgroup of the U(1)A symmetry and spatial trans-
lations preserves the would-be order parameter TrUe2iµ

′x1 . Recalling that the ψ†
−aψ

a
+

bilinear carries U(1)A charge +2, this subgroup is a U(1)A transformation of parameter
α accompanied by a translation with parameter δx1 = −α/µ′. The condensation of TrU
breaks completely the global center symmetry ZLN of the SU(N)1 theory.

There are a number of arguments in favor of spontaneous breaking of ZLN on R2.1 As
we will discuss in the next Section, in the SU(N)1 WZW model there is a mixed ’t Hooft
anomaly involving the PSU(N)V ×ZLN symmetry (3.13), which is also the symmetry that
is preserved by the JJ̄ deformation, hinting at the fact that the ZLN symmetry is sponta-
neously broken. Moreover, in Appendix A, we study the classical potential arising from
the JJ̄ deformation in the free field realization of SU(N)1, and indeed one finds there N
degenerate minima with a spontaneously broken ZLN symmetry. Given the absence of tun-
neling effects in a QFT in infinite volume, one expects that this also holds at the quantum

1The full extent of those argument was not known to us at the time of publication of [1], for this reason
one finds a more cautious discussion there, which we report after this paragraph.
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level.

Even if the ZLN symmetry were unbroken in the SU(N)1 theory (that is, ⟨TrU⟩ = 0),
one can find an operator of the cGN theory with a spatially modulated expectation value
who contains only vertex operators of the form ei kN ϕ/

√
N , with k ∈ Z. This ensures that

the operator is invariant under ZPN , without the need of a compensating factor charged
under ZLN from the SU(N)1 sector (recall that the diagonal subgroup of these two ZN is
gauged, so any physical operator must be neutral under it). For instance, the quasi-long
range order could be detected in the two-point function of the composite fermion operator
det(ψ†

−aψ
b
+). In this case the combination of U(1)A and translation that preserves it will

be different, namely a U(1)A transformation of parameter α needs to be accompanied by
a translation with parameter δx1 = −Nα/µ′. There could also be intermediate possibili-
ties in which only a nontrivial subgroup ZPN ′ ⊂ ZPN is preserved, when N is a multiple of N ′.

The vacuum is then in a so-called “chiral spiral" configuration, where only a linear
combination of the U(1)A symmetry and of spatial translations preserves the would-be
order parameter. Such combination depends on the realization of the ZLN symmetry in the
vacuum of the deformed SU(N)1 theory. Excitations on top of the chiral spiral are gapless
and have a relativistic dispersion relation.

4.2 Anomalies and Persistent Order at T > 0

We have discussed in Section 3.2 the bosonization of the chiral Gross-Neveu model in
absence of the JJ̄ deformation, i.e. of free fermions, on a non-trivial manifold. The defor-
mation has a mild effect in the U(1) sector, where it just changes the radius of the compact
scalar, and a non-trivial effect to the SU(N) sector, where it gives rise to a strongly cou-
pled gapped theory [1]. In this Section we use ’t Hooft anomaly matching conditions to
determine key IR properties of the theory.

We start by discussing ’t Hooft anomalies of the bosonic SU(N)k WZW bosonic model
in isolation. It is known that SU(N)k WZW models have a mixed ZN anomaly between
PSU(N)V and ZLN symmetries for k = 0 mod N [104, 105].2 In presence of a nontrivial
PSU(N)V bundle P and a background gauge field AL for the ZLN symmetry, the partition
function is not background gauge invariant. Invariance can be restored by coupling the
theory to a three-dimensional bulk topological theory defined on M3 with ∂M3 =M2. This
is a symmetry protected topological (SPT) phase with partition function

ZSPT = exp

Å
2πik

N

∫
M3

AL ∪ u2(P )
ã
. (4.7)

In (4.7) u2 ∈ H2(BPSU(N),ZN ) = H2(PSU(N),ZN ) = ZN is the Brauer class (for
N = 2, it coincides with the more common Stiefel-Whitney class w2). The SPT phase
(4.7) is non-trivial unless k = 0 mod N .

An alternative way of detecting such anomalies is to study QED with N Dirac fermions,
i.e. gauging U(1)V . This theory (upon summing over the spin structures) is expected to

2Another notable ’t Hooft anomaly of SU(N)k WZW models is a Z2 mixed global-gravitational one
present for N even and k odd [106–109]. This anomaly is at the root of the different treatment of even
and odd N in Section 3.2.
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flow in the IR to the SU(N)1 WZW model. Using anomaly matching conditions, we can
then determine the anomalies from the UV theory. The axial U(1)A symmetry is broken
down to Z2N by the ordinary chiral anomaly. The sum over the spin structures is performed
by gauging ZF2 ⊂ Z2N , so in the bosonic theory we are left with a ZN chiral symmetry. In
presence of a non-trivial PSU(N) bundle we can have fractional U(1) fluxes,∫

M2

F

2π
=

1

N
, (4.8)

where F is the field strength for the U(1)V gauge field. In this backgroud the fermion
measure is not invariant under a chiral ZN transformation and ZN is completely broken.
The IR manifestation of this anomaly is precisely the mixed anomaly (4.7).

Yet another way to get this anomaly is by using the correspondence between 3d Gk
Chern-Simons on M2 × S1 and the WZW coset Gk/Gk on M2 (for G simply connected)
obtained by dimensional reduction [61, 110]. The coset is implemented by gauging the
vector G symmetry of the two-dimensional Gk WZW theory. For Gk = SU(N)k, the 3d
Chern-Simons theory has a global ZN one-form symmetry Z̃(1)

N , implemented by topological
defect lines. This symmetry has an ’t Hooft anomaly unless k = 0 mod N [14]. Upon
compactification to M2, Z̃

(1)
N gives both the ZLN global zero-form symmetry and the Z(1)

N

one-form symmetry of the SU(N) two-dimensional gauge theory. These symmetries are
implemented in the two-dimensional theory by topological defect lines and by topological
local operators, respectively. The topological defect lines for ZLN are Wilson lines for the
two-dimensional gauge theory, and are thus charged under Z(1)

N unless they have vanishing
N -ality. Conversely, the topological local operators that realize the one-form symmetry of
the gauge theory are charged under ZLN . We conclude that there is a mixed ’t Hooft anomaly
between ZLN and Z(1)

N in the SU(N)1/SU(N)1 coset WZW model. On the other hand, in
the limit of infinite gauge coupling a non-trivial SU(N) gauge field configuration together
with a non-trivial Z(1)

N background form a (possibly non-trivial) PSU(N)V background,
thus the result holds also for the non-gauged SU(N)1 WZW model.

We now consider the JJ̄-deformed SU(N)1 WZW model. As discussed in the previous
chapter, the deformation preserves a PSU(N)V × ZLN subgroup of the symmetry group
(SU(N)L × SU(N)R)/ZVN of the undeformed theory. The above mixed PSU(N)V × ZLN
anomaly forbids the JJ̄-deformed theory to be trivially gapped in the IR. The most nat-
ural possibility is to assume that the deformed SU(N)1 theory has N vacua and displays
spontaneous breaking of ZLN . 3

We can use (3.19) and the knowledge that the deformed SU(N)1 flows in the IR to
N gapped vacua connected by the ZLN symmetry to argue about the low energy effective
theory of the cGN model. More specifically, we want to understand the fate of the vacuum
at finite temperature. For this it will be important to have a closer look at the possible
discrete ’t Hooft anomalies associated to the free U(1) compact scalar.

4.2.1 A mixed Z2 anomaly of the bosonic theory

In this subsection we discuss a certain Z2 ’t Hooft anomaly of the bosonic theory B in
(3.17). It involves the charge conjugation ZC2 and other two Z2 symmetries which are not

3As further evidence, using the correspondence between modular invariants of 2d rational CFTs and
topological interfaces in 3d TQFTs [111], it has been conjectured in [112] that the ground state of the
JJ̄-deformed SU(N)1 theory is exactly N -fold degenerate on M2 = T 2.



4.2. ANOMALIES AND PERSISTENT ORDER AT T > 0 57

broken by the JJ̄ deformations. The anomaly manifests itself as follows: when we gauge
one of the two Z2 factors, the remaining global Z2 and ZC2 are realized projectively in the
twisted sector of the Hilbert space of the theory.

This anomaly is a generalization of an anomaly found in the compact boson in [113],
so it is useful to first review the anomaly for the compact boson in isolation. In this
case the Z2 symmetries involved are, in addition to ZC2 , the ZP2 and ZW2 subgroups of the
momentum and winding symmetries (2.47). When we gauge, say, ZW2 , the vertex operators
(2.50) with odd m are projected out, but new operators with half-integer e appear from
the twisted sector. This phenomenon is a discrete remnant of the mixed U(1)P − U(1)W
anomaly. The physical vertex operators in the gauged theory are then Ve+ℓ/2,2m, e,m ∈ Z,
ℓ = 0, 1. Let P and C be the topological lines implementing the ZP2 and ZC2 actions in the
Hilbert space. On vertex operators Ve+ ℓ

2
,2m we have

P 2 = (−1)ℓ , CP = (−1)ℓPC , (4.9)

where we used the action of charge conjugation given by

ZC2 : Vp,q → V−p,−q , (4.10)

for any fractional or integer p, q. We see that the symmetry ZC2 × ZP2 acts linearly in the
untwisted sector, but projectively in the twisted sector of the orbifolded theory.

We can refine the analysis by considering the torus partition function in presence of
nontrivial backgroundsW = [Wa,Wb] and S = [Sa, Sb] for the winding ZW2 and its dual ẐW2
symmetry, where Ta, Tb = 0, 1 label the holonomy of the Z2 gauge field on the corresponding
cycle of the torus. The partition function of the orbifolded theory is given by (2.110):

Z ′
2R[Sa, Sb] =

1

2

∑
w

ZR[wa, wb]e
iπ

∫
S∪w . (4.11)

Eq.(4.9) implies that

P 2 = (−1)wa , PC = (−1)waCP , wa = 0, 1 , (4.12)

from which we get

Z
(PC)′

2R [Sa, Sb] =
1

2

∑
w

Z
(PC)
R [wa, wb]e

iπ
∫
S∪w =

1

2

∑
w

(−1)waZ
(CP )
R [wa, wb]e

iπ
∫
S∪w

=
1

2

∑
w

Z
(CP )
R [wa, wb]e

iπ
∫
w∪[Sa,Sb+1] = Z

(CP )′

2R [Sa, Sb + 1] ,

Z
(P 2)′

2R [Sa, Sb] =
1

2

∑
w

Z
(P 2)
R [wa, wb]e

iπ
∫
S∪w =

1

2

∑
w

(−1)waZR[wa, wb]e
iπ

∫
S∪w

=
1

2

∑
w

ZR[wa, wb]e
iπ

∫
w∪[Sa,Sb+1] = Z ′

2R[Sa, Sb + 1] ,

(4.13)
where Z(A) indicates the partition function with the insertion of the charge operator associ-
ated to the ZA2 symmetry in the trace. While ZP2 and ZC2 acts projectively, the combination
of ZP2 , ZC2 , and ẐW2 acts linearly, since from (4.13) we have

P 2 = Ŵ , PC = ŴCP . (4.14)
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B′ ZW2 = +1 ZW2 = −1

H′
O(k,0)
n,e,m = Sn+k,nVe+ k

N
,m ,

n+ k = m mod N ,
m = 0 mod 2 , k ∈ ZN

O(k,0)
n,e,m = Sn+k,nVe+ k

N
,m

n+ k = m mod N ,
m = 1 mod 2 , k ∈ ZN

H′
tw

O(k,1)
n,e,m = Sn+k,nVe+ k

N
+N2

2
,m
,

n+ k = m mod N ,
m = 0 mod 2 , k ∈ ZN

O(k,1)
n,e,m = Sn+k,nVe+ k

N
+N2

2
,m
,

n+ k = m mod N ,
m = 1 mod 2 , k ∈ ZN

Table 4.1: Classification of the operators of the theory B′ = SU(N)1×U(1)N
ZN

, for N odd,
under the ZW2 symmetry (4.19).

We see that ZP2 × ZC2 is centrally extended by the dual symmetry ẐW2 to the group D8,
the dihedral group of order 8, defined as

D8 = ⟨P,C, Ŵ |P 4 = C2 = 1, CPC = P 3, P 2 = Ŵ ⟩ . (4.15)

The D8 symmetry group of the gauged theory is anomaly-free. Upon gauging its ẐW2 sub-
group, we reobtain the original theory with the anomalous ZP2 ×ZC2 ×ZW2 symmetry. The
extension by ẐW2 and the anomaly involving ZW2 get exchanged by their gauging [15]. If we
gauge ZP2 instead of ZW2 , all the considerations above apply with the replacement P ↔W .

We are now ready to discuss a similar ’t Hooft anomaly in our setup. We first discuss
N odd and consider the theory B′ in the formulation (3.18). The operator of B′ are ZLN
are gauge-invariant products of the operators of S in the SU(N)1 sector and of the vertex
operators V in the U(1)N sector.4 As far as our considerations are concerned, it is enough
to classify the SU(N)1 operators according to their N -ality, so we denote by Sn,n̄ the
SU(N)1 operators with L and R N -ality n and n̄ under SU(N)L and SU(N)R, respectively
(n, n̄ = 0 . . . , N − 1, primary operators have n = n̄). The diagonal ZN symmetry acts on
the SU(N) and U(1) operators as follows:

ZLN : Sn,n̄ → e−
2iπn
N Sn,n̄ ,

ZWN : Ve,m → e
2iπm
N Ve,m .

(4.16)

Charge conjugation acts on the U(1) sector as in (4.10) and on SU(N)1 operators as

ZC2 : Sn,n̄ → SN−n,N−n̄ . (4.17)

After gauging the diagonal ZN of (4.16), the physical operators of the theory are

O(k)
e,m = Sn+k,nVe+ k

N
,m , n+ k = m mod N , (4.18)

where k = 0 represents the unwisted sector and k = 1, . . . N − 1 the twisted sectors of the
orbifolded theory. The second global symmetry involved is the ZW2 appearing in (3.18).
Its action on the fields is5

ZW2 : Ve+ k
N
,m → eiπN

2mVe+ k
N
,m , Sn+k,n → Sn+k,n . (4.19)

4In order to avoid clutter in the formulas, we remove the hat from ZL
N and ZW

2 which appear in (3.18).
5Note that for N odd eiπN2

= eiπN , but the choice of shift in (4.19) ensures that the ZW
2 acts as a

chiral action on the fields.
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B ZL2 = +1 ZL2 = −1

H O(k,0)
n,e,m = Sn+2k,nVe+k,m+ 2k

N
,

n = e+ N
2 m mod N , k ∈ ZN/2

O(k,0)
n,e,m = Sn+2k,nVe+k,m+ 2k

N
,

n = e+ N
2 m+ N

2 mod N , k ∈ ZN/2

Htw
O(k,1)
n,e,m = Sn+2k+1,nVe+k+ 1

2
,m+ 2k+1

N
,

n = e+ N
2 m mod N , k ∈ ZN/2

O(k,1)
n,e,m = Sn+2k+1,nVe+k+ 1

2
,m+ 2k+1

N
,

n = e+ N
2 m+ N

2 mod N , k ∈ ZN/2

Table 4.2: Classification of the operators of the theory B = SU(N)1×U(1)N
ZL
N/2

, for N even,

under the ZL2 symmetry (4.25).

When we gauge ZW2 , the physical operators read

O(k,ℓ)
e,m = Sn+k,nVe+ k

N
+N2ℓ

2
,2m

, n+ k = 2m mod N , (4.20)

where ℓ = 0 and ℓ = 1 represents the ZW2 untwisted and twisted sector, respectively.
Finally, the third Z2 global symmetry involved is a ZP2 ⊂ U(1)P which acts as6

ZP2 : V
e+ k

N
+N2ℓ

2
,2m

→ eiπN(e+ k
N
+N2ℓ

2
)V
e+ k

N
+N2ℓ

2
,2m

, Sn+k,n → Sn+k,n . (4.21)

Using eqs.(4.10), (4.17) and (4.21), it is immediate to verify that on the operators (4.20),

P 2 = (−1)ℓ , CP = (−1)ℓPC . (4.22)

Similarly to the compact scalar case, ZC2 × ZP2 acts linearly in the ℓ = 0 untwisted sector
and projectively in the ℓ = 1 twisted sector. The analysis from (4.11) until (4.15) applies
with obvious changes. Due to the anomaly the ZP2 × ZC2 is centrally extended by the dual
symmetry ẐW2 to the group D8 in (4.15).

We now discuss the theory B with N even in (3.17). As we will see, the role played by
ZP2 and ZW2 above will be respectively played by a ZW2 and a ZL2 symmetry. The action of
the diagonal ZLN/2 symmetry on the SU(N) and U(1) operators is as follows:7

ZLN/2 : Ve,m → e
4iπ
N

(e+N
2
m)Ve,m , Sn,n̄ → e−

4iπn
N Sn,n̄ . (4.23)

Charge conjugation acts as before. After gauging ZLN/2, the physical operators are

O(k)
e,m = Sn+2k,nVe+k,m+ 2k

N
, n = e mod

N

2
, (4.24)

where k = 0 represents the unwisted sector and k = 1, . . . N/2 − 1 the twisted sectors of
the orbifolded theory. The second global symmetry involved is the ZL2 appearing in (3.16):

ZL2 : Ve+k,m+ 2k
N

→ e
2iπ
N

(e+k+N
2
(m+ 2k

N
))Ve+k,m+ 2k

N
, Sn+2k,n → e−

2iπ(n+2k)
N Sn+2k,n .

(4.25)
Note that ZL2 is not a Z2 action individually on S and V, but only on the operators O(k)

e,m,
where it acts as O(k)

e,m → (−)mO(k)
e,m. When we further gauge ZL2 , the physical operators

read
O(k,ℓ)
e,m = Sn+2k+ℓ,nVe+k+ ℓ

2
,m+ 2k

N
+ ℓ

N
, n = e+

N

2
m mod N , (4.26)

6This is obtained by taking αP = Nπ in (2.47), since after gauging ZW
N αP ∼ αP + 2πN .

7Note that the action on the U(1)N sector is the same as a ZP
N/2 momentum shift.
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where ℓ = 0 and ℓ = 1 represents the ZL2 untwisted and twisted sector, respectively. Finally,
the third Z2 global symmetry involved is a ZW2 ⊂ U(1)W which acts as

ZW2 : Ve+k+ ℓ
2
,m+ 2k

N
+ ℓ

N
→ e

iπN
2

(m+ 2k
N

+ ℓ
N
)Ve+k+ ℓ

2
,m+ 2k

N
+ ℓ

N
, Sn+2k+ℓ,n → Sn+2k+ℓ,n .

(4.27)
Using eqs.(4.10), (4.17) and (4.27), we get

W 2 = (−1)ℓ , CW = (−1)ℓWC . (4.28)

The ZC2 × ZW2 symmetry acts linearly in the ℓ = 0 untwisted sector and projectively in
the ℓ = 1 twisted sector. The analysis from (4.11) until (4.15) applies again with obvious
changes. Due to the anomaly the ZW2 × ZC2 symmetry is centrally extended by the dual
symmetry ẐL2 to the group D8 in (4.15).

Note that the mixed ZP2 ×ZW2 ×ZC2 anomaly (4.9) reduces in 1d to the Z2 anomaly in
quantum mechanics discussed in Appendix D of [114]. Indeed, the action for the compact
scalar ϕ ∼ ϕ+ 2πR with a background U(1)W gauge field Aµ on R× S1

L is

S2d[ϕ,Aµ] =
1

8π

∫
dt

∫ L

0
dx(∂ϕ)2 − i

2πR

∫
dt

∫ L

0
dxϵµνAµ ∂νϕ . (4.29)

We choose Aµ to be a flat gauge field with a nontrivial holonomy θ around the compact
S1
L, At = 0, Ax = θ/L, with θ ∼ θ+ 2π. If we neglect the 2d massive excitations and only

keep the zero mode ϕ(x, t) ≈ ϕ0(t) we get

S1d[ϕ0, θ] =
L

8π

∫
dt ϕ̇20 −

iθ

2πR

∫
dt ϕ̇0 . (4.30)

The action (4.30) inherits the following symmetries from the 2d theory:®
ZP2 : ϕ0 7→ ϕ0 + πR , for any θ,
ZC2 : ϕ0 7→ −ϕ0 , for θ = 0, π.

(4.31)

We then recover the situation described in [114]: ZP2 ×ZC2 is realized linearly at θ = 0 and
projectively at θ = π. In the latter case we have a Z2 ’t Hooft anomaly which forbids to
have a unique gapped vacuum.

4.2.2 Fermionization and Persistent Order

In this Section we study the fate of the bosonic anomaly discussed above upon fermion-
ization. It is useful to first look at the simplest case N = 1, i.e. the duality between a
compact boson at R = 1 and a free Dirac fermion. The Z2 bosonic symmetry to be gauged
is ZW2 as in the relation (2.130). The fermion partition function is obtained from (2.122),

ZF ′ [ρa, ρb] =
1

2

∑
w

Z1[wa, wb](−1)Arf[w·ρ] . (4.32)

We determine the effect of (4.14) in the fermionic theory by adding the corresponding line
operators for P and C in the partition function. We then get

Z
(PC)
F ′ [ρa, ρb] =

1

2

∑
w

(−1)waZ
(CP )
1 [wa, wb]e

iπArf[w·ρ] = (−1)ρaZ
(CP )
F ′ [ρa, ρb + 1] , (4.33)
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where ρb + 1 means (with a slight abuse of notation) that we are exchanging ρb = 0 = NS
and ρb = 1 = R spin structures on the b-cycle, and we have used the identity∫

w ∪ T +Arf[w · ρ] = Arf[w · (T · ρ)] + Arf[T · ρ] + Arf[ρ] (4.34)

specified for T = [Ta, Tb] = [0, 1], i.e. for T having nontrivial holonomy only along the
b-cycle. Similarly, we have

Z
(P 2)
F ′ [ρa, ρb] =

1

2

∑
w

(−1)waZ1[wa, wb]e
iπArf[w·ρ] = (−1)ρaZF ′ [ρa, ρb + 1] . (4.35)

The ZC2 × ZP2 action is realized projectively in the fermionic theory by (−1)F due to the
shift ρb → ρb + 1:

P 2 = (−1)F , PC = (−1)FCP . (4.36)

Like in the bosonic case discussed in the previous subsection, the resulting extended group
is DF

8 , where DF
8 is the group (4.15) with Ŵ → (−1)F . Its action on the Weyl components

of the free Dirac fermion is given by

DF
8 :


P : ψ± 7→ iψ± , ψ†

± 7→ −iψ†
± ,

C : ψ± 7→ ψ†
± , ψ†

± 7→ ψ± ,

(−1)F : ψ± 7→ −ψ± , ψ†
± 7→ −ψ†

± .

(4.37)

As it can be seen, the symmetry (4.37) is not broken by the λs and λv deformations in
(3.1). In fact, it is unbroken also under the O(2N) deformation which defines the GN
model. In the fermionized theory, P is a Z4 ⊂ U(1)V transformation whereas C is still
charge conjugation. However, while DF

8 acts linearly in the NS sector, it acts projectively
in the R sector because of an additional sign which arises from the (−1)ρa factor in (4.33)
and (4.35). The projective action in the R sector is a manifestation of a Z2 anomaly
involving the group DF

8 .
The same fermionic theory F ′ can be alternatively obtained by (2.129), namely starting

from the compact boson with R2 = 4 and gauging ZP2 . In this formulation, it is easy to see
that the factor (−1)ρa disappears from the analogue of (4.33) and (4.35), being reabsorbed
due to the presence of the additional Arf term. The opposite occurs to the fermion theory
F . We conclude that, depending on which projection we perform in the R sector (i.e.
if we take F or F ′, see (2.126)), either a DF

8 involving ZP2 (with P corresponding to a
ZV4 transformation) or one involving ZW2 (with W corresponding to a ZA4 transformation)
is realized projectively in the R sector. No matter what we choose, there is no way to
have both DF

8 ’s linearly realized and hence a Z2 anomaly persists. The ZP2 or ZW2 acts on
fermions as discrete U(1)V or U(1)A rotations, so this phenomenon is nothing else than
the discrete version of the well-known fact that we can move the mixed U(1)V − U(1)A
anomaly by counterterms, but there is no way to get rid of it altogether.

We now consider the fermionization of the bosonic theory (3.17). For N odd we start
from the bosonic theory B′ to get the fermionic theory F ′ using (3.18). The analysis is
identical to the one performed for the N = 1 compact boson. It is enough to replace Z1

from (4.33) to (4.35) with the partition function of the B′ theory, to infer that in F ′ we
have a DF

8 symmetry which is anomalous because it is realized projectively in the Ramond
sector.
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F ′ ZF2 = +1 ZF2 = −1

HNS

O(k,0)
n,e,m = Sn+k,nVe+ k

N
,m ,

n+ k = m mod N ,
m = 0 mod 2 , k ∈ ZN

O(k,1)
n,e,m = Sn+k,nVe+ k

N
+N2

2
,m
,

n+ k = m mod N ,
m = 1 mod 2 , k ∈ ZN

HR

O(k,0)
n,e,m = Sn+k,nVe+ k

N
,m

n+ k = m mod N ,
m = 1 mod 2 , k ∈ ZN

O(k,1)
n,e,m = Sn+k,nVe+ k

N
+N2

2
,m
,

n+ k = m mod N ,
m = 0 mod 2 , k ∈ ZN

Table 4.3: Classification of the operators of the theory F ′, for N odd, under fermion parity
ZF2 .

F ZF2 = +1 ZF2 = −1

HNS
O(k,0)
n,e,m = Sn+2k,nVe+k,m+ 2k

N
,

n = e+ N
2 m mod N , k ∈ ZN/2

O(k,1)
n,e,m = Sn+2k+1,nVe+k+ 1

2
,m+ 2k+1

N
,

n = e+ N
2 m+ N

2 mod N , k ∈ ZN/2

HR
O(k,1)
n,e,m = Sn+2k+1,nVe+k+ 1

2
,m+ 2k+1

N
,

n = e+ N
2 m mod N , k ∈ ZN/2

O(k,0)
n,e,m = Sn+2k,nVe+k,m+ 2k

N
,

n = e+ N
2 m+ N

2 mod N , k ∈ ZN/2

Table 4.4: Classification of the operators of the theory F , for N even, under fermion parity
ZF2 .

For N even we use (3.19) but we look at the fermionic theory F . We get

Z
(WC)
F [ρa, ρb] =

1

2

∑
l

(−1)laZ
(CW )
B′ [la, lb]e

iπArf[l·ρ] = (−1)ρaZ
(CW )
F [ρa, ρb + 1] , (4.38)

where la and lb are the holonomies of the ZL2 gauge field around the two cycles a and b of
T 2. The comment in the last paragraph holds also in this case, so we have chosen F ′ and
F for N odd and even, respectively, because these are the theories where the above DF

8 ’s
symmetries are projectively realized in the R sector.

As we will discuss in detail in Section 4.3, the above Z2 anomaly has an important
physical consequence. The fate of the quasi long-range order discussed in [1] for the chiral
Gross-Neveu model at finite temperature depends crucially on the fermion periodicity along
the thermal circle. In the NS sector (antiperiodic fermions) we expect that as soon as T ̸= 0
quasi long-range order disappears due to thermal fluctuations (as generally expected in 2d
models due to quantum mechanical tunneling effects). On the other hand, in the R sector
(periodic fermions) the presence of a Z2 anomaly forbids a trivially gapped spectrum and
a form of order is expected. Interestingly enough, this ordered phase should persist at
arbitrarily high temperatures.

4.3 Inhomogeneities at T > 0

In a two dimensional theory, quasi long-range ordered phases are not detected directly
from the one-point function of an order parameter, but rather from the slow decay of the
two-point function of a “would-be order parameter” [55, 56]. For this reason, in order to
explore the existence of inhomogeneous phases at finite temperature, we now consider a
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two-point function in the fermionic theory, and in particular its long distance behavior
when the temperature is turned on. The goal of this calculation is two-fold: firstly, we
show the loss of the order at finite temperature in the theory with antiperiodic conditions,
and the persistence of the order with periodic conditions; secondly, we show that the addi-
tion of a finite chemical potential µ for the U(1)V symmetry induces a spatial modulation
of the would-be order parameter, i.e. the finite-temperature version of the chiral spiral
behavior found at zero temperature in Section 4.1. We work at finite µ, but everything
that we say in this Section can also be applied to the special case of vanishing chemical
potential. The role of the chemical potential is simply to mix the U(1)A symmetry with
translations.

What are the possible local operators that can play the role of the would-be order
parameter? The minimal requirement is that the operator is charged under U(1)A. The
most obvious candidate is the lightest scalar operator in this category, namely ψ†

+,aψ
a
−.

This is the operator we used to detect the chiral spiral order in R2 in Section 4.1. How-
ever, upon bosonization, this operator is mapped to a primary operator of the form
tr[S1,1]V1,0 = tr[U ]eiϕ/R for N even, or tr[S1,1]V2,0 = tr[U ]e2iϕ/R for N odd,8 and its
two-point function receives contributions from various correlation functions of the opera-
tor tr[U ] in the deformed SU(N)1 theory, which is gapped and strongly coupled at large
distances. In R2 the only required information about the correlation function of tr[U ]
could be deduced from the spontaneous breaking of the ZLN center symmetry. At finite
temperature, instead, we need to include a sum over the insertions of the charge operator
along the Euclidean time-like circle, and this requires substantial more information about
the SU(N)1 sector which is hard to obtain with the present tools, unless one restricts to
the special cases N = 1 or N = 2. To circumvent this problem we consider instead the
baryon (or “determinant”) operator in the fermionic theory

OF =
1

N !
ϵa1...aN ϵb1...bNψ

†
+a1ψ

b1
− · · ·ψ†

+aN
ψbN− ≡ det(ψ†

+ψ−) , (4.39)

which under bosonization is mapped to

OB = S0,0VN,0 ≡ 1 eNiϕ/R , N even ,

OB = S0,0V2N,0 ≡ 1 e2Niϕ/R , N odd .
(4.40)

This choice has the advantage that the part of the correlator due to the SU(N)1 sector
greatly simplifies, reducing essentially to the contribution from (possibly twisted) partition
function in the absence of nontrivial operator insertions, and most of the calculation can
be performed in the free U(1)N or U(1)4N sector, where exact results can be obtained.

Let us clarify the type of long-distance behavior that we expect at finite temperature,
and what we mean by the order being lost or persisting at finite temperature. In the deriva-
tion of the chiral spiral order in the zero temperature case (see Section 4.1) an important
role was played by the spontaneous breaking of the ZLN symmetry in the strongly coupled
sector of the bosonized theory. The long-distance behavior of the two-point function on
R2 combined the approach to a constant value in the SU(N)1 sector, associated to ZLN

8In this Section, for N odd we use the description in terms of the (JJ̄ deformed) U(1)4N compact
scalar, i.e. B and not B′.
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breaking, and the power-law decay of the free scalar sector, associated to the quasi long-
range order. When we turn on the temperature, effectively at large distances we are in a
one-dimensional system, and the order is expected to be destroyed due to tunelling. As a
result, barring the presence of anomalies in the effective quantum mechanics, generically
we expect both of the behaviors to turn into an exponential decay on a scale fixed by the
temperature. We find that this expectation is met for antiperiodic conditions: in this case
the spatially modulated chiral spiral has an exponentially decaying amplitude. However,
this exponential decay is absent instead for periodic conditions. We interpret this as the
presence of an obstruction to tunneling that makes the order persist. This is ultimately
a manifestation of the anomaly presented in the previous Section, that survives at finite
temperature in the presence of periodic conditions.

There are some general considerations about the tunneling induced by the temperature
in the strongly-coupled sector of the bosonic theory, that will allow us to greatly simplify
the study of the two-point function. Upon adding the JJ̄ deformation, the SU(N)1 WZW
model develops a mass gap. On R2, its ZLN center symmetry gets spontaneously broken,
with N degenerate vacua. In 2d any non-vanishing temperature T > 0 leads generally
(but not always, as we will see) to symmetry restoration with a unique symmetric ground
state |Ω0⟩ since there are kink solutions with a finite energy Mkink interpolating between
the N distinct vacua. We can obtain a finite action bounce just by taking the time-
independent kink solution and wrapping it around the Euclidean time circle. This leads to
Sbounce = βMkink. Of course, as in any other dimension d > 2, symmetry restoration with
a unique symmetric ground state generally occurs also by taking the space volume to be
finite (at any T , including T = 0), in which case the bounce is given by Sbounce = LMkink,
where L is the length of the spatial dimension in 2d.9 In the following we will denote by
M the mass gap of the deformed SU(N)1 WZW model. We then write Mkink = cM , with
c an order one coefficient. We will be interested in the limit of low temperatures βM ≫ 1,
in which case the prefactor K = c′M , with c′ another order 1 coefficient.

We study the two-point function both in the limit of low temperatures and large spatial
distances |x|M ≫ 1. To perform the calculation, especially in the compact scalar sector,
it is convenient to study the model on a torus T 2 with modulus τ = it and then take the
limit L→ ∞ where the spatial dimension becomes non-compact.

4.3.1 N odd

The SU(N)1 partition function with insertion of ZLN topological lines on both cycles, in
the limit discussed above, behaves as follows,

ZSU(N)1+JJ̄ [ta, tb] ∼ C × δtb,0 . (4.41)

Here the first entry ta denotes the insertion of topological lines wrapping the circle of length
β, while tb denotes lines wrapping the circle of length L (equivalently, ta denotes the ZLN
holonomy along the circle of length L and tb the one along the circle of length β). The
independence on ta in our limit is the consequence of the ZLN -invariance of the ground
state |Ω0⟩ in the quantization where the β circle is regarded as space. The fact that only
tb = 0 contributes is simply the statement that sectors with tb ̸= 0, as is manifest in this

9If on R2 we have a discrete ZN symmetry breaking, we expect however N −1 almost-degenerate states
|Ωk⟩, k = 1, . . . , N − 1, whose gap with respect to |Ω0⟩ is of order ∆Ek ∼ Ke−Sbounce .
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different quantization, have an energy gap above the ground state and decouple when we
take L→ ∞. C is an unknown constant which we will not need to fix.

We can use the identities (3.16), (3.17), and (3.69) to express correlation functions
in the fermionic theory in terms of SU(N)1 and U(1)4N correlation functions. Thanks
to (4.41), the partition function and the two-point function of the determinant operator
further simplify to

ZF ′ [ρ] ∼ C

2N

∑
s∈H1(T 2,Z2)

(−1)Arf[s·ρ]−Arf[ρ]
N−1∑
ta=0

ZU(1)4N+JJ̄ [T (ta, s)] ,

ZF ′ [ρ]⟨OF (z, z̄)O†
F (0, 0)⟩ρ ∼

C

2N

∑
s∈H1(T 2,Z2)

(−1)Arf[s·ρ]−Arf[ρ]×

×
N−1∑
ta=0

ZU(1)4N+JJ̄ [T (ta, s)] ⟨e2iNϕ/R(z, z̄)e−2iNϕ/R(0, 0)⟩T (ta,s) .

(4.42)

The subscript in the two-point function and the argument in square brackets in the partition
function both denote that these quantities are computed with line insertions along the two
cycles, corresponding to the two entries of the vector T (ta, s) ≡ 2(N + 1)(ta, 0) + 2Ns.
This is the background appearing in (3.69) with the renaming [kψ, ℓψ] = s and k = ta,
ℓ = tb which is set to 0. Thanks to (4.41) the gauging of the ZN diagonal between the
WZW and the compact boson is implemented through a single sum over the remaining
label ta. Finally the sum over the background s for ZP2 implements the fermionization, and
the choice of spin structure is denoted by ρ. Note that the JJ̄ deformation in the U(1)4N
sector modifies the value of the radius R according to (3.15).

The quantities appearing in (4.42) can be computed exactly, since the summands are
correlators in a free CFT. The computation is performed in full generality in Appendix
B on the torus. We compute the expression on a rectangular torus of modular parameter
τ = iβ/L. We will compute the two-point function of generic vertex operator of charge e,
namely eieϕ/R, and then set e = 0 to obtain ZF ′ and e = 2N to obtain ZF ′⟨OFO†

F ⟩. Given
that we are interested in the limit of high temperature T = β−1 ≫ 1, it makes sense to
consider correlation functions with operators inserted at equal times and a spatial distance
x. The result is∑

ta

ZU(1)4N+JJ̄ [T (ta, s)]⟨eieϕ/R(z, z̄)e−ieϕ/R(0, 0)⟩T (ta,s)

=

∣∣∣∣ θ′1(0|iLT )
θ1(−ixT |iLT )

∣∣∣∣2e2/R2

Ne4iµ̃Nex/R
2

|η(iLT )|2
×

× F s1

Å
2µ̃N2L

πR2
− 2ieNxT

R2

∣∣∣∣2iLTN2

R2

ã
F s2

Å
0

∣∣∣∣ iLTR2

2

ã
.

(4.43)

where

F
(0,0)
1 = F

(0,0)
2 = θ3

F
(0,1)
1 = θ3 , F

(0,1)
2 = θ2

F
(1,0)
1 = θ4 , F

(1,0)
2 = θ3

F
(1,1)
1 = θ4 , F

(1,1)
2 = θ2 ,

(4.44)
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and µ̃ is related to the chemical potential µ appearing in the action (4.1) by a rescaling,

µ̃ = µ

…
1 +

λ′

2πN
, (4.45)

such that 2µ̃N is the chemical potential for the U(1)W current at radius R. The details
of why the chemical potential induces a spatial modulation of the two-point function are
very similar to the zero temperature case studied at T = 0 and they are spelled out in
Appendix B.4.

The next step is to plug (4.43) back in (4.42) and perform the fermionization sum. We
set u ≡ 2µ̃N2L

πR2 − 2ieNxT
R2 . The result of the sum is

ZF [ρ]⟨OF (z, z̄)O†
F (0, 0)⟩ρ ∼

C

2

∣∣∣∣ θ′1(0|iLT )
θ1(−ixT |iLT )

∣∣∣∣2e2/R2

e4iµ̃Nex/R
2

|η(iLT )|2
×

×
[
θ3
Ä
0
∣∣∣ iLTR2

2

ä
(θ3 + wρ1θ4)

Ä
u
∣∣∣2iLTN2

R2

ä
+ wρ2θ2

Ä
0
∣∣∣ iLTR2

2

ä
(θ3 + wρ3θ4)

Ä
u
∣∣∣2iLTN2

R2

ä]
.

(4.46)

where wρ1,2,3 are the following signs which depend on the spin structure10

w
[NS,NS]
1 = +1 , w

[NS,NS]
2 = +1 , w

[NS,NS]
3 = −1 ,

w
[R,NS]
1 = +1 , w

[R,NS]
2 = −1 , w

[R,NS]
3 = −1 ,

w
[NS,R]
1 = −1 , w

[NS,R]
2 = +1 , w

[NS,R]
3 = +1 ,

w
[R,R]
1 = −1 , w

[R,R]
2 = −1 , w

[R,R]
3 = −1 .

(4.47)

To take L→ ∞ we use the following asymptotic expansions for t→ i∞,

θ1(u|it) ∼
t→i∞

2e−πt/4 sin(πu) , θ2(u|it) ∼
t→i∞

2e−πt/4 cos(πu) ,

θ3(u|it) ∼
t→i∞

1 + 2e−πt cos(2πu) , θ4(u|it) ∼
t→i∞

1− 2e−πt cos(2πu) ,

θ′1(0|it) ∼
t→i∞

2πe−πt/4 , η(it) ∼
t→i∞

e−πt/12 .

(4.48)

Plugging these asymptotics in the result (4.46), we obtain

ZF ′ [ρ]⟨OF (z, z̄)O†
F (0, 0)⟩ρ ∼ C

∣∣∣∣ π

sinh(πxT )

∣∣∣∣2e2/R2

e4iµ̃Nex/R
2
eπLT/6×

×
®
1 +O(e−βM ), ρ = [any, NS] ,

2e−2πLTN2/R2
cosh(4πeNxT/R2 + 4iµ̃N2L/R2) +O(e−βM ), ρ = [any, R] .

(4.49)

Note that upon taking L → ∞ we lose dependence on the periodicity condition along
the cycle of length L, but we retain dependence on the periodicity on the cycle of length
β = T−1. Evaluating for e = 0 this gives

ZF ′ [ρ] ∼ CeπLT/6
®
1 +O(e−βM ), ρ = [any, NS] ,

2e−2πLTN2/R2
cos(4µ̃N2L/R2) +O(e−βM ), ρ = [any, R] ,

(4.50)
10We remind that ρ = [ρa, ρb] denotes the periodicity along the a cycle (of length L) and the b cycle (of

length β), respectively.
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and taking the ratio between the results for e = 2N and e = 0 we get the result for the
two-point function

⟨OF (z, z̄)O†
F (0, 0)⟩ρ

∼
|x|T→∞

(2π)8N
2/R2

e8N
2iµ̃x/R2

®
e−8N2π|x|T/R2

+O(e−βM ) , ρ = [any, NS] ,
1
2 +O(e−βMe−8N2π|x|T/R2

) , ρ = [any, R] .

(4.51)

In the last equation, in addition to the limit explained above, we also took the large-distance
limit |x|T → ∞.

Summarizing, we see the following behavior:

• for thermal fermions, i.e. fermions with antiperiodic conditions ρ = [any, NS], the
correlation function of the operator OF = det(ψ†

+ψ−) vanishes at large |x| exponen-
tially with the temperature

⟨OF (z, z̄)O†
F (0, 0)⟩NS ∼ e−|x|/ξT e2iNµ

′x , ξ−1
T = 2NπT

Å
1 +

λ′

2πN

ã
, (4.52)

where we used that R =
√

4N
Ä
1 + λ′

2πN

ä
and we set µ′ = µ

Ä
1 + λ′

2πN

ä−1/2
, so the

modulation is visible only at intermediate scales, provided that Nµ′ ≳ πξ−1
T ;

• for periodic fermions, i.e. with conditions ρ = [any, R], the same correlation function
does not decay, and the spatial modulation due to the chemical potential µ is visible
at large distances even at finite temperature,

⟨OF (z, z̄)O†
F (0, 0)⟩R ∼ e2iNµ

′x . (4.53)

4.3.2 N even

The SU(N)1 partition function with insertion of ZLN/2 and possibly also ZL2 topological
lines on both cycles behaves as follows in the limit

ZSU(N)1+JJ̄ [2ta, 2tb] ∼ C × δtb,0 ,

ZSU(N)1+JJ̄ [2ta + sa, 2tb + sb] ∼ C × δtb,0Z
±[sa, sb] .

(4.54)

where
Z±[sa, sb] = (±1)sasb , (4.55)

is a sign that remains ambiguous due to the anomaly in ZL2 in the SU(N)1 theory. The
independence from ta and the projection to tb = 0 have the same explanation as in the
case of N odd, and again C denotes an undetermined constant.

Plugging (4.54) in the fermionization formula that can be derived from (3.16), (3.17),
and (3.52), we obtain

ZF ′ [ρ] ∼ C

N

∑
s∈H1(T 2,Z2)

(−1)Arf[s·ρ]−Arf[ρ]Z±[s]

N/2−1∑
ta=0

ZU(1)N+JJ̄ [T (ta, s)] ,

ZF ′ [ρ]⟨OF (z, z̄)O†
F (0, 0)⟩ρ ∼

C

N

∑
s∈H1(Z2)

(−1)Arf[s·ρ]−Arf[ρ]Z±[s]×

×
N/2−1∑
ta=0

ZU(1)N+JJ̄ [T (ta, s)]⟨eiNϕ/R(z, z̄)e−iNϕ/R(0, 0)⟩T (ta,s) .

(4.56)
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where the notation follows the same conventions as in the case of N odd, explained under
(4.42), and T (ta, s) = 2(ta, 0)+ s is the background appearing in (3.52) with the renaming
[kψ, ℓψ] = s and k = 2ta, ℓ = tb which is set to 0. Also for N even the radius R in the
U(1)N sector is modified according to (3.15).

Like we did in the previous Section, we proceed by performing exactly the part of the
calculation that involves the free scalar sector. Again, we compute for generic charge e of
the vertex operator, and this will give the partition function for e = 0, and the product of
the partition function with the two-point function for e = N . The result is

∑
ta

ZU(1)N+JJ̄ [T (ta, s)]⟨eieϕ/R(z, z̄)e−ieϕ/R(0, 0)⟩T (ta,s)

=

∣∣∣∣ θ′1(0|iLT )
θ1(−ixT |iLT )

∣∣∣∣2e2/R2

Ne2iµ̃Nex/R
2

2|η(iLT )|2
×

× F s1

Å
µ̃N2L

2πR2
− ieNxT

R2

∣∣∣∣ iLTN2

2R2

ã
F s2

Å
0

∣∣∣∣ iLTR2

2

ã
,

(4.57)

where

F
(0,0)
1 = F

(0,0)
2 = θ3 ,

F
(0,1)
1 = F

(0,1)
2 = θ2 ,

F
(1,0)
1 = F

(1,0)
2 = θ4 ,

± F
(1,1)
1 = F

(1,1)
2 = θ1 ,

(4.58)

and again µ̃ = µ
»
1 + λ′

2πN . Note that the s = (1, 1) contribution, which seems to have an
ambiguous sign, actually vanishes. This means that Z±[s] contributes always 1 and can
be neglected.

Performing the fermionization sum over s we get

ZF ′ [ρ]⟨OF (z, z̄)O†
F (0, 0)⟩ρ ∼

C

2

∣∣∣∣ θ′1(0|iLT )
θ1(−ixT |iLT )

∣∣∣∣2e2/R2

e2iµ̃Nex/R
2

|η(iLT )|2
×

×
[
θ3
Ä
0
∣∣∣ iLTR2

2

ä
θ3
Ä
u
∣∣∣ iLTN2

2R2

ä
+ wρ1θ4

Ä
0
∣∣∣ iLTR2

2

ä
θ4
Ä
u
∣∣∣ iLTN2

2R2

ä
+wρ2θ2

Ä
0
∣∣∣ iLTR2

2

ä
θ2
Ä
u
∣∣∣ iLTN2

2R2

ä]
,

(4.59)

where we set u ≡ µ̃N2L
2πR2 − ieNxT

R2 and wρ1,2 are the following signs that depend on the spin
structure

w
[NS,NS]
1 = +1 , w

[NS,NS]
2 = +1 ,

w
[R,NS]
1 = +1 , w

[R,NS]
2 = −1 ,

w
[NS,R]
1 = −1 , w

[NS,R]
2 = +1 ,

w
[R,R]
1 = −1 , w

[R,R]
2 = −1 .

(4.60)
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We then use (4.48) to take the limit L→ ∞, obtaining

ZF ′ [ρ]⟨OF (z, z̄)O†
F (0, 0)⟩ρ ∼ C

∣∣∣∣ π

sinh(πxT )

∣∣∣∣2e2/R2

e2iµ̃Nex/R
2
eπLT/6×

×
®
1 +O(e−βM ), ρ = [any , NS] ,

2e−πLTN
2/2R2

cosh(2πeNxT/R2 + iµ̃N2L/R2) +O(e−βM ), ρ = [any , R] .

(4.61)

Plugging e = 0, the result for the partition function is

ZF ′ [ρ] ∼ CeπLT/6
®
1 +O(e−βM ), ρ = [any , NS] ,

2e−πLTN
2/2R2

cos(µ̃N2L/R2) +O(e−βM ), ρ = [any , R] ,
(4.62)

while taking the ratio between e = N and e = 0 we obtain for the two-point function

⟨OF (z, z̄)O†
F (0, 0)⟩ρ ∼

|x|T→∞
(2π)2N

2/R2
e2iµ̃N

2x/R2×

×
®
e−2π|x|N2T/R2

+O(e−βM ) , ρ = [any , NS] ,
1
2 +O(e−βMe−2π|x|N2T/R2

) . ρ = [any , R] .

(4.63)

In the last equation, we also took |x|T → ∞ and kept only the large-distance asymoptotic

behavior. Upon substituting R =
√
4N
Ä
1 + λ′

2πN

ä
and setting µ′ = µ

Ä
1 + λ′

2πN

ä−1/2
, we

see that this is exactly the same behavior as in the case of N odd, summarized in equations
(4.52)-(4.53).



70 CHAPTER 4. PHASES OF THE N -FLAVOR CHIRAL GROSS-NEVEU MODEL



Chapter 5

The N = ∞ Phase Diagram with
Feynman Diagrams

The chiral Gross-Neveu model in the large N limit is conveniently studied by introducing
a complex Hubbard-Stratonovich (HS) field ∆ rather than reformulating the theory as a
JJ̄ deformation of a WZW model. At large N the ZLN symmetry can be spontaneously
broken even at finite T , because the usual no-go theorems do not apply in this limit. In
this Chapter we derive the critical temperature Tc of the chiral Gross-Neveu model, repro-
ducing the result of [47–50] with a different method, and we extend them also to the case
of fermions with periodic boundary conditions along the thermal cycle. To this end, we
compute the free energy density per flavour (which for simplicity is called free energy in
what follows) both for a homogeneous condensate and for a inhomogeneous one, assumed
to have the same chiral spiral form found at finite N for T = 0. We show that, for ther-
mal fermions, at low temperatures T < Tc the chiral spiral configuration minimizes the
free energy also at large N ; for T > Tc the symmetry-preserving configuration, in which
fermions are massless, is recovered. For periodic fermions, instead, we find again persistent
order in the large-N limit, as hinted at in [45], consistently with our finite N analysis; in
particular, we find that the chiral spiral configuration always minimizes the free energy.

5.1 Thermal Fermions

We take the ’t Hooft limit N → ∞ with λs, λv fixed in (1.22). To obtain the usual
description of chiral Gross-Neveu model at large N we set λv = 0. The free energy of the
chiral Gross-Neveu model at large N is given by

F (∆) =
|∆|2
λs

− Tr log
(
/∂ +∆P+ +∆∗P−

)
, (5.1)

where |∆|2 denotes the spacetime average of the square modulus of the condensate. It is
not known how to perform the minimization in full generality, and in practice one has to
minimize within a given ansatz for the functional form of ∆.

Let us consider homogeneous configurations ∆(x) = M , and let us minimize the free
energy as a function of M . We can perform a perturbative expansion in the coupling λs,

71



72 CHAPTER 5. THE N = ∞ PHASE DIAGRAM WITH FEYNMAN DIAGRAMS

or equivalently in M . Neglecting irrelevant constant terms, we have

F (M) =
M2

λs
−

∞∑
n=1

(−1)n+1

n
Tr(/∂

−1
M)n . (5.2)

On the other hand,

−Tr
Ä
/∂
−1
M
än

=
⊗1 ⊗2

⊗
n ...

, (5.3)

where oriented lines denote massless fermion propagators and crosses ⊗ denote M inser-
tions. By gamma matrix algebra the diagram is nonzero only when n is even. Resumming
the insertions, at T = µ = 0 one has

∞∑
n=1

1

2n

⊗1 ⊗2

⊗
2n ...

=

∫
d2p

(2π)2
log

Å
p2 +M2

p2

ã
. (5.4)

At T > 0 we need to replace
∫ dp2

2π → T
∑

p2
, with p2 = π(2n+1)T , and at µ ̸= 0 we have

p2 → p2 + iµ ≡ p2+. Performing the integral over p1, we get

F (M) =M2

Ñ
1

λs
− T

2

∑
p2

1»
p22+

é
− T

∑
p2

Ñ»
p22+ +M2 −

»
p22+ − M2

2
»
p22+

é
.

(5.5)

The second sum is manifestly finite. Also the first sum is finite, because λs is the bare ’t
Hooft coupling. We can trade the bare coupling for a UV cutoff Λ via the T = µ = 0 gap
equation (1.26),

1

λs
=

∫ Λ

−Λ

dp2
2π

∫
dp1
2π

1

p2 +M2
0

≈ 1

2π
log

Å
2Λ

M0

ã
, (5.6)

where M0 is the mass of the fermions at T = µ = 0. We can define a renormalization
scheme by putting a cutoff p2,max = π(2nmax − 1)T over the Matsubara frequencies and
relate it to the UV cutoff as Λ = 2πnmaxT . In this way (5.5) is finite and we can safely
remove both cut-offs by taking nmax → ∞. We then get

F (M) =
M2

2π

Å
log

Å
4πT

M0

ã
+Reψ

Å
1

2
+ i

µ

2πT

ãã
− T

∑
p2

Ñ»
p22+ +M2 −

»
p22+ − M2

2
»
p22+

é
,

(5.7)

where ψ is the digamma function. The minimization over M is performed as follows.
Extremizing with respect to M , one obtains an implicit expression

log

Å
4πT

M0

ã
+Reψ

Å
1

2
+

iµ

2πT

ã
− 2πTRe

∑
p2>0

Ñ
1»

M2 + p22+

− 1»
p22+

é
= 0 , (5.8)
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which is inverted numerically at fixed (µ, T ). Then, the resulting values for M are plugged
back into F to obtain Fhom = minM F (M), which is plotted as a function of (µ, T ) see
Figure 5.1.

Let us now consider spiral configurations. Under a U(1)A transformation the HS field
∆ = ρ eiθ transforms as (1.27),

U(1)A : ρ 7→ ρ , θ 7→ θ + 2α , α ∈ Z . (5.9)

At large N we can then identify (cf. (3.10))

θ =
ϕ√
N

, (5.10)

where ϕ is the compact scalar in the bosonization of the model at T = 0, c.f. (3.10). In
terms of the HS field ∆, the chiral spiral configuration (1.42) reads

∆(x) =Me2iqx , (5.11)

where we expect q = µ at large N (at fixed λs and λv = 0), and we denote x ≡ x1. Let us
however keep q generic and minimize the free energy F (M, q) over these configurations, to
prove that indeed this is the case. We have

F (M, q) =
M2

λs
−

∞∑
n=1

(−1)n+1

n
× Tr[/∂

−1
M(e2iqxP+ + e−2iqxP−)]

n . (5.12)

As before, we can interpret the traces diagrammatically, as each insertion of P±, denoted
by ⊕,⊖ respectively, brings an insertion of mass M and spatial momentum ∓2q. By
momentum conservation in the loop there has to be equal number of P± insertions, which
must be alternated because P±γ

µP± = 0. Therefore,

−Tr log
î
/∂
−1
M(e2iqxP+ + e−2iqxP−)

ó2n
= 2

⊕
1+ ⊖

1−

⊖
n− ...

, (5.13)

where the extra factor of 2 comes from P+ ↔ P−. Letting p1∓ = p1 ∓ 2q, at T = µ = 0
one has

∞∑
n=1

1

n

⊕
1+ ⊖

1−

⊖
n− ...

=

∫
d2p

(2π)2
log

Ç
1 +

M2(p21 + p22 − q2 + 2iqp2)

(p21− + p22)(p
2
1+ + p22)

å
. (5.14)

At nonzero T and µ, after p1 integration we have

F (M, q) =
M2

λs
− T

∑
p2

(»
M2 + p22+(q)−

»
p22+(q)

)
, (5.15)

where p2+(q) = π(2n + 1)T + i(µ − q). It is immediate to verify that the configuration
with

q = µ , (5.16)



74 CHAPTER 5. THE N = ∞ PHASE DIAGRAM WITH FEYNMAN DIAGRAMS
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Figure 5.1: The large N free energy F as a function of µ and T , in units of M0. At
low T , the chiral spiral configuration (yellow) is favored with respect to the homogeneous
configuration (brown) and the chirally symmetric phase (green). At T = Tc, there is a
second order phase transition (red line) dividing the chiral spiral phase from the chirally
symmetric phase. Assuming homogeneity one finds a different phase transition line (blue
line).

achieves minimization of F (M, q) with respect to q. Proceeding as in the homogeneous
configuration, for q = µ, we then get

F (M,µ) =

[
M2

2π

Å
log

Å
πT

M0

ã
− γ

ã
− T

∑
p2

Å»
p22 +M2 − |p2| −

M2

2|p2|

ã]
, (5.17)

where γ is the Euler-Mascheroni constant. We see that the µ-dependence drops completely
in F (M,µ), and that

Fcs = min
M,q

F (M, q) = Fhom(µ = 0) . (5.18)

We compare the minimum of the free energy in the homogeneous and inhomogeneous
configurations in Fig. 5.1. We see that the chiral spiral configuration ∆ = M(T )e2iµx is
always favored with respect to the homogeneous configuration ∆ = M(µ, T ); moreover,
one has M(T ) = 0, i.e. the symmetric massless phase is recovered, for

T ≥ Tc =
eγ

π
M0 , (5.19)

where a second order phase transition occurs.1

5.2 Periodic Fermions and Persistent Order

We can repeat the diagrammatic argument for the case of fermions with periodic boundary
conditions along the thermal cycle. This is equivalent to choosing a different spin structure
for the spacetime manifold. Let us start from the expression of the free energy density per
flavor,

F (M, q) =
M2

λs
− T

∑
p2

(»
M2 + p22(q)−

»
p22(q)

)
, (5.20)

1Note that the value of Tc is renormalization scheme-dependent.
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Figure 5.2: The large N free energy F (for periodic fermions) as a function of µ and T ,
in units of M0. The massless configuration (green) is favored only at high µ with respect
to the homogeneous configuration (orange), but the spiral configuration (yellow) is always
favored with respect to both of them. As a consequence, symmetry is never restored at
high temperature.

where now p2(q) = 2πnT + i(µ− q), n ∈ Z, in order to impose periodicity. As in the case
of thermal fermions, this expression contains divergences that need to be regularized. It is
convenient to separate the contribution from the zero-mode in the sum,

F (M, q) =
M2

λs
− T

(»
M2 − (µ− q)2 −

»
−(µ− q)2

)
− 2T Re

∑
p2>0

(»
M2 + p22(q)−

»
p22(q)

)
.

(5.21)

We proceed similarly as in the antiperiodic case. We use the T = µ = 0 gap equation, to
trade the dependence on the bare coupling λs for the UV cutoff Λ. Similarly, we regularize
the sum by placing a cutoff p2,max = 2πnmaxT over the Matsubara frequencies and relate
it to the UV cutoff by letting Λ = p2,max. Removing the cutoff, we are left with

F (M, q) =
M2

2π

ï
log

Å
4πT

M0

ã
+Reψ

Å
1 +

i(µ− q)

2πT

ãò
− T

(»
M2 − (µ− q)2 −

»
−(µ− q)2

)
− 2T Re

∑
p2>0

Ñ»
M2 + p22(q)−

»
p22(q)−

M2

2
»
p22(q)

é
.

(5.22)

We now compare the minimum of F over the whole parameter space with the one computed
assuming translational invariance (q = 0). In the former case, q-minimization is obtained
for q = µ, as in the antiperiodic setup. We can extremize with respect to M to get an
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implicit expression for M ,

log

Å
4πT

M0

ã
+Reψ

Å
1 +

i(µ− q)

2πT

ã
− πT Re

1√
M2 − (µ− q)2

− 2πT Re
∑
p2>0

Ñ
1»

M2 + p22(q)
− 1»

p22(q)

é
= 0 ,

(5.23)
and use this expression to get the value of the free energy numerically, both for q = 0 and
for q = µ. The results are plotted in Figure 5.2. We see that, as in the antiperiodic setup,
the spiral configuration is always favored with respect to the homogeneous one. This time,
however, the M = 0 configuration is never favored with respect to the spiral one at any
value of T and µ, i.e. translational invariance is never restored.



Conclusions and Outlook

In this thesis, we have studied a specific interacting model of fermions in 1+1 dimensions,
the chiral Gross-Neveu model. Our main accomplishments have been to rigorously derive
the ground state of a strongly interacting theory, as well as having computed correlation
functions of certain local operators in it. This determination has come from a mixture of
’t Hooft anomaly matching arguments which have constrained the nature of the vacuum,
either to spontaneously break a ZN symmetry at zero temperature or to provide persistent
order with periodic boundary conditions for fermions, and explicit CFT computations for
the gapless excitation on top of the vacuum.

Thanks to our efforts, we are ready to draw the phase diagram of the chiral Gross-
Neveu model at finite N . For fermions that are thermal, i.e. antiperiodic around the
Euclidean time direction, the quasi-long-range ordered crystalline phase at T = 0 is the
only remnant at finite N of the large-N crystal phase, with an amplitude of the two-point
function of the would-be order parameter that decays power-like with the distance. At
T > 0, thermal fluctuations destroy any asymptotic large-distance behavior with a finite
correlation length, and the oscillating behavior in the two-point function is visible only
at finite scales, cf. Figure 5.3. For periodic fermions, instead, we have found that the
crystal phase persists at arbitrarily high temperatures, and the amplitude of the two-point
function approaches a finite value at large distances, see Figure 5.4.

The obvious question that is left open is to which extent the methods and the results of
this thesis can be extended to the physics of the ordinary Gross-Neveu model. The main
difference between the two is in the amount of symmetry preserved by the deformation,
which is orthogonal, GGN = O(2N)V ×ZA2 , rather than unitary, GcGN = U(N)V ×U(1)A.
This implies that its bosonization has a more natural description as a deformed Spin(2N)1
WZW model, since the marginally relevant (ψ̄ψ)2 operator has a local realization in terms
of SO(2N) currents. Nevertheless, it is possible that an expression in terms of a compact
scalar degree of freedom can still be obtained, but for sure it will not be free. Moreover,
we expect that the DF

8 anomaly derived in the free theory will still be present with the
Gross-Neveu deformation, pointing towards the existence of persistent order for periodic
fermions also in that setup.

There is another direction from which we could have studied this problem, completely
orthogonal to the one present in this thesis, and that is integrability. Both the ordinary
and the chiral Gross-Neveu model are integrable field theories. Their symmetries are so
constraining that one can solve the Yang-Baxter equation for the three-body scattering
and determine their exact spectrum of asymptotic states and S-matrix elements [115–118].
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Quasi-Long-Range Crystalline Order

Disordered Phase

µ

T

Figure 5.3: (T, µ) phase diagram for the finite N chiral Gross-Neveu model, with thermal
fermions. The drawings sketch the shape of the two-point function of the would-be order
parameters (4.5) and (4.52).

Quasi-Long-Range Crystalline Order

Persistent Crystal Phase

T

µ

Figure 5.4: (T, µ) phase diagram for the finite N chiral Gross-Neveu model, with periodic
fermions around the Euclidean time direction. The drawings sketch the shape of the two-
point function of the would-be order parameters (4.5) and (4.53).

With Thermodynamic Bethe Ansatz techniques, one can compute essentially any informa-
tion about the ground state properties in the thermodynamic limit as a function of the
thermodynamic parameters, see e.g. [119] for a review. This approach is extremely pow-
erful as it is completely free from assumptions, except the underlying symmetries of the
system. It has one downside, namely that its computational complexity increases rapidly
with the number of flavors. Even for N as small as 2, though, it would be interesting to
have our predictions checked explicitly by the Bethe Ansatz.

Our thesis contains a discussion about a certain DF
8 anomaly of a system of free Dirac

fermions. Anomalies of fermionic systems are classified in terms of spin group cobordisms,
rather than group cohomology. The cobordism groups for the discrete D8 symmetry are
not discussed as extensively in literature as simpler cases (see however [120–123]). Our
construction has the advantage of making the appearence of the anomaly manifest in a
concrete way from a parent Z2×Z2×Z2 anomaly of a compact scalar under the bosoniza-
tion/fermionization duality. It would be interesting to rederive this result within the for-
malism of discrete fermionic anomalies.

In two spacetime dimensions, the dualities presented in Section 2.3 are exact as they
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are obtained by gauging discrete symmetries. In three spacetime dimensions, a similar
set of dualities exists, but they are not exact dualities, rather statements about emerging
properties in the infrared [124, 125]. As such, they are useful for describing quantum crit-
ical points of condensed matter systems, in particular those who fall outside the Landau
paradigm. Our work is very similar in spirit to this approach, but from a more high-energy
perspective.

Summarizing, we have used dualities to find equivalent descriptions of a strongly-
interacting system, in which our question – namely, the nature of the phase diagram of the
chiral Gross-Neveu model at finite N – became easier to answer. The techniques in this
thesis can in principle be extended to many other interacting theories in 1+1 dimensions.
In particular it would be nice to study models of fermions with more general deformations.
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Appendix A

Free field realization at N flavors

The SU(N)1 WZW model can also be described in terms of N−1 compact scalars, in what
is known as free field realization [126]. This description makes manifest only the U(1)N−1

Cartan subalgebra of SU(N)1. However, it is useful here because it allows us to write in
an alternative form the current-current deformation. Let θℓ , ℓ = 1, . . . , N − 1, be scalars
with radius r =

√
2. In these variables, the undeformed SU(N)1 theory reads simply

L0 =
N−1∑
ℓ=1

2

8π
∂+θℓ ∂−θℓ , (A.1)

where we have made explicit the radius in the normalization of the kinetic term, so that
with these conventions θℓ ∼ θℓ + 2π. The SU(N) currents are given by

J ℓ± = − 1

4π
∂±θℓ , Jα+ =

i

2π
exp(iα · ϑ) , Jα− =

i

2π
exp(−iα · ϑ̄) , (A.2)

where ϑℓ and ϑ̄ℓ are the holomorphic and antiholomorphic components of θl, and α ∈ ∆+

are the positive roots of the su(N) algebra. We then have∑
A

JA+J
A
− =

1

16π2
∂+θℓ ∂−θℓ −

1

2π2

∑
α∈∆+

cos(α · θ) . (A.3)

The scalar potential can be rewritten in a more explicit form as

∑
α∈∆+

cos(α · θ) =
N−1∑
p=1

N−1∑
i1>i2>···>ip=1

cos

(
N−1∑
ℓ=1

(Ai1ℓ +Ai2ℓ + · · ·+Aipℓ)θℓ

)
, (A.4)

where Aij = 2δi,j − δ|i−j|,1 is the su(N) Cartan matrix. Using (A.4) it is not difficult to
see that the potential has exactly N classical minima, attained at

θℓ = Θ
(k)
ℓ ≡ 2πℓ

N
k , k = 0, 1, . . . , N − 1 . (A.5)

It is instructive to look at the symmetries preserved by the JJ̄ deformation in this
language. Of the full PSU(N)V ×ZLN symmetry, the ones that are explicit are only a ZKN ×
ZSN × ZLN subgroup, with ZKN × ZSN ⊂ PSU(N)V being ‘clock’ and ‘shift’ transformations.
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The action on the matrix field U is as follows,
ZLN : U 7→ e

2πi
N U ,

ZKN : U 7→MKUM
†
K , (MK)ab = e

2πi(a−1)
N δa,b ,

ZSN : U 7→MSUM
†
S , (MS)ab = δa,b−1 mod N ,

(A.6)

which translates to the following action on the (anti-)holomorphic components of θℓ,
ZLN : ϑℓ 7→ ϑℓ +

2π
N ℓ , ϑ̄ℓ 7→ ϑ̄ℓ ,

ZKN : ϑℓ 7→ ϑℓ +
2π
N ℓ , ϑ̄ℓ 7→ ϑ̄ℓ − 2π

N ℓ ,

ZSN : ϑℓ 7→ ϑℓ+1 − ϑ1 , ϑ̄ℓ 7→ ϑ̄ℓ+1 − ϑ̄1 , ϑN = ϑ̄N ≡ 0 ,

(A.7)

The configurations Θ(k)
ℓ spontaneously break the ZLN symmetry: under ZLN , Θ(k)

ℓ 7→ Θ
(k+1)
ℓ ;

on the other hand, they preserve the ZKN × ZSN symmetry.

A.1 Condensation for N = 2

For N = 2, the deformed theory is a sine-Gordon model, for which ⟨TrU⟩ can be exactly
computed and shown to be non-vanishing. The non-Abelian JA+J

A
− deformation modifies

the free SU(2)1 = U(1)2 WZW model,

L =
2

8π
∂+θ ∂−θ +

λ

16π2
∂+θ ∂−θ −

λ

4π2
cos(2θ) , (A.8)

with θ ∼ θ+2π in this normalization. This is also known as the 2-folded sine-Gordon model
introduced in [127]. The k-folded sine-Gordon model differs from the original sine-Gordon
model as the target space for the scalar is wrapped into a circle in order to have exactly
k minima of the potential. This spontaneously breaks the U(1) translational symmetry of
the scalar to its Zk subgroup. We have two classical degenerate minima of the potential,
at θ = 0 and θ = π.

In the undeformed SU(2)1 theory U is a (h, h̄) = (1/4, 1/4) field transforming in the
bifundamental representation of SU(2). In terms of the compact scalar θ, up to unitary
transformations, we have

Uab =
1√
2

Ç
eiθ −eiθ̃

e−iθ̃ e−iθ

å
, (A.9)

where θ̃ is the T-dual of θ. Note that cos(θ) = TrU/
√
2 is a local operator and takes the

classical value +1 at θ = 0 and −1 at θ = π. The exact quantum vacuum expectation
value of ⟨TrU⟩ can be computed using the results of [128], where a formula for one-point
functions of vertex operators in the sine-Gordon model is derived. Using eq.(20) of [128]
we get

⟨TrU⟩ =
√
2

2MΓ
Ä
1+ξ
2

ä
4π

3
2Γ
Ä
ξ
2

ä  ξ
2(1+ξ)

exp
(
A(ξ)

)
, (A.10)

where

A(ξ) =

∫ ∞

0

dt

t

 sinh2
(
ξ t
ξ+1

)
2 sinh

(
ξ t
ξ+1

)
sinh(t) cosh

Ä
1
ξ+1 t

ä − ξe−2t

2(1 + ξ)

 , ξ =
4π

λ
, (A.11)
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Figure A.1: The value of ⟨TrU⟩/
√
2 as a function of λ.

and M is the mass of the sine-Gordon soliton, which is exactly determined in terms of ξ:

M =
2

1−ξ
2 Γ
( ξ
2

)
√
πΓ
(1+ξ

2

) ( Γ
(

1
1+ξ

)
ξ Γ
( ξ
1+ξ

)) 1+ξ
2

. (A.12)

We report in figure A.1 the value of TrU/
√
2 as a function of λ. As can be seen, it is

non-vanishing for any value of λ > 0. For large λ we enter a semi-classical regime. The
soliton mass (A.12) reads

M ≈
√
2λ

2π2
(1 +O(λ−1)) , (A.13)

and agrees with its semi-classical value. Consistently, TrU approaches the classical value√
2.

A.1.1 Symmetry breaking from the mixed Z2 anomaly

We could have argued for the same result without computations, as the 2-folded sine-
Gordon model presents the mixed ’t Hooft anomaly (4.9) between ZP2 −ZW2 −ZC2 inherited
from the free theory. As a consequence, it cannot have a unique symmetric ground state.
Noticeably, the JJ̄-deformed SU(2)1 WZW model has a mixed PSU(2)V − ZL2 anomaly
(4.7) leading to the same conclusion. We show here that these anomalies are in fact the
same, in the sense that the anomaly (4.9) embeds into the anomaly (4.7) for N = 2.

Let us recall how ZP2 , ZW2 , and ZC2 act on the scalar fields,
ZP2 : θ 7→ θ + π , θ̃ 7→ θ̃ ,

ZW2 : θ 7→ θ , θ̃ 7→ θ̃ + 2π ,

ZC2 : θ 7→ −θ , θ̃ 7→ −θ̃ ,
(A.14)

where we have also included the action on the T-dual field θ̃. On the SU(2)1 side, let
us work with “clock” and “shift” matrices, cf. (A.6). Using the expression (A.9), it is not
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difficult to see that

K(U) ≡MKUM
−1
K =W (U) , S(U) ≡MSUM

−1
S =WC(U) , L(U) ≡ −U = PW (U) ,

(A.15)
where P, W, C are the generators of ZP2 , ZW2 , and ZC2 , respectively.

Thanks to this correspondence, we can translate the triple anomaly of the compact
boson (4.9) to a special case of the PSU(2)V − ZL2 mixed anomaly (4.7). We can largely
repeat the argument for N = 1 presented in Section 4.2.1 in an almost identical way. The
symmetry operators K = W and S = WC will not commute on the L = PW -twisted
sector. Indeed, on U(1)2 primary operators,

ZL2 : Ve,m 7→ (−1)e+mVe,m ,
ZK2 : Ve,m 7→ (−1)mVe,m ,
ZS2 : Ve,m 7→ (−1)−mV−e,−m ,

(A.16)

and since in the L-twisted sector e,m ∈ Z + 1/2, it is evident that K and S will not
commute there, but rather anticommute. Similarly, K2 = −1 on the L-twisted sector.



Appendix B

Two-point function of vertex
operators on T 2

B.1 Free case

Let ϕ be a free compact boson of radius R, ϕ ∼ ϕ + 2πR, living on the torus with
parameter τ . We are interested in computing the two-point functions of primary operators
on the torus. Because of electric and magnetic neutrality, the only non-vanishing two-point
functions are of the kind

⟨Ve,m(z1, z̄1)V−e,−m(z2, z̄2)⟩ . (B.1)

This has been computed e.g. in [101], to which we refer for the full computation.1 Let
us report only the key steps that we wish to generalize. Since the boson is compact,
periodicity of ϕ on the torus can be satisfied up to 2πRZ. The two-point function (B.1) gets
contributions from each periodicity sector (n, n′), where the field ϕ satisfies the following
boundary conditions,

ϕ(z + 1, z̄ + 1) = ϕ(z, z̄) + 2πRn ,

ϕ(z + τ, z̄ + τ̄) = ϕ(z, z̄) + 2πRn′ .
(B.2)

We can decompose ϕ such that it satisfies the boundary conditions (B.2) and that it has
a discontinuity of 2πRm along the line that connects z1 and z2,

ϕ = Φcl
n,n′ +Φcl

m + ϕ0 , (B.3)

with

Φcl
n,n′(z, z̄) = 2πR

Im (z(n′ − nτ̄))

Im τ
, (B.4)

Φcl
m(z, z̄) = mR Im

ï
log

θ1(z − z1|τ)
θ1(z − z2|τ)

− 2π

Im τ
zRe z12

ò
, (B.5)

and ϕ0 the free part, with propagator

⟨ϕ0(z, z̄)ϕ0(0, 0)⟩ = − log

∣∣∣∣ θ1(z|τ)∂zθ1(0|τ)
e−π

(Im z)2

Im τ

∣∣∣∣2 . (B.6)

1Please note that the corresponding expression and its derivation as appear in [101] contain some
typographical errors. Here we report the correct expression.
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The final result reads

ZR⟨Ve,m(z1, z̄1)V−e,−m(z2, z̄2)⟩ =
Å
∂zθ1(0|τ)
θ1(z12|τ)

ã2he,m
Ç
∂zθ1(0|τ)
θ1(z12|τ)

å2h̄e,m

×

× 1

|η(τ)|2
∑
e′,m′

qhe′,m′ q̄h̄e′,m′e4πi[αe′,m′αe,mz12−ᾱe′,m′ ᾱe,mz̄12] ,

(B.7)

where
αe,m =

1√
2

Å
e

R
+
mR

2

ã
, ᾱe,m =

1√
2

Å
e

R
− mR

2

ã
. (B.8)

B.2 Nontrivial ZPN background

We repeat the above computation in the presence of a nontrivial ZPN ⊂ U(1)P background
on the torus. The insertion of a ZPN defect alters the boundary conditions of the scalar
field. Let a, b ∈ ZN denote twists by ZPN on the two cycles. Then the new boundary
conditions in each (n, n′) sector become

ϕ(z + 1, z̄ + 1) = ϕ(z, z̄) + 2πR(n+ a/N) ,

ϕ(z + τ, z̄ + τ̄) = ϕ(z, z̄) + 2πR(n′ + b/N) .
(B.9)

One easily computes the partition function in the presence of defects,

ZR[a, b] =
1

|η(τ)|2
∑
e,m

qhe,m+a/N q̄h̄e,m+a/N e−2πieb/N , (B.10)

and similarly for the (unnormalized) correlation function one obtains the following result,

ZR[a, b] ⟨Ve,m(z1, z̄1)V−e,−m(z2, z̄2)⟩[a,b]

=

Å
∂zθ1(0|τ)
θ1(z12|τ)

ã2he,m
Ç
∂zθ1(0|τ)
θ1(z12|τ)

å2h̄e,m
1

|η(τ)|2
×

×
∑
e′,m′

qhe′,m′+a/N q̄h̄e′,m′+a/N e−2πie′b/Ne4πi[αe′,m′+a/Nαe,mz12−ᾱe′,m′+a/N ᾱe,mz̄12] .

(B.11)

B.3 Nontrivial ZL2 background

We would like to turn on a background for the symmetry ZL2 as in (2.55),

ZL2 : ϕ 7→ ϕ+
2πℓ

2
pR , ϕ̃+

2πℓ

2
p′

2

R
, ℓ = 0 , 1 . (B.12)

Here, p and p′ are coprime positive integers such that ZL2 matches the Z2 subgroup of the
U(1)L symmetry at the rational value R2 = 2p′/p. In doing so we lose modular covariance
due to the chiral anomaly. To restore modular covariance, we should consider a product
theory of the compact scalar with another theory with equal (and opposite) anomaly for
a ZL2 symmetry. Then turning on the diagonal ZL2 background in the product theory is
equivalent to turning on the same ZL2 background for both factors. This is what we will
be doing, and for this reason we are allowed to ignore the issue of modular covariance.
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The partition function for general ZL2 background [la, lb], la, lb ∈ {0, 1}, can be computed
with the same method as above, and one obtains

ZR[la, lb] =
1

|η(τ)|2
∑
e,m∈Z

(−1)lb(pe+p
′m)qhe+p′la/2,m+pla/2 q̄h̄e+p′la/2,m+pla/2 , (B.13)

The correlation functions between vertex operators is also easily generalized from the
one in the absence of background to

ZR[la, lb] ⟨Ve,m(z1, z̄1)V−e,−m(z2, z̄2)⟩R[la,lb]

=

Å
∂zθ1(0|τ)
θ1(z12|τ)

ã2he,m
Ç
∂zθ1(0|τ)
θ1(z12|τ)

å2h̄e,m
1

|η(τ)|2
×

×
∑

e′∈Z+p′la/2

∑
m′∈Z+pla/2

qhe′,m′ q̄h̄e′,m′e4πi[αe′,m′αe,mz12−ᾱe′,m′ ᾱe,mz̄12] .

(B.14)

B.4 Chemical potential for U(1)W

In the presence of a chemical potential for U(1)W , the action reads

S =
1

8π

∫
(∂ϕ)2 d2x+

µ

2πR

∫
∂1ϕ d

2x , (B.15)

The classical minimum of this action is

Φcl
µ (z, z̄) = 2µRe z/R . (B.16)

This means that ϕ will in general satisfy the boundary condition

ϕ(z + 1, z̄ + 1) = ϕ(z, z̄) + 2πR(n+ µ/(πR2)) ,

ϕ(z + τ, z̄ + τ̄) = ϕ(z, z̄) + 2πR(n′ + µRe τ/(πR2)) .
(B.17)

Proceeding as usual, one gets the following expression for the partition function,

ZR,µ =
1

|η(τ)|2
∑
e,m

q
he,m+µN/πR2 q̄

h̄e,m+µN/πR2e−2ieµN Re τ . (B.18)

Let us now compute the two-point function. To the decomposition (B.3) we should add
the term (B.16). By doing so, one obtains

ZR,µ ⟨Ve,m(z1, z̄1)V−e,−m(z2, z̄2)⟩µ

=

Å
∂zθ1(0|τ)
θ1(z12|τ)

ã2he,m
Ç
∂zθ1(0|τ)
θ1(z12|τ)

å2h̄e,m

× e2ieµRe z12/R2−2mµ Im z12/R2×

× 1

|η(τ)|2
∑
e′,m′

[
q
he′,m′+µ/πR2 q̄

h̄e′,m′+µ/πR2e−2ie′µRe τ×

× e
4πi
Ä
αe′,m′+µ/πR2αe,mz12−ᾱe′,m′+µ/πR2 ᾱe,mz̄12

ä]
.

(B.19)
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Let us also add a nontrivial ZPN background. Then for the partition function one gets

ZR,µ[a, b] =
1

|η(τ)|2
∑
e,m

q
he,m+a/N+µ/πR2 q̄

h̄e,m+a/N+µ/πR2e−2πie
Ä

b
N
+ µ

πR2 Re τ
ä
, (B.20)

while the correlator reads

ZR,µ[a, b] ⟨Ve,m(z1, z̄1)V−e,−m(z2, z̄2)⟩µ,[a,b]

=

Å
∂zθ1(0|τ)
θ1(z12|τ)

ã2he,m
Ç
∂zθ1(0|τ)
θ1(z12|τ)

å2h̄e,m

e2ieµRe z12/R2−2mµ Im z12/R2 1

|η(τ)|2
×

×
∑
e′,m′

[
q
he′,m′+a/N+µ/πR2 q̄

h̄e′,m′+a/N+µ/πR2e−2πie′
Ä

b
N
+ µ

πR2 Re τ
ä
×

× e
4πi
Ä
αe′,m′+a/N+µ/πR2αe,mz12−ᾱe′,m′+a/N+µ/πR2 ᾱe,mz̄12

ä]
.

(B.21)

For a nontrivial ZL2 background, similar expressions hold,

ZR,µ[la, lb] =
1

|η(τ)|2
∑

e∈Z+p′ la
2

∑
m∈Z+p la

2

q
he,m+µ/πR2 q̄

h̄e,m+µ/πR2e−2ieµRe τ (−1)lb(pe+p
′m) ,

(B.22)
and

ZR,µ[la, lb] ⟨Ve,m(z1, z̄1)V−e,−m(z2, z̄2)⟩µ,[la,lb]

=

Å
∂zθ1(0|τ)
θ1(z12|τ)

ã2he,m
Ç
∂zθ1(0|τ)
θ1(z12|τ)

å2h̄e,m

e2ieµN Re z12/R2−2mµN Im z12/R2 1

|η(τ)|2
×

×
∑

e′∈Z+p′la/2

∑
m′∈Z+pla/2

[
q
he′,m′+µ/πR2 q̄

h̄e′,m′+µ/πR2e−2ie′µRe τ (−1)lb(pe
′+p′m′)

× e
4πi
Ä
αe′,m′+µ/πR2αe,mz12−ᾱe′,m′+µ/πR2 ᾱe,mz̄12

ä]
.

(B.23)



Appendix C

Useful identities for elliptic
θ-functions

In dealing with CFT computations on the torus one systematically encounters infinite
sums that can be expressed in terms of elliptic θ-functions. This class of functions has a
huge number of identities that can be used to further simplify expressions. We follow [129].

The elliptic θ-function of argument u ∈ C and modular parameter τ ∈ C, with charac-
teristics a, b ∈ R, is defined as

θa,b(u|τ) =
∑
k∈Z

exp
{
πiτ(k + a)2 + 2πi(k + a)(u+ b)

}
. (C.1)

This series converges absolutely for any u ∈ C if Im τ > 0. It has the following properties,

θa,b
(
u+ τa′ + b′|τ

)
= e−2πia′(u+b+b′+a′τ/2)θa+a′,b+b′(u|τ) ,

θa+1,b(u|τ) = θa,b(u|τ) ,
θa,b+1(u|τ) = e2πiaθa,b(u|τ) .

(C.2)

A special class of θ-functions is given by the ones with a, b either integer or half-integer,
which can be reconduced to the following four basic θ-functions,

θ1(u|τ) = −θ 1
2
, 1
2
(u|τ) = −i

∑
k∈Z

(−1)kq
1
2(k+

1
2)

2

eπi(2k+1)u ,

θ2(u|τ) = θ 1
2
,0(u|τ) =

∑
k∈Z

q
1
2(k+

1
2)

2

eπi(2k+1)u ,

θ3(u|τ) = θ0,0(u|τ) =
∑
k∈Z

q
k2

2 e2πiku ,

θ4(u|τ) = θ0, 1
2
(u|τ) =

∑
k∈Z

(−1)kq
k2

2 e2πiku ,

(C.3)

with1

q = e2πiτ . (C.4)
1Here we use the most common convention in physics. The most common convention in mathematics

is q = eπiτ .
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Additionally, another typically encountered function is θ′1(u|τ) = ∂uθ1(u|τ), as well as the
Dedekind η-function,

η(τ) = q1/24
∞∏
n=1

(1− qn) . (C.5)

Elliptic θ-functions have particularly simple transformation laws under a shift of the
argument u by one of the two periods of the torus at fixed τ ,

θ1(u+ 1|τ) = −θ1(u|τ) , θ1(u+ τ |τ) = −e−πi(2u+τ)θ1(u|τ) ,
θ2(u+ 1|τ) = −θ2(u|τ) , θ2(u+ τ) = e−πi(2u+τ)θ2(u|τ) ,
θ3(u+ 1|τ) = θ3(u|τ) , θ3(u+ τ) = e−πi(2u+τ)θ3(u|τ) ,
θ4(u+ 1|τ) = θ4(u|τ) . θ4(u+ τ) = −e−πi(2u+τ)θ4(u|τ) ,

(C.6)

as well as under shifts of u by half-periods,

θ1
(
u+ 1

2 |τ
)
= θ2(u|τ) , θ1

(
u+ τ

2 |τ
)
= ie−πi(u+τ/4)θ4(u|τ) ,

θ2
(
u+ 1

2 |τ
)
= −θ1(u|τ) , θ2

(
u+ τ

2 |τ
)
= e−πi(u+τ/4)θ3(u|τ) ,

θ3
(
u+ 1

2 |τ
)
= θ4(u|τ) , θ3

(
u+ τ

2 |τ
)
= e−πi(u+τ/4)θ2(u|τ) ,

θ4
(
u+ 1

2 |τ
)
= θ3(u|τ) , θ4

(
u+ τ

2 |τ
)
= ie−πi(u+τ/4)θ1(u|τ) .

(C.7)

However, their most relevant relations are the ones that involve modular transformations.
Under a modular T transformation,

θ1(u|τ + 1) = e
πi
4 θ1(u|τ) ,

θ2(u|τ + 1) = e
πi
4 θ2(u|τ) ,

θ3(u|τ + 1) = θ4(u|τ) ,
θ4(u|τ + 1) = θ3(u|τ) ,
η(τ + 1) = eiπ/12η(τ) ,

(C.8)

whereas under a modular S transformation,

θ1(u/τ | − 1/τ) = −i
√
−iτeπiu2/τθ1(u|τ) ,

θ2(u/τ | − 1/τ) =
√
−iτeπiu2/τθ4(u|τ) ,

θ3(u/τ | − 1/τ) =
√
−iτeπiu2/τθ3(u|τ) ,

θ4(u/τ | − 1/τ) =
√
−iτeπiu2/τθ2(u|τ) ,

η(−1/τ) =
√
−iτη(τ) .

(C.9)

Oftentimes one also finds useful also the following addition formulas,

θ1(u|τ)θ1(v|τ) = θ3(u+ v|2τ)θ2(u− v|2τ)− θ2(u+ v|2τ)θ3(u− v|2τ) ,
θ1(u|τ)θ2(v|τ) = θ1(u+ v|2τ)θ4(u− v|2τ) + θ4(u+ v|2τ)θ1(u− v|2τ) ,
θ2(u|τ)θ2(v|τ) = θ2(u+ v|2τ)θ3(u− v|2τ) + θ3(u+ v|2τ)θ2(u− v|2τ) ,
θ3(u|τ)θ3(v|τ) = θ3(u+ v|2τ)θ3(u− v|2τ) + θ2(u+ v|2τ)θ2(u− v|2τ) ,
θ3(u|τ)θ4(v|τ) = θ4(u+ v|2τ)θ4(u− v|2τ)− θ1(u+ v|2τ)θ1(u− v|2τ) ,
θ4(u|τ)θ4(v|τ) = θ3(u+ v|2τ)θ3(u− v|2τ)− θ2(u+ v|2τ)θ2(u− v|2τ) ,

(C.10)
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or equivalently,

2θ1(u+ v|2τ)θ1(u− v|2τ) = θ4(u|τ)θ3(v|τ)− θ3(u|τ)θ4(v|τ) ,
2θ1(u+ v|2τ)θ4(u− v|2τ) = θ1(u|τ)θ2(v|τ) + θ2(u|τ)θ1(v|τ) ,
2θ2(u+ v|2τ)θ2(u− v|2τ) = θ3(u|τ)θ3(v|τ)− θ4(u|τ)θ4(v|τ) ,
2θ2(u+ v|2τ)θ3(u− v|2τ) = θ2(u|τ)θ2(v|τ)− θ1(u|τ)θ1(v|τ) ,
2θ3(u+ v|2τ)θ3(u− v|2τ) = θ3(u|τ)θ3(v|τ) + θ4(u|τ)θ4(v|τ) ,
2θ4(u+ v|2τ)θ4(u− v|2τ) = θ3(u|τ)θ4(v|τ) + θ4(u|τ)θ3(v|τ) ,

(C.11)

which, as a corollary, have the famous relation

θ41(u|τ) + θ43(u|τ) = θ42(u|τ) + θ44(u|τ) . (C.12)
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